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Uniqueness of two-convex closed ancient
solutions to the mean curvature flow

By SIGURD ANGENENT, PANAGIOTA DASKALOPOULOS, and NATASA SESUM

Abstract

In this paper we consider the classification of closed non-collapsed an-
cient solutions to the Mean Curvature Flow (n > 2) that are uniformly
two-convex. We prove that they are either contracting spheres or they
must coincide up to translations and scaling with the rotationally symmet-
ric closed ancient non-collapsed solution first constructed by Brian White,
and later by Robert Haslhofer and Or Hershkovits.
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1. Introduction

In this paper we consider closed non-collapsed ancient solutions F(-,t) :
M"™ — R to the mean curvature flow (n > 2)

5,
(1.1) 5 F = —Hv

for t € (—o0,0), where H is the inward mean curvature of M; := F(M"™,t) and
v is the outward unit normal vector. We know by Huisken’s result [14] that
compact convex surfaces M; will contract to a point in finite time.

The main focus of the paper is the classification of two-convex closed
ancient solutions to mean curvature flow, i.e., solutions that are defined for
t € (—o0,T) for some T' < +00. Ancient solutions play an important role in
understanding the singularity formation in geometric flows, as such solutions
are usually obtained after performing a blow-up near points where the cur-
vature is very large. In fact, Perelman’s famous work on the Ricci flow [17]
shows that the high curvature regions in 3D Ricci flow are modeled on ancient
solutions that have non-negative curvature and are x-non-collapsed. Similar
results for mean curvature flow were obtained in [13], [20], [21] assuming mean
convexity and embeddedness.

Daskalopoulos, Hamilton and Sesum previously established the complete
classification of ancient compact convex solutions to the curve shortening flow
in [8] and ancient compact solutions to the Ricci flow on S? in [9]. The higher
dimensional cases have remained open for both the mean curvature flow and
the Ricci flow.

In [18] W. Sheng and X. J. Wang introduced the following notion of non-
collapsed solutions to the MCF, which is the analogue to the k-non-collapsing
condition for the Ricci flow discussed above. Furthermore, in [19] Xu-Jia Wang
provided a number of results regarding the asymptotic behavior of ancient
solutions, as ¢ — —oo, and he also constructed new examples of ancient MCF
solutions.

Definition 1.1. Let K™™' C R"*! be a domain whose boundary is a
smooth mean convex hypersurface M". We say that M™ is a-non-collapsed

o

if for every p € M™, there are balls By and Bs of radius at least ) such
that B; ¢ K™ and By ¢ R™!\ Int(K™*!), and such that B; and Bj are
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tangent to M" at the point p, from the interior and exterior of K™*1, respec-
tively. (In the limiting case H(p) = 0, this means that K"*! is a halfspace.) A
smooth mean curvature flow {M;} is a-non-collapsed if M is a-non-collapsed
for every t.

In [1] Andrews showed that the a-non-collapsedness property is preserved
along mean curvature flow; namely, if the initial hypersurface is a-non-collapsed
at time t = tg, then evolving hypersurfaces M; are a-non-collapsed for all later
times for which the solution exists. Haslhofer and Kleiner [13] showed that
every closed, ancient, and a-non-collapsed solution is necessarily convex.

In recent breakthrough works, Brendle and Choi [7], [6] gave the complete
classification of non-compact ancient solutions to the mean curvature flow that
are both strictly convex and uniformly two-convex. More precisely, they show
that any non-compact and complete ancient solution to mean curvature flow
(1.1) that is strictly convex, uniformly two-convex, and non-collapsed is the
Bowl soliton, up to scaling and ambient isometries. Recall that the Bowl
soliton is the unique rotationally-symmetric, strictly convex solution to mean
curvature flow that translates with unit speed. It has the approximate shape
of a paraboloid, and its mean curvature is largest at the tip. The uniqueness
of the Bowl soliton among non-collapsed and uniformly two-convex translating
solitons was established by Haslhofer in [11].

While the a-non-collapsedness property for mean curvature flow is pre-
served forward in time, it is not necessarily preserved going back in time.
Indeed, Xu-Jia Wang [19] exhibited examples of ancient compact convex mean
curvature flow solutions {M; | ¢t < 0} that are not uniformly a-non-collapsed
for any o > 0. Such solutions lie in slab regions. The methods in [19] rely on
the level set flow. Recently, Bourni, Langford and Tinaglia [5] provided a de-
tailed construction of the Xu-Jia Wang solutions by different methods, showing
also that the solution they construct is unique within the class of rotationally
symmetric mean curvature flows that lie in a slab of a fixed width. In the
present paper we will not consider these ancient collapsed solutions and will
focus on the classification of ancient closed non-collapsed mean curvature flows.

Ancient self-similar shrinking solutions to MCF are of the form M; =
VT —t M for some fixed surface M and some “blow-up time” 7. We rewrite
a general ancient solution {M; : t < T} as

(1.2) My =T —tM,, 7:=—log(T —t).

Haslhofer and Kleiner [13] proved that every closed ancient non-collapsed
mean curvature flow with strictly positive mean curvature sweeps out the whole
space. By Xu-Jia Wang’s result [19], it follows that in this case the backward
limit as 7 — —oo of the type-I rescaling M, of the original solution M;, de-
fined by (1.2), is either a sphere or a generalized cylinder R¥ x "% of radius
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\/2(n — k). In [3] we showed that if the backward limit is a sphere, then the
ancient solution {M;} has to be a family of shrinking spheres itself. Note that
in [13] it has been shown that if a closed ancient non-collapsed solution is self-
similar, then it has to be the round sphere. Hence, we introduce the following
definition.

Definition 1.2. We say an ancient mean curvature flow {M; : —oo <t <T'}
is an Ancient Oval if it is compact, smooth, non-collapsed, and not self-similar.

Definition 1.3. We say that an ancient solution {M; : —oo < t < T'} is
uniformly two-convex if there exists a uniform constant 5 > 0 so that

(1.3) A +A>BH  forallt<T.

Throughout the paper we will be using the following observation: if an
Ancient Oval My is uniformly two-convex, then by results in [19], the backward
limit of its type-I parabolic blow-up must be a shrinking round cylinder Rx S™~1,
with radius \/2(n — 1).

Based on formal matched asymptotics, Angenent [2] conjectured the exis-
tence of an Ancient Oval, that is, of an ancient solution that for ¢ — 0 collapses
to a round point, but for ¢ — —oo becomes more and more oval in the sense that
it looks like a round cylinder R x S”~! in the middle region, and like a rotation-
ally symmetric translating soliton (the Bowl soliton) near the tips. A variant
of this conjecture was proved already by White in [21]. By considering convex
regions of increasing eccentricity and using limiting arguments, White proved
the existence of ancient flows of compact, convex sets that are not self-similar.
Haslhofer and Hershkovits [12] carried out White’s construction in more detail,
including, in particular, the study of the geometry at the tips. As a result they
gave a rigorous and simple proof for the existence of an Ancient Oval.

Our main result in this paper is as follows.

THEOREM 1.4 (Uniqueness of Ancient Ovals). Let {M;, —oo <t < T} be
a uniformly two-conver Ancient Oval. Then it is unique up to rotation, scaling

and translation in time, and hence it must be the solution constructed by White
in [21] and later by Haslhofer and Hershkovits in [12].

An immediate consequence of our Theorem 1.4 and the definition of An-
cient Ovals is the following classification result.

THEOREM 1.5. Let {M;, —oo < t < T} be an ancient mean curvature
flow that is compact, uniformly two-conver and non-collapsed. Then, it is
either the contracting spheres or the solution constructed by White in [21] and
later by Haslhofer and Hershkovits in [12].
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The proof of Theorem 1.4 will follow from the two Theorems 1.6 and 1.7
stated below.

THEOREM 1.6 (Rotational symmetry of Ancient Ovals). If {M; : —oco <
t < 0} is an Ancient Owval that is uniformly two-convex, then it is rotationally
symmetric.

Our proof of Theorem 1.6 closely follows the arguments by Brendle and
Choi in [7], [6] on the uniqueness of strictly convex, non-compact, uniformly
two-convex, and non-collapsed ancient mean curvature flow. It was shown
in [7] that such solutions are rotationally symmetric. Then, by analyzing the
rotationally symmetric solutions, Brendle and Choi showed that such solutions
agree with the Bowl soliton.

Given Theorem 1.6, we may assume in our proof of Theorem 1.4 that any
Ancient Oval M; is rotationally symmetric. After applying a suitable Euclidean
motion we may assume that its axis of symmetry is the x1-axis. Then, M; can
be represented as

(1.4) My = {(z,2') e RxR" : —dy(t) < & < da(t), [|2'|| = U(x,t)}

for some function ||2’|| = U(z,t), and from now on we will set x = x1 and
' = (x2,...,xp+1). We call the points (—dy(t),0) and (da(t),0) the tips of
the surface. The function U(z,t), which we call the profile of the hypersurface
My, is only defined for x € [—d;(t),da(t)]. Any surface M, defined by (1.4) is
automatically invariant under O(n) acting on R x R™. Convexity of the surface
M; is equivalent to concavity of the profile U; i.e., M; is convex if and only if

A family of surfaces M, defined by ||z|| = U(x,t) evolves by mean curva-
ture flow if and only if the profile U(x, t) satisfies

oU U n—1

ot 14+U2 U

(1.5)

If M, satisfies MCF, then its parabolic rescaling M, defined by (1.2) evolves
by the rescaled MCF
oF -
vogr = HAF

where F(x,7) = ¢™/?F(2,T — e™7) is the parametrization of M,, and v =
v(z,T) is the corresponding unit normal. Also,

(1.6) M ={(y,y) ERxR" | =di(7) Sy < do(7), ||/l = uly, )}
for a profile function u, which is related to U by the parabolic rescaling

U(z,t) =VT —tu(y,7), Y=

T
T—1

, T=—log(T —1).
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The points (—d1(7),0) and (da(7),0) are referred to as the tips of rescaled
surface M,. Equation (1.5) for U(z,t) is equivalent to the following equation
for u(y, 7):

Ou — uyy Y n—1 wu

or i e 2w T

(1.7)

It follows from the discussion above that our most general result (1.4) re-
duces to the following classification under the presence of rotational symmetry.

THEOREM 1.7 (Uniqueness of O(n)-invariant Ancient Ovals). Let (Mj);
and (Ma)t, —oo <t < T, be two O(n)-invariant Ancient Ovals with the same
azis of symmetry. Then, they are the same up to translations along the axis
of symmetry, translations in time and parabolic rescaling.

Our proof of Theorem 1.7 relies on our previous result [3], which we state
below for the reader’s convenience.

THEOREM 1.8 (Angenent, Daskalopoulos, Sesum in [3]). Let {M;} be any
O(1) x O(n) invariant Ancient Oval. Then the solution u(y,T) to (1.7) has
the following asymptotic expansions:

(i) For every M >0,
2

y- -2 _
uly,m) =2 =D (1= =) el ), <M

as T — —0Q.

(ii) Define z :=y/+/|7| and u(z,7) == u(z+/|7],7). Then,
lim a(z,7)= \/(n —1)(2-2?)

T—r—00

uniformly on compact subsets in |z| < /2.
(iii) Denote by p; any of the two tips of My C R"L and define for any t, <0
the rescaled flow at the tip

My, () = M) { My, 1one)-2 — Pr }s

where

A(t) = H(pi,t) = Huax(t) = /St 10g £](1 4 ().

Then, as t, — —o0, the family of mean curvature flows Mt*() converges
to the unique unit speed Bowl soliton, i.e., the unique conver rotationally
symmetric translating soliton with velocity one.

In [3] we proved this theorem with the additional assumption that the
solutions are reflection symmetric (i.e., they were O(1) x O(n) invariant). In
Appendix 9 we show how to remove the assumption of reflection symmetry.
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Finally, in Appendix 10 we recall that for non-collapsed convex hypersurfaces,
the intrinsic and extrinsic distances are equivalent.

In previous classifications of ancient solutions to mean curvature flow and
Ricci flow, [8], [9], [7], [6], an essential role in the proofs was played by the
fact that all such solutions were either given in closed form or that they were
solitons. The techniques in our current work overcome such a requirement and
potentially can be used in many other parabolic equations and particularly in
other geometric flows. To our knowledge, our work and the recent work by
Bourni, Langford and Tinaglia [5] are the first classification results of geomet-
ric ancient solutions where the solutions are not given in closed form and they
are not solitons. Let us also point out that our current techniques are remi-
niscent of the significant work by Merle and Zaag in [16] which has provided
an inspiration for us.

The outline of the proof of Theorem 1.4 is as follows. In Section 2 we prove
Theorem 1.6. Once we know our Ancient Oval is rotationally symmetric, we
devote the rest of the paper to the proof of Theorem 1.7. In Section 3 we
give a detailed outline of the proof of Theorem 1.7. We prove various a priori
estimates for a solution to (1.7) in Section 5. In Sections 6 and 7, we consider
the difference of two solutions and prove coercive estimates with respect to ap-
propriately chosen weights in the cylindrical region and tip region respectively.
Finally in Section 8 we discuss how to combine those two estimates together
to conclude the proof of Theorem 1.4. In Section 9 we show that the asymp-
totics showed in Theorem 1.8 in [3] hold under the assumption on rotational
symmetry, that is, O(n)-symmetry only rather than O(1) x O(n)-symmetry.

Acknowledgements. The authors are indebted to S. Brendle for many use-
ful discussions regarding the rotational symmetry of ancient solutions. The au-
thors are indebted to the referees for many useful comments. P. Daskalopoulos
thanks the NSF (grant DMS-1600658) and the Simons Foundation. N. Sesum
thanks the NSF (grant DMS-1056387) and the Simons Foundation.

2. Rotational symmetry

The main goal in this section is to prove Theorem 1.6. Our proof of
Theorem 1.6 follows closely the arguments of the recent work by Brendle and
Choi [7], [6] on the uniqueness of strictly convex, uniformly two-convex, non-
compact and non-collapsed ancient solutions of mean curvature flow in R?*1.
It was shown in [7] and [6] that such solutions are rotationally symmetric. Then
by analyzing the rotationally symmetric solutions, Brendle and Choi showed
that such solutions agree with the Bowl soliton. For the reader’s convenience
we state their result next.
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THEOREM 2.1 (Brendle and Choi [7], [6]). Let {M; : t € (—00,0)} be a
non-compact ancient mean curvature flow in R" ! that is strictly convex, non-
collapsed, and uniformly two-conver. Then M; agrees with the Bowl soliton,
up to scaling and ambient isometries.

In the proof of Theorem 1.6 we will use both the key results that led to
the proof of the main theorem in [6] (see Propositions 2.5 and 2.6 below) and
the uniqueness result as stated in Theorem 2.1.

Before we proceed with the proof of Theorem 1.6, let us recall some stan-
dard notation. Our solution M; is embedded in R"*1, for all ¢ € (—o0,T) and
in the mean curvature flow, time scales like distance squared. We denote by
P(z,t,7) the parabolic cylinder centered at (Z,f) € R"*1 x R of radius 7 > 0
and duration 7' > 0, namely, the set

P(z,t,r,T) = B(z,r) x [t —T,1],

where B(x,r) := {z € R"" : | — 7| < r} denotes the closed Euclidean ball
of radius r in R™*1. If we do not specify the duration 7', then we choose the
default value T = 72 that corresponds to parabolic scaling.

Also, following the notation in [15] and [6], we denote by P(Z,t,r,T) the
rescaled by mean curvature parabolic cylinder centered at (z,%) € R"*! x R of

radius r > 0 and duration 7', namely, the set
n

B T  D(= T A A= T2 A Ty .

P(z,t,r,T) = P(z,t,p(z,t)r, p(z,t)° T), p(Z,t) = iEE)
The default value for the duration T is always assumed to be T' = r2; therefore
P(z,t,r) = P(z,1I,rr?).

Note that in [15, §7] Huisken and Sinestrari consider parabolic cylinders
with respect to the intrinsic metric g(¢) on the solution My, which in our case
and in the case of [7] and [6] is equivalent to the extrinsic metric on space-time
that we are considering here. See Appendix 10.

We recall Brendle and Choi’s [6] definition of a mean curvature flow being
e-symmetric in terms of the normal components of rotation vector fields. In
what follows we identify so(n) with the subalgebra of so(n + 1) consisting of
skew symmetric matrices of the form

J = [8 3,] ,  with J" €s0(n).
Thus so(n) acts on the second factor in the splitting R**! = R x R”. Any
J € so(n+1) generates a vector field on R"*! by #(x) = Jz. If &(x) = Sz +p
is a Euclidean motion, with p € R**! and S € O(n+ 1), then the pushforward
of the vector field ¥(x) = Jx under @ is given by

@,0(x) = dd, - U(d 'x) = SISz — p).

Any vector field of this form is a rotation vector field.
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Definition 2.2. A collection of vector fields K := {K, | 1 < a < in(n—1)}
on R is a normalized set of rotation vector fields if there exist an orthonor-
mal basis {Jo | 1 < a < §n(n—1)} of s0(n) C so(n+1), a matrix S € O(n+1),
and a point ¢ € R"*! such that

Kao(z) = SJ.S7 (z — q).

Definition 2.3. Let My be a solution of mean curvature flow. We say that
a point (Z,t) is e-symmetric if there exists a normalized set of rotation vector
fields K@ = {K&ja |1 < a < in(n—1)}, such that max, |[K.|H < 10n
at the point (Z,¢) and max, |(K,,v)|H < € in the parabolic neighborhood
P(z,1,10,100).

Lemma 4.2 in [6] allows us to control how the axis of rotation of a nor-
malized set of rotation vector fields K(**) varies as we vary the point (z,t).

The proof of Theorem 1.6 relies on the following two key propositions
which were both shown in [7] and [6] for dimensions n = 2 and n > 3 respec-
tively. The first proposition is directly taken from [7], [6] (see Theorem 4.4 in
[7], [6]). The second proposition required some adjustments of the arguments
in [7], [6] and hence we present those parts requiring modifications of the proof
below (see Proposition 2.6).

Definition 2.4. A point (x,t) of a mean curvature flow lies on an (e, L)-
neck if there are a Euclidean transformation @ : R"*! — R"*! and a scale
A > 0 such that
e & maps x to (0,4/2(n—1),0,...,0);

e for all 7 € [~L?,0], the hypersurface A™'® (M, 2,) is e-close in C? in the
ball B(0, L) to the cylinder of length L, radius \/2(n — 1)(1 — 7) and with

the ri-axis as symmetry axis.

PropPOSITION 2.5 (Neck Improvement: Theorem 4.4 in [7], [6]). There
exist a large constant Ly and a small constant eg with the following property.
Suppose that My is a mean curvature flow, and suppose that (Z,t) is a point in
space-time with the property that every point in 75(:1?, t,Lo) is e-symmetric and
lies on an (e, 10)-neck, where € < eg. Then (Z,t) is §-symmetric.

Proof. The proof is given in Theorem 4.4 in [7], [6]. O

The next result will be shown by slight modification of arguments in the
proof of Theorem 5.2 in [6]. The proof of Proposition 2.6 below follows closely
the arguments in [7].

PROPOSITION 2.6 (Cap Improvement [7]). Let Lo and €y be chosen as in
the Neck Improvement Proposition 2.5. Then there exist constants Ly > 2Ly,
Ty >0, and e1 < ¢ with the following property. Suppose that {M;} is a mean
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curvature flow solution defined in 75(3_3,7?, L1, Ty). Moreover, assume that after
scaling to make H(Z,t) = 1, My N B(Z, L1) is, for t € [t — T1,t], e1-close in
the C?-norm to a piece of a Bowl soliton, and that the tip of the Bowl soliton
lies in 75(53,1?, %Ll,Tl). If for some e < €y every point in My 0 B(Z, L1) with
t € [t —T1,1] is e-symmetric, then (Z,t) is §-symmetric.

Proof. Without loss of generality we may assume t=—1 and H(z, —1)=1.

The Hessian of the mean curvature around the maximum mean curvature
point in a Bowl soliton is strictly negative definite. Thus, the assumptions in
the proposition imply that if we take €; sufficiently small, then we may assume
that the maximum of H(-,t) in B(z, L) N M, is attained at a unique interior
point ¢; € B(z, L1) N M; and also that the Hessian of the mean curvature at
¢ is negative definite. Hence, ¢; varies smoothly in t. We now conclude that
if (zo,to) € 75(53, —1,L1,T1), then

(2.1) %\xo—qt\ <0Ofor —1-T) <t< -1

The proof of (2.1) is the same as the proof of Lemma 5.2 in [7].

We claim that there exists a uniform constant s, with the property that
every point (z,t) € P(&,—1,L1,T)) with |z — q| > s, lies on an (e, 10)-neck
and satisfies |x — q;|H (x,t) > 1000Lo. Indeed, knowing the behavior of the
Bowl soliton, it is a straightforward computation to check that these claims
are true on the Bowl soliton, with a constant, for example, 2000Lg. By our
assumption, the part of the solution within 75(9%, —1,L;,TY) is €;-close to the
Bowl soliton and hence the claims are true for our solution as well.

If |Z — q_1] > s«, the proposition follows immediately from the Neck
Improvement Proposition 2.5. Thus, we may assume that |z —qg_;| < s.. Then
we have the following claim, in which we abbreviate

0= Qﬁ.

Claim 2.7. Suppose that M; is an ancient solution of mean curvature flow.
Given any positive integer j, there exist large constants L;, T}, and a small
constant €; > 0 with the following property: if the parabolic neighborhood
75(5:, —1,L;,T}) is €j-close in the C?-norm to a piece of the Bowl soliton that
includes the tip, and every point in 75(9?:,—1,Lj,Tj) is e-symmetric, where
€ < ¢, then every point (z,t) € 75(56,—1,Lj,Tj) with ¢t € [-0%,—1] and
5:07 < | — q4| < 5,091 is 27 e-symmetric.

Proof of Claim 2.7. The proof is by induction on j. If j = 0, the statement
is obviously satisfied. Let us prove that the statement holds for j = 1. For j =
1, we have s, < |z — q| < s.0 and t < —1, as long as (z,t) € 75(1_:, —1,L4,T1).
By the above discussion we have that (z,t) lies on an (eg, 10)-neck and |x—q;| >
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e This implies 575 < 1+ and hence P(x,t, Lo, L3) CP(%, -1, Ly, L?)
if we choose L sufficiently big compared to s,. Therefore, every point in
P(x,t, Lo, L2) is e-symmetric and lies on an (e, 10)-neck (where € < ). By
Proposition 2.5 we conclude (z,t) is §-symmetric. The same argument works to
show that actually all points (z,t), where |t —¢| > s, and —1-T7/2 <t < —1,
as long as |v — Z| < L1/2, are §-symmetric. Note that we have to choose L1
and T big relative to s,.

We will now assume that the statement of the claim holds for j — 1 and
prove that it also holds for j. Due to a repeated application of Proposition 2.5
we may assume that P(z, —1,L;,Tj) is € close to a Bowl soliton and that
all points (z,t) such that |z — ¢| > 077 1s,, =1 —Tj/2 <t < —1, as long as
|z — x| < Lj/2, are 277 le-symmetric. Let (z,t) be such that 67s, < |z —q| <
§it1s, and —0% <t < —1. First, the arguments from above show that every
such point (z,t) lies on an (ep, 10)-neck. Moreover, we claim that for every
such point (z,t), we have that

75(337757 LO’L(Q)) C {(yvs) | |y - QS| > 0j715*7

(2.2)
S1-Ty2<s< -1, ly— & < L/2}.

Indeed, let (y,s) € 75(:1:,15, Lo, L3). Then by (2.1) and the triangle inequality,
we have

Lo
H(z,t)
By the same discussion as at the beginning of the proof of the claim we have
that

ly—aqs| >y —a| > |ge — x| — |z —y| > 5. —

1000Lg
H(z,t)

(2.3) Gt ls, > | — q >
implying that % < %, which shows that |y — q| > 6771 s,, as desired.
We also have s > —1 — T} /2. Indeed, using (2.3) we have

02D 5, L coct<—1
10002 =" H( 2 = ='=""

We also have t > —#3, and hence —1 > s > —T;/2 — 1, if we choose T}
sufficiently big. If L; is sufficiently big, then |y — z| < L;/2 easily follows.
Finally, (2.2) holds and every point in the set on the right-hand side of the
inclusion in (2.2) is 2777 te - symmetric. By Proposition 2.5 we conclude that
every point (z,t) such that 6/s, < |z — | < 07F1s, and —6% <t < —1is
27 Je-symmetric. It is clear from the proof of (2.1) that can be found in [7]
that if we take a bigger parabolic cylinder around (Z, —1) of size L;, in order to
still have (2.1) one needs to require that P(z, —1, L;,T;) is €; close to a Bowl
soliton, where €; needs to be taken very small, depending on L;. U
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In the following, j will denote a large integer, which will be determined
later. Moreover, assume that L > L; and € < ¢;. Using the claim, we conclude
that for every point (z,t) with —6% <t < —1 and s.67 < |z — q;| < 5,671,
there exists a normalized set of rotation vector fields (@t = {Kc(f’t) |1<a<
sn(n — 1)}, such that max, |(K((f’t),y>\H < 277¢ on P(x,t,10). Moreover,

since |z — q¢| > sy implies H(z,t)|z — ¢:| > 1000Lg, we have

27Je  9itlo7ig
K(xvt) < *
for a uniform constant C that is independent of j and e. Lemma 4.3 in [7] allows
us to control how the axis of rotation of K(*) varies as we vary the point (z,1).
More precisely, as in [7], if (x1,t1) and (22,t2) both satisfy —0% < ¢; < —1
and .07 < |x; — qi| < 5,071 and if (w9,t2) € P(xq,11,1,1), then

e<C2mie,  j>j

%n(n—l)
inf su max | K@t _ was K| < 027y )
weO(n) BlOTQI()£D2) a “ ; aﬂ ﬁ - 2

where ro = H (o, tg)_l. Hence we can find a normalized set of rotation vector
fields KU) = {K&]) | 1 < o < in(n—1)} so that if -3 < ¢ < —1 and
5:07 < |z — | < 56771, then,

in(n-1)

2

inf max |[K9) — 3 wask (| < 027972,
wEHOl(n) mOéX o P Wap B

at the point (z,f). As in [7] we conclude that max, ](K&j),yﬂ < 027%,
whenever —0% < ¢t < —1 and 5,0 < |z — ¢ < 5.67T!. Finally, note that
maxqy \(Kc(yj),Vﬂ < 02%0, whenever s,607 < |z — q;| < 5,677 and t = —637.

As in [7], for each a € {1,...,3n(n — 1)}, we define a function féj) :
{(z,t) |t € [-0%,-1], |z —q| <567} > Rby

f(]) — 6672t <K&])’ l/)
@ H—o-1

The same computation as in [7] implies that by the maximum principle applied

to the evolution of fo(/ ) we get

9 (@, 1) < 027/
in the region
—0% <t < -1, 8.0 < |z —qf < s

Standard interior estimates for parabolic equations give estimates for the higher
order derivatives of (Kéj ), v).
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Hence, if we choose j sufficiently big, then the same reasoning as in [7]
implies (Z, —1) is §-symmetric. Having chosen j in this way, we finally define
L1 = L; and €1 := ¢j. Then L; and €; have the desired properties as stated in
Proposition 2.6. U

The goal of the remaining part of this section is to show how we can
employ Propositions 2.5 and 2.6 to prove Theorem 1.6.

Observe that by the crucial work of Haslhofer and Kleiner in [13] we
know that a strictly convex a-non-collapsed ancient solution to mean curvature
flow sweeps out the whole space. Hence, the well-known important result of
X. J. Wang in [19] shows that the rescaled flow, after a proper rotation of
coordinates, converges, as time goes to —oo, uniformly on compact sets, to a

round cylinder of radius 1/2(n — 1).

This has as as a consequence that M; N Bs( DV is a neck with radius

n— [t

V2(n —1)|t| for t < —1. The complement Mt\BS(nfl)\/m has two connected

components, call them Q! and Qf, both compact. Thus, for every ¢, the
maximum of H on 2 is attained at least at one point in €} and similarly
for Q.

For every t, we define the tip points p; and p? as follows. Let pf for
k = 1,2 be a point such that

[(Ev)(pr,0)] = [FI(pf, 1) and | F|(pf,t) = max [F|(:, ).
k

Write di,(t) := |F|(pf,t) for k € {1,2}.

Throughout the rest of the section we will be using the next observation
about possible limits of our solution around arbitrary sequence of points (x;,t;)
with x; € My;, t; — —oo when rescaled by H(zj,t;).

LEMMA 2.8. Let My, t € (—00,0) be an Ancient Oval satisfying the as-
sumptions in Theorem 1.6. Fiz a k € {1,2}. Then for every sequence of points
xj € My; and any sequence of times t; — —oo, the rescaled sequence of solu-
tions Fj(-,t) == Q;(F (-, t; + tQj_2) — xj), where Q; = H(x;,t;), subconverges
to either a Bowl soliton or a shrinking round cylinder.

Proof. By the global convergence theorem (Theorem 1.12) in [13] we have
that after passing to a subsequence, the flow Mt] converges, as j — 00, to an an-
cient solution M®, for t € (—o0, 0], which is convex and uniformly two-convex.
Note that H(0,0) = 1 on the limiting manifold. By the strong maximum prin-
ciple applied to H we have that H > 0 everywhere on M, where t € (—o0, 0].
Assume the limit Mp° is non-compact. Then, if M° is strictly convex, by
the classification result in [7] we have that it is a Bowl soliton. If the limit is
not strictly convex, by the strong maximum principle it splits off a line and
hence it is of the form N;'~! x R, where N/*"! is an n — l1-dimensional ancient
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solution. On the other hand, the uniform two-convexity assumption on our so-
lution implies the inequality Apin(N7™1) > BH(N?™1) for a uniform constant
B > 0. Thus, Lemma 3.14 in [13] implies that the limiting flow M is a family
of round shrinking cylinders S"~1 x R.

To complete the proof of the lemma we still need to show the limit M°
is non-compact. We argue by contradiction. Assume it is compact, implying
that

limsup H (x;,t;) diam(My;) < oo
J]—00
and
limsup H (z;,¢;) " sup H(-,1;) < oc.
Jj—o0 M
Combining these two we obtain limsup;_, ., diam(My,)sup,, H(z,t;) < oo.
This, in particula,r implies M;; cannot contain arbitrarily long necks. On the
other hand, since we know the rescaled flow converges uniformly on compact
sets to a round cylinder, My, must contain arbitrarily long necks if j is suf-
ficiently big. Hence we get contradiction, and M must be non-compact as
claimed. O

We will next show that points that are away from the tip points in both
regions Qf, k = 1,2 are cylindrical.

LEMMA 2.9. Let My, t € (—00,0), be an Ancient Oval satisfying the
assumptions of Theorem 1.6, and fix k € 1,2. Then, for every n > 0, there
exist L and ty, so that for all x € QF, the following holds:

I/ — >\min
H(z,t) H
We may chose L so that (2.4) holds for both k =1, 2.

(2.4) & —pf| >

(x,t) <.

Proof. Without loss of generality we may assume that k£ = 1, and we will
argue by contradiction. If the statement is not true, then there exist L; — oo
and sequences of times t; — —oo and points x; € My, so that

2.5 zi—pr|>—""2  and 2=
( ) | J ptj| —_— H(:Z:J,tj) H
Rescale the flow around (xj,t;) by Q; := H(z;,t;) as in Lemma 2.8, and call
the rescaled manifolds M. Then

(zj,t5) = .

(2.6) 0—pj| > L; w00, as j— oo,
where the origin and ]3}- correspond to x; and tip points ptlj after rescaling,

respectively. By Lemma 2.8 we have that passing to a subsequence Mg con-
verges to either a Bowl soliton or a cylinder. Since )““T‘“ is a scaling invariant
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quantity, (2.5) implies that on the limiting manifold we have %(0,0) >
which immediately excludes the cylinder. Thus the limiting manifold must be
the Bowl soliton.

Let us look next at the tip points pfj of our solution that lie on the other
side Q%j and denote by ]5]2 the corresponding points on our rescaled solution.
Then we must have that |0 — 1332] < () for some constant Cjy. Otherwise, if we
had that limsup;_, | ., [0 — ﬁ?\ — 400, this together with (2.6), the convexity
of our surface, the fact that the furthest points p}j and p%j lie on the opposite
side of a necklike piece and the splitting theorem would imply that the limit
of Mtj would split off a line. This and Lemma 2.8 would yield that the limit
of Mt] around (z;,t;) would have been the cylinder that we have already ruled
out. Thus, |0 — 13]2] < (Y, which in terms of our unrescaled solution M; means
that |z; —p?j| < %

Since x; € Q%j and p%j € Q?j, we then have that the whole neck-like region
that divides the sets Q%j and ij lies at a distance less than equal to ﬁ;’m
from x;. This implies that the whole neck-like region has to lie on a compact
set of the Bowl soliton, implying that ’\mﬁ(~,tj) > ¢o > 0 holds for some
constant ¢y, independent of j. This is a contradiction, since on the neck-like
region of our solution the scaling invariant quantity Amin 2! — 0 as t; — —o0.
The above discussion shows that |z — p}| > % implies that /\”‘Tm(:n, t) <m,
thus finishing the proof of the lemma. ([

In the following lemma we show that mean curvature of an ancient oval
solution satisfying the assumptions of Theorem 1.6, around the tip points on
QF, for a fixed k = 1,2, are uniformly equivalent in a quantitative way.

LEMMA 2.10. Let My, t € (—00,0), be an Ancient Owval satisfying the
assumptions of Theorem 1.6, and fix k = 1,2. For every L > 0, there exist
uniform constants ¢ > 0, C' < oo and tg < —1 so that for all t < ty, we have

(2.7) cH(pF,t) < H(z,t) < CH(pF t) if |z —pf| < ,x e QF.

L
H(x,1)
We may chose ¢,C so that (2.7) holds for both k = 1,2.

Proof. Let us take, without loss of generality, £ = 1. First let us show the
estimate from below. Assume the statement is false. This implies there exist
a sequence of times t; — —oo and a sequence of constants C; — oo so that

(2.8) H(pj,,t;) > Cj H(xj, tj) ¥V j
for some x; € Q%j such that |z; — p,}j| < m Rescale the flow around

(xj,tj) by Qj :== H(xj,t;). By the global convergence Theorem 1.12 in [13],
the sequence of rescaled flows subconverges uniformly on compact sets to an
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ancient non-collapsed solution. Points x; get translated to the origin, and
points ptlj get translated to points ﬁ%j under rescaling. Since by our assumption
we have

10—y, | = H(zj,t;) |25 — p | < L,
then due to uniform convergence of the rescaled flow on bounded sets we have
H,(p;,,0) <C,  j > jo
for a uniform constant C' < oo, which depends on L, but is independent of j.
This implies
H(py,,tj) < CH(zjty),  § = Jjo,
which contradicts (2.8).

To prove the upper bound in (2.7) note that the lower bound in (2.7),
which we have just proved, implies |z — p}| < H Hence, we can

L o~ __L

(,t) = cH(pt)
switch the roles of # and p} in the proof above. This ends the proof of the
lemma. O

Remark 2.11. Note that we can choose uniform ¢ > 0 and tg <€ —1 so
that the conclusion of Lemma 2.10 holds for both £k =1 and k = 2.

Let € > 0 be a small number. By our assumption the flow is a-non-
collapsed and uniformly two-convex, meaning that (1.3) holds. By the cylin-
drical estimate ([13], [15]) we can find an n = n(e, a, 5) > 0 so that if the flow

is defined in the normalized parabolic cylinder P(z,t,7~!) and if

Lt <,

then the flow M; is e-close to a shrinking round cylinder S"~! x R near (x,1).
Being e-close to a shrinking round cylinder near (x,t) means that after para-
bolic rescaling by H(x,t), shifting (x,t) to (0,0) and a rotation, the solution
becomes e-close in the Clel-norm on P(0,0,1/€) to the standard shrinking
cylinder with H(0,0) = 1. (See [13] for more details.)

PROPOSITION 2.12. Fiz a k € {1,2}, and let L > 0 be any fized constant.
Let My be an Ancient Oval that satisfies the assumptions of Theorem 1.6. Then
for any sequence of times t; — —oo, and any sequence of points x; € ny such

that |x; —p,’fj\ < H(%_t_), the rescaled limit around (xj,t;) by factors H(xj,t;)
777
subconverges to a Bowl soliton.

In the course of proving this proposition we need the following observation.

LEMMA 2.13. For all t < 0, each of the two components Qg of My \
B(0,/8(n —1)|t]) contains at least one point at which Amin s not a simple

etgenvalue.
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Proof. Suppose Amin is a simple eigenvalue at each point on Q}. Then the
corresponding eigenspace defines a one dimensional subbundle of the tangent
bundle T'M;. Since M; is simply connected, any one dimensional bundle over
My is trivial and thus has a section v : My — TM,; with v(p) # p for all p.
Within the region B(0, 1/8(n — 1)[t|) the hypersurfaces M; are asymptotic in a
C? sense to a cylinder with radius \/2(n — 1)[t| (which simply follows from the
fact that within the region B(0,1/8(n — 1)), the rescaled hypersurfaces M, =

Me_ - converge, as T — —oo in a C? sense to a cylinder with radius 1/2(n — 1))

Vi

so within this region A\, is a simple eigenvalue, and the eigenvector v(p) will
be transverse to the boundary 9€2}. We may assume that it points outward
relative to Q}.

The component €} is diffeomorphic with the unit ball B® C R", and
under this diffeomorphism the vector field v : Qf — TQ} is mapped to non-zero
vector field ¥ : B® — R", which points outward on the boundary S"~! = 9B™.
The normalized map o = 9/|9| : S"~! — S"~! is therefore homotopic to
the unit normal, i.e., the identity map id : S"~! — S"~!. Its degree must
then equal +1, which is impossible because ¥ can be extended continuously to
0 =19/|9]: B" — S"L. a

Proof of Proposition 2.12. Without any loss of generality take k = 1, and
let L > 0 be an arbitrary fixed constant. Let tj — —oo be an arbitrary
sequence of times, and let z; € Q%j be an arbitrary sequence of points such
that |z; — pt1j| < W Rescale our solution around (z;,t;) by scaling factors
H(zj,t;). By Lemma 2.8 we know that the sequence of our rescaled solutions
subconverges to either a Bowl soliton or a round shrinking cylinder. If the limit
is a Bowl soliton, we are done. Hence, assume the limit is a shrinking round
cylinder, which is a situation we want to rule out. By Lemma 2.10 we have

that for j large enough, the curvatures H (p%j,tj) and H(z;,t;) are uniformly

equivalent. This together with |z; — p%j| < m implies that if we rescale
our solution around points (ptlj,tj) by factors H (p%j,tj), after taking a limit
we also get a shrinking round cylinder.

Since the limit around (p%j,tj) is a round shrinking cylinder, for every
Amin (Ptlj it5)

m < €. In the

€ > 0 there exists a jy so that for j > jo, we have

following two claims, ptlj € Q%j will be a sequence of the tip points as above,
such that the limit of the sequence of rescaled solutions around (ptlj,tj) by
factors H (p%j,tj) is a shrinking round cylinder.

In the first claim we show that the ratio )‘me can be made arbitrarily small
not only at points ptlj, but also at all the points that are at bounded distances
away from them.
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For every € > 0 and every Cy > 0, there exists a jy so that for j > jo, we
have

Amin (P, ) 0
H(p,t;) H(p, ;)
Proof of the claim. Assume the claim is not true, meaning there exist con-

stants € > 0, Cp > 0, a subsequence we still denote by ¢;, and points p; € ng
so that

(2.9) <€, whenever |p —pt1j| < and p € Qtlj.

Co but Amin(Pj,15) .
H(pj,t;) H(pj,t;) —

Consider the sequence of rescaled flows around (pj;,t;) by factors H(pj,t;).
Lemma 2.8 and the second inequality in (2.10) imply the above sequence sub-
converges to a Bowl soliton. On the other hand, since |p; — pt1j| < %, by
Lemma 2.10, the curvatures H(p;,t;) and H (p%j,tj) are uniformly equivalent.

(2.10) pj —pi,| <

At the same time, this together with our assumption on (p%j,tj) and the
first inequality in (2.10) imply that the sequence, after rescaling around (p;,t;)
by factors H(pj,t;), subconverges to a round shrinking cylinder. Hence, we
get a contradiction. This proves the claim. O

Next we claim that for sufficiently big j, even far away from the tip points
p%j we see the cylindrical behavior. Assume L is big enough so that the con-
clusion of Lemma 2.9 holds. The immediate consequence of the Lemma 2.9 is
that for every e > 0, there exists a jg so that for j > jp, we have

)\min<p7tj)

We now continue proving Proposition 2.12. Estimates (2.9), after taking
Co = L and (2.11), yield for every ¢ > 0 that there exists a jo so that for
j > jO?

(2.11) <€, whenever pe€ ng and |p —p,}j\ >

H(p,t;)

(2.12) )\Irr;n (p,tj) <€, on all of Q%j.

By the cylindrical estimate ([15], [13]) we have that for every e > 0 there exists
a jo so that for j > jo.
‘)‘p — )‘q‘
H
For small enough e > 0, the conditions (2.12) and (2.13) imply that Ay is a

simple eigenvalue, hence contradicting Lemma 2.13. This finishes the proof of
Proposition 2.12. O

(2.13) (p,tj) <e forall n>p,qg>2 on ng.
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LEMMA 2.14. Let My, t € (—00,0), be an Ancient Oval satisfying the
assumptions of Theorem 1.6, and fix k = 1,2. Then for every ¢ > 0, there
exist uniform constants pg < co and ty <K —1 so that for every t < tg, we have
that 75(]91]?, t, po, p%) is e-close to a piece of a Bowl soliton that includes the tip.

Proof. First of all observe that by Proposition 2.12 it is easy to argue that
for every € > 0 and any pg < oo, there exists a tg < —1 so that for ¢ < tg, the
parabolic cylinder ﬁ(pf,t, po, p3) is e-close to a piece of a Bowl soliton. The
point of this lemma is to show that we can find pg big enough, but uniform in
t <ty < —1 so that the piece of the Bowl soliton above includes the tip.

To prove the statement we argue by contradiction. Assume the statement
is not true, meaning there exist an € > 0, a sequence p; — oo and a sequence
tj; — —o0 so that ﬁ(pfj NINIE p?) is e-close to a piece of Bowl soliton that does
not include the tip. Rescale the solution around (p,’fj,tj) by factors H (p,’fj,tj).
By Proposition 2.12 we know that the rescaled solution subconverges to a
piece of a Bowl soliton. Hence there exists a uniform constant Cjy so that the
origin that lies on the limiting Bowl soliton and corresponds after scaling, to the
points (p,’fj ,t;), is at distance Cy from the tip of the soliton (which is the point of

maximum curvature). This implies that there exist points g;, € ij so that |q;, —

p,’fj |< Héfot 5 for j > jo, with the property that the points ¢, converge to the tip
tj’ J

of the Bowl soliton. Furthermore, for sufficiently big j > jo, parabolic cylinders
P(pf’j,tj, 3Co, 903) are e-close to a piece of the Bowl soliton that includes the

tip. This contradicts our assumption that for every j, ﬁ(pfj RINIR p?) is e-close
to a piece of Bowl soliton that does not include its tip. U

Finally we show the crucial, for our purposes, proposition below, which
says that every point on M; has a parabolic neighborhood of uniform size,
around which it is either close to a Bowl soliton or to a round shrinking cylinder.

PROPOSITION 2.15. Let M; be an Ancient Ouval that is uniformly two-
convex. Let €y, €1, Lo, L1 be the constants from Propositions 2.5 and 2.6, and
let ¢ < min{ep, €1}. Then, there exists tg < —1, depending on these constants,
with the following property: for every (T,t) with T € My and t < tg, either
P(Z,t, Lo, L2) lies on an (e,10)-neck or every point in P(Z,t, Ly, L?) is, after
scaling by H(z,t), e-close in the C**-norm to a piece of a Bowl soliton that
includes the tip.

Proof. Recall that as a consequence of Hamilton’s Harnack estimate [10],
our ancient solution satisfies H; > 0. This implies there exists a uniform
constant Cy so that

(2.14) II]l\/E[%XH(-,t) < CD, t < tp.
t



372 S. ANGENENT, P. DASKALOPOULOS, and N. SESUM

Let € < min{eg, €1, Ly'}. For this € > 0, find a § = §(€) as in Theorem 1.19 in
[13] (see also [15] for the similar estimate) so that if

)\min
(2.15) H(pt) <0

and the flow is defined in 75(p, t,671), then the solution M is é-close to a round
cylinder around (p, t), in the sense that a rescaled flow by H(p,t) around (p, t)
is &-close on P(0,0,&° 1) to a round cylinder with H(0,0) = 1. Take § > 0 as
in (2.15). For this d, choose L sufficiently big and ty < —1 so that Lemma 2.9
holds (after we take 7 in the lemma to be equal to 9).

Let (Z,t) be such that € M;and ¢ < ty. Then either T € Mt_nt(n—l)\/M’

orx € Q%, or ¥ € th In the first case that has already been discussed above,

for —t sufficiently large, we know that M;N Bl6(n_1) B is neck-like and hence
there exists tg < —1 so that for ¢ < tg,
)\ .
max <),

L H
where § is as in (2.15). Thus every point Z € MzN Bs(n—l)\/\ﬂ has the property

that every point in 75(50, t, Lo, L?) lies at the center of an (e, 10)-neck.
We may assume from now on, with no loss of generality, that T € Qtl, since

the discussion for & € Q2 is equivalent. We either have |z — p}| > ﬁ, or we

have |z — p}| < I;%,E)' In the first case, Lemma 2.9 gives that AmT‘“(:E,ﬂ < 6.

H
As discussed abové, the cylindrical estimate then implies that the rescaled flow
H(%,t)(Fiyp(z5-2¢ — @) is éclose to the round cylinder with H(0,0) = 1, in
a parabolic cylinder P(0,0,é!). It is straightforward then to conclude that
every point in the normalized cylinder 75(9%,{, Lo, L3) lies on an (e, 10)-neck,
where we use that Ly < € ! and € < .
Assume now that Z € Qf and |z — p}| <

L
H(z,b)"
mas 2.10 and 2.14 yield we can find a sufficiently large but uniform constant
Ly and constant tog < —1 so that for < to, we have that P(z,t, L1, L?) is
e1-close to a piece of a Bowl soliton that also includes its tip. O

Combining this with Lem-

We can now conclude the proof of Theorem 1.6.

Proof of Theorem 1.6. Let Lg, L1, €g, €1 be chosen so that Propositions 2.5
and 2.6 hold. Let € < € := min (€p,€;1). Let tp < —1 be as in Proposition 2.15
so that for every (z,7) with € M; and T < t, either P(z,7, Lo) lies on an
(€,10)-neck (and hence on an (€p, 10)-neck, since € < ¢), or every point in
P(i,f, L) is, after scaling, é-close in the C?’-norm to a piece of the Bowl
soliton that includes the tip (and hence is also €] close, since € < €1). Note
that the axis of symmetry of this Bowl soliton may depend on the point (Z, ?).
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The above implies that every point (z,t), for Z € My and t < tg, lies in a
parabolic neighborhood of uniform size (after scaling) € close to a rotationally
symmetric surface (either a round cylinder or a Bowl soliton). Hence, it follows
that if we choose € sufficiently small relative to €, then (Z,t) is e-symmetric
(defined as in Definition 2.3). After applying Propositions 2.5 and 2.6 we then
conclude that (Z,%) is §-symmetric for all z € My and all £ < T'. Iterative
application of Propositions 2.5 and 2.6 yields that (Z,t) is 57-symmetric for all
T € Mg, t <tgand all j > 1. Letting j — 400 we finally conclude that M; is
rotationally symmetric for all ¢t < ¢y, which also implies that M; is rotationally
symmetric for all ¢ € (—o0,0). O

3. Outline of the proof of Theorem 1.7

Since the proof of Theorem 1.7 is quite involved, in this preliminary section
we will give an outline of the main steps in the proof of the classification result
in the presence of rotational symmetry. Our method is based on a priori
estimates for various distance functions between two given ancient solutions
in appropriate coordinates and measured in weighted L? norms. We need to
consider two different regions: the cylindrical region and the tip region. Note
that the tip region will be divided in two sub-regions: the collar and the
soliton region. These are pictured in Figure 1 below. In what follows, we will
define these regions, review the equations in each region and define appropriate
weighted L? norms with respect to which we will prove coercive type estimates
in the subsequent sections. At the end of the section we will give an outline of
the proof of Theorem 1.7.

Let M;(t), Ma(t) be two rotationally symmetric ancient oval solutions sat-
isfying the assumptions of Theorem 1.7. Being surfaces of rotation, they are
each determined by a function U = Uj(z,t), (i = 1,2), which satisfies the
equation
U n—1
T 1402 U

In the statement of Theorem 1.7 we claim the uniqueness of any two
Ancient Ovals up to dilations and translations. In fact since equation (3.1)
is invariant under translation in time, translation in space and also under

(3.1) Ui

parabolic dilations in space-time, each solution M;(t) gives rise to a three
parameter family of solutions
(3.2) M () = 12 @a(Mi(e ™ (— 5))),

where @, is a rigid motion that is just the translation of the hypersurface along
x axis by value .. The theorem claims the following: given two ancient oval
solutions we can find a, 8,7 and tg € R such that

My(t) = MEPV(t)  fort < to.
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cylindrical region
Ul
u=20
collar
U= 0/2 o .. tip
u= LI | {soliton

Figure 1. The three regions. The cylindrical region consists of
all points with u;(y,7) > 6/2; the tip region contains all points
with u1(y,7) < 260 and is subdivided into the collar, in which
uy > L/+/||, and the soliton region, where u; < L/+/]7|.

The profile function U™ corresponding to the modified solution M7 (t) is
given by

(2

(3.3) U (2, 1) = 120 (6—7/2(33 —a),e Nt — 5)).

We rescale the solutions M;(t) by a factor /—t and introduce a new time
variable 7 = —log(—t); that is, we set

(3.4) Mi(t) ==t Mi(7),  7:=—log(—t).

These are again O(n) symmetric with profile function u, which is related to U
by

(35) U(l’,t) = \/jtu(yﬂ_)v

T
= —, T

Y=

If the U; satisfy the MCF equation (3.1), then the rescaled profiles u; sat-

isfy (1.7), i.e.,

= —log(—t).

Y n—1+u
— = Uy — —.
2 Y u 2

87u_ Uyy
or 1+u§

Translating and dilating the original solution M;(t) to M;" b 7(t) has the follow-
ing effect on u;(y, 7):

2

— aeT/
(36) U?ﬁw(y, T) =4/1 —|—ﬁe7' Uj (yae

= —i—ﬁeHT—i_v — log(1 —i—ﬁeT)).
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To prove the uniqueness theorem we will look at the difference Uy — Uy’ g 7,

or equivalently at u; — ug‘ﬁ 7. The parameters «, 3,7 will be chosen so that
the projections of u; — ugﬁ 7 onto positive eigenspace (which is spanned by two

independent eigenvectors) and zero eigenspace of the linearized operator £ at
the cylinder are equal to zero at time 7p, which will be chosen sufficiently close
to —oo. Correspondingly, we denote the difference Uy — Uy’ cl by Uy — Uy and
U — ug‘ﬁ 7 by uy —uz. What we will actually observe is that the parameters o, 3
and -y can be chosen to lie in a certain range, which allows our main estimates
to hold without having to keep track of these parameters during the proof.
In fact, we will show in Section 8 that for a given small € > 0, there exists
79 < —1 sufficiently negative for which we have
—T70/2 —T

o/ | Bl < e e
|70l

gl

and our estimates hold for (u; —ug

(3.7) o] <€ Il <elnl

|70

-, 7), T < 79. This inspires the following
definition.

Definition 3.1 (Admissible triple of parameters (a, 3,7)). We say that
the triple of parameters («, 3,) is admissible with respect to time 79 if they
satisfy (3.7).

We will next define different regions and outline how we treat each region.

3.1. The cylindrical region. For a given 7 < 79 and constant 6 positive
and small, the cylindrical region is defined by

¢ ={m)mlr) > )

(see Figure 1). We will consider in this region a cut-off function pc(y, ) with
the following properties:

(i) supppc € Cp, (il) 0 < e <1, (iii) pc =1 on Coy.
The solutions u;, i = 1,2, satisfy equation (1.7). Setting

w = up — u;ﬁv and we = w e,
we see that we satisfies the equation
0
(3.8) Fouc = Llwe] + E[w, e,
where the operator L is given by
(3.9) L=02— %ay 1

and where the error term £ is described in detail in Section 6. We will see that

Elw, gc] = E(we) + E[w, ¢c],
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where £(wc) is the error introduced due to the non-linearity of our equation
and is given by (6.3) and E[w, ¢ is the error introduced due to the cut-off
function ¢¢ and is given by (6.11). (To simplify the notation we have set
o = u2PY
9 = u2 )
The differential operator £ is a well-studied self-adjoint operator on the
Hilbert space $ := L?(R, e v/ 4dy) with respect to the norm and inner product

(310) /I3 = /R F@Pe vy, (f.g) = /R Fw)a(w)e v dy.

We split $ into the unstable, neutral, and stable subspaces $H4, $o,
and $)_, respectively. The unstable subspace £ is spanned by all eigen-
functions with positive eigenvalues. (In this case £ is spanned by a constant
function equal to 1y = 1, which corresponds to eigenvalue 1, and by a linear
function 1 = y, which corresponds to eigenvalue %; that is, $H is two dimen-
sional.) The neutral subspace $)g is the kernel of £ and is the one dimensional
space spanned by 1, = y? — 2. The stable subspace $)_ is spanned by all other
eigenfunctions. Let P4 and Py be the orthogonal projections on £+ and $g.

For any function f: R x (—o0,79] — R, we define the cylindrical norm

1

lne(r) =sp( [ GG ds)’ r <

o<t

and we will often simply set

(3.11) [f1l$.00 := [1fll$,00(70)-

In the course of proving necessary estimates in the cylindrical region we
define yet another Hilbert space © by

D={feH: f,fyeN}
equipped with a norm
1113 = [ (7P + Fe ™ ay.
We will write

(. 9)0 = /R (' )d () + F@)a(y)ye v dy

for the inner product in ®. Similarly as above define the parabolic norm

Iflooc(r) =sn( [ 17 as)

o<t

and also set || f|l9,00 = || fll2,00(T)-
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Denote by ©* the dual of ®©. Since we have a dense inclusion ® C $),
we also get a dense inclusion § C ©* where every f € §) is interpreted as a
functional on ® via

geD—(f9)
Because of this we will also denote the duality between ® and ®* by
(f,9) €D xD* = (f,9).
Since $ C ©*, for every f € $) we define the dual norm as usual by
[fllo+ :=sup{(f,9) : llgllo <1},

the dual parabolic norm by

o 1
2
I oclr) =sup( [ 1751 ds)
o<t o—1
and for simplicity we set || f||o+.0c0 := || f]|2*,00(70)-

In Section 6 we will show a coercive estimate for we in terms of the error
El[w, pc]. However, as expected, this can only be achieved by removing the
projection Pywe onto the kernel of £, generated by 5. More precisely, setting

we = Prwe + P_we = we — Powe,

we will prove that for any € > 0, there exist 6 > 0 and 79 < 0 such that the
following bound holds:

(3.12) [[doe|

9,00 < C||E[w, vcllo+ 00

provided Pywe(19) = 0. This estimate is a consequence of the parabolic equa-
tion (3.8). In fact, we will show in Proposition 4.1 that the parameters «,

aBy
2

and 7 can be adjusted so that for w7 := u; — u3"”, we have

(3.13) Prwe(mo) =0 and Powe(m0) = 0.

Thus (3.12) will hold for such a choice of «, 8,7 and 79 < 0. The condition
Powe (1) = 0 is essential and will be used in Section 8 to give us that w7 = 0.
In addition, we will show in Proposition 4.1 that «, 8 and v can be chosen to
be admissible according to our Definition 3.1.

The norm of the error term ||Efw, ¢cl||p+ 0o on the right-hand side of
(3.12) will be estimated in Section 6, Lemmas 6.8 and 6.9. We will show that
given € > 0 small, there exists a 79 < —1 such that

(3.14) IE[w, ¢clllos 00 < € (lwelloeo + llwxnyllo.00)

where Dy := {(y, 1) : g < uy(y,7) < 0} contains the support of the derivative
of pc. Combining (3.12) and (3.14) yields the bound

(3.15) [dellp,00 < € (lwellp,o0 + [ XDl9,00)
holding for all € > 0 and 79 := 79(€) < —1.
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To close the argument we need to estimate ||wx p, |5 o it terms of [|we |9 oo-
This will be done by considering the tip region and establishing an appropriate
a priori bound for the difference of our two solutions there.

3.2. The tip region. The tip region is defined by
To={(u,7): up <20, 7 <79}

(see Figure 1). In the tip region we switch the variables y and u in our two
solutions, with u now becoming an independent variable. Hence, our solutions
uy (y, 7) and uS? (y, 7) become Yy (u,7) and Y7V (u, 1), where

s (¥, 7),7) = .
Both functions Yi(u, 1), Y;‘BV satisfy the equation

Y.iu n—1

1
3.16 Y, = Yo+ o (Y —uly).
(3.16) S iive . wt (Y —u)

By inverting the definition (3.6) of u®?7, we find that the transformed Y;*"?
and Y5 are related by

3.17) Y29 T)=ae?+\/1+ €TY($,T—|— —log(1 + eT>.
317 V¥, 7) VIR (St~ og(1 4+ 60
It follows from (3.16) that the difference W := Y; — Y37 satisfies

(3.18) W, =

W ( n—1 wu 1

_u Dﬁv “w,
1+n§+ u 2" v
where

Y;ﬁj (Yl ut Yaﬁv)

(1+ (Y10)?) (1 + (Y507)2)

Our next goal is to define an appropriate weighted L? norm

0
HVV(T)H2 ::/O WZ(u, T) et T) gy

in the tip region Ty, by defining the weight p(u, 7). To this end we need to
further distinguish between two regions in Ty: for L > 0 sufficiently large to
be determined in Section 7, we define the collar region to be the set

) < 20}

Ko, 22{ T <wui(y

and the soliton region to be the set

se={yl0ulym <=}

7]

(see Figure 1).
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The soliton region is the set where our asymptotic result in Theorem 1.8
implies that the solutions Y; and Y3 are very close to the Bowl soliton (after
rescaling). To see this, we consider in the soliton region the change of variables

(3.19) Yi(u, ) :E(O,T)—F\/%Zi(pﬂ'), pi=ur\/|7|

for each of our two solutions Y7 and Y5. The asymptotic description in The-
orem 1.8 (see also Corollary 5.1) implies that as 7 — —oo, both Z;(p,7) and
Zs(p,T) converge to the unique rotationally symmetric translating Bowl so-
lution Zo(p) with speed v/2/2. The Bowl profile Zj is the unique solution
of

Z0pp

3.20
(3.20) 1+ ng

n—1 1
+ p Zop+§f2:0, Zo(0) = Z4(0) = 0.

For large and small p, the function Zy(p) satisfies
Zo() —V2p*/4(n —1) + O(log p) p — oo,
olp) =
—V2p [4n + O(p*) p— 0.

These expansions may be differentiated (see [4]).
The collar region is the transition region between the cylindrical and the

(3.21)

tip regions. To deal with this region we need to refine our asymptotics in
Theorem 1.8. A crucial part on this is played by the fact that for each profile
u(y,7), we have (u?),, < 0, namely, that u?(y,7) is a concave function in
y. This will be shown in Proposition 5.2. A consequence of this fact is the
estimate in Lemma 5.7 that implies one may regard the term D in (3.18) as
an error term in KCg 1, (since in this region D can be made arbitrarily small for
7o < —1 and in addition by choosing L, appropriately).

Let us next define our weight ") du in the tip region by choosing p(u, 7)
so that it smoothly interpolates between

1
N(% T) = _1}/12 (U,, T)

for u > 6/2 and

1 u
M(uv 7-) = _7Y12(97 7-) +/
4 0

in the region u < #/4. See (7.2) and (7.3) for the precise definitions. In the
region u > 6/2 this weight matches the Gaussian weight e v/ 4dy that we use
in the cylindrical region up to lower order factors.

For a function W : [0, 26] x (—o0, 9] — R, we define the parabolic norms

n—1
U

(1+ Ylgu(u, 7)) du

/

1 T 20
(3.22) W 2,00, = sUp —— / W2(u, ) "7 du ds
'<r |7— ’ / 7'—1J0

1/2
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|=1/4 to make the norms

for any 7 < 79. We include the weight in time |7
equivalent in the transition region between the cylindrical and the tip region,
as will become apparent in Lemma 8.1. This is due to different rescalings in

the two regions. We will also abbreviate

(3.23) W20 := W

27OO>7-O °

Our main estimates in the tip region apply to a localized version of the
difference W. To localize W to the tip region we choose a cut-off function
o7 (u) with the following properties:

(3.24) (i) supp pr € T, (ii)) 0 < p <1, (iii) w7 =1, on Ty o

and define
(3.25) W=Y—Y  and  Wp(u,7) := W(u,7)or.

We will see in Section 7 that the following bound holds in the tip region:
(3.26) Wrlaoe < 77 [Wxgan e,

where X9 29 is the characteristic function of the interval [0, 20].

3.3. The conclusion. The statement of Theorem 1.7 is equivalent to show-
ing that there exist parameters «, 5 and 7 so that u;(y,7) = ugﬁv(y, 7), where
ugﬁv(y, 7) is defined by (3.6) and both functions, u; (y, 7) and ugm(y, T), satisfy
equation (1.7). We set w := uy —ugﬂ 7 where (a, 3,7) is an admissible triple of
parameters with respect to 7p, such that (3.13) holds for some 79 < —1. Now
for this 79, the main estimates in each of the regions, namely, (3.15) and (3.26)
hold for w. Next, we want to combine (3.15) and (3.26). To this end we need
to show that the norms of the difference of our two solutions, with respect to
the weights defined in the cylindrical and the tip regions, are equivalent in the
intersection between the cylindrical and the tip regions, the so-called transition
region. More precisely, we will show in Section 8 that for every # > 0 small,
there exist 79 < 0 and uniform constants ¢(6),C(6) > 0, so that for 7 < 79,

we have

(3.27) c(9) ||WX[9,20] 5,00 < ||wXD29 [5,00 < C(0) ||WX[9,29] 19,005

where Dy := {y | 0 <wui(y,7) < 20} and x[,9¢] is the characteristic function
of the interval [6, 26].

Combining (3.27) with (3.15) and (3.26) finally shows that in the norm
|lwel|D.00, What actually dominates is ||Powe || 00 We will use this fact in Sec-
tion 8 to conclude that w(y, ) := w*7(y,7) = 0 for our choice of parameters
a, B and . To do so we will look at the projection a(7) := Pywe and consider
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the norm

o 1

Jallso(r) =sup( [ a(s)Pds)", <
o<t “o—1

with [|al[s,00 := llalls,cc(70)-

By projecting equation (3.8) onto the zero eigenspace spanned by 12 and
estimating error terms by ||a||g o itself, we will conclude in Section 8 that a(7)
satisfies a certain differential inequality, which combined with our assumption
that a(rg) = 0 (which follows from the choice of parameters «, 3, v so that
(3.13) hold) will yield that a(7) = 0 for all 7 < 7p. On the other hand, since
||la|ls,0o dominates the ||wel|s 0o, this will imply that we = 0, thus yielding
w = 0, as stated in Theorem 1.7.

Remark 3.2. Note that our evolving hypersurface has O(n) symmetry and
can be represented as in (1.6). Due to asymptotics proved in Theorem 1.8,
when considering the tip region, it is enough to consider our solutions and
prove the estimates only around y = dy(7), where after switching the variables
as in (3.19), we have p > 0. There we have Z(p,7) < 0 and Z, < 0. We
also have Z,, < 0, due to our convexity assumption. The estimates around

y = —da(7) are similar.

4. Choice of parameters

Recall that the zero eigenspace of £ defined by (3.9) is spanned by the
function 15 (y) = y? —2 and the positive eigenspace is spanned by the eigenvec-
tors ¥o(y) = 1 (corresponding to eigenvalue 1) and ¥ (y) = y (corresponding
to eigenvalue 1/2).

To prove Theorem 1.7 it turns out it is essential for our proof to have

(4.1) PLwd? (10) = Pows™ (1) = 0.

We will next show that for every 79 < —1, we can find parameters o = a(7p),
B = B(19) and v = v(79) such that (4.1) holds, and we will also give their
asymptotics relative to 7p. Let us emphasize that we need to be able for every
7o < —1 to find parameters «, 3,7 so that (4.1) holds, since up to the final
step of our proof we have to keep adjusting 79 by taking it even more negative
so that our estimates hold. More precisely, we have the following result.

PROPOSITION 4.1. There is a number 7, < —1 such that for all T < 7,
there exist b, I' and A such that the difference w*?Y = u; — ugﬂv satisfies

<7/10; ¥c waﬁ’y> = <w17 ®c waﬁf}/> = <¢2; ¥c wa67> =0.
In addition, the parameters o, 8 and ~y can be chosen so that b, I' and A defined
in (4.5) satisfy

(4.2) |b| = 0(]7'\*1>, IT'| = o(1) and |A| = o(1), as T — —o0.



382 S. ANGENENT, P. DASKALOPOULOS, and N. SESUM

Equivalently, this means that the triple (o, B,7) is admissible with respect to T,
according to our Definition 3.1.

For v; related to u; by u; = 1/2(n — 1)(14wv;), the corresponding dilations
by (a, 8,7) are given by

—aeT/?
U?BV(Z/,T) _ m{l +Ui<%,7+’y— log(l +B67)>} —1.

Simply write v for v; and v for vgm.

Our asymptotics in Theorem 1.8 imply that each v; satisfies the following
estimates in the cylindrical region Cy: for any ¢y > 0 and any number M > 0,
there is a 7¢, ;s < 0 such that

y2—2  e(y,7)
4|7 7]

(4.3) vi(y, ) = — for 0 <y <2M, 7 < 7M1,

where €(y,7) is a generic function whose definition may change from line to
line, but that always satisfies

(4.4) le(y, 7)| < € for 0 <y <2M, 7 < 7Te M-

We will next estimate the first three components of the truncated differ-
ence @c(v —v),

(bis e @=v))  (i=0,1,2),

where ¢¢ is the cut-off function for the cylindrical region Cy. We will show
that the coefficients «, 5 and - can be chosen so as to make these components
vanish. Instead of working directly with «, 8 and - it will be more convenient

to use
(4.5) b iGger—1, T 2TlslHBe) e
T
Then
(4.6) oy, 7) = b+ (1+b)v (y—A (1+r)r)
. Y, 2 1+b7 .

Our next goal is to show the following result.

The proof of the proposition will be based on the following estimate.

LEMMA 4.2. For every n > 0, there ewists 7, < 0 such that for all 7 < 7,
and all b,I", A € R with

1
bl < = Il <

— ) |A| S 1>
7]

DO |
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one has
(4.7)
A B AQ R N A
(Yo, pe (0 —v)) — b+ m‘ + | (1, e (v —v)) — m’

_|_

o B T n
(2, 00 =) = 3| S T

where lﬁj = ¢j/<¢ja ¢j>~

The conditions on b, I' and A are met if the original parameters «, 8 and
~ satisfy
/2 T c 1
|O[€ ‘ S ]-a ‘56 | S T ‘/ﬂ S §|T|
7]
Proof that Lemma 4.2 implies Proposition 4.1. Let n, > 0 be given, and
consider the disc

B={(b1,4) |7 + T2+ 42 <2},
On this ball we define the map ® : B — R? given by

7/ (s (B — )
O(0,T) = [ |rl{n, pe (o —v))
7/ (s (5= 0)

The map @ is continuous because the solution v depends continuously on the
parameters b, I, A.

It follows from (4.7) that if n < 7, is chosen small enough, and if 7 is
restricted to 7 < 7, with 7, defined as in Lemma 4.2, then the map & restricted
to the boundary of the ball B is homotopic to the injective map

A2 A T >
C+1)20+1)4T+1)/"

through maps from 9B to R?\ {0}. The map ® from the full ball to R3
therefore has degree one, and it follows that for some (¥/,I", A’) € B, one has
oV, I',A’) = 0. From the definition of the disc B it follows that (b',I7, A")
satisfies (4.2). O

(b,T, A) s (mb— y

Proof of Lemma 4.2. By Lemma 5.14 in [3] it follows that our for any
ancient solution u, we have

H (u Y/ 2(” - 1) + %iﬁ_‘_l) 77b2) Xsupp(ec)

=o(lr|™),
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where Xgupp(pe) 18 the characteristic function of supp ¢¢. Using this we have
that on the support of ¢¢,

(T)(y7 7—) - ’U(y, T)) ¥c

2b + b? 1
201 +D)(1+0b) |7
1 22 24y — A? 5¢(y,
+{1_ }y N y e(y.7)
(I+b)(1+1)J) 47| 4T(T+1)(b+ 1) | 7]
_ 20+0° 1
B 2(1+T)(1+0b) |7
b+T +0I 4% —2 2Ay — A? 5e(y, T)
(L+T)(1+0b) 47| 4T+ 1)(b+ 1) 7|

2
which holds in the L? sense, meaning that the fe(y,T)QefyT dy = o(1) as
7 — —00. Given the assumptions on b, I and A in the statement of Lemma 4.2
we can rewrite this as

(4.8)
O )=o) e =0 g7 le)m s (y;;ﬁ) " 2|Tyéy+ T
holding in the L2-sense, where the remainder R satisfies
(49) ([ rwme s an)” = ol ).
as T — —00.
Components of the error. We estimate (1, pc(0 — v)):
(¥, 0c(v = v)) = (¥, 1>(b - 4(Fi121)’7'|) + (¥, ) mAlﬂﬂ
+ (059 =)y + )
In view of the fact that g = 1, 1 =y and 12 = y> — 2, we have
Wopc@=v) , A (W R
(to, Po) AT+ Dl (Yo, v0)
and
Wrpc-v) _ A WLR)
(11, 91) 20+ 1)r[ (W1, 1)
(Yo, pc(0—v)) T (Y2, R)

(W ta) AT D] (o

~
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We claim that for every n > 0, there exist 7, < 0 such that for all 7 < 7,
one has

(4.10) (i B)| <

H-
Indeed, this immediately follows by applying (4.9) and Hoélder’s inequality to

1
2

2 2
il < [lulire s ay <o [ R ay)
This concludes the proof of the lemma. O

Remark 4.3 (The choice of parameters («, 3,7)). We can choose 1p < —1
to be any small number so that 79 < 7., where 7, is as in Proposition 4.1 and
so that all our uniform estimates in previous sections hold for 7 < 7. Note
also that having Proposition 4.1 we can decrease 7y if necessary and choose
parameters «, § and v again so that we still have Prwe(79) = Powe(19) = 0,
without affecting our estimates. Hence, from now on we will be assuming that
we have fixed parameters «, 8 and = at some time 79 < —1, to have both
projections zero at time 7. As a consequence of Proposition 4.1, which shows
that the parameters («, 8,7) are admissible with respect to 79, we can ensure

B

all the estimates for w = u; —ug” " will then hold for all 7 < 7y, independently

of our choice of (a, 3,7).

5. A priori estimates

Let u(y, ) be an ancient oval solution of (1.7) that satisfies the asymp-
totics in Theorem 1.8. In this section we will prove some further a priori
estimates on u(y,7) which hold for 7 < —1. These estimates will be used
in the subsequent sections. Throughout this section we will use the notation
introduced in the previous section and in particular the definition of Y (u, 7)
as the inverse function of u(y, 7) in the tip region and Z(p, 7) given by (3.19).

Before we start discussing a priori estimates for our solution u(y,7), we
recall a corollary of Theorem 1.8 that will be used throughout the paper,
especially in dealing with the tip region.

COROLLARY 5.1 (Corollary of Theorem 1.8). Let M; be any ancient oval
satisfying the assumptions of Theorem 1.8. Consider the tip region of our so-
lution as in part (iii) of Theorem 1.8, and switch the coordinates around the tip
region as in formula (3.19). Then, Z(p,T) converges, as T — —oo, uniformly
smoothly to the unique rotationally symmetric translating Bowl solution Zy(p)

with speed \/2/2.

Proof. According to the asymptotic description of the tip-region from [3]
(see part (iii) of Theorem 1.8), the family of hypersurfaces that we get by
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translating the tip of M; to the origin and then rescaling so that the maximal
mean curvature becomes equal to one, converges to the translating Bowl soliton
with velocity equal to one.
In defining Z(p, ) by
1

VIrl
we have in fact translated the tip to the origin and rescaled the surface My, first
by a factor 1/4/[t] = 7/? (the cylindrical rescaling (3.4) that leads to u(y, 7)
or equivalently Y (u, 7)), and then by the factor /|7| from (3.19). These two
rescalings together shrink M; by a factor /|t|/log |t|. Since by Theorem 1.8
the maximal mean curvature at the tip satisfies

(5.1) Y(u,7) =Y(0,7) +

Z(p,T)

log ||
2[t]

Hmax(t) = (1 + 0(1))

the hypersurface of rotation given by z = Z(p, 7) has maximal mean curvature

Hnax (1) - 1/[t|/log [t] = V/2/2 + o(1). It therefore converges to the unique ro-
tationally symmetric, translating Bowl solution Zy(p) with speed v/2/2, which

satisfies equation (3.20). O

Next we prove a proposition that will play an important role in obtaining
the coercive type estimate (3.26) in the tip region.

PROPOSITION 5.2. Let u be an ancient oval solution of (1.7) that satisfies
the asymptotic estimates (i)—(iil) in Theorem 1.8. Then, there exists 19 < —1
for which we have (u?)yy(y, 7) <0 for all T < 7.

The proof of this proposition will combine a contradiction argument based
on scaling and the following maximum principle lemma.

LEMMA 5.3. Under the assumptions of Proposition 5.2, there exists time
70 < —1 such that

max(u?)y, (-, 7) >0 and T <71 = dimax(u2)yy(~,7') <0.
M, T

Proof. For the proof of this lemma, it is more convenient to work in the
original scaling (z,t,U(x,t)) (see equation (1.5)) that is related to (y,7,u(y,))
via the change of variables (3.5). Set

Q(z,t) == U(x,t), qly,7) =u>(y,7).

The inequality we want to show is scaling invariant, namely, (U?)..(z,t) =
(u?)yy(y, 7). Hence, it is sufficient to show that there exists to < —1 such that

d
) < el . )
rr]{/%me(,t)>0 and t <ty — dtnjl‘ZXQm(,t)<0
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To this end, we will apply the maximum principle to the evolution of ..
Since U satisfies (1.5), a simple calculation shows that

1QQqzs — 2Q2
Qr= Qf@ n Q2Q —2(n—1).
Differentiate this equation with respect to x to get
xt = T~ Ao 4 Txr VAR R
. . 4QQ;1¢$$ - _ 2 2Qac

We differentiate again, but this time we only consider points where @, is
either maximal or minimal, so that .., = 0. Note that

(53) (4QQCEJI - 2@926)96 = 4QQa:xz =0 and (sz + 2)90 = waz =0
at those points. Also,
( 2Qq ) - 2Q0x (4Q + QF) — 2(4Qs + 2Q2Q42) (2Q1)
( z

1Q+Q3)° (4Q + Q3)°
-9 (4Q — 3Q§)Qx$ — SQ%
(4Q +@Q2)
_,4Q-3Q; 8Q3
g aps (%~ 1g-aqr)
Using these facts we now differentiate (5.2). This leads us to
szt - m
_ 2y 4Q — 303 8Q7
- _(Qxx + 2)(4Qch - 2@30) : 2(4Q + Q%)g <Q:L‘:r - 4Q — 3Q%>a

holding at the maximal or minimal points of Q.. Recall that since Q = U2,
we have Q2 = 4U%U2. Thus the previous equation becomes

(5:4) (Quz), - 1+02 T 4Q (1+U2)3

We will now use (5.4) to conclude that at a maximum point of @, such
that Qz; > 0, we have

14 U2

Since the equation becomes singular at the tip of the surface, we will first
show that very near the tip we have @, < 0. After going to the y variable

< 0.
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and setting q(y,7) = u*(y,7), we have Quz = gyy, Where after switching
coordinates,

Y, 1 2

2
(5:6)  qyy =2 (wuyy +ud) =2(—u ¥ 73) =73 (%= p2).
Since by Corollary 5.1 we have that Z(p, 7) converges uniformly smoothly, as
T — —o0, on the set p < 1, to the translating soliton Zy(p), it will be sufficient
to show that 22;3 (Zop—pZopp) < 0mear p = 0. Since Zy is a smooth function,
this can be easily seen using the Taylor expansion of Zjy near the origin. Let

Zo(p) = ap® +bp* +o(p?), as p — 0. A direct calculation using (3.20) shows

that
a=— L and b= —L
2V —16n3(2+n)’
implying that
2 1 V2P
. —(Zo, — pZ0,p) = 1) =— 1

as p — 0. We conclude that for 7 < 79 < —1 and p sufficiently close to zero,
we have

(58) me = Qyy < - <0

24n

We will now show that at a maximum point where Q,, > 0, (5.5) holds.
By (5.8) we know this point cannot be at the tip, and hence all derivatives are
well defined at the maximum point of Q... At such a point, Q.. +2 > 0. We
also have g, = 2UUy, + 2U§, so convexity of the surface implies Q.. — 2U§ =
2UU,; < 0 on the entire solution. Thus we have

(5.9) Vot Que < 2UZ,
so it suffices to show that when Q.. > 0,
(5.10) Que(1—3U2) —8U2 <0

holds.
We consider the two cases 3U2 < 1 and 3U2 > 1. If 3U2 < 1, then
Quz(1 —3U2) < Quz < 2U2 so that

Quz(1 —3U2) — 8U2 < Qup — 8UZ < —6U2,

By (5.9) we have U2 > 0 whenever Q. > 0, so that (5.10) holds at a positive
maximum of Q. If, on the other hand, 3U2 > 1, then in view of Q. > 0 we
have (1 —3U2)Q.. —8U2 < —8U2 < 0 so that (5.10) holds again. We conclude
from both cases that at a maximum point where @, > 0, (5.5) holds. O



UNIQUENESS OF ANCIENT OVALS IN MCF 389

Let Zy be the translating Bowl soliton that satisfies (3.20) and the asymp-
totics (3.21). Recall that we have Zy(0) = (Zo),(0) = 0 and the sign conven-
tions (Zy),(p) < 0 and (Zy),p(p) < 0 for p > 0 (see Remark 3.2), which also
imply that Zy(p) < 0 for p > 0. By Corollary 5.1 we have lim,_,_ Z(p,7) =
Zy(p), smoothly on compact sets in p. Thus (5.6) implies that

Gy ~ s (Z0) — P(Z0),p)

(Zo)3
for 7 < 19 <« —1. In the proof of the previous lemma we have shown that this
quantity is negative near the origin p = 0. We will next show that it remains
negative for all p > 0.

LEMMA 5.4. On the translating Bowl soliton Zy(p) that satisfies equa-
tion (3.20), we have

(ZO)% ((ZO)p - p(ZO)PP) <0

for any p > 0.

Proof. The proof simply follows from the maximum principle in a similar
manner as the proof of Lemma 5.3. To use the calculations from before we
need to flip the coordinates. Setting © = Zy(p), after we flip coordinates we
have p = Up(x) for some function Uy > 0. Since we have assumed above
that Zo < 0, we also have that z < 0. Setting Q := UZ we find that

2
Qrw = 3 ((Zo)p — p(Zo)pp), hence it is sufficient to show that Qu, < 0
for x < 0.

(Zo)3
A direct calculation shows that Uy satisfies the equation

(U )zx n_l_\@
1 +(()U0)§ g =g e

Note that in addition to U > 0 for z < 0, we have (Up), = 1/(Zp), < 0 and
(U0)zz = —(Zg)pp/(Z())% < 0. Also since (Up), — —oo as x — 0, the function
Uy fails to be a C' function near x = 0. However this is not a problem since
we have shown in the proof of the previous lemma that (5.7) holds, implying

that Qzz < 0 for |z| < n, if n chosen sufficiently small. In addition, a direct
calculation where we use that Zy(p) satisfies the asymptotics

2
Zo(p) = ——~—— +logp+o(logp),  as p— o,

2v/2(n — 1)
as shown in by Proposition 2.1 in [4], leads to

2

me = (ZO)?;

((20)p — p(Z0)pp) <0
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for p sufficiently large, which is equivalent to x < —/¢ with £ > 0 sufficiently
large.
We will now use the maximum principle to conclude that @, < 0 for
€ [—¢, —n]. Similarly to the computation in the proof of the previous lemma,
after setting @) := UOQ, we find that

10+ Q2 2 %
After we differentiate twice in x, following the same calculations as in the proof
of Lemma 5.3, we find that ()., satisfies the equation

V2 (Qm) (Qe2) 1

2 1
(5.11) + UO

4Q (1 + UOx)

Assume that @, assumes a positive maximum at some point xg € [—¢, —7).

Arguing exactly as in Lemma 5.3 we conclude that at a maximum point of Q.
where Qg > 0, we have

2 Qux(1 —3U3,) — 8UE

_ = ) o 2U2 T O0x 0x

On the other hand, at this point we also have that Quz: = 0 and Qurze < 0,
so we get a contradiction with (5.11). Hence, @, cannot achieve a positive
maximum on [—¢, —n] finishing the proof of our lemma. O

< 0.

We will now proceed to the proof of Proposition 5.2.

Proof of Proposition 5.2. We will argue by contradiction. Assuming that
our claim does not hold, we can find a decreasing sequence 7; — —oo0 and
points (y;,7;) such that g, (y;,7;) = maxy;_ qyy(-,7;) > 0. We may assume
without loss of generality that y; > 0. It fojllows from Lemma 5.3 that the
sequence {qyy(yj,7j)} is non-increasing, implying that
(5.12) Qyy (Y5, 7j) = r]‘r%laquy(-,'rj) >c>0 Vi.

7

This in particular implies that

(5.13) w(y5,77) 2 5 >0,

Set § := y/c/2. After flipping the coordinates and using the change of variables
(3.19) (or (5.1)) we find that for u; = u(y;, 75), p; = /|75 uj, we have

1 1
’u (y'vT')‘: = 26 - ‘Z (P',T‘)’<*
yRey Yulug, )1 1 Zp(pj, 75)] PR

—_

C)q
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The monotonicity of Z,(p, ) in p and the convergence lim, .o, Z(p,7) = Zo(p)
smoothly on any compact set in p imply that p; < ps, where ps is the point
at which |(Zo),(ps)| = 2/0. We may assume without loss of generality that
d is small, which means that ps is large. The asymptotics (3.21) for Zy(p)
as p — 00, give that |(Zo),(p)| ~ p/(vV2(n — 1)), as p — +oo, implying that
by choosing & sufficiently small we have 2/8 = |(Zo),(ps)| ~ ps/(V2(n — 1)),
or equivalently ps ~ 2v/2(n — 1)/6. Since p; < ps, we conclude that the
points (p;, 75, Z(pj, 7j)), or equivalently the points (y;, 7j, u(y;j, 7;)), belong to
the soliton region where we know that ¢,, < 0 by Lemma 5.4, contradicting
our assumption (5.12). This implies (2.15) holds.

Since we have that (2.15) holds, this contradicts (5.13), hence finishing
the proof of Proposition 5.2. U

In the rotationally symmetric case that we consider here, the principal

curvatures of our hypersurface are given by
U 1
(14 u2)3/2 w14 uR)?

In [3] we showed that on our Ancient Ovals M; we have
A1 < Ao

We also showed A1 = Ao at the tip of the Ancient Ovals, at which the mean
curvature is maximal as well. The quotient

R::ﬁ:—UUM L Uy
Ao 1+ U2 14 u?

is a scaling invariant quantity and in some sense measures how close we are
to a cylinder, in a given region and at a given scale. It turns out that this
quotient can be made arbitrarily small outside the soliton region Sp(7) :=
{y10<uly,7) < ﬁ}, by choosing L > 1 and 7 < 79 <« —1. This is shown

next.

PROPOSITION 5.5. For every n > 0, there exist L > 1 and 19 < —1 so

that

A L
iy, 1) <n, if u(y,7) > ——= and T <T9.
A2 VIl

Proof. Having Lemma 2.9, to prove Proposition 5.5 it suffices to show the
following claim.

Claim 5.6. For every L > 0 big, there exist L > 1 and 79 < —1 so that

L — ’ k‘ > L
Pyr = P7rl 2 77—
’7“ o T H(pyT)T)

u(y, ) >
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for both k € {1,2} and where p,, € M. is a point on a surface that is described
by the profile function u(y,7) at time 7.

Proof. Assume the claim is not true and that there exist a sequence

(yj,7j), with 7, = —oo0 and L; — oo such that u(y;,7;) > 7> but for ex-
J
ample, for k =1,
L
5.14 pi—pi| < —"F
( ) |p] ptj| — H(ﬁjaT])
where we shortly denote p; := py.r,. By Proposition 2.12 we have that a

rescaled limit around (pj, 7;) by factors H(p;, ;) converges to a Bowl soliton.
On the other hand, u(y;, ;) \/|7j| > Lj, or equivalently in the tip variables,
pj = Lj. In the switched variables around the tip we have

1

——= Z(pj,Tj)s
VIl

Y(0,75) = Y(uj, 1) = —

which implies
1Z(pj, i)l o 12(L, 7))l

Viml VIl
since |Z(p,7;)| increases in p > 0 and p; > L;j — oco. We can choose any L
and the above inequality will hold for sufficiently big j; that is, the larger L
we take, we may need to increase the j so that (5.15) holds. We know that
. . . 2
lim; o Z(L, 7j) = Zo(L), where Zj is the Bowl soliton and | Zy(L)| ~ m
for L large enough. This together with (5.14) and (5.15) yield

L S 1p—pl|> L?
= . =2 IPj —Pr| =2
H(pjim) =77 77 7 4v2(n—1) /|7
for j > jo sufficiently big.

On the other hand, since we have (5.14), by Lemmas 2.10 and 2.14 we
have that H(p;,7j) and Hmpmax(7;) are uniformly equivalent, implying that
cHpmax(75) < H(pj, 7j) < Hmax(7;) for a uniform constant ¢ > 0 and for j > jo.
In [3] we proved that Hpax(7;) ~ 1/ |T—2J‘ for 7 > 1, and hence we have that
H(pj, 1) > c/|r;| for j > 1 for a uniform constant ¢ > 0. Combining this

and (5.16) yields contradiction for j > jp big enough, if we choose L so that
2> 8v2(n—1)L 0
—— .

(5.15) 15— pL | =

(5.16)

Since we have Claim 5.6 and Lemma 2.9, the proof of Proposition 5.5 is
now complete. O

We will finally use the convexity estimate shown in Proposition 5.2 to
show the following crucial estimate that will be used in Section 7 and holds in
the collar region Ko f, := {u: L/y/|7] < u <26}
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LEMMA 5.7. Let u be an ancient oval solution of (1.7) that satisfies the
asymptotics in Theorem 1.8. Then, for 0 < 08 < 1 and L > 1 large, there exist
€0, L) small and a 19 < —1 for which we have

'1 + <€,L) inKgr forT <.

2(n —1)Y,
Moreover, for L>> 1 and 0 < 1, we can choose € := max{46?, c(n)L™1}.
Proof. By Proposition 5.2 we have that (u?),, < 0. We need to show that

1—e< wY ooy

—e< ————— €
- 2n-1)Y, —

in the considered region, which is equivalent to

1

5.17 l—e<————y?), <1+e
( ) € > 4(n_1)y(u )Z/— +e
The intermediate region asymptotics in Theorem 1.8 imply that for u = 20,
we have
202
(5.18) Y= \/2|7'|\/1—n_1 +o(1), as T — —00.

It follows that at u = 26 and for  small, y > /2|7| (1 — 46?). Hence, in the
considered region L/+/|7| < u < 26, we have

(5.19) V2|7 (1 — 46%) <y < /2|7](1 + o(1)),

where o(1) — 0, as 7 — —oo. Next, using the inequality —(u?)y, > 0, which
was shown in Proposition 5.2, we can estimate
2 2 2
—(u )y‘uzgg < —(u )y < —(u )y’u:L/m-

Furthermore, our intermediate region asymptotics from Theorem 1.8 imply
that at ©v = 260 and 0 < 1, we have

—(@*)¢ =2(n—1)z+ o(1),
which combined with (5.18) gives that

Y 1 2v/2(n — 1) 202
—(u?)ylu=2s = 2(n —1)== + o = 1-

& AR TV Ve
On the other hand, in the tip region the solutions are approximated by the
Bowl soliton, so that at u = L/+/|7|, we have

_(“2)3/ 2u

N

+o(1).

2L 1

w=L/NT 7] Zo(Ly )




394 S. ANGENENT, P. DASKALOPOULOS, and N. SESUM

Combining the convergence lim,_,_ o Z(p, 7) = Zp(p) together with the asymp-
totics (3.21) implies that for L > 1, we have
L—c
Z(L,7)> —— ¢
for a fixed constant ¢ = ¢(n). Hence
) 2L V2(n—1) 2v2(n—1)
—(u)y < =
w=t/\Irl = /7] L—c VTl

for € = ¢(n)L™!, for another fixed constant c(n). We conclude that

2/2(n — 1) ) 262 2v/2(n — 1)

~ i _n_15_(“2)y§7m (1+e).

Combining (5.19) and (5.20) yields that for 7 < —1, we have the bounds

(1+e),

(5.20)

(1—46%) /1 - o1 (u)y < (1+¢)
n—1- 4mn-1 =0T

which yields (5.17) for € := max(46%,¢(n) L7™') and L > 1, § < 1. O

6. The cylindrical region

Let ui(y,7) and ua(y, 7) be the two solutions to equation (1.7) as in the
statement of Theorem 1.7, and let ugﬁ 7 be defined by (3.6). In this section
we will estimate the difference w := u; — ug"g 7 in the cylindrical region Cp =
{y | wi(y,7) > 0/2} for a given number § > 0 small and any 7 < 7p < —1.
Recall all the definitions and notation introduced in Section 3.1.

Our goal in this section is to prove that the bound (3.15) holds as stated

next.

PROPOSITION 6.1. For every € > 0 and 68 > 0 small, there exists a 1o <
—1 so that if w(y,7) is a solution to (6.1) for which Pywe(m9) = 0, then we
have

lellp,00 < € (llwell,oo + 1w XDy ll5.00)

where Dy :={y | 0/2 <wui(y,0) <0} and we = P_we + Pywe.

The rest of this section will be devoted to the proof of Proposition 6.1.
To simplify the notation for the rest of the section we will simply denote ugﬁ K
by uo and set w := uy — ug. The difference w satisfies
Wyy (u1y + ugy)usy,y Y 1 n—1

= - Wy — Wy + —W +
T+uf, (I+ad)(1+ud,) ? 277

(6.1) wr

which we can rewrite as

(6.2) wy = Lw + Ew
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in which £ = 85 — %0, + 1 is as above, and where £ is given by

_ u%y W — (u1y + ugy)ugyy w, + 2(n — 1) —ujug
2 vy 2 2 Y
L+ uly (1 + uly)(l + u2y)

6.1. The operator L. We recall the definition of the Hilbert spaces ), ©
and ©* are given in Section 3.1. The formal linear operator

(6.3) Euw] =

QU1UQ

2 Y %
E:(‘?y—§8y+1:—8y8y+l

defines a bounded operator £ : ® — ©*, meaning that for any f € ©, we have
that Lf € ©®* is the functional given by

Vo €D (L1.0) = [ (hoy+ 1oy
By integrating by parts one verifies that if f € C2, one has

Yy 2
(16) = [ (f = 3+ £) 6V 1ay,
R
so that the weak definition of Lf coincides with the classical definition.

6.2. Operator bounds and Poincaré type inequalities. The following in-
equality was shown in Lemma 4.12 in [3].

LEMMA 6.2. For any f € ©, one has
.éyﬁwfff“@néCAJﬂw2+h@V%ff“@,

which implies the multiplication operator f w— yf is bounded from ® to 9, i.e.,

lyflls < Cllfllo
forall f €.
As a consequence we have the following two lemmas.

LEMMA 6.3. The following operators are bounded both as operators from
D to H and also as operators from $ to D*:

froufs o [o 0= (=0,+5) 1,

where 8} is the formal adjoint of the operator 9y, it satisfies (f, 9y9) = 0y [, 9)
forall f,ge®.

LEMMA 6.4. The following operators are bounded from ® to ®*:

F=9*f, Ferydyf, [ 05f.
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Proof of Lemmas 6.3 and 6.4. By definition of the norms in ® and $), the
operator Jy is bounded from D to £, and by duality its adjoint 9 = -9, + ¥
is bounded from $ to D*.

The Poincaré inequality from Lemma 6.2 implies directly that f — yf
is bounded from ® to $. By duality the same multiplication operator is also
bounded from $) to ®*; i.e., for every f € $) the product yf defines a linear
functional on © by (yf, ) = (f,y¢) for every ¢ € ©. We get

1y fllo- < Cllf s

for all f € $.

Composing the multiplications y : ® — $ and y : H — D* we see that
multiplication with %2 is bounded as operator from ® to D*; i.e., for all f € D,
we have y2f € ©* and

ly* fllo- < C*|£llo-

Since y : ® — $ and 9, : © — $ are both bounded operators, we find that
0, = —0, + £ is also bounded from D to ®. By duality again, it follows that
0Oy is bounded from § to ©*. This proves Lemma 6.3.

Each of the operators in Lemma 6.4 is the composition of two operators
from Lemma 6.3, so they are also bounded. ([

More generally, to estimate the operator norm of multiplication with some
function m : R — R, seen as operator from ® to £, we have

[m(y)|
[m flls < sup 1 fllo-
Hﬁ yER 1+ ’y‘ ’

Indeed the following lemma can be easily shown.

LEMMA 6.5. Let m : R — R be a measurable function, and consider the
multiplication operator M : f — mf. Then, the following hold:

o M : 9 — 9 is bounded if m € L®(R), and [|M||s—g < ||m] L.
o M : D — 9 is bounded if and only if M : H — D is bounded. Both
operators are bounded if (1+ |y|)~tm(y) is bounded, and

Im(y)|
L+ y|

HMHﬁﬁD* = ”MHQﬁﬁ < Cess SUPyeRr

e Finally, M is a bounded operator from ® to ®* if (1 + |y|)2m(y) is
bounded, and the operator norm is bounded by

Im(y)|

IM|lo—p* < ess Sup ecp————rs5 -
- YR+ Tyl)?
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6.3. Eigenfunctions of L. There is a sequence of polynomials 1, (y) =
y"™ + - -- that are eigenfunctions of the operator £ and agree with the Hermite
polynomials, up to scaling. The n'® eigenfunction has eigenvalue \, = 1 — 5
The first few eigenfunctions are given by

¢0(Z~/) =1, wl(y) =Y, 1#2(34) = y2 -2

up to scaling.

The functions {¢, : n € N} form an orthogonal basis in all three Hilbert
spaces D, $ and ©*. The three projections P+ and Py onto the subspaces
spanned by the eigenfunctions with negative/positive, or zero eigenvalues are
therefore the same on each of the three Hilbert spaces. Since 1, is the eigen-
function with eigenvalue zero, they are given by

P f = Z 1/;]7’ Doy, Py = Z df” Loy, s = &f’qﬁwz.

6.4. Estimates for ancient solutions of the linear cylindrical equation.
In this section we will give energy type estimates for ancient solutions f :

(=00, 9] = ® of the linear cylindrical equation

T L) = gr).

LEMMA 6.6. Let f: (700,7’0] — ® be a bounded solution of (6.4). Then
there is a constant C' < oo that does not depend on f, such that

©5) sw lfEE+ 5 [ IFOIRdr <1l +C [ k. dn

7<70

(6.4)

where fi =Py f andf:P+f+73_f.

Proof. This is a standard cylindrical estimate applied to the infinite time
domain (—o0, 79]. Since the operator £ commutes with the projections Py we
can split f(7) into its P4 and P_ components and estimate these separately.

Applying the projection P_ to both sides of the equation f,—Lf =g we get

fL(r) = Lf-(7) + g-(7),
where ¢g_(7) = P_g(7 ) This implies

||f 5= (f=. LF-) +{f-.9-)-

Using the eigenfunctmn expansion of f_ we get

(F L) <~ 11

We also have

(f-9-) <llf-llo llg-llo-

<selliB+S
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We therefore get

1d 2 1 2 C 2
“ 7 — < —— — - — * o
SN < sl + Sl 1

Integrating in time over the interval (—oo, 7] then leads to

1 1
OB+ 55 [ b ar <5 [ ol .

Taking the supremum over 7 < 7y then gives us the P_ component of (6.6).
For the other component, fi(7) = Py f, we have

1
(f  Lfy) > c [FAES

A similar calculation then leads to

1d
SR > 0B~ S gl

Integrating this over the interval [, 79| introduces the boundary term || f (79) ||525
and gives us the estimate

1 1 0 1 C [T
OB+ 5g [ o <A@+ S [l dr
Adding the estimates for P4 f and P_ f yields (6.5). O

LEMMA 6.7. Let f : (—o0,70] = @ be a bounded solution of equation (6.4).
If T > 0 is sufficiently large, then there is a constant Cy such that

sup || () ||5+—sup / 13 dr
T7<T0

(6.6)
< 1Al + Cosup [ ()

where I, is the interval I,, = [0 — (n+1)T, 70 — nT] and where f+ = Py f and
f=Pif+PT.

Proof. To simplify notation we assume in this proof that Py f(7) = 0, i.e.,
that f(7) = f(r) for all 7. Likewise we assume that §(7) = g(7) for all 7 < 7.

Choose a large number 7" > 0, and let n € C°(R) be a smooth cut-off
function with n(t) = 1 for t € [-T,0], suppn C (—27,+7T). We may assume
that

(6.7) ' (7)] <
For any integer n > 0, we consider

fulT) = (7)) f(7),  where n,(7) =n(r — 70 + nT).

The cut-off function 7, satisfies n,(7) =1 for 7 € I,,, and suppn, C J, where,

for all 7 € R.

el
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«(n+2)T -(n+1)T  -nT  ~(n-1)T

Figure 2. The cut-off function 7, (7), and the intervals I,, and J,.

by definition,
Iy =TI UL, Ul 1.

The function f, is a solution of

Fu(T) = Lfa(7) = 0 (7) (1) + 0a(7)g(7).

If n > 1, then we can apply Lemma 6.6 to f,, with f,(79) = 0. Since f,, and
f coincide on I,,, we get

sup | F()3 + / IFlfsdr < sup | £ + / | fulBdr

Tel,

<c /J W + maglly-dr.

Here C is the constant from Lemma 6.6. Using (a + b)? < 2(a? + b%) and also
our bound (6.7) for n/,(7) we get

1 2
sup £ + & [ 1513dr <€ [ {75001 + ol far

Tely,

It follows that

sup |F(1)[13 + / 1F13dr
TEIn

(6.8)
< Zow [ fledr +3Csup [ fgldr
T E JI, k I

For n = 0, the truncated function f,(7) is not defined for 7 > 7y and we
must use an estimate on Jy = I1 U Iy. We apply Lemma 6.6 to the function
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o) = mo(r) £ ():
S

w5+ & [ Wb

T€lp

1 [
< sup [fo(l+ 5 [ Iolfadr

7<70

T0
(6.9) < (o)l +C / 1o f + mogll3-dr
<+ (o)Il% + 2C /1 ()2 I3 dr +2C /J gl dr
1 (0]

2C
< 1Al + Zgsuw [ Ufledr +2Csup [ Jglf-ar
k k

Combining (6.8) and (6.9) and taking the supremum over n yields

1
sup |70+ s [ fldr

T<70
2 , 3C 2 2
< |[f+(m0)ll5 + T2 SuP | fllD+dr +3Csup [ |[gl|5-dr.
k JI, kJI

Since |Jullg < |lu|lp for all u € D, it follows by duality that ||u|o+ < ||ul|g for
all u € 9, and thus we have ||f(7)|lo+ < || f(7)|o. Therefore

1
sup 7+ gsup [ 11dr

7<70

3C
< W)l + g sup [ 3+ 3Csup [ glfar.
k JI, k JIy

At this point we assume that 7T is so large that 3C/T? < 1/2C, which lets us
move the terms with f on the right to the left-hand side of the inequality:

sup ()13 + 55w [ e < U7l +3C s [ gl

TTO

@* D

6.5. L2-estimates for the error terms. The two solutions w1, us of equa-
tion (1.7) that we are considering are only defined for y? < (24 o(1))|7|. This
follows from the asymptotics in our previous work [3] (see also Theorems 1.8
and 9.1), where it was also shown that they satisfy the asymptotics

u(y,7) = \/(n—l) (2—22)+0(1), as T — —00
Yy

NG

We have seen that w := u; — ug satisfies (6.2) where the error term &

uniformly in z, where z =

is given by (6.3). We will now consider this equation only in the “cylindrical
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region,” i.e., the region where

0 Y 62
u> -, ie.. <4 j2— —— +0(1).
2 1/|7" 4(71*].) ( )

To concentrate on this region, we choose a cut-off function ® € C*°(R) de-

pending on the parameter 6 that decreases smoothly from 1 to 0 in the interior

of the interval
02 02
2 — 22— — .
i N Ty

With this cut-off function we then define

celpr)=((5)  and ey m) = ely Ty, 7).

The cut-off function ¢¢ satisfies the bounds
C(0)

Il

[(pe)yl* + [(e)yyl + 1(we)-| <

where C(6) is a constant that depends on 6 and that may change from line to
line in the text. The localized difference function we satisfies

(6.10) wer — Lwe = E[we] + Ew, e,

where the operator £ is again defined by (6.3) and where the new error term
£ is given by the commutator

Elw,c] = [0; — (L +E), pc]w,

ie.,
(6.11) E[w, ¢c] =
2
_ _ Yy (u1y + ugy)uzyy y
{SOC,T @vay + 1 + u%y SOCJJU + (1 + u%y)(l + u%y) ((Pc)y + 2(()06):’! w

2u%y
T (e 2l

Equation (6.10) for we is not self contained because of the last term
E[w, ¢c], which involves w rather than we. The extra non-local term is sup-
ported in the intersection of the cylindrical and tip regions because all the
terms in it involve derivatives of ¢¢, but not ¢ itself.

Let us abbreviate the right-hand side in (6.10) to

g := Elwe] + E[w, pc).
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Apply Lemma 6.7 to we solving (6.10), to conclude that there exist 7p < —1
and constant C, > 0, so that if the parameters («, 3,7) are chosen to ensure
that Pywe(m9) = 0, then we := Prwe + P_we satisfies the estimate

(6.12) [de]lD,00 < Cllgllox 00

for all 7 < 7.
In the next two lemmas we focus on estimating ||g||o+.

LEMMA 6.8. For every ¢ > 0, there exist a 19 so that for T < 19, we have
1€ [welllo+ < €lwello-

Proof. Recall that
2

uy (u1 -+ U9 )UQ 2(” - 1) — Uru2
Elwe] = ——— 5 (we)yy — = o7 o (We)y +
1+ u%y W14 u%y)(l + u%y) v 2ujus
In [3] we showed that for, 7 < 79 < —1
(6.13) [(wi)y| =+ [(i)yy| + [(ui)yyy| < \/f for (y,7) € Cy,

where u;,i = 1,2 is any of the two considered solutions. The constant C(6)
depends on 6 and may change from line to line, but it is independent of 7 as
long as 7 < 19 <« —1.

Using (6.13) and Lemma 6.4, we have

C(0)

9_\!

C(o
l(we)yyllor < ‘<|> lwello,

2
(6.14) |2 ()
1—|—u%y vy

while by (6.13) and Lemma 6.3, we have

(u1y + ugy)uzyy (o) C(0)
(6.15) | (wel| . < TN we)yllo < = flwclls.
L+ w1 +uz) e = 7] ! 7]
Also,
—1) - —1)—u? —
[P a2 el <[ iy el + [ 2 el
ULU 2uius o

It is very similar to deal with either of the terms on the right-hand side,
so we explain how to deal with the first one next: Lemma 6.3, the uniform
boundedness of our solutions and the fact that u; > 6/4 in C for ¢ € {1,2},
give

H(2(n— ) —ui) |

2uquz Cllg- = Cé?(f)n(m_“l)wcﬂg*
2(0) )| (v2(n — 1) —w) w

e L
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Then, for any K > 0, we have

(2(n—1) — ui) C(0) VI —D-w)® 5, 2 \°
H 2uug : wc‘@*g 62 (/O<y<K (y+1)? ke 4dy)

c(6) (VI —w)? , 2 \°
T (/y>K (y+1)? wee dy) .

9(’;(]?2 < g, and then for

that chosen K, we choose a 79 < —1 so that 00(20)( 2(n —1) —uy) < § for

all 7 < 19 and 0 < y < K. (Note that here we use that w;(y, ) converges
uniformly on compact sets in y to y/2(n — 1), as 7 — —o0.) We conclude that

Now for any given ¢ > 0, we choose K large so that

for 7 > 79,

(6.16) Wﬂn—D—U%

| <5 el < 5 el
w — ||W — [{W .
2uius C@*_?) cﬁ_?) clio

Finally combining (6.14), (6.15) and (6.16) finishes the proof of the lemma. [

We will next estimate the error term E[w, pc].

LEMMA 6.9. There exists a 19 < —1 and C(0) so that for all T < 79, we

have
C(9)

|70

I€[w, clllor < XDy wllsy;

where E[w, @c] is defined by (6.11) and xp, is the characteristic function of
the set Dy :={0/2 < u < 6}.

Proof. Setting
2

.f _ Uy (u1y + ugy)usy,
‘l(yaT) =Qcr — Peyy t+ 1+ U’%y Peyy T (1 T u%y)<]‘ T u%y)@C,y
and
2u%y
b(y,7) :==(¢c)y  and  d(y,T):= 5 (vc)y — 2(c)y
1+ uf,
we may write
c Yy
(6.17) Elw, pc| = aly, T)w + 3 by, ™) w + d(y, T) wy.

Note that the support of all three functions, a(y,7), b(y,7) and d(y,7) is
contained in Dy and
C(9)

la(y, T)[ + [b(y, 7)| + ld(y, )| < =
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Furthermore, by (6.13) and Lemma 6.3 we get

C(9)
a(y, 7)wlo+ < ||laly, T)w|ly < —= ||w ,
la(y, 7) wllo- < [la(y, T)wl|s WH XDoll9

. _
15 0y, T)wllo- < [1b(y, 7) wllg <

e,
NG lw XDyl

and
d(y, 7) wyllo~ < [[(d(y, T)w)yllo- + [wdy(y, 7)o
C(9
< . 7wl + o,y
c(
< 9O x ).
Vil
The above estimates together with (6.17) readily imply the lemma. O

Finally, we now employ all the estimates shown above to conclude the
proof of Proposition 6.1.

Proof of Proposition 6.1. By (6.12) with g := E[wc] + E[w, p¢] and using
also Lemmas 6.8, 6.9 and the assumption that P;we(79) = 0, we have that for
every € > 0, there exists a 79 < —1 so that
C(9)

[lwX Dy 159,00
Vol

This readily gives the proposition. O

7. The tip region

Let ui(y,7) and ua(y, T) be the two solutions to equation (1.7) as in the
statement of Theorem 1.7, and let u;g 7 be defined by (3.6). We will now
estimate the difference of these solutions in the tip region Ty = {(y, 7) | u1 <260}
for # > 0 sufficiently small, and 7 < 79 <« —1, where 73 is to be chosen later
(see Figure 1). In the tip region we invert the functions y — wui(y,7) and
ugﬁw(y,T) to get Y1(u,7) and Yam(u 7). By the change of variables (3.19)

and by the definition of us(y,7) := u3”"(y,7) as in (3.6), we have that

Zaﬁ“r(p7 ) = \/H{YQQBW(\/%vT) —YQQBW(O,T)},

where
Y;‘M( —azeT/2 \/1+B€TY2<

o =7+~ —log(l+ BeT).

)

Note that Zg il actually does not depend on a.
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LEmMMA 7.1. If (o, B,7) are 1o admissible in the sense of Definition 3.1,
then
25" (p.7) = Zo(p) as T — —oc,

00
loc

where the convergence is in for bounded p.

Proof. Combining the above two equations yields

289 (p,7) = VIl VI+Be 22<p\/m70)'
Since («, ,7) is 79 admissible, Definition 3.1 guarantees that we have |Se”| <
6|7_O|_17 and |’)’| < €|7’0‘ for all 7 < 9.
It follows that

Ce
o — 7| < |y + C|Be™| < e|mo| + ol
and thus
Vol B
1| < Ce
VITIVI + Bem
for all 7 < 719, while
AL (1 — —00).

V7
VITIVT+ Be™
Since Za(p,7) — Zo(p) in Cy%, for bounded p, as 7 — —oo, we conclude that

the same must be true for Zgﬁ'y. O

Hence, it is easy to see that in all the estimates below we can find a uniform
7o < —1, independent of parameters «, § and v (as long as they are admissible
with respect to 7p), so that all the estimates below hold for 7 (u, 7)— Y37 (u, 7)
for all 7 < 7.

To measure the distance between the two solutions in the tip region we
consider the difference W =Y; — YQQB 7 and multiply it by the cut-off function
defined in (3.24), namely, set Wr := @7 W. Recall the norm || - [|2,0c as defined
in (3.22)—(3.23). The goal in this section is to prove the following estimate.

PROPOSITION 7.2. There exist 0 with 0 < 0 < 1, 1o < —1 and C < 400
such that

(7.1) |[Wr

C
2,00 < H HWX[Q,QG] ”2700
holds.

To simplify the notation throughout this section we will drop the sub-
script on Y; and write Y = Y; instead. Also, we will denote Y;‘ﬁ 7 by Ys. As
already explained in Section 3.2, the proof of this proposition will be based on
a Poincaré inequality for the function Wy that is supported in the tip region.
These estimates will be shown to hold with respect to an appropriately chosen
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weight (") du, where p(u,7) is given by (7.2) below. We will begin by es-
tablishing various properties of the weight p(u, 7). We will continue with the
proof of the Poincaré inequality, and we will finish with the proof of Proposi-
tion 7.2. Recall that the definitions of the collar region Kr, ¢ and the soliton
region Sy, are given in Section 3.2.

7.1. Properties of pu(u,7). Let us begin by recalling the definition of our
weight p(u, 7) in the tip region. Let {(u) be a non-negative smooth decreasing
function defined on u € (0, 00) such that

C(u)y=1 foru>06/2 and C(u)=0 foru<60/4.

Such a function can be chosen to satisfy the derivative estimate 0 < [{'(u)| <
50~1. We define our weight p(u,7) in the tip region to be

2 T u
(7.2) pla,7) = 0T [ty
where
2 n—
(73 =) (10) +0—can "Ly,

u

Note that since ( = 1 for u > 6/2, we have p(u,7) = —3Y?(u, 7) in this
region, hence e#(*7) coincides with the Gaussian weight e~¥*/4 under our coor-
dinate change y = Y (u, 7). This is important as our norms in the intersection
of the cylindrical and tip regions need to coincide.

In a few subsequent lemmas we show estimates for the weight p(u, 7). In
our first two lemmas we summarize some bounds on quantities involving Y and
its derivatives Yy, Yy, and Y, that will be used in the remainder of this section.
The estimates in the next lemma hold on the collar region Ky . They have
been essentially shown in Section 5, but we state them here for the reader’s
convenience.

LEMMA 7.3. For any small n > 0, there exist 0 < 0 < 1, L > 1, and
70 <K —1, all depending on 1 such that the bounds
Yool _ ¥
1+Y2 =~ " w

uY
2(n —1)Y,

(7.4) and |1+ | <

hold on Ko 1, for all 7 < 9.

Proof. Fix n > 0 small. The first bound follows from Proposition 5.5 by
-1

, » we have

observing that since Yy, = uyy u,, 3and Y, =u

[uY . |““yy| . |“Uyy‘ . A1

Vul(T+Y2)  w2(1+uy?)  1T4ul Ao
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Hence, Proposition 5.5 guarantees that

[uY |

—_— <
Va+vz "

for L > 1 and 7 < 79 < —1 (both L and 7y depending on 7). This readily
gives us the first bound.

The second bound simply follows from the estimate in Corollary 5.7 by
choosing the parameters 0, L such that e(f, L) := max{46% c¢(n)L~'} < n and
70 KL —1. |

The estimates in the next lemma hold on the whole tip region 7y.

LEMMA 7.4. For any small n > 0, there exist 0 < § < 1 and 19 € —1
depending on n, such that the bounds

1 Y. Yy
(7.5) %\/H<|;|<\/m and |YT]§77| | <17\/m

u
hold on Ty, for all T < 19.

Proof. Fix n > 0 small, and assume without loss of generality that we are
in the region where u, < 0, Y, < 0. We begin by showing the first bounds
from above and below. We use the crucial inequality (u?),, < 0, which holds
everywhere on our solution for 7 < 7y <« —1 and was shown in Proposition 5.2.
Expanding the square gives u u,, + ug < 0 and can be expressed in terms of Y
and its derivatives in u (under the assumption that u, < 0) as uYy, — Y, < 0.
Hence, since Y,, < 0, we have

[‘Yuq I e 1)

(7.6) - .

> 0.

u

It follows that for all (u,7) € Ty where u < 26, we have

U U 260

u—0

[V (u,7)

To estimate lim,_,q | from below, we observe that for 7 <« —1, we

| Yu(u, )| 1
lim ———= =Y, (0,7) = /|7 Z,,(0,7) > on ik

u—0 u

have

since Z(p, ) = Zo(p) in C°, for p > 0 as 7 — —oo.

loc
[Yal

To estimate the ratio at v = 260, we use our intermediate region

asymptotics from Theorem 1.8, which imply that

_(u2)y—2(n—1)’7_y‘+0(\/1‘7’) — Yu—l——(nu_ﬁgyw(\/ﬁ)

Uy
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for u = 26 and 7 < 79 < —1 (79 depending on #). Using the intermediate
region asymptotics from Theorem 1.8 again we find

Y(20,7) = /|72 - —\/2/7]y/1 - o 2V

(the last bound holds for 0 < § < 1 dependlng on n), and so we conclude that
for @ sufficiently small, we have

|i“| = |T|1)Y +o(y/I7)) < /17l

provided that 7 < 79 <« —1, which proves the desired bound.
We will next prove the bound on |Y;| and will first deal with the region

Ko, for L > 1. We rearrange the terms in equation (3.16) to get

Yiu (n—1)Y, ( ng ) fﬁ
14Y? u 2(n—-1)Y, 2 u’
For our given 1 > 0, we use both inequalities in (7.4) with 7 replaced by ﬁ
instead of 7 (these bounds hold on Ky 1, and for 7 < 7) and the bound u < 26
(which holds on 7p) to obtain the inequality

(7.7) Y, =

Yol ¢ U Yl
Vol < S8 (ot ) Sl
which holds if we choose 6 with 46? < n/4. Hence, the desired bound holds
when L/mgug 20 and T < 15 < —1.

Next, we show that the bound on |Y;| holds for u < L//|7| by simply
using the convergence of Z(p,7) := /7| (Y(u,7)=Y(0,7)), p= V|7 u to the
soliton Zy(p). We first express the right-hand side of equation (3.16) in terms
of Z, which after substituting Y = Y(0,7) 4+ +/]7| Z and factoring out /|7]
gives

(78) Y, = \M( Zp”p + (”;1) Zp+2\%Y(0,T)+2|17’ (Z—pr)>.

?\}HY(O’ T) = @ +o0(1),as 7 — —o0,

that |Z — pZ,| < C(L), on p < L, and the convergence lim,_,_o Z(p,7) =
Zo(p) on p < L, which implies that
Z (n—1)

i Z, —)<
1+Z§+ p +

To estimate |Y;| from (7.8), we use that

for 7 < 79 < —1. Combining all these bounds readily gives that |Y;| < n+/|7]
holds on 0 < u < L/\/m, holds on p := \/mu < Landforall 7 <1y < —1,
where 1y depends on 7, L. This finishes the proof of the bound for Y concluding
the proof of the lemma. O
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LEMMA 7.5. For any small n > 0, there exists 6 > 0 small depending on
n and 19 < —1 depending on 1,0 such that

U [y

. 1-n< <1
(7.9) "= naryy S
and
(7.10) fr <7l

hold on Ty for all T < 7.

Proof. We begin with the proof of (7.9). By the definition of the weight
1(u, 7), to satisfy (7.3) we have p, = 22 (14Y,2) on u < 6/4 where ((u) = 0.
Hence, it is sufficient to show that

(7.11) <147

u

1-n< el ( Y2>
T=m-na+yy) 1
holds on the set where #/4 < u < 26 (which is the intersection of Ty with
{u > 6/4}). This readily follows from the second bound in (7.4) since
u (_Yz) _uY Y2
(n—1)(1+Y2) 4/, 2(n—-1)Y, 1+Y2

u

and Y2 > 1 in the considered region. Note that since we are interested in a
bound that only holds on /4 < u < 26, the above bound holds if we choose 6
sufficiently small depending on 1 and 79 < —1 depending on 7, 6.

We will now proceed with the proof of (7.10), which will follow from
the definition of p(u,7) in (7.2)—(7.3) and the bounds (7.5). Without loss of
generality we will assume that we are in the region where y > 0, wu, < 0, or
equivalently, Y > 0, Y, < 0. We use the definition of u(u,7) in (7.2)—(7.3)
and that ¢ =1 for u > 0/2. Integration by parts gives

Y2(0 ) /eu C(—f) La-0 (n—l)(i—l—Yf)T} "

uT

(- {
-(- 2 ) () ramo e
¢

(7.12)

uT

( ) —/j(’ (—T) du+2(n—1) UGC/}Z‘YTdu

T

Fa(n—1)(1- )T ofn 1) / -9 ] v

u

where, to simplify the notation, we will denote the variable of integration by
u (instead of u') when there is no danger of confusion.
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Fix n > 0 small. Observe first that the second bound in (7.5) and ¥ <
24/2|7| imply that for all u < 26, we have

(7.13) ‘(—YQ(ZT)) < 2\/|7lY;] < 27|

for 7 < —1. This bound combined with (7.12) implies that in the region u > 6,
where ¢ = 1,(’ = 0, the desired bound (7.10) holds.

Assume now that u < 6. Using (7.13) to estimate the first two terms in
the third line of (7.12), and using the bounds (7.5) to estimate the third term

of (7.13), we get
9(' (—};2) du +2(n — 1)/

(7.14) |C (—YQ(Z’T>> +/

T u T u

_|YY,
2

T

0
Yy
¢ =Y, du
u

< c(n)n]7]

holds on Ty, for # small and 7 < 79 < —1 (recall that ¢, (" are zero for u < 6/4)
and c(n) is a universal constant that depends only on a dimension.
Furthermore, the bounds (7.5) imply that

Y,Y,
uu Tl < 2(n—1)n|7|.

(7.15) ‘2(71 “1(1-0)

It remains to estimate the last integral in (7.12). To this end, recall (7.6),
which gives (since Y;, < 0) the inequality

[ﬂ _ W= Yu

2 —
ul, u

and therefore

/f(lo Hﬂ

This combined with our bound |Y;| < n+/|7| give us

/ue(l — () [%} Y, du

u

dug/j{yﬁ} du§w<ﬁ‘

ul, u

u

(7.16) 2(n—1) <2(n—1)n|7|.

Finally, combining (7.12) with (7.14)—(7.16) shows that

pr < c(n) 7]

from which the desired bound (7.10) follows if we start our estimates with
n/c(n) instead of 7. O
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7.2. Poincaré inequality. We will next show a weighted Poincaré type es-
timate with respect to weight p(u,7) defined in (7.2)—(7.3). This inequality
will play a crucial role in the proof of Proposition 7.2. For a fixed 7 < 7
where 79 is sufficiently negative, we recall that Tp, := {u: 0 < u < 26y} and
consider the solution Y (u,7) and the weight profile u(u,7) as functions of u
for u € [0, 26y).

PROPOSITION 7.6 (Poincaré inequality). There exist an absolute constant
Co > 0 and a small absolute constant 0y, such that
2
fu(u) ep,(u,T) du
+Y?

(7.17) m/}%meﬂmgch/l

holds for any smooth compactly supported function f(u) in [0,26) with f'(0)
=0 and for all T < 19 K —1, where 17y depends on 6.

Proof. By the Peter-Paul inequality 2ab < a® + b%, we have

2k 4 Ia

1+Y?
u _1+Yu2+( + “)4u2

Multiply with e#(*7) and integrate by parts over the interval uy < u < 20 for
some small ug € (0,26) to obtain

/20< Afa +(1+Y3)J02>eﬂdu2—/2eu2)“eudu

42

, \14+Y2 w U
0
_ f(u())zeu(uo,‘r) + /2 Ufty — 1 f2eudu'
U o u?
Rearranging terms leads to
(7.18)
f(UO)Q w(uo,7) /26 ( 1 2 f2 /29 f2

: 14y _1>7ﬂd <4 Ju_ gy
Uo ‘ +u0 Hht 4(+ U) u26 ‘= uQ 1+Yu2€ !

We next apply (7.9) with n = 1/4, which shows that there exists 0 < 0y < 1
such that lower bound on ug, > 3(n—1)(1+Y;2) holds on Tg,. Hence we find
that

1

(7.19) zmu—4u+4f)—1z3@“*0_l

4
holds on Ty, for 7 < 79. (Here 7 is an absolute constant, and we have used
that n > 2.)

In (7.5) we found a lower bound for |Y,|/u, which implies

1+Y2>Y2> ¢o(n)u?|7].

1
a+xb—1z§u+xﬂ—1

If we choose 1y depending on 7 so that co(n)ug(7)?|7| > 4, then

1 1
Uuu—z(l‘f‘yf) > Z(l‘FYuQ),



412 S. ANGENENT, P. DASKALOPOULOS, and N. SESUM

and (7.19), (7.18) imply

2 1 20 2 20 2
Luo) etuoT) 4 4/ (1+ YQ) / efdu < 4/ Toye +“ efdu

uo 0 0 U

holds for all 7 < 79 < —1 and with ug = 2/1/—co(n)T.
Using —Y,/u > Cy/—7, we can extract the following two estimates from

this:
260 20
(7.20) || / fPet du < C’/ I + Y2 et du,
2, u(uo,r) R
(7.21) f(ug)“e! < dug(T) /UO(T) T+ YuQe du .

To complete the proof we now apply the standard Poincaré inequality on
the ball of radius ug in R™ to the function f. Recall that this inequality states
that for all f € C1([0,up)) with f(up) = 0, one has

(7.22) /Ouo fw)?u™ 1t du < ¢(n)ul /Ouo 2 du.

We may assume that f(ug) # 0, in which case we use f(u)? = (f(u) — f(uo) +
f(u )) < 2( up) 2 +2f(up)? and apply the above inequality to f(u)—
F(uo) to get

uo 2 uo
/ fw)*u"tdu < ﬁugf(uo)2 + c(n)ug/ 2t du.
0 0

If f(up) = 0, then we can directly use inequality (7.22). In the region u < ug(7)
one has u < 6/4 and thus p, = =1(1+Y;?). Hence

u Y1,
w(u, ) — p(ug, 7) = (n — 1) log ot (n—1) ;Yu du.
0

uo

Use |V, /u| < Cv/—7 again to estimate

“1
/ ~Y.2 du
ug U

which implies that for some constant C,

< Clrlup(r)? < C,

n—1 n—1
ly%ﬂ(ﬁ) SJWﬂ§0¢%ﬂ<E>
C uQ uQ
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for all u € [0, up(7)] and 7 < 79 if —7¢ is sufficiently large. Using this we obtain

ug(T) ug(T)
/ f2eMWT) gy < Cetuom)y, "'H/ fu)?u™ 1 du
0 0
uo(T) 9
< C’«e’“(uo’ﬂuawrl {C(n)u%/ 2"t du + nugf(u())Q}
0
ug(T)
c(n)C%ul / F2et ) duy 4 Cuget o) f(ug)?.
0

To continue, we use that |Y;,(u, 7)| is uniformly bounded in the region 0 < u <
uo(7), and we also use (7.21) to get

ug(T) uo(7) f2 20 f2
2 u,T 2 u,T 2 u,T
/O f2et )dugcuo/o — UQeu( )du+0u0/u0 i Eeu( ) du

) 260 f2 ()
< Cu U oM WT) dy.
=00 /0 1+ Y2

Finally recall that uo(7)? = 4/(co(n)|7|), and combine with the estimate (7.20)
on the interval [ug(7),20] to arrive at

20 2
|7 / er” wT) du, < C/ Ju T dy, O
1+ Y2

7.3. Proof of Proposition 7.2. In order to prove Proposition 7.2, we com-
bine an energy estimate for the difference W = Y; — Y5, which will be shown
below, with our Poincaré inequality (7.17).

Proof of Proposition 7.2. Recall that ¢p(u) denotes a standard smooth
cut-off function supported on 0 < u < 26, with o7 = 1 0on 0 < u < 0 and
pr = 0 for u > 26. To simplify the notation, in the proof below we will drop
the index T from o1 and simply denote o1 by @ and let W := Wppr = Wep.

We have seen in Section 3.2 that W =Y — Y satisfies the equation

W, n—1 wu 1
2 = uu < _ 2 D) W+ =W,
(7.23) W. T1y2 2 + W, + 2VV
where
(7.2 PP CTALTRR )

1+Y2) A+Y3)
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As usual, multiplying (7.23) by W? e# and integrating by parts we obtain

d /1 2w B W2 u

n—1 u Mo 2YuYuu 2
_u D)WW y
+/( w2 1+Y2+(1+Y2)2+ wViprerdu

1
—2/1+Y2WW¢¢ue“du—|—/WT +MT>e“du

Let us write

n—1 u M, 2YuYuu
7.25 G:= - = - D.
(7:25) u 2 1+Y5+(1+Yu2)2Jr
Then, we have
1 2 Wep? 2
— 2/WTe“du :_/1—:5/2 e“du—l—/GWquo et du

1
+2/1+Y2WW¢¢ue“du—l—/WT —l—,uT>e“du

Applying Cauchy-Schwarz to the term above that contains G, we have

1 W2 2
/GWqupzeudu §2/1_:;P/26Hdu

1
+ 2/G2 (1+Y2) W2 e du,
which inserting in the previous identity gives

1 2 p ) 1 [ Wi 1/ 2 2\ 11,2
— = W < — = u 1Y _ 1
2/ reldu) < 2/1_|_Yu26 du+2 G*(1+Y;)Wietdu

w

+2 1+Y2 PPu € dU+/WT<2+/JJ7—>€Hdu

Furthermore, using (Wr)2 = (Wue + Wgou) to write
1 1 1
9 Wu2902 = D) (WT)’?L + 9 WQ‘:DZ + WWy, opu,

after combining and rearranging terms, we obtain the integral bound

W2 et _ (WT)u m WWw,
/ du) 2/1+Y2 Wt [ Ty eeuedu

+/{G2(1+Y2)+1+u}e“du+l/ we el du
2 vl T 2/ 1+y2 ™ '
Next, we use Wy = (Wrp), — W ¢, and the inequality ab < ‘11—; + 3b? to get

WWaopu = (Wr) W, — W2l < E(WT) + 222,
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which implies the integral bound

WW, Wr)a w2
1+Y230g0u6“du 4/( })/2 e’ du +6/1+Y2gpie“du.

Note that the support of ¢, is contained in the region {6 < u < 26}. Combin-
ing the above yields

(7.26)

d 2 _u 1 (WT)2 2 2

- < = I I 1

o Wi et du < 2/1+Y2e du+ | GW2e! du+ C(6) ; W=e! du,
where
(7.27) G:=G*(1+Y2) +1+2u,.

Claim 7.7. For n > 0 sufficiently small, there exist 0 < § < 1 depending
on 7 and 79 < —1 depending on 7, 6 such that

(7.28) G?(1+Y;) < g 7]
on Ty for all 7 < 7.

Proof of Claim. Fix n > 0 sufficiently small. We will prove the bound

(7.29) |Gl\/1+Y2 < C(n)ny/|7|

in which the constant C'(n) only depends on the dimension n. This will readily
imply (7.28) if n is chosen sufficiently small. We begin by establishing that
the desired bound holds on the collar region Ky := {L//|7] < u < 26}
for 0 < 8 < 1,L > 1 depending on 7. First let us bound the first three
terms in (7.25) multiplied by /1 + Y2 together. Using (7.9) and the bound
|Yyul/u < +/|7] given in (7.5) to obtain that in the region where Y,2 > 1, we

have
n—1 wu n—1|Y< u2>
‘u 2 1+Y2‘V 5
<2(n—1)(n+20%) /|| < ¥ \/yr

where the last inequality holds for n <« 1 (depending onn),0<u<20K1
(where 6 depends on 1) and 7 < 79 < —1.

To bound the fourth term in (7.25) multiplied by /1 + Y2, we use that
Y2 > 1 in this region, and we combine the first bound in (7.4) with the first
bound in (7.5) to obtain that for L/y/|7| < u < 26 with L > 1 (depending on
n) and 7 < —1, we have

(7.31) 2|V You| /1 + Y2 77\Yu| Y| < /7.
(1+Y2)? u 1+ Y2

(7.30)
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To bound the last term in (7.25) multiplied by /1 + Y2, we recall the definition
of D in (7.24) to write

DI /11Y2 = Youu| Yo+ Youl - [Youu| [Yul +[Yau|

VIFYZ(14+YE) ~1+Y3 J1+72

|Y2u|

Using the first bound in (7.4) applied to Y3 to estimate Pf;‘,él < and the
2u
bounds in (7.5) to estimate the ratio ||};?:|‘ < 2n and ‘Y%“ < 4/|7|, we obtain

the estimate

(32)  |DIievg <yl I%| < @+ D)ny/irl.
Combining (7.30), (7.31) and (7.32) yields that (7.29) holds on L//|7|<u <20
for 7 < 19 <« —1, provided that 7 is chosen sufficiently small depending on n
and provided # < 1, L > 1 and 7 < —1 (all depending on 7).

It remains to prove the inequality (7.29) in the soliton region Sy, := {0 <
u < L/\/|7]}, where L > 1 is now fixed so that (7.29) holds in the collar
region Kg . Recall that in this region % = 1, by the definition of
our weight. Using also the change of variables

Y;'(’U,,T) :YVZ(OvT)_F Zi(p77_)a p=1u |T‘7 1=1,2,

1
VTl
we find that in S}, we have

p 27,7, Zopp (Zy+ Zap)
Gy/1 Y2:<—— oZoo Loy ) ),/1 724/
T 217\+(1+Zg)2 (1+22)(1+ 23, * 7l

The C* convergence of Z;(p, 7) — Zy(p) on the soliton region Sy, where p < L
implies that

2Zprp ngp Z + ng ‘

— Z2 < !
‘(1+Z§)2 (1+22)( Vit
on Sy, if 7 < —1 depending on L and 7. Hence,

\G|\/1+Y2<—,/1+Z2+ <n

provided 7 < 79 < —1, which readily implies that (7.29) also holds in the
soliton region.

Finally squaring (7.29) and taking n < C(n)~2/3 yields the bound (7.28).

U

We now conclude the proof of Proposition 7.2. Let n > 0 be a sufficiently
small number (depending on on dimension n) so that (7.28) holds on 7y for
< 1and 7 < 19 < —1. Lemma 7.5 implies that by decreasing 6 and 7y, if
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necessary, the bound p, < g |7| holds on the whole tip region Ty for 7 < 7.
The two bounds imply that

G:=G*A+Y2) +1+2u, <7l
on Ty provided 7 < 7. Inserting this bound in (7.26) yields

d 2 ot (WT)u et
dr /W du 2 / 1+ Y2 du
20

—f—n[T\/W%e“du—f—C(G) ; W2 e du.

On the other hand, our Poincaré inequality implies that
W 2
/ §+T§)% et du > co |7 /W%e“ du

for an absolute constant cg > 0 that is uniform in 7 and independent of 6.
This inequality holds if # < 6y, where 6 is again an absolute constant. Finally

I
choose 1 := ZO. Such an 7 is an absolute constant and determines 6 and Tg.
Our Poincaré inequality then yields that

Wr)y
—2/1+Y26“du+n17\ W2 et du

<—]T]/WTe”du+77/WTe“du

< —/|T!WTe“du

holds provided 7 < 79, with 75. Combining this with our energy inequality we
finally conclude that in the tip region 7y the following holds:

(7.33) Ci_/W%e“ du < —CZEM/ W2 et du—i—Ch(_é‘)) /(WX[@Q@])Q@’M du.

Define
/WT et du, g(1) := /(WX[9729})2 et du.

Then equation (7 33) becomes

¢ c(o
ﬂﬂs—“hwvw—éfmﬂ
Furthermore, setting F'(7 / f(s)ds and G(7) := / g(s) ds, we have
7—1

SR = ()~ f(r = 1) ds
T—1

’ 70(9) s)as

e[ ﬂ)d—le ls)ds
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implying
c(0)

7]

—F(r) < —7F(1)+ G(7).

This is equivalent to

%(6*0*“%(7)) <

Since Wy is uniformly bounded for 7 < 79 < —1, it follows that f(7) and
therefore also F(7) are uniformly bounded functions for 7 < 7y. Therefore, we

— e /16 (7).

have lim e—cor/16 (1) =0, so for the last differential inequality we get
e

e—coll? /16F ) < C/ G(s (‘ | —0052/16) ds

i) [ i
|7“ 2 s<

o0

( ) —co12/16
é
2

with C' = C(#). This ylelds

1 C 1
_1 < _1
sup (I8l 2 () < 5 sup (Isf G(s)),
or equivalently,

C(0)
(7.34) [Wrll2,00 < Trol

therefore concluding the proof of Proposition 7.2. (|

8. Proofs of Theorems 1.4 and 1.7

We will now combine Propositions 6.1 and 7.2 to conclude the proof
of our main result Theorem 1.7. Our most general result, Theorem 1.4,
will then readily follow by combining Theorems 1.6 and 1.7. Recall that by
Proposition 4.1 we found parameters (a, (,7) so that we have the projections
73+wgﬁ 7= Powgﬁ 7 =0, where «, 8 and ~ are admissible parameters (see also
Remark 4.3). Our goal is to show that

WP =y — ugﬁv =

Proposition 7.2 says that the weighted L2-norm ||[W%7||3 o of the differ-
ence of our solutions W% (u, 7) := Y1 (u, 7) — Y77 (u, 7) (after we switch the
variables y and w) in the whole tip region 7y is controlled by ||
where (g 2¢)(u) is supported in the transition region between the cylindri-

cal and tip regions and is included in the cylindrical region Cy = {(y,7) :
ui(y,7) > 0/2}. Lemma 8.1 below says that the norms [|[W®7 xp,,||2.00 and
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w7 XD,y l5.00 are equivalent for every number 6 > 0 sufficiently small. (Re-
call the definition of || - |50 in (3.10)—(3.11).) Therefore combining Proposi-
tions 6.1 and 7.2 gives the crucial estimate (8.7), which will be shown in detail
in Proposition 8.2 below. This estimate says that the norm of the difference
w?ﬁ 7 of our solutions when restricted in the cylindrical region is dominated
by the norm of its projection onto the zero eigenspace of the operator £ (the
linearization of our equation on the limiting cylinder).

After having established that the projection onto the zero eigenspace
a(t) = <wgﬁy,zp2) dominates in ngﬁyﬂﬁm, the conclusion of Theorem 1.7
will follow by establishing an appropriate differential inequality for a(7), for
7 <75 < —1, and also having that a(7) = Pow2’(19) = 0 at the same time.

As we pointed out above, we need to show next that the norms of the
difference of our two solutions with respect to the weights defined in the cylin-
drical and the tip regions are equivalent in the intersection between the regions,

the so-called transition region.

LEMMA 8.1 (Equivalence of the norms in the transition region). Let w, W
denote the difference of the two solutions w = u; — ugﬂ’y and W :=Y; — Y;‘B’y
in the cylindrical and tip regions respectively. Then, for every 8 > 0 small,
there exist 1o < —1 and uniform constants c(0),C(0) > 0, so that for T < 19,
we have

(8'1) 0(9) HWX[9,29] HZOO < HwXD20 Hﬁ,oo < 0(9) HWX[G,QB] HQ,Oov
where Dog := {(y,7) : 0 <wuy(y,7) < 20}.
Proof. To simplify the notation we put ug := ugﬂ 7T and Y, := Y;‘ﬁ 7 in this

proof. Define Agy := Do U{(y,7) : 0 < ua(y, ) < 26}. The convexity of both
our solutions u; and ue imply that

U1 (y) T) - UQ(yv 7-)
Yl(u,v') — YQ(U,T)

(8.2) min |(ug)y| < < max |(ug)y].
Agg Azg

This easily follows from

ur(y, 7) = w2y, T)| _ |ua(Vi(u, 1), 7) — ua(Ya(u, 7)|
Yi(u, 7) = Ya(u,7)] Y1 (u, 7) = Ya(u, 7)]
where ¢ is a point in between Y;(u,7) and Ya(u, 7).
The results in [3] (see also Theorem 1.8 in the current paper) show that

= ’u2y(€7 T)|7

by the asymptotics in the intermediate region for uq, we have
c1(0) C1(9)
V7l il
for uniform constants ¢;(0) > 0 and C1(0) > 0, independent of 7 for 7 < 7.
On the other hand, using that us has the same asymptotics in the intermediate

(83) < Jugy(y, 7)| < for 6 < up(y,T) <20
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region as u, it is easy to see that for 7 < 79 <« —1,

0
Doy C {(y,T) Py S uz(y,7) < 39}
and hence
1(0) C1(0)

< ugy| < for y € Daqy.

ﬂ

Vil
Combining this, (8. ) d (8.2) yields
a(®) _ lww.n)| _ Ci()
Vit = W (wn)l = /7]
for all y € Doy, u = u1(y,0) and 7 < 79 < —1. See Figure 3.

By (7.2) and (7.3) we have u(u,7) = —Y3(u,7)/4 for u € [0,20]. Intro-
ducing the change of variables y = Y1 (u, ) (or equivalently v = u1(y, 7)), the
inequality (8.4) yields

20 26
W2 et ) gy = /
0

(8.4)

|7]

0 D29

where we used that du = (u1), dy and that due to our asymptotics from [3] in
the intermediate region we have

c2(0

ﬁ

(8.5) for y € Dog.

In conclusion,
HWX[6,29] ”2,00 < C(9> HwXD29 HQ,OW
which proves one of the inequalities in (8.1).
We will next show the other inequality in (8.1). To this end, we again use
(8.4), the change of variables u = u1(y,7) (or equivalently y = Y1 (u, 7)) and
(8.5), to obtain

260 Yl w,r) 0(9) 20
(8.6) / w?e” T dy < / du = / W2 et dy
Dag V7l VITl Jo

from which the bound

[ X p,, 2,00 < CO) WX g2 lI2,00
readily follows. ([l

We will next combine the main results in the previous two sections, Propo-
sitions 6.1 and 7.2, with the estimate (8.1) above to establish our crucial
estimate, which says that what actually dominates in the norm ||we|9 00 is

[Powe||9,00-
PROPOSITION 8.2. For any € > 0, there exists a 19 < —1 so that we have

(8.7) [ |[0,00 < €[[Powe||0,00-
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uz(y,71) —ur (3, 7)

Yo(u,7) - Y1(u,1)

Uy \\

T e 26

u=ui(yT1)

i=y Yolu,1)

Figure 3. Converting the vertical distance ua(y,7) — ui(y, )
to the horizontal distance Ya(u,7) — Y1(u, 7). Given a point
(y,u) on the graph of uy(-,7) we define Y1 = y, u = uy(y,7),
Y2 = Ya(u,7). By the Mean Value Theorem the ratio y2=¢*
must equal the derivative —ug (7, 7) at some g € (Y7, Y3).

Proof. Keeping in mind Remark 4.3, by Proposition 6.1, for every ¢ > 0,
there exists a 1) <« —1 so that

. €
liicllo.oo < 5 (lcs.o0 + XDyl )

where Dy = {y | /2 < wi(y,7) < 0}. Furthermore, by Lemma 8.1, by
decreasing 7y if necessary we ensure that the following holds:

. €
e ||lD,00 < g(”wCH’D,oo + CO) W xp/2,012,00)

(8.8)

€
< = (lello e + C0) [Wrlla o),

where X[g/2, is the characteristic function of interval u € [0/2,0] and where
we used the property of the cut-off function 7 that pp =1 for u € [0/2,0)].
By Proposition 7.2, there exist 0 < § < 1 and 19 < —1 so that

C(0
1Wrlze < O 1 xp0001 oo

V1ol

By Lemma 8.1 we have

C
Wrll2,00 <

(6) _ )
\/H ||U)XD29H~‘7),00 — \/H ”wCHfJ,OO’

where we also use that ¢¢ =1 on Dgy. Combining this with (8.8) yields

. € c(o 2€
liclnse < £ (el + b fuelpoe) < ocfue

9,00
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by choosing |7p| sufficiently large relative to C(#). The last estimate yields
(8.7), finishing the proof of the proposition. O

Proof of the Main Theorem 1.7. Recall that

waﬁ’y(y7 7—) = U1 (y7 7—) - ugﬁ’ytl/v T):

where «, 8 and v are as in Remark 4.3. Denote this difference shortly by
w(y,7) = ui(y,7) — u2(y, 7). Our goal is to show that for that choice of
parameters, w(y,7) = 0.

Following the notation from previous sections we have

9 ~
5, We = Llwe] + E[we] + Elw, ¢c]

with we = we +a(1) 12, where a(7) = (we, 12). Projecting the above equation
on the eigenspace generated by 12 while using that (L[w¢],12) = 0, we obtain

d _
2-a(1) = (Elwe] + E[w, pcl, ¥2).
Since <ﬁ€;ﬁ§> = 8, we can write the above equation as
d 2
—a(r) = ‘|‘T(’T) + F(r),
where
Flr) = (E[we] + Ew, pc] — %@/J%,wz)
(8.9) ||T/’2||2
_ <g[w790C]7¢2> n <g[ ] - Tﬂw2a¢2>
[[2]? 1422 '

Furthermore, solving the above ordinary differential equation for a(7) yields

(r) = C [P F(s)s*ds
a(r) = — - :
By Remark 4.3 we may assume «(79) = 0 and hence C' = 0, which implies

" F(s)s?ds
(8.10) la(r)| = L Els)s”ds|

72

Define |jal/g,00(7) = sups§T<fSS_1 |a(§)]2dc>§. Since Powe (-, 7) = a(7) P2(+),

we have

[Powell0.00(T) = llalls.co(T) [92]lo-
Write [|al|¢,00 1= ||Cl”500(7'[) Note that

/:OF(S)MS(S ‘/J+ (s)ds| < Z /]H (5)|ds,

Jj=[rl-
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where with no loss of generality we may assume 7q is an integer. Next we need
the following claim.

Claim 8.3. For every € > 0, there exists a 79 so that
T
€
[ 1@ < 5 lalle
T—1 |T|
for 7 < 7.
Assume for the moment that the claim holds. Then,

70

To 70 J
| restas <Y [ Rl < clalsa 3 i
" =l 19

j=lrl-1

70
<elallpeo Y il
j=[r]-1

< €7 |lalls,c0-

Combining this with (8.10), where e < 1/2, yields
1
la(T)] < =llall 4,00 for all 7 < 7.

This implies

1
lalls,00 < 5 llall200

and hence ||al|s,0c = 0, which further gives
Powe||9,00 = 0.

Finally, (8.7) implies w¢c = 0 and hence, we = 0 for 7 < 7. By (8.1) and the
fact that ¢ = 1 on Doy, we have Wx(g 29 = 0 for 7 < 7. Proposition 7.2

then yields that Wy = 0 for 7 < 75. All these imply w1 (y,7) = u$?(y,7)
for 7 < 79. By forward uniqueness of solutions to the mean curvature flow
(or equivalently to cylindrical equation (1.7)), we have u; = ug’g 7, and hence
M, = M$P7. Assuming Claim 8.3, this concludes the proof of Theorem 1.7

Hence, to complete the proof of Theorem 1.7 we now prove Claim 8.3.
Proof of Claim 8.3. Throughout the proof we will use the estimate
(8.11) lwello,00 < Cllalls,o0 for 10 < —1,
which follows from Proposition 8.2. By the proof of the same proposition we
also have
0 XDy llg0e < D fpullge  for o < 1.

V1ol

Also throughout the proof we will use the a priori estimates on the solutions
u; shown in our previous work [3] that continue to hold here without the
assumption of O(1) symmetry, as we discuss in Theorem 9.1 below.
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From the definition of £[w, ¢c] given in (6.11) and the definition of the
cut-off function ¢, we see that the support of E[w, ¢¢] is contained in

( 2—n'9_21—el> WSIy\§< 2_4(nei1)+61) \/m

where €; is so tiny that /2 — 4(372_1) + €1 < /2. Also by the a priori estimates

proved in [3, Lemma 4.1 and (5.28)], we have
C(8) 02
12 < f < 2——- VAP
(8.12) |ty| + uyy| < \/m or |y| < < An—1) + e |7|

Furthermore, Lemma 5.14 in [3] shows that our ancient solutions u;, i € {1,2}
satisfy

( ) H <u2 —V2An- D+ 24(17]17]_1) %) Xsupp(pc) || = oflr|™),
8.13
H (ul + 24([|Z7-|_1) ¢2>yXSupp(soc) = o(|7|™1),

where Xqupp(ee) 18 the characteristic function of supp p¢. In particular, this

implies
ui— 2= =00 and ()| = o717,

We start by estimating the first term on the right-hand side in (8.9). Using
Lemma 6.9, we conclude that

(8.14) (

(8.15) [(E[w, pe), w2)| < NIE[w, pe]llo-[¥2 Xllo < €llwello e,
where x denotes a smooth function with a support in
[yl = (/2= 62/(4(n — 1)) = 2e1) /I

being equal to one for |y| > (1/2 — 62/(4(n — 1)) — €1) y/|7|. This implies that
for every € > 0 we can find a 79 < —1 so that for 7 < 7y, we have

[ 1w pel ol s < cllallo.qe
7—1

A

where we used (8.11).

We focus next on the second term on the right-hand side in (8.9). Let us
write we = we + a(7)Y2. Recall that
(8.16)

Elwe] =

2(77, — 1) — U1U2 U%y

we —
2uqug 1+ u%y

(ury + ugy)usy,
( C)y

W T )3,
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Then for the first term on the right-hand side of (8.16), we get
(8.17)

‘<2(n—1)—u1u2w (‘ ’>¢27¢2>‘

2uqiug
< | (H o |y (2 e ng,m

To estimate the first term on the right-hand side in (8.17), we write
(8.18)

‘<2(n—1)—um . 7¢2>‘ - ’<(W—U1)(m+“1)wc,wg>‘

2u1u2 2’LL1U2
up —+/2(n—1 2ln—1) —u
+‘< ! ( )’LZ)C,'(/J2>‘+‘< ( ) 2ﬁ)07¢2>‘-
2u9 2u9

Note that u; > 6/2 on the support of we. Hence the arguments for estimating
either of the terms on the right-hand side in (8.18) are analogous to estimating
the second term in (8.18). Using Lemma 6.2, Proposition 8.2, (8.11) and (8.14),
we get that for every e > 0, there exists a 79 < —1 so that for 7 < 7y, we have

(g i)

U2

<) ([ a2vale "/ ay) " ([ (/20— 1)~ un)Plusle 1 ay)
< C@)liclls y/2(n— 1)~ wllo

€ N
< — lldello
7]
implying
T 1/2(n—1) —ujug &
8.19 / ‘< , > )ds < a
(5.19) (g e ) s < 15 lallo .

Let us now estimate the second term on the right-hand side in (8.17). Writing
u; = +/2(n — 1)(1 4 v;), we get

2(n — 1) — U1UQ
< 2U1U2 | ’¢25¢2>
_ /. n + Vo + V1V9
(8.20) = <2(1+v1)(1+v2) i ‘wz,w2>

1 v (2 v2 ()
_§<(1+v1)(1+vg) 4‘T|,¢2> <1—|—v2 4|7"71/}2>

The two terms on the right-hand side in above equation can be estimated in

the same way, so we will demonstrate how to estimate the second one. Using
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(8.13), (8.14) and Holder’s inequality we get that for every ¢ > 0, there exist
K large enough and 79 < —1 so that for 7 < 79, we have

v (2
<1 + vo 4\7’|’¢2>
2
<’U2 + 41/‘}2’1¢%> - <v727w%>

2

<C’va+4| |‘+C/7)2y e T dy

() 2 9 g v 2
<
<7 ( vze 4dy) (Rvgy e 4dy)

1 2 1

< ()—i- ((/ v%yse T aly)2 (/ v%yse_yT dy)2>

] 7] ly|<K ly|>K

€

<.
4fr|

To justify the last inequality note that for a given € > 0 we can find K large

5 1
enough so that (/ vgyge_yT dy) < —. On the other hand, using our
ly|>K 60

asymptotics result proven in [3], for a chosen K, we can find a 79 < —1 so that

€
CVK’

there exists a 79 < —1, so that for all 7 < 7,

for 7 < 79 we have |v;]| < Finally, we conclude that for every e > 0,

’<2(n—1)—u1u2 _ﬂ’wgﬂ €

U1 Us 4|7| %

This implies
(n—1) —uiug o €
(8.21) / oll& =1 9| ds < Tl

2'LL1’U,2 ’T‘

Since the first term on the right-hand side in (8.20) can be estimated in a
similar manner, we conclude that this inequality holds.

It remains now to estimate the second and third terms in the error term
(8.16), which involve first and second order derivative bounds for our solu-
tions u;. We claim that for every K there exist 79 <« —1 and a uniform
constant C so that

C
(8.22) [(wi)y| + (i) yy| < m for [y <K, 7<7, i=1,2.

This follows by standard derivative estimates applied to the equation satisfied
by each of the v;, ¢ = 1,2 and the L* bound |v;| < ‘%, which holds on

ly] <2K, 7 <7195 < —1.
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Let us use (8.22) to estimate the projection involving the third term in
(8.16): for every € > 0, there exists a 79 < —1 so that for 7 < 79,

ety )|

2
_y
<c / (lug] + [uzg]) gy (we)y| (5 + 1) e dy
ly|<K

2
_y
£ 0 [ gl byl g ) = dy
ly|=K
C(K C 2 1
< D huelio + Ll ([ ote % ay)”
7l 7] ly|>K
€
< S lucllo
B

where we used Holder’s inequality, estimate (8.12) in the region {|y| > K} N
suppwc} and estimate (8.22) in the region {|y| < K}. This implies that for
every € > 0, there exists a 79 < —1 so that

T (u1y + uay)ugy, € €
8.23 / we)ys ¥ )| ds < = [[welooo < = [lalls so-
(8.23) . <(1+u§y)(1+u§y)( Jy >) 17| 7]

Finally, to estimate the projection involving the second term in (8.16), we
note that integration by parts yields

(8.24)
2
uy
<1_|_ZQ (wC)yya¢2>
ly
2/ Ulyyuly( ) w ,ﬁd +2/ ui{’yulyy ( ) w ,ﬁd
= T, 3 \wc 2€¢ 4 ay — 5 (W 2e 4 dy
r 1 +uj, Y r (1+u3,)? Y
2 2
- w, e tdy+ - | —(w e T dy.
[ oy e [ ey dy

It is easy to see that all terms on the right-hand side in (8.24) can be estimated
very similarly as in (8.23). Hence, for every e > 0, there exists a 79 so that for
all 7 < 79, we have

(8.25) / T_l

Combining (8.9), (8.15), (8.16), (8.19), (8.21), (8.23), (8.24) and (8.25) con-
cludes Claim 8.3. O

€

2
- >‘

W, , ds < a .

<1+u%y( C)yy ¢2 |7_’ H ||f),00

The proof of our Theorem 1.7 is now also complete. U



428 S. ANGENENT, P. DASKALOPOULOS, and N. SESUM

9. Reflection symmetry

In this appendix we will justify why the conclusions of Theorem 1.8 proved
in [3] under the assumption on O(1) x O(n) symmetry hold in the presence of
O(n)-symmetry only. More precisely we will show the following result.

THEOREM 9.1. If M; is an Ancient Oval that is rotationally symmetric,
then the conclusions of Theorem 1.8 hold.

Proof. We will follow closely the arguments in Theorem 1.8 and point out
below only steps in which the arguments slightly change because of the lack
of reflection symmetry. All other estimates can be argued in exactly the same
way.

Recall that we consider non-collapsed, ancient solutions (and hence convex
due to [13]) that are O(n)-invariant hypersurfaces in R"*!. Such hypersurfaces
can be represented as

{(z,2)) €ERXR" | —di(t) <z <ds(t), || = Ulz,t)}

for some function ||| = U(z,t). The points (—d;(¢),0) and (da(t),0) are
called the tips of the surface. The profile function U(x,t) is defined only for
x € [—di(t),da2(t)]. After parabolic rescaling
x

U(l’,t) :\/ﬁu(yﬂ—)’ y= T — ¢

, 7= —log(T —t),

the profile function u(y, 7) is defined for —d;(7) <y < da(7). Theorem 1.11 in

[13] and Corollary 6.3 in [19] imply that as 7 — —oo, surfaces M, converge in

o)

> to a cylinder of radius \/2(n — 1), with axis passing through the origin.

Due to concavity, for every 7, there exists a y(7) so that u,(-,7) < 0 for
y > y(7), uy(-,7) > 0 for y < y(7) and w,(y(7),7) = 0. To finish the proof
of Theorem 9.1 we need the following lemma saying the maximum of H is
attained at one of the tips.

LEMMA 9.2. We have that (A\1)y > 0 for y € [y(7),d1(7)) and (A1), <0
fory € (—da(7),y(7)]. As a consequence, the mean curvature H on My attains
its maximum at one of the tips (—dyi(t),0) or (d2(t),0).

Proof. We follow the proof of Corollary 3.8 in [3], where the result followed
from the fact that the scaling invariant quantity

An Uy

R:=—=
A 14w ~

satisfies

(9.1) R<1.
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Let us then show that (9.1) still holds in our case. Note that at umbilic points
one has R = 1. Both tips of the surface are umbilic points, and hence we have
R =1 at the tips for all 7. (Here we use that the surface is smooth and strictly
convex and radially symmetric at the tips.) Hence, Ryax(7) is achieved on the

surface for all 7 and is larger or equal than one. Thus it is sufficient to show
2

that Rpyax(7) < 1. We first note that the quantity @ := % (considered
u?(1 + uj)
also in [3]) satisfies @, > 0 for y > y(7) and Q, < 0 for y < y(7).
To prove (9.1), we may assume Ryax(7) = R(yr,7) > 1 for all 7 < 79 and
some ¥, € M, since otherwise the statement is true. The convergence to the
cylinder in the middle implies that |g.| — +o0, as 7 — —oo. As in the proof

of Lemma 3.5 in [3] it is enough to show that
(9.2) ligl_inf@(g}, T)>¢>0

for a uniform constant ¢ > 0 and all 7 < 7.
The same proof as in [3] implies there exists a uniform constant ¢; > 0 so
that for all 7 < 79 < —1, we have

(9.3) Qy, 1) > c1, whenever R(y,7) = 1.

We claim that this implies (9.2). To prove this claim we argue by con-
tradiction and hence assume that there exists a sequence 7; — —oo for which
Q(Yr,, ) — 0 as i — oo. This implies that lim; ,_ . R(y,7) = 0, uniformly
for y bounded. We conclude that for all 7 < 7y, there exists at least one point
yr such that R(y,,7) = 1. The convergence to the cylinder also implies that
without loss of generality we may take a subsequence such that y(7;) < y,.
We consider two different cases.

Case 1. R(y(7;),7) < 1. Then, either R(y(7;),7) = 1 (in which case
set §r, = y(m)), or R(y(m), ;) < 1 (in which case we find y,, € (y(7),9r)
so that R(yr,, ) = 1). In either case, since R(yr,, ) = 1, (9.3) implies that
Q(Yr,, ) > 1 for i > dp. Since Qy(-,7) > 0 for y > y(7) and g5, > U5, > y(1),
we conclude that Q(gr,, ) > ¢1 > 0 for i > ip, contradicting our assumption
that the lim; oo Q(,, i) = 0.

Case 2. R(y(7;), ;) > 1. Recall that u(y, 7) satisfies the equation

0 Uyy y u n-—1 y u
= Ty + = — = —H/1+u2 - Zu, + =
o T i 2T Ty Tyt

The maximum of u(-,7) is achieved at y(7), and hence by (2.14) we have

d Umax
Eumax > —C+ r121a
implying that

w(y(7), 7) = tUmax(7) < max{2C, umax(70)} for T <.
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On the other hand, due to the convergence to the cylinder of radius 1/2(n — 1)
in the middle, we have that umax(7) > u(0,7) > % V2(n—1)form <719 < —1.
All these imply that for 7 < 79 < —1, we have

-1
Co > H(y(r),7) > nT > > 0.

Hence, we can take a limit around (y(7;),u(y(7),7) to conclude that the
limit is a complete graph of a concave, non-negative function 4(y,7) so that
Uy(0,0) = 0. All these yield & = constant, that is, the limit is the round
cylinder R x S"~1 contradicting that R(y(r;), ;) > 1.

This finishes the proof of estimate (9.2). Next we can argue as in the proof
of Lemma 3.5 in [3] to conclude the proof that R <1 for 7 < 79 <« —1.

To finish the proof of Lemma 9.2, note that R < 1 on M, for 7 < 7
implies that

(M)y >0 fory € [y(7),di(7)] and (A1), <0 for y € [—da(7), y(7)].
We now conclude as in the proof of Corollary 3.8 in [3] that
H(y, ) < max (H(d(7),7), H(d2(7), 7)),  y€ M
for all 7 < 79 <« —1, finishing the proof of Lemma 9.2. ([

The a priori estimates from Section 4 in [3] hold as well in our case, one just
has to use that u, < 0 for y € [y(7),d1(7)] and uy > 0 for y € [—da(7),y(7)].
By using the same barriers that we constructed in [3] one can easily see that
we still have the inner-outer estimate we showed in Section 4.5 in [3]. Note
that the same inner-outer estimates were proved and the same barriers were
used in [7] without assuming any symmetry.

LEMMA 9.3. There is an Ly, > 0 such that for any rescaled Ancient Oval
u(y,7), there exist sequences T;, T, — —o0 such that for all i =1,2,3,..., one

w(Lp,7i) <y\/2(n—1) and u(—Ly,,7) <y/2(n—1).

Proof. Choose Ly, so that the region {(y,u) : y > Ly, 0<wu <./2(n—1)}
is foliated by self-shinkers as in [3]; i.e., for each a € (0,/2(n — 1)), there is a
unique solution Uy, : [Ly,o0) — R of

Uyy Y 1 n—1
20, + -U — = U(L,) = a.
1 lfg 92 Yy 9 U— 07 ( ) a

has

(9.4)

To prove the lemma we argue by contradiction and assume that the sequence 7;
does not exist. This means that for some 7, one has u(L,,7) > 1/2(n — 1) for
all 7 < 7. The same arguments as in [3, §4] then imply that u(y,7) > U,(y)
for all y > Ly, any 7 < 7 and any a € (0,y/2(n —1)). This implies that
u(y,7) > y/2(n — 1) for all y > L,, and therefore contradicts the compactness
of M. O
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For any of our rescaled rotationally symmetric Ancient Ovals u(y, 7), then
we can consider the truncated difference

= o) (s )

for some large L. This function satisfies
(9.5) vr = Ly + E(71),

where F contains the non-linear as well as the cut-off terms, and where £ is
the operator

Lo =y~ 56+ 9.

Using the fact that v comes from an ancient solution, and by comparing the
Huisken functionals of M, with that of the cylinder, we can show as in [3] that
for any € > 0, one can choose L = L. and 7. < 0 large enough so that

(9.6) IE)ls < elloC s

holds for all 7 < ..
As in [3] we can decompose v into eigenfunctions of the linearized equation,
ie.,

v(y, 7) = v_(y,7) + c2(T)P2(y) + v (y, 7)

with the only difference that vi are no longer necessarily even functions of y.
The component in the unstable directions now has two terms,

vi(y) = co(T)do(y) + er(T)Pa(y) = co(7) +er(7) y

The estimate (9.6) implies that the exponential growth rates of the various
components v_, ca, c1, g are close to the growth rates predicted by the lin-

earization; i.e., if we write V_(7) = ||v,(-,7')\|y), then we have
(9.7a) VI(r) < =5Vo(7) +elo(, ),
(9.7b) ley(T)] < H ¢l

(9.7¢) | (1) = 3en(n)] < ellv(, 7,

(9.7d) |c6(T) = co(T)| < €llv(- 7).

The total norm, which appears on the right in each of these inequalities, is
given by Pythagoras:

lo(-, )IE = Vo(7)? + co(7)? + e1(7)? + ca (7).

Using the ODE Lemma (see Lemma in [3]) we conclude that for 7 — —oo,
exactly one of the four quantities V_(7), co(7), ¢1(7), and c2(7) is much larger
than the others. Similarly to [3], we will now argue that ca(7) is in fact the
largest term:
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LEMMA 9.4. For 7 — —o00, we have
VL(7) + leo(T)] + [er(7)] = o(Jea(T)]).-

Proof. We must rule out that any of the three components V_, ¢y, or ¢;
dominates for 7 < 0.

The simplest is V_, for if ||v(7)|ls = O(V_(7)), then (9.7a) implies that
V_(7) is exponentially decaying. Since v(-,7) — 0 as 7 — —o0, it would follow
that V_(7) =0, and thus v(-,7) = 0, which is impossible.

If |o(-, 7)||ss = o(co(7)), then on any bounded interval |y| < L we have

v(y,7) = co(T)(l + 0(1)) (1 = —00).

In this case we derive a contradiction using the same arguments as in [3].
Finally, if ¢1(7) were the largest component, then we would have

v(y,7) =a(m)(y+o()  (r— -
so that we would have either v(L,7) > 0, or v(—L,7) > 0 for all 7 <« 0. This
again contradicts Lemma 9.3. U
Once we have the result in Lemma 9.3, it follows as in [3] that

2_9
47|

Y _
u(y,7) = /2(n—1) (1 B ) +o(r|7h) ly| <M
as 7 — —oo. This implies that y(7), the maximum point of u(y, ) (such that
uy(y(1),7) = 0) satisfies

ly(T)| = o(1), as T — —00.

In particular, we have that y(r) < 1 for 7 < 79 <« —1. After we conclude
this, the arguments in the intermediate and the tip region asymptotics in [3]
go through in our current case where we lack the reflection symmetry. O

10. Equivalence of intrinsic and extrinsic distance

Let Q C R"*! be a compact convex subset with smooth boundary. Recall
that Q is a-non-collapsed if at every point Q € 9€) there is a P € Q with
Q € 0B,(P) C Q, where r satisfies H(Q)r > «. Here H(Q) > 0 is the mean
curvature of 9 at (). Since the sphere 0B, (P) touches the hypersurface 02
from one side, we have H(Q) < ™ so that a convex subset cannot be a-non-
collapsed if o > n.

For any pair of points A, B € 912, define d(A, B) to be the intrinsic dis-
tance between A and B on the surface 0Q2. Then d(A, B) > ||A — B|| always.
Consider d(A, B)

L= ia— B
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LEMMA 10.1. There is a ¢, € R such that if Q is a-non-collapsed for
some a € (0,n], then L < c,a™ /2.

Except for the precise value of the constant ¢, this estimate is optimal,
as shown by considering flat ellipsoids of rotation.

Proof. Throughout we will assume that L > 2.

Given (2, choose A, B € 092 with d(A,B) = L||A — BJ|. The lemma is
scaling invariant, so we may assume that ||A — B|| = 1, and after a Euclidean
motion we may also assume that A is the origin, and that ) is contained in
the upper halfspace z,4+1 > 0.

Let v be the outward unit normal to Q at B.

Claim 1. The outward normal v at B points upwards, i.e., vp+1 > 0.

Indeed, assume v,11 < 0. Then B cannot lie on the z,41 axis, for in this
case we clearly would have v,+1 > 0. Thus B does not lie on the x,-axis,
and we can consider the two dimensional plane P containing the x,41 axis and
the point B. The intersection of this plane with 0} is a convex plane curve

Ty 1 B

containing both A and B. One of the arcs in 02 NP connecting A and B is
the graph of a convex increasing function whose length is at most /2. Thus
L = d(A, B) <+/2, contradicting our assumption that L > 2.
After further rotation we may assume that v; > 0 for i =1,2,...,n.
Consider the point C' = 2(A + B), and define

m; = sup{m > 0| C' 4+ me; € Q}.
We also define D; = C' + mje;.
Claim 2. L < max{2,12m;} for each i € {1,...,n}.

To prove this consider the plane P through the points A, B, D;. The curve
JQ NP is convex and contains {A, B, D;}.

The points {A, B} split the curve in two arcs, each of which has length
no less than d(A, B) = L. We consider the length of the arc that contains D;.
To this end consider two horizontal lines in the plane P through the points
A and B, respectively. The line through BD; intersects the horizontal line
through A in the point F'; the line through AD; intersects the horizontal line
through B at E. Since we had arranged our coordinate axes so that v; > 0,
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B 2m; 5
14
/" m Di
A 2my F
2 P

Figure 4. Proof that intrinsic and extrinsic distance on 0f) are equivalent.

the arc AD;B lies below the horizontal line through B (i.e., z,41 < 1 on the
arc AD;B). (See Figure 4.)

Both line segments BE and AF have length 2m;. By convexity, the arc
BD; is shorter than ||D; — E|| + ||E — B||, and the arc AD; is shorter than
|A—=F[[ + |[F = Di.

The segments BD; and D;F' have the same length, as do the segments
AD; and D;F. By the triangle inequality we have |B — D;|| < 3 + m; and
|A = Di|| <% +m,.

Summing up, we find that the arc AD;B is bounded by

length(AD;B) < |A— F| + |F — D;|| + | D; — E|| + |E — B||
<2m; + (3 +my) + (3 +m;) + 2m;
=6m; + 1.
Hence L < 6m; + 1. If we assume that L > 2, then this implies L < 6m,; + %L,
and thus L < 12m,;.

We now consider the hypersurface ® : ¥ — R"*! parametrized by

Dy(t1, ... tn) = C + Ltamaer + -+ + Ltymuen + A f(t, - tn)ent,
where ¥ is the simplex ¥ = {t e R" | ¢; > 0,),¢; <1} and f is the function

ooty =+ D))" gty oty (1=t — - — ).

This function vanishes on 9%, is positive in the interior of ¥, and attains its

maximum when ¢; = --- =1t, = 1/(n + 1). The coefficient in f was chosen so
that the maximal value of f|y is exactly max f(X) = 1. By convexity of Q we
have ®,(9%) C K for all A > 0. If A > 1, then ®x(527, ..., 737) € €, so there

is a largest A\, € [0, 1] for which the patch ®,,(X) is contained in €.

Since each of the m; is bounded from below by m; > %L, it follows that
the angle between the unit normal anywhere on the patch @), (X) and the x4 -
axis is bounded by C/L, while the curvature of the patch @), (X) is bounded
by C/L? for some constant C. For large enough L, the unit normal anywhere
on the patch @), (3) will be close to vertical. If P € 02 is a point of contact
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between @, (X) and 01, then the inward pointing normal at P will also be
almost vertical. If Q is a-non-collapsed, then the sphere with radius o/ H that
touches 02 from the inside at the point of contact must be contained in 2.
The mean curvature H at the contact point is bounded by C'/L?, so we find
that the interior sphere with radius %LQ at the point of contact is contained
in the region 2. See Figure 4.

The point of contact has z,4+; < 1 while we have x,+; > 0 throughout
the convex region 2. It follows that the radius of any interior sphere at the
point of contact is at most v/2. Therefore we have %Lz < v/2, which implies
that L? < C/a, where the constant C only depends on the dimension n. [0
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