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Viscosity solutions and hyperbolic motions:
a new PDE method for
the N-body problem

By Ezequiel Maderna and Andrea Venturelli

Abstract

We prove for the N -body problem the existence of hyperbolic motions for

any prescribed limit shape and any given initial configuration of the bodies.

The energy level h > 0 of the motion can also be chosen arbitrarily. Our

approach is based on the construction of global viscosity solutions for the

Hamilton-Jacobi equation H(x, dxu) = h. We prove that these solutions are

fixed points of the associated Lax-Oleinik semigroup. The presented results

can also be viewed as a new application of Marchal’s Theorem, whose main

use in recent literature has been to prove the existence of periodic orbits.
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1. Introduction

This paper is about the Newtonian model of gravitation, also known as

the classical N -body problem. We start by recalling the standard notation.

Let E be an Euclidean space, in which the punctual masses m1, . . . ,mN > 0

are moving under the action of the inverse-square law of universal gravitation.

If the components of x = (r1, . . . , rN ) ∈ EN are the positions of the bodies,

then we shall denote by rij = ‖ ri − rj ‖E the distance between bodies i and

j for any pair 1 ≤ i < j ≤ N . The Newton’s equations can be written as

ẍ = ∇U(x), where U : EN → R ∪ {+∞} is the Newtonian potential,

U(x) =
∑
i<j

mimj r
−1
ij ,

and the gradient is taken with respect to the mass scalar product. A config-

uration x ∈ EN is said to be without collisions if U(x) < +∞, that is to say,

whenever we have rij 6= 0 for all i 6= j. We denote Ω ⊂ EN the open and

dense set of configurations without collisions. Therefore Newton’s equations

define an analytic local flow on TΩ = Ω × EN , with a first integral given by

the energy constant

h =
1

2
‖ ẋ ‖2 − U(x).

One of the main difficulties for the analysis of the dynamics in this model

is the uncertainty, for a given motion, about the presence of singularities after

a finite amount of time. That is to say, we cannot predict whether a certain

evolution of the bodies will be defined for all future time or not. We recall that

maximal solutions that end in finite time must either undergo collisions at the

last moment, or else have an extremely complex behavior called pseudocollision

([17, p. 39]). Notwithstanding, the classification of all possible final evolutions

was developed, for motions assumed to be without singularities in the future,

essentially in terms of the asymptotic behavior of the distance between the

bodies. Some of the greatest contributions in this direction are undoubtedly

those due to Chazy, and especially those that he obtained in the works [8],

[9] that we comment below. However, this approach does not provide the

existence of motions for any type of final evolution.
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In this paper we will be concerned with the class of hyperbolic motions

defined by Chazy by analogy with the Keplerian case.

Definition. Hyperbolic motions are those such that each body has a dif-

ferent limit velocity vector, that is, ṙi(t) → ai ∈ E as t → +∞, and ai 6= aj
whenever i 6= j.

If V is a normed vector space and x(t) is a smooth curve in V with asymp-

totic velocity a ∈ V , then we must have x(t) = ta + o(t) as t → +∞, but the

converse is of course not true. However, for V =EN and a=(a1, . . . , aN )∈Ω,

the converse is satisfied by solutions of the Newtonian N -body problem (see

Lemma 4.1). Thus, hyperbolic motions are characterized as motions without

singularities in the future and such that x(t) = ta+o(t) for some configuration

a ∈ Ω.

It follows that for any hyperbolic motion, we have αt < rij(t) < βt for

some positive constants, for all i < j, and for all t big enough. As we will see,

Chazy proved that this weaker property also characterizes hyperbolic motions.

As usual, I(x) = 〈x, x 〉 =
∑

imi〈 ri, ri 〉E will denote the moment of in-

ertia of the configuration x ∈ EN with respect to the origin of E. When the

motion x(t) is given, we will use the notation U(t) and I(t) for the compositions

U(x(t)) and I(x(t)) respectively. Thus for a hyperbolic motion such that x(t) =

at+ o(t) as t→ +∞, we have U(t)→ 0, I(t) ∼ I(a) t2 and 2h = I(a) > 0.

We say that a motion x(t) has limit shape when there is a time dependent

similitude S(t) of the space E such that S(t)x(t) converges to some config-

uration a 6= 0. (Here the action of S(t) on EN is the diagonal one.) Thus

the limit shape of a hyperbolic motion is the shape of his asymptotic velocity

a = limt→+∞ t
−1x(t). Note that, in fact, this represents a stronger way of hav-

ing a limit shape, since in this case the similarities are given by homotheties.

1.1. Existence of hyperbolic motions. The only explicitly known hyper-

bolic motions are of the homographic type, meaning that the configuration is

always in the same similarity class. For this kind of motion, x(t) is all the

time a central configuration, that is, a critical point of I1/2U . This is a strong

limitation; for instance, the only central configurations for N = 3 are either

equilateral or collinear. Moreover, the Painlevé-Wintner conjecture states that

up to similarity there are always a finite number of central configurations. The

conjecture was confirmed by Hampton and Moeckel [23] in the case of four

bodies, and by Albouy and Kaloshin [2] for generic values of the masses in the

planar five-body problem.

On the other hand, Chazy proved in [9] that the set of initial conditions

giving rise to hyperbolic motions is an open subset of TΩ and, moreover, that

the limit shape depends continuously on the initial condition (see Lemma 4.1).
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In particular, a motion close enough to some hyperbolic homographic motion is

still hyperbolic. However, this does not allow us to draw conclusions about the

set of configurations that are realised as limit shapes. In this paper we prove

that any configuration without collisions is the limit shape of some hyperbolic

motion. To our knowledge, there are no results in this direction in the literature

on the subject.

An important novelty in this work is the use of global viscosity solutions,

in the sense introduced by Crandall, Evans and Lions [15], [14], for the super-

critical Hamilton-Jacobi equation

(HJ) H(x, dxu) = h, x ∈ EN ,

where H is the Hamiltonian of the Newtonian N -body problem, and h > 0.

We will found global viscosity solutions through a limit process inspired by

the Gromov’s construction of the ideal boundary of a complete locally compact

metric space. To do this, we will have to generalize to the case h > 0 the Hölder

estimate for the action potential discovered by the first author in [25] in the

case h = 0. With this new estimate we will remedy the loss of the Lipschitz

character of the viscosity subsolutions, which is due to the singularities of the

Newtonian potential.

In a second step, we will show that the functions thus obtained are in fact

fixed points of the Lax-Oleinik semigroup. Moreover, we will prove that given

any configuration without collisions a ∈ Ω, there are solutions of equation (HJ)

such that all its calibrating curves are hyperbolic motions having the shape of

a as limit shape. Following this method (developed in Section 2) we get to our

main result.

Theorem 1.1. For the Newtonian N -body problem in a space E of di-

mension at least two, there are hyperbolic motions x : [0,+∞)→ EN such that

x(t) =
√

2h t a+ o(t) as t→ +∞

for any choice of x0 = x(0) ∈ EN , for any configuration without collisions

a ∈ Ω normalized by ‖ a ‖ = 1, and for any choice of the energy constant h > 0.

We emphasize the fact that the initial configuration can be chosen with

collisions. This means that in such a case, the motion x given by the theo-

rem is continuous at t = 0 and defines a maximal solution x(t) ∈ Ω for t > 0.

For instance, choosing x0 = 0 ∈ EN , the theorem gives the existence of ejec-

tions from the total collision configuration, with prescribed positive energy and

arbitrarily chosen limit shape.

Moreover, the well-known Sundman’s inequality (see Wintner [42]) implies

that motions with total collisions have zero angular momentum. Therefore, we

deduce the following non-trivial corollary.
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Corollary 1.2. For any configuration without collisions a ∈ Ω, there is

a hyperbolic motion with zero angular momentum and asymptotic velocity a.

It should be said that the hypothesis that excludes the collinear case

dimE = 1 is only required to ensure that action minimizing curves do not

suffer collisions. The avoidance of collisions is thus assured by the celebrated

Marchal’s Theorem that we state below in Section 2.1. The collinear case

could eventually be analyzed in the light of the results obtained by Yu and

Zhang [44].

Theorem 1.1 should be compared with that obtained by the authors in

[27], which concerns completely parabolic motions. We recall that completely

parabolic motions (as well as total collisions) have a very special asymptotic

behavior. In his work of 1918 [8], Chazy proves that the normalized config-

uration must approximate the set of normal central configurations. Under a

hypothesis of non-degeneracy, he also deduces the convergence to a particular

central configuration. This hypothesis is always satisfied in the three-body

problem. However, a first counterexample with four bodies in the plane was

founded by Palmore [33], thus allowing the possibility of motions with infinite

spin (see Chenciner [12, p. 281]).

In all the cases, Chazy’s Theorem prevents arbitrary limit shapes for com-

pletely parabolic motions as well as for total collisions. In this sense, let us

mention, for instance, the general result by Shub [39] on the localisation of

central configurations, showing that they are isolated from the diagonals.

We should also mention that the confinement of the asymptotic configu-

ration to the set of central configurations, both for completely parabolic mo-

tions and for total collisions, extends to homogeneous potentials of degree

α ∈ (−2, 0). For these potentials, the mutual distances must grow like t2/(2−α)

in the parabolic case and must decay like | t− t0 |2/(2−α) in the case of a total

collision at time t = t0. On the other hand, it is known that potentials giving

rise to strong forces near collisions can present motions of total collision with

non-central asymptotic configurations. We refer the reader to the comments

on the subject by Chenciner in [11] about the Jacobi-Banachiewitz potential,

and to Arredondo et al. [3] for related results on the dynamics of total collisions

in the case of Schwarzschild and Manev potentials.

Let us say that there is another natural way to prove the existence of

hyperbolic motions, using the fact that the Newtonian force vanishes when all

mutual distances diverge. We could call these motions almost linear. The way

to do that is as follows. Suppose first that (x0, a) ∈ Ω × Ω is such that the

half-straight line given by x̄(t) = x0 + ta, t > 0 has no collisions (x̄(t) ∈ Ω

for all t > 0). Consider now the motion x(t) with initial condition x(0) = x0
and ẋ(0) = αa for some positive constant α. It is not difficult to prove that,
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for α > 0 chosen big enough, the trajectory x(t) is defined for all t > 0, and

moreover, it is a hyperbolic motion with limit velocity b ∈ Ω close to αa. In

particular, the limit shape of such a motion can be obtained as close as we

want from the shape of a.

The previous construction is unsatisfactory for several reasons. First, we

do not get exactly the desired limit shape but a close one. This approximation

can be made as good as we want, but we lose the control of the energy constant

h of the motion, whose order of magnitude is that of α2. Secondly, it is not

possible to apply this method when the half-straight line x̄ presents collisions.

For instance, this is the case if we take a = z0−x0 for any choice of z0 ∈ EN \Ω.

Finally, even if the homogeneity of the potential can be exploited to find a

new hyperbolic motion with a prescribed positive energy constant, and the

same limit shape, we lose the control on the initial configuration. Indeed, if

x is a hyperbolic motion defined for all t ≥ 0 with energy constant h, then

the motion xλ defined by xλ(t) = λx(λ−3/2t) is still hyperbolic with energy

constant λ−1h. Moreover, the limit shapes of x and xλ are the same, but

xλ(0) = λx(0), meaning that the initial configuration is dilated by the factor

λ.

1.2. Other expansive motions. Hyperbolic motions are part of the family

of expansive motions that we define now. In order to classify them, as well as

for further later uses, we summarize below a set of well-known facts about the

possible evolutions of the motions in the Newtonian N -body problem.

Definition (Expansive motion). A motion x : [0,+∞) → Ω is said to be

expansive when all the mutual distances diverge, that is, when rij(t) → +∞
for all i < j. Equivalently, the motion is expansive if U(t)→ 0.

We will see that there are three well-defined classes of expansive motions.

First of all we must observe that, since U(t) → 0 implies ‖ ẋ(t) ‖ →
√

2h,

expansive motions can only occur with h ≥ 0.

In his pioneering work, Jean Chazy proposed a classification of motions in

terms of their final evolution. In the Keplerian case there is only one distance

function to consider, and the three classes of motions are elliptic, parabolic and

hyperbolic. Extending the analysis for N ≥ 3, he introduced several hybrid

classes of motions, such as hyperbolic-elliptical in which some distances diverge

and others remain bounded. In his attempt to achieve a full classification, he

obtains the theoretical possibility of complex behaviors such as the so-called

oscillatory motions or the superhyperbolic motions; see Saari and Xia [38].

After the works of Chazy, and for quite some time, specialists have doubted the

existence of such motions because of his complex and paradoxical appearance.
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The same can be said about the existence of pseudo-collision singularities,

which, as is well known, are impossible if N = 3.

Let us say that the existence results of oscillatory motions goes back to

the work of Sitnikov [40] for the spatial restricted three-body problem. Then,

the main idea in this paper was extended to the unrestricted problem by Alek-

seev. (See Moser [32] for a more detailed explanation of this and other related

developments.) Sitnikov’s ideas were undoubtedly very important for the con-

struction of the first example of a motion with a pseudo-collision singularity

with five bodies by Xia [43]. With respect to superhyperbolic motions we must

say that, although there are no known examples of them, they exist at least in

a weak sense for the collinear four-body problem (with regularisation of binary

collisions) [38].

As we will see, to achieve the proof of the announced results, it will be

crucial to show certain motions that will be obtained are not superhyperbolic,

and that they do not suffer collisions nor pseudo-collisions.

We need to introduce two functions that play an important role in the

classical description of the dynamics. For a given motion, these two functions

are

r(t) = min
i<j

rij(t) and R(t) = max
i<j

rij(t),

the minimum and the maximum separation between the bodies at time t. We

now recall some facts concerning the possible behaviors of the trajectories as

t→ +∞ in terms of the behaviors of these functions.

We start by fixing some notation and making some remarks.

Notation. Given positive functions f and g, we will write f ≈ g when the

quotient of them is bounded between two positive constants.

Remark 1.3. It is easy to see that r ≈ U−1. Moreover, R2 ≈ IG, where

IG denotes the moment of inertia with respect to the center of mass G of

the configuration. To see this it suffices to write IG in terms of the mutual

distances.

Remark 1.4. The function µ = U IG
1/2 is homogeneous of degree zero.

Some authors call this function the configurational measure. According to the

previous remark we have µ ≈ Rr−1.

Remark 1.5. By König’s decomposition we have that I = IG +M ‖G ‖2E ,

where M is the total mass of the system. Therefore, using the Largange-Jacobi

identity Ï = 4h+2U we deduce that, if h > 0 and the center of mass is at rest,

then R(t) > At for some constant A > 0.

Theorem (1922, Chazy [9, pp. 39–49]). Let x(t) be a motion with energy

constant h > 0 and defined for all t > t0.



506 EZEQUIEL MADERNA and ANDREA VENTURELLI

(i) The limit

lim
t→+∞

R(t) r(t)−1 = L ∈ [1,+∞]

always exists.

(ii) If L < +∞, then there are a configuration a ∈ Ω and some function P ,

which is analytic in a neighborhood of (0, 0), such that for every t large

enough, we have

x(t) = ta− log(t)∇U(a) + P (u, v),

where u = 1/t and v = log(t)/t.

As Chazy pointed out, surprisingly Poincaré made the mistake of omitting

the log(t) order term in his “Méthodes Nouvelles de la Mécanique Céleste.”

Subsequent advances in this subject were recorded much later, when

Chazy’s results on final evolutions were included in a more general descrip-

tion of motions. From this development we must recall the following theorems.

Notice that none of them make assumptions on the sign of the energy con-

stant h.

Theorem (1967, Pollard [37]). Let x be a motion defined for all t > t0.

If r is bounded away from zero, then we have that R = O(t) as t → +∞. In

addition, R(t)/t→ +∞ if and only if r(t)→ 0.

This leads to the following definition.

Definition. A motion is said to be superhyperbolic when

lim sup
t→+∞

R(t)/t = +∞.

A short time later it was proven that either the quotient R(t)/t → +∞,

or R = O(t) and the system expansion can be described more accurately.

Theorem (1976, Marchal-Saari [29]). Let x be a motion defined for all

t > t0. Then either R(t)/t → +∞ and r(t) → 0, or there is a configuration

a ∈ EN such that x(t) = ta + O(t2/3). In particular, for superhyperbolic

motions the quotient R(t)/t diverges.

Of course this theorem does not provide much information in some cases;

for instance, if the motion is bounded, then we must have a = 0. On the

other hand, it admits an interesting refinement concerning the the behavior

of the subsystems. More precisely, when R(t) = O(t) and the configuration

a given by the theorem has collisions, the system decomposes naturally into

subsystems, within which the distances between the bodies grow at most like

t2/3. Considering the internal energy of each subsystem, Marchal and Saari

[29, Th. 2 and Cor. 4, pp. 165–166] gave a description of the possible dynamics
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that can occur within the subsystems. From these results we can easily deduce

the following.

Theorem (1976, Marchal-Saari [29]). Suppose that x(t) = ta + O(t2/3)

for some a ∈ EN and that the motion is expansive. Then, for each pair i < j

such that ai = aj , we have rij ≈ t2/3.

Notice that we can always consider the internal motion of the system, that

is, looking at the relative positions of the bodies with respect to their center

of mass. This gives a new motion with the same distance functions. Moreover,

the internal motion of an expansive motion is also expansive.

All the previous considerations allow us to classify expansive motions ac-

cording to the asymptotic order of growth of the distances between the bodies.

Since an expansive motion is not superhyperbolic, we can assume that it is

of the form x(t) = ta + O(t2/3) for some a ∈ EN . Moreover, we can assume

that the center of mass is at rest, meaning that G(a) = 0. We then get the

following three types:

(H) Hyperbolic: a ∈ Ω, and rij ≈ t for all i < j;

(PH) Partially hyperbolic: a ∈ EN \ Ω but a 6= 0;

(P) Completely parabolic: a = 0, and rij ≈ t2/3 for all i < j.

Let h0 be the energy constant of the above defined internal motion. It is

clear that the first two types can only occur if h0 > 0, while the third requires

h0 = 0.

Finally, we observe that Chazy’s Theorem applies in the first two cases.

In these cases, the limit shape of x(t) is the shape of the configuration a

and moreover, we have L < +∞ if and only if x is hyperbolic. Of course if

h0 > 0 and L = +∞, then either the motion is partially hyperbolic or it is not

expansive.

1.3. The geometric viewpoint. We explain now the geometric formula-

tion and the geometrical meaning of this work with respect to the Jacobi-

Maupertuis metrics associated to the positive energy levels. Several technical

details concerning these metrics are given in Section 5. The boundary notions

are also discussed in Section 3.2. It may be useful for the reader to keep in

mind that reading this section can be postponed to the end.

We recall that for each h ≥ 0, the Jacobi-Maupertuis metric of level

h is a Riemannian metric defined on the open set of configurations without

collisions Ω. More precisely, it is the metric defined by jh = 2(h + U) gm,

where gm is the Euclidean metric in EN given by the mass inner product. Our

main theorem has a stronger version in geometric terms. Actually Theorem 1.1

can be reformulated in the following way.
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Theorem 1.6. For any h > 0, p ∈ EN and a ∈ Ω, there is geodesic

ray of the Jacobi-Maupertuis metric of level h with asymptotic direction a and

starting at p.

This formulation requires some explanations. The Riemannian distance

dh in Ω is defined as usual as the infimum of the length functional among all

the piecewise C1 curves in Ω joining two given points. We will prove that

dh can be extended to a distance φh in EN , which is a metric completion of

(Ω, dh), and which also we call the Jacobi-Maupertuis distance. Moreover, we

will prove that φh is precisely the action potential defined in Section 2.1.

The minimizing geodesic curves can then be defined as the isometric im-

mersions of compact intervals [a, b] ⊂ R within EN . Moreover, we will say

that a curve γ : [0,+∞) → EN is a geodesic ray from p ∈ EN , if γ(0) = p

and each restriction to a compact interval is a minimizing geodesic. To deduce

this geometric version of our main theorem it will be enough to observe that

the obtained hyperbolic motions can be reparametrized taking the action as

parameter to obtain geodesic rays.

We observe now the following interesting implication of Chazy’s Theorem.

Remark 1.7. If two given hyperbolic motions have the same asymptotic

direction, then they have a bounded difference. Indeed, if x and y are hyper-

bolic motions with the same asymptotic direction, then the two unbounded

terms of the Chazy’s asymptotic development of x and y also agree.

We recall that the Gromov boundary of a geodesic space is defined as

the quotient set of the set of geodesic rays by the equivalence that identifies

rays that are kept at bounded distance. From the previous remark, we can

deduce that two geodesic rays with asymptotic direction given by the same

configuration a ∈ Ω define the same point at the Gromov boundary.

Notation. Let φh : EN × EN → R+ be the Jacobi-Maupertuis distance

for the energy level h ≥ 0 in the full space of configurations. We will write Gh
for the corresponding Gromov boundary.

The proof of the following corollary is given in Section 5.

Corollary 1.8. If h > 0, then each class in Ω1 = Ω/R+ determines a

point in Gh that is composed by all geodesic rays with asymptotic direction in

this class.

On the other hand, if instead of the arc length we parametrize the geodesics

by the dynamical parameter, then it is natural to question the existence of

non-hyperbolic geodesic rays. We do not know if there are partially hyperbolic

geodesic rays. Nor do we know if a geodesic ray should be an expansive motion.
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In what follows we write ‖ v ‖h for the norm of v ∈ TΩ with respect to the

metric jh and ‖ p ‖h for the dual norm of an element p ∈ T ∗Ω. If γ : (a, b)→ Ω

is a geodesic parametrized by the arc length, then

‖ γ̇(s) ‖2h = 2(h+ U(γ(s)) ‖ γ̇(s) ‖2 = 1

for all s ∈ (a, b). Taking into account that U≈r−1, we see that the parametriza-

tion of motions as geodesics leads to slowed evolutions over passages near col-

lisions. We also note that for expansive geodesics we have ‖ γ̇(s) ‖ → 1/
√

2h.

Finally we make the following observations about the Hamilton-Jacobi

equation that we will solve in the weak sense. First, equation (HJ), which

explicitly reads
1

2
‖ dxu ‖2 − U(x) = h,

can be written in geometric terms, precisely as the eikonal equation

‖ dxu ‖h =
1√

2(h+ U(x))
‖ dxu ‖ = 1

for the Jacobi-Maupertuis metric. On the other hand, the solutions will be ob-

tained as limits of weak subsolutions, which can be viewed as 1-Lipschitz func-

tions for the Jacobi-Maupertuis distance. We will see that the set of viscosity

subsolutions is the set of functions u : EN → R such that u(x)−u(y) ≤ φh(x, y)

for all x, y ∈ EN .

2. Viscosity solutions of the Hamilton-Jacobi equation

The Hamiltonian H is defined over T ∗EN ' EN × (E∗)N as usual by

H(x, p) =
1

2
‖ p ‖2 − U(x)

and taking the valueH(x, p) = −∞ whenever the configuration x has collisions.

Here the norm is the dual norm with respect to the mass product, that is, for

p = (p1, . . . , pN ) ∈ (E∗)N ,

‖ p ‖2 = m−11 ‖ p1 ‖2 + · · ·+m−1N ‖ pN ‖
2 ,

and thus in terms of the positions of the bodies equation (HJ) becomes

H(x, dxu) =
N∑
i=1

1

2mi

∥∥∥∥ ∂u∂ri
∥∥∥∥2 − ∑

i<j

mimj

rij
= h.

As is known, the method of characteristics for this type of equations consists

in reducing the problem to the resolution of an ordinary differential equation,

whose solutions are precisely the characteristic curves. Once these curves are

determined, we can obtain solutions by integration along these curves, from

a cross section in which the solution value is given. Of course, here the char-

acteristics are precisely the solutions of the N -body problem and cannot be
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computed. Our method will be the other way around: first we build a solution

as a limit of subsolutions, and then we find characteristic curves associated

with that solution.

We start by recalling the notion of viscosity solution in our context. There

is an extremely wide literature on viscosity solutions due to the great diversity

of situations in which they can be applied. For a general and introductory

presentation, the books of Evans [19] and Barles [6] are recommended. For a

broad view on the Lax-Oleinik semigroups, we suggest references [7], [16], [20].

Definition (Viscosity solutions). With respect to the Hamilton-Jacobi

equation (HJ), we say that a continuous function u : EN → R is a

(1) viscosity subsolution if for any ψ ∈ C1(EN ) and for any configuration x0
at which u− ψ has a local maximum, we have H(x0, dx0ψ) ≤ h;

(2) viscosity supersolution if for any ψ ∈ C1(EN ) and for any configuration

x0 at which u− ψ has a local minimum, we have H(x0, dx0ψ) ≥ h.

(3) viscosity solution as long as is both a subsolution and a supersolution.

Remark 2.1. It is clear that we get the same notions by taking test func-

tions ψ defined on open subsets of EN .

Remark 2.2. The notion of viscosity solution is a generalization of the

notion of classical solution. Indeed, if u ∈ C1(EN ) satisfies the Hamilton-

Jacobi equation everywhere, then u is a viscosity solution since we can take

ψ = u as a test function.

If u ∈ C0(EN ) is a viscosity solution, then we have H(x, dxu) = h at any

point where u is differentiable. This follows from the fact that for any C0 func-

tion u, the differentiability at x0 ∈ EN implies the existence of C1 functions

ψ− and ψ+ such that ψ− ≤ u ≤ ψ+ and ψ−(x0) = u(x0) = ψ+(x0). As we will

see (Lemma 2.5), in our case viscosity subsolutions are locally Lipschitz over

the open and dense set Ω ⊂ EN of configurations without collisions. Therefore

by Rademacher’s Theorem they are differentiable almost everywhere. But, as

is well known to the reader familiar with the subject, being a viscosity solu-

tion is a much more demanding property than satisfying the equation almost

everywhere.

Remark 2.3. We note that the participation of the unknown u in equa-

tion (HJ) is only through the derivatives dxu. Therefore the set of classical

solutions is preserved by addition of constants. Also note that the same applies

for the set of viscosity subsolutions and the set of viscosity supersolutions.

From now on, we will use of the powerful interaction between the Hamil-

tonian view of dynamics and the Lagrangian view. The Hamilton-Jacobi equa-

tion provides a great bridge between the symplectic aspects of dynamics and

the variational properties of trajectories.
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Once the Lagrangian action is defined, we will characterize the set of vis-

cosity subsolutions as the set of functions satisfying a property of domination

with respect to the action. Then, the next step will be to prove the equicon-

tinuity of the family of viscosity subsolutions by finding an estimate for an

action potential.

2.1. Action potentials and viscosity solutions. The Lagrangian is defined

on TEN ' EN ×EN fiberwise as the convex dual of the Hamiltonian, that is,

L(x, v) = sup
¶
p(v)−H(x, p) | p ∈ (E∗)N

©
or equivalently,

L(x, v) =
1

2
‖ v ‖2 + U(x)

so, in particular, it takes the value L(x, v) = +∞ if x has collisions. The

Lagrangian action will be considered on absolutely continuous curves, and its

value could be infinite. We will use the following notation. For x, y ∈ EN and

τ > 0, let

C(x, y, τ) =
¶
γ : [a, b]→ EN | γ(a) = x, γ(b) = y, b− a = τ

©
be the set of absolutely continuous curves going from x to y in time τ , and

C(x, y) =
⋃
τ>0

C(x, y, τ).

The Lagrangian action of a curve γ ∈ C(x, y, τ) will be denoted

AL(γ) =

∫ b

a

L(γ, γ̇) dt =

∫ b

a

1
2 ‖ γ̇ ‖

2 + U(γ) dt.

It is well known that Tonelli’s Theorem on the lower semicontinuity of the

action for convex Lagrangians extends to this setting. A proof can be found,

for instance, in [24, Th. 2.3]. In particular, for any pair of configurations

x, y ∈ EN , we have the existence of curves achieving the minimum value

φ(x, y, τ) = min {AL(γ) | γ ∈ C(x, y, τ) }

for any τ > 0. When x 6= y there also are curves reaching the minimum

φ(x, y) = min {AL(γ) | γ ∈ C(x, y) } = min {φ(x, y, τ) | τ > 0 } .

In the case x = y we have φ(x, x) = inf {AL(γ) | γ ∈ C(x, y) } = 0. We call

these functions on EN × EN respectively the fixed time action potential and

the free time (or critical) action potential.

According to the Hamilton’s principle of least action, if a curve γ : [a, b]→
EN is a minimizer of the Lagrangian action in C(x, y, τ), then γ satisfy New-

ton’s equations at every time t ∈ [a, b] in which γ(t) has no collisions, i.e.,

whenever γ(t) ∈ Ω.
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On the other hand, it is easy to see that there are curves both with isolated

collisions and finite action. This phenomenon, already noticed by Poincaré

in [36], prevented the use of the direct method of the calculus of variations in

the N -body problem for a long time.

A big breakthrough came from Marchal, who gave the main idea needed

to prove the following theorem. Complete proofs of this and more general

versions were established by Chenciner [12] and by Ferrario and Terracini [21].

Theorem (2002, Marchal [28]). If γ ∈ C(x, y) is defined on some interval

[a, b], and satisfies AL(γ) = φ(x, y, b− a), then γ(t) ∈ Ω for all t ∈ (a, b).

Thanks to this advance, the existence of countless periodic orbits has been

established using variational methods. Among them, the celebrated three-

body figure eight due to Chenciner and Montgomery [13] is undoubtedly the

most representative example, although it was discovered somewhat before.

Marchal’s Theorem was also used to prove the non-existence of entire free

time minimizers [24], or in geometric terms, that the zero energy level has

no straight lines. The proof we provide below for our main result depends

crucially on Marchal’s Theorem. Our results can thus be considered as a new

application of Marchal’s Theorem, this time in positive energy levels.

We must also define for h > 0 the supercritical action potential as the

function

φh(x, y) = inf {AL+h(γ) | γ ∈ C(x, y) } = inf {φ(x, y, τ) + hτ | τ > 0 } .

For the reader familiar with the Aubry-Mather theory, this definition

should be reminiscent of the supercritical action potentials used by Mañé to

define the critical value of a Tonelli Lagrangian on a compact manifold.

As before we prove (see Lemma 4.2 below), now for h > 0, that given

any pair of different configurations x, y ∈ EN , the infimum in the definition

of φh(x, y) is achieved by some curve γ ∈ C(x, y), that is, we have φh(x, y) =

AL+h(γ). It follows that if γ is defined in [0, τ ], then γ also minimizes AL in

C(x, y, τ), and by Marchal’s Theorem we conclude that γ avoid collisions, i.e.,

γ(t) ∈ Ω for every t ∈ (0, τ).

2.1.1. Dominated functions and viscosity subsolutions. Let us fix h > 0

and take a C1 subsolution u of H(x, dxu) = h; that is, such that H(x, dxu) ≤ h
for all x ∈ EN . Notice now that since for any absolutely continuous curve

γ : [a, b]→ EN we have

u(γ(b))− u(γ(a)) =

∫ b

a

dγu(γ̇) dt,

by Fenchel’s inequality we also have

u(γ(b))− u(γ(a)) ≤
∫ b

a

L(γ, γ̇) +H(γ, dγu) dt ≤ AL+h(γ).
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Therefore we can say that if u is a C1 subsolution, then

u(x)− u(y) ≤ AL+h(γ)

for any curve γ ∈ C(x, y). This motivates the following definition.

Definition (Dominated functions). We said that u ∈ C0(EN ) is dominated

by L+ h, and we will denote it by u ≺ L+ h if we have

u(y)− u(x) ≤ φh(x, y) for all x, y ∈ EN .

Thus we know that C1 subsolutions are dominated functions. We prove

now the well-known fact that dominated functions are indeed viscosity subso-

lutions.

Proposition 2.4. If u ≺ L+h, then u is a viscosity subsolution of (HJ).

Proof. Let u ≺ L+ h, and consider a test function ψ ∈ C1(EN ). Assume

that u − ψ has a local maximum at some configuration x0 ∈ EN . Therefore,

for all x ∈ EN , we have ψ(x0)− ψ(x) ≤ u(x0)− u(x).

On the other hand, the convexity and superlinearity of the Lagrangian

implies that there is a unique v ∈ EN such that H(x0, dx0ψ) = dx0ψ(v) −
L(x0, v). Taking any smooth curve x : (−δ, 0]→ EN such that x(0) = x0 and

ẋ(0) = v we can write, for t ∈ (−δ, 0),

ψ(x0)− ψ(x(t))

−t
≤ u(x0)− u(x(t))

−t
≤ −1

t
AL+h

(
x |[t,0 ]

)
.

Thus for t→ 0−, we get dx0ψ(v) ≤ L(x0, v)+h, that is to say, H(x0, dx0ψ) ≤ h
as we had to prove. �

Actually, the converse can be proved. For all that follows, we will only

need to consider dominated functions, and for this reason, it will no longer be

necessary to manipulate test functions to verify the subsolution condition in

the viscosity sense. However, for the sake of completeness we give a proof of

this converse.

A first step is to prove that viscosity subsolutions are locally Lipschitz on

the open, dense, and full measure set of configurations without collisions. (For

this we follow the book of Bardi and Capuzzo-Dolcetta [5, Prop. 4.1, p. 62].)

Lemma 2.5. The viscosity subsolutions of (HJ) are locally Lipschitz on Ω.

Proof. Let u ∈ C0(EN ) be a viscosity subsolution, and let z ∈ Ω. We take

a compact neighborhood W of z in which the Newtonian potential is bounded,

i.e., such that W ⊂ Ω. Thus our Hamiltonian is coercive on T ∗W , meaning

that given h > 0, we can choose ρ > 0 for which, if ‖ p ‖ > ρ and w ∈W , then

H(w, p) > h.
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Now we choose r > 0 such that the open ball B(z, 3r) is contained in W .

Let M = max {u(x)− u(y) | x, y ∈W }, and take k > 0 such that 2kr > M .

Now we take any configuration y ∈ B(z, r), and in the closed ball By =

B(y, 2r), we define the function ψy(x) = u(y) + k ‖x− y ‖. We will use the

function ψy as a test function in the open set B∗y = B(y, 2r) \ { y }. We

observe first that u(y)−ψy(y) = 0 and that u−ψy is negative in the boundary

of By. Therefore the maximum of u − ψy is achieved at some interior point

x0 ∈ B(y, 2r).

Suppose that x0 6= y. Since ψy is smooth on B∗y , and u is a viscosity

subsolution, we must have H(x0, dx0ψy) ≤ h. Therefore we must also have

k = ‖ dx0ψy ‖ ≤ ρ.

We conclude that, if we choose k > ρ such that 2rk > M , then for any

y ∈ B(z, r), the maximum of u − ψ in By is achieved at y, meaning that

u(x) − u(y) ≤ k ‖x− y ‖ for all x ∈ By. This proves that u is k-Lipschitz on

B(z, r). �

Remark 2.6. By Rademacher’s Theorem, we know that any viscosity sub-

solution is differentiable almost everywhere in the open set Ω. In addition,

at every point of differentiability x ∈ Ω we have H(x, dxu) ≤ h. Therefore,

since Ω has full measure in EN , we can say that viscosity subsolutions satisfies

H(x, dxu) ≤ h almost everywhere in EN .

Remark 2.7. We observe that the local Lipschitz constant k we have ob-

tained in the proof depends, a priori, on the chosen viscosity subsolution u.

We will see that this is not really the case. This fact will result immediately

from the following proposition and Theorem 2.11.

We can prove now that the set of viscosity subsolutions of H(x, dxu) = h

and the set of dominated functions u ≺ L+ h coincide.

Proposition 2.8. If u is a viscosity subsolution of (HJ), then u ≺ L+h.

Proof. Let u : EN → R be a viscosity subsolution. We have to prove that

u(y)− u(x) ≤ AL+h(γ) for all x, y ∈ EN , γ ∈ C(x, y).

We start by showing the inequality for any segment s(t) = x+t(y−x), t ∈ [0, 1].

Note first that in the case y = x there is nothing to prove, since the action is

always positive. Thus we can assume that r = ‖ y − x ‖ > 0.

We know H(x, dxu) ≤ h is satisfied on a full measure set D ⊂ EN in which

u is differentiable; see Lemma 2.5 and Remark 2.6. Assuming that s(t) ∈ D
for almost every t ∈ [0, 1], we can write

d

dt
u(s(t)) = ds(t)u (y − x) a.e. in [0, 1]
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from which we deduce, applying Fenchel’s inequality and integrating,

u(y)− u(x) ≤
∫ 1

0

L(s(t), y − x) +H(s(t), ds(t)u) dt ≤ AL+h(s).

Our assumption may not be satisfied. Moreover, it could even happen that

all the segment is outside the set D in which the derivatives of u exist. This

happens, for instance, if x and y are configurations with collisions and with the

same colliding bodies. However Fubini’s Theorem tells us that our assumption

is verified for almost every y ∈ Sr =
{
y ∈ EN | ‖ y − x ‖ = r

}
. Then

u(y)− u(x) ≤ AL+h(s) for almost y ∈ Sr.

Taking into account that both u and AL+h(s) are continuous as functions of y,

we conclude that the previous inequality in fact holds for all y ∈ Sr.
We remark that the same argument applies to any segment with constant

speed, that is to say, to any curve s(t) = x+ tv, t ∈ [a, b]. Concatenating these

segments we deduce that the inequality also holds for any piecewise affine curve

p ∈ C(x, y). The proof is then achieved as follows.

Let γ ∈ C(x, y) be a curve such that AL+h(γ) = φh(x, y). The existence

of such a curve is guaranteed by Lemma 4.2. Since this curve is a minimizer

of the Lagrangian action, Marchal’s Theorem assures that, if γ is defined on

[a, b], then γ(t) ∈ Ω for all t ∈ (a, b). As a consequence, the restriction of γ to

(a, b) must be a true motion.

Suppose that there are no collisions at configurations x and y. Since in

this case γ is thus C1 on [a, b], we can approximate it by sequence of piecewise

affine curves pn ∈ C(x, y), in such a way that ṗn(t)→ γ̇(t) uniformly for t over

some full measure subset D ⊂ [a, b]. In order to be explicit, let us define for

each n > 0 the polygonal pn with vertices at configurations γ(a+ k(b− a)n−1)

for k = 0, . . . , n. Then D can be taken as the complement in [a, b] of the

countable set a+Q(b− a). Therefore, we have u(y)− u(x) ≤ AL+h(pn) for all

n ≥ 0, as well as

lim
n→∞

AL+h(pn) = AL+h(γ) = φh(x, y).

This implies that u(y) − u(x) ≤ φh(x, y). If there are collisions at x or y,

then we apply what we have proved to the configurations without collisions

xε = γ(a + ε) and yε = γ(b − ε), and we get the same conclusion taking the

limit as ε→ 0. This proves that u ≺ L+ h. �

Remark 2.9. The use of Marchal’s Theorem in the last proof seems to be

required by the argument. In fact, the argument works well for non-singular

Hamiltonians for which it is known a priori that the corresponding minimizers

are of class C1.

Notation. We will denote Sh the set of viscosity subsolutions of (HJ).
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Observe that, not only we have proved that Sh is precisely the set of

dominated functions u ≺ L+h, but also that Sh agrees with the set of functions

satisfying H(x, dxu) ≤ h almost everywhere in EN .

2.1.2. Estimates for the action potentials. We give now an estimate for

φh that implies the viscosity subsolutions form an equicontinuous family of

functions. Therefore, if we normalize subsolutions by imposing u(0) = 0, then

according to the Ascoli’s Theorem we get to the compactness of the set of

normalized subsolutions.

The estimate will be deduced from the basic estimates for φ(x, y, τ) and

φ(x, y) found by the first author for homogeneous potentials and that we recall

now. They correspond in the reference to Theorems 1 and 2 and Proposi-

tion 9, considering that in the original formulation the value κ = 1/2 is for the

Newtonian potential.

We will say that a given configuration x = (r1, . . . , rN ) is contained in a

ball of radius R > 0 if we have ‖ ri − r0 ‖E < R for all 1 ≤ i ≤ N and for some

r0 ∈ E.

Theorem ([25]). There are positive constants α0 and β0 such that, if x

and y are two configurations contained in the same ball of radius R > 0, then

for any τ > 0,

φ(x, y, τ) ≤ α0
R2

τ
+ β0

τ

R
.

If a configurations y is close enough to a given configuration x, the min-

imal radius of a ball containing both configurations is greater than ‖x− y ‖.
However, this result was successfully combined with an argument providing

suitable cluster partitions in order to obtain the following theorem.

Theorem ([25]). There are positive constants α1 and β1 such that, if x

and y are any two configurations, and r > ‖x− y ‖, then for all τ > 0,

(∗) φ(x, y, τ) ≤ α1
r2

τ
+ β1

τ

r
.

Note that the right side of the inequality is continuous for τ, ρ > 0. There-

fore, we can replace r by ‖x− y ‖ whenever x 6= y.

Remark 2.10. If x = y, then the upper bound (∗) holds for every r > 0.

Choosing r = τ2/3, we get to the upper bound φ(x, x, τ) ≤ µ τ1/3 that holds

for any τ > 0, any x ∈ EN , and for the positive constant µ = α1 + β1.

Therefore we can now bound the critical potential. The previous remark

leads to φ(x, x) = 0 for all x ∈ EN . On the other hand, for the case x 6= y

we can bound φ(x, y) with the bound for φ(x, y, τ), taking r = ‖x− y ‖ and

τ = ‖x− y ‖3/2.
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Theorem (Hölder estimate for the critical action potential [25]). There

exists a positive constant η > 0 such that for any pair of configurations x, y

∈ EN ,

φ(x, y) ≤ η ‖x− y ‖
1
2 .

These estimates for the action potentials have been used firstly to prove

the existence of parabolic motions [25], [27] and were the starting point for the

study of free time minimizers [24], [26], as well as their associated Busemann

functions by Percino and Sánchez [35], [34], and later by Moeckel, Montgomery

and Sánchez [31] in the planar three-body problem.

For our current purposes, we need to generalize the Hölder estimate of

the critical action potential in order to also include supercritical potentials.

As expected, the upper bound we found is of the form ξ(‖x− y ‖), where

ξ : [0,+∞)→ R+ is such that ξ(r) ≈ r
1
2 for r → 0 and ξ(r) ≈ r for r → +∞.

Theorem 2.11. There are positive constants α and β such that, if x and

y are any two configurations and h ≥ 0, then

φh(x, y) ≤
Ä
α ‖x− y ‖+ h β ‖x− y ‖2

ä1/2
.

Proof. We have to bound φh(x, y) = inf {φ(x, y, t) + hτ | τ > 0 }. Fix any

two configurations x and y, and let r > ‖x− y ‖. We already know by (∗) that

for any τ > 0, we have

φ(x, y, τ) + hτ ≤ A
1

τ
+B τ,

A = α1 r
2 and B = β1 r

−1 + h,
(∗∗)

α1 and β1 > 0 being two positive constants. Since the minimal value of the

right side of inequality (∗∗) as a function of τ is 2(AB)1/2, we conclude that

φh(x, y) = inf {φ(x, y, t) + hτ | τ > 0 }

≤
(
α r + h β r2

)1/2
for α = 4α1β1 and β = 4α1. By continuity, we have that the last inequality

also holds for r = ‖x− y ‖, as we wanted to prove. �

Corollary 2.12. The set of viscosity subsolutions S0h={u∈Sh | u(0)=0}
is compact for the topology of the uniform convergence on compact sets.

Proof. By Propositions 2.4 and 2.8 we know that u ∈ Sh if and only if

u ≺ L + h. Thus by Theorem 2.11 we have that, for any u ∈ Sh and for all

x, y ∈ EN ,

u(x)− u(y) ≤ φh(x, y) ≤ ξ(‖x− y ‖),

where ξ : [0,+∞)→ R+ is given by ξ(ρ) =
(
αρ+ hβ ρ2

)1/2
.
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Since ξ is uniformly continuous, we conclude that the family of functions

Sh is indeed equicontinuous. Therefore, the compactness of S0h is actually a

consequence of Ascoli’s Theorem. �

2.2. The Lax-Oleinik semigroup. We recall that a solution of H(x, dxu)=h

corresponds to a stationary solution U(t, x) = u(x)−ht of the evolution equa-

tion

∂tU +H(x, ∂xU) = 0,

for which the Hopf-Lax formula reads

U(t, x) = inf
¶
u0(y) +AL(γ) | y ∈ EN , γ ∈ C(y, x, t)

©
.

In a wide range of situations, this formula provides the unique viscosity solution

satisfying the initial condition U(0, x) = u0(x). Using the action potential we

can also write the formula as

U(t, x) = inf
¶
u0(y) + φ(y, x, t) | y ∈ EN

©
.

If the initial data u0 is bounded, then U(t, x) is clearly well defined and

bounded. In our case, we know that solutions will not be bounded, thus we

need a condition ensuring that the function y 7→ u0(y) + φ(y, x, t) is bounded

from below. Assuming u0 ≺ L+ h, we have the lower bound

u0(x)− ht ≤ u0(y) + φ(y, x, t)

for all t > 0 and all x ∈ EN , but this is in fact an equivalent formulation for

the domination condition u0 ≺ L+ h, that is to say, u ∈ Sh.

Definition (Lax-Oleinik semigroup). The backward1 Lax-Oleinik semi-

group is the map T : [0,+∞)× Sh → Sh, given by T (t, u) = Ttu, where

Ttu(x) = inf
¶
u(y) + φ(y, x, t) | y ∈ EN

©
for t > 0, and T0u = u.

Observe that u ≺ L+ h if and only if u ≤ Ttu+ ht for all t > 0. Also, we

note that Ttu − u → 0 as t → 0, uniformly in EN . This is clear since for all

x ∈ EN and t > 0, we have −ht ≤ Ttu(x) − u(x) ≤ φ(x, x, t) ≤ µ t1/3, where

the last inequality is justified by Remark 2.10.

It is not difficult to see that T defines an action on Sh, that is to say, that

the semigroup property Tt ◦ Ts = Tt+s is always satisfied. Thus the continuity

at t = 0 spreads throughout all the domain.

1The forward semigroup is defined in a similar way; see [16]. This other semigroup gives

the opposite solutions of the reversed Hamiltonian H̃(x, p) = H(x,−p). In our case the

Hamiltonian is reversible, meaning that H̃ = H.
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Other important properties of this semigroup are the monotonicity, that

is to say, that u ≤ v implies Ttu ≤ Ttv, and the commutation with constants,

saying that for every constant k ∈ R, we have Tt(u+ k) = Ttu+ k.

Thus, for u ∈ Sh and s, t > 0, we can write Tsu ≤ Ts(Ttu+ ht) = Tt(Tsu)

+ ht, which implies that we have Tsu ∈ Sh for all s > 0.

Definition (Lax-Oleinik quotient semigroup). The semigroup (Tt)t≥0 de-

fines a semigroup (T̂t)t≥0 on the quotient space Ŝh = Sh/R, given by T̂t[u] =

[Ttu].

Proposition 2.13. Given h ≥ 0 and u ∈ Sh, we have that [u] ∈ Ŝh is a

fixed point of (T̂t)t≥0 if and only if there is h′ ∈ [0, h] such that Ttu = u − h′t
for all t ≥ 0.

Proof. The sufficiency of the condition is trivial. It is enough then to

prove that it is necessary. That [u] is a fixed point of T̂ means that we have

T̂t[u] = [u] for all t > 0. That is to say, there is a function c : R+ → R+

such that Ttu = u + c(t) for each t ∈ R+. From the semigroup property,

we can easily deduce that the function c(t) must be additive, meaning that

c(t+ s) = c(t) + c(s) for all t, s ≥ 0. Moreover, the continuity of the semigroup

implies the continuity of c(t). As is well known, a continuous and additive

function from R+ into itself is linear; therefore we must have c(t) = c(1)t.

Now, since u ≤ Ttu + ht for all t ∈ R+, we get 0 ≤ c(1) + h. On the other

hand, since u ≺ L− c(1) and Sh = ∅ for h < 0, hence −c(1) ≥ 0. We conclude

that c(t) = −h′t for some h′ ∈ [0, h]. �

2.2.1. Calibrating curves and supersolutions. We finish this section by re-

lating the fixed points of the quotient Lax-Oleinik semigroup and the viscosity

supersolutions of (HJ). This relationship is closely linked to the existence of

certain minimizers, which will ultimately allow us to obtain the hyperbolic

motions we seek.

Definition (calibrating curves). Let u ∈ Sh be a given subsolution. We say

that a curve γ : [a, b]→ EN is an h-calibrating curve of u if u(γ(b))−u(γ(a)) =

AL+h(γ).

Definition (h-minimizers).A curve γ : [a, b]→ EN is said to be an h-mini-

mizer if it verifies AL+h(γ) = φh(γ(a), γ(b)).

Remark 2.14. As we have seen, the fact that u ∈ Sh is characterized by

u ≺ L+ h. Therefore for all x, y ∈ EN , we have

u(x)− u(y) ≤ φh(x, y) ≤ AL+h(γ)

for any γ ∈ C(x, y). It follows that every h-calibrating curve of u is an

h-minimizer.
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It is easy to prove that restrictions of h-calibrating curves of a given sub-

solution u ∈ Sh are themselves h-calibrating curves of u. This is also true, and

even more easy to see for h-minimizers. But nevertheless, there is a property

valid for the calibrating curves of a given subsolution but which is not satis-

fied in general by the minimizing curves. The concatenation of two calibrating

curves is again calibrating.

Lemma 2.15. Let u ∈ Sh. If γ1 ∈ C(x, y) and γ2 ∈ C(y, z) are both

h-calibrating curves of u, and if γ ∈ C(x, z) is a concatenation of γ1 and γ2,

then γ is also an h-calibrating curve of u.

Proof. We have u(y) − u(x) = AL+h(γ1) and u(z) − u(y) = AL+h(γ2).

Adding both equations we get u(z)− u(x) = AL+h(γ). �

Now we give a criterion for a subsolution to be a viscosity solution.

From here on, a curve defined on a non-compact interval will be said to be

h-calibrating if all its restrictions to compact intervals are too. In the same

way we define h-minimizers over non-compact intervals.

We start by proving a lemma on calibrating curves of subsolutions.

Lemma 2.16. Let u ∈ Sh, and let γ : [a, b] → EN be an h-calibrating

curve of u. If x0 = γ(b) is a configuration with collisions, then there is no

Lipschitz function ψ defined on a neighborhood of x0 such that ψ ≤ u and

ψ(x0) = u(x0).

Proof. Since our system is autonomous, we can assume without loss of

generality that b = 0. Thus the h-calibrating property of γ says that for every

t ∈ [a, 0],∫ 0

t

1
2 ‖ γ̇ ‖

2 dt +

∫ 0

t

U(γ) dt + h | t | = AL+h(γ |[t,0]) = u(x0)− u(γ(t)).

On the other hand, if ψ ≤ u is a k-Lipschitz function on a neighborhood of x0
such that ψ(x0) = u(x0), then we also have, for t close enough to 0,

u(x0)− u(γ(t)) ≤ ψ(x0)− ψ(γ(t)) ≤ k ‖ γ(t)− x0 ‖ .

Therefore we also have ∫ 0

t

‖ γ̇ ‖2 dt ≤ 2k ‖ γ(t)− x0 ‖ .

Now, applying Cauchy-Schwarz we can write∫ 0

t

‖ γ̇ ‖ dt ≤ | t |1/2
Ç∫ 0

t

‖ γ̇ ‖2 dt
å1/2

,
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and thus we deduce that

‖ γ(t)− x0 ‖2 ≤
Ç∫ 0

t

‖ γ̇ ‖ dt
å2

≤ 2k ‖ γ(t)− x0 ‖ | t |

and hence that

‖ γ(t)− x0 ‖ ≤ 2k | t | .
Finally, since ∫ 0

t

U(γ) dt ≤ u(x0)− u(γ(t)) ≤ k ‖ γ(t)− x0 ‖ ,

we conclude that ∫ 0

t

U(γ) dt ≤ 2k2 | t | .

Therefore, dividing by | t | and taking the limit for t→ 0 we get U(x0) ≤ 2k2.

This proves that x0 has no collisions. �

Proposition 2.17. If u ∈ Sh is a viscosity subsolution of (HJ) and for

each x ∈ EN , there is at least one h-calibrating curve γ : (−δ, 0] → EN with

γ(0) = x, then u is in fact a viscosity solution.

Proof. We only have to prove that u is a viscosity supersolution. Thus

we assume that ψ ∈ C1(EN ) and x0 ∈ EN are such that u − ψ has a local

minimum in x0. We must prove that H(x0, dx0ψ) ≥ h. First of all, we exclude

the possibility that x0 is a configuration with collisions. To do this, it suffices

to apply Lemma 2.16, taking the locally Lipschitz function ψ+ u(x0)−ψ(x0).

Now let γ : (−δ, 0] → EN with γ(0) = x0 and h-calibrating. Thus for

t ∈ (−δ, 0], ∫ 0

t

L(γ, γ̇) dt − ht = u(x0)− u(γ(t))

and also, given that x0 is a local minimum of u− ψ, for t close enough to 0,

u(x0)− u(γ(t)) ≤ ψ(x0)− ψ(γ(t)).

Since x0 ∈ Ω and γ is a minimizer, we know that γ can be extended beyond

t = 0 as solution of Newton’s equation. In particular, v = γ̇(0) is well defined,

and moreover, using the previous inequality we find

dx0ψ(v) = lim
t→0−

ψ(x0)− ψ(γ(t))

−t
≥ L(x0, v) + h,

which implies, by Fenchel’s inequality, that H(x0, dx0ψ) ≥ h. �

The following proposition complements the previous one. It states that

under a stronger condition, the viscosity solution is in addition a fixed point

of the quotient Lax-Oleinik semigroup.
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Proposition 2.18. Let u ∈ Sh be a viscosity subsolution of (HJ). If for

each x ∈ EN there is an h-calibrating curve of u, say γx : (−∞, 0]→ EN , such

that γx(0) = x, then Ttu = u− ht for all t ≥ 0.

Proof. For each x ∈ EN , for t ≥ 0 we have

Ttu(x)− u(x) = inf
¶
u(y)− u(x) + φ(y, x, t) | y ∈ EN

©
.

Thus it is clear that Ttu(x) − u(x) ≥ −ht since we know that u ≺ L + h. On

the other hand, given that γx is an h-calibrating curve of u,

u(x)− u(γx(−t)) = φ(γx(−t), x, t) + ht.

Writing yt = γx(−t) we have that u(yt) − u(x) + φ(yt, x, t) = −ht, and we

conclude that Ttu(x)− u(x) ≤ −ht. We have proved that Ttu = u− ht for all

t ≥ 0. �

Remark 2.19. The formulation of the previous condition can cause some

confusion, since the calibrating curves are parametrized on negative intervals.

Here the Lagrangian is symmetric, thus reversing the time of a curve always

preserves the action. More precisely, given an absolutely continuous curve γ :

[a, b]→ EN , if we define γ̃ on [−b,−a] by γ̃(t) = γ(−t), then AL(γ̃) = AL(γ).

We can reformulate the calibrating condition of the previous proposition

in this equivalent way: For each x ∈ EN , there is a curve γx : [0,+∞)→ EN

such that γx(0) = x, and such that u(x) − u(γx(t)) = AL+h(γx |[0,t]) for all

t > 0.

Remark 2.20. The hypothesis of Proposition 2.17 implies the hypothesis

of Proposition 2.18. This is exactly what we do in the proof of Theorem 3.2

below.

3. Ideal boundary of a positive energy level

This section is devoted to the construction of global viscosity solutions

for the Hamilton-Jacobi equations (HJ). The method is quite similar to that

developed by Gromov in [22] to compactify locally compact metric spaces (see

also [4, Ch. 3]).

3.1. Horofunctions as viscosity solutions. The underlying idea giving rise

to the construction of horofunctions is that each point in a metric space

(X, d) can be identified with the distance function to that point. More pre-

cisely, the map X → C(X) that associates to each point x ∈ X the func-

tion dx(y) = d(y, x) is an embedding such that for all x0, x1 ∈ X, we have

max | dx0(y)− dx1(y) | = d(x0, x1).

It is clear that any sequence of functions dxn diverges if xn →∞, that is

to say, if the sequence xn escapes from any compact subset of X. However, for
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a non-compact space X, the induced embedding of X into the quotient space

C(X)/R has in general an image with a non-trivial boundary. This boundary

can thus be considered as an ideal boundary of X.

Here the metric space will be (EN , φh) with h > 0, and the set of continu-

ous functions C0(EN ) will be endowed with the topology of the uniform conver-

gence on compact sets. Instead of looking at equivalence classes of functions, we

will take as the representative of each class the only one vanishing at 0 ∈ EN .

Definition (Ideal boundary). We say that a function u ∈ C0(EN ) is in

the ideal boundary of level h if there is a sequence of configurations pn, with

‖ pn ‖ → +∞ and such that for all x ∈ EN ,

u(x) = lim
n→∞

φh(x, pn)− φh(0, pn).

We will denote by Bh the set of all these functions, which we will also call

horofunctions.

The first observation is that Bh 6= ∅ for any value of h ≥ 0. This can

be seen as a consequence of the estimate for the potential φh we proved; see

Theorem 2.11.

Actually for any p ∈ EN , the function x → φh(x, p) − φh(0, p) is in S0h,

the set of viscosity subsolutions vanishing at x = 0. Since by Corollary 2.12

we know that S0h is compact, for any sequence of configurations pn such that

‖ pn ‖ → +∞, there is a subsequence that defines a function in Bh as above.

It is also clear that Bh ⊂ Sh. Functions in Bh are limits of functions in Sh,

and this set is closed in EN even for the topology of pointwise convergence. But

since we already know that the family Sh is equicontinuous, the convergence

is indeed uniform on compact sets.

Notation. When the value of h is understood, we will denote by up the

function defined by up(x) = φh(x, p), where p is a given configuration.

One fact that should be clarifying is that for any p ∈ EN , the subsolution

given by up fails to be a viscosity solution precisely at x = p. If x 6= p,

then there is a minimizing curve of AL+h in C(p, x) (see Lemma 4.2 below),

and clearly this curve is h-calibrating of up. On the other hand, there are

no h-calibrating curves of up defined over an interval (−δ, 0] and ending at

x = p. This is because up ≥ 0, up(p) = 0, and h-calibrating curves, as

h-minimizers, have strictly increasing action. Actually, this property of the

up functions occurs for all energy levels greater than or equal to the critical

one, in a wide class of Lagrangian systems. The simplest case to visualize

is surely the case of absence of potential energy in an Euclidean space, in

which we have up(x) = h ‖x− p ‖ and h-calibrating curves are segments of

the half-lines emanating from p with a constant speed (gradient curves).
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This suggest that the horofunctions must be viscosity solutions, which is

what we will prove now.

Theorem 3.1. Given u ∈ Bh and r > 0 there are, for each x ∈ EN , some

y ∈ EN with ‖ y − x ‖ = r, and a curve γx ∈ C(y, x) such that u(x) − u(y) =

AL+h(γx). In particular, every function u ∈ Bh is a global viscosity solution

of (HJ).

Proof. Let u ∈ Bh, that is to say, u = limn(upn−upn(0)) for some sequence

of configurations pn such that ‖ pn ‖ → +∞, and upn(x) = φh(x, pn).

Let x ∈ EN be any configuration, and fix r > 0. Using Lemma 4.2 we get,

for each n > 0, a curve γn ∈ C(pn, x) such that AL+h(γn) = φh(pn, x). Each

curve γn is thus an h-calibrating curve of upn .

If ‖ pn − x ‖ > r, then the curve γn must pass through a configuration yn
with ‖ yn − x ‖ = r. Extracting a subsequence if necessary, we may assume

that this is the case for all n > 0, and that yn → y, with ‖ y − x ‖ = r. Since

the arc of γn joining yn to x also h-calibrates upn , we can write

upn(x)− upn(yn) = φh(yn, x)

for all n big enough. We conclude that

u(x)− u(y) = lim
n→∞

upn(x)− upn(y) = φh(y, x),

which proves the first statement. The second one follows now from the criterion

for viscosity solutions given in Proposition 2.17. �

Our next goal is to prove that horofunctions are actually fixed points of

the quotient Lax-Oleinik semigroup. We will achieve this goal by showing the

existence of calibrating curves allowing the use of Proposition 2.18. These

calibrating curves will be the key to the proof of the existence of hyperbolic

motions (see Figure 2).

Thanks to the previous theorem we can build maximal calibrating curves.

Then, Marchal’s Theorem will allow us to assert that these curves are in fact

true motions of the N -body problem. Next we have to prove that these motions

are defined over unbounded above time intervals; that is to say, we must exclude

the possibility of collisions or pseudocollisions. It is for this reason that we will

also invoke the famous von Zeipel’s theorem2 that we recall now.

Theorem (1908, von Zeipel [41]). Let x : (a, t∗) → EN be a maximal

solution of the Newton’s equations of the N -body problem with t∗ < +∞. If

2This theorem had no major impact on the theory until it was rediscovered after at least

half a century later, and it proved to be essential for the understanding of pseudocollision

singularities; see, for instance, Chenciner’s Bourbaki seminar [10]. Among other proofs, there

is a modern version due to McGehee [30] of the proof originally outlined by von Zeipel.
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‖x(t) ‖ is bounded in some neighborhood of t∗, then the limit xc = limt→t∗ x(t)

exists and the singularity is therefore due to collisions.

Theorem 3.2. If u ∈ Bh, then for each x ∈ EN , there is a curve γx :

[0,+∞)→ EN with γx(0) = x, and such that for all t > 0,

u(x)− u(γx(t)) = AL+h(γx |[0,t]).

In particular, every function u ∈ Bh satisfies Ttu = u− ht for all t > 0.

Proof. Let us fix a configuration x ∈ EN . By Theorem 3.1 we know that

u has at least one h-calibrating curve γ : (−δ, 0] → EN such that γ(0) = x.

By application of Zorn’s Lemma we get a maximal h-calibrating curve of the

form γ : (t∗, 0] → EN with γ(0) = x. We will prove that t∗ = −∞, and thus

the required curve can be defined on [0,+∞) by γx(t) = γ(−t).
Suppose by contradiction that t∗ > −∞. Since γ is an h-minimizing curve,

we know that its restriction to (t∗, 0) is a true motion with energy constant h.

Either the curve can be extended as a motion for values less than t∗, or it

presents a singularity at t = t∗. In the case of singularity, we have at t = t∗

either a collision, or a pseudocollision. According to von Zeipel’s Theorem, in

the pseudocollision case we must have sup { ‖ γ(t) ‖ | t ∈ (t∗, 0] } = +∞.

Suppose that the limit y = limt→t∗ γ(t) exists. Then by Theorem 3.1 we

can choose a calibrating curve γ̃ defined on (−δ, 0] and such that γ̃(0) = y.

Thus the concatenation of γ̃ with γ defines a calibrating curve γ+ defined on

(t∗ − δ, 0] and such that γ+(0) = x. But this contradicts the maximality of γ.

On the other hand, if we suppose that ‖ γ(t) ‖ is unbounded, we can

choose a sequence yn = γ(tn) such that ‖ yn − x ‖ → +∞. Let us define

An = AL(γ |[tn,0]).
A standard way to obtain a lower bound for An is by neglecting the po-

tential term that is positive. Then by using the Cauchy-Schwarz inequality

we obtain that for all n > 0, we have 2 | tn |An ≥ ‖ yn − n ‖2. Since γ is

h-minimizing, we deduce that

φh(yn, x) ≥ ‖ yn − x ‖
2

2 | tn |
+ h | tn |

for all n > 0. Since ‖ yn − x ‖ → +∞ and tn → t∗ > −∞, we get a contra-

diction with the upper estimate given by Theorem 2.11. Indeed that theorem

implies φh(yn, x) is bounded above by a function that is of order O(‖ yn − x ‖)
as ‖ yn − x ‖ → +∞, which contradicts the displayed inequality.

The last assertion is a consequence of Proposition 2.18 and Remark 2.19.

�

3.2. Busemann functions. We recall that a length space (X, d) is said to be

geodesic space if the distance between any two points is realized as the length of
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a curve joining them. A ray in X is an isometric embedding γ : [0,+∞)→ X.

As we said in Section 1.3, the Gromov boundary of a geodesic space is defined

as the quotient space of the set of rays of X under the equivalence relation:

γ ∼ γ′ if and only if the function given by d(γ(t), γ′(t)) on [0,+∞) is bounded.

There is a natural way to associate a horofunction to each ray. Let us

write dp for the function measuring the distance to the point p ∈ X; that is,

dp(x) = d(x, p). Once γ is fixed, we define

ut(x) = dγ(t)(x)− dγ(t)(γ(0)) and uγ = lim
t→∞

ut.

These horofunctions uγ are called Busemann functions and are well de-

fined because of the geodesic characteristic property of rays. More precisely,

for any ray γ and for all 0 ≤ s ≤ t, we have d(γ(t), γ(s)) = t − s and hence

that ut ≤ us. Moreover, it is also clear that ut ≥ −dγ(0), which implies that

uγ ≥ −dγ(0). We also note that uγ = limn utn whenever (tn)n>0 is a sequence

such that tn →∞.

It is well known that under some hypothesis on X we have that, for any

two equivalent rays γ ∼ γ′, the corresponding Busemann functions are the

same up to a constant; that is, [uγ ] = [uγ′ ]. Therefore in these cases a map

is defined from the Gromov boundary into the ideal boundary, and it is thus

natural to ask about the injectivity and the surjectivity of this map. However,

the following simple and enlightening example shows a geodesic space in which

there are equivalent rays γ ∼ γ′ for which [uγ ] 6= [uγ′ ].

Example (The infinite ladder). We define X ⊂ R2 as the union of the two

straight lines R× {−1, 1 } with the segments Z× [−1, 1]; see Figure 1.

Figure 1. The infinite ladder.

We endow X with the length distance induced by the standard metric

in R2. It is not difficult to see that every ray in X is eventually of the form

x(t) = (±t + c,±1). Each possibility for the two signs determines one of the

four different Busemann functions that indeed compose the ideal boundary.

Therefore, there are four points in the ideal boundary of X, while there are

only two classes of rays composing the Gromov boundary of X.

Let us return to the context of the N -body problem; that is to say, let us

take as metric space the set of configurations EN , with the action potential φh
as the distance function. Actually (EN , φh) becomes a length space, and φh
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coincides with the length distance of the Jacobi-Maupertuis metric when re-

stricted to Ω. Proofs of all these facts are given in Section 5. We are interested

in the study of the ideal and Gromov boundaries of this space; in particular, we

need to understand the rays in this space having prescribed asymptotic direc-

tion. As we will see, they will be found as calibrating curves of horofunctions

in a special class.

Definition (Directed horofunctions). Given a configuration a 6= 0 we define

the set of horofunctions directed by a as the set

Bh(a) =
{
u ∈ Bh | u = lim

n
(upn − upn(0)), pn = λna+ o(λn), λn → +∞

}
.

Remark 3.3. Theorem 2.11 implies, in a manner identical to the proof of

Corollary 2.12, that Bh(a) 6= ∅.

O a

Figure 2. Calibrating curves of a hyperbolic Busemann function

u(x) = limn(φh(x, na)− φh(0, na)) in the Kepler problem.

The following theorem is the key for the proof of Theorem 1.1 and its

proof is given in Section 4.3.

Theorem 3.4. Let a ∈ Ω and u ∈ Bh(a). If γ : [0,+∞)→ EN satisfies

u(γ(0))− u(γ(t)) = AL+h(γ |[0,t])

for all t > 0, then γ is a hyperbolic motion of energy h with asymptotic direc-

tion a.

We can thus deduce the following corollary, whose proof is a very easy

application of the Chazy’s Theorem on hyperbolic motions; see Remark 1.7.

Corollary 3.5. If a ∈ Ω and u ∈ Bh(a), then the distance between any

two h-calibrating curves for u is bounded on their common domain.
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We can also apply Theorem 3.4 to deduce that calibrating curves of a

hyperbolic Busemann function are mutually asymptotic hyperbolic motions.

Corollary 3.6. If γ is a hyperbolic h-minimizer and uγ is its associated

Busemann function, then all the calibrating curves of uγ are hyperbolic motions

with the same limit shape and direction as γ.

Proof. Since γ is hyperbolic, we know that there is a configuration without

collisions a ∈ Ω such that γ(t) = ta + o(t) as t → +∞. Taking the sequence

pn = γ(n) we have that pn = na+ o(n), and also that

uγ − uγ(0) = lim
n→+∞

[upn − upn(0)].

This implies that uγ − uγ(0) ∈ Bh(a), hence that uγ is a viscosity solution.

Moreover, Theorem 3.4 says that the calibrating curves of uγ all of the form

ta + o(t). On the other hand, clearly γ calibrates uγ since for any 0 ≤ s ≤ t,

we have that

uγ(t)(γ(s))− uγ(t)(γ(0)) = −φh(γ(0), γ(s)),

which in turn implies, taking the limit for t→ +∞, that

uγ(γ(0))− uγ(γ(s)) = −uγ(γ(s)) = φh(γ(0), γ(s)). �

4. Proof of the main results on hyperbolic motions

This part of the paper contains the proofs that so far have been postponed

for different reasons. In the first part we deal with several lemmas and technical

results, after which we complete the proof of the main results in Section 4.3.

4.1. Chazy ’s Lemma. The first lemma that we will prove states that the

set H+ ⊂ TΩ of initial conditions in the phase space given rise to hyperbolic

motions is an open set. Moreover, it also says that the map defined in this set

that gives the asymptotic velocity in the future is continuous. This is precisely

what in Chazy’s work appears as continuité de l’instabilité. We give a slightly

more general version for homogeneous potentials of degree −1, but the proof

works the same for potentials of negative degree in any Banach space.

Intuitively what happens is that, if an orbit is sufficiently close to some

given hyperbolic motion, then after some time the bodies will be so far away

from each other that the action of the gravitational forces will not be able to

perturb their velocities too much.

Lemma 4.1. Let U : EN → R ∪ {+∞} be a homogeneous potential of

degree −1 of class C2 on the open set Ω =
{
x ∈ EN | U(x) < +∞

}
. Let

x : [0,+∞) → Ω be a given solution of ẍ = ∇U(x) satisfying x(t) = ta + o(t)

as t→ +∞ with a ∈ Ω.

Then we have the following :
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(1) The solution x has asymptotic velocity a, meaning that

lim
t→+∞

ẋ(t) = a.

(2) (Chazy ’s continuity of the limit shape). Given ε > 0, there are constants

t1 > 0 and δ > 0 such that, for any maximal solution y : [0, T ) → Ω

satisfying ‖ y(0)− x(0) ‖ < δ and ‖ ẏ(0)− ẋ(0) ‖ < δ, we have

(i) T = +∞, ‖ y(t)− ta ‖ < tε for all t > t1; and moreover

(ii) there is b ∈ Ω with ‖ b− a ‖ < ε for which y(t) = tb+ o(t).

Proof. Let 0 < ρ < ε such that the closed ball B = B(a, ρ) is contained in

Ω. Let k = max { ‖∇U(z) ‖ | z ∈ B }, and choose t0 > 0 in such a way that for

any t ≥ t0, we have ‖x(t)− ta ‖ < tρ. Therefore, since ∇U is homogeneous of

degree −2, for each t ≥ t0 we have t−1x(t) ∈ B and

‖∇U(x(t)) ‖ ≤ t−2
∥∥∇U(t−1x(t))

∥∥ ≤ kt−2.
Thus, for t0 < t1 < t2, we can write

‖ ẋ(t2)− ẋ(t1) ‖ ≤
∫ t2

t1

‖∇U(x(s)) ‖ ds ≤
∫ +∞

t1

ks−2 ds =
k

t1

from which we deduce that ẋ(t) has a limit for t → +∞. This limit cannot

be other than lim ẋ = a, since otherwise we would have that the derivative of

x(t)− ta has a non-null limit contradicting the hypothesis x(t)− ta = o(t).

Writing x1 = x(t1) and ẋ1 = ẋ(t1), we see that we can fix t1 > t0 large

enough such that

‖x1 − t1a ‖ < t1
ρ

3
.

If, in addition, t1 > 3k/ρ, then we also have

‖ ẋ1 − a ‖ ≤
k

t1
<
ρ

3
.

On the other hand, since the vector field X(x, v) = (v,∇U(x)) is of

class C1, it defines a local flow on TΩ. Let us denote by (x0, ẋ0) the ini-

tial condition (x(0), ẋ(0)) of x(t). We can choose δ > 0 such that, for any

choice of (y0, ẏ0) ∈ TΩ verifying ‖ y0 − x0 ‖ < δ and ‖ ẏ0 − ẋ0 ‖ < δ, the maxi-

mal solution y : [0, T )→ Ω with y(0) = y0 and ẏ(0) = ẏ0 satisfies the following

two conditions: T > t1, and

‖ y1 − t1a ‖ < t1
ρ

3
and ‖ ẏ1 − a ‖ <

ρ

3
,

where y1 = y(t1) and ẏ1 = ẏ(t1).

Now, assume t ∈ [t1, T ) is such that y(s) ∈ sB for all s ∈ [t1, t]. As before

we have ‖ ẏ(s)− ẏ1 ‖ ≤ k/t1 < ρ/3, and thus ‖ ẏ(s)− a ‖ < 2ρ/3. Therefore
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we can deduce that

‖ y(t)− ta ‖ ≤ ‖ y1 − t1a ‖+

∫ t

t1

‖ ẏ(s)− a ‖ ds

< t1
ρ

3
+ (t− t1)

2ρ

3
< tρ.

Since the last inequality is strict, in fact we have proved that y(s) ∈ sBo for all

s ∈ [t1, t], where Bo denotes the open ball B(a, ρ). Thus, the set of t ∈ [t1, T )

such that y(s) ∈ sB for all s ∈ [t1, t] is an open subset, and easily we conclude

that we must have y(t) ∈ tBo for all t ∈ [t1, T ).

Note that T = +∞. Otherwise K = ∪t∈[0,T ] tB would be compact and

(y(t), ẏ(t)) ∈ K × B for all t ∈ [t1, T ), which is impossible for a maximal

solution. By the same argument used for the motion x, we have that ẏ(t) has

a limit b ∈ B. In particular, ‖ b− a ‖ < ε and y(t) = tb+ o(t). �

4.2. Existence and properties of h-minimizers. The following lemma en-

sures that for h > 0, the length space (EN , φh) is indeed geodesically convex.

Actually the lemma gives us minimizing curves for any pair of configura-

tions, even with collisions, and it follows from Marchal’s Theorem that such

curves avoid collisions at intermediary times. The proof is a well-known argu-

ment based on the Tonelli’s Theorem for convex Lagrangians, combined with

Fatou’s Lemma for dealing with the singularities of the potential.

Lemma 4.2 (Existence of minimizers for φh). Given h>0 and x 6=y∈EN ,

there is a curve γ ∈ C(x, y) such that AL+h(γ) = φh(x, y).

First we need to introduce some notation and make a simple remark that

we will use several times. It is worth noting that the remark applies whenever

we consider a system defined by a potential U > 0.

Notation. Given h ≥ 0, for x, y ∈ EN and τ > 0 we will write

Φx,y(τ) = 1
2 ‖x− y ‖

2 τ−1 + h τ.

Remark 4.3. Given h ≥ 0 we have, for any pair of configurations x, y ∈ EN
and any τ > 0

φ(x, y, τ) + hτ ≥ Φx,y(τ).

Indeed, given any pair of configurations x, y ∈ EN and for any σ ∈ C(x, y, τ),

the Cauchy-Schwarz inequality implies

‖x− y ‖2 ≤
Ç∫ b

a

‖ σ̇ ‖ dt
å2

≤ τ

∫ b

a

‖ σ̇ ‖2 dt.

Thus, since U > 0,

AL(σ) > 1
2

∫ b

a

‖ σ̇ ‖2 dt ≥ 1
2 ‖x− y ‖

2 τ−1.
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This justifies the assertion, since this lower bound does not depend on the

curve σ.

Proof of Lemma 4.2. Let x, y ∈ EN be two given configurations, with

x 6= y. We start by taking a minimizing sequence of AL+h in C(x, y), that is

to say, a sequence of curves (σn)n>0 such that

lim
n→∞

AL+h(σn) = φh(x, y).

Then from this minimizing sequence we build a new one, but this time com-

posed by curves with the same domain. To do this, we first observe that, if

each σn is defined on an interval [0, τn], then by the previous remark we know

that

AL+h(σn) ≥ φ(x, y, τn) + hτn ≥ Φx,y(τn),

where Φx,y is the above defined function. Since clearly Φx,y is a proper function

on R+, we deduce that 0 < lim inf τn ≤ lim sup τn < +∞, and therefore we

can suppose without loss of generality that τn → τ0 as n → ∞. It is not

difficult to see that reparametrizing linearly each curve σn over the interval

[0, τ0] we get a new minimizing sequence. More precisely, for each n > 0, the

reparametrization is the curve γn : [0, τ0]→ EN defined by γn(t) = σn(τnτ
−1
0 t).

Computing the action of the curves γn we get∫ τ0

0

1
2 ‖ γ̇n ‖

2 dt = τnτ
−1
0

∫ τn

0

1
2 ‖ σ̇n ‖

2 dt

and ∫ τ0

0

U(γ) dt = τ0τ
−1
n

∫ τn

0

U(σ) dt,

and thus we have that

lim
n→∞

AL+h(γ) = lim
n→∞

AL+h(σ) = φh(x, y).

On the other hand, it is easy to see that a uniform bound for the action of

the family of curves γn implies the equicontinuity of the family. More precisely,

if the bound AL(γn) ≤ 1
2 M

2 holds for all n > 0, then using Cauchy-Schwarz

inequality as in Remark 4.3 we have

‖ γn(t)− γn(s) ‖ ≤M | t− s |
1
2

for all t, s ∈ [0, t0] and for all n > 0. Thus by Ascoli’s Theorem we can assume

that the sequence (γn) converges uniformly to a curve γ ∈ C(x, y, τ0). Finally,

we apply Tonelli’s Theorem for convex Lagrangians to get∫ τ0

0

1
2 ‖ γ̇ ‖

2 dt ≤ lim inf
n→∞

∫ τ0

0

1
2 ‖ γ̇n ‖

2 dt



532 EZEQUIEL MADERNA and ANDREA VENTURELLI

and Fatou’s Lemma to obtain that∫ τ0

0

U(γ) dt ≤ lim inf
n→∞

∫ τ0

0

U(γn) dt.

Therefore AL(γ) ≤ φ(x, y, τ0), which is only possible if the equality holds, and

thus we deduce that AL+h(γ) = φh(x, y). �

The next lemma is quite elementary and provides a rough lower bound

for φh. However it has an interesting consequence, namely that reparametriza-

tions of the h-minimizers by arc length of the metric φh are Lipschitz with the

same Lipschitz constant. We point out that this lower bound only depends on

the positivity of the Newtonian potential.

Lemma 4.4. Let h > 0. For any pair of configurations x, y ∈ EN , we have

φh(x, y) ≥
√

2h ‖x− y ‖ .

Proof. We note that

φh(x, y) = min {φ(x, y, τ) + τh | τ > 0 } ≥ min {Φx,y(τ) | τ > 0 }

and that

min {Φx,y(τ) | τ > 0 } =
√

2h ‖x− y ‖ . �

Remark 4.5. If γ(s) is a reparametrization of an h-minimizer and the

parameter is the arc length for the metric φh, then we have
√

2h ‖ γ(s2)− γ(s1) ‖ ≤ φh(γ(s1), γ(s2)) = | s2 − s1 | .

Therefore all these reparametrizations are Lipschitz with Lipschitz constant

1/
√

2h.

Finally, the following and last lemma will be used to estimate the time

needed by an h-minimizer to join two given configurations.

Lemma 4.6. Let h > 0, x, y ∈ EN be two given configurations, and let

σ ∈ C(x, y, τ) be an h-minimizer. Then we have

τ−(x, y) ≤ τ ≤ τ+(x, y),

where τ−(x, y) and τ+(x, y) are the roots of the polynomial

P (τ) = 2h τ2 − 2φh(x, y) τ + ‖x− y ‖2 .

Proof. Since σ minimizes AL+h, in view of Remark 4.3 we have

φh(x, y) = φ(x, y, τ) + τh ≥ Φx,y(τ),

that is,

φh(x, y) ≥ ‖x− y ‖
2

2τ
+ τh,

which is equivalent to saying that P (τ) < 0. �
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4.3. Proof of Theorems 1.1 and 3.4.

Proof of Theorem 1.1. Given h > 0, a ∈ Ω and x0 ∈ EN , we proceed as

follows. First, we define the sequence of functions

un(x) = φh(x, na)− φh(0, na), x ∈ EN .

Each one of these functions is a viscosity subsolution of the Hamilton-Jacobi

equation H(x, dxu) = h; that is to say, we have un ≺ L + h for all n > 0.

Since the estimate for the action potential φh given by Theorem 2.11 implies

that the set of such subsolutions is an equicontinuous family, and since we have

un(0) = 0 for all n > 0, we can extract a subsequence converging to a function

u(x) = lim
k→+∞

unk(x),

and the convergence is uniform on compact subsets of EN . Actually the limit

is a directed horofunction u ∈ Bh(a).

By Theorem 3.2 we know that there is at least one curve x : [0,+∞)→ EN

such that

φh(x0, x(t)) = AL(x |[0,t]) + ht = u(x0)− u(x(t))

for any t > 0, and such that x(0) = x0. Proposition 2.17 now implies that

u is a viscosity solution of the Hamilton-Jacobi equation H(x, dxu) = h and,

moreover, that u is a fixed point of the quotient Lax-Oleinik semigroup.

Finally, by Theorem 3.4 we have that the curve x(t) is a hyperbolic mo-

tion, with energy constant h, and whose asymptotic direction is given by the

configuration a. More precisely, we have that

x(t) = t

√
2h

‖ a ‖
a + o(t)

as t→ +∞, as we wanted to prove. �

Proof of Theorem 3.4. For h > 0 and a ∈ Ω, let u ∈ Bh(a) be a given ho-

rofunction directed by a. This means that there is a sequence of configurations

(pn)n>0, such that pn = λna+ o(λn) with λn → +∞ as n→∞, and such that

u(x) = lim
n→∞

(upn(x)− upn(0)),

where up denotes the function up(x) = φh(x, p). Let also γ : [0,+∞) → EN

be the curve given by the hypothesis and satisfying

u(γ(0))− u(γ(t)) = AL+h(γ |[0,t])

for all t > 0. In particular, γ is an h-minimizer. We recall that this means

the restrictions of γ to compact intervals are global minimizers of AL+h. Thus

the restriction of γ to (0,+∞) is a genuine motion of the N -body problem,

with energy constant h, and it is a maximal solution if and only if γ(0) has
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collisions, otherwise the motion defined by γ can be extended as a motion to

some interval (−ε,+∞).

The proof is divided into three steps. The first one will be to prove that

the curve γ is not a superhyperbolic motion. This will be deduced from the

minimization property of γ. Then we will apply the Marchal-Saari theorem to

conclude that there is a configuration b 6= 0 such that γ(t) = tb+O(t2/3). The

second and most sophisticated step will be to exclude the possibility of having

collisions in b, that is to say, in the limit shape of the motion γ. Finally, once

it is known that γ is a hyperbolic motion, an easy application of the Chazy’s

Lemma 4.1 will allow us to conclude that we must have b = λa for some λ > 0.

Then the proof will be achieved by observing that, since ‖ b ‖ =
√

2h, we must

also have λ =
√

2h ‖ a ‖−1.
We start now by proving that γ is not superhyperbolic. We will give

a proof by contradiction. Supposing that γ is superhyperbolic we can choose

tn → +∞ such that R(tn)/tn → +∞. We recall that R(t)=max { rij(t) | i<j }
denotes the maximal distance between the bodies at time t, and that R(t) =

O(‖ γ(t) ‖). Thus we can assume that ‖ γ(tn)− γ(0) ‖ /tn → +∞. Given that

the calibrating property implies the curve γ is an h-minimizer, for each n > 0

we have

AL(γ |[0,tn]) + htn = φh(γ(0), γ(tn)).

For short, let us write rn = ‖ γ(0)− γ(tn) ‖. In view of the observation we

made in Remark 4.3, and using Theorem 2.11, we have the lower and upper

bounds

1
2 r

2
n t
−1
n + htn ≤ φh(γ(0), γ(tn)) ≤

(
α rn + hβ r2n

)1/2
for some constants α, β > 0 and for any n > 0. It is not difficult to see

that this is impossible for n large enough using the fact that rn t
−1
n → +∞.

Thus by the Marchal-Saari theorem there is a configuration b ∈ EN such that

γ(t) = tb+O(t2/3). Since by the Lagrange-Jacobi identity b = 0 forces h = 0,

we know that b 6= 0.

We prove now that b has no collisions, that is to say, that b ∈ Ω. This is

our second step in the proof. Let us write p = γ(0), q0 = γ(1), and let us also

define σ0 ∈ C(q0, p, 1) by reversing the parametrization of γ0 = γ |[0,1]. Thus

σ0 calibrates the function u; that is to say, we have u(p)− u(q0) = AL+h(σ0).

Now, using Lemma 4.2 we can define a sequence of curves σ′n ∈ C(pn, q0),
such that AL+h(σ′n) = φh(pn, q0) for all n > 0. Thus each curve σ′n is an

h-calibrating curve of the function upn(x) = φh(x, pn). It will be convenient to

also consider the curves γ′n obtained by reversing the parametrizations of the

curves σ′n. If for each n > 0 the curve σ′n is defined over an interval [−sn, 0],

then we get a sequence of curves γ′n ∈ C(q0, pn, sn), respectively defined over

the intervals [0, sn].
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Since q0 is an interior point of γ, Marchal’s Theorem implies that q0 ∈ Ω.

Thus for each curve γ′n, the velocity wn = γ̇′n(0) is well defined. Since h-

minimizers have energy constant h, we also have ‖wn ‖2 = 2(h + U(q0)) for

all n > 0. This allow us to choose a subsequence nk such that wnk → v0
as k → ∞. At this point we need to prove that lim sn = +∞. This can be

done by application of Lemma 4.6 to the h-minimizers γ′n as follows. Given

two configurations x, y ∈ EN , the polynomial given by the lemma satisfies

P (τ) ≥ ‖x− y ‖2 − 2φh(x, y)τ for all τ > 0. Therefore, when x 6= y, its roots

can be bounded below by ‖x− y ‖2 /2φh(x, y). Using this fact, we have that

for all n > 0,

sn >
‖ q0 − pn ‖2

2φ(q0, pn)
.

Then the upper bound for φh given by Theorem 2.11 implies that lim sn = +∞.

Let us summarize what we have built so far. From now on, for short let

us write qk = pnk , tk = snk , vk = wnk , and also γk = γ′nk and σk = σ′nk . First,

there is a sequence of configurations (qk)k>0 such that, for some increasing

sequence nk of positive integers, we have qk = λnka + o(λnk) as k → ∞.

Associated to each qk there is an h-minimizer γk : [0, tk]→ EN , with tk → +∞,

such that γk ∈ C(q0, qk). Moreover, vk = γ̇k(0), and we have vk → v0 as k →∞.

In addition, each reversed curve σk ∈ C(qk, q0) is an h-calibrating curve of the

function uqk(x) = φh(x, qk).

We will prove that v0 = γ̇(1). To do this, we start by considering the

maximal solution of Newton’s equations with initial conditions (q0, v0) and by

calling ζ its restriction to positive times, let us say for t ∈ [0, t∗). Next, we

choose τ ∈ (0, t∗), and we observe that we have tk > τ for any k big enough.

Thus, for these values of k, we have that γk(t) and γ̇k(t) converge respectively

to ζ(t) and ζ̇(t), and the convergence is uniform for t ∈ [0, τ ]. Therefore,

lim
k→∞

AL+h(γk |[0,τ ]) = AL+h(ζ |[0,τ ]).

On the other hand, since on each compact set our function u(x) is the uniform

limit of the functions uk(x) = uqk(x)− uqk(0), we can also write

u(q0)− u(ζ(τ)) = lim
k→∞

(uk(q0)− uk(γk(τ)) ).

We use now the fact that for each one of these values of k we have, by the

calibration property, that

uk(q0)− uk(γk(τ)) = AL+h(γk |[0,τ ]),

to conclude then that

u(q0)− u(ζ(τ)) = AL+h(ζ |[0,τ ]).
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Notice that what we have proved is that the reversed curve ζ(−t) defined on

[−τ, 0] is indeed an h-calibrating curve of u. The concatenation of this cali-

brating curve with the calibrating curve σ0 results, according to Lemma 2.15,

in a new calibrating curve, defined on [−τ, 1] and passing by q0 at t = 0.

Therefore this concatenation of curves is an h-minimizer, which implies that it

is smooth at t = 0. We have proved that ζ̇(0) = v0 = γ̇(1). This also implies

that t∗ = +∞ and that ζ(t) = γ(t+ 1) for all t ≥ 0.

O a λa

qk

Br(λa)

p = γ(0)

q0 = γ(1)

v0

vk = γ̇k(0) γk(t)

γ(t+ 1)

Figure 3. The C1 approximation of the curve γ by h-minimizers

from q0 to qk = pnk . Here λ = λnk and ‖ qk − λa ‖ < r = o(λ).

For simplicity, in the rest of the proof we will call γ the curve ζ, assuming

then that the original curve γ was reparametrized to be defined on the interval

[−1,+∞). Making this abuse of notation we can then write γk(t)→ γ(t), and

γ̇k(t)→ γ̇(t), uniformly on any compact interval [0, T ].

We continue now with the proof that the limit shape b of γ has no colli-

sions. We will make use of the function µ that we mentioned in Remark 1.4,

which is called the configurational measure. It is defined as the homogeneous

function of degree zero µ : EN \ { 0 } → R+ given by µ(x) = ‖x ‖U(x) =

U(‖x ‖−1 x), that is to say, µ = UI1/2. Notice that µ(x) < +∞ if and only if

x ∈ Ω.

Under the assumption that b has collisions, we will construct a new se-

quence of curves ηk ∈ C(q0, qk) in such a way that AL+h(ηk) < AL+h(γk) for

all k big enough. Since this contradicts the minimality of the curves γk, we will

conclude that b ∈ Ω. The construction of the curves ηk will be done in terms

of the polar components of the curves γk. More precisely, for each k > 1, we

define the functions

ρk : [0, tk]→ R+, ρk(t) = ‖ γk(t) ‖ ,

θk : [0, tk]→ S, θk(t) = ‖ γk(t) ‖−1 γk(t),
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where S =
{
x ∈ EN | 〈x, x 〉 = 1

}
is the unit sphere for the mass inner prod-

uct. Thus, for each k > 0, we can write γk = ρkθk, and the Lagrangian action

in polar coordinates is

AL+h(γk) =

∫ tk

0

1
2 ρ̇

2
k dt +

∫ tk

0

1
2 ρk θ̇

2
k dt +

∫ tk

0

ρ−1k µ(γk) dt + htk.

Assuming that µ(b) = +∞, we can find ε > 0 such that, if ‖x− b ‖ < ε, then

µ(x) > 3µ(a). On the other hand, since we have that γ(t) = tb+ o(t), there is

T0 > 0 such that
∥∥ γ(t)t−1 − b

∥∥ < ε/2 for all t ≥ T0.
Now we use the approximation of γ by the curves γk. For each T ≥

T0, there is a positive integer kT such that, if k > kT , then tk > T and

‖ γk(t)− γ(t) ‖ < T0ε/2 for all t ∈ [T0, T ]. It follows that for k > kT and for

any t ∈ [T0, T ], we have ∥∥∥∥ γk(t)t − γ(t)

t

∥∥∥∥ < ε

2
,

and then
∥∥ γk(t)t−1 − b∥∥ < ε. In turn, since µ is homogeneous, this implies that

µ(γk(t)) = µ(γk(t)t
−1) > 3µ(a).

Now we are almost able to define the sequence of curves ηk ∈ C(q0, qn).

Let us write k0 for kT0 . For k ≥ k0, we know that µ(γk(T0)) > 3µ(a). More-

over, since the extreme pk of the curve γk lies in a ball Br(λa) with r = o(λ),

we can assume that k0 is big enough in order to have µ(pk) < 2µ(a) for all

k ≥ k0. Then we define

Tk = max {T ≥ T0 | µ(γk(t)) ≥ 2µ(a) for all t ∈ [T0, T ] }
and ck = θk(Tk). Given T > T0, by the previous considerations we have that

k > kT implies Tk > T . Thus, we can take Tk as large as we want by choosing

k large enough. The last ingredient for building the curve ηk is a minimizer δk
of AL+h in C(γk(T0), ρk(T0)ck) whose existence is guaranteed by Theorem 4.2.

Then we define ηk as follows. For k < k0, we set ηk = γk. For k ≥ k0, the

curve ηk is the concatenation of the following four curves: (i) the restriction

of γk to [0, T0], (ii) the minimizer δk defined above , (iii) the homothetic curve

ρk(t)ck for t ∈ [T0, Tk], and (iv) the restriction of γk to [Tk, tk] (see Figure 4).

We will show that ∆k = AL+h(γk)−AL+h(ηk) > 0 for k large enough.

We start by observing that the first and the last components of ηk are also

segments of γk so that their contributions to ∆k cancel each other out.

We also have

AL+h(γk |[T0,Tk]) =

∫ Tk

T0

1
2 ρ̇

2
k dt+

∫ Tk

T0

1
2 ρkθ̇

2 dt+

∫ Tk

T0

ρ−1k µ(γk) dt+h(Tk−T0)

and

AL+h( ρkck |[T0,Tk]) =

∫ Tk

T0

1
2 ρ̇

2
k dt+

∫ Tk

T0

ρ−1k 2µ(a) dt+ h(Tk − T0).
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O a

λka

qkb

q0

γ

ck

γk

dk

ek
bk

Figure 4. For k large enough, the AL+h action of the green

curve ηk is less than that of the curve γk. The intermediate

points are bk = γk(T0), dk = ρk(T0)ck, and ek = ρk(Tk)ck =

γk(Tk).

We recall that µ(γk(t)) ≥ 2µ(a) for all t ∈ [T0, Tk]. Therefore, so far we can

say that

∆k >

∫ Tk

T0

ρ−1k (µ(γk(t))− 2µ(a)) dt − AL+h(δk).

This part of the proof is essentially done. To conclude we only need to establish

estimates for the two terms on the right side of the previous inequality. More

precisely, we will prove that the the integral diverges as k →∞, and that the

second term is bounded as a function of k.

Claim 1. The sequence AL+h(δk) is bounded.

Proof. Indeed, the curve δk is a minimizer of AL+h between curves binding

two configurations of size ρk(T0), and

ρk(T0)→ ρ(T0) = ‖ γ(T0) ‖

as k → ∞. Therefore there is R > 0 such that the endpoints of the curves δk
are all contained in the compact ball BR(0) ⊂ EN . On the other hand, since

by Theorem 2.11 we know that the action potential φh is continuous, we can

conclude that supAL+h(δk) < +∞. �

Claim 2. The sequence
∫ Tk
T0
ρ−1k (µ(γk(t))− 2µ(a)) dt diverges as k →∞.

Proof. In order to get a lower bound for the integral of ρ−1k , we make the

following considerations. We note first that ρ(t) = ‖ γ(t) ‖ < αt + β for some

constants α, β > 0. This is because we know that γ(t) = tb+ o(t) as t→ +∞.
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Thus we have that for any T > T0,∫ T

T0

ρ−1dt ≥ log(αT + β)− log(αT0 + β).

Therefore, for any choice of K > 0, there is T > 0 such that the integral at

the left side is bigger than µ(a)−1K.

On the other hand, since for k > kT we have that Tk > T , and since

γk(t) uniformly converges to γ(t) on [T0, T ], we can assume that we have

µ(γk(t)) > 3µ(a) for all t ∈ [T0, T ] and then, neglecting the part of the in-

tegral between T and Tk that is positive, to conclude that∫ Tk

T0

ρ−1k dt (µ(γk(t))− 2µ(a)) dt > µ(a)

∫ T

T0

ρ−1k dt > K

for every k sufficiently large. �

It follows that for large values of k, the difference ∆k is positive, meaning

that the corresponding curves γk are not h-minimizers because the curves ηk
have smaller action. Therefore we have proved by contradiction that b ∈ Ω.

The last step to finish the proof is to show that b = λa for some λ > 0. If

not, we can choose two disjoint cones Ca and Cb in EN , centered at the origin

and with axes directed by the configurations a and b respectively. Since we

know that b ∈ Ω, we can apply Chazy’s Lemma to get that for k large enough,

the curves γk are defined for all t > 0, and that there is T ∗ > 0 for which we

must have γk(t) ∈ Cb for all t > T ∗ and any k large enough. But this produces

a contradiction, because we know that qk = γk(tk) = λnka+ o(λnk) as k →∞,

which forces us to have qk ∈ Ca for k large enough. �

5. The Jacobi-Maupertuis distance for non-negative energy

In this section we develop the geometric viewpoint and we show, for h ≥ 0,

that when restricted to Ω the action potential φh is exactly the Riemannian

distance associated to the Jacobi-Maupertuis metric jh = 2(h + U)gm, where

gm is the mass scalar product. Moreover, we will see that the metric space

(EN , φh) is the completion of (Ω, jh). The fact that φh is a distance over EN

is a straightforward consequence of the definition and of Lemmas 4.4 or 5.2

depending on whether h > 0 or h = 0. It is also immediate to see that (EN , φh)

is a length space; that is to say, φh coincides with the induced length distance.

From now on, we denote by Lh(γ) the Riemannian length of a C1 curve γ, and

we denote by dh the Riemannian distance on Ω.

Proposition 5.1. For all h ≥ 0, the space (EN , φh) is the completion of

(Ω, dh).
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Proof. In the case h > 0, the fact that (EN , φh) is a complete length space

comes directly from the definition of φh and from Lemma 4.4 and Theorem 2.11.

Moreover, we have that φh generates the topology of EN and that Ω is thus a

dense subset.

For the case h = 0, the argument is exactly the same, but instead of

Lemma 4.4, which becomes meaningless, we have to use Lemma 5.2 below.

The proof will be achieved now by showing that the inclusion of Ω into

EN is an isometry, that is to say, that φh coincides with dh when restricted

to Ω. Given (x, v) ∈ Ω× EN , we have

‖ v ‖h = jh(x)(v, v)1/2 ≤ L(x, v) + h

with equality if and only if E(x, v) = h, where E(x, v) = 1
2 ‖ v ‖

2 − U(x) is the

energy function in TΩ. It follows that if γ is an absolutely continuous curve

in Ω, it holds that Lh(γ)≤AL+h(γ), with equality if and only if E(γ(t), γ̇(t))=h

for almost all t. Now given x, y ∈ Ω, by Marchal’s Theorem any h-minimizer

joining x to y is a genuine motion; in particular, it is a C1 curve. Since dh is

defined as the infimum of Lh(γ) over all C1 curves in Ω joining x to y, we have

that dh(x, y) ≤ φh(x, y).

In order to prove the converse inequality, let ε > 0 and γ : [0, 1] → Ω be

a C1 curve joining x to y such that Lh(γ) ≤ dh(x, y) + ε. We can now find

a finite sequence 0 = t0 < · · · < tN = 1 such that for any i = 1, . . . , N , the

points γ(ti−1) and γ(ti) can be joined by a minimizing geodesic in Ω, here

denoted σi. We will assume that each σi is parametrized by arclength, thus

σ̇i(t) 6= 0 for all t. Now let us reparametrize each σi so that, denoting by

δi the reparametrization, we have E(δi(t), δ̇i(t)) = h for all t. Let δ be the

concatenation of all δi. By construction,

φh(x, y) ≤ AL+h(δ) = Lh(δ) ≤ Lh(γ) ≤ dh(x, y) + ε,

and by arbitrariness of ε we conclude that φh(x, y) ≤ dh(x, y). �

Lemma 5.2. There exists a constant µ0 > 0 such that for all x, y ∈ EN
satisfying x 6= y, we have

φ0(x, y) ≥ µ0
ρ
‖x− y ‖ ,

where ρ = max { ‖x ‖ , ‖ y ‖ }
1
2 .

Proof. The main idea of the proof is to estimate φ0 by comparing it with

the action of some Kepler problem in EN . Since U is a continuous function

with values in (0,+∞], the minimum of U on the unit sphere of EN , here

denoted U0, is strictly positive. Thus, by homogeneity of the potential, if x is

any non-zero configuration, we have

U(x) =
1

‖x ‖
U

Å
x

‖x ‖

ã
≥ U0

‖x ‖
.
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Let us consider now the Lagrangian function associated to the Kepler problem

in EN with potential U0/ ‖x ‖, that is to say,

Lκ(x, v) =
1

2
‖ v ‖2 +

U0

‖x ‖
.

By the previous inequality we know that Lκ(x, v) ≤ L(x, v). The critical action

potential associated to Lκ is defined on EN × EN by

Φ0(x, y) = min {ALκ(γ) | γ ∈ C(x, y) } ,

and it follows immediately from the definition that Φ0(x, y) ≤ φ0(x, y). Assume

now x 6= y, and let γ : [0, τ ]→ EN be a free-time minimizer for ALκ in C(x, y).

Thus γ is an absolutely continuous curve satisfying ALκ(γ) = Φ0(x, y). As

a zero energy motion of the Kepler problem, we know that γ is an arc of

Keplerian parabola and, in particular, we know that

max
t∈[0,τ ]

‖ γ(t) ‖ = max { ‖x ‖ , ‖ y ‖ } ,

which in turn implies that
U0

‖ γ(t) ‖
≥ U0

ρ2

for all t ∈ [0, τ ]. Thus, using this lower bound and Cauchy-Schwarz inequality

for the kinetic part of the action of γ we deduce that Φ0(x, y) ≥ g(τ), where

g : R+ → R is the function defined by

g(s) =
‖x− y ‖2

2s
+
U0

ρ2
s.

Observing now that g is convex and proper, and replacing g(τ) in the previous

inequality by the minimum of g(s) for s > 0, we obtain

φ0(x, y) ≥ Φ0(x, y) ≥ µ0
ρ
‖x− y ‖

for µ0 =
√

2U0. �

Now we have all the necessary elements to give the proof of the corollary

stated in Section 1.3. We have to prove that if two geodesic rays have the

same asymptotic limit, then they are equivalent in the sense of having bounded

difference.

Proof of Corollary 1.8. Let γ : [0,+∞) → EN be a geodesic ray of the

distance φh, with h > 0. We assume that γ(s) = sa + o(s) as s → +∞ for

some a ∈ Ω. Thus, we know that γ(s) is without collisions for all s sufficiently

big. By performing a time translation we can assume that γ(s) ∈ Ω for all

s ≥ 0, hence that γ is a geodesic ray of the Jacobi-Maupertuis metric jh in Ω.

Now we know that γ admits a factorization γ(s) = x(tγ(s)) where x(t) is a

motion of energy h. More precisely, the inverse of the new parameter tγ is a
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function sx satisfying x(t) = γ(sx(t)). Since γ is arclength parametrized, we

have ‖ γ̇(s) ‖h = 1 for all s ≥ 0, and we deduce that sx is the solution of the

differential equation

(?) ṡx(t) = 2h+ 2U(γ(sx(t)))

with initial condition sx(0) = 0. This implies that sx(t)→ +∞ and ṡx(t)→ 2h

as t → +∞, hence we also have sx(t) = 2ht + o(t) and x(t) = 2ht a + o(t) as

t→ +∞. In particular, x(t) is a hyperbolic motion. We claim now that

sx(t) = 2ht+
U(a)

h
log t+O(1).

The proof is as follows. From (?) we have, for t > 1,

(??) sx(t) = 2ht+

∫ 1

0

2U(x(ν)) dν +

∫ t

1

2U(x(ν)) dν.

On the other hand, by Chazy’s Theorem we have that

x(t) = 2ht a− log t

4h2
∇U(a) +O(1).

Then we observe that

U(x(ν)) =
1

2h ν
U

Å
a+O

Å
log ν

ν

ãã
=
U(a)

2h

1

ν
+O

Å
log ν

ν2

ã
.

Now the claim can be verified by replacing this last expression of U(x(ν)) in

the last term of (??).

Now given another geododesic ray σ : [0,+∞)→ EN , denoting by σ(s) =

y(tσ(s)) the reparametrization such that y(t) is a motion of energy constant h,

and denoting by sy the inverse of tσ, it is clear from the previous asymptotic

estimates that the difference sx(t) − sy(t) is bounded. Since the derivative of

sx and sy are both bounded below by the same positive constant, we easily

conclude that tγ(s)− tσ(s) is also bounded. By replacing this estimate in the

asymptotic expansion of x(t) and y(t), we find that γ(s)−σ(s) is bounded. �

6. Open questions on bi-hyperbolic motions

We finish with some general open questions. They are closely related to

the recent advances made by Duignan et al. [18] in which the authors show in

particular that the limit shape map (x, v) 7→ (a−, a+) defined below is actually

real analytic.

We define bi-hyperbolic motions as those that are defined for all t ∈ R
and are hyperbolic both in the past and in the future. The orbits of these
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entire solutions define a non-empty open set in the phase space, namely, the

intersection of the two open set

H = H+ ∩H−,
where H+ ⊂ TΩ = Ω × EN is the set of the initial conditions giving rise to

hyperbolic motions in the future, and H− = { (x, v) ∈ TΩ | (x,−v) ∈ H+ } is

the set of the initial conditions giving rise to hyperbolic motions in the past.

Newton’s equations define a complete vector field in the open set H ⊂ Ω×EN .

We will denote by ϕt the corresponding flow and by π : Ω × EN → Ω the

projection onto the first factor.

We also note that this open and completely invariant set has a natural

global section, given by the section of perihelia:

P = H ∩ { (x, v) ∈ TΩ | 〈x, v 〉 = 0 } .
Proposition 6.1. The flow ϕt in H is conjugated to the shift in P ×R.

Proof. Given (x0, v0) ∈ H, let x(t) = π(ϕt(x0, v0)) be the generated bi-

hyperbolic motion. Since I = 〈x, x 〉, it follows from the Lagrange-Jacobi

identity Ï = 4h + 2U that I is a proper and strictly convex function. Thus,

there is a unique tp ∈ R such that ϕtp(x0, v0) ∈ P. Moreover, the sign of

İ = 〈x, ẋ 〉 is the sign of t− tp, and ‖x(t) ‖ reaches its minimal value at t = tp.

The conjugacy is thus given by the map (x0, v0) 7→ (p(x0, v0),−tp), where

p : H → P gives the phase point at perihelion p(x0, v0) = (x(tp), ẋ(tp)). �

Naturally associated with each bi-hyperbolic motion, there is the pair of

limit shapes that it produces both in the past and in the future. More precisely,

we can define the limit shape map S : H → Ω× Ω by

S(x, v) = (a−(x, v), a+(x, v)),

a±(x, v) = lim
t→±∞

| t |−1 π(ϕt(x, v)).

As a consequence of Chazy’s continuity of the instability (Lemma 4.1) we have

that the limit shape map is actually a continuous map. It is also clear that∥∥ a−(x, v)
∥∥ =

∥∥ a+(x, v)
∥∥

for all (x, v) ∈ H. In fact, we have∥∥ a±(x, v)
∥∥2 = 2h = ‖ v ‖2 − 2U(x),

where h > 0 is the energy constant of the generated bi-hyperbolic motion.

Hence the image of S is contained in the manifold

S = { (a, b) ∈ Ω× Ω | ‖ a ‖ = ‖ b ‖ } .

Clearly, we have S◦ϕt = S for all t ∈ R. Therefore the study of the limit shape

map can be restricted to the section of perihelia P. Counting dimensions we get

dimP = 2dN − 1 = dimS,

where d = dimE.
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We will see now that the center of mass can be reduced to the origin. Let

us call G : EN → E the linear map that associates to each configuration its

center of mass. More precisely, if M = m1 + · · · + mN is the total mass of

the system, then the center of mass G(x) of x = (r1, . . . , rN ) ∈ EN is well

defined by the condition MG(x) = m1r1 + · · · + mNrN . Just as we did for

the quantities U and I, we will write G(t) instead of G(x(t)) when the motion

x(t) is understood. We observe now that if x(t) = ta+ + o(t) as t→ +∞, then

G(t) = tG(a+) + o(t). Moreover, since G̈(t) = 0 for all t ∈ R we know that the

velocity of the center of mass Ġ(t) = vG is constant, hence G(t) = tvG +G(0).

Therefore we must have G(a+) = vG. If in addition x(t) = −ta− + o(t) as

t→ −∞, then we also have G(a−) = −vG. We conclude that

G(a−(x, v)) = − G(a+(x, v))

for all (x, v) ∈ H. This allows us to reduce in d dimensions the codomain of the

limit shape map. On the other hand, a constant translation of a bi-hyperbolic

motion gives a new bi-hyperbolic motion with the same limit shapes. Thus

the domain can also be reduced of d dimensions by imposing the condition

G(x(0)) = 0.

Finally, we note that bi-hyperbolic motions are preserved by addition of

uniform translations. Let ∆ ⊂ EN be the diagonal subspace that is the set of

configurations of total collision. For any bi-hyperbolic motion x(t) with limit

shapes a− and a+, and any v ∈ ∆, we get a new bi-hyperbolic motion xv(t) =

x(t) + tv, whose limit shapes are precisely a− − v and a+ + v. In particular,

these configurations without collisions have opposite center of mass and the

same norm. The equality of the norms can also be deduced from the orthogonal

decomposition EN = ∆⊕ kerG and using the fact that G(a+ − a−) = 0.

In sum, we can perform the total reduction of the center of mass by setting

G(x(0)) = G(ẋ(0)), which leads to G(a−) = G(a+) = 0. We define

P0 = { (x, v) ∈ H | G(x) = G(v) = 0 and 〈x, v 〉 = 0 } ,
S0 = { (a, b) ∈ Ω× Ω | G(a) = G(b) = 0 and ‖ a ‖ = ‖ b ‖ } ,

and we maintain the balance of dimensions.

Question 1. Is the limit shape map S : P0 → S0 a local diffeomorphism?

The answer is yes in the Kepler case (see Figure 5). But in the general case,

this property must depend on the potential U . For instance, in the extremal

case of U = 0, in which motions are thus straight lines, we get the restriction

a− = −a+ for all hyperbolic motion. In this case the shape map loses half of

the dimensions.

It is therefore natural to ask, for the general N -body problem, whether or

not there is some relationship between these two functions.
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O a

P

Figure 5. Hyperbolic motions of the Kepler problem with fixed

value of the energy constant h > 0 and asymptotic velocity a

in the future. All but one of these motions are bi-hyperbolic.

The blue curve P is composed of the corresponding perihelia.

Question 2. How big is the image of the limit shape map?

In the Kepler case, only the pairs (a, b) such that ‖ a ‖ = ‖ b ‖ and a 6= ± b
are realized as asymptotic velocities of some hyperbolic trajectory. This can

be generalized for N ≥ 3. If a ∈ Ω is a planar central configuration and

R ∈ SO(E) keeps invariant the plane containing a, the pair (a,Ra) is realized

as the limit shapes of a unique homographic hyperbolic motion, except in the

cases R = ± Id.

We now devote attention to the effect of homogeneity. Recall that if x(t) is

a bi-hyperbolic motion of energy constant h, then for every λ > 0 the solution

given by xλ(t) = λx(λ−3/2t) is still bi-hyperbolic with energy constant λ−1h.

Moreover, if we note x0 = x(0) and v0 = ẋ(0), then we have

(xλ(t), ẋλ(t)) = ϕt(λx0, λ
−1/2 v0)

for all t ∈ R. These considerations prove the following remark.

Remark 6.2. For any (x, v) ∈ H and for any λ > 0, we have

S(λx, λ−1/2 v) = λ−1/2 S(x, v).

Let us introduce the following question with an example. Consider the

planar three-body problem with equal masses. That is, E = R2 ' C, N = 3

and mi = 1 for i = 1, 2, 3. For h > 0, define the equilateral and collinear
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configurations

ah =

…
2h

3
(1, z, z2), bh =

√
h (−1, 0, 1),

where z is a primitive root of z3 − 1. Thus we have ‖ ah ‖ = ‖ bh ‖ =
√

2h and

also G(ah) = G(bh) = 0 for all h > 0.

Question 3. Is the pair (ah, bh) in the image of the limit shape map?

In other words, is there a bi-hyperbolic motion whose dynamics originates

in the past with a contraction from a big equilateral triangle, and then, after

a period of strong interaction between the particles, the evolution ends with

an almost collinear expansion?

In our view, the method of viscosity solutions could be useful to answer

this question. In particular, we consider it necessary to push forward the

understanding of the regions of differentiability of these weak solutions. It

seems reasonable that an orbit like this can be found by looking for critical

points of a sum of two Busemann functions (see Section 3.2).

Question 4. If the answer to Question 3 is yes, what is the infimum of the

norm of the perihelia of the bi-hyperbolic motions having these limit shapes?

Observe that once we have a bi-hyperbolic motion that is equilateral in

the past and collinear in the future, we can play with the homogeneity in order

to obtain a new one, but having a perihelion contained in an arbitrarily small

ball. That is to say, it would be possible to make, at some point, all bodies

pass as close as we want from a total collision. Of course, to do this we must

increase the value of the energy constant indefinitely. Thus we preserve the

limit shapes in the weak sense, but not the size of the asymptotic velocities. In

the family of motions (xλ) described above, the product of the energy constant

h and the norm of the perihelion is constant. In the Kepler case, once we fix the

value of h > 0 there is only one bi-hyperbolic motion connecting a given pair

(a, b) (see [1]). Therefore we can see the norm of the perihelion as a function

of the limit shapes. We can see that the norm of the perihelion tends to 0 for

a→ b and tends to +∞ for a→ −b.
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[36] H. Poincaré, Sur les solutions périodiques et le principe de moindre action, C.

R. Acad. Sci., Paris, Sér. I, Math 123 (1896), 915–918. Zbl 27.0608.02.

[37] H. Pollard, The behavior of gravitational systems, J. Math. Mech. 17

(1967/1968), 601–611. MR 0261826. Zbl 0159.26102. https://doi.org/10.1512/

iumj.1968.17.17036.

[38] D. G. Saari and Z. Xia, The existence of oscillatory and superhyperbolic mo-

tion in Newtonian systems, J. Differential Equations 82 no. 2 (1989), 342–355.

MR 1027973. Zbl 0705.34034. https://doi.org/10.1016/0022-0396(89)90137-X.

[39] M. Shub, Appendix to Smale’s paper: “Diagonals and relative equilibria”, in

Manifolds – Amsterdam 1970 (Proc. Nuffic Summer School), Lecture Notes in

http://www.ams.org/mathscinet-getitem?mr=3146584
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1286.70017
https://doi.org/10.1134/S1560354713060063
http://www.ams.org/mathscinet-getitem?mr=2533929
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1253.70015
https://doi.org/10.1007/s00205-008-0175-8
http://www.ams.org/mathscinet-getitem?mr=1956531
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1073.70011
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1073.70011
https://doi.org/10.1023/A:1020128408706
http://www.ams.org/mathscinet-getitem?mr=0416150
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0336.70010
https://doi.org/10.1016/0022-0396(76)90101-7
http://www.ams.org/mathscinet-getitem?mr=0867962
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0622.70005
http://www.ams.org/mathscinet-getitem?mr=3779036
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1390.70022
https://doi.org/10.1007/s10569-018-9823-y
https://doi.org/10.1007/s10569-018-9823-y
http://www.ams.org/mathscinet-getitem?mr=0442980
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0271.70009
https://doi.org/10.1515/9781400882694
http://www.ams.org/mathscinet-getitem?mr=0420713
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0321.58014
https://doi.org/10.2307/1970964
https://doi.org/10.2307/1970964
http://www.ams.org/mathscinet-getitem?mr=3218835
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1342.70031
https://doi.org/10.1007/s00205-014-0748-7
http://www.ams.org/mathscinet-getitem?mr=3689149
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1383.37050
https://doi.org/10.3842/SIGMA.2017.068
https://doi.org/10.3842/SIGMA.2017.068
http://www.zentralblatt-math.org/zmath/en/search/?q=an:27.0608.02
http://www.ams.org/mathscinet-getitem?mr=0261826
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0159.26102
https://doi.org/10.1512/iumj.1968.17.17036
https://doi.org/10.1512/iumj.1968.17.17036
http://www.ams.org/mathscinet-getitem?mr=1027973
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0705.34034
https://doi.org/10.1016/0022-0396(89)90137-X


550 EZEQUIEL MADERNA and ANDREA VENTURELLI

Math. 197, Springer, Berlin, 1971, pp. 199–201. MR 0278700. Zbl 0219.57026.

https://doi.org/10.1007/BFb0068619.

[40] K. Sitnikov, The existence of oscillatory motions in the three-body problems,

Soviet Physics. Dokl. 5 (1960), 647–650. MR 0127389. Zbl 0108.18603. Available

at http://mi.mathnet.ru/eng/dan/v133/i2/p303.

[41] H. von Zeipel, Sur les singularités du probléme des n corps, Ark. Math. Astr.
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