Annals of Mathematics 192 (2020), 309-352
https://doi.org/10.4007 /annals.2020.192.2.1

Subalgebras of simple AF-algebras

By CHRISTOPHER SCHAFHAUSER

Abstract

It is shown that if A is a separable, exact C*-algebra which satisfies the
Universal Coefficient Theorem (UCT) and has a faithful, amenable trace,
then A admits a trace-preserving embedding into a simple, unital AF-
algebra with a unique trace. Modulo the UCT, this provides an abstract
characterization of C*-subalgebras of simple, unital AF-algebras.

As a consequence, for a countable, discrete, amenable group G acting
on a second countable, locally compact, Hausdorff space X, Co(X) %, G
embeds into a simple, unital AF-algebra if, and only if, X admits a faithful,
invariant, Borel, probability measure. Also, for any countable, discrete,
amenable group G, the reduced group C*-algebra C;(G) admits a trace-
preserving embedding into the universal UHF-algebra.

Introduction

It follows from the work of Murray and von Neumann in [57] that there is a
unique separably acting, hyperfinite II;-factor R and that any separably acting,
hyperfinite, tracial von Neumann algebra admits a trace-preserving embedding
into R. A fundamental result of Connes in [13] characterizes hyperfinite von
Neumann algebras abstractly by showing the equivalence of hyperfiniteness
and injectivity among von Neumann algebras. Together, these results show
that a separably acting, finite von Neumann algebra embeds into R if, and
only if, it is hyperfinite, a result which has an instrumental role in the theory
of subfactors initiated by Jones in [41].

A Cr*-algebraic analogue of the Murray-von Neumann classification the-
orem is given by Elliott’s celebrated result in [26] classifying approximately
finite-dimensional (AF) C*-algebras and *-homomorphisms between such alge-
bras in terms of the non-stable Ky-group. The problem of finding abstract char-
acterizations of AF-algebras and C*-subalgebras of AF-algebras was posed by
Effros in [24] with the latter problem motivated in part by the AF-embedding
of the irrational rotation algebras of Pimsner and Voiculescu in [64] which
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led to the classification of such C*-algebras in terms of the angle of rotation.
Although an abstract characterization of AF-algebras among all C*-algebras
seems out of reach, such a characterization is possible among simple, unital
C*-algebras due to the remarkable success of Elliott’s classification programme
for simple, nuclear C*-algebras over the last several decades with the final steps
taken in [35], [29], and [81].

The problem of characterizing C*-subalgebras of AF-algebras has received
much attention over the last several decades with the standing conjecture being
that a C*-algebra embeds into an AF-algebra if, and only if, it is separable,
exact, and quasidiagonal; see Section 7 of [4]. Shortly after the Pimsner-
Voiculescu AF-embedding result of [64], Pimsner characterized in [63] which
C*-algebras of the form C(X) x Z can be embedded into an AF-algebra in
terms of the underlying action of Z on X. Similar results were obtained by
Brown for crossed products of AF-algebras by Z in [7] and for crossed products
of UHF-algebras by Z* in [8]. Many other partial results along these lines have
appeared in [42], [52], and [40] for example. The latter result in [40] also has an
important role in the work of Ozawa, Rgrdam, and Sato in [62] showing that
the C*-algebra of an elementary amenable group embeds into an AF-algebra,
a result which was later extended to all countable, discrete, amenable groups
in [81].

Aside from crossed products, it is known that all residually stably finite,
type I C*-algebras embed into AF-algebras [80], separable, exact, residually
finite-dimensional C*-algebras satisfying the UCT embed into AF-algebras [18],
and the cone over any separable, exact C*-algebra embeds into an AF-algebra
[60]. Also, combining Ozawa’s result in [60] with the techniques introduced by
Spielberg in [80], Dadarlat has obtained AF-embeddings of continuous fields
of C*-algebras in [19] provided the base space is sufficiently connected and
at least one fibre is AF-embeddable. See Chapter 8 of [10] for a well-written
survey of the AF-embedding problem for C*-algebras.

Despite the remarkable work on the AF-embedding problem given in the
results above, in each of these results, the methods used are very specific to
the class of C*-algebras under consideration and shed very little light on the
abstract AF-embedding problem. This paper introduces a systematic method
for producing embeddings into certain simple, unital AF-algebras.

It is well known that any C*-subalgebra of a simple, unital AF-algebra
must be separable and exact and must admit a faithful, amenable trace. Mod-
ulo the Universal Coefficient Theorem (UCT) of [72], the present paper shows
these are the only obstructions. There are no known counterexamples to the
UCT among separable, exact C*-algebras with a faithful, amenable trace, and
it is an important open problem whether all separable, nuclear C*-algebras
satisfy the UCT.
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THEOREM A. If A is a separable, exact C*-algebra which satisfies the
UCT and admits a faithful, amenable trace, then there is a simple, unital AF-
algebra B with a unique trace and a trace-preserving embedding A — B.

Amenable traces were introduced by Connes in [13] in the von Neumann
algebraic setting and are characterized by the existence of almost multiplica-
tive, almost trace-preserving, completely positive, contractive maps into M,,,
the algebra of n xn matrices over C, where “almost” is measured in the 2-norm
defined by the normalized trace on M,,. A key step in Connes’ proof that injec-
tive II;-factors are hyperfinite consists of showing that the trace on an injective
II;-factor is amenable. In fact, the amenability of the trace characterizes in-
jectivity of II;-factors. Amenable traces were introduced in the C*-algebraic
setting by Kirchberg in [44] and extensively developed by Brown in [9].

There is a very close connection between the theory of amenable traces
on C*-algebras and von Neumann algebras. For example, if A is an exact
C*-algebra, a trace 74 on A is amenable if, and only if, 7, (A)” is hyperfinite.
Furthermore, if 74 is faithful, then the GNS representation 7, : A — m-(A)”
is faithful, and hence any exact C*-algebra A with a faithful, amenable trace
admits a trace-preserving embedding into a hyperfinite von Neumann algebra.
This observation, which can be viewed as a weak*-version of Theorem A, is the
starting point of the proof of the quasidiagonality theorem of Tikuisis, White,
and Winter in [81] and Gabe in [33] which, in turn, has an important role in
the proof of Theorem A.

Building on the work of Ozawa, Rgrdam, and Sato in [62], it was shown
in [81] that if G is a countable, discrete, amenable group, then C!(G) embeds
into an AF-algebra, although these results give no control over the codomain
AF-algebra. Combining the techniques introduced in the present paper with
the work of Higson and Kasparov [39], Liick [53], and Tu [84] on the Baum-
Connes conjecture yields a much sharper AF-embedding result showing group
C*-algebras embed into the universal UHF-algebra Q = Qn—; M.

For a discrete group G, the group von Neumann algebra L(G) and the
reduced group C*-algebra C}(G) are equipped with the usual faithful trace
given by Y e ¢g - g — ce, where e € G is the neutral element.

THEOREM B. For a countable, discrete group G, the following are equiv-
alent:

(1) G is amenable;
(2) L(G) admits a trace-preserving embedding into R;
(3) Ci(G) admits a trace-preserving embedding into Q.

In fact, the methods introduced here also yield an AF-embedding result
for crossed products of abelian C*-algebras by amenable groups in the spirit
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of Pimsner’s result for crossed products C'(X) x Z in [63] and Lin’s result for
crossed products C(X) x ZF in [52].

THEOREM C. If X is a second countable, locally compact, Hausdorff space
and G is a countable, discrete, amenable group acting on X, then Co(X) x G
embeds into a simple, unital AF-algebra if, and only if, X admits a faithful,
G-invariant, Borel, probability measure.

The new technical tool facilitating these results is a classification theorem
for faithful *~-homomorphisms into certain AF-algebras. The precise statement
of Theorem D is given in Corollary 5.4. Theorems A, B, and C will be deduced
from Theorem D at the beginning of Section 6.

THEOREM D. If A is a separable, unital, exact C*-algebra satisfying the
UCT with a faithful, amenable trace and B is a simple, unital AF-algebra
with a unique trace and divisible Ky-group, then the unital, trace-preserving
embeddings A — B are classified up to approrimate unitary equivalence by
their behaviour on the Ky-group.

A more general classification result is given in Theorem 5.3 which does not
require any inductive limit structure or nuclearity assumption on the codomain
C*-algebra. Along with the applications to AF-embeddability listed above,
this technical refinement of Theorem D also leads to a self-contained proof of
an abstract characterization of AF-algebras among simple, unital C*-algebras
with a unique trace and divisible Ky-group in Corollary 6.7. These results
also lead to new examples of MF algebras arising as reduced crossed products
by free groups (see Corollary 6.5) building on [43], [66], [67], [77] and give
AF-embedding results for k-graph algebras extending those of [76] and [12].

Special cases of Theorem D have appeared in several places in the litera-
ture. When A is an AF-algebra or an AT-algebra of real rank zero, Theorem D
is a special case of classical results of Elliott in [26] and [28], respectively. For a
commutative or, more generally, approximately homogeneous (AH) C*-algebra
A, classification results for embeddings from A into an AF-algebra form a cru-
cial part of the AF-embedding results for crossed products obtained by Lin in
[52]. Also, the classification results for simple, nuclear C*-algebras with tracial
approximation structure, initiated by Lin in [49] and culminating in the re-
markable work of Gong, Lin, and Niu in [35], depends heavily on classification
results for embeddings between such algebras.

The power of Theorem D and what distinguishes Theorem D from exist-
ing classification results is the general hypothesis on the domain C*-algebra.
The proof is motivated by the classical classification results for tracially AF-
algebras in [17] and [51], but it avoids making any use of the internal structure
of the domain C*-algebra and makes no use of inductive limit models such as
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the AH-algebras used in [51]. The proof of Theorem D, and the more gen-
eral Theorem 5.3 below, serve as proof of concept for an abstract approach to
Elliott’s classification programme which does not depend on tracial approxi-
mations. A more general result of this form will appear in forthcoming work
of the author with Carrién, Gabe, Tikuisis, and White.

On the proof of Theorem D. The proof of Theorem D is heavily motivated
by the classification theorem for separable, simple, unital, nuclear, tracially
AF-algebras satisfying the UCT due to Lin in [51] and the classification of
*-homomorphisms between such algebras due to Dadarlat in [17], and, on a
non-technical level, there are very close analogies between the proofs of these
results. The class of tracially AF-algebras was introduced by Lin in [49] moti-
vated in part by an approximation condition proved by Popa in [65] for simple,
unital, quasidiagonal C*-algebras of real rank zero. Roughly, a tracially AF-
algebra is a C*-algebra B which admits the following approximation condition
in the spirit of Egoroff’s Theorem: There is an approximately central projec-
tion in B with large trace such that the corner pBp is locally approximated by
a finite-dimensional C*-subalgebra where the approximations are in operator
norm.

The basic strategy for the classification results in [17] and [51] is to use
the tracial finite-dimensional approximations for A to produce approximately
multiplicative maps from A into a suitably well-behaved AH-algebra which ap-
proximately preserve the tracial data. From here, one then perturbs these maps
on tracially small corners of A to adjust the behaviour of the maps on the infin-
itesimal elements of the K-theory groups. Then, the structure of AH-algebras
allows one to construct an embedding of the given AH-algebra into B which
implements an isomorphism on the invariant so that, upon composing this em-
bedding with the approximately multiplicative maps into the AH-algebra, one
obtains approximately multiplicative maps A — B with prescribed behaviour
on K-theory and traces. Together with a uniqueness result for approximately
multiplicative maps from A to B relying on a Weyl-von Neumann type theorem
for Hilbert module representations as in [50] or [21] and using the tracial ap-
proximation structure of B, an intertwining argument allows one to construct
*-homomorphisms from A to B with prescribed behaviour on K-theory and
traces.

Changing perspective slightly, the almost multiplicative, almost trace-
preserving maps A — B can be encoded as a trace-preserving *-homomorphism
Y : A — B,, where B, denotes the norm ultrapower of B. Adjusting
the behaviour of these approximations on the tracially small corner of A
can be viewed as classifying, up to unitary equivalence, all *~-homomorphisms
p: A — B, which are trace-zero perturbations of ¢. It should be noted that
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this formalism is also explicitly used in the classical tracially AF-algebra clas-
sification results (usually with sequence algebras in place of ultrapowers, but
this is mostly a matter of taste).

In the abstract setting of Theorem D, the existence of i will follow directly
from the quasidiagonality theorem of [81] and [33]; see Theorem 1.2 below. The
new step is an abstract method for describing the trace-zero perturbations of
1 up to unitary equivalence. Consider the trace-kernel extension

0 y Jg —2 B, —2£, pw s 0

associated to B, where B“ is the 2-norm ultrapower of B and
Jg={be B, :715,(b°b) = 0}.

Roughly, B¥ and Jp will play the roles of the tracially large and small corners
of B, respectively.

When B has a unique trace and no non-zero, finite-dimensional represen-
tations, B“ is a IIj-factor, and hence all trace-preserving *-homomorphisms
A — B factor through the von Neumann algebra m,,(A)” associated to A
and 74. When A is exact and 74 is amenable, 7;,(A)” is a hyperfinite von
Neumann algebra, and hence the classification of normal *-homomorphisms
from hyperfinite von Neumann algebras to I1j-factors yields a classification re-
sult for trace-preserving *~homomorphisms A — B“ up to unitary equivalence.
It is through exploiting this observation that both the tracial approximation
assumptions on A and factoring through a model AH-algebra are avoided.

Having classification of trace-preserving *-homomorphisms A — B“ =
B,/ Jp, the goal becomes to lift this classification along ¢p to obtain classifica-
tion of *~homomorphisms A — B, up to unitary equivalence. Using extension
theoretic methods, it is shown in [78] that (at least when B = Q), mod-
ulo a certain K K-obstruction, a faithful, nuclear *~homomorphism A — BY
can be lifted to a nuclear *-homomorphism A — B,. The strategy behind
Theorem D is to use extension theoretic methods to show that the nuclear
*-homomorphisms A — B,, lifting a given faithful, nuclear *-homomorphism
A — BY are parametrized up to unitary equivalence by the Kasparov group
K Kuue(A, Jg).! Now, using the UCT and the K-theoretic assumptions on B,
the group K Kyyue(A, Jp) is computed in terms of the Ky-groups of A and B,,.
Together with an intertwining argument given in Section 5, this will prove
Theorem D.

In order to illustrate the lifting process suggested above, let us consider the
uniqueness result (Proposition 4.3) in more detail; the corresponding existence

!The C*-algebra Jp is not o-unital. In the actual proof, all computations will be done in a
sufficiently large, separable C*-subalgebra of Jg.
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result (Proposition 4.2) has a similar flavour. Let A and B be as in Theorem D,
and suppose ¢, : A — B, are unital, full, nuclear *-homomorphisms with
B, = TB,¢ and Ky(p) = Ko(¢).

Since ¢ and 1 agree on the trace on B, qgp, gy : A — B“ agree on the
trace on B¥. As BY is a II;-factor and ¢ and 1 are nuclear, gy and gpt) are
unitarily equivalent; see Proposition 1.1 below. Let u € B“ denote a unitary
conjugating qpt to qpp. If F' € B, with ¢g(F') = u, then

F*F —1p,, FF* —1p,, ¢(a) — Fyp(a)F* € Jp

for all a € A.? Hence viewing B,, as a C*-subalgebra of the multiplier algebra
M (Jp) of Jp, the triple (¢,v, F) defines an element in K Kpu.(A, JB).

Under the hypotheses of Theorem D, since K((¢) = Ko(¢), this K K-class
vanishes, so there are a *-homomorphism 7 : A — M(Jp ® K) and a unitary
V e M(Jp ® K) such that

V—-F&lyyzek) €@K and ¢&m=ad(V)(y ® ).

In Section 3, following the techniques introduced in [78] for the case B = Q,
it is shown that, modulo separability issues, Jp is stable and has the corona
factorization property. From here, the fullness of ¢ and ¢ together with a
Weyl-von Neumann type absorption theorem due to Elliott and Kucerovsky in
[30] (Theorem 2.3 below) is used to remove the summand 7 and show there is
a unitary U € M (Jp) with

U—-FeJp and ¢=ad(U)y.

But now, as F € B, and U — F € Jg C B, we have U € B,. Since U
conjugates 1 to ¢ by construction, this shows the uniqueness result.

The paper is organized as follows. In Section 1, some preliminary results
on amenable traces are collected along with some general machinery for reduc-
ing problems to separable C*-algebras. Section 2 records some K K-theoretic
prerequisites and obtains the non-stable K K-theoretic results needed in Sec-
tion 4. Section 3 is devoted to the trace-kernel extension and proves certain
extension-theoretic regularity conditions for the trace-kernel ideal. The main
classification results are given in Sections 4 and 5; the former section proves
classification results for embeddings into ultrapower C*-algebras, and the lat-
ter section restates these results in terms of approximate morphisms and, from
here, obtains Theorem D via an intertwining argument. Finally, Theorems A,
B, and C along with some other consequences of Theorem D are proved in
Section 6.

2In fact, as the unitary group of B“ is path-connected, u lifts to a unitary. For technical
reasons, it will be helpful to take a unitary lift of u and replace ¥ with a unitary conjugate
of 9 to arrange F' = 1p,.
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1. Preliminaries

1.1. Amenable traces. Throughout, the word trace is reserved for a tracial
state on a C*-algebra. Given a C*-algebra A and a trace 74 on A, let 74 :
Ky(A) — R denote the induced state on Ky(A). In the case A has a unit,
74([p]) = (r®Trk)(p) for a projection p € ARK, where Tri is the usual tracial
weight on the C*-algebra K of compact operators on a separable, infinite-
dimensional Hilbert space.

For n > 1, let 7y, denote the unique trace on the C*-algebra M, of n x n
matrices over C and define the 2-norm || - |2 on M, by a2 = mu, (a*a)'/? for
all a € M,,. A trace 74 on a C*-algebra A is called amenable if there is a net
@i+ A — M,,(;) of completely positive, contractive maps with

lpi(aa’) = pi(a)pi(@)2 = 0 and 7, (i(a)) = Ta(a)
for all a,a’ € A. See [9] or Chapter 6 of [10] for a detailed treatment of
amenable traces. Note that by Theorem 4.2.1 of [9], all traces on nuclear
C*-algebras are amenable.
Exploiting the connections between amenable traces and hyperfinite von

Neumann algebras given in Theorem 3.2.2 of [9] leads to the following unique-
ness result which is well known in the case when A is nuclear.

ProrosiTION 1.1. If A is a C*-algebra, M is a finite factor, and o, :
A — M are weakly nuclear *-homomorphisms such that Tapre = TmY, then
there is a net of unitaries (u;) in M such that

lp(a) — ui(a)uillz = 0
for all a € A.

Proof. Let 74 = Tamp, and note that ¢ and ¥ induce normal *-homomor-
phisms @, 9 : 7., (A)"” — M such that ¢(n,,(a)) = p(a) and (7, (a)) = ¥ (a)
for all a € A. As ¢ is faithful and normal, Lemma 1.5.11 of [10] implies
that there is a normal, completely positive map 6 : M — 7., (A)” such that
7r(a) = 0(p(a)) for all a € A. Since ¢ is weakly nuclear, m-(A)” is hyperfinite
by the equivalence of (5) and (6) in Theorem 3.2.2 of [9]. The result follows from
the classification of normal *-homomorphisms from hyperfinite von Neumann

algebras into finite factors; see the proof of Proposition 2.1 in [11] for example.
([l
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The following fundamental result was proved for nuclear C*-algebras by
Tikuisis, White, and Winter in [81] and was extended to exact C*-algebras by
Gabe in [33]. (See also [78] for a short proof.) This result is the starting point
for the existence result in Theorem D.

Let Q = &),,>1 M, denote the universal UHF-algebra, and let 9, denote
the norm ultrapower of Q with respect to a fixed free ultrafilter w on the natural
numbers. Recall that a *~homomorphism ¢ : A — B between C*-algebras A
and B is full if for every non-zero a € A, ¢(a) generates B as an ideal.

THEOREM 1.2. If A is a separable, unital, exact C*-algebra satisfying the
UCT and T4 is a faithful, amenable trace on A, then there is a unital, full,
nuclear *-homomorphism ¢ : A — Q,, such that To_, @ = TA.

The result is not quite stated this way in the references given above.
The existence of a unital, nuclear, trace-preserving *-homomorphism A— Q,,
follows from Theorem 3.8 and Proposition 3.4(ii) in [33], and this *-homo-
morphism is necessarily full by Lemma 2.2 in [81] and the faithfulness of 74.

1.2. Separability issues. Throughout the paper, several non-separable
C*-algebras such as ultraproducts and their trace-kernel ideals (as defined in
Section 3) will be considered. The lack of separability causes technical issues
in certain arguments; this is especially the case with K K-theoretic consider-
ations where all C*-algebras are typically required to be separable or, at the
very least, o-unital. This section collects some general methods for reducing
problems to the separable setting.

Definition 1.3 (Blackadar [3, §I1.8.5]). A property (P) of C*-algebras is
called separably inheritable if

(1) whenever A is a C*-algebra satisfying (P) and Ay is a separable C*-sub-
algebra of A, there is a separable C*-subalgebra A of A which satisfies (P)
and contains Ag, and

(2) whenever A; < As < A3 < --- is an inductive system of separable
C*-algebras with injective connecting maps, if each A,, satisfies (P), then
@An satisfies (P).

Many important properties of C*-algebras are separably inheritable such
as exactness, nuclearity, simplicity, real rank zero, and stable rank one, to name
a few. Also, the meet of countably many separably inheritable properties is
separably inheritable. See Section II.8.5 of [3] for proofs of these facts and for
many more examples of separably inheritable properties.

The following slight variation of separable inheritability will be useful.

Definition 1.4. Let (P) be a property of separable C*-algebras. A C*-
algebra A separably satisfies (P) if whenever Ay is a separable C*-subalgebra
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of A, there is a separable C*-subalgebra A of A which satisfies (P) and con-
tains Ag.

Note that if (P) is a separably inheritable property of C*-algebras and A
is a C*-algebra satisfying (P), then A separably satisfies (P). Note also that
if (P) is a property of separable C*-algebras preserved under sequential induc-
tive limits with injective connecting maps, then separably (P) is a separably
inheritable property.

The following is analogous to I1.8.5.3 in [3], and the same proof holds here.

PROPOSITION 1.5. Let (P;) be a countable family of properties of separable
C*-algebras preserved under sequential inductive limits with injective connect-
ing maps. If A is a C*-algebra separably satisfying (P;) for each i, then A
separably satisfies the meet of the (F;).

The following result will be crucial for K K-theoretic considerations related
to the trace-kernel extension defined in Section 3.

PROPOSITION 1.6. Consider an extension

0 v I s E_%4,D 0

of C*-algebras, and suppose that for each X € {I,E, D}, (Px) is a property of
separable C*-algebras preserved under sequential inductive limits with injective
connecting maps and X separably satisfies (Px). If for each X € {I,E,D}, a
separable C*-subalgebra Xo of X is given, then for each X € {I,E, D}, there
is a separable C*-subalgebra X of X which satisfies (Px) and contains Xy and
such that there is a homomorphism

0

~

~ — ~

. D
‘5D

of extensions where the vertical arrows are the inclusion maps.

& — =

0 > 0

Proof. For X € {I, E, D}, we construct an increasing sequence of separa-
ble C*-subalgebras (X,,)2%; of X containing Xy such that for each n > 1, X,
satisfies (Px),

Q(Enfl) g Dn g Q(En)v and Infl g ]_I(En) g In

Assuming this has been done, for each X € {I,E, D}, let X be the closed
union of the X,, and note that X is a separable C*-subalgebra of X. As each
X, satisfies (Px), so does X by hypothesis. By construction, q(E) =D, and
j7YE) =1, so the result follows.



SUBALGEBRAS OF SIMPLE AF-ALGEBRAS 319

We construct the desired C*-subalgebras I,,, F,, and D,, inductively start-
ing from the given C*-subalgebras Iy, Dy, and Ey. Assume n > 1 and [,,_1,
D,,_1, and E,_1 have been constructed. The C*-subalgebra of D generated
by D,—1 and ¢q(E,—_1) is separable, and hence there is a separable C*-sub-
algebra D,, of D which satisfies (Pp) and contains both D,,_1 and q(F,_1).
Fix a countable, dense set T, C D,,, and let .S,, C E be a countable set with
q(Sn) = T),. Then the C*-subalgebra of E generated by j(I,—1), Fn—1, and S,
is separable, and hence there is a separable C*-subalgebra F,, of E which satis-
fies (Pg) and contains j(I,—1), Ep—1, and S,. Then T, = ¢(S,) C q(E,) since
Sp C E,, and as T), is dense in D,, and the *-homomorphism ¢|g, has closed
range, D,, C q(E,). Also, as j(I,_1) C E, and j is injective, I,,_1 C j~Y(E,).
Finally, as j~!(E,) is a separable C*-subalgebra of I, there is a separable C*-
subalgebra I,, of I which satisfies (P) and contains j~1(E,). This completes
the construction. O

COROLLARY 1.7. Let (P) be a property of separable C*-algebras preserved
under sequential inductive limits with injective connecting maps. If (P) is pre-
served by ideals, quotients, or extensions of separable C*-algebras, then sepa-
rably (P) has the same permanence property among all C*-algebras.

Proof. We only consider the case of extensions as the other two results
are similar. Let (P) be a property of separable C*-algebras preserved by ex-
tensions. Suppose [ is an ideal of a C*-algebra A such that I and A/I both
separably satisfy (P), and suppose Ay is a separable C*-subalgebra of A. By
Proposition 1.6, there are separable C*-subalgebras I , /1, and B of I , A, and
A/I, respectively, such that I and B satisfy (P), A contains A, and there is
a homomorphism

0 s I A » B 0
0 > 1 A » A/l —— 0

of extensions where the vertical arrows are the inclusion maps. Now Ais a
separable C*-subalgebra of A satisfying (P) and containing Ayp. O

The method for reducing to separable C*-algebras given here also behaves
well with hereditary subalgebras.

PROPOSITION 1.8. If (P) is a property of separable C*-algebras preserved
by hereditary subalgebras, then the property separably (P) is preserved by hered-
itary subalgebras.

Proof. Suppose A is a C*-algebra separably satisfying (P) and B C A is
a hereditary subalgebra. Let By be a separable C*-subalgebra of B. There is
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a separable C*-subalgebra A of A which satisfies (P) and contains By. Now,
B:= ByABy is a separable C*-subalgebra of B containing By. Moreover, Bis
a hereditary subalgebra of A, and hence it satisfies (P). O

The following result will be used heavily in Section 4.

PRrOPOSITION 1.9. Suppose A and B are C*-algebras such that A is sep-
arable and B is unital. If p : A — B is a full, nuclear *-homomorphism, there
is a separable, unital C*-subalgebra By of B such that p(A) C By and the
corestriction of ¢ to By is full and nuclear.

Proof. As A is separable and ¢ is nuclear, for each integer n > 1, there
are an integer d(n) > 1 and completely positive maps 6,, : A — Mg(n) and
pn : Mg,y — B such that

1o (On(a)) = p(a)]| =0
for all a € A.

By Proposition I1.8.5.7 of [3], there is a sequence (a,)52; € A\ {0} such
that for every non-zero ideal I C A, there is an n > 1 with a, 6 1. As ¢ is full
and B is unital, for each n > 1, there are an integer k(n) > 1 and elements
bm,b;m € Bfori=1,...,k(n) such that Zk(n mgp(an)b;m =1g.

Let By denote the C*-subalgebra of B generated by ¢(A), pn(My()), bni,
and b/n,i for i = 1,...,k(n) and n > 1. Then By is separable, and if ¢q is
the corestriction of ¢ to By, then ¢ is nuclear. Suppose a € A\ {0} and
let I denote the ideal of By generated by ¢(a). Then o~ 1(I) is an ideal in A
which is non-zero as a € ¢~1(I), and hence there is an integer n > 1 such that
an € o Y(I). Now, ¢(a,) € I, and since ¢(a,) is full in By by construction,
I = By. This shows that g is full. O

A version of the following result appeared in an early version of [78].

PRrOPOSITION 1.10. Suppose G is a countable, abelian group and A is a
C*-algebra. Fori = 0,1, the natural group homomorphisms

liLnHomZ(G, Ki(Ap)) — Homgz(G, K;(A))
and
li_H}EXt%(G,Ki(AO)) — Exty(G, K(A))
are isomorphisms where the limit is taken over all separable C*-subalgebras Ay
of A.
Proof. As G is a countable, abelian group, there is an extension

0 y X 7Y G 0

for countable sets X and Y, where ZX and ZY denote the free abelian groups
generated by X and Y, respectively. For every C*-algebra B and for ¢ = 0,1,
there is a natural exact sequence
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Homyz (G, K;(B)) —— Homg(ZY, K;(B)) —— Homz(ZX, K;(B))

— Exti (G, Ki(B)).

As inductive limits preserve exact sequences, it is enough to prove that the
natural map

lim Homz(ZX, K;(Ao)) — Homz (ZX, Ki(A))

is an isomorphism for each countable set X.

Adding a unit to A if necessary, we may assume A is unital. We only
prove the case when 7 = 0 as the case i = 1 then follows by Bott periodicity
(or by a similar argument).

To show surjectivity, let f : ZX — Ky(A) be given. For each z € X,
there are an integer n(x) > 1 and projections p, and g, in M) (A) with
f(x) = [pz] — [qz]- If Ap denotes the unital C*-subalgebra of A generated by
the entries of the projections p, and ¢, then there is a group homomorphism
fo 1 ZX — Ko(Ap) given by fo(x) = [pz] — [gz]. If 1o : A9 — A denotes the
inclusion, then Ko(t)fo = f.

To show injectivity, let Ag C A be a separable, unital C*-subalgebra, let
o : Ap — A denote the inclusion, and suppose f,g : ZX — Ky(Ap) are such
that Ko(w)f = Ko(wp)g. For each x € X, there are an integer n(zx) > 1
and projections py, Gz, P, @ € My (g)(Ao) such that f(z) = [p.] — [g.] and
g(x) = [pl] — [¢.]. For each x € X, there are an integer k(xz) > 1 and a partial
isometry vy € My, () 4i(x)(A) With

(z) ©k(z)

v;vmsz@qg@lfﬁk and vv =pl, g DL, .

Let A; denote the C*-subalgebra of A generated by Ay and the entries of each
vy for x € X. If 119 : Agp — A; denotes the inclusion, then Ko(t10)f =
Ko(t1,0)g- O

1.3. Tensorial absorption and separability. Recall from [83] that a sep-
arable, unital, infinite-dimensional C*-algebra D is strongly self-absorbing if
there is an isomorphism D — D ® D approximately unitarily equivalent to the
first factor embedding. For a strongly self-absorbing C*-algebra D, a separa-
ble C*-algebra A is D-stable if A ® D = A. The only strongly self-absorbing
C*-algebra needed here is the universal UHF-algebra Q.

A local characterization of D-stability for separable, unital C*-algebras
can be extracted from Theorem 2.2 of [83], which shows a separable, unital
C*-algebra A is D-stable if, and only if, there is a unital embedding of D into
the central sequence algebra Aso N A’ of A where A := (*°(A)/co(A). This
local characterization extends to the non-separable setting with D-stability
replaced by separable D-stability.
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LEMMA 1.11. For a strongly self-absorbing C*-algebra D, a unital C*-
algebra A is separably D-stable if, and only if, for every finite set F C A,
for every finite set G C D, and for every € > 0, there is a unital, completely
positive map @ : D — A such that

lp(dd) —p(d)p(d)|| <e and |ap(d) —p(d)al < e
foralla e F and d,d € G.

Proof. Assume first that A is separably D-stable. Fix a finite set F C A,
a finite set G C D, and € > 0. There is a separable, unital, D-stable C*-
subalgebra A of A containing F. By Theorem 2.2 of [83], there is a unital
embedding ¢oo : D — Aso N A’. As D is nuclear, the Choi-Effros lifting
theorem implies that there are unital, completely positive maps ¢, : D — A
representing (... Hence

Tim [[on(dd') — pu(d)gn(d)] = lim [lapn(d) ~ pn(d)a] =0

for all a € A and d,d’ € D. Take ¢ = ¢, for some sufficiently large n.

Conversely, suppose the approximation condition holds and let Ay be a
separable, unital C*-subalgebra of A. Let Fy, be an increasing sequence of
finite subsets of Ay with dense union, and let G, be an increasing sequence
of finite subsets of D with dense union. There are unital, completely positive
maps @on : D — A such that

1 1
lpon(dd’) = on(d)pon(d)ll <~ and [lapon(d) - pon(d)a] < —

foralla € Fy,, and d,d’ € G,,. Let A; denote the C*-subalgebra of A generated
by Ap and g, (D) for each n > 1, and note that A; is separable.

Iterating this argument, there are an increasing sequence of separable
C*-subalgebras A of A and sequences of unital, completely positive maps
Pk - D — Ay with

nh_fgo H‘Pk,n(ddl) - @k,n(d)%,n(d/)H = nh—>n<;lo H(upk,n(d) - @k,n(d)an =0
for all a € Ay, d,d € D, and k > 0. Let A C A denote the closed union

of the Aj. A reindexing argument produces a sequence of unital, completely
positive maps ¥, : D — A such that

foralla € A and d,d’ € D. The sequence v, induces a unital *-homomorphism
D — AN A’  and since A is separable, A is D-stable by Theorem 2.2 of [83].
As A contains Ag by construction, this shows A is separably D-stable. O

The next proposition collects some permanence properties of separable
D-stability.
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PROPOSITION 1.12. For a strongly self-absorbing C*-algebra D, heredi-
tary subalgebras, quotients, and extensions of separably D-stable C*-algebras
are separably D-stable, and £°°-products and ultraproducts of unital, separably
D-stable C*-algebras are separably D-stable.

Proof. By Corollary 3.4 in [83], D-stability is preserved by sequential in-
ductive limits of separable C*-algebras. By Corollaries 3.1 and 3.3 and Theo-
rem 4.3 of [83], hereditary subalgebras, quotients, and extensions of separable,
D-stable C*-algebras are D-stable. Now, separable D-stability passes to hered-
itary subalgebras by Proposition 1.8 and is preserved by quotients and exten-
sions by Corollary 1.7. For £°°-products, the result follows from Lemma 1.11
by choosing approximately central approximate morphisms into each factor of
the product and taking the product of these maps. For ultraproducts, the
result follows from the result for £*°-products and quotients. O

2. Some K K-theory

This section contains a brief overview of K K-theory and collects the re-
sults on absorbing representations which will be needed in the classification
results in Section 4. With one exception in the proof of Proposition 3.3, we
will work exclusively with the nuclear K K-bifunctor K Kyyc(—, —) introduced
by Skandalis in [79].

2.1. Basics of K K-theory. Let A be a separable C*-algebra, and let B be
a o-unital C*-algebra. The word representation will refer to a *-homomorphism
A — M(B®K). A representation ¢ : A — M(B® K) is called weakly nuclear
if the completely positive map A — B ® K given by a — b*p(a)b is nuclear for
allb e B® K.

Let Enuc (A, B) denote the set of pairs (¢, %) such that ¢, : A— M (B®K)
are weakly nuclear representations with ¢(a) —1(a) € BQK for all a € A.
Such a pair (p,%) is called a (weakly nuclear) Cuntz pair. A homotopy be-
tween Cuntz pairs (¢o,%0) and (¢1,%1) in Enue(A, B) is a Cuntz pair (, V) €
Enc(A,C([0,1], B)) such that for t € {0,1}, composing ® and ¥ with the
evaluation map M (C([0,1],B) ® K) - M(B ® K) at t produces ¢; and ),
respectively. Let K Kp..(A, B) denote the set of homotopy classes of Cuntz
pairs in Enc(A, B), and let [p, 1] denote the class of a Cuntz pair (¢,?) in
K Kpuo(A, B).

Let s1,s2 € M(B ® K) be isometries with s;s] + s2s5 = 1. Given
representations 6,p : A — M(B ® K), define a representation 6 @5, 5, p =
510(-)sT + s2p(-)s5 called the Cuntz sum with respect to s; and s. For another
choice of isometries t1,t2 € M (B ® K) with t1t] +tath = 1, u = t15] +t2s5 is a
unitary with ad(u)(0®s, s, p) = 0S¢, 1, p, and hence, up to unitary equivalence,
the Cuntz sum is independent of the choice of s1 and ss.
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If (p1,%1) and (g2,v2) are Cuntz pairs in Enue(A, B), then (¢1 @s; s
02,1 Bgy s, P2) is also a Cuntz pair in Eyye(A, B). Since the unitary group
of M(B ® K) is path-connected in the operator norm topology by the main
result of [14] (see also [56] for the case when B is unital), the class [¢1 @s, s,
02,1 By 50 V2| in K Kpye(A, B) is independent of the choice of isometries s;
and s2; abusing notation, this element will be written as [¢1 ® w2, 1 @ 2.
The set K Kpuc(A, B) is an abelian group with addition given by Cuntz sum.

If p: A — B is a nuclear *-homomorphism and p € K is a rank one
projection, define a representation ¢, : A = M(B®K) by ¢,(a) = ¢(a)®p for
a € A. Then (¢p,0) defines a Cuntz pair in Enyc(A, B) and the corresponding
element of K K, .(A, B) is denoted by [¢]. The element [¢] is independent of
the choice of the rank one projection p.

Given a separable C*-algebra A and a *-homomorphism 6 : B — D be-
tween o-unital C*-algebras B and D, there is an induced group homomorphism

0, : K Kuue(A, B) = K Knue(A, D).

In this way, K Kpuc(A, —) becomes a covariant functor from the category of
o-unital C*-algebras to the category of abelian groups; see [79] for the details.
We will only need an explicit computation of 6, in the following special case.

PROPOSITION 2.1. Suppose A and E are separable C*-algebras, I C E is
an ideal in E with IQK =2 I, and p,v : A — E are nuclear *-homomorphisms
with p(a) —(a) € I for alla € A. Let A\ : E — M(I) denote the canonical
*-homomorphism, and note that (Ap, \p) € Enuc(A, I).

If 5 : I — E denotes the inclusion map, then j.[\p, \Y] = [p] — [¢] in
KK (A E).

Proof. As in [79] (see also Chapter 17 of [2]), K Knuc(A, I) can be realized
as homotopy classes of Kasparov modules (6, 01, F') where 0; : A — B(K;) is a
weakly nuclear representation of A on a countably generated Hilbert I-module
K; and F : Ky — K is an adjointable operator which, modulo the compacts,
is a unitary intertwining of #y and 6;.

Viewing I has a Hilbert module over itself, the Cuntz pair (Ap, A\¢)) defines
the Kasparov module (Ap, A, 1p7(r)) which defines the element [Ap, \Yp] €
KK (A, I). It Hy = I is viewed as a Hilbert E-module, then there is a
natural isomorphism M (I) — B(Hp). Let ¢o,%0 : A — B(Hy) denote the
representations given by composing Ap and Ay with this isomorphism. Then
Je[Ao, A, Lar)] = (90, %0, 18(Hy)] 0 K Knue(A, E) by the construction of ji
given in [79]. (See also Section 17.8 of [2].)

Consider H; = E as a Hilbert E-module. If p1,1¢1 : A — B(H;) denote
the representations induced by ¢ and 1), respectively, then [p1,91, 15(a,)] =
[¢] = [¥] in K Kyue(A, I). Tt suffices to show (o, %0, 15(#,y)) and (1, Y1, 15(m,))
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are homotopic. To this end, define
H={feC(0,1],E): f(0) € I}

and view H as a Hilbert C([0, 1], E)-module in the natural way. Define &, U :
A — B(H) by

®(a)(f)(t) = ¢(a)f(t) and W(a)(f)(t) =1(a)f(t)
foralla € A, f € C([0,1], E), and t € [0,1]. Then (®, ¥, 154)) is a homotopy
from (@0) o, 1B(Ho)) to (8017 (0 1B(H1)) g

For a separable C*-algebras A, a o-unital C*-algebras, B, and a represen-
tation ¢ : A — M (B ® K), define the infinite repeat oo : A — M (B ® K)
as follows. Let (s,,)22; be a sequence of isometries in M (B ® K) such that
> me1 505y, =1, and let

Vela) = 3 sutb(a)s, € M(B&K)
n=1

for a € A where convergence is in the strict topology. Then 1, is a *~homo-
morphisms, and up to unitary equivalence, 1, is independent of the choice
of the sequence (s,,)72; in particular, ¥ & 1 and 1 are unitarily equivalent.
Note also that if 1 is weakly nuclear, then so is 1.

2.2. Absorbing representations. Let A and B be C*-algebras such that A is
separable and B is o-unital. Given two representations ¢, : A - M(B® K),
write ¢ ~ 1 if there is a sequence of unitaries (u,)5°; C M (B ® K) such that
for all @ € A,

(1) |lp(a) — upp(a)ul|| — 0 as n — oo and
(2) ¢(a) —upp(a)u), € B® K for all n > 1.

Definition 2.2. Suppose A and B are C*-algebras such that A is separable
and B is o-unital. A representation ¢ : A — M (B ® K) is called (unitally)
nuclearly absorbing if for all (unital) weakly nuclear representations 6 : A —
MBK), p@f~p.

Consider the special case when B = C. All representations A — M (K) =
B(£?(N)) are weakly nuclear as K is nuclear. Now, Voiculescu’s representation
theorem, as stated in Theorem I1.5.8 of [22] for example, is the statement that
a unital representation ¢ : A — M (K) is unitally nuclearly absorbing if, and
only if, ¢ is faithful and ¢(A) N K = 0. There is a far reaching generalization
of this result for nuclearly absorbing representations due to the work of Elliott
and Kucerovsky in [30]; see also [47] and [32].

A o-unital C*-algebra B has the corona factorization property if for all
projections p € M(B® K), 1 = p @ p implies 1 3 p; see [47]. The corona
factorization property is a very weak regularity property of C*-algebras. See



326 CHRISTOPHER SCHAFHAUSER

[46], [58], [59] and the references within for several examples and connections
to other regularity properties. In this paper, the examples of interest will be
separable C*-subalgebras of the trace-kernel ideal Jp associated to an appro-
priate C*-algebra B as discussed in the introduction and introduced formally
in Section 3.

When B is unital, a *~-homomorphism ¢ : A — B is called unitizably full
if the unitization ¢f : AT — B is full. Note that when A and B are unital
C*-algebras, a *~homomorphism ¢ : A — B is unitizably full if, and only if, ¢
is full and 15 — ¢(14) is full.

THEOREM 2.3. If A is a separable C*-algebra and B is a o-unital C*-algebra

with the corona factorization property, then every unitizably full representation
A — M(B®K) is nuclearly absorbing.

Proof. After adding units, it is enough to show that every unital, full
representation ¢ : A — M (B ® K) is unitally nuclearly absorbing. Let g :
M(B®K) - M(B®K)/(B®K) denote the quotient map. By [47], qp is
a purely large extension, and hence, by the main result of [30], gy is unitally
nuclearly absorbing as an extension.

For any unital, weakly nuclear representation ¢ : A — M (B ® K), there
is a unitary v € M (B ® K) such that

u(p(a) ® Yos(a))u” — oo(a) € BOK

for all @ € A. By the equivalence of (iv) and (v) in Theorem 3.4 of [34],
© D Yoo ~ . As Yoo B P and 1, are unitarily equivalent,
DY~ QDYoo DY~ @D Yoo ~ 0,

so ¢ is unitally nuclearly absorbing. O

Given two representations ¢,? : A = M(B ® K), write ¢ ~asymp ¢ if

there is a norm continuous family (u¢)i>0 € M (B ® K) of unitaries such that
for all a € A,

(1) |lp(a) — wp(a)uy]| — 0 as t — oo and
(2) p(a) —w(a)u; € B® K for all t > 0.

The following folklore result shows nuclearly absorbing representations
also satisfy a stronger asymptotic absorption condition.

PROPOSITION 2.4. Suppose A and B are C*-algebras such that A is sep-
arable and B is o-unital. If ¢ : A — M(B ® K) is a nuclearly absorbing
representation and 1 : A — M(B®K) is a weakly nuclear representation, then

"2 ©® '(/) ~asymp ¥-

Proof. As ¢ is nuclearly absorbing, ¢ @ %o ~ ¢; hence ¢ @ oo ~asymp ¥
by the equivalence of (v) and (vi) in Theorem 3.4 of [34]. Now,

D (0 ~asymp ¥ D Yoo B Y ~asymp ¥ D Yo ~asymp $- U
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2.3. Destabilizing K K -theory. Following Dadarlat and Eilers in [20], two
representations ¢, v : A — M(B ® K) are properly asymptotically unitarily
equivalent, written @ = 1), if there is a norm continuous family of unitaries
(ut)i>0 in B® K + Cly(pgk)y € M(B ® K) such that for all a € A,

(1) lle(a) —wp(a)uf|| — 0 as t — oo and
(2) p(a) —wp(a)u; € B® K for all t > 0.

The word proper reflects that the path of unitaries is taken from the mini-
mal unitization of B® K instead of the multiplier algebra. This is a subtle, but
very critical, difference with the relation ~gasymp above. The following result,
which is essentially due to Dadarlat and Eilers in [20], shows the relevance of
proper asymptotic equivalence in K K-theory. This is in stark contrast with
Proposition 2.4 above, which shows the relation ~,symp is a rather weak equiv-
alence relation on representations.

THEOREM 2.5. Suppose that A is a separable C*-algebra, B is a o-unital
C*-algebra, and (p,v) € Enc(A, B) is a Cuntz pair. The following are equiv-
alent:

(1) [9071” =0¢€ KKnuC(APB);

(2) there is a weakly nuclear representation 6 : A — M(B ® K) such that
peo=Y o,

(3) for any weakly nuclear, nuclearly absorbing representation 0: A— M (B®K),
pDO=YDo.

Proof. By Theorem 3.10 of [20], (1) and (2) are equivalent to

(3") for any weakly nuclear, nuclearly absorbing representation §: A— M (B®K),
YD Oso YD 0.

Hence it suffices to show (3) is equivalent to (3'). If 6 is weakly nuclear and

nuclearly absorbing, then 6, is weakly nuclear, and hence 0 @ 0 ~asymp 0

by Proposition 2.4. So 0y ~asymp ¢, and the result follows from Lemma 3.4
in [20]. O

The next two results in this section will allow us to control the stabiliza-
tions appearing in the previous theorem when all representations considered
are assumed to be nuclearly absorbing. These results form a critical part of
the classification results in Section 4 and play a role analogous to that of the
stable uniqueness theorem used in earlier classification results.

PROPOSITION 2.6. Suppose A and B are C*-algebras such that A is sep-
arable and B is o-unital. If v € KKpy(A,B) and ¢ : A - M(B®K) is a
weakly nuclear, nuclearly absorbing representation, then there is a weakly nu-
clear, nuclearly absorbing representation ¢ : A — M(B ® K) such that (¢, 1)
is a Cuntz pair in Enue(A, B) and x = [¢,v].
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Proof. Let © € KKy (A,B) and ¢ be given. There is a Cuntz pair
(0,p) in Enuc(A, B) such that x = [6, p]. By Proposition 2.4, there is a norm
continuous family (u¢):>o of unitaries in M (B ® K) such that for all a € A,

(1) |l(a) —u(p @ ¥)(a)uf|| = 0 as t = oo and
(2) Y(a) —u(p®Y)(a)uf € B® K for all t > 0.
For each t > 0 and a € A, ui(p ® ¢)(a)u; and ug(p ® ) (a)ug differ by an

element of B ® K as both elements differ from 1 (a) by an element of B ® K.
As (0, p) is a Cuntz pair, we have

uo((0 @ ¥)(a) — (p®Y)(a))ug € BOK

for all a € A. Hence (ad(up)(0 1), ad(us)(p @ 1)) is a Cuntz pair for all ¢ > 0
and defines a homotopy?® between the Cuntz pairs (ad(uo)(0©v), ad(ug)(p®))
and (ad(uo)(6 @ v), ). Now,

z=[0©¢,p®Y] = [ad(uo)(0 © ), ad(uo)(p © )] = [ad(uo) (6 © ), ¥].
To complete the proof, define ¢ = ad(ug)(0 @ ). O

In the uniqueness portion of Theorem D, we will need a way to relate two
weakly nuclear representations ¢,9 : A — M(B ® K) when (¢,%) forms a
Cuntz pair and [p, 1] = 0 in K Ky (A, B). Ideally, if ¢ and ¢ are nuclearly
absorbing, then [p, 1] = 0 would imply ¢ & . This is known to be the case
when B = K (see Theorem 3.12 in [20]) but is not known in general. The
following technical variation will be sufficient for our purposes. A stronger
result of this form will appear in forthcoming work of the author with Carrion,
Gabe, Tikuisis, and White.

PROPOSITION 2.7. Suppose A is a separable C*-algebra, E is a separable,
unital, Q-stable C*-algebra, and I C F is an ideal such that IQKC = I. Suppose
0, A — E are nuclear *-homomorphisms such that p(a) — ¢ (a) € I for all
a€ A Let A\: E — M(I) be the canonical *-homomorphism, and note that
()‘907 AI/J) € EnuC(Av I)

If Ap and M\ are nuclearly absorbing representations and [Ap, \p] =0 €
KK (A, I), then there is a sequence of unitaries (un)2>y C E such that

lle(a) = unp(a)up| — 0
for all a € A.

Proof. Since [Ap, \)] = 0 € KKyue(A4, I), Ap is nuclearly absorbing, and
A is weakly nuclear, we have Ao @ Ap = A\p @ Ap by Theorem 2.5. Reversing

3Here the homotopy is defined on [0, oc] in place of [0, 1].
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the roles of ¢ and v, we have Ap @ Ap = \ip @ Ap. In particular, there is a
sequence (u,)n2q © Ma(I + Clyy(p)) such that

1(Ap & Ap)(a) — un(Mp & M) (a)uy, || — 0

for all a € A. As the restriction of A to My(I+Clg) is injective, it follows that
© @ @ and P @ ¢ are approximately unitarily equivalent as *-homomorphisms

As there is a unital embedding My — Q, ¢ ® 19 and 1 ® 1¢ are approxi-
mately unitarily equivalent as *~-homomorphisms A -+ F® Q. As F is O-stable
and Q is strongly self-absorbing, there is, by Remark 2.7 in [83], a sequence
0, : E® Q — F of unital *-homomorphisms such that 0, (x ® 1g) — z for all
x € E. An £/3 argument implies that ¢ and 1 are approximately unitarily
equivalent as *-homomorphisms A — F. O

3. The trace-kernel extension

Let B be a simple, unital C*-algebra with a unique trace 75, and define
the 2-norm on B by ||b|j2 = 75(b*b)'/? for all b € B. Let £*(B) denote the
C*-algebra of all bounded sequences in B and, for a free ultrafilter w on the
natural numbers, define

Bo = ((B)/{b € £(B) : lim [lb,] = 0}
and

B = ¢(B)/{b € ((B) : lim |lby 2 = 0}.

Since 7p is contractive, [|b]l2 < ||b]| for all b € B, and hence there is a

natural extension

0 s Jp 22, B, 2, B s 0,

where ¢p is the canonical quotient map, Jp = ker(gg), and jp is the inclusion
map. The C*-algebra Jp is referred to as the trace-kernel ideal associated
to B, and the extension is called the trace-kernel extension associated to B.

The trace-kernel extension has been extensively studied in connection with
the Toms-Winter conjecture (with a modified definition when B has more than
one trace); see [5], [45], [54], [55], [74], [75], [82] for example. In the case B = Q,
this extension also has a crucial role in the proof of the quasidiagonality theo-
rem (Theorem 1.2 above), where the basic strategy is to lift a trace-preserving
*-homomorphism into Q% = R along the quotient map gg to obtain a trace-
preserving *-homomorphism into Q,. This was made more explicit in [78],
where the lift was obtained through extension theoretic methods.

Many of the properties of Jg proved in [78] also hold for Jp for much
more general C*-algebras B (Proposition 3.2 below). The following definition
is taken from [78].
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Definition 3.1. A C*-algebra [ is called an admissible kernel if I has real
rank zero and stable rank one, Ko([) is divisible, K;(I) = 0, the Murray-von
Neumann semigroup V' (I) is almost unperforated, and every projection in @K
is Murray-von Neumann equivalent to a projection in I.

The following result collects the key properties of the trace-kernel exten-
sion needed in the next section.

ProprosITION 3.2. If B is a simple, unital, Q-stable C*-algebra with a
unique trace g such that every quasitrace on B is a trace and K1(B) = 0, then
(1) B% is a II;-factor;

(2) B, has real rank zero and stable rank one, has a unique trace Tg,, has
strict comparison of positive elements with respect to the trace, is separa-
bly Q-stable, and has trivial Ki-group; and

(3) Jp is an admissible kernel.

Proof. For (1), as B has a unique trace 75, 7., (B)" is a II;-factor (see

Theorem 6.7.4 and Corollary 6.8.5 in [23]), and hence so is the tracial ultra-
power (7., (B)")“. By Remark 4.7 in [45], BY = B,,/Jp = (7,(B)")“.

For (2), the C*-algebra B has real rank zero by Theorem 7.2 of [70],
stable rank one by Corollary 6.6 in [69], and strict comparison by Theorem 5.2
of [70]. All three properties are known to be preserved by ultraproducts; for
strict comparison, this follows from Lemma 1.23 in [5], and for real rank zero
and stable rank one, see the proof of Proposition 3.2 in [78] for example. As
B is Q-stable, we have that B, is separably Q-stable by Proposition 1.12. By
Theorem 8 in [61], the unique trace on B, is the trace 75, induced by 7p.

As B, has stable rank one, to show K;(B,) = 0, it suffices by Theorem
2.10 of [68] to show that the unitary group of B, is path connected. Let u
be a unitary in B, and fix a sequence of unitaries (u,)5 ; in B lifting u. As
K1(B) = 0 and B has stable rank one, another application of Theorem 2.10 in
[68] shows u,, is in the path component of the identity for each n > 1. Since
B has real rank zero, Theorem 5 of [48] implies there is a unitary v, € B
with finite spectrum such that ||u, — v,|| < 1/n. Write v, = e for a self-
adjoint h,, € B with ||h,|| < 7, and let h denote the self-adjoint element of B,
determined by the sequence (h,,)2%;. Then u = ¢, and hence u is in the path
component of the identity in the unitary group of B,,.

For (3), as B, has real rank zero and stable rank one, so does Jp as
both properties pass of ideals by Corollary 2.8 in [6] and Theorem 4.3 in [68],
respectively. If d > 1 is an integer and p € My(Jp) is a projection, then

(75 © T )(p) = 0 < 1= (75, @ Trag, ) (15, ® 05",

where Tryy, is the tracial functional on My normalized at a rank one projection.
As B, has strict comparison, there is a partial isometry v € My(B,,) such that
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v*v = pand vv* < 1p, @Ogidfl). Since v*v € My(Jp), we have vv* € My(Jp),

and hence vv* = ¢ @ Ogid_l) for some projection g € Jg. So every projection
in Jp ® K is Murray-von Neumann equivalent to a projection in Jp.

Since B,, is separably Q-stable, so is Jg by Proposition 1.12. Hence there
is an increasing net J; of a separable, QO-stable C*-subalgebras of Jp with
dense union. It is well known that, since J; is Q-stable, V(J;) is unperforated
and Ky(J;) is divisible; this can be shown using the continuity of V(—) and
Ko(—) and writing J; ® Q as the inductive limit of the *-homomorphisms
My (J;) — My(J;) where k divides ¢ and the maps are given by the diagonal
embeddings with multiplicity ¢/k. Using the continuity of the functors V(—)
and Ky(—) again, it follows that V(Jpg) is almost unperforated and Ko(Jp) is
divisible as both properties are preserved by inductive limits.

It remains to show K;(Jp) = 0. Consider the exact sequence

) Ko(gm)

Ko(B., Ko(B*) =2 K1(J5) 9% Ky (BL)

induced by the trace-kernel extension. As Ki(B,) = 0, it suffices to show
Ky(gp) is surjective. Suppose t € [0,1], and write ¢t = lim,_, ¢, with ¢, €
Qn0,1]. As B is unital and Q-stable, there is a unital embedding Q — B.
Hence there is a sequence of projections (p,)52,; C B with 75(p,) = tn. If
p denotes the projection in B, defined by the sequence py, then 75, (p) = t.
Hence the group homomorphism 75, : Ko(B,) — R is surjective, and since B¥
is a IT;-factor, the group homomorphism 7w : Ko(B“) — R is an isomorphism.
Now, 75, = T« Ko(qB), so Ko(gp) is surjective, and hence Ki(Jg) =0. O

The relevant properties of admissible kernels are collected in the following
result.

PRrRoPOSITION 3.3.

(1) The property of being an admissible kernel is separably inheritable.

(2) If I is an admissible kernel, then M, (I) is an admissible kernel for all
n > 1.

(3) If I is a separable admissible kernel, then I is stable and has the corona
factorization property.

(4) If A is a separable C*-algebra satisfying the UCT and I is a separa-
ble admissible kernel, then the canonical homomorphism K Kp,(A,I) —
Homy (Ko(A), Ko(I)) is an isomorphism.

Proof. (1) is Proposition 4.1 in [78]. In (2), the only non-trivial claim is
that real rank zero and stable rank one are preserved by taking matrix algebras;
this follows from Theorem 2.10 in [6] and Theorem 3.3 in [68], respectively. The
first two paragraphs of the proof of Theorem 2.1 in [78] show (3). Since K (I)
= 0 and Ky([) is divisible, it is an immediate consequence of the UCT that
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the natural map KK(A,I) — Homy(Ky(A), Ko(I)) is an isomorphism. By
Theorem 4.1 and Proposition 7.1 in [72], A is K K-equivalent to a commutative
C*-algebra, and hence, by Propositions 3.2 and 3.3 in [79], the canonical map
KKye(A, I) — KK(A,I) is an isomorphism. O

4. Classification of *~homomorphisms into ultrapowers

The goal of this section is to produce classification results for unital, full,
nuclear *~homomorphisms from a separable, exact C*-algebra A satisfying the
UCT into an ultrapower of a suitably well-behaved codomain B as outlined in
the introduction. The following pullback lemma, shown to me by Jamie Gabe,
will be used to control the range of a representation A — M (Jp) in the proof
of Proposition 4.2. This lemma is implicitly contained in the proof Theorem
5.1 in [78] and was explicitly stated in a slightly different form in an earlier
version available on the arXiv. As the result does not appear in the published
version of [78], the statement and proof are reproduced here.

LEMMA 4.1. Consider a commuting diagram

al

0 I, p B 0
I
0 I-2.,p _®.p 0

of C*-algebras with exact rows. If A is a C*-algebra and ¢p; : A — B; are
*-homomorphisms for i = 1,2 such that B1p1 = Pawe, then there is a unique
*-homomorphism ¢ : A — P such that a;po = ; for i = 1,2. Moreover, ¢ is
nuclear if, and only if, ¢1 and @2 are nuclear.

Proof. Consider the pullback C*-algebra @Q = {(b1,b2) € B1®Bs : B1(b1) =
B2(b2)}, and define 7 : P — @ by ©(p) = (a1(p), a2(p)). A diagram chase
shows 7 is an isomorphism. For existence, the *-homomorphism ¢ is given by
o(a) = 77 1(p1(a), p2(a)), and uniqueness reduces to the statement ker(a;) N
ker(ag) = ker(m) = 0.

If ¢ is nuclear, then ¢; = «a;p is nuclear for i = 1,2. Conversely, suppose
1 and o are nuclear. Fix a C*-algebra C, and let p : A®maxC — AQminC be
the canonical *-homomorphism. As maximal tensor products preserve exact
sequences, there is a commuting diagram

00— T @ C 22 po 028 B o  C— 50

H [ [

0*>I®maxC*>Bz®maxCM>D®maxC*>0
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with exact rows. As ¢; is nuclear, there is a *-homomorphism v; : A ®pin C' —
B; ®max C such that ¢; ®max ido = 1;p for each ¢ = 1,2 by Corollary 3.8.8
of [10].

Applying the first part of the lemma to the maps 11 and s, there is a
*-homomorphism ¥ : A @pin C = P ®max C such that (a; @max ide)y = ;.
Since

(OZ@' @ max ldc)iﬂp = ©; Qmax idC = (ai Qmax 1dC’)(S0 Qmax idC)a

the uniqueness portion of the first part of the lemma implies ¥p = ¢ ®naxidc.
S0 ¢ ®max ide factors through A ®pin C. As C was arbitrary, ¢ is nuclear by
Corollary 3.8.8 of [10]. O

The next two propositions provide a first approximation to the existence
and uniqueness results in Theorem D and its technical refinement given in
Theorem 5.3.

For any C*-algebra C, 15 : C' — My(C) denotes the inclusion into the
(1,1)-corner, and for any *-homomorphism f : C; — C3 between C*-algebras
Cy and Cb, the induced *-homomorphism My (C1) — Ma(Cy) is still denoted

by f.

PROPOSITION 4.2. Suppose A is a separable, unital, exact C*-algebra sat-
isfying the UCT and B is a simple, unital, Q-stable C*-algebra with a unique
trace Tp such that every quasitrace on B is a trace and Ki(B) = 0.

If T4 is a faithful, amenable trace on A and o : Ko(A) — Ko(By) is a
group homomorphism such that 7p,0 = 74 and o([14]) = [1B,], then there is
a unital, full, nuclear *-homomorphism ¢ : A — By, such that Ko(¢) = o and

TB,P = TA-

Proof. As B is Q-stable, there is a unital embedding @ — B which is
necessarily trace-preserving by the uniqueness of the trace on Q. This induces
a unital, trace-preserving embedding 9, — B,. Composing this embedding
with the *-homomorphism A — Q,, given by Theorem 1.2 yields a unital, full,
nuclear *-homomorphism v : A — B,, such that 75,1 = 74.

Note that 75« Ko(qpy) = T« Ko(gqp)o. As B is a IIj-factor by Proposi-
tion 3.3, 7pw is an isomorphism, and hence K(qp1) = Ko(gp)o. So the image
of 0 — Ky(%) is contained in ker(Ky(gp)) = im(Ko(jp)). Using again that BY
is a II;-factor, K;(B%) = 0, and hence Ky(jg) is injective. So there is a group
homomorphism & : Ko(A) — Ko(Jp) such that Ko(jp)x = o — Ko(¢).

By Proposition 1.9, there is a separable C*-subalgebra Ey of B, containing
1(A) such that the corestriction of ¢ to Ej is full and nuclear. By Proposi-
tion 1.10, there is a separable C*-subalgebra Iy of Jp such that  factors as the
composition of a group homomorphism kg : Ko(A) — Ky(Ip) and the group
homomorphism Ky(Ily) — Ko(Jp) induced by the inclusion Iy — Jp. As Jp
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is an admissible kernel by Proposition 3.2 and being an admissible kernel is
separably inheritable by Proposition 3.3, Proposition 1.6 implies there are a
separable admissible kernel I C Jp containing Ij, a separable C*-subalgebra
E C B, containing Ej, and a separable C*-subalgebra D C B“ such that there
is a homomorphism

J g

0 > I > B D > 0
O
JB qB w

0 > JB > B, » B > 0

of extensions where the vertical maps are the inclusions. Let 1& : A — FE denote
the corestriction of ¢ to E and let & : Ko(A) — Ko(I) be the composition of
ko with the group homomorphism Ky (Ip) — Ko(I) induced by the inclusion
Iy — 1.

As ¢ : A — E is full and nuclear, 190 : A — My (FE) is unitizably full
and nuclear. Let A\ : My(E) — M (My(I)) be the canonical *~homomorphism.
By Proposition 3.3, My(I) is a separable admissible kernel, and hence it is
stable and has the corona factorization property. Note that )\LQQZJ is unitizably
full since A is unital and Lyﬂ is unitizably full. Now by Theorem 2.3, )\Lgﬁ is
nuclearly absorbing.

As M (I) is a separable admissible kernel and A satisfies the UCT, the
canonical group homomorphism

K Knue(A,M2(I)) — Homgz(Ko(A), Ko(Ma(I)))

is an isomorphism by Proposition 3.3. Let z € KK (A, My(I)) be a lift
of Ko(t2)k. By Proposition 2.6, there is a weakly nuclear representation 6 :
A — M(My(I)) such that (0, Xotp) is a Cuntz pair in Enue(A, Ma(I)) and
[0, Mot)] = z.

As A is exact and 6 is weakly nuclear, Proposition 3.2 of [31] implies that
0 is nuclear. Lemma 4.1 applied to the diagram

0 — Mo(I) —— Ma(E) — & My(D) ——— 0

H b |

0 —— My(I) —— M(M3(I)) —— M (M(I))/M2(I) — 0
implies there is a nuclear *-homomorphism ¢9 : A — My (F) such that Apo = 6
and ¢p2 = quatp.

Now in K Kpu(A,Ma(E)), we have

(@) = ju[Ap2, Aotl] = [p2] — [12¥)]
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by Proposition 2.1. In particular, as x induces the group homomorphism
Ko(e2)k,

Ko(@2) — Ko(ta¥)) = Ko(t2)) .
Let Y2 = LEng A — MQ(BM) Then

Ko(p2) — Ko(i2¥)) = Ko(t2jB)k = Ko(t2)o — Ko(t21))
by the choice of x, and hence Ky(p2) = Ko(t2)o. In particular,

[p2(14)] = Ko(e2)(o([14])) = [1B,] € Ko(Bu)-

As B, has stable rank one by Proposition 3.2, B, has cancellation of pro-
jections by Proposition 6.5.1 of [2], and there is a unitary u € My (B,) with
up2(la)u* = 1p, ® 0p,. Now, there is a unital *-homomorphism ¢ : A — B,
such that 1o = ad(u)pa2.

We claim ¢ is the desired *-homomorphism. Note that

Ko(r29) = Ko(p2) = Ko(t2)o

by the unitary invariance of Kjy. By the stability of Ky, the map Koy(e2) is
an isomorphism, and hence Ky(¢) = 0. By construction, gpps = qptat), so if
M, (B,,) 1S the trace on Mia(B,,) induced by 75, then

TA = TB,Y = 2TMy(B,) P2 = 2TMy(B.,) 2 = TB.¥-

As ¢ is a compression of @9 and 9 is nuclear, ¢ is also nuclear. For each
a€ Ap\ {0}, 7B, (¢(a)) = Ta(a) > 0 since 74 is faithful. Since B, has strict
comparison by Proposition 3.2, it follows from Lemma 2.2 in [81] that ¢ is
full. O

PROPOSITION 4.3. Suppose A is a separable, unital, exact C*-algebra sat-
isfying the UCT and B is a simple, unital, Q-stable C*-algebra with a unique
trace Tp such that every quasitrace on B is a trace and Ki(B) = 0.

If p,v : A — B, are unital, full, nuclear *-homomorphisms such that
Ko(p) = Ko(v) and 7,9 = TB,%, then there is a unitary u € By, such that

¢ =ad(u)y.

Proof. Note that Tpoqpy = Tpwqpt. As BY¥ is a IIj-factor by Proposi-
tion 3.2 and gpp and ¢pvy are nuclear, gy and ¢pv are unitarily equivalent
by Proposition 1.1 and a reindexing argument. Let ¥ be a unitary in B with
gy = ad(v)gp1. Again as B“ is a IIj-factor, the unitary group of B¥ is path
connected. Hence there is a unitary v € B, such that gg(v) = 0. Replacing 9
with ad(v)1, we may assume qpp = qp.

By Propositions 1.9 and 1.10, there is a separable C*-subalgebra FEj of
B, containing ¢(A) and ¥(A) such that the corestrictions of ¢ and 9 to Fy
are full and nuclear and agree on Ky. By Proposition 3.2, Jp is an admis-
sible kernel, B, is separably Q-stable, and B“ is a IIj-factor and, therefore,
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has trivial Ki-group. As having trivial Kj-group and being an admissible
kernel are separably inheritable properties, Proposition 1.6 implies there are
separable C*-subalgebras I C Jg, E C B, and D C B“ such that I is an
admissible kernel, E contains Ey and is Q-stable, K1(D) = 0, and there is a
homomorphism

b

0 y Jg —25 B, £, pw s 0

of extensions where the vertical arrows are the inclusion maps. Let @, 1& A —
FE be the corestrictions of ¢ and ¢ to E, respectively. Then o = (jlﬁ, ¢ and 1&
are unital, full, and nuclear, and Ko(¢) = Ko(¢).

Let A : My(E) — M(Ms(I)) be the canonical *~homomorphism. Note
that the image of A\ia — Aiat) is contained in My (1), so (A2, Atath) is a Cuntz
pair in Enye(A, Mo (1)). If & : Ko(A) — Ko(Ma([)) is the group homomorphism
induced by this Cuntz pair, then Ko(j)s = Ko(12$) — Ko(121)) = 0 by Propo-
sition 2.1. As K;(D) = 0, we have that K¢(j) is injective, and hence x = 0.
Proposition 3.3 implies Ma(/) is an admissible kernel and the canonical group
homomorphism

K Ky (A,Ma (1)) — Homy (Ko(A), Ko(Ma(1)))

is an isomorphism, so [Ai2¢, )\ngﬂ] =0.

As ¢ and zﬁ are full and nuclear and A is unital, we have Atz and )\ngﬁ are
unitizably full and nuclear. As Mly([) is a separable admissible kernel, Proposi-
tion 3.3 implies Mp(7) is stable and satisfies the corona factorization property.
It follows that Ata¢ and )\L21/A} are nuclearly absorbing by Theorem 2.3, and
Proposition 2.7 implies 1o and mz? are approximately unitarily equivalent.

Now, 12 and 1910 are approximately unitarily equivalent, and hence, by
a reindexing argument, there is a unitary w € Ma(B,,) with o = ad(w)ea1).
As ¢ and ¢ are unital, w commutes with tap(14) = w29p(14) = 1, @ 0p,,.
Therefore, w = u @ u’ for unitaries v and v’ in B,,, and ¢ = ad(u). (]

5. The classification theorem

The goal of this section is to show the classification results for *-homomor-
phisms from A to B, given in Section 4 imply the analogous results for *~homo-
morphisms from A to B under the same hypothesis. The ideas used here go
back at least as far as the work of Lin in [50] and Dadarlat and Eilers in [21]
and have been used heavily since then. The uniqueness result for *-homo-
morphisms from A to B follows immediately from the uniqueness result for
*-homomorphisms from A to B,. The difficulty lies in the existence result
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where only approximately multiplicative maps from A to B can be produced
directly from a *-homomorphism from A to B,,. To make up for this, a technical
uniqueness result for approximately multiplicative maps is needed.

Let A and B be C*-algebras, let G C A be a finite set, and let § > 0 be
given. A linear, self-adjoint function ¢ : A — B is called (G, 0)-multiplicative if

lp(aa’) — pla)p(a’)]| <o

for all a,a’ € G. Following Section 3.3 of [21], a K-triple for a unital C*-algebra
A is a triple (G, 8, P), where G C A is a finite set, 6 > 0, and P C P (A) is
a finite set of projections in matrices over A such that whenever B is a unital
C*-algebra and ¢ : A — B is a linear, self-adjoint, (G, d)-multiplicative map,
le(p?) — o(p)?|| < 1/4 for all p € P. Note that if P C Pa(A) is any finite set,
then for all sufficiently large finite sets G C A and sufficiently small § > 0, the
triple (G, 0, P) is a Ky-triple for A.

Let x denote the characteristic function of [1/2,00) defined on the real
numbers. Note that if (G, d, P) is a Ko-triple for A and ¢ : A — B is a linear,
self-adjoint, (G, §)-multiplicative map, then 1/2 is not in the spectrum of ¢(p)
for all p € P. Hence for p € P, we may define p4(p) := [x(¢(p))] € Ko(B). In
this way, every linear, self-adjoint, (G, ¢)-multiplicative map ¢ : A — B defines
a function ¢y : P — Ko(B).

LEMMA 5.1. Suppose A is a separable, unital, exact C*-algebra satisfying
the UCT and B is a simple, unital, Q-stable C*-algebra with a unique trace
7B such that every quasitrace on B is a trace and K1(B) = 0.

If T4 is a faithful, amenable trace on A and o : Ko(A) — Ko(B) is a
group homomorphism such that Tgo = 74 and o([14]) = [1B], then for any
Ky-triple (G,0,P) for A, there is a unital, completely positive, nuclear, (G,9)-
multiplicative map ¢ : A — B such that o4(p) = o([p]) for all p € P and
|TB(p(a)) — Ta(a)| <6 for alla € G.

Proof. Suppose o and 74 are given as in the statement, and let (G, J,P)
be a Ky-triple for A. Let tp : B — B, denote the diagonal embedding. By
Proposition 4.2, there is a unital, nuclear *~homomorphism ¢, : A — B, such
that Ko(vw) = Ko(tp)o and 75,9, = T4. By the Choi-Effros lifting theorem,
there is a sequence of unital, completely positive, nuclear maps ¢, : A — B
representing . Let

Si= [ {n=1:ll¢alaa’) — pa(@)pn(d)|| < 63,
a,a’€g

and note that S; € w and, for each n € Sy, ¢, is (G, §)-multiplicative.

Fix p € P, and let d,k > 1 be integers such that p € My(A) and there
are projections e, f € My (B) with o([p]) = [e] — [f]. Then [, (p)] = [tB(e)] —
[tB(f)]. Now, there are an integer £ > 1 and a partial isometry v € My x4¢(B,,)
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such that
v = pu(p) ®a(f) ® lgi and v = O%i ®p(e) @ 1%5.
Let (v,)52, be a bounded sequence in M, x1¢(B) lifting v, and note that
. « ¢ . x d l
lim [[v} o, = X(en(p)) & f & 15| = lim fJonv;, — 03" & e & 15| = 0.
As p € P was arbitrary and P is finite,
Si=[{n € Si: (pn)(p) = [0(p)]} € w.

peP
Let T' = Naegin = 1 : |7B(¢(a)) —Ta(a)| < d}, and note that T' € w since
T8, = TA. Now, SNT € w and, in particular, SNT # . Fix n € SNT and
define ¢ = @,. O

LEMMA 5.2. Suppose A is a separable, unital, exact C*-algebra satisfying
the UCT and B is a simple, unital, Q-stable C*-algebra with a unique trace
TB such that every quasitrace on B is a trace and K;(B) = 0.

For any faithful trace T4 on A, finite set F C A, and € > 0, there is
a Ko-triple (G,0,P) for A such that if p,1p : A — B are unital, completely
positive, nuclear, (G, 0)-multiplicative maps with 4 (p) = V¥4 (p), |TB(P(a)) —
Ta(a)| <9, and |T(Y(a)) —Ta(a)| < & for alla € G and p € P, then there is
a unitary u € B such that

lo(a) — up(a)u™|| < e
for alla € F.

Proof. Assume the result is false, and fix a faithful trace 74 on A, a finite
set F C A, and € > 0 where the result fails. Let (G,)22; be an increasing
sequence of finite subsets of A with dense union, let (4,)22; be a decreasing
sequence of positive real numbers converging to zero, and let (P,)22; be an
increasing sequence of finite subsets of P, (A4) with dense* union such that
(Gny0n, Pp) is a Ky-triple for each n > 1. For each n > 1, there are unital,
completely positive, nuclear, (G, §,,)-multiplicative maps ¢, 1, : A — B such
that () (p) = ()4 (p), 175(9n(@) ~7a(0)] < G, and |75 (thn(a)) ~Ta(a)] <
o, for all a € G, and p € P,, but such that for each unitary u, € B, there is
an a € F with

lon(a) — untn(a)up|l > €.

Let ¢,,%, : A — B, denote the functions induced by the sequences
(pn)o2; and (1,)52 ;, respectively, and note that ¢,, and 1), are unital *~homo-
morphisms. Since A is exact, ¢, and 1, are nuclear by Proposition 3.3 in [15].
Also, 7B, ¢w = TB,%w = Ta. Since 74 is faithful and B,, has strict comparison

4Here Poo(A) is equipped with the metric induced by the norm on A ® K.
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with respect to 7p, by Proposition 3.2, ¢, and ), are full by Lemma 2.2
in [81].

Fix p € Py, and let d > 1 be an integer with p € Mgy(A). As (¢r)x(p) =
(6r)4(p) for all k > n, we have [x(¢x(p))] = [(t4(p)] in Ko(B) for all
k > n. Note that B has stable rank one by Corollary 6.6 in [69], and hence
B has cancellation of projections by Proposition 6.5.1 of [2]. Now, there is
a partial isometry v, € My(B) with vivy = x(¢r(p)) and vipvy = x(Vr(p))
for all k& > n. The sequence (vj);, defines a partial isometry v in My(B,,
with v*v = X(¢w(p)) = ¥uw(p) and vo* = x(Yu(p)) = Yu(p). Hence [p,(p)] =
[ (p)] in Ko(By). This shows Ko(p.,) = Ko(tw).

Proposition 4.3 now shows there is a unitary v € B, with ¢,(a) =
upy(a)u* for all a € A. If (un)22, € B is a sequence of unitaries lifting u,
then for each a € A,

lim |on(a) = untn(a)uy,|| =0
n—w
and, in particular, for some integer n > 1,

len(a) = unthn(a)up|l < e

for all a € F, which is a contradiction. O

Intertwining the previous two lemmas produces the following classification
theorem, which is the main technical result of the paper.

THEOREM 5.3. Suppose A is a separable, unital, exact C*-algebra satis-
fying the UCT and B is a simple, unital, Q-stable C*-algebra with a unique
trace T such that every quasitrace on B is a trace and Ki(B) = 0.

(1) If 74 is a faithful, amenable trace on A and o : Ko(A) — Ko(B) is a group
homomorphism such that Tgo = 74 and o([14]) = [1B], then there is a
unital, faithful, nuclear *-homomorphism ¢ : A — B such that Ko(¢) =0
and Tpp = TA.

(2) If p,9b : A — B are unital, faithful, nuclear *-homomorphisms with Ky(p)
= Ko(¢) and Tpp = T, then there is a sequence of unitaries (uy)2>, C B
such that

Tim_ (@) — ut(ayuy ] = 0

for all a € A.

Proof. Note that (2) follows immediately from Lemma 5.2 with 74 := 7.
For (1), fix an increasing sequence of finite sets F,, C A with dense union and
a sequence £, > 0 with Y &, < oco. Let (G,,0n,Pn) be Ko-triples for A

satisfying Lemma 5.2 for the trace 74 and the pair (F,,&,). Enlarging G,, and
P, and decreasing ¢,,, we may assume the G, are increasing with union dense
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in A, the d,, are decreasing and converging to zero, and the P,, are increasing
with union dense in Py (A).

By Lemma 5.1, for each n > 1, there is a unital, completely positive,
nuclear, (G, 0,)-multiplicative map v, : A — B with (¢,)%(p) = o([p]) for all
p € Py and |1(¢¥n(a)) — Ta(a)| < 6, for all a € G,. By Lemma 5.2, for each
n > 1, there is a unitary u,4+1 € B such that

1¥n(a) — un+1¢n+1(a)uz+1” <Eé&n

for all a € F,. Define ¢1 = 11, and define ¢, = ad(uaus - - - up )y, for n > 2.
Then for all n > 1 and a € Fp,,

lpn(a) = ent1(a)ll = [[¢n(a) = uni1nii(@)ug |l < en

This implies (¢, (a))p2, is Cauchy for all a € | J;2; Fp, and hence by an /3
argument, it is Cauchy for all ¢ € A. The desired map ¢ : A — B is given by
w(a) = limy 00 @n(a). O

The following result provides the rigorous statement of Theorem D.

COROLLARY 5.4 (Theorem D). Suppose A is a separable, unital, exact
C*-algebra satisfying the UCT and B is a simple, unital AF-algebra with a
unique trace T and divisible Ky-group.

(1) If T4 is a faithful, amenable trace on A and o : Ko(A) — Ky(B) is a
group homomorphism such that Tgo = 74 and o([14]) = [1B], then there
is a unital, faithful *-homomorphism ¢ : A — B such that Ko(¢) = o and
TBY = TA-

(2) If p,v : A — B are unital, faithful *-homomorphisms with Ky(p) = Ko(v)
and Ty = TRY, then there is a sequence of unitaries (un)o>y C B such
that for all a € A,

lim () — untp(a)uy,| = 0.

n—oo

Proof. As B is an AF-algebra, we have that Ko(B) is torsion-free, K;(B)
= 0, and every quasitrace on B is a trace. As Ky(B) is divisible and torsion-
free, the homomorphism Ky (B) — Ko(B) ®z Q given by [p] — [p] ® 1 for all
projections p € B® K is an isomorphism. Also, viewing B® Q as the inductive
limit of the diagonal embeddings My (B) — My(B) for integers k, ¢ > 1 with k
dividing ¢, the group homomorphisms

Ko(Mg(B)) = Ko(B) @z Q: [p] = [p] ® %

induce an isomorphism Ky(B® Q) — Ky(B)®zQ. These isomorphisms induce
an isomorphism Ky(B) = Ko(B ® Q) of ordered abelian groups, and it follows
from Elliott’s classification of AF-algebras that B = B® Q. As B is nuclear, all
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*-homomorphisms A — B are nuclear, so the result follows from Theorem 5.3.
O

6. Applications

Proof of Theorem A. We may assume A is unital. Let 74 be a faithful,
amenable trace on A, and let

Go = spang{(74 ® Tric)(p) : p € A® K is a projection} C R.

By [27], if Gy is equipped with the order and unit inherited from R, then Gy is
a simple dimension group with a unique state given by the inclusion Gy — R.
Let B be a unital AF-algebra with K¢(B) = Gp and note that B is simple
and has a unique trace. Composing the map Ky(A) — Go induced by the
trace with an isomorphism Go — Ky(B) produces a group homomorphism
o : Ko(A) — Ky(B) compatible with the unit and the trace. Corollary 5.4
now implies the existence of a unital, trace-preserving embedding A — B. [J

Proof of Theorem B. The implications (1) < (2) < (3) are well known.
To show (1) implies (3), let G be a countable, discrete, amenable group. A
result of Higson and Kasparov in [39] shows that G satisfies the Baum-Connes
conjecture, and hence a result of Liick in [53] shows that if 7¢. () denote the
canonical trace on C!(G), then for all projections p € Ci(G) ® K, we have
(Tex@) @ Tri)(p) € Q. As Ko(Q) = Q, the trace on C;(G) produces a group
homomorphism Ky(C!(G)) — Ko(Q) compatible with the unit and trace. A
result of Tu in [84] shows C}(G) satisfies the UCT, and the result follows from
Corollary 5.4. O

Proof of Theorem C. If Cy(X) %, G embeds into a simple, unital AF-
algebra B, then any trace on B induces a faithful, G-invariant, Borel measure
on X with mass at most 1, and hence after rescaling, X admits a probability
measure of the desired form.

Conversely, suppose G is amenable and suppose p is a faithful, G-invariant,
Borel, probability measure on X. If E': Cy(X) x G — Cy(X) is the canonical
conditional expectation, then the map Cp(X) x G — C given by

a— /XE(a) du

is a faithful trace on Cp(X) x G which is amenable as Cy(X) %, G is nuclear.
A result of Tu in [84] shows Cp(X) %, G satisfies the UCT, so the result follows
from Theorem A. O

In [52], Lin has shown that if A is an AH-algebra and « is an action of
ZF on A such that A admits a faithful, a-invariant trace, then the crossed
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product A x, ZF embeds into an AF-algebra. Theorem A implies the following
generalization of this result.

COROLLARY 6.1. Suppose A is a separable, exact C*-algebra satisfying
the UCT, G is a countable, discrete, torsion-free, abelian group, and « is an
action of G on A. If A admits a faithful, a-invariant, amenable trace, then
A Xqo G embeds into an AF-algebra.

Proof. Let G, be an increasing sequence of finitely generated subgroups
of G with union G. If «, is the restriction of « to an action of G,, on A, then
the canonical *-homomorphism

lim A Xq, G, — AXq G
H

is an isomorphism. As each G,, is finitely generated, torsion-free, and abelian,
Gn = 2% for some integer d(n) > 1. It follows that A x, G satisfies the
UCT. Also, A is separable and exact, and if £/ : A X, G — A is the canonical
conditional expectation and 74 is a faithful, a-invariant, amenable trace on A,
then 74 F is a faithful trace on A x, G. As 74 is amenable and A is exact,
7z, (A)" is injective. Therefore,

oA 2o QY 2 7, (A)'2G

is injective by Proposition 6.8 of [13], and hence 74 E is amenable. The result
now follows from Theorem A. O

The AF-embedding problem for C*-algebras of countable 1-graphs was
solved in [76]. For countable, cofinal, row-finite 2-graphs with no sources,
a similar result was obtained by Clark, an Huef, and Sims in [12]. Using
their techniques together with Theorem A, the main result of [12] extends to
k-graphs.

COROLLARY 6.2. Let k > 1 be an integer, let A be a countable, cofinal,
row-finite k-graph with no sources, and let Aq,..., Ay denote the coordinate
matrices of A. The following are equivalent:

(1) C*(A) embeds into an AF-algebra;
(2) C*(A) is quasidiagonal;

(3) C*(A) is stably finite;

(4) (Shyim(1 - AD) NZ,A° = {0};
(5) A admits a faithful graph trace.

Proof. The equivalence of (2) through (5) is Theorem 1.1 in [12], and it
is well known that (1) implies (2). The same proof given in Lemma 3.7 of [12]
shows (5) implies (1) by appealing to Theorem A above in place of Corollary B
of [81]. O
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A C*-algebra A is matricial field (MF) if there is a net ¢; : A — M, ;) of
linear, self-adjoint functions such that

lpi(aa’) — wi(a)pi(a)| = 0 and pi(a)ll — [lal
for all a,a’ € A. Similarly, a trace 74 on a C*-algebra A is called matricial

field (MF') if there is a net ¢; : A — M,,(;) of linear, self-adjoint functions such
that

lpi(aa’) — pi(a)pi(d)| =0 and my,, (i(a)) = Ta(a)
for all a,a’ € A.

The class of MF algebras was introduced by Blackadar and Kirchberg
in [4]. Haagerup and Thorbjgrnsen have shown in [37] that C}(F%) is MF where
F; is the free group on two generators. From here, it follows as well that C*(F)
is MF for all free groups F'. (One first reduces to the case where F' is countable
and then considers an embedding F' < F5.) Using this result, many reduced
crossed products of C*-algebras by free groups have been shown to be MF in
[43], [66], [67], [77]. The results above allow for substantial generalizations of
these results.

COROLLARY 6.3. Suppose A is a separable, exact C*-algebra satisfying
the UCT and « is an action of a free group F on A. If T is a trace on A x, F
such that 7|4 is faithful and amenable, then T is MF.

Proof. Adding a unit to A if necessary, we may assume A is unital. By
Theorem 4.8 in [67], there is a group homomorphism o : K¢(A4) — Ko(Qu)
such that o([14]) = [lo,], To,0 = 7|a, and 0Ky(as) = o for each s € F. By
Proposition 4.2, there is a unital, full, nuclear *-homomorphism ¢ : A — Q,,
such that Ko(¢) = o and 179, = 7]4.

For each s in a free generating set for F', we have Ky(pas) = Ko(p) and
To,pos = T, and hence, by Proposition 4.3, there is a unitary us, € 9,
such that pas; = ad(us)e. As F' is free, the function s — ug extends to a
unitary representation of F' on Q,, with pas = ad(us)p for all s € F.

This shows that the trace 7|4 is @-MF in the sense of [67], and hence, if
E : A x, F — A denotes the conditional expectation, then the trace (7|4)FE
is MF. When F % Z, we have 7 = (7|4)E by [38], and therefore, 7 is MF.

Now assume F' = Z. Since A is exact and 7|4 is amenable, 7., (A)" is
injective. Since

Tr (A X L) =21, (A)'%Z

is injective by Proposition 6.8 of [13], (7|4)E is amenable. Now, A x Z is
separable and exact, satisfies the UCT, and admits a faithful, amenable trace
(t]a)E. By Theorem 3.8 in [33], (7|4)E is quasidiagonal, and hence A x Z
is quasidiagonal. By Theorem 4.1 in [33], every amenable trace on A x Z is
quasidiagonal and, in particular, is MF. So it suffices to show 7 is amenable.
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Let T'(A) denote the set of traces on A. Since A is unital, T(A) is a
Choquet simplex by Theorem 3.1.18 in [73]. It was shown by Kirchberg in
Lemma 3.4 of [44] that the set of amenable traces on A is a weak*-closed face
in T(A), so by Corollary I1.5.20 of [1], there is a continuous, affine function
f:T(A) — [0,1] such that for p € T(A), f(p) = 0if, and only if, p is amenable.
Let & be the action of T on A x Z dual to o. Then

(T|A)E_/mzz dz.
T

As f((7|a)E) = 0 and the map z — f(7d;) is positive and continuous on T,
we have f(7a,) = 0 for all z € T by the faithfulness of the Lebesgue measure
on T. Therefore, 7é, is an amenable trace for all z € T and, in particular,
T = TG is an amenable trace. O

COROLLARY 6.4. If A is a locally type I C*-algebra and o is an action of
a free group F on A, then every trace on A X, F is MF.

Proof. We may assume A is separable. Suppose 7T is a trace on A x, F.
Then J := {a € A : 7(a*a)} = 0 is an a-invariant ideal of A and 7 vanishes
on the ideal J x, F' of A %, F. Hence, as F' is exact, 7 factors through
(A/J) %, F. As A is locally type I, so is A/J. After replacing A with A/J,
we may assume 7|4 is faithful. By Theorem 1.1 in [16], locally type I algebras
satisfy the UCT. Since locally type I algebras are nuclear, the result follows
from Corollary 6.3. (]

The following is a substantial generalization of a result of Kerr and Nowak
(Theorem 5.2 in [43]) which gives the same statement in the case when A is
commutative. An action of a group GG on a C*-algebra A is called minimal if
A admits no non-trivial G-invariant ideals.

COROLLARY 6.5. Suppose A is a separable, unital, nuclear C*-algebra
satisfying the UCT and F is a free group acting minimally on A. Then the
following are equivalent:

(1) Ax, F is MF;
(2) A x, F is stably finite;
(3) A admits an invariant trace.

Proof. All MF C*-algebras are stably finite, so (1) implies (2). For (2)
implies (3), if A x, F' is stably finite, then since A x, F' is unital and exact,
A x, F admits a trace 7 by Corollary 5.12 in [36], and then 7|4 is an invariant
trace on A. Finally, for (3) implies (1), suppose A admits an invariant trace
Ta. Since {a € A : 74(a*a) = 0} is an invariant ideal in A and « is minimal,
74 is faithful. As A is nuclear, 74 is amenable, and hence 74F is MF by
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Corollary 6.3. Since 74 and E are faithful, 74 F is faithful. So A %, F has a
faithful, MF trace, hence it is MF. O

Theorem D also allows for a description of closed unitary orbits of normal
operators in simple, unital AF-algebras with a unique trace and divisible K-
group in terms of spectral data.

COROLLARY 6.6. Suppose B is a simple, unital AF-algebra with a unique
trace and divisible Ky-group. Two normal operators a and b in B are approx-
imately unitarily equivalent if, and only if, o(a) = o(b), 7(f(a)) = 75(f(b))
for all f € C(o(a)), and for every compact, open set U C o(a), the projections
xv(a) and xu(b) are unitarily equivalent.

Proof. Let X = o(a) = o(b), and let @ and b be the *homomorphisms
C(X) — B given by the functional calculus. If X = o(a) = o(b), then
Ko(C(X)) is canonically isomorphic to C(X,Z) and is generated as a group
by the elements [xy] for compact, open sets U C X. Hence Ko(a) = Ko(b)
if, and only if, xy(a) and xy(b) are unitarily equivalent for each compact,
open set U C X. Now apply the uniqueness portion of Theorem 5.3 to the

*-homomorphisms & and b. U

We end with an abstract characterization of AF-algebras among the class
of simple, unital C*-algebras with a unique trace and divisible Ky-group. The
following result is known and can be deduced from the classification of separa-
ble, simple, unital, nuclear, Z-stable C*-algebras which satisfy the UCT and
have a unique trace. The minimal route through the literature seems to be
the quasidiagonality theorem of [81], the results of Matui-Sato to show A is
tracially AF [55], and the classification of separable, simple, unital, nuclear,
tracially AF-algebras satisfying the UCT due to Lin in [51]. The latter result
makes heavy use of deep classification and structural results for approximately
homogeneous C*-algebras. It is worth emphasizing that the proof given here
does not depend on tracial approximations of any kind and does not depend
on any inductive limit structure beyond that for AF-algebras.

COROLLARY 6.7. Suppose A is a simple, unital, C*-algebra with a unique
trace and divisible Ko-group. Then A is an AF-algebra if, and only if, A is
separable, nuclear, and Q-stable, A satisfies the UCT, and Ki(A) = 0.

Proof. 1t is well known that AF-algebras are separable, nuclear, and satisfy
the UCT. As Ko(A) is divisible, Ko(A® Q) = Ky(A) and hence A is Q-stable
by the classification of AF-algebras.

Conversely, suppose A is a separable, simple, unital, nuclear, Q-stable
C*-algebra with a unique trace, A satisfies the UCT, and K;(A4) = 0. As A
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is simple, the trace on A is necessarily faithful, so A is stably finite. Hence
(Ko(A), K (A),[14]) is an ordered group by Proposition 6.3.3 in [2].

As A is O-stable and has a unique trace, A has real rank zero by Theorem
7.2 of [70]. Also, A has stable rank one by Corollary 6.6 in [69] and, therefore,
has cancellation of projections by Proposition 6.5.1 of [2]. Therefore, Ky(A)
has Riesz interpolation by Corollary 1.6 in [85]. Also, as A is O-stable, Ky(A)
is unperforated. By the Effros-Handelman-Shen Theorem [25], there is a unital
AF-algebra B with Ky(A) = Ky(B) as ordered groups. Necessarily, B is simple
and has a unique trace. Let o : Ko(A) — Ko(B) be a unital order isomorphism.
As Ky(B) has unique state, we have 7go = 74. Applying Theorem 5.3, there is
a unital, nuclear *-homomorphism ¢ : A — B with Ky(¢) = 0 and 75p = 74.

As B is an AF-algebra and A has stable rank one, there is a *-homomor-
phism 1 : B — A such that Ko(v)) = 0~! and 747 = 75 by the classification
of *-homomorphisms out of AF-algebras (or by Theorem 5.3). Using Theo-
rem 5.3, 1 is approximately unitarily equivalent to the identity on A and
1) is approximately unitarily equivalent to the identity on B. By Elliott’s
intertwining argument (see Corollary 2.3.4 of [71]), A = B. O
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