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Uniform Manin-Mumford for
a family of genus 2 curves

By LAurRA DEMARCO, HoLLY KRIEGER, and HEXI YE

Abstract

We introduce a general strategy for proving quantitative and uniform
bounds on the number of common points of height zero for a pair of in-
equivalent height functions on P*(Q). We apply this strategy to prove a
conjecture of Bogomolov, Fu, and Tschinkel asserting uniform bounds on
the number of common torsion points of elliptic curves in the case of two
Legendre curves over C. As a consequence, we obtain two uniform bounds
for a two-dimensional family of genus 2 curves: a uniform Manin-Mumford
bound for the family over C, and a uniform Bogomolov bound for the family

over Q.

1. Introduction

In this article, we use the Arakelov-Zhang intersection of adelically-
metrized line bundles on P1(Q) to prove a uniform Manin-Mumford bound for a
two-dimensional family of genus 2 curves over C. The Manin-Mumford Conjec-
ture, proved by Raynaud [Ray83], asserts the following: Let X be any smooth
complex projective curve of genus g > 2, P € X(C) any point, jp : X — J(X)
the Abel-Jacobi embedding of X into its Jacobian J(X) based at P, and
J(X)trs the set of torsion points of the Jacobian. Then

(1.1) ip(X) N J(X)| < oo,

In the case of genus g = 2, the curve is hyperelliptic, and the fixed points of
the hyperelliptic involution provide geometrically natural choices of base point
for the Abel-Jacobi map. We show there is a uniform bound on the number of
torsion images under such a map, provided the curve is also bielliptic, meaning
that it admits a degree-two branched covering to an elliptic curve.
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THEOREM 1.1. There exists a uniform constant B such that
ip(X) N J(X)*™| < B

for all smooth, bielliptic curves X over C of genus 2 and all Weierstrass points
P on X.

The curves satisfying the hypothesis of Theorem 1.1 form a complex sur-
face Lo in the moduli space Mo of genus 2 curves. These X are also character-
ized by the property that their Jacobians admit real multiplication by the real
quadratic order of discriminant 4. Further details on L9 are given in Section 9.

Remark 1.2. We do not give an explicit value for the B of Theorem 1.1,
but this bound can be made effective by estimating the continuity constants
of Section 4. Poonen showed that there are infinitely many curves X € Lo
for which [jp(X) N J(X)"| is at least 22, taking P to be a Weierstrass point
on X [Poo00, Th. 1]. More recently, Stoll found an example with |jp(X) N
J(X)tr8| = 34 for Weierstrass point P on X € Lo [Sto]; the curve X is
defined over Q. We know of no curve X € My(C) and point P € X satisfying
lip(X) N J(X)tors| > 34.

Remark 1.3. Although Theorem 1.1 provides a uniform bound on the
number of torsion points on X in its Jacobian, there cannot be a uniform
bound on the order of these torsion points. See Proposition 9.2.

The question of uniformity in (1.1) was raised by Mazur in [Maz86], who
asked if a bound could be given that depends only on the genus g of the
curve X. Quantitative bounds on torsion points on curves have been obtained
when the curve is defined over a number field, notably by Coleman [Col85],
Buium [Bui96], Hrushovski [Hru01], and more recently by Katz, Rabinoff, and
Zureick-Brown [KRZB16]. By quantifying the p-adic approach to (1.1), these
authors achieve bounds for general families of curves; however, these bounds
all involve dependence on field of definition or the choice of a prime for the
family of curves, so they are not uniform for families over Q or C.

Our new technique that yields Theorem 1.1 is a quantification of the
approach of Szpiro, Ullmo, and Zhang [SUZ97|, [Ull98], [Zha98] to proving
(1.1), utilizing adelic equidistribution theory. We first reduce to the setting
where the curve is defined over Q. Over Q, we build on the proof of the
quantitative equidistribution theorem for height functions on P*(Q) of Favre
and Rivera-Letelier [FRLOG6].

In fact, we deduce Theorem 1.1 from a case of the following conjecture,
discussed by Bogomolov and Tschinkel [BT07] and stated formally as [BFT18,
Conjs. 2 and 12], which asserts uniform bounds on common torsion points for
pairs of elliptic curves. By a standard projection 7 : E — P! of an elliptic curve
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E over C, we mean any degree-two quotient that identifies a point P and its
inverse —P. Note that every standard projection w will have a simple critical
point at each of the four elements of the 2-torsion subgroup E[2].

CONJECTURE 1.4 ([BFT18]). There exists a uniform constant B such that
1 (BE) o) < B

for any pair of elliptic curves E; over C and any pair of standard projections

m; for which m (F1[2]) # ma(F2[2]).

Note that if 71 (E1[2]) = me(E2[2]), then Fj is isomorphic to Es and
71 (EO) = mo(EY°™S). The finiteness of the set 1 (EP™) N my( EL°™), under
the assumption that m(E1[2]) # m2(E2[2]), follows from the main theorem of
Raynaud in [Ray83]; indeed, the diagonal in P! x P! lifts to a (singular) curve
C C E; x Fjy via m X mg with normalization of genus g > 2 [BTO07].

We prove Conjecture 1.4 in the case of maximal overlap of the 2-torsion
points; i.e., when

|1 (E1([2]) Nma(E2[2])] = 3.

This setting corresponds to the case where the (normalization of the) curve C
in B x By has genus 2. By fixing coordinates on P!, it suffices to work with
the Legendre family of elliptic curves

(1.2) E P =x(x—1)(z—1)
with ¢ € C\ {0,1} and the standard projection w(xz,y) = x on E;. (See
Corollary 8.2.)
THEOREM 1.5. There exists a uniform constant B such that
|m(B)™) N w(E™)| < B,
for all ty # to in C\ {0, 1}, for the curves Ey defined by (1.2) and projection
m(x,y) = x.

To prove Theorem 1.5, we introduce a general strategy for bounding the
number of common height-zero points for any pair of distinct height functions
hi,hs : P1(Q) — R that arise from continuous, semipositive, adelic metrics on
the line bundle Op1(1). There is a natural Arakelov-Zhang pairing between any
two such heights, given by the intersection number of the associated metrized

line bundles. Our heights are normalized so this intersection number, which
we denote by hi - ha, will satisfy

h1 - ho > 0 with equality if and only if A1 = hs.

Details on these heights and the pairing are given in Section 2. The value of
hi-he provides a notion of distance between the two heights (as was observed by
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Fili in [Fil17]). It follows from equidistribution [CLO06], [FRLO06], [BR10] that
(1.3) li_>m hz(xn) = h1 . h2

for any infinite sequence of distinct points x,, € P!(Q) such that h1(x,) — 0 as
n — 00, suggesting that large numbers of common zeroes between h; and ho
will imply that h; and hs are close. However, this measure of closeness between
two heights is not generally uniform in families of heights, because the rate of
equidistribution is not uniform. Nevertheless, by bounding the height pairing
h1 - ho from below, we can obtain an upper bound on the number of common
zeroes for certain families.

In the context of Theorem 1.5, we consider the family of height functions hy
on P'(Q) induced from the Néron-Tate canonical height on the elliptic curve
E; for t € Q)\ {0,1}; its zeroes are precisely the elements of 7(E{°™). We
implement this general strategy by proving three bounds on the intersection
pairing Btl . iLtz. We prove a uniform lower bound on the pairing:

THEOREM 1.6. There exists 6 > 0 such that
hi, - hyy > 6
for allt; #ty € Q\ {0, 1}.

We also prove an asymptotic lower bound for parameters t; and to with
large height:

THEOREM 1.7. There exist constants a, 8 > 0 such that
hiy - hey > ah(ty,ts) — B
for all t1 # to in Q\ {0,1}. Here h(t1,t2) is the naive logarithmic height on
A%(Q).
We find an upper bound that depends on the number of common zeroes

of iLtl and iLtQ as well as the heights of the parameters ¢; and ts:

THEOREM 1.8. For all € > 0, there exists a constant C(g) > 0 such that

he, - by, < (5 + NZE%) (h(t1,t2) + 1)

for all t1 and ty in Q\ {0,1}, where N(t1,t2) := |w(Ef°) N w(EL™)].

The three theorems combine to give a uniform bound on the number
N (t1,t2) of common zeroes of hy, and hy, for all £ # ¢ in Q \ {0,1}.

Theorems 1.6 and 1.7 follow from estimates on the local height functions
and the local equilibrium measures on the v-adic Berkovich projective line
at each place v of a number field containing ¢; and ts, computed using the
dynamical Lattes map f; : P! — P! induced by multiplication by 2 on a
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Legendre curve F;. The non-archimedean contributions to iztl . iltz turn out to
be straightforward to compute for these heights. Significant technical issues
arise when v is archimedean and both parameters t; are tending to the sin-
gularity set {0,1, 00} for this family; we resolve these issues by appealing to
the theory of degenerations of complex dynamical systems on P!(C), in which
a family of complex rational maps degenerates to a non-archimedean dynam-
ical system acting on a Berkovich space, as in the work of DeMarco-Faber
[DMF14] and Favre [Fav16], using the formalism of hybrid space as discussed
by Boucksom-Jonsson in [BJ17].

For Theorem 1.8, we expand upon the quantitative equidistribution re-
sults of Favre-Rivera-Letelier [FRL0O6] and Fili [Fill17] to analyze the rates of
convergence of measures supported on finite sets of zeroes of a height A to the
associated equilibrium measures at each place v. To do so requires control on
the modulus of continuity of the local heights, and again we rely on estimates
from the hybrid space to treat the cases where a parameter t is tending to one
of the singularities for the family E;.

Although Theorem 1.6 alone was not enough to prove Theorem 1.5, it
implies a uniform bound of a different sort, when combined with Zhang’s in-
equality on the essential minimum of a height function [Zha95]:

PROPOSITION 1.9. Choose any b satisfying 0 < b < §/2 for the ¢ of

Theorem 1.6. Then the set
S(b,t1,t2) == {a € PY(Q) : hy, (x) + hey () < b}
is finite for each pair t; #t2 € Q\ {0,1}.

The complete proof of Theorem 1.5, however, gives a much stronger state-
ment: we obtain a uniform bound on the size of the set S(b,t1,t2) defined in
Proposition 1.9 over all pairs t; # to € Q\ {0,1}; see Theorem 8.1. This in
turn provides a uniform version of the Bogomolov Conjecture for the associ-
ated family of genus 2 curves. The Bogomolov Conjecture was proved for each
individual curve X over Q in [Ul198], [Zha98]. To state our result precisely, we
fix ample and symmetric line bundles on the family of Jacobians J(X) for the
genus 2 curves X defined over Q that we consider in Theorem 1.1. Specifically,
we take Ly = ®*Lp for the isogeny ® : J(X) — Ej x E3 of Proposition 9.1,
with Lp the line bundle associated to the divisor D = {O1} x Ea+ E7 x {O3},
where O; is the identity element of E;.

THEOREM 1.10. There exist constants B and b > 0 such that
{z € jp(X)(@Q) : hpy(z) <Y < B

for all smooth curves X over Q of genus 2 admitting a degree-two map to an
elliptic curve and all Weierstrass points P on X, where hy . is the Néron-Tate
canonical height on the Jacobian J(X).
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Finally, we mention that we implement this general strategy towards uni-
form boundedness in a follow-up article [DKY19] in another setting, providing
a uniform bound on the number of common preperiodic points for distinct
polynomials of the form f.(z) = 22 + ¢ with ¢ € C.

Remark 1.11. We have chosen to work with the Arakelov-Zhang pairing
ﬁtl . ﬁtz to measure proximity of the two height functions, with ¢; # t5 in
Q\ {0,1}, but there are other choices we could have made. For example,
Kawaguchi and Silverman in [KS09] study

) (htl,th) = sup_ ‘htl (x) — hy, ()]
zePL(Q)
It turns out that the two quantities are comparable for this family of heights.
The upper bound lAltl . ﬁtQ < § (ﬁtl,ﬁtQ) can be seen as a corollary of arith-
metic equidistribution and (1.3), and therefore holds for any pair of normalized
heights coming from continuous, semipositive adelic metrics on Opi(1). A lower
bound of the form ﬁtl -iLtQ >Ch 6 (ﬂtl, ith) — (5 for positive constants C7, Co,
and for all t; # to in Q \ {0, 1}, is a consequence of Theorem 1.7, when com-
bined with [KS09, Th. 1]. However, such a lower bound does not hold for all
pairs of heights coming from metrics on Opi(1). A comparison of these two
pairings is addressed further in [DKY19] for the canonical heights associated
to morphisms of P!.

Outline of the paper. We fix our notation and provide background in Sec-
tion 2. Sections 3, 4, and 5 provide the estimates on local height functions and
local measures needed to prove all of our theorems. Theorem 1.7 is proved in
Section 6, and from it we deduce Theorem 1.6 and Proposition 1.9. A gen-
eralization of Theorem 1.8 is proved in Section 7 that treats points of small
height, not only of height 0. We prove Theorem 1.5 in Section 8 and finally
Theorems 1.1 and 1.10 in Section 9.
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Special thanks go to Ken Jacobs, Mattias Jonsson, Curt McMullen, and Khoa
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Foundation (DMS-1600718), H. Krieger was supported by Isaac Newton Trust
(RGT74916), and H. Ye was partially supported by ZJNSF (LR18A010001) and
NSFC (11701508).

2. Heights, measures, and energies

This section develops the background and notation needed for the proofs
that follow. Throughout, K is a number field and M its set of places.
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2.1. The canonical height. Fix t € Q\ {0,1}. Let E; be the Legendre
elliptic curve and 7 : E; — P! the projection defined by m(z,y) = 2. The
multiplication-by-two endomorphism on E; descends via 7w to a morphism of
degree 4 on P! given by

(@ - 1)

21) ) = e =y

The canonical height on the elliptic curve

~ —_

hEt : Et((@) — R

can be defined via the projection 7 and the iteration of f; as hg,(P) :=
2hi(n(P)), where

he : PH@Q) = R
is the dynamical canonical height defined by

.1 n

(2.2) () = Tim S h(fF ().
Here, h is the (logarithmic) Weil height on P'(Q). Note that h(z) > 0 for all
r € P}(Q), and
hi(z) =0 <= z € n(E{*™)
[Sil09], [CS93].

The height h; has a local decomposition as follows: for any number field
K containing ¢, and for each place v € M, there exists a local height function
At,» such that

“ T
hi(z) = Z — Z Ao ()
vEMK |Ga1(K/K) ' :1:| yeGal(K/K)-z
for all z € K, where
[Kv : Q’U]
(K : Q]

The local heights A, can be chosen to extend continuously to P!(C,) \ {oo},
where C, is the completion (with respect to v) of an algebraic closure of the

Ty 1=

completion K, and to satisfy
Ao (2) = log [2], + O(1)

as ||, — oo.
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2.2. Local heights and escape rates. To compute the local heights, we will
often express the maps f; : P! — P! of (2.1) in homogeneous coordinates, as

Fy(z,w) = ((2* — tw?)?, dzw(z — w)(z — tw))
for z and w in C,. As observed in [BR10, Ch. 10], its escape-rate function
.1
(2.3) Gro(zw) = lim -olog | (z,0)]le,

where [|(z, w)[|ly = max{|z|y, ylv}, satisfies

@)= > e s 2 Gre@

vEMK §eGal(K/K)-Z

for z € P}(K) and Z any choice of lift of = to K’ \ {(0,0)}. In particular, we
may take

(2.4) Aw(z) =GR, (2, 1)

as a local height for hy.
The elliptic curves E; and Fy_; and F; /t are isomorphic, with the following
transformation formulas for the local heights:

PROPOSITION 2.1. Fixz any number field K and v € Mg. Then, for all
te K\ {0,1}, we have

Gr_w(1=21) =Gpro(2,1) = Gr,0(2,t) = Gry,0(2/t, 1) + 1og [t
Proof. Let A be the automorphism A(z,w) = (w — z,w). Then
AoF'=—F",0A
for all iterates, proving the first equality. Similarly, let B(z,w) = (z,tw). Then

Bo Fl'= {L/toB

for all iterates, proving the second equality. The final equality follows from the
logarithmic homogeneity of G. ([

2.3. The Berkovich projective line. Let K be a number field. For each v €
Mg, let A}/an denote the Berkovich affine line over C,. For non-archimedean v,
the points of A" come in four types. The Type I points in Ay are, by
definition, the elements of the field C,. The Type II points are in one-to-one
correspondence with disks D(a,r) = {z € C, : |zr—al, < r} with r > 0 rational,
and these are the branch points for the underlying tree structure on Ay®”". The
Type IIT points correspond to disks D(a,r) with r irrational. (We will not
need the Type IV points in this article.) A Type II or III point corresponding
to D(a,r) will be denoted by (,,. The Gauss point (p; is the Type II point
identified with the unit disk. The Berkovich projective line P},’a" = A},’anu{oo}
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is the one-point compactification of A},’a", which is a canonically-defined path-
connected compact Hausdorff space containing P'(C,) as a dense subspace. If
v is archimedean, then C, ~ C and Py = P(C).

For each v € My, there is a distribution-valued Laplacian operator A on
Py™". The function log* |z], on P!(C,) extends naturally to a continuous real
valued function Py®" — R U {o0}, and the Laplacian is normalized such that

A10g+ |2]o = Wy — b0

on Py, where w, = mg: is the Lebesgue probability measure on the unit
circle when v is archimedean, and w, = d¢ is a point mass at the Gauss point
of Py when v is non-archimedean. A probability measure p, on Py is said
to have continuous potentials if p, —w, = Ag with g : le,’an — R continuous.
The function g for u, is unique up to the addition of a constant. See [BR10,
Ch. 5] for more details. Note that the Laplacian used here is the negative of the
one appearing in [PST12] and [BR10], but it agrees with the usual Laplacian
(up to a factor of 27) at the archimedean places.

For v non-archimedean, we set
. AlLan
H:= A, \ C,.

The hyperbolic distance dyy, on H gives it the structure of a metrized R-tree
and satisfies

dhyp(fa,m > Ca,rg) = IOg(Tl /TQ)

for any a € C, and any r; > ry > 0. We will say that a probability measure
ty on H is an interval measure if it is the uniform distribution on an interval
[C1, (2] € H with respect to the linear structure induced from the hyperbolic
metric dpyp.

2.4. Canonical measures and good reduction. For each Legendre elliptic
curve E; with ¢ in a number field K and each v € Mk, the local height A\;, of
(2.4) extends to define a continuous and subharmonic function on Ay™ with
logarithmic singularity at co. We have

AAt,v = Mtp — 000

on IP%’“", where i, is the canonical probability measure for the dynamical
system f; at v [FRLO6], [BR10, Th. 10.2].

For archimedean v € Mp, the measure p, is the unique fi-invariant
measure on P*(C) achieving the maximal entropy log4. It is the push-forward
of the Haar measure on E;(C) via the projection 7 introduced in Section 2.1.
See, for example, [Mil06] for a dynamical discussion of the maps f; on the
Riemann sphere.

For non-archimedean v € M, if the curve F; and the map f; have good
reduction, the measure py, is the point mass dg supported on the Gauss
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point (p1. The map f; has potential good reduction, meaning that it has
good reduction under a suitable change of coordinates on P!, if and only if
the measure p;, is supported at a single Type II point in H. In general, the
support of i, is equal to the Julia set of f; in Py®".
Recall that the j-invariant of the elliptic curve E; over C is given by
. 256(1 — t + t2)3

For t € K and non-archimedean v € My, the map f; has potential good
reduction at v if and only if the curve E; has potential good reduction at v.
This equivalence can be proved via equidistribution of torsion points on F;
at all places [BP05, Th. 1] (thus implying that the measure p, will also be
supported at a single point of Py®") or via a direct calculation showing that
the Julia set of f; is a singleton if and only if |j(¢)], < 1.

2.5. The height as an adelic metric. Suppose t € K \ {0,1}. The height
h; on P! (Q), introduced in Section 2.1, is induced from an adelic metric on
Op1(1), in the sense of Zhang [Zha95]. Fixing coordinates on P! and a section
s of Op1(1) with (s) = (00), then a metric || - ||¢, can be defined at each place
v of K by setting

—logls(2)[le0 = Aw(2) = GRo(2,1)

for the function G, , of (2.3). The height h; satisfies

~ T’U

he(z) = _ 1 .

0= Y e L el
veEMg yeGal(K/K)-x

for all x # oo in P}(Q). Writing At »(2) = log |2]» + ¢y +0(1) as |2], — oo with
a constant ¢, at each place v of K, we may compute that

(2.6) 0=hi(oo) = Y rycy,

veEMK

because oo is the projection of the origin of Ej.

2.6. The intersection pairing. For these heights hy coming from the Le-
gendre family of elliptic curves, with ¢t € Q \ {0, 1}, we have

(2.7) iLtl = iLtQ <= 11 = to.

Indeed, any height coming from an adelic metric on Opi(1) is uniquely deter-
mined, up to an additive constant, by the associated curvature distributions;
see, for example, the construction of a height function from the measures in
[FRLOG6]. For heights of the form &, at each archimedean place v of a number
field containing ¢, the curvature distribution s, on P!(C) is the push-forward
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of the Haar measure on E;(C) by m; it therefore has a greater density at the
four branch points {0, 1,¢,00} of m and thus determines ¢.

There is a well-defined intersection number between any pair of such
heights, as in [Zha95] (see also [CL11]); more precisely, it is the arithmetic
intersection number of the two associated adelically metrized line bundles. By
the non-degeneracy of this height pairing and (2.7),

(2.8) hi, - hy, > 0 with equality if and only if ¢ = t,

as computed in [PST12].

To define the pairing hy, - hy,, we fix sections s and u of Op1(1) such that
their divisors do not intersect. Given ¢; and t5 in a number field K, and a
place v of K, we set

<ht17 ht2>fi’u = /10g ||3Ht_1,1v A(log Hth_g,lv) = <ht27ht1>g7s'
The integral is over the Berkovich analytification Py of P!, over the field C,.
The metrics satisfy
A(l0g [1s[l;0) = pe0 = 8s),

and fu, is the associated curvature distribution.
The height pairing is then defined as

(2‘9) il’tl ’ iLt2 = ilh((“’)) + ilt2((8)) + Z Ty <iLt1’ }Alt2>f;’uv
veEMK

which is independent of the choices of s and u. This pairing is easily seen to
be symmetric, and since h¢(0co) = 0 for all ¢, it can be expressed as

(2.10)
g = by (o0 + 3 1 [ g sl i = 3 o [ Ay di,
UEMK 'UEMK
— i)+ Y n / Gog Isllih) dty = 3 7o / N

veEMK veEMK

when (s) = (00).
As hy-hy =0 for all t € Q\ {0,1} from (2.8), note that

(2.11) > m,//\t,v dpey =0= > 1y,

vEMK vEMK
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by combining (2.10) and (2.6). The pairing can be rewritten as:

(2.12)

SO 1/ . .

ht1 : htz = 5 ht2(oo) =+ htl (OO) + Z Ty (/ )‘tl,v d/‘t2,v +/)‘tQ,U d:utl,v>

’UGMK

Z Ty </ <)\t1,v - Atg,v) d,utg,v + / ()\tQ,’U - )\t1,v) dﬂtl,fu) .

vEME

N | =

The advantage of working with (2.12) is the following local version of the non-
degeneracy property (2.8):

ProprosITION 2.2 ([FRLO06, Props. 2.6 and 4.5]). Let K be a number field
and v € Mg. For any t1,ty € K\ {0,1}, the local energy

Ey(t1,t2) = % (/ (At1,0 = Atg,0) dbty0 + / (Mg — Ay ) d,utl,v>
is non-negative; it is equal to 0 if and only if pu, v = [ty 0-
PROPOSITION 2.3. Let v € Mg, and fix t1,t2 € K\ {0,1}. We have
Ey(ta,t1) = Ey(t1,t2) = Ey(1 — 11,1 — t2) = E,(1/t1,1/t2).

Proof. Given measures i, , and fi, o, the local energy E,(t1,t2) can be
expressed as

1
_5 /g d(ﬂm,v - Mtz,v)

for any continuous potential g of the signed measure p, , — fit,,0, because
9 = M1 v — Aiyv + ¢ for some constant c. We have

fist=ao froa™

for a(z) = 1—2 = a~(2), such that ity = ity and g = ()\tl,v—)\tmv)oa_l
is a potential for the measure j1_¢, » — ft1—t,,0. Therefore, E,(1 —1t;,1 —1t3) =
Ey(t1,t2). Similarly, we have fi,(z) = ao fyoa™!(z) for a(z) = z/t, so
E,(1/t1,1/ta) = Ey(t1,t2). O

2.7. Measures and mutual energy. Suppose that v; and v are signed mea-
sures on P}(C) with trace measures |v;| for which the function log |z — w| €
LY(Jv1]| ® |v2|) on €%\ Diag. The mutual energy of v, and vy is defined in
[FRLO6] by

(2.13) (v1,12) = —/ log |z — w| dvy & duvs.
C2\Diag

This definition extends to the non-archimedean setting by replacing |z—w| with
the Hsia kernel d,(z,w) based at the point at co. In this way, for v € MIOO a
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pairing is defined similarly as

(2.14) (v1,19)y := —/ log §, (2, w) dvy @ dvs.
AL x Ap®™\Diag
See [FRLO6, §4.4] and [BR10, Ch. 4].
For measures v; of total mass 0 with continuous potentials on Py, we
have

(v1,12)p = — /91 dvy

for any choice of continuous potential g; for vq. Further, (v1,12), > 0 with
equality if and only if 11 = v» [FRLO6, Props. 2.6 and 4.5]. Note that Proposi-
tion 2.2 is a special case of this fact. Indeed, in this notation, the local energy
Ey(t1,t9) defined in Proposition 2.2 is given by

(2'15) Ev(tth) = % (:Uthv — Mty vy Mtyo — :UtQ,v)v

at each place v of a number field containing ¢1 and to for the canonical measures
introduced in Section 2.4.

The mutual energy (-,-), of (2.13) and (2.14) can also be defined for
discrete measures. If F' = {x1,...,2,} is any finite set in a number field K,
and v € Mk, then denote by [F], the probability measure supported equally
on the elements of F' C C,. Then

1

(2.16) Z o ([Flos [Flo)v = Z Ty W ZlOg |2 — 2jlo =0
v v i#]

by the product formula.

2.8. A metric on the space of adelic heights. The height pairing gives
rise to a metric on the space of continuous, semipositive, adelic metrics on
Op1(1) [Fill7, Th. 1]. Given a number field K and any collection of probability
measures { [ty }yehy, ON Rl,’an with continuous potentials for which p, = w, at
all but finitely many places (where w, is a point mass supported on the Gauss
point), then there is a unique metric on Op1(1) with curvature distributions
given by {p }venr,, normalized such that its associated height function h :
P}(Q) — R satisfies h - h = 0 [FRLO06]. The height pairing between any two
such heights is computed as

1
hihy=g D ro (Mo = H2es 1 = p20)o:
vEME

Fili observed that a distance between h; and ho can be defined by
dist(hy, he) := (hy - ha)Y/?.

Indeed, we have already seen that hi - ho = 0 if and only if hy = hy because
of the non-degeneracy of the mutual energy (-,-), at each place. Furthermore,
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dist(-, -) satisfies a triangle inequality: at each place, the mutual energy induces
a non-degenerate, symmetric, bilinear form on the vector space of measures of
mass 0 with continuous potentials on Py®", and so the triangle inequality for

dist(-, -) follows from an ¢? triangle inequality.

3. Non-archimedean energy

Throughout this section, we fix a number field K and a non-archimedean
place v € Mg, and we provide a lower bound on the non-archimedean local
energy defined in Proposition 2.2:

THEOREM 3.1. Forty,te € K\ {0,1}, we have

log? |t1/tal,
6 log max{|ta|y, [t1]v}

for min{|ta|y, t1]} > 1,

4 log? |t1/ts]
Ey(t1,te) — = log|2|, > g [t1/t2]v - o
' 3 ’ —6log min{|taly, [t1]o} for max{[ta|v, [t1]v} ;
log |t1/t
W otherwise.
\

Equality holds for vt 2 with min{|t; — 1|, [t — 1|y} > 1.
3.1. Measure and escape rate for v { 2.

PROPOSITION 3.2. Suppose t € K \ {0,1} and v { 2. Then f; has good
reduction at v if and only if [t(t — 1)|, = 1. If [t(t — 1)|, # 1, then f; fails to
have potential good reduction at v, and the canonical measure fi;, on Pyo" of
ft is the interval measure supported on

7 0,15 Co,¢/,] for [tl, > 1 or |t], <1,
[Co,1, Cuyi—tfy]  for [1—t[, < 1.
Proof. By Proposition 2.1, it suffices to treat the cases with [¢|, > 1. By

[FRL10, §5.1], f,'(I) = I and the action of f; on I is by a tent map of degree 2.

That is,
CO jt2r 1 for 1/2 <r <1,

fe(Coyjepr) = {

The proposition follows. U

We may now compute the local height \; ,(2) = GF, »(2,1) on Ay™, which
is locally constant away from the interval [0, 00) C Ay®".
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PROPOSITION 3.3. Suppose v t 2 is non-archimedean and |t(t — 1)|, > 1.
The escape-rate function G, , satisfies

(log ||, for |zl = |t
1 (log?|z|
(31) GFtﬂ)(Z, 1) = 5 <IOg|t|vU + lOg |t|v fO?” 1< |Z|U < |t|v,
1
3 log |t], for|z|l, <1

for all z € C,,.

Proof. Let A be the continuous extension of the expression on the right-
hand side of formula (3.1) to Ay®". By Proposition 3.2, i, is the interval
measure corresponding to [(p 1, Co,mv], and a direct computation shows that

A)\ = Wtp — 500

Thus it suffices to show that Gp, ,(-,1) and X agree at a single point. For any
2o € Cy with |z0|, > [t|y, define (z,,wy,) = F{*(z0,1), so that

(32) (2Zng1, Wni1) = Fy(zn, wn) = (22 — tw?)?, dzpwn (20 — wn) (20 — twy)).

Inductively,
2nlo = |20l > [tlo|wnlo > [wnlo-
Consequently,
. 1
GF,w(20,1) = lim —log | EY (20, 1)||o = log |z0]o = A(20). O
n—oo 4

A similar application of Proposition 3.2 yields

PROPOSITION 3.4. Suppose v t 2 is non-archimedean and |t|, < 1. The
escape-rate function GF,, satisfies

log |zl for|z|y > 1,
Grn(e1) = d Bl ol or < Jel < 1
= ——="" 14 logl|z or z
(33) Ft’U(Z, ) 210g ’t’v g% v v v s
1
§log|t|v for |z|y < |ty

for all z € C,.

3.2. Proof of Theorem 3.1 forv 1 2. We compute the local energy E,(t1,t2)
by cases.
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Case (1): |t1], > 1 and [t2|, < 1. Recall the local energy can be expressed
as

2E,(t1,t2) = /

P%,an

(Athv - )‘tz,v) d:utmv + / ()‘t2,v - )‘tl,v) d/‘thv'

qu},an

Therefore by Proposition 3.2, 3.3 and 3.4,

2Ev(t1>t2) = /1 . ()\tl,v - )\tg,v) dﬂtz,v +/ ()\tz,v - )\tl,v) d,utl,v

]Pv,a ]P)zl),an
/0 (log\t1|v ( x? n >) dz
p— _ —_——_— w e —
log [t2]v 2 2log |t2,v —log ‘t2|v
[ (o o)
+ x— - ——— +logt
o 2 \log [t 2"/ ) Tog ta]s
_ log|t1/ta]v
—

Case (2): |ti], > 1 and [t2|, > 1. Without loss of generality, we assume
that |t1], = max{|ti|y, |[t2|v}. By Proposition 3.2 and 3.3,

2E’U(t17t2) == /1 ()\t1,v - Atg,’u) dutg,v + /1 (Atg,v - )‘tl,’u) d,u’th’u
Pv,an ]Pv,an

[ (g )Y )
0 2 \log [t1]s &%l 2 \log [ta|, & 1%2lv log |taly
/loglm (1 ( @ o L2 ] dx
+ s\ +log|t )——<7+ogt )>7
0 2 \log|ta|s 2h 2 \log [t1]s llv log [t1 ]y

10g|t1u( 1( 72 dx
n P G ))
/1 2 \log [t1]s gltaly log |t1]s

oglt2|v
_ log2 |t1/t2]v
3log max{|ti|y, [t2|v}

Case (3): |ta(t2 — 1)]y = 1 and [t; — 1|, > 1. In this case, f, has good
reduction, so fi, , is a point mass supported on the Gauss point (p 1. Hence

[log [t1lu| _ [log|t1/talo|
(t1,t2) = 3 = 3 .
Case (4): The remaining cases reduce to the above three by the symmetry
relations of Proposition 2.3. This completes the proof of Theorem 3.1 under
the assumption that v { 2.

2F,

3.3. Measure and escape rate for v | 2.

PROPOSITION 3.5. Suppose v | 2 is non-archimedean. The canonical mea-
sure fig, OnN P, of f+ is the interval measure corresponding to the interval I
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with
[€0,j¢ /4, > C0,j4].] for [ty < |16y,
I'= < [Co,1 /4105 Co,ja], ] for |t], > 1/|16,,
[C1 1=t /1410 C1uja), ] for [T =ty < [16],.

For [16], < |t|, < 1/|16|, with |1 —t|, > |16]y, fi(z) has potential good reduc-
tion, and py, 15 supported on a single point in H.

Proof. We proceed as in the computations of [FRL10, §5.1], though the
authors had assumed for simplicity that the residue characteristic of their field
is not 2. If [t[, > [1/16],, the interval [(y|1/4), Co,a¢|,] I8 totally invariant by
ft, and

ft(Co,|4t|v\16t\;’“) = Co,|4t\,,|16t\;2’° and ft(<0,|4tlv\16t|2_l) = <0,|4t\,,|16t\—2’°

v

for r € [0,1/2]. Thus j,, is the interval measure on [ |1 /4|, , Go,j4¢],)- The cases
|t|, < |16|, or |1 —t|, < |16], can then be deduced from Proposition 2.1.

For all |16], < |t|, < 1/|16], with |1 — |, > |16],, we have |j(t)|, < 1, so
ft has potential good reduction. [l

Following the proofs of Propositions 3.3 and 3.4, from Proposition 3.5 we
obtain

PROPOSITION 3.6. Suppose v | 2 is non-archimedean. We have

log |z|y for |z|, > |4t|y,

1

(3.4) GFM;(Z, 1) = 9

10g2|42’v
—————— +log|t 1/l4 At
(log|16t|v +logltly | for 1/[4f, < |zlu < |4t

1
510g|t|v Jor |z]y < 1/14],

for t with |t|, > 1/|16|,, and

(log |2, for 2]y > 4],
1 (log? |42 /t]
(3-5) GFM)(Z’ 1) = 5 <log\16/t: + log ‘t‘v fOT ‘4’1) < ‘Z|’U < ’t/4‘U7
1
ilog [t]o for [z]y < [t/4]y

for t with |t|, < |16],.
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3.4. Proof of Theorem 3.1 for v | 2. We compute as in the case where
v12.

Case (1): {t1,t2} with min{|¢1|,, |t2|v} > 1/]16|, and max{|ti|y, |[t2|v} >
1/]16|,. Proposition 3.6 yields

log? |t1/t log? |ty /t
2y (11. 1) — 0g” [t1/talv > og”[ti/taly
3log max{ |16ty |y, |16t2],} — 3log max{|ti|y, [t2]v}
Case (2): |t1|y > 1/]16], and |t2|, < |16],. Again by Proposition 3.6,

log |16t1], — log |t2/16],
3

log ’tl/tQ‘U
73 .

2E,(t1,t2) = — log |16}, >

Case (3): [t1]y > 1/]16]y, |16], < |t2]y < 1/]16|, and |1 — t2|, > [16],. Let
Ct, € H be the support of py, ,. For any z € C, with |z|, > 1/[4],,

GRS
|4z(z — 1)(z — t2)|v

| fea (2) o > |z]o.

Hence (o,1/)4, € [Ctpy00). Let 29 € C, with |2o[, > 1/[4],, and let (2, wy) =
F}'(20,1). From the recursive formula (3.2), inductively we have |z,| = |z[5 >
|wn|v/|4]y. Consequently

log || F}*
g || tzH'U —1lo ’Z‘
n

Aty w(2) = GFt2,v(Z, 1) = lim

v
n—00 4

for z with |z|, > 1/|4,, and then A, (o) = logr for r > 1/|4],. Moreover,
as Ay, » = 5<t2 — 0, the function M\, , is increasing at a constant rate along
the ray [(z,,00), with respect to the hyperbolic metric. Therefore Ay, ,,((t,) <
Aty 0(Co,1/141,) = — log [4],. Hence by Propositions 3.5 and 3.6,

2Ev(tlat2) = /1 ()\tl,'u - )\tz,v) dﬂtg,v + /1 ()\tg,v - )\tl,v) d,utl,'u-
]P)v,an Pv,an
- (/\t17v<ct2) - /\t2,v(<t2))

. /log|4t1v <$ 1 <(:1:+10g|4|v)2 + log |t )) _dr
log |1/4] 2 log |16t1 |, v} ) log|16t1],

S log\lﬁtllv.

- 3
Here we have used A, »((r,) < —log 4]y and Ay, 4(G,) = 3 log [t ], for the last
inequality.
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Of course, for |16, < |ti|, < 1/[16|, and |1 — t;|, > |16|, for i = 1,2, we
have
\log ’tl/tg‘v‘ 8
> TTo i/ ralvl &
- 3 * 3
Case (4): The remaining cases reduce to the above three by the symmetry
relations of Proposition 2.3. This completes the proof of Theorem 3.1.

2E,(t1,t2) = 0 log 2],

4. Archimedean places and the hybrid space

In this section, we provide some of the estimates we need to control the
archimedean contributions to the height pairings. Throughout this section,
we assume our parameter ¢ € C\ {0,1} is complex. We let p; denote the
probability measure on P!(C) that is the push-forward of the Haar measure
on the Legendre elliptic curve E;(C) via w(z,y) = x. This measure is also the
unique measure of maximal entropy for the dynamical system defined by the
Lattes map
B (22 — 1)2
C4z(z—-1D)(z—t)’

as noted in [Mil06, §7]. We study degenerations of the probability measures
and their potentials as ¢ — 0. (The cases of t — 1 and t — oo are similar.) To
this end, we consider the action of f; sending (¢, z) to (¢, f:(z)) on the complex
surface X = D* x P1(C), where D* is the punctured unit disk. We make use
of the hybrid space X™P  in which the Berkovich projective line over the field
of formal Laurent series C((¢)) creates a central fiber of X over ¢ = 0 in the

fi(2)

unit disk ). We appeal to the topological description of the hybrid space from
[BJ17] and the associated dynamical degenerations described in [Fav16].

4.1. The family of Lattés maps and their escape rates. In homogeneous
coordinates on C?, recall that the maps f; may be presented as

Fi(z,w) := ((z2 —tw?)?, 4zw(z — w)(z — tw))

for t € C\ {0,1}. They have escape-rate functions
.1
(4‘1) GFt<va) = tligloglinlog HFtn(va)H7

as in (2.3).

View the families f; and F; as maps f = fr and F' = Fr defined over the
field k¥ = C(T), and consider the non-archimedean absolute value | - |p on k
satisfying |g(T)|o = e~ 409, Let kg = C((T)) denote the completion of C(T)
with respect to this absolute value. Let L denote a (minimal) complete and
algebraically closed field containing kg. The non-archimedean escape rate Gr
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on IL? is defined as in (2.3). Since |T|o < 1, it is given for z € LL by the following
formula, exactly as in Proposition 3.4:

(log | o for |z]p > 1,
- - (log |z[o)”
=G 1)=1<1 — ————— for [T|o < <1
95(x) = Gr(z,1) fg 7l = S1ogrrye " Tlo <lelo <1,
510g|T\0 for |z[op < |To
(4.2)
—a for |z]p = |T'|§ with a <0

1
= —a+§a2 for |z]p = |T'|§ with0<a <1

1
—3 for |z]p = |T'|§ with a > 1.

The function gy extends naturally to the Berkovich space PH{’“”; away from the
point at oo, it is a continuous potential for the equilibrium measure fi; of f.

The potential gy and the measure fiy are invariant under the action of
Gal(LL/ko) on ]P’H{’a". They descend to define a function and probability measure
— that we will also denote by gy and jiy — on the quotient Berkovich line
P,lcgm. (See [Ber90, §4.2] for details on this quotient map.) As computed in
Proposition 3.2, the measure fiy is supported on the interval [(y |7),,Co,1], and
it is uniform with respect the linear structure from the hyperbolic metric.

4.2. Convergence of measures. The family f; acts on the product space
D* x P! sending (¢, 2) to (¢, f;(2)). It extends meromorphically to X := D x P!,
or indeed to any model complex surface X — D that is isomorphic to D* x P!
over D* and has a simple normal crossings divisor as its central fiber.

Fixing a surface X — D and letting t — 0, the degeneration of the mea-
sures p; of maximal entropy for f; — or indeed for any meromorphic family
of rational maps on P! — to the central fiber of X is now well understood. In
[DMF14], [DF16], the limit of the measures yu; is computed for any choice of
model X, and a relation is shown between these limits and the non-archimedean
measure fif. In particular, if we define the annulus

Ai(a,b,0):={z e C:Ct|* < |z| < CIt|P}
for t € D*, C > 1, and real numbers a > b, then
(4.3) pe(Ai(a, b,C)) = fig([Corjas Co,|T|g]> = lengthg ([0, 1] N [b, a])

as t — 0. This follows from [DMF14, Th. B] (allowing for changes of coordi-
nates on P! and base changes, passing to covers of the punctured disk D*) or
from the computations described in [DF16, Th. D] (taking I" to be a vertex set
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in the interval [Co,1,Co,7|,]). Another proof is described below in Section 4.3.
In particular, this convergence implies

LEMMA 4.1. Given any € > 0 and integer n > 1, there exists § > 0 such
that

1 » , 1
< ({2 < ) < - e

for all0 < |t| <0 andi=0,...,n—1.

Taking ¢ = 1/n? in Lemma 4.1, we observe that for any given n, there is
a 0 > 0 such that we also have

(4.4) Ht({\2| >1}u{lz] < |t|}> < %

for all 0 < |t] < §.

4.3. Convergence in the hybrid space. In [Fav16], Favre gives an alternate
proof of (4.3) by showing that

(4.5) fe = fiy

weakly in the hybrid space X™P [Fav16, Th. B]. The hybrid space consists
of replacing the central fiber in the models X above with the Berkovich line
IP’,lggm, carrying an appropriate topology. The convergence of measures follows
from the convergence of their potentials to the potential of the measure fis in
the Berkovich line. We describe this convergence here, as we will use it for

proving our main result.

Let m1 denote the Lebesgue measure on the unit circle in C, normalized
to have total length 1. Let ®;(2) denote a continuous potential on P!(C) for
the measure p; — mq. Explicitly, in local coordinates z € C C P!, we can take

(4.6) ®y(2) = Gp,(2,1) — log™ |2
with G, as in (4.1). In [Fav16], Favre proves that the function

(I’t(2>

(4.7) o(t, z) = W

extends to define a continuous function on X™P taking the values of a potential
of the limiting measure fiy —wp on the central fiber. Here wy is the delta mass
on the Gauss point (p 1 of the Berkovich line ]P’,igm. More precisely, we consider
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the function

0 for |z|p > 1,
(log |z[o)®
P 71 ————— f Tl < <1
(Pf(x) = fg |x’0 2log |T‘0 or ’ ‘0 ‘.%"(] )
- log |To for |zlo < [T'|o
(4.8) 2
0 for |z|op = |T'|§ with a <0,
1
= —a+§a2 for |z]op = |T'|§ with 0 <a <1,
1
~3 for |z|op = |T'|§ with a > 1
for x € L, similar to the formula for g; in (4.2). This function ¢, extends

continuously to all of ]P’i’“”; it is Galois invariant over kg; and it descends to

the quotient Pi;‘m. Favre’s theorem implies that the function ¢ of (4.7) extends
continuously to X™P, coinciding with ¢ rover t = 0:

PROPOSITION 4.2. Given any € > 0, there exists 6 > 0 such that

<e

[(t,2) = &5 (Goyrip)
for all 0 < |t| < &, for all a € R, and all z for which
log|z|

< 4.
log 1] ‘

Proof. Recall that the absolute value |- |p on LL induces a continuous func-

tion on the Berkovich space that we will also denote by ||o : P,ﬁf" — R>oU{oo}.

We use the standard absolute value |-| on C, extended to a continuous function
P! (C) — R>o U {o0}.
The topology on Piz}a" is such that annuli of the form

A(ry,ma) :={x € IP’,IC;Ja” i < |zlo < ro}

are open for any choice of 0 < r; < ry < 00, as are the Berkovich disks of the
form

Dy(r) :={x € P,lgf” tzlo < r}and Doo(r) :={z € IP’IIC;W zlo >}

for any 0 < r < co. The topology on X™P is such that an annular set of the
form

{(t,z) € D* x PL(C) : [t|*% < |2| < [t|27% and 0 < [t| < 6} U A(|T[3F°, |T|¢7%)

is an open neighborhood of Co,j7)z on the central fiber for any a and any § > 0.
Similarly, the disk-like sets

{(t,z) € D* x PL(C) : |2| < |t|* and 0 < |t| < 6} U Do(|T)3)
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and
{(t,2) € D* x P(C) : |2| > |t|* and 0 < |t| < 6} U Doo(|T|3)

are open for any a € R, and allowing a and § to vary provides open neighbor-
hoods at 0 and oo respectively in the central fiber. See [BJ17, §2.2 and Def. 4.9]
for details on the hybrid topology. Note in particular that the hybrid topology
restricted to the central fiber induces the usual (weak) Berkovich topology.

By the continuity statement of [Fav16, Th. 2.10] and exhibiting ¢ as a
uniform limit of model functions ([Fav16, §4.3] provides the details in the
dynamical case) the function ¢ extends to define a continuous function on
Xbyb taking the values of ¢ 7 on the central fiber. Let L denote the closed
segment in P,lgfn between 0 and co. We may by compactness cover L by finitely
many neighborhoods on which [p(z) — ¢(y)| < e. As the values of ¢y depend
only on the values of ¢ on L, each open neighborhood of a point in the interior
of L contains an open interval in L, and ¢ is constant near 0 and oo, we may
assume these neighborhoods are annular or disk-like as defined above. Thus
we obtain a uniform § as claimed. (]

As ®4(2) = G, (2,1) —log™ ||, we also have a uniform continuity state-
ment for G when |z| is bounded from above:

PROPOSITION 4.3. Given any € > 0 and M > 1, there exists § > 0 such

that
GF, (Z, 1)

log [¢|~!
for all 0 < |t| < 0, for all a € R, and all |z| < M for which
log |z|

— 97 (Cope)| < e

< 0.

log |

4.4. Discrete measures and regularizations. Let F be any finite set in C.
Denote by [F'] the probability measure supported equally on the elements of F,
and for r > 0, denote by [F|, the probability measure supported equally and
uniformly on circles of radius r about each element of F.

PROPOSITION 4.4. For every € > 0, there exists ¢ = c(e) > 0 such that
(i [F]) = (g, [F))] < & max{log |1, log |¢ — 1, logl#], 1}
for allt € C\ {0,1} and any finite set F in C and any
r < cmin{|t|?, |t — 12, |t|72}.

Proof. For any x € C and any r > 0, let m,, be the probability measure
supported on the circle of radius r around x. Recall that

(p,o):= _//(CX(C\A log |z — w| dp(z) do(w).
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For each fixed t, the function G, (-, 1) is a potential for y; in C, and therefore,
there exists a constant C; such that

/ log |z — w|du(z) = Gg,(w, 1) + Ct.
C

Now let F' be any finite set in C. Then, assuming r < 1, we have

P = o P = 1y 3 (Gt ) = [ (61 dmer(©)
7 X (w0 [ e an.,©)

{z€F:|z|>2}
1
T W Z (GFt (.’L’, 1) - /GFt (Cv 1) dmz,r(g))
{veFlal<2)

because the function log™ |z| is harmonic away from the unit circle on C.
By Proposition 4.3, there exists § > 0 such that

GF (Z, 1) A

(4.9) W — gr(Corja)| <e/2
for all |z| < 2 satisfying

1

oglel | _s

log ||
and all |t/ < 6 and any a € R. Shrinking ¢ if needed, we have
(4.10) lo(t, 2)| < e/2

for |z] > 1 and all |t| < §, by Proposition 4.2.

Let Cs be the compact subset of C\ {0, 1} consisting of all ¢ with |¢t| > §
and |t — 1| > 6 and |1/t| > 6. Over Cs x P!, the family of potentials {®;} is
uniformly continuous. So there exists ¢; = ¢1(d) such that

|q)t(Z) — CDt(Z,)| <e

whenever dist(z, 2’) < ¢; and for all t € Cs. Here, dist represents the chordal
distance on P'. Furthermore, we may take ¢; such that we also have

’GFt<zv 1) - GFt<Z/, 1)’ <e
for all |z — 2'| < ¢; with |z] <2, and all ¢ € Cs. Thus

|, [F]r) = (p, [F])| < €

for any choice of finite set F', t € Cy, and r < ¢;.
Now assume that [t| < §. We will consider three cases. First, suppose
[t|'9 < |z| < 2. Choose any ¢z = ¢2(6) such that

(4.11) log(1 =+ ¢26'7%)| < d(logd™1).
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Then

/_
log Z =z

|log |2’ /2| =

|

/_
gmax{log<l+ : ZD,
z

£2
log(l:l:c2| | )‘
]

< max ‘log (1 + 6251_6)‘
< 8(logd™t) < dloglt| ™!
for all |t| < 0. This is equivalent to

2 —z

log <1 —

)l

z

< max

i

log|z| loglz

(4.12) <6

logt|  loglt|
for all |z — 2/| < caft|? with |t]'*9 < |z| < 2. Combined with (4.9) and setting
a = (log |z|)/(log |t|), this implies that

‘GFt (Zv 1) - Gp, (2,7 1)| < elog ’t|_1

for such pairs z and 2’.
’1+6

Second, suppose that |z| < [¢|'*°. By shrinking co further if necessary,
we have co < (1 — 6°)/6, and therefore if |z| < [t|'F0 and |z — 2| < coft]?,
with [t| < §, we also have |2/| < |t|. Applying the convergence (4.9) where
gy = —1/2, for all |z| < |t|'T° we have

|GF,(2,1) — GR,(2,1)] < elog|t|™!

for 2 satisfying |z — 2'| < c2|t|? and for all |t| < 6.
Third, for |z| > 2, by the convergence (4.10),
|®4(2) — ®4(2))] < elog [t| ™
for all |z| > 2 and |z — 2/| < coft|? and |¢| < 6.
Together these three cases yield
(e, [Fr) = (e, [FD)] < elog [~

for any choice of finite set F' and all [t| < &, with r < cot|%.
If |t — 1] < 6, the arguments above go through by replacing z with 1 — z,
as

GFl_t(]- —Z, 1) — GFt (Z, 1)
by Proposition 2.1. It follows that
\(pt, [Flr) = (e, [F])| < elog |t — 1] 7*

for any choice of finite set F, |t — 1| < 6, and r < co [t — 1|2, with & and ¢y as
above.
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For t near oo, more care is needed, as
Gr, (Za 1) = GFl/t (Za t) = GFl/t (Z/ta 1) + log |t|
by Proposition 2.1. Setting s = 1/t,

GFt(Za]-) _ GFS(SZ7 1) _1Og|8| _ GFS(SZ7 1)
loglt] log |s|~!  logls|™!

+ 1.

From (4.9), we have
Gr,(sz,1)

log|s| L gf(<0,|T|(1f“) <¢/2
for |sz| <2, |s| < 0, and
log |sz|
—(1—a)| <9
logls]

for any choice of a € R. Thus,

GFt(Z, 1) n
for all |z| < 2|t| satisfying
1
oglz| _ al < ¢
log ||
with [t| > §~! and any a € R. As in (4.10), we also have
|o(t, 2)| < /2

for |z| > [¢] and [¢] > 671, because g5 (¢, ‘T‘é_a) +1=ua for all @ > 1, from the
formula given in (4.2). The choice of ¢y in (4.11) is similar. It follows that

(et [Flr) = (e, [F])] < elog [¢]

for any choice of finite set F' and all [t| > 1/§, with r < cp [t|72.
Let ¢ := min{¢y, c2} to complete the proof. O

5. Archimedean energy

As in Section 4, assume t € C\ {0, 1} is a complex parameter, with u; on
P!(C) the push-forward of the Haar measure on E;(C), and M\(2) = G, (2,1)
a potential for j; — doo on P}(C). In this section we provide estimates on the
archimedean local energy (introduced in Proposition 2.2)

Bals.0)i= 5 ([ =2 d O =2 d )

for s,t € C\ {0,1} as one or both of the parameters tends to 0, 1, or co. We
treat three cases separately: where only one parameter escapes into a cusp,
where both parameters escape into a cusp, and where the two parameters
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head to two different cusps. By the symmetry established in Proposition 2.3,
we focus on the case where s tends to 0.

Throughout, we work in hybrid space and make use of the convergence of
potentials to gy and measures to jiy as t — 0, as proved in [Fav16, Th. B] and
explained in Section 4.3.

5.1. A single escaping parameter.

THEOREM 5.1. Given € > 0 and any compact set C C C\ {0,1}, there
exists 6 > 0 such that

1 1
(6 - 5) log|s| ™! < Ex(s,t) < (6 + s) log |s| ™!
for all s satisfying 0 < |s| < 0 and allt € C.

Proof. Recall that for any s € C\{0, 1}, we have defined ®4(z) = Gp,(z,1)
—log™ |z] in (4.6) and p(s, z) = ®4(2)/(log|s|~!). For any pair s,t € C\ {0,1},
the local energy Foo(s,t) satisfies

Ex(sit) 1 (/(cps—<bt>dut+/(¢>t—¢s>d“5)

log|s|=1  2log|s|~!

(/1 o) et [ g o [ ote.2)d)
== — )4 — o, — ,2) dps ) -
) / QO(S,Z) 10g|8’_1 Mt + IOg’S’_l 12 (p(S Z) 12

Fix € > 0, and suppose that C C C\ {0,1} is compact. The ®; functions
are uniformly bounded for all ¢t € C' and all z € P*(C), so there is a § such that

b,
7d s
'/logISI1 a

for all |s| < ¢ and all t € C. We can also find a small » = r(C') such that

p({lz] <7}) <e
for all t € C. By Proposition 4.2 (shrinking ¢ if needed),

<e€

lp(s,2)| < e

for all |z| > r and |s| < d, and

lo(s, 2)] <1

for all z and all |s| < §. Consequently,
Py
plo2) = ) i < [ et [ el di
'/ < log |s[~! {lzl<r}

{lz[>r}
-/

< 3e.

D,
log |s|~1

dpe
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Finally, by the weak convergence of j1s — fiy and convergence of (s, 2)
to ¢y, we can shrink ¢ again such that

'/«p(s,z)dus/@fdﬂf‘ <

for all |s| < 6. Recalling the formula for ¢ from (4.8), we have

1 a? 1
ordp :/ (—a+> da = ——,
/ fapf 0 9 3

since the measure fi7 is the uniform distribution on the interval [0, 1] in the a
coordinates, as described in Section 4.1. Therefore,

1 1
<6 - 45) log|s| ™! < Ex(s,t) < (6 + 45) log |s| ™!

for all [s| <0 and all t € C. O
5.2. Both parameters escaping to the same cusp.

THEOREM 5.2. Given € > 0, there exists § > 0 such that

1 1\? o 1( 1)2 1
Z _ ) — < < | = _ -
(6 (1 b) 6) log|s| ™ < Ex(s,t) < (6 1 2 +¢ | log |s|

for all s,t satisfying 0 < |s| < |t| < &, where b = (log|s|)/(log |t]) > 1.

For each real number b > 1, consider the function

0 for |x|o > 1,
. (log |]o)* b
gp(a) = 3 loglzlo - log [T for |T|g < [zlo <1,
b
§log|T]0 for |z|o < |T}
0 for |z|o = |T'|§ with a <0,
=< —a+a?/(2b) for |z|p = |T|¢ with 0 < a <b,
—b/2 for |z|op = |T'|§ with a > b

for all € L. Note that ¢1 = ¢ from (4.8). As with @1, each ¢ extends
naturally to a function on the Berkovich projective line ]P’,i’oan and is a potential
of the measure [i, — dg, where [i; is interval measure on [C07|T|3’ Co,1] and d¢ is
the delta-mass at the Gauss point (p 1.
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For each b > 1, the non-archimedean local energy Ey(fi1, i) is given by

B )= ([ 01— @) din+ [ (2= o) din)
_ (tog(ITlo/IT1h))”
~6 log min{|Tlo, [T15}
(b—1)°
6
as computed in Theorem 3.1 (in the case v 1 2).

For s and ¢ in C\ {0, 1}, if both s and ¢ are close to one of the three
cusps, we can estimate the archimedean local energy Fo(s,t) in terms of the

non-archimedean pairing using the degeneration description in hybrid space.
We first prove a special case of Theorem 5.2:

PROPOSITION 5.3. Given ¢ > 0 and B > 2, there exists § > 0 such that
(Eo(fin, fun) — &) log [t| ™" < Eno(s, 1) < (Eo(fu, fip) + &) log [t~
for all s,t satisfying 0 < [t|P < |s| < |t| < §, where b= (log|s|)/(log|t|) < B.
This proposition is an immediate consequence of the weak convergence of
measures u; — fi1 in the hybrid space, and the convergence of potentials as

described in Section 4.3. We give the details to clarify how the bound b < B
is used.

Proof. Fix € > 0 and B > 2.
For s and ¢ in the punctured unit disk D*, and for any 1 < b < B, consider

) 1 bd 1 P 1
_ Ft(z7 ) and b(p(s,z) _ FS(Z7 ) o Fs(z7 )
log [¢]~*

1 t,z): =
(5 ) SO( 72) 10g’8’_1 log’t|_1 )

viewed as functions on the fiber {¢} x C in the hybrid space. By Proposition 4.2,
there exists 47 > 0 such that

(5.2) o(t,z) — ¢1(Co,rjg)| < €/(4B)
for all |t| < 01, a > 0, and all [t|*+% < |z| < [¢|*791. In particular,
|o(t, 2)| < e/(4B)
for all |z| > 1 and all |t| < d;. It follows that
bp(s, z) = du((r)e)

in the hybrid space as s and ¢ tend to 0 with |s| = [¢|* and (log |2|)/(log |t|) — a,
uniformly in b for 1 < b < B. This is because the annulus

Ay(a,8) = {z € C: [t < |2] < [t]2~%}
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for each fixed t € D*, § > 0 and a € R can be written in terms of s as
Aa,d)={zeCr [s PO < 2] < |00

whenever |s| = |t|’. Therefore,
(5.3)

by(s, z) — Pu(Co,7a)

<be/(4B) <e/4

bdp (2,1 R
- ’Fs() _ Wl(%mg/b)

log [s|~1

for all z € As(a,d1), as a consequence of (5.2). In particular,
bo(s, 2)| <e/4

for all |z] > 1 and all |t| < §;.

Recall that the measures p; on the fiber over ¢t converge weakly in X
to the measure fi; on the central fiber. For each s with |s| = [¢[®, let x denote
the measure associated to fs but viewed in the fiber {¢} x P'. The measures
3 converge to the measure i, as t — 0 with |s| = |¢|’, and this convergence
can also be made uniform in b with b < B. That is, by Lemma 4.1, for any n
there exists d9 > 0 such that
(54) o < < el < ) <

for all |t| < d2 and each i = 0,...,n. Note that this implies that

pelflel < 1 Ul 2 1)) <

Therefore, we also have

1 1 ; - 1 1
55 - < S t b(z-l-l)/n < < t bz/n < = .
(55) < P < (o] < ) <
and )

il < YUl > 1) < —
for all |t| < d2. Thus, the measure fi; on small sub-annuli of the annulus
{|t|> < |2| < 1} is controlled uniformly for all 1 < b < B.
Putting all the pieces together,

Ex(s,t) 1

o = 5 ([ oets) =t du+ [ (ott.2) = b(s.2)) di)

is within € of
A 1 o o b—1)2
Eo(ji1, fw) = 3 </ (b — 1) dinn +/(901 2] dm;) _ o )

for all ¢ sufficiently small and all s with |s| = |¢t|* for any 1 < b < B. O

Here is an equivalent restatement of Theorem 5.2, expressed in terms of
the growth of [t]:
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THEOREM 5.4. Given € > 0, there exists § > 0 such that

_1)2 _1)\2
(P ) tog i < Bty < (Y

for all s,t satisfying 0 < |s| < [t| < &, where b = (log|s|)/(log |t]) > 1.

+ be) log |t| ™!

Comparing Theorem 5.4 to the statement of Proposition 5.3, we see that
we lose the ability to bound the energy within a uniform ¢ when b becomes
large.

Proof of Theorems 5.4 and 5.2. Fix € > 0.

As in the proof of Proposition 5.3, we make use of the weak convergence
of measures py — f11 and convergence of the potentials ¢(t,z) — ¢ in the
hybrid space as t — 0. Recalling the formula for ¢ from (4.8), we have

1 2
a 1
brdig= [ (~a+ %) da=—3
/f 1=/ 5 3

since the measure fis is the uniform distribution on the interval [0, 1] in the a
coordinates, as described in Section 4.1.
Choose r satisfying 0 < r < £/100. There is a do such that

pe({lz] < [¢]}) < /50,
lo(t, 2)| < e/50 for |z| > [t|",
and

1
lp(t, )] < 5+ /50 for all 2

for all |t| < 2. Thus, for s € C* with |s| = |t|* and b > 1/r, we have
lbp(s, z)| < be/b0 for |z| > |t

and
|bp(s, 2)| < g + be/50 for all z

for all |t| < d2. By shrinking dy further if necessary, we appeal to the weak
convergence of measures p; — f11 in the hybrid space to deduce that

[ et du+ 5| =| [t don ~ [ o din

for all |t| < d2.
Now fix B > 1/r, and recall that r < /100, so that

_1\2
57) ‘(b 12 b

6b 6
for all b > B. For this B, we can find a dg > 0 such that Proposition 5.3
is satisfied for all 0 < |s| = |t|® < |t| < dp with 1 < b < B. Choose any
0 <min{dp, 2}, and we obtain the theorem for b < B.

(5.6)

< €/10

< be/50
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Now suppose b > B. We will estimate

Pl = 2 ([ vt = 0020 di+ [ (000.2) ~ it 2) )

log [t|=1 2

for all |t| < § and any s with |s| = [t|” by estimating the two integrals sepa-
rately.
As shown above,

lbp(s, z) —@(t,z)] <1/2+¢/504+be/50 < be/10
for all |z| > |t| and 0 < |s| = |t|” < |t| < § with b > B, and
lbp(s,z) —@(t,2)| <1/2+¢/504b/2 + be/50
for all z and 0 < |s| = [t|® < |t| < 6. Writing the first integral as

[ tsts.2) = o(t.2) dus = [ (bpls.2) = ot 2)) d

|z|>1t]
4 / (bo(s, 2) — lt, 2)) dpu,
|z|<|¢|
it follows that
/ (bio(s, 2) — (. 2)) dy

for all b > B and 0 < |s| = [t|® < |t| < 4.
Write the second integral as

[ t6t.2) = bots.2) du = [ otz aui ~ [ bo(s.z) dut

As |o(t, z)| is bounded by 1/2 + ¢/50, we have
[ et a
for all b > B. On the other hand, we have

/bw(w) dpi = b/so(évz) dpss

< be/10+ (1/2+¢/50+b/2+be/50)(c/50) < be/5

1
< 5 Te/50 <be/25

so that )
‘/b(p(s,z)duf + 3’ <be/10

for all 0 < |s| = [t|” < |t| < § from (5.6).

We conclude that Eo(st) b

co(8, 1
—_— = be/2
i | <Yl

for all b sufficiently large and all |¢| < . On the other hand, we also have
b (b—1)?

6 6b

< be/50
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for all b > B by our choice of B, so the theorem is proved. O
5.3. Parameters escaping to different cusps.

THEOREM 5.5. Given € > 0, there exists § > 0 such that

1 1 1 1
“l1+2) —¢)l 1< B, <<7<1 7) )1 -1
(6( —i—b) 5) ogls|7H < (s,t) < 5 +b + ¢ ) log |s]

for all s,t € C satisfying |t| > 1/0 and 0 < |s| < 1/|t|, where
b= —(log|s[)/(log [t]).

Proof. The proof is nearly identical to that of Theorem 5.2, working in
the hybrid space over a unit disk that we will parametrize by v € . For fixed

b>1,t=1/uand any s satisfying |s| = |u|’, consider the functions
Gr,(21)  Gplz1)
gu(z) = 1 =
log [ul log 1
and (2.1)
GF z,1
b =p—
95 = log sl

in the fiber {u} x PL.
As computed in Proposition 3.3, the limit of g, (z) as u — 0 with |z| = |u|®
is

—a for a < —1,
Joo(a) =% (a?+1)/2 for —1<a<0,
1/2 for a > 0.

As u — 0, the measures p/, on {u} x P! will to converge the canonical
measure [l for the map f = f,y on the Berkovich projective line, working
over the field C((U)); the measure fi, is uniformly distributed on the interval
[CO,la C07|U|61]'

As s — 0 with |s| = 1/[t|® = |u|’, b > 1, we have

bgs(2) = gv(Co,v2)

for |z| = |u|?, exactly as in (5.3). The non-archimedean local energy is com-

puted in Theorem 3.1 as

. b+41
Efios, fir) = ——

We conclude as in the proof of Theorem 5.2 that, for all given € > 0, there
exists 0 > 0 such that

1 1
(bg - bs) log [t] < Eoo(s,t) < (bg + bs) log ||

for all |t| > 1/6 and |s| = 1/|t|’. This completes the proof of Theorem 5.5. [
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6. Proof of Theorems 1.6 and 1.7

In this section, we first prove Theorem 1.7, which states there exist con-
stants «, 8 > 0 such that

Btl : iLtQ Z Oéh(t]_,tQ) - /8

for all t; # t5 in Q\ {0,1}. We then use this lower bound to prove Theorem 1.6
and Proposition 1.9.

6.1. Balancing local contributions. Fix any r such that
0<r<1/16.

Fix t1,t2 € Q\ {0,1}, and let K be any number field containing ¢; and t».
We split the places Mk into “good” and “bad” subsets, depending on the pair
t1,t2 and the choice of r. Let Mgooq(t1,t2) be the set of places v € My with

|log [ta/t1]y| > 7 - max{|log |tal,|,|log |t1]s|},

and set Mpaq(t1,t2) = Mg\ Mgood(t1,t2). We further decompose Mgood(t1,t2)
into its archimedean (M ggod) and non-archimedean (M, good) places.

LEMMA 6.1. There exists a constant Cy > 0 such that
3r
GEU(tl,tg) Z Z‘ log ’tl/tg‘y‘ — C()

for any choice of t1 and ty in Q\ {0,1} and for all v € Mggoq(ti, t2).
Proof. Let

and let §; be the minimum of the §’s from Theorems 5.2 and 5.5 for this choice
of €. Let do be the § of Theorem 5.1 for the compact set

{t66161§|t|§1/51 and |t—1|251}

in C\ {0,1}. Let dp be the minimum of §; and d2, and let Cy be any real
number larger than log(1/dy).
Now fix t1, 2 and any number field K containing ¢ and %o, and fix a place
v e Mé’god(tl,tg) C Mg. If 5o < [ti]y < 1/dp for i = 1,2, we have
3r
6 Ey(t,t2) 2 0 2 —-|logti/tz]| — Co.

As v e Mgg gy, if [ta|v < [t1]o <1, then

[tal = [t1]5, < [t1]o for

>r
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and therefore, by Theorem 5.2, if additionally |t1], < 1, then we have

b— 1)
6B 1) > (U —6c) joglr )

b—1r 72
> (P20 T gl
3rb—1 L
> — = — .
2 5 Hogltily| = —-|log [t1/ta]o]
If |t1], < 61 and [ta], = 1/[t1]% for some b > 1, then by Theorem 5.5,

(b+1)
b

6Bt 12) > (U7 o) [log )

3b+1)r
4
if 01 < |t1]y < 1/61, [t1 — 1], > 01 and |t2|, < dp, we have by Theorem 5.1 that

3r
> [log[ta]o] = [ log t1/talu];

3r
GEU(tl,tg) Z (1 — 66)‘10g ’tg‘v‘ Z Z\log ’tl/tg‘v‘ — C().

Combining the above inequalities with the symmetry relations of Proposi-
tion 2.3, we obtain

3r
GEU(tl,tg) Z Z|10g‘t1/t2|v| — Co. O

LEMMA 6.2. There is a constant C > 0 such that

3 3r?
>° sruBu(tit) = Thita/h) — S-h(tt) = C
UEMgood(tlth)

for any t1 # t2 € Q\{0,1}.

Proof. Fix t; and t9 and any number field K containing them. For the

non-archimedean places v € M? . (t1,t2), by Theorem 3.1, we have

good

6Ev(t1,t2) Z r- ‘10g|t2/t1‘y‘ — 810g+ |1/2’v,

and thus
(6.1)

S 6Bt t) > > 1y (re|loglta/ti]s| — 8logT [1/2],) .
veMY, i (t1,t2) veEMY 4 (t1,t2)

Now choose any integer Ny so that log Ny is larger than the Cy of Lemma 6.1

for each archimedean v € Mgy 4(t1,t2). We have

3r
6y (t1,t2) > Z\ log [t2/t1]v| — log No



984 LAURA DEMARCO, HOLLY KRIEGER, and HEXI YE

for all v € Mgy 4 (t1,t2). With h the naive logarithmic height on Q, we set

1 1
C'=4h(2) + 5 h(No) = 3 log (28 Np).
Then, we have

Z 67y By (th t2) = Z 67y L (tlu t2)

veMgood(tlth) veMggod(tlth)

+ Z 6TUEU(t1,t2)

vEMY, 4 (t1,t2)

3
> Y rvzr]logﬁg/tllvl— S vy (8log* (2] +log™ [Nol,)

UeMgood(tlatQ) UGMK

3r
= ) ro — |log|ta/ta]u| — 2C

UEMgood (tl 7t2)

3r 3r
= Z Ty Z“Og|t2/t1‘v’_ Z Ty Z‘10g|t2/t1‘v’—20
vEMp VEMpaq(t1,t2)
3ry,r
> D = oglta/tily
vEME
3r2r,

max{|log [t2[y|, [log [t1|v[} — 2C
VEMpad(tite)
3 3r?
> ZT 2h(t2/t1) — % 4 h(ta, t1) —2C.

For the last inequality, we use the facts that 2h(x) = > 5/ 70| log |z[y| for
nonzero x € K and

> 1y max{|log [talul, [log [t1]o|} < 2 (A(t2) + h(t1)) < 4h(ta,tr). O
vEME

6.2. Proof of Theorem 1.7. We begin with a standard lemma.

LEMMA 6.3. There is a constant C > 0, such that

to 1—t2> 1
h(*, > = h(ty,t9) — C
t1 1—t1/ — 2 (1 2)

forty #t2 € Q\ {0,1}. Here the h is the naive logarithmic height on A?(Q).

Proof. Consider the birational transformation g : P2 --» P? defined in
affine coordinates by g(z1,z2) = (z2/x1, (1 — x2)/(1 — x1)), with inverse

_ T—y2 y1(1—y2
g 1(1/1792): ( 5 ( )
Yr— Y2 Y1 — Y2
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of degree d = 2. There exists a constant C' such that
(g (x:y:2) <(degg D h(z:y:2)+C=2h(z:y:2)+C
outside of the indeterminacy set for g=! in P? [HS00, Th. B.2.5]. The inde-
terminacy set for g7! is {(0: 1:0),(1:0:0),(1:1:1)}. Therefore, letting
(ty :ta:1) = g Y(z :y: 1) for some point (z : 7 : 1), we obtain
h(t1, tz) <2 h(g(tl, tg)) +C
for all t; # t2 in Q\ {0, 1}. In other words,

t t2—1> 1 1
h(— > — h(t1.t0) — = C. ]
0t —1) =2 (1, t2) 2

Now fix t; # t5 in Q\ {0, 1}. From Lemma 6.2, we know there is a constant
C (independent of ¢; and t2) such that

3?Lt1 . iLtQ =3 Z Ty Ev(t17t2)
vEME

(6.2) >3 Z Ty Ey(t1,t2)
UeMgood (tl )t2)

3r 3r2
> Zh(t2/t1) - 7h(t2,t1) -C

for any t; # to € Q\{0,1}. Replacing ¢; in inequality (6.2) with 1 —¢;, for
i = 1,2, we also have

- . 3r (1—ty\ 32
hi_¢ - hi_ >h< )—hl—t,l—t - C.
3hy—¢, 1=t 2 rh T 5 ( 2 1) —C
Combining this with Proposition 2.3, we find that
L 3r (1—t 3r?
(6.3) 3hey, by > Th( 2) R —ty,1— ) — C.
4 1—1t 2

Consequently, by adding the inequalities (6.2) and (6.3), we have

.3 1ty
6ht1 'ht2 > Z (h(tz/tl) +h (1 —t1)>

3r2
— 7 (h(tz,tl) + h(l — 12,1 — tl)) —-2C.

Observe that there is a constant C’ > 0 from Lemma 6.3 such that

1—1t9 to 1 —1to 1
h(ta/t h< >>h(, >>-ht,t - (.
<2/1)+ 1—-t1/ — t1'1—¢t1/ — 2 (1 2)

Since |h(1—tg, 1 —t1) — h(t1,2)| is uniformly bounded over all pairs t1,t2 € Q,
we may combine the above inequality with the previous to conclude that

.. 3
6 hy, - hyy > gh(tl,tg) — 302 h(ty, ts) — 6C".
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In other words,

hi, - hyy > ()16 — 12 /2)h(ta, t1) — C",
and the proof of Theorem 1.7 is complete by taking a = 7/16 — r?/2 and
g=C". O

Remark 6.4. If we set r = 1/16, the constant a > 0 in Theorem 1.7 can
be taken to be o = 1/512.

6.3. Proof of Theorem 1.6. We will use Theorem 1.7 to deduce a uniform
lower bound on the height pairing hs - h; for all s # ¢ in Q \ {0, 1}.
Suppose there exist parameters s, # t, € Q such that

hs, - ht, =0  asn — oo.

Fix € > 0. For each n, choose a number field K,, containing s, and t,. By
assumption and non-negativity of the local energies E, (Proposition 2.2), there
is N € N such that for all n > N, the archimedean contribution to the pairing
is less than €; that is, for n > N,

Z TU E’U(Sn7tn) < 67
ver(on

recalling that r, = U[{féﬁigf} now depends on n.

Let M, be the set of archimedean places v in Mlo(on such that E,(sp, t,) < 2e,
noting that for n > N, we have

Recall that the local energy E,(s,t) is continuous in s and ¢, and it vanishes
if and only if s =t. So there exists a J, depending only on €, so that, for each
n > N and for each place v € M,,, one of the following must hold:

(1) |tn — snlo < 6;

(2) min{[spv, [tn|v} < 6

(3) min{|sp — 1o, |tn — 1o} < 95

(4) max{|splv, |tnlo} > 1/0.

Note that we can take § — 0 as ¢ — 0. We may then, for each n > N, choose a
subset M, of M, for which s,, and t,, satisfy the same one of the four conditions
at all places v € M/, and such that

We conclude by the product formula that

1 1
max{h(sy, —tn), h(Sn,tn), h(sp — 1, t, — 1)} > 3 log 5
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It then follows from the triangle inequality, combined with shrinking our choice
of €, that we have h(sp,t,) — co. The inequality of Theorem 1.7 implies that
hs,, -hi,, — 00 as well, a contradiction. This completes the proof of Theorem 1.6.

6.4. Proof of Proposition 1.9. Fix a number field K, and fix t; # t3 in
K\{0,1}. Let ||-||; denote the adelic metric on the line bundle Op1 (1) associated
to the height lALti. Let L denote the line bundle Op1 (1) equipped with the metric
(I - [I1]l - ll2)*/?; its associated height function is

() = 5 (e () + ().

Zhang’s inequality on the essential minimum of a height function implies that

liminf hy(z,) > (hy-hg)/(2deg L) = % (hy - hy)

n—0o0

along any infinite sequence of distinct points z,, € P*(Q) [Zha95, Th. 1.10]. In
particular, the set

{z € PY(Q) : ey (@) + fy () < 0}

is finite for any choice of b < h - hy.
By the linearity of the intersection pairing, we see that
1. - 1. - 1. - 1. .
ht-hy = thl - hy, +§ht1 ‘th—i—thQ ~hi, = §ht1 - hy,.

Therefore, we may choose any b < §/2 for the 6 of Theorem 1.6, and the
proposition is proved.
7. Proof of Theorem 1.8

Fix any b > 0 such that b < §/2 for the 6 of Theorem 1.6. Recall from
Proposition 1.9 that the set

(7.1) S(b,t1,t9) := {x € PY(Q) : hy, () + hey(z) < b}

is finite for every pair t; # to € Q\ {0, 1}. Note that {0,1,00} C S(0,t1,2) so
that |S(b,t1,t2)| > 3 for all t1 # t2 in Q\ {0,1} and all b > 0. In this section,
we prove the following generalization of Theorem 1.8.

THEOREM 7.1. Let b > 0 be chosen so that b < /2 for the § of Theo-

rem 1.6. For all € > 0, there exists a constant C(g) so that

C(e)
‘S(b,tl,tg)’) (h(tl,tQ) + 1)7

for all t1 # ty in Q\ {0,1}, for the set S(b,t1,t2) defined by (7.1).

iLtl 'ilt2 §4b+ <5+

Note that Theorem 1.8 follows from Theorem 7.1 by setting b = 0.
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7.1. Adelic measures and heights associated to a finite set. Fix a number
field K, and suppose that F is a finite set in K that is Gal(K/K)-invariant.
Let 1 be a collection of positive real numbers

ni= {nv}veMK

with n, = 1 for all but finitely many v € M. For archimedean v € My and
x € F, we let m,, denote the Lebesgue probability measure on the circle of
radius 7, centered at the point x € F. We then set

mrnv = i Z M-
|F‘ zeF

Similarly, for each non-archimedean v € My, we let mpg,, , denote the proba-
bility measure distributed uniformly on the points (; 4, in AP over all z € F.
Then mpy, = {mFnw}tvermy is an adelic measure in the sense of [FRL06]. It
gives rise to a unique height hp, on P(Q) associated to a continuous and semi-
positive adelic metric on Opi(1) with curvature distributions given by mpgy..
and satisfying

(7.2) hpy - hiy, = 0.

Its local heights are given by
1
Arnw(2) = aw + 7 > logmax{|z — x|y, 7.}
zeF

for z € C, and suitable constants «,,; taking
1
ay = —m ; log max{|z — |y, N} dmp ..
X

gives (7.2).

Remark 7.2. The height hg, will generally not admit sequences of “small”
points, meaning sequences z,, € P(Q) with hry(zn) — 0. In fact, for any
choices of F' and 7 such that ) r, a, # 0, the essential minimum of hp,, is
positive.

7.2. An upper bound on the height pairing. Now suppose that t; and ¢
lie in K \ {0,1}. Recall that j; and hy respectively denote the measure and
height associated to the curve E;. By the triangle inequality for the distance
function of Section 2.8, we have

(7.3) (e, .htz)m < (s, .thn)l/Q + (B, - th)l/Q
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for any choice of F' and 1. By symmetry and bilinearity of the mutual energy,

- 1
hti . h,Fm = 5 E Tv (,utl-,v - mF,n,Ua Nti,v - mFﬂ?,’U)’U
vEME

1
= 5 Z Ty ((:U’ti;ua ,U’ti,v)'u -2 (mF:an7 Hti,v)v + (mFm’U, mF,mv)v)
veEMK

for ¢ = 1,2. For fixed ¢, writing the local height for Bti as A, o = log |z|, + ¢y +
o(1) for |z|, — oo yields

er (Mti,mﬂti,v>v = — ZTU /()\ti,v - CU) d,uti,v =0
v v

from (2.11). Therefore,
- 1
htz : thn = 5 Z Ty (72(/4Lt7;,1)’ mFﬂlﬂ))’U + (va,'YyU’ mF,VIv’U)U) :
veEMK

Recall from Section 2.7 that [F], is the probability measure on Py™ dis-
tributed equally on the elements of F' for each v € M. By [FRLO6, Lemma
4.11] and [Fill7, Lemma 12|, we have

B log Tl

(mF,n,vamF,ﬂ,U)” S ([F]va [F]U)U + |F|

It follows that

. 1 — log
hi; - hpy < 9 Z Tv (_2 (Hts 0o mEg)v + ([Flo, [Flo)v + 7] )

(7.4)

B IOg T
= — ’]"v . <—2 (lulti’v,mF7n7fu)fU + ‘F’ >
with the final equality following from (2.16).

PROPOSITION 7.3. Suppose t # 0,1 lies in a number field K. Assume
that F is a finite, Gal(K /K)-invariant set of points. Then

B log 7711)

hy - hF,n < ht(F) + Z Ty <_(Nt,v>mF,n,v)v + (,Ut,va [F]v)v + 5 |F‘

vEME
for any choice of n = {ny}, with n, =1 for all but finitely many v € M.
Proof. The height of F' is computed as
. 1 . .
ht(F) = W Z ht(x) = ht(00>* Z Ty (Ht,vv [F]v)v = - Z Ty (,Uft,va {F]v)vv
zeF vEMK vEME

and therefore we may add ﬁt(F) + >, v (e, [Flo)o to the right-hand side
of (7.4). O
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7.3. Proof of Theorem 7.1. Fix 0 < b < 6/2 so that Proposition 1.9 is
satisfied for all ¢; # t2 in Q\ {0, 1}. Now fix ¢; # t2 in Q\ {0, 1} and a number
field K containing t; and t5. Set

F={z € P Q) : hy, (x) + hey(x) <} \ {00} = S(b, t1,t2) \ {00},
so F is a finite, Gal(K /K )-invariant set with
he,(F) < b
for i = 1,2. At each non-archimedean place v of K, we set
Ny := min{1, [t1(t1 — 1)|y, [t2(ta — 1)|s}-
Now fix ¢/ > 0. For each archimedean v, we set

o 1= e(e') min min 62, 85 — 12, 6]},

where the constant c(e’) is from Proposition 4.4. Let n = {n, },; observe that
1, = 1 for all but finitely many v, and

1
(7.5) > —rylogn, <2 (h(ty) + h(1 —t1) + h(ta) + h(1 — t2) =5 log c(€').
veEMK
For non-archimedean v, the explicit form of the measure i, ,, (described
in Section 3) implies that

(/’LthU?mFﬁ%’U)’U = (/J’tiﬂ)’ [Flv)w
for this choice of 1, because the potentials for p;, , are constant on disks of

radius 7.
We thus obtain from Proposition 7.3 that

7 _log Mo
hti'hF,’VZSb—"_ Z Ty 2‘F‘
vEM?(
—log
- Z T <_(:Ufti,v7mF,77,v)v + (:U’tz'ﬂh [Flo)v + 2|F|77v)
veEMg
for ¢ = 1,2, where M?{ denotes the non-archimedean places and Mz the

archimedean places.
We have for v € Mz that
(o Mo (s [Flo)o < 2/ ogma{til, 6], 15— 11,7}
for ¢ = 1,2 by Proposition 4.4.
Since the logarithmic Weil height satisfies 2 h(x) = )", |log |x|,|, we thus
obtain
hi, - hpy <b+ 2" (h(t;) + h(t; — 1))
N 2 (h(t1) + h(1 — t1) + h(t2) + k(1 — t2)) — L logc(e)
ral
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for i =1,2. Since h(1 —t;) < h(t;) +log2 < h(t1,t2) + log?2 for ¢ = 1,2, this
inequality becomes
. 1 1
hi, - hpy < b+ 2&" (2h(t1,t2) +log2) + 7 (8h(t1,t2) +4log2 — 3 log c(s/))
fori=1,2.
By the triangle inequality (7.3), we have
N7 A /2 » 1/2
(hey - huy) " < (hay )"+ (hay - By

1 1 1/2
<2 <b + 2¢" (2h(t1,t2) + log 2) + — (8h(ty,t2) + 4log 2 — 5 log c(a’))) )

|F|
S0
(7.6)
A~ . 1 1
hiy - he, < 4 (b—i—2€’(2h(t1,t2) + log 2)+W(8h(t1,t2)+4log2— 5 log c(e')))
2 16log2 — 21 !
—4b+ <|3F‘ + 165’) Bt ta) + 018 e 8ele) | e 10g2.

Fix any € > 0, and choose ¢ < €/16. Since |F| = |S(b,t1,t2)| — 1 > 2, we
can find a large constant C'(e) satisfying

32 C(e)
216 <et ot
|F| 15(b, t1,t2)]
and
16log2 — 2log c(e’) , C(e)
+8log2 < e+ — -t —.
F| 57 = TS0t )

The inequality (7.6) then yields

C(e)
|S(b,t1,t2)]

concluding the proof of Theorem 7.1.

hy, - by, < 4b+ (5—|— > (h(t1,t2) + 1),

8. Proof of Theorem 1.5

In this section, we deduce Theorem 1.5 from Theorems 1.6, 1.7 and 1.8 for
algebraic values of t; and to; we then extend the result to hold for parameters
t; in C, via a specialization argument. In fact, we prove the following stronger
result over Q:

THEOREM &.1. There exist constants B and b > 0 so that
’{:C € Pl(@) : iLtl(x) + ﬁtz(m) < b}‘ < B
for all t; # t2 in Q\ {0,1}.
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Finally, in Section 8.4, we observe that there is no uniform bound on the
order of the torsion points on E;, and Ey, that can share an x-coordinate, even
if Theorem 1.5 provides a uniform bound on the total number of such points.

8.1. Proof of Theorem 8.1. Let § > 0 be as in Theorem 1.6 so that
e, - hyy > 6
for all t; # t2 in Q\ {0,1}. Fix
0<b<d/8
so that, from Proposition 1.9, the set
S(b,t1,ty) = {z € PYQ) : hy, () + hy, () < b}
is finite for all t; # t5 in Q\ {0, 1}. Let h(t1,t2) be the naive logarithmic height
on A?(Q). Fix H > % for the o, 8 of Theorem 1.7 and such that
H—8b/a
H+1

Suppose that t; # to € Q satisfy h(ty,t2) > H. Then for ¢ = 7, there
exists by Theorem 7.1 a constant C' such that
A « C
he, - hyy, < 4b (— 7>ht,t 1).
t1 to > + 4+|S(b7t17t2)’ ( (1 2)"— )
On the other hand, by Theorem 1.7 and the choice of H, we have

o ~ N
) h(t1,t2) < ah(ti,ta) — B < hyy - hy,.

(8.1) > 3/4.

Therefore
« o C )
— <4 _—t 1
5 h(t1,te) < 4b+ (4 + SOERD] (h(t1,t2) + 1),
and so o C 80
1S(b, 1, 12)] < = <=

(ah}{274b) _a o (h78b/a) o«
1 1 2 \Thtt 1
for h := h(t1,t2) > H, from (8.1).
Suppose now that t; # to € Q satisfy h(t1,t2) < H. Set &’ = ZL(HLH), and
find a constant C’ as in Theorem 7.1 so that

!
he, - by, < 4b+ <5’+ ¢

|S(btlt2)’> (h(t1,t2) + 1),

and thus, since b < 0/8, we have
C/

§/2 <6 —4b < (5’ + M) (h(t1,t2) +1).

We conclude that
4(H+1)C

’S(b7t17t2)‘ S 5 )
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providing a uniform bound also for ¢; and ty satisfying h(t1,t2) < H. This
completes the proof of Theorem 8.1.

8.2. Specialization: proof of Theorem 1.5. We implement a standard spe-
cialization argument to deduce Theorem 1.5 from Theorem 8.1. Note that
the division polynomials for the Legendre curve E; have coefficients in Q[t];
see, for example, [Sil09, Exer. 3.7]. Let B be the uniform bound obtained in
Theorem 8.1, so that

(82)  |m(ER®)Nm(ERS)| = {z € PHQ) : hey(2) = huy(2) = 0} < B
for all t; # t2 € Q\ {0,1}. Assume that there exist t; # to € C\ {0, 1} with
N(t1,t2) = |n(E;™) N w(Ey™)| > B

and t; transcendental. If z € w(E{®) N PY(Q), then z € w(E{°™) for all
t € C\{0,1} as it is a root of a division polynomial. It follows that there is at
least one non-algebraic point & € w(E{®) N w(E{™), as only « = 0,1, 00 are
torsion images for all t € C\ {0,1} [DWY16, Prop. 1.4].
Now let
S = {z1,22,..., x5} = 7(E) N w(EL™),

where N = N(t1,t2), and assume that z; is transcendental. Because it is a
torsion image for both parameters, Q(z1,t1,%2) and therefore also the field

L= Q(tl,tg,xl, e ,l'N)

are of transcendence degree one. Consequently L is isomorphic to a function
field k = K(X) for a number field K and an algebraic curve X defined over Q.

Via the identification of L with k, there exists an algebraic point v € X (K)
with distinct specializations z;(v) € P}(Q) for i = 1,..., N and

t1(v) # t2(y) € Q\ {0, 1}.

The division relations in L imply that the specializations Ey, (,) and Ej, () have
at least N common torsion images, contradicting (8.2). Therefore, we must
have

Im(E) A w(EL2)| < B
for all t; # to € C\ {0, 1}, and the proof of Theorem 1.5 is complete. O

8.3. Common torsion images. We obtain the following immediate corol-
lary of Theorem 1.5, which is a special case of Conjecture 1.4. Recall that
a standard projection from elliptic curve E to P! is any degree-two branched
cover that identifies each point P € E with its inverse —P.

COROLLARY 8.2. There exists a uniform bound B such that

m () Ny (E§™)| < B
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for any pair of elliptic curves E; over C and any pair of standard projections
m; for which

[m1(E1[2]) Nma(Ea[2])] = 3.

Proof. By fixing coordinates on P!, we may assume that 1 (E1[2]) N
mo(E2[2]) = {0, 1,00}. For each e € E;[2], the composition 7§ (P) = m;(P+e) is
again a standard projection and satisfies 7¢(E!°") = m;(E°™). Therefore, we
may assume that m;(O;) = oo for the origin O; of E;, i = 1,2. Putting each E;
into Legendre form now shows that the corollary follows from Theorem 1.5. O

8.4. No uniform bound on the torsion order. We conclude this section by
observing that there cannot be a uniform bound on the order of the torsion
points that lie in the intersections in Theorem 1.5.

PrOPOSITION 8.3. Let E; be the Legendre elliptic curve with equation
(1.2) and 7(z,y) = x. For every N > 0 and for every zo € Q\ {0,1}, there
exist t1 # to in Q\ {0,1} so that the points

P = (:I;o, :I:\/xg(aco —1)(zo — tz))

are torsion points on Ey; of order > N fori=1,2.

Proof. Fix 2o € Q\ {0,1} and N > 0. Let

P = (a:o, i\/xo(mo —1)(xg — t))

be the points on E; with z-coordinate equal to xg. The set

Tor(xg) := {t € Q\ {0,1} : P, is torsion on F;}

is an infinite but proper subset of Q \ {0,1}. See, for example, [DWY16,
Th. 1.2] for a proof, taking a = b = z¢ in the statement of the theorem. The
fact that P, is not torsion for every t is a consequence of Proposition 1.4 of
[DWY16] and the remark that follows it; it follows that Tor(zo) is a set of
bounded height, and so not equal to all of Q@ \ {0,1}. Consequently, there
are only finitely many elements of Tor(zg) corresponding to points P; of order
< N, so we can find ¢t; # t where the point P;, has order at least V. This
proves the proposition. U

9. Proof of Theorems 1.1 and 1.10

Throughout this section, we let L2 denote the hypersurface in the moduli
space My consisting of all genus 2 curves X over C that admit a degree-two
map to an elliptic curve; see, e.g., [SV04] for details on Lo. The surface Lo con-
sists of all X whose Jacobians admit real multiplication by the real quadratic
order of discriminant 4, as explained in the proof of [McMO07, Th. 4.10].
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For any smooth, compact, genus 2 curve over C, and for any Weierstrass
point P on X,

7p(X) N J(X)*| > 6

as the difference of two Weierstrass points is torsion. On the other hand, any
curve X of genus g > 2 has [jp(X) N J(X)™| < 2 for all but finitely many P,
by Baker and Poonen [BP01], so an Abel-Jacobi map based at a Weierstrass
point has in this sense a large number of torsion images.

In this section we deduce Theorem 1.1 from Corollary 8.2, providing a
uniform upper bound on [jp(X) N J(X)*| for all X in L£o. We also deduce
Theorem 1.10 from Theorem 8.1.

9.1. Genus 2 curve from a pair of elliptic curves. Suppose 7 : Fy — P!
and 7y : Fy — P! are standard projections on elliptic curves E; such that

|m1(E1[2]) N ma(E2[2])] = 3,

as in Corollary 8.2. Recall that standard projections are degree-two branched
covers 7 : B — P! such that 7(P) = 7(—P) for all points P € E, and so they
have simple critical points at the four points of E[2]. Consider the diagonal
D c P! xP!, and lift D toa curve C C By x Ey viall = 1y xmg. Letv: X — C
normalize C', noting that the degree four map Ilov : X — D has branch locus
m1(E1[2]) U ma(E2[2]), with each branch point the image of two points in X,
each of multiplicity two. By Riemann-Hurwitz, the genus of X is 2, and by
construction, the curve X is in Lo in My. Note that X maps to both of the
elliptic curves F; and Fy with degree 2.

9.2. A pair of elliptic curves from a genus 2 curve. Here we observe that
every X € Lo arises from the construction described in Section 9.1. In partic-
ular, admitting a degree-two branched cover X — FEj to an elliptic curve Ej
implies that X also admits a second degree-two branched cover X — FEs. The
proof of the following proposition shows how the curve Fs arises:

PROPOSITION 9.1. Every X € Lq is the lift of the diagonal under a prod-
uct of standard projections w; on elliptic curves E; for which

|m1(E1[2]) N ma(Ea2])] = 3.

Moreover, there are a Weierstrass point @ € X(C) and a degree-four isogeny
¢ : J(X)— Ey x Ey such that

P ojo(X) = (m xm) 'D in Ey x Es,

where D is the diagonal in P! x P, J(X) is the Jacobian of X, and jq is the
Abel-Jacobi embedding associated to Q.
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Proof. As noted by [SV04] and attributed to Jacobi [Jac32], each curve
X € L5 has an affine model

C:y2:x6781x4+52x271,

where the polynomial on the right has non-zero discriminant. Here C' admits
degree two maps (z,y) — (22,y) and (z,y) — (1/22,iy/x>) to elliptic curves
with affine presentation

3

E1:y2:x — 5122+ 59— 1

and

3 —82$2+813§'— 1,

E2 : y2 =X
respectively, defining a map v : X — FEj; X Es. For each of these curves,
the z-coordinate projection 7, is standard, so m := m, and mo := 1/7, are
standard projections for F; and FEs respectively. The projection m; ramifies
over {00, 1,712,173} and my ramifies over {0, 71,79, 73}, where {ry,rs,r3} are the
distinct, nonzero roots of % — s122 4+ sexz — 1. Thus

w1 (B [2]) Nma(E2f2])] = 3.
Define II := 71 X 79, noting that for (z,y) € C, we have
Mo v(a,y) = M(a%, 1/22) = (a2, 27).
Thus Mo v(X) = D, where D C P! x P! is the diagonal.

Fix r € m1(E1[2]) N m2(E2[2]), and equip each E; with a group structure
such that the identity lies above 7. Observe that the [—1]-involution on E; x E
induces the hyperelliptic involution on X. In particular, the Weierstrass points
on X are the six preimages of 71 (E1[2]) Nma(E2[2]) under ITov. Choose Q € X
such that II(v(Q)) = (r,7), so that @ is Weierstrass and v factors as ® o jg
for some isogeny ® : J(X) — Fj x F3. The nontrivial elements of the kernel
of @ are precisely the three 2-torsion points in J(X) that are differences of

Weierstrass points mapping to the same point in the diagonal D C P! x P!
Thus @ is degree four as claimed, completing the proof. O

9.3. Proof of Theorem 1.1. Fix X € L5. From Proposition 9.1, we have
elliptic curves E; and Fy and a Weierstrass point () € X such that

lio(X) N J(X)0| < 16 |7y (L) N o E5))|

for a pair of standard projections m; : E; — P! satisfying | (E1[2]) Nma(E2[2])]
= 3. Given any other Weierstrass point P € X, we have [P — Q] € J(X)!",
so we conclude that

7P (X) N J(X)*"| = [jo(X) N J(X)'"| < 16B,

where B is the constant of Corollary 8.2.



UNIFORM MANIN-MUMFORD FOR A FAMILY OF GENUS 2 CURVES 997

9.4. Proof of Theorem 1.10. Fix X € L3 C Mas, defined over Q. From
Proposition 9.1 there are a pair t; # t3 in Q\ {0, 1} and an isogeny ® : J(X) —
E, x Ey, of degree 4 so that II o ® o jg(X) is the diagonal in P! x P!, where
II =7 x 7 and @ is a Weierstrass point on X. Recall from Section 2.1 that
the Néron-Tate canonical height on h g, on E; satisfies

i (P) = 5 bn(n(P))

for all P € E,(Q) and each t € Q\ {0,1}.
Let
D= {Ol} X Et2 + Et1 X {02}
be a divisor on E;, x E},, where O; denotes the identity element of Ey,, and let
Lp be the associated line bundle. Let Lx = ®*Lp on J(X), and let iLLX be

the associated Néron-Tate canonical height on J(X)(Q). By the functoriality
of canonical heights [HS00, Th. B.5.6], we have

hiy(x) =hr, (®(z))
= hp, (®(2)1) + hp,, (B(z)2)

:% (hay (7(B(2)1)) + ey ((@(2)2)))

where ®(x) = (®(z)1,P(x)2) in Ey, x E,. Restricting to the points = €
jp(X)(Q), so that m(®(x)1) = m(®(x)2) in P!, the theorem now follows from
Theorem 8.1. U

9.5. No uniform bound on the torsion order. We conclude the article with
the observation that there cannot be a uniform bound on the order of the
torsion points that lie in the intersections in Theorem 1.1. It is an immediate
consequence of Propositions 8.3 and 9.1.

PROPOSITION 9.2. Given any N > 0, there exist a curve X € Ly defined
over Q and a Weierstrass point P € X so that the intersection

jp(X) 0 J(X )
contains a point of order > N in the Jacobian J(X).

Proof. Fix N > 0. From Proposition 8.3, we can find t; # to in Q\ {0,1}
and torsion points P, € Ey,, ¢ = 1, 2, having the same z-coordinate and torsion
orders > N. Let z( denote the z-coordinate of F;,. Let X be the normalization
of the curve C' C Ey, x Ey, that is the lift of the diagonal in P! x P! under the
projection m x w. From Proposition 9.1, we know that X is of genus 2 and lies
in Lo, and there is a Weierstrass point ) € X so that jo(X) maps to the curve
C under a degree-four isogeny ® : J(X) — E;, X Ey,. Let w be a preimage in
J(X) of the point (zg,z0) in P! x P! under the map (7 x 7) o ®. Then w has
order at least N. O
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