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The Weyl bound for Dirichlet L-functions
of cube-free conductor

By Ian Petrow and Matthew P. Young

Abstract

We prove a Weyl-exponent subconvex bound for any Dirichlet L-function

of cube-free conductor. We also show a bound of the same strength for

certain L-functions of self-dual GL2 automorphic forms that arise as twists

of forms of smaller conductor.

1. Introduction

Subconvex estimates for L-functions play a major role in modern ana-

lytic number theory. The first subconvex estimate is due to Weyl and Hardy-

Littlewood, who showed that

(1.1) ζ(1/2 + it)�ε (1 + |t|)
1
6

+ε.

The exponent 1/6 appearing in (1.1) is a consequence of Weyl’s differencing

method for estimating exponential sums, introduced in 1916. This method

itself is important for studying equidistribution and has immediate applications

to lattice point counting problems.

Today we call a subconvex bound of the form L(1/2, π) �ε Q(π)1/6+ε

the Weyl bound, where Q(π) is the analytic conductor of the automorphic

L-function L(1/2, π). The Weyl bound is only known in a few cases, notably

for quadratic twists of certain self-dual GL2 automorphic forms; see [CI00],

[Ivi01], [You17], [PY19b] for example.
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Estimating the Dirichlet L-functions L(1/2, χ) of conductor q as q → ∞
is analogous to estimating ζ(1/2+ it) as t→∞, but the former is a harder and

more arithmetic problem. In 1963, Burgess [Bur63] showed by a completely

different method that

(1.2) L(1/2, χ)�ε q
3
16

+ε.

Burgess’s method required new ideas; in particular, it uses the Riemann

Hypothesis for curves over finite fields. Note that the Burgess exponent of

3/16 falls short of the exponent 1/6 found by Weyl. Curiously, the expo-

nent 3/16 often re-occurs in the modern incarnations of these problems; see

[BHM07], [BH08], [BH14], [Wu14], [Wu19] for example.

Even for the case of Dirichlet L-functions, the Burgess bound has only

been improved in some limited special cases. In a breakthrough, Conrey and

Iwaniec [CI00] obtained a Weyl-quality bound for quadratic characters of odd

conductor using techniques from automorphic forms and Deligne’s solution of

the Weil conjectures for varieties over finite fields. Another class of results,

such as [BLT64] and [HB78], consider situations where the conductor q of χ

runs over prime powers or otherwise has some special factorizations. Notably,

Milićević [Mil16] recently obtained a sub-Weyl subconvex bound when q = pn

with n large.

One of the main results of this paper (see Corollary 1.3) gives a Weyl-

exponent subconvex bound for any Dirichlet L-function of cube-free conductor.

In particular, we give the first improvement on the Burgess bound for all

Dirichlet L-functions of prime conductor.

1.1. Statement of results. Let q be a positive integer, and let χ be a primi-

tive Dirichlet character of conductor q. LetHitj (m,χ2) denote the set (possibly

empty) of Hecke-normalized Hecke-Maass newforms of level m|q, central char-

acter χ2 and spectral parameter tj . For f ∈ Hitj (m,χ2), f ⊗ χ is a self-dual

newform of level q2 and trivial central character.

Theorem 1.1. Let notation be as above. Assume q is cube-free and χ is

not quadratic. Then for some B > 2, we have

(1.3)
∑
m|q

∑
|tj |≤T

∑
f∈Hitj (m,χ2)

L(1/2, f⊗χ)3+

∫ T

−T
|L(1/2+it, χ)|6dt�ε T

Bq1+ε.

Theorem 1.1 generalizes the celebrated result of Conrey and Iwaniec [CI00]

that assumed χ is the quadratic character of odd, square-free conductor q. The

central values appearing in Theorem 1.1 are non-negative [Wal85], [Guo96],

which is crucial for obtaining the Weyl-quality subconvex bound for these

central values.
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A potential defect of Theorem 1.1 is that, although it is consistent with

the Lindelöf hypothesis in the q-aspect, it is weak in the T -aspect. However,

if T � qε, then it is sharp. As in the work of [You17], we can obtain a hybrid

result for T � qε.

Theorem 1.2. Let conditions be as in Theorem 1.1, and suppose that

T � qδ for some δ > 0. Then

∑
m|q

∑
T≤tj<T+1

∑
f∈Hitj (m,χ2)

L(1/2, f ⊗ χ)3

+

∫ T+1

T

|L(1/2 + it, χ)|6dt�ε,δ T
1+εq1+ε.

(1.4)

As a consequence, we obtain a Weyl-quality subconvex bound for Dirichlet

L-functions simultaneously in q- and t-aspects:

Corollary 1.3. Suppose χ has cubefree conductor q. Then

(1.5) |L(1/2 + it, χ)| �ε q
1/6+ε(1 + |t|)1/6+ε.

Corollary 1.4. Let p be an odd prime, and suppose F is a Hecke-Maass

newform of level p2, trivial central character, and spectral parameter tF . If F

is not twist-minimal, then

(1.6) L(1/2, F )�ε (p(1 + |tF |))1/3+ε.

Here the assumption that F is not twist minimal means there exists a

newform f of level m dividing p and a primitive Dirichlet character χ of con-

ductor p so that F = f ⊗ χ. The central character of F , which is trivial by

assumption, equals χ2 times the central character of f . Hence f ∈ HitF (m,χ2),

and so Theorem 1.1 applies. Another observation is that for F of level p2 and

trivial central character, the condition that F is twist-minimal is equivalent

to the assertion that the local representation of GL2(Qp) associated to F is

supercuspidal (see, e.g., [Gel75, Table (4.20)]).

Theorems 1.1 and 1.2 (and hence Corollary 1.4) also carry over to holo-

morphic modular forms. Let Sκ(q, χ2) denote the space of cusp forms of level q,

central character χ2, and even weight κ ≥ 2. Let Hκ(m,χ2) denote the set of

Hecke-normalized newforms of level m|q and central character χ2.

Theorem 1.5. Let notation be as above, with q cube-free. Then

(1.7)
∑
m|q

∑
κ≤T

∑
f∈Hκ(m,χ2)

L(1/2, f ⊗ χ)3 �ε T
Bq1+ε
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for some B > 2. Moreover, if there exists δ > 0 such that T � qδ , then we

have

(1.8)
∑
m|q

∑
T≤κ<T+1

∑
f∈Hκ(m,χ2)

L(1/2, f ⊗ χ)3 �ε,δ T
1+εq1+ε.

The sum over κ in (1.8) has at most one non-zero term and is often empty.

Nonetheless, we include it so that (1.8) aligns with the form of (1.4).

1.2. Remarks. The reader may wonder why q is restricted to be cube-free

in the above results (Coincidentally, the Burgess bound for character sums is

stronger in certain ranges in case the conductor is cube-free; see, e.g., [IK04,

Thm. 12.6].) To explain this restriction on q, we need to outline the proof of

Theorem 1.1. As in the work of Conrey and Iwaniec [CI00], we apply some

standard tools: approximate functional equations, the Petersson/Kuznetsov

formula, and Poisson summation. The dual sum after Poisson summation in

large part boils down to a certain character sum defined by

(1.9) g(χ, ψ) =
∑

t,u (mod q)

χ(t)χ(t+ 1)χ(u)χ(u+ 1)ψ(ut− 1),

where ψ is a Dirichlet character modulo q. After the above steps, the problem

essentially reduces to bounding

(1.10)
∑

ψ (mod q)

|L(1/2, ψ)|4g(χ, ψ).

Since the fourth moment of Dirichlet L-functions is of size Oε(q
1+ε), the sum

(1.10) can be bounded by Oε(q
1+ε) times the maximum value of |g(χ, ψ)| as ψ

varies. Here, the Riemann hypothesis of Deligne [Del80] plays a crucial role in

proving |g(χ, ψ)| �ε q
1+ε for q prime (see Section 9.1), which then extends to

square-free q by multiplicativity. In case q = p2, we establish |g(χ, ψ)| �ε q
1+ε

by elementary means (see Section 9.2), and hence this bound on g(χ, ψ) holds

for cube-free q. However, for q = p3, it is no longer true that |g(χ, ψ)| �ε q
1+ε

for all primitive ψ. Rather, there exist many characters of conductor p3 so

that |g(χ, ψ)| � qp1/2. Barring an improved estimate for the sub-sum of

(1.10) coming from these “bad” characters ψ, this extra factor of p1/2 would

propagate through all the estimates, and hence would presumably lead to (at

best) the bound

(1.11) |L(1/2 + it, χ)|6 �ε q
1+εp1/2 (q = p3).

This would imply |L(1/2 + it, χ)| �ε q
7
36

+ε, and note 7
36 >

3
16 , so this would

not improve on the Burgess bound.

The analysis of g(χ, ψ) becomes more complicated for q = pn with larger n.

Since there are complementary methods well-suited to treat the depth-aspect
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(as in [Mil16], [BM15], and other papers), we content ourselves here with the

restriction to q cube-free.

Remark added August 28, 2019: In [PY19a], written after the first version

of the present paper, we have extended all the cubic moment bounds stated

in Section 1.1 to hold for arbitrary q. More precisely, [PY19a] contains proofs

of Conjectures 6.6 and 8.2 from the present paper, which are shown here to

imply the cubic moment bounds for general q.

1.3. Organization of the paper. For the rest of the paper, we will focus

almost entirely on the proof of Theorem 1.1. The proof of Theorem 1.2 fol-

lows the same approach, and the only change is in the behavior of the weight

function on the spectrum. These archimedean aspects were already developed

in [You17], so we can largely quote those results. For brevity, we sketch the

proof in Section 13.

The analogous results on the holomorphic forms (Theorem 1.5) are also

similar to the Maass form cases, so we briefly sketch the necessary changes in

Section 13.

1.4. Convention. The notation A� B for quantities A and B means that

there exists a constant K such that |A| ≤ KB for all relevant A and B, the

value of which in each instance should be clear from context. If p1, . . . , pn
are parameters, then �p1,...,pn indicates that the constant K may depend on

p1, . . . , pn. Implied constants also depend on the choices of implied constants

already established in the proof, but we suppress this from this notation. For

example, if |A| ≤ K1B and |B| ≤ K2C, then A� C with K3 = K1K2. A ma-

jor purpose of this notation is to avoid excessive labelling of implied constants.

The appearance of the parameter ε among the pi plays a similar role: each of

these ε represents a quantity εj that may be taken to be arbitrarily small, and

that may depend on all previous ε1, . . . , εj−1 appearing in the proof.

1.5. Acknowledgements. We would like to thank Emmanuel Kowalski for

explaining his work on `-adic trace functions to us, which plays a crucial role

in Section 9.1 of this paper. We also thank Philippe Michel for pointing out

an oversight in an earlier version of that section of the paper and for proposing

a solution to it. Part of this work was accomplished during our visit to the

Hausdorff Center in Bonn for the summer school on L-functions in 2018. We

thank the Center for its support. Lastly, we thank the referees for their careful

and thorough reading of this paper.

2. Automorphic forms and L-functions

2.1. Cusp forms. Let q be a positive integer, and let ψ be a Dirichlet

character modulo q. For tj ∈ R ∪ i[−1/2, 1/2], let Sitj (q, ψ) be the space of
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Maass cusp forms of level q, central character ψ, and spectral parameter tj .

Similarly, for κ ≥ 2, we let Sκ(q, ψ) be the space of holomorphic cusp forms of

weight κ. Any f ∈ Sitj (q, ψ) admits a Fourier expansion

(2.1) f(z) = 2
√
y
∑
n6=0

λf (n)e(nx)Kitj (2π|n|y),

and similarly, if f ∈ Sκ(q, ψ), we may write

(2.2) f(z) =
∞∑
n=1

λf (n)n
κ−1
2 e(nz).

Now let Hitj (m,ψ) be the set of Hecke-Maass newforms of level m|q, normal-

ized so that λf (1) = 1, and define similarly Hκ(m,ψ). Recall the Petersson

inner product on Sitj (q, ψ) or Sκ(q, ψ) defined by

〈f, g〉q :=

∫
Γ0(q)\H

yκf(z)g(z)
dxdy

y2
,

where in the former case we take κ = 0. With this normalization of the inner

product, we have for any f ∈ Hitj (m,ψ) orHκ(m,ψ) by Rankin-Selberg theory

and work of Iwaniec and Hoffstein-Lockhart [Iwa90], [HL94] that

(2.3) 〈f, f〉q =
q

cosh(πtj)
(q(1 + |tj |))o(1), or 〈f, f〉q =

qΓ(κ)

(4π)κ−1
(qκ)o(1).

In fact, we only use the upper bounds implicit in (2.3), which are due to

Iwaniec.

Any newform f ∈ H∗(m,ψ) satisfies the Hecke relation

(2.4) λf (n1)λf (n2) =
∑

d|(n1,n2)

λf (n1n2/d
2)ψ(d).

Recall that a Hecke-Maass newform f is called even if λf (−1) = 1, and

odd if λf (−1) = −1. It is easy to see that the parity of f ⊗ χ is the parity of

f times the parity of χ.

By Atkin-Lehner-Li theory [AL70], [AL78] we have the following direct

sum decomposition:

(2.5) Sitj (q, ψ) =
⊕
`m=q

⊕
f∈Hitj (m,ψ)

Sitj (`, f, ψ),

where Sitj (`, f, ψ) = span{f(dz) : d|`}, and similarly for holomorphic forms,

where each instance of itj is replaced by κ. The direct sums in (2.5) are

orthogonal with respect to the Petersson inner product.

For any f ∈ Hitj (m,χ2) with m|q, we have by [JL70, Prop. 3.8(iii)] that

f⊗χ ∈ Hitj (q2, 1), and similarly for holomorphic forms. See also [AL78, Thm.

3.1(ii)] for a classical proof of this fact.
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2.2. Eisenstein series. Let

(2.6)

Eχ1,χ2(z, 1/2 + it) = eχ1,χ2(y, 1/2 + it) + 2
√
y
∑
n6=0

λχ1,χ2,t(n)e(nx)Kit(2π|n|y),

where χ1, χ2 are primitive Dirichlet characters modulo q1, q2, respectively,

λE(n) = λχ1,χ2,t(n) = χ2(sgn(n))
∑
ab=|n|

χ1(a)χ2(b)a−itbit,

and eχ1,χ2(y, s) = cys + c′y1−s, for certain constants c, c′. Note that the defini-

tion (2.6) corresponds to the “completed” Eisenstein series E∗χ1,χ2
(z, 1/2 + it)

in [You19], so some care is needed when we quote results from that reference.

Then Eχ1,χ2 is of level m = q1q2 and central character χ1χ2, and is an eigen-

function of all the Hecke operators, and so (2.4) also holds for λE(n). These

are, by definition, the newform Eisenstein series. For two arbitrary Dirichlet

characters χ and ψ, let us write χ ' ψ if the underlying primitive characters of

χ and ψ are equal. With this notation, we denote the set of newform Eisenstein

series by

Hit,Eis(m,ψ) = {Eχ1,χ2(z, 1/2 + it) : q1q2 = m and χ1χ2 ' ψ}.

In particular, if E ∈ Hit,Eis(m,ψ), then λE(1) = 1 and the Hecke relations

hold for λE(n) exactly as they do for λf (n).

The space Eit(q, ψ), for t 6= 0, admits a formal inner product 〈·, ·〉Eis in-

duced by
1

4π 〈Ea(z, 1/2 + it, ψ), Eb(z, 1/2 + it, ψ)〉Eis = δa=b.

With this definition of the inner product, we have in perfect analogy to (2.3)

that

(2.7) 〈Eχ1,χ2(z, 1/2+ it), Eχ1,χ2(z, 1/2+ it)〉Eis =
q1+o(1)

cosh(πt)
|L(1+2it, χ1χ2)|2.

This equation can be deduced from [You19, (8.13), (8.10)], keeping in mind

the normalization of the completed Eisenstein series (see [You19, §4]).

There exists an Atkin-Lehner-Li theory for the space Eit(q, ψ), for t 6= 0,

and a decomposition into spaces of oldforms completely analogous to (2.5).

This decomposition is orthogonal with respect to 〈·, ·〉Eis and is explained thor-

oughly in [You19, §8].

Lastly, we define, for χ1χ2 ' χ2 with χ primitive of conductor q,

(2.8) L(s, Eχ1,χ2,t ⊗ χ) =
∞∑
n=1

λχ1,χ2,t(n)χ(n)

ns
= L(s+ it, χχ1)L(s− it, χχ2).

We claim that (2.8) defines the true automorphic L-function of conductor q2.

To see this, check that locally all the solutions to χ1χ2 ' χ2 with q1q2|q arise
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from χ1 = 1, χ2 = χ2 or χ2 = 1, χ1 = χ2. Hence both χχ1 and χχ2 are

primitive of conductor q.

2.3. Root Numbers. Although the theorems in this paper do not depend

on the precise values of the root numbers of the forms f ⊗ χ, formulas for

these are useful when interpreting the main results of this paper. If χ is

primitive modulo q, m | q and f ∈ Hitj (m,χ2) or f ∈ Hit,Eis(m,χ
2), then

the root number ε(f ⊗ χ) is equal to the parity of f . If f ∈ Hκ(m,χ2), then

ε(f ⊗ χ) = i−κχ(−1). These formulas follow from local computations at finite

primes using [JL70, Prop. 3.8(iii)] and the explicit formulas for root numbers at

the archimedean place found just above [JL70, Thm. 5.15]. See also [Li80, §1].

2.4. Bruggeman-Kuznetsov. Let Bitj (q, ψ) denote an orthogonal basis for

Sitj (q, ψ), and let Bit,Eis(q, ψ) denote an orthogonal basis for Eit(q, ψ) when

t 6= 0. Let h(t) be a function holomorphic in the strip |Im(t)| ≤ 1
2 +δ, satisfying

h(t) = h(−t), and |h(t)| � (1 + |t|)−2−δ for some δ > 0. Recall the twisted

Kloosterman sum

Sψ(m,n; c) =
∑∗

y (mod c)

ψ(y)e
(my + ny

c

)
,

where the ∗ on the sum indicates that (y, c) = 1, and let ct = 4π
cosh(πt) . Then,

for mn > 0, we have (see, e.g., [You19, (10.2)])∑
tj

h(tj)ctj
∑

f∈Bitj (q,ψ)

λf (m)λf (n)

〈f, f〉q

+
1

4π

∫ ∞
−∞

h(t)ct
∑

E∈Bit,Eis(q,ψ)

λE(m)λE(n)

〈E,E〉Eis
dt

= δm=ng0 +
∑

c≡0 (mod q)

Sψ(m,n; c)

c
g+
(4π
√
mn

c

)
,

where

(2.9)

g0 =
1

π

∫ ∞
−∞

t tanh(πt)h(t) dt and g+(x) = 2i

∫ ∞
−∞

J2it(x)

cosh(πt)
th(t) dt.

It was shown by the first author [Pet18, §7] that there exist certain positive

weights ρf (`) = `o(1) such that if (n1n2, q) = 1, then

(2.10)
∑
`m=q

∑
f∈Hitj (m,ψ)

λf (n1)λf (n2)

〈f, f〉q
1

ρf (`)
=

∑
f∈Bitj (q,ψ)

λf (n1)λf (n2)

〈f, f〉q
.

The weight ρf (`) is a certain explicit function of the Hecke eigenvalues of f . It

was shown by the second author [You19, §8.5 and Lem. 8.3] that an analogous
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formula holds for the Eisenstein series, namely,

(2.11)
∑
`m=q

∑
E∈Hit,Eis(m,ψ)

λE(n1)λE(n2)

〈E,E〉Eis

1

ρE(`)
=

∑
E∈Bit,Eis(q,ψ)

λE(n1)λE(n2)

〈E,E〉Eis
,

where ρE(`) is given by the same function of the Hecke eigenvalues of E as

ρf (`).

Let

wf,` = ctj
1

〈f, f〉q
1

ρf (`)
and wE,` = ct

1

〈E,E〉Eis

1

ρE(`)

for f ∈ Hitj (m,ψ) and E ∈ Hit,Eis(m,ψ). Note that ctj > 0 for any f ∈
Hitj (m,ψ), including any exceptional cases where tj ∈ iR. More precisely, we

have by (2.3) (see also [You19, §§8.4, 8.5] for the Eisenstein case)

(2.12) wf,` = q−1(q(1 + |tj |))o(1) and wE,` =
q−1(q(1 + |t|))o(1)

|L(1 + 2it, χ1χ2)|2
.

Note that if χ1χ2 is the trivial character, then this weight vanishes to order

2 at t = 0, which is the situation encountered in [CI00]. Indeed, there q is

square-free and χ is quadratic, hence the only solution to χ1χ2 ' χ2 with

q1q2|q is q1 = q2 = 1, χ1 = χ2 = 1. By the hypothesis in Theorem 1.1 that

χ is not quadratic, we have χ1χ2 is not trivial (see the discussion following

(2.8)), and hence wE,` � q−1(q(1 + |t|))−ε for all t ∈ R. This is the only place

where the hypothesis that χ is not quadratic is used in this paper, which is for

convenience of notation only.

In summary, we have established the following.

Proposition 2.1. Suppose χ is primitive of conductor q, and not qua-

dratic. There exist positive weights wf,` � q−1(q(1 + |tj |))−ε, and wE,` �
q−1(q(1 + |t|))−ε so that for any (n1n2, q) = 1 and n1n2 > 0, we have∑

tj

h(tj)
∑
`m=q

∑
f∈Hitj (m,χ2)

wf,`λf (n1)λf (n2)

+
1

4π

∫ ∞
−∞

h(t)
∑
`m=q

∑
E∈Hit,Eis(m,χ2)

wE,`λE(n1)λE(n2)dt

= δn1=n2g0 +
∑

c≡0 (mod q)

Sχ2(n1, n2; c)

c
g+
(4π
√
n1n2

c

)
.

(2.13)

We also need the opposite-sign case of Proposition 2.1, i.e., when n1n2 < 0.

The formula is identical to (2.13) except that g+(x) is replaced by g−(x) defined

by

(2.14) g−(x) =
4

π

∫ ∞
0

K2it(x) sinh(πt)th(t) dt.
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3. Conventions and terminology for weight functions

We begin with a useful definition from [KPY19]. Let F be an index set

and X = XT : F → R≥1 be a function of T ∈ F .

Definition 3.1. A family {wT }T∈F of smooth functions supported on a

product of dyadic intervals in Rd>0 is called X-inert if for each a ∈ Zd≥0, we

have

C(a) := sup
T∈F

sup
t∈Rd>0

X−a.1
T

∣∣∣taw
(a)
T (t)

∣∣∣ <∞.
It is also convenient for later purposes to slightly generalize the above

notion of a family of X-inert functions.

Definition 3.2. Suppose that WT (x, t) with T ∈ F is a family of smooth

functions, where t ∈ Rd. We say that {WT }T∈F forms an X-inert family with

respect to t if W has dyadic support in terms of t and if for each a, k and x,

we have

Ck(x,a) := sup
T∈F

sup
t∈Rd>0

X−a.1
T

∣∣∣ta ∂
a

∂ta

∂k

∂xk
WT (x, t)

∣∣∣ <∞.
As a convention, we may write w(x, ·) as shorthand to represent w(x, t).

We may then state that w(x, ·) is X-inert with respect to t, which allows us

to concisely track the behavior of w with respect to the suppressed variables.

4. Setting up the moment problem

For T ≥ 1, let

(4.1) h0(t) = exp(−(t/T )2)
(t2 + 1

4)

T 2
.

Note h0(t) > 0 for t ∈ R as well as −1
2 < it < 1

2 . Moreover, h0(t) � T−2 for

t� T .

In this paper we are concerned with estimating the following moment of

L-functions:

M(q, χ) :=
∑
tj

h0(tj)
∑
`m=q

∑+

f∈Hitj (m,χ2)

wf,`L(1/2, f ⊗ χ)3

+
1

4π

∫ ∞
−∞

h0(t)
∑
`m=q

∑+

E∈Hit,Eis(m,χ2)

wE,LL(1/2, E ⊗ χ)3dt,

(4.2)

where the + over the sums represents Maass forms or Eisenstein series with

even parity.
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Theorem 4.1. If χ has cube-free conductor and is not quadratic, then we

have

M(q, χ)�ε T
Bqε.

Theorem 4.1 implies Theorem 1.1. Indeed, let χ1 = 1 and χ2 be the

primitive character underlying χ2. Then E = Eχ1,χ2,t occurs in Hit,Eis(m,χ
2)

for some m|q, and we have for this E that

L(1/2, E ⊗ χ) = |L(1/2 + it, χ)|2.

We have as well that L(1/2, f ⊗ χ) ≥ 0 by [Guo96] (see also (2.8) for the

non-negativity in the Eisenstein case), so that Theorem 1.1 follows from The-

orem 4.1 by (2.12).

4.1. Approximate functional equation. For j = 1, 2, let

(4.3)

Vj(y, t) =
1

2πi

∫
(σ)

y−s
ΓR(1/2 + δ + s+ it)jΓR(1/2 + δ + s− it)j

ΓR(1/2 + δ + it)jΓR(1/2 + δ − it)j
Gj(s)

s
ds,

where ΓR(s) = π−s/2Γ(s/2), δ ∈ {0, 1}, and σ is to the right of all poles of the

integrand. We take G1(s) = e2s2 and G2(s) = e4s2 . Here Vj(x, t) is a smooth

function on x > 0 with rapid decay for x � 1 + |t|j . See Section 10 for more

precise estimates for Vj .

Lemma 4.2. Suppose m | q and f ∈ Hitj (m,χ2) is even. We have

L(1/2, f ⊗ χ)3

=
∑

(d,q)=1

4

d

∑
n1,n2,n3

λf (n1)λf (n2n3)χ(n1)χ(n2n3)
√
n1n2n3

V1

(n1

q
, tj

)
V2

(n2n3d
2

q2
, tj

)
,

and similarly for L(1/2, E ⊗ χ)3 for m | q and E ∈ Hit,Eis(m,χ
2) even. The

parity parameter δ implicit in the definition of Vj is equal to the parity of χ.

Proof. Since f is even, the root number ε(f ⊗ χ) is +1. For f a Maass

newform of spectral parameter tj , a standard approximate functional equation

[IK04, Thm. 5.3] gives

(4.4) L(1/2, f ⊗ χ) = 2
∑
n1

λf (n1)χ(n1)
√
n1

V1

(n1

q
, tj

)
,

where δ = 0 if χ is even and δ = 1 if χ is odd. Similarly we have

(4.5) L(1/2, f ⊗ χ)2 = 2
∑

(d,q)=1

1

d

∑
n2,n3

λf (n2n3)χ(n2n3)
√
n2n3

V2

(n2n3d
2

q2
, tj

)
,

where the conjugates appear for convenience since λf (n)χ(n) ∈ R, and the

sum over d arises from the Hecke relation (2.4).



448 IAN PETROW and MATTHEW P. YOUNG

The product of (4.4) and (4.5) gives the formula in the statement of the

lemma. �

4.2. Bruggeman-Kuznetsov. Let w0(·) = w0(n1, n2, n3, c) be a family of

1-inert functions (depending on q, T,Nj , C) with dyadic support on nj � Nj

and c � C, and let N1, N2, N3, C � 1. Define J±0 = J±0 (x, n1, n2, n3, c) by

(4.6) J+
0 (x, n1, n2, n3, c) = w0(·)

∫ ∞
−∞

J2it(x)

cosh(πt)
th
(
t,
n1

q
,
n2n3d

2

q2

)
dt,

with J−0 defined similarly with J2it(x)
cosh(πt) replaced by K2it(x) sinh(πt), where in

both cases

(4.7) h(t, y1, y2) = exp(−(t/T )2)
(t2 + 1

4)

T 2
V1(y1, t)V2(y2, t).

Let S±N1,N2,N3,C
be defined by

1

C
√
N1N2N3

∑
c≡0 (mod q)

∑
n1,n2,n3

χ(n1)χ(n2n3)Sχ2(n1, n2n3; c)J±
0

(4π
√
n1n2n3
c

, ·
)
.

Proposition 4.3. Suppose that there exists B > 2 such that S±N1,N2,N3,C

�ε T
Bqε for all N1, N2, N3, C satisfying

(4.8) N1 �ε (qT )1+ε, N2N3 �ε d
−2(qT )2+ε, q � C � (qT )100.

Then Theorem 4.1 holds.

Proof. Recall the even parity condition on the sums over newforms in (4.2).

This condition can be detected by extending the sums to all newforms and

inserting the indicator function 1
2(1 + λf (−1)) for Maass forms and Eisenstein

series. By (2.13), we have

M(q, χ) = D + 1
2S

+ + 1
2S
−,

where D is the diagonal term, and

S± =
∑

(d,q)=1

4

d

∑
n1,n2,n3

χ(n1)χ(n2n3)
√
n1n2n3

×
∑

c≡0 (mod q)

Sχ2(±n1, n2n3; c)

c
g±
(4π
√
n1n2n3

c

)
.

(4.9)

Here g±(x) is defined by (2.9) and (2.14) with respect to h(t, n1
q ,

n2n3d2

q2
) defined

in (4.7).

The function h is a valid test function for the hypotheses in the Bruggeman-

Kuznetsov formula, and one may derive a crude bound of the form g±(x) �
x1−εT 1+ε, as we will show in Section 10. Hence by the Weil bound (see,

e.g., [KL13, Thm. 9.2], which gives |Sψ(a, b; c)| ≤ d(c)(a, b, c)1/2c1/2q1/2, where
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ψ has conductor q|c and d(·) is the divisor function), we have that the sum

over c in (4.9) converges absolutely. We further develop the analytic properties

of g±(x) in Section 10.

It is easy to see that D �ε T
2+εqε, and so the proof of Proposition 4.3

reduces to showing that S± �ε T
Bqε.

Next we apply a dyadic partition of unity to each of n1, n2, n3, c. Consider

the component w0(·) of this partition of unity that localizes the variables by

nj � Nj , c � C. We may assume the inequalities (4.8) hold, since if they do

not, then the contribution from that piece of the partition of unity is small by

trivial bounds. Hence,

(4.10) S± =
∑

(d,q)=1

4

d

∑
N1,N2,N3,C

S±N1,N2,N3,C
+Oε((qT )ε),

where N1, N2, N3, C run over dyadic number satisfying the bounds (4.8). From

the hypothesis on S±N1,N2,N3,C
in the statement of the proposition, we conclude

the proof. �

4.3. Poisson summation. Let m1,m2,m3 ∈ Z and c > 0. Let G =

G(m1,m2,m3; c) be the character sum defined by

G = c−3
∑∗

y (mod c)

∑
x1,x2,x3 (mod c)

× χ(x1)χ(x2x3)χ2(y)ec(m1x1 +m2x2 +m3x3 + x1y + x2x3y),

where ec(x) = e(x/c).

Let M1,M2,M3 > 0, and let w(·) = w(n1, n2, n3, c,m1,m2,m3) be a fam-

ily of 1-inert functions (depending on q, T,Nj , C,Mj) with dyadic support on

nj � Nj , c � C, and mj � Mj . Let J±(x, ·) = J±(x, n1, n2, n3,m1,m2,m3, c)

be defined by

(4.11)

J+(x, n1, n2, n3,m1,m2,m3, c) = w(·)
∫ ∞
−∞

J2it(x)

cosh(πt)
th
(
t,
n1

q
,
n2n3d

2

q2

)
dt,

and let J− be defined similarly with K2it(x) sinh(πt) in place of J2it(x)
cosh(πt) . Note

that J± is identical to J±0 except that w0(·) is replaced by w(·), which depends

on the additional variables m1,m2,m3.

Let

(4.12)

K±0 =

∫
R3

J±0

(4π
√
t1t2t3
c

, t1, t2, t3, c
)
ec(−m1t1 −m2t2 −m3t3)dt1dt2dt3
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and

(4.13)

K± =

∫
R3

J±
(4π
√
t1t2t3
c

, t1, t2, t3, ·
)
ec(−m1t1 −m2t2 −m3t3)dt1dt2dt3.

Finally, let ε1, ε2, ε3 ∈ {±1},

(4.14) T ± = T ±ε1,ε2,ε3 =
∑

c≡0 (mod q)

∑
mjεj≥1

G(m1,m2,m3; c)
K±(m1,m2,m3, c)

C
√
N1N2N3

,

and

(4.15) T ±0 =
∑

c≡0 (mod q)

∑
m1m2m3=0

G(m1,m2,m3; c)
K±0 (m1,m2,m3, c)

C
√
N1N2N3

.

Proposition 4.4. Suppose that T ±, T ±0 �ε T
Bqε for some B > 2 and

for all N1, N2, N3, C satisfying (4.8) and all M1,M2,M3 satisfying Mj �
(qT )A for some large but fixed A. Then S±N1,N2,N3,C

�ε T
Bqε for all such

N1, N2, N3, C .

Sections 5–12 are dedicated to the proof of the bounds T ±, T ±0 �ε T
Bqε,

which by Propositions 4.4 and 4.3 will finish the proof of Theorem 4.1, and

hence of Theorem 1.1.

Proof. Applying Poisson summation in each of the variables n1, n2, n3

modulo c gives

S±N1,N2,N3,C
=

1

C
√
N1N2N3

∑
c≡0 (mod q)

×
∑

m1,m2,m3∈Z
χ(±1)G(±m1,m2,m3; c)K±0 (m1,m2,m3, c).

(4.16)

By integrating K±0 by parts three times in each variable, we have by (4.8) a

crude bound of the form

(4.17) K±0 (m1,m2,m3, c)� (qT )A
3∏
j=1

(1 + |mj |)−3

for some possibly large but fixed A. Therefore the sum (4.16) converges ab-

solutely, and we may in fact truncate each mj variable at |mj | � (qT )A
′

for

some large A′ depending polynomially on 1/ε at the cost of a small error term.

Next, we separate the terms with m1m2m3 = 0 in S±N1,N2,N3,C
from those

in which none of the mj vanish. The terms with m1m2m3 = 0 form the

sum T ±0 defined in (4.15). Leaving these terms aside, we split the remaining

terms for which mj 6= 0 for all j into eight separate sums according to the
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octants of Z3 − {m1m2m3 = 0}. Let us parametrize these eight sums by

(ε1, ε2, ε3) ∈ {±1}3. The octant corresponding to ε1, ε2, ε3 is then described by

the inequalities mjεj ≥ 1 for j = 1, 2, 3. Given one choice of signs εj ∈ {±1},
we insert a dyadic partition of unity to the m1,m2,m3 sums, which localizes

each |mj | �Mj � (qT )A
′
. The result of all of these decompositions is that

S±N1,N2,N3,C
= T ±0 +

∑
M1,M2,M3

∑
ε1,ε2,ε3∈{±1}

T ±ε1,ε2,ε3 +Oε((qT )ε).

The proposition now follows from the hypothesized bounds on T ±0 and T ±. �

The main focus in this paper is on the character sum G, which is a gen-

eralization of the character sum found in the previous works [CI00], [You17],

[Pet15], [PY19b], since χ is no longer assumed to be quadratic and q is not

necessarily square-free. On the other hand, K± is very similar in shape to the

oscillatory integrals found in the above references, so in Section 11 we largely

quote the existing literature.

5. The calculation of G

Based on the structural approach presented in [PY19b], our primary goal

on the arithmetical aspects of G is to understand the analytic properties of the

Dirichlet series

Z(s1, s2, s3, s4)

:=
∑

ε1m1,ε2m2,ε3m3≥1

∑
c≡0 (mod q)

cqG(m1,m2,m3; c)ec(−m1m2m3)χ(−1)

ms1
1 m

s2
2 m

s3
3 (c/q)s4

.

(5.1)

For simplicity of notation, we only consider the case of (5.1) where εj = 1 for

all j, since the other sign combinations can be treated in the same way. Of

course, we cannot neglect to study the contribution from m1m2m3 = 0 as well.

In any event, we calculate G in explicit form as much as possible.

5.1. Simplifications. Write c = qr with r ≥ 1. We have∑
x1 (mod c)

χ(x1)ec(m1x1 + x1y) = rτ(χ)χ
(m1 + y

r

)
,

where the sum vanishes unless y ≡ −m1 (mod r), and τ(χ) denotes the Gauss

sum of χ (mod q). Similarly, we calculate the x2 sum by∑
x2 (mod c)

χ(x2)ec(x2(m2 + x3y)) = rτ(χ)χ
(m2 + x3y

r

)
,
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where the sum vanishes unless x3 ≡ −m2y (mod r). Changing variables x3 →
yx3, we hence obtain

G =
r2τ(χ)τ(χ)

c3

∑∗

y (mod c)
y≡−m1 (mod r)

×
∑

x3 (mod c)
x3≡−m2 (mod r)

χ(x3)χ(y)ec(m3yx3)χ
(m1 + y

r

)
χ
(m2 + x3

r

)
.

Since (y, c) = 1, we learn that G = 0 unless

(5.2) (m1, r) = 1.

Provided we maintain this condition, we can drop the condition that (y, c) = 1.

Writing y = −m1 + ru and x3 = −m2 + rt, we obtain

G(m1,m2,m3; c) = c−3r2τ(χ)τ(χ)ec(m1m2m3)Hχ(m1,m2,m3, r)δ(m1,r)=1,

where

Hχ(m1,m2,m3, r) =
∑

u,t (mod q)

χ(t)χ(u)χ(−m2 + rt)χ(−m1 + ru)

× ec(m3(−m1 + ru)(−m2 + rt)−m1m2m3).

Note that

(5.3) δ(m1,r)=1Hχ(m1,m2,m3, r) = cqG(m1,m2,m3; c)ec(−m1m2m3)χ(−1),

so that

(5.4) Z(s1, s2, s3, s4) =
∑

m1,m2,m3,r≥1
(m1,r)=1

Hχ(m1,m2,m3, r)

ms1
1 m

s2
2 m

s3
3 r

s4
.

Next we derive some simple but useful symmetries of Hχ. Although we

only need to compute Hχ(m1,m2,m3, r) when (5.2) holds, it will be more

convenient not to assume this condition. Changing variables t→ (−m1+ru)−1t

gives

Hχ(m1,m2,m3, r)

=
∑

u,t (mod q)

χ(t)χ(−m1 + ru)χ(u)χ(rt−m2(−m1 + ru))eq(m3t−m2m3u).

Next shift by t→ t+m2u, giving

(5.5)

Hχ(m1,m2,m3, r)=
∑

u,t (mod q)

χ(t+m2u)χ(rt+m1m2)χ(u)χ(−m1+ru)eq(m3t).
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Since G(m1,m2,m3; c) is symmetric in m2,m3, we see that

(5.6) Hχ(m1,m2,m3, r) = Hχ(m1,m3,m2, r).

Observe that if (m1m2, r, q) 6= 1, then every summand in (5.5) vanishes. To-

gether with the symmetry (5.6), we obtain

(5.7) Hχ(m1,m2,m3, r) = 0 if (m1m2m3, r, q) 6= 1.

If (q, r) = 1, then there is some additional symmetry. We claim that

(5.8) Hχ(m1,m2,m3, r) = Hχ(m2,m1,m3, r) if (q, r) = 1.

Indeed, changing variables t→ rt, u→ ru, gives

Hχ(m1,m2,m3, r) =
∑

u,t (mod q)

χ(t+m2u)χ(t+m1m2)χ(u)χ(−m1+u)eq(m3rt).

Next we change variables u → u+m1, followed by t → ut−m1m2 (note u is

coprime to q for every non-zero summand), giving

Hχ(m1,m2,m3, r)

= eq(−m1m2m3r)
∑

u,t (mod q)

χ(t+m2)χ(t)χ(u+m1)χ(u)eq(m3rut),(5.9)

from which we deduce (5.8).

5.2. Decomposition into Dirichlet characters. It is possible to calculate

Hχ further, as in [CI00], but going to the Fourier transform of Hχ turns out

to be a more advantageous move.

Begin by writing r = r0r
′ and mj = mj,0m

′
j , j = 1, 2, 3, with

(5.10) mj,0|q∞, r0|q∞

and (m′1m
′
2m
′
3r
′, q) = 1. Inside the expression (5.5), change variables t →

m′1m
′
2r
′t and u→ r′m′1u, giving

Hχ(m1,m2,m3, r) = Hχ(m1,0,m2,0,m3,0w, r0),

where

w = m′1m
′
2m
′
3r
′.

Note that (w, q) = 1 by assumption. We may then view Hχ as a function of w

on (Z/qZ)× and apply multiplicative Fourier analysis. That is, we write

(5.11) Hχ(m1,0,m2,0,m3,0w, r0) =
1

ϕ(q)

∑
ψ (mod q)

“H(ψ)ψ(w),

where “H(ψ) = “H = “H(ψ, χ,m1,0,m2,0,m3,0, r0)

=
∑

v (mod q)

Hχ(m1,0,m2,0,m3,0v, r0)ψ(v).(5.12)
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Expanding the definition, we have“H(ψ, χ,m1,m2,m3, r)

=
∑

t,u,v (mod q)

χ(t+m2u)χ(rt+m1m2)χ(u)χ(−m1 + ru)eq(m3vt)ψ(v).

(5.13)

The sum “H(ψ) inherits from (5.6) and (5.8) the symmetries“H(ψ, χ,m1,m3,m2, r) = “H(ψ, χ,m1,m2,m3, r),“H(ψ, χ,m2,m1,m3, r) = “H(ψ, χ,m1,m2,m3, r) if (q, r) = 1.
(5.14)

Similarly, from (5.7) we deduce

(5.15) “H(ψ, χ,m1,m2,m3, r) = 0 if (m1m2m3, r, q) 6= 1.

We immediately see the pleasant factorization

(5.16) Z(s1, s2, s3, s4) =
1

ϕ(q)

∑
ψ (mod q)

L(s1, ψ)L(s2, ψ)L(s3, ψ)L(s4, ψ)

ζ(q)(s1 + s4)
Zfin,

where

Zfin = Zfin(s1, s2, s3, s4) :=
∑

m1,0,m2,0,m3,0,r0|q∞
(m1,0,r0)=1

“H(ψ, χ,m1,0,m2,0,m3,0, r0)

ms1
1,0m

s2
2,0m

s3
3,0r

s4
0

.

The factor ζ(q)(s1 + s4)−1 arose from Möbius inversion to detect (m′1, r
′) = 1.

Now the task is to understand the analytic properties of Zfin. Suppose

q = q1q2 with (q1, q2) = 1, χ = χ1χ2 and ψ = ψ1ψ2 with χj , ψj modulo qj .

Similarly, write a = a1a2, and so on with b, c, d. By the Chinese remainder

theorem, we have that “H(ψ, χ, a, b, c, d) factors as a sum of modulus q1 times

a sum of modulus q2. The sum modulo q1 equals∑
t1,u1,v1 (mod q1)

χ1(t1 + b1b2u1)χ1(d1d2t1 + a1a2b1b2)χ1(u1)

× χ1(−a1a2 + d1d2u1)eq1(q2c1c2v1t1)ψ1(v1).

Changing variables t1 → a2b2d2t1, u1 → a2d2u1, and v1 → a2b2c2d2q2v1 shows“H(ψ, χ, a, b, c, d) = ε“H(ψ1, χ1, a1, b1, c1, d1)“H(ψ2, χ2, a2, b2, c2, d2),

where ε = ψ1(a2b2c2q2d2)ψ2(a1b1c1q1d1). Pleasantly, “H is almost multiplica-

tive in terms of χ, ψ, and the only “twisted” aspect comes from the factor ε.
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This shows

(5.17) Zfin = ω
∏
pj ||q

∑
a,b,c,d|p∞
(a,d)=1

η(abc)η(d)

as1bs2cs3ds4
“H(ψp, χp, a, b, c, d),

where η is some Dirichlet character depending on ψ and p, and ω is some

complex number of absolute value 1, which depends on ψ. Here χp, ψp are the

p-parts of χ, ψ.

6. Evaluation of “H
Here we comprehensively evaluate “H when q = pk, k ≥ 1. Recall that “H

was defined in (5.13). Throughout this section we assume m1,m2,m3, r|q∞.

6.1. Elementary lemmas on character sums. We begin with some charac-

ter sum evaluations that are used repeatedly in the calculations of “H.

Lemma 6.1. Suppose that χ is primitive modulo q and d|q, d 6= q. Then∑
a (mod q)
a≡b (mod d)

χ(a) = 0.

This well-known lemma may be found in [IK04, (3.9)], for instance.

Lemma 6.2. Suppose p is prime, a ∈ Z, and χ has conductor pk, k ≥ 2.

Then ∑
t (mod pk)
t≡a (mod p)

χ(t)χ(t+ 1) = 0.

Proof. If (a(a + 1), p) 6= 1, then the sum is empty, so suppose otherwise.

Then from χ(t)χ(t+1) = χ(1+t), and changing variables t→ t, the conclusion

follows from Lemma 6.1. �

Lemma 6.3. Suppose χ is primitive modulo q, and let a, b, c, d ∈ Z with

(a, c, q) = 1. Then

(6.1)
∑

t (mod q)

χ(at+ b)χ(ct+ d) = χ(a)χ(c)Rq(ad− bc),

where Rq(n) = S(n, 0; q) is the Ramanujan sum.

Proof. We first claim the sum vanishes unless (a, q) = (c, q) = 1. By

symmetry, suppose (a, q) 6= 1. Then χ(at+ b) is constant for t ranging over an

arithmetic progression modulo q
(a,q) . Lemma 6.1 shows that the sum over this

arithmetic progression of χ(ct+d) vanishes unless q|c q
(a,q) , i.e., (a, q)|c, whence

1 = (a, c, q) = (a, q), a contradiction. Therefore, (6.1) is derived if (a, q) 6= 1

or (c, q) 6= 1.
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Now suppose (a, q) = (c, q) = 1. By converting to additive characters,

that is, using

(6.2) χ(at+ b) =
1

τ(χ)

∑
x (mod q)

χ(x)eq(x(at+ b)),

and likewise for χ(ct+ d), the formula (6.1) follows from a routine calculation.

�

6.2. The case ψ primitive modulo q.

Lemma 6.4. Suppose p is a prime and q = pk, k ≥ 1. Suppose ψ is

primitive modulo q. Then “H vanishes unless (m1m2m3r, q) = 1, in which case

(6.3) “H(ψ, χ, 1, 1, 1, 1) = τ(ψ)g(χ, ψ),

where g(χ, ψ) was defined by (1.9), and τ(ψ) is the Gauss sum.

Proof. Since ψ is primitive, the sum over v in (5.13) is a Gauss sum, giving“H(ψ, χ,m1,m2,m3, r)

= τ(ψ)
∑

t,u (mod q)

χ(t+m2u)χ(rt+m1m2)χ(u)χ(−m1 + ru)ψ(m3t).

Hence, “H vanishes unless (m3, q) = 1. By the first symmetry in (5.14), this

means it vanishes unless (m2, q) = 1, too. We claim that it vanishes unless

(m1, q) = 1. If p|m1 and (p, r) = 1, then the claim follows from the second

symmetry in (5.14), while if p|(m1, r), then the claim follows from (5.15). Thus

we may set m1 = m2 = m3 = 1, since we have assumed that m1m2m3r|q∞.

If (p, r) = 1, then r = 1, in which case“H(ψ, χ, 1, 1, 1, 1) = τ(ψ)
∑

t,u (mod q)

χ(t+ u)χ(t+ 1)χ(u)χ(u− 1)ψ(t).

Changing variables u→ u+ 1 followed by t→ ut− 1, and finally changing the

roles of u and t (for cosmetic purposes), we obtain (6.3).

Finally, suppose that p|r and m1m2m3 = 1. Changing variables t → ut

gives“H(ψ, χ, 1, 1, 1, r) = τ(ψ)
∑

t,u (mod q)

χ(1 + t)χ(−1 + ru)χ(1 + rut)ψ(tu).

Since χ(−1 + ru)χ(1 + rut) is periodic in u with period pk

(r,pk)
≤ pk−1, the sum

over u vanishes by Lemma 6.1, since ψ has conductor pk. �
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6.3. The case of ψ trivial.

Lemma 6.5. Suppose ψ = χ0 is the trivial character, and q = pk, k ≥ 1.

Then “H(χ0, χ,m1,m2,m3, r) = χ0(r)Rq(m1)Rq(m2)Rq(m3)

+ qRq(r)χ(−1)χ0(m1m2m3).

Proof. In this case, “H(χ0, χ,m1,m2,m3, r) equals∑
t,u (mod q)

χ(t+m2u)χ(rt+m1m2)χ(u)χ(−m1 + ru)Rq(m3t).

Write Rq(m3t) = Rq(m3) + (Rq(m3t) − Rq(m3)), and note that if p - t, then

Rq(m3t)−Rq(m3) = 0. We accordingly write “H = S1 + S2, where

S1 = Rq(m3)
∑

t,u (mod q)

χ(t+m2u)χ(rt+m1m2)χ(u)χ(−m1 + ru),

and S2 = “H − S1. We will show

S1 = χ0(r)Rq(m1)Rq(m2)Rq(m3) and S2 = qRq(r)χ(−1)χ0(m1m2m3).

First we evaluate S1. By Lemma 6.3 and since we may assume (m1−ru, q)
= 1, we have ∑

t (mod q)

χ(t+m2u)χ(rt+m1m2) = χ(r)Rq(m2).

To finish the evaluation of S1, we apply Lemma 6.3 to give∑
u (mod q)

χ(u)χ(ru−m1) = χ(r)Rq(m1).

Now we evaluate S2. The t-sum is restricted by p|t, and so we see that S2

vanishes unless (p,m1m2) = 1. By our convention, we may set m1 = m2 = 1,

giving

S2 = χ0(m1m2)χ(−1)

×
∑

t (mod q)
p|t

∑
u (mod q)

χ(t+ u)χ(rt+ 1)χ(u)χ(1− ru)(Rq(m3t)−Rq(m3)).

Next we change variables t→ ut, giving

S2 = χ0(m1m2)χ(−1)

×
∑

t (mod q)
p|t

(Rq(m3t)−Rq(m3))χ(t+ 1)
∑∗

u (mod q)

χ(rut+ 1)χ(1− ru).
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For the inner sum over u, apply u→ u−1, giving∑∗

u (mod q)

χ(1− u−1r)χ(1 + u−1rt) =
∑

u (mod q)

χ(u− r)χ(u+ rt),

where we could omit the condition (u, q) = 1 since p|t. By Lemma 6.3, this

equals Rq(r(t+ 1)) = Rq(r), provided (t+ 1, q) = 1. Hence

S2 = χ0(m1m2)χ(−1)Rq(r)
∑

t (mod q)
p|t

χ(t+ 1)(Rq(m3t)−Rq(m3)).

To complete the proof, we will show∑
t (mod q)

p|t

χ(t+ 1)(Rq(m3t)−Rq(m3)) = qχ0(m3).

If q = p, this is immediate, noting Rp(0) − Rp(m3) = pχ0(m3), so suppose

q = pk, k ≥ 2. If (p,m3) = 1, it is easy to verify the claim using the evaluation

Rq(m3t) =
∑

d|(q,t) dµ(q/d) and Lemma 6.1. If p|m3, then Rq(m3t) is periodic

(in t) of period pk−1, so the sum vanishes by Lemma 6.1. �

6.4. The case q = pk, ψ of conductor pj , 1 ≤ j < k.

Conjecture 6.6. Suppose χ has conductor pk, and ψ has conductor pj ,

with 1 ≤ j < k. Then

(6.4)
∑

u,y (mod pj)

ψ(uy)χ(1 + pk−jy)χ(1− pk−ju)χ(1 + uyp2(k−j)) = O(pj).

Lemma 6.7. Conjecture 6.6 holds in case k = 2, j = 1.

Proof. By converting to additive characters (as in (6.2)), one may show∑
x(mod p) ψ(x)χ(1 +px) = τ(ψ)τ(χψ)

τ(χ) , which has absolute value
√
p. In the case

k = 2, j = 1 the factor χ(1 + uyp2(k−j)) is identically 1, and so (6.4) is the

product of two sums of this type. �

In the following lemma and its proof, we use the convention that if χ is a

Dirichlet character, x ∈ Q, x 6∈ Z, then χ(x) = 0.

Lemma 6.8. Let χ, ψ be as in Conjecture 6.6, and suppose (6.4) holds.

Then “H(ψ, χ,m1,m2,m3, r)

=


0, (m1m2m3r, p) = 1

χ0( r
pk−j

)O(p2k− j
2 ), p|r, m1m2m3 = 1

χ0( m1

pk−j
)χ0( m2

pk−j
)χ0( m3

pk−j
)O(p3k− 3j

2 ), p|m1m2m3, r = 1

0, p|r, p|m1m2m3.

(6.5)
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In particular, the bound (6.5) holds unconditionally for k = 2, j = 1. Fur-

thermore, if in the second line of (6.5) the O(p2k− j
2 ) is replaced by O(p2k+ j

2 )

and in the third line the O(p3k− 3j
2 ) is replaced by O(p3k− j

2 ), then the revised

bounds holds unconditionally for all 1 ≤ j < k .

Proof. We begin with the observation

(6.6)
∑

v (mod q)

eq(m3vt)ψ(v) = pk−jτ(ψ)ψ
(m3t

pk−j

)
.

Using (6.6) in (5.13), we have

(6.7)“H = pk−jτ(ψ)
∑

t,u (mod pk)

χ(t+m2u)χ(rt+m1m2)χ(u)χ(−m1 + ru)ψ
(m3t

pk−j

)
.

First suppose that (m1m2m3r, p) = 1. Then changing variables t → ut,

we have“H(ψ, χ, 1, 1, 1, 1)=pk−jτ(ψ)
∑

t,u (mod pk)

χ(t+1)χ(ut+1)χ(−1+u)ψ(u)ψ
( t

pk−j

)
.

Note that χ(ut + 1)ψ(u) is periodic in u of period pj , since pk−j |t and ψ has

conductor pj . Hence by Lemma 6.1 the sum over u vanishes, as desired.

Now suppose p|r and m1m2m3 = 1. Then“H(ψ, χ, 1, 1, 1, r)=pk−jτ(ψ)
∑

t,u (mod pk)

χ(t+u)χ(rt+1)χ(u)χ(−1+ru)ψ
( t

pk−j

)
.

Changing variables t→ upk−jy (where y now runs modulo pj), we have“H(ψ, χ, 1, 1, 1, r)

= pk−jτ(ψ)
∑

y (mod pj)

∑∗

u (mod pk)

χ(1 + pk−jy)χ(−1 + ru)χ(1 + rpk−juy)ψ(uy).

We claim the u-sum vanishes if vp(r) 6= k − j, as we now show. Note that

χ(1 + rpk−juy)ψ(u) is periodic in u with period pj , while if vp(r) < k− j, then

χ(−1 + ru) has period at least pj+1. Lemma 6.1 then shows the claim. On

the other hand, if vp(r) > k − j, then χ(−1 + ru)χ(1 + rpk−juy) is periodic

with period pj−1, while ψ(u) has least period pj . Again, Lemma 6.1 shows

the claim. Thus we may now restrict attention to r = pk−j , in which case“H(ψ, χ, 1, 1, 1, pk−j) equals

pk−jτ(ψ)
∑

y (mod pj)

∑
u (mod pk)

χ(1 + pk−jy)χ(−1 + pk−ju)χ(1 + p2(k−j)uy)ψ(uy).
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The summand is periodic in u modulo pj , so it is the same sum repeated pk−j

times. The conjectured bound (6.4) then finishes the job. Bounding the sum

trivially gives an unconditional bound that is weaker by a factor pj .

Now suppose p|m1m2m3 and r = 1. We claim that “H = 0 unless pk−j ||mi

for each i = 1, 2, 3. By symmetry, we may assume p|m2, say. Under this

condition, the summand in (6.7) vanishes unless (p, t) = 1, in which case we

must assume pk−j ||m3. By symmetry again, this implies that the sum vanishes

unless pk−j ||m1,m2 also. Then “H(ψ, χ, pk−j , pk−j , pk−j , 1) equals“H = pk−jτ(ψ)
∑

t,u (mod pk)

χ(t+ pk−ju)χ(t+ p2(k−j))χ(u)χ(−pk−j + u)ψ(t).

Changing variables t→ ut, followed by t→ t−1 and u→ u−1, this becomes“H = pk−jτ(ψ)
∑

t,u (mod pk)

χ(1 + pk−jt)χ(1− pk−ju)χ(1 + p2(k−j)tu)ψ(tu).

The summand is periodic modulo pj , so it is the same sum repeated p2(k−j)

times, and the conjectured bound (6.4) finishes the bound in this case. Bound-

ing the sum trivially gives an unconditional bound that is weaker by a factor pj .

Lastly, the case with p|r and p|m1m2m3 is covered by (5.15). �

The most important case in the evaluation of “H occurs with (6.3), and it

is crucial to have a strong bound on g(χ, ψ), which we claim with the following

Theorem 6.9. Let g(χ, ψ) be given by (1.9), where χ is primitive mod-

ulo q. For q = p or q = p2, we have

|g(χ, ψ)| � q.

We prove Theorem 6.9 in Section 9.

6.5. Estimates for Hχ(m1,m2,m3, r) in case some mj = 0. The calcula-

tions in this section may also be used to bound Hχ in case some mj = 0, by way

of (5.11) (of course, one could calculate Hχ directly). From Lemma 6.4 and

the unconditional parts of Lemma 6.8, observe that “H(ψ, χ,m1,m2,m3, r) = 0

if some mj = 0, except in the case that ψ is the trivial character mod-

ulo q, in which case from Lemma 6.5 we deduce |“H(ψ, χ,m1,m2,m3, r)| ≤
(m1, q)(m2, q)(m3, q) by the trivial bound on the Ramanujan sums. Therefore

by (5.11), we have

(6.8) |Hχ(m1,m2,m3, r)| � q−1(m1, q)(m2, q)(m3, q)q
ε if m1m2m3 = 0.

It is useful to record that from (5.3), we deduce

(6.9) |G(m1,m2,m3, c)| �
qε

cq

(m1, q)(m2, q)(m3, q)

q
if m1m2m3 = 0.
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7. Estimation of Zfin

Let ηj , j = 1, 2, 3, 4 denote any unimodular completely multiplicative

functions, and define

Zfin,p(σ1, σ2, σ3, σ4) =
∑

a1,a2,a3,d|p∞
(a1,d)=1

η1(a1)η2(a2)η3(a3)η4(d)

aσ11 aσ22 aσ33 dσ4
“H(ψp, χp, a1, a2, a3, d).

Lemma 7.1. Let Zfin,p be as above, with q = pk, k ≥ 1, and χp primitive

modulo q. If ψp has conductor pj with 1 ≤ j < k, assume Conjecture 6.6 holds

for χp, ψp. If σj ≥ σ > 1/2 for all j, then

(7.1) Zfin,p(σ1, σ2, σ3, σ4)�σ,ε δψq
1/2|g(χ, ψ)|+ q3/2+ε,

where δψ is the indicator function of the property that ψ is primitive (of con-

ductor pk). If σj ≥ σ > 1 for all j, and ψp is the trivial character, then

(7.2) Zfin,p(σ1, σ2, σ3, σ4)�σ,ε q
1+ε.

Remark. This result is unconditional for k ≤ 2.

Proof. First suppose that ψ is primitive modulo q. By Lemma 6.4, all

terms except a1 = a2 = a3 = d = 1 vanish, giving the result.

Now suppose that ψ is the trivial character. By Lemma 6.5, we have

|Zfin,p| ≤ q
∞∑
r=0

(pk, pr)

prσ4
+

∑
a1,a2,a3≥0

(pk, pa1)(pk, pa2)(pk, pa3)

pa1σ1+a2σ2+a3σ3
.

which is bounded consistently with the lemma.

Finally, consider ψ of conductor pj , 1 ≤ j < k. Lemma 6.8, which depends

on Conjecture 6.6, gives

|Zfin,p| �
p2k− j

2

p(k−j)σ4
+

p3k− 3j
2

p(k−j)(σ1+σ2+σ3)
� p3k/2.

This is consistent with (7.1). (Note that the bound (7.2) is not claimed in this

case.) �

8. Estimation of Z

8.1. The main lemma. Recall Z is given by (5.16).

Lemma 8.1. Suppose q is cube-free. There exists a decomposition Z =

Z0 +Z1, where Z0 and Z1 satisfy the following properties. Firstly, Z0 is mero-

morphic for Re(sj) ≥ σ > 1/2 for all j and analytic for Re(sj) ≥ σ > 1 for

all j. It has a pole whenever some sj = 1 and the other variables are fixed. In

the region Re(sj) ≥ σ > 1 it satisfies the bound

Z0(s1, s2, s3, s4)�σ,ε q
ε.
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Secondly, Z1 is analytic for Re(sj) ≥ σ ≥ 1/2 for all j, wherein it satisfies

the bound

(8.1)

∫ T

−T
|Z1(σ + it, σ + it, σ + it, σ − it)|dt�ε q

3/2+εT 1+ε

for T � 1. The same bound stated for Z1 also hold for Z0, provided 1/2 ≤
Re(sj) ≤ 0.99.

Remark. The statement of Lemma 8.1 is essentially equivalent to [PY19b,

Prop. 3].

Proof. Let Z0 be the contribution to Z from the trivial character, and let

Z1 = Z − Z0. All the desired estimates follow from the previous estimates on

Zfin and a bound on the fourth moment of Dirichlet L-functions (see [Pet15,

Lem. 8] for instance). �

Conjecture 8.2. The statement of Lemma 8.1 holds for any q.

Remark. The proofs of the cubic moment bounds only need the properties

of Z presented in Lemma 8.1. Therefore, if Conjecture 8.2 is true, then all the

cubic moment bounds stated in the introduction of this paper are valid for

arbitrary q.

9. Bounding g(χ, ψ): the proof of Theorem 6.9

9.1. The case q = p. In this subsection, we prove Theorem 6.9 in the case

where q = p is prime. Conrey and Iwaniec [CI00] proved g(χ, ψ) � p in the

case that χ is the quadratic character. However, their proof does not seem to

generalize: they conclude from Deligne’s theorem that the bound g(χ, ψ)� p

holds for all except at most one primitive ψ. The possible exceptional ψ can

only be the quadratic character ψ = χ, and then g(χ, χ) has a special structure

that Conrey and Iwaniec exploited to show g(χ, χ)� p by elementary means.

When χ is not quadratic, this special structure is not present, and it is not

clear whether the bound g(χ, ψ)� p for ψ quadratic has an elementary proof.

To prove Theorem 6.9 we instead use Deligne’s second proof of the Rie-

mann Hypothesis [Del80]. We analyze the sum g(χ, ψ) by writing it as

∑
x

χ(x)χ(x+ 1)

(∑
y

χ(y)χ(y + 1)ψ(xy − 1)

)
and realize the inner sum as a trace function in x of a sheaf G. The sheaf G
will then be compared with the sheaf that corresponds to the trace function

x 7→ χ(x)χ(x + 1) to show cancellation in both variables. In executing this

strategy, we have benefited greatly from the recent works of Fouvry, Kowalski
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and Michel, which have served to make the theorems of Deligne and Katz on

trace functions more amenable to analytic applications.

Proof. Suppose χ and ψ are primitive modulo p, and let χm, ψm be the

characters derived from χ, ψ by composing with the norm map N : Fpm → Fp.
Let

g(χm, ψm) =
∑

x,y∈Fpm
χm(x)χm(x+ 1)χm(y)χm(y + 1)ψm(xy − 1).

By the Grothendieck-Lefschetz trace formula [Del77, Rapport, Thm. 3.2] and

the Riemann hypothesis of Deligne [Del80], we have that there exist algebraic

numbers αi,+ and αi,− with |αi,+| = pki/2, |αi,−| = p`i/2 with ki, `i ∈ Z such

that

(9.1) g(χm, ψm) = −
N+∑
i=1

αmi,+ +

N−∑
i=1

αmi,−.

Results of Adolphson-Sperber or Katz [Kat01, Thm. 12] show that N+, N− �
1, independently of χ, ψ, p. Thus, to prove Theorem 6.9 in the case that χ, ψ

are primitive modulo p, it suffices to show that |αi,+|, |αi,−| ≤ p.
We show that |αi,+|, |αi,−| ≤ p using the theory of `-adic sheaves and trace

functions; for background, see [Del77], [Kat88], [FKMS19]. Let ` be a prime

distinct from p, and let ι : Q` → C be a fixed isomorphism. If X is an algebraic

variety over Fp, then by “sheaf” or “`-adic sheaf” we will mean a constructible

Q`-sheaf on X. Note that ` is always assumed distinct from the base field of

X. If F is a sheaf on X and x ∈ X(Fp) is a geometric point of X, then we

write Fx for the stalk of F at x.

For any `-adic sheaf F on X, its trace function tF (x) is defined to be the

value at x ∈ X(Fp) of the trace of the Frobenius endomorphism of Fp acting

on Fx. That is,

tF (x) = ι((TrF)(Fp, x)) = ι(Tr(Frp|Fx)).

Let

F1 = Lχ((Y+1)Y −1)

be the Kummer sheaf attached to the character χ
(
Y+1
Y

)
, whose trace function

is χ(y)χ(y+1). Thus F1 is an `-adic sheaf on A1; it is a middle-extension sheaf,

pure of weight 0, and lisse on A1−{0,−1}. It is of rank 1, hence geometrically

irreducible. Let

K = Lψ(XY−1)

be the middle extension of the Kummer sheaf attached to ψ(XY −1) on A1×A1.

Let Z ⊂ A2 be the closed set defined by the equation XY = 1. The sheaf K is

lisse, of rank 1 and pure of weight 0 on the dense open set V = A2 −Z. Since
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ψ is non-trivial, the middle extension sheaf is identical to the extension by 0

of K restricted to V .

Let pj : A1 × A1 → A1, j = 1, 2 be the two canonical projections, and let

H = p∗2F1 ⊗K.

The sheaf H is lisse on the dense open set U = A2 −D, where D ⊂ A2 is the

divisor

D = Z ∪ A1 × {0} ∪ A1 × {−1}.
For i = 0, 1, 2, define the `-adic sheaves

T iK(F1) := Rip1,!(H),

where Rip1,! is the higher direct image with compact supports. The sheaf G =

T 1
K(F1) is is the “cohomological transform” of F1 defined by the “kernel” K,

in the sense of Katz’s affine cohomological transforms and of [FKM21].

Lemma 9.1. If χ and ψ are non-trivial Dirichlet characters modulo p, then

tG(x) = −
∑
y∈Fp

tF1(y)tK(x, y).

Proof. Let Ux = U ∩ {x} × A1 be the open set on which H restricted to

{x} × A1 is lisse. Precisely, we have Ux = {x} × (A1 − {0,−1, 1/x}). (Below

we take restrictions of p∗2F1 and K to {x} × A1 without mention.)

There are three representations of Gal(Fp/Fp) given by H i
c(Ux,Fp ,H) for

i = 0, 1, 2. The Grothendieck-Lefschetz trace formula asserts that∑
y∈Ux(Fp)

tH(x, y) = Tr(Frp|H0
c (Ux,Fp ,H))

− Tr(Frp|H1
c (Ux,Fp ,H)) + Tr(Frp|H2

c (Ux,Fp ,H)),

where Frp ∈ Gal(Fp/Fp) is the Frobenius automorphism. By standard opera-

tions with Galois representations, and the fact that F1 and K are extension by

0 sheaves, we have that∑
y∈Fp

tF (y)tK(x, y) =
∑

y∈Ux(Fp)

tH(x, y).

Furthermore, by the proper base change theorem (see [Del77, Arcata, IV, Th.

5.4]) we have that H i
c(Ux,Fp ,H) is naturally isomorphic to the stalk at x of

T iK(F1). Therefore, to prove the lemma, it suffices to show that all of the

stalks of T 0
K(F1) and T 2

K(F1) are 0.

First we show that the stalks of T 0
K(F1) are all zero. We claim that

H0
c (Ux,Fp ,H) = 0, and so T 0

K(F1) = 0 as well. Since χ is non-trivial, F1 is a

middle extension sheaf, and so is p∗2F1. Since both p∗2F1 and K are middle-

extension, we have, e.g. by [FKM21, Lem. 4.2], that H0
c ({x}×A1,H) = 0. Let
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π : ({x}×A1)−Ux → SpecFp be the structure morphism. The sheaf R−1π!H
vanishes by definition, so H−1

c (({x}×A1)−Ux,H) = 0. By excision (see [Del77,

Sommes Trig. (2.5.1)∗]) and the vanishing of the above two cohomology groups,

we have that H0
c (Ux,Fp ,H) = 0 as well.

Now we show that the stalks of T 2
K(F1) are all zero. If L1 and L2 are any

two geometrically irreducible sheaves, lisse on Ux, then H2
c (Ux,Fp ,L1⊗L2) 6= 0

if and only if L1 ' D(L2) on a dense open set where both sheaves are lisse,

as one can see by the co-invariants formula (see [Del80, (1.4.1)b]) and Schur’s

lemma. In our case, it suffices to consider the Ggeom = Gal(Fp(X)/Fp(X))-

invariants acting on the stalk of p∗2F1 and K at a lisse geometric point. Since

χ is non-trivial (this is crucial), we have that F1 is ramified at 0 whereas K
is not. Therefore the inertia group at zero I0 ⊂ Ggeom acts non-trivially on

the stalk of F1 at any lisse point, whereas I0 acts trivially on any stalk of K.

Therefore the two sheaves cannot be geometrically isomorphic, and so the H2
c

vanishes. �

By Lemma 9.1 and the fact that F1 is middle extension, we have

(9.2) g(χ, ψ) = −
∑
u∈Fp

tF1(u)tG(u).

By the Riemann hypothesis of Deligne [Del80, Thm. 3.3.1], G is mixed of

weights ≤ 1, so to apply the orthogonality form of the Riemann hypothesis

(e.g., [FKMS19, Thm. 5.2]), we would need to show that the part of weight 1

of G, say G0, is geometrically irreducible and not geometrically isomorphic

to F1. It is not difficult to see that G has generic rank 2, and we would

like to argue that this prevents G0 from being geometrically isomorphic to F1.

However, it is less clear that G0 itself has generic rank 2.

Recall U = A2−D, and let j be the open embedding of U in A2. To handle

the issue raised in the previous paragraph, let us introduce the modified sheaf‹H := j!(j
∗H)

and the corresponding cohomological transform sheaves

T̃ iK(F1) := Rip1,!(‹H).

We have defined ‹H in order that it satisfy the hypotheses of Deligne’s semicon-

tinuity theorem [Lau81], used in the proof of part (1) of the following lemma.

Lemma 9.2. Suppose that χ and ψ are non-trivial modulo p. The sheaf

G̃ = T̃ 1
K(F1)

(1) is lisse on the dense open set W = A1 − {0,−1},
(2) is geometrically irreducible and pure of weight 1 on W , and

(3) has generic rank 2.
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Proof. (1) In order to prove that G̃ is lisse on W , we will use Deligne’s

semicontinuity theorem [Lau81, Cor. 2.1.2]. Consider

p̃1 : A1 × P1 → A1,

which is a smooth and proper morphism of relative dimension 1. Abusing

notation, we continue to write ‹H for the extension by 0 of ‹H from A1 ×A1 to

A1 × P1. By definition, we have G̃ = R1
p̃1,∗
‹H.

Let ‹D be the complement in A1 × P1 of the open set U , that is ‹D =

D∪A1×{∞}. By restriction, p̃1 defines a proper smooth morphism of relative

dimension 1

X →W = A1 − {0,−1},

where X = p̃−1
1 (W ). The intersection ‹D ∩ X is a divisor in X, which is flat

and finite (of degree 4) over W . The sheaf G̃ is lisse on the complement of‹D ∩X in A1 × P1.

Let x ∈ W . We identify the fiber Cx of p̃1 over x with P1, and so the

restriction of ‹H to Cx is identified with a lisse sheaf on the dense open set

(abusing notation)

Ux = A1 − {0,−1, 1/x,∞} ⊂ P1.

The restriction of the sheaf ‹H to Cx is at most tamely unramified everywhere,

hence the function ϕ of [Lau81, Thm. 2.1.1] is constant equal to 0 on points

of W . Then we have by Corollary 2.1.2 of loc. cit. that R1p̃1,∗‹H is lisse on W .

(2) The sheaf G̃ is mixed of weights ≤ 1 on W by the Riemann hypoth-

esis of Deligne [Del80, Thm. 3.3.1]. Furthermore, the part of G̃ of weight 1 is

geometrically irreducible on W by the diophantine criterion for geometric irre-

ducibility. Indeed, F1 is not geometrically isomorphic to the Kummer sheaf Lψ
attached to ψ, since F1 is ramified at −1 and Lψ is not, and so the hypothesis

of [FKM21, Prop. 5.12 and Rem. 5.14] is satisfied.

Finally, we prove that G̃ is pure of weight 1 on W by applying [KMS17,

Lem. 4.22(2)] to the morphism p̃1 : X → W and the sheaf ‹H on X. For any

x ∈ P1, the sheaf pullback ‹Hx to Cx = {x} × P1 has no punctual section nor

trivial subrepresentation (as a lisse sheaf on Ux). Thus the assumptions of loc.

cit. are satisfied.

It follows that for any x ∈ W , the part of weight < 1 of the stalk at x of

G̃ = R1p̃1,∗‹H is isomorphic to⊕
y∈Cx−Ux

(‹Hx)
Iy
η /(
‹Hx)y.
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But we already have (‹Hx)
Iy
η = 0 at all singular points y ∈ {0,−1, 1/x,∞}, so

the direct sum vanishes. From Deligne’s Theorem, we conclude that G̃ is pure

of weight 1 on W .

(3) The stalk of G̃ over x ∈ Fp is H1
c ({x}×A1, ‹H). By the Euler-Poincaré

formula [Kat88, 8.5.2, 8.5.3], if x 6= −1 then the dimension of this cohomology

group is −1+3 = 2 for the three tamely ramified points 0,−1, 1/x of ‹H. Hence

the generic rank is 2. �

To compare ‹H with H, observe that the stalks of ‹H are equal to those of

H outside D, and are 0 along D. Thus, the stalks of H and ‹H may only differ

on ‹D (and this can only happen if χ = ψ). Indeed, in the case χ = ψ note

that tH(−1,−1) = χ(−1)2, whereas t‹H(−1,−1) = 0. As an aside, one wonders

whether g(χ, χ) admits a “special structure” for χ complex that could be used

to give a simpler the proof of the bound g(χ, χ)� p in that special case, as was

exploited by Conrey and Iwaniec in the case that χ is quadratic [CI00, §14].

By the discussion in the preceding paragraph, we have that tG(u) = tG̃(u)+

O(1). Thus, setting

s(χ, ψ) = −
∑

Fp−{0,−1}

χ(x)χ(x+ 1)
∑
y

χ(y)χ(y + 1)ψ(xy − 1),

we have

(9.3) g(χ, ψ) = −s(χ, ψ) +O(p) = −
∑

x∈W (Fp)

tF1(x)tG̃(x) +O(p).

Since F1 is pure of weight 0 and rank 1 on W and G̃ is pure of weight 1

and geometrically irreducible of rank 2 on W by Lemma 9.2, G̃ cannot be

isomorphic to F1. Thus, the Grothendieck-Lefschetz trace formula, the co-

invariants formula [Del80, (1.4.1)b], and the Riemann hypothesis of Deligne

imply that there exist algebraic numbers βi,+ and βi,−, with |βi,+| ≤ p, |βi,−| ≤
p such that

(9.4) s(χm, ψm) =
∑

x∈W (Fpm )

tF1(N(x))tG̃(N(x)) = −
M+∑
i=1

βmi,+ +

M−∑
i=1

βmi,−.

Here it is not clear that M+ and M− are bounded independently of χ, ψ, p.

However, we can avoid this issue by appealing to the two-dimensional Riemann

hypothesis of Deligne (9.1), in which situation we know that N+, N− � 1. A

slight variation of [CI00, Lem. 13.2] shows that |αi,+|, |αi,−| ≤ p3/2, and we

would like to show in fact that αi,+ and αi,i are bounded by p. Suppose not.

Then we would have

lim sup
m→∞

|g(χm, ψm)|
p3m/2

> 0.
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But this is impossible by (9.4) since |βi,+|, |βi,−| ≤ p. Thus |αi,+|, |αi,−| ≤ p,

so by (9.1) and the fact that N+, N− � 1 we have g(χ, ψ) � p for all χ, ψ

primitive.

If ψ is not primitive, it must be the trivial character ψ0, in which case we

have g(χ, ψ0) � p by Lemma 6.3, which completes the proof of Theorem 6.9

when q = p. �

Remark. A proof of a minor variant of Theorem 6.9 also appears as

[FKM21, Thm. 5.8], from which we drew inspiration in giving the proof that

appears above. However, our proof departs from that of loc. cit. in that we have

completely avoided the difficult main Theorems 2.3, 2.5, and 5.11 of [FKM21]

on the behavior of the conductor under cohomological transforms.

9.2. The case q = p2. This case can be treated by elementary means.

Since χ is a Dirichlet character modulo p2, the function t 7→ χ(1 + pt) is an

additive character on Z/pZ, so there exists an integer `χ so that

χ(1 + pt) = ep(`χt).

Note that χ has conductor p2 if and only if (`χ, p) = 1. Hence if a, b are integers

with (a, p) = 1, then

(9.5) χ(a+ pb) = χ(a)χ(1 + pab) = χ(a)ep(`χab),

where a ∈ Z satisfies aa ≡ 1 (mod p2). Now, for each t, u (mod q), choose

a, b, c, d ∈ Z such that a+ pb ≡ t (mod q) and c+ pd ≡ u (mod q). We have

ψ(ut− 1) = ψ(−1 + ac+ p(bc+ ad)) = ψ(−1 + ac)ep(`ψ(bc+ ad)(−1 + ac)).

Note that as t, u run through Z/qZ, each of the integers a, b, c, d represent

every residue class modulo p. We obtain

g(χ, ψ) =
∑
a,c

χ(a)χ(a+ 1)χ(c)χ(c+ 1)ψ(−1 + ac)
∑
b,d

ep(`χb(a− (a+ 1))

+ `ψbc(−1 + ac))ep(−`χd(c− (c+ 1)) + `ψad(−1 + ac)).

(9.6)

In particular, we have (a(a+ 1)c(c+ 1)(ac− 1), p) = 1 for every non-zero term

of the sum over a and c, so all inversions modulo p here and below are justified.

The sum over b equals p provided

(9.7) `χ(a− (a+ 1)) ≡ −`ψc(−1 + ac) (mod p)

and vanishes otherwise. Similarly, the sum over d equals p provided

(9.8) `χ(c− (c+ 1)) ≡ `ψa(−1 + ac) (mod p)
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and vanishes otherwise. We claim that there at most two solutions to (9.7)

and (9.8), whence

|g(χ, ψ)| ≤ 2q

for q = p2. Along the way, we will also see that g(χ, ψ) = 0 if ψ is not primitive.

Indeed, multiplying the first congruence by a(a + 1) and the second one

by c(c+ 1), we obtain the equivalent system

`χ ≡ −`ψac(a+1)(−1 + ac) (mod p), `χ ≡ `ψac(c+1)(−1 + ac) (mod p).

Since (`χ, p) = 1, this implies that g(χ, ψ) = 0 unless (`ψ, p) = 1, which means

ψ is primitive. Furthermore, we deduce that a(a+ 1)c ≡ −ac(c+ 1) (mod p),

whence c ≡ −2− a (mod p), which uniquely determines c in terms of a. Then

we see that a must satisfy

(9.9) a(a+ 1)(a+ 2)(−1 + a(−2− a)) ≡ `ψ`χ (mod p).

Setting A = `ψ`χ, (9.9) is equivalent to

a(a+ 2) ≡ −A(a+ 1) (mod p).

Hence a satisfies a certain monic quadratic polynomial, having at most two

solutions modulo p. This gives the desired bound on g, completing the proof

of Theorem 6.9.

10. Archimedean aspects, part 1

In this section, we derive the analytic properties of the weight functions

J±0 and J± defined in (4.6) and (4.11).

10.1. Approximate functional equations. Recall from (4.3) the functions

Vj(y, t).

Lemma 10.1. For each j = 1, 2, Vj(y, t) is an entire, even function in t

for any given y > 0. Moreover, for t ∈ R, it satisfies the bound

(10.1) yk(1/2 + it)`
∂k+`

∂yk∂t`
Vj(y, t)�A,k,`

(
1 +

y

1 + |t|j
)−A

for any A > 0. For t = −i/2 + v with v ∈ R, we have, for any A > 0,

(10.2) yk
∂k

∂yk
Vj(y,− i

2 + v)�A,k

(
1 +

y

1 + |v|j
)−A

.

Proof. By shifting the contour far to the right, we see that Vj(y, t) is

analytic for t in any fixed horizontal strip, so it can be extended as an entire

function of t. It is clearly invariant under t→ −t.
Now assume t ∈ R. First we show (10.1) in the case k = ` = 0. We

assume δ = 0 for notational simplicity, the δ = 1 case being similar. Stirling’s

asymptotic expansion gives that log Γ(z) = (z − 1
2) log(z)− z +

∑N
j=0 cjz

−j +
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O(|z|−N−1), for certain constants cj , valid for Re(z) ≥ 1/100, say. From this

we deduce that if |a|2 ≤ |z|, Re(z) ≥ 1/4, then

(10.3) log
Γ(z + a)

Γ(z)
= a log z +

N∑
j=1

Pj(a)

zj
+O

((1 + |a|)2N+2

|z|N+1

)
for certain polynomials Pj of degree at most 2j. Fix σ ∈ R so that 1/2+σ > 0.

Then for Re(s) = σ and |Im(s)| ≤ (1 + |t|)1/4, we derive from (10.3) that

exp(s2)
ΓR(1/2 + s+ it)

ΓR(1/2 + it)

=
( |t|
π

)s/2
exp(s2)

(
1 +

N∑
j=1

Pj(s)

(1/2 + it)j
+Oσ,N ((1 + |t|)−

N+1
2 )
)
,

(10.4)

provided t is sufficiently large, and where Pj is a different collection of poly-

nomials of degree ≤ 2j. If |Im(s)| > (1 + |t|)1/4, then a crude application of

Stirling gives

exp(s2)
ΓR(1/2 + s+ it)

ΓR(1/2 + it)
= O((1 + |t|)σ/2 exp(−Im(s)2/2)).

In any event, we shift the contour to Re(s) = A to see that Vj(y, t) �A

(1 + |t|j)Ay−A for y > 1 + |t|j . If y ≤ 1 + |t|j , we instead move the contour to

σ = −1/4, say. Accounting for the pole and bounding the integral on the new

line, we obtain Vj(y, t)� 1 in this case.

Next we consider derivatives. Note that differentiation k times with re-

spect to y followed by multiplication by yk gives an integral of the form (4.3)

back, but with Gj(s) multiplied by a polynomial in s. The exponential decay

of Gj(s) easily accommodates for this, showing (10.1) for ` = 0, and any k ≥ 0.

Differentiation of Stirling’s formula with respect to t leads to (10.1) for any k, `.

Next consider the case t = −i/2 + v with v ∈ R, so it = 1/2 + iv. For y >

1+|t|j , we move the contour far to the right and bound it the same way. For y ≤
1+ |t|j , we shift left, to −1/4 again. We pass poles at s = 0 (as before) giving a

residue of 1, and at s = −1/2 + iy = iv. This latter residue is O((1 + |v|)−100),

i.e., uniformly bounded for v ∈ R, using that the apparent pole of 1
iv at v = 0

is cancelled by a zero of 1/ΓR(−iv). It is not hard to see that (10.2) holds. �

10.2. Properties of J+. We invite the reader to recall the definition of

inert functions from Section 3.

Lemma 10.2. Let J+(x, ·) be defined as in (4.11). Then

(10.5)
∂k

∂xk
J+(x, ·)�k x(x−k + xk)T k+1,

and J+(x, ·) is 1-inert with respect to the variables t1, t2, t3, c,m1,m2,m3.
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We will use this for the relatively small values x� T 2+ε. In the comple-

mentary range, we have the following.

Lemma 10.3. Suppose for some ε > 0 that 1 ≤ T 2+ε � x. Then for any

A > 0,

J+(x, ·) =
∑
±
T 2x−1/2e±ixW±(x, ·) +Oε,A(x−A),

where W±(x, ·) is a function (depending additionally on ε, T , A) satisfying

xk ∂k

∂xk
W±(x, ·)� 1. Moreover, W±(x, ·) is 1-inert with respect to the variables

t1, t2, t3,m1,m2,m3, c.

Proof of Lemma 10.2. First consider the case k = 0. In (4.11) we shift the

contour to the line Im(t) = −1/2. Then from (10.2), and using | cosh(−πi
2 +πy)|

= | sinh(πy)|, we have

|J+(x, ·)| �
∫ ∞
−∞

|J1+2iy(x)|
| sinh(πy)|

|y|(1 + y2)

T 2
exp(−(y/T )2)dy.

Next we claim that for any integer a ≥ 0, we have

(10.6)
|J1+a+2iy(x)|
| sinh(πy)|

� 1 + |y|
|y|

(x/2)1+a

|1/2 + 2iy|a+1
.

This bound can be derived with a little work from [GR00, 8.411.4] and Stirling’s

approximation. Taking a = 0, this implies (10.5) for k = 0.

We next extend this to k ≥ 1. By [GR00, 8.472.2, 8.486.13] we have

(10.7)
d

dx
Zν(x) =

ν

x
Zν(x)− Zν+1(x),

valid for Zν = Jν as well as Zν = Kν . Iterating this, we derive

(10.8)
dk

dxk
Jν(x) =

k∑
m=0

Pk,m(ν)

xm
Jν+k−m(x),

where Pk,m is a polynomial of degree at most m. By (10.8) and (10.6), we

deduce that

| dk
dxk

J1+2iy(x)|
| sinh(πy)|

�k
1 + |y|
|y|

k∑
m=0

(1 + |y|)m

xm
x1+k−m

(1 + |y|)1+k−m

� x

|y|

( xk

(1 + |y|)k
+

(1 + |y|)k

xk

)
.

It is then straightforward to derive (10.5) for all k.

The final statement of the lemma, that J+(x, ·) is 1-inert with respect to

the other variables, follows from Lemma 10.1, since the only dependence of J+

on these auxiliary parameters is via the factors V1(y1, t)V2(y2, t) and the inert

function w. �
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Proof of Lemma 10.3. By [GR00, 8.411.11] and an interchange of orders of

integration justified by integration by parts and Fubini, there exists an integral

representation in the form

J+(x, ·) = w(·)T 2

∫ ∞
0

cos(x cosh(v))g(v, ·)dv,

where

g(v, ·) = T−2

∫ ∞
−∞

t tanh(πt)
t2 + 1

4

T 2
exp(−(t/T )2) cos(2tv)V1(·, t)V2(·, t) dt.

Here g is a Schwartz-class function; more precisely, it satisfies the bounds

(10.9) g(j)(v, ·)�A,j T
j(1 + |v|)−A for all A > 0, j ≥ 0

and is 1-inert with respect to the other variables by Lemma 10.1. Hence

J+(x, ·) =
∑
±
T 2

∫ ∞
0

e±ix cosh(v)g(v, ·)dv =
∑
±
T 2e±ixF±(x, ·),

where

F±(x, ·) =

∫ ∞
0

e±ix(cosh v−1)g(v, ·)dv.

It suffices to show that F±(x, ·) = 1
x1/2

W±(x, ·) + OA(x−A) with W±(x, ·) sat-

isfying the required derivative bounds. For notational simplicity, we consider

only the + case, which we write as F (x, ·) for F+(x, ·).
Write a smooth partition of unity of the form

1 = f0(v/U) +
∑
V

f1(v/V ) + f2(v) for v > 0,

with the following properties: f0 has support on [−1, 1], f1 has support on [1, 2],

f2 vanishes on [0, 1], U = x−1/2+ε, and V runs over O(log x) real numbers with

U � V � 1. Repeated integration by parts shows that for all sufficiently large

A > 0,

(10.10)

∫ ∞
1

eix(cosh v−1)g(v, ·)f2(v) dv � T jx−j �A x
−A,

taking j large, and using x� T 2. Similarly, applying [BKY13, Lem. 8.1] with

parameters (X,Y,Q,R,U, α, β) in our situation taking the values (1, x, 1, xV,

1, V, 2V ), we see that∫ ∞
−∞

eix(cosh v−1)g(v, ·)f1(v/V ) dv �A x
−A.

Hence

F (x, ·) =

∫ 2

0

eix(cosh v−1)g(v, ·)f0

( v
U

)
dv +OA(x−A).
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Now let us develop eix(cosh v−1) by first taking the Taylor expansion for

cosh v−1 and then expanding it in the power series expansion for exp. We get

that

eix(cosh v−1) = eixv
2/2

M∑
m=0

bm

(
x

N∑
n=0

anv
2n+4

)m
+O
Ä
xv2N+6 + (xv4)M+1

ä
.

Since v � x−1/2+ε, we may take M,N large enough depending on ε,A so that

eix(cosh v−1) = eixv
2/2

∑
m,n≥0

cm,n(xv2)mv2n +OA(x−A)

for some new coefficients cm,n and where all but finitely many of the cm,n are

zero.

Thus

F (x, ·) =
∑

m≤M,n≤N
cm,n

∫ ∞
0

(xv2)mv2neixv
2/2g(v, ·)f0

( v
U

)
dv +OA(x−A).

It transpires that g is nearly constant on the support of f0. To see this, we

note that

UT � x−δ

for some ε > δ > 0, where ε is the ε appearing in x � T 2+ε, and we have

chosen the ε in the definition of U small enough in comparison. Then, for

any L, we have

g(L)(ξ)vL � (UT )L � x−Lδ,

so that we may develop g in a Taylor series around 0 with finitely many terms,

the number of which only depends on A, ε. Hence

F (x, ·) =
∑

`≤L,m≤M,n≤N
c`,m,ng

(`)(0)

×
∫ ∞

0

(xv2)mv2n+`eixv
2/2f0

( v
U

)
dv +OA(x−A)

for all sufficiently large L,M,N . Changing variables v → x−1/2v, we obtain

(10.11)

F (x, ·) = x−1/2
∑
`,m,n

c`,m,n
g(`)(0)

x`/2
x−n

∫ ∞
0

v2m+2n+`eiv
2/2f0

( v
xε

)
dv+OA(x−A).

Let us analyze the inner integral. We claim∫ ∞
0

vNeiv
2/2f0

( v
xε

)
dv = C(N) +ON,A(x−A)

for some constant C(N) independent of f0 and x.
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Proof of claim. For a smooth function f supported on |v| � 1, define

I(N, f, V ) =

∫ ∞
0

vNeiv
2/2f(v/V )dv,

where V � 1 is large. Our first observation is that [BKY13, Lem. 8.1] shows

that I(N, f, V ) �A,N,f V −A provided f is supported on [1/2, 4], say. Our

f0 is not supported on this interval, but this argument shows I(0, f0, V ) =

I(0, 1, V ) + OA(V −A), where I(0, 1, V ) = eπi/4
√

π
2 . Next, an integration by

parts argument shows

I(N, f, V ) = iδN=1f(0) + i(N − 1)I(N − 2, f, V ) + iV −1I(N − 1, f ′, V ).

Here we interpret I(M,f, V ) = 0 if M < 0. Since f ′0 is dyadically-supported,

this implies

I(N, f0, x
ε) = iδN=1 + i(N − 1)I(N − 2, f0, x

ε) +ON,A(x−A).

Repeating, we obtain the claim. �

Applying the claim to (10.11), we have

F (x, ·) = x−1/2
∑

`≤L,m≤M,n≤N
c`,m,n

g(`)(0)

x`/2
x−n +OA(x−A)

for some newly re-defined sequence of coefficients c`,m,n, which completes the

proof. �

10.3. Properties of J−.

Lemma 10.4. We have

(10.12)
∂k

∂xk
J−(x, ·)�k,ε x

1−ε(x−k + xk)T 1+k+ε.

Moreover, J−(x, ·) is 1-inert with respect to the variables t1, t2, t3, c,m1,m2,m3.

As in the J+ case, this lemma is of interest to us when x is not too large.

In the complementary case we have the following.

Lemma 10.5. Suppose for some ε > 0 that 1 ≤ T 1+ε � x. Then

J−(x, ·)�A x
−A

Proof of Lemma 10.4. As in the proof of Lemma 10.2, the property that

J− is 1-inert with respect to the other variables is easy to see, so we now focus

on the bound (10.12). By [GR00, 8.486.10], we have

J−(x, ·) =
x

iπ2

∫ ∞
−∞

(K1+2it(x)−K1−2it(x)) sinh(πt) exp(−(t/T )2)

×
(t2 + 1

4)

T 2
V1(·, t)V2(·, t)dt.

(10.13)
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From [GR00, 8.432.5], that is,

Kν(x) =
Γ(ν + 1

2)2ν

xνΓ(1
2)

∫ ∞
0

cos(xt)

(t2 + 1)
1
2

+ν
dt, Re(ν) > 0,

one may readily deduce that

(10.14) Kε+2iy(x)�ε
(1 + |y|)ε

xε cosh(πy)

for y ∈ R. For the part of the integral (10.13) with K1+2it we move the

contour to Re(1 + 2it) = ε > 0, in all giving a contribution to J−(x) of size

� x1−εT 1+ε. A similar bound works for the part of the integral with K1−2it(x),

but by shifting the contour the other way. This gives the desired bound for

k = 0.

Next we sketch how to treat k ≥ 1. The bound on Kε+2iy given in (10.14)

has the same essential features as (10.6). Moreover, the K-Bessel function

satisfies (10.7). The same method used for J+ now carries over to J− without

any significant changes. �

Proof of Lemma 10.5. From [GR00, 8.432.4] one may derive

J−(x, ·) = T 2

∫ ∞
−∞

cos(x sinh(v))g(v, ·)dv,

where g satisfies (10.9). (Here g(v, ·) may differ slightly from that occurring in

the proof of Lemma 10.3, but only by an absolute constant.)

As in the proof of Lemma 10.3, we can cut the integral at |v| ≤ 1 again

(with a smooth cutoff), since repeated integration by parts shows the comple-

ment is OA(x−A) for any A > 0. Therefore,

J−(x, ·) = T 2

∫ ∞
−∞

cos(x sinh v)g1(v, ·)dv +OA(x−A),

where g
(j)
1 (v, ·) �A T j(1 + |v|)−A. We then change variables v = arcsinh(u),

so dv = (1 + u2)−1/2du, giving

J−(x, ·) = T 2

∫ ∞
−∞

cos(xu)g0(u, ·)du+OA(x−A),

g0(u, ·) = g1(arcsinh(u), ·)(1 + u2)−1/2.

(10.15)

Since arcsinh(u) is smooth with bounded derivatives for u � 1, then g0(u, ·)
is Schwartz-class and satisfies g

(j)
0 (u, ·) �j,A T j(1 + |u|)−A. The integral in

(10.15) is a cosine transform of g0, and is hence O(T 2(T/x)j), for any j ≥ 0,

which is OA(x−A) for any A > 0, since x� T 1+ε by assumption. �
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11. Archimedean aspects, part 2

The goal in this section is to understand the behavior of K± defined

by (4.13).

We begin with some comments to help bridge the material in [PY19b,

§10.4] to this work. In that article, the analog of K was defined but with

J±(x, ·) replaced by Jκ−1(x), the J-Bessel function, with κ fixed. Nevertheless,

a great majority of the work done on K in [PY19b] carries over to this article,

and the properties of J± developed in Section 10 will allow for this extension.

Throughout this section we assume that for some 0 < η ≤ 1/13,

(11.1) T � qη.

The precise T -dependence is not important for the proof of Theorem 1.1.

11.1. The properties of K .

Lemma 11.1 (Oscillatory Case). Suppose that |mj | � Mj for j = 1, 2, 3

and that c � C . Suppose there exists δ > 0 such that

(11.2)

√
N1N2N3

C
� T 2qδ.

Then

K+(m1,m2,m3, c) =
T 2C2(N1N2N3)1/2ec(−m1m2m3)

M1M2M3
L(m1,m2,m3, c)

+Oδ,A

(
q−A

3∏
j=1

(1 +mj)
−2
)
,

(11.3)

where L has the following properties. Firstly, L vanishes (meaning K+ is very

small) unless

(11.4) Mj �
(N1N2N3)1/2

Nj
, j = 1, 2, 3,

and all the mj have the same sign. Moreover, we have that

L(m1,m2,m3, c) =

∫
|u|�qε

∫
|y|�qε

F (u; y)
( |m1m2m3|

c

)iy
×
( M1

|m1|

)u1( M2

|m2|

)u2( M3

|m3|

)u3(C
c

)u4
dudy,

(11.5)

where F = FC,N1,N2,N3,M1,M2,M3 is entire in terms of u and satisfies

F (u; y)�Re(u),A (1 + |u|)−A(1 + |y|)−A

for any A > 0.

Finally, K−(m1,m2,m3, c)� q−1000.
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Sketch of proof. The conditions in place in Lemma 11.1 ensure that the

hypotheses of Lemma 10.3 are satisfied, which shows that J+(x) is essentially

of the form e±ix/
√
x, times a smooth function of x. This is the same shape

of Jκ−1(x) that was used in [PY19b, Lem. 11] and so the method used there

carries over with minimal changes.

The final statement on the small size of K− follows immediately from

Lemma 10.5. �

Lemma 11.2 (Non-oscillatory case). Suppose that mj �Mj for j = 1, 2, 3,

c � C , and

(11.6)

√
N1N2N3

C
� T 2qδ.

Then for both cases K = K±, we have

K(m1,m2,m3, c) = TN1N2N3

(√N1N2N3

C

)
ec(−m1m2m3)

∫
|u|�T 2qδ+ε

F (u)

×
∫
|t|�qε+P

f(t)
( |m1m2m3|

c

)it( M1

|m1|

)u1( M2

|m2|

)u2( M3

|m3|

)u3(C
c

)u4
dtdu

+Oε,A(q−A
3∏
j=1

(1 +mj)
−2),

(11.7)

where P is defined by

(11.8) P =
M1M2M3

C
,

f(t) � (1 + |t|)−1/2, and F (u) �A,Re(u),ε q
ε∏4

`=1(1 + |u`|
qε )−A for all A > 0.

Moreover, F vanishes (meaning K is small) unless

(11.9)
M1N1

C
�ε q

ε,
M2N2

C
�ε q

ε,
M3N3

C
�ε q

ε.

If there exists ε > 0 such that P � qε, then f may be chosen to have support

on |t| � P .

Sketch of proof. In this case, J± satisfies the properties of Lemma 10.2 or

10.4 (depending on the choice of ±). In turn, these are essentially the only

properties that were used about Jκ−1(x) in [PY19b, Lem. 12]. �

Lemma 11.3 (Other cases). Suppose some mj = 0, and let K denote

either case of K±. If (11.2) holds, then K is small. If (11.6) holds, then K

is small unless |mj | �ε
C
Nj
qε for j = 1, 2, 3, in which case

(11.10) K(m1,m2,m3; c)�ε TN1N2N3

(√N1N2N3

C

)
qε.
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Proof. The fact that K is small if (11.2) holds follows from repeated in-

tegration by parts (see [BKY13, Lem. 8.1] for instance). If (11.6) holds, then

another repeated integration by parts argument shows that the integral is small

if there exists ε > 0 such that |mj | � C
Nj
qε for some j. Finally, the bound

(11.10) follows from trivially estimating the integral defining K, using (10.5)

or (10.12). �

12. Completing the proof of Theorem 1.1

Here we finish the proof of the bounds T ±, T ±0 �ε T
Bqε (for definitions,

see (4.14) and (4.15)), which will complete the proof of Theorem 1.1.

We only deal with the case that εj = 1 for all j = 1, 2, 3. The other cases

are similar. Recall the definition of T ± from (4.14):

T ± :=
1

C
√
N1N2N3

∑
m1,m2,m3,r≥1

(m1,r)=1

G(m1,m2,m3; qr)K±(m1,m2,m3, qr).

Using (5.3), we have

|T ±| � 1

C2q
√
N1N2N3

×
∣∣∣ ∑
m1,m2,m3,r≥1

(m1,r)=1

eqr(m1m2m3)K±(m1,m2,m3, qr)Hχ(±m1,m2,m3, r)
∣∣∣.

Letting N = N1N2N3, the behavior of K depends on whether or not

(12.1)

√
N

C
� T 2qε.

Oscillatory case. Suppose (12.1) holds for some ε > 0. By Lemma 11.1,

only the case of K+ is relevant, in which case we have (recalling (5.4))

|T +| � T 2

qM

∣∣∣ ∫
|u|�qε

∫
|y|�qε

F (u; y)q−iyMu1
1 Mu2

2 Mu3
3 (C/q)u4

× Z(u1 − iy, u2 − iy, u3 − iy, u4 + iy)dudy
∣∣∣,(12.2)

plus a small error term, where M = M1M2M3. Here we initially take Re(uj) =

1+ε for all j. According to Lemma 8.1, write Z = Z0+Z1. For Z0, we keep the

lines at 1 + ε, while for Z1 we move them to 1/2 + ε. By the decay properties

of F , the horizontal contour integrals arising from these contour shifts are small

(� q−100, say), and we will not mention them further. Thus we obtain

(12.3) T + � qεT 2

qM

(MC

q
+

√
MC
√
q
q3/2

)
� qεT 2

(C
q2

+

√
C

N1/4

)
,
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using that K+ is very small unless M �
√
N in this oscillatory case. Since

CT 2 � N1/2 � (qT )3/2+ε (from (12.1) and (4.8)), we have T ± � Tqε (using

T � qη for some η > 0 small).

Non-oscillatory case. The method of estimation is similar in the case that√
N
C � T 2qε, but we use Lemma 11.2 in place of Lemma 11.1. From the terms

with mj �Mj , we obtain that the contribution to T ± is

� NT

C3q

∣∣∣ ∫
|t|�qε+P

f(t)

∫
|u|�T 2qε

Mu1
1 Mu2

2 Mu3
3

(C
q

)u4
× F (u)

qit
Z(u1 − it, u2 − it, u3 − it, u4 + it)dudt

∣∣∣,
where P = M/C. By the large sieve-like bound (8.1), we have that the con-

tribution to the above from Z1, say T ±1 , satisfies the bound

T ±1 �ε
NTqε

C3q

√
MC
√
q
q3/2

(
1 +

√
M√
C

)
T 2.

In this case, M �ε
C3

N qε, and so this bound becomes

(12.4) T ±1 �ε q
εT 3(

√
N

C
+ 1)� T 5qε.

Next consider the contribution from Z0, say T ±00 . If P � qε for some ε > 0,

then we may assume f is supported on |t| � P , and we shift the contours to

the (1/2 + ε)-line. No poles are crossed during this procedure since they occur

at height t, and the horizontal integrals arising from this contour shift are

negligible since F is small at this height. By the final sentence of Lemma 8.1,

the bound we obtain on T ±00 is no worse than the bound on T ±1 given in (12.4).

Finally, consider the case P �ε q
ε, that is, M �ε Cq

ε. Here we keep the

contours at the (1 + ε)-line, giving

T ±00 �ε
NT

C3q

MC

q
T 2qε � NT 3

Cq2
qε = T 3

√
N

C

√
N

q2
qε � T

13
2 q−

1
2

+ε,

using (4.8), which is �ε q
ε taking η ≤ 1/13 in (11.1).

The cases with some mj = 0. We will estimate T ±0 by trivial bounds. By

Lemma 11.3, K(m1,m2,m3, c) is very small in this case, unless we are in the

non-oscillatory situation (11.6).

Using Lemma 11.3, we deduce

(12.5) T ±0 �ε
TN

C2
qε
∑
r�C/q

∑
m1m2m3=0
|mj |�εMj

|G(m1,m2,m3; qr)|, Mj :=
C

Nj
qε,

plus a small error term. Recall the bound (6.9), and thatG(m1,m2,m3, qr) = 0

if (m1, r) 6= 1.
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First consider the terms with m3 = 0 and m1,m2 6= 0. Their contribution

to (12.5) is

(12.6) �ε
TN

C2

C

q
M1M2

qε

Cq
� T

N3

q2
qε � T 3qε,

using (4.8). The case with m2 = 0 and m1,m3 6= 0 is essentially identical to

the previous case, but the case with m1 = 0 and m2,m3 6= 0 is slightly different

because of the condition (m1, r) = 1. The r-sum collapses to r = 1, and this

sum is even smaller than that appearing in the previous cases (essentially, the

factor C
q may be improved to 1).

Next consider the terms with two mj = 0, the hardest one being m2 =

m3 = 0. Compared to (12.6), the difference is that the factor M2 is replaced

by q, leading to the bound

�ε
TN

C2

C

q
M1q

qε

Cq
� T

N2N3

qC
qε � T

√
N

C

√
N2N3

q
qε.

Using
√
N
C �ε T

2qε and N2N3 �ε (qT )2+ε (recall (4.8)) shows this is�ε T
4qε.

If m1 is one of the two mj ’s equal to zero, then the numerology changes enough

to be worthy of mention. (We no longer have N1N3 �ε (Tq)2+ε, but on the

other hand the r-sum collapses, so we may assume C � q since c = qr � C.)

Say m1 = m3 = 0 and m2 6= 0. Then the contribution of these terms to T ±0 is

�ε
TN

C2
qM2

qε

Cq
� TN

C3
M2q

ε � TN1N3

C2
qε � T 5qε,

where we used C
q � 1, M2 � C

N2
qε, and N1N3 ≤ N � C2T 4qε.

Finally, the terms of T ±0 with m1 = m2 = m3 = 0 (hence r = 1, C � q)

are bounded by

�ε
TN

C2

q

C
qε � T 5qε.

This completes the proof of Theorem 1.1.

13. Sketch of proof of Theorems 1.2 and 1.5

In this section, we outline what changes are needed to prove Theorem 1.2.

The problem is arithmetically identical to the proof of Theorem 1.1, but the

Archimedean aspects are different. Recall we have assumed that T � qη for

some small but fixed η > 0.

The first change is that instead of using h0(t) defined by (4.1), we take

h0(t) =
1

cosh
(
t−T
∆

) +
1

cosh
(
t+T
∆

) ,
as in [You17, §4], where ∆ = T ε for some ε > 0. A more precise version

of Lemma 10.1 is developed in [You17, §5], showing that Vj(y, t) has an as-

ymptotic expansion with leading term of the form Wj(
y
T j

), where W1 and
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W2 are fixed smooth weight functions, satisfying xkW
(k)
j (x) �A (1 + |x|)−A

for all A > 0. The analogs of the estimates for J± appear as [You17, Lem.

7.1, 7.2], while the crucial integral representations of K(m1,m2,m3, c) are

treated in [You17, Lem. 8.1] in place of those covered in Section 11. Note that

in [You17, (8.5)], the contours were set at Re(y) = Re(u) = 0. To accom-

modate more general choices of contour, the formula [You17, (8.4)] should be

updated to state

K+(m1,m2,m3, c) =
C3/2∆T (N1N2N3)1/2ec(−m1m2m3)

(M1M2M3)1/2
L(m1,m2,m3, c),

plus a small error term, where

L(m1,m2,m3, c) =
1

V

∫
|u|�(qT )ε

∫
|y|�U

F (u; y)
( |m1m2m3|

c

)iy
×
( M1

|m1|

)u1( M2

|m2|

)u2( M3

|m3|

)u3(C
c

)u4
dudy,

where V = T and

U =
T 2C

(N1N2N3)1/2
.

Moreover, L vanishes (i.e., K+ is very small) unless

C �ε
(N1N2N3)1/2

∆1−εT
and Mj �

(N1N2N3)1/2

Nj
, j = 1, 2, 3.

The formula for K− can be adapted in a similar way, but we leave out the

details for brevity.

Now if we follow along the details of the Oscillatory case from Section 12,

we obtain that the contribution to T ± from these terms is (in place of (12.2))

|T ±| � ∆T

qC1/2M1/2V

∣∣∣ ∫
|u|�qε

∫
|y|�U

F (u; y)q−iyMu1
1 Mu2

2 Mu3
3 (C/q)u4

× Z(u1 − iy, u2 − iy, u3 − iy, u4 + iy)dudy
∣∣∣,

plus a small error term. We decompose Z as Z0 +Z1, and for Z1, we shift the

contour to the (1/2 + ε)-lines, giving that its contribution to T ± is

�ε
1

q

∆T

C1/2M1/2

U

V

√
MC
√
q
q3/2T ε.

Using U
V �ε ∆−1+ε shows this term is �ε T

1+ε, which is the bound required

for Theorem 1.2. Next we turn to Z0. For this term, it is helpful to point

out that in fact F (u; y) is very small unless |y| � U , which was a property

that was not stated in [You17, Lem. 8.1], but was developed in the proof

(see [You17, p.1569]). This shows that if U � T ε for some ε > 0, then in

the estimation of Z0 we can shift the contours to the (1/2 + ε)-lines without
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crossing poles. The bound obtained on Z0 is no larger than the one obtained

on Z1. If U �ε T
ε, then we keep the contours at the (1 + ε)-lines, giving that

their contribution to T ± is

�ε
∆T

qC1/2M1/2V

MC

q
T ε � q−1/2∆1/2T 1+ε,

which is stronger than the bound obtained on Z1.

The Non-oscillatory case is similar, and we omit the details for brevity.

Finally, we need to consider the terms where some mj = 0. These cases

were overlooked in [You17], so we take this opportunity to correct this omis-

sion. The first claim is that K+(m1,m2,m3, c) is very small if some mj = 0.

This follows from the fact that B+(x) (the analog of J+(x, ·)) is very small

unless x�ε ∆T 1−ε, in which case it has an asymptotic expansion of the form
∆T√
x

cos(x+φ(x, T )), where φ(x, T ) = −2T 2/x+ · · · . Then repeated integration

by parts in the tj variable (where mj = 0) shows that K+ is small. Therefore,

it suffices to consider K−. We claim that if some mj = 0, then

(13.1) K−(m1,m2,m3, c)�ε ∆NT ε.

The trivial bound arising from [You17, Lem. 7.2] would give a bound of the

form NT , so (13.1) saves a factor of T/∆ over this. We now prove the claim.

According to [You17, (7.3)], we have

B−(x) = ∆T

∫
|v|≤∆−1+ε

cos(x sinh v)e2ivT g(∆v)dv +OA(T−A),

where g(j)(x) �A (1 + |x|)−A for all A > 0. Moreover, B−(x) is very small

unless x � T . Here B−(x) is the analog of J−(x, ·). To fix the notation, say

m3 = 0. (The cases with m1 = 0 or m2 = 0 are identical.) Then the t3-integral

inside the definition of K− takes the form∫ ∞
−∞

w(t3, ·) cos
(4π
√
t1t2t3
c

sinh v
)
dt3,

where w(t3, ·) is supported on t3 � N3, and satisfies tj3
dj

dtj3
w(t3, ·) � 1. Re-

peated integration by parts (see [BKY13, Lem. 8.1]) therefore shows that

K−(m1,m2,m3, c) is very small unless
√
N

C
|v| �ε T

ε.

On the other hand, we also knowK− is very small unless x �
√
N
C � T , so inside

the definition of K− we may further restrict v by |v| �ε T
−1+ε. The trivial

bound on K− now leads to (13.1). An integration by parts argument in the

t1, t2 variables shows that K−(m1,m2, 0, c) is very small unless |mj | �ε
C
Nj
T ε

for j = 1, 2.
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At this point, we carry through the same argument used in Section 12,

using (6.9) as before, but using (13.1) in place of Lemma 11.3. As a repre-

sentative sample, consider the contribution from m3 = 0, m1,m2 6= 0. These

terms give

�ε
1

C
√
N

∆N

Cq
T ε
∑
r�C

q

∑
1≤|m1|�ε

C
N1

T ε

∑
1≤|m2|�ε

C
N2

T ε

(m2, q)(m3, q)�
∆N3

q2T
T ε,

using C �
√
N
T . Since N3 �ε (qT )2+ε, this is �ε ∆T 1+ε, which is the bound

required for Theorem 1.2. Similar arguments may be used to treat the other

terms with m1m2m3 = 0, and we leave the details to the diligent reader.

The proof of Theorem 1.2 is now complete. �

Finally, we discuss the proof of Theorem 1.5. The framework of [You17]

placed both the Maass forms and holomorphic forms on an equal footing, and

so the proof of the hybrid bound (1.8) is now essentially identical to that of

Theorem 1.2. In order to derive the bound (1.7), one may adapt the material

from Section 10. It is not difficult to prove an analogous version of Lemma 10.1.

(The use of Stirling’s formula is slightly different.) The use of the Bruggeman-

Kuznetsov formula will then be replaced by the Petersson formula and Poisson

summation over κ (see [Iwa97, pp. 85, 86]). One can then derive properties of

the resulting weight functions that are analogous to those of J± presented in

Sections 10.2 and 10.3. The properties of K± derived in Section 11 then carry

over with minimal changes, and the final steps of Section 12 then proceed in

the same fashion as in the proof of Theorem 1.1.
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