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Viscosity solutions and hyperbolic motions:
a new PDE method for
the N-body problem

By EZEQUIEL MADERNA and ANDREA VENTURELLI

Abstract

We prove for the N-body problem the existence of hyperbolic motions for
any prescribed limit shape and any given initial configuration of the bodies.
The energy level h > 0 of the motion can also be chosen arbitrarily. Our
approach is based on the construction of global viscosity solutions for the
Hamilton-Jacobi equation H(x, dyu) = h. We prove that these solutions are
fixed points of the associated Lax-Oleinik semigroup. The presented results
can also be viewed as a new application of Marchal’s Theorem, whose main
use in recent literature has been to prove the existence of periodic orbits.
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1. Introduction

This paper is about the Newtonian model of gravitation, also known as
the classical N-body problem. We start by recalling the standard notation.
Let E be an Euclidean space, in which the punctual masses my,...,my > 0
are moving under the action of the inverse-square law of universal gravitation.
If the components of x = (r1,...,7y) € EV are the positions of the bodies,
then we shall denote by r;; = ||r; —r; || the distance between bodies i and
j for any pair 1 < ¢ < 57 < N. The Newton’s equations can be written as
i = VU(x), where U : EN — RU { 400} is the Newtonian potential,

U(x) = Z m;m; 7‘%1 ,
1<]

and the gradient is taken with respect to the mass scalar product. A config-
uration z € EV is said to be without collisions if U (x) < 400, that is to say,
whenever we have r;; # 0 for all i # j. We denote €2 C EN the open and
dense set of configurations without collisions. Therefore Newton’s equations
define an analytic local flow on TQ = Q x EV, with a first integral given by
the energy constant

1.
h=slE]? - U@

One of the main difficulties for the analysis of the dynamics in this model
is the uncertainty, for a given motion, about the presence of singularities after
a finite amount of time. That is to say, we cannot predict whether a certain
evolution of the bodies will be defined for all future time or not. We recall that
maximal solutions that end in finite time must either undergo collisions at the
last moment, or else have an extremely complex behavior called pseudocollision
([17, p. 39]). Notwithstanding, the classification of all possible final evolutions
was developed, for motions assumed to be without singularities in the future,
essentially in terms of the asymptotic behavior of the distance between the
bodies. Some of the greatest contributions in this direction are undoubtedly
those due to Chazy, and especially those that he obtained in the works [8],
[9] that we comment below. However, this approach does not provide the
existence of motions for any type of final evolution.
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In this paper we will be concerned with the class of hyperbolic motions
defined by Chazy by analogy with the Keplerian case.

Definition. Hyperbolic motions are those such that each body has a dif-
ferent limit velocity vector, that is, 7;(t) = a; € E as t — 400, and a; # a;
whenever ¢ # j.

If V' is a normed vector space and x(t) is a smooth curve in V' with asymp-
totic velocity a € V, then we must have z(t) =ta + o(t) as t — +o0, but the
converse is of course not true. However, for V =E" and a=(ay,...,ay) €,
the converse is satisfied by solutions of the Newtonian N-body problem (see
Lemma 4.1). Thus, hyperbolic motions are characterized as motions without
singularities in the future and such that x(t) = ta+o(t) for some configuration
a €.

It follows that for any hyperbolic motion, we have at < 745(t) < St for
some positive constants, for all ¢ < j, and for all ¢ big enough. As we will see,
Chazy proved that this weaker property also characterizes hyperbolic motions.

As usual, I(z) = (z,z) = > ;mi(r;,r;)p will denote the moment of in-
ertia of the configuration x € EV with respect to the origin of E. When the
motion z(t) is given, we will use the notation U (¢) and I(t) for the compositions
U(z(t)) and I(z(t)) respectively. Thus for a hyperbolic motion such that z(t) =
at + o(t) as t — 400, we have U(t) — 0, I(t) ~ I(a)t? and 2h = I(a) > 0.

We say that a motion x(t) has limit shape when there is a time dependent
similitude S(t) of the space E such that S(¢)z(t) converges to some config-
uration a # 0. (Here the action of S(t) on EV is the diagonal one.) Thus
the limit shape of a hyperbolic motion is the shape of his asymptotic velocity
a = limy_,; ot '2(¢). Note that, in fact, this represents a stronger way of hav-
ing a limit shape, since in this case the similarities are given by homotheties.

1.1. Ezistence of hyperbolic motions. The only explicitly known hyper-
bolic motions are of the homographic type, meaning that the configuration is
always in the same similarity class. For this kind of motion, z(t) is all the
time a central configuration, that is, a critical point of I*/2U. This is a strong
limitation; for instance, the only central configurations for N = 3 are either
equilateral or collinear. Moreover, the Painlevé-Wintner conjecture states that
up to similarity there are always a finite number of central configurations. The
conjecture was confirmed by Hampton and Moeckel [23] in the case of four
bodies, and by Albouy and Kaloshin [2] for generic values of the masses in the
planar five-body problem.

On the other hand, Chazy proved in [9] that the set of initial conditions
giving rise to hyperbolic motions is an open subset of T2 and, moreover, that
the limit shape depends continuously on the initial condition (see Lemma 4.1).
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In particular, a motion close enough to some hyperbolic homographic motion is
still hyperbolic. However, this does not allow us to draw conclusions about the
set of configurations that are realised as limit shapes. In this paper we prove
that any configuration without collisions is the limit shape of some hyperbolic
motion. To our knowledge, there are no results in this direction in the literature
on the subject.

An important novelty in this work is the use of global viscosity solutions,
in the sense introduced by Crandall, Evans and Lions [15], [14], for the super-
critical Hamilton-Jacobi equation

(HJ) H(z,dyu) = h, z e EN,

where H is the Hamiltonian of the Newtonian N-body problem, and h > 0.

We will found global viscosity solutions through a limit process inspired by
the Gromov’s construction of the ideal boundary of a complete locally compact
metric space. To do this, we will have to generalize to the case h > 0 the Holder
estimate for the action potential discovered by the first author in [25] in the
case h = 0. With this new estimate we will remedy the loss of the Lipschitz
character of the viscosity subsolutions, which is due to the singularities of the
Newtonian potential.

In a second step, we will show that the functions thus obtained are in fact
fixed points of the Lax-Oleinik semigroup. Moreover, we will prove that given
any configuration without collisions a € €2, there are solutions of equation (HJ)
such that all its calibrating curves are hyperbolic motions having the shape of
a as limit shape. Following this method (developed in Section 2) we get to our
main result.

THEOREM 1.1. For the Newtonian N-body problem in a space E of di-
mension at least two, there are hyperbolic motions x : [0, +00) — EN such that

z(t) =v2hta+o(t) as t— +oo

for any choice of xg = x(0) € EV, for any configuration without collisions
a € Q normalized by || a || = 1, and for any choice of the energy constant h > 0.

We emphasize the fact that the initial configuration can be chosen with
collisions. This means that in such a case, the motion = given by the theo-
rem is continuous at ¢t = 0 and defines a maximal solution z(t) €  for t > 0.
For instance, choosing zo = 0 € EY, the theorem gives the existence of ejec-
tions from the total collision configuration, with prescribed positive energy and
arbitrarily chosen limit shape.

Moreover, the well-known Sundman’s inequality (see Wintner [42]) implies
that motions with total collisions have zero angular momentum. Therefore, we
deduce the following non-trivial corollary.
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COROLLARY 1.2. For any configuration without collisions a € €, there is
a hyperbolic motion with zero angular momentum and asymptotic velocity a.

It should be said that the hypothesis that excludes the collinear case
dim £ = 1 is only required to ensure that action minimizing curves do not
suffer collisions. The avoidance of collisions is thus assured by the celebrated
Marchal’s Theorem that we state below in Section 2.1. The collinear case
could eventually be analyzed in the light of the results obtained by Yu and
Zhang [44].

Theorem 1.1 should be compared with that obtained by the authors in
[27], which concerns completely parabolic motions. We recall that completely
parabolic motions (as well as total collisions) have a very special asymptotic
behavior. In his work of 1918 [8], Chazy proves that the normalized config-
uration must approximate the set of normal central configurations. Under a
hypothesis of non-degeneracy, he also deduces the convergence to a particular
central configuration. This hypothesis is always satisfied in the three-body
problem. However, a first counterexample with four bodies in the plane was
founded by Palmore [33], thus allowing the possibility of motions with infinite
spin (see Chenciner [12, p. 281]).

In all the cases, Chazy’s Theorem prevents arbitrary limit shapes for com-
pletely parabolic motions as well as for total collisions. In this sense, let us
mention, for instance, the general result by Shub [39] on the localisation of
central configurations, showing that they are isolated from the diagonals.

We should also mention that the confinement of the asymptotic configu-
ration to the set of central configurations, both for completely parabolic mo-
tions and for total collisions, extends to homogeneous potentials of degree
a € (—2,0). For these potentials, the mutual distances must grow like {2/(2-0a)
in the parabolic case and must decay like |t — tg |2/ (2=9) i the case of a total
collision at time ¢ = t3. On the other hand, it is known that potentials giving
rise to strong forces near collisions can present motions of total collision with
non-central asymptotic configurations. We refer the reader to the comments
on the subject by Chenciner in [11] about the Jacobi-Banachiewitz potential,
and to Arredondo et al. [3] for related results on the dynamics of total collisions
in the case of Schwarzschild and Manev potentials.

Let us say that there is another natural way to prove the existence of
hyperbolic motions, using the fact that the Newtonian force vanishes when all
mutual distances diverge. We could call these motions almost linear. The way
to do that is as follows. Suppose first that (zg,a) € Q x Q is such that the
half-straight line given by Z(t) = z¢ + ta, ¢ > 0 has no collisions (Z(t) € €2
for all ¢ > 0). Consider now the motion x(¢) with initial condition z(0) = xg
and £(0) = aa for some positive constant a. It is not difficult to prove that,
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for @ > 0 chosen big enough, the trajectory z(t) is defined for all ¢ > 0, and
moreover, it is a hyperbolic motion with limit velocity b € €2 close to aa. In
particular, the limit shape of such a motion can be obtained as close as we
want from the shape of a.

The previous construction is unsatisfactory for several reasons. First, we
do not get exactly the desired limit shape but a close one. This approximation
can be made as good as we want, but we lose the control of the energy constant
h of the motion, whose order of magnitude is that of &®. Secondly, it is not
possible to apply this method when the half-straight line T presents collisions.
For instance, this is the case if we take a = zg—x¢ for any choice of zg € EN \ Q.
Finally, even if the homogeneity of the potential can be exploited to find a
new hyperbolic motion with a prescribed positive energy constant, and the
same limit shape, we lose the control on the initial configuration. Indeed, if
x is a hyperbolic motion defined for all ¢ > 0 with energy constant A, then
the motion z defined by z(t) = Az(A\~%/%t) is still hyperbolic with energy
constant A~'h. Moreover, the limit shapes of z and x) are the same, but
2(0) = Az(0), meaning that the initial configuration is dilated by the factor
A

1.2. Other expansive motions. Hyperbolic motions are part of the family
of expansive motions that we define now. In order to classify them, as well as
for further later uses, we summarize below a set of well-known facts about the
possible evolutions of the motions in the Newtonian N-body problem.

Definition (Expansive motion). A motion z : [0, +00) — € is said to be
expansive when all the mutual distances diverge, that is, when r;;(t) — 400
for all i < j. Equivalently, the motion is expansive if U(t) — 0.

We will see that there are three well-defined classes of expansive motions.
First of all we must observe that, since U(t) — 0 implies ||Z(t)| — V/2h,
expansive motions can only occur with h > 0.

In his pioneering work, Jean Chazy proposed a classification of motions in
terms of their final evolution. In the Keplerian case there is only one distance
function to consider, and the three classes of motions are elliptic, parabolic and
hyperbolic. Extending the analysis for N > 3, he introduced several hybrid
classes of motions, such as hyperbolic-elliptical in which some distances diverge
and others remain bounded. In his attempt to achieve a full classification, he
obtains the theoretical possibility of complex behaviors such as the so-called
oscillatory motions or the superhyperbolic motions; see Saari and Xia [38].
After the works of Chazy, and for quite some time, specialists have doubted the
existence of such motions because of his complex and paradoxical appearance.
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The same can be said about the existence of pseudo-collision singularities,
which, as is well known, are impossible if N = 3.

Let us say that the existence results of oscillatory motions goes back to
the work of Sitnikov [40] for the spatial restricted three-body problem. Then,
the main idea in this paper was extended to the unrestricted problem by Alek-
seev. (See Moser [32] for a more detailed explanation of this and other related
developments.) Sitnikov’s ideas were undoubtedly very important for the con-
struction of the first example of a motion with a pseudo-collision singularity
with five bodies by Xia [43]. With respect to superhyperbolic motions we must
say that, although there are no known examples of them, they exist at least in
a weak sense for the collinear four-body problem (with regularisation of binary
collisions) [38].

As we will see, to achieve the proof of the announced results, it will be
crucial to show certain motions that will be obtained are not superhyperbolic,
and that they do not suffer collisions nor pseudo-collisions.

We need to introduce two functions that play an important role in the
classical description of the dynamics. For a given motion, these two functions
are

r(t) =minr(t) and  R(t) = maxr;(t),
1<) 1<)
the minimum and the maximum separation between the bodies at time t. We
now recall some facts concerning the possible behaviors of the trajectories as
t — 400 in terms of the behaviors of these functions.
We start by fixing some notation and making some remarks.

Notation. Given positive functions f and g, we will write f =~ g when the
quotient of them is bounded between two positive constants.

Remark 1.3. It is easy to see that » ~ U~!. Moreover, R? ~ I, where
Io denotes the moment of inertia with respect to the center of mass G of
the configuration. To see this it suffices to write Ig in terms of the mutual
distances.

Remark 1.4. The function p = U I '/? is homogeneous of degree zero.
Some authors call this function the configurational measure. According to the
previous remark we have pu~ Rr~!.

Remark 1.5. By Koénig’s decomposition we have that I = Ig + M || G ||%,
where M is the total mass of the system. Therefore, using the Largange-Jacobi
identity I = 4h +2U we deduce that, if h > 0 and the center of mass is at rest,
then R(t) > At for some constant A > 0.

THEOREM (1922, Chazy [9, pp. 39-49]). Let x(t) be a motion with energy
constant h > 0 and defined for all t > t.
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(i) The limit
lim R(t)r(t)™' =L € [1, 400

t—-+o0
always exists.
(ii) If L < +oo, then there are a configuration a € Q and some function P,
which is analytic in a neighborhood of (0,0), such that for every t large
enough, we have

x(t) = ta — log(t) VU (a) + P(u,v),
where u =1/t and v = log(t)/t.

As Chazy pointed out, surprisingly Poincaré made the mistake of omitting
the log(t) order term in his “Méthodes Nouvelles de la Mécanique Céleste.”

Subsequent advances in this subject were recorded much later, when
Chazy’s results on final evolutions were included in a more general descrip-
tion of motions. From this development we must recall the following theorems.
Notice that none of them make assumptions on the sign of the energy con-
stant h.

THEOREM (1967, Pollard [37]). Let = be a motion defined for all t > tg.
If r is bounded away from zero, then we have that R = O(t) as t — +o00. In
addition, R(t)/t — +oo if and only if r(t) — 0.

This leads to the following definition.

Definition. A motion is said to be superhyperbolic when

limsup R(t)/t = +oo.
t—+o00
A short time later it was proven that either the quotient R(t)/t — o0,
or R = O(t) and the system expansion can be described more accurately.

THEOREM (1976, Marchal-Saari [29]). Let x be a motion defined for all
t > to. Then either R(t)/t — 400 and r(t) — 0, or there is a configuration
a € EN such that x(t) = ta + O(t*3). In particular, for superhyperbolic
motions the quotient R(t)/t diverges.

Of course this theorem does not provide much information in some cases;
for instance, if the motion is bounded, then we must have ¢ = 0. On the
other hand, it admits an interesting refinement concerning the the behavior
of the subsystems. More precisely, when R(t) = O(t) and the configuration
a given by the theorem has collisions, the system decomposes naturally into
subsystems, within which the distances between the bodies grow at most like
t2/3. Considering the internal energy of each subsystem, Marchal and Saari
[29, Th. 2 and Cor. 4, pp. 165-166] gave a description of the possible dynamics
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that can occur within the subsystems. From these results we can easily deduce
the following.

THEOREM (1976, Marchal-Saari [29]). Suppose that z(t) = ta + O(t*/3)
for some a € EN and that the motion is expansive. Then, for each pairi < j
such that a; = aj, we have 1;; ~ 2/3.

Notice that we can always consider the internal motion of the system, that
is, looking at the relative positions of the bodies with respect to their center
of mass. This gives a new motion with the same distance functions. Moreover,
the internal motion of an expansive motion is also expansive.

All the previous considerations allow us to classify expansive motions ac-
cording to the asymptotic order of growth of the distances between the bodies.
Since an expansive motion is not superhyperbolic, we can assume that it is
of the form z(t) = ta + O(t*?) for some a € EN. Moreover, we can assume
that the center of mass is at rest, meaning that G(a) = 0. We then get the
following three types:

H) Hyperbolic: a € 2, and r;; ~ t for all i < j;
J
(PH) Partially hyperbolic: a € EN \ Q but a # 0;
P) Completely parabolic: a =0, and r;; ~ t2/3 for all i < j.
J

Let hg be the energy constant of the above defined internal motion. It is
clear that the first two types can only occur if hg > 0, while the third requires
ho = 0.

Finally, we observe that Chazy’s Theorem applies in the first two cases.
In these cases, the limit shape of z(t) is the shape of the configuration a
and moreover, we have L < 4o0 if and only if z is hyperbolic. Of course if
ho > 0 and L = 400, then either the motion is partially hyperbolic or it is not
expansive.

1.3. The geometric viewpoint. We explain now the geometric formula-
tion and the geometrical meaning of this work with respect to the Jacobi-
Maupertuis metrics associated to the positive energy levels. Several technical
details concerning these metrics are given in Section 5. The boundary notions
are also discussed in Section 3.2. It may be useful for the reader to keep in
mind that reading this section can be postponed to the end.

We recall that for each h > 0, the Jacobi-Maupertuis metric of level
h is a Riemannian metric defined on the open set of configurations without
collisions 2. More precisely, it is the metric defined by j, = 2(h + U) gm,
where g, is the Euclidean metric in E”V given by the mass inner product. Our
main theorem has a stronger version in geometric terms. Actually Theorem 1.1
can be reformulated in the following way.
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THEOREM 1.6. For any h > 0, p € EN and a € Q, there is geodesic
ray of the Jacobi-Maupertuis metric of level h with asymptotic direction a and
starting at p.

This formulation requires some explanations. The Riemannian distance
dp, in € is defined as usual as the infimum of the length functional among all
the piecewise C'! curves in (2 joining two given points. We will prove that
dy, can be extended to a distance ¢y, in EV, which is a metric completion of
(Q,dp), and which also we call the Jacobi-Maupertuis distance. Moreover, we
will prove that ¢y, is precisely the action potential defined in Section 2.1.

The minimizing geodesic curves can then be defined as the isometric im-
mersions of compact intervals [a,b] C R within EY. Moreover, we will say
that a curve 7 : [0, +00) — E¥ is a geodesic ray from p € EV, if v(0) = p
and each restriction to a compact interval is a minimizing geodesic. To deduce
this geometric version of our main theorem it will be enough to observe that
the obtained hyperbolic motions can be reparametrized taking the action as
parameter to obtain geodesic rays.

We observe now the following interesting implication of Chazy’s Theorem.

Remark 1.7. If two given hyperbolic motions have the same asymptotic
direction, then they have a bounded difference. Indeed, if x and y are hyper-
bolic motions with the same asymptotic direction, then the two unbounded
terms of the Chazy’s asymptotic development of z and y also agree.

We recall that the Gromov boundary of a geodesic space is defined as
the quotient set of the set of geodesic rays by the equivalence that identifies
rays that are kept at bounded distance. From the previous remark, we can
deduce that two geodesic rays with asymptotic direction given by the same
configuration a € () define the same point at the Gromov boundary.

Notation. Let ¢p, : EN x EN — Rt be the Jacobi-Maupertuis distance
for the energy level h > 0 in the full space of configurations. We will write G,
for the corresponding Gromov boundary.

The proof of the following corollary is given in Section 5.

COROLLARY 1.8. If h > 0, then each class in Q3 = Q/RT determines a
point in Gy, that is composed by all geodesic rays with asymptotic direction in
this class.

On the other hand, if instead of the arc length we parametrize the geodesics
by the dynamical parameter, then it is natural to question the existence of
non-hyperbolic geodesic rays. We do not know if there are partially hyperbolic
geodesic rays. Nor do we know if a geodesic ray should be an expansive motion.
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In what follows we write || v ||, for the norm of v € T'Q? with respect to the
metric jp, and || p||, for the dual norm of an element p € T*Q. If v : (a,b) — 2
is a geodesic parametrized by the arc length, then

15(s) Iz = 2(h + U(x(s)) | 7(s) |* = 1

L we see that the parametriza-

for all s € (a,b). Taking into account that U~ r~
tion of motions as geodesics leads to slowed evolutions over passages near col-
lisions. We also note that for expansive geodesics we have || 4(s) || — 1/v/2h.
Finally we make the following observations about the Hamilton-Jacobi
equation that we will solve in the weak sense. First, equation (HJ), which

explicitly reads
1 2
Sl deu | = U() = h,
can be written in geometric terms, precisely as the eikonal equation

1
ol = s o =1
for the Jacobi-Maupertuis metric. On the other hand, the solutions will be ob-
tained as limits of weak subsolutions, which can be viewed as 1-Lipschitz func-
tions for the Jacobi-Maupertuis distance. We will see that the set of viscosity
subsolutions is the set of functions u : EY — R such that u(z) —u(y) < ¢n(x,y)

for all z,y € EN.

2. Viscosity solutions of the Hamilton-Jacobi equation

The Hamiltonian H is defined over T*EYN ~ EN x (E*)N as usual by

Hr,p) = 3 Ip |~ Ula)

and taking the value H(x, p) = —oo whenever the configuration x has collisions.
Here the norm is the dual norm with respect to the mass product, that is, for

p= (pl: s 7pN) € (E*)N7
2 —1 2 —1 2
IpI"=mi" llpo "+ +my llon |7,
and thus in terms of the positions of the bodies equation (HJ) becomes

Ty,

o
i<j Y

N

H(z,dyu) = Z

=1

1
2mi

Ou
8r,~

As is known, the method of characteristics for this type of equations consists
in reducing the problem to the resolution of an ordinary differential equation,
whose solutions are precisely the characteristic curves. Once these curves are
determined, we can obtain solutions by integration along these curves, from
a cross section in which the solution value is given. Of course, here the char-
acteristics are precisely the solutions of the N-body problem and cannot be



510 EZEQUIEL MADERNA and ANDREA VENTURELLI

computed. Our method will be the other way around: first we build a solution
as a limit of subsolutions, and then we find characteristic curves associated
with that solution.

We start by recalling the notion of viscosity solution in our context. There
is an extremely wide literature on viscosity solutions due to the great diversity
of situations in which they can be applied. For a general and introductory
presentation, the books of Evans [19] and Barles [6] are recommended. For a
broad view on the Lax-Oleinik semigroups, we suggest references [7], [16], [20].

Definition (Viscosity solutions). With respect to the Hamilton-Jacobi
equation (HJ), we say that a continuous function u : ENY — R is a

(1) wiscosity subsolution if for any 1 € C'(E") and for any configuration z
at which u — 1 has a local maximum, we have H(xo, dz,v) < h;

(2) wiscosity supersolution if for any 1 € C'(E") and for any configuration
xo at which v — v has a local minimum, we have H (zg, dy,1) > h.

(3) wiscosity solution as long as is both a subsolution and a supersolution.

Remark 2.1. Tt is clear that we get the same notions by taking test func-
tions v defined on open subsets of EVV.

Remark 2.2. The notion of viscosity solution is a generalization of the
notion of classical solution. Indeed, if v € C'(EY) satisfies the Hamilton-
Jacobi equation everywhere, then u is a viscosity solution since we can take
1 = u as a test function.

If u € CO(EY) is a viscosity solution, then we have H(z,d,u) = h at any
point where wu is differentiable. This follows from the fact that for any C° func-
tion u, the differentiability at =g € EV implies the existence of C' functions
¥~ and T such that ¢~ < u < ¥t and ¥~ (xg) = u(xg) = ¥ (x0). As we will
see (Lemma 2.5), in our case viscosity subsolutions are locally Lipschitz over
the open and dense set Q C EY of configurations without collisions. Therefore
by Rademacher’s Theorem they are differentiable almost everywhere. But, as
is well known to the reader familiar with the subject, being a viscosity solu-
tion is a much more demanding property than satisfying the equation almost
everywhere.

Remark 2.3. We note that the participation of the unknown u in equa-
tion (HJ) is only through the derivatives dyu. Therefore the set of classical
solutions is preserved by addition of constants. Also note that the same applies
for the set of viscosity subsolutions and the set of viscosity supersolutions.

From now on, we will use of the powerful interaction between the Hamil-
tonian view of dynamics and the Lagrangian view. The Hamilton-Jacobi equa-
tion provides a great bridge between the symplectic aspects of dynamics and
the variational properties of trajectories.
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Once the Lagrangian action is defined, we will characterize the set of vis-
cosity subsolutions as the set of functions satisfying a property of domination
with respect to the action. Then, the next step will be to prove the equicon-
tinuity of the family of viscosity subsolutions by finding an estimate for an
action potential.

2.1. Action potentials and viscosity solutions. The Lagrangian is defined
on TEN ~ EN x EN fiberwise as the convex dual of the Hamiltonian, that is,

L(z,v) = sup { p(v) — H(z,p) | p € ()" }
or equivalently,
1
L(z,0) = o v |* + U(2)

so, in particular, it takes the value L(x,v) = 400 if = has collisions. The
Lagrangian action will be considered on absolutely continuous curves, and its
value could be infinite. We will use the following notation. For z,y € E and
7> 0, let

C(a,y,7) = {v:la,b] » BV | y(a) =2, y(b) =y, b—a =T}
be the set of absolutely continuous curves going from x to y in time 7, and
Clz,y) = U Clz,y, 7).
>0

The Lagrangian action of a curve v € C(z,y,7) will be denoted

b b
A = [ L= [I5IE+ UG

It is well known that Tonelli’s Theorem on the lower semicontinuity of the
action for convex Lagrangians extends to this setting. A proof can be found,
for instance, in [24, Th. 2.3]. In particular, for any pair of configurations
z,y € EN, we have the existence of curves achieving the minimum value

gb(l‘?y)'r) = mln{AL(V) | e C(Il),y,T)}

for any 7 > 0. When x # y there also are curves reaching the minimum

gb(x,y) :mln{AL(rY) | WEC(:E,y)}:min{gb(m,y,T) |T>0}'

In the case © = y we have ¢(z,z) = inf { AL(y) | v € C(x,y)} = 0. We call
these functions on EN x EN respectively the fized time action potential and
the free time (or critical) action potential.

According to the Hamilton’s principle of least action, if a curve 7 : [a, b] —
EN is a minimizer of the Lagrangian action in C(z,y,7), then v satisfy New-
ton’s equations at every time t € [a,b] in which (¢) has no collisions, i.e.,
whenever v(t) € Q.
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On the other hand, it is easy to see that there are curves both with isolated
collisions and finite action. This phenomenon, already noticed by Poincaré
in [36], prevented the use of the direct method of the calculus of variations in
the N-body problem for a long time.

A big breakthrough came from Marchal, who gave the main idea needed
to prove the following theorem. Complete proofs of this and more general
versions were established by Chenciner [12] and by Ferrario and Terracini [21].

THEOREM (2002, Marchal [28]). Ify € C(z,y) is defined on some interval
[a,b], and satisfies AL(7y) = ¢(x,y,b— a), then y(t) € Q for all t € (a,b).

Thanks to this advance, the existence of countless periodic orbits has been
established using variational methods. Among them, the celebrated three-
body figure eight due to Chenciner and Montgomery [13] is undoubtedly the
most representative example, although it was discovered somewhat before.
Marchal’s Theorem was also used to prove the non-existence of entire free
time minimizers [24], or in geometric terms, that the zero energy level has
no straight lines. The proof we provide below for our main result depends
crucially on Marchal’s Theorem. Our results can thus be considered as a new
application of Marchal’s Theorem, this time in positive energy levels.

We must also define for h > 0 the supercritical action potential as the
function

on(z,y) =inf{ Apipn(y) | v €C(x,y) } =inf{ p(z,y,7)+ hr | T>0}.

For the reader familiar with the Aubry-Mather theory, this definition
should be reminiscent of the supercritical action potentials used by Mané to
define the critical value of a Tonelli Lagrangian on a compact manifold.

As before we prove (see Lemma 4.2 below), now for h > 0, that given
any pair of different configurations z,y € E, the infimum in the definition
of ¢p(z,y) is achieved by some curve v € C(z,y), that is, we have ¢p(z,y) =
Apin(7y). It follows that if v is defined in [0, 7], then v also minimizes Az, in
C(z,y,7), and by Marchal’s Theorem we conclude that ~ avoid collisions, i.e.,
v(t) € Q for every t € (0,7).

2.1.1. Dominated functions and viscosity subsolutions. Let us fix h > 0
and take a C* subsolution u of H(z,d,u) = h; that is, such that H(z,d,u) < h
for all 2 € EN. Notice now that since for any absolutely continuous curve
7y : [a,b] = EV we have

b
u(y(b)) — u((a)) = / dyu() dt,

by Fenchel’s inequality we also have

b
uO) —ur(@) < [ L)+ Hdy) de < Apanln),



VISCOSITY SOLUTIONS AND HYPERBOLIC MOTIONS 513

Therefore we can say that if u is a O subsolution, then

u(z) — uly) < Apqn(y)
for any curve v € C(x,y). This motivates the following definition.

Definition (Dominated functions). We said that u € C°(E?) is dominated
by L + h, and we will denote it by u < L + h if we have

u(y) —u(z) < gp(z.y) forall z,ye BY.

Thus we know that C! subsolutions are dominated functions. We prove
now the well-known fact that dominated functions are indeed viscosity subso-
lutions.

PROPOSITION 2.4. Ifu < L+ h, then u is a viscosity subsolution of (HJ).

Proof. Let u < L + h, and consider a test function ¢ € C*(EY). Assume
that u — ¢ has a local maximum at some configuration g € EV. Therefore,
for all z € EV, we have ¢(xq) — ¥(z) < u(zo) — u(x).

On the other hand, the convexity and superlinearity of the Lagrangian
implies that there is a unique v € EV such that H(xg,dy1)) = dugt(v) —
L(z,v). Taking any smooth curve z : (—6,0] — E” such that z(0) = ¢ and
#(0) = v we can write, for t € (—¢,0),

$lwo) = la(t)) _ ulwo) —u(z(®) _ _% Apn (z

it.01) -

—t - —t
Thus for t — 07, we get dy, 9 (v) < L(zg,v)+h, that is to say, H(xo, dzy) < h
as we had to prove. O

Actually, the converse can be proved. For all that follows, we will only
need to consider dominated functions, and for this reason, it will no longer be
necessary to manipulate test functions to verify the subsolution condition in
the viscosity sense. However, for the sake of completeness we give a proof of
this converse.

A first step is to prove that viscosity subsolutions are locally Lipschitz on
the open, dense, and full measure set of configurations without collisions. (For
this we follow the book of Bardi and Capuzzo-Dolcetta [5, Prop. 4.1, p. 62].)

LEMMA 2.5. The viscosity subsolutions of (HJ) are locally Lipschitz on Q.

Proof. Let u € C°(E™) be a viscosity subsolution, and let z € Q. We take
a compact neighborhood W of z in which the Newtonian potential is bounded,
i.e., such that W C Q. Thus our Hamiltonian is coercive on T*W, meaning
that given h > 0, we can choose p > 0 for which, if || p|| > p and w € W, then
H(w,p) > h.
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Now we choose 7 > 0 such that the open ball B(z,3r) is contained in W.
Let M = max{u(z) —u(y) | =,y € W}, and take k > 0 such that 2kr > M.

Now we take any configuration y € B(z,r), and in the closed ball B, =
B(y,2r), we define the function ¢y (z) = u(y) + k ||z —y|. We will use the
function v, as a test function in the open set By = B(y,2r) \ {y}. We
observe first that u(y) —,(y) = 0 and that u — 1), is negative in the boundary
of Py. Therefore the maximum of u — 1), is achieved at some interior point
xo € B(y,2r).

Suppose that o # y. Since ¢, is smooth on By, and u is a viscosity
subsolution, we must have H(xg,dy,1y) < h. Therefore we must also have
b=l duytty I < p.

We conclude that, if we choose k > p such that 2rk > M, then for any
y € B(z,r), the maximum of u — ¢ in Ey is achieved at gy, meaning that
u(z) —u(y) < k|lz —y| for all z € B,. This proves that u is k-Lipschitz on
B(z,r). O

Remark 2.6. By Rademacher’s Theorem, we know that any viscosity sub-
solution is differentiable almost everywhere in the open set 2. In addition,
at every point of differentiability x € Q we have H(z,dyu) < h. Therefore,
since © has full measure in EV, we can say that viscosity subsolutions satisfies
H(z,d,u) < h almost everywhere in BV,

Remark 2.7. We observe that the local Lipschitz constant & we have ob-
tained in the proof depends, a priori, on the chosen viscosity subsolution .
We will see that this is not really the case. This fact will result immediately
from the following proposition and Theorem 2.11.

We can prove now that the set of viscosity subsolutions of H(z,dyu) = h
and the set of dominated functions v < L 4 h coincide.

PROPOSITION 2.8. Ifw is a viscosity subsolution of (HJ), then w < L+ h.

Proof. Let uw: EV — R be a viscosity subsolution. We have to prove that
u(y) —u(z) < Apan(y)  forall z,y € BN, v € C(xz,y).

We start by showing the inequality for any segment s(t) = x+t(y—=z), t € [0, 1].
Note first that in the case y = x there is nothing to prove, since the action is
always positive. Thus we can assume that r = ||y —z || > 0.

We know H (z, d,u) < h is satisfied on a full measure set D C E in which
u is differentiable; see Lemma 2.5 and Remark 2.6. Assuming that s(t) € D
for almost every ¢ € [0,1], we can write

Gous(1) = dyou(y—2)  ae.in[0,1]
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from which we deduce, applying Fenchel’s inequality and integrating,

1
uly) — ulx) < /0 L(s(t).y — ) + H(s(t), dyyu) dt < Apen(s).

Our assumption may not be satisfied. Moreover, it could even happen that
all the segment is outside the set D in which the derivatives of u exist. This
happens, for instance, if x and y are configurations with collisions and with the
same colliding bodies. However Fubini’s Theorem tells us that our assumption
is verified for almost every y € S, = {y € EY | ||y — x| =7 }. Then

u(y) —u(x) < Arpyp(s) for almost y € S,.

Taking into account that both u and Az (s) are continuous as functions of y,
we conclude that the previous inequality in fact holds for all y € 5.

We remark that the same argument applies to any segment with constant
speed, that is to say, to any curve s(t) = z+tv, t € [a,b]. Concatenating these
segments we deduce that the inequality also holds for any piecewise affine curve
p € C(x,y). The proof is then achieved as follows.

Let v € C(z,y) be a curve such that Ar,(y) = ¢n(x,y). The existence
of such a curve is guaranteed by Lemma 4.2. Since this curve is a minimizer
of the Lagrangian action, Marchal’s Theorem assures that, if v is defined on
[a, b], then ~(t) € Q for all t € (a,b). As a consequence, the restriction of y to
(a,b) must be a true motion.

Suppose that there are no collisions at configurations z and y. Since in
this case v is thus C! on [a, b], we can approximate it by sequence of piecewise
affine curves p,, € C(z,y), in such a way that p,(t) — (¢) uniformly for ¢ over
some full measure subset D C [a,b]. In order to be explicit, let us define for
each n > 0 the polygonal p,, with vertices at configurations y(a + k(b —a)n™1)
for k = 0,...,n. Then D can be taken as the complement in [a,b] of the
countable set a + Q(b — a). Therefore, we have u(y) — u(x) < Ap1p(py) for all
n >0, as well as

nlglgo Apin(Pn) = Artn(v) = on(z,y).

This implies that u(y) — u(z) < ¢p(x,y). If there are collisions at x or y,
then we apply what we have proved to the configurations without collisions
ze = v(a+€) and y. = y(b — €), and we get the same conclusion taking the
limit as € — 0. This proves that u < L + h. O

Remark 2.9. The use of Marchal’s Theorem in the last proof seems to be
required by the argument. In fact, the argument works well for non-singular
Hamiltonians for which it is known a priori that the corresponding minimizers
are of class C!,

Notation. We will denote Sy, the set of viscosity subsolutions of (HJ).
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Observe that, not only we have proved that S is precisely the set of
dominated functions © < L+h, but also that Sj, agrees with the set of functions
satisfying H (x,d,u) < h almost everywhere in E¥.

2.1.2. Estimates for the action potentials. We give now an estimate for
¢y, that implies the viscosity subsolutions form an equicontinuous family of
functions. Therefore, if we normalize subsolutions by imposing u(0) = 0, then
according to the Ascoli’s Theorem we get to the compactness of the set of
normalized subsolutions.

The estimate will be deduced from the basic estimates for ¢(z,y,7) and
¢(x,y) found by the first author for homogeneous potentials and that we recall
now. They correspond in the reference to Theorems 1 and 2 and Proposi-
tion 9, considering that in the original formulation the value k = 1/2 is for the
Newtonian potential.

We will say that a given configuration = (r1,...,ry) is contained in a
ball of radius R > 0 if we have || r; —rg ||z < R for all 1 <i < N and for some
ro € E.

THEOREM ([25]). There are positive constants g and Py such that, if x
and y are two configurations contained in the same ball of radius R > 0, then

for any T > 0,
2

R T
QZS(JZ’,y,T) < Qg T + BO

7

If a configurations ¥ is close enough to a given configuration x, the min-
imal radius of a ball containing both configurations is greater than ||z — y ||.
However, this result was successfully combined with an argument providing
suitable cluster partitions in order to obtain the following theorem.

THEOREM ([25]). There are positive constants a1 and (1 such that, if x
and y are any two configurations, and r > ||x —y||, then for all T > 0,
2
r T
(*) d)(.’E,y,T) < aq 7 + /81 ;

Note that the right side of the inequality is continuous for 7, p > 0. There-
fore, we can replace r by ||z — y || whenever x # y.

Remark 2.10. If x = y, then the upper bound (x) holds for every r > 0.
2/3 we get to the upper bound ¢(z,z,7) < /3 that holds
for any 7 > 0, any « € EV, and for the positive constant u = oy + 3.

Choosing r = 7

Therefore we can now bound the critical potential. The previous remark
leads to ¢(z,x) = 0 for all z € EV. On the other hand, for the case z # y
we can bound ¢(z,y) with the bound for ¢(x,y,7), taking r = ||z — y || and

3/2
=z -y |*%
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THEOREM (Holder estimate for the critical action potential [25]). There
exists a positive constant n > 0 such that for any pair of configurations x,y
€ EN,

1
oz, y) < n llz—yl?2.

These estimates for the action potentials have been used firstly to prove
the existence of parabolic motions [25], [27] and were the starting point for the
study of free time minimizers [24], [26], as well as their associated Busemann
functions by Percino and Sanchez [35], [34], and later by Moeckel, Montgomery
and Sanchez [31] in the planar three-body problem.

For our current purposes, we need to generalize the Holder estimate of
the critical action potential in order to also include supercritical potentials.
As expected, the upper bound we found is of the form {(||x — y||), where
€:1]0,4+00) = RT is such that £(r) = rz for r — 0 and &(r) = r for r — +o0.

THEOREM 2.11. There are positive constants o and 8 such that, if x and
y are any two configurations and h > 0, then

1/2
on(z,y) < (allz—yll+nBllz—y]*) "

Proof. We have to bound ¢y, (z,y) = inf { ¢(z,y,t) + h7 | 7 > 0}. Fix any
two configurations x and y, and let r > || — y ||. We already know by (x) that
for any 7 > 0, we have

1
¢(xz,y,7)+hr < A— + B,

() T
A=a;r® and B=pr"'+h,

a1 and B1 > 0 being two positive constants. Since the minimal value of the

1/2

right side of inequality (xx) as a function of 7 is 2(AB)"/#, we conclude that

on(r,y) =inf{ p(z,y,t) + ht |7 >0}
< (ar+hﬁr2)1/2

for « = 4a161 and 8 = 4«aq. By continuity, we have that the last inequality
also holds for r = ||z — y ||, as we wanted to prove. O

COROLLARY 2.12. The set of viscosity subsolutions Sy ={u €S, | u(0)=0}
1s compact for the topology of the uniform convergence on compact sets.

Proof. By Propositions 2.4 and 2.8 we know that u € Sy, if and only if
u < L + h. Thus by Theorem 2.11 we have that, for any u € S and for all
z,y € EY,
u(z) —uly) < onlz,y) <&z —yl)),

where € : [0, 400) — R* is given by £(p) = (ap+ hﬁp2)1/2.
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Since £ is uniformly continuous, we conclude that the family of functions
Sy, is indeed equicontinuous. Therefore, the compactness of 82 is actually a
consequence of Ascoli’s Theorem. O

2.2. The Laz-Oleinik semigroup. We recall that a solution of H (x, d,u)=h
corresponds to a stationary solution U(t,z) = u(x) — ht of the evolution equa-
tion

U 4+ H(z,0,U) =0,
for which the Hopf-Lax formula reads

Ult,x) = mf{uo )+ AL(y )|yEEN,7€C(y,x,t)}.

In a wide range of situations, this formula provides the unique viscosity solution
satisfying the initial condition U(0,x) = up(x). Using the action potential we
can also write the formula as

Ult,z) = mf{uo )+ oy, z, t)|y€EN}

If the initial data wug is bounded, then U(t,z) is clearly well defined and
bounded. In our case, we know that solutions will not be bounded, thus we
need a condition ensuring that the function y — wuo(y) + ¢(y, z,t) is bounded
from below. Assuming ug < L + h, we have the lower bound

UO(w) — ht < U(](y) + d)(y,x,t)

for all t > 0 and all z € EV, but this is in fact an equivalent formulation for
the domination condition ug < L + h, that is to say, u € Sy,.

Definition (Lax-Oleinik semigroup). The backward! Lax-Oleinik semi-
group is the map 7' : [0, +00) X Sp — Sp, given by T'(t,u) = Tyu, where

Tiu(x 1nf{ +¢)y,:z:t)]y€EN}
for t > 0, and Tyu = u.

Observe that u < L + h if and only if u < Tyu + ht for all £ > 0. Also, we
note that Tyu — v — 0 as t — 0, uniformly in EV. This is clear since for all
z € EN and t > 0, we have —ht < Tyu(z) — u(z) < ¢(z,x,t) < pt'/3, where
the last inequality is justified by Remark 2.10.

It is not difficult to see that T" defines an action on Sy, that is to say, that
the semigroup property T; o Ty = Ty ¢ is always satisfied. Thus the continuity
at t = 0 spreads throughout all the domain.

YThe forward semigroup is defined in a similar way; see [16]. This other semigroup gives
the opposite solutions of the reversed Hamiltonian H(x,p) = H(z,—p). In our case the
Hamiltonian is reversible, meaning that H = H.
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Other important properties of this semigroup are the monotonicity, that
is to say, that v < v implies Tyu < Tiv, and the commutation with constants,
saying that for every constant k € R, we have T;(u + k) = Tyu + k.

Thus, for u € Sy, and s,t > 0, we can write Tsu < Ty(Tyu + ht) = Ty (Tsu)
+ ht, which implies that we have T u € Sy, for all s > 0.

Definition (Lax-Oleinik quotient semigroup). The semigroup (7})i>0 de-
fines a semigroup (7})¢>0 on the quotient space Sp, = Sp,/R, given by Ti[u] =

PROPOSITION 2.13. Given h > 0 and u € Sy, we have that [u] € Sy, is a
fized point of (T)¢>0 if and only if there is h' € [0, h] such that Tyu = u — b/t
for allt > 0.

Proof. The sufficiency of the condition is trivial. It is enough then to
prove that it is necessary. That [u] is a fixed point of T means that we have
Tilu] = [u] for all t > 0. That is to say, there is a function ¢ : RT — RF
such that Tyu = u + ¢(t) for each ¢ € R*. From the semigroup property,
we can easily deduce that the function ¢(¢) must be additive, meaning that
c(t+s) = c(t) +¢(s) for all t,s > 0. Moreover, the continuity of the semigroup
implies the continuity of c(t). As is well known, a continuous and additive
function from RY into itself is linear; therefore we must have c(t) = c(1)t.
Now, since u < Tyu + ht for all t € Rt we get 0 < ¢(1) + h. On the other
hand, since u < L — ¢(1) and S, = 0 for h < 0, hence —¢(1) > 0. We conclude
that ¢(t) = —h't for some h' € [0, h). O

2.2.1. Calibrating curves and supersolutions. We finish this section by re-
lating the fixed points of the quotient Lax-Oleinik semigroup and the viscosity
supersolutions of (HJ). This relationship is closely linked to the existence of
certain minimizers, which will ultimately allow us to obtain the hyperbolic
motions we seek.

Definition (calibrating curves). Let u € Sy, be a given subsolution. We say
that a curve v : [a,b] — EY is an h-calibrating curve of u if u(y(b)) —u(y(a)) =
Apn(7)-

Definition (h-minimizers). A curve v : [a,b] — E¥ is said to be an h-mini-
mizer if it verifies Appn(v) = én(v(a),v(b)).

Remark 2.14. As we have seen, the fact that u € Sy is characterized by
u < L + h. Therefore for all z,y € EY, we have

u(z) —u(y) < on(z,y) < Apsn(y)

for any v € C(x,y). It follows that every h-calibrating curve of u is an
h-minimizer.
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It is easy to prove that restrictions of h-calibrating curves of a given sub-
solution u € Sy, are themselves h-calibrating curves of w. This is also true, and
even more easy to see for h-minimizers. But nevertheless, there is a property
valid for the calibrating curves of a given subsolution but which is not satis-
fied in general by the minimizing curves. The concatenation of two calibrating
curves is again calibrating.

LEMMA 2.15. Let u € Sp. If y1 € C(z,y) and 2 € C(y,z) are both
h-calibrating curves of w, and if v € C(x,z) is a concatenation of y1 and s,
then 7 is also an h-calibrating curve of u.

Proof. We have u(y) — u(z) = Ar4n(y1) and u(z) — u(y) = Arin(r2)-
Adding both equations we get u(z) — u(x) = Ar1n(7)- O

Now we give a criterion for a subsolution to be a viscosity solution.
From here on, a curve defined on a non-compact interval will be said to be
h-calibrating if all its restrictions to compact intervals are too. In the same
way we define h-minimizers over non-compact intervals.

We start by proving a lemma on calibrating curves of subsolutions.

LEMMA 2.16. Let u € Sy, and let 7 : [a,b] — EV be an h-calibrating
curve of u. If xg = v(b) is a configuration with collisions, then there is no
Lipschitz function 1 defined on a neighborhood of xog such that ¢ < u and

Y(z0) = u(zo)-

Proof. Since our system is autonomous, we can assume without loss of
generality that b = 0. Thus the h-calibrating property of + says that for every
t € [a, 0],

0 0
/t 1A )2 dt + / U di + ht] = Apan( ligy) = u(xo) — u(y(1).

On the other hand, if ¥ < wu is a k-Lipschitz function on a neighborhood of zg
such that ¢ (z9) = u(zo), then we also have, for ¢ close enough to 0,

u(zo) — u(y(t)) < P(xo) — Y (v(1)) < k| ¥(t) — ol

Therefore we also have

0
J 131 e < 261900 - w0l
t

Now, applying Cauchy-Schwarz we can write

0 " 0 ) 1/2
/t||fv||dts|t|/ (/ 151 dt) ,
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and thus we deduce that

0 2
Iv(t) = 2o ||* < (/t 1l dt) < 2|y (t) — ol [t]

and hence that
[v(t) — o || < 2k|2].

Finally, since

0
[ U6y de < ulan) ~ ur(0) < K30~ a0
t
we conclude that .
/ Uly)dt < 2k*|t].
t

Therefore, dividing by || and taking the limit for ¢t — 0 we get U(xg) < 2k2.
This proves that xg has no collisions. O

PROPOSITION 2.17. If u € &y, is a viscosity subsolution of (HJ) and for
each © € EN, there is at least one h-calibrating curve v : (—6,0] — EN with
~v(0) = x, then u is in fact a viscosity solution.

Proof. We only have to prove that u is a viscosity supersolution. Thus
we assume that ¢ € CY(EV) and 9 € EV are such that u — ¢ has a local
minimum in zp. We must prove that H(zg, d,%) > h. First of all, we exclude
the possibility that xg is a configuration with collisions. To do this, it suffices
to apply Lemma 2.16, taking the locally Lipschitz function ¥ + u(zg) — 1 (z0).

Now let 7y : (—6,0] — EV with v(0) = z¢ and h-calibrating. Thus for
t e (—9,0],

0
[ p)de = bt = utan) —ut(0)
¢
and also, given that x( is a local minimum of u — ¢, for ¢ close enough to 0,

u(@o) — u(v(t)) < W(xo) — ¥((1)).

Since g € 2 and « is a minimizer, we know that v can be extended beyond
t = 0 as solution of Newton’s equation. In particular, v = 4(0) is well defined,
and moreover, using the previous inequality we find

Y(zo) —¥(1(1))

dzo(v) = lim > L(xg,v) + h,
t—0~ —t
which implies, by Fenchel’s inequality, that H(xo, dz,v) > h. O

The following proposition complements the previous one. It states that
under a stronger condition, the viscosity solution is in addition a fixed point
of the quotient Lax-Oleinik semigroup.
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PROPOSITION 2.18. Let u € Sy, be a viscosity subsolution of (HJ). If for
each x € EN there is an h-calibrating curve of u, say v : (—o0,0] — EN | such
that v, (0) = z, then Tyu = u — ht for all t > 0.

Proof. For each x € EN, for t > 0 we have
Tyu(z) — u(x) = inf {u(y) — u(@) + oy, z,8) |y € B }.

Thus it is clear that Tyu(z) — u(x) > —ht since we know that u < L + h. On
the other hand, given that =y, is an h-calibrating curve of wu,

w(z) — u(y2(—t)) = ¢(va(—1), 2, 1) + ht.

Writing y; = v.(—t) we have that u(y;) — u(z) + ¢(ys, x,t) = —ht, and we
conclude that Tyu(z) — u(x) < —ht. We have proved that Tyu = u — ht for all
t > 0. ([

Remark 2.19. The formulation of the previous condition can cause some
confusion, since the calibrating curves are parametrized on negative intervals.
Here the Lagrangian is symmetric, thus reversing the time of a curve always
preserves the action. More precisely, given an absolutely continuous curve -y :
[a,b] — EV, if we define 5 on [—b, —a] by 7(t) = v(—t), then AL(7) = AL(7).

We can reformulate the calibrating condition of the previous proposition
in this equivalent way: For each x € EV, there is a curve 7, : [0, +00) — EV
such that 7,(0) = z, and such that u(z) — u(vz(t)) = ALyn(yz ljo,g) for all
t>0.

Remark 2.20. The hypothesis of Proposition 2.17 implies the hypothesis
of Proposition 2.18. This is exactly what we do in the proof of Theorem 3.2
below.

3. Ideal boundary of a positive energy level

This section is devoted to the construction of global viscosity solutions
for the Hamilton-Jacobi equations (HJ). The method is quite similar to that
developed by Gromov in [22] to compactify locally compact metric spaces (see
also [4, Ch. 3]).

3.1. Horofunctions as viscosity solutions. The underlying idea giving rise
to the construction of horofunctions is that each point in a metric space
(X,d) can be identified with the distance function to that point. More pre-
cisely, the map X — C(X) that associates to each point z € X the func-
tion d;(y) = d(y,x) is an embedding such that for all zp,z; € X, we have
max| dag (y) — da, () | = d(z0,71).

It is clear that any sequence of functions d;, diverges if z, — oo, that is
to say, if the sequence z,, escapes from any compact subset of X. However, for
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a non-compact space X, the induced embedding of X into the quotient space
C(X)/R has in general an image with a non-trivial boundary. This boundary
can thus be considered as an ideal boundary of X.

Here the metric space will be (EY, ¢p,) with h > 0, and the set of continu-
ous functions CO(EY) will be endowed with the topology of the uniform conver-
gence on compact sets. Instead of looking at equivalence classes of functions, we
will take as the representative of each class the only one vanishing at 0 € EV.

Definition (Ideal boundary). We say that a function v € CO(EV) is in
the ideal boundary of level h if there is a sequence of configurations p,, with
| pn || = 400 and such that for all x € EV,

We will denote by By, the set of all these functions, which we will also call
horofunctions.

The first observation is that By, # @ for any value of A > 0. This can
be seen as a consequence of the estimate for the potential ¢; we proved; see
Theorem 2.11.

Actually for any p € EV, the function x — ¢n(x,p) — ¢1(0,p) is in 82,
the set of viscosity subsolutions vanishing at x = 0. Since by Corollary 2.12
we know that 82 is compact, for any sequence of configurations p, such that
|| pn || = 400, there is a subsequence that defines a function in Bj, as above.

It is also clear that By, C Sj,. Functions in By, are limits of functions in Sy,
and this set is closed in EV even for the topology of pointwise convergence. But
since we already know that the family Sy is equicontinuous, the convergence
is indeed uniform on compact sets.

Notation. When the value of h is understood, we will denote by w, the
function defined by uy(z) = ¢n(x,p), where p is a given configuration.

One fact that should be clarifying is that for any p € EV, the subsolution
given by u, fails to be a viscosity solution precisely at = = p. If x # p,
then there is a minimizing curve of Ar4s in C(p,x) (see Lemma 4.2 below),
and clearly this curve is h-calibrating of u,. On the other hand, there are
no h-calibrating curves of u, defined over an interval (—¢,0] and ending at
x = p. This is because u, > 0, u,(p) = 0, and h-calibrating curves, as
h-minimizers, have strictly increasing action. Actually, this property of the
u, functions occurs for all energy levels greater than or equal to the critical
one, in a wide class of Lagrangian systems. The simplest case to visualize
is surely the case of absence of potential energy in an Euclidean space, in
which we have u,(z) = h ||z —p|| and h-calibrating curves are segments of
the half-lines emanating from p with a constant speed (gradient curves).
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This suggest that the horofunctions must be viscosity solutions, which is
what we will prove now.

THEOREM 3.1. Given u € By, and r > 0 there are, for each x € EV, some
y € EN with |y —z|| = r, and a curve v, € C(y,x) such that u(z) — u(y) =
Arin(vz). In particular, every function u € By, is a global viscosity solution

of (HJ).

Proof. Let u € By, that is to say, u = lim, (up,, —up, (0)) for some sequence
of configurations p,, such that || p, || = 400, and u,, (z) = ¢p(z, pp).

Let 2 € EV be any configuration, and fix 7 > 0. Using Lemma 4.2 we get,
for each n > 0, a curve v, € C(pn,x) such that A p(7n) = én(pn,x). Each
curve 7, is thus an h-calibrating curve of u,,, .

If || p, — x|| > r, then the curve 7, must pass through a configuration y,
with ||y, — x| = r. Extracting a subsequence if necessary, we may assume
that this is the case for all n > 0, and that vy, — y, with ||y — z || = r. Since
the arc of v, joining ¥, to x also h-calibrates u,,, we can write

Up, () = Up, (Yn) = P (Yn, )
for all n big enough. We conclude that

w(@) —uly) = lim wup, (x) = up, (y) = ¢n(y, ),

which proves the first statement. The second one follows now from the criterion
for viscosity solutions given in Proposition 2.17. (]

Our next goal is to prove that horofunctions are actually fixed points of
the quotient Lax-Oleinik semigroup. We will achieve this goal by showing the
existence of calibrating curves allowing the use of Proposition 2.18. These
calibrating curves will be the key to the proof of the existence of hyperbolic
motions (see Figure 2).

Thanks to the previous theorem we can build maximal calibrating curves.
Then, Marchal’s Theorem will allow us to assert that these curves are in fact
true motions of the N-body problem. Next we have to prove that these motions
are defined over unbounded above time intervals; that is to say, we must exclude
the possibility of collisions or pseudocollisions. It is for this reason that we will
also invoke the famous von Zeipel’s theorem? that we recall now.

THEOREM (1908, von Zeipel [41]). Let = : (a,t*) — EV be a mazimal
solution of the Newton’s equations of the N-body problem with t* < +oo. If

2This theorem had no major impact on the theory until it was rediscovered after at least
half a century later, and it proved to be essential for the understanding of pseudocollision
singularities; see, for instance, Chenciner’s Bourbaki seminar [10]. Among other proofs, there
is a modern version due to McGehee [30] of the proof originally outlined by von Zeipel.
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|| z(t) || is bounded in some neighborhood of t*, then the limit x. = limy_4» x(t)
exists and the singularity is therefore due to collisions.

THEOREM 3.2. If u € By, then for each x € EN, there is a curve v, :
[0, +00) — EN with ~,(0) = =, and such that for all t > 0,

u(z) = u(v2(t)) = AL+n(Ve o)
In particular, every function u € By, satisfies Tyu = uw — ht for all t > 0.

Proof. Let us fix a configuration x € EV. By Theorem 3.1 we know that
u has at least one h-calibrating curve 7 : (—6,0] — EV such that v(0) = =.
By application of Zorn’s Lemma we get a maximal h-calibrating curve of the
form v : (t*,0] — EV with v(0) = 2. We will prove that t* = —oc, and thus
the required curve can be defined on [0, 4+00) by 75 (t) = v(—t).

Suppose by contradiction that t* > —oco. Since 7 is an h-minimizing curve,
we know that its restriction to (¢*,0) is a true motion with energy constant h.
Fither the curve can be extended as a motion for values less than t*, or it
presents a singularity at ¢ = t*. In the case of singularity, we have at t = t*
either a collision, or a pseudocollision. According to von Zeipel’s Theorem, in
the pseudocollision case we must have sup { || y(¢) || | ¢ € (¢*,0] } = 4o0.

Suppose that the limit y = lim;_4= y(¢) exists. Then by Theorem 3.1 we
can choose a calibrating curve 4 defined on (—4,0] and such that 5(0) = y.
Thus the concatenation of 4 with ~ defines a calibrating curve v* defined on
(t* — 6,0] and such that y*(0) = z. But this contradicts the maximality of +.

On the other hand, if we suppose that ||7y(¢)| is unbounded, we can
choose a sequence y, = 7(t,) such that ||y, — x| — 4oo. Let us define
An = ALY |it,.0))-

A standard way to obtain a lower bound for A, is by neglecting the po-
tential term that is positive. Then by using the Cauchy-Schwarz inequality
we obtain that for all n > 0, we have 2|t, | A, > [yn —n||>. Since v is
h-minimizing, we deduce that

lyn — |

hilt
2le, ]

on (yna «73) >

for all n > 0. Since ||y, —z|| = 400 and ¢, — t* > —o0, we get a contra-

diction with the upper estimate given by Theorem 2.11. Indeed that theorem

implies ¢y (yn, z) is bounded above by a function that is of order O(|| y, — z ||)
as || yn — || = 400, which contradicts the displayed inequality.

The last assertion is a consequence of Proposition 2.18 and Remark 2.19.

O

3.2. Busemann functions. We recall that a length space (X, d) is said to be
geodesic space if the distance between any two points is realized as the length of
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a curve joining them. A ray in X is an isometric embedding 7 : [0, +00) — X.
As we said in Section 1.3, the Gromov boundary of a geodesic space is defined
as the quotient space of the set of rays of X under the equivalence relation:
v ~ 7/ if and only if the function given by d(~(¢),~'(t)) on [0, 400) is bounded.

There is a natural way to associate a horofunction to each ray. Let us
write d,, for the function measuring the distance to the point p € X; that is,
dy(x) = d(x,p). Once 7 is fixed, we define

u(z) = dyy () — dyy (v(0))  and  uy = tlgglo Ug.

These horofunctions u, are called Busemann functions and are well de-
fined because of the geodesic characteristic property of rays. More precisely,
for any ray v and for all 0 < s < ¢, we have d(y(t),7(s)) = t — s and hence
that u; < ugs. Moreover, it is also clear that u; > —dv(o), which implies that
Uy > —dy ). We also note that u, = lim,, u;, whenever (t,)n>0 is a sequence
such that ¢, — oo.

It is well known that under some hypothesis on X we have that, for any
two equivalent rays v ~ 4/, the corresponding Busemann functions are the
same up to a constant; that is, [uy] = [u,]. Therefore in these cases a map
is defined from the Gromov boundary into the ideal boundary, and it is thus
natural to ask about the injectivity and the surjectivity of this map. However,
the following simple and enlightening example shows a geodesic space in which
there are equivalent rays v ~ +' for which [u,] # [u/].

Ezample (The infinite ladder). We define X C R? as the union of the two
straight lines R x { —1,1} with the segments Z x [—1, 1]; see Figure 1.

Figure 1. The infinite ladder.

We endow X with the length distance induced by the standard metric
in R2. It is not difficult to see that every ray in X is eventually of the form
x(t) = (£t + ¢,£1). Each possibility for the two signs determines one of the
four different Busemann functions that indeed compose the ideal boundary.
Therefore, there are four points in the ideal boundary of X, while there are
only two classes of rays composing the Gromov boundary of X.

Let us return to the context of the N-body problem; that is to say, let us
take as metric space the set of configurations EV, with the action potential ¢y,
as the distance function. Actually (EV, #;,) becomes a length space, and ¢y,
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coincides with the length distance of the Jacobi-Maupertuis metric when re-
stricted to 2. Proofs of all these facts are given in Section 5. We are interested
in the study of the ideal and Gromov boundaries of this space; in particular, we
need to understand the rays in this space having prescribed asymptotic direc-
tion. As we will see, they will be found as calibrating curves of horofunctions
in a special class.

Definition (Directed horofunctions). Given a configuration a # 0 we define
the set of horofunctions directed by a as the set

Bp(a) = {u eB|u= li7rln(upn — up, (0)), pn = Ana+o(A,), Ay — +00 } .

Remark 3.3. Theorem 2.11 implies, in a manner identical to the proof of
Corollary 2.12, that Bp,(a) # 0.

Figure 2. Calibrating curves of a hyperbolic Busemann function
u(z) = limy, (¢n(z, na) — ¢p(0,na)) in the Kepler problem.

The following theorem is the key for the proof of Theorem 1.1 and its
proof is given in Section 4.3.
THEOREM 3.4. Let a € Q and u € Bp(a). If v : [0, +00) — EV satisfies

u(7(0)) —u(y(t)) = Ar+n (¥ lj0,4)

for all t > 0, then v is a hyperbolic motion of energy h with asymptotic direc-
tion a.

We can thus deduce the following corollary, whose proof is a very easy
application of the Chazy’s Theorem on hyperbolic motions; see Remark 1.7.

COROLLARY 3.5. Ifa € Q and u € By(a), then the distance between any
two h-calibrating curves for u is bounded on their common domain.
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We can also apply Theorem 3.4 to deduce that calibrating curves of a
hyperbolic Busemann function are mutually asymptotic hyperbolic motions.

COROLLARY 3.6. If v is a hyperbolic h-minimizer and ., is its associated
Busemann function, then all the calibrating curves of u., are hyperbolic motions
with the same limit shape and direction as .

Proof. Since vy is hyperbolic, we know that there is a configuration without
collisions a € €2 such that v(t) = ta + o(t) as t — +o0. Taking the sequence
pn = v(n) we have that p, = na + o(n), and also that

Uy — Uy (0) = ngrfoo[upn — up, (0)].

This implies that u, — u,(0) € By(a), hence that u, is a viscosity solution.
Moreover, Theorem 3.4 says that the calibrating curves of w, all of the form
ta + o(t). On the other hand, clearly v calibrates u, since for any 0 < s < ¢,
we have that

Uy (1) (7(5)) = ty1) (7(0)) = —n(7(0),7()),
which in turn implies, taking the limit for ¢ — +o0, that

uy(Y(0)) = uy (7(s)) = —uy(7(s)) = ¢n(7(0),7(s)). 0

4. Proof of the main results on hyperbolic motions

This part of the paper contains the proofs that so far have been postponed
for different reasons. In the first part we deal with several lemmas and technical
results, after which we complete the proof of the main results in Section 4.3.

4.1. Chazy’s Lemma. The first lemma that we will prove states that the
set HT C TN of initial conditions in the phase space given rise to hyperbolic
motions is an open set. Moreover, it also says that the map defined in this set
that gives the asymptotic velocity in the future is continuous. This is precisely
what in Chazy’s work appears as continuité de linstabilité. We give a slightly
more general version for homogeneous potentials of degree —1, but the proof
works the same for potentials of negative degree in any Banach space.

Intuitively what happens is that, if an orbit is sufficiently close to some
given hyperbolic motion, then after some time the bodies will be so far away
from each other that the action of the gravitational forces will not be able to
perturb their velocities too much.

LEMMA 4.1. Let U : EN — RU{+o00} be a homogeneous potential of
degree —1 of class C? on the open set @ = {x € EN |U(z) < +o0o }. Let
x 1 [0,400) = Q be a given solution of & = VU (x) satisfying x(t) = ta + o(t)
as t — 400 with a € €.

Then we have the following:
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(1) The solution x has asymptotic velocity a, meaning that

tLHJPoox(t) -

(2) (Chazy’s continuity of the limit shape). Given € > 0, there are constants
t1 > 0 and 6 > 0 such that, for any maximal solution y : [0,T) — Q
satisfying || y(0) — z(0) || < 6 and || y(0) — z(0) || < J, we have

(i) T = o0, ||y(t) —ta|| < te for all t > ti; and moreover
(ii) there is b € Q with ||b—a || < € for which y(t) = tb+ o(t).

Proof. Let 0 < p < e such that the closed ball B = B(a, p) is contained in
Q. Let k =max{||VU(z) ||| z € B}, and choose to > 0 in such a way that for
any t > tg, we have || z(t) — ta || < tp. Therefore, since VU is homogeneous of
degree —2, for each t > to we have t~!z(t) € B and

[VU((t) || < t72|| VU () || < kt™2

Thus, for tg < t1 < ta, we can write

to ~+o00 9 k
it~ i) | < [ VU@E) lds< [ ks s =
t1 t1 1
from which we deduce that @(¢) has a limit for ¢ — +oo. This limit cannot
be other than lim & = a, since otherwise we would have that the derivative of
x(t) — ta has a non-null limit contradicting the hypothesis x(t) — ta = o(t).
Writing 21 = x(¢1) and &; = @(t1), we see that we can fix t; > to large
enough such that
||:E1 —tia || <t g
If, in addition, t; > 3k/p, then we also have
. k p
—all< X<k
i —all< 3 <2
On the other hand, since the vector field X(z,v) = (v,VU(z)) is of
class C!, it defines a local flow on T€). Let us denote by (zg,dg) the ini-
tial condition (z(0),4(0)) of x(t). We can choose ¢ > 0 such that, for any
choice of (yo,go) € T verifying || yo — zo || < 0 and || go — Zo || < J, the maxi-
mal solution y : [0,7) — Q with y(0) = yo and §(0) = yo satisfies the following
two conditions: T > t1, and
I —tal <t L and [l —af <%,
3 3
where y1 = y(t1) and g1 = y(t1).
Now, assume t € [t1,T) is such that y(s) € sB for all s € [t1,t]. As before
we have ||g(s) — 91 || < k/t1 < p/3, and thus ||y(s) — a| < 2p/3. Therefore
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we can deduce that
t
[y(t) —ta|l < ||y1—t1a|!+/ [9(s) —all ds
ty

<t1§+(t—t1)% < ip.

Since the last inequality is strict, in fact we have proved that y(s) € sB° for all
s € [t1,t], where B°® denotes the open ball B(a, p). Thus, the set of t € [t1,T)
such that y(s) € sB for all s € [t1,1] is an open subset, and easily we conclude
that we must have y(t) € tB° for all t € [t1,T).

Note that T' = +oo. Otherwise K = Uyc[g7tB would be compact and
(y(t),y(t)) € K x B for all t € [t;,T), which is impossible for a maximal
solution. By the same argument used for the motion x, we have that ¢(¢) has

a limit b € B. In particular, |0 —a || < € and y(t) = tb + o(t). O

4.2. Existence and properties of h-minimizers. The following lemma en-
sures that for A > 0, the length space (E, ¢;,) is indeed geodesically convex.

Actually the lemma gives us minimizing curves for any pair of configura-
tions, even with collisions, and it follows from Marchal’s Theorem that such
curves avoid collisions at intermediary times. The proof is a well-known argu-
ment based on the Tonelli’s Theorem for convex Lagrangians, combined with
Fatou’s Lemma for dealing with the singularities of the potential.

LEMMA 4.2 (Existence of minimizers for ¢p,). Given h>0 and x#y€ EYN,
there is a curve v € C(x,y) such that Arn(y) = én(z,y).

First we need to introduce some notation and make a simple remark that
we will use several times. It is worth noting that the remark applies whenever
we consider a system defined by a potential U > 0.

Notation. Given h > 0, for z,y € EN and 7 > 0 we will write

O, (1) =3z —y|Pr + R

Remark 4.3. Given h > 0 we have, for any pair of configurations z,y € EV

and any 7 > 0

d(z,y,7) +hr > Oy (7).
Indeed, given any pair of configurations z,y € EY and for any o € C(z,y,7),
the Cauchy-Schwarz inequality implies

2 b ’ b 2
o< ([iata) < [1ora

Thus, since U > 0,

b
Aoy >3 [ Na 1Pz b -yl r
a
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This justifies the assertion, since this lower bound does not depend on the
curve o.

Proof of Lemma 4.2. Let x,y € EN be two given configurations, with
x # y. We start by taking a minimizing sequence of Ay, in C(z,y), that is
to say, a sequence of curves (0,,)n>0 such that

nhﬂrgo ALJrh(UTL) - ¢h(x7 y)

Then from this minimizing sequence we build a new one, but this time com-
posed by curves with the same domain. To do this, we first observe that, if
each oy, is defined on an interval [0, 7,,], then by the previous remark we know
that

-AL+h(Un) > fb(x’yﬂ'n) + h7 2> (I)xyy(Tn%

where @, , is the above defined function. Since clearly ® , is a proper function
on RT, we deduce that 0 < liminf7, < limsup7, < +o0, and therefore we
can suppose without loss of generality that =, — 79 as n — oo. It is not
difficult to see that reparametrizing linearly each curve o, over the interval
[0, 70] we get a new minimizing sequence. More precisely, for each n > 0, the
reparametrization is the curve 7, : [0,79] — EV defined by v, (t) = o (1,75 1)
Computing the action of the curves 7, we get

T0 Tn
L 40P de =t [T 3160 1P
0 0
and
T0 Tn
/ Ul(y)dt = o7, * / U(o)dt,
0 0
and thus we have that
Jim Artn(y) = Jim Arn(0) = ¢n(z,y).

On the other hand, it is easy to see that a uniform bound for the action of
the family of curves =, implies the equicontinuity of the family. More precisely,
if the bound Af(y,) < %M 2 holds for all n > 0, then using Cauchy-Schwarz
inequality as in Remark 4.3 we have

1
[ (8) = nls) | < M|t —s]|2

for all ¢, s € [0, tp] and for all n > 0. Thus by Ascoli’s Theorem we can assume
that the sequence () converges uniformly to a curve v € C(x,y, 79). Finally,
we apply Tonelli’s Theorem for convex Lagrangians to get

T0 9 T0 9
/ LIq ) dt < 1inrgi£f/ 14 |1 dt
0 0
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and Fatou’s Lemma to obtain that

T0 T0
/ U(y)dt < liminf/ U(yn) dt.
0 0

n—oo
Therefore Ar(v) < ¢(x,y, 70), which is only possible if the equality holds, and
thus we deduce that Ap4n(7) = én(z,y). O

The next lemma is quite elementary and provides a rough lower bound
for ¢5,. However it has an interesting consequence, namely that reparametriza-
tions of the h-minimizers by arc length of the metric ¢, are Lipschitz with the
same Lipschitz constant. We point out that this lower bound only depends on
the positivity of the Newtonian potential.

LEMMA 4.4. Let h > 0. For any pair of configurations x,y € EN | we have
dn(z,y) > V2h ||z —yl|.
Proof. We note that
on(z,y) =min{ ¢(z,y,7)+7h|7>0} >min{ @, (1) | 7> 0}
and that
min { ®,,(7) |7 >0} = V2h||z—y]. O

Remark 4.5. If ~(s) is a reparametrization of an h-minimizer and the
parameter is the arc length for the metric ¢y, then we have

V2h [[v(s2) = v(s1) | < dn(v(s1),7(s2)) = [ 52 — 51|
Therefore all these reparametrizations are Lipschitz with Lipschitz constant

1/v/2h.

Finally, the following and last lemma will be used to estimate the time
needed by an h-minimizer to join two given configurations.

LEMMA 4.6. Let h > 0, z,y € EN be two given configurations, and let
o€ C(x,y,T) be an h-minimizer. Then we have
T (2, y) ST < T2, y),
where T_(x,y) and 74 (x,y) are the roots of the polynomial
P(r) =2h7* = 2¢p(z,y) T+ |z —y |*.
Proof. Since ¢ minimizes Arp, in view of Remark 4.3 we have

¢h($,y) = ¢($,y,T) +7h > (I)%y(T)v

that is,
EX1
d)h(wvy) >
2T

which is equivalent to saying that P(7) < 0. O

+ 7h,
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4.3. Proof of Theorems 1.1 and 3.4.

Proof of Theorem 1.1. Given h > 0, a € Q and zo € EY, we proceed as
follows. First, we define the sequence of functions

un(z) = ¢n(x,na) — ¢p(0,na), ze EN.

Each one of these functions is a viscosity subsolution of the Hamilton-Jacobi
equation H(z,dyu) = h; that is to say, we have u,, < L + h for all n > 0.
Since the estimate for the action potential ¢p given by Theorem 2.11 implies
that the set of such subsolutions is an equicontinuous family, and since we have
u,(0) = 0 for all n > 0, we can extract a subsequence converging to a function

u() = lim_uy, (@),

and the convergence is uniform on compact subsets of EV. Actually the limit
is a directed horofunction u € By (a).

By Theorem 3.2 we know that there is at least one curve z : [0, +00) — EY
such that

dn(wo, 2(t)) = AL(x |j0,4) + It = u(zo) — u(z(t))

for any ¢ > 0, and such that x(0) = z¢. Proposition 2.17 now implies that
u is a viscosity solution of the Hamilton-Jacobi equation H (z,d,u) = h and,
moreover, that u is a fixed point of the quotient Lax-Oleinik semigroup.

Finally, by Theorem 3.4 we have that the curve z(t) is a hyperbolic mo-
tion, with energy constant h, and whose asymptotic direction is given by the
configuration a. More precisely, we have that

V2h

xz(t) =t Tall a + o(t)

as t — 400, as we wanted to prove. O
Proof of Theorem 3.4. For h > 0 and a € €2, let u € By (a) be a given ho-

rofunction directed by a. This means that there is a sequence of configurations
(Pn)n>0, such that p, = Ap,a+ o(\,) with \,, = 400 as n — 0o, and such that

ule) = lim (up, (2) = uy, (0)),

where u, denotes the function u,(z) = ¢p(z,p). Let also v : [0, 4+00) — EV
be the curve given by the hypothesis and satisfying

w(v(0)) = u(y(t)) = AL+n(7 lj0.))

for all £ > 0. In particular, v is an h-minimizer. We recall that this means
the restrictions of v to compact intervals are global minimizers of Af . Thus
the restriction of v to (0,4+00) is a genuine motion of the N-body problem,
with energy constant h, and it is a maximal solution if and only if v(0) has
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collisions, otherwise the motion defined by + can be extended as a motion to
some interval (—e, +00).

The proof is divided into three steps. The first one will be to prove that
the curve v is not a superhyperbolic motion. This will be deduced from the
minimization property of . Then we will apply the Marchal-Saari theorem to
conclude that there is a configuration b # 0 such that ~(t) = tb+ O(t*/3). The
second and most sophisticated step will be to exclude the possibility of having
collisions in b, that is to say, in the limit shape of the motion «. Finally, once
it is known that v is a hyperbolic motion, an easy application of the Chazy’s
Lemma 4.1 will allow us to conclude that we must have b = Aa for some A > 0.
Then the proof will be achieved by observing that, since || b || = v/2h, we must
also have A = v2h || a | "

We start now by proving that ~ is not superhyperbolic. We will give
a proof by contradiction. Supposing that ~ is superhyperbolic we can choose
tn, — 400 such that R(ty,)/t, — +o0o. We recall that R(t)=max {r;(t) | i<j}
denotes the maximal distance between the bodies at time ¢, and that R(t) =
O(]|y(t) ||). Thus we can assume that || v(¢,) —v(0) || /t, — +00. Given that
the calibrating property implies the curve « is an h-minimizer, for each n > 0
we have

ALY lj0,40]) + htn = Sn(7(0), ¥(tn)).

For short, let us write r,, = ||7(0) — v(¢t5) ||. In view of the observation we
made in Remark 4.3, and using Theorem 2.11, we have the lower and upper
bounds
L2t ity < on(3(0),7(tn)) < (arn+hB12)"?

for some constants «,5 > 0 and for any n > 0. It is not difficult to see
that this is impossible for n large enough using the fact that r,¢,! — +oco.
Thus by the Marchal-Saari theorem there is a configuration b € EV such that
v(t) = tb + O(t*/3). Since by the Lagrange-Jacobi identity b = 0 forces h = 0,
we know that b # 0.

We prove now that b has no collisions, that is to say, that b € 2. This is
our second step in the proof. Let us write p = v(0), go = (1), and let us also
define o9 € C(qo,p, 1) by reversing the parametrization of o = 7 [[p,1). Thus
oo calibrates the function u; that is to say, we have u(p) — u(qo) = Ar+n(00).

Now, using Lemma 4.2 we can define a sequence of curves o/, € C(py, qo),
such that Apin(0),) = ¢n(pn,qo) for all n > 0. Thus each curve o}, is an
h-calibrating curve of the function u,, (z) = ¢p(x, pp). It will be convenient to
also consider the curves 7/, obtained by reversing the parametrizations of the
curves o,,. If for each n > 0 the curve o}, is defined over an interval [—s,, 0],
then we get a sequence of curves 7, € C(qo, Pn, Sn), respectively defined over
the intervals [0, s;,].
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Since qq is an interior point of «, Marchal’s Theorem implies that gy € 2.
Thus for each curve 7, the velocity w, = #,(0) is well defined. Since h-
minimizers have energy constant h, we also have || w, ||> = 2(h + U(qo)) for
all n > 0. This allow us to choose a subsequence nj such that w,, — vg
as k — oo. At this point we need to prove that lims, = +oo. This can be
done by application of Lemma 4.6 to the h-minimizers 7/, as follows. Given
two configurations x,y € EY, the polynomial given by the lemma satisfies
P(r) > ||z —y|* = 2¢n(x,y)7 for all 7 > 0. Therefore, when z # y, its roots
can be bounded below by ||z — v ||* /2¢n(z,y). Using this fact, we have that
for all n > 0,

g0 — pn |l
2 0(q0,pn)
Then the upper bound for ¢, given by Theorem 2.11 implies that lim s,, = +00.

Let us summarize what we have built so far. From now on, for short let
us write qx = pny; tk = Sny,, Uk = Wn,,, and also v, = 7, and o} = oy, . First,
there is a sequence of configurations (gx)g>o such that, for some increasing
sequence ny, of positive integers, we have g = A,,a + o(\,,) as k — oo.
Associated to each gy there is an hA-minimizer i : [0, tx] — EN | with t, — +o0,
such that v, € C(qo, qx). Moreover, vy = 4,(0), and we have v, — vy as k — oo.
In addition, each reversed curve o € C(q,qo) is an h-calibrating curve of the
function g, (z) = ¢n(x, qi).

We will prove that vg = §(1). To do this, we start by considering the
maximal solution of Newton’s equations with initial conditions (qo,v9) and by
calling ¢ its restriction to positive times, let us say for ¢ € [0,¢*). Next, we
choose 7 € (0,t*), and we observe that we have t;, > 7 for any k big enough.
Thus, for these values of k, we have that 74 (t) and 4% (t) converge respectively
to ¢(t) and ¢(t), and the convergence is uniform for ¢ € [0, 7]. Therefore,

klim Apn(7k \[o,r]) = Ar4n(C [0,7})-
—00

On the other hand, since on each compact set our function u(x) is the uniform
limit of the functions uy(x) = ug, (x) — ug, (0), we can also write

u(go) —u(¢(r)) = lim (ux(q0) — ur(k(7)))-

We use now the fact that for each one of these values of k we have, by the
calibration property, that

ug(qo) — wr(v(7)) = Ar+n (v lo,7);

to conclude then that

u(qo) — u(¢(7)) = Ar+n(C ljo,7)-
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Notice that what we have proved is that the reversed curve ((—t) defined on
[—7,0] is indeed an h-calibrating curve of u. The concatenation of this cali-
brating curve with the calibrating curve og results, according to Lemma 2.15,
in a new calibrating curve, defined on [—7,1] and passing by ¢qp at t = 0.
Therefore this concatenation of curves is an A-minimizer, which implies that it
is smooth at ¢ = 0. We have proved that ¢(0) = vy = 4(1). This also implies
that t* = 400 and that ((t) = y(t + 1) for all ¢ > 0.

Figure 3. The C' approximation of the curve v by h-minimizers
from go to gz = pn,,. Here A = X\, and || g — Aa | <7 = o(N).

For simplicity, in the rest of the proof we will call v the curve (, assuming
then that the original curve v was reparametrized to be defined on the interval
[—1,400). Making this abuse of notation we can then write v (t) — 7(t), and
A (t) — 4(t), uniformly on any compact interval [0, T].

We continue now with the proof that the limit shape b of « has no colli-
sions. We will make use of the function y that we mentioned in Remark 1.4,
which is called the configurational measure. It is defined as the homogeneous
function of degree zero pu : EV \ {0} — R* given by u(z) = ||z||U(z) =
U(|| 2]~ z), that is to say, u = UI'/2. Notice that u(z) < +oo if and only if
x € €.

Under the assumption that b has collisions, we will construct a new se-
quence of curves 1 € C(qo,qr) in such a way that Appn(nk) < Apan(yk) for
all k£ big enough. Since this contradicts the minimality of the curves v, we will
conclude that b € Q. The construction of the curves n; will be done in terms
of the polar components of the curves 7. More precisely, for each k > 1, we
define the functions

o [0,t] = RY, pp(t) = [[yn(t) ||,
O [0,te] =S, O(t) = () | (t),
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where S = {z € EV | (2,2) = 1} is the unit sphere for the mass inner prod-
uct. Thus, for each k > 0, we can write v, = pr0, and the Lagrangian action
in polar coordinates is

i
Arn() = / S pRdt +/
0 0

Assuming that p(b) = 400, we can find € > 0 such that, if || — b < ¢, then
w(x) > 3u(a). On the other hand, since we have that v(¢) = tb+ o(t), there is
To > 0 such that || y(¢)t™! —b]|| < €/2 for all t > Ty.

Now we use the approximation of + by the curves ;. For each T >
Ty, there is a positive integer kr such that, if & > kp, then ¢ > T and
| v (t) —v(t) || < Toe/2 for all t € [Ty, T]. It follows that for k > kr and for
any t € [Ty, T], we have

th ) th
3 P OF dt +/ pit (ve) dt + hty,.
0

t t
wt) @ | <
t t 2
and then || ()t —b H < €. In turn, since p is homogeneous, this implies that

p(w(t)) = pOm®t") > 3pu(a).
Now we are almost able to define the sequence of curves 7 € C(qo, gn).
Let us write ko for kp,. For k > ko, we know that u(yx(Zo)) > 3u(a). More-
over, since the extreme py of the curve 7y lies in a ball B,.(Aa) with r = o(\),

we can assume that kg is big enough in order to have u(px) < 2u(a) for all
k > ko. Then we define

T =max{T > Ty | u(y(t)) > 2u(a) for all t € [Ty, T] }

and ¢ = 0y (T)). Given T > Tp, by the previous considerations we have that
k > kr implies T}, > T. Thus, we can take T} as large as we want by choosing
k large enough. The last ingredient for building the curve 7 is a minimizer J
of Ap+n in C(vx(Tv), px(To)cr) whose existence is guaranteed by Theorem 4.2.
Then we define 7y as follows. For k < kg, we set np = ;. For k > kg, the
curve 7y is the concatenation of the following four curves: (i) the restriction
of v to [0, Tp], (ii) the minimizer d; defined above , (iii) the homothetic curve
pr(t)ey for t € [Ty, Ty], and (iv) the restriction of v, to [Tk, tx]| (see Figure 4).

We will show that Ay = Arn (V) — Ar+n(nx) > 0 for k large enough.

We start by observing that the first and the last components of 7 are also
segments of v so that their contributions to Ay cancel each other out.

We also have

T T . Tk L
Apn (v mo,1) = / shr dt+/ %pw?dtqt/ Py (k) dt+h(Ty —Tp)
To To To

and

T Ty
Arn( prex limy 1)) = /T 3P dt + /T pr. 2p(a) dt + h(T}, — To).
0 0
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Figure 4. For k large enough, the Ar.; action of the green
curve 7y is less than that of the curve 7. The intermediate
points are by = ’Yk(TO); dip = pk(To)Ck, and e, = pk(Tk)Ck =
Vi (Tk)-

We recall that u(yx(t)) > 2u(a) for all ¢ € [Ty, Ti]. Therefore, so far we can
say that

T,
B> [ (a6 = 200) dt — Apin (8.

This part of the proof is essentially done. To conclude we only need to establish
estimates for the two terms on the right side of the previous inequality. More
precisely, we will prove that the the integral diverges as £ — oo, and that the
second term is bounded as a function of k.

CrAM 1. The sequence Ar (k) is bounded.

Proof. Indeed, the curve J is a minimizer of Ay between curves binding
two configurations of size pi(Tp), and

pr(To) — p(To) = || v(To) ||

as k — oo. Therefore there is R > 0 such that the endpoints of the curves d;
are all contained in the compact ball Br(0) C EV. On the other hand, since
by Theorem 2.11 we know that the action potential ¢ is continuous, we can
conclude that sup Az, (k) < +o0. O

CLAIM 2. The sequence f:,z;’“ pnt () — 2p(a)) dt diverges as k — oo.

Proof. In order to get a lower bound for the integral of plzl, we make the
following considerations. We note first that p(t) = || v(t) || < at + 5 for some
constants «, > 0. This is because we know that v(¢) = tb+ o(t) as t — +o0.
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Thus we have that for any T > T,

T
/ p~tdt > log(aT + B) — log(aTy + A).
To

Therefore, for any choice of K > 0, there is T > 0 such that the integral at
the left side is bigger than u(a) K.

On the other hand, since for k& > kp we have that T, > T, and since
~k(t) uniformly converges to ~y(t) on [Tp,T], we can assume that we have
w(vk(t)) > 3u(a) for all ¢t € [Tp,T] and then, neglecting the part of the in-
tegral between T and T}, that is positive, to conclude that

Ty T
[ st o) — 2t de > pta) [ pitae > K
To TO
for every k sufficiently large. O

It follows that for large values of k, the difference Ay is positive, meaning
that the corresponding curves 7 are not h-minimizers because the curves ny
have smaller action. Therefore we have proved by contradiction that b € €.

The last step to finish the proof is to show that b = A\a for some A > 0. If
not, we can choose two disjoint cones C, and Cj, in EV, centered at the origin
and with axes directed by the configurations a and b respectively. Since we
know that b € 2, we can apply Chazy’s Lemma to get that for k large enough,
the curves ~y; are defined for all ¢ > 0, and that there is T* > 0 for which we
must have v (t) € Cp for all t > T* and any k large enough. But this produces
a contradiction, because we know that g = Vi (tx) = Apa+0(Ay,) as k — oo,
which forces us to have ¢ € C, for k large enough. O

5. The Jacobi-Maupertuis distance for non-negative energy

In this section we develop the geometric viewpoint and we show, for h > 0,
that when restricted to 2 the action potential ¢y is exactly the Riemannian
distance associated to the Jacobi-Maupertuis metric j, = 2(h + U)gy,, where
gm 1s the mass scalar product. Moreover, we will see that the metric space
(EN | ¢p,) is the completion of (€2,7). The fact that ¢y, is a distance over BV
is a straightforward consequence of the definition and of Lemmas 4.4 or 5.2
depending on whether A > 0 or h = 0. It is also immediate to see that (EV, ¢p,)
is a length space; that is to say, ¢ coincides with the induced length distance.
From now on, we denote by L (7y) the Riemannian length of a C! curve v, and
we denote by dj, the Riemannian distance on €.

PROPOSITION 5.1. For all h > 0, the space (E™, ¢,) is the completion of
(Q) dh)
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Proof. In the case h > 0, the fact that (EN , ®n) is a complete length space
comes directly from the definition of ¢, and from Lemma 4.4 and Theorem 2.11.
Moreover, we have that ¢, generates the topology of EV and that € is thus a
dense subset.

For the case h = 0, the argument is exactly the same, but instead of
Lemma 4.4, which becomes meaningless, we have to use Lemma 5.2 below.

The proof will be achieved now by showing that the inclusion of ) into
EN is an isometry, that is to say, that ¢, coincides with dj, when restricted
to . Given (z,v) € Q x EV, we have

vl = jn(@)(v,0)"/? < L(w,0) + I

with equality if and only if £(z,v) = h, where £(z,v) = 1 ||v 12 — U(x) is the
energy function in 7). It follows that if v is an absolutely continuous curve
in €2, it holds that L (v) < Arin(7), with equality if and only if £(v(t),5(t))=h
for almost all . Now given z,y € €2, by Marchal’s Theorem any h-minimizer
joining = to v is a genuine motion; in particular, it is a C'' curve. Since dj, is
defined as the infimum of £, (7) over all C! curves in €2 joining x to y, we have
that dp(x,y) < on(x,y).

In order to prove the converse inequality, let € > 0 and ~ : [0,1] — Q be
a C! curve joining z to y such that £;(y) < dp(z,y) + €. We can now find
a finite sequence 0 = ty < --- < ty = 1 such that for any ¢ = 1,..., N, the
points y(t;—1) and 7(t;) can be joined by a minimizing geodesic in {2, here
denoted g;. We will assume that each o; is parametrized by arclength, thus
o;(t) # 0 for all t. Now let us reparametrize each o; so that, denoting by
8; the reparametrization, we have £(8;(t),0;(t)) = h for all t. Let & be the
concatenation of all §;. By construction,

On(x,y) < Apn(8) = Ln(9) < Ln(7) < da(z,y) + e,
and by arbitrariness of € we conclude that ¢p(z,y) < dp(z,y). O

LEMMA 5.2. There exists a constant pg > 0 such that for all x,y € EN
satisfying x # y, we have

Ho

1
where p =max{ | z|, |y }2.

Proof. The main idea of the proof is to estimate ¢y by comparing it with
the action of some Kepler problem in EV. Since U is a continuous function
with values in (0, +oc], the minimum of U on the unit sphere of EV, here
denoted Uy, is strictly positive. Thus, by homogeneity of the potential, if z is
any non-zero configuration, we have

Ulz) = 1 U(’x >> Uo.
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Let us consider now the Lagrangian function associated to the Kepler problem
in BN with potential Up/ || ||, that is to say,

o

[E4l

By the previous inequality we know that L (x,v) < L(x,v). The critical action
potential associated to L, is defined on EN x EN by

Po(z,y) =min{ Az, () |y €C(z,y) },

and it follows immediately from the definition that ®¢(z,y) < ¢o(z,y). Assume
now = # y, and let 7 : [0,7] — E” be a free-time minimizer for Ay in C(z,y).

1
Le(w,0) = 5 0] +

Thus v is an absolutely continuous curve satisfying Az, (v) = ®o(z,y). As
a zero energy motion of the Kepler problem, we know that + is an arc of
Keplerian parabola and, in particular, we know that

max || y(t) | = max{|z|,[ly]},
te(0,7]

which in turn implies that

Uy S Uo

@1 = 0
for all t € [0, 7]. Thus, using this lower bound and Cauchy-Schwarz inequality
for the kinetic part of the action of v we deduce that ®¢(x,y) > g(7), where

g : RT — R is the function defined by

_z—yl? | U

Observing now that g is convex and proper, and replacing g(7) in the previous

inequality by the minimum of g(s) for s > 0, we obtain
Ho

for po = v/2Uj. U

Now we have all the necessary elements to give the proof of the corollary
stated in Section 1.3. We have to prove that if two geodesic rays have the
same asymptotic limit, then they are equivalent in the sense of having bounded
difference.

Proof of Corollary 1.8. Let 7 : [0,+00) — EY be a geodesic ray of the
distance ¢y, with h > 0. We assume that v(s) = sa + o(s) as s — 400 for
some a € §2. Thus, we know that y(s) is without collisions for all s sufficiently
big. By performing a time translation we can assume that y(s) € € for all
s > 0, hence that v is a geodesic ray of the Jacobi-Maupertuis metric j; in 2.
Now we know that v admits a factorization v(s) = x(t(s)) where z(t) is a
motion of energy h. More precisely, the inverse of the new parameter ¢, is a
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function s, satisfying x(t) = v(sz(t)). Since v is arclength parametrized, we
have ||§(s) ||, =1 for all s > 0, and we deduce that s, is the solution of the
differential equation

(*) $2(t) = 2h + 2U (7(sx(1)))

with initial condition s,(0) = 0. This implies that s, () — 400 and $,(t) — 2h
as t — +00, hence we also have s;(t) = 2ht + o(t) and x(t) = 2hta + o(t) as
t — +oco. In particular, x(t) is a hyperbolic motion. We claim now that

Ula)
h

The proof is as follows. From (x) we have, for ¢t > 1,

sz(t) = 2ht +

logt+ O(1).

1 t
(k) sz (t) = 2ht —|—/0 2U (z(v)) dv +/1 2U (z(v)) dv.

On the other hand, by Chazy’s Theorem we have that

logt

VU(a) + O(1).

Then we observe that

Ulz(v)) = thy U (a—i— 0 (1°g”>)

v
~Ula) 1 <logy>
- 2h V+O v )

Now the claim can be verified by replacing this last expression of U(z(v)) in
the last term of (%x).

Now given another geododesic ray o : [0, +00) — E”, denoting by o(s) =
y(ts(s)) the reparametrization such that y(t) is a motion of energy constant h,
and denoting by s, the inverse of ¢,, it is clear from the previous asymptotic
estimates that the difference s, (t) — s,(t) is bounded. Since the derivative of
sz and s, are both bounded below by the same positive constant, we easily
conclude that ¢,(s) — ts(s) is also bounded. By replacing this estimate in the
asymptotic expansion of z(t) and y(t), we find that v(s) —o(s) is bounded. O

6. Open questions on bi-hyperbolic motions

We finish with some general open questions. They are closely related to
the recent advances made by Duignan et al. [18] in which the authors show in
particular that the limit shape map (x,v) — (a~,a™") defined below is actually
real analytic.

We define bi-hyperbolic motions as those that are defined for all ¢ € R
and are hyperbolic both in the past and in the future. The orbits of these
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entire solutions define a non-empty open set in the phase space, namely, the
intersection of the two open set
H=H"TNH,

where HT € TQ = Q x EV is the set of the initial conditions giving rise to
hyperbolic motions in the future, and H~ = { (z,v) € TQ | (z,—v) € HT } is
the set of the initial conditions giving rise to hyperbolic motions in the past.
Newton’s equations define a complete vector field in the open set H C Q x EN.
We will denote by ¢! the corresponding flow and by 7 : Q x EN — Q the
projection onto the first factor.

We also note that this open and completely invariant set has a natural
global section, given by the section of perihelia:

P=HN{(x,0) eTQ|(z,v)=0}.

PROPOSITION 6.1. The flow ¢! in H is conjugated to the shift in P x R.

Proof. Given (zg,v9) € H, let z(t) = w(p'(x0,v0)) be the generated bi-
hyperbolic motion. Since I = (z,x), it follows from the Lagrange-Jacobi
identity I = 4h 4 2U that I is a proper and strictly convex function. Thus,
there is a unique t, € R such that ¢'(zg,v9) € P. Moreover, the sign of
I = (z,) is the sign of t —t,, and | z(t) || reaches its minimal value at t = t,.
The conjugacy is thus given by the map (zo,v9) — (p(zo,v0), —tp), where
p : H — P gives the phase point at perihelion p(zg,vo) = (z(¢p), (tp)). O

Naturally associated with each bi-hyperbolic motion, there is the pair of
limit shapes that it produces both in the past and in the future. More precisely,
we can define the limit shape map S : H — Q x Q by
S(z,v) = (a*(x,v),aJr(a:,v)),
(

a x,v):tlim 117 7 (o (2, 0)).

—+o0

As a consequence of Chazy’s continuity of the instability (Lemma 4.1) we have
that the limit shape map is actually a continuous map. It is also clear that

[a™(z,v) || = || a™ (2, 0) |
for all (z,v) € H. In fact, we have
2 2
| a*(@,0) |* = 2h = 0| 20 (a),
where h > 0 is the energy constant of the generated bi-hyperbolic motion.
Hence the image of S is contained in the manifold

S={(a,0) e Q@ xQllal=]b]}-

Clearly, we have Sop? = § for all ¢t € R. Therefore the study of the limit shape
map can be restricted to the section of perihelia P. Counting dimensions we get

dimP = 2dN — 1 =dim S,
where d = dim F.
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We will see now that the center of mass can be reduced to the origin. Let
us call G : EV — E the linear map that associates to each configuration its
center of mass. More precisely, if M = mq + --- + my is the total mass of
the system, then the center of mass G(x) of z = (r1,...,rn) € EV is well
defined by the condition MG(x) = myry + -+ + myry. Just as we did for
the quantities U and I, we will write G(t) instead of G(z(t)) when the motion
x(t) is understood. We observe now that if z(t) = ta* + o(t) as t — +oo, then
G(t) = tG(a™) + o(t). Moreover, since G(t) = 0 for all t € R we know that the
velocity of the center of mass G(t) = vg is constant, hence G(t) = tvg + G(0).
Therefore we must have G(at) = vg. If in addition z(t) = —ta™ + o(t) as
t — —oo, then we also have G(a™) = —vg. We conclude that

G(a™(z,v)) = — G(a™(z,v))

for all (x,v) € H. This allows us to reduce in d dimensions the codomain of the
limit shape map. On the other hand, a constant translation of a bi-hyperbolic
motion gives a new bi-hyperbolic motion with the same limit shapes. Thus
the domain can also be reduced of d dimensions by imposing the condition
G(z(0)) = 0.

Finally, we note that bi-hyperbolic motions are preserved by addition of
uniform translations. Let A C EV be the diagonal subspace that is the set of
configurations of total collision. For any bi-hyperbolic motion z(¢) with limit
shapes a~ and a™, and any v € A, we get a new bi-hyperbolic motion z,(t) =
x(t) + tv, whose limit shapes are precisely a~ — v and a* + v. In particular,
these configurations without collisions have opposite center of mass and the
same norm. The equality of the norms can also be deduced from the orthogonal
decomposition EY = A @ ker G and using the fact that G(a™ —a~) = 0.

In sum, we can perform the total reduction of the center of mass by setting
G(z(0)) = G(2(0)), which leads to G(a~) = G(a™) = 0. We define

Po={(x,v) eH| G(x) =G(v) =0and (x,v) =0},
So ={(a,b) € 2x Q| G(a) =G(b) =0and |af =]|0]},

and we maintain the balance of dimensions.
Question 1. Is the limit shape map S : Py — Sp a local diffeomorphism?

The answer is yes in the Kepler case (see Figure 5). But in the general case,
this property must depend on the potential U. For instance, in the extremal
case of U = 0, in which motions are thus straight lines, we get the restriction
a~ = —a™ for all hyperbolic motion. In this case the shape map loses half of
the dimensions.

It is therefore natural to ask, for the general N-body problem, whether or

not there is some relationship between these two functions.
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Iy
A

I

Figure 5. Hyperbolic motions of the Kepler problem with fixed
value of the energy constant h > 0 and asymptotic velocity a
in the future. All but one of these motions are bi-hyperbolic.
The blue curve P is composed of the corresponding perihelia.

Question 2. How big is the image of the limit shape map?

In the Kepler case, only the pairs (a,b) such that ||a| = ||b] and a # £b
are realized as asymptotic velocities of some hyperbolic trajectory. This can
be generalized for N > 3. If a € Q is a planar central configuration and
R € SO(FE) keeps invariant the plane containing a, the pair (a, Ra) is realized
as the limit shapes of a unique homographic hyperbolic motion, except in the
cases R = +1d.

We now devote attention to the effect of homogeneity. Recall that if z(¢) is
a bi-hyperbolic motion of energy constant h, then for every A > 0 the solution
given by xx(t) = Ax(A3/2t) is still bi-hyperbolic with energy constant A~'h.
Moreover, if we note o = x(0) and vy = #(0), then we have

(@x(1), (1)) = @' (Azo, A2 00)

for all t € R. These considerations prove the following remark.

Remark 6.2. For any (z,v) € H and for any A > 0, we have

Sz, A7V20) = A7V2 5(2,v).

Let us introduce the following question with an example. Consider the
planar three-body problem with equal masses. That is, E = R? ~C, N = 3
and m; = 1 for ¢ = 1,2,3. For h > 0, define the equilateral and collinear
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configurations

2h
ah:\/g(l,z,zQ), bhz\/ﬁ(—l,o,l),

where z is a primitive root of z3 — 1. Thus we have || ay || = || bx || = V2R and
also G(ap) = G(bp) =0 for all h > 0.

Question 3. Is the pair (ap,bp) in the image of the limit shape map?

In other words, is there a bi-hyperbolic motion whose dynamics originates
in the past with a contraction from a big equilateral triangle, and then, after
a period of strong interaction between the particles, the evolution ends with
an almost collinear expansion?

In our view, the method of viscosity solutions could be useful to answer
this question. In particular, we consider it necessary to push forward the
understanding of the regions of differentiability of these weak solutions. It
seems reasonable that an orbit like this can be found by looking for critical
points of a sum of two Busemann functions (see Section 3.2).

Question 4. If the answer to Question 3 is yes, what is the infimum of the
norm of the perihelia of the bi-hyperbolic motions having these limit shapes?

Observe that once we have a bi-hyperbolic motion that is equilateral in
the past and collinear in the future, we can play with the homogeneity in order
to obtain a new one, but having a perihelion contained in an arbitrarily small
ball. That is to say, it would be possible to make, at some point, all bodies
pass as close as we want from a total collision. Of course, to do this we must
increase the value of the energy constant indefinitely. Thus we preserve the
limit shapes in the weak sense, but not the size of the asymptotic velocities. In
the family of motions (z)) described above, the product of the energy constant
h and the norm of the perihelion is constant. In the Kepler case, once we fix the
value of h > 0 there is only one bi-hyperbolic motion connecting a given pair
(a,b) (see [1]). Therefore we can see the norm of the perihelion as a function
of the limit shapes. We can see that the norm of the perihelion tends to 0 for
a — b and tends to +oo for a — —b.
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