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Subalgebras of simple AF-algebras

By Christopher Schafhauser

Abstract

It is shown that if A is a separable, exact C∗-algebra which satisfies the

Universal Coefficient Theorem (UCT) and has a faithful, amenable trace,

then A admits a trace-preserving embedding into a simple, unital AF-

algebra with a unique trace. Modulo the UCT, this provides an abstract

characterization of C∗-subalgebras of simple, unital AF-algebras.

As a consequence, for a countable, discrete, amenable group G acting

on a second countable, locally compact, Hausdorff space X, C0(X) or G

embeds into a simple, unital AF-algebra if, and only if, X admits a faithful,

invariant, Borel, probability measure. Also, for any countable, discrete,

amenable group G, the reduced group C∗-algebra C∗r(G) admits a trace-

preserving embedding into the universal UHF-algebra.

Introduction

It follows from the work of Murray and von Neumann in [57] that there is a

unique separably acting, hyperfinite II1-factorR and that any separably acting,

hyperfinite, tracial von Neumann algebra admits a trace-preserving embedding

into R. A fundamental result of Connes in [13] characterizes hyperfinite von

Neumann algebras abstractly by showing the equivalence of hyperfiniteness

and injectivity among von Neumann algebras. Together, these results show

that a separably acting, finite von Neumann algebra embeds into R if, and

only if, it is hyperfinite, a result which has an instrumental role in the theory

of subfactors initiated by Jones in [41].

A C∗-algebraic analogue of the Murray-von Neumann classification the-

orem is given by Elliott’s celebrated result in [26] classifying approximately

finite-dimensional (AF) C∗-algebras and ∗-homomorphisms between such alge-

bras in terms of the non-stableK0-group. The problem of finding abstract char-

acterizations of AF-algebras and C∗-subalgebras of AF-algebras was posed by

Effros in [24] with the latter problem motivated in part by the AF-embedding

of the irrational rotation algebras of Pimsner and Voiculescu in [64] which
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led to the classification of such C∗-algebras in terms of the angle of rotation.

Although an abstract characterization of AF-algebras among all C∗-algebras

seems out of reach, such a characterization is possible among simple, unital

C∗-algebras due to the remarkable success of Elliott’s classification programme

for simple, nuclear C∗-algebras over the last several decades with the final steps

taken in [35], [29], and [81].

The problem of characterizing C∗-subalgebras of AF-algebras has received

much attention over the last several decades with the standing conjecture being

that a C∗-algebra embeds into an AF-algebra if, and only if, it is separable,

exact, and quasidiagonal; see Section 7 of [4]. Shortly after the Pimsner-

Voiculescu AF-embedding result of [64], Pimsner characterized in [63] which

C∗-algebras of the form C(X) o Z can be embedded into an AF-algebra in

terms of the underlying action of Z on X. Similar results were obtained by

Brown for crossed products of AF-algebras by Z in [7] and for crossed products

of UHF-algebras by Zk in [8]. Many other partial results along these lines have

appeared in [42], [52], and [40] for example. The latter result in [40] also has an

important role in the work of Ozawa, Rørdam, and Sato in [62] showing that

the C∗-algebra of an elementary amenable group embeds into an AF-algebra,

a result which was later extended to all countable, discrete, amenable groups

in [81].

Aside from crossed products, it is known that all residually stably finite,

type I C∗-algebras embed into AF-algebras [80], separable, exact, residually

finite-dimensional C∗-algebras satisfying the UCT embed into AF-algebras [18],

and the cone over any separable, exact C∗-algebra embeds into an AF-algebra

[60]. Also, combining Ozawa’s result in [60] with the techniques introduced by

Spielberg in [80], Dadarlat has obtained AF-embeddings of continuous fields

of C∗-algebras in [19] provided the base space is sufficiently connected and

at least one fibre is AF-embeddable. See Chapter 8 of [10] for a well-written

survey of the AF-embedding problem for C∗-algebras.

Despite the remarkable work on the AF-embedding problem given in the

results above, in each of these results, the methods used are very specific to

the class of C∗-algebras under consideration and shed very little light on the

abstract AF-embedding problem. This paper introduces a systematic method

for producing embeddings into certain simple, unital AF-algebras.

It is well known that any C∗-subalgebra of a simple, unital AF-algebra

must be separable and exact and must admit a faithful, amenable trace. Mod-

ulo the Universal Coefficient Theorem (UCT) of [72], the present paper shows

these are the only obstructions. There are no known counterexamples to the

UCT among separable, exact C∗-algebras with a faithful, amenable trace, and

it is an important open problem whether all separable, nuclear C∗-algebras

satisfy the UCT.
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Theorem A. If A is a separable, exact C∗-algebra which satisfies the

UCT and admits a faithful, amenable trace, then there is a simple, unital AF-

algebra B with a unique trace and a trace-preserving embedding A ↪→ B.

Amenable traces were introduced by Connes in [13] in the von Neumann

algebraic setting and are characterized by the existence of almost multiplica-

tive, almost trace-preserving, completely positive, contractive maps into Mn,

the algebra of n×n matrices over C, where “almost” is measured in the 2-norm

defined by the normalized trace on Mn. A key step in Connes’ proof that injec-

tive II1-factors are hyperfinite consists of showing that the trace on an injective

II1-factor is amenable. In fact, the amenability of the trace characterizes in-

jectivity of II1-factors. Amenable traces were introduced in the C∗-algebraic

setting by Kirchberg in [44] and extensively developed by Brown in [9].

There is a very close connection between the theory of amenable traces

on C∗-algebras and von Neumann algebras. For example, if A is an exact

C∗-algebra, a trace τA on A is amenable if, and only if, πτA(A)′′ is hyperfinite.

Furthermore, if τA is faithful, then the GNS representation πτA : A→ πτ (A)′′

is faithful, and hence any exact C∗-algebra A with a faithful, amenable trace

admits a trace-preserving embedding into a hyperfinite von Neumann algebra.

This observation, which can be viewed as a weak∗-version of Theorem A, is the

starting point of the proof of the quasidiagonality theorem of Tikuisis, White,

and Winter in [81] and Gabe in [33] which, in turn, has an important role in

the proof of Theorem A.

Building on the work of Ozawa, Rørdam, and Sato in [62], it was shown

in [81] that if G is a countable, discrete, amenable group, then C∗r(G) embeds

into an AF-algebra, although these results give no control over the codomain

AF-algebra. Combining the techniques introduced in the present paper with

the work of Higson and Kasparov [39], Lück [53], and Tu [84] on the Baum-

Connes conjecture yields a much sharper AF-embedding result showing group

C∗-algebras embed into the universal UHF-algebra Q =
⊗∞

n=1Mn.

For a discrete group G, the group von Neumann algebra L(G) and the

reduced group C∗-algebra C∗r(G) are equipped with the usual faithful trace

given by
∑

g∈G cg · g 7→ ce, where e ∈ G is the neutral element.

Theorem B. For a countable, discrete group G, the following are equiv-

alent :

(1) G is amenable;

(2) L(G) admits a trace-preserving embedding into R;

(3) C∗r(G) admits a trace-preserving embedding into Q.

In fact, the methods introduced here also yield an AF-embedding result

for crossed products of abelian C∗-algebras by amenable groups in the spirit
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of Pimsner’s result for crossed products C(X) o Z in [63] and Lin’s result for

crossed products C(X) o Zk in [52].

Theorem C. If X is a second countable, locally compact, Hausdorff space

and G is a countable, discrete, amenable group acting on X , then C0(X) oG

embeds into a simple, unital AF-algebra if, and only if, X admits a faithful,

G-invariant, Borel, probability measure.

The new technical tool facilitating these results is a classification theorem

for faithful ∗-homomorphisms into certain AF-algebras. The precise statement

of Theorem D is given in Corollary 5.4. Theorems A, B, and C will be deduced

from Theorem D at the beginning of Section 6.

Theorem D. If A is a separable, unital, exact C∗-algebra satisfying the

UCT with a faithful, amenable trace and B is a simple, unital AF-algebra

with a unique trace and divisible K0-group, then the unital, trace-preserving

embeddings A → B are classified up to approximate unitary equivalence by

their behaviour on the K0-group.

A more general classification result is given in Theorem 5.3 which does not

require any inductive limit structure or nuclearity assumption on the codomain

C∗-algebra. Along with the applications to AF-embeddability listed above,

this technical refinement of Theorem D also leads to a self-contained proof of

an abstract characterization of AF-algebras among simple, unital C∗-algebras

with a unique trace and divisible K0-group in Corollary 6.7. These results

also lead to new examples of MF algebras arising as reduced crossed products

by free groups (see Corollary 6.5) building on [43], [66], [67], [77] and give

AF-embedding results for k-graph algebras extending those of [76] and [12].

Special cases of Theorem D have appeared in several places in the litera-

ture. When A is an AF-algebra or an AT-algebra of real rank zero, Theorem D

is a special case of classical results of Elliott in [26] and [28], respectively. For a

commutative or, more generally, approximately homogeneous (AH) C∗-algebra

A, classification results for embeddings from A into an AF-algebra form a cru-

cial part of the AF-embedding results for crossed products obtained by Lin in

[52]. Also, the classification results for simple, nuclear C∗-algebras with tracial

approximation structure, initiated by Lin in [49] and culminating in the re-

markable work of Gong, Lin, and Niu in [35], depends heavily on classification

results for embeddings between such algebras.

The power of Theorem D and what distinguishes Theorem D from exist-

ing classification results is the general hypothesis on the domain C∗-algebra.

The proof is motivated by the classical classification results for tracially AF-

algebras in [17] and [51], but it avoids making any use of the internal structure

of the domain C∗-algebra and makes no use of inductive limit models such as



SUBALGEBRAS OF SIMPLE AF-ALGEBRAS 313

the AH-algebras used in [51]. The proof of Theorem D, and the more gen-

eral Theorem 5.3 below, serve as proof of concept for an abstract approach to

Elliott’s classification programme which does not depend on tracial approxi-

mations. A more general result of this form will appear in forthcoming work

of the author with Carrión, Gabe, Tikuisis, and White.

On the proof of Theorem D. The proof of Theorem D is heavily motivated

by the classification theorem for separable, simple, unital, nuclear, tracially

AF-algebras satisfying the UCT due to Lin in [51] and the classification of
∗-homomorphisms between such algebras due to Dadarlat in [17], and, on a

non-technical level, there are very close analogies between the proofs of these

results. The class of tracially AF-algebras was introduced by Lin in [49] moti-

vated in part by an approximation condition proved by Popa in [65] for simple,

unital, quasidiagonal C∗-algebras of real rank zero. Roughly, a tracially AF-

algebra is a C∗-algebra B which admits the following approximation condition

in the spirit of Egoroff’s Theorem: There is an approximately central projec-

tion in B with large trace such that the corner pBp is locally approximated by

a finite-dimensional C∗-subalgebra where the approximations are in operator

norm.

The basic strategy for the classification results in [17] and [51] is to use

the tracial finite-dimensional approximations for A to produce approximately

multiplicative maps from A into a suitably well-behaved AH-algebra which ap-

proximately preserve the tracial data. From here, one then perturbs these maps

on tracially small corners of A to adjust the behaviour of the maps on the infin-

itesimal elements of the K-theory groups. Then, the structure of AH-algebras

allows one to construct an embedding of the given AH-algebra into B which

implements an isomorphism on the invariant so that, upon composing this em-

bedding with the approximately multiplicative maps into the AH-algebra, one

obtains approximately multiplicative maps A→ B with prescribed behaviour

on K-theory and traces. Together with a uniqueness result for approximately

multiplicative maps from A to B relying on a Weyl-von Neumann type theorem

for Hilbert module representations as in [50] or [21] and using the tracial ap-

proximation structure of B, an intertwining argument allows one to construct
∗-homomorphisms from A to B with prescribed behaviour on K-theory and

traces.

Changing perspective slightly, the almost multiplicative, almost trace-

preserving maps A→ B can be encoded as a trace-preserving ∗-homomorphism

ψ : A → Bω, where Bω denotes the norm ultrapower of B. Adjusting

the behaviour of these approximations on the tracially small corner of A

can be viewed as classifying, up to unitary equivalence, all ∗-homomorphisms

ϕ : A → Bω which are trace-zero perturbations of ψ. It should be noted that
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this formalism is also explicitly used in the classical tracially AF-algebra clas-

sification results (usually with sequence algebras in place of ultrapowers, but

this is mostly a matter of taste).

In the abstract setting of Theorem D, the existence of ψ will follow directly

from the quasidiagonality theorem of [81] and [33]; see Theorem 1.2 below. The

new step is an abstract method for describing the trace-zero perturbations of

ψ up to unitary equivalence. Consider the trace-kernel extension

0 JB Bω Bω 0
jB qB

associated to B, where Bω is the 2-norm ultrapower of B and

JB = {b ∈ Bω : τBω(b∗b) = 0}.

Roughly, Bω and JB will play the roles of the tracially large and small corners

of B, respectively.

When B has a unique trace and no non-zero, finite-dimensional represen-

tations, Bω is a II1-factor, and hence all trace-preserving ∗-homomorphisms

A → Bω factor through the von Neumann algebra πτA(A)′′ associated to A

and τA. When A is exact and τA is amenable, πτA(A)′′ is a hyperfinite von

Neumann algebra, and hence the classification of normal ∗-homomorphisms

from hyperfinite von Neumann algebras to II1-factors yields a classification re-

sult for trace-preserving ∗-homomorphisms A→ Bω up to unitary equivalence.

It is through exploiting this observation that both the tracial approximation

assumptions on A and factoring through a model AH-algebra are avoided.

Having classification of trace-preserving ∗-homomorphisms A → Bω ∼=
Bω/JB, the goal becomes to lift this classification along qB to obtain classifica-

tion of ∗-homomorphisms A→ Bω up to unitary equivalence. Using extension

theoretic methods, it is shown in [78] that (at least when B ∼= Q), mod-

ulo a certain KK-obstruction, a faithful, nuclear ∗-homomorphism A → Bω

can be lifted to a nuclear ∗-homomorphism A → Bω. The strategy behind

Theorem D is to use extension theoretic methods to show that the nuclear
∗-homomorphisms A → Bω lifting a given faithful, nuclear ∗-homomorphism

A → Bω are parametrized up to unitary equivalence by the Kasparov group

KKnuc(A, JB).1 Now, using the UCT and the K-theoretic assumptions on B,

the group KKnuc(A, JB) is computed in terms of the K0-groups of A and Bω.

Together with an intertwining argument given in Section 5, this will prove

Theorem D.

In order to illustrate the lifting process suggested above, let us consider the

uniqueness result (Proposition 4.3) in more detail; the corresponding existence

1The C∗-algebra JB is not σ-unital. In the actual proof, all computations will be done in a

sufficiently large, separable C∗-subalgebra of JB .
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result (Proposition 4.2) has a similar flavour. Let A and B be as in Theorem D,

and suppose ϕ,ψ : A → Bω are unital, full, nuclear ∗-homomorphisms with

τBωϕ = τBωψ and K0(ϕ) = K0(ψ).

Since ϕ and ψ agree on the trace on Bω, qBϕ, qBψ : A→ Bω agree on the

trace on Bω. As Bω is a II1-factor and ϕ and ψ are nuclear, qBϕ and qBψ are

unitarily equivalent; see Proposition 1.1 below. Let u ∈ Bω denote a unitary

conjugating qBψ to qBϕ. If F ∈ Bω with qB(F ) = u, then

F ∗F − 1Bω , FF
∗ − 1Bω , ϕ(a)− Fψ(a)F ∗ ∈ JB

for all a ∈ A.2 Hence viewing Bω as a C∗-subalgebra of the multiplier algebra

M(JB) of JB, the triple (ϕ,ψ, F ) defines an element in KKnuc(A, JB).

Under the hypotheses of Theorem D, since K0(ϕ) = K0(ψ), this KK-class

vanishes, so there are a ∗-homomorphism π : A → M(JB ⊗ K) and a unitary

V ∈M(JB ⊗K) such that

V − F ⊕ 1M(JB⊗K) ∈ JB ⊗K and ϕ⊕ π = ad(V )(ψ ⊕ π).

In Section 3, following the techniques introduced in [78] for the case B = Q,

it is shown that, modulo separability issues, JB is stable and has the corona

factorization property. From here, the fullness of ϕ and ψ together with a

Weyl-von Neumann type absorption theorem due to Elliott and Kucerovsky in

[30] (Theorem 2.3 below) is used to remove the summand π and show there is

a unitary U ∈M(JB) with

U − F ∈ JB and ϕ = ad(U)ψ.

But now, as F ∈ Bω and U − F ∈ JB ⊆ Bω, we have U ∈ Bω. Since U

conjugates ψ to ϕ by construction, this shows the uniqueness result.

The paper is organized as follows. In Section 1, some preliminary results

on amenable traces are collected along with some general machinery for reduc-

ing problems to separable C∗-algebras. Section 2 records some KK-theoretic

prerequisites and obtains the non-stable KK-theoretic results needed in Sec-

tion 4. Section 3 is devoted to the trace-kernel extension and proves certain

extension-theoretic regularity conditions for the trace-kernel ideal. The main

classification results are given in Sections 4 and 5; the former section proves

classification results for embeddings into ultrapower C∗-algebras, and the lat-

ter section restates these results in terms of approximate morphisms and, from

here, obtains Theorem D via an intertwining argument. Finally, Theorems A,

B, and C along with some other consequences of Theorem D are proved in

Section 6.

2In fact, as the unitary group of Bω is path-connected, u lifts to a unitary. For technical

reasons, it will be helpful to take a unitary lift of u and replace ψ with a unitary conjugate

of ψ to arrange F = 1Bω .
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1. Preliminaries

1.1. Amenable traces. Throughout, the word trace is reserved for a tracial

state on a C∗-algebra. Given a C∗-algebra A and a trace τA on A, let τ̂A :

K0(A) → R denote the induced state on K0(A). In the case A has a unit,

τ̂A([p]) = (τ⊗TrK)(p) for a projection p ∈ A⊗K, where TrK is the usual tracial

weight on the C∗-algebra K of compact operators on a separable, infinite-

dimensional Hilbert space.

For n ≥ 1, let τMn denote the unique trace on the C∗-algebra Mn of n×n
matrices over C and define the 2-norm ‖ · ‖2 on Mn by ‖a‖2 = τMn(a∗a)1/2 for

all a ∈ Mn. A trace τA on a C∗-algebra A is called amenable if there is a net

ϕi : A→Mn(i) of completely positive, contractive maps with

‖ϕi(aa′)− ϕi(a)ϕi(a
′)‖2 → 0 and τMn(i)

(ϕi(a))→ τA(a)

for all a, a′ ∈ A. See [9] or Chapter 6 of [10] for a detailed treatment of

amenable traces. Note that by Theorem 4.2.1 of [9], all traces on nuclear

C∗-algebras are amenable.

Exploiting the connections between amenable traces and hyperfinite von

Neumann algebras given in Theorem 3.2.2 of [9] leads to the following unique-

ness result which is well known in the case when A is nuclear.

Proposition 1.1. If A is a C∗-algebra, M is a finite factor, and ϕ,ψ :

A → M are weakly nuclear ∗-homomorphisms such that τMϕ = τMψ, then

there is a net of unitaries (ui) in M such that

‖ϕ(a)− uiψ(a)u∗i ‖2 → 0

for all a ∈ A.

Proof. Let τA = τMϕ, and note that ϕ and ψ induce normal ∗-homomor-

phisms ϕ̄, ψ̄ : πτA(A)′′ →M such that ϕ̄(πτA(a)) = ϕ(a) and ψ̄(πτA(a)) = ψ(a)

for all a ∈ A. As ϕ̄ is faithful and normal, Lemma 1.5.11 of [10] implies

that there is a normal, completely positive map θ : M → πτA(A)′′ such that

πτ (a) = θ(ϕ(a)) for all a ∈ A. Since ϕ is weakly nuclear, πτ (A)′′ is hyperfinite

by the equivalence of (5) and (6) in Theorem 3.2.2 of [9]. The result follows from

the classification of normal ∗-homomorphisms from hyperfinite von Neumann

algebras into finite factors; see the proof of Proposition 2.1 in [11] for example.

�
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The following fundamental result was proved for nuclear C∗-algebras by

Tikuisis, White, and Winter in [81] and was extended to exact C∗-algebras by

Gabe in [33]. (See also [78] for a short proof.) This result is the starting point

for the existence result in Theorem D.

Let Q =
⊗

n≥1Mn denote the universal UHF-algebra, and let Qω denote

the norm ultrapower ofQ with respect to a fixed free ultrafilter ω on the natural

numbers. Recall that a ∗-homomorphism ϕ : A → B between C∗-algebras A

and B is full if for every non-zero a ∈ A, ϕ(a) generates B as an ideal.

Theorem 1.2. If A is a separable, unital, exact C∗-algebra satisfying the

UCT and τA is a faithful, amenable trace on A, then there is a unital, full,

nuclear ∗-homomorphism ϕ : A→ Qω such that τQωϕ = τA.

The result is not quite stated this way in the references given above.

The existence of a unital, nuclear, trace-preserving ∗-homomorphism A→Qω
follows from Theorem 3.8 and Proposition 3.4(ii) in [33], and this ∗-homo-

morphism is necessarily full by Lemma 2.2 in [81] and the faithfulness of τA.

1.2. Separability issues. Throughout the paper, several non-separable

C∗-algebras such as ultraproducts and their trace-kernel ideals (as defined in

Section 3) will be considered. The lack of separability causes technical issues

in certain arguments; this is especially the case with KK-theoretic consider-

ations where all C∗-algebras are typically required to be separable or, at the

very least, σ-unital. This section collects some general methods for reducing

problems to the separable setting.

Definition 1.3 (Blackadar [3, §II.8.5]). A property (P ) of C∗-algebras is

called separably inheritable if

(1) whenever A is a C∗-algebra satisfying (P ) and A0 is a separable C∗-sub-

algebra of A, there is a separable C∗-subalgebra Â of A which satisfies (P )

and contains A0, and

(2) whenever A1 ↪→ A2 ↪→ A3 ↪→ · · · is an inductive system of separable

C∗-algebras with injective connecting maps, if each An satisfies (P ), then

lim
−→

An satisfies (P ).

Many important properties of C∗-algebras are separably inheritable such

as exactness, nuclearity, simplicity, real rank zero, and stable rank one, to name

a few. Also, the meet of countably many separably inheritable properties is

separably inheritable. See Section II.8.5 of [3] for proofs of these facts and for

many more examples of separably inheritable properties.

The following slight variation of separable inheritability will be useful.

Definition 1.4. Let (P ) be a property of separable C∗-algebras. A C∗-

algebra A separably satisfies (P ) if whenever A0 is a separable C∗-subalgebra
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of A, there is a separable C∗-subalgebra Â of A which satisfies (P ) and con-

tains A0.

Note that if (P ) is a separably inheritable property of C∗-algebras and A

is a C∗-algebra satisfying (P ), then A separably satisfies (P ). Note also that

if (P ) is a property of separable C∗-algebras preserved under sequential induc-

tive limits with injective connecting maps, then separably (P ) is a separably

inheritable property.

The following is analogous to II.8.5.3 in [3], and the same proof holds here.

Proposition 1.5. Let (Pi) be a countable family of properties of separable

C∗-algebras preserved under sequential inductive limits with injective connect-

ing maps. If A is a C∗-algebra separably satisfying (Pi) for each i, then A

separably satisfies the meet of the (Pi).

The following result will be crucial forKK-theoretic considerations related

to the trace-kernel extension defined in Section 3.

Proposition 1.6. Consider an extension

0 I E D 0
j q

of C∗-algebras, and suppose that for each X ∈ {I, E,D}, (PX) is a property of

separable C∗-algebras preserved under sequential inductive limits with injective

connecting maps and X separably satisfies (PX). If for each X ∈ {I, E,D}, a

separable C∗-subalgebra X0 of X is given, then for each X ∈ {I, E,D}, there

is a separable C∗-subalgebra X̂ of X which satisfies (PX) and contains X0 and

such that there is a homomorphism

0 Î Ê D̂ 0

0 I E D 0
j q

of extensions where the vertical arrows are the inclusion maps.

Proof. For X ∈ {I, E,D}, we construct an increasing sequence of separa-

ble C∗-subalgebras (Xn)∞n=1 of X containing X0 such that for each n ≥ 1, Xn

satisfies (PX),

q(En−1) ⊆ Dn ⊆ q(En), and In−1 ⊆ j−1(En) ⊆ In.

Assuming this has been done, for each X ∈ {I, E,D}, let X̂ be the closed

union of the Xn and note that X̂ is a separable C∗-subalgebra of X. As each

Xn satisfies (PX), so does X̂ by hypothesis. By construction, q(Ê) = D̂, and

j−1(Ê) = Î, so the result follows.
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We construct the desired C∗-subalgebras In, En, and Dn inductively start-

ing from the given C∗-subalgebras I0, D0, and E0. Assume n ≥ 1 and In−1,

Dn−1, and En−1 have been constructed. The C∗-subalgebra of D generated

by Dn−1 and q(En−1) is separable, and hence there is a separable C∗-sub-

algebra Dn of D which satisfies (PD) and contains both Dn−1 and q(En−1).

Fix a countable, dense set Tn ⊆ Dn, and let Sn ⊆ E be a countable set with

q(Sn) = Tn. Then the C∗-subalgebra of E generated by j(In−1), En−1, and Sn
is separable, and hence there is a separable C∗-subalgebra En of E which satis-

fies (PE) and contains j(In−1), En−1, and Sn. Then Tn = q(Sn) ⊆ q(En) since

Sn ⊆ En, and as Tn is dense in Dn and the ∗-homomorphism q|En has closed

range, Dn ⊆ q(En). Also, as j(In−1) ⊆ En and j is injective, In−1 ⊆ j−1(En).

Finally, as j−1(En) is a separable C∗-subalgebra of I, there is a separable C∗-

subalgebra In of I which satisfies (PI) and contains j−1(En). This completes

the construction. �

Corollary 1.7. Let (P ) be a property of separable C∗-algebras preserved

under sequential inductive limits with injective connecting maps. If (P ) is pre-

served by ideals, quotients, or extensions of separable C∗-algebras, then sepa-

rably (P ) has the same permanence property among all C∗-algebras.

Proof. We only consider the case of extensions as the other two results

are similar. Let (P ) be a property of separable C∗-algebras preserved by ex-

tensions. Suppose I is an ideal of a C∗-algebra A such that I and A/I both

separably satisfy (P ), and suppose A0 is a separable C∗-subalgebra of A. By

Proposition 1.6, there are separable C∗-subalgebras Î, Â, and B̂ of I, A, and

A/I, respectively, such that Î and B̂ satisfy (P ), Â contains A0, and there is

a homomorphism

0 Î Â B̂ 0

0 I A A/I 0

of extensions where the vertical arrows are the inclusion maps. Now Â is a

separable C∗-subalgebra of A satisfying (P ) and containing A0. �

The method for reducing to separable C∗-algebras given here also behaves

well with hereditary subalgebras.

Proposition 1.8. If (P ) is a property of separable C∗-algebras preserved

by hereditary subalgebras, then the property separably (P ) is preserved by hered-

itary subalgebras.

Proof. Suppose A is a C∗-algebra separably satisfying (P ) and B ⊆ A is

a hereditary subalgebra. Let B0 be a separable C∗-subalgebra of B. There is
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a separable C∗-subalgebra Â of A which satisfies (P ) and contains B0. Now,

B̂ := B0ÂB0 is a separable C∗-subalgebra of B containing B0. Moreover, B̂ is

a hereditary subalgebra of Â, and hence it satisfies (P ). �

The following result will be used heavily in Section 4.

Proposition 1.9. Suppose A and B are C∗-algebras such that A is sep-

arable and B is unital. If ϕ : A→ B is a full, nuclear ∗-homomorphism, there

is a separable, unital C∗-subalgebra B0 of B such that ϕ(A) ⊆ B0 and the

corestriction of ϕ to B0 is full and nuclear.

Proof. As A is separable and ϕ is nuclear, for each integer n ≥ 1, there

are an integer d(n) ≥ 1 and completely positive maps θn : A → Md(n) and

ρn : Md(n) → B such that

‖ρn(θn(a))− ϕ(a)‖ → 0

for all a ∈ A.

By Proposition II.8.5.7 of [3], there is a sequence (an)∞n=1 ⊆ A \ {0} such

that for every non-zero ideal I ⊆ A, there is an n ≥ 1 with an ∈ I. As ϕ is full

and B is unital, for each n ≥ 1, there are an integer k(n) ≥ 1 and elements

bn,i, b
′
n,i ∈ B for i = 1, . . . , k(n) such that

∑k(n)
i=1 bn,iϕ(an)b′n,i = 1B.

Let B0 denote the C∗-subalgebra of B generated by ϕ(A), ρn(Md(n)), bn,i,

and b′n,i for i = 1, . . . , k(n) and n ≥ 1. Then B0 is separable, and if ϕ0 is

the corestriction of ϕ to B0, then ϕ0 is nuclear. Suppose a ∈ A \ {0} and

let I denote the ideal of B0 generated by ϕ(a). Then ϕ−1(I) is an ideal in A

which is non-zero as a ∈ ϕ−1(I), and hence there is an integer n ≥ 1 such that

an ∈ ϕ−1(I). Now, ϕ(an) ∈ I, and since ϕ(an) is full in B0 by construction,

I = B0. This shows that ϕ0 is full. �

A version of the following result appeared in an early version of [78].

Proposition 1.10. Suppose G is a countable, abelian group and A is a

C∗-algebra. For i = 0, 1, the natural group homomorphisms

lim
−→

HomZ(G,Ki(A0)) −→ HomZ(G,Ki(A))

and

lim
−→

Ext1Z(G,Ki(A0)) −→ Ext1Z(G,Ki(A))

are isomorphisms where the limit is taken over all separable C∗-subalgebras A0

of A.

Proof. As G is a countable, abelian group, there is an extension

0 ZX ZY G 0

for countable sets X and Y , where ZX and ZY denote the free abelian groups

generated by X and Y , respectively. For every C∗-algebra B and for i = 0, 1,

there is a natural exact sequence
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HomZ(G,Ki(B)) HomZ(ZY,Ki(B)) HomZ(ZX,Ki(B))

Ext1Z(G,Ki(B)).

As inductive limits preserve exact sequences, it is enough to prove that the

natural map

lim
−→

HomZ(ZX,Ki(A0)) −→ HomZ(ZX,Ki(A))

is an isomorphism for each countable set X.

Adding a unit to A if necessary, we may assume A is unital. We only

prove the case when i = 0 as the case i = 1 then follows by Bott periodicity

(or by a similar argument).

To show surjectivity, let f : ZX → K0(A) be given. For each x ∈ X,

there are an integer n(x) ≥ 1 and projections px and qx in Mn(x)(A) with

f(x) = [px] − [qx]. If A0 denotes the unital C∗-subalgebra of A generated by

the entries of the projections px and qx, then there is a group homomorphism

f0 : ZX → K0(A0) given by f0(x) = [px] − [qx]. If ι0 : A0 → A denotes the

inclusion, then K0(ι0)f0 = f .

To show injectivity, let A0 ⊆ A be a separable, unital C∗-subalgebra, let

ι0 : A0 → A denote the inclusion, and suppose f, g : ZX → K0(A0) are such

that K0(ι0)f = K0(ι0)g. For each x ∈ X, there are an integer n(x) ≥ 1

and projections px, qx, p
′
x, q
′
x ∈ Mn(x)(A0) such that f(x) = [px] − [qx] and

g(x) = [p′x]− [q′x]. For each x ∈ X, there are an integer k(x) ≥ 1 and a partial

isometry vx ∈M2n(x)+k(x)(A) with

v∗xvx = px ⊕ q′x ⊕ 1
⊕k(x)
A and vxv

∗
x = p′x ⊕ qx ⊕ 1

⊕k(x)
A .

Let A1 denote the C∗-subalgebra of A generated by A0 and the entries of each

vx for x ∈ X. If ι1,0 : A0 ↪→ A1 denotes the inclusion, then K0(ι1,0)f =

K0(ι1,0)g. �

1.3. Tensorial absorption and separability. Recall from [83] that a sep-

arable, unital, infinite-dimensional C∗-algebra D is strongly self-absorbing if

there is an isomorphism D → D⊗D approximately unitarily equivalent to the

first factor embedding. For a strongly self-absorbing C∗-algebra D, a separa-

ble C∗-algebra A is D-stable if A ⊗D ∼= A. The only strongly self-absorbing

C∗-algebra needed here is the universal UHF-algebra Q.

A local characterization of D-stability for separable, unital C∗-algebras

can be extracted from Theorem 2.2 of [83], which shows a separable, unital

C∗-algebra A is D-stable if, and only if, there is a unital embedding of D into

the central sequence algebra A∞ ∩ A′ of A where A∞ := `∞(A)/c0(A). This

local characterization extends to the non-separable setting with D-stability

replaced by separable D-stability.
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Lemma 1.11. For a strongly self-absorbing C∗-algebra D, a unital C∗-

algebra A is separably D-stable if, and only if, for every finite set F ⊆ A,

for every finite set G ⊆ D, and for every ε > 0, there is a unital, completely

positive map ϕ : D → A such that

‖ϕ(dd′)− ϕ(d)ϕ(d′)‖ < ε and ‖aϕ(d)− ϕ(d)a‖ < ε

for all a ∈ F and d, d′ ∈ G.

Proof. Assume first that A is separably D-stable. Fix a finite set F ⊆ A,

a finite set G ⊆ D, and ε > 0. There is a separable, unital, D-stable C∗-

subalgebra Â of A containing F . By Theorem 2.2 of [83], there is a unital

embedding ϕ∞ : D → Â∞ ∩ Â′. As D is nuclear, the Choi-Effros lifting

theorem implies that there are unital, completely positive maps ϕn : D → Â

representing ϕ∞. Hence

lim
n→∞

‖ϕn(dd′)− ϕn(d)ϕn(d′)‖ = lim
n→∞

‖aϕn(d)− ϕn(d)a‖ = 0

for all a ∈ Â and d, d′ ∈ D. Take ϕ = ϕn for some sufficiently large n.

Conversely, suppose the approximation condition holds and let A0 be a

separable, unital C∗-subalgebra of A. Let F0,n be an increasing sequence of

finite subsets of A0 with dense union, and let Gn be an increasing sequence

of finite subsets of D with dense union. There are unital, completely positive

maps ϕ0,n : D → A such that

‖ϕ0,n(dd′)− ϕ0,n(d)ϕ0,n(d′)‖ < 1

n
and ‖aϕ0,n(d)− ϕ0,n(d)a‖ < 1

n

for all a ∈ F0,n and d, d′ ∈ Gn. Let A1 denote the C∗-subalgebra of A generated

by A0 and ϕ0,n(D) for each n ≥ 1, and note that A1 is separable.

Iterating this argument, there are an increasing sequence of separable

C∗-subalgebras Ak of A and sequences of unital, completely positive maps

ϕk,n : D → Ak+1 with

lim
n→∞

‖ϕk,n(dd′)− ϕk,n(d)ϕk,n(d′)‖ = lim
n→∞

‖aϕk,n(d)− ϕk,n(d)a‖ = 0

for all a ∈ Ak, d, d
′ ∈ D, and k ≥ 0. Let Â ⊆ A denote the closed union

of the Ak. A reindexing argument produces a sequence of unital, completely

positive maps ψn : D → Â such that

lim
n→∞

‖ψn(dd′)− ψn(d)ψn(d′)‖ = lim
n→∞

‖aψn(d)− ψn(d)a‖ = 0

for all a ∈ Â and d, d′ ∈ D. The sequence ψn induces a unital ∗-homomorphism

D → Â∞ ∩ Â′, and since Â is separable, Â is D-stable by Theorem 2.2 of [83].

As Â contains A0 by construction, this shows A is separably D-stable. �

The next proposition collects some permanence properties of separable

D-stability.
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Proposition 1.12. For a strongly self-absorbing C∗-algebra D, heredi-

tary subalgebras, quotients, and extensions of separably D-stable C∗-algebras

are separably D-stable, and `∞-products and ultraproducts of unital, separably

D-stable C∗-algebras are separably D-stable.

Proof. By Corollary 3.4 in [83], D-stability is preserved by sequential in-

ductive limits of separable C∗-algebras. By Corollaries 3.1 and 3.3 and Theo-

rem 4.3 of [83], hereditary subalgebras, quotients, and extensions of separable,

D-stable C∗-algebras are D-stable. Now, separable D-stability passes to hered-

itary subalgebras by Proposition 1.8 and is preserved by quotients and exten-

sions by Corollary 1.7. For `∞-products, the result follows from Lemma 1.11

by choosing approximately central approximate morphisms into each factor of

the product and taking the product of these maps. For ultraproducts, the

result follows from the result for `∞-products and quotients. �

2. Some KK-theory

This section contains a brief overview of KK-theory and collects the re-

sults on absorbing representations which will be needed in the classification

results in Section 4. With one exception in the proof of Proposition 3.3, we

will work exclusively with the nuclear KK-bifunctor KKnuc(−,−) introduced

by Skandalis in [79].

2.1. Basics of KK-theory. Let A be a separable C∗-algebra, and let B be

a σ-unital C∗-algebra. The word representation will refer to a ∗-homomorphism

A→M(B ⊗K). A representation ϕ : A→M(B ⊗K) is called weakly nuclear

if the completely positive map A→ B⊗K given by a 7→ b∗ϕ(a)b is nuclear for

all b ∈ B ⊗K.

Let Enuc(A,B) denote the set of pairs (ϕ,ψ) such that ϕ,ψ : A→M(B⊗K)

are weakly nuclear representations with ϕ(a)−ψ(a) ∈ B ⊗K for all a ∈ A.

Such a pair (ϕ,ψ) is called a (weakly nuclear) Cuntz pair. A homotopy be-

tween Cuntz pairs (ϕ0, ψ0) and (ϕ1, ψ1) in Enuc(A,B) is a Cuntz pair (Φ,Ψ) ∈
Enuc(A,C([0, 1], B)) such that for t ∈ {0, 1}, composing Φ and Ψ with the

evaluation map M(C([0, 1], B) ⊗ K) � M(B ⊗ K) at t produces ϕt and ψt,

respectively. Let KKnuc(A,B) denote the set of homotopy classes of Cuntz

pairs in Enuc(A,B), and let [ϕ,ψ] denote the class of a Cuntz pair (ϕ,ψ) in

KKnuc(A,B).

Let s1, s2 ∈ M(B ⊗ K) be isometries with s1s
∗
1 + s2s

∗
2 = 1. Given

representations θ, ρ : A → M(B ⊗ K), define a representation θ ⊕s1,s2 ρ =

s1θ(·)s∗1+s2ρ(·)s∗2 called the Cuntz sum with respect to s1 and s2. For another

choice of isometries t1, t2 ∈M(B⊗K) with t1t
∗
1 + t2t

∗
2 = 1, u = t1s

∗
1 + t2s

∗
2 is a

unitary with ad(u)(θ⊕s1,s2 ρ) = θ⊕t1,t2 ρ, and hence, up to unitary equivalence,

the Cuntz sum is independent of the choice of s1 and s2.
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If (ϕ1, ψ1) and (ϕ2, ψ2) are Cuntz pairs in Enuc(A,B), then (ϕ1 ⊕s1,s2
ϕ2, ψ1 ⊕s1,s2 ψ2) is also a Cuntz pair in Enuc(A,B). Since the unitary group

of M(B ⊗ K) is path-connected in the operator norm topology by the main

result of [14] (see also [56] for the case when B is unital), the class [ϕ1 ⊕s1,s2
ϕ2, ψ1 ⊕s1,s2 ψ2] in KKnuc(A,B) is independent of the choice of isometries s1
and s2; abusing notation, this element will be written as [ϕ1 ⊕ ϕ2, ψ1 ⊕ ψ2].

The set KKnuc(A,B) is an abelian group with addition given by Cuntz sum.

If ϕ : A → B is a nuclear ∗-homomorphism and p ∈ K is a rank one

projection, define a representation ϕp : A→M(B⊗K) by ϕp(a) = ϕ(a)⊗p for

a ∈ A. Then (ϕp, 0) defines a Cuntz pair in Enuc(A,B) and the corresponding

element of KKnuc(A,B) is denoted by [ϕ]. The element [ϕ] is independent of

the choice of the rank one projection p.

Given a separable C∗-algebra A and a ∗-homomorphism θ : B → D be-

tween σ-unital C∗-algebras B and D, there is an induced group homomorphism

θ∗ : KKnuc(A,B)→ KKnuc(A,D).

In this way, KKnuc(A,−) becomes a covariant functor from the category of

σ-unital C∗-algebras to the category of abelian groups; see [79] for the details.

We will only need an explicit computation of θ∗ in the following special case.

Proposition 2.1. Suppose A and E are separable C∗-algebras, I ⊆ E is

an ideal in E with I⊗K ∼= I , and ϕ,ψ : A→ E are nuclear ∗-homomorphisms

with ϕ(a) − ψ(a) ∈ I for all a ∈ A. Let λ : E → M(I) denote the canonical
∗-homomorphism, and note that (λϕ, λψ) ∈ Enuc(A, I).

If j : I → E denotes the inclusion map, then j∗[λϕ, λψ] = [ϕ] − [ψ] in

KKnuc(A,E).

Proof. As in [79] (see also Chapter 17 of [2]), KKnuc(A, I) can be realized

as homotopy classes of Kasparov modules (θ0, θ1, F ) where θi : A→ B(Ki) is a

weakly nuclear representation of A on a countably generated Hilbert I-module

Ki and F : K0 → K1 is an adjointable operator which, modulo the compacts,

is a unitary intertwining of θ0 and θ1.

Viewing I has a Hilbert module over itself, the Cuntz pair (λϕ, λψ) defines

the Kasparov module (λϕ, λψ, 1M(I)) which defines the element [λϕ, λψ] ∈
KKnuc(A, I). If H0 = I is viewed as a Hilbert E-module, then there is a

natural isomorphism M(I) → B(H0). Let ϕ0, ψ0 : A → B(H0) denote the

representations given by composing λϕ and λψ with this isomorphism. Then

j∗[λϕ, λψ, 1M(I)] = [ϕ0, ψ0, 1B(H0)] in KKnuc(A,E) by the construction of j∗
given in [79]. (See also Section 17.8 of [2].)

Consider H1 = E as a Hilbert E-module. If ϕ1, ψ1 : A → B(H1) denote

the representations induced by ϕ and ψ, respectively, then [ϕ1, ψ1, 1B(H1)] =

[ϕ]−[ψ] in KKnuc(A, I). It suffices to show (ϕ0, ψ0, 1B(H0)) and (ϕ1, ψ1, 1B(H1))
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are homotopic. To this end, define

H = {f ∈ C([0, 1], E) : f(0) ∈ I}

and view H as a Hilbert C([0, 1], E)-module in the natural way. Define Φ,Ψ :

A→ B(H) by

Φ(a)(f)(t) = ϕ(a)f(t) and Ψ(a)(f)(t) = ψ(a)f(t)

for all a ∈ A, f ∈ C([0, 1], E), and t ∈ [0, 1]. Then (Φ,Ψ, 1B(H)) is a homotopy

from (ϕ0, ψ0, 1B(H0)) to (ϕ1, ψ1, 1B(H1)). �

For a separable C∗-algebras A, a σ-unital C∗-algebras, B, and a represen-

tation ψ : A → M(B ⊗ K), define the infinite repeat ψ∞ : A → M(B ⊗ K)

as follows. Let (sn)∞n=1 be a sequence of isometries in M(B ⊗ K) such that∑∞
n=1 sns

∗
n = 1, and let

ψ∞(a) =
∞∑
n=1

snψ(a)s∗n ∈M(B ⊗K)

for a ∈ A where convergence is in the strict topology. Then ψ∞ is a ∗-homo-

morphisms, and up to unitary equivalence, ψ∞ is independent of the choice

of the sequence (sn)∞n=1; in particular, ψ ⊕ ψ∞ and ψ are unitarily equivalent.

Note also that if ψ is weakly nuclear, then so is ψ∞.

2.2. Absorbing representations. Let A and B be C∗-algebras such that A is

separable and B is σ-unital. Given two representations ϕ,ψ : A→M(B⊗K),

write ϕ ∼ ψ if there is a sequence of unitaries (un)∞n=1 ⊆M(B ⊗K) such that

for all a ∈ A,

(1) ‖ϕ(a)− unψ(a)u∗n‖ → 0 as n→∞ and

(2) ϕ(a)− unψ(a)u∗n ∈ B ⊗K for all n ≥ 1.

Definition 2.2. Suppose A and B are C∗-algebras such that A is separable

and B is σ-unital. A representation ϕ : A → M(B ⊗ K) is called (unitally)

nuclearly absorbing if for all (unital) weakly nuclear representations θ : A →
M(B ⊗K), ϕ⊕ θ ∼ ϕ.

Consider the special case when B = C. All representations A→M(K) ∼=
B(`2(N)) are weakly nuclear as K is nuclear. Now, Voiculescu’s representation

theorem, as stated in Theorem II.5.8 of [22] for example, is the statement that

a unital representation ϕ : A → M(K) is unitally nuclearly absorbing if, and

only if, ϕ is faithful and ϕ(A) ∩ K = 0. There is a far reaching generalization

of this result for nuclearly absorbing representations due to the work of Elliott

and Kucerovsky in [30]; see also [47] and [32].

A σ-unital C∗-algebra B has the corona factorization property if for all

projections p ∈ M(B ⊗ K), 1 - p ⊕ p implies 1 - p; see [47]. The corona

factorization property is a very weak regularity property of C∗-algebras. See
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[46], [58], [59] and the references within for several examples and connections

to other regularity properties. In this paper, the examples of interest will be

separable C∗-subalgebras of the trace-kernel ideal JB associated to an appro-

priate C∗-algebra B as discussed in the introduction and introduced formally

in Section 3.

When B is unital, a ∗-homomorphism ϕ : A → B is called unitizably full

if the unitization ϕ† : A† → B is full. Note that when A and B are unital

C∗-algebras, a ∗-homomorphism ϕ : A→ B is unitizably full if, and only if, ϕ

is full and 1B − ϕ(1A) is full.

Theorem 2.3. If A is a separable C∗-algebra andB is a σ-unital C∗-algebra

with the corona factorization property, then every unitizably full representation

A→M(B ⊗K) is nuclearly absorbing.

Proof. After adding units, it is enough to show that every unital, full

representation ϕ : A → M(B ⊗ K) is unitally nuclearly absorbing. Let q :

M(B ⊗ K) → M(B ⊗ K)/(B ⊗ K) denote the quotient map. By [47], qϕ is

a purely large extension, and hence, by the main result of [30], qϕ is unitally

nuclearly absorbing as an extension.

For any unital, weakly nuclear representation ψ : A → M(B ⊗ K), there

is a unitary u ∈M(B ⊗K) such that

u(ϕ(a)⊕ ψ∞(a))u∗ − ψ∞(a) ∈ B ⊗K
for all a ∈ A. By the equivalence of (iv) and (v) in Theorem 3.4 of [34],

ϕ⊕ ψ∞ ∼ ϕ. As ψ∞ ⊕ ψ and ψ∞ are unitarily equivalent,

ϕ⊕ ψ ∼ ϕ⊕ ψ∞ ⊕ ψ ∼ ϕ⊕ ψ∞ ∼ ϕ,
so ϕ is unitally nuclearly absorbing. �

Given two representations ϕ,ψ : A → M(B ⊗ K), write ϕ ∼asymp ψ if

there is a norm continuous family (ut)t≥0 ⊆ M(B ⊗ K) of unitaries such that

for all a ∈ A,

(1) ‖ϕ(a)− utψ(a)u∗t ‖ → 0 as t→∞ and

(2) ϕ(a)− utψ(a)u∗t ∈ B ⊗K for all t ≥ 0.

The following folklore result shows nuclearly absorbing representations

also satisfy a stronger asymptotic absorption condition.

Proposition 2.4. Suppose A and B are C∗-algebras such that A is sep-

arable and B is σ-unital. If ϕ : A → M(B ⊗ K) is a nuclearly absorbing

representation and ψ : A→M(B⊗K) is a weakly nuclear representation, then

ϕ⊕ ψ ∼asymp ϕ.

Proof. As ϕ is nuclearly absorbing, ϕ⊕ ψ∞ ∼ ϕ; hence ϕ⊕ ψ∞ ∼asymp ϕ

by the equivalence of (v) and (vi) in Theorem 3.4 of [34]. Now,

ϕ⊕ ψ ∼asymp ϕ⊕ ψ∞ ⊕ ψ ∼asymp ϕ⊕ ψ∞ ∼asymp ϕ. �
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2.3. Destabilizing KK-theory. Following Dadarlat and Eilers in [20], two

representations ϕ,ψ : A → M(B ⊗ K) are properly asymptotically unitarily

equivalent, written ϕ u ψ, if there is a norm continuous family of unitaries

(ut)t≥0 in B ⊗K + C1M(B⊗K) ⊆M(B ⊗K) such that for all a ∈ A,

(1) ‖ϕ(a)− utψ(a)u∗t ‖ → 0 as t→∞ and

(2) ϕ(a)− utψ(a)u∗t ∈ B ⊗K for all t ≥ 0.

The word proper reflects that the path of unitaries is taken from the mini-

mal unitization of B⊗K instead of the multiplier algebra. This is a subtle, but

very critical, difference with the relation ∼asymp above. The following result,

which is essentially due to Dadarlat and Eilers in [20], shows the relevance of

proper asymptotic equivalence in KK-theory. This is in stark contrast with

Proposition 2.4 above, which shows the relation ∼asymp is a rather weak equiv-

alence relation on representations.

Theorem 2.5. Suppose that A is a separable C∗-algebra, B is a σ-unital

C∗-algebra, and (ϕ,ψ) ∈ Enuc(A,B) is a Cuntz pair. The following are equiv-

alent :

(1) [ϕ,ψ] = 0 ∈ KKnuc(A,B);

(2) there is a weakly nuclear representation θ : A → M(B ⊗ K) such that

ϕ⊕ θ u ψ ⊕ θ;

(3) for any weakly nuclear, nuclearly absorbing representation θ :A→M(B⊗K),

ϕ⊕ θ u ψ ⊕ θ.

Proof. By Theorem 3.10 of [20], (1) and (2) are equivalent to

(3′) for any weakly nuclear, nuclearly absorbing representation θ :A→M(B⊗K),

ϕ⊕ θ∞ u ψ ⊕ θ∞.

Hence it suffices to show (3) is equivalent to (3′). If θ is weakly nuclear and

nuclearly absorbing, then θ∞ is weakly nuclear, and hence θ ⊕ θ∞ ∼asymp θ

by Proposition 2.4. So θ∞ ∼asymp θ, and the result follows from Lemma 3.4

in [20]. �

The next two results in this section will allow us to control the stabiliza-

tions appearing in the previous theorem when all representations considered

are assumed to be nuclearly absorbing. These results form a critical part of

the classification results in Section 4 and play a role analogous to that of the

stable uniqueness theorem used in earlier classification results.

Proposition 2.6. Suppose A and B are C∗-algebras such that A is sep-

arable and B is σ-unital. If x ∈ KKnuc(A,B) and ψ : A → M(B ⊗ K) is a

weakly nuclear, nuclearly absorbing representation, then there is a weakly nu-

clear, nuclearly absorbing representation ϕ : A → M(B ⊗ K) such that (ϕ,ψ)

is a Cuntz pair in Enuc(A,B) and x = [ϕ,ψ].



328 CHRISTOPHER SCHAFHAUSER

Proof. Let x ∈ KKnuc(A,B) and ψ be given. There is a Cuntz pair

(θ, ρ) in Enuc(A,B) such that x = [θ, ρ]. By Proposition 2.4, there is a norm

continuous family (ut)t≥0 of unitaries in M(B ⊗K) such that for all a ∈ A,

(1) ‖ψ(a)− ut(ρ⊕ ψ)(a)u∗t ‖ → 0 as t→∞ and

(2) ψ(a)− ut(ρ⊕ ψ)(a)u∗t ∈ B ⊗K for all t ≥ 0.

For each t ≥ 0 and a ∈ A, ut(ρ⊕ψ)(a)u∗t and u0(ρ⊕ψ)(a)u∗0 differ by an

element of B ⊗ K as both elements differ from ψ(a) by an element of B ⊗ K.

As (θ, ρ) is a Cuntz pair, we have

u0((θ ⊕ ψ)(a)− (ρ⊕ ψ)(a))u∗0 ∈ B ⊗K

for all a ∈ A. Hence (ad(u0)(θ⊕ψ), ad(ut)(ρ⊕ψ)) is a Cuntz pair for all t ≥ 0

and defines a homotopy3 between the Cuntz pairs (ad(u0)(θ⊕ψ), ad(u0)(ρ⊕ψ))

and (ad(u0)(θ ⊕ ψ), ψ). Now,

x = [θ ⊕ ψ, ρ⊕ ψ] = [ad(u0)(θ ⊕ ψ), ad(u0)(ρ⊕ ψ)] = [ad(u0)(θ ⊕ ψ), ψ].

To complete the proof, define ϕ = ad(u0)(θ ⊕ ψ). �

In the uniqueness portion of Theorem D, we will need a way to relate two

weakly nuclear representations ϕ,ψ : A → M(B ⊗ K) when (ϕ,ψ) forms a

Cuntz pair and [ϕ,ψ] = 0 in KKnuc(A,B). Ideally, if ϕ and ψ are nuclearly

absorbing, then [ϕ,ψ] = 0 would imply ϕ u ψ. This is known to be the case

when B = K (see Theorem 3.12 in [20]) but is not known in general. The

following technical variation will be sufficient for our purposes. A stronger

result of this form will appear in forthcoming work of the author with Carrión,

Gabe, Tikuisis, and White.

Proposition 2.7. Suppose A is a separable C∗-algebra, E is a separable,

unital, Q-stable C∗-algebra, and I ⊆ E is an ideal such that I⊗K ∼= I . Suppose

ϕ,ψ : A→ E are nuclear ∗-homomorphisms such that ϕ(a)− ψ(a) ∈ I for all

a ∈ A. Let λ : E → M(I) be the canonical ∗-homomorphism, and note that

(λϕ, λψ) ∈ Enuc(A, I).

If λϕ and λψ are nuclearly absorbing representations and [λϕ, λψ] = 0 ∈
KKnuc(A, I), then there is a sequence of unitaries (un)∞n=1 ⊆ E such that

‖ϕ(a)− unψ(a)u∗n‖ → 0

for all a ∈ A.

Proof. Since [λϕ, λψ] = 0 ∈ KKnuc(A, I), λϕ is nuclearly absorbing, and

λψ is weakly nuclear, we have λϕ⊕λϕ u λψ⊕λϕ by Theorem 2.5. Reversing

3Here the homotopy is defined on [0,∞] in place of [0, 1].
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the roles of ϕ and ψ, we have λϕ ⊕ λψ u λψ ⊕ λψ. In particular, there is a

sequence (un)∞n=1 ⊆M2(I + C1M(I)) such that

‖(λϕ⊕ λϕ)(a)− un(λψ ⊕ λψ)(a)u∗n‖ → 0

for all a ∈ A. As the restriction of λ to M2(I+C1E) is injective, it follows that

ϕ⊕ ϕ and ψ ⊕ ψ are approximately unitarily equivalent as ∗-homomorphisms

A→M2(E).

As there is a unital embedding M2 ↪→ Q, ϕ⊗ 1Q and ψ⊗ 1Q are approxi-

mately unitarily equivalent as ∗-homomorphisms A→ E⊗Q. As E is Q-stable

and Q is strongly self-absorbing, there is, by Remark 2.7 in [83], a sequence

θn : E ⊗Q → E of unital ∗-homomorphisms such that θn(x⊗ 1Q)→ x for all

x ∈ E. An ε/3 argument implies that ϕ and ψ are approximately unitarily

equivalent as ∗-homomorphisms A→ E. �

3. The trace-kernel extension

Let B be a simple, unital C∗-algebra with a unique trace τB, and define

the 2-norm on B by ‖b‖2 = τB(b∗b)1/2 for all b ∈ B. Let `∞(B) denote the

C∗-algebra of all bounded sequences in B and, for a free ultrafilter ω on the

natural numbers, define

Bω := `∞(B)/{b ∈ `∞(B) : lim
n→ω
‖bn‖ = 0}

and

Bω := `∞(B)/{b ∈ `∞(B) : lim
n→ω
‖bn‖2 = 0}.

Since τB is contractive, ‖b‖2 ≤ ‖b‖ for all b ∈ B, and hence there is a

natural extension

0 JB Bω Bω 0,
jB qB

where qB is the canonical quotient map, JB = ker(qB), and jB is the inclusion

map. The C∗-algebra JB is referred to as the trace-kernel ideal associated

to B, and the extension is called the trace-kernel extension associated to B.

The trace-kernel extension has been extensively studied in connection with

the Toms-Winter conjecture (with a modified definition when B has more than

one trace); see [5], [45], [54], [55], [74], [75], [82] for example. In the case B = Q,

this extension also has a crucial role in the proof of the quasidiagonality theo-

rem (Theorem 1.2 above), where the basic strategy is to lift a trace-preserving
∗-homomorphism into Qω ∼= Rω along the quotient map qQ to obtain a trace-

preserving ∗-homomorphism into Qω. This was made more explicit in [78],

where the lift was obtained through extension theoretic methods.

Many of the properties of JQ proved in [78] also hold for JB for much

more general C∗-algebras B (Proposition 3.2 below). The following definition

is taken from [78].
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Definition 3.1. A C∗-algebra I is called an admissible kernel if I has real

rank zero and stable rank one, K0(I) is divisible, K1(I) = 0, the Murray-von

Neumann semigroup V (I) is almost unperforated, and every projection in I⊗K
is Murray-von Neumann equivalent to a projection in I.

The following result collects the key properties of the trace-kernel exten-

sion needed in the next section.

Proposition 3.2. If B is a simple, unital, Q-stable C∗-algebra with a

unique trace τB such that every quasitrace on B is a trace and K1(B) = 0, then

(1) Bω is a II1-factor;

(2) Bω has real rank zero and stable rank one, has a unique trace τBω , has

strict comparison of positive elements with respect to the trace, is separa-

bly Q-stable, and has trivial K1-group; and

(3) JB is an admissible kernel.

Proof. For (1), as B has a unique trace τB, πτB (B)′′ is a II1-factor (see

Theorem 6.7.4 and Corollary 6.8.5 in [23]), and hence so is the tracial ultra-

power (πτB (B)′′)ω. By Remark 4.7 in [45], Bω ∼= Bω/JB ∼= (πτB (B)′′)ω.

For (2), the C∗-algebra B has real rank zero by Theorem 7.2 of [70],

stable rank one by Corollary 6.6 in [69], and strict comparison by Theorem 5.2

of [70]. All three properties are known to be preserved by ultraproducts; for

strict comparison, this follows from Lemma 1.23 in [5], and for real rank zero

and stable rank one, see the proof of Proposition 3.2 in [78] for example. As

B is Q-stable, we have that Bω is separably Q-stable by Proposition 1.12. By

Theorem 8 in [61], the unique trace on Bω is the trace τBω induced by τB.

As Bω has stable rank one, to show K1(Bω) = 0, it suffices by Theorem

2.10 of [68] to show that the unitary group of Bω is path connected. Let u

be a unitary in Bω, and fix a sequence of unitaries (un)∞n=1 in B lifting u. As

K1(B) = 0 and B has stable rank one, another application of Theorem 2.10 in

[68] shows un is in the path component of the identity for each n ≥ 1. Since

B has real rank zero, Theorem 5 of [48] implies there is a unitary vn ∈ B

with finite spectrum such that ‖un − vn‖ < 1/n. Write vn = eihn for a self-

adjoint hn ∈ B with ‖hn‖ ≤ π, and let h denote the self-adjoint element of Bω
determined by the sequence (hn)∞n=1. Then u = eih, and hence u is in the path

component of the identity in the unitary group of Bω.

For (3), as Bω has real rank zero and stable rank one, so does JB as

both properties pass of ideals by Corollary 2.8 in [6] and Theorem 4.3 in [68],

respectively. If d ≥ 1 is an integer and p ∈Md(JB) is a projection, then

(τBω ⊗ TrMd
)(p) = 0 < 1 = (τBω ⊗ TrMd

)(1Bω ⊕ 0
⊕(d−1)
Bω

),

where TrMd
is the tracial functional on Md normalized at a rank one projection.

As Bω has strict comparison, there is a partial isometry v ∈Md(Bω) such that
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v∗v = p and vv∗ ≤ 1Bω⊕0
⊕(d−1)
Bω

. Since v∗v ∈Md(JB), we have vv∗ ∈Md(JB),

and hence vv∗ = q ⊕ 0
⊕(d−1)
Bω

for some projection q ∈ JB. So every projection

in JB ⊗K is Murray-von Neumann equivalent to a projection in JB.

Since Bω is separably Q-stable, so is JB by Proposition 1.12. Hence there

is an increasing net Ji of a separable, Q-stable C∗-subalgebras of JB with

dense union. It is well known that, since Ji is Q-stable, V (Ji) is unperforated

and K0(Ji) is divisible; this can be shown using the continuity of V (−) and

K0(−) and writing Ji ⊗ Q as the inductive limit of the ∗-homomorphisms

Mk(Ji) → M`(Ji) where k divides ` and the maps are given by the diagonal

embeddings with multiplicity `/k. Using the continuity of the functors V (−)

and K0(−) again, it follows that V (JB) is almost unperforated and K0(JB) is

divisible as both properties are preserved by inductive limits.

It remains to show K1(JB) = 0. Consider the exact sequence

K0(Bω) K0(B
ω) K1(JB) K1(Bω)

K0(qB) ∂0 K1(jB)

induced by the trace-kernel extension. As K1(Bω) = 0, it suffices to show

K0(qB) is surjective. Suppose t ∈ [0, 1], and write t = limn→ω tn with tn ∈
Q ∩ [0, 1]. As B is unital and Q-stable, there is a unital embedding Q ↪→ B.

Hence there is a sequence of projections (pn)∞n=1 ⊆ B with τB(pn) = tn. If

p denotes the projection in Bω defined by the sequence pn, then τBω(p) = t.

Hence the group homomorphism τ̂Bω : K0(Bω)→ R is surjective, and since Bω

is a II1-factor, the group homomorphism τ̂Bω : K0(B
ω)→ R is an isomorphism.

Now, τ̂Bω = τ̂BωK0(qB), so K0(qB) is surjective, and hence K1(JB) = 0. �

The relevant properties of admissible kernels are collected in the following

result.

Proposition 3.3.

(1) The property of being an admissible kernel is separably inheritable.

(2) If I is an admissible kernel, then Mn(I) is an admissible kernel for all

n ≥ 1.

(3) If I is a separable admissible kernel, then I is stable and has the corona

factorization property.

(4) If A is a separable C∗-algebra satisfying the UCT and I is a separa-

ble admissible kernel, then the canonical homomorphism KKnuc(A, I) →
HomZ(K0(A),K0(I)) is an isomorphism.

Proof. (1) is Proposition 4.1 in [78]. In (2), the only non-trivial claim is

that real rank zero and stable rank one are preserved by taking matrix algebras;

this follows from Theorem 2.10 in [6] and Theorem 3.3 in [68], respectively. The

first two paragraphs of the proof of Theorem 2.1 in [78] show (3). Since K1(I)

= 0 and K0(I) is divisible, it is an immediate consequence of the UCT that
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the natural map KK(A, I) → HomZ(K0(A),K0(I)) is an isomorphism. By

Theorem 4.1 and Proposition 7.1 in [72], A is KK-equivalent to a commutative

C∗-algebra, and hence, by Propositions 3.2 and 3.3 in [79], the canonical map

KKnuc(A, I)→ KK(A, I) is an isomorphism. �

4. Classification of ∗-homomorphisms into ultrapowers

The goal of this section is to produce classification results for unital, full,

nuclear ∗-homomorphisms from a separable, exact C∗-algebra A satisfying the

UCT into an ultrapower of a suitably well-behaved codomain B as outlined in

the introduction. The following pullback lemma, shown to me by Jamie Gabe,

will be used to control the range of a representation A→M(JB) in the proof

of Proposition 4.2. This lemma is implicitly contained in the proof Theorem

5.1 in [78] and was explicitly stated in a slightly different form in an earlier

version available on the arXiv. As the result does not appear in the published

version of [78], the statement and proof are reproduced here.

Lemma 4.1. Consider a commuting diagram

0 I P B1 0

0 I B2 D 0

j1 α1

α2 β1

j2 β2

of C∗-algebras with exact rows. If A is a C∗-algebra and ϕi : A → Bi are
∗-homomorphisms for i = 1, 2 such that β1ϕ1 = β2ϕ2, then there is a unique
∗-homomorphism ϕ : A → P such that αiϕ = ϕi for i = 1, 2. Moreover, ϕ is

nuclear if, and only if, ϕ1 and ϕ2 are nuclear.

Proof. Consider the pullback C∗-algebraQ = {(b1, b2) ∈ B1⊕B2 : β1(b1) =

β2(b2)}, and define π : P → Q by π(p) = (α1(p), α2(p)). A diagram chase

shows π is an isomorphism. For existence, the ∗-homomorphism ϕ is given by

ϕ(a) = π−1(ϕ1(a), ϕ2(a)), and uniqueness reduces to the statement ker(α1) ∩
ker(α2) = ker(π) = 0.

If ϕ is nuclear, then ϕi = αiϕ is nuclear for i = 1, 2. Conversely, suppose

ϕ1 and ϕ2 are nuclear. Fix a C∗-algebra C, and let ρ : A⊗maxC → A⊗minC be

the canonical ∗-homomorphism. As maximal tensor products preserve exact

sequences, there is a commuting diagram

0 I ⊗max C P ⊗max C B1 ⊗max C 0

0 I ⊗max C B2 ⊗max C D ⊗max C 0

j1⊗id α1⊗id

α2⊗id β1⊗id
j2⊗id β2⊗id
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with exact rows. As ϕi is nuclear, there is a ∗-homomorphism ψi : A⊗minC →
Bi ⊗max C such that ϕi ⊗max idC = ψiρ for each i = 1, 2 by Corollary 3.8.8

of [10].

Applying the first part of the lemma to the maps ψ1 and ψ2, there is a
∗-homomorphism ψ : A ⊗min C → P ⊗max C such that (αi ⊗max idC)ψ = ψi.

Since

(αi ⊗max idC)ψρ = ϕi ⊗max idC = (αi ⊗max idC)(ϕ⊗max idC),

the uniqueness portion of the first part of the lemma implies ψρ = ϕ⊗max idC .

So ϕ⊗max idC factors through A⊗min C. As C was arbitrary, ϕ is nuclear by

Corollary 3.8.8 of [10]. �

The next two propositions provide a first approximation to the existence

and uniqueness results in Theorem D and its technical refinement given in

Theorem 5.3.

For any C∗-algebra C, ι2 : C → M2(C) denotes the inclusion into the

(1, 1)-corner, and for any ∗-homomorphism f : C1 → C2 between C∗-algebras

C1 and C2, the induced ∗-homomorphism M2(C1) → M2(C2) is still denoted

by f .

Proposition 4.2. Suppose A is a separable, unital, exact C∗-algebra sat-

isfying the UCT and B is a simple, unital, Q-stable C∗-algebra with a unique

trace τB such that every quasitrace on B is a trace and K1(B) = 0.

If τA is a faithful, amenable trace on A and σ : K0(A) → K0(Bω) is a

group homomorphism such that τ̂Bωσ = τ̂A and σ([1A]) = [1Bω ], then there is

a unital, full, nuclear ∗-homomorphism ϕ : A→ Bω such that K0(ϕ) = σ and

τBωϕ = τA.

Proof. As B is Q-stable, there is a unital embedding Q → B which is

necessarily trace-preserving by the uniqueness of the trace on Q. This induces

a unital, trace-preserving embedding Qω → Bω. Composing this embedding

with the ∗-homomorphism A→ Qω given by Theorem 1.2 yields a unital, full,

nuclear ∗-homomorphism ψ : A→ Bω such that τBωψ = τA.

Note that τ̂BωK0(qBψ) = τ̂BωK0(qB)σ. As Bω is a II1-factor by Proposi-

tion 3.3, τ̂Bω is an isomorphism, and hence K0(qBψ) = K0(qB)σ. So the image

of σ−K0(ψ) is contained in ker(K0(qB)) = im(K0(jB)). Using again that Bω

is a II1-factor, K1(B
ω) = 0, and hence K0(jB) is injective. So there is a group

homomorphism κ : K0(A)→ K0(JB) such that K0(jB)κ = σ −K0(ψ).

By Proposition 1.9, there is a separable C∗-subalgebra E0 of Bω containing

ψ(A) such that the corestriction of ψ to E0 is full and nuclear. By Proposi-

tion 1.10, there is a separable C∗-subalgebra I0 of JB such that κ factors as the

composition of a group homomorphism κ0 : K0(A) → K0(I0) and the group

homomorphism K0(I0) → K0(JB) induced by the inclusion I0 ↪→ JB. As JB
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is an admissible kernel by Proposition 3.2 and being an admissible kernel is

separably inheritable by Proposition 3.3, Proposition 1.6 implies there are a

separable admissible kernel I ⊆ JB containing I0, a separable C∗-subalgebra

E ⊆ Bω containing E0, and a separable C∗-subalgebra D ⊆ Bω such that there

is a homomorphism

0 I E D 0

0 JB Bω Bω 0

̂

ιI

q̂

ιE ιD

jB qB

of extensions where the vertical maps are the inclusions. Let ψ̂ : A→ E denote

the corestriction of ψ to E and let κ̂ : K0(A) → K0(I) be the composition of

κ0 with the group homomorphism K0(I0) → K0(I) induced by the inclusion

I0 ↪→ I.

As ψ̂ : A → E is full and nuclear, ι2ψ̂ : A → M2(E) is unitizably full

and nuclear. Let λ : M2(E) → M(M2(I)) be the canonical ∗-homomorphism.

By Proposition 3.3, M2(I) is a separable admissible kernel, and hence it is

stable and has the corona factorization property. Note that λι2ψ̂ is unitizably

full since λ is unital and ι2ψ̂ is unitizably full. Now by Theorem 2.3, λι2ψ̂ is

nuclearly absorbing.

As M2(I) is a separable admissible kernel and A satisfies the UCT, the

canonical group homomorphism

KKnuc(A,M2(I))→ HomZ(K0(A),K0(M2(I)))

is an isomorphism by Proposition 3.3. Let x ∈ KKnuc(A,M2(I)) be a lift

of K0(ι2)κ̂. By Proposition 2.6, there is a weakly nuclear representation θ :

A → M(M2(I)) such that (θ, λι2ψ̂) is a Cuntz pair in Enuc(A,M2(I)) and

[θ, λι2ψ̂] = x.

As A is exact and θ is weakly nuclear, Proposition 3.2 of [31] implies that

θ is nuclear. Lemma 4.1 applied to the diagram

0 M2(I) M2(E) M2(D) 0

0 M2(I) M(M2(I)) M(M2(I))/M2(I) 0

̂ q̂

λ

implies there is a nuclear ∗-homomorphism ϕ̂2 : A→M2(E) such that λϕ̂2 = θ

and q̂ϕ̂2 = q̂ι2ψ̂.

Now in KKnuc(A,M2(E)), we have

̂∗(x) = ̂∗[λϕ̂2, λι2ψ̂] = [ϕ̂2]− [ι2ψ̂]
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by Proposition 2.1. In particular, as x induces the group homomorphism

K0(ι2)κ̂,

K0(ϕ̂2)−K0(ι2ψ̂) = K0(ι2̂)κ̂.

Let ϕ2 = ιEϕ̂2 : A→M2(Bω). Then

K0(ϕ2)−K0(ι2ψ) = K0(ι2jB)κ = K0(ι2)σ −K0(ι2ψ)

by the choice of κ, and hence K0(ϕ2) = K0(ι2)σ. In particular,

[ϕ2(1A)] = K0(ι2)(σ([1A])) = [1Bω ] ∈ K0(Bω).

As Bω has stable rank one by Proposition 3.2, Bω has cancellation of pro-

jections by Proposition 6.5.1 of [2], and there is a unitary u ∈ M2(Bω) with

uϕ2(1A)u∗ = 1Bω ⊕ 0Bω . Now, there is a unital ∗-homomorphism ϕ : A→ Bω
such that ι2ϕ = ad(u)ϕ2.

We claim ϕ is the desired ∗-homomorphism. Note that

K0(ι2ϕ) = K0(ϕ2) = K0(ι2)σ

by the unitary invariance of K0. By the stability of K0, the map K0(ι2) is

an isomorphism, and hence K0(ϕ) = σ. By construction, qBϕ2 = qBι2ψ, so if

τM2(Bω) is the trace on M2(Bω) induced by τBω , then

τA = τBωψ = 2τM2(Bω)ϕ2 = 2τM2(Bω)ι2ϕ = τBωϕ.

As ϕ is a compression of ϕ2 and ϕ2 is nuclear, ϕ is also nuclear. For each

a ∈ A+ \ {0}, τBω(ϕ(a)) = τA(a) > 0 since τA is faithful. Since Bω has strict

comparison by Proposition 3.2, it follows from Lemma 2.2 in [81] that ϕ is

full. �

Proposition 4.3. Suppose A is a separable, unital, exact C∗-algebra sat-

isfying the UCT and B is a simple, unital, Q-stable C∗-algebra with a unique

trace τB such that every quasitrace on B is a trace and K1(B) = 0.

If ϕ,ψ : A → Bω are unital, full, nuclear ∗-homomorphisms such that

K0(ϕ) = K0(ψ) and τBωϕ = τBωψ, then there is a unitary u ∈ Bω such that

ϕ = ad(u)ψ.

Proof. Note that τBωqBϕ = τBωqBψ. As Bω is a II1-factor by Proposi-

tion 3.2 and qBϕ and qBψ are nuclear, qBϕ and qBψ are unitarily equivalent

by Proposition 1.1 and a reindexing argument. Let v̄ be a unitary in Bω with

qBϕ = ad(v̄)qBψ. Again as Bω is a II1-factor, the unitary group of Bω is path

connected. Hence there is a unitary v ∈ Bω such that qB(v) = v̄. Replacing ψ

with ad(v)ψ, we may assume qBϕ = qBψ.

By Propositions 1.9 and 1.10, there is a separable C∗-subalgebra E0 of

Bω containing ϕ(A) and ψ(A) such that the corestrictions of ϕ and ψ to E0

are full and nuclear and agree on K0. By Proposition 3.2, JB is an admis-

sible kernel, Bω is separably Q-stable, and Bω is a II1-factor and, therefore,
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has trivial K1-group. As having trivial K1-group and being an admissible

kernel are separably inheritable properties, Proposition 1.6 implies there are

separable C∗-subalgebras I ⊆ JB, E ⊆ Bω, and D ⊆ Bω such that I is an

admissible kernel, E contains E0 and is Q-stable, K1(D) = 0, and there is a

homomorphism

0 I E D 0

0 JB Bω Bω 0

̂

ιI

q̂

ιE ιD

jB qB

of extensions where the vertical arrows are the inclusion maps. Let ϕ̂, ψ̂ : A→
E be the corestrictions of ϕ and ψ to E, respectively. Then q̂ϕ̂ = q̂ψ̂, ϕ̂ and ψ̂

are unital, full, and nuclear, and K0(ϕ̂) = K0(ψ̂).

Let λ : M2(E) → M(M2(I)) be the canonical ∗-homomorphism. Note

that the image of λι2ϕ−λι2ψ is contained in M2(I), so (λι2ϕ, λι2ψ) is a Cuntz

pair in Enuc(A,M2(I)). If κ : K0(A)→ K0(M2(I)) is the group homomorphism

induced by this Cuntz pair, then K0(̂)κ = K0(ι2ϕ̂)−K0(ι2ψ̂) = 0 by Propo-

sition 2.1. As K1(D) = 0, we have that K0(̂) is injective, and hence κ = 0.

Proposition 3.3 implies M2(I) is an admissible kernel and the canonical group

homomorphism

KKnuc(A,M2(I))→ HomZ(K0(A),K0(M2(I)))

is an isomorphism, so [λι2ϕ̂, λι2ψ̂] = 0.

As ϕ̂ and ψ̂ are full and nuclear and λ is unital, we have λι2ϕ̂ and λι2ψ̂ are

unitizably full and nuclear. As M2(I) is a separable admissible kernel, Proposi-

tion 3.3 implies M2(I) is stable and satisfies the corona factorization property.

It follows that λι2ϕ̂ and λι2ψ̂ are nuclearly absorbing by Theorem 2.3, and

Proposition 2.7 implies ι2ϕ̂ and ι2ψ̂ are approximately unitarily equivalent.

Now, ι2ϕ and ι2ψ are approximately unitarily equivalent, and hence, by

a reindexing argument, there is a unitary w ∈ M2(Bω) with ι2ϕ = ad(w)ι2ψ.

As ϕ and ψ are unital, w commutes with ι2ϕ(1A) = ι2ψ(1A) = 1Bω ⊕ 0Bω .

Therefore, w = u⊕ u′ for unitaries u and u′ in Bω, and ϕ = ad(u)ψ. �

5. The classification theorem

The goal of this section is to show the classification results for ∗-homomor-

phisms from A to Bω given in Section 4 imply the analogous results for ∗-homo-

morphisms from A to B under the same hypothesis. The ideas used here go

back at least as far as the work of Lin in [50] and Dadarlat and Eilers in [21]

and have been used heavily since then. The uniqueness result for ∗-homo-

morphisms from A to B follows immediately from the uniqueness result for
∗-homomorphisms from A to Bω. The difficulty lies in the existence result
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where only approximately multiplicative maps from A to B can be produced

directly from a ∗-homomorphism from A to Bω. To make up for this, a technical

uniqueness result for approximately multiplicative maps is needed.

Let A and B be C∗-algebras, let G ⊆ A be a finite set, and let δ > 0 be

given. A linear, self-adjoint function ϕ : A→ B is called (G, δ)-multiplicative if

‖ϕ(aa′)− ϕ(a)ϕ(a′)‖ < δ

for all a, a′ ∈ G. Following Section 3.3 of [21], aK0-triple for a unital C∗-algebra

A is a triple (G, δ,P), where G ⊆ A is a finite set, δ > 0, and P ⊆ P∞(A) is

a finite set of projections in matrices over A such that whenever B is a unital

C∗-algebra and ϕ : A → B is a linear, self-adjoint, (G, δ)-multiplicative map,

‖ϕ(p2)−ϕ(p)2‖ < 1/4 for all p ∈ P. Note that if P ⊆ P∞(A) is any finite set,

then for all sufficiently large finite sets G ⊆ A and sufficiently small δ > 0, the

triple (G, δ,P) is a K0-triple for A.

Let χ denote the characteristic function of [1/2,∞) defined on the real

numbers. Note that if (G, δ,P) is a K0-triple for A and ϕ : A→ B is a linear,

self-adjoint, (G, δ)-multiplicative map, then 1/2 is not in the spectrum of ϕ(p)

for all p ∈ P. Hence for p ∈ P, we may define ϕ#(p) := [χ(ϕ(p))] ∈ K0(B). In

this way, every linear, self-adjoint, (G, δ)-multiplicative map ϕ : A→ B defines

a function ϕ# : P → K0(B).

Lemma 5.1. Suppose A is a separable, unital, exact C∗-algebra satisfying

the UCT and B is a simple, unital, Q-stable C∗-algebra with a unique trace

τB such that every quasitrace on B is a trace and K1(B) = 0.

If τA is a faithful, amenable trace on A and σ : K0(A) → K0(B) is a

group homomorphism such that τ̂Bσ = τ̂A and σ([1A]) = [1B], then for any

K0-triple (G, δ,P) for A, there is a unital, completely positive, nuclear, (G, δ)-
multiplicative map ϕ : A → B such that ϕ#(p) = σ([p]) for all p ∈ P and

|τB(ϕ(a))− τA(a)| < δ for all a ∈ G.

Proof. Suppose σ and τA are given as in the statement, and let (G, δ,P)

be a K0-triple for A. Let ιB : B → Bω denote the diagonal embedding. By

Proposition 4.2, there is a unital, nuclear ∗-homomorphism ϕω : A→ Bω such

that K0(ϕω) = K0(ιB)σ and τBωϕω = τA. By the Choi-Effros lifting theorem,

there is a sequence of unital, completely positive, nuclear maps ϕn : A → B

representing ϕω. Let

S1 =
⋂

a,a′∈G
{n ≥ 1 : ‖ϕn(aa′)− ϕn(a)ϕn(a′)‖ < δ},

and note that S1 ∈ ω and, for each n ∈ S1, ϕn is (G, δ)-multiplicative.

Fix p ∈ P, and let d, k ≥ 1 be integers such that p ∈ Md(A) and there

are projections e, f ∈ Mk(B) with σ([p]) = [e]− [f ]. Then [ϕω(p)] = [ιB(e)]−
[ιB(f)]. Now, there are an integer ` ≥ 1 and a partial isometry v ∈Md+k+`(Bω)
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such that

v∗v = ϕω(p)⊕ ιB(f)⊕ 1⊕`Bω
and vv∗ = 0⊕dBω

⊕ ιB(e)⊕ 1⊕`Bω
.

Let (vn)∞n=1 be a bounded sequence in Md+k+`(B) lifting v, and note that

lim
n→ω
‖v∗nvn − χ(ϕn(p))⊕ f ⊕ 1⊕`B ‖ = lim

n→ω
‖vnv∗n − 0⊕dB ⊕ e⊕ 1⊕`B ‖ = 0.

As p ∈ P was arbitrary and P is finite,

S :=
⋂
p∈P
{n ∈ S1 : (ϕn)#(p) = [σ(p)]} ∈ ω.

Let T =
⋂
a∈G{n ≥ 1 : |τB(ϕ(a))− τA(a)| < δ}, and note that T ∈ ω since

τBωϕ = τA. Now, S ∩ T ∈ ω and, in particular, S ∩ T 6= ∅. Fix n ∈ S ∩ T and

define ϕ = ϕn. �

Lemma 5.2. Suppose A is a separable, unital, exact C∗-algebra satisfying

the UCT and B is a simple, unital, Q-stable C∗-algebra with a unique trace

τB such that every quasitrace on B is a trace and K1(B) = 0.

For any faithful trace τA on A, finite set F ⊆ A, and ε > 0, there is

a K0-triple (G, δ,P) for A such that if ϕ,ψ : A → B are unital, completely

positive, nuclear, (G, δ)-multiplicative maps with ϕ#(p) = ψ#(p), |τB(ϕ(a)) −
τA(a)| < δ, and |τB(ψ(a))− τA(a)| < δ for all a ∈ G and p ∈ P , then there is

a unitary u ∈ B such that

‖ϕ(a)− uψ(a)u∗‖ < ε

for all a ∈ F .

Proof. Assume the result is false, and fix a faithful trace τA on A, a finite

set F ⊆ A, and ε > 0 where the result fails. Let (Gn)∞n=1 be an increasing

sequence of finite subsets of A with dense union, let (δn)∞n=1 be a decreasing

sequence of positive real numbers converging to zero, and let (Pn)∞n=1 be an

increasing sequence of finite subsets of P∞(A) with dense4 union such that

(Gn, δn,Pn) is a K0-triple for each n ≥ 1. For each n ≥ 1, there are unital,

completely positive, nuclear, (Gn, δn)-multiplicative maps ϕn, ψn : A→ B such

that (ϕn)#(p) = (ψn)#(p), |τB(ϕn(a))−τA(a)| < δn, and |τB(ψn(a))−τA(a)| <
δn for all a ∈ Gn and p ∈ Pn but such that for each unitary un ∈ B, there is

an a ∈ F with

‖ϕn(a)− unψn(a)u∗n‖ ≥ ε.
Let ϕω, ψω : A → Bω denote the functions induced by the sequences

(ϕn)∞n=1 and (ψn)∞n=1, respectively, and note that ϕω and ψω are unital ∗-homo-

morphisms. Since A is exact, ϕω and ψω are nuclear by Proposition 3.3 in [15].

Also, τBωϕω = τBωψω = τA. Since τA is faithful and Bω has strict comparison

4Here P∞(A) is equipped with the metric induced by the norm on A⊗K.



SUBALGEBRAS OF SIMPLE AF-ALGEBRAS 339

with respect to τBω by Proposition 3.2, ϕω and ψω are full by Lemma 2.2

in [81].

Fix p ∈ Pn, and let d ≥ 1 be an integer with p ∈ Md(A). As (ϕk)#(p) =

(ψk)#(p) for all k ≥ n, we have [χ(ϕk(p))] = [χ(ψk(p))] in K0(B) for all

k ≥ n. Note that B has stable rank one by Corollary 6.6 in [69], and hence

B has cancellation of projections by Proposition 6.5.1 of [2]. Now, there is

a partial isometry vk ∈ Md(B) with v∗kvk = χ(ϕk(p)) and vkv
∗
k = χ(ψk(p))

for all k ≥ n. The sequence (vk)
∞
k=1 defines a partial isometry v in Md(Bω)

with v∗v = χ(ϕω(p)) = ϕω(p) and vv∗ = χ(ψω(p)) = ψω(p). Hence [ϕω(p)] =

[ψω(p)] in K0(Bω). This shows K0(ϕω) = K0(ψω).

Proposition 4.3 now shows there is a unitary u ∈ Bω with ϕω(a) =

uψω(a)u∗ for all a ∈ A. If (un)∞n=1 ⊆ B is a sequence of unitaries lifting u,

then for each a ∈ A,

lim
n→ω
‖ϕn(a)− unψn(a)u∗n‖ = 0

and, in particular, for some integer n ≥ 1,

‖ϕn(a)− unψn(a)u∗n‖ < ε

for all a ∈ F , which is a contradiction. �

Intertwining the previous two lemmas produces the following classification

theorem, which is the main technical result of the paper.

Theorem 5.3. Suppose A is a separable, unital, exact C∗-algebra satis-

fying the UCT and B is a simple, unital, Q-stable C∗-algebra with a unique

trace τB such that every quasitrace on B is a trace and K1(B) = 0.

(1) If τA is a faithful, amenable trace on A and σ : K0(A)→ K0(B) is a group

homomorphism such that τ̂Bσ = τ̂A and σ([1A]) = [1B], then there is a

unital, faithful, nuclear ∗-homomorphism ϕ : A→ B such that K0(ϕ) = σ

and τBϕ = τA.

(2) If ϕ,ψ : A→ B are unital, faithful, nuclear ∗-homomorphisms with K0(ϕ)

= K0(ψ) and τBϕ = τBψ, then there is a sequence of unitaries (un)∞n=1 ⊆ B
such that

lim
n→∞

‖ϕ(a)− unψ(a)u∗n‖ = 0

for all a ∈ A.

Proof. Note that (2) follows immediately from Lemma 5.2 with τA := τBϕ.

For (1), fix an increasing sequence of finite sets Fn ⊆ A with dense union and

a sequence εn > 0 with
∑

n εn < ∞. Let (Gn, δn,Pn) be K0-triples for A

satisfying Lemma 5.2 for the trace τA and the pair (Fn, εn). Enlarging Gn and

Pn and decreasing δn, we may assume the Gn are increasing with union dense
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in A, the δn are decreasing and converging to zero, and the Pn are increasing

with union dense in P∞(A).

By Lemma 5.1, for each n ≥ 1, there is a unital, completely positive,

nuclear, (Gn, δn)-multiplicative map ψn : A→ B with (ψn)#(p) = σ([p]) for all

p ∈ Pn and |τB(ψn(a)) − τA(a)| < δn for all a ∈ Gn. By Lemma 5.2, for each

n ≥ 1, there is a unitary un+1 ∈ B such that

‖ψn(a)− un+1ψn+1(a)u∗n+1‖ < εn

for all a ∈ Fn. Define ϕ1 = ψ1, and define ϕn = ad(u2u3 · · ·un)ψn for n ≥ 2.

Then for all n ≥ 1 and a ∈ Fn,

‖ϕn(a)− ϕn+1(a)‖ = ‖ψn(a)− un+1ψn+1(a)u∗n+1‖ < εn.

This implies (ϕn(a))∞n=1 is Cauchy for all a ∈
⋃∞
n=1Fn, and hence by an ε/3

argument, it is Cauchy for all a ∈ A. The desired map ϕ : A→ B is given by

ϕ(a) = limn→∞ ϕn(a). �

The following result provides the rigorous statement of Theorem D.

Corollary 5.4 (Theorem D). Suppose A is a separable, unital, exact

C∗-algebra satisfying the UCT and B is a simple, unital AF-algebra with a

unique trace τB and divisible K0-group.

(1) If τA is a faithful, amenable trace on A and σ : K0(A) → K0(B) is a

group homomorphism such that τ̂Bσ = τ̂A and σ([1A]) = [1B], then there

is a unital, faithful ∗-homomorphism ϕ : A→ B such that K0(ϕ) = σ and

τBϕ = τA.

(2) If ϕ,ψ : A→ B are unital, faithful ∗-homomorphisms with K0(ϕ) = K0(ψ)

and τBϕ = τBψ, then there is a sequence of unitaries (un)∞n=1 ⊆ B such

that for all a ∈ A,

lim
n→∞

‖ϕ(a)− unψ(a)u∗n‖ = 0.

Proof. As B is an AF-algebra, we have that K0(B) is torsion-free, K1(B)

= 0, and every quasitrace on B is a trace. As K0(B) is divisible and torsion-

free, the homomorphism K0(B)→ K0(B)⊗Z Q given by [p] 7→ [p]⊗ 1Q for all

projections p ∈ B⊗K is an isomorphism. Also, viewing B⊗Q as the inductive

limit of the diagonal embeddings Mk(B)→M`(B) for integers k, ` ≥ 1 with k

dividing `, the group homomorphisms

K0(Mk(B))→ K0(B)⊗Z Q : [p] 7→ [p]⊗ 1

k

induce an isomorphism K0(B⊗Q)→ K0(B)⊗ZQ. These isomorphisms induce

an isomorphism K0(B) ∼= K0(B⊗Q) of ordered abelian groups, and it follows

from Elliott’s classification of AF-algebras that B ∼= B⊗Q. As B is nuclear, all
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∗-homomorphisms A→ B are nuclear, so the result follows from Theorem 5.3.

�

6. Applications

Proof of Theorem A. We may assume A is unital. Let τA be a faithful,

amenable trace on A, and let

G0 = spanQ{(τA ⊗ TrK)(p) : p ∈ A⊗K is a projection} ⊆ R.

By [27], if G0 is equipped with the order and unit inherited from R, then G0 is

a simple dimension group with a unique state given by the inclusion G0 ↪→ R.

Let B be a unital AF-algebra with K0(B) ∼= G0 and note that B is simple

and has a unique trace. Composing the map K0(A) → G0 induced by the

trace with an isomorphism G0 → K0(B) produces a group homomorphism

σ : K0(A) → K0(B) compatible with the unit and the trace. Corollary 5.4

now implies the existence of a unital, trace-preserving embedding A→ B. �

Proof of Theorem B. The implications (1) ⇔ (2) ⇐ (3) are well known.

To show (1) implies (3), let G be a countable, discrete, amenable group. A

result of Higson and Kasparov in [39] shows that G satisfies the Baum-Connes

conjecture, and hence a result of Lück in [53] shows that if τC∗r(G) denote the

canonical trace on C∗r(G), then for all projections p ∈ C∗r(G) ⊗ K, we have

(τC∗r(G) ⊗ TrK)(p) ∈ Q. As K0(Q) ∼= Q, the trace on C∗r(G) produces a group

homomorphism K0(C
∗
r(G)) → K0(Q) compatible with the unit and trace. A

result of Tu in [84] shows C∗r(G) satisfies the UCT, and the result follows from

Corollary 5.4. �

Proof of Theorem C. If C0(X) or G embeds into a simple, unital AF-

algebra B, then any trace on B induces a faithful, G-invariant, Borel measure

on X with mass at most 1, and hence after rescaling, X admits a probability

measure of the desired form.

Conversely, supposeG is amenable and suppose µ is a faithful, G-invariant,

Borel, probability measure on X. If E : C0(X) oG→ C0(X) is the canonical

conditional expectation, then the map C0(X) oG→ C given by

a 7→
∫
X

E(a) dµ

is a faithful trace on C0(X) oG which is amenable as C0(X) or G is nuclear.

A result of Tu in [84] shows C0(X)orG satisfies the UCT, so the result follows

from Theorem A. �

In [52], Lin has shown that if A is an AH-algebra and α is an action of

Zk on A such that A admits a faithful, α-invariant trace, then the crossed
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product Aor Zk embeds into an AF-algebra. Theorem A implies the following

generalization of this result.

Corollary 6.1. Suppose A is a separable, exact C∗-algebra satisfying

the UCT, G is a countable, discrete, torsion-free, abelian group, and α is an

action of G on A. If A admits a faithful, α-invariant, amenable trace, then

Aoα G embeds into an AF-algebra.

Proof. Let Gn be an increasing sequence of finitely generated subgroups

of G with union G. If αn is the restriction of α to an action of Gn on A, then

the canonical ∗-homomorphism

lim
−→

Aoαn Gn −→ Aoα G

is an isomorphism. As each Gn is finitely generated, torsion-free, and abelian,

Gn ∼= Zd(n) for some integer d(n) ≥ 1. It follows that A oα G satisfies the

UCT. Also, A is separable and exact, and if E : Aoα G→ A is the canonical

conditional expectation and τA is a faithful, α-invariant, amenable trace on A,

then τAE is a faithful trace on A oα G. As τA is amenable and A is exact,

πτA(A)′′ is injective. Therefore,

πτAE(Aoα G)′′ ∼= πτA(A)′′ōG

is injective by Proposition 6.8 of [13], and hence τAE is amenable. The result

now follows from Theorem A. �

The AF-embedding problem for C∗-algebras of countable 1-graphs was

solved in [76]. For countable, cofinal, row-finite 2-graphs with no sources,

a similar result was obtained by Clark, an Huef, and Sims in [12]. Using

their techniques together with Theorem A, the main result of [12] extends to

k-graphs.

Corollary 6.2. Let k ≥ 1 be an integer, let Λ be a countable, cofinal,

row-finite k-graph with no sources, and let A1, . . . , Ak denote the coordinate

matrices of Λ. The following are equivalent :

(1) C∗(Λ) embeds into an AF-algebra ;

(2) C∗(Λ) is quasidiagonal ;

(3) C∗(Λ) is stably finite;

(4)
Ä∑k

i=1 im(1−Ati)
ä
∩ Z+Λ0 = {0};

(5) Λ admits a faithful graph trace.

Proof. The equivalence of (2) through (5) is Theorem 1.1 in [12], and it

is well known that (1) implies (2). The same proof given in Lemma 3.7 of [12]

shows (5) implies (1) by appealing to Theorem A above in place of Corollary B

of [81]. �
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A C∗-algebra A is matricial field (MF ) if there is a net ϕi : A→Mn(i) of

linear, self-adjoint functions such that

‖ϕi(aa′)− ϕi(a)ϕi(a
′)‖ → 0 and ‖ϕi(a)‖ → ‖a‖

for all a, a′ ∈ A. Similarly, a trace τA on a C∗-algebra A is called matricial

field (MF ) if there is a net ϕi : A→Mn(i) of linear, self-adjoint functions such

that

‖ϕi(aa′)− ϕi(a)ϕi(a
′)‖ → 0 and τMn(i)

(ϕi(a))→ τA(a)

for all a, a′ ∈ A.

The class of MF algebras was introduced by Blackadar and Kirchberg

in [4]. Haagerup and Thorbjørnsen have shown in [37] that C∗r(F2) is MF where

F2 is the free group on two generators. From here, it follows as well that C∗r(F )

is MF for all free groups F . (One first reduces to the case where F is countable

and then considers an embedding F ↪→ F2.) Using this result, many reduced

crossed products of C∗-algebras by free groups have been shown to be MF in

[43], [66], [67], [77]. The results above allow for substantial generalizations of

these results.

Corollary 6.3. Suppose A is a separable, exact C∗-algebra satisfying

the UCT and α is an action of a free group F on A. If τ is a trace on Aor F

such that τ |A is faithful and amenable, then τ is MF.

Proof. Adding a unit to A if necessary, we may assume A is unital. By

Theorem 4.8 in [67], there is a group homomorphism σ : K0(A) → K0(Qω)

such that σ([1A]) = [1Qω ], τ̂Qωσ = τ̂ |A, and σK0(αs) = σ for each s ∈ F . By

Proposition 4.2, there is a unital, full, nuclear ∗-homomorphism ϕ : A → Qω
such that K0(ϕ) = σ and τQωϕ = τ |A.

For each s in a free generating set for F , we have K0(ϕαs) = K0(ϕ) and

τQωϕαs = τQωϕ, and hence, by Proposition 4.3, there is a unitary us ∈ Qω
such that ϕαs = ad(us)ϕ. As F is free, the function s 7→ us extends to a

unitary representation of F on Qω with ϕαs = ad(us)ϕ for all s ∈ F .

This shows that the trace τ |A is α-MF in the sense of [67], and hence, if

E : A or F → A denotes the conditional expectation, then the trace (τ |A)E

is MF. When F 6∼= Z, we have τ = (τ |A)E by [38], and therefore, τ is MF.

Now assume F = Z. Since A is exact and τ |A is amenable, πτ |A(A)′′ is

injective. Since

π(τ |A)E(Ao Z)′′ ∼= πτ |A(A)′′ōZ
is injective by Proposition 6.8 of [13], (τ |A)E is amenable. Now, A o Z is

separable and exact, satisfies the UCT, and admits a faithful, amenable trace

(τ |A)E. By Theorem 3.8 in [33], (τ |A)E is quasidiagonal, and hence A o Z
is quasidiagonal. By Theorem 4.1 in [33], every amenable trace on A o Z is

quasidiagonal and, in particular, is MF. So it suffices to show τ is amenable.
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Let T (A) denote the set of traces on A. Since A is unital, T (A) is a

Choquet simplex by Theorem 3.1.18 in [73]. It was shown by Kirchberg in

Lemma 3.4 of [44] that the set of amenable traces on A is a weak∗-closed face

in T (A), so by Corollary II.5.20 of [1], there is a continuous, affine function

f : T (A)→ [0, 1] such that for ρ ∈ T (A), f(ρ) = 0 if, and only if, ρ is amenable.

Let α̂ be the action of T on Ao Z dual to α. Then

(τ |A)E =

∫
T
τα̂z dz.

As f((τ |A)E) = 0 and the map z 7→ f(τα̂z) is positive and continuous on T,

we have f(τα̂z) = 0 for all z ∈ T by the faithfulness of the Lebesgue measure

on T. Therefore, τα̂z is an amenable trace for all z ∈ T and, in particular,

τ = τα̂1 is an amenable trace. �

Corollary 6.4. If A is a locally type I C∗-algebra and α is an action of

a free group F on A, then every trace on Aor F is MF.

Proof. We may assume A is separable. Suppose τ is a trace on A or F .

Then J := {a ∈ A : τ(a∗a)} = 0 is an α-invariant ideal of A and τ vanishes

on the ideal J or F of A or F . Hence, as F is exact, τ factors through

(A/J) or F . As A is locally type I, so is A/J . After replacing A with A/J ,

we may assume τ |A is faithful. By Theorem 1.1 in [16], locally type I algebras

satisfy the UCT. Since locally type I algebras are nuclear, the result follows

from Corollary 6.3. �

The following is a substantial generalization of a result of Kerr and Nowak

(Theorem 5.2 in [43]) which gives the same statement in the case when A is

commutative. An action of a group G on a C∗-algebra A is called minimal if

A admits no non-trivial G-invariant ideals.

Corollary 6.5. Suppose A is a separable, unital, nuclear C∗-algebra

satisfying the UCT and F is a free group acting minimally on A. Then the

following are equivalent :

(1) Aor F is MF ;

(2) Aor F is stably finite;

(3) A admits an invariant trace.

Proof. All MF C∗-algebras are stably finite, so (1) implies (2). For (2)

implies (3), if A or F is stably finite, then since A or F is unital and exact,

Aor F admits a trace τ by Corollary 5.12 in [36], and then τ |A is an invariant

trace on A. Finally, for (3) implies (1), suppose A admits an invariant trace

τA. Since {a ∈ A : τA(a∗a) = 0} is an invariant ideal in A and α is minimal,

τA is faithful. As A is nuclear, τA is amenable, and hence τAE is MF by
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Corollary 6.3. Since τA and E are faithful, τAE is faithful. So A or F has a

faithful, MF trace, hence it is MF. �

Theorem D also allows for a description of closed unitary orbits of normal

operators in simple, unital AF-algebras with a unique trace and divisible K0-

group in terms of spectral data.

Corollary 6.6. Suppose B is a simple, unital AF-algebra with a unique

trace and divisible K0-group. Two normal operators a and b in B are approx-

imately unitarily equivalent if, and only if, σ(a) = σ(b), τB(f(a)) = τB(f(b))

for all f ∈ C(σ(a)), and for every compact, open set U ⊆ σ(a), the projections

χU (a) and χU (b) are unitarily equivalent.

Proof. Let X = σ(a) = σ(b), and let â and b̂ be the ∗-homomorphisms

C(X) → B given by the functional calculus. If X = σ(a) = σ(b), then

K0(C(X)) is canonically isomorphic to C(X,Z) and is generated as a group

by the elements [χU ] for compact, open sets U ⊆ X. Hence K0(â) = K0(b̂)

if, and only if, χU (a) and χU (b) are unitarily equivalent for each compact,

open set U ⊆ X. Now apply the uniqueness portion of Theorem 5.3 to the
∗-homomorphisms â and b̂. �

We end with an abstract characterization of AF-algebras among the class

of simple, unital C∗-algebras with a unique trace and divisible K0-group. The

following result is known and can be deduced from the classification of separa-

ble, simple, unital, nuclear, Z-stable C∗-algebras which satisfy the UCT and

have a unique trace. The minimal route through the literature seems to be

the quasidiagonality theorem of [81], the results of Matui-Sato to show A is

tracially AF [55], and the classification of separable, simple, unital, nuclear,

tracially AF-algebras satisfying the UCT due to Lin in [51]. The latter result

makes heavy use of deep classification and structural results for approximately

homogeneous C∗-algebras. It is worth emphasizing that the proof given here

does not depend on tracial approximations of any kind and does not depend

on any inductive limit structure beyond that for AF-algebras.

Corollary 6.7. Suppose A is a simple, unital, C∗-algebra with a unique

trace and divisible K0-group. Then A is an AF-algebra if, and only if, A is

separable, nuclear, and Q-stable, A satisfies the UCT, and K1(A) = 0.

Proof. It is well known that AF-algebras are separable, nuclear, and satisfy

the UCT. As K0(A) is divisible, K0(A⊗Q) ∼= K0(A) and hence A is Q-stable

by the classification of AF-algebras.

Conversely, suppose A is a separable, simple, unital, nuclear, Q-stable

C∗-algebra with a unique trace, A satisfies the UCT, and K1(A) = 0. As A
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is simple, the trace on A is necessarily faithful, so A is stably finite. Hence

(K0(A),K+
0 (A), [1A]) is an ordered group by Proposition 6.3.3 in [2].

As A is Q-stable and has a unique trace, A has real rank zero by Theorem

7.2 of [70]. Also, A has stable rank one by Corollary 6.6 in [69] and, therefore,

has cancellation of projections by Proposition 6.5.1 of [2]. Therefore, K0(A)

has Riesz interpolation by Corollary 1.6 in [85]. Also, as A is Q-stable, K0(A)

is unperforated. By the Effros-Handelman-Shen Theorem [25], there is a unital

AF-algebra B with K0(A) ∼= K0(B) as ordered groups. Necessarily, B is simple

and has a unique trace. Let σ : K0(A)→ K0(B) be a unital order isomorphism.

As K0(B) has unique state, we have τ̂Bσ = τ̂A. Applying Theorem 5.3, there is

a unital, nuclear ∗-homomorphism ϕ : A→ B with K0(ϕ) = σ and τBϕ = τA.

As B is an AF-algebra and A has stable rank one, there is a ∗-homomor-

phism ψ : B → A such that K0(ψ) = σ−1 and τAψ = τB by the classification

of ∗-homomorphisms out of AF-algebras (or by Theorem 5.3). Using Theo-

rem 5.3, ψϕ is approximately unitarily equivalent to the identity on A and

ϕψ is approximately unitarily equivalent to the identity on B. By Elliott’s

intertwining argument (see Corollary 2.3.4 of [71]), A ∼= B. �
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