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Uniqueness of two-convex closed ancient
solutions to the mean curvature flow

By Sigurd Angenent, Panagiota Daskalopoulos, and Natasa Sesum

Abstract

In this paper we consider the classification of closed non-collapsed an-

cient solutions to the Mean Curvature Flow (n ≥ 2) that are uniformly

two-convex. We prove that they are either contracting spheres or they

must coincide up to translations and scaling with the rotationally symmet-

ric closed ancient non-collapsed solution first constructed by Brian White,

and later by Robert Haslhofer and Or Hershkovits.
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1. Introduction

In this paper we consider closed non-collapsed ancient solutions F (·, t) :

Mn → Rn+1 to the mean curvature flow (n ≥ 2)

(1.1)
∂

∂t
F = −H ν

for t ∈ (−∞, 0), where H is the inward mean curvature of Mt := F (Mn, t) and

ν is the outward unit normal vector. We know by Huisken’s result [14] that

compact convex surfaces Mt will contract to a point in finite time.

The main focus of the paper is the classification of two-convex closed

ancient solutions to mean curvature flow, i.e., solutions that are defined for

t ∈ (−∞, T ) for some T < +∞. Ancient solutions play an important role in

understanding the singularity formation in geometric flows, as such solutions

are usually obtained after performing a blow-up near points where the cur-

vature is very large. In fact, Perelman’s famous work on the Ricci flow [17]

shows that the high curvature regions in 3D Ricci flow are modeled on ancient

solutions that have non-negative curvature and are κ-non-collapsed. Similar

results for mean curvature flow were obtained in [13], [20], [21] assuming mean

convexity and embeddedness.

Daskalopoulos, Hamilton and Sesum previously established the complete

classification of ancient compact convex solutions to the curve shortening flow

in [8] and ancient compact solutions to the Ricci flow on S2 in [9]. The higher

dimensional cases have remained open for both the mean curvature flow and

the Ricci flow.

In [18] W. Sheng and X. J. Wang introduced the following notion of non-

collapsed solutions to the MCF, which is the analogue to the κ-non-collapsing

condition for the Ricci flow discussed above. Furthermore, in [19] Xu-Jia Wang

provided a number of results regarding the asymptotic behavior of ancient

solutions, as t→ −∞, and he also constructed new examples of ancient MCF

solutions.

Definition 1.1. Let Kn+1 ⊂ Rn+1 be a domain whose boundary is a

smooth mean convex hypersurface Mn. We say that Mn is α-non-collapsed

if for every p ∈ Mn, there are balls B1 and B2 of radius at least α
H(p) such

that B̄1 ⊂ Kn+1 and B̄2 ⊂ Rn+1 \ Int(Kn+1), and such that B1 and B2 are
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tangent to Mn at the point p, from the interior and exterior of Kn+1, respec-

tively. (In the limiting case H(p) ≡ 0, this means that Kn+1 is a halfspace.) A

smooth mean curvature flow {Mt} is α-non-collapsed if Mt is α-non-collapsed

for every t.

In [1] Andrews showed that the α-non-collapsedness property is preserved

along mean curvature flow; namely, if the initial hypersurface is α-non-collapsed

at time t = t0, then evolving hypersurfaces Mt are α-non-collapsed for all later

times for which the solution exists. Haslhofer and Kleiner [13] showed that

every closed, ancient, and α-non-collapsed solution is necessarily convex.

In recent breakthrough works, Brendle and Choi [7], [6] gave the complete

classification of non-compact ancient solutions to the mean curvature flow that

are both strictly convex and uniformly two-convex. More precisely, they show

that any non-compact and complete ancient solution to mean curvature flow

(1.1) that is strictly convex, uniformly two-convex, and non-collapsed is the

Bowl soliton, up to scaling and ambient isometries. Recall that the Bowl

soliton is the unique rotationally-symmetric, strictly convex solution to mean

curvature flow that translates with unit speed. It has the approximate shape

of a paraboloid, and its mean curvature is largest at the tip. The uniqueness

of the Bowl soliton among non-collapsed and uniformly two-convex translating

solitons was established by Haslhofer in [11].

While the α-non-collapsedness property for mean curvature flow is pre-

served forward in time, it is not necessarily preserved going back in time.

Indeed, Xu-Jia Wang [19] exhibited examples of ancient compact convex mean

curvature flow solutions {Mt | t < 0} that are not uniformly α-non-collapsed

for any α > 0. Such solutions lie in slab regions. The methods in [19] rely on

the level set flow. Recently, Bourni, Langford and Tinaglia [5] provided a de-

tailed construction of the Xu-Jia Wang solutions by different methods, showing

also that the solution they construct is unique within the class of rotationally

symmetric mean curvature flows that lie in a slab of a fixed width. In the

present paper we will not consider these ancient collapsed solutions and will

focus on the classification of ancient closed non-collapsed mean curvature flows.

Ancient self-similar shrinking solutions to MCF are of the form Mt =√
T − t M̄ for some fixed surface M̄ and some “blow-up time” T . We rewrite

a general ancient solution {Mt : t < T} as

(1.2) Mt =
√
T − t M̄τ , τ := − log(T − t).

Haslhofer and Kleiner [13] proved that every closed ancient non-collapsed

mean curvature flow with strictly positive mean curvature sweeps out the whole

space. By Xu-Jia Wang’s result [19], it follows that in this case the backward

limit as τ → −∞ of the type-I rescaling M̄τ of the original solution Mt, de-

fined by (1.2), is either a sphere or a generalized cylinder Rk × Sn−k of radius
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2(n− k). In [3] we showed that if the backward limit is a sphere, then the

ancient solution {Mt} has to be a family of shrinking spheres itself. Note that

in [13] it has been shown that if a closed ancient non-collapsed solution is self-

similar, then it has to be the round sphere. Hence, we introduce the following

definition.

Definition 1.2. We say an ancient mean curvature flow {Mt : −∞< t < T}
is an Ancient Oval if it is compact, smooth, non-collapsed, and not self-similar.

Definition 1.3. We say that an ancient solution {Mt : −∞ < t < T} is

uniformly two-convex if there exists a uniform constant β > 0 so that

(1.3) λ1 + λ2 ≥ βH for all t < T.

Throughout the paper we will be using the following observation: if an

Ancient Oval Mt is uniformly two-convex, then by results in [19], the backward

limit of its type-I parabolic blow-up must be a shrinking round cylinder R×Sn−1,

with radius
√

2(n− 1).

Based on formal matched asymptotics, Angenent [2] conjectured the exis-

tence of an Ancient Oval, that is, of an ancient solution that for t→ 0 collapses

to a round point, but for t→ −∞ becomes more and more oval in the sense that

it looks like a round cylinder R×Sn−1 in the middle region, and like a rotation-

ally symmetric translating soliton (the Bowl soliton) near the tips. A variant

of this conjecture was proved already by White in [21]. By considering convex

regions of increasing eccentricity and using limiting arguments, White proved

the existence of ancient flows of compact, convex sets that are not self-similar.

Haslhofer and Hershkovits [12] carried out White’s construction in more detail,

including, in particular, the study of the geometry at the tips. As a result they

gave a rigorous and simple proof for the existence of an Ancient Oval.

Our main result in this paper is as follows.

Theorem 1.4 (Uniqueness of Ancient Ovals). Let {Mt, −∞ < t < T} be

a uniformly two-convex Ancient Oval. Then it is unique up to rotation, scaling

and translation in time, and hence it must be the solution constructed by White

in [21] and later by Haslhofer and Hershkovits in [12].

An immediate consequence of our Theorem 1.4 and the definition of An-

cient Ovals is the following classification result.

Theorem 1.5. Let {Mt, −∞ < t < T} be an ancient mean curvature

flow that is compact, uniformly two-convex and non-collapsed. Then, it is

either the contracting spheres or the solution constructed by White in [21] and

later by Haslhofer and Hershkovits in [12].
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The proof of Theorem 1.4 will follow from the two Theorems 1.6 and 1.7

stated below.

Theorem 1.6 (Rotational symmetry of Ancient Ovals). If {Mt : −∞ <

t < 0} is an Ancient Oval that is uniformly two-convex, then it is rotationally

symmetric.

Our proof of Theorem 1.6 closely follows the arguments by Brendle and

Choi in [7], [6] on the uniqueness of strictly convex, non-compact, uniformly

two-convex, and non-collapsed ancient mean curvature flow. It was shown

in [7] that such solutions are rotationally symmetric. Then, by analyzing the

rotationally symmetric solutions, Brendle and Choi showed that such solutions

agree with the Bowl soliton.

Given Theorem 1.6, we may assume in our proof of Theorem 1.4 that any

Ancient OvalMt is rotationally symmetric. After applying a suitable Euclidean

motion we may assume that its axis of symmetry is the x1-axis. Then, Mt can

be represented as

(1.4) Mt =
{

(x, x′) ∈ R× Rn : −d1(t) < x < d2(t), ‖x′‖ = U(x, t)
}

for some function ‖x′‖ = U(x, t), and from now on we will set x = x1 and

x′ = (x2, . . . , xn+1). We call the points (−d1(t), 0) and (d2(t), 0) the tips of

the surface. The function U(x, t), which we call the profile of the hypersurface

Mt, is only defined for x ∈ [−d1(t), d2(t)]. Any surface Mt defined by (1.4) is

automatically invariant under O(n) acting on R×Rn. Convexity of the surface

Mt is equivalent to concavity of the profile U ; i.e., Mt is convex if and only if

Uxx ≤ 0.

A family of surfaces Mt defined by ‖x′‖ = U(x, t) evolves by mean curva-

ture flow if and only if the profile U(x, t) satisfies

(1.5)
∂U

∂t
=

Uxx
1 + U2

x

− n− 1

U
.

If Mt satisfies MCF, then its parabolic rescaling M̄τ defined by (1.2) evolves

by the rescaled MCF

ν · ∂F̄
∂τ

= −H + 1
2 F̄ · ν,

where F̄ (x, τ) = eτ/2F (x, T − e−τ ) is the parametrization of M̄τ , and ν =

ν(x, τ) is the corresponding unit normal. Also,

(1.6) M̄τ = {(y, y′) ∈ R× Rn | −d̄1(τ) ≤ y ≤ d̄2(τ), ‖y′‖ = u(y, τ)}

for a profile function u, which is related to U by the parabolic rescaling

U(x, t) =
√
T − t u(y, τ), y =

x√
T − t

, τ = − log(T − t).
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The points (−d̄1(τ), 0) and (d̄2(τ), 0) are referred to as the tips of rescaled

surface M̄τ . Equation (1.5) for U(x, t) is equivalent to the following equation

for u(y, τ):

(1.7)
∂u

∂τ
=

uyy
1 + u2

y

− y

2
uy −

n− 1

u
+
u

2
.

It follows from the discussion above that our most general result (1.4) re-

duces to the following classification under the presence of rotational symmetry.

Theorem 1.7 (Uniqueness of O(n)-invariant Ancient Ovals). Let (M1)t
and (M2)t, −∞ < t < T , be two O(n)-invariant Ancient Ovals with the same

axis of symmetry. Then, they are the same up to translations along the axis

of symmetry, translations in time and parabolic rescaling.

Our proof of Theorem 1.7 relies on our previous result [3], which we state

below for the reader’s convenience.

Theorem 1.8 (Angenent, Daskalopoulos, Sesum in [3]). Let {Mt} be any

O(1) × O(n) invariant Ancient Oval. Then the solution u(y, τ) to (1.7) has

the following asymptotic expansions :

(i) For every M > 0,

u(y, τ) =
»

2(n− 1)
(

1− y2 − 2

4|τ |

)
+ o(|τ |−1), |y| ≤M

as τ → −∞.

(ii) Define z := y/
√
|τ | and ū(z, τ) := u(z

√
|τ |, τ). Then,

lim
τ→−∞

ū(z, τ) =
»

(n− 1) (2− z2)

uniformly on compact subsets in |z| <
√

2.

(iii) Denote by pt any of the two tips of Mt ⊂ Rn+1, and define for any t∗ < 0

the rescaled flow at the tip

M̃t∗(t) = λ(t∗)
{
Mt∗+tλ(t∗)−2 − pt∗

}
,

where

λ(t) := H(pt, t) = Hmax(t) =
»

1
2 |t| log |t|

(
1 + o(1)

)
.

Then, as t∗ → −∞, the family of mean curvature flows M̃t∗(·) converges

to the unique unit speed Bowl soliton, i.e., the unique convex rotationally

symmetric translating soliton with velocity one.

In [3] we proved this theorem with the additional assumption that the

solutions are reflection symmetric (i.e., they were O(1) × O(n) invariant). In

Appendix 9 we show how to remove the assumption of reflection symmetry.
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Finally, in Appendix 10 we recall that for non-collapsed convex hypersurfaces,

the intrinsic and extrinsic distances are equivalent.

In previous classifications of ancient solutions to mean curvature flow and

Ricci flow, [8], [9], [7], [6], an essential role in the proofs was played by the

fact that all such solutions were either given in closed form or that they were

solitons. The techniques in our current work overcome such a requirement and

potentially can be used in many other parabolic equations and particularly in

other geometric flows. To our knowledge, our work and the recent work by

Bourni, Langford and Tinaglia [5] are the first classification results of geomet-

ric ancient solutions where the solutions are not given in closed form and they

are not solitons. Let us also point out that our current techniques are remi-

niscent of the significant work by Merle and Zaag in [16] which has provided

an inspiration for us.

The outline of the proof of Theorem 1.4 is as follows. In Section 2 we prove

Theorem 1.6. Once we know our Ancient Oval is rotationally symmetric, we

devote the rest of the paper to the proof of Theorem 1.7. In Section 3 we

give a detailed outline of the proof of Theorem 1.7. We prove various a priori

estimates for a solution to (1.7) in Section 5. In Sections 6 and 7, we consider

the difference of two solutions and prove coercive estimates with respect to ap-

propriately chosen weights in the cylindrical region and tip region respectively.

Finally in Section 8 we discuss how to combine those two estimates together

to conclude the proof of Theorem 1.4. In Section 9 we show that the asymp-

totics showed in Theorem 1.8 in [3] hold under the assumption on rotational

symmetry, that is, O(n)-symmetry only rather than O(1)×O(n)-symmetry.

Acknowledgements. The authors are indebted to S. Brendle for many use-

ful discussions regarding the rotational symmetry of ancient solutions. The au-

thors are indebted to the referees for many useful comments. P. Daskalopoulos

thanks the NSF (grant DMS-1600658) and the Simons Foundation. N. Sesum

thanks the NSF (grant DMS-1056387) and the Simons Foundation.

2. Rotational symmetry

The main goal in this section is to prove Theorem 1.6. Our proof of

Theorem 1.6 follows closely the arguments of the recent work by Brendle and

Choi [7], [6] on the uniqueness of strictly convex, uniformly two-convex, non-

compact and non-collapsed ancient solutions of mean curvature flow in Rn+1.

It was shown in [7] and [6] that such solutions are rotationally symmetric. Then

by analyzing the rotationally symmetric solutions, Brendle and Choi showed

that such solutions agree with the Bowl soliton. For the reader’s convenience

we state their result next.
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Theorem 2.1 (Brendle and Choi [7], [6]). Let {Mt : t ∈ (−∞, 0)} be a

non-compact ancient mean curvature flow in Rn+1 that is strictly convex, non-

collapsed, and uniformly two-convex. Then Mt agrees with the Bowl soliton,

up to scaling and ambient isometries.

In the proof of Theorem 1.6 we will use both the key results that led to

the proof of the main theorem in [6] (see Propositions 2.5 and 2.6 below) and

the uniqueness result as stated in Theorem 2.1.

Before we proceed with the proof of Theorem 1.6, let us recall some stan-

dard notation. Our solution Mt is embedded in Rn+1, for all t ∈ (−∞, T ) and

in the mean curvature flow, time scales like distance squared. We denote by

P(x̄, t̄, r) the parabolic cylinder centered at (x̄, t̄) ∈ Rn+1 × R of radius r > 0

and duration T > 0, namely, the set

P(x̄, t̄, r, T ) := B(x̄, r)× [t̄− T, t̄],
where B(x, r) := {x ∈ Rn+1 : |x − x̄| ≤ r} denotes the closed Euclidean ball

of radius r in Rn+1. If we do not specify the duration T , then we choose the

default value T = r2 that corresponds to parabolic scaling.

Also, following the notation in [15] and [6], we denote by P̂(x̄, t̄, r, T ) the

rescaled by mean curvature parabolic cylinder centered at (x̄, t̄) ∈ Rn+1 ×R of

radius r > 0 and duration T , namely, the set

P̂(x̄, t̄, r, T ) := P(x̄, t̄, ρ̂(x̄, t̄) r, ρ̂(x̄, t̄)2 T ), ρ̂(x̄, t̄) :=
n

H(x̄, t̄)
.

The default value for the duration T is always assumed to be T = r2; therefore

P̂(x̄, t̄, r) := P̂(x̄, t̄, r, r2).

Note that in [15, §7] Huisken and Sinestrari consider parabolic cylinders

with respect to the intrinsic metric g(t) on the solution Mt, which in our case

and in the case of [7] and [6] is equivalent to the extrinsic metric on space-time

that we are considering here. See Appendix 10.

We recall Brendle and Choi’s [6] definition of a mean curvature flow being

ε-symmetric in terms of the normal components of rotation vector fields. In

what follows we identify so(n) with the subalgebra of so(n + 1) consisting of

skew symmetric matrices of the form

J =

ñ
0 0

0 J ′

ô
, with J ′ ∈ so(n).

Thus so(n) acts on the second factor in the splitting Rn+1 = R × Rn. Any

J ∈ so(n+ 1) generates a vector field on Rn+1 by ~v(x) = Jx. If Φ(x) = Sx+ p

is a Euclidean motion, with p ∈ Rn+1 and S ∈ O(n+ 1), then the pushforward

of the vector field ~v(x) = Jx under Φ is given by

Φ∗~v(x) = dΦx · ~v(Φ−1x) = SJS−1(x− p).
Any vector field of this form is a rotation vector field.
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Definition 2.2. A collection of vector fields K := {Kα | 1 ≤ α ≤ 1
2n(n−1)}

on Rn+1 is a normalized set of rotation vector fields if there exist an orthonor-

mal basis {Jα | 1 ≤ α ≤ 1
2n(n−1)} of so(n) ⊂ so(n+1), a matrix S ∈ O(n+1),

and a point q ∈ Rn+1 such that

Kα(x) = SJαS
−1(x− q).

Definition 2.3. Let Mt be a solution of mean curvature flow. We say that

a point (x̄, t̄) is ε-symmetric if there exists a normalized set of rotation vector

fields K(x̄,t̄) = {K(x̄,t̄)
α | 1 ≤ α ≤ 1

2n(n − 1)}, such that maxα |Kα|H ≤ 10n

at the point (x̄, t̄) and maxα |〈Kα, ν〉|H ≤ ε in the parabolic neighborhood

P̂(x̄, t̄, 10, 100).

Lemma 4.2 in [6] allows us to control how the axis of rotation of a nor-

malized set of rotation vector fields K(x,t) varies as we vary the point (x, t).

The proof of Theorem 1.6 relies on the following two key propositions

which were both shown in [7] and [6] for dimensions n = 2 and n ≥ 3 respec-

tively. The first proposition is directly taken from [7], [6] (see Theorem 4.4 in

[7], [6]). The second proposition required some adjustments of the arguments

in [7], [6] and hence we present those parts requiring modifications of the proof

below (see Proposition 2.6).

Definition 2.4. A point (x, t) of a mean curvature flow lies on an (ε, L)-

neck if there are a Euclidean transformation Φ : Rn+1 → Rn+1 and a scale

λ > 0 such that

• Φ maps x to (0,
√

2(n− 1), 0, . . . , 0);

• for all τ ∈ [−L2, 0], the hypersurface λ−1Φ
(
Mt+λ2τ

)
is ε-close in C20 in the

ball B(0, L) to the cylinder of length L, radius
√

2(n− 1)(1− τ) and with

the x1-axis as symmetry axis.

Proposition 2.5 (Neck Improvement: Theorem 4.4 in [7], [6]). There

exist a large constant L0 and a small constant ε0 with the following property.

Suppose that Mt is a mean curvature flow, and suppose that (x̄, t̄) is a point in

space-time with the property that every point in P̂(x̄, t̄, L0) is ε-symmetric and

lies on an (ε0, 10)-neck, where ε ≤ ε0. Then (x̄, t̄) is ε
2 -symmetric.

Proof. The proof is given in Theorem 4.4 in [7], [6]. �

The next result will be shown by slight modification of arguments in the

proof of Theorem 5.2 in [6]. The proof of Proposition 2.6 below follows closely

the arguments in [7].

Proposition 2.6 (Cap Improvement [7]). Let L0 and ε0 be chosen as in

the Neck Improvement Proposition 2.5. Then there exist constants L1 ≥ 2L0,

T1 > 0, and ε1 ≤ ε0
2 with the following property. Suppose that {Mt} is a mean
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curvature flow solution defined in P̂(x̄, t̄, L1, T1). Moreover, assume that after

scaling to make H(x̄, t̄) = 1, Mt ∩ B(x̄, L1) is, for t ∈ [t̄ − T1, t̄], ε1-close in

the C20-norm to a piece of a Bowl soliton, and that the tip of the Bowl soliton

lies in P̂(x̄, t̄, 1
2L1, T1). If for some ε ≤ ε0 every point in Mt ∩ B(x̄, L1) with

t ∈ [t̄− T1, t̄] is ε-symmetric, then (x̄, t̄) is ε
2 -symmetric.

Proof. Without loss of generality we may assume t̄=−1 and H(x̄,−1)=1.

The Hessian of the mean curvature around the maximum mean curvature

point in a Bowl soliton is strictly negative definite. Thus, the assumptions in

the proposition imply that if we take ε1 sufficiently small, then we may assume

that the maximum of H(·, t) in B(x̄, L1) ∩Mt is attained at a unique interior

point qt ∈ B(x̄, L1) ∩Mt and also that the Hessian of the mean curvature at

qt is negative definite. Hence, qt varies smoothly in t. We now conclude that

if (x0, t0) ∈ P̂(x̄,−1, L1, T1), then

(2.1)
d

dt
|x0 − qt| < 0 for − 1− T1 ≤ t ≤ −1.

The proof of (2.1) is the same as the proof of Lemma 5.2 in [7].

We claim that there exists a uniform constant s∗ with the property that

every point (x, t) ∈ P̂(x̄,−1, L1, T1) with |x − qt| ≥ s∗ lies on an (ε0, 10)-neck

and satisfies |x − qt|H(x, t) ≥ 1000L0. Indeed, knowing the behavior of the

Bowl soliton, it is a straightforward computation to check that these claims

are true on the Bowl soliton, with a constant, for example, 2000L0. By our

assumption, the part of the solution within P̂(x̄,−1, L1, T1) is ε1-close to the

Bowl soliton and hence the claims are true for our solution as well.

If |x̄ − q−1| ≥ s∗, the proposition follows immediately from the Neck

Improvement Proposition 2.5. Thus, we may assume that |x̄−q−1| ≤ s∗. Then

we have the following claim, in which we abbreviate

θ := 2
1

100 .

Claim 2.7. Suppose that Mt is an ancient solution of mean curvature flow.

Given any positive integer j, there exist large constants Lj , Tj , and a small

constant εj > 0 with the following property: if the parabolic neighborhood

P̂(x̄,−1, Lj , Tj) is εj-close in the C20-norm to a piece of the Bowl soliton that

includes the tip, and every point in P̂(x̄,−1, Lj , Tj) is ε-symmetric, where

ε < εj , then every point (x, t) ∈ P̂(x̄,−1, Lj , Tj) with t ∈ [−θ3j ,−1] and

s∗θ
j ≤ |x− qt| ≤ s∗θj+1 is 2−jε-symmetric.

Proof of Claim 2.7. The proof is by induction on j. If j = 0, the statement

is obviously satisfied. Let us prove that the statement holds for j = 1. For j =

1, we have s∗ ≤ |x− qt| ≤ s∗θ and t ≤ −1, as long as (x, t) ∈ P̂(x̄,−1, L1, T1).

By the above discussion we have that (x, t) lies on an (ε0, 10)-neck and |x−qt| ≥
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1000L0
H(x,t) . This implies L0

H(x,t)≤
θ

1000s∗ and hence P̂(x, t, L0, L
2
0)⊂P̂(x̄,−1, L1, L

2
1)

if we choose L1 sufficiently big compared to s∗. Therefore, every point in

P̂(x, t, L0, L
2
0) is ε-symmetric and lies on an (ε0, 10)-neck (where ε < ε0). By

Proposition 2.5 we conclude (x, t) is ε
2 -symmetric. The same argument works to

show that actually all points (x, t), where |x−qt| ≥ s∗ and −1−T1/2 ≤ t ≤ −1,

as long as |x − x̄| ≤ L1/2, are ε
2 -symmetric. Note that we have to choose L1

and T1 big relative to s∗.

We will now assume that the statement of the claim holds for j − 1 and

prove that it also holds for j. Due to a repeated application of Proposition 2.5

we may assume that P̂(x̄,−1, Lj , Tj) is εj close to a Bowl soliton and that

all points (x, t) such that |x − qt| ≥ θj−1s∗, −1 − Tj/2 ≤ t ≤ −1, as long as

|x̄−x| ≤ Lj/2, are 2−j+1ε-symmetric. Let (x, t) be such that θjs∗ ≤ |x− qt| ≤
θj+1s∗ and −θ3j ≤ t ≤ −1. First, the arguments from above show that every

such point (x, t) lies on an (ε0, 10)-neck. Moreover, we claim that for every

such point (x, t), we have that

P̂(x, t, L0, L
2
0) ⊂ {(y, s) | |y − qs| ≥ θj−1s∗,

− 1− Tj/2 ≤ s ≤ −1, |y − x̄| ≤ Lj/2}.
(2.2)

Indeed, let (y, s) ∈ P̂(x, t, L0, L
2
0). Then by (2.1) and the triangle inequality,

we have

|y − qs| ≥ |y − qt| ≥ |qt − x| − |x− y| ≥ θjs∗ −
L0

H(x, t)
.

By the same discussion as at the beginning of the proof of the claim we have

that

(2.3) θj+1s∗ ≥ |x− qt| ≥
1000L0

H(x, t)

implying that L0
H(x,t) ≤

θj+1s∗
1000 , which shows that |y − qs| ≥ θj−1 s∗, as desired.

We also have s ≥ −1− Tj/2. Indeed, using (2.3) we have

t− θ2(j+1) s2
∗

10002
≤ t− L2

0

H(x, t)2
≤ s ≤ t ≤ −1.

We also have t ≥ −θ3j , and hence −1 ≥ s ≥ −Tj/2 − 1, if we choose Tj
sufficiently big. If Lj is sufficiently big, then |y − x̄| ≤ Lj/2 easily follows.

Finally, (2.2) holds and every point in the set on the right-hand side of the

inclusion in (2.2) is 2−j+1ε - symmetric. By Proposition 2.5 we conclude that

every point (x, t) such that θjs∗ ≤ |x − qt| ≤ θj+1s∗ and −θ3j ≤ t ≤ −1 is

2−jε-symmetric. It is clear from the proof of (2.1) that can be found in [7]

that if we take a bigger parabolic cylinder around (x̄,−1) of size Lj , in order to

still have (2.1) one needs to require that P̂(x̄,−1, Lj , Tj) is εj close to a Bowl

soliton, where εj needs to be taken very small, depending on Lj . �
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In the following, j will denote a large integer, which will be determined

later. Moreover, assume that L ≥ Lj and ε ≤ εj . Using the claim, we conclude

that for every point (x, t) with −θ3j ≤ t ≤ −1 and s∗θ
j ≤ |x − qt| ≤ s∗θ

j+1,

there exists a normalized set of rotation vector fields K(x,t) = {K(x,t)
α | 1 ≤ α ≤

1
2n(n − 1)}, such that maxα |〈K(x,t)

α , ν〉|H ≤ 2−jε on P̄(x, t, 10). Moreover,

since |x− qt| ≥ s∗ implies H(x, t)|x− qt| ≥ 1000L0, we have

max
α
|〈K(x,t)

α , ν〉| ≤ 2−jε

H
≤ θj+12−js∗

1000L0
ε ≤ C 2

j
100
−j ε, j ≥ j0

for a uniform constant C that is independent of j and ε. Lemma 4.3 in [7] allows

us to control how the axis of rotation of K(x,t) varies as we vary the point (x, t).

More precisely, as in [7], if (x1, t1) and (x2, t2) both satisfy −θ3j ≤ ti ≤ −1

and s∗θ
j ≤ |xi − qt| ≤ s∗θj+1, and if (x2, t2) ∈ P̂(x1, t1, 1, 1), then

inf
w∈O(n)

sup
B10r2 (x2)

max
α

∣∣∣∣∣∣∣K(x1,t1)
α −

1
2
n(n−1)∑
β=1

wαβK
(x2,t2)
β

∣∣∣∣∣∣∣ ≤ C2−jr2,

where r2 = H(x2, t2)−1. Hence we can find a normalized set of rotation vector

fields K(j) = {K(j)
α | 1 ≤ α ≤ 1

2n(n − 1)} so that if −θ3j ≤ t ≤ −1 and

s∗θ
j ≤ |x− qt| ≤ s∗θj+1, then,

inf
w∈O(n)

max
α

∣∣∣∣∣∣∣K(j)
α −

1
2
n(n−1)∑
β=1

wαβK
(x,t)
β

∣∣∣∣∣∣∣ ≤ C2−j/2,

at the point (x, t). As in [7] we conclude that maxα |〈K(j)
α , ν〉| ≤ C2−

j
2 ,

whenever −θ3j ≤ t ≤ −1 and s∗θ
j ≤ |x − qt| ≤ s∗θ

j+1. Finally, note that

maxα |〈K(j)
α , ν〉| ≤ C2

j
100 , whenever s∗θ

j ≤ |x− qt| ≤ s∗θj+1 and t = −θ3j .

As in [7], for each α ∈ {1, . . . , 1
2n(n − 1)}, we define a function f

(j)
α :

{(x, t) | t ∈ [−θ3j ,−1], |x− qt| ≤ s∗θj} → R by

f (j)
α := eθ

−2t 〈K
(j)
α , ν〉

H − θ−1
.

The same computation as in [7] implies that by the maximum principle applied

to the evolution of f
(j)
α we get

|f (j)
α (x, t)| ≤ C 2−j/4

in the region

−θ3j ≤ t ≤ −1, s∗θ
j ≤ |x− qt| ≤ s∗θj+1.

Standard interior estimates for parabolic equations give estimates for the higher

order derivatives of 〈K(j)
α , ν〉.
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Hence, if we choose j sufficiently big, then the same reasoning as in [7]

implies (x̄,−1) is ε
2 -symmetric. Having chosen j in this way, we finally define

L1 = Lj and ε1 := εj . Then L1 and ε1 have the desired properties as stated in

Proposition 2.6. �

The goal of the remaining part of this section is to show how we can

employ Propositions 2.5 and 2.6 to prove Theorem 1.6.

Observe that by the crucial work of Haslhofer and Kleiner in [13] we

know that a strictly convex α-non-collapsed ancient solution to mean curvature

flow sweeps out the whole space. Hence, the well-known important result of

X. J. Wang in [19] shows that the rescaled flow, after a proper rotation of

coordinates, converges, as time goes to −∞, uniformly on compact sets, to a

round cylinder of radius
√

2(n− 1).

This has as as a consequence that Mt ∩ B8(n−1)
√
|t| is a neck with radius√

2(n− 1)|t| for t� −1. The complement Mt\B8(n−1)
√
|t| has two connected

components, call them Ωt
1 and Ωt

2, both compact. Thus, for every t, the

maximum of H on Ωt
1 is attained at least at one point in Ωt

1 and similarly

for Ωt
2.

For every t, we define the tip points p1
t and p2

t as follows. Let pkt for

k = 1, 2 be a point such that

|〈F, ν〉(pkt , t)| = |F |(pkt , t) and |F |(pkt , t) = max
Ωtk

|F |(·, t).

Write dk(t) := |F |(pkt , t) for k ∈ {1, 2}.
Throughout the rest of the section we will be using the next observation

about possible limits of our solution around arbitrary sequence of points (xj , tj)

with xj ∈Mtj , tj → −∞ when rescaled by H(xj , tj).

Lemma 2.8. Let Mt, t ∈ (−∞, 0) be an Ancient Oval satisfying the as-

sumptions in Theorem 1.6. Fix a k ∈ {1, 2}. Then for every sequence of points

xj ∈ Mtj and any sequence of times tj → −∞, the rescaled sequence of solu-

tions Fj(·, t) := Qj(F (·, tj + tQ−2
j )− xj), where Qj := H(xj , tj), subconverges

to either a Bowl soliton or a shrinking round cylinder.

Proof. By the global convergence theorem (Theorem 1.12) in [13] we have

that after passing to a subsequence, the flow M j
t converges, as j →∞, to an an-

cient solution M∞t , for t ∈ (−∞, 0], which is convex and uniformly two-convex.

Note that H(0, 0) = 1 on the limiting manifold. By the strong maximum prin-

ciple applied to H we have that H > 0 everywhere on M∞t , where t ∈ (−∞, 0].

Assume the limit M∞t is non-compact. Then, if M∞t is strictly convex, by

the classification result in [7] we have that it is a Bowl soliton. If the limit is

not strictly convex, by the strong maximum principle it splits off a line and

hence it is of the form Nn−1
t ×R, where Nn−1

t is an n− 1-dimensional ancient
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solution. On the other hand, the uniform two-convexity assumption on our so-

lution implies the inequality λmin(Nn−1
t ) ≥ βH(Nn−1

t ) for a uniform constant

β > 0. Thus, Lemma 3.14 in [13] implies that the limiting flow M∞t is a family

of round shrinking cylinders Sn−1 × R.

To complete the proof of the lemma we still need to show the limit M∞t
is non-compact. We argue by contradiction. Assume it is compact, implying

that

lim sup
j→∞

H(xj , tj) diam(Mtj ) <∞

and

lim sup
j→∞

H(xj , tj)
−1 sup

M
H(·, tj) <∞.

Combining these two we obtain lim supj→∞ diam(Mtj ) supM H(x, tj) < ∞.

This, in particula,r implies Mtj cannot contain arbitrarily long necks. On the

other hand, since we know the rescaled flow converges uniformly on compact

sets to a round cylinder, Mtj must contain arbitrarily long necks if j is suf-

ficiently big. Hence we get contradiction, and M∞t must be non-compact as

claimed. �

We will next show that points that are away from the tip points in both

regions Ωk
t , k = 1, 2 are cylindrical.

Lemma 2.9. Let Mt, t ∈ (−∞, 0), be an Ancient Oval satisfying the

assumptions of Theorem 1.6, and fix k ∈ 1, 2. Then, for every η > 0, there

exist L̄ and t0, so that for all x ∈ Ωk
t , the following holds :

(2.4) |x− pkt | ≥
L̄

H(x, t)
=⇒ λmin

H
(x, t) < η.

We may chose L̄ so that (2.4) holds for both k = 1, 2.

Proof. Without loss of generality we may assume that k = 1, and we will

argue by contradiction. If the statement is not true, then there exist Lj →∞
and sequences of times tj → −∞ and points xj ∈Mtj so that

(2.5) |xj − p1
tj | ≥

Lj
H(xj , tj)

and
λmin

H
(xj , tj) ≥ η.

Rescale the flow around (xj , tj) by Qj := H(xj , tj) as in Lemma 2.8, and call

the rescaled manifolds M j
t . Then

(2.6) |0− p̄1
j | ≥ Lj →∞, as j →∞,

where the origin and p̄1
j correspond to xj and tip points p1

tj after rescaling,

respectively. By Lemma 2.8 we have that passing to a subsequence M j
t con-

verges to either a Bowl soliton or a cylinder. Since λmin
H is a scaling invariant
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quantity, (2.5) implies that on the limiting manifold we have λmin
H (0, 0) ≥ η

which immediately excludes the cylinder. Thus the limiting manifold must be

the Bowl soliton.

Let us look next at the tip points p2
tj of our solution that lie on the other

side Ω2
tj and denote by p̄2

j the corresponding points on our rescaled solution.

Then we must have that |0− p̄2
j | ≤ C0 for some constant C0. Otherwise, if we

had that lim supj→+∞ |0 − p̄2
j | → +∞, this together with (2.6), the convexity

of our surface, the fact that the furthest points p1
tj and p2

tj lie on the opposite

side of a necklike piece and the splitting theorem would imply that the limit

of M j
t would split off a line. This and Lemma 2.8 would yield that the limit

of M j
t around (xj , tj) would have been the cylinder that we have already ruled

out. Thus, |0− p̄2
j | ≤ C0, which in terms of our unrescaled solution Mt means

that |xj − p2
tj | ≤

C0
H(xj ,tj)

.

Since xj ∈ Ω1
tj and p2

tj ∈ Ω2
tj , we then have that the whole neck-like region

that divides the sets Ω1
tj and Ω2

tj lies at a distance less than equal to C0
H(xj ,tj)

from xj . This implies that the whole neck-like region has to lie on a compact

set of the Bowl soliton, implying that λmin
H (·, tj) ≥ c0 > 0 holds for some

constant c0, independent of j. This is a contradiction, since on the neck-like

region of our solution the scaling invariant quantity λminH
−1 → 0 as tj → −∞.

The above discussion shows that |x − p1
t | ≥ L

H(x,t) implies that λmin
H (x, t) < η,

thus finishing the proof of the lemma. �

In the following lemma we show that mean curvature of an ancient oval

solution satisfying the assumptions of Theorem 1.6, around the tip points on

Ωk
t , for a fixed k = 1, 2, are uniformly equivalent in a quantitative way.

Lemma 2.10. Let Mt, t ∈ (−∞, 0), be an Ancient Oval satisfying the

assumptions of Theorem 1.6, and fix k = 1, 2. For every L > 0, there exist

uniform constants c > 0, C <∞ and t0 � −1 so that for all t ≤ t0, we have

(2.7) cH(pkt , t) ≤ H(x, t) ≤ C H(pkt , t) if |x− pkt | <
L

H(x, t)
, x ∈ Ωk

t .

We may chose c, C so that (2.7) holds for both k = 1, 2.

Proof. Let us take, without loss of generality, k = 1. First let us show the

estimate from below. Assume the statement is false. This implies there exist

a sequence of times tj → −∞ and a sequence of constants Cj →∞ so that

(2.8) H(p1
tj , tj) ≥ Cj H(xj , tj) ∀ j

for some xj ∈ Ω1
tj such that |xj − p1

tj | <
L

H(xj ,tj)
. Rescale the flow around

(xj , tj) by Qj := H(xj , tj). By the global convergence Theorem 1.12 in [13],

the sequence of rescaled flows subconverges uniformly on compact sets to an
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ancient non-collapsed solution. Points xj get translated to the origin, and

points p1
tj get translated to points p̃1

tj under rescaling. Since by our assumption

we have

|0− p̃1
tj | = H(xj , tj) |xj − p1

tj | < L,

then due to uniform convergence of the rescaled flow on bounded sets we have

Hj(p̃
1
tj , 0) ≤ C, j ≥ j0

for a uniform constant C < ∞, which depends on L, but is independent of j.

This implies

H(p1
tj , tj) ≤ C H(xj , tj), j ≥ j0,

which contradicts (2.8).

To prove the upper bound in (2.7) note that the lower bound in (2.7),

which we have just proved, implies |x− p1
t | ≤ L

H(x,t) ≤
L

cH(p1
t ,t)

. Hence, we can

switch the roles of x and p1
t in the proof above. This ends the proof of the

lemma. �

Remark 2.11. Note that we can choose uniform c > 0 and t0 � −1 so

that the conclusion of Lemma 2.10 holds for both k = 1 and k = 2.

Let ε > 0 be a small number. By our assumption the flow is α-non-

collapsed and uniformly two-convex, meaning that (1.3) holds. By the cylin-

drical estimate ([13], [15]) we can find an η = η(ε, α, β) > 0 so that if the flow

is defined in the normalized parabolic cylinder P̂(x, t, η−1) and if

λ1

H
(x, t) < η,

then the flow Mt is ε-close to a shrinking round cylinder Sn−1 ×R near (x, t).

Being ε-close to a shrinking round cylinder near (x, t) means that after para-

bolic rescaling by H(x, t), shifting (x, t) to (0, 0) and a rotation, the solution

becomes ε-close in the C [ 1
ε
]-norm on P(0, 0, 1/ε) to the standard shrinking

cylinder with H(0, 0) = 1. (See [13] for more details.)

Proposition 2.12. Fix a k ∈ {1, 2}, and let L > 0 be any fixed constant.

Let Mt be an Ancient Oval that satisfies the assumptions of Theorem 1.6. Then

for any sequence of times tj → −∞, and any sequence of points xj ∈ Ωk
tj such

that |xj − pktj | ≤
L

H(xj ,tj)
, the rescaled limit around (xj , tj) by factors H(xj , tj)

subconverges to a Bowl soliton.

In the course of proving this proposition we need the following observation.

Lemma 2.13. For all t � 0, each of the two components Ωj
t of Mt \

B(0,
√

8(n− 1)|t|) contains at least one point at which λmin is not a simple

eigenvalue.
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Proof. Suppose λmin is a simple eigenvalue at each point on Ω1
t . Then the

corresponding eigenspace defines a one dimensional subbundle of the tangent

bundle TMt. Since Mt is simply connected, any one dimensional bundle over

Mt is trivial and thus has a section v : Mt → TMt with v(p) 6= p for all p.

Within the region B̄(0,
√

8(n− 1)|t|) the hypersurfaces Mt are asymptotic in a

C2 sense to a cylinder with radius
√

2(n− 1)|t| (which simply follows from the

fact that within the region B(0,
√

8(n− 1)), the rescaled hypersurfaces M̃τ =
Mt√
|t|

, converge, as τ → −∞ in a C2 sense to a cylinder with radius
√

2(n− 1))

so within this region λmin is a simple eigenvalue, and the eigenvector v(p) will

be transverse to the boundary ∂Ω1
t . We may assume that it points outward

relative to Ω1
t .

The component Ω1
t is diffeomorphic with the unit ball Bn ⊂ Rn, and

under this diffeomorphism the vector field v : Ω1
t → TΩ1

t is mapped to non-zero

vector field ṽ : Bn → Rn, which points outward on the boundary Sn−1 = ∂Bn.

The normalized map v̂ = ṽ/|ṽ| : Sn−1 → Sn−1 is therefore homotopic to

the unit normal, i.e., the identity map id : Sn−1 → Sn−1. Its degree must

then equal +1, which is impossible because v̂ can be extended continuously to

v̂ = ṽ/|ṽ| : Bn → Sn−1. �

Proof of Proposition 2.12. Without any loss of generality take k = 1, and

let L̃ > 0 be an arbitrary fixed constant. Let tj → −∞ be an arbitrary

sequence of times, and let xj ∈ Ω1
tj be an arbitrary sequence of points such

that |xj−p1
tj | ≤

L̃
H(xj ,tj)

. Rescale our solution around (xj , tj) by scaling factors

H(xj , tj). By Lemma 2.8 we know that the sequence of our rescaled solutions

subconverges to either a Bowl soliton or a round shrinking cylinder. If the limit

is a Bowl soliton, we are done. Hence, assume the limit is a shrinking round

cylinder, which is a situation we want to rule out. By Lemma 2.10 we have

that for j large enough, the curvatures H(p1
tj , tj) and H(xj , tj) are uniformly

equivalent. This together with |xj − p1
tj | ≤

L̃
H(xj ,tj)

implies that if we rescale

our solution around points (p1
tj , tj) by factors H(p1

tj , tj), after taking a limit

we also get a shrinking round cylinder.

Since the limit around (p1
tj , tj) is a round shrinking cylinder, for every

ε > 0 there exists a j0 so that for j ≥ j0, we have
λmin(p1

tj
,tj)

H(p1
tj
,tj)

< ε. In the

following two claims, p1
tj ∈ Ω1

tj will be a sequence of the tip points as above,

such that the limit of the sequence of rescaled solutions around (p1
tj , tj) by

factors H(p1
tj , tj) is a shrinking round cylinder.

In the first claim we show that the ratio λmin
H can be made arbitrarily small

not only at points p1
tj , but also at all the points that are at bounded distances

away from them.
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For every ε > 0 and every C0 > 0, there exists a j0 so that for j ≥ j0, we

have

(2.9)
λmin(p, tj)

H(p, tj)
< ε, whenever |p− p1

tj | ≤
C0

H(p, tj)
and p ∈ Ω1

tj .

Proof of the claim. Assume the claim is not true, meaning there exist con-

stants ε > 0, C0 > 0, a subsequence we still denote by tj , and points pj ∈ Ω1
tj

so that

(2.10) |pj − p1
tj | ≤

C0

H(pj , tj)
but

λmin(pj , tj)

H(pj , tj)
≥ ε.

Consider the sequence of rescaled flows around (pj , tj) by factors H(pj , tj).

Lemma 2.8 and the second inequality in (2.10) imply the above sequence sub-

converges to a Bowl soliton. On the other hand, since |pj − p1
tj | ≤

C0
H(pj ,tj)

, by

Lemma 2.10, the curvatures H(pj , tj) and H(p1
tj , tj) are uniformly equivalent.

At the same time, this together with our assumption on (p1
tj , tj) and the

first inequality in (2.10) imply that the sequence, after rescaling around (pj , tj)

by factors H(pj , tj), subconverges to a round shrinking cylinder. Hence, we

get a contradiction. This proves the claim. �

Next we claim that for sufficiently big j, even far away from the tip points

p1
tj we see the cylindrical behavior. Assume L̄ is big enough so that the con-

clusion of Lemma 2.9 holds. The immediate consequence of the Lemma 2.9 is

that for every ε > 0, there exists a j0 so that for j ≥ j0, we have

(2.11)
λmin(p, tj)

H(p, tj)
< ε, whenever p ∈ Ω1

tj and |p− p1
tj | ≥

L̄

H(p, tj)
.

We now continue proving Proposition 2.12. Estimates (2.9), after taking

C0 = L̄ and (2.11), yield for every ε > 0 that there exists a j0 so that for

j ≥ j0,

(2.12)
λmin

H
(p, tj) < ε, on all of Ω1

tj .

By the cylindrical estimate ([15], [13]) we have that for every ε > 0 there exists

a j0 so that for j ≥ j0.

(2.13)
|λp − λq|

H
(p, tj) < ε for all n ≥ p, q ≥ 2, on Ω1

tj .

For small enough ε > 0, the conditions (2.12) and (2.13) imply that λmin is a

simple eigenvalue, hence contradicting Lemma 2.13. This finishes the proof of

Proposition 2.12. �
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Lemma 2.14. Let Mt, t ∈ (−∞, 0), be an Ancient Oval satisfying the

assumptions of Theorem 1.6, and fix k = 1, 2. Then for every ε > 0, there

exist uniform constants ρ0 <∞ and t0 � −1 so that for every t ≤ t0, we have

that P̂(pkt , t, ρ0, ρ
2
0) is ε-close to a piece of a Bowl soliton that includes the tip.

Proof. First of all observe that by Proposition 2.12 it is easy to argue that

for every ε > 0 and any ρ0 <∞, there exists a t0 � −1 so that for t ≤ t0, the

parabolic cylinder P̂(pkt , t, ρ0, ρ
2
0) is ε-close to a piece of a Bowl soliton. The

point of this lemma is to show that we can find ρ0 big enough, but uniform in

t ≤ t0 � −1 so that the piece of the Bowl soliton above includes the tip.

To prove the statement we argue by contradiction. Assume the statement

is not true, meaning there exist an ε > 0, a sequence ρj →∞ and a sequence

tj → −∞ so that P̂(pktj , tj , ρj , ρ
2
j ) is ε-close to a piece of Bowl soliton that does

not include the tip. Rescale the solution around (pktj , tj) by factors H(pktj , tj).

By Proposition 2.12 we know that the rescaled solution subconverges to a

piece of a Bowl soliton. Hence there exists a uniform constant C0 so that the

origin that lies on the limiting Bowl soliton and corresponds after scaling, to the

points (pktj , tj), is at distance C0 from the tip of the soliton (which is the point of

maximum curvature). This implies that there exist points qtj ∈Ωk
tj so that |qtj−

pktj |≤
2C0

H(pktj
,tj)

for j≥j0, with the property that the points qtj converge to the tip

of the Bowl soliton. Furthermore, for sufficiently big j ≥ j0, parabolic cylinders

P̂(pktj , tj , 3C0, 9C
2
0 ) are ε-close to a piece of the Bowl soliton that includes the

tip. This contradicts our assumption that for every j, P̂(pktj , tj , ρj , ρ
2
j ) is ε-close

to a piece of Bowl soliton that does not include its tip. �

Finally we show the crucial, for our purposes, proposition below, which

says that every point on Mt has a parabolic neighborhood of uniform size,

around which it is either close to a Bowl soliton or to a round shrinking cylinder.

Proposition 2.15. Let Mt be an Ancient Oval that is uniformly two-

convex. Let ε0, ε1, L0, L1 be the constants from Propositions 2.5 and 2.6, and

let ε ≤ min{ε0, ε1}. Then, there exists t0 � −1, depending on these constants,

with the following property : for every (x̄, t̄) with x̄ ∈ Mt̄ and t̄ ≤ t0, either

P̂(x̄, t̄, L0, L
2
0) lies on an (ε, 10)-neck or every point in P̂(x̄, t̄, L1, L

2
1) is, after

scaling by H(x̄, t̄), ε-close in the C20-norm to a piece of a Bowl soliton that

includes the tip.

Proof. Recall that as a consequence of Hamilton’s Harnack estimate [10],

our ancient solution satisfies Ht ≥ 0. This implies there exists a uniform

constant C0 so that

(2.14) max
Mt

H(·, t) ≤ C0, t ≤ t0.
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Let ε̄� min{ε0, ε1, L−1
0 }. For this ε̄ > 0, find a δ = δ(ε̄) as in Theorem 1.19 in

[13] (see also [15] for the similar estimate) so that if

(2.15)
λmin

H
(p, t) < δ

and the flow is defined in P̂(p, t, δ−1), then the solution Mt is ε̄-close to a round

cylinder around (p, t), in the sense that a rescaled flow by H(p, t) around (p, t)

is ε̄-close on P(0, 0, ε̄−1) to a round cylinder with H(0, 0) = 1. Take δ > 0 as

in (2.15). For this δ, choose L̄ sufficiently big and t0 � −1 so that Lemma 2.9

holds (after we take η in the lemma to be equal to δ).

Let (x̄, t̄) be such that x̄ ∈Mt̄ and t̄ < t0. Then either x̄ ∈Mt̄∩B8(n−1)
√
|t|,

or x̄ ∈ Ω1
t̄ , or x̄ ∈ Ω2

t̄ . In the first case that has already been discussed above,

for −t̄ sufficiently large, we know that Mt̄ ∩B16(n−1)
√
|t̄| is neck-like and hence

there exists t0 � −1 so that for t ≤ t0,

max
Mt̄∩B16(n−1)

√
|t̄|

λmin

H
< δ,

where δ is as in (2.15). Thus every point x̄ ∈Mt̄∩B8(n−1)
√
|t| has the property

that every point in P̂(x̄, t̄, L0, L
2
0) lies at the center of an (ε, 10)-neck.

We may assume from now on, with no loss of generality, that x̄ ∈ Ω1
t̄ , since

the discussion for x̄ ∈ Ω2
t̄ is equivalent. We either have |x̄− p1

t̄ | ≥
L̄

H(x̄,t̄) , or we

have |x̄ − p1
t̄ | ≤

L̄
H(x̄,t̄) . In the first case, Lemma 2.9 gives that λmin

H (x̄, t̄) < δ.

As discussed above, the cylindrical estimate then implies that the rescaled flow

H(x̄, t̄)(Ft̄+H(x̄,t̄)−2t − x̄) is ε̄-close to the round cylinder with H(0, 0) = 1, in

a parabolic cylinder P(0, 0, ε̄−1). It is straightforward then to conclude that

every point in the normalized cylinder P̂(x̄, t̄, L0, L
2
0) lies on an (ε, 10)-neck,

where we use that L0 � ε̄−1 and ε̄� ε.

Assume now that x̄ ∈ Ω1
t̄ and |x̄−p1

t̄ | ≤
L̄

H(x̄,t̄) . Combining this with Lem-

mas 2.10 and 2.14 yield we can find a sufficiently large but uniform constant

L1 and constant t0 � −1 so that for t̄ ≤ t0, we have that P̂(x̄, t̄, L1, L
2
1) is

ε1-close to a piece of a Bowl soliton that also includes its tip. �

We can now conclude the proof of Theorem 1.6.

Proof of Theorem 1.6. Let L0, L1, ε0, ε1 be chosen so that Propositions 2.5

and 2.6 hold. Let ε̄� ε := min (ε0, ε1). Let t0 � −1 be as in Proposition 2.15

so that for every (x̄, t̄) with x̄ ∈ Mt̄ and t̄ ≤ t0, either P̂ (x̄, t̄, L0) lies on an

(ε̄, 10)-neck (and hence on an (ε0, 10)-neck, since ε̄ ≤ ε0), or every point in

P̂ (x̄, t̄, L1) is, after scaling, ε̄-close in the C20-norm to a piece of the Bowl

soliton that includes the tip (and hence is also ε1 close, since ε̄ ≤ ε1). Note

that the axis of symmetry of this Bowl soliton may depend on the point (x̄, t̄).
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The above implies that every point (x̄, t̄), for x̄ ∈Mt̄ and t̄ ≤ t0, lies in a

parabolic neighborhood of uniform size (after scaling) ε̄ close to a rotationally

symmetric surface (either a round cylinder or a Bowl soliton). Hence, it follows

that if we choose ε̄ sufficiently small relative to ε, then (x̄, t̄) is ε-symmetric

(defined as in Definition 2.3). After applying Propositions 2.5 and 2.6 we then

conclude that (x̄, t̄) is ε
2 -symmetric for all x̄ ∈ Mt̄ and all t̄ ≤ T . Iterative

application of Propositions 2.5 and 2.6 yields that (x̄, t̄) is ε
2j

-symmetric for all

x̄ ∈ Mt̄, t̄ ≤ t0 and all j ≥ 1. Letting j → +∞ we finally conclude that Mt is

rotationally symmetric for all t ≤ t0, which also implies that Mt is rotationally

symmetric for all t ∈ (−∞, 0). �

3. Outline of the proof of Theorem 1.7

Since the proof of Theorem 1.7 is quite involved, in this preliminary section

we will give an outline of the main steps in the proof of the classification result

in the presence of rotational symmetry. Our method is based on a priori

estimates for various distance functions between two given ancient solutions

in appropriate coordinates and measured in weighted L2 norms. We need to

consider two different regions: the cylindrical region and the tip region. Note

that the tip region will be divided in two sub-regions: the collar and the

soliton region. These are pictured in Figure 1 below. In what follows, we will

define these regions, review the equations in each region and define appropriate

weighted L2 norms with respect to which we will prove coercive type estimates

in the subsequent sections. At the end of the section we will give an outline of

the proof of Theorem 1.7.

Let M1(t),M2(t) be two rotationally symmetric ancient oval solutions sat-

isfying the assumptions of Theorem 1.7. Being surfaces of rotation, they are

each determined by a function U = Ui(x, t), (i = 1, 2), which satisfies the

equation

(3.1) Ut =
Uxx

1 + U2
x

− n− 1

U
.

In the statement of Theorem 1.7 we claim the uniqueness of any two

Ancient Ovals up to dilations and translations. In fact since equation (3.1)

is invariant under translation in time, translation in space and also under

parabolic dilations in space-time, each solution Mi(t) gives rise to a three

parameter family of solutions

(3.2) Mαβγ
i (t) = eγ/2 Φα(Mi(e

−γ(t− β))),

where Φα is a rigid motion that is just the translation of the hypersurface along

x axis by value α. The theorem claims the following: given two ancient oval

solutions we can find α, β, γ and t0 ∈ R such that

M1(t) = Mαβγ
2 (t) for t ≤ t0.
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Figure 1. The three regions. The cylindrical region consists of

all points with u1(y, τ) ≥ θ/2; the tip region contains all points

with u1(y, τ) ≤ 2θ and is subdivided into the collar, in which

u1 ≥ L/
√
|τ |, and the soliton region, where u1 ≤ L/

√
|τ |.

The profile function Uαβγi corresponding to the modified solution Mαβγ
i (t) is

given by

(3.3) Uαβγi (x, t) = eγ/2Ui

(
e−γ/2(x− α), e−γ(t− β)

)
.

We rescale the solutions Mi(t) by a factor
√
−t and introduce a new time

variable τ = − log(−t); that is, we set

(3.4) Mi(t) =
√
−t M̄i(τ), τ := − log(−t).

These are again O(n) symmetric with profile function u, which is related to U

by

(3.5) U(x, t) =
√
−t u(y, τ), y =

x√
−t
, τ = − log(−t).

If the Ui satisfy the MCF equation (3.1), then the rescaled profiles ui sat-

isfy (1.7), i.e.,
∂u

∂τ
=

uyy
1 + u2

y

− y

2
uy −

n− 1

u
+
u

2
.

Translating and dilating the original solution Mi(t) to Mαβγ
i (t) has the follow-

ing effect on ui(y, τ):

(3.6) uαβγi (y, τ) =
√

1 + βeτ ui

(
y − αeτ/2√

1 + βeτ
, τ + γ − log

(
1 + βeτ

))
.



UNIQUENESS OF ANCIENT OVALS IN MCF 375

To prove the uniqueness theorem we will look at the difference U1−Uαβγ2 ,

or equivalently at u1 − uαβγ2 . The parameters α, β, γ will be chosen so that

the projections of u1−uαβγ2 onto positive eigenspace (which is spanned by two

independent eigenvectors) and zero eigenspace of the linearized operator L at

the cylinder are equal to zero at time τ0, which will be chosen sufficiently close

to −∞. Correspondingly, we denote the difference U1 − Uαβγ2 by U1 − U2 and

u1−uαβγ2 by u1−u2. What we will actually observe is that the parameters α, β

and γ can be chosen to lie in a certain range, which allows our main estimates

to hold without having to keep track of these parameters during the proof.

In fact, we will show in Section 8 that for a given small ε > 0, there exists

τ0 � −1 sufficiently negative for which we have

(3.7) |α| ≤ εe
−τ0/2

|τ0|
, |β| ≤ ε e

−τ0

|τ0|
, |γ| ≤ ε |τ0|,

and our estimates hold for (u1−uαβγ2 )(·, τ), τ ≤ τ0. This inspires the following

definition.

Definition 3.1 (Admissible triple of parameters (α, β, γ)). We say that

the triple of parameters (α, β, γ) is admissible with respect to time τ0 if they

satisfy (3.7).

We will next define different regions and outline how we treat each region.

3.1. The cylindrical region. For a given τ ≤ τ0 and constant θ positive

and small, the cylindrical region is defined by

Cθ =
{

(y, τ) : u1(y, τ) ≥ θ

2

}
(see Figure 1). We will consider in this region a cut-off function ϕC(y, τ) with

the following properties:

(i) suppϕC b Cθ, (ii) 0 ≤ ϕC ≤ 1, (iii) ϕC ≡ 1 on C2θ.

The solutions ui, i = 1, 2, satisfy equation (1.7). Setting

w := u1 − uαβγ2 and wC := wϕC ,

we see that wC satisfies the equation

(3.8)
∂

∂τ
wC = L[wC ] + E [w,ϕC ],

where the operator L is given by

(3.9) L = ∂2
y −

y

2
∂y + 1

and where the error term E is described in detail in Section 6. We will see that

E [w,ϕC ] = E(wC) + Ē [w,ϕC ],
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where E(wC) is the error introduced due to the non-linearity of our equation

and is given by (6.3) and Ē [w,ϕC ] is the error introduced due to the cut-off

function ϕC and is given by (6.11). (To simplify the notation we have set

u2 := uαβγ2 .)

The differential operator L is a well-studied self-adjoint operator on the

Hilbert space H := L2(R, e−y2/4dy) with respect to the norm and inner product

(3.10) ‖f‖2H =

∫
R
f(y)2e−y

2/4 dy, 〈f, g〉 =

∫
R
f(y)g(y)e−y

2/4 dy.

We split H into the unstable, neutral, and stable subspaces H+, H0,

and H−, respectively. The unstable subspace H+ is spanned by all eigen-

functions with positive eigenvalues. (In this case H+ is spanned by a constant

function equal to ψ0 = 1, which corresponds to eigenvalue 1, and by a linear

function ψ1 = y, which corresponds to eigenvalue 1
2 ; that is, H+ is two dimen-

sional.) The neutral subspace H0 is the kernel of L and is the one dimensional

space spanned by ψ2 = y2−2. The stable subspace H− is spanned by all other

eigenfunctions. Let P± and P0 be the orthogonal projections on H± and H0.

For any function f : R× (−∞, τ0]→ R, we define the cylindrical norm

‖f‖H,∞(τ) = sup
σ≤τ

(∫ σ

σ−1
‖f(·, s)‖2H ds

) 1
2
, τ ≤ τ0,

and we will often simply set

(3.11) ‖f‖H,∞ := ‖f‖H,∞(τ0).

In the course of proving necessary estimates in the cylindrical region we

define yet another Hilbert space D by

D = {f ∈ H : f, fy ∈ H},

equipped with a norm

‖f‖2D =

∫
R
{f(y)2 + f ′(y)2}e−y2/4dy.

We will write

(f, g)D =

∫
R
{f ′(y)g′(y) + f(y)g(y)}e−y2/4dy

for the inner product in D. Similarly as above define the parabolic norm

‖f‖D,∞(τ) = sup
σ≤τ

(∫ σ

σ−1
‖f(·, s)‖2D ds

) 1
2
,

and also set ‖f‖D,∞ = ‖f‖D,∞(τ).
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Denote by D∗ the dual of D. Since we have a dense inclusion D ⊂ H,

we also get a dense inclusion H ⊂ D∗ where every f ∈ H is interpreted as a

functional on D via

g ∈ D 7→ 〈f, g〉.
Because of this we will also denote the duality between D and D∗ by

(f, g) ∈ D×D∗ 7→ 〈f, g〉.

Since H ⊂ D∗, for every f ∈ H we define the dual norm as usual by

‖f‖D∗ := sup{〈f, g〉 : ‖g‖D ≤ 1 },

the dual parabolic norm by

‖f‖D∗,∞(τ) = sup
σ≤τ

(∫ σ

σ−1
‖f(·, s)‖2D∗ ds

) 1
2
,

and for simplicity we set ‖f‖D∗,∞ := ‖f‖D∗,∞(τ0).

In Section 6 we will show a coercive estimate for wC in terms of the error

E[w,ϕC ]. However, as expected, this can only be achieved by removing the

projection P0wC onto the kernel of L, generated by ψ2. More precisely, setting

ŵC := P+wC + P−wC = wC − P0wC ,

we will prove that for any ε > 0, there exist θ > 0 and τ0 � 0 such that the

following bound holds:

(3.12) ‖ŵC‖D,∞ ≤ C ‖E[w,ϕC ]‖D∗,∞,

provided P+wC(τ0) = 0. This estimate is a consequence of the parabolic equa-

tion (3.8). In fact, we will show in Proposition 4.1 that the parameters α, β

and γ can be adjusted so that for wαβγ := u1 − uαβγ2 , we have

(3.13) P+wC(τ0) = 0 and P0wC(τ0) = 0.

Thus (3.12) will hold for such a choice of α, β, γ and τ0 � 0. The condition

P0wC(τ0) = 0 is essential and will be used in Section 8 to give us that wαβγ ≡ 0.

In addition, we will show in Proposition 4.1 that α, β and γ can be chosen to

be admissible according to our Definition 3.1.

The norm of the error term ‖E[w,ϕC ]‖D∗,∞ on the right-hand side of

(3.12) will be estimated in Section 6, Lemmas 6.8 and 6.9. We will show that

given ε > 0 small, there exists a τ0 � −1 such that

(3.14) ‖E[w,ϕC ]‖D∗,∞ ≤ ε
(
‖wC‖D,∞ + ‖wχDθ‖D,∞

)
,

where Dθ := {(y, τ) : θ
2 ≤ u1(y, τ) ≤ θ} contains the support of the derivative

of ϕC . Combining (3.12) and (3.14) yields the bound

(3.15) ‖ŵC‖D,∞ ≤ ε (‖wC‖D,∞ + ‖wχDθ‖H,∞),

holding for all ε > 0 and τ0 := τ0(ε)� −1.
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To close the argument we need to estimate ‖wχDθ‖H,∞ in terms of ‖wC‖D,∞.

This will be done by considering the tip region and establishing an appropriate

a priori bound for the difference of our two solutions there.

3.2. The tip region. The tip region is defined by

Tθ = {(u, τ) : u1 ≤ 2θ, τ ≤ τ0}

(see Figure 1). In the tip region we switch the variables y and u in our two

solutions, with u now becoming an independent variable. Hence, our solutions

u1(y, τ) and uαβγ2 (y, τ) become Y1(u, τ) and Y αβγ
2 (u, τ), where

uj(Yj(u, τ), τ) ≡ u.

Both functions Y1(u, τ), Y αβγ
2 satisfy the equation

(3.16) Yτ =
Yuu

1 + Y 2
u

+
n− 1

u
Yu +

1

2

(
Y − uYu

)
.

By inverting the definition (3.6) of uαβγ , we find that the transformed Y αβγ
2

and Y2 are related by

(3.17) Y αβγ
2 (y, τ) = αeτ/2 +

√
1 + βeτY2

( u√
1 + βeτ

, τ + γ − log(1 + βeτ )
)
.

It follows from (3.16) that the difference W := Y1 − Y αβγ
2 satisfies

(3.18) Wτ =
Wuu

1 + Y 2
1u

+
(n− 1

u
− u

2
+D

)
Wu +

1

2
W,

where

D := −
Y αβγ

2,uu (Y1,u + Y αβγ
2,u )

(1 + (Y1,u)2) (1 + (Y αβγ
2,u )2)

.

Our next goal is to define an appropriate weighted L2 norm

‖W (τ)‖2 :=

∫ θ

0
W 2(u, τ) eµ(u,τ) du

in the tip region Tθ, by defining the weight µ(u, τ). To this end we need to

further distinguish between two regions in Tθ: for L > 0 sufficiently large to

be determined in Section 7, we define the collar region to be the set

Kθ,L :=
{
y | L√

|τ |
≤ u1(y, τ) ≤ 2θ

}
and the soliton region to be the set

SL :=
{
y | 0 ≤ u1(y, τ) ≤ L√

|τ |

}
(see Figure 1).



UNIQUENESS OF ANCIENT OVALS IN MCF 379

The soliton region is the set where our asymptotic result in Theorem 1.8

implies that the solutions Y1 and Y2 are very close to the Bowl soliton (after

rescaling). To see this, we consider in the soliton region the change of variables

(3.19) Yi(u, τ) = Yi(0, τ) +
1√
|τ |

Zi(ρ, τ), ρ := u
»
|τ |

for each of our two solutions Y1 and Y2. The asymptotic description in The-

orem 1.8 (see also Corollary 5.1) implies that as τ → −∞, both Z1(ρ, τ) and

Z2(ρ, τ) converge to the unique rotationally symmetric translating Bowl so-

lution Z0(ρ) with speed
√

2/2. The Bowl profile Z0 is the unique solution

of

(3.20)
Z0ρρ

1 + Z2
0ρ

+
n− 1

ρ
Z0ρ +

1

2

√
2 = 0, Z0(0) = Z ′0(0) = 0.

For large and small ρ, the function Z0(ρ) satisfies

(3.21) Z0(ρ) =

{
−
√

2ρ2/4(n− 1) +O(log ρ) ρ→∞,

−
√

2ρ2/4n+O(ρ4) ρ→ 0.

These expansions may be differentiated (see [4]).

The collar region is the transition region between the cylindrical and the

tip regions. To deal with this region we need to refine our asymptotics in

Theorem 1.8. A crucial part on this is played by the fact that for each profile

u(y, τ), we have (u2)yy ≤ 0, namely, that u2(y, τ) is a concave function in

y. This will be shown in Proposition 5.2. A consequence of this fact is the

estimate in Lemma 5.7 that implies one may regard the term D in (3.18) as

an error term in Kθ,L (since in this region D can be made arbitrarily small for

τ0 � −1 and in addition by choosing L, θ appropriately).

Let us next define our weight eµ(u,τ) du in the tip region by choosing µ(u, τ)

so that it smoothly interpolates between

µ(u, τ) = −1

4
Y 2

1 (u, τ)

for u ≥ θ/2 and

µ(u, τ) = −1

4
Y 2

1 (θ, τ) +

∫ u

θ

n− 1

u

(
1 + Y 2

1,u(u, τ)
)
du

in the region u ≤ θ/4. See (7.2) and (7.3) for the precise definitions. In the

region u ≥ θ/2 this weight matches the Gaussian weight e−y
2/4dy that we use

in the cylindrical region up to lower order factors.

For a function W : [0, 2θ]× (−∞, τ0]→ R, we define the parabolic norms

(3.22) ‖W‖2,∞,τ = sup
τ ′≤τ

1

|τ ′|1/4

ñ∫ τ ′

τ ′−1

∫ 2θ

0
W 2(u, τ) eµ(u,τ) du ds

ô1/2
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for any τ ≤ τ0. We include the weight in time |τ |−1/4 to make the norms

equivalent in the transition region between the cylindrical and the tip region,

as will become apparent in Lemma 8.1. This is due to different rescalings in

the two regions. We will also abbreviate

(3.23) ‖W‖2,∞ := ‖W‖2,∞,τ0 .

Our main estimates in the tip region apply to a localized version of the

difference W . To localize W to the tip region we choose a cut-off function

ϕT (u) with the following properties:

(3.24) (i) suppϕT b Tθ, (ii) 0 ≤ ϕT ≤ 1, (iii) ϕT ≡ 1, on Tθ/2

and define

(3.25) W = Y1 − Y αβγ
2 and WT (u, τ) := W (u, τ)ϕT .

We will see in Section 7 that the following bound holds in the tip region:

(3.26) ‖WT ‖2,∞ ≤
C

|τ0|
‖Wχ[θ,2θ]‖2,∞,

where χ[θ,2θ] is the characteristic function of the interval [θ, 2θ].

3.3. The conclusion. The statement of Theorem 1.7 is equivalent to show-

ing that there exist parameters α, β and γ so that u1(y, τ) = uαβγ2 (y, τ), where

uαβγ2 (y, τ) is defined by (3.6) and both functions, u1(y, τ) and uαβγ2 (y, τ), satisfy

equation (1.7). We set w := u1−uαβγ2 , where (α, β, γ) is an admissible triple of

parameters with respect to τ0, such that (3.13) holds for some τ0 � −1. Now

for this τ0, the main estimates in each of the regions, namely, (3.15) and (3.26)

hold for w. Next, we want to combine (3.15) and (3.26). To this end we need

to show that the norms of the difference of our two solutions, with respect to

the weights defined in the cylindrical and the tip regions, are equivalent in the

intersection between the cylindrical and the tip regions, the so-called transition

region. More precisely, we will show in Section 8 that for every θ > 0 small,

there exist τ0 � 0 and uniform constants c(θ), C(θ) > 0, so that for τ ≤ τ0,

we have

(3.27) c(θ) ‖Wχ
[θ,2θ]
‖H,∞ ≤ ‖wχD2θ

‖H,∞ ≤ C(θ) ‖Wχ
[θ,2θ]
‖H,∞,

where D2θ := {y | θ ≤ u1(y, τ) ≤ 2θ} and χ[θ,2θ] is the characteristic function

of the interval [θ, 2θ].

Combining (3.27) with (3.15) and (3.26) finally shows that in the norm

‖wC‖D,∞, what actually dominates is ‖P0wC‖D,∞. We will use this fact in Sec-

tion 8 to conclude that w(y, τ) := wαβγ(y, τ) ≡ 0 for our choice of parameters

α, β and γ. To do so we will look at the projection a(τ) := P0wC and consider
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the norm

‖a‖H,∞(τ) = sup
σ≤τ

(∫ σ

σ−1
‖a(s)‖2 ds

) 1
2
, τ ≤ τ0

with ‖a‖H,∞ := ‖a‖H,∞(τ0).

By projecting equation (3.8) onto the zero eigenspace spanned by ψ2 and

estimating error terms by ‖a‖H,∞ itself, we will conclude in Section 8 that a(τ)

satisfies a certain differential inequality, which combined with our assumption

that a(τ0) = 0 (which follows from the choice of parameters α, β, γ so that

(3.13) hold) will yield that a(τ) = 0 for all τ ≤ τ0. On the other hand, since

‖a‖H,∞ dominates the ‖wC‖H,∞, this will imply that wC ≡ 0, thus yielding

w ≡ 0, as stated in Theorem 1.7.

Remark 3.2. Note that our evolving hypersurface has O(n) symmetry and

can be represented as in (1.6). Due to asymptotics proved in Theorem 1.8,

when considering the tip region, it is enough to consider our solutions and

prove the estimates only around y = d̄1(τ), where after switching the variables

as in (3.19), we have ρ ≥ 0. There we have Z(ρ, τ) ≤ 0 and Zρ ≤ 0. We

also have Zρρ ≤ 0, due to our convexity assumption. The estimates around

y = −d̄2(τ) are similar.

4. Choice of parameters

Recall that the zero eigenspace of L defined by (3.9) is spanned by the

function ψ2(y) = y2−2 and the positive eigenspace is spanned by the eigenvec-

tors ψ0(y) = 1 (corresponding to eigenvalue 1) and ψ1(y) = y (corresponding

to eigenvalue 1/2).

To prove Theorem 1.7 it turns out it is essential for our proof to have

(4.1) P+w
αβγ
C (τ0) = P0w

αβγ
C (τ0) = 0.

We will next show that for every τ0 � −1, we can find parameters α = α(τ0),

β = β(τ0) and γ = γ(τ0) such that (4.1) holds, and we will also give their

asymptotics relative to τ0. Let us emphasize that we need to be able for every

τ0 � −1 to find parameters α, β, γ so that (4.1) holds, since up to the final

step of our proof we have to keep adjusting τ0 by taking it even more negative

so that our estimates hold. More precisely, we have the following result.

Proposition 4.1. There is a number τ∗ � −1 such that for all τ ≤ τ∗,

there exist b, Γ and A such that the difference wαβγ := u1 − uαβγ2 satisfies

〈ψ0, ϕC w
αβγ〉 = 〈ψ1, ϕC w

αβγ〉 = 〈ψ2, ϕC w
αβγ〉 = 0.

In addition, the parameters α, β and γ can be chosen so that b, Γ and A defined

in (4.5) satisfy

(4.2) |b| = o
(
|τ |−1

)
, |Γ| = o(1) and |A| = o(1), as τ → −∞.
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Equivalently, this means that the triple (α, β, γ) is admissible with respect to τ ,

according to our Definition 3.1.

For vi related to ui by ui =
√

2(n− 1)(1+vi), the corresponding dilations

by (α, β, γ) are given by

vαβγi (y, τ) =
√

1 + β eτ
{

1 + vi

(y − α eτ/2√
1 + βeτ

, τ + γ − log
(
1 + βeτ

))}
− 1.

Simply write v for v1 and v̄ for vαβγ2 .

Our asymptotics in Theorem 1.8 imply that each vi satisfies the following

estimates in the cylindrical region Cθ: for any ε0 > 0 and any number M > 0,

there is a τε0,M < 0 such that

(4.3) vi(y, τ) = −y
2 − 2

4|τ |
+
ε(y, τ)

|τ |
for 0 ≤ y ≤ 2M, τ ≤ τε0,M ,

where ε(y, τ) is a generic function whose definition may change from line to

line, but that always satisfies

(4.4) |ε(y, τ)| ≤ ε0 for 0 ≤ y ≤ 2M, τ ≤ τε0,M .

We will next estimate the first three components of the truncated differ-

ence ϕC(v̄ − v), 〈
ψj , ϕC (v̄ − v)

〉
(j = 0, 1, 2),

where ϕC is the cut-off function for the cylindrical region Cθ. We will show

that the coefficients α, β and γ can be chosen so as to make these components

vanish. Instead of working directly with α, β and γ it will be more convenient

to use

(4.5) b =
√

1 + βeτ − 1, Γ =
γ − log(1 + βeτ )

τ
, A = α eτ/2.

Then

(4.6) v̄(y, τ) = b+ (1 + b) v2

(y −A
1 + b

, (1 + Γ)τ
)
.

Our next goal is to show the following result.

The proof of the proposition will be based on the following estimate.

Lemma 4.2. For every η > 0, there exists τη < 0 such that for all τ ≤ τη ,

and all b,Γ, A ∈ R with

|b| ≤ 1

|τ |
, |Γ| ≤ 1

2
, |A| ≤ 1,
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one has

∣∣∣〈ψ̂0, ϕC(v̄ − v)〉 − b+
A2

4(Γ + 1)|τ |

∣∣∣+
∣∣∣〈ψ̂1, ϕC(v̄ − v)〉 − A

2|τ |(Γ + 1)

∣∣∣
+
∣∣∣〈ψ̂2, ϕC(v̄ − v)〉 − Γ

4(Γ + 1)|τ |

∣∣∣ ≤ η

|τ |
,

(4.7)

where ψ̂j = ψj/〈ψj , ψj〉.

The conditions on b, Γ and A are met if the original parameters α, β and

γ satisfy

|α eτ/2| ≤ 1, |βeτ | ≤ C

|τ |
, |γ| ≤ 1

3 |τ |.

Proof that Lemma 4.2 implies Proposition 4.1. Let η∗ > 0 be given, and

consider the disc

B =
{

(b,Γ, A) | |τ |2b2 + Γ2 +A2 ≤ η2
∗

}
.

On this ball we define the map Φ : B → R3 given by

Φ(b,Γ) =

Ö
|τ |〈ψ̂0, ϕC(v̄ − v)〉
|τ |〈ψ̂1, ϕC(v̄ − v)〉
|τ |〈ψ̂2, ϕC(v̄ − v)〉

è
.

The map Φ is continuous because the solution v̄ depends continuously on the

parameters b,Γ, A.

It follows from (4.7) that if η � η∗ is chosen small enough, and if τ is

restricted to τ < τη, with τη defined as in Lemma 4.2, then the map Φ restricted

to the boundary of the ball B is homotopic to the injective map

(b,Γ, A) 7→
Å
|τ |b− A2

4(Γ + 1)
,

A

2(Γ + 1)
,

Γ

4(Γ + 1)

ã
,

through maps from ∂B to R3 \ {0}. The map Φ from the full ball to R3

therefore has degree one, and it follows that for some (b′,Γ′, A′) ∈ B, one has

Φ(b′,Γ′, A′) = 0. From the definition of the disc B it follows that (b′,Γ′, A′)

satisfies (4.2). �

Proof of Lemma 4.2. By Lemma 5.14 in [3] it follows that our for any

ancient solution u, we have∥∥∥Çu−»2(n− 1) +

√
2(n− 1)

4|τ |
ψ2

å
χsupp(ϕC)

∥∥∥ = o(|τ |−1),
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where χsupp(ϕC) is the characteristic function of suppϕC . Using this we have

that on the support of ϕC ,

(v̄(y, τ)− v(y, τ))ϕC

= b+
2b+ b2

2(1 + Γ)(1 + b)

1

|τ |

+
{

1− 1

(1 + b)

1

(1 + Γ)

}y2 − 2

4|τ |
+

2Ay −A2

4|τ |(Γ + 1)(b+ 1)
+

5ε(y, τ)

|τ |

= b+
2b+ b2

2(1 + Γ)(1 + b)

1

|τ |

+
b+ Γ + bΓ

(1 + Γ)(1 + b)

y2 − 2

4|τ |
+

2Ay −A2

4|τ |(Γ + 1)(b+ 1)
+

5ε(y, τ)

|τ |
,

which holds in the L2 sense, meaning that the
∫
ε(y, τ)2e−

y2

4 dy = o(1) as

τ → −∞. Given the assumptions on b, Γ and A in the statement of Lemma 4.2

we can rewrite this as

(4.8)

(v̄(y, τ)−v(y, τ))ϕC = b− A2

4(Γ + 1)|τ |
+

Γ

Γ + 1

(y2 − 2)

4|τ |
+

Ay

2|τ |(Γ + 1)
+R(y, τ),

holding in the L2-sense, where the remainder R satisfies

(4.9)

Å∫
R(y, τ)2 e−

y2

4 dy

ã 1
2

= o(|τ |−1),

as τ → −∞.

Components of the error. We estimate 〈ψj , ϕC(v̄ − v)〉:〈
ψj , ϕC(v̄ − v)

〉
= 〈ψj , 1〉

(
b− A2

4(Γ + 1)|τ |

)
+ 〈ψj , y〉

A

2(Γ + 1)|τ |

+ 〈ψj , y2 − 2〉 Γ

4(Γ + 1)|τ |
+ 〈ψj , R〉.

In view of the fact that ψ0 = 1, ψ1 = y and ψ2 = y2 − 2, we have

〈ψ0, ϕC(v̄ − v)〉
〈ψ0, ψ0〉

= b− A2

4(Γ + 1)|τ |
+
〈ψ0, R〉
〈ψ0, ψ0〉

and

〈ψ1, ϕC(v̄ − v)〉
〈ψ1, ψ1〉

=
A

2(Γ + 1)|τ |
+
〈ψ1, R〉
〈ψ1, ψ1〉

,

〈ψ2, ϕC(v̄ − v)〉
〈ψ2, ψ2〉

=
Γ

4(Γ + 1)|τ |
+
〈ψ2, R〉
〈ψ2, ψ2〉

.
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We claim that for every η > 0, there exist τη < 0 such that for all τ ≤ τη
one has

(4.10)
∣∣∣〈ψj , R〉∣∣∣ ≤ η

|τ |
.

Indeed, this immediately follows by applying (4.9) and Hölder’s inequality to

|〈ψjR〉| ≤
∫
|ψj ||R|e−

y2

4 dy ≤ C
Å∫

R2e−
y2

4 dy

ã 1
2

.

This concludes the proof of the lemma. �

Remark 4.3 (The choice of parameters (α, β, γ)). We can choose τ0 � −1

to be any small number so that τ0 ≤ τ∗, where τ∗ is as in Proposition 4.1 and

so that all our uniform estimates in previous sections hold for τ ≤ τ0. Note

also that having Proposition 4.1 we can decrease τ0 if necessary and choose

parameters α, β and γ again so that we still have P+wC(τ0) = P0wC(τ0) = 0,

without affecting our estimates. Hence, from now on we will be assuming that

we have fixed parameters α, β and γ at some time τ0 � −1, to have both

projections zero at time τ0. As a consequence of Proposition 4.1, which shows

that the parameters (α, β, γ) are admissible with respect to τ0, we can ensure

all the estimates for w = u1− uαβγ2 will then hold for all τ ≤ τ0, independently

of our choice of (α, β, γ).

5. A priori estimates

Let u(y, τ) be an ancient oval solution of (1.7) that satisfies the asymp-

totics in Theorem 1.8. In this section we will prove some further a priori

estimates on u(y, τ) which hold for τ � −1. These estimates will be used

in the subsequent sections. Throughout this section we will use the notation

introduced in the previous section and in particular the definition of Y (u, τ)

as the inverse function of u(y, τ) in the tip region and Z(ρ, τ) given by (3.19).

Before we start discussing a priori estimates for our solution u(y, τ), we

recall a corollary of Theorem 1.8 that will be used throughout the paper,

especially in dealing with the tip region.

Corollary 5.1 (Corollary of Theorem 1.8). Let Mt be any ancient oval

satisfying the assumptions of Theorem 1.8. Consider the tip region of our so-

lution as in part (iii) of Theorem 1.8, and switch the coordinates around the tip

region as in formula (3.19). Then, Z(ρ, τ) converges, as τ → −∞, uniformly

smoothly to the unique rotationally symmetric translating Bowl solution Z0(ρ)

with speed
√

2/2.

Proof. According to the asymptotic description of the tip-region from [3]

(see part (iii) of Theorem 1.8), the family of hypersurfaces that we get by
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translating the tip of Mt to the origin and then rescaling so that the maximal

mean curvature becomes equal to one, converges to the translating Bowl soliton

with velocity equal to one.

In defining Z(ρ, τ) by

(5.1) Y (u, τ) = Y (0, τ) +
1√
|τ |

Z(ρ, τ)

we have in fact translated the tip to the origin and rescaled the surface Mt, first

by a factor 1/
√
|t| = eτ/2 (the cylindrical rescaling (3.4) that leads to u(y, τ)

or equivalently Y (u, τ)), and then by the factor
√
|τ | from (3.19). These two

rescalings together shrink Mt by a factor
√
|t|/ log |t|. Since by Theorem 1.8

the maximal mean curvature at the tip satisfies

Hmax(t) = (1 + o(1))

 
log |t|
2|t|

,

the hypersurface of rotation given by z = Z(ρ, τ) has maximal mean curvature

Hmax(t) ·
√
|t|/log |t| =

√
2/2 + o(1). It therefore converges to the unique ro-

tationally symmetric, translating Bowl solution Z0(ρ) with speed
√

2/2, which

satisfies equation (3.20). �

Next we prove a proposition that will play an important role in obtaining

the coercive type estimate (3.26) in the tip region.

Proposition 5.2. Let u be an ancient oval solution of (1.7) that satisfies

the asymptotic estimates (i)–(iii) in Theorem 1.8. Then, there exists τ0 � −1

for which we have (u2)yy(y, τ) ≤ 0 for all τ ≤ τ0.

The proof of this proposition will combine a contradiction argument based

on scaling and the following maximum principle lemma.

Lemma 5.3. Under the assumptions of Proposition 5.2, there exists time

τ0 � −1 such that

max
M̄τ

(u2)yy(·, τ) > 0 and τ ≤ τ0 =⇒ d

dτ
max(u2)yy(·, τ) ≤ 0.

Proof. For the proof of this lemma, it is more convenient to work in the

original scaling (x,t,U(x,t)) (see equation (1.5)) that is related to (y,τ,u(y,τ))

via the change of variables (3.5). Set

Q(x, t) := U2(x, t), q(y, τ) = u2(y, τ).

The inequality we want to show is scaling invariant, namely, (U2)xx(x, t) =

(u2)yy(y, τ). Hence, it is sufficient to show that there exists t0 � −1 such that

max
Mt

Qxx(·, t) > 0 and t ≤ t0 =⇒ d

dt
max
Mt

Qxx(·, t) < 0.
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To this end, we will apply the maximum principle to the evolution of Qxx.

Since U satisfies (1.5), a simple calculation shows that

Qt =
4QQxx − 2Q2

x

4Q+Q2
x

− 2(n− 1).

Differentiate this equation with respect to x to get

Qxt =
4QQxxx
4Q+Q2

x

− (4QQxx − 2Q2
x)

4Qx + 2QxQxx
(4Q+Q2

x)2
,

=
4QQxxx
4Q+Q2

x

− (4QQxx − 2Q2
x)(Qxx + 2)

2Qx
(4Q+Q2

x)2
.

(5.2)

We differentiate again, but this time we only consider points where Qxx is

either maximal or minimal, so that Qxxx = 0. Note that

(5.3) (4QQxx − 2Q2
x)x = 4QQxxx = 0 and (Qxx + 2)x = Qxxx = 0

at those points. Also,( 2Qx
(4Q+Q2

x)2

)
x

=
2Qxx(4Q+Q2

x)− 2(4Qx + 2QxQxx)(2Qx)

(4Q+Q2
x)3

= 2
(4Q− 3Q2

x)Qxx − 8Q2
x

(4Q+Q2
x)3

= 2
4Q− 3Q2

x

(4Q+Q2
x)3

(
Qxx −

8Q2
x

4Q− 3Q2
x

)
.

Using these facts we now differentiate (5.2). This leads us to

Qxxt −
4QQxxxx
4Q+Q2

x

= −(Qxx + 2)(4QQxx − 2Q2
x) · 2 4Q− 3Q2

x

(4Q+Q2
x)3

(
Qxx −

8Q2
x

4Q− 3Q2
x

)
,

holding at the maximal or minimal points of Qxx. Recall that since Q = U2,

we have Q2
x = 4U2U2

x . Thus the previous equation becomes

(5.4)
(
Qxx

)
t
−
(
Qxx

)
xx

1 + U2
x

= − 2

4Q
(Qxx + 2)(Qxx − 2U2

x)
(1− 3U2

x)Qxx − 8U2
x

(1 + U2
x)3

.

We will now use (5.4) to conclude that at a maximum point of Qxx, such

that Qxx > 0, we have

(5.5)
(
Qxx

)
t
−
(
Qxx

)
xx

1 + U2
x

< 0.

Since the equation becomes singular at the tip of the surface, we will first

show that very near the tip we have Qxx < 0. After going to the y variable
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and setting q(y, τ) := u2(y, τ), we have Qxx = qyy, where after switching

coordinates,

(5.6) qyy = 2 (uuyy + u2
y) = 2

(
−u Yuu

Y 3
u

+
1

Y 2
u

)
=

2

Z3
ρ

(Zρ − ρZρρ).

Since by Corollary 5.1 we have that Z(ρ, τ) converges uniformly smoothly, as

τ → −∞, on the set ρ ≤ 1, to the translating soliton Z0(ρ), it will be sufficient

to show that 2Z−3
ρ (Z0ρ−ρZ0ρρ) < 0 near ρ = 0. Since Z0 is a smooth function,

this can be easily seen using the Taylor expansion of Z0 near the origin. Let

Z0(ρ) = a ρ2 + b ρ4 + o(ρ4), as ρ→ 0. A direct calculation using (3.20) shows

that

a = − 1

2
√

2n
and b = −

√
2

16n3(2 + n)
,

implying that

(5.7)
2

Z3
ρ

(Z0ρ − ρZ0ρρ) =
1

(2aρ)3

√
2 ρ3

2n3(2 + n)
+ o(1) = − 2

2 + n
+ o(1)

as ρ → 0. We conclude that for τ ≤ τ0 � −1 and ρ sufficiently close to zero,

we have

(5.8) Qxx = qyy ≤ −
1

2 + n
< 0.

We will now show that at a maximum point where Qxx > 0, (5.5) holds.

By (5.8) we know this point cannot be at the tip, and hence all derivatives are

well defined at the maximum point of Qxx. At such a point, Qxx + 2 > 0. We

also have Qxx = 2UUxx+2U2
x , so convexity of the surface implies Qxx−2U2

x =

2UUxx < 0 on the entire solution. Thus we have

(5.9) ∀x, t : Qxx < 2U2
x ,

so it suffices to show that when Qxx > 0,

(5.10) Qxx(1− 3U2
x)− 8U2

x < 0

holds.

We consider the two cases 3U2
x < 1 and 3U2

x ≥ 1. If 3U2
x < 1, then

Qxx(1− 3U2
x) < Qxx < 2U2

x so that

Qxx(1− 3U2
x)− 8U2

x < Qxx − 8U2
x < −6U2

x .

By (5.9) we have U2
x > 0 whenever Qxx > 0, so that (5.10) holds at a positive

maximum of Qxx. If, on the other hand, 3U2
x ≥ 1, then in view of Qxx > 0 we

have (1−3U2
x)Qxx−8U2

x ≤ −8U2
x < 0 so that (5.10) holds again. We conclude

from both cases that at a maximum point where Qxx > 0, (5.5) holds. �
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Let Z0 be the translating Bowl soliton that satisfies (3.20) and the asymp-

totics (3.21). Recall that we have Z0(0) = (Z0)ρ(0) = 0 and the sign conven-

tions (Z0)ρ(ρ) < 0 and (Z0)ρρ(ρ) < 0 for ρ > 0 (see Remark 3.2), which also

imply that Z0(ρ) < 0 for ρ > 0. By Corollary 5.1 we have limτ→−∞ Z(ρ, τ) =

Z0(ρ), smoothly on compact sets in ρ. Thus (5.6) implies that

qyy ∼
2

(Z0)3
ρ

((Z0)ρ − ρ(Z0)ρρ)

for τ ≤ τ0 � −1. In the proof of the previous lemma we have shown that this

quantity is negative near the origin ρ = 0. We will next show that it remains

negative for all ρ > 0.

Lemma 5.4. On the translating Bowl soliton Z0(ρ) that satisfies equa-

tion (3.20), we have

2

(Z0)3
ρ

(
(Z0)ρ − ρ(Z0)ρρ

)
< 0

for any ρ ≥ 0.

Proof. The proof simply follows from the maximum principle in a similar

manner as the proof of Lemma 5.3. To use the calculations from before we

need to flip the coordinates. Setting x = Z0(ρ), after we flip coordinates we

have ρ = U0(x) for some function U0 > 0. Since we have assumed above

that Z0 ≤ 0, we also have that x ≤ 0. Setting Q := U2
0 we find that

Qxx =
2

(Z0)3
ρ

(
(Z0)ρ − ρ(Z0)ρρ

)
, hence it is sufficient to show that Qxx < 0

for x < 0.

A direct calculation shows that U0 satisfies the equation

(U0)xx
1 + (U0)2

x

− n− 1

U
=

√
2

2
(U0)x.

Note that in addition to U > 0 for x < 0, we have (U0)x = 1/(Z0)ρ < 0 and

(U0)xx = −(Z0)ρρ/(Z0)3
ρ < 0. Also since (U0)x → −∞ as x → 0, the function

U0 fails to be a C1 function near x = 0. However this is not a problem since

we have shown in the proof of the previous lemma that (5.7) holds, implying

that Qxx < 0 for |x| ≤ η, if η chosen sufficiently small. In addition, a direct

calculation where we use that Z0(ρ) satisfies the asymptotics

Z0(ρ) = − ρ2

2
√

2(n− 1)
+ log ρ+ o(log ρ), as ρ→∞,

as shown in by Proposition 2.1 in [4], leads to

Qxx =
2

(Z0)3
ρ

(
(Z0)ρ − ρ(Z0)ρρ

)
< 0
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for ρ sufficiently large, which is equivalent to x < −` with ` > 0 sufficiently

large.

We will now use the maximum principle to conclude that Qxx < 0 for

x ∈ [−`,−η]. Similarly to the computation in the proof of the previous lemma,

after setting Q := U2
0 , we find that

4QQxx − 2Q2
x

4Q+Q2
x

− 2(n− 1) =

√
2

2
Qx.

After we differentiate twice in x, following the same calculations as in the proof

of Lemma 5.3, we find that Qxx satisfies the equation
√

2

2

(
Qxx

)
x
−
(
Qxx

)
xx

1 + U2
0x

= − 2

4Q
(Qxx + 2)(Qxx − 2U2

0x)
Qxx(1− 3U2

0x)− 8U2
0x

(1 + U2
0x)3

.

(5.11)

Assume that Qxx assumes a positive maximum at some point x0 ∈ [−`,−η].

Arguing exactly as in Lemma 5.3 we conclude that at a maximum point of Qxx
where Qxx > 0, we have

− 2

4Q
(Qxx + 2)(Qxx − 2U2

0x)
Qxx(1− 3U2

0x)− 8U2
0x

(1 + U2
0x)3

< 0.

On the other hand, at this point we also have that Qxxx = 0 and Qxxxx ≤ 0,

so we get a contradiction with (5.11). Hence, Qxx cannot achieve a positive

maximum on [−`,−η] finishing the proof of our lemma. �

We will now proceed to the proof of Proposition 5.2.

Proof of Proposition 5.2. We will argue by contradiction. Assuming that

our claim does not hold, we can find a decreasing sequence τj → −∞ and

points (yj , τj) such that qyy(yj , τj) = maxM̄τj
qyy(·, τj) > 0. We may assume

without loss of generality that yj > 0. It follows from Lemma 5.3 that the

sequence {qyy(yj , τj)} is non-increasing, implying that

(5.12) qyy(yj , τj) := max
M̄τj

qyy(·, τj) ≥ c > 0 ∀i.

This in particular implies that

(5.13) u2
y(yj , τj) ≥

c

2
> 0.

Set δ :=
√
c/2. After flipping the coordinates and using the change of variables

(3.19) (or (5.1)) we find that for uj = u(yj , τj), ρj =
√
|τj |uj , we have

|uy(yj , τj)| =
1

|Yu(uj , τj)|
=

1

|Zρ(ρj , τj)|
≥ δ =⇒ |Zρ(ρj , τj)| ≤

1

δ
.
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The monotonicity of Zρ(ρ, τ) in ρ and the convergence limτ→∞ Z(ρ, τ) = Z0(ρ)

smoothly on any compact set in ρ imply that ρj ≤ ρδ, where ρδ is the point

at which |(Z0)ρ(ρδ)| = 2/δ. We may assume without loss of generality that

δ is small, which means that ρδ is large. The asymptotics (3.21) for Z0(ρ)

as ρ → ∞, give that |(Z0)ρ(ρ)| ∼ ρ/(
√

2(n− 1)), as ρ → +∞, implying that

by choosing δ sufficiently small we have 2/δ = |(Z0)ρ(ρδ)| ∼ ρδ/(
√

2(n− 1)),

or equivalently ρδ ∼ 2
√

2(n − 1)/δ. Since ρj ≤ ρδ, we conclude that the

points (ρj , τj , Z(ρj , τj)), or equivalently the points (yj , τj , u(yj , τj)), belong to

the soliton region where we know that qyy < 0 by Lemma 5.4, contradicting

our assumption (5.12). This implies (2.15) holds.

Since we have that (2.15) holds, this contradicts (5.13), hence finishing

the proof of Proposition 5.2. �

In the rotationally symmetric case that we consider here, the principal

curvatures of our hypersurface are given by

λ1 = − uyy

(1 + u2
y)

3/2
and λ2 = · · · = λn =

1

u (1 + u2
y)

1/2
.

In [3] we showed that on our Ancient Ovals Mt we have

λ1 ≤ λ2.

We also showed λ1 = λ2 at the tip of the Ancient Ovals, at which the mean

curvature is maximal as well. The quotient

R :=
λ1

λ2
= − U Uxx

1 + U2
x

= − uuyy
1 + u2

y

is a scaling invariant quantity and in some sense measures how close we are

to a cylinder, in a given region and at a given scale. It turns out that this

quotient can be made arbitrarily small outside the soliton region SL(τ) :={
y | 0 ≤ u(y, τ) ≤ L√

|τ |

}
, by choosing L� 1 and τ ≤ τ0 � −1. This is shown

next.

Proposition 5.5. For every η > 0, there exist L � 1 and τ0 � −1 so

that
λ1

λ2
(y, τ) < η, if u(y, τ) >

L√
|τ |

and τ ≤ τ0.

Proof. Having Lemma 2.9, to prove Proposition 5.5 it suffices to show the

following claim.

Claim 5.6. For every L > 0 big, there exist L̄� 1 and τ0 � −1 so that

u(y, τ) ≥ L̄√
|τ |

=⇒ |pyτ − pkτ | ≥
L

H(pyτ , τ)
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for both k ∈ {1, 2} and where pyτ ∈ M̄τ is a point on a surface that is described

by the profile function u(y, τ) at time τ .

Proof. Assume the claim is not true and that there exist a sequence

(yj , τj), with τj → −∞ and Lj → ∞ such that u(yj , τj) ≥ Lj
|τj | , but for ex-

ample, for k = 1,

(5.14) |p̄j − p1
tj | ≤

L̄

H(p̄j , τj)
,

where we shortly denote p̄j := pyjτj . By Proposition 2.12 we have that a

rescaled limit around (p̄j , τj) by factors H(p̄j , τj) converges to a Bowl soliton.

On the other hand, u(yj , τj)
√
|τj | ≥ Lj , or equivalently in the tip variables,

ρj ≥ Lj . In the switched variables around the tip we have

Y (0, τj)− Y (uj , τj) = − 1√
|τj |

Z(ρj , τj),

which implies

(5.15) |p̄j − p1
τj | =

|Z(ρj , τj)|√
|τj |

≥ |Z(L, τj)|√
|τj |

,

since |Z(ρ, τj)| increases in ρ > 0 and ρj ≥ Lj → ∞. We can choose any L

and the above inequality will hold for sufficiently big j; that is, the larger L

we take, we may need to increase the j so that (5.15) holds. We know that

limj→∞ Z(L, τj) = Z0(L), where Z0 is the Bowl soliton and |Z0(L)| ∼ L2

2
√

2(n−1)

for L large enough. This together with (5.14) and (5.15) yield

(5.16)
L̄

H(p̄j , τj)
≥ |p̄j − p1

τj | ≥
L2

4
√

2(n− 1)
√
|τj |

for j ≥ j0 sufficiently big.

On the other hand, since we have (5.14), by Lemmas 2.10 and 2.14 we

have that H(p̄j , τj) and Hmax(τj) are uniformly equivalent, implying that

cHmax(τj) ≤ H(p̄j , τj) ≤ Hmax(τj) for a uniform constant c > 0 and for j ≥ j0.

In [3] we proved that Hmax(τj) ∼
»
|τj |
2 for j � 1, and hence we have that

H(p̄j , τj) ≥ c
√
|τj | for j � 1 for a uniform constant c > 0. Combining this

and (5.16) yields contradiction for j ≥ j0 big enough, if we choose L so that

L2 > 8
√

2(n−1)L̄
c . �

Since we have Claim 5.6 and Lemma 2.9, the proof of Proposition 5.5 is

now complete. �

We will finally use the convexity estimate shown in Proposition 5.2 to

show the following crucial estimate that will be used in Section 7 and holds in

the collar region Kθ,L := {u : L/
√
|τ | ≤ u ≤ 2θ}.
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Lemma 5.7. Let u be an ancient oval solution of (1.7) that satisfies the

asymptotics in Theorem 1.8. Then, for 0 < θ � 1 and L� 1 large, there exist

ε(θ, L) small and a τ0 � −1 for which we have∣∣∣∣1 +
uY

2(n− 1)Yu

∣∣∣∣ < ε(θ, L) in Kθ,L for τ ≤ τ0.

Moreover, for L� 1 and θ � 1, we can choose ε := max{4θ2, c(n)L−1}.

Proof. By Proposition 5.2 we have that (u2)yy ≤ 0. We need to show that

1− ε ≤ − uY

2(n− 1)Yu
≤ 1 + ε

in the considered region, which is equivalent to

(5.17) 1− ε ≤ − 1

4(n− 1)
y (u2)y ≤ 1 + ε.

The intermediate region asymptotics in Theorem 1.8 imply that for u = 2θ,

we have

(5.18) y =
»

2|τ |

 
1− 2θ2

n− 1
+ o(1), as τ → −∞.

It follows that at u = 2θ and for θ small, y ≥
√

2|τ | (1 − 4θ2). Hence, in the

considered region L/
√
|τ | ≤ u ≤ 2θ, we have

(5.19)
»

2|τ |(1− 4θ2) ≤ y ≤
»

2|τ |(1 + o(1)),

where o(1) → 0, as τ → −∞. Next, using the inequality −(u2)yy ≥ 0, which

was shown in Proposition 5.2, we can estimate

−(u2)y
∣∣
u=2θ

≤ −(u2)y ≤ −(u2)y
∣∣
u=L/
√
|τ |.

Furthermore, our intermediate region asymptotics from Theorem 1.8 imply

that at u = 2θ and θ � 1, we have

−(ū2)ζ = 2(n− 1) z + o(1),

which combined with (5.18) gives that

−(u2)y|u=2θ = 2(n− 1)
y

|τ |
+ o
( 1√
|τ |
)

=
2
√

2(n− 1)√
|τ |

 
1− 2θ2

n− 1
+ o(1).

On the other hand, in the tip region the solutions are approximated by the

Bowl soliton, so that at u = L/
√
|τ |, we have

−(u2)y

∣∣∣
u=L/
√
|τ |

= −2u

Yu

∣∣∣
u=L/
√
|τ |

=
2L√
|τ |

1

Zρ(L, τ)
.
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Combining the convergence limτ→−∞ Z(ρ, τ) = Z0(ρ) together with the asymp-

totics (3.21) implies that for L� 1, we have

Zρ(L, τ) ≥ L− c√
2(n− 1)

for a fixed constant c = c(n). Hence

−(u2)y

∣∣∣
u=L/
√
|τ |
≤ 2L√

|τ |

√
2(n− 1)

L− c
=

2
√

2(n− 1)√
|τ |

(1 + ε),

for ε = c(n)L−1, for another fixed constant c(n). We conclude that

(5.20)
2
√

2(n− 1)√
|τ |

 
1− 2θ2

n− 1
≤ −(u2)y ≤

2
√

2(n− 1)√
|τ |

(1 + ε).

Combining (5.19) and (5.20) yields that for τ � −1, we have the bounds

(1− 4θ2)

 
1− 4θ2

n− 1
≤ − 1

4(n− 1)
y (u2)y ≤ (1 + ε),

which yields (5.17) for ε := max(4θ2, c(n)L−1) and L� 1, θ � 1. �

6. The cylindrical region

Let u1(y, τ) and u2(y, τ) be the two solutions to equation (1.7) as in the

statement of Theorem 1.7, and let uαβγ2 be defined by (3.6). In this section

we will estimate the difference w := u1 − uαβγ2 in the cylindrical region Cθ =

{y | u1(y, τ) ≥ θ/2 } for a given number θ > 0 small and any τ ≤ τ0 � −1.

Recall all the definitions and notation introduced in Section 3.1.

Our goal in this section is to prove that the bound (3.15) holds as stated

next.

Proposition 6.1. For every ε > 0 and θ > 0 small, there exists a τ0 �
−1 so that if w(y, τ) is a solution to (6.1) for which P+wC(τ0) = 0, then we

have

‖ŵC‖D,∞ ≤ ε
(
‖wC‖D,∞ + ‖wχDθ‖H,∞

)
,

where Dθ := {y | θ/2 ≤ u1(y, θ) ≤ θ} and ŵC = P−wC + P+wC .

The rest of this section will be devoted to the proof of Proposition 6.1.

To simplify the notation for the rest of the section we will simply denote uαβγ2

by u2 and set w := u1 − u2. The difference w satisfies

(6.1) wτ =
wyy

1 + u2
1y

− (u1y + u2y)u2yy

(1 + u2
1y)(1 + u2

2y)
wy −

y

2
wy +

1

2
w +

n− 1

u1u2
w,

which we can rewrite as

(6.2) wτ = Lw + Ew
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in which L = ∂2
y −

y
2∂y + 1 is as above, and where E is given by

(6.3) E [w] = −
u2

1y

1 + u2
1y

wyy −
(u1y + u2y)u2yy

(1 + u2
1y)(1 + u2

2y)
wy +

2(n− 1)− u1u2

2u1u2
w.

6.1. The operator L. We recall the definition of the Hilbert spaces H, D

and D∗ are given in Section 3.1. The formal linear operator

L = ∂2
y −

y

2
∂y + 1 = −∂∗y∂y + 1

defines a bounded operator L : D→ D∗, meaning that for any f ∈ D, we have

that Lf ∈ D∗ is the functional given by

∀φ ∈ D : 〈Lf, φ〉 =

∫
R

(−fyφy + fφ) e−y
2/4 dy.

By integrating by parts one verifies that if f ∈ C2
c , one has

〈f, φ〉 =

∫
R

(
fyy −

y

2
fy + f

)
φ e−y

2/4dy,

so that the weak definition of Lf coincides with the classical definition.

6.2. Operator bounds and Poincaré type inequalities. The following in-

equality was shown in Lemma 4.12 in [3].

Lemma 6.2. For any f ∈ D, one has∫
R
y2f(y)2e−y

2/4dy ≤ C
∫
R

(
f(y)2 + fy(y)2

)
e−y

2/4dy,

which implies the multiplication operator f 7→ yf is bounded from D to H, i.e.,

‖yf‖H ≤ C‖f‖D

for all f ∈ D.

As a consequence we have the following two lemmas.

Lemma 6.3. The following operators are bounded both as operators from

D to H and also as operators from H to D∗:

f 7→ yf, f 7→ ∂yf, f 7→ ∂∗yf =
(
−∂y +

y

2

)
f,

where ∂∗y is the formal adjoint of the operator ∂y , it satisfies 〈f, ∂∗yg〉 = 〈∂yf, g〉
for all f, g ∈ D.

Lemma 6.4. The following operators are bounded from D to D∗:

f 7→ y2f, f 7→ y∂yf, f 7→ ∂2
yf.
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Proof of Lemmas 6.3 and 6.4. By definition of the norms in D and H, the

operator ∂y is bounded from D to H, and by duality its adjoint ∂∗y = −∂y + y
2

is bounded from H to D∗.

The Poincaré inequality from Lemma 6.2 implies directly that f 7→ yf

is bounded from D to H. By duality the same multiplication operator is also

bounded from H to D∗; i.e., for every f ∈ H the product yf defines a linear

functional on D by 〈yf, φ〉 = 〈f, yφ〉 for every φ ∈ D. We get

‖y f‖D∗ ≤ C‖f‖H

for all f ∈ H.

Composing the multiplications y : D → H and y : H → D∗ we see that

multiplication with y2 is bounded as operator from D to D∗; i.e., for all f ∈ D,

we have y2f ∈ D∗ and

‖y2 f‖D∗ ≤ C2‖f‖D.

Since y : D → H and ∂y : D → H are both bounded operators, we find that

∂∗y = −∂∗y + y
2 is also bounded from D to D. By duality again, it follows that

∂y is bounded from H to D∗. This proves Lemma 6.3.

Each of the operators in Lemma 6.4 is the composition of two operators

from Lemma 6.3, so they are also bounded. �

More generally, to estimate the operator norm of multiplication with some

function m : R→ R, seen as operator from D to H, we have

‖mf‖H ≤ sup
y∈R

|m(y)|
1 + |y|

‖f‖D.

Indeed the following lemma can be easily shown.

Lemma 6.5. Let m : R → R be a measurable function, and consider the

multiplication operator M : f 7→ mf . Then, the following hold :

• M : H→ H is bounded if m ∈ L∞(R), and ‖M‖H→H ≤ ‖m‖L∞ .

• M : D → H is bounded if and only if M : H → D∗ is bounded. Both

operators are bounded if (1 + |y|)−1m(y) is bounded, and

‖M‖H→D∗ = ‖M‖D→H ≤ C ess supy∈R
|m(y)|
1 + |y|

.

• Finally, M is a bounded operator from D to D∗ if (1 + |y|)−2m(y) is

bounded, and the operator norm is bounded by

‖M‖D→D∗ ≤ ess supy∈R
|m(y)|

(1 + |y|)2
.
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6.3. Eigenfunctions of L. There is a sequence of polynomials ψn(y) =

yn + · · · that are eigenfunctions of the operator L and agree with the Hermite

polynomials, up to scaling. The nth eigenfunction has eigenvalue λn = 1− n
2 .

The first few eigenfunctions are given by

ψ0(y) = 1, ψ1(y) = y, ψ2(y) = y2 − 2

up to scaling.

The functions {ψn : n ∈ N} form an orthogonal basis in all three Hilbert

spaces D, H and D∗. The three projections P± and P0 onto the subspaces

spanned by the eigenfunctions with negative/positive, or zero eigenvalues are

therefore the same on each of the three Hilbert spaces. Since ψ2 is the eigen-

function with eigenvalue zero, they are given by

P+f =

1∑
j=0

〈ψj , f〉
〈ψj , ψj〉

ψj , P−f =

∞∑
j=3

〈ψj , f〉
〈ψj , ψj〉

ψj , P0f =
〈ψ2, f〉
〈ψ2, ψ2〉

ψ2.

6.4. Estimates for ancient solutions of the linear cylindrical equation.

In this section we will give energy type estimates for ancient solutions f :

(−∞, τ0]→ D of the linear cylindrical equation

(6.4)
df

dτ
− Lf(τ) = g(τ).

Lemma 6.6. Let f : (−∞, τ0]→ D be a bounded solution of (6.4). Then

there is a constant C <∞ that does not depend on f , such that

(6.5) sup
τ≤τ0
‖f̂(τ)‖2H +

1

C

∫ τ0

−∞
‖f̂(τ)‖2D dτ ≤ ‖f+(τ0)‖2H + C

∫ τ0

−∞
‖ĝ(τ)‖2D∗ dτ,

where f+ = P+f and f̂ = P+f + P−f .

Proof. This is a standard cylindrical estimate applied to the infinite time

domain (−∞, τ0]. Since the operator L commutes with the projections P± we

can split f(τ) into its P+ and P− components and estimate these separately.

Applying the projection P− to both sides of the equation fτ−Lf=g we get

f ′−(τ) = Lf−(τ) + g−(τ),

where g−(τ) = P−g(τ). This implies

1

2

d

dτ
‖f−‖2H = 〈f−,Lf−〉+ 〈f−, g−〉.

Using the eigenfunction expansion of f− we get

〈f−,Lf−〉 ≤ −
1

C
‖f−‖2D.

We also have

〈f−, g−〉 ≤ ‖f−‖D ‖g−‖D∗ ≤
1

2C
‖f−‖2D +

C

2
‖g−‖2D∗ .
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We therefore get

1

2

d

dτ
‖f−‖2H ≤ −

1

2C
‖f−‖2D +

C

2
‖g−‖2D∗ .

Integrating in time over the interval (−∞, τ ] then leads to

1

2
‖f−(τ)‖2H +

1

2C

∫ τ

−∞
‖f−(τ ′)‖2D dτ ′ ≤ C

2

∫ τ

−∞
‖g−(τ ′)‖2D∗ dτ ′.

Taking the supremum over τ ≤ τ0 then gives us the P− component of (6.6).

For the other component, f+(τ) = P+f , we have

〈f+,Lf+〉 ≥
1

C
‖f+‖2D.

A similar calculation then leads to

1

2

d

dτ
‖f+‖2H ≥

1

2C
‖f+‖2D −

C

2
‖g+‖2D∗ .

Integrating this over the interval [τ, τ0] introduces the boundary term ‖f+(τ0)‖2H
and gives us the estimate

1

2
‖f+(τ)‖2H +

1

2C

∫ τ0

τ
‖f+(τ ′)‖2D dτ ′ ≤ 1

2
‖f+(τ0)‖2H +

C

2

∫ τ0

τ
‖g+(τ ′)‖2D∗ dτ ′.

Adding the estimates for P+f and P−f yields (6.5). �

Lemma 6.7. Let f : (−∞, τ0]→ D be a bounded solution of equation (6.4).

If T > 0 is sufficiently large, then there is a constant C? such that

sup
τ≤τ0
‖f̂(τ)‖2H +

1

C?
sup
n≥0

∫
In

‖f̂(τ)‖2D dτ

≤ ‖f+(τ0)‖2H + C? sup
n≥0

∫
In

‖ĝ(τ)‖2D∗ dτ,
(6.6)

where In is the interval In = [τ0− (n+ 1)T, τ0−nT ] and where f+ = P+f and

f̂ = P+f + P−f .

Proof. To simplify notation we assume in this proof that P0f(τ) = 0, i.e.,

that f̂(τ) = f(τ) for all τ . Likewise we assume that ĝ(τ) = g(τ) for all τ ≤ τ0.

Choose a large number T > 0, and let η ∈ C∞c (R) be a smooth cut-off

function with η(t) = 1 for t ∈ [−T, 0], supp η ⊂ (−2T,+T ). We may assume

that

(6.7) |η′(τ)| ≤ 2

T
for all τ ∈ R.

For any integer n ≥ 0, we consider

fn(τ) = ηn(τ)f(τ), where ηn(τ) = η(τ − τ0 + nT ).

The cut-off function ηn satisfies ηn(τ) = 1 for τ ∈ In, and supp ηn ⊂ Jn where,
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Figure 2. The cut-off function ηn(τ), and the intervals In and Jn.

by definition,

Jn = In+1 ∪ In ∪ In−1.

The function fn is a solution of

f ′n(τ)− Lfn(τ) = η′n(τ)f(τ) + ηn(τ)g(τ).

If n ≥ 1, then we can apply Lemma 6.6 to fn, with fn(τ0) = 0. Since fn and

f coincide on In, we get

sup
τ∈In
‖f(τ)‖2H +

1

C

∫
In

‖f‖2Ddτ ≤ sup
τ∈Jn

‖fn(τ)‖2H +
1

C

∫
Jn

‖fn‖2Ddτ

≤ C
∫
Jn

‖η′nf + ηng‖2D∗dτ.

Here C is the constant from Lemma 6.6. Using (a+ b)2 ≤ 2(a2 + b2) and also

our bound (6.7) for η′n(τ) we get

sup
τ∈In
‖f(τ)‖2H +

1

C

∫
In

‖f‖2Ddτ ≤ C
∫
Jn

ß
2

T 2
‖f‖2D∗ + ‖g‖2D∗

™
dτ.

It follows that

sup
τ∈In
‖f(τ)‖2H +

1

C

∫
In

‖f‖2Ddτ

≤ 3C

T 2
sup
k

∫
Ik

‖f‖2D∗dτ + 3C sup
k

∫
Ik

‖g‖2D∗dτ.
(6.8)

For n = 0, the truncated function fn(τ) is not defined for τ > τ0 and we

must use an estimate on J0 = I1 ∪ I0. We apply Lemma 6.6 to the function
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f0(τ) = η0(τ)f(τ):

sup
τ∈I0
‖f(τ)‖2H +

1

C

∫
I0

‖f‖2Ddτ

≤ sup
τ≤τ0
‖f0(τ)‖2H +

1

C

∫ τ0

−∞
‖f0‖2Ddτ

≤ ‖f+(τ0)‖2H + C

∫ τ0

−∞
‖η′0f + η0g‖2D∗dτ

≤ ‖f+(τ0)‖2H + 2C

∫
I1

(η′0)2‖f‖2D∗dτ + 2C

∫
J0

‖g‖2D∗dτ

≤ ‖f+(τ0)‖2H +
2C

T 2
sup
k

∫
Ik

‖f‖2D∗dτ + 2C sup
k

∫
Ik

‖g‖2D∗dτ.

(6.9)

Combining (6.8) and (6.9) and taking the supremum over n yields

sup
τ≤τ0
‖f(τ)‖2H +

1

C
sup
n

∫
In

‖f‖2Ddτ

≤ ‖f+(τ0)‖2H +
3C

T 2
sup
k

∫
Ik

‖f‖2D∗dτ + 3C sup
k

∫
Ik

‖g‖2D∗dτ.

Since ‖u‖H ≤ ‖u‖D for all u ∈ D, it follows by duality that ‖u‖D∗ ≤ ‖u‖H for

all u ∈ H, and thus we have ‖f(τ)‖D∗ ≤ ‖f(τ)‖D. Therefore

sup
τ≤τ0
‖f(τ)‖2H +

1

C
sup
n

∫
In

‖f‖2Ddτ

≤ ‖f+(τ0)‖2H +
3C

T 2
sup
k

∫
Ik

‖f‖2Ddτ + 3C sup
k

∫
Ik

‖g‖2D∗dτ.

At this point we assume that T is so large that 3C/T 2 ≤ 1/2C, which lets us

move the terms with f on the right to the left-hand side of the inequality:

sup
τ≤τ0
‖f(τ)‖2H +

1

2C
sup
n

∫
In

‖f‖2Ddτ ≤ ‖f+(τ0)‖2H + 3C sup
k

∫
Ik

‖g‖2D∗dτ. �

6.5. L2-estimates for the error terms. The two solutions u1, u2 of equa-

tion (1.7) that we are considering are only defined for y2 ≤ (2 + o(1))|τ |. This

follows from the asymptotics in our previous work [3] (see also Theorems 1.8

and 9.1), where it was also shown that they satisfy the asymptotics

u(y, τ) =
»

(n− 1) (2− z2) + o(1), as τ → −∞

uniformly in z, where z =
y√
|τ |

.

We have seen that w := u1 − u2 satisfies (6.2) where the error term E
is given by (6.3). We will now consider this equation only in the “cylindrical
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region,” i.e., the region where

u >
θ

2
, i.e..

y√
|τ |

<

 
2− θ2

4(n− 1)
+ o(1).

To concentrate on this region, we choose a cut-off function Φ ∈ C∞(R) de-

pending on the parameter θ that decreases smoothly from 1 to 0 in the interior

of the interval  
2− θ2

n− 1
< z <

 
2− θ2

4(n− 1)
.

With this cut-off function we then define

ϕC(y, τ) = Φ
( y
|τ |

)
and wC(y, τ) = ϕC(y, τ)w(y, τ).

The cut-off function ϕC satisfies the bounds

|(ϕC)y|2 + |(ϕC)yy|+ |(ϕC)τ | ≤
C̄(θ)

|τ |
,

where C̄(θ) is a constant that depends on θ and that may change from line to

line in the text. The localized difference function wC satisfies

(6.10) wC,τ − LwC = E [wC ] + Ē [w,ϕC ],

where the operator E is again defined by (6.3) and where the new error term

Ē is given by the commutator

Ē [w,ϕC ] =
[
∂τ − (L+ E), ϕC

]
w,

i.e.,

(6.11) Ē [w,ϕC ] ={
ϕC,τ − ϕC,yy +

u2
1y

1 + u2
1y

ϕC,yy +
(u1y + u2y)u2yy

(1 + u2
1y)(1 + u2

2y)
(ϕC)y +

y

2
(ϕC)y

}
w

+

ß
2u2

1y

1 + u2
1y

(ϕC)y − 2(ϕC)y

™
wy.

Equation (6.10) for wC is not self contained because of the last term

Ē [w,ϕC ], which involves w rather than wC . The extra non-local term is sup-

ported in the intersection of the cylindrical and tip regions because all the

terms in it involve derivatives of ϕC , but not ϕC itself.

Let us abbreviate the right-hand side in (6.10) to

g := E [wC ] + Ē [w,ϕC ].
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Apply Lemma 6.7 to wC solving (6.10), to conclude that there exist τ0 � −1

and constant C∗ > 0, so that if the parameters (α, β, γ) are chosen to ensure

that P+wC(τ0) = 0, then ŵC := P+wC + P−wC satisfies the estimate

(6.12) ‖ŵC‖D,∞ ≤ C∗ ‖g‖D∗,∞

for all τ ≤ τ0.

In the next two lemmas we focus on estimating ‖g‖D∗ .

Lemma 6.8. For every ε > 0, there exist a τ0 so that for τ ≤ τ0, we have

‖E [wC ]‖D∗ ≤ ε ‖wC‖D.

Proof. Recall that

E [wC ] = −
u2

1y

1 + u2
1y

(wC)yy −
(u1y + u2y)u2yy

(1 + u2
1y)(1 + u2

2y)
(wC)y +

2(n− 1)− u1u2

2u1u2
wC .

In [3] we showed that for, τ ≤ τ0 � −1

(6.13) |(ui)y|+ |(ui)yy|+ |(ui)yyy| ≤
C̄(θ)√
|τ |

for (y, τ) ∈ Cθ,

where ui, i = 1, 2 is any of the two considered solutions. The constant C̄(θ)

depends on θ and may change from line to line, but it is independent of τ as

long as τ ≤ τ0 � −1.

Using (6.13) and Lemma 6.4, we have

(6.14)
∥∥∥ u2

1y

1 + u2
1y

(wC)yy

∥∥∥
D∗
≤ C̄(θ)

|τ |
‖(wC)yy‖D∗ ≤

C̄(θ)

|τ |
‖wC‖D,

while by (6.13) and Lemma 6.3, we have

(6.15)
∥∥∥ (u1y + u2y)u2yy

(1 + u1y2)(1 + u2
2y)

(wC)y

∥∥∥
D∗
≤ C̄(θ)

|τ |
‖(wC)y‖D∗ ≤

C̄(θ)

|τ |
‖wC‖H.

Also,∥∥∥(2(n− 1)− u1u2)

2u1u2
wC

∥∥∥
D∗
≤
∥∥∥(2(n− 1)− u2

1)

2u1u2
wC

∥∥∥
D∗

+
∥∥∥(u1 − u2)

2u2
wC

∥∥∥
D∗
.

It is very similar to deal with either of the terms on the right-hand side,

so we explain how to deal with the first one next: Lemma 6.3, the uniform

boundedness of our solutions and the fact that ui ≥ θ/4 in C for i ∈ {1, 2},
give ∥∥∥(2(n− 1)− u2

1)

2u1u2
wC

∥∥∥
D∗
≤ C̄(θ)

θ2
‖(
»

2(n− 1)− u1)wC‖D∗

≤ C̄(θ)

θ2

∥∥∥(
√

2(n− 1)− u1)

y + 1
wC

∥∥∥
H
.
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Then, for any K > 0, we have∥∥∥(2(n− 1)− u2
1)

2u1u2
wC

∥∥∥
D∗
≤ C̄(θ)

θ2

Ç∫
0≤y≤K

(
√

2(n− 1)− u1)2

(y + 1)2
w2
C e
− y

2

4 dy

å 1
2

+
C̄(θ)

θ2

Ç∫
y≥K

(
√

2(n− 1)− u1)2

(y + 1)2
w2
C e
− y

2

4 dy

å 1
2

.

Now for any given ε > 0, we choose K large so that C̄(θ)
θ2K2 <

ε
6 , and then for

that chosen K, we choose a τ0 � −1 so that C̄(θ)
θ2 (

√
2(n− 1)− u1) < ε

6 for

all τ ≤ τ0 and 0 ≤ y ≤ K. (Note that here we use that ui(y, τ) converges

uniformly on compact sets in y to
√

2(n− 1), as τ → −∞.) We conclude that

for τ ≥ τ0,

(6.16)
∥∥∥(2(n− 1)− u2

1)

2u1u2
wC

∥∥∥
D∗
≤ ε

3
‖wC‖H ≤

ε

3
‖wC‖D.

Finally combining (6.14), (6.15) and (6.16) finishes the proof of the lemma. �

We will next estimate the error term Ē [w,ϕC ].

Lemma 6.9. There exists a τ0 � −1 and C̄(θ) so that for all τ ≤ τ0, we

have

‖Ē [w,ϕC ]‖D∗ ≤
C̄(θ)√
|τ0|
‖χDθ w‖H,

where Ē [w,ϕC ] is defined by (6.11) and χDθ is the characteristic function of

the set Dθ := {θ/2 < u < θ}.

Proof. Setting

a(y, τ) := ϕC,τ − ϕC,yy +
u2

1y

1 + u2
1y

ϕC,yy +
(u1y + u2y)u2yy

(1 + u2
1y)(1 + u2

2y)
ϕC,y

and

b(y, τ) := (ϕC)y and d(y, τ) :=
2u2

1y

1 + u2
1y

(ϕC)y − 2(ϕC)y

we may write

(6.17) Ē [w,ϕC ] = a(y, τ)w +
y

2
b(y, τ)w + d(y, τ)wy.

Note that the support of all three functions, a(y, τ), b(y, τ) and d(y, τ) is

contained in Dθ and

|a(y, τ)|+ |b(y, τ)|+ |d(y, τ)| ≤ C̄(θ)√
|τ |
.



404 S. ANGENENT, P. DASKALOPOULOS, and N. SESUM

Furthermore, by (6.13) and Lemma 6.3 we get

‖a(y, τ)w‖D∗ ≤ ‖a(y, τ)w‖H ≤
C̄(θ)√
|τ |
‖wχDθ‖H,

‖y
2
b(y, τ)w‖D∗ ≤ ‖b(y, τ)w‖H ≤

C̄(θ)√
|τ |
‖wχDθ‖H

and

‖d(y, τ)wy‖D∗ ≤ ‖(d(y, τ)w)y‖D∗ + ‖wdy(y, τ)‖D∗

≤ ‖d(y, τ)w‖H +
C̄(θ)√
|τ |
‖wχDθ‖H

≤ C̄(θ)√
|τ |
‖wχDθ‖.

The above estimates together with (6.17) readily imply the lemma. �

Finally, we now employ all the estimates shown above to conclude the

proof of Proposition 6.1.

Proof of Proposition 6.1. By (6.12) with g := E [wC ] + Ē [w,ϕC ] and using

also Lemmas 6.8, 6.9 and the assumption that P+wC(τ0) = 0, we have that for

every ε > 0, there exists a τ0 � −1 so that

‖ŵC‖D,∞ ≤ ε ‖wC‖D,∞ +
C̄(θ)√
|τ0|
‖wχDθ‖H,∞.

This readily gives the proposition. �

7. The tip region

Let u1(y, τ) and u2(y, τ) be the two solutions to equation (1.7) as in the

statement of Theorem 1.7, and let uαβγ2 be defined by (3.6). We will now

estimate the difference of these solutions in the tip region Tθ = {(y, τ) |u1≤2θ}
for θ > 0 sufficiently small, and τ ≤ τ0 � −1, where τ0 is to be chosen later

(see Figure 1). In the tip region we invert the functions y 7→ u1(y, τ) and

uαβγ2 (y, τ) to get Y1(u, τ) and Y αβγ
2 (u, τ). By the change of variables (3.19)

and by the definition of u2(y, τ) := uαβγ2 (y, τ) as in (3.6), we have that

Zαβγ2 (ρ, τ) =
»
|τ |
{
Y αβγ

2

( ρ√
|τ |
, τ
)
− Y αβγ

2 (0, τ)
}
,

where

Y αβγ
2 (u, τ) = αeτ/2 +

√
1 + βeτ Y2

( u√
1 + βeτ

, σ
)
,

σ := τ + γ − log(1 + βeτ ).

Note that Zαβγ2 actually does not depend on α.
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Lemma 7.1. If (α, β, γ) are τ0 admissible in the sense of Definition 3.1,

then

Zαβγ2 (ρ, τ)→ Z0(ρ) as τ → −∞,
where the convergence is in C∞loc for bounded ρ.

Proof. Combining the above two equations yields

Zαβγ2 (ρ, τ) =

√
|τ |
√

1 + βeτ√
|σ|

Z2

(
ρ

√
|σ|√

|τ |
√

1 + βeτ
, σ
)
.

Since (α, β, γ) is τ0 admissible, Definition 3.1 guarantees that we have |βeτ | ≤
ε|τ0|−1, and |γ| ≤ ε|τ0| for all τ ≤ τ0.

It follows that

|σ − τ | ≤ |γ|+ C|βeτ | ≤ ε|τ0|+
Cε

|τ0|
,

and thus ∣∣∣∣∣
√
|σ|√

|τ |
√

1 + βeτ
− 1

∣∣∣∣∣ ≤ Cε
for all τ ≤ τ0, while √

|σ|√
|τ |
√

1 + βeτ
→ 1 (τ → −∞).

Since Z2(ρ, τ) → Z0(ρ) in C∞loc for bounded ρ, as τ → −∞, we conclude that

the same must be true for Zαβγ2 . �

Hence, it is easy to see that in all the estimates below we can find a uniform

τ0 � −1, independent of parameters α, β and γ (as long as they are admissible

with respect to τ0), so that all the estimates below hold for Y1(u, τ)−Y αβγ
2 (u, τ)

for all τ ≤ τ0.

To measure the distance between the two solutions in the tip region we

consider the difference W = Y1 − Y αβγ
2 and multiply it by the cut-off function

defined in (3.24), namely, set WT := ϕT W . Recall the norm ‖ · ‖2,∞ as defined

in (3.22)–(3.23). The goal in this section is to prove the following estimate.

Proposition 7.2. There exist θ with 0 < θ � 1, τ0 � −1 and C < +∞
such that

(7.1) ‖WT ‖2,∞ ≤
C

|τ0|
‖W χ

[θ,2θ]
‖2,∞

holds.

To simplify the notation throughout this section we will drop the sub-

script on Y1 and write Y = Y1 instead. Also, we will denote Y αβγ
2 by Y2. As

already explained in Section 3.2, the proof of this proposition will be based on

a Poincaré inequality for the function WT that is supported in the tip region.

These estimates will be shown to hold with respect to an appropriately chosen



406 S. ANGENENT, P. DASKALOPOULOS, and N. SESUM

weight eµ(u,τ) du, where µ(u, τ) is given by (7.2) below. We will begin by es-

tablishing various properties of the weight µ(u, τ). We will continue with the

proof of the Poincaré inequality, and we will finish with the proof of Proposi-

tion 7.2. Recall that the definitions of the collar region KL,θ and the soliton

region SL are given in Section 3.2.

7.1. Properties of µ(u, τ). Let us begin by recalling the definition of our

weight µ(u, τ) in the tip region. Let ζ(u) be a non-negative smooth decreasing

function defined on u ∈ (0,∞) such that

ζ(u) = 1 for u ≥ θ/2 and ζ(u) = 0 for u ≤ θ/4.

Such a function can be chosen to satisfy the derivative estimate 0 ≤ |ζ ′(u)| ≤
5θ−1. We define our weight µ(u, τ) in the tip region to be

(7.2) µ(u, τ) = −Y
2(θ, τ)

4
+

∫ u

θ
µu(u′, τ) du′,

where

(7.3) µu := ζ(u)

Å
−Y

2

4

ã
u

+ (1− ζ(u))
n− 1

u
(1 + Y 2

u ).

Note that since ζ = 1 for u ≥ θ/2, we have µ(u, τ) = −1
4Y

2(u, τ) in this

region, hence eµ(u,τ) coincides with the Gaussian weight e−y
2/4 under our coor-

dinate change y = Y (u, τ). This is important as our norms in the intersection

of the cylindrical and tip regions need to coincide.

In a few subsequent lemmas we show estimates for the weight µ(u, τ). In

our first two lemmas we summarize some bounds on quantities involving Y and

its derivatives Yu, Yuu and Yτ that will be used in the remainder of this section.

The estimates in the next lemma hold on the collar region Kθ,L. They have

been essentially shown in Section 5, but we state them here for the reader’s

convenience.

Lemma 7.3. For any small η > 0, there exist 0 < θ � 1, L � 1, and

τ0 � −1, all depending on η such that the bounds

(7.4)
|Yuu|

1 + Y 2
u

≤ η |Yu|
u

and
∣∣1 +

uY

2(n− 1)Yu

∣∣ ≤ η
hold on Kθ,L for all τ ≤ τ0.

Proof. Fix η > 0 small. The first bound follows from Proposition 5.5 by

observing that since Yuu = uyy u
−3
y and Yu = u−1

y , we have

|uYuu|
|Yu|(1 + Y 2

u )
=

|uuyy|
u2
y(1 + u−2

y )
=
|uuyy|
1 + u2

y

=
λ1

λ2
.
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Hence, Proposition 5.5 guarantees that

|uYuu|
|Yu|(1 + Y 2

u )
< η

for L � 1 and τ ≤ τ0 � −1 (both L and τ0 depending on η). This readily

gives us the first bound.

The second bound simply follows from the estimate in Corollary 5.7 by

choosing the parameters θ, L such that ε(θ, L) := max{4θ2, c(n)L−1} < η and

τ0 � −1. �

The estimates in the next lemma hold on the whole tip region Tθ.

Lemma 7.4. For any small η > 0, there exist 0 < θ � 1 and τ0 � −1

depending on η, such that the bounds

(7.5)
1

2n

»
|τ | <

∣∣Yu
u

∣∣ <»|τ | and |Yτ | ≤ η
|Yu|
u

< η
»
|τ |

hold on Tθ, for all τ ≤ τ0.

Proof. Fix η > 0 small, and assume without loss of generality that we are

in the region where uy < 0, Yu < 0. We begin by showing the first bounds

from above and below. We use the crucial inequality (u2)yy ≤ 0, which holds

everywhere on our solution for τ ≤ τ0 � −1 and was shown in Proposition 5.2.

Expanding the square gives uuyy +u2
y ≤ 0 and can be expressed in terms of Y

and its derivatives in u (under the assumption that uy < 0) as uYuu − Yu ≤ 0.

Hence, since Yu < 0, we have

(7.6)

ï |Yu|
u

ò
u

= −uYuu − Yu
u2

≥ 0.

It follows that for all (u, τ) ∈ Tθ where u ≤ 2θ, we have

lim
u→0

|Yu(u, τ)|
u

≤ |Yu(u, τ)|
u

≤ |Yu(2θ, τ)|
2θ

.

To estimate limu→0
|Yu(u,τ)|

u from below, we observe that for τ � −1, we

have

lim
u→0

|Yu(u, τ)|
u

= Yuu(0, τ) =
»
|τ |Zρρ(0, τ) >

1

2n

»
|τ |

since Z(ρ, τ)→ Z0(ρ) in C∞loc for ρ ≥ 0 as τ → −∞.

To estimate the ratio |Yu|
u at u = 2θ, we use our intermediate region

asymptotics from Theorem 1.8, which imply that

−(u2)y = 2(n− 1)
y

|τ |
+ o

Ç
1√
|τ |

å
=⇒ Yu =

1

uy
= − u |τ |

(n− 1)Y
+ o

(»
|τ |
)
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for u = 2θ and τ ≤ τ0 � −1 (τ0 depending on θ). Using the intermediate

region asymptotics from Theorem 1.8 again we find

Y (2θ, τ) =
»
|τ |
 

2− 4θ2

2(n− 1)
=
»

2|τ |
 

1− θ2

(n− 1)
> 1.2

»
|τ |

(the last bound holds for 0 < θ � 1 depending on n), and so we conclude that

for θ sufficiently small, we have

|Yu|
u

=
|τ |

(n− 1)Y
+ o(
»
|τ |) <

»
|τ |

provided that τ ≤ τ0 � −1, which proves the desired bound.

We will next prove the bound on |Yτ | and will first deal with the region

Kθ,L for L� 1. We rearrange the terms in equation (3.16) to get

(7.7) Yτ =
Yuu

1 + Y 2
u

+
(n− 1)Yu

u

(
1 +

uY

2(n− 1)Yu

)
− u2

2

Yu
u
.

For our given η > 0, we use both inequalities in (7.4) with η replaced by η
4(n−1)

instead of η (these bounds hold on Kθ,L and for τ ≤ τ0) and the bound u ≤ 2θ

(which holds on Tθ) to obtain the inequality

|Yτ | ≤
|Yu|
u

( η

4(n− 1)
+
η

4
+ 4θ2

)
≤ η |Yu|

u
,

which holds if we choose θ with 4θ2 ≤ η/4. Hence, the desired bound holds

when L/
√
|τ | ≤ u ≤ 2θ and τ ≤ τ0 � −1.

Next, we show that the bound on |Yτ | holds for u ≤ L/
√
|τ | by simply

using the convergence of Z(ρ, τ) :=
√
|τ |
(
Y (u, τ)−Y (0, τ)

)
, ρ =

√
|τ |u to the

soliton Z0(ρ). We first express the right-hand side of equation (3.16) in terms

of Z, which after substituting Y = Y (0, τ) +
√
|τ |Z and factoring out

√
|τ |

gives

(7.8) Yτ =
»
|τ |
( Zρρ

1 + Z2
ρ

+
(n− 1)

ρ
Zρ +

1

2
√
|τ |
Y (0, τ) +

1

2|τ |
(
Z − ρZρ

))
.

To estimate |Yτ | from (7.8), we use that 1

2
√
|τ |
Y (0, τ) =

√
2

2 + o(1), as τ → −∞,

that
∣∣Z − ρZρ∣∣ < C(L), on ρ ≤ L, and the convergence limτ→−∞ Z(ρ, τ) =

Z0(ρ) on ρ ≤ L, which implies that∣∣∣ Zρρ
1 + Z2

ρ

+
(n− 1)

ρ
Zρ +

√
2

2

∣∣∣ < η

10

for τ ≤ τ0 � −1. Combining all these bounds readily gives that |Yτ | < η
√
|τ |

holds on 0 ≤ u ≤ L/
√
|τ |, holds on ρ :=

√
|τ |u ≤ L and for all τ ≤ τ0 � −1,

where τ0 depends on η, L. This finishes the proof of the bound for Yτ concluding

the proof of the lemma. �
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Lemma 7.5. For any small η > 0, there exists θ > 0 small depending on

η and τ0 � −1 depending on η, θ such that

(7.9) 1− η ≤ uµu
(n− 1) (1 + Y 2

u )
≤ 1 + η

and

(7.10) µτ ≤ η |τ |

hold on Tθ for all τ ≤ τ0.

Proof. We begin with the proof of (7.9). By the definition of the weight

µ(u, τ), to satisfy (7.3) we have µu = n−1
u (1 +Y 2

u ) on u ≤ θ/4 where ζ(u) = 0.

Hence, it is sufficient to show that

(7.11) 1− η ≤ u

(n− 1)(1 + Y 2
u )

Å
−Y

2

4

ã
u

≤ 1 + η

holds on the set where θ/4 ≤ u ≤ 2θ (which is the intersection of Tθ with

{u ≥ θ/4}). This readily follows from the second bound in (7.4) since

u

(n− 1)(1 + Y 2
u )

Å
−Y

2

4

ã
u

= − uY

2(n− 1)Yu

Y 2
u

1 + Y 2
u

and Y 2
u � 1 in the considered region. Note that since we are interested in a

bound that only holds on θ/4 ≤ u ≤ 2θ, the above bound holds if we choose θ

sufficiently small depending on η and τ0 � −1 depending on η, θ.

We will now proceed with the proof of (7.10), which will follow from

the definition of µ(u, τ) in (7.2)–(7.3) and the bounds (7.5). Without loss of

generality we will assume that we are in the region where y > 0, uy < 0, or

equivalently, Y > 0, Yu < 0. We use the definition of µ(u, τ) in (7.2)–(7.3)

and that ζ ≡ 1 for u ≥ θ/2. Integration by parts gives

µτ =

Å
−Y

2(θ, τ)

4

ã
τ

+

∫ u

θ

ß
ζ

Å
−Y

2

4

ã
uτ

+ (1− ζ)
(n− 1)(1 + Y 2

u )τ
u

™
du

(7.12)

=

Å
−Y

2(θ, τ)

4

ã
τ

+

∫ u

θ

ß
ζ

Å
−Y

2

4

ã
uτ

+ (1− ζ)
2(n− 1)YuYuτ

u

™
du

= ζ

Å
−Y

2(u, τ)

4

ã
τ

−
∫ θ

u
ζ ′
Å
−Y

2

4

ã
τ

du+ 2(n− 1)

∫ θ

u
ζ ′
Yu
u
Yτ du

+ 2(n− 1)(1− ζ)
Yu Yτ
u

+ 2(n− 1)

∫ θ

u
(1− ζ)

ï
Yu
u

ò
u

Yτ du,

where, to simplify the notation, we will denote the variable of integration by

u (instead of u′) when there is no danger of confusion.
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Fix η > 0 small. Observe first that the second bound in (7.5) and Y ≤
2
√

2 |τ | imply that for all u ≤ 2θ, we have

(7.13)

∣∣∣∣Å−Y 2(u, τ)

4

ã
τ

∣∣∣∣ =

∣∣∣∣Y Yτ2

∣∣∣∣ ≤ 2
»
|τ ||Yτ | ≤ 2η |τ |

for τ � −1. This bound combined with (7.12) implies that in the region u ≥ θ,
where ζ = 1, ζ ′ = 0, the desired bound (7.10) holds.

Assume now that u ≤ θ. Using (7.13) to estimate the first two terms in

the third line of (7.12), and using the bounds (7.5) to estimate the third term

of (7.13), we get

(7.14)

∣∣∣∣∣ζ
Å
−Y

2(u, τ)

4

ã
τ

+

∫ θ

u
ζ ′
Å
−Y

2

4

ã
τ

du+ 2(n− 1)

∫ θ

u
ζ ′
Yu
u
Yτdu

∣∣∣∣∣
< c(n)η |τ |

holds on Tθ, for θ small and τ ≤ τ0 � −1 (recall that ζ, ζ ′ are zero for u ≤ θ/4)

and c(n) is a universal constant that depends only on a dimension.

Furthermore, the bounds (7.5) imply that

(7.15)

∣∣∣∣2(n− 1)(1− ζ)
Yu Yτ
u

∣∣∣∣ < 2(n− 1)η |τ |.

It remains to estimate the last integral in (7.12). To this end, recall (7.6),

which gives (since Yu < 0) the inequalityï
Yu
u

ò
u

=
uYuu − Yu

u2
≤ 0

and therefore∫ θ

u
(1− ζ)

∣∣∣∣ïYuu òu∣∣∣∣ du ≤ ∫ θ

u

ï
−Yu
u

ò
u

du ≤ |Yu|(θ, τ)

u
<
√
τ .

This combined with our bound |Yτ | ≤ η
√
|τ | give us

(7.16) 2(n− 1)

∣∣∣∣∣
∫ θ

u
(1− ζ)

ï
Yu
u

ò
u

Yτ du

∣∣∣∣∣ < 2(n− 1)η |τ |.

Finally, combining (7.12) with (7.14)–(7.16) shows that

µτ ≤ c(n) η |τ |

from which the desired bound (7.10) follows if we start our estimates with

η/c(n) instead of η. �
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7.2. Poincaré inequality. We will next show a weighted Poincaré type es-

timate with respect to weight µ(u, τ) defined in (7.2)–(7.3). This inequality

will play a crucial role in the proof of Proposition 7.2. For a fixed τ ≤ τ0

where τ0 is sufficiently negative, we recall that Tθ0 := {u : 0 ≤ u ≤ 2θ0} and

consider the solution Y (u, τ) and the weight profile µ(u, τ) as functions of u

for u ∈ [0, 2θ0].

Proposition 7.6 (Poincaré inequality). There exist an absolute constant

C0 > 0 and a small absolute constant θ0, such that

(7.17) |τ |
∫
f2(u) eµ(u,τ) du ≤ C0

∫
f2
u(u)

1 + Y 2
u

eµ(u,τ) du

holds for any smooth compactly supported function f(u) in [0, 2θ0) with f ′(0)

= 0 and for all τ ≤ τ0 � −1, where τ0 depends on θ0.

Proof. By the Peter-Paul inequality 2ab ≤ a2 + b2, we have

−2 ffu
u
≤ 4f2

u

1 + Y 2
u

+ (1 + Y 2
u )

f2

4u2
.

Multiply with eµ(u,τ) and integrate by parts over the interval u0 ≤ u ≤ 2θ for

some small u0 ∈ (0, 2θ) to obtain∫ 2θ

u0

( 4f2
u

1 + Y 2
u

+ (1 + Y 2
u )

f2

4u2

)
eµdu ≥ −

∫ 2θ

u0

(f2)u
u

eµdu

=
f(u0)2

u0
eµ(u0,τ) +

∫ 2θ

u0

uµu − 1

u2
f2eµdu.

Rearranging terms leads to

(7.18)
f(u0)2

u0
eµ(u0,τ) +

∫ 2θ

u0

(
uµu − 1

4(1 + Y 2
u )− 1

) f2

u2
eµdu ≤ 4

∫ 2θ

u0

f2
u

1 + Y 2
u

eµdu.

We next apply (7.9) with η = 1/4, which shows that there exists 0 < θ0 � 1

such that lower bound on uµu ≥ 3
4(n− 1)(1 +Y 2

u ) holds on Tθ0 . Hence we find

that

(7.19) uµu −
1

4
(1 + Y 2

u )− 1 ≥ 3(n− 1)− 1

4
(1 + Y 2

u )− 1 ≥ 1

2
(1 + Y 2

u )− 1

holds on Tθ0 for τ ≤ τ0. (Here τ0 is an absolute constant, and we have used

that n ≥ 2.)

In (7.5) we found a lower bound for |Yu|/u, which implies

1 + Y 2
u ≥ Y 2

u ≥ c0(n)u2|τ |.

If we choose u0 depending on τ so that c0(n)u0(τ)2|τ | ≥ 4, then

uµu −
1

4
(1 + Y 2

u ) ≥ 1

4
(1 + Y 2

u ),
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and (7.19), (7.18) imply

f(u0)2

u0
eµ(u0,τ) +

1

4

∫ 2θ

u0

(1 + Y 2
u )

f2

u2
eµdu ≤ 4

∫ 2θ

u0

f2
u

1 + Y 2
u

eµdu

holds for all τ ≤ τ0 � −1 and with u0 = 2/
√
−c0(n)τ .

Using −Yu/u ≥ C
√
−τ , we can extract the following two estimates from

this:

|τ |
∫ 2θ

u0(τ)
f2eµ du ≤ C

∫ 2θ

u0(τ)

f2
u

1 + Y 2
u

eµ du,(7.20)

f(u0)2eµ(u0,τ) ≤ 4u0(τ)

∫ 2θ

u0(τ)

f2
u

1 + Y 2
u

eµ du .(7.21)

To complete the proof we now apply the standard Poincaré inequality on

the ball of radius u0 in Rn to the function f . Recall that this inequality states

that for all f ∈ C1([0, u0)) with f(u0) = 0, one has

(7.22)

∫ u0

0
f(u)2un−1 du ≤ c(n)u2

0

∫ u0

0
f2
uu

n−1 du.

We may assume that f(u0) 6= 0, in which case we use f(u)2 =
(
f(u)− f(u0) +

f(u0)
)2 ≤ 2

(
f(u)−f(u0)

)2
+2f(u0)2 and apply the above inequality to f(u)−

f(u0) to get∫ u0

0
f(u)2un−1 du ≤ 2

n
un0f(u0)2 + c(n)u2

0

∫ u0

0
f2
uu

n−1 du.

If f(u0) = 0, then we can directly use inequality (7.22). In the region u ≤ u0(τ)

one has u ≤ θ/4 and thus µu = n−1
u (1 + Y 2

u ). Hence

µ(u, τ)− µ(u0, τ) = (n− 1) log
u

u0
+ (n− 1)

∫ u

u0

1

u
Y 2
u du.

Use |Yu/u| ≤ C
√
−τ again to estimate∣∣∣∣∫ u

u0

1

u
Y 2
u du

∣∣∣∣ ≤ C|τ |u0(τ)2 ≤ C,

which implies that for some constant C,

1

C
eµ(u0,τ)

Å
u

u0

ãn−1

≤ eµ(u,τ) ≤ Ceµ(u0,τ)

Å
u

u0

ãn−1
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for all u ∈ [0, u0(τ)] and τ ≤ τ0 if −τ0 is sufficiently large. Using this we obtain

∫ u0(τ)

0
f2eµ(u,τ) du ≤ Ceµ(u0,τ)u−n+1

0

∫ u0(τ)

0
f(u)2un−1 du

≤ Ceµ(u0,τ)u−n+1
0

®
c(n)u2

0

∫ u0(τ)

0
f2
uu

n−1 du+
2

n
un0f(u0)2

´
≤ c(n)C2u2

0

∫ u0(τ)

0
f2
ue
µ(u,τ) du+ Cu0e

µ(u0,τ)f(u0)2.

To continue, we use that |Yu(u, τ)| is uniformly bounded in the region 0 ≤ u ≤
u0(τ), and we also use (7.21) to get

∫ u0(τ)

0
f2eµ(u,τ) du ≤ Cu2

0

∫ u0(τ)

0

f2
u

1 + Y 2
u

eµ(u,τ) du+ Cu2
0

∫ 2θ

u0

f2
u

1 + Y 2
u

eµ(u,τ) du

≤ Cu2
0

∫ 2θ

0

f2
u

1 + Y 2
u

eµ(u,τ) du.

Finally recall that u0(τ)2 = 4/(c0(n)|τ |), and combine with the estimate (7.20)

on the interval [u0(τ), 2θ] to arrive at

|τ |
∫ u0(τ)

0
f2eµ(u,τ) du ≤ C

∫ 2θ

0

f2
u

1 + Y 2
u

eµ(u,τ) du. �

7.3. Proof of Proposition 7.2. In order to prove Proposition 7.2, we com-

bine an energy estimate for the difference W = Y1 − Y2, which will be shown

below, with our Poincaré inequality (7.17).

Proof of Proposition 7.2. Recall that ϕT (u) denotes a standard smooth

cut-off function supported on 0 ≤ u < 2θ, with ϕT = 1 on 0 ≤ u ≤ θ and

ϕT = 0 for u ≥ 2θ. To simplify the notation, in the proof below we will drop

the index T from ϕT and simply denote ϕT by ϕ and let WT := WϕT = Wϕ.

We have seen in Section 3.2 that W = Y − Y2 satisfies the equation

(7.23) Wτ =
Wuu

1 + Y 2
u

+
(n− 1

u
− u

2
+D

)
Wu +

1

2
W,

where

(7.24) D := − Y2uu (Yu + Y2u)

(1 + Y 2
u ) (1 + Y 2

2u)
.
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As usual, multiplying (7.23) by Wϕ2 eµ and integrating by parts we obtain

d

dτ

(1

2

∫
W 2
T e

µ du
)

= −
∫

W 2
u

1 + Y 2
u

ϕ2 eµ du

+

∫ (n− 1

u
− u

2
− µu

1 + Y 2
u

+
2YuYuu

(1 + Y 2
u )2

+D
)
WuWϕ2eµ du

− 2

∫
1

1 + Y 2
u

WuW ϕϕu e
µ du+

∫
W 2
T

(1

2
+ µτ

)
eµ du.

Let us write

(7.25) G :=
n− 1

u
− u

2
− µu

1 + Y 2
u

+
2YuYuu

(1 + Y 2
u )2

+D.

Then, we have

d

dτ

(1

2

∫
W 2
T e

µ du
)

= −
∫

W 2
uϕ

2

1 + Y 2
u

eµ du+

∫
GWuW ϕ2 eµ du

+ 2

∫
1

1 + Y 2
u

WuW ϕϕu e
µ du+

∫
W 2
T

(1

2
+ µτ

)
eµ du.

Applying Cauchy-Schwarz to the term above that contains G, we have∫
GWuW ϕ2 eµ du ≤1

2

∫
W 2
uϕ

2

1 + Y 2
u

eµ du

+
1

2

∫
G2 (1 + Y 2

u )W 2
T e

µ du,

which inserting in the previous identity gives

d

dτ

(1

2

∫
W 2
T e

µ du
)
≤− 1

2

∫
W 2
uϕ

2

1 + Y 2
u

eµ du+
1

2

∫
G2 (1 + Y 2

u )W 2
T e

µ du

+ 2

∫
W Wu

1 + Y 2
u

ϕϕu e
µ du+

∫
W 2
T

(1

2
+ µτ

)
eµ du.

Furthermore, using (WT )2
u =

(
Wuϕ+Wϕu

)2
to write

−1

2
W 2
uϕ

2 = −1

2
(WT )2

u +
1

2
W 2ϕ2

u +WWu ϕϕu,

after combining and rearranging terms, we obtain the integral bound

d

dτ

(1

2

∫
W 2
T e

µ du
)
≤ −1

2

∫
(WT )2

u

1 + Y 2
u

eµ du+ 3

∫
WWu

1 + Y 2
u

ϕϕue
µ du

+

∫ ï
1

2
G2 (1 + Y 2

u ) +
1

2
+ µτ

ò
eµ du+

1

2

∫
W 2

1 + Y 2
u

ϕ2
ue
µ du.

Next, we use Wuϕ = (WT )u −W ϕu and the inequality ab ≤ a2

12 + 3b2 to get

WWuϕϕu = (WT )uWϕu −W 2ϕ2
u ≤

1

12
(WT )2

u + 2W 2ϕ2,
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which implies the integral bound

3

∫
WWu

1 + Y 2
u

ϕϕu e
µ du ≤ 1

4

∫
(WT )2

u

1 + Y 2
u

eµ du+ 6

∫
W 2

1 + Y 2
u

ϕ2
u e

µ du.

Note that the support of ϕu is contained in the region {θ ≤ u ≤ 2θ}. Combin-

ing the above yields

d

dτ

∫
W 2
T e

µ du ≤ −1

2

∫
(WT )2

u

1 + Y 2
u

eµ du+

∫
ḠW 2

T e
µ du+ C(θ)

∫ 2θ

θ
W 2eµ du,

(7.26)

where

(7.27) Ḡ := G2 (1 + Y 2
u ) + 1 + 2µτ .

Claim 7.7. For η > 0 sufficiently small, there exist 0 < θ � 1 depending

on η and τ0 � −1 depending on η, θ such that

(7.28) G2 (1 + Y 2
u ) ≤ η

3
|τ |

on Tθ for all τ ≤ τ0.

Proof of Claim. Fix η > 0 sufficiently small. We will prove the bound

(7.29) |G|
»

1 + Y 2
u ≤ C(n) η

»
|τ |

in which the constant C(n) only depends on the dimension n. This will readily

imply (7.28) if η is chosen sufficiently small. We begin by establishing that

the desired bound holds on the collar region Kθ,L := {L/
√
|τ | ≤ u ≤ 2θ}

for 0 < θ � 1, L � 1 depending on η. First let us bound the first three

terms in (7.25) multiplied by
√

1 + Y 2
u together. Using (7.9) and the bound

|Yu|/u ≤
√
|τ | given in (7.5) to obtain that in the region where Y 2

u > 1, we

have ∣∣∣n− 1

u
− u

2
− µu

1 + Y 2
u

∣∣∣»1 + Y 2
u ≤

2(n− 1) |Yu|
u

Å
η +

u2

2

ã
≤ 2(n− 1)(η + 2θ2)

»
|τ | <

√
η

10

»
|τ |,

(7.30)

where the last inequality holds for η � 1 (depending on n), 0 ≤ u ≤ 2θ � 1

(where θ depends on η) and τ ≤ τ0 � −1.

To bound the fourth term in (7.25) multiplied by
√

1 + Y 2
u , we use that

Y 2
u > 1 in this region, and we combine the first bound in (7.4) with the first

bound in (7.5) to obtain that for L/
√
|τ | ≤ u ≤ 2θ with L� 1 (depending on

η) and τ � −1, we have

(7.31)
2|YuYuu|

√
1 + Y 2

u

(1 + Y 2
u )2

≤ 2η
|Yu|
u

|Yu|√
1 + Y 2

u

< 2η
»
|τ |.
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To bound the last term in (7.25) multiplied by
√

1 + Y 2
u , we recall the definition

of D in (7.24) to write

|D|
»

1 + Y 2
u :=

|Y2uu| |Yu + Y2u|√
1 + Y 2

u (1 + Y 2
2u)
≤ |Y2uu|

1 + Y 2
2u

|Yu|+ |Y2u|√
1 + Y 2

u

.

Using the first bound in (7.4) applied to Y2 to estimate |Y2uu|
1+Y 2

2u
≤ η |Y2u|

u and the

bounds in (7.5) to estimate the ratio |Y2u|
|Yu| < 2n and |Y2u|

u <
√
|τ |, we obtain

the estimate

(7.32) |D|
»

1 + Y 2
u ≤ η

|Y2u|
u

|Yu|+ |Y2u|√
1 + Y 2

u

< (2n+ 1) η
»
|τ |.

Combining (7.30), (7.31) and (7.32) yields that (7.29) holds on L/
√
|τ |≤u≤2θ

for τ ≤ τ0 � −1, provided that η is chosen sufficiently small depending on n

and provided θ � 1, L� 1 and τ � −1 (all depending on η).

It remains to prove the inequality (7.29) in the soliton region SL := {0 ≤
u ≤ L/

√
|τ |}, where L > 1 is now fixed so that (7.29) holds in the collar

region Kθ,L. Recall that in this region uµu
(n−1) (1+Y 2

u )
= 1, by the definition of

our weight. Using also the change of variables

Yi(u, τ) = Yi(0, τ) +
1√
|τ |

Zi(ρ, τ), ρ := u
»
|τ |, i = 1, 2,

we find that in SL we have

G
»

1 + Y 2
u =

(
− ρ

2|τ |
+

2ZρZρρ
(1 + Z2

ρ)2
− Z2ρρ (Zρ + Z2ρ)

(1 + Z2
ρ) (1 + Z2

2ρ)

)»
1 + Z2

ρ

»
|τ |.

The C∞ convergence of Zi(ρ, τ)→ Z0(ρ) on the soliton region SL where ρ ≤ L
implies that ∣∣∣ 2ZρZρρ

(1 + Z2
ρ)2
− Z2ρρ (Zρ + Z2ρ)

(1 + Z2
ρ) (1 + Z2

2ρ)

∣∣∣»1 + Z2
ρ <

η

2

on SL if τ � −1 depending on L and η. Hence,

|G|
»

1 + Y 2
u ≤

L

2|τ |
»

1 + Z2
ρ +

η

2
< η

provided τ ≤ τ0 � −1, which readily implies that (7.29) also holds in the

soliton region.

Finally squaring (7.29) and taking η < C(n)−2/3 yields the bound (7.28).

�

We now conclude the proof of Proposition 7.2. Let η > 0 be a sufficiently

small number (depending on on dimension n) so that (7.28) holds on Tθ for

θ � 1 and τ ≤ τ0 � −1. Lemma 7.5 implies that by decreasing θ and τ0, if
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necessary, the bound µτ <
η
3 |τ | holds on the whole tip region Tθ for τ ≤ τ0.

The two bounds imply that

Ḡ := G2 (1 + Y 2
u ) + 1 + 2µτ < η |τ |

on Tθ provided τ ≤ τ0. Inserting this bound in (7.26) yields

d

dτ

∫
W 2
T e

µ du ≤ −1

2

∫
(WT )2

u

1 + Y 2
u

eµ du

+ η|τ |
∫
W 2
T e

µ du+ C(θ)

∫ 2θ

θ
W 2 eµ du.

On the other hand, our Poincaré inequality implies that∫
(WT )2

u

1 + Y 2
u

eµ du ≥ c0 |τ |
∫
W 2
T e

µ du

for an absolute constant c0 > 0 that is uniform in τ and independent of θ.

This inequality holds if θ ≤ θ0, where θ0 is again an absolute constant. Finally

choose η :=
c0

4
. Such an η is an absolute constant and determines θ and τ0.

Our Poincaré inequality then yields that

−1

2

∫
(WT )2

u

1 + Y 2
u

eµ du+ η|τ |
∫
W 2
T e

µ du

≤ −c0

2
|τ |
∫
W 2
T e

µ du+ η

∫
W 2
T e

µ du

≤ −c0

4

∫
|τ |W 2

T e
µ du

holds provided τ ≤ τ0, with τ0. Combining this with our energy inequality we

finally conclude that in the tip region Tθ the following holds:

(7.33)
d

dτ

∫
W 2
T e

µ du ≤ −c0

4
|τ |
∫

W 2
T e

µ du+
C(θ)

|τ |

∫
(Wχ[θ,2θ])

2 eµ du.

Define

f(τ) :=

∫
W 2
T e

µ du, g(τ) :=

∫
(Wχ[θ,2θ])

2 eµ du.

Then equation (7.33) becomes

d

dτ
f(τ) ≤ −c0

4
|τ | f(τ) +

C(θ)

|τ |
g(τ).

Furthermore, setting F (τ) :=

∫ τ

τ−1
f(s) ds and G(τ) :=

∫ τ

τ−1
g(s) ds, we have

d

dτ
F (τ) = f(τ)− f(τ − 1) =

∫ τ

τ−1

d

ds
f(s) ds

≤ c0

4

∫ τ

τ−1
sf(s) ds+

∫ τ

τ−1

C(θ)

|s|
g(s) ds,
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implying
d

dτ
F (τ) ≤ c0

8
τ F (τ) +

C(θ)

|τ |
G(τ).

This is equivalent to

d

dτ

(
e−c0τ

2/16F (τ)
)
≤ C(θ)

|τ |
e−c0τ

2/16G(τ).

Since WT is uniformly bounded for τ ≤ τ0 � −1, it follows that f(τ) and

therefore also F (τ) are uniformly bounded functions for τ ≤ τ0. Therefore, we

have lim
τ→−∞

e−c0τ
2/16F (τ) = 0, so for the last differential inequality we get

e−c0|τ |
2/16 F (τ) ≤ C

∫ τ

−∞

G(s)

s2
(|s| e−c0s2/16) ds

≤ C

|τ |
3
2

sup
s≤τ

(
|s|−

1
2G(s)

) ∫ τ

−∞
|s| e−c0s2/16 ds

≤ C

|τ |
3
2

sup
s≤τ

(
|s|−

1
2G(s)

)
e−c0τ

2/16

with C = C(θ). This yields

sup
s≤τ

(
|s|−

1
2F (s)

)
≤ C

|τ |2
sup
s≤τ

(
|s|−

1
2 G(s)

)
,

or equivalently,

(7.34) ‖WT ‖2,∞ ≤
C(θ)

|τ0|
‖Wχ[θ,2θ]‖2,∞,

therefore concluding the proof of Proposition 7.2. �

8. Proofs of Theorems 1.4 and 1.7

We will now combine Propositions 6.1 and 7.2 to conclude the proof

of our main result Theorem 1.7. Our most general result, Theorem 1.4,

will then readily follow by combining Theorems 1.6 and 1.7. Recall that by

Proposition 4.1 we found parameters (α, β, γ) so that we have the projections

P+w
αβγ
C = P0w

αβγ
C = 0, where α, β and γ are admissible parameters (see also

Remark 4.3). Our goal is to show that

wαβγ := u1 − uαβγ2 ≡ 0.

Proposition 7.2 says that the weighted L2-norm ‖Wαβγ‖2,∞ of the differ-

ence of our solutions Wαβγ(u, τ) := Y1(u, τ)− Y αβγ
2 (u, τ) (after we switch the

variables y and u) in the whole tip region Tθ is controlled by ‖Wαβγ χ[θ,2θ]‖2,∞,

where χ[θ,2θ](u) is supported in the transition region between the cylindri-

cal and tip regions and is included in the cylindrical region Cθ = {(y, τ) :

u1(y, τ) ≥ θ/2}. Lemma 8.1 below says that the norms ‖Wαβγ χD2θ
‖2,∞ and
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‖wαβγ χD2θ
‖H,∞ are equivalent for every number θ > 0 sufficiently small. (Re-

call the definition of ‖ · ‖H,∞ in (3.10)–(3.11).) Therefore combining Proposi-

tions 6.1 and 7.2 gives the crucial estimate (8.7), which will be shown in detail

in Proposition 8.2 below. This estimate says that the norm of the difference

wαβγC of our solutions when restricted in the cylindrical region is dominated

by the norm of its projection onto the zero eigenspace of the operator L (the

linearization of our equation on the limiting cylinder).

After having established that the projection onto the zero eigenspace

a(τ) := 〈wαβγC , ψ2〉 dominates in ‖wαβγC ‖H,∞, the conclusion of Theorem 1.7

will follow by establishing an appropriate differential inequality for a(τ), for

τ ≤ τ0 � −1, and also having that a(τ0) = P0w
αβγ
C (τ0) = 0 at the same time.

As we pointed out above, we need to show next that the norms of the

difference of our two solutions with respect to the weights defined in the cylin-

drical and the tip regions are equivalent in the intersection between the regions,

the so-called transition region.

Lemma 8.1 (Equivalence of the norms in the transition region). Let w,W

denote the difference of the two solutions w := u1− uαβγ2 and W := Y1−Y αβγ
2

in the cylindrical and tip regions respectively. Then, for every θ > 0 small,

there exist τ0 � −1 and uniform constants c(θ), C(θ) > 0, so that for τ ≤ τ0,

we have

(8.1) c(θ) ‖Wχ
[θ,2θ]
‖2,∞ ≤ ‖wχD2θ

‖H,∞ ≤ C(θ) ‖Wχ
[θ,2θ]
‖2,∞,

where D2θ := {(y, τ) : θ ≤ u1(y, τ) ≤ 2θ}.

Proof. To simplify the notation we put u2 := uαβγ2 and Y2 := Y αβγ
2 in this

proof. Define A2θ := D2θ ∪{(y, τ) : θ ≤ u2(y, τ) ≤ 2θ}. The convexity of both

our solutions u1 and u2 imply that

(8.2) min
A2θ

|(u2)y| ≤
∣∣∣u1(y, τ)− u2(y, τ)

Y1(u, τ)− Y2(u, τ)

∣∣∣ ≤ max
A2θ

|(u2)y|.

This easily follows from

|u1(y, τ)− u2(y, τ)|
|Y1(u, τ)− Y2(u, τ)|

=
|u2(Y1(u, τ), τ)− u2(Y2(u, τ)|

|Y1(u, τ)− Y2(u, τ)|
= |u2y(ξ, τ)|,

where ξ is a point in between Y1(u, τ) and Y2(u, τ).

The results in [3] (see also Theorem 1.8 in the current paper) show that

by the asymptotics in the intermediate region for u2, we have

(8.3)
c1(θ)√
|τ |
≤ |u2y(y, τ)| ≤ C1(θ)√

|τ |
for θ ≤ u2(y, τ) ≤ 2θ

for uniform constants c1(θ) > 0 and C1(θ) > 0, independent of τ for τ ≤ τ0.

On the other hand, using that u2 has the same asymptotics in the intermediate
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region as u1, it is easy to see that for τ ≤ τ0 � −1,

D2θ ⊂
ß

(y, τ) :
θ

2
≤ u2(y, τ) ≤ 3θ

™
and hence

c1(θ)√
|τ |
≤ |u2y| ≤

C1(θ)√
|τ |

for y ∈ D2θ.

Combining this, (8.3) and (8.2) yields

(8.4)
c1(θ)√
|τ |
≤ |w(y, τ)|
|W (u, τ)|

≤ C1(θ)√
|τ |

for all y ∈ D2θ, u = u1(y, θ) and τ ≤ τ0 � −1. See Figure 3.

By (7.2) and (7.3) we have µ(u, τ) = −Y 2
1 (u, τ)/4 for u ∈ [θ, 2θ]. Intro-

ducing the change of variables y = Y1(u, τ) (or equivalently u = u1(y, τ)), the

inequality (8.4) yields∫ 2θ

θ
W 2 eµ(u,τ) du =

∫ 2θ

θ
W 2 e−

Y 2
1 (u,τ)

4 du ≤ C(θ)
»
|τ |
∫
D2θ

w2e−
y2

4 dy,

where we used that du = (u1)y dy and that due to our asymptotics from [3] in

the intermediate region, we have

(8.5)
c2(θ)√
|τ |
≤ |(u1)y| ≤

C2(θ)√
|τ |

for y ∈ D2θ.

In conclusion,

‖Wχ
[θ,2θ]
‖2,∞ ≤ C(θ) ‖wχD2θ

‖2,∞,
which proves one of the inequalities in (8.1).

We will next show the other inequality in (8.1). To this end, we again use

(8.4), the change of variables u = u1(y, τ) (or equivalently y = Y1(u, τ)) and

(8.5), to obtain

(8.6)

∫
D2θ

w2e−
y2

4 dy ≤ C(θ)√
|τ |

∫ 2θ

θ
W 2e−

Y 2
1 (u,τ)

4 du =
C(θ)√
|τ |

∫ 2θ

θ
W 2 eµ(u,τ) du

from which the bound

‖wχD2θ
‖2,∞ ≤ C(θ) ‖Wχ

[θ,2θ]
‖2,∞

readily follows. �

We will next combine the main results in the previous two sections, Propo-

sitions 6.1 and 7.2, with the estimate (8.1) above to establish our crucial

estimate, which says that what actually dominates in the norm ‖wC‖D,∞ is

‖P0wC‖D,∞.

Proposition 8.2. For any ε > 0, there exists a τ0 � −1 so that we have

(8.7) ‖ŵC‖D,∞ ≤ ε ‖P0wC‖D,∞.
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Figure 3. Converting the vertical distance u2(y, τ) − u1(y, τ)

to the horizontal distance Y2(u, τ) − Y1(u, τ). Given a point

(y, u) on the graph of u1(·, τ) we define Y1 = y, u = u1(y, τ),

Y2 = Y2(u, τ). By the Mean Value Theorem the ratio u2−u1
Y2−Y1

must equal the derivative −u2,y(ỹ, τ) at some ỹ ∈ (Y1, Y2).

Proof. Keeping in mind Remark 4.3, by Proposition 6.1, for every ε > 0,

there exists a τ0 � −1 so that

‖ŵC‖D,∞ <
ε

3
(‖wC‖D,∞ + ‖wχDθ‖H,∞),

where Dθ = {y | θ/2 ≤ u1(y, τ) ≤ θ}. Furthermore, by Lemma 8.1, by

decreasing τ0 if necessary we ensure that the following holds:

‖ŵC‖D,∞ <
ε

3
(‖wC‖D,∞ + C(θ)‖Wχ[θ/2,θ]‖2,∞)

<
ε

3
(‖wC‖D,∞ + C(θ) ‖WT ‖2,∞),

(8.8)

where χ[θ/2,θ] is the characteristic function of interval u ∈ [θ/2, θ] and where

we used the property of the cut-off function ϕT that ϕT ≡ 1 for u ∈ [θ/2, θ].

By Proposition 7.2, there exist 0 < θ � 1 and τ0 � −1 so that

‖WT ‖2,∞ <
C(θ)√
|τ0|
‖Wχ[θ,2θ]‖2,∞.

By Lemma 8.1 we have

‖WT ‖2,∞ ≤
C(θ)√
|τ0|
‖wχD2θ

‖H,∞ ≤
C(θ)√
|τ0|
‖wC‖H,∞,

where we also use that ϕC ≡ 1 on D2θ. Combining this with (8.8) yields

‖ŵC‖D,∞ <
ε

3

(
‖wC‖D,∞ +

C(θ)√
|τ0|
‖wC‖H,∞

)
<

2ε

3
‖wC‖D,∞
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by choosing |τ0| sufficiently large relative to C(θ). The last estimate yields

(8.7), finishing the proof of the proposition. �

Proof of the Main Theorem 1.7. Recall that

wαβγ(y, τ) = u1(y, τ)− uαβγ2 (y, τ),

where α, β and γ are as in Remark 4.3. Denote this difference shortly by

w(y, τ) = u1(y, τ) − u2(y, τ). Our goal is to show that for that choice of

parameters, w(y, τ) ≡ 0.

Following the notation from previous sections we have

∂

∂τ
wC = L[wC ] + E [wC ] + Ē [w,ϕC ]

with wC = ŵC+a(τ)ψ2, where a(τ) = 〈wC , ψ2〉. Projecting the above equation

on the eigenspace generated by ψ2 while using that 〈L[wC ], ψ2〉 = 0, we obtain

d

dτ
a(τ) = 〈E [wC ] + Ē [w,ϕC ], ψ2〉.

Since
〈ψ2

2 ,ψ2〉
‖ψ2‖2 = 8, we can write the above equation as

d

dτ
a(τ) =

2a(τ)

|τ |
+ F (τ),

where

F (τ) :=
〈E [wC ] + Ē [w,ϕC ]− a(τ)

4|τ | ψ
2
2, ψ2〉

‖ψ2‖2

=
〈Ē [w,ϕC ], ψ2〉
‖ψ2‖2

+
〈E [wC ]− a(τ)

4|τ | ψ
2
2, ψ2〉

‖ψ2‖2
.

(8.9)

Furthermore, solving the above ordinary differential equation for a(τ) yields

a(τ) =
C

τ2
−
∫ τ0
τ F (s)s2 ds

τ2
.

By Remark 4.3 we may assume α(τ0) = 0 and hence C = 0, which implies

(8.10) |a(τ)| =
|
∫ τ0
τ F (s)s2 ds|

τ2
.

Define ‖a‖H,∞(τ) = sups≤τ

(∫ s
s−1 |a(ζ)|2 dζ

) 1
2
. Since P0wC(·, τ) = a(τ)ψ2(·),

we have

‖P0wC‖D,∞(τ) = ‖a‖H,∞(τ) ‖ψ2‖D.
Write ‖a‖H,∞ := ‖a‖H,∞(τ0). Note that∣∣∣∫ τ0

τ
F (s) s2 ds

∣∣∣ ≤ τ0∑
j=[τ ]−1

∣∣∣∫ j+1

j
s2F (s) ds

∣∣∣ ≤ C τ0∑
j=[τ ]−1

j2

∫ j+1

j
|F (s)| ds,
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where with no loss of generality we may assume τ0 is an integer. Next we need

the following claim.

Claim 8.3. For every ε > 0, there exists a τ0 so that∫ τ

τ−1
|F (s)| ds ≤ ε

|τ |
‖a‖H,∞

for τ ≤ τ0.

Assume for the moment that the claim holds. Then,∣∣∣∫ τ0

τ
F (s) s2 ds

∣∣∣ ≤ τ0∑
j=[τ ]

∫ j

j−1
s2|F (s)| ds ≤ ε ‖a‖H,∞

τ0∑
j=[τ ]−1

|j|

≤ ε ‖α‖H,∞
τ0∑

j=[τ ]−1

|j|

≤ ε |τ |2 ‖a‖H,∞.

Combining this with (8.10), where ε ≤ 1/2, yields

|a(τ)| ≤ 1

2
‖a‖H,∞, for all τ ≤ τ0.

This implies

‖a‖H,∞ ≤
1

2
‖a‖2,∞

and hence ‖a‖H,∞ = 0, which further gives

‖P0wC‖D,∞ = 0.

Finally, (8.7) implies ŵC ≡ 0 and hence, wC ≡ 0 for τ ≤ τ0. By (8.1) and the

fact that ϕC ≡ 1 on D2θ, we have Wχ[θ,2θ] ≡ 0 for τ ≤ τ0. Proposition 7.2

then yields that WT ≡ 0 for τ ≤ τ0. All these imply u1(y, τ) ≡ uαβγ2 (y, τ)

for τ ≤ τ0. By forward uniqueness of solutions to the mean curvature flow

(or equivalently to cylindrical equation (1.7)), we have u1 ≡ uαβγ2 , and hence

M1 ≡ Mαβγ
2 . Assuming Claim 8.3, this concludes the proof of Theorem 1.7.

Hence, to complete the proof of Theorem 1.7 we now prove Claim 8.3.

Proof of Claim 8.3. Throughout the proof we will use the estimate

(8.11) ‖wC‖D,∞ ≤ C ‖a‖H,∞ for τ0 � −1,

which follows from Proposition 8.2. By the proof of the same proposition we

also have

‖wχDθ‖H,∞ <
C(θ)√
|τ0|
‖wC‖H,∞ for τ0 � −1.

Also throughout the proof we will use the a priori estimates on the solutions

ui shown in our previous work [3] that continue to hold here without the

assumption of O(1) symmetry, as we discuss in Theorem 9.1 below.
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From the definition of Ē [w,ϕC ] given in (6.11) and the definition of the

cut-off function ϕC , we see that the support of E [w,ϕC ] is contained in( 
2− θ2

n− 1
− ε1

) »
|τ | ≤ |y| ≤

Ç 
2− θ2

4(n− 1)
+ ε1

å »
|τ |,

where ε1 is so tiny that
√

2− θ2

4(n−1) + ε1 <
√

2. Also by the a priori estimates

proved in [3, Lemma 4.1 and (5.28)], we have

(8.12) |uy|+ |uyy| ≤
C(θ)√
|τ |

for |y| ≤
Ç 

2− θ2

4(n− 1)
+ ε1

å»
|τ |.

Furthermore, Lemma 5.14 in [3] shows that our ancient solutions ui, i ∈ {1, 2}
satisfy ∥∥∥Çui −»2(n− 1) +

√
2(n− 1)

4|τ |
ψ2

å
χsupp(ϕC)

∥∥∥ = o(|τ |−1),

∥∥∥(ui +

√
2(n− 1)

4|τ |
ψ2

)
y
χsupp(ϕC)

∥∥∥ = o(|τ |−1),

(8.13)

where χsupp(ϕC) is the characteristic function of suppϕC . In particular, this

implies

(8.14)
∥∥∥ui −»2(n− 1)

∥∥∥ = O(|τ |−1) and
∥∥∥(ui)y

∥∥∥ = O(|τ |−1).

We start by estimating the first term on the right-hand side in (8.9). Using

Lemma 6.9, we conclude that

|〈Ē [w,ϕC ], ψ2〉| ≤ ‖Ē [w,ϕC ]‖D∗‖ψ2 χ̄‖D < ε ‖wC‖D e−|τ |/4,(8.15)

where χ̄ denotes a smooth function with a support in

|y| ≥ (
»

2− θ2/(4(n− 1))− 2ε1)
»
|τ |

being equal to one for |y| ≥ (
√

2− θ2/(4(n− 1))− ε1)
√
|τ |. This implies that

for every ε > 0 we can find a τ0 � −1 so that for τ ≤ τ0, we have∫ τ

τ−1
|〈Ē [w,ϕC ], ψ2〉| ds ≤

ε‖a‖H,∞
|τ |

,

where we used (8.11).

We focus next on the second term on the right-hand side in (8.9). Let us

write wC = ŵC + a(τ)ψ2. Recall that

(8.16)

E [wC ] =
2(n− 1)− u1u2

2u1u2
wC −

u2
1y

1 + u2
1y

(wC)yy −
(u1y + u2y)u2yy

(1 + u2
1y)(1 + u2

2y)
(wC)y.
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Then for the first term on the right-hand side of (8.16), we get

∣∣∣〈2(n− 1)− u1u2

2u1u2
wC −

a(τ)

4|τ |
ψ2

2, ψ2

〉∣∣∣
≤
∣∣∣〈2(n− 1)− u1u2

2u1u2
ŵC , ψ2

〉∣∣∣+ |a(τ)|
∣∣∣〈2(n− 1)− u1u2

2u1u2
− 1

4|τ |
ψ2, ψ

2
2

〉∣∣∣.

(8.17)

To estimate the first term on the right-hand side in (8.17), we write

∣∣∣〈2(n− 1)− u1u2

2u1u2
ŵC , ψ2

〉∣∣∣ ≤ ∣∣∣〈(
√

2(n− 1)− u1)(
√

2(n− 1) + u1)

2u1u2
ŵC , ψ2

〉∣∣∣
+
∣∣∣〈u1 −

√
2(n− 1)

2u2
ŵC , ψ2

〉∣∣∣+
∣∣∣〈√2(n− 1)− u2

2u2
ŵC , ψ2

〉∣∣∣.

(8.18)

Note that ui ≥ θ/2 on the support of ŵC . Hence the arguments for estimating

either of the terms on the right-hand side in (8.18) are analogous to estimating

the second term in (8.18). Using Lemma 6.2, Proposition 8.2, (8.11) and (8.14),

we get that for every ε > 0, there exists a τ0 � −1 so that for τ ≤ τ0, we have∣∣∣〈u1 −
√

2(n− 1)

2u2
ŵC , ψ2

〉∣∣∣
≤ C(θ)

(∫
ŵ2
C |ψ2|e−y

2/4 dy
)1/2 (∫

(
»

2(n− 1)− u1)2|ψ2|e−y
2/4 dy

)1/2

≤ C(θ)‖ŵC‖D ‖
»

2(n− 1)− u1‖D

<
ε

|τ |
‖ŵC‖D

implying

(8.19)

∫ τ

τ−1

∣∣∣〈2(n− 1)− u1u2

2u1u2
ŵC , ψ2

〉 ∣∣∣ds < ε

|τ |
‖a‖H,∞.

Let us now estimate the second term on the right-hand side in (8.17). Writing

ui =
√

2(n− 1)(1 + vi), we get〈2(n− 1)− u1u2

2u1u2
− 1

4|τ |
ψ2, ψ

2
2

〉
= −

〈 v1 + v2 + v1v2

2(1 + v1)(1 + v2)
+

1

4|τ |
ψ2, ψ

2
2

〉
= −1

2

〈 v1

(1 + v1)(1 + v2)
+

ψ2

4|τ |
, ψ2

2

〉
− 1

2

〈 v2

1 + v2
+

ψ2

4|τ |
, ψ2

2

〉
.

(8.20)

The two terms on the right-hand side in above equation can be estimated in

the same way, so we will demonstrate how to estimate the second one. Using
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(8.13), (8.14) and Hölder’s inequality we get that for every ε > 0, there exist

K large enough and τ0 � −1 so that for τ ≤ τ0, we have〈 v2

1 + v2
+

ψ2

4|τ |
, ψ2

2

〉
= 〈v2 +

ψ2

4|τ |
, ψ2

2〉 − 〈
v2

2

1 + v2
, ψ2

2〉

≤ C
∥∥∥v2 +

ψ2

4|τ |

∥∥∥+ C

∫
R
v2

2 y
4 e−

y2

4 dy

≤ o(1)

|τ |
+
(∫

R
v2

2 e
− y

2

4 dy
) 1

2
(∫

R
v2

2 y
8 e−

y2

4 dy
) 1

2

≤ o(1)

|τ |
+
C

|τ |

Ç(∫
|y|≤K

v2
2y

8e−
y2

4 dy
) 1

2
+
(∫
|y|≥K

v2
2y

8e−
y2

4 dy
) 1

2

å
<

ε

4|τ |
.

To justify the last inequality note that for a given ε > 0 we can find K large

enough so that
(∫
|y|≥K

v2
2y

8e−
y2

4 dy
) 1

2
<

ε

6C
. On the other hand, using our

asymptotics result proven in [3], for a chosen K, we can find a τ0 � −1 so that

for τ ≤ τ0 we have |vi| <
ε

6C
√
K

. Finally, we conclude that for every ε > 0,

there exists a τ0 � −1, so that for all τ ≤ τ0,∣∣∣〈2(n− 1)− u1u2

2u1u2
− ψ2

4|τ |
, ψ2

2

〉∣∣∣ < ε

2|τ |
.

This implies

(8.21)

∫ τ

τ−1
|a(s)|

∣∣∣〈2(n− 1)− u1u2

2u1u2
− ψ2

4|τ |
, ψ2

2

〉∣∣∣ ds ≤ ε

|τ |
‖a‖H,∞.

Since the first term on the right-hand side in (8.20) can be estimated in a

similar manner, we conclude that this inequality holds.

It remains now to estimate the second and third terms in the error term

(8.16), which involve first and second order derivative bounds for our solu-

tions ui. We claim that for every K there exist τ0 � −1 and a uniform

constant C so that

(8.22) |(ui)y|+ |(ui)yy| ≤
C

|τ |
for |y| ≤ K, τ ≤ τ0, i = 1, 2.

This follows by standard derivative estimates applied to the equation satisfied

by each of the vi, i = 1, 2 and the L∞ bound |vi| ≤ C
|τ | , which holds on

|y| ≤ 2K, τ ≤ τ0 � −1.
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Let us use (8.22) to estimate the projection involving the third term in

(8.16): for every ε > 0, there exists a τ0 � −1 so that for τ ≤ τ0,∣∣∣〈 (u1y + u2y)u2yy

(1 + u2
1y) (1 + u2

2y)
(wC)y, ψ2

〉∣∣∣
≤ C

∫
|y|≤K

(|u1y|+ |u2y|) |u2yy| |(wC)y| (y2 + 1) e−
y2

4 dy

+ C

∫
|y|≥K

(|u1y|+ |u2y|) |u2yy| |(wC)y| y2 e−
y2

4 dy

≤ C(K)

|τ |2
‖wC‖D +

C

|τ |
‖wC‖D

(∫
|y|≥K

y4 e−
y2

4 dy
) 1

2

<
ε

|τ |
‖wC‖D,

where we used Hölder’s inequality, estimate (8.12) in the region {|y| ≥ K} ∩
suppwC} and estimate (8.22) in the region {|y| ≤ K}. This implies that for

every ε > 0, there exists a τ0 � −1 so that

(8.23)

∫ τ

τ−1

∣∣∣〈 (u1y + u2y)u2yy

(1 + u2
1y)(1 + u2

2y)
(wC)y, ψ2

〉∣∣∣ ds < ε

|τ |
‖wC‖D,∞ <

ε

|τ |
‖a‖H,∞.

Finally, to estimate the projection involving the second term in (8.16), we

note that integration by parts yields

〈 u2
1y

1 + u2
1y

(wC)yy, ψ2

〉
= −2

∫
R

u1yyu1y

1 + u2
1y

(wC)y ψ2 e
− y

2

4 dy + 2

∫
R

u3
1yu1yy

(1 + u2
1y)

2
(wC)y ψ2 e

− y
2

4 dy

−
∫
R

u2
1y

1 + u2
1y

(wC)y (ψ2)y e
− y

2

4 dy +
1

2

∫
R

u2
1y

1 + u2
1y

(wC)yψ2 y e
− y

2

4 dy.

(8.24)

It is easy to see that all terms on the right-hand side in (8.24) can be estimated

very similarly as in (8.23). Hence, for every ε > 0, there exists a τ0 so that for

all τ ≤ τ0, we have

(8.25)

∫ τ

τ−1

∣∣∣〈 u2
1y

1 + u2
1y

(wC)yy, ψ2

〉∣∣∣ ds < ε

|τ |
‖a‖H,∞.

Combining (8.9), (8.15), (8.16), (8.19), (8.21), (8.23), (8.24) and (8.25) con-

cludes Claim 8.3. �

The proof of our Theorem 1.7 is now also complete. �
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9. Reflection symmetry

In this appendix we will justify why the conclusions of Theorem 1.8 proved

in [3] under the assumption on O(1)×O(n) symmetry hold in the presence of

O(n)-symmetry only. More precisely we will show the following result.

Theorem 9.1. If Mt is an Ancient Oval that is rotationally symmetric,

then the conclusions of Theorem 1.8 hold.

Proof. We will follow closely the arguments in Theorem 1.8 and point out

below only steps in which the arguments slightly change because of the lack

of reflection symmetry. All other estimates can be argued in exactly the same

way.

Recall that we consider non-collapsed, ancient solutions (and hence convex

due to [13]) that are O(n)-invariant hypersurfaces in Rn+1. Such hypersurfaces

can be represented as

{(x, x′) ∈ R× Rn | − d1(t) < x < d2(t), ‖x′‖ = U(x, t)}

for some function ‖x′‖ = U(x, t). The points (−d1(t), 0) and (d2(t), 0) are

called the tips of the surface. The profile function U(x, t) is defined only for

x ∈ [−d1(t), d2(t)]. After parabolic rescaling

U(x, t) =
√
T − t u(y, τ), y =

x√
T − t

, τ = − log(T − t),

the profile function u(y, τ) is defined for −d̄1(τ) ≤ y ≤ d̄2(τ). Theorem 1.11 in

[13] and Corollary 6.3 in [19] imply that as τ → −∞, surfaces Mτ converge in

C∞loc to a cylinder of radius
√

2(n− 1), with axis passing through the origin.

Due to concavity, for every τ , there exists a y(τ) so that uy(·, τ) ≤ 0 for

y ≥ y(τ), uy(·, τ) ≥ 0 for y ≤ y(τ) and uy(y(τ), τ) = 0. To finish the proof

of Theorem 9.1 we need the following lemma saying the maximum of H is

attained at one of the tips.

Lemma 9.2. We have that (λ1)y ≥ 0 for y ∈ [y(τ), d̄1(τ)) and (λ1)y ≤ 0

for y ∈ (−d̄2(τ), y(τ)]. As a consequence, the mean curvature H on Mt attains

its maximum at one of the tips (−d1(t), 0) or (d2(t), 0).

Proof. We follow the proof of Corollary 3.8 in [3], where the result followed

from the fact that the scaling invariant quantity

R :=
λn
λ1

= − uuyy
1 + u2

y

≥ 0

satisfies

(9.1) R ≤ 1.
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Let us then show that (9.1) still holds in our case. Note that at umbilic points

one has R = 1. Both tips of the surface are umbilic points, and hence we have

R = 1 at the tips for all τ . (Here we use that the surface is smooth and strictly

convex and radially symmetric at the tips.) Hence, Rmax(τ) is achieved on the

surface for all τ and is larger or equal than one. Thus it is sufficient to show

that Rmax(τ) ≤ 1. We first note that the quantity Q :=
u2
y

u2(1 + u2
y)

(considered

also in [3]) satisfies Qy ≥ 0 for y ≥ y(τ) and Qy ≤ 0 for y ≤ y(τ).

To prove (9.1), we may assume Rmax(τ) = R(ȳτ , τ) > 1 for all τ ≤ τ0 and

some ȳτ ∈ M̄τ , since otherwise the statement is true. The convergence to the

cylinder in the middle implies that |ȳτ | → +∞, as τ → −∞. As in the proof

of Lemma 3.5 in [3] it is enough to show that

(9.2) lim inf
τ→−∞

Q(ȳτ , τ) ≥ c > 0

for a uniform constant c > 0 and all τ ≤ τ0.

The same proof as in [3] implies there exists a uniform constant c1 > 0 so

that for all τ ≤ τ0 � −1, we have

(9.3) Q(y, τ) ≥ c1, whenever R(y, τ) = 1.

We claim that this implies (9.2). To prove this claim we argue by con-

tradiction and hence assume that there exists a sequence τi → −∞ for which

Q(ȳτi , τi) → 0 as i → ∞. This implies that limτ→−∞R(y, τ) = 0, uniformly

for y bounded. We conclude that for all τ ≤ τ0, there exists at least one point

yτ such that R(yτ , τ) = 1. The convergence to the cylinder also implies that

without loss of generality we may take a subsequence such that y(τi) < ȳτi .

We consider two different cases.

Case 1. R(y(τi), τi) ≤ 1. Then, either R(y(τi), τi) = 1 (in which case

set ŷτi := y(τi)), or R(y(τi), τi) < 1 (in which case we find ŷτi ∈ (y(τi), ȳτi)

so that R(yτi , τi) = 1). In either case, since R(ŷτi , τi) = 1, (9.3) implies that

Q(ŷτi , τi) ≥ c1 for i ≥ i0. Since Qy(·, τ) ≥ 0 for y ≥ y(τ) and ȳτi ≥ ŷτi ≥ y(τi),

we conclude that Q(ȳτi , τi) ≥ c1 > 0 for i ≥ i0, contradicting our assumption

that the limi→∞Q(ȳτi , τi) = 0.

Case 2. R(y(τi), τi) > 1. Recall that u(y, τ) satisfies the equation

∂

∂τ
u =

uyy
1 + u2

y

− y

2
uy +

u

2
− n− 1

u
= −H

»
1 + u2

y −
y

2
uy +

u

2
.

The maximum of u(·, τ) is achieved at y(τ), and hence by (2.14) we have

d

dτ
umax ≥ −C +

umax

2

implying that

u(y(τ), τ) = umax(τ) ≤ max{2C, umax(τ0)} for τ ≤ τ0.
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On the other hand, due to the convergence to the cylinder of radius
√

2(n− 1)

in the middle, we have that umax(τ) ≥ u(0, τ) ≥ 1
2

√
2(n− 1) for τ ≤ τ0 � −1.

All these imply that for τ ≤ τ0 � −1, we have

C0 ≥ H(y(τ), τ) ≥ n− 1

u
≥ c0 > 0.

Hence, we can take a limit around (y(τi), u(y(τi), τi) to conclude that the

limit is a complete graph of a concave, non-negative function û(y, τ) so that

ûy(0, 0) = 0. All these yield û ≡ constant, that is, the limit is the round

cylinder R× Sn−1, contradicting that R(y(τi), τi) > 1.

This finishes the proof of estimate (9.2). Next we can argue as in the proof

of Lemma 3.5 in [3] to conclude the proof that R ≤ 1 for τ ≤ τ0 � −1.

To finish the proof of Lemma 9.2, note that R ≤ 1 on Mτ for τ ≤ τ0

implies that

(λ1)y ≥ 0 for y ∈ [y(τ), d̄1(τ)] and (λ1)y ≤ 0 for y ∈ [−d̄2(τ), y(τ)].

We now conclude as in the proof of Corollary 3.8 in [3] that

H(y, τ) ≤ max
(
H(d̄1(τ), τ), H(d̄2(τ), τ)

)
, y ∈Mτ

for all τ ≤ τ0 � −1, finishing the proof of Lemma 9.2. �

The a priori estimates from Section 4 in [3] hold as well in our case, one just

has to use that uy ≤ 0 for y ∈ [y(τ), d̄1(τ)] and uy ≥ 0 for y ∈ [−d̄2(τ), y(τ)].

By using the same barriers that we constructed in [3] one can easily see that

we still have the inner-outer estimate we showed in Section 4.5 in [3]. Note

that the same inner-outer estimates were proved and the same barriers were

used in [7] without assuming any symmetry.

Lemma 9.3. There is an Ln > 0 such that for any rescaled Ancient Oval

u(y, τ), there exist sequences τi, τ
′
i→−∞ such that for all i = 1, 2, 3, . . . , one

has
u(Ln, τi) <

»
2(n− 1) and u(−Ln, τ ′i) <

»
2(n− 1).

Proof. Choose Ln so that the region {(y, u) : y ≥ Ln, 0 ≤ u ≤
√

2(n− 1)}
is foliated by self-shinkers as in [3]; i.e., for each a ∈ (0,

√
2(n− 1)), there is a

unique solution Ua : [Ln,∞)→ R of

(9.4)
Uyy

1 + U2
y

− y

2
Uy +

1

2
U − n− 1

U
= 0, U(Ln) = a.

To prove the lemma we argue by contradiction and assume that the sequence τi
does not exist. This means that for some τ∗, one has u(Ln, τ) ≥

√
2(n− 1) for

all τ ≤ τ∗. The same arguments as in [3, §4] then imply that u(y, τ) ≥ Ua(y)

for all y ≥ Ln, any τ ≤ τ∗ and any a ∈ (0,
√

2(n− 1)). This implies that

u(y, τ) ≥
√

2(n− 1) for all y ≥ Ln and therefore contradicts the compactness

of Mτ . �
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For any of our rescaled rotationally symmetric Ancient Ovals u(y, τ), then

we can consider the truncated difference

v(y, τ) = ϕ
( y
L

)Å u(y, τ)√
2(n− 1)

− 1

ã
for some large L. This function satisfies

(9.5) vτ = Lv + E(τ),

where E contains the non-linear as well as the cut-off terms, and where L is

the operator

Lφ = φyy −
y

2
φy + φ.

Using the fact that v comes from an ancient solution, and by comparing the

Huisken functionals of Mτ with that of the cylinder, we can show as in [3] that

for any ε > 0, one can choose L = Lε and τε < 0 large enough so that

(9.6) ‖E(τ)‖H ≤ ε‖v(·, τ)‖H

holds for all τ ≤ τε.
As in [3] we can decompose v into eigenfunctions of the linearized equation,

i.e.,

v(y, τ) = v−(y, τ) + c2(τ)ψ2(y) + v+(y, τ)

with the only difference that v± are no longer necessarily even functions of y.

The component in the unstable directions now has two terms,

v+(y) = c0(τ)ψ0(y) + c1(τ)ψ1(y) = c0(τ) + c1(τ) y.

The estimate (9.6) implies that the exponential growth rates of the various

components v−, c2, c1, c0 are close to the growth rates predicted by the lin-

earization; i.e., if we write V−(τ) = ‖v−(·, τ)‖H, then we have

V ′−(τ) ≤ −1
2V−(τ) + ε‖v(·, τ)‖,(9.7a)

|c′2(τ)| ≤ ε‖v(·, τ)‖,(9.7b)

|c′1(τ)− 1
2c1(τ)| ≤ ε‖v(·, τ)‖,(9.7c)

|c′0(τ)− c0(τ)| ≤ ε‖v(·, τ)‖.(9.7d)

The total norm, which appears on the right in each of these inequalities, is

given by Pythagoras:

‖v(·, τ)‖2H = V−(τ)2 + c0(τ)2 + c1(τ)2 + c2(τ)2.

Using the ODE Lemma (see Lemma in [3]) we conclude that for τ → −∞,

exactly one of the four quantities V−(τ), c0(τ), c1(τ), and c2(τ) is much larger

than the others. Similarly to [3], we will now argue that c2(τ) is in fact the

largest term:
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Lemma 9.4. For τ → −∞, we have

V−(τ) + |c0(τ)|+ |c1(τ)| = o
(
|c2(τ)|

)
.

Proof. We must rule out that any of the three components V−, c0, or c1

dominates for τ � 0.

The simplest is V−, for if ‖v(τ)‖H = O(V−(τ)), then (9.7a) implies that

V−(τ) is exponentially decaying. Since v(·, τ)→ 0 as τ → −∞, it would follow

that V−(τ) ≡ 0, and thus v(·, τ) ≡ 0, which is impossible.

If ‖v(·, τ)‖H = o
(
c0(τ)

)
, then on any bounded interval |y| ≤ L we have

v(y, τ) = c0(τ)
(
1 + o(1)

)
(τ → −∞).

In this case we derive a contradiction using the same arguments as in [3].

Finally, if c1(τ) were the largest component, then we would have

v(y, τ) = c1(τ)
(
y + o(1)

)
(τ → −∞)

so that we would have either v(L, τ) > 0, or v(−L, τ) > 0 for all τ � 0. This

again contradicts Lemma 9.3. �

Once we have the result in Lemma 9.3, it follows as in [3] that

u(y, τ) =
»

2(n− 1)

Å
1− y2 − 2

4|τ |

ã
+ o(|τ |−1) |y| ≤M

as τ → −∞. This implies that y(τ), the maximum point of u(y, τ) (such that

uy(y(τ), τ) = 0) satisfies

|y(τ)| = o(1), as τ → −∞.

In particular, we have that y(τ) ≤ 1 for τ ≤ τ0 � −1. After we conclude

this, the arguments in the intermediate and the tip region asymptotics in [3]

go through in our current case where we lack the reflection symmetry. �

10. Equivalence of intrinsic and extrinsic distance

Let Ω ⊂ Rn+1 be a compact convex subset with smooth boundary. Recall

that Ω is α-non-collapsed if at every point Q ∈ ∂Ω there is a P ∈ Ω with

Q ∈ ∂Br(P ) ⊂ Ω, where r satisfies H(Q)r ≥ α. Here H(Q) > 0 is the mean

curvature of ∂Ω at Q. Since the sphere ∂Br(P ) touches the hypersurface ∂Ω

from one side, we have H(Q) ≤ n
r so that a convex subset cannot be α-non-

collapsed if α > n.

For any pair of points A,B ∈ ∂Ω, define d(A,B) to be the intrinsic dis-

tance between A and B on the surface ∂Ω. Then d(A,B) ≥ ‖A− B‖ always.

Consider

L = max
A 6=B

d(A,B)

‖A−B‖
.
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Lemma 10.1. There is a cn ∈ R such that if Ω is α-non-collapsed for

some α ∈ (0, n], then L ≤ cnα−1/2.

Except for the precise value of the constant cn, this estimate is optimal,

as shown by considering flat ellipsoids of rotation.

Proof. Throughout we will assume that L ≥ 2.

Given Ω, choose A,B ∈ ∂Ω with d(A,B) = L‖A − B‖. The lemma is

scaling invariant, so we may assume that ‖A−B‖ = 1, and after a Euclidean

motion we may also assume that A is the origin, and that Ω is contained in

the upper halfspace xn+1 ≥ 0.

Let ν be the outward unit normal to Ω at B.

Claim 1. The outward normal ν at B points upwards, i.e., νn+1 > 0.

Indeed, assume νn+1 ≤ 0. Then B cannot lie on the xn+1 axis, for in this

case we clearly would have νn+1 > 0. Thus B does not lie on the xn+1-axis,

and we can consider the two dimensional plane P containing the xn+1 axis and

the point B. The intersection of this plane with ∂Ω is a convex plane curve

containing both A and B. One of the arcs in ∂Ω ∩ P connecting A and B is

the graph of a convex increasing function whose length is at most
√

2. Thus

L = d(A,B) ≤
√

2, contradicting our assumption that L ≥ 2.

After further rotation we may assume that νi ≥ 0 for i = 1, 2, . . . , n.

Consider the point C = 1
2(A+B), and define

mi = sup{m > 0 | C +mei ∈ Ω}.

We also define Di = C +miei.

Claim 2. L ≤ max{2, 12mi} for each i ∈ {1, . . . , n}.

To prove this consider the plane P through the points A,B,Di. The curve

∂Ω ∩ P is convex and contains {A,B,Di}.
The points {A,B} split the curve in two arcs, each of which has length

no less than d(A,B) = L. We consider the length of the arc that contains Di.

To this end consider two horizontal lines in the plane P through the points

A and B, respectively. The line through BDi intersects the horizontal line

through A in the point F ; the line through ADi intersects the horizontal line

through B at E. Since we had arranged our coordinate axes so that νi ≥ 0,
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Figure 4. Proof that intrinsic and extrinsic distance on ∂Ω are equivalent.

the arc ADiB lies below the horizontal line through B (i.e., xn+1 ≤ 1 on the

arc ADiB). (See Figure 4.)

Both line segments BE and AF have length 2mi. By convexity, the arc

BDi is shorter than ‖Di − E‖ + ‖E − B‖, and the arc ADi is shorter than

‖A− F‖+ ‖F −Di‖.
The segments BDi and DiF have the same length, as do the segments

ADi and DiF . By the triangle inequality we have ‖B − Di‖ ≤ 1
2 + mi and

‖A−Di‖ ≤ 1
2 +mi.

Summing up, we find that the arc ADiB is bounded by

length(ADiB) ≤ ‖A− F‖+ ‖F −Di‖+ ‖Di − E‖+ ‖E −B‖
≤ 2mi + (1

2 +mi) + (1
2 +mi) + 2mi

= 6mi + 1.

Hence L ≤ 6mi + 1. If we assume that L ≥ 2, then this implies L ≤ 6mi + 1
2L,

and thus L ≤ 12mi.

We now consider the hypersurface Φ : Σ→ Rn+1 parametrized by

Φλ(t1, . . . , tn) = C + 1
2 t1m1e1 + · · ·+ 1

2 tnmnen + λf(t1, . . . , tn)en+1,

where Σ is the simplex Σ = {t ∈ Rn | ti ≥ 0,
∑

i ti ≤ 1} and f is the function

f(t1, . . . , tn) = (n+ 1)n+1 t1t2 · · · tn(1− t1 − · · · − tn).

This function vanishes on ∂Σ, is positive in the interior of Σ, and attains its

maximum when t1 = · · · = tn = 1/(n+ 1). The coefficient in f was chosen so

that the maximal value of f |Σ is exactly max f(Σ) = 1. By convexity of Ω we

have Φλ(∂Σ) ⊂ K for all λ ≥ 0. If λ > 1, then Φλ( 1
n+1 , . . . ,

1
n+1) 6∈ Ω, so there

is a largest λ∗ ∈ [0, 1] for which the patch Φλ∗(Σ) is contained in Ω.

Since each of the mi is bounded from below by mi ≥ 1
12L, it follows that

the angle between the unit normal anywhere on the patch Φλ∗(Σ) and the xn+1-

axis is bounded by C/L, while the curvature of the patch Φλ∗(Σ) is bounded

by C/L2 for some constant C. For large enough L, the unit normal anywhere

on the patch Φλ∗(Σ) will be close to vertical. If P ∈ ∂Ω is a point of contact
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between Φλ∗(Σ) and ∂Ω, then the inward pointing normal at P will also be

almost vertical. If Ω is α-non-collapsed, then the sphere with radius α/H that

touches ∂Ω from the inside at the point of contact must be contained in Ω.

The mean curvature H at the contact point is bounded by C/L2, so we find

that the interior sphere with radius α
CL

2 at the point of contact is contained

in the region Ω. See Figure 4.

The point of contact has xn+1 ≤ 1 while we have xn+1 ≥ 0 throughout

the convex region Ω. It follows that the radius of any interior sphere at the

point of contact is at most
√

2. Therefore we have α
CL

2 ≤
√

2, which implies

that L2 ≤ C/α, where the constant C only depends on the dimension n. �
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