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The Weyl bound for Dirichlet L-functions
of cube-free conductor

By IaN PETROW and MATTHEW P. YOUNG

Abstract

We prove a Weyl-exponent subconvex bound for any Dirichlet L-function
of cube-free conductor. We also show a bound of the same strength for
certain L-functions of self-dual GL2 automorphic forms that arise as twists
of forms of smaller conductor.

1. Introduction

Subconvex estimates for L-functions play a major role in modern ana-
lytic number theory. The first subconvex estimate is due to Weyl and Hardy-
Littlewood, who showed that

(1.1) C(1/2 + it) <o (1+|t])s e

The exponent 1/6 appearing in (1.1) is a consequence of Weyl’s differencing
method for estimating exponential sums, introduced in 1916. This method
itself is important for studying equidistribution and has immediate applications
to lattice point counting problems.

Today we call a subconvex bound of the form L(1/2,7) <. Q(x)Y/6+¢
the Weyl bound, where Q(m) is the analytic conductor of the automorphic
L-function L(1/2, 7). The Weyl bound is only known in a few cases, notably
for quadratic twists of certain self-dual GLy automorphic forms; see [CI00],
[Ivi01], [Youl7], [PY19b] for example.
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Estimating the Dirichlet L-functions L(1/2,x) of conductor q as ¢ — oo
is analogous to estimating ((1/2+it) as t — oo, but the former is a harder and
more arithmetic problem. In 1963, Burgess [Bur63] showed by a completely
different method that

(1.2) L(1/2,x) < qis ™.

Burgess’s method required new ideas; in particular, it uses the Riemann
Hypothesis for curves over finite fields. Note that the Burgess exponent of
3/16 falls short of the exponent 1/6 found by Weyl. Curiously, the expo-
nent 3/16 often re-occurs in the modern incarnations of these problems; see
[BHMO7], [BHO8], [BH14], [Wul4], [Wul9] for example.

Even for the case of Dirichlet L-functions, the Burgess bound has only
been improved in some limited special cases. In a breakthrough, Conrey and
Iwaniec [CI00] obtained a Weyl-quality bound for quadratic characters of odd
conductor using techniques from automorphic forms and Deligne’s solution of
the Weil conjectures for varieties over finite fields. Another class of results,
such as [BLT64] and [HB78|, consider situations where the conductor ¢ of x
runs over prime powers or otherwise has some special factorizations. Notably,
Mili¢evié¢ [Mill6] recently obtained a sub-Weyl subconvex bound when ¢ = p”
with n large.

One of the main results of this paper (see Corollary 1.3) gives a Weyl-
exponent subconvex bound for any Dirichlet L-function of cube-free conductor.
In particular, we give the first improvement on the Burgess bound for all
Dirichlet L-functions of prime conductor.

1.1. Statement of results. Let q be a positive integer, and let x be a primi-
tive Dirichlet character of conductor q. Let H;, (m, X?) denote the set (possibly
empty) of Hecke-normalized Hecke-Maass newforms of level m|q, central char-
acter Y2 and spectral parameter t;. For f € Hit, (m,x?), f ® x is a self-dual
newform of level ¢ and trivial central character.

THEOREM 1.1. Let notation be as above. Assume q is cube-free and x is
not quadratic. Then for some B > 2, we have

3) > > > L(1/2,f®x)3+/:;\L(1/2+it,x)|6dt<<5TBq“a.

mq [t;|<T et (m,x?) B

Theorem 1.1 generalizes the celebrated result of Conrey and Iwaniec [CI00]
that assumed Y is the quadratic character of odd, square-free conductor q. The
central values appearing in Theorem 1.1 are non-negative [Wal85], [Guo96],
which is crucial for obtaining the Weyl-quality subconvex bound for these
central values.
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A potential defect of Theorem 1.1 is that, although it is consistent with
the Lindelof hypothesis in the g-aspect, it is weak in the T-aspect. However,
if T' < ¢¢, then it is sharp. As in the work of [Youl7], we can obtain a hybrid
result for T > ¢°.

THEOREM 1.2. Let conditions be as in Theorem 1.1, and suppose that
T > ¢° for some § > 0. Then

> D > LO/2.fex)’

(1.4) mlq T<t;<T+1 feHy, (mX?)

T+1
+/ |L(1/2 +it, x)|%dt <5 T M.
T

As a consequence, we obtain a Weyl-quality subconvex bound for Dirichlet
L-functions simultaneously in ¢- and t-aspects:

COROLLARY 1.3. Suppose x has cubefree conductor q. Then

(15) [L(1/2 4 it )| <o g% (14 [2]) /5.

COROLLARY 1.4. Let p be an odd prime, and suppose F is a Hecke-Maass
newform of level p?, trivial central character, and spectral parameter tp. If F
18 not twist-minimal, then

(1.6) L(1/2,F) <. (p(1 + |tp|)Y/3+.

Here the assumption that F' is not twist minimal means there exists a
newform f of level m dividing p and a primitive Dirichlet character y of con-
ductor p so that F' = f ® x. The central character of F', which is trivial by
assumption, equals y? times the central character of f. Hence f € Hjt,.(m,X?),
and so Theorem 1.1 applies. Another observation is that for F' of level p? and
trivial central character, the condition that F' is twist-minimal is equivalent
to the assertion that the local representation of GL2(Q)) associated to F is
supercuspidal (see, e.g., [Gel75, Table (4.20)]).

Theorems 1.1 and 1.2 (and hence Corollary 1.4) also carry over to holo-
morphic modular forms. Let S, (g, ¥?) denote the space of cusp forms of level g,
central character X2, and even weight x > 2. Let H,(m,X?) denote the set of
Hecke-normalized newforms of level m|q and central character X?.

THEOREM 1.5. Let notation be as above, with q cube-free. Then

(1.7) N Y /2 fex)® < T8¢

mlq k=T fEH (m,X?)
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for some B > 2. Moreover, if there exists 6 > 0 such that T > ¢°, then we
have

(1.8) >y Y L(1/2, fox)? <o THEgHE.

mlqg T<k<T+1 fGHN(m,YQ)

The sum over & in (1.8) has at most one non-zero term and is often empty.
Nonetheless, we include it so that (1.8) aligns with the form of (1.4).

1.2. Remarks. The reader may wonder why ¢ is restricted to be cube-free
in the above results (Coincidentally, the Burgess bound for character sums is
stronger in certain ranges in case the conductor is cube-free; see, e.g., [IK04,
Thm. 12.6].) To explain this restriction on ¢, we need to outline the proof of
Theorem 1.1. As in the work of Conrey and Iwaniec [CI00], we apply some
standard tools: approximate functional equations, the Petersson/Kuznetsov
formula, and Poisson summation. The dual sum after Poisson summation in
large part boils down to a certain character sum defined by

(1.9) gbe) = D xOX(E+ Dx(u)x(u+ 1) (ut — 1),

t,u (mod q)

where 1) is a Dirichlet character modulo ¢. After the above steps, the problem
essentially reduces to bounding

(1.10) > ILA/2,9) g (x ¥).
% (mod q)

Since the fourth moment of Dirichlet L-functions is of size O.(¢'*¢), the sum

(1.10) can be bounded by O.(g'*¢) times the maximum value of |g(x, )| as ¥
varies. Here, the Riemann hypothesis of Deligne [Del80] plays a crucial role in
proving |g(x,¥)| < ¢'*¢ for ¢ prime (see Section 9.1), which then extends to
square-free ¢ by multiplicativity. In case ¢ = p?, we establish |g(x, V)| < ¢' ¢
by elementary means (see Section 9.2), and hence this bound on g(x, ) holds
for cube-free q. However, for ¢ = p?, it is no longer true that |g(x, V)| < ¢'™¢
for all primitive ). Rather, there exist many characters of conductor p? so
that |g(x,¥)| > ¢p'/?. Barring an improved estimate for the sub-sum of
(1.10) coming from these “bad” characters 1, this extra factor of p!/? would
propagate through all the estimates, and hence would presumably lead to (at
best) the bound

(1.11) IL(1/2 4 it,x)|® <. ¢"tp? (¢ =p%).

This would imply |L(1/2 + it, x)| <. g3 *¢, and note = > 3, so this would
not improve on the Burgess bound.

The analysis of g(x, ¥) becomes more complicated for ¢ = p™ with larger n.
Since there are complementary methods well-suited to treat the depth-aspect
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(as in [Mill6], [BM15], and other papers), we content ourselves here with the
restriction to ¢ cube-free.

Remark added August 28, 2019: In [PY19a], written after the first version
of the present paper, we have extended all the cubic moment bounds stated
in Section 1.1 to hold for arbitrary q. More precisely, [PY19a] contains proofs
of Conjectures 6.6 and 8.2 from the present paper, which are shown here to
imply the cubic moment bounds for general q.

1.3. Organization of the paper. For the rest of the paper, we will focus
almost entirely on the proof of Theorem 1.1. The proof of Theorem 1.2 fol-
lows the same approach, and the only change is in the behavior of the weight
function on the spectrum. These archimedean aspects were already developed
in [Youl7], so we can largely quote those results. For brevity, we sketch the
proof in Section 13.

The analogous results on the holomorphic forms (Theorem 1.5) are also
similar to the Maass form cases, so we briefly sketch the necessary changes in
Section 13.

1.4. Convention. The notation A < B for quantities A and B means that
there exists a constant K such that |A] < KB for all relevant A and B, the
value of which in each instance should be clear from context. If p1,...,pn

are parameters, then <, . ,, indicates that the constant K may depend on

D1, ---,Pn. Implied constants also depend on the choices of implied constants
already established in the proof, but we suppress this from this notation. For
example, if |A| < K1 B and |B| < K»C, then A <« C with K3 = K1 K5. A ma-
jor purpose of this notation is to avoid excessive labelling of implied constants.
The appearance of the parameter ¢ among the p; plays a similar role: each of
these e represents a quantity ¢; that may be taken to be arbitrarily small, and

that may depend on all previous €1, ...,;_1 appearing in the proof.

1.5. Acknowledgements. We would like to thank Emmanuel Kowalski for
explaining his work on f-adic trace functions to us, which plays a crucial role
in Section 9.1 of this paper. We also thank Philippe Michel for pointing out
an oversight in an earlier version of that section of the paper and for proposing
a solution to it. Part of this work was accomplished during our visit to the
Hausdorff Center in Bonn for the summer school on L-functions in 2018. We
thank the Center for its support. Lastly, we thank the referees for their careful
and thorough reading of this paper.

2. Automorphic forms and L-functions

2.1. Cusp forms. Let q be a positive integer, and let ¢ be a Dirichlet
character modulo g. For t; € RUi[-1/2,1/2], let Sj;;(q,9) be the space of
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Maass cusp forms of level g, central character ¢, and spectral parameter t;.
Similarly, for k > 2, we let S, (q,1) be the space of holomorphic cusp forms of
weight x. Any f € Si,(q,7) admits a Fourier expansion

(2.1) =2y Y Ap(n)e(na) K, (27|nly),
n#0
and similarly, if f € Sk(q, ), we may write

(2.2) Zz\f nn"T e (nz).

Now let H;i;(m, 1) be the set of Hecke-Maass newforms of level m|q, normal-

ized so that Ag(1) = 1, and define similarly #,(m,1). Recall the Petersson
inner product on S, (q,) or Sk(g,1) defined by

. _, Jdzxdy

tge= [ e

To(q)\H Yy

where in the former case we take k = 0. With this normalization of the inner
product, we have for any f € H;,(m, ) or H,(m,v) by Rankin-Selberg theory
and work of Iwaniec and Hoffstein-Lockhart [Iwa90], [HL94] that

23) Ul)a= s @+ D, or (7 = A

In fact, we only use the upper bounds implicit in (2.3), which are due to

Iwaniec.
Any newform f € H.(m, 1)) satisfies the Hecke relation

(2.4) Ap(n1)Af(n2) Z Ap(ning/d*)(d).
d|(n1,n2)

Recall that a Hecke-Maass newform f is called even if A\f(—1) = 1, and
odd if A¢(—1) = —1. It is easy to see that the parity of f ® x is the parity of
f times the parity of .

By Atkin-Lehner-Li theory [AL70], [AL78] we have the following direct
sum decomposition:

(2.5) S, 0) =B @ Su, ),

tm=q feMit; (m,))

where Sy, (¢, f,1) = span{f(dz) : d|{}, and similarly for holomorphic forms,
where each instance of it; is replaced by . The direct sums in (2.5) are
orthogonal with respect to the Petersson inner product.

For any f € Hy,(m,x?) with m|q, we have by [JL70, Prop. 3.8(iii)] that
f@x € Hi, (¢%,1), and similarly for holomorphic forms. See also [AL78, Thm.
3.1(ii)] for a classical proof of this fact.
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2.2. Eisenstein series. Let
(2.6)
By s (2, 1/2 4+ it) = ey, 5o (4, 1/2 4+ it) + 205 Y Ay ot (n)e(na) Kig (27| nly),
n#0

where x1, x2 are primitive Dirichlet characters modulo q1, g2, respectively,

AB(n) = A xea(n) = xa(sgn(n) Y xi(a)xa(b)a™ ",

ab=|n|

and ey, v, (Y, 8) = cy® + 'y} =%, for certain constants ¢, . Note that the defini-
tion (2.6) corresponds to the “completed” Eisenstein series EY, | (z,1/2 +it)
in [Youl9], so some care is needed when we quote results from that reference.
Then E,, , is of level m = ¢1¢q2 and central character x1x2, and is an eigen-
function of all the Hecke operators, and so (2.4) also holds for Ag(n). These
are, by definition, the newform Eisenstein series. For two arbitrary Dirichlet
characters x and 1, let us write y ~ v if the underlying primitive characters of
x and 1 are equal. With this notation, we denote the set of newform Eisenstein

series by

Hit Eis(M, ) = {Eyy x2(2,1/2 +1it) : qg2 = m and x1X2 ~ ¥}

In particular, if £ € H; gis(m,1), then Ag(1) = 1 and the Hecke relations
hold for Ag(n) exactly as they do for A¢(n).

The space Eit(q,v), for t # 0, admits a formal inner product (-, -)gis in-
duced by

£(Ea(2,1/2 4+ it,0), Eg(2,1/2 + it,¥))Eis = Jap-
With this definition of the inner product, we have in perfect analogy to (2.3)
that
1+0(1)

cosh(mt)

This equation can be deduced from [Youl9, (8.13), (8.10)], keeping in mind
the normalization of the completed Eisenstein series (see [Youl9, §4]).

There exists an Atkin-Lehner-Li theory for the space & (q, ), for t # 0,
and a decomposition into spaces of oldforms completely analogous to (2.5).
This decomposition is orthogonal with respect to (-, -)gis and is explained thor-
oughly in [Youl9, §8].

Lastly, we define, for y1x2 ~ X2 with x primitive of conductor ¢,

(2.7) (Eyy xo(2,1/241t), By o (2,1/2+1t))pis = |L(1+2it, x1x2)|?.

o0

(2.8) L(s, Ex)xot ® X) = Z

n=1

Aot (1) x (1)

e = L(s +it, xx1)L(s — it, xX2)-

We claim that (2.8) defines the true automorphic L-function of conductor ¢2.
To see this, check that locally all the solutions to y1xz =~ X> with q1¢2|q arise
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from x1 = 1,x2 = x> or x2 = 1, x1 = X>. Hence both xx; and Y¥Xz are
primitive of conductor gq.

2.3. Root Numbers. Although the theorems in this paper do not depend
on the precise values of the root numbers of the forms f ® y, formulas for
these are useful when interpreting the main results of this paper. If y is
primitive modulo ¢, m | ¢ and f € Hitj(m,XQ) or f € Hitmis(m,X?), then
the root number e(f ® x) is equal to the parity of f. If f € H.(m,X?), then
e(f ®x) =i "x(—1). These formulas follow from local computations at finite
primes using [JL70, Prop. 3.8(iii)] and the explicit formulas for root numbers at
the archimedean place found just above [JL70, Thm. 5.15]. See also [Li80, §1].

2.4. Bruggeman-Kuznetsov. Let Bj; (q,1) denote an orthogonal basis for
Sit;(q,%), and let By gis(q,%) denote an orthogonal basis for &;(q,v) when
t # 0. Let h(t) be a function holomorphic in the strip [Im(t)| < £+, satisfying
h(t) = h(—t), and |h(t)] < (1 4 |t[)7279 for some & > 0. Recall the twisted
Kloosterman sum

Sulmmic) = 32" D",

C

y (mod c)
where the % on the sum indicates that (y,c) = 1, and let ¢; = Cosh( 77+ Then,
for mn > 0, we have (see, e.g., [Youl9, (10.2)])
Ar(m)Ar(n
Zh e, S f(<f)f>f( )
fEB’LtJ (qzw) ’ ¢
L[ Ap(m)Ag(n)
+ E - h(t)ct Z <E’ >Els t
E€Bit Eis(q,%)
Sy (m,n; e 4m\/mn
= Om=ngo + Z w g+< c )7
¢=0 (mod q)
where
(2.9)
1 oo [ Jou()
90=_ /_Oottanh(mf)h(t) dt and g (xz)=2i /_OO cosh(mf)th(t) dt.

It was shown by the first author [Pet18, §7] that there exist certain positive
weights ps(¢) = ¢°1) such that if (ning,q) = 1, then

Ar(n)As(ng) 1 Ap(n)Ag(n2)
210 > 3> X -y A
fm=q fEH“j (m,3) <f7 f>q Pi (g) feBitj (a,%) <f7 f>q

The weight p¢(¢) is a certain explicit function of the Hecke eigenvalues of f. It
was shown by the second author [Youl9, §8.5 and Lem. 8.3] that an analogous



THE WEYL BOUND FOR DIRICHLET L-FUNCTIONS 445

formula holds for the Eisenstein series, namely,

T S 2 D ELE SR )

FE, E)g; 14 E, E)g;
tm=q E€H 1 mis(m,) < ’ >Es PE( ) E€B;t mis(q,%) < >Es

where pg(¢) is given by the same function of the Hecke eigenvalues of E as
pr(0).
Let
1 1 1 1

/5 >qm and wE’EZCt<E,E>EisPE(€)

for f € Hi;(m,v) and E € Higis(m, ). Note that ¢;; > 0 for any f €
Hit;(m, 1), including any exceptional cases where t; € iR. More precisely, we
have by (2.3) (see also [Youl9, §§8.4, 8.5] for the Eisenstein case)

(g1 + [¢])e™)
2.12 = ¢ Yq(1 + [t;))°V  and _ gl .
( ) Wre =4 (q(1+ ’ ]|)) an WE.¢ ’L(l +2it7X1X2>‘2

Note that if x1xo is the trivial character, then this weight vanishes to order
2 at t = 0, which is the situation encountered in [CI00]. Indeed, there ¢ is
square-free and y is quadratic, hence the only solution to yiXxz ~ X° with

wﬁg = Ctj <

q192]q is g1 = @2 = 1, x1 = x2 = 1. By the hypothesis in Theorem 1.1 that
X is not quadratic, we have yix2 is not trivial (see the discussion following
(2.8)), and hence wg ¢ > ¢~ *(g(1 + |t|)) ¢ for all ¢t € R. This is the only place
where the hypothesis that y is not quadratic is used in this paper, which is for
convenience of notation only.

In summary, we have established the following.

PROPOSITION 2.1. Suppose x is primitive of conductor q, and not qua-
dratic. There exist positive weights wre > g '(q(1 + [t;]) ¢, and wge >
g H(q(1+ [t]))~¢ so that for any (n1n2,q) =1 and nins > 0, we have

Dont) D> D wihp(n)As(na)

Im=q fGHitj (m,x?)

1 o0 -
(2.13) T ) M > X wedsm)s(n)d
tm=q EEHityEis(m,X2)
Sy2(n1,ng;c) A7 /ming
bt 3 Sl (in/)

¢=0 (mod q)

We also need the opposite-sign case of Proposition 2.1, i.e., when niny < 0.
The formula is identical to (2.13) except that g™ (z) is replaced by g~ () defined
by

(2.14) g (x) = i/ooo Ko () sinh(7t)th(t) dt.
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3. Conventions and terminology for weight functions

We begin with a useful definition from [KPY19]. Let F be an index set
and X = X7 : F = R>q be a function of T € F.

Definition 3.1. A family {wr}rer of smooth functions supported on a
product of dyadic intervals in Rio is called X -inert if for each a € Zéo, we
have

C(a) := sup sup X;*!
TEF tere,

tawgﬂa) (t)’ < 0.

It is also convenient for later purposes to slightly generalize the above
notion of a family of X-inert functions.

Definition 3.2. Suppose that Wrp(z,t) with T € F is a family of smooth
functions, where t € R%. We say that {Wr}rcr forms an X-inert family with
respect to t if W has dyadic support in terms of t and if for each a, k£ and x,
we have

Ci(z,a) == sup sup X, 2 [t2————Wr(z,t)| < co.
TEF teRrd,, T ota oxk
As a convention, we may write w(x,-) as shorthand to represent w(z,t).
We may then state that w(z,-) is X-inert with respect to t, which allows us
to concisely track the behavior of w with respect to the suppressed variables.

4. Setting up the moment problem

For T > 1, let

(#+ 7)

(4.1) ho(t) = exp(—(t/T)?) T2

Note ho(t) > 0 for t € R as well as —3 < it < 3. Moreover, ho(t) > T2 for
t<T.

In this paper we are concerned with estimating the following moment of
L-functions:

+
Mg, x) =Y ho(ty) > Y. wreLl(1/2, f@x)?
tj tm=q f EMit, (m,x2)
(4.2)

1 [ + 3
+47T/_Oo hg(t) Z Z wE7LL(1/2,E®X) dt,

m=q E€ Mt gis(m,X2)

where the + over the sums represents Maass forms or Eisenstein series with
even parity.
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THEOREM 4.1. If x has cube-free conductor and is not quadratic, then we
have

M(q,x) < TP¢.

Theorem 4.1 implies Theorem 1.1. Indeed, let xy; = 1 and xs be the
primitive character underlying x?. Then E = Ey| xot occurs in Hi gig (m, x?)
for some m|q, and we have for this F that

L(1/2,E® x) = |L(1/2 +it, x)[*.

We have as well that L(1/2,f ® x) > 0 by [Guo96] (see also (2.8) for the
non-negativity in the Eisenstein case), so that Theorem 1.1 follows from The-
orem 4.1 by (2.12).

4.1. Approzimate functional equation. For j = 1,2, let
(4.3)
Vi t) = - / _TR(1/2+ 8+ s+ it) Tr(1/2 4+ 6 + s — it)? G4(s)
N Tr(1/2+ 6 + it)iTR(1/2 + 0 — it) 5

(e

ds,

where I'r(s) = 7%/?T'(s/2), § € {0,1}, and o is to the right of all poles of the
integrand. We take G1(s) = ¢2¢° and Ga(s) = e***. Here Vj(z,t) is a smooth
function on z > 0 with rapid decay for z > 1+ [tJ. See Section 10 for more
precise estimates for V.

LEMMA 4.2. Suppose m | q and f € Hy, (m,x?) is even. We have
L(1/2, f ® x)°

4 A W _ E
= Z = Z f(nl) f(nzns)X(m)x(ngng)vl(E’t])%(%’tj)’
(d q)=1 d ni,n2,n3 \/W q p

and similarly for L(1/2, E ® x)® for m | ¢ and E € H;s gis(m, X?) even. The
parity parameter & implicit in the definition of V; is equal to the parity of x.

Proof. Since f is even, the root number e(f ® x) is +1. For f a Maass
newform of spectral parameter ¢;, a standard approximate functional equation
[IK04, Thm. 5.3] gives

(14) L/ o) =230 Ay (2 )

where 6 = 0 if x is even and § = 1 if x is odd. Similarly we have

1 T(TLQTLg)Y(nQng) n2n3d2
45)  L(1/2, fox) =2 - ! V: i),
49 zmsent=2 3 53 SR (")

where the conjugates appear for convenience since A¢(n)x(n) € R, and the

sum over d arises from the Hecke relation (2.4).
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The product of (4.4) and (4.5) gives the formula in the statement of the
lemma. g

4.2. Bruggeman-Kuznetsov. Let wy(-) = wo(n1,n2,ns,c) be a family of
l-inert functions (depending on ¢, 7T, N;, C) with dyadic support on n; < Nj
and ¢ < C, and let N1, No, N3, C > 1. Define JSE = J(;—L(:E,nl,ng,ng,c) by

& Jgit(.%') ni n2n3d2
+ — . _ —
(4.6) Jo (@, 2,3, €) = wol’) /_oo cosh(ﬂt)th<t’ ¢ ¢ ) a

Joit(x)
cosh(7t)

with J; defined similarly with replaced by Ky (x)sinh(nt), where in

both cases

(4.7) h(t,y1,y2) = exp(—(t/T)?)

Let SJj\Efl,Ng,Ng,C be defined by

1 W NCE
SRR, 2 3 XSt mansi ) ()

@+
T2

‘/l(ylat)‘/?(y27 t)

¢=0 (mod q) n1,n2,n3

PROPOSITION 4.3. Suppose that there exists B > 2 such that :S]j\c,1 No.Ns.C
<. TB¢ for all Ny, Ny, N3, C satisfying

(4.8) Ny <. (qT)'e, NoN3 <. d2(qT)**e, q < C < (qT)'.
Then Theorem 4.1 holds.

Proof. Recall the even parity condition on the sums over newforms in (4.2).
This condition can be detected by extending the sums to all newforms and
inserting the indicator function 3(1+As(—1)) for Maass forms and Eisenstein
series. By (2.13), we have

M(q,x) =D+ %SJF + %S‘,

where D is the diagonal term, and

x(n1)X(nans)
Z Z n1n2n

(d,q)= n17n2,n3
(4.9)
Ss2(En1,nans;c) | 4w /minang
- (T
c c
¢=0 (mod q)

Here g* () is defined by (2.9) and (2.14) with respect to h(t, ™, "2”3d ) defined
n (4.7).

The function A is a valid test function for the hypotheses in the Bruggeman-
Kuznetsov formula, and one may derive a crude bound of the form g% (z) <
' 7¢T1*4 as we will show in Section 10. Hence by the Weil bound (see,

g., [KL13, Thm. 9.2], which gives |Sy(a, b; c)| < d(c)(a, b, c)'/2c1/2¢1/2 | where
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¥ has conductor g|c and d(-) is the divisor function), we have that the sum
over ¢ in (4.9) converges absolutely. We further develop the analytic properties
of g*(x) in Section 10.

It is easy to see that D <. T?T¢¢%, and so the proof of Proposition 4.3
reduces to showing that S* <. T5¢".

Next we apply a dyadic partition of unity to each of ni,no,ng, c. Consider
the component wp(-) of this partition of unity that localizes the variables by
nj =< Nj, ¢ < C. We may assume the inequalities (4.8) hold, since if they do
not, then the contribution from that piece of the partition of unity is small by
trivial bounds. Hence,

4 :t 15
(4.10) St = Z P Z SNhNQ,Ng,C + Oa((qT) )7
(d,g)=1  Ni1,N2,N3,C

where N1, No, N3, C run over dyadic number satisfying the bounds (4.8). From
the hypothesis on S]j\E,1 Ny Ng,C 1L the statement of the proposition, we conclude
the proof. O

4.3. Poisson summation. Let mq,mo,mg € Z and ¢ > 0. Let G =
G(mq,mga, m3;c) be the character sum defined by

G-ty Y

y (mod ¢) z1,z2,3 (mod c)

x x(21)X(x223) X2 (y)ec(mizy + maxa + maxs + x1y + 2237),

where e.(z) = e(x/c).

Let My, My, M3 > 0, and let w(-) = w(ny,na, n3, c,my, ma, ms) be a fam-
ily of 1-inert functions (depending on ¢, T, N;, C, M;) with dyadic support on
n; < Nj, ¢ < C, and mj < M;. Let J*(z,-) = J=(z,n1,n2,n3, m1, ma2, ms, c)
be defined by
(4.11)

J+($7n17n27n37 mi, ma2,ms, C) = w() /

0 Jgit(l‘) th( ny n2n3d2)dt
) q q ’

t? R
o cosh(mt 2

and let J~ be defined similarly with Ko (2) sinh(nt) in place of c‘iiﬁ((g) Note

that J* is identical to JSE except that wq(-) is replaced by w(-), which depends
on the additional variables mi, mg, ms.

Let
(4.12)

47‘(‘\/251252253
+ +

s tl, tQ, t3, C) ec(—mltl — m2t2 — mgtg)dtldtgdtg
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and
(4.13)
4dmy/titat
Ki = / Ji (u,tl,tg,tg, -)ec(—mltl — m2t2 — m:gtg)dtldtzdt;g.
R3 C
Finally, let €1, €2, €3 € {£1},

K*(mq, mg,mg3,c)
N N B . 1, 1762, 7783,
(414) T 7;1’62’63 = Z Z G(mh ma, ms; C) C\/W )

¢=0 (mod q) mje;>1
and

415)  TE= Y Y G(mi,ma,m;ic)

¢=0 (mod ¢) mimam3=0

K(:)t(mlv mo,ms, C)

C+/NiNyN3

PROPOSITION 4.4. Suppose that Ti,%i <. TBq¢ for some B > 2 and
for all Ni,Na,N3,C satisfying (4.8) and all My, My, M3 satisfying M; <
(qT)A for some large but fized A. Then SJj\E,l’N%Ns’C < TB¢E for all such
Ny, No, N3, C.

Sections 512 are dedicated to the proof of the bounds 7+, 76i <. TB¢,
which by Propositions 4.4 and 4.3 will finish the proof of Theorem 4.1, and
hence of Theorem 1.1.

Proof. Applying Poisson summation in each of the variables ni,ns,ng
modulo ¢ gives

(4.16)

Sy - >
M2V 0 /NT Ny Ny

¢=0 (mod q)
x Y X(EDG(Ema, ma, my; ¢)Kg (my, mg, ms, c).

mi,ma,m3EZ

By integrating K(jf by parts three times in each variable, we have by (4.8) a
crude bound of the form

3
(4.17) KE(my,ma,m3,c) < (qT) H 1+ |m;|)~

for some possibly large but fixed A. Therefore the sum (4.16) converges ab-
solutely, and we may in fact truncate each m; variable at |m;| < (¢T )A/ for
some large A’ depending polynomially on 1/e at the cost of a small error term.

Next, we separate the terms with mimoms = 0 in S]j\t,l’ Na.Ns.C from those
in which none of the m; vanish. The terms with mimaom3 = 0 form the
sum 76i defined in (4.15). Leaving these terms aside, we split the remaining
terms for which m; # 0 for all j into eight separate sums according to the
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octants of Z3 — {mymams = 0}. Let us parametrize these eight sums by
(€1,€2,€3) € {£1}2. The octant corresponding to €y, €2, €3 is then described by
the inequalities mje; > 1 for j = 1,2,3. Given one choice of signs €; € {1},
we insert a dyadic partition of unity to the mgy, mo, ms sums, which localizes
each |mj| < M; < (¢T)*". The result of all of these decompositions is that

S]:{:f17N27N37C = 7E):t + Z Z 7;:1‘:762,63 + OE((qT)E)

M1,M2,M3 €1 ,€e2,es€{£1}

The proposition now follows from the hypothesized bounds on 76i and 7%, O

The main focus in this paper is on the character sum G, which is a gen-
eralization of the character sum found in the previous works [CI00], [Youl7],
[Pet15], [PY19b], since x is no longer assumed to be quadratic and ¢ is not
necessarily square-free. On the other hand, K* is very similar in shape to the
oscillatory integrals found in the above references, so in Section 11 we largely
quote the existing literature.

5. The calculation of G

Based on the structural approach presented in [PY19b], our primary goal
on the arithmetical aspects of GG is to understand the analytic properties of the
Dirichlet series

(5.1)
Z(s1,52,53,54)

_ Z Z cqG(my, ma, ms; c)ec(—mlmgmg)x(—l)'

mitmy*ms?(c/q)s

e1mi,eamz,e3m3z>1 c=0 (mod q)

For simplicity of notation, we only consider the case of (5.1) where ¢; =1 for
all j, since the other sign combinations can be treated in the same way. Of
course, we cannot neglect to study the contribution from mimeoms = 0 as well.
In any event, we calculate G in explicit form as much as possible.

5.1. Simplifications. Write ¢ = qr with r > 1. We have

m1+y)

Z x(z1)ec(mizy + x1y) = TT(X)Y( ,

21 (mod c¢)

where the sum vanishes unless y = —my (mod r), and 7(x) denotes the Gauss
sum of x (mod ¢). Similarly, we calculate the z2 sum by

> X(wa)ec(wa(ms + 237)) = rr(X)x

z2 (mod c¢)

)

<m2 +:E3?)
T
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where the sum vanishes unless z3 = —may (mod r). Changing variables x3 —
yx3, we hence obtain

1) (X) *
G= 3 Z
y (mod c)
y=—m1 (mod )

Y Xshedmayrsx (M) (M2,

z3 (mod c¢)
r3=—mg (mod r)

Since (y,c¢) = 1, we learn that G = 0 unless
(5.2) (my,7) = 1.

Provided we maintain this condition, we can drop the condition that (y,c) = 1.
Writing y = —mj + ru and x3 = —ms + rt, we obtain

G(m1,m2,m3;c) = CigrzT(X)T(Y)ec(m1m2m3)Hx(m1, M2, M3, 7)0(my 1)=1>

where
Hy (my, mg, m3,r) = Z X)X (w)x(—m2 + rt)x(—mi + ru)
u,t (mod q)
X ec(ms(—my + ru)(—ma + 1t) — mimams).
Note that

(5.3) Oy =1 Hy(m1,ma, m3,7) = cqG(m1, mg, m3; c)ec(—mimamsz)x(—1),

so that

Hx(mh ma,ms, 7")
(5.4) Z(s1,82,83,50) = MR

mi,ma,m3,r>1
(m1,r)=1

Next we derive some simple but useful symmetries of H,. Although we
only need to compute H,(mi,mg, ms,r) when (5.2) holds, it will be more
convenient not to assume this condition. Changing variables t — (—mj+ru)~t
gives

Hx(mlu ma,ms, T)
= Z X () x(—m1 + ru)x(u)X(rt — ma(—mi + ru))eq(mst — momau).
u,t (mod q)

Next shift by ¢t — t + mau, giving
(5.5)

H,(my,ma,mg,r)= Z X (t+mou) X (rt+mime)x(u)x(—mi+ru)eq(mst).
u,t (mod q)
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Since G(m1,mg, ms;c) is symmetric in mg, mg, we see that
(56) Hx(mlam27m3ar) :Hx(mlam?nm%r)‘

Observe that if (myma,r,q) # 1, then every summand in (5.5) vanishes. To-
gether with the symmetry (5.6), we obtain

(5.7) H,(mi,ma,mg,r) =0 if (mimaoms,r,q) # 1.
If (g¢,r) = 1, then there is some additional symmetry. We claim that
(5.8) H, (m1,mg,m3,r) = Hy(ma,my,ms,r) if (¢,r) = 1.
Indeed, changing variables t — 7t, u — Tu, gives
H,(mi,mg,m3,r) = Z X (t+mou) X (t+mima) X (uw)x(—mi+u)eq(msrt).
u,t (mod q)

Next we change variables u — u + mj, followed by ¢ — ut — mi;ms (note u is
coprime to ¢ for every non-zero summand), giving
Hx(mh ma,ms, T)
(59 = eg(—mamamsT) > x(t+m2)X(E)X(u+ m1)x (u)eq(maTut),
u,t (mod q)

from which we deduce (5.8).

5.2. Decomposition into Dirichlet characters. It is possible to calculate
H, further, as in [CI00], but going to the Fourier transform of H, turns out
to be a more advantageous move.

Begin by writing 7 = ror’ and m; = m;om}, j = 1,2, 3, with
(5.10) mjolg™, ro]q™
and (mimim4r’.q) = 1. Inside the expression (5.5), change variables ¢ —
mimbhr't and u — r'mfu, giving

Hy (ma,ma, m3, ) = Hy(m1,0, m2,0, m30w, 7o),
where
w = mymhmir’.

Note that (w, ¢) = 1 by assumption. We may then view H, as a function of w
on (Z/qZ)* and apply multiplicative Fourier analysis. That is, we write

> H@)(w),

¥ (mod q)

5.11 Hy (my 0, m20, m3ow,m0) = ——
(5.11) xl ) v(q)

where

—~

HW) =H = H(¢,X,m1,o,m2,o,m3,o,ro)

= Z H, (mq,0,ma0,m3,0v, 7‘0)@(”)~
v (mod q)

(5.12)
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Expanding the definition, we have

(5.13)
HW, X, M1, M2, M3, T)

= Z X(t + mou)X(rt + mima)x(u)x(—mq + ru)eq(mgvt)ﬂ(v).
t,u,v (mod q)

The sum H (¢) inherits from (5.6) and (5.8) the symmetries
‘Z/:I\(wa X, my1, M3, ma, T) = ﬁ(wa X, My, M2, ms, 7’)7
(5.14) R
H(¢a X, M2,mM1, M3, T) = H(d}a X M1, Mg, M3, T) if (CL T) =1
Similarly, from (5.7) we deduce
(5.15) ﬁ(?/),x,ml,mg,mg,r) =0 if (mymams,r,q) # 1.

We immediately see the pleasant factorization

1 L(s1,9)L(s2,9)L(s3,%)L(s4, 0
(5.16) Z(s1,52,53,81) = 2@ > (61, 9) (;(Z)Ei) JESE ;b) (4 /(/])Zﬁn,
w\q W (mod q) 1+t 84
where
j{\ » X5 11,0, 12,0, 1103,0, T
Ztin = Zgin(s1, 52, 83, 54) 1= Z (W2 M0, M2, M0 0).

S1 So S3 .54
m1,0,Mm2,0,M3,0,70|q° M1,0™M2,0"3,0"0
(m1,0,70)=1
The factor ¢(@(s; + s4)~" arose from Mébius inversion to detect (m/}, ') = 1.
Now the task is to understand the analytic properties of Zg,. Suppose
q = q1q2 with (q1,q2) = 1, x = xax2 and ¢ = Y192 with x;, ¥; modulo g;.
Similarly, write a = ajas, and so on with b,¢,d. By the Chinese remainder
theorem, we have that H (1, x,a,b, c,d) factors as a sum of modulus ¢; times
a sum of modulus ¢2. The sum modulo ¢; equals

Z X1 (tl + blbgul)ﬂ(dldgtl + a1a2b1b2)ﬂ(u1)

t1,u1,v1 (mod q1)
x x1(—a1az + didaur)eq, (Gaercovits ) (v1).
Changing variables t; — asbadaty, w1 — asdouy, and vi — agbacadagavy shows
H(y, x,a,b,c,d) = eH (41, x1, a1, b1, ¢1,d1 ) H (2, X2, az, by, 2, da),

where € = 11 (agbacaqada)a(a1biciqidy). Pleasantly, H is almost multiplica-
tive in terms of y, 1, and the only “twisted” aspect comes from the factor e.
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This shows
n(abe)n
(517) = w H Z SleZCSSdS4 (¢p’Xpaaa ba ¢, d)a
pI|lg a;b,c,d|p™
a,d):l

where 7 is some Dirichlet character depending on % and p, and w is some
complex number of absolute value 1, which depends on 1. Here x,,1, are the
p-parts of x, .

6. Evaluation of H

Here we comprehensively evaluate H when q = p*, k > 1. Recall that 2]
was defined in (5.13). Throughout this section we assume my, ma, ms, r|q™

6.1. Elementary lemmas on character sums. We begin with some charac-
ter sum evaluations that are used repeatedly in the calculations of H.

LEMMA 6.1. Suppose that x is primitive modulo q and d|q, d # q. Then

Z x(a) =0.

(mod q)
b (mod d)

a
a=

This well-known lemma may be found in [IK04, (3.9)], for instance.

LEMMA 6.2. Suppose p is prime, a € Z, and x has conductor p*, k > 2.
Then
S XX+ 1) =0.
t (mod p*)
t=a (mod p)
Proof. If (a(a+ 1),p) # 1, then the sum is empty, so suppose otherwise.
Then from x(¢)x(t+1) = X(1+¢), and changing variables ¢t — ¢, the conclusion
follows from Lemma 6.1. O

LEMMA 6.3. Suppose x is primitive modulo q, and let a,b,c,d € Z with
(a,c,q) = 1. Then

(6.1) Z x(at +b)x(ct + d) = x(a)x(c)Rq(ad — be),
t (mod q)

where Rq(n) = S(n,0;q) is the Ramanujan sum.

Proof. We first claim the sum vanishes unless (a,q) = (¢,q) = 1. By
symmetry, suppose (a,q) # 1. Then x(at +b) is constant for ¢ ranging over an
arithmetic progression modulo ﬁ. Lemma 6.1 shows that the sum over this
arithmetic progression of x(ct+d) vanishes unless q|cﬁ, i.e., (a,q)|c, whence
1 = (a,¢,q) = (a,q), a contradiction. Therefore, (6.1) is derived if (a,q) # 1
or (¢,q) # 1.
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Now suppose (a,q) = (¢,q) = 1. By converting to additive characters,
that is, using

(6.2) x(at +b) = 7'(1X) Z X(x)eq(z(at + b)),

z (mod q)

and likewise for X(ct + d), the formula (6.1) follows from a routine calculation.
O

6.2. The case ¢ primitive modulo q.

LEMMA 6.4. Suppose p is a prime and ¢ = p*, k > 1. Suppose v is
primitive modulo q. Then H wvanishes unless (mimaomsr,q) = 1, in which case

(6.3) H(¥,x,1,1,1,1) = 7()g(x, ¥),

where g(x,v) was defined by (1.9), and 7(¢)) is the Gauss sum.

Proof. Since 1) is primitive, the sum over v in (5.13) is a Gauss sum, giving

ﬁ("lﬁa X, M1, Mg, M3, 7)

=r(@) Y X(t+mau)X(rt + myma)X(uw)x(—my + ru)p(mst).
t,u (mod q)

Hence, H vanishes unless (ms,q) = 1. By the first symmetry in (5.14), this

means it vanishes unless (mg,q) = 1, too. We claim that it vanishes unless

(m1,q) = 1. If plm; and (p,r) = 1, then the claim follows from the second

symmetry in (5.14), while if p|(m1, r), then the claim follows from (5.15). Thus

we may set m; = mg = ms = 1, since we have assumed that mimamsr|q®.
If (p,r) =1, then r = 1, in which case

H, oL L1L1) =7(0) > x(t+w)x(t+ DX(u)x(u = 1)w(t).

t,u (mod q)

Changing variables u — w4 1 followed by ¢t — ut — 1, and finally changing the
roles of u and ¢ (for cosmetic purposes), we obtain (6.3).

Finally, suppose that p|r and mimems = 1. Changing variables t — ut
gives

H@po LLLr) =7@) Y x(+8)x(—1 +ru)x(1 + rut)e(tu).
t,u (mod q)

k
p k—1
o) < p**, the sum

over v vanishes by Lemma 6.1, since 9 has conductor p¥. U

Since x(—1+ru)X(1 + rut) is periodic in u with period i
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6.3. The case of i trivial.

LEMMA 6.5. Suppose 1 = xq is the trivial character, and ¢ = p*, k > 1.
Then
E[\(X()a X, my, ma,ms, T) = XO(T)Rq(ml)Rq(mQ)Rq(mB)
+ qRy(r)x(=1)xo(mimams).
Proof. In this case, H(Xo,x,ml,mg,mg, r) equals
> x(t+ mau)X(rt + myma)X(w)x(—m1 + ru)Ry(mst).
t,u (mod q)
Write Ry(mst) = Ry(m3) + (Rq(mst) — Rq(mg)), and note that if p { ¢, then
R,(mst) — Ry(m3) = 0. We accordingly write H = S; + Sg, where

S1 = Ry(m3) Z X(t + mou)X(rt + mima)x(u)x(—m1 + ru),
t,u (mod q)

and Sy = H— S1. We will show
S1 = xo(r)Rg(m1)Ry(ma)Ry(m3) and Sy = qRy(r)x(—1)xo(mimams).

First we evaluate S;. By Lemma 6.3 and since we may assume (mj —ru, q)
=1, we have

Z X(t + mau)X(rt + mimz) = X(r)Rg(ma2).
t (mod q)
To finish the evaluation of S1, we apply Lemma 6.3 to give
Z X(uw)x(ru —my) = x(r)Rq(ma).
u (mod q)

Now we evaluate Sy. The t-sum is restricted by p|t, and so we see that S
vanishes unless (p, mimsg) = 1. By our convention, we may set m; = mg = 1,
giving

S2 = xo(mima)x(—1)
Y > Xt uwx(rt + D)X (u)x(1 — ru)(Ry(mst) — Ry(ms)).

t (mod ¢) u (mod q)
plt

Next we change variables ¢t — ut, giving
S2 = Xxo(mimz)x(—1)
< ST (Rylmat) = Ry(ma))x(t+1) 37 X(rut + D)x(1 - ra).

t (mod q) u (mod q)
plt
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For the inner sum over u, apply v — u ™!, giving
Z x(I—utr)x(1 +utrt) = Z X(u—r)x(u+rt),
u (mod q) u (mod gq)

where we could omit the condition (u,q) = 1 since p|t. By Lemma 6.3, this
equals Ry (r(t + 1)) = Ry(r), provided (t+ 1,¢q) = 1. Hence

So = xo(mima)x(=1)Ry(r) Y x(t + 1)(Rq(mat) — Ry(m3)).
t (mod q)
plt

To complete the proof, we will show

Y X(t+ 1)(Rg(mst) — Re(ms)) = gxo(ms).

t (mod q)
plt

If ¢ = p, this is immediate, noting R,(0) — R,(m3) = pxo(ms), so suppose
q=pF, k>2 If (p,m3) = 1, it is easy to verify the claim using the evaluation

Ry(mst) =3 4(g) dii(q/d) and Lemma 6.1. If p[ms, then Ry(mst) is periodic

k—1

(in t) of period p”~, so the sum vanishes by Lemma 6.1. O

6.4. The case ¢ = p*, ¥ of conductor p/, 1 < j < k.

Conjecture 6.6. Suppose x has conductor p*, and 1 has conductor p/,
with 1 < j < k. Then

(6.4) > pluy)x(+p T y)x( - PP u)x(1 4+ uyp®™ 7)) = 0(p).
u,y (mod p7)
LEMMA 6.7. Conjecture 6.6 holds in case k = 2,5 = 1.

Proof. By converting to additive characters (as in (6.2)), one may show

> a(mod p) V(@)X (1 +pz) = %&Tw, which has absolute value /p. In the case

k= 2,7 = 1 the factor x(1 4+ uyp**=9)) is identically 1, and so (6.4) is the
product of two sums of this type. O

In the following lemma and its proof, we use the convention that if x is a
Dirichlet character, x € Q, x € Z, then x(z) = 0.

LEMMA 6.8. Let x, ¥ be as in Conjecture 6.6, and suppose (6.4) holds.
Then

(¢) X,mi,ma,ms, T)

]
0, _ (mimomar,p) =1
65 [ xo(E)0@* ), plr, mimaomz =1

_3J
XO(pk—j )XO(pk—j )Xo(pk—] )O<p3k 2])7 p|m1m2m3, r=1
0, p|r, plmimams.
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In particular, the bound (6.5) holds unconditionally for k = 2, j = 1. Fur-
thermore, if in the second line of (6.5) the O(p*~12) is replaced by O(p+12)
and in the third line the O(pgkf%) is replaced by O(p**~2), then the revised
bounds holds unconditionally for all 1 < j <k .

Proof. We begin with the observation

(6.6) S eqlmsut)b(o) = oI ().
v (mod q)

Using (6.6) in (5.13), we have

(6.7)

H=por@) 3 x4 manx(rt + mma)x(x(-mi +rujv(55).

J
t,u (mod pk)

First suppose that (mimomsr,p) = 1. Then changing variables ¢ — ut,
we have

AW 0L L L) =g (@) 3 e+ DRt Dx(—Lhupp(( ).

k—j
t,u (mod pk) p

Note that ¥ (ut + 1)v(u) is periodic in u of period p/, since p*~J|t and v has
conductor p’. Hence by Lemma 6.1 the sum over u vanishes, as desired.
Now suppose p|r and mimgoms = 1. Then

Ho 1,110 =p7@) S ()X (rt+1)x )y (1+m)¢(p,fj).

t,u (mod pk)

Changing variables t — up*~Jy (where y now runs modulo p?), we have

Aw,x,l,l,l,r)
)Y YT XA IyX (-1 )X (L + Ty (uy).

y (mod p?)u (mod p*)

We claim the u-sum vanishes if v,(r) # k — j, as we now show. Note that
X(1+rpk~Juy)ib(u) is periodic in u with period p/, while if v,(r) < k — j, then
x(—1 + ru) has period at least p’*1. Lemma 6.1 then shows the claim. On
the other hand, if v,(r) > k — j, then x(—1 + ru)x(1 + rp*~Juy) is periodic
with period p/~!, while ¢ (u) has least period p/. Again, Lemma 6.1 shows
the claim. Thus we may now restrict attention to r = p*~7, in which case

j{\(d}?x; 17 17 17pk_j) equals

@) Y > XA P Iy (14 IR+ P ) (uy),

y (mod p7) u (mod p*)
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The summand is periodic in v modulo p?, so it is the same sum repeated p*—J
times. The conjectured bound (6.4) then finishes the job. Bounding the sum
trivially gives an unconditional bound that is weaker by a factor p/.

Now suppose p|mimamsg and r = 1. We claim that H = 0 unless pF=I||my;
for each ¢ = 1,2,3. By symmetry, we may assume p|mg, say. Under this
condition, the summand in (6.7) vanishes unless (p,t) = 1, in which case we
must assume p*~7||m3. By symmetry again, this implies that the sum vanishes
unless p*~7||my, mso also. Then fl\(w, X, "7, pFI pF=I 1) equals

H=p"7@) > x(t+p"ux(t+p* ™ )xu)x(—p" 7 + u)u ().
t,u (mod pk)

Changing variables t — ut, followed by ¢t — ¢~! and u — u ™!, this becomes

H=p"77@) Y x(+p"70x(1 - p" Iux(1 + p* D) (tu).
t,u (mod pk)

The summand is periodic modulo p?, so it is the same sum repeated p2(*k=7)
times, and the conjectured bound (6.4) finishes the bound in this case. Bound-
ing the sum trivially gives an unconditional bound that is weaker by a factor p’.

Lastly, the case with p|r and p|mimaomg is covered by (5.15). O

The most important case in the evaluation of H occurs with (6.3), and it
is crucial to have a strong bound on g(x, 1), which we claim with the following

THEOREM 6.9. Let g(x, ) be given by (1.9), where x is primitive mod-
ulo q. For g =1p or q = p?, we have

l9(x, V)| < q.

We prove Theorem 6.9 in Section 9.

6.5. Estimates for H,(my,ma, ms,r) in case some m; = 0. The calcula-
tions in this section may also be used to bound H, in case some m; = 0, by way
of (5.11) (of course, one could calculate H,, directly). From Lemma 6.4 and
the unconditional parts of Lemma 6.8, observe that fl\(w, X, mi, ma,ms,r) =0
if some m; = 0, except in the case that v is the trivial character mod-
ulo ¢, in which case from Lemma 6.5 we deduce |ﬁ(w,x,m1,m2,m3,r)] <
(m1, q)(me, q)(ms, q) by the trivial bound on the Ramanujan sums. Therefore
by (5.11), we have

(6.8)  |Hy(m1,ma,ms,7)| < ¢ *(m1,q)(ma, q)(ms,q)g"  if myimams = 0.
It is useful to record that from (5.3), we deduce

15
(69) |G(m1,m2,m3,c)| < i(mlaq)(m27q)(m37q) lf mimaems = O

cq q
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7. Estimation of Zg,

Let n;, j = 1,2,3,4 denote any unimodular completely multiplicative
functions, and define

3 m (a1)nz(az)ns(as)na(d)

H ai,as,as,d).
aifla22ag3d04 (q/)ll”Xp? 1, @2, 3, )

Zgnp(01,02,03,04) =

a1,a2,a3,d|p>
(al,d):1

LEMMA 7.1. Let Zgy, ) be as above, with q = Pk, k> 1, and Xp primitive
modulo q. If vy, has conductor p’ with 1 < j < k, assume Congjecture 6.6 holds
for xp, ¥p. If 0; > 0 > 1/2 for all j, then
(7.1) Ztinp(01,02,03,04) Koo 5111‘11/2‘9()(7 b)) + Frre

where 0y is the indicator function of the property that 1 is primitive (of con-
ductor p*). If o; >0 >1 forall j, and 1, is the trivial character, then

(72) Zﬁn7p(017 02,03, 04) <<O',€ q1+€'
Remark. This result is unconditional for k < 2.

Proof. First suppose that 1 is primitive modulo ¢. By Lemma 6.4, all
terms except a1 = ag = a3 = d = 1 vanish, giving the result.
Now suppose that ¢ is the trivial character. By Lemma 6.5, we have

0 k r k ,a k ,a k ,a
(p",p") (p", p™) (", p**) (", p™)
|Zﬁn’p’ = qz proa + Z pa101+a202+a303 )
r=0 a1,a2,a3>0

which is bounded consistently with the lemma.
Finally, consider 1 of conductor p’, 1 < j < k. Lemma 6.8, which depends
on Conjecture 6.6, gives

p%% P’ - 3k/2
12l < i ¥ e <P

This is consistent with (7.1). (Note that the bound (7.2) is not claimed in this
case.) O

8. Estimation of 7
8.1. The main lemma. Recall Z is given by (5.16).

LEMMA 8.1. Suppose q is cube-free. There exists a decomposition Z =
Zo+ Z1, where Zy and Z1 satisfy the following properties. Firstly, Zy is mero-
morphic for Re(s;) > o > 1/2 for all j and analytic for Re(s;) > o > 1 for
all j. It has a pole whenever some s; = 1 and the other variables are fized. In
the region Re(sj) > o > 1 it satisfies the bound

Zo(s1,52,53,54) Loge ¢
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Secondly, Z1 is analytic for Re(sj) > o > 1/2 for all j, wherein it satisfies
the bound

T

(8.1) / |Z1(o +it,o +it,o +it, 0 —it)|dt <. gFtepite
-T

for T > 1. The same bound stated for Zi also hold for Zy, provided 1/2 <

Re(s;) < 0.99.

Remark. The statement of Lemma 8.1 is essentially equivalent to [PY19b,
Prop. 3].

Proof. Let Zy be the contribution to Z from the trivial character, and let
Z = Z — Zy. All the desired estimates follow from the previous estimates on
Zgin and a bound on the fourth moment of Dirichlet L-functions (see [Petl5,
Lem. 8] for instance). O

Conjecture 8.2. The statement of Lemma 8.1 holds for any gq.

Remark. The proofs of the cubic moment bounds only need the properties
of Z presented in Lemma 8.1. Therefore, if Conjecture 8.2 is true, then all the
cubic moment bounds stated in the introduction of this paper are valid for
arbitrary q.

9. Bounding g(x,%): the proof of Theorem 6.9

9.1. The case ¢ = p. In this subsection, we prove Theorem 6.9 in the case
where ¢ = p is prime. Conrey and Iwaniec [CI00] proved g(x,v) < p in the
case that x is the quadratic character. However, their proof does not seem to
generalize: they conclude from Deligne’s theorem that the bound g(x,v) < p
holds for all except at most one primitive ¢). The possible exceptional ¥ can
only be the quadratic character ¢ = x, and then g(, x) has a special structure
that Conrey and Iwaniec exploited to show g(x, x) < p by elementary means.
When x is not quadratic, this special structure is not present, and it is not
clear whether the bound g(y, 1) < p for ¢ quadratic has an elementary proof.

To prove Theorem 6.9 we instead use Deligne’s second proof of the Rie-
mann Hypothesis [Del80]. We analyze the sum ¢(x, ) by writing it as

> x(@)x(z+1) (Z X(W)x(y + Do(zy — 1))

and realize the inner sum as a trace function in = of a sheaf G. The sheaf G
will then be compared with the sheaf that corresponds to the trace function
x — x(x)x(z + 1) to show cancellation in both variables. In executing this
strategy, we have benefited greatly from the recent works of Fouvry, Kowalski
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and Michel, which have served to make the theorems of Deligne and Katz on
trace functions more amenable to analytic applications.

Proof. Suppose x and 1 are primitive modulo p, and let ., Y., be the
characters derived from x, by composing with the norm map N : Fym — .
Let

900 Um) = D> Xm (@)X (@ + DX (¥) X (y + Db (zy — 1).
a:,yGFpm

By the Grothendieck-Lefschetz trace formula [Del77, Rapport, Thm. 3.2] and
the Riemann hypothesis of Deligne [Del80], we have that there exist algebraic

numbers «; y and «o; — with |a; 4| = pki/2, |l —| = pli/2 with k;,¢; € Z such
that

Ny N_
(9'1) g(Xmawm) = _ZO‘ZL—F +ZO‘Z%—'

i=1 i=1

Results of Adolphson-Sperber or Katz [Kat01, Thm. 12] show that N, N_ <
1, independently of y, 1, p. Thus, to prove Theorem 6.9 in the case that x, ¥
are primitive modulo p, it suffices to show that |a; 4|, | —| < p.

We show that |a; 1|, |y, —| < p using the theory of ¢-adic sheaves and trace
functions; for background, see [Del77], [Kat88], [FKMS19]. Let ¢ be a prime
distinct from p, and let ¢ : Q, — C be a fixed isomorphism. If X is an algebraic
variety over [F),, then by “sheaf” or “/-adic sheaf” we will mean a constructible
Qg-sheaf on X. Note that /£ is always assumed distinct from the base field of
X. If Fis a sheaf on X and 7 € X(F,) is a geometric point of X, then we
write JF5 for the stalk of F at .

For any ¢-adic sheaf F on X, its trace function ¢z(x) is defined to be the
value at © € X (F)) of the trace of the Frobenius endomorphism of F,, acting

on F,. That is,
tr(2) = (e F)(Fy ) = o(Te(Fr, | Fy)).
Let

Fir=Ly(v+ny-1)
be the Kummer sheaf attached to the character x (%) , whose trace function
is X(y)x(y+1). Thus F; is an f-adic sheaf on Al; it is a middle-extension sheaf,
pure of weight 0, and lisse on A! — {0, —1}. It is of rank 1, hence geometrically

irreducible. Let
K= Lyxy-1
be the middle extension of the Kummer sheaf attached to 1)(XY —1) on A x Al

Let Z C A? be the closed set defined by the equation XY = 1. The sheaf K is
lisse, of rank 1 and pure of weight 0 on the dense open set V = A2 — Z. Since
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1 is non-trivial, the middle extension sheaf is identical to the extension by 0
of IC restricted to V.
Let pj : Al x Al — Al j =1,2 be the two canonical projections, and let

H = p3F1 @ K.
The sheaf H is lisse on the dense open set U = A? — D, where D C A? is the

divisor
D=ZUA' x {0} UA! x {~1}.
For i = 0,1, 2, define the ¢-adic sheaves
T (F1) = R'p1y(H),

where Ripl,! is the higher direct image with compact supports. The sheaf G =
TL(F) is is the “cohomological transform” of F; defined by the “kernel” K,
in the sense of Katz’s affine cohomological transforms and of [FKM21].

LEMMA 9.1. If x and v are non-trivial Dirichlet characters modulo p, then

tg(:l?) == Z tr (y)t;g(l’,y).

y€lFy

Proof. Let U, = U N {x} x Al be the open set on which H restricted to
{x} x Al is lisse. Precisely, we have U, = {z} x (Al — {0, —1,1/z}). (Below
we take restrictions of p3F; and K to {z} x A! without mention.)

There are three representations of Gal(F,/F,) given by H:(U »FP’H) for

xT

i =0,1,2. The Grothendieck-Lefschetz trace formula asserts that

Z t’H(SU,y) = TI'(FI‘MHS(UIFP,H))
y€UL(Fp)

— Te(Fu|HA(U, 5 1)) + Te(Fr | H2(U, 5, 1)),

where Fr, € Gal(F,/F,) is the Frobenius automorphism. By standard opera-
tions with Galois representations, and the fact that /7 and K are extension by
0 sheaves, we have that

STtritclzy) = Y ty(xy).

yeFp y€Uz(Fp)

Furthermore, by the proper base change theorem (see [Del77, Arcata, IV, Th.
5.4]) we have that H:(U ﬁp,”H) is naturally isomorphic to the stalk at = of

Ti(F1). Therefore, to prove the lemma, it suffices to show that all of the
stalks of T2(F1) and T2 (F1) are 0.

First we show that the stalks of T2(F;) are all zero. We claim that
HB(Upr,H) =0, and so T2(F;) = 0 as well. Since y is non-trivial, 7 is a
middle extension sheaf, and so is p5Fj. Since both p5F; and K are middle-

extension, we have, e.g. by [FKM21, Lem. 4.2], that H?({z} x A, H) = 0. Let
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7 : ({2} x AY) — U, — SpecF, be the structure morphism. The sheaf R™1mH
vanishes by definition, so H, ' (({z} x Al)—U,,H) = 0. By excision (see [Del77,
Sommes Trig. (2.5.1)*]) and the vanishing of the above two cohomology groups,
we have that HS(UIFP, H) =0 as well.

Now we show that the stalks of T ,% (F1) are all zero. If £; and L, are any
two geometrically irreducible sheaves, lisse on U,, then H, CQ(Ux,Fp’ L1®Ly) #0
if and only if £; ~ D(L2) on a dense open set where both sheaves are lisse,
as one can see by the co-invariants formula (see [Del80, (1.4.1)b]) and Schur’s
lemma. In our case, it suffices to consider the G&°™ = Gal(F,(X)/F,(X))-
invariants acting on the stalk of p5/; and K at a lisse geometric point. Since
X is non-trivial (this is crucial), we have that F; is ramified at 0 whereas K
is not. Therefore the inertia group at zero Iy C G2%°™ acts non-trivially on
the stalk of F; at any lisse point, whereas Iy acts trivially on any stalk of K.
Therefore the two sheaves cannot be geometrically isomorphic, and so the H?

vanishes. O

By Lemma 9.1 and the fact that /7 is middle extension, we have

(9:2) g06w) == > tr (u)tg(u).
u€lf,

By the Riemann hypothesis of Deligne [Del80, Thm. 3.3.1], G is mixed of
weights < 1, so to apply the orthogonality form of the Riemann hypothesis
(e.g., [FKMS19, Thm. 5.2]), we would need to show that the part of weight 1
of G, say Gy, is geometrically irreducible and not geometrically isomorphic
to Fi. It is not difficult to see that G has generic rank 2, and we would
like to argue that this prevents Gy from being geometrically isomorphic to Fj.
However, it is less clear that Gy itself has generic rank 2.

Recall U = A?— D, and let j be the open embedding of U in A2. To handle
the issue raised in the previous paragraph, let us introduce the modified sheaf

H:=H("H)
and the corresponding cohomological transform sheaves
TiH(F) = Riplg(ﬁ)-

We have defined H in order that it satisfy the hypotheses of Deligne’s semicon-
tinuity theorem [Lau81], used in the proof of part (1) of the following lemma.

LEMMA 9.2. Suppose that x and v are non-trivial modulo p. The sheaf
G = Ti(F)
(1) is lisse on the dense open set W = Al — {0, -1},
(2) is geometrically irreducible and pure of weight 1 on W, and
(3) has generic rank 2.
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Proof. (1) In order to prove that G is lisse on W, we will use Deligne’s
semicontinuity theorem [Lau81, Cor. 2.1.2]. Consider

1 Al x P — Al

which is a smooth and proper morphism of relative dimension 1. Abusing
notation, we continue to write H for the extension by 0 of H from Al x Al to
Al x P'. By definition, we have G = Rl 7—[

Let D be the complement in Al x IP’l of the open set U, that is D =
DUA' x {cc}. By restriction, p; defines a proper smooth morphism of relative
dimension 1

X - W=A"—{0,-1},

where X = p; '(W). The intersection DN X is a divisor in X, which is flat
and finite (of degree 4) over W. The sheaf G is lisse on the complement of
DN X in Al x P,

Let x € W. We identify the fiber C, of p; over x with P!, and so the
restriction of H to C, is identified with a lisse sheaf on the dense open set
(abusing notation)

Uy =A' —{0,-1,1/x,00} C P..

The restriction of the sheaf H to C, is at most tamely unramified everywhere,
hence the function ¢ of [Lau81, Thm. 2.1.1] is constant equal to 0 on points
of W. Then we have by Corollary 2.1.2 of loc. cit. that Rlﬁl,*H is lisse on W.

(2) The sheaf G is mixed of weights < 1 on W by the Riemann hypoth-
esis of Deligne [Del80, Thm. 3.3.1]. Furthermore, the part of G of weight 1 is
geometrically irreducible on W by the diophantine criterion for geometric irre-
ducibility. Indeed, F; is not geometrically isomorphic to the Kummer sheaf £,
attached to v, since 7 is ramified at —1 and L, is not, and so the hypothesis
of [FKM21, Prop. 5.12 and Rem. 5.14] is satisfied.

Finally, we prove that G is pure of weight 1 on W by applying [KMS17,
Lem. 4.22(2)] to the morphism p; : X — W and the sheaf # on X. For any
z € P!, the sheaf pullback H, to Cp = {x} x P! has no punctual section nor
trivial subrepresentation (as a lisse sheaf on U;). Thus the assumptions of loc.
cit. are satisfied.

It follows that for any x € W, the part of weight < 1 of the stalk at x of
G = Rlﬁly*’;'-lv is isomorphic to

D (Ho)/(Ha)y

y€Cy—Us
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But we already have (ﬁx)%y = 0 at all singular points y € {0,—1,1/x,00}, so
the direct sum vanishes. From Deligne’s Theorem, we conclude that G is pure
of weight 1 on W.

(3) The stalk of G over = € Fpis H ({z} x AL, 77) By the Euler-Poincaré
formula [Kat88, 8.5.2, 8.5.3], if x # —1 then the dimension of this cohomology
group is —1+3 = 2 for the three tamely ramified points 0, —1, 1/x of H. Hence
the generic rank is 2. O

To compare H with ‘H, observe that the stalks of H are _equal to those of
H outside D, and are 0 along D. Thus, the stalks of H and H may only differ
on D (and this can only happen if x = ). Indeed, in the case x = 1) note
that t3(—1,—1) = x(—1)2, whereas t7(—1,—1) = 0. As an aside, one wonders
whether ¢g(x,Y) admits a “special structure” for y complex that could be used
to give a simpler the proof of the bound ¢(x, x) < p in that special case, as was
exploited by Conrey and Iwaniec in the case that y is quadratic [CI00, §14].

By the discussion in the preceding paragraph, we have that tg(u) = tg(u)+
O(1). Thus, setting

sOGY) == Y X(z +1 Zx X(y+ Dp(zy — 1),

]Fp—{O,—l}

we have

93)  glev)=-s(¥)+0@) =— > tr@)tzx)+O0(p).

€W (Fp)

Since F is pure of weight 0 and rank 1 on W and G is pure of weight 1
and geometrically irreducible of rank 2 on W by Lemma 9.2, G cannot be
isomorphic to Fj. Thus, the Grothendieck-Lefschetz trace formula, the co-
invariants formula [Del80, (1.4.1)b], and the Riemann hypothesis of Deligne
imply that there exist algebraic numbers §; + and §; —, with |8; +| < p, |Bi -] <
p such that

M,y M_
94)  slomtm) = Y R (N@)t5(N(@) = =D Bl + > B
i=1 i=1

$€W(]Fpm)

Here it is not clear that My and M_ are bounded independently of x, 1, p.
However, we can avoid this issue by appealing to the two-dimensional Riemann
hypothesis of Deligne (9.1), in which situation we know that N;, N_ < 1. A
slight variation of [CI00, Lem. 13.2] shows that |ay 4|, || < p*/2, and we
would like to show in fact that o; 1 and «;; are bounded by p. Suppose not.
Then we would have

l9(Xm, ¥m)|

i >0

lim sup
m—0o0
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But this is impossible by (9.4) since |5; 1|, |Bi—| < p. Thus | +|, |, —| < p,
so by (9.1) and the fact that N;, N_ < 1 we have g(x,v) < p for all x,¢
primitive.

If %) is not primitive, it must be the trivial character g, in which case we
have g(x, o) < p by Lemma 6.3, which completes the proof of Theorem 6.9
when ¢ = p. O

Remark. A proof of a minor variant of Theorem 6.9 also appears as
[FKM21, Thm. 5.8], from which we drew inspiration in giving the proof that
appears above. However, our proof departs from that of loc. cit. in that we have
completely avoided the difficult main Theorems 2.3, 2.5, and 5.11 of [FKM21]
on the behavior of the conductor under cohomological transforms.

9.2. The case ¢ = p?. This case can be treated by elementary means.
Since x is a Dirichlet character modulo p?, the function ¢ +— x(1 + pt) is an
additive character on Z/pZ, so there exists an integer ¢, so that

X(1+pt) = ep(€yt).

Note that x has conductor p? if and only if (¢,,p) = 1. Hence if a, b are integers
with (a,p) = 1, then

(9.5) x(a+pb) = x(a)x(1 + pab) = x(a)e,(£,ab),

where @ € 7Z satisfies aa = 1 (mod p?). Now, for each t,u (mod q), choose
a,b,c,d € Z such that a + pb =t (mod ¢q) and ¢+ pd = u (mod ¢). We have

P(ut — 1) = (=1 + ac+ p(bc + ad)) = (=1 + ac)ep(€y(be + ad)(—1 + ac)).

Note that as ¢,u run through Z/qZ, each of the integers a,b,c,d represent
every residue class modulo p. We obtain

(9. 6)

ZX X(a+ 1)x(c)x(c+ 1)p(—1+ ac) Zepfba— (a+1))
b.d

+ Lybe(—1 4 ac))ep(—yd(C — (c + 1)) + £pad(—1 + ac)).

In particular, we have (a(a+ 1)c(c+1)(ac—1),p) = 1 for every non-zero term
of the sum over a and ¢, so all inversions modulo p here and below are justified.
The sum over b equals p provided

(9.7) 6(@—(a+1)) = —Lyc(—14+ac) (mod p)
and vanishes otherwise. Similarly, the sum over d equals p provided

(0.8) ty(e~ (et 1)) = tya(—1tac) (mod p)
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and vanishes otherwise. We claim that there at most two solutions to (9.7)
and (9.8), whence

l906 ¥l < 2¢

for ¢ = p?. Along the way, we will also see that g(x,v) = 0 if 1/ is not primitive.
Indeed, multiplying the first congruence by a(a + 1) and the second one
by ¢(c+ 1), we obtain the equivalent system

by = —Llyac(a+1)(—1+ac) (mod p), £, =Llyac(c+1)(—1+ac) (mod p).

Since (¢, p) = 1, this implies that g(x, ) = 0 unless (¢y,p) = 1, which means
1 is primitive. Furthermore, we deduce that a(a + 1)c = —ac(c+ 1) (mod p),

whence ¢ = —2 —a (mod p), which uniquely determines ¢ in terms of a. Then
we see that a must satisfy
(9.9) ala+1)(a+2)(—1+a(—2—a)) =lyly, (mod p).

Setting A = @EX, (9.9) is equivalent to
ala+2)=—-A(a+1) (mod p).

Hence a satisfies a certain monic quadratic polynomial, having at most two
solutions modulo p. This gives the desired bound on g, completing the proof
of Theorem 6.9.

10. Archimedean aspects, part 1

In this section, we derive the analytic properties of the weight functions
Ji and J* defined in (4.6) and (4.11).

10.1. Approximate functional equations. Recall from (4.3) the functions
Vi(y,1).

LEMMA 10.1. For each j = 1,2, Vj(y,t) is an entire, even function in t
for any given y > 0. Moreover, for t € R, it satisfies the bound

. ' 6k+é Yy —A
10.1 1/2 +it) -2 Vi(y.t (1 )
101 P2 Vi) <ane (14 500
for any A > 0. Fort= —i/2+ v with v € R, we have, for any A >0,
ok , y —A
10.2 F vy, —L (1 )
(10.2) Vo iy, =5 +v) <ak 1T or

Proof. By shifting the contour far to the right, we see that Vj(y,t) is
analytic for ¢ in any fixed horizontal strip, so it can be extended as an entire
function of t. It is clearly invariant under ¢ — —t.

Now assume ¢ € R. First we show (10.1) in the case k = ¢ = 0. We
assume 0 = 0 for notational simplicity, the § = 1 case being similar. Stirling’s
asymptotic expansion gives that logI'(z) = (z — 3)log(z) — 2z + Z;-V:O cjz 7l +
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O(|z|7N=1), for certain constants c;, valid for Re(z) > 1/100, say. From this
we deduce that if |a|? < |2], Re(z) > 1/4, then

Z+a N p.a a)2N+2
(10.3) logr(r(—:)) :alOgZJFZPJZ(j ) +O((14‘rz\|Nl)+l )

for certain polynomials P; of degree at most 2j. Fix o € R so that 1/2+0 > 0.
Then for Re(s) = o and |Tm(s)| < (1 + [¢|)'/*, we derive from (10.3) that

Tr(1/2 + s+ it)
exp(s”) Tr(1/2 + i)

N (s N41
= (1) exp(et) (1 +g(l/§(+>t) PO+ 1)),

provided ¢ is sufficiently large, and where P; is a different collection of poly-
nomials of degree < 2j. If [Im(s)| > (1 + [t|)/%, then a crude application of
Stirling gives

J=1

(10.4)

I'r(1/2 + s+ it)
Ir(1/2 +it)

In any event, we shift the contour to Re(s) = A to see that Vj(y,t) <a
(14 [t])Ay=A for y > 1 + |t). If y < 1+ |t, we instead move the contour to
o = —1/4, say. Accounting for the pole and bounding the integral on the new
line, we obtain Vj(y,t) < 1 in this case.

Next we consider derivatives. Note that differentiation £ times with re-
spect to y followed by multiplication by 3* gives an integral of the form (4.3)
back, but with Gj(s) multiplied by a polynomial in s. The exponential decay
of G(s) easily accommodates for this, showing (10.1) for £ = 0, and any k > 0.
Differentiation of Stirling’s formula with respect to t leads to (10.1) for any &, £.

Next consider the case t = —i/2+v with v € R, so it = 1/2+4v. For y >
1-+[t]?, we move the contour far to the right and bound it the same way. For y <
1+|t]7, we shift left, to —1/4 again. We pass poles at s = 0 (as before) giving a
residue of 1, and at s = —1/2+4y = iv. This latter residue is O((1 + |v])~109),
i.e., uniformly bounded for v € R, using that the apparent pole of % atv=20

is cancelled by a zero of 1/T'r(—iv). It is not hard to see that (10.2) holds. [

exp(s®)

= O((1 + [#))7* exp(~Im(s)?/2)).

10.2. Properties of J*. We invite the reader to recall the definition of
inert functions from Section 3.
LEMMA 10.2. Let J*(z,-) be defined as in (4.11). Then
ak
(10.5) WJJF(JU, D < x(@ Tk 4 2R
x

and JT(x,-) is 1-inert with respect to the variables ty,ta,ts3, c,my1, ma, m3.
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We will use this for the relatively small values < T2, In the comple-
mentary range, we have the following.

LEMMA 10.3. Suppose for some ¢ > 0 that 1 < T?*¢ < x. Then for any
A >0,

Jt(z,) = ZTQxfl/QeimWi(x, V4 O-a(z™),
+

where Wy (x,-) is a function (depending additionally on e, T, A) satisfying
xk%Wi(x, ) < 1. Moreover, Wi (z,-) is 1-inert with respect to the variables
t1,12,13,m1, ma, ms3, .

Proof of Lemma 10.2. First consider the case k = 0. In (4.11) we shift the
contour to the line Im(#) = —1/2. Then from (10.2), and using | cosh(—% +my)|
= | sinh(7y)|, we have

fe’e) A 2
R e e e R

Next we claim that for any integer a > 0, we have
[iatoiy(z)] 141yl (z/2)'*
| sinh(my)| lyl 11/2 + 2iy|ett
This bound can be derived with a little work from [GRO00, 8.411.4] and Stirling’s
approximation. Taking a = 0, this implies (10.5) for & = 0.
We next extend this to £ > 1. By [GR00, 8.472.2, 8.486.13] we have
d v

(10.6)

(10.7) %Z,,(x) = ;Zl,(a:) — Zy+1(x),

valid for Z, = J, as well as Z, = K,,. Iterating this, we derive
d* P (V)

(10.8) k(@) = mZ:O o Jvrh-m(2),

where Py, is a polynomial of degree at most m. By (10.8) and (10.6), we
deduce that

k
e hm(@] 1t g~ (At ) o

| sinh(7ry)] lyl = am o (L4
x ak (1+ |y)*
< = - 2.
[yl N1+ yl) z

It is then straightforward to derive (10.5) for all k.

The final statement of the lemma, that J*(z,) is 1-inert with respect to
the other variables, follows from Lemma 10.1, since the only dependence of J*
on these auxiliary parameters is via the factors Vi(y1,¢)Va(y2,t) and the inert
function w. 0
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Proof of Lemma 10.3. By [GR00, 8.411.11] and an interchange of orders of
integration justified by integration by parts and Fubini, there exists an integral
representation in the form

o0
Jt(z,) = w(-)TQ/ cos(x cosh(v))g(v, -)dv,
0
where
2 [ 2+ % 2
g(v,")=T" / ttanh(ﬂ't)ﬁ exp(—(t/T)7) cos(2tv) Vi (-, t)Va(-, t) dt.

—0o0
Here ¢ is a Schwartz-class function; more precisely, it satisfies the bounds
(10.9) g9 (v,") <A T+ |v))™4 forall A>0,7>0
and is 1-inert with respect to the other variables by Lemma 10.1. Hence

o
J+(:E, ) — ZTQ / e:l:z:vcosh(v)g(,u’ )dU _ ZTQGimFi(l', ‘),
+ 0 +

where
Fi(l‘, ) — / eztim(coshv—l)g(v’ )dv
0

It suffices to show that Fly(x,-) = Tlmwi(x, )+ O4(x~4) with Wy(z,-) sat-
isfying the required derivative bounds. For notational simplicity, we consider
only the + case, which we write as F(x,-) for Fi(z,-).

Write a smooth partition of unity of the form

1= fow/U)+ > fi(v/V)+ falv)  forv>0,
\4

with the following properties: fy has support on [—1, 1], f; has support on [1, 2],
f2 vanishes on [0,1], U = 2~ Y/2%¢ and V runs over O(log ) real numbers with
U <V <« 1. Repeated integration by parts shows that for all sufficiently large
A >0,

(10.10) / eirteoshv=1) oy, N fo(v)dv < TVa™ <4 a4,
1

taking j large, and using x > T2. Similarly, applying [BKY13, Lem. 8.1] with
parameters (X,Y,Q, R,U, «, 3) in our situation taking the values (1,x, 1,2V,
1,V,2V), we see that

(o]
| e g0 oV do
Hence

2
F(z,) = /0 el g(v,) fo 7 )dv + Oa(a™).
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Now let us develop ei*(coshv—1) by firgt taking the Taylor expansion for

cosh v — 1 and then expanding it in the power series expansion for exp. We get
that

M N
. . m
pir(coshv—1) _ jizv?/2 Z b, (:I;Zanv2"+4) L0 (xUZN—i—G + (xv4)M+1) _
m=0 n=0

Since v < z~ Y2t we may take M, N large enough depending on ¢, A so that
6im(coshv—l) _ ei:m;2/2 Z Cm’n(xv2)mv2n + OA(SC_A)
m,n>0

for some new coefficients ¢, ,, and where all but finitely many of the ¢, , are
Z€ro.
Thus

[ee) ) v B
Fl,)= > cmn / (w0226 2 (0, fo (1 ) do + Oa(a™).
m<Mn<N 0

It transpires that g is nearly constant on the support of fy. To see this, we
note that

UT < 279

for some € > § > 0, where ¢ is the ¢ appearing in > T?%¢, and we have
chosen the ¢ in the definition of U small enough in comparison. Then, for
any L, we have

g P (et < (UT) < 2759,

so that we may develop ¢ in a Taylor series around 0 with finitely many terms,
the number of which only depends on A,e. Hence

F(.’E, ) = Z Cé,m,ng(g) (0)

(<L m<Mn<N
o0
> / ($U2)mv2n+ﬁezxv2/2f0 (%)dv + OA(JJiA)
0
for all sufficiently large L, M, N. Changing variables v — x~/2v, we obtain
(10.11)

@0 0 , v
F(x’ ) — x*l/? Z Cf:m,”gajg/(g)xn/o U2m+2n+f6w2/2f0(E>dv+oA(wa)_
l,m,n

Let us analyze the inner integral. We claim
o 2 v
/ N e /2 £ <E>dv = C(N) + On.a(z™)
0

for some constant C'(N) independent of fy and x.
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Proof of claim. For a smooth function f supported on |v| < 1, define
INV) = [ oV,
0

where V' > 1 is large. Our first observation is that [BKY13, Lem. 8.1] shows
that I(N, f,V) <an.s V~4 provided f is supported on [1/2,4], say. Our
fo is not supported on this interval, but this argument shows I(0, fo,V) =
1(0,1,V) + 04(V~4), where 1(0,1,V) = e™/%, /T Next, an integration by
parts argument shows
I(N, £, V) = idy=1f(0) + i(N — 1)[(N =2, f, V) +iV (N — 1, f', V).
Here we interpret I(M, f,V) = 0if M < 0. Since f is dyadically-supported,
this implies
I(N, fo,2°) = idn=1 + i(N — 1)I(N =2, fo, %) + On.a(z=).

Repeating, we obtain the claim. O

Applying the claim to (10.11), we have

)
F(xa ) = x_l/Q Z C@,m,ngT(QO)x_n + OA(J}_A)
L<Lm<Mmn<N z

for some newly re-defined sequence of coefficients ¢y, ,, which completes the
proof. O
10.3. Properties of J—.

LEMMA 10.4. We have
8k
Az

Moreover, J~(x,-) is 1-inert with respect to the variables tq, ta, ts, ¢, my, ma, ms.

(10.12) J7(x,) Kpe 217 (x7F 4 2F)TIHRTE

As in the JT case, this lemma is of interest to us when z is not too large.
In the complementary case we have the following.

LEMMA 10.5. Suppose for some ¢ > 0 that 1 < T'*¢ <« x. Then
J(z,)) <a274

Proof of Lemma 10.4. As in the proof of Lemma 10.2, the property that
J ™ is 1-inert with respect to the other variables is easy to see, so we now focus
on the bound (10.12). By [GR00, 8.486.10], we have

T =25 [ (Rugau(e) = Kioela)) sinbrt) exp(~(1/T))
(10.13) -
. +Z)Vl(-,t)V2(-,t)dt.

T2
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From [GR00, 8.432.5], that is,

I(v+1)2” /°° cos(xt)
2T(3) Jo (2 +1):+

K,(x)= dt, Re(v) > 0,

one may readily deduce that

(1 + [y)*

10.14 Koo
( ) 5+2zy(x) <e x€ cosh(my)

for y € R. For the part of the integral (10.13) with K42, we move the
contour to Re(1 + 2it) = ¢ > 0, in all giving a contribution to J~(z) of size
< x'7fT1+¢. A similar bound works for the part of the integral with K1 o5 (z),
but by shifting the contour the other way. This gives the desired bound for
k= 0.

Next we sketch how to treat & > 1. The bound on K. 9, given in (10.14)
has the same essential features as (10.6). Moreover, the K-Bessel function
satisfies (10.7). The same method used for J* now carries over to J~ without
any significant changes. O

Proof of Lemma 10.5. From [GR00, 8.432.4] one may derive

o0
J (z,:) = T2/ cos(z sinh(v))g(v, -)dv,
—0o0

where g satisfies (10.9). (Here g(v,-) may differ slightly from that occurring in
the proof of Lemma 10.3, but only by an absolute constant.)

As in the proof of Lemma 10.3, we can cut the integral at |[v| < 1 again
(with a smooth cutoff), since repeated integration by parts shows the comple-
ment is O (2~4) for any A > 0. Therefore,

oo

J (x,-) = T2/ cos(x sinh v)g1 (v, -)dv + Oa(z~4),
—0o0

where gg)(v, ) <4 T7(1 + |v])™4. We then change variables v = arcsinh(u),

so dv = (1 + u?)~Y2du, giving

“(z,) =T? Oocosxu w. - )du A
(10.15) (@) =T /_OO (zu)go(u, -)du + Oa(z™"),

go(u,-) = g1 (arcsinh(u),)(1 + u2)_1/2_

Since arcsinh(u) is smooth with bounded derivatives for u < 1, then go(u,-)
is Schwartz-class and satisfies g(gj)(u, ) <ja TI(1 + |u[)~*. The integral in
(10.15) is a cosine transform of go, and is hence O(T?(T/x)?), for any j > 0,
which is O4(2=4) for any A > 0, since z > T by assumption. O
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11. Archimedean aspects, part 2

The goal in this section is to understand the behavior of K* defined
by (4.13).

We begin with some comments to help bridge the material in [PY19b,
§10.4] to this work. In that article, the analog of K was defined but with
J*(x,-) replaced by J._1(x), the J-Bessel function, with » fixed. Nevertheless,
a great majority of the work done on K in [PY19b] carries over to this article,
and the properties of J* developed in Section 10 will allow for this extension.

Throughout this section we assume that for some 0 < n < 1/13,

(11.1) T <q".
The precise T-dependence is not important for the proof of Theorem 1.1.
11.1. The properties of K.

LEMMA 11.1 (Oscillatory Case). Suppose that |m;| < M; for j =1,2,3
and that ¢ < C. Suppose there exists 6 > 0 such that

VNI NoN;

(11.2) e

> T2q5.

Then

(11.3)

T202(N1N2N3) /260( mlmgmg)
My Mo M3y

+ Os,.4 (Q_A ﬁ(l + mj)_Q)»
j=1

where L has the following properties. Firstly, L vanishes (meaning K is very
small) unless

K+(m1am25m3a ) L(m1,m27m3a6)

N1 N, N3)!/2
(11.4) My = WNVeNS TP g
Nj
and all the m; have the same sign. Moreover, we have that
L(my,ma,my, ¢ / / ) ([mamamaly
(11.5) lu|<q® /|y|<q® c

X(!mﬂ) QZ;) <Z§y> () vy

where F' = Fo Ny Ny, N3, M1, Mo, M, 15 entire in terms of u and satisfies

F(65y) <ge(u),a (1+ [a)) 1+ [y) ™

for any A > 0.
Finally, K~ (my, ma, m3,c) < ¢~ 1990,
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Sketch of proof. The conditions in place in Lemma 11.1 ensure that the
hypotheses of Lemma 10.3 are satisfied, which shows that JT(x) is essentially
of the form e**/,/z, times a smooth function of x. This is the same shape
of Ji—1(z) that was used in [PY19b, Lem. 11] and so the method used there
carries over with minimal changes.

The final statement on the small size of K~ follows immediately from
Lemma 10.5. ([

LEMMA 11.2 (Non-oscillatory case). Suppose that mj < M; forj =1,2,3,
c=C, and

v N1 Ny N
(11.6) % < T%.
Then for both cases K = K+, we have
(11.7)

v N1 Ny N.
K(ml,mg,mg,c) = TN1N2N3 (%) ec(—mlQOg)/ F(u)
lu|<T2g +e
[ (s a4,
— u
lt|<q+P ¢ [mal /- \mal/ - \|mg] c

+O0:alg T +my)™2),

—

Il
—

J
where P is defined by
My My M3
-—F
FO) < (L4 [t) 72, and F(u) < pewye ¢ [Tz (1+ 24)=4 for all A > 0,
Moreover, F vanishes (meaning K is small) unless
M1 Ny M3 Ny . M3 N3

C C <Le G, C

If there exists € > 0 such that P > ¢%, then f may be chosen to have support
on |t| < P.

(11.8) P

(11.9) < ¢, <e ¢

Sketch of proof. In this case, J* satisfies the properties of Lemma 10.2 or
10.4 (depending on the choice of £). In turn, these are essentially the only
properties that were used about J,_i(x) in [PY19b, Lem. 12]. O

LEMMA 11.3 (Other cases). Suppose some m; = 0, and let K denote
either case of K*. If (11.2) holds, then K is small. If (11.6) holds, then K
is small unless |m;| <. N%qg for 5 =1,2,3, in which case

\/]\71]\72]\’3)(1E

(11.10) K(ml,mg,mg;c) < TNlNQNg( C
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Proof. The fact that K is small if (11.2) holds follows from repeated in-
tegration by parts (see [BKY13, Lem. 8.1] for instance). If (11.6) holds, then
another repeated integration by parts argument shows that the integral is small
if there exists ¢ > 0 such that |m;| > N%qe for some j. Finally, the bound

(11.10) follows from trivially estimating the integral defining K, using (10.5)
r (10.12). O

12. Completing the proof of Theorem 1.1

Here we finish the proof of the bounds 7=, 76i <. TP¢ (for definitions,
see (4.14) and (4.15)), which will complete the proof of Theorem 1.1.

We only deal with the case that €; =1 for all j = 1,2,3. The other cases
are similar. Recall the definition of 7+ from (4.14):

1
T = e —— > G(ma,mg,mg;qr) K= (my, mg, mg, qr).
C N1N2N mi,ma,m3,r>1
(m17) 1
Using (5.3), we have
1
TH <« ———r
7 C%q/N1 N2 N3
X ‘ Z egr(mimams) K= (mq, ma, ms, qr) Hy(£mq, ma, m3, 7)|.
mi,mz,m3,r>1
(m1,r)=1

Letting N = N1 N2 N3, the behavior of K depends on whether or not

VN
el

Oscillatory case. Suppose (12.1) holds for some ¢ > 0. By Lemma 11.1,
only the case of KT is relevant, in which case we have (recalling (5.4))

(12.1) > T?¢°.

T < ‘ / / Y)q M M MY (Cfg)™
(12.2) lul<q® Jyl<q*

X Z(u1 — iy, ug — iy, uz — iy, uq + iy)dudy|,

plus a small error term, where M = M; M M3. Here we initially take Re(u;) =
1+¢ for all j. According to Lemma 8.1, write Z = Zy+ Z;. For Zy, we keep the
lines at 1 + ¢, while for Z; we move them to 1/2 + e. By the decay properties
of F', the horizontal contour integrals arising from these contour shifts are small
(< ¢ say), and we will not mention them further. Thus we obtain

OT (MO YO 1) < 12(G 4 1),

(12.3) TH<
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using that KT is very small unless M =< /N in this oscillatory case. Since
CT? « N2 <« (¢qT)%?*¢ (from (12.1) and (4.8)), we have T+ < T¢° (using
T < ¢" for some n > 0 small).

Non-oscillatory case. The method of estimation is similar in the case that
@ < T?¢°, but we use Lemma 11.2 in place of Lemma 11.1. From the terms
with m; < M;, we obtain that the contribution to T+ is

NT O\ u
< =3 ‘/ f(t)/ M?IM;QM? <7> 4
Cq |t|<qs+P lu|<T2qe q
F
(11:) Z(uy —it, ug — it, uz — it, uy + it)dudt|,
q

where P = M/C'. By the large sieve-like bound (8.1), we have that the con-
tribution to the above from Z;, say 7'1i, satisfies the bound

c —_— 1+ — )7~
7?[<< C3q V4 a ( + )

VC

In this case, M <. %qu , and so this bound becomes

N
(12.4) T <. q€T3(\g +1) < T°¢.

Next consider the contribution from Zj, say 76%. If P> ¢° for some ¢ > 0,
then we may assume f is supported on [t| < P, and we shift the contours to
the (1/2+ €)-line. No poles are crossed during this procedure since they occur
at height ¢, and the horizontal integrals arising from this contour shift are
negligible since F' is small at this height. By the final sentence of Lemma 8.1,
the bound we obtain on 75 is no worse than the bound on 7;* given in (12.4).

Finally, consider the case P <. ¢, that is, M <. C¢®. Here we keep the
contours at the (1 + ¢)-line, giving

3
Too <e (]g]‘fﬂqa < ](\;ZQ q = T?’ggqa < T2q2te,
using (4.8), which is <. ¢° taking n < 1/13 in (11.1).

The cases with some m; = 0. We will estimate 76i by trivial bounds. By
Lemma 11.3, K(my, mg, ms,c) is very small in this case, unless we are in the
non-oscillatory situation (11.6).

Using Lemma 11.3, we deduce

TN
(12.5) T35 <. oz Y Y GO, ma,maiqr), M=

r=<C/qmimam3z=0
Imj|<e M;

plus a small error term. Recall the bound (6.9), and that G(m1,ma, ms,qr) =0
if (mq,7) # 1.
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First consider the terms with m3 = 0 and my, ms # 0. Their contribution
o (12.5) is
TN C

¢ N;
12.6 A VN VA I T3¢°
(12.6) <e g Ml < 2q<< :

using (4.8). The case with mg = 0 and mq,ms # 0 is essentially identical to
the previous case, but the case with m; = 0 and ms, m3 # 0 is slightly different
because of the condition (mq,r) = 1. The r-sum collapses to r = 1, and this
sum is even smaller than that appearing in the previous cases (essentially, the
factor % may be improved to 1).

Next consider the terms with two m; = 0, the hardest one being mo =
m3 = 0. Compared to (12.6), the difference is that the factor Ms is replaced
by q, leading to the bound

1>
<. TCNCMlng < TN203 g fx/?
Using Y7 YN <. T2¢F and NoN; <. (qT)%*+¢ (recall (4.8)) shows this is <. T%¢°.
If my is one of the two m;’s equal to zero, then the numerology changes enough
to be worthy of mention. (We no longer have N1 N3 <. (Tq)?*¢, but on the
other hand the r-sum collapses, so we may assume C' < ¢ since ¢ = qr < C.)
Say m1; = mz = 0 and mg # 0. Then the contribution of these terms to ’76i is

TN q° TN TN1N3 5
<<E 02 qM2C 03 MQQ 02 q{5 << T 67
where we used % =1, My < qu ,and N1N3 < N <« C?T*¢¢
Finally, the terms of 7? with m; = mg = mg = 0 (hence r = 1, C < q)
are bounded by

TN q 5
<e oz Cq€<<T q.

This completes the proof of Theorem 1.1.

13. Sketch of proof of Theorems 1.2 and 1.5

In this section, we outline what changes are needed to prove Theorem 1.2.
The problem is arithmetically identical to the proof of Theorem 1.1, but the
Archimedean aspects are different. Recall we have assumed that T > ¢" for
some small but fixed n > 0.

The first change is that instead of using ho(t) defined by (4.1), we take

ho(t) = — &
0= o () " cosh (5T)°
as in [Youl7, §4], where A = T¢ for some ¢ > 0. A more precise version

of Lemma 10.1 is developed in [Youl7, §5], showing that Vj(y,t) has an as-
ymptotic expansion with leading term of the form W;(#;), where Wi and




THE WEYL BOUND FOR DIRICHLET L-FUNCTIONS 481

Wy are fixed smooth weight functions, satisfying kaj(k) (z) <a (L+|z)~4
for all A > 0. The analogs of the estimates for J* appear as [Youl7, Lem.
7.1, 7.2], while the crucial integral representations of K(mj,mo, ms,c) are
treated in [Youl7, Lem. 8.1] in place of those covered in Section 11. Note that
n [Youl7, (8.5)], the contours were set at Re(y) = Re(u) = 0. To accom-
modate more general choices of contour, the formula [Youl7, (8.4)] should be
updated to state

03/2AT(N1N2N3)1/266(—m1m2m3)
(My My Ms)'/?

K+(m1,m2,m3,c) = L(m17m27m3yc)a

plus a small error term, where

1 mi1mom, 1y
L(ma,ma, m3, c) = / / F(u; y)(M)
4 lu|<(qT)= J |y|l<U c

() () (M) (9

where V =T and

. T*C
~ (N1NaN3)1/2
Moreover, L vanishes (i.e., K is very small) unless
N1 N, N3)1/2 N1 Ny N3)1/2
C <<5 ( 1A12_€;3 and MJ = ( ! ]2\[ 3) 7j - 17273'
j

The formula for K~ can be adapted in a similar way, but we leave out the
details for brevity.

Now if we follow along the details of the Oscillatory case from Section 12,
we obtain that the contribution to 7+ from these terms is (in place of (12.2))

AT

+
|T ‘<< 01/2M1/2V

/ / P y)q™ " MY My ML (C )™
luj<gs Jy|l<U

x Z(“’l — 1y, u2 — 1y, u3 — 1y, us + Zy)dUdy )

plus a small error term. We decompose Z as Zy + Z1, and for Z1, we shift the
contour to the (1/2 4 ¢)-lines, giving that its contribution to 7+ is

1 AT U \/ 3/2 E
01/2M1/2 V \[

Using % <. A717¢ shows this term is <, T'*¢, which is the bound required
for Theorem 1.2. Next we turn to Zy. For this term, it is helpful to point
out that in fact F(u;y) is very small unless |y| < U, which was a property
that was not stated in [Youl7, Lem. 8.1], but was developed in the proof
(see [Youl7, p.1569]). This shows that if U > T¢ for some ¢ > 0, then in
the estimation of Zy we can shift the contours to the (1/2 + ¢)-lines without
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crossing poles. The bound obtained on Zj is no larger than the one obtained
on Z;. If U <. T¢, then we keep the contours at the (1 + ¢)-lines, giving that
their contribution to 7% is
AT
<e qC’l/2M1/2V

which is stronger than the bound obtained on 7.

CTE < q—1/2A1/2T1+6

The Non-oscillatory case is similar, and we omit the details for brevity.

Finally, we need to consider the terms where some m; = 0. These cases
were overlooked in [Youl7], so we take this opportunity to correct this omis-
sion. The first claim is that Kt (mq, ma, m3,c) is very small if some m; = 0.
This follows from the fact that BT (z) (the analog of J*(z,)) is very small
unless >, AT'~¢ in which case it has an asymptotic expansion of the form
% cos(x+¢(z,T)), where ¢p(z,T) = —2T2%/x+- - -. Then repeated integration
by parts in the ¢; variable (where m; = 0) shows that K is small. Therefore,
it suffices to consider K~. We claim that if some m; = 0, then

(13.1) K™ (my,mg,ms3,c) <. ANT®.

The trivial bound arising from [Youl7, Lem. 7.2] would give a bound of the
form NT, so (13.1) saves a factor of T'/A over this. We now prove the claim.
According to [Youl7, (7.3)], we have

B (x) = AT/ cos(x sinh v)e?T g(Av)dv + O4(T~4),
lu|<A=i+e

where gU)(z) <4 (1 + |z|)~ for all A > 0. Moreover, B~ (z) is very small

unless x < T. Here B~ (z) is the analog of J~ (z,-). To fix the notation, say

ms3 = 0. (The cases with m; = 0 or mg = 0 are identical.) Then the t3-integral

inside the definition of K~ takes the form

o 4dm\/titat
/ w(ts, ) cos (u sinh v) dts,

o c

where w(ts,-) is supported on t3 =< N3, and satisfies té%w(tg, ) < 1. Re-
3

peated integration by parts (see [BKY13, Lem. 8.1]) therefore shows that

K~ (my,mga, ms, c) is very small unless

VN

7|U‘ <¢ T=.

On the other hand, we also know K~ is very small unless x =< g =T, soinside

the definition of K~ we may further restrict v by |v| <. T~!T¢. The trivial

bound on K~ now leads to (13.1). An integration by parts argument in the

t1,ts variables shows that K~ (m1,m2,0,c) is very small unless |m;| <. %Ta
J

for j =1,2.
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At this point, we carry through the same argument used in Section 12,
using (6.9) as before, but using (13.1) in place of Lemma 11.3. As a repre-
sentative sample, consider the contribution from mg = 0, mq, my # 0. These

terms give
1 AN AN;
771"8 T&.
< CvN Cq Z Z Z (m2,q)(m3,q) < 2T

- C C C
= 1§|ml|<<5N—1T5 1§|m2\<<5N—2TE

using C =< g Since N3 <. (¢T)?*, this is <. AT, which is the bound
required for Theorem 1.2. Similar arguments may be used to treat the other
terms with mimeomg = 0, and we leave the details to the diligent reader.

The proof of Theorem 1.2 is now complete. O

Finally, we discuss the proof of Theorem 1.5. The framework of [Youl7]
placed both the Maass forms and holomorphic forms on an equal footing, and
so the proof of the hybrid bound (1.8) is now essentially identical to that of
Theorem 1.2. In order to derive the bound (1.7), one may adapt the material
from Section 10. It is not difficult to prove an analogous version of Lemma 10.1.
(The use of Stirling’s formula is slightly different.) The use of the Bruggeman-
Kuznetsov formula will then be replaced by the Petersson formula and Poisson
summation over k (see [Iwa97, pp. 85, 86]). One can then derive properties of
the resulting weight functions that are analogous to those of J* presented in
Sections 10.2 and 10.3. The properties of K+ derived in Section 11 then carry
over with minimal changes, and the final steps of Section 12 then proceed in
the same fashion as in the proof of Theorem 1.1.
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