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Uniform Manin-Mumford for
a family of genus 2 curves

By Laura DeMarco, Holly Krieger, and Hexi Ye

Abstract

We introduce a general strategy for proving quantitative and uniform

bounds on the number of common points of height zero for a pair of in-

equivalent height functions on P1(Q). We apply this strategy to prove a

conjecture of Bogomolov, Fu, and Tschinkel asserting uniform bounds on

the number of common torsion points of elliptic curves in the case of two

Legendre curves over C. As a consequence, we obtain two uniform bounds

for a two-dimensional family of genus 2 curves: a uniform Manin-Mumford

bound for the family over C, and a uniform Bogomolov bound for the family

over Q.

1. Introduction

In this article, we use the Arakelov-Zhang intersection of adelically-

metrized line bundles on P1(Q) to prove a uniform Manin-Mumford bound for a

two-dimensional family of genus 2 curves over C. The Manin-Mumford Conjec-

ture, proved by Raynaud [Ray83], asserts the following: Let X be any smooth

complex projective curve of genus g ≥ 2, P ∈ X(C) any point, jP : X ↪→ J(X)

the Abel-Jacobi embedding of X into its Jacobian J(X) based at P , and

J(X)tors the set of torsion points of the Jacobian. Then

(1.1) |jP (X) ∩ J(X)tors| <∞.

In the case of genus g = 2, the curve is hyperelliptic, and the fixed points of

the hyperelliptic involution provide geometrically natural choices of base point

for the Abel-Jacobi map. We show there is a uniform bound on the number of

torsion images under such a map, provided the curve is also bielliptic, meaning

that it admits a degree-two branched covering to an elliptic curve.
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Theorem 1.1. There exists a uniform constant B such that

|jP (X) ∩ J(X)tors| ≤ B

for all smooth, bielliptic curves X over C of genus 2 and all Weierstrass points

P on X .

The curves satisfying the hypothesis of Theorem 1.1 form a complex sur-

face L2 in the moduli spaceM2 of genus 2 curves. These X are also character-

ized by the property that their Jacobians admit real multiplication by the real

quadratic order of discriminant 4. Further details on L2 are given in Section 9.

Remark 1.2. We do not give an explicit value for the B of Theorem 1.1,

but this bound can be made effective by estimating the continuity constants

of Section 4. Poonen showed that there are infinitely many curves X ∈ L2

for which |jP (X)∩ J(X)tors| is at least 22, taking P to be a Weierstrass point

on X [Poo00, Th. 1]. More recently, Stoll found an example with |jP (X) ∩
J(X)tors| = 34 for Weierstrass point P on X ∈ L2 [Sto]; the curve X is

defined over Q. We know of no curve X ∈M2(C) and point P ∈ X satisfying

|jP (X) ∩ J(X)tors| > 34.

Remark 1.3. Although Theorem 1.1 provides a uniform bound on the

number of torsion points on X in its Jacobian, there cannot be a uniform

bound on the order of these torsion points. See Proposition 9.2.

The question of uniformity in (1.1) was raised by Mazur in [Maz86], who

asked if a bound could be given that depends only on the genus g of the

curve X. Quantitative bounds on torsion points on curves have been obtained

when the curve is defined over a number field, notably by Coleman [Col85],

Buium [Bui96], Hrushovski [Hru01], and more recently by Katz, Rabinoff, and

Zureick-Brown [KRZB16]. By quantifying the p-adic approach to (1.1), these

authors achieve bounds for general families of curves; however, these bounds

all involve dependence on field of definition or the choice of a prime for the

family of curves, so they are not uniform for families over Q or C.

Our new technique that yields Theorem 1.1 is a quantification of the

approach of Szpiro, Ullmo, and Zhang [SUZ97], [Ull98], [Zha98] to proving

(1.1), utilizing adelic equidistribution theory. We first reduce to the setting

where the curve is defined over Q. Over Q, we build on the proof of the

quantitative equidistribution theorem for height functions on P1(Q) of Favre

and Rivera-Letelier [FRL06].

In fact, we deduce Theorem 1.1 from a case of the following conjecture,

discussed by Bogomolov and Tschinkel [BT07] and stated formally as [BFT18,

Conjs. 2 and 12], which asserts uniform bounds on common torsion points for

pairs of elliptic curves. By a standard projection π : E → P1 of an elliptic curve
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E over C, we mean any degree-two quotient that identifies a point P and its

inverse −P . Note that every standard projection π will have a simple critical

point at each of the four elements of the 2-torsion subgroup E[2].

Conjecture 1.4 ([BFT18]). There exists a uniform constant B such that

|π1(Etors
1 ) ∩ π2(Etors

2 )| ≤ B

for any pair of elliptic curves Ei over C and any pair of standard projections

πi for which π1(E1[2]) 6= π2(E2[2]).

Note that if π1(E1[2]) = π2(E2[2]), then E1 is isomorphic to E2 and

π1(Etors
1 ) = π2(Etors

2 ). The finiteness of the set π1(Etors
1 ) ∩ π2(Etors

2 ), under

the assumption that π1(E1[2]) 6= π2(E2[2]), follows from the main theorem of

Raynaud in [Ray83]; indeed, the diagonal in P1 × P1 lifts to a (singular) curve

C ⊂ E1 × E2 via π1 × π2 with normalization of genus g ≥ 2 [BT07].

We prove Conjecture 1.4 in the case of maximal overlap of the 2-torsion

points; i.e., when

|π1(E1[2]) ∩ π2(E2[2])| = 3.

This setting corresponds to the case where the (normalization of the) curve C

in E1 × E2 has genus 2. By fixing coordinates on P1, it suffices to work with

the Legendre family of elliptic curves

(1.2) Et : y2 = x(x− 1)(x− t)

with t ∈ C \ {0, 1} and the standard projection π(x, y) = x on Et. (See

Corollary 8.2.)

Theorem 1.5. There exists a uniform constant B such that

|π(Etors
t1 ) ∩ π(Etors

t2 )| ≤ B,

for all t1 6= t2 in C \ {0, 1}, for the curves Et defined by (1.2) and projection

π(x, y) = x.

To prove Theorem 1.5, we introduce a general strategy for bounding the

number of common height-zero points for any pair of distinct height functions

h1, h2 : P1(Q)→ R that arise from continuous, semipositive, adelic metrics on

the line bundle OP1(1). There is a natural Arakelov-Zhang pairing between any

two such heights, given by the intersection number of the associated metrized

line bundles. Our heights are normalized so this intersection number, which

we denote by h1 · h2, will satisfy

h1 · h2 ≥ 0 with equality if and only if h1 = h2.

Details on these heights and the pairing are given in Section 2. The value of

h1·h2 provides a notion of distance between the two heights (as was observed by
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Fili in [Fil17]). It follows from equidistribution [CL06], [FRL06], [BR10] that

(1.3) lim
n→∞

h2(xn) = h1 · h2

for any infinite sequence of distinct points xn ∈ P1(Q) such that h1(xn)→ 0 as

n → ∞, suggesting that large numbers of common zeroes between h1 and h2

will imply that h1 and h2 are close. However, this measure of closeness between

two heights is not generally uniform in families of heights, because the rate of

equidistribution is not uniform. Nevertheless, by bounding the height pairing

h1 · h2 from below, we can obtain an upper bound on the number of common

zeroes for certain families.

In the context of Theorem 1.5, we consider the family of height functions ĥt
on P1(Q) induced from the Néron-Tate canonical height on the elliptic curve

Et for t ∈ Q \ {0, 1}; its zeroes are precisely the elements of π(Etors
t ). We

implement this general strategy by proving three bounds on the intersection

pairing ĥt1 · ĥt2 . We prove a uniform lower bound on the pairing:

Theorem 1.6. There exists δ > 0 such that

ĥt1 · ĥt2 ≥ δ

for all t1 6= t2 ∈ Q \ {0, 1}.

We also prove an asymptotic lower bound for parameters t1 and t2 with

large height:

Theorem 1.7. There exist constants α, β > 0 such that

ĥt1 · ĥt2 ≥ αh(t1, t2)− β

for all t1 6= t2 in Q \ {0, 1}. Here h(t1, t2) is the naive logarithmic height on

A2(Q).

We find an upper bound that depends on the number of common zeroes

of ĥt1 and ĥt2 as well as the heights of the parameters t1 and t2:

Theorem 1.8. For all ε > 0, there exists a constant C(ε) > 0 such that

ĥt1 · ĥt2 ≤
Å
ε+

C(ε)

N(t1, t2)

ã
(h(t1, t2) + 1)

for all t1 and t2 in Q \ {0, 1}, where N(t1, t2) := |π(Etors
t1 ) ∩ π(Etors

t2 )|.

The three theorems combine to give a uniform bound on the number

N(t1, t2) of common zeroes of ĥt1 and ĥt2 for all t1 6= t2 in Q \ {0, 1}.
Theorems 1.6 and 1.7 follow from estimates on the local height functions

and the local equilibrium measures on the v-adic Berkovich projective line

at each place v of a number field containing t1 and t2, computed using the

dynamical Lattès map ft : P1 → P1 induced by multiplication by 2 on a
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Legendre curve Et. The non-archimedean contributions to ĥt1 · ĥt2 turn out to

be straightforward to compute for these heights. Significant technical issues

arise when v is archimedean and both parameters ti are tending to the sin-

gularity set {0, 1,∞} for this family; we resolve these issues by appealing to

the theory of degenerations of complex dynamical systems on P1(C), in which

a family of complex rational maps degenerates to a non-archimedean dynam-

ical system acting on a Berkovich space, as in the work of DeMarco-Faber

[DMF14] and Favre [Fav16], using the formalism of hybrid space as discussed

by Boucksom-Jonsson in [BJ17].

For Theorem 1.8, we expand upon the quantitative equidistribution re-

sults of Favre-Rivera-Letelier [FRL06] and Fili [Fil17] to analyze the rates of

convergence of measures supported on finite sets of zeroes of a height h to the

associated equilibrium measures at each place v. To do so requires control on

the modulus of continuity of the local heights, and again we rely on estimates

from the hybrid space to treat the cases where a parameter t is tending to one

of the singularities for the family Et.

Although Theorem 1.6 alone was not enough to prove Theorem 1.5, it

implies a uniform bound of a different sort, when combined with Zhang’s in-

equality on the essential minimum of a height function [Zha95]:

Proposition 1.9. Choose any b satisfying 0 < b < δ/2 for the δ of

Theorem 1.6. Then the set

S(b, t1, t2) := {x ∈ P1(Q) : ĥt1(x) + ĥt2(x) ≤ b}

is finite for each pair t1 6= t2 ∈ Q \ {0, 1}.
The complete proof of Theorem 1.5, however, gives a much stronger state-

ment: we obtain a uniform bound on the size of the set S(b, t1, t2) defined in

Proposition 1.9 over all pairs t1 6= t2 ∈ Q \ {0, 1}; see Theorem 8.1. This in

turn provides a uniform version of the Bogomolov Conjecture for the associ-

ated family of genus 2 curves. The Bogomolov Conjecture was proved for each

individual curve X over Q in [Ull98], [Zha98]. To state our result precisely, we

fix ample and symmetric line bundles on the family of Jacobians J(X) for the

genus 2 curves X defined over Q that we consider in Theorem 1.1. Specifically,

we take LX = Φ∗LD for the isogeny Φ : J(X) → E1 × E2 of Proposition 9.1,

with LD the line bundle associated to the divisor D = {O1}×E2 +E1×{O2},
where Oi is the identity element of Ei.

Theorem 1.10. There exist constants B and b > 0 such that∣∣{x ∈ jP (X)(Q) : ĥLX
(x) ≤ b}

∣∣ ≤ B
for all smooth curves X over Q of genus 2 admitting a degree-two map to an

elliptic curve and all Weierstrass points P on X , where ĥLX
is the Néron-Tate

canonical height on the Jacobian J(X).
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Finally, we mention that we implement this general strategy towards uni-

form boundedness in a follow-up article [DKY19] in another setting, providing

a uniform bound on the number of common preperiodic points for distinct

polynomials of the form fc(z) = z2 + c with c ∈ C.

Remark 1.11. We have chosen to work with the Arakelov-Zhang pairing

ĥt1 · ĥt2 to measure proximity of the two height functions, with t1 6= t2 in

Q \ {0, 1}, but there are other choices we could have made. For example,

Kawaguchi and Silverman in [KS09] study

δ
Ä
ĥt1 , ĥt2

ä
:= sup

x∈P1(Q)

∣∣∣ĥt1(x)− ĥt2(x)
∣∣∣ .

It turns out that the two quantities are comparable for this family of heights.

The upper bound ĥt1 · ĥt2 ≤ δ
Ä
ĥt1 , ĥt2

ä
can be seen as a corollary of arith-

metic equidistribution and (1.3), and therefore holds for any pair of normalized

heights coming from continuous, semipositive adelic metrics onOP1(1). A lower

bound of the form ĥt1 · ĥt2 ≥ C1 δ
Ä
ĥt1 , ĥt2

ä
−C2 for positive constants C1, C2,

and for all t1 6= t2 in Q \ {0, 1}, is a consequence of Theorem 1.7, when com-

bined with [KS09, Th. 1]. However, such a lower bound does not hold for all

pairs of heights coming from metrics on OP1(1). A comparison of these two

pairings is addressed further in [DKY19] for the canonical heights associated

to morphisms of P1.

Outline of the paper. We fix our notation and provide background in Sec-

tion 2. Sections 3, 4, and 5 provide the estimates on local height functions and

local measures needed to prove all of our theorems. Theorem 1.7 is proved in

Section 6, and from it we deduce Theorem 1.6 and Proposition 1.9. A gen-

eralization of Theorem 1.8 is proved in Section 7 that treats points of small

height, not only of height 0. We prove Theorem 1.5 in Section 8 and finally

Theorems 1.1 and 1.10 in Section 9.
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2. Heights, measures, and energies

This section develops the background and notation needed for the proofs

that follow. Throughout, K is a number field and MK its set of places.
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2.1. The canonical height. Fix t ∈ Q \ {0, 1}. Let Et be the Legendre

elliptic curve and π : Et → P1 the projection defined by π(x, y) = x. The

multiplication-by-two endomorphism on Et descends via π to a morphism of

degree 4 on P1 given by

(2.1) ft(x) =
(x2 − t)2

4x(x− 1)(x− t)
.

The canonical height on the elliptic curve

ĥEt : Et(Q)→ R

can be defined via the projection π and the iteration of ft as hEt(P ) :=
1
2 ĥt(π(P )), where

ĥt : P1(Q)→ R

is the dynamical canonical height defined by

(2.2) ĥt(x) = lim
n→∞

1

4n
h(fnt (x)).

Here, h is the (logarithmic) Weil height on P1(Q). Note that ĥt(x) ≥ 0 for all

x ∈ P1(Q), and

ĥt(x) = 0 ⇐⇒ x ∈ π(Etors
t )

[Sil09], [CS93].

The height ĥt has a local decomposition as follows: for any number field

K containing t, and for each place v ∈MK , there exists a local height function

λt,v such that

ĥt(x) =
∑
v∈MK

rv

|Gal(K/K) · x|

∑
y∈Gal(K/K)·x

λt,v(y)

for all x ∈ K, where

rv :=
[Kv : Qv]

[K : Q]
.

The local heights λt,v can be chosen to extend continuously to P1(Cv) \ {∞},
where Cv is the completion (with respect to v) of an algebraic closure of the

completion Kv, and to satisfy

λt,v(x) = log |x|v +O(1)

as |x|v →∞.
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2.2. Local heights and escape rates. To compute the local heights, we will

often express the maps ft : P1 → P1 of (2.1) in homogeneous coordinates, as

Ft(z, w) :=
(
(z2 − tw2)2, 4zw(z − w)(z − tw)

)
for z and w in Cv. As observed in [BR10, Ch. 10], its escape-rate function

(2.3) GFt,v(z, w) := lim
n→∞

1

4n
log ‖Fnt (z, w)‖v,

where ‖(z, w)‖v = max{|x|v, |y|v}, satisfies

ĥt(x) =
∑
v∈MK

rv

|Gal(K/K) · x̃|

∑
ỹ∈Gal(K/K)·x̃

GFt,v(ỹ)

for x ∈ P1(K) and x̃ any choice of lift of x to K
2 \ {(0, 0)}. In particular, we

may take

(2.4) λt,v(x) = GFt,v(x, 1)

as a local height for ĥt.

The elliptic curves Et and E1−t and E1/t are isomorphic, with the following

transformation formulas for the local heights:

Proposition 2.1. Fix any number field K and v ∈ MK . Then, for all

t ∈ K \ {0, 1}, we have

GF1−t,v(1− z, 1) = GFt,v(z, 1) = GF1/t,v(z, t) = GF1/t,v(z/t, 1) + log |t|v.

Proof. Let A be the automorphism A(z, w) = (w − z, w). Then

A ◦ Fnt = −Fn1−t ◦A

for all iterates, proving the first equality. Similarly, let B(z, w) = (z, tw). Then

B ◦ Fnt = Fn1/t ◦B

for all iterates, proving the second equality. The final equality follows from the

logarithmic homogeneity of G. �

2.3. The Berkovich projective line. Let K be a number field. For each v ∈
MK , let A1,an

v denote the Berkovich affine line over Cv. For non-archimedean v,

the points of A1,an
v come in four types. The Type I points in A1,an

v are, by

definition, the elements of the field Cv. The Type II points are in one-to-one

correspondence with disksD(a, r) = {x ∈ Cv : |x−a|v ≤ r} with r > 0 rational,

and these are the branch points for the underlying tree structure on A1,an
v . The

Type III points correspond to disks D(a, r) with r irrational. (We will not

need the Type IV points in this article.) A Type II or III point corresponding

to D(a, r) will be denoted by ζa,r. The Gauss point ζ0,1 is the Type II point

identified with the unit disk. The Berkovich projective line P1,an
v = A1,an

v ∪{∞}
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is the one-point compactification of A1,an
v , which is a canonically-defined path-

connected compact Hausdorff space containing P1(Cv) as a dense subspace. If

v is archimedean, then Cv ' C and P1,an
v = P1(C).

For each v ∈MK , there is a distribution-valued Laplacian operator ∆ on

P1,an
v . The function log+ |z|v on P1(Cv) extends naturally to a continuous real

valued function P1,an
v → R ∪ {∞}, and the Laplacian is normalized such that

∆ log+ |z|v = ωv − δ∞
on P1,an

v , where ωv = mS1 is the Lebesgue probability measure on the unit

circle when v is archimedean, and ωv = δG is a point mass at the Gauss point

of P1,an
v when v is non-archimedean. A probability measure µv on P1,an

v is said

to have continuous potentials if µv − ωv = ∆g with g : P1,an
v → R continuous.

The function g for µv is unique up to the addition of a constant. See [BR10,

Ch. 5] for more details. Note that the Laplacian used here is the negative of the

one appearing in [PST12] and [BR10], but it agrees with the usual Laplacian

(up to a factor of 2π) at the archimedean places.

For v non-archimedean, we set

H := A1,an
v \ Cv.

The hyperbolic distance dhyp on H gives it the structure of a metrized R-tree

and satisfies

dhyp(ζa,r1 , ζa,r2) = log(r1/r2)

for any a ∈ Cv and any r1 ≥ r2 > 0. We will say that a probability measure

µv on H is an interval measure if it is the uniform distribution on an interval

[ζ1, ζ2] ⊂ H with respect to the linear structure induced from the hyperbolic

metric dhyp.

2.4. Canonical measures and good reduction. For each Legendre elliptic

curve Et with t in a number field K and each v ∈MK , the local height λt,v of

(2.4) extends to define a continuous and subharmonic function on A1,an
v with

logarithmic singularity at ∞. We have

∆λt,v = µt,v − δ∞

on P1,an
v , where µt,v is the canonical probability measure for the dynamical

system ft at v [FRL06], [BR10, Th. 10.2].

For archimedean v ∈ MK , the measure µt,v is the unique ft-invariant

measure on P1(C) achieving the maximal entropy log 4. It is the push-forward

of the Haar measure on Et(C) via the projection π introduced in Section 2.1.

See, for example, [Mil06] for a dynamical discussion of the maps ft on the

Riemann sphere.

For non-archimedean v ∈ MK , if the curve Et and the map ft have good

reduction, the measure µt,v is the point mass δG supported on the Gauss
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point ζ0,1. The map ft has potential good reduction, meaning that it has

good reduction under a suitable change of coordinates on P1, if and only if

the measure µt,v is supported at a single Type II point in H. In general, the

support of µt,v is equal to the Julia set of ft in P1,an
v .

Recall that the j-invariant of the elliptic curve Et over C is given by

(2.5) j(t) =
256(1− t+ t2)3

(1− t)2t2
.

For t ∈ K and non-archimedean v ∈ MK , the map ft has potential good

reduction at v if and only if the curve Et has potential good reduction at v.

This equivalence can be proved via equidistribution of torsion points on Et
at all places [BP05, Th. 1] (thus implying that the measure µt,v will also be

supported at a single point of P1,an
v ) or via a direct calculation showing that

the Julia set of ft is a singleton if and only if |j(t)|v ≤ 1.

2.5. The height as an adelic metric. Suppose t ∈ K \ {0, 1}. The height

ĥt on P1(Q), introduced in Section 2.1, is induced from an adelic metric on

OP1(1), in the sense of Zhang [Zha95]. Fixing coordinates on P1 and a section

s of OP1(1) with (s) = (∞), then a metric ‖ · ‖t,v can be defined at each place

v of K by setting

− log ‖s(z)‖t,v = λt,v(z) = GFt,v(z, 1)

for the function GFt,v of (2.3). The height ĥt satisfies

ĥt(x) =
∑
v∈MK

rv

|Gal(K/K) · x|

∑
y∈Gal(K/K)·x

(− log ‖s(y)‖t,v)

for all x 6=∞ in P1(Q). Writing λt,v(z) = log |z|v + cv + o(1) as |z|v →∞ with

a constant cv at each place v of K, we may compute that

(2.6) 0 = ĥt(∞) =
∑
v∈MK

rv cv,

because ∞ is the projection of the origin of Et.

2.6. The intersection pairing. For these heights ĥt coming from the Le-

gendre family of elliptic curves, with t ∈ Q \ {0, 1}, we have

(2.7) ĥt1 = ĥt2 ⇐⇒ t1 = t2.

Indeed, any height coming from an adelic metric on OP1(1) is uniquely deter-

mined, up to an additive constant, by the associated curvature distributions;

see, for example, the construction of a height function from the measures in

[FRL06]. For heights of the form ĥt, at each archimedean place v of a number

field containing t, the curvature distribution µt,v on P1(C) is the push-forward
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of the Haar measure on Et(C) by π; it therefore has a greater density at the

four branch points {0, 1, t,∞} of π and thus determines t.

There is a well-defined intersection number between any pair of such

heights, as in [Zha95] (see also [CL11]); more precisely, it is the arithmetic

intersection number of the two associated adelically metrized line bundles. By

the non-degeneracy of this height pairing and (2.7),

(2.8) ĥt1 · ĥt2 ≥ 0 with equality if and only if t1 = t2,

as computed in [PST12].

To define the pairing ĥt1 · ĥt2 , we fix sections s and u of OP1(1) such that

their divisors do not intersect. Given t1 and t2 in a number field K, and a

place v of K, we set

〈ĥt1 , ĥt2〉s,uv :=

∫
log ‖s‖−1

t1,v
∆(log ‖u‖−1

t2,v
) = 〈ĥt2 , ĥt1〉u,sv .

The integral is over the Berkovich analytification P1,an
v of P1, over the field Cv.

The metrics satisfy

∆(log ‖s‖−1
t,v ) = µt,v − δ(s),

and µt,v is the associated curvature distribution.

The height pairing is then defined as

(2.9) ĥt1 · ĥt2 := ĥt1((u)) + ĥt2((s)) +
∑
v∈MK

rv 〈ĥt1 , ĥt2〉s,uv ,

which is independent of the choices of s and u. This pairing is easily seen to

be symmetric, and since ĥt(∞) = 0 for all t, it can be expressed as

ĥt1 · ĥt2 = ĥt2(∞) +
∑
v∈MK

rv

∫
(log ‖s‖−1

t1,v
) dµt2,v =

∑
v∈MK

rv

∫
λt1,v dµt2,v

= ĥt1(∞) +
∑
v∈MK

rv

∫
(log ‖s‖−1

t2,v
) dµt1,v =

∑
v∈MK

rv

∫
λt2,v dµt1,v

(2.10)

when (s) = (∞).

As ĥt · ĥt = 0 for all t ∈ Q \ {0, 1} from (2.8), note that

(2.11)
∑
v∈MK

rv

∫
λt,v dµt,v = 0 =

∑
v∈MK

rv cv,
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by combining (2.10) and (2.6). The pairing can be rewritten as:

ĥt1 · ĥt2 =
1

2

Ñ
ĥt2(∞) + ĥt1(∞) +

∑
v∈MK

rv

Å∫
λt1,v dµt2,v +

∫
λt2,v dµt1,v

ãé
=

1

2

∑
v∈MK

rv

Å∫
(λt1,v − λt2,v) dµt2,v +

∫
(λt2,v − λt1,v) dµt1,v

ã
.

(2.12)

The advantage of working with (2.12) is the following local version of the non-

degeneracy property (2.8):

Proposition 2.2 ([FRL06, Props. 2.6 and 4.5]). Let K be a number field

and v ∈MK . For any t1, t2 ∈ K \ {0, 1}, the local energy

Ev(t1, t2) :=
1

2

Å∫
(λt1,v − λt2,v) dµt2,v +

∫
(λt2,v − λt1,v) dµt1,v

ã
is non-negative; it is equal to 0 if and only if µt1,v = µt2,v .

Proposition 2.3. Let v ∈MK , and fix t1, t2 ∈ K \ {0, 1}. We have

Ev(t2, t1) = Ev(t1, t2) = Ev(1− t1, 1− t2) = Ev(1/t1, 1/t2).

Proof. Given measures µt1,v and µt2,v, the local energy Ev(t1, t2) can be

expressed as

−1

2

∫
g d(µt1,v − µt2,v)

for any continuous potential g of the signed measure µt1,v − µt2,v, because

g = λt1,v − λt2,v + c for some constant c. We have

f1−t = α ◦ ft ◦ α−1

for α(z) = 1−z = α−1(z), such that µ1−t,v = α∗µt,v and g = (λt1,v−λt2,v)◦α−1

is a potential for the measure µ1−t1,v − µ1−t2,v. Therefore, Ev(1− t1, 1− t2) =

Ev(t1, t2). Similarly, we have f1/t(z) = α ◦ ft ◦ α−1(z) for α(z) = z/t, so

Ev(1/t1, 1/t2) = Ev(t1, t2). �

2.7. Measures and mutual energy. Suppose that ν1 and ν2 are signed mea-

sures on P1(C) with trace measures |νi| for which the function log |z − w| ∈
L1(|ν1| ⊗ |ν2|) on C2 \ Diag. The mutual energy of ν1 and ν2 is defined in

[FRL06] by

(2.13) (ν1, ν2) := −
∫
C2\Diag

log |z − w| dν1 ⊗ dν2.

This definition extends to the non-archimedean setting by replacing |z−w| with

the Hsia kernel δv(z, w) based at the point at ∞. In this way, for v ∈ M0
K , a



UNIFORM MANIN-MUMFORD FOR A FAMILY OF GENUS 2 CURVES 961

pairing is defined similarly as

(2.14) (ν1, ν2)v := −
∫
A1,an
v ×A1,an

v \Diag
log δv(z, w) dν1 ⊗ dν2.

See [FRL06, §4.4] and [BR10, Ch. 4].

For measures νi of total mass 0 with continuous potentials on P1,an
v , we

have

(ν1, ν2)v = −
∫
g1 dν2

for any choice of continuous potential g1 for ν1. Further, (ν1, ν2)v ≥ 0 with

equality if and only if ν1 = ν2 [FRL06, Props. 2.6 and 4.5]. Note that Proposi-

tion 2.2 is a special case of this fact. Indeed, in this notation, the local energy

Ev(t1, t2) defined in Proposition 2.2 is given by

(2.15) Ev(t1, t2) =
1

2
(µt1,v − µt2,v, µt1,v − µt2,v)v

at each place v of a number field containing t1 and t2 for the canonical measures

introduced in Section 2.4.

The mutual energy (·, ·)v of (2.13) and (2.14) can also be defined for

discrete measures. If F = {x1, . . . , xn} is any finite set in a number field K,

and v ∈ MK , then denote by [F ]v the probability measure supported equally

on the elements of F ⊂ Cv. Then

(2.16)
∑
v

rv ([F ]v, [F ]v)v =
∑
v

rv
1

|F |2
∑
i 6=j

log |xi − xj |v = 0

by the product formula.

2.8. A metric on the space of adelic heights. The height pairing gives

rise to a metric on the space of continuous, semipositive, adelic metrics on

OP1(1) [Fil17, Th. 1]. Given a number field K and any collection of probability

measures {µv}v∈MK
on P1,an

v with continuous potentials for which µv = ωv at

all but finitely many places (where ωv is a point mass supported on the Gauss

point), then there is a unique metric on OP1(1) with curvature distributions

given by {µv}v∈MK
, normalized such that its associated height function h :

P1(Q) → R satisfies h · h = 0 [FRL06]. The height pairing between any two

such heights is computed as

h1 · h2 =
1

2

∑
v∈MK

rv (µ1,v − µ2,v, µ1,v − µ2,v)v.

Fili observed that a distance between h1 and h2 can be defined by

dist(h1, h2) := (h1 · h2)1/2 .

Indeed, we have already seen that h1 · h2 = 0 if and only if h1 = h2 because

of the non-degeneracy of the mutual energy (·, ·)v at each place. Furthermore,
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dist(·, ·) satisfies a triangle inequality: at each place, the mutual energy induces

a non-degenerate, symmetric, bilinear form on the vector space of measures of

mass 0 with continuous potentials on P1,an
v , and so the triangle inequality for

dist(·, ·) follows from an `2 triangle inequality.

3. Non-archimedean energy

Throughout this section, we fix a number field K and a non-archimedean

place v ∈ MK , and we provide a lower bound on the non-archimedean local

energy defined in Proposition 2.2:

Theorem 3.1. For t1, t2 ∈ K \ {0, 1}, we have

Ev(t1, t2)− 4

3
log |2|v ≥



log2 |t1/t2|v
6 log max{|t2|v, |t1|v}

for min{|t2|v, |t1|v} > 1,

log2 |t1/t2|v
−6 log min{|t2|v, |t1|v}

for max{|t2|v, |t1|v} < 1,

| log |t1/t2|v|
6

otherwise.

Equality holds for v - 2 with min{|t1 − 1|v, |t2 − 1|v} ≥ 1.

3.1. Measure and escape rate for v - 2.

Proposition 3.2. Suppose t ∈ K \ {0, 1} and v - 2. Then ft has good

reduction at v if and only if |t(t − 1)|v = 1. If |t(t − 1)|v 6= 1, then ft fails to

have potential good reduction at v, and the canonical measure µt,v on P1,an
v of

ft is the interval measure supported on

I =

{
[ζ0,1, ζ0,|t|v ] for |t|v > 1 or |t|v < 1,

[ζ0,1, ζ1,|1−t|v ] for |1− t|v < 1.

Proof. By Proposition 2.1, it suffices to treat the cases with |t|v > 1. By

[FRL10, §5.1], f−1
t (I) = I and the action of ft on I is by a tent map of degree 2.

That is,

ft(ζ0,|t|rv) =

{
ζ0,|t|2r−1

v
for 1/2 ≤ r ≤ 1,

ζ0,|t|1−2r
v

for 0 ≤ r ≤ 1/2.

The proposition follows. �

We may now compute the local height λt,v(z) = GFt,v(z, 1) on A1,an
v , which

is locally constant away from the interval [0,∞) ⊂ A1,an
v .



UNIFORM MANIN-MUMFORD FOR A FAMILY OF GENUS 2 CURVES 963

Proposition 3.3. Suppose v - 2 is non-archimedean and |t(t− 1)|v ≥ 1.

The escape-rate function GFt,v satisfies

(3.1) GFt,v(z, 1) =



log |z|v for |z|v ≥ |t|v,

1

2

Ç
log2 |z|v
log |t|v

+ log |t|v

å
for 1 < |z|v < |t|v,

1

2
log |t|v for |z|v ≤ 1

for all z ∈ Cv .

Proof. Let λ be the continuous extension of the expression on the right-

hand side of formula (3.1) to A1,an
v . By Proposition 3.2, µt,v is the interval

measure corresponding to [ζ0,1, ζ0,|t|v ], and a direct computation shows that

∆λ = µt,v − δ∞.

Thus it suffices to show that GFt,v(·, 1) and λ agree at a single point. For any

z0 ∈ Cv with |z0|v > |t|v, define (zn, wn) := Fnt (z0, 1), so that

(3.2) (zn+1, wn+1) = Ft(zn, wn) = ((z2
n − tw2

n)2, 4znwn(zn − wn)(zn − twn)).

Inductively,

|zn|v = |z0|4
n

v > |t|v|wn|v > |wn|v.

Consequently,

GFt,v(z0, 1) = lim
n→∞

1

4n
log ‖Fnt (z0, 1)‖v = log |z0|v = λ(z0). �

A similar application of Proposition 3.2 yields

Proposition 3.4. Suppose v - 2 is non-archimedean and |t|v < 1. The

escape-rate function GFt,v satisfies

(3.3) GFt,v(z, 1) =



log |z|v for |z|v ≥ 1,

− log2 |z|v
2 log |t|v

+ log |z|v for |t|v < |z|v < 1,

1

2
log |t|v for |z|v ≤ |t|v

for all z ∈ Cv .

3.2. Proof of Theorem 3.1 for v - 2. We compute the local energy Ev(t1, t2)

by cases.
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Case (1): |t1|v > 1 and |t2|v < 1. Recall the local energy can be expressed

as

2Ev(t1, t2) =

∫
P1,an
v

(λt1,v − λt2,v) dµt2,v +

∫
P1,an
v

(λt2,v − λt1,v) dµt1,v.

Therefore by Proposition 3.2, 3.3 and 3.4,

2Ev(t1, t2) =

∫
P1,an
v

(λt1,v − λt2,v) dµt2,v +

∫
P1,an
v

(λt2,v − λt1,v) dµt1,v

=

∫ 0

log |t2|v

Å
log |t1|v

2
−
Å
− x2

2 log |t2|v
+ x

ãã
dx

− log |t2|v

+

∫ log |t1|v

0

Å
x− 1

2

Å
x2

log |t1|v
+ log |t1|v

ãã
dx

log |t1|v

=
log |t1/t2|v

3
.

Case (2): |t1|v > 1 and |t2|v > 1. Without loss of generality, we assume

that |t1|v = max{|t1|v, |t2|v}. By Proposition 3.2 and 3.3,

2Ev(t1, t2) =

∫
P1,an
v

(λt1,v − λt2,v) dµt2,v +

∫
P1,an
v

(λt2,v − λt1,v) dµt1,v

=

∫ log |t2|v

0

Å
1

2

Å
x2

log |t1|v
+ log |t1|v

ã
− 1

2

Å
x2

log |t2|v
+ log |t2|v

ãã
dx

log |t2|v

+

∫ log |t2|v

0

Å
1

2

Å
x2

log |t2|v
+ log |t2|v

ã
− 1

2

Å
x2

log |t1|v
+ log |t1|v

ãã
dx

log |t1|v

+

∫ log |t1|v

log |t2|v

Å
x− 1

2

Å
x2

log |t1|v
+ log |t1|v

ãã
dx

log |t1|v

=
log2 |t1/t2|v

3 log max{|t1|v, |t2|v}
.

Case (3): |t2(t2 − 1)|v = 1 and |t1 − 1|v ≥ 1. In this case, ft2 has good

reduction, so µt2,v is a point mass supported on the Gauss point ζ0,1. Hence

2Ev(t1, t2) =
| log |t1|v|

3
=
| log |t1/t2|v|

3
.

Case (4): The remaining cases reduce to the above three by the symmetry

relations of Proposition 2.3. This completes the proof of Theorem 3.1 under

the assumption that v - 2.

3.3. Measure and escape rate for v | 2.

Proposition 3.5. Suppose v | 2 is non-archimedean. The canonical mea-

sure µt,v on P1,an
v of ft is the interval measure corresponding to the interval I
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with

I =


[ζ0,|t/4|v , ζ0,|4|v ] for |t|v < |16|v,

[ζ0,|1/4|v , ζ0,|4t|v ] for |t|v > 1/|16|v,

[ζ1,|1−t|v/|4|v , ζ1,|4|v ] for |1− t|v < |16|v.

For |16|v ≤ |t|v ≤ 1/|16|v with |1− t|v ≥ |16|v , ft(z) has potential good reduc-

tion, and µt,v is supported on a single point in H.

Proof. We proceed as in the computations of [FRL10, §5.1], though the

authors had assumed for simplicity that the residue characteristic of their field

is not 2. If |t|v > |1/16|v, the interval [ζ0,|1/4|v , ζ0,|4t|v ] is totally invariant by

ft, and

ft(ζ0,|4t|v |16t|−r
v

) = ζ0,|4t|v |16t|−2r
v

and ft(ζ0,|4t|v |16t|r−1
v

) = ζ0,|4t|v |16t|−2r
v

for r ∈ [0, 1/2]. Thus µt,v is the interval measure on [ζ0,|1/4|v , ζ0,|4t|v ]. The cases

|t|v < |16|v or |1− t|v < |16|v can then be deduced from Proposition 2.1.

For all |16|v ≤ |t|v ≤ 1/|16|v with |1− t|v ≥ |16|v, we have |j(t)|v ≤ 1, so

ft has potential good reduction. �

Following the proofs of Propositions 3.3 and 3.4, from Proposition 3.5 we

obtain

Proposition 3.6. Suppose v | 2 is non-archimedean. We have

(3.4) GFt,v(z, 1) =



log |z|v for |z|v ≥ |4t|v,

1

2

Ç
log2 |4z|v
log |16t|v

+ log |t|v

å
for 1/|4|v < |z|v < |4t|v,

1

2
log |t|v for |z|v ≤ 1/|4|v

for t with |t|v ≥ 1/|16|v , and

(3.5) GFt,v(z, 1) =



log |z|v for |z|v ≥ |4|v,

1

2

Ç
log2 |4z/t|v
log |16/t|v

+ log |t|v

å
for |4|v < |z|v < |t/4|v,

1

2
log |t|v for |z|v ≤ |t/4|v

for t with |t|v ≤ |16|v .
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3.4. Proof of Theorem 3.1 for v | 2. We compute as in the case where

v - 2.

Case (1): {t1, t2} with min{|t1|v, |t2|v} ≥ 1/|16|v and max{|t1|v, |t2|v} >
1/|16|v. Proposition 3.6 yields

2Ev(t1, t2) =
log2 |t1/t2|v

3 log max{|16t1|v, |16t2|v}
≥ log2 |t1/t2|v

3 log max{|t1|v, |t2|v}
.

Case (2): |t1|v ≥ 1/|16|v and |t2|v ≤ |16|v. Again by Proposition 3.6,

2Ev(t1, t2) =
log |16t1|v − log |t2/16|v

3
− log |16|v ≥

log |t1/t2|v
3

.

Case (3): |t1|v > 1/|16|v, |16|v ≤ |t2|v ≤ 1/|16|v and |1− t2|v ≥ |16|v. Let

ζt2 ∈ H be the support of µt2,v. For any z ∈ Cv with |z|v > 1/|4|v,

|ft2(z)|v =
|(z2 − t2)2|v

|4z(z − 1)(z − t2)|v
> |z|v.

Hence ζ0,1/|4|v ∈ [ζt2 ,∞). Let z0 ∈ Cv with |z0|v > 1/|4|v, and let (zn, wn) :=

Fnt2(z0, 1). From the recursive formula (3.2), inductively we have |zn| = |z0|4
n

v >

|wn|v/|4|v. Consequently

λt2,v(z) = GFt2 ,v
(z, 1) = lim

n→∞

log ‖Fnt2‖v
4n

= log |z|v

for z with |z|v > 1/|4|v, and then λt2,v(ζ0,r) = log r for r ≥ 1/|4|v. Moreover,

as ∆λt2,v = δζt2 − δ∞, the function λt2,v is increasing at a constant rate along

the ray [ζt2 ,∞), with respect to the hyperbolic metric. Therefore λt2,v(ζt2) ≤
λt2,v(ζ0,1/|4|v) = − log |4|v. Hence by Propositions 3.5 and 3.6,

2Ev(t1, t2) =

∫
P1,an
v

(λt1,v − λt2,v) dµt2,v +

∫
P1,an
v

(λt2,v − λt1,v) dµt1,v.

= (λt1,v(ζt2)− λt2,v(ζt2))

+

∫ log |4t1|v

log |1/4|v

Å
x− 1

2

Å
(x+ log |4|v)2

log |16t1|v
+ log |t1|v

ãã
dx

log |16t1|v

≥ log |16t1|v
3

.

Here we have used λt2,v(ζt2) ≤ − log |4|v and λt1,v(ζt2) = 1
2 log |t1|v for the last

inequality.
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Of course, for |16|v ≤ |ti|v ≤ 1/|16|v and |1 − ti|v ≥ |16|v for i = 1, 2, we

have

2Ev(t1, t2) ≥ 0 ≥ | log |t1/t2|v|
3

+
8

3
log |2|v.

Case (4): The remaining cases reduce to the above three by the symmetry

relations of Proposition 2.3. This completes the proof of Theorem 3.1.

4. Archimedean places and the hybrid space

In this section, we provide some of the estimates we need to control the

archimedean contributions to the height pairings. Throughout this section,

we assume our parameter t ∈ C \ {0, 1} is complex. We let µt denote the

probability measure on P1(C) that is the push-forward of the Haar measure

on the Legendre elliptic curve Et(C) via π(x, y) = x. This measure is also the

unique measure of maximal entropy for the dynamical system defined by the

Lattès map

ft(z) =
(z2 − t)2

4z(z − 1)(z − t)
,

as noted in [Mil06, §7]. We study degenerations of the probability measures µt
and their potentials as t→ 0. (The cases of t→ 1 and t→∞ are similar.) To

this end, we consider the action of ft sending (t, z) to (t, ft(z)) on the complex

surface X = D∗ × P1(C), where D∗ is the punctured unit disk. We make use

of the hybrid space Xhyb, in which the Berkovich projective line over the field

of formal Laurent series C((t)) creates a central fiber of X over t = 0 in the

unit disk D. We appeal to the topological description of the hybrid space from

[BJ17] and the associated dynamical degenerations described in [Fav16].

4.1. The family of Lattès maps and their escape rates. In homogeneous

coordinates on C2, recall that the maps ft may be presented as

Ft(z, w) :=
(
(z2 − tw2)2, 4zw(z − w)(z − tw)

)
for t ∈ C \ {0, 1}. They have escape-rate functions

(4.1) GFt(z, w) := lim
t→∞

1

4n
log ‖Fnt (z, w)‖,

as in (2.3).

View the families ft and Ft as maps f = fT and F = FT defined over the

field k = C(T ), and consider the non-archimedean absolute value | · |0 on k

satisfying |g(T )|0 = e− ord0 g. Let k0 = C((T )) denote the completion of C(T )

with respect to this absolute value. Let L denote a (minimal) complete and

algebraically closed field containing k0. The non-archimedean escape rate ĜF
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on L2 is defined as in (2.3). Since |T |0 < 1, it is given for x ∈ L by the following

formula, exactly as in Proposition 3.4:

ĝf (x) := ĜF (x, 1) =


log |x|0 for |x|0 ≥ 1,

log |x|0 −
(log |x|0)2

2 log |T |0
for |T |0 < |x|0 < 1,

1

2
log |T |0 for |x|0 ≤ |T |0

=


−a for |x|0 = |T |a0 with a ≤ 0

−a+
1

2
a2 for |x|0 = |T |a0 with 0 ≤ a ≤ 1

−1

2
for |x|0 = |T |a0 with a ≥ 1.

(4.2)

The function ĝf extends naturally to the Berkovich space P1,an
L ; away from the

point at ∞, it is a continuous potential for the equilibrium measure µ̂f of f .

The potential ĝf and the measure µ̂f are invariant under the action of

Gal(L/k0) on P1,an
L . They descend to define a function and probability measure

— that we will also denote by ĝf and µ̂f — on the quotient Berkovich line

P1,an
k0

. (See [Ber90, §4.2] for details on this quotient map.) As computed in

Proposition 3.2, the measure µ̂f is supported on the interval [ζ0,|T |0 , ζ0,1], and

it is uniform with respect the linear structure from the hyperbolic metric.

4.2. Convergence of measures. The family ft acts on the product space

D∗×P1 sending (t, z) to (t, ft(z)). It extends meromorphically to X0 := D×P1,

or indeed to any model complex surface X → D that is isomorphic to D∗ × P1

over D∗ and has a simple normal crossings divisor as its central fiber.

Fixing a surface X → D and letting t → 0, the degeneration of the mea-

sures µt of maximal entropy for ft — or indeed for any meromorphic family

of rational maps on P1 — to the central fiber of X is now well understood. In

[DMF14], [DF16], the limit of the measures µt is computed for any choice of

modelX, and a relation is shown between these limits and the non-archimedean

measure µ̂f . In particular, if we define the annulus

At(a, b, C) := {z ∈ C : C−1|t|a ≤ |z| ≤ C|t|b}

for t ∈ D∗, C > 1, and real numbers a ≥ b, then

(4.3) µt(At(a, b, C))→ µ̂f ([ζ0,|T |a0 , ζ0,|T |b0
]) = lengthR([0, 1] ∩ [b, a])

as t → 0. This follows from [DMF14, Th. B] (allowing for changes of coordi-

nates on P1 and base changes, passing to covers of the punctured disk D∗) or

from the computations described in [DF16, Th. D] (taking Γ to be a vertex set
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in the interval [ζ0,1, ζ0,|T |0 ]). Another proof is described below in Section 4.3.

In particular, this convergence implies

Lemma 4.1. Given any ε > 0 and integer n ≥ 1, there exists δ > 0 such

that

1

n
− ε < µt({|t|(i+1)/n ≤ |z| ≤ |t|i/n}) < 1

n
+ ε

for all 0 < |t| < δ and i = 0, . . . , n− 1.

Taking ε = 1/n2 in Lemma 4.1, we observe that for any given n, there is

a δ > 0 such that we also have

(4.4) µt

Å
{|z| ≥ 1} ∪ {|z| ≤ |t|}

ã
<

1

n

for all 0 < |t| < δ.

4.3. Convergence in the hybrid space. In [Fav16], Favre gives an alternate

proof of (4.3) by showing that

(4.5) µt → µ̂f

weakly in the hybrid space Xhyb [Fav16, Th. B]. The hybrid space consists

of replacing the central fiber in the models X above with the Berkovich line

P1,an
k0

, carrying an appropriate topology. The convergence of measures follows

from the convergence of their potentials to the potential of the measure µ̂f in

the Berkovich line. We describe this convergence here, as we will use it for

proving our main result.

Let m1 denote the Lebesgue measure on the unit circle in C, normalized

to have total length 1. Let Φt(z) denote a continuous potential on P1(C) for

the measure µt −m1. Explicitly, in local coordinates z ∈ C ⊂ P1, we can take

(4.6) Φt(z) = GFt(z, 1)− log+ |z|

with GFt as in (4.1). In [Fav16], Favre proves that the function

(4.7) ϕ(t, z) :=
Φt(z)

log |t|−1

extends to define a continuous function onXhyb, taking the values of a potential

of the limiting measure µ̂f −ω0 on the central fiber. Here ω0 is the delta mass

on the Gauss point ζ0,1 of the Berkovich line P1,an
k0

. More precisely, we consider
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the function

ϕ̂f (x) :=


0 for |x|0 ≥ 1,

log |x|0 −
(log |x|0)2

2 log |T |0
for |T |0 < |x|0 < 1,

1

2
log |T |0 for |x|0 ≤ |T |0

=


0 for |x|0 = |T |a0 with a ≤ 0,

−a+
1

2
a2 for |x|0 = |T |a0 with 0 ≤ a ≤ 1,

−1

2
for |x|0 = |T |a0 with a ≥ 1

(4.8)

for x ∈ L, similar to the formula for ĝf in (4.2). This function ϕ̂f extends

continuously to all of P1,an
L ; it is Galois invariant over k0; and it descends to

the quotient P1,an
k0

. Favre’s theorem implies that the function ϕ of (4.7) extends

continuously to Xhyb, coinciding with ϕ̂f over t = 0:

Proposition 4.2. Given any ε > 0, there exists δ > 0 such that∣∣∣ϕ(t, z)− ϕ̂f (ζ0,|T |a0 )
∣∣∣ < ε

for all 0 < |t| < δ, for all a ∈ R, and all z for which∣∣∣∣ log |z|
log |t|

− a
∣∣∣∣ < δ.

Proof. Recall that the absolute value | · |0 on L induces a continuous func-

tion on the Berkovich space that we will also denote by |·|0 : P1,an
k0
→ R≥0∪{∞}.

We use the standard absolute value | · | on C, extended to a continuous function

P1(C)→ R≥0 ∪ {∞}.
The topology on P1,an

k0
is such that annuli of the form

A(r1, r2) := {x ∈ P1,an
k0

: r1 < |x|0 < r2}

are open for any choice of 0 ≤ r1 < r2 ≤ ∞, as are the Berkovich disks of the

form

D0(r) := {x ∈ P1,an
k0

: |x|0 < r} and D∞(r) := {x ∈ P1,an
k0

: |x|0 > r}

for any 0 < r < ∞. The topology on Xhyb is such that an annular set of the

form

{(t, z) ∈ D∗ × P1(C) : |t|a+δ < |z| < |t|a−δ and 0 < |t| < δ} ∪A(|T |a+δ
0 , |T |a−δ0 )

is an open neighborhood of ζ0,|T |a0 on the central fiber for any a and any δ > 0.

Similarly, the disk-like sets

{(t, z) ∈ D∗ × P1(C) : |z| < |t|a and 0 < |t| < δ} ∪D0(|T |a0)
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and

{(t, z) ∈ D∗ × P1(C) : |z| > |t|a and 0 < |t| < δ} ∪D∞(|T |a0)

are open for any a ∈ R, and allowing a and δ to vary provides open neighbor-

hoods at 0 and∞ respectively in the central fiber. See [BJ17, §2.2 and Def. 4.9]

for details on the hybrid topology. Note in particular that the hybrid topology

restricted to the central fiber induces the usual (weak) Berkovich topology.

By the continuity statement of [Fav16, Th. 2.10] and exhibiting ϕ as a

uniform limit of model functions ([Fav16, §4.3] provides the details in the

dynamical case) the function ϕ extends to define a continuous function on

Xhyb, taking the values of ϕ̂f on the central fiber. Let L denote the closed

segment in P1,an
k0

between 0 and∞. We may by compactness cover L by finitely

many neighborhoods on which |ϕ(x) − ϕ(y)| ≤ ε. As the values of ϕ̂f depend

only on the values of ϕ on L, each open neighborhood of a point in the interior

of L contains an open interval in L, and ϕ̂ is constant near 0 and ∞, we may

assume these neighborhoods are annular or disk-like as defined above. Thus

we obtain a uniform δ as claimed. �

As Φt(z) = GFt(z, 1) − log+ |z|, we also have a uniform continuity state-

ment for G when |z| is bounded from above:

Proposition 4.3. Given any ε > 0 and M > 1, there exists δ > 0 such

that ∣∣∣∣GFt(z, 1)

log |t|−1
− ĝf (ζ0,|T |a0 )

∣∣∣∣ < ε

for all 0 < |t| < δ, for all a ∈ R, and all |z| ≤M for which∣∣∣∣ log |z|
log |t|

− a
∣∣∣∣ < δ.

4.4. Discrete measures and regularizations. Let F be any finite set in C.

Denote by [F ] the probability measure supported equally on the elements of F ,

and for r > 0, denote by [F ]r the probability measure supported equally and

uniformly on circles of radius r about each element of F .

Proposition 4.4. For every ε > 0, there exists c = c(ε) > 0 such that

|(µt, [F ])− (µt, [F ]r)| < ε max{log |t|−1, log |t− 1|−1, log |t|, 1}

for all t ∈ C \ {0, 1} and any finite set F in C and any

r ≤ c min{|t|2, |t− 1|2, |t|−2}.

Proof. For any x ∈ C and any r > 0, let mx,r be the probability measure

supported on the circle of radius r around x. Recall that

(ρ, σ) := −
∫∫

C×C\∆
log |z − w| dρ(z) dσ(w).
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For each fixed t, the function GFt(·, 1) is a potential for µt in C, and therefore,

there exists a constant Ct such that∫
C

log |z − w| dµt(z) = GFt(w, 1) + Ct.

Now let F be any finite set in C. Then, assuming r < 1, we have

(µt, [F ]r)− (µt, [F ]) =
1

|F |
∑
x∈F

Å
GFt(x, 1)−

∫
GFt(ζ, 1) dmx,r(ζ)

ã
=

1

|F |
∑

{x∈F :|x|>2}

Å
Φt(x)−

∫
Φt(ζ) dmx,r(ζ)

ã
+

1

|F |
∑

{x∈F :|x|≤2}

Å
GFt(x, 1)−

∫
GFt(ζ, 1) dmx,r(ζ)

ã
because the function log+ |z| is harmonic away from the unit circle on C.

By Proposition 4.3, there exists δ > 0 such that

(4.9)

∣∣∣∣GFt(z, 1)

log |t|−1
− ĝf (ζ0,|T |a0 )

∣∣∣∣ < ε/2

for all |z| ≤ 2 satisfying ∣∣∣∣ log |z|
log |t|

− a
∣∣∣∣ < δ

and all |t| < δ and any a ∈ R. Shrinking δ if needed, we have

(4.10) |ϕ(t, z)| < ε/2

for |z| ≥ 1 and all |t| < δ, by Proposition 4.2.

Let Cδ be the compact subset of C \ {0, 1} consisting of all t with |t| ≥ δ

and |t − 1| ≥ δ and |1/t| ≥ δ. Over Cδ × P1, the family of potentials {Φt} is

uniformly continuous. So there exists c1 = c1(δ) such that

|Φt(z)− Φt(z
′)| < ε

whenever dist(z, z′) < c1 and for all t ∈ Cδ. Here, dist represents the chordal

distance on P1. Furthermore, we may take c1 such that we also have

|GFt(z, 1)−GFt(z
′, 1)| < ε

for all |z − z′| < c1 with |z| ≤ 2, and all t ∈ Cδ. Thus

|(µt, [F ]r)− (µt, [F ])| < ε

for any choice of finite set F , t ∈ Cδ, and r < c1.

Now assume that |t| < δ. We will consider three cases. First, suppose

|t|1+δ ≤ |z| ≤ 2. Choose any c2 = c2(δ) such that

(4.11)
∣∣∣log(1± c2δ

1−δ)
∣∣∣ < δ(log δ−1).
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Then ∣∣log |z′/z|
∣∣ =

∣∣∣∣log

∣∣∣∣z′ − zz
+ 1

∣∣∣∣∣∣∣∣
≤ max

ß
log

Å
1 +

∣∣∣∣z′ − zz

∣∣∣∣ã , ∣∣∣∣log

Å
1−

∣∣∣∣z′ − zz

∣∣∣∣ã∣∣∣∣™
≤ max

∣∣∣∣log

Å
1± c2|t|2

|z|

ã∣∣∣∣
≤ max

∣∣∣log
Ä
1± c2δ

1−δ
ä∣∣∣

< δ(log δ−1) ≤ δ log |t|−1

for all |t| < δ. This is equivalent to

(4.12)

∣∣∣∣ log |z|
log |t|

− log |z′|
log |t|

∣∣∣∣ < δ

for all |z − z′| < c2|t|2 with |t|1+δ ≤ |z| ≤ 2. Combined with (4.9) and setting

a = (log |z|)/(log |t|), this implies that

|GFt(z, 1)−GFt(z
′, 1)| < ε log |t|−1

for such pairs z and z′.

Second, suppose that |z| ≤ |t|1+δ. By shrinking c2 further if necessary,

we have c2 < (1 − δδ)/δ, and therefore if |z| ≤ |t|1+δ and |z − z′| < c2|t|2,

with |t| < δ, we also have |z′| ≤ |t|. Applying the convergence (4.9) where

ĝf = −1/2, for all |z| ≤ |t|1+δ we have

|GFt(z, 1)−GFt(z
′, 1)| < ε log |t|−1

for z′ satisfying |z − z′| < c2|t|2 and for all |t| < δ.

Third, for |z| ≥ 2, by the convergence (4.10),

|Φt(z)− Φt(z
′)| < ε log |t|−1

for all |z| ≥ 2 and |z − z′| < c2|t|2 and |t| < δ.

Together these three cases yield

|(µt, [F ]r)− (µt, [F ])| < ε log |t|−1

for any choice of finite set F and all |t| < δ, with r < c2|t|2.

If |t− 1| < δ, the arguments above go through by replacing z with 1− z,
as

GF1−t(1− z, 1) = GFt(z, 1)

by Proposition 2.1. It follows that

|(µt, [F ]r)− (µt, [F ])| < ε log |t− 1|−1

for any choice of finite set F , |t− 1| < δ, and r < c2 |t− 1|2, with δ and c2 as

above.
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For t near ∞, more care is needed, as

GFt(z, 1) = GF1/t
(z, t) = GF1/t

(z/t, 1) + log |t|

by Proposition 2.1. Setting s = 1/t,

GFt(z, 1)

log |t|
=
GFs(s z, 1)− log |s|

log |s|−1
=
GFs(s z, 1)

log |s|−1
+ 1.

From (4.9), we have ∣∣∣∣GFs(s z, 1)

log |s|−1
− ĝf (ζ0,|T |1−a

0
)

∣∣∣∣ < ε/2

for |sz| ≤ 2, |s| < δ, and ∣∣∣∣ log |sz|
log |s|

− (1− a)

∣∣∣∣ < δ

for any choice of a ∈ R. Thus,

(4.13)

∣∣∣∣GFt(z, 1)

log |t|
−
Ä
ĝf (ζ0,|T |1−a

0
) + 1

ä∣∣∣∣ < ε/2

for all |z| ≤ 2|t| satisfying ∣∣∣∣ log |z|
log |t|

− a
∣∣∣∣ < δ

with |t| > δ−1 and any a ∈ R. As in (4.10), we also have

|ϕ(t, z)| < ε/2

for |z| ≥ |t| and |t| > δ−1, because ĝf (ζ0,|T |1−a
0

) + 1 = a for all a ≥ 1, from the

formula given in (4.2). The choice of c2 in (4.11) is similar. It follows that

|(µt, [F ]r)− (µt, [F ])| < ε log |t|

for any choice of finite set F and all |t| > 1/δ, with r < c2 |t|−2.

Let c := min{c1, c2} to complete the proof. �

5. Archimedean energy

As in Section 4, assume t ∈ C \ {0, 1} is a complex parameter, with µt on

P1(C) the push-forward of the Haar measure on Et(C), and λt(z) = GFt(z, 1)

a potential for µt − δ∞ on P1(C). In this section we provide estimates on the

archimedean local energy (introduced in Proposition 2.2)

E∞(s, t) :=
1

2

Å∫
(λs − λt) dµt +

∫
(λt − λs) dµs

ã
for s, t ∈ C \ {0, 1} as one or both of the parameters tends to 0, 1, or ∞. We

treat three cases separately: where only one parameter escapes into a cusp,

where both parameters escape into a cusp, and where the two parameters
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head to two different cusps. By the symmetry established in Proposition 2.3,

we focus on the case where s tends to 0.

Throughout, we work in hybrid space and make use of the convergence of

potentials to ĝf and measures to µ̂f as t→ 0, as proved in [Fav16, Th. B] and

explained in Section 4.3.

5.1. A single escaping parameter.

Theorem 5.1. Given ε > 0 and any compact set C ⊂ C \ {0, 1}, there

exists δ > 0 such thatÅ
1

6
− ε
ã

log |s|−1 ≤ E∞(s, t) ≤
Å

1

6
+ ε

ã
log |s|−1

for all s satisfying 0 < |s| < δ and all t ∈ C .

Proof. Recall that for any s ∈ C\{0, 1}, we have defined Φs(z) = GFs(z, 1)

− log+ |z| in (4.6) and ϕ(s, z) = Φs(z)/(log |s|−1). For any pair s, t ∈ C\{0, 1},
the local energy E∞(s, t) satisfies

E∞(s, t)

log |s|−1
=

1

2 log |s|−1

Å∫
(Φs − Φt) dµt +

∫
(Φt − Φs) dµs

ã
=

1

2

Å∫ Å
ϕ(s, z)− Φt

log |s|−1

ã
dµt +

∫
Φt

log |s|−1
dµs −

∫
ϕ(s, z) dµs

ã
.

Fix ε > 0, and suppose that C ⊂ C \ {0, 1} is compact. The Φt functions

are uniformly bounded for all t ∈ C and all z ∈ P1(C), so there is a δ such that∣∣∣∣∫ Φt

log |s|−1
dµs

∣∣∣∣ < ε

for all |s| < δ and all t ∈ C. We can also find a small r = r(C) such that

µt({|z| ≤ r}) < ε

for all t ∈ C. By Proposition 4.2 (shrinking δ if needed),

|ϕ(s, z)| < ε

for all |z| > r and |s| < δ, and

|ϕ(s, z)| < 1

for all z and all |s| < δ. Consequently,∣∣∣∣∫ Åϕ(s, z)− Φt

log |s|−1

ã
dµt

∣∣∣∣≤ ∫
{|z|≤r}

|ϕ(s, z)| dµt +

∫
{|z|>r}

|ϕ(s, z)| dµt

+

∫ ∣∣∣∣ Φt

log |s|−1

∣∣∣∣ dµt
< 3ε.
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Finally, by the weak convergence of µs → µ̂f and convergence of ϕ(s, z)

to ϕ̂f , we can shrink δ again such that∣∣∣∣∫ ϕ(s, z) dµs −
∫
ϕ̂f dµ̂f

∣∣∣∣ < ε

for all |s| < δ. Recalling the formula for ϕ̂f from (4.8), we have∫
ϕ̂f dµ̂f =

∫ 1

0

Å
−a+

a2

2

ã
da = −1

3
,

since the measure µ̂f is the uniform distribution on the interval [0, 1] in the a

coordinates, as described in Section 4.1. Therefore,Å
1

6
− 4ε

ã
log |s|−1 ≤ E∞(s, t) ≤

Å
1

6
+ 4ε

ã
log |s|−1

for all |s| < δ and all t ∈ C. �

5.2. Both parameters escaping to the same cusp.

Theorem 5.2. Given ε > 0, there exists δ > 0 such thatÇ
1

6

Å
1− 1

b

ã2

− ε
å

log |s|−1 ≤ E∞(s, t) ≤
Ç

1

6

Å
1− 1

b

ã2

+ ε

å
log |s|−1

for all s, t satisfying 0 < |s| ≤ |t| < δ, where b = (log |s|)/(log |t|) ≥ 1.

For each real number b ≥ 1, consider the function

ϕ̂b(x) :=


0 for |x|0 ≥ 1,

log |x|0 −
(log |x|0)2

2b log |T |0
for |T |b0 ≤ |x|0 ≤ 1,

b

2
log |T |0 for |x|0 ≤ |T |b0

=


0 for |x|0 = |T |a0 with a ≤ 0,

−a+ a2/(2b) for |x|0 = |T |a0 with 0 ≤ a ≤ b,
−b/2 for |x|0 = |T |a0 with a ≥ b

for all x ∈ L. Note that ϕ̂1 = ϕ̂f from (4.8). As with ϕ̂1, each ϕ̂b extends

naturally to a function on the Berkovich projective line P1,an
k0

and is a potential

of the measure µ̂b − δG, where µ̂b is interval measure on [ζ0,|T |b0
, ζ0,1] and δG is

the delta-mass at the Gauss point ζ0,1.
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For each b ≥ 1, the non-archimedean local energy E0(µ̂1, µ̂b) is given by

E0(µ̂1, µ̂b) :=
1

2

Å∫
(ϕ̂1 − ϕ̂b) dµ̂b +

∫
(ϕ̂b − ϕ̂1) dµ̂1

ã
=

(
log(|T |0/|T |b0)

)2
−6 log min{|T |0, |T |b0}

=
(b− 1)2

6b
,

as computed in Theorem 3.1 (in the case v - 2).

For s and t in C \ {0, 1}, if both s and t are close to one of the three

cusps, we can estimate the archimedean local energy E∞(s, t) in terms of the

non-archimedean pairing using the degeneration description in hybrid space.

We first prove a special case of Theorem 5.2:

Proposition 5.3. Given ε > 0 and B > 2, there exists δ > 0 such that

(E0(µ̂1, µ̂b)− ε) log |t|−1 ≤ E∞(s, t) ≤ (E0(µ̂1, µ̂b) + ε) log |t|−1

for all s, t satisfying 0 < |t|B ≤ |s| ≤ |t| < δ, where b = (log |s|)/(log |t|) ≤ B.

This proposition is an immediate consequence of the weak convergence of

measures µt → µ̂1 in the hybrid space, and the convergence of potentials as

described in Section 4.3. We give the details to clarify how the bound b ≤ B

is used.

Proof. Fix ε > 0 and B > 2.

For s and t in the punctured unit disk D∗, and for any 1 ≤ b ≤ B, consider

(5.1) ϕ(t, z) :=
ΦFt(z, 1)

log |t|−1
and bϕ(s, z) =

bΦFs(z, 1)

log |s|−1
=

ΦFs(z, 1)

log |t|−1
,

viewed as functions on the fiber {t}×C in the hybrid space. By Proposition 4.2,

there exists δ1 > 0 such that

(5.2)
∣∣∣ϕ(t, z)− ϕ̂1(ζ0,|T |a0 )

∣∣∣ < ε/(4B)

for all |t| < δ1, a ≥ 0, and all |t|a+δ1 < |z| < |t|a−δ1 . In particular,

|ϕ(t, z)| < ε/(4B)

for all |z| ≥ 1 and all |t| < δ1. It follows that

bϕ(s, z)→ ϕ̂b(ζ|T |a0 )

in the hybrid space as s and t tend to 0 with |s| = |t|b and (log |z|)/(log |t|)→ a,

uniformly in b for 1 ≤ b ≤ B. This is because the annulus

At(a, δ) := {z ∈ C : |t|a+δ < |z| < |t|a−δ}
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for each fixed t ∈ D∗, δ > 0 and a ∈ R can be written in terms of s as

At(a, δ) =
¶
z ∈ C : |s|a/b+δ/b < |z| < |s|a/b−δ/b

©
whenever |s| = |t|b. Therefore,

(5.3)∣∣∣bϕ(s, z)− ϕ̂b(ζ0,|T |a0 )
∣∣∣ =

∣∣∣∣bΦFs(z, 1)

log |s|−1
− b ϕ̂1(ζ

0,|T |a/b0

)

∣∣∣∣ < b ε/(4B) < ε/4

for all z ∈ At(a, δ1), as a consequence of (5.2). In particular,

|b ϕ(s, z)| < ε/4

for all |z| ≥ 1 and all |t| < δ1.

Recall that the measures µt on the fiber over t converge weakly in Xhyb

to the measure µ̂1 on the central fiber. For each s with |s| = |t|b, let µst denote

the measure associated to fs but viewed in the fiber {t} × P1. The measures

µst converge to the measure µ̂b as t → 0 with |s| = |t|b, and this convergence

can also be made uniform in b with b ≤ B. That is, by Lemma 4.1, for any n

there exists δ2 > 0 such that

(5.4)
1

n
− 1

n2
< µt({|t|(i+1)/n ≤ |z| ≤ |t|i/n}) < 1

n
+

1

n2

for all |t| < δ2 and each i = 0, . . . , n. Note that this implies that

µt({|z| ≤ |t|} ∪ {|z| ≥ 1}) < 1

n
.

Therefore, we also have

(5.5)
1

n
− 1

n2
< µst ({|t|b(i+1)/n ≤ |z| ≤ |t|bi/n}) < 1

n
+

1

n2

and

µst ({|z| ≤ |t|b} ∪ {|z| ≥ 1}) < 1

n
for all |t| < δ2. Thus, the measure µ̂b on small sub-annuli of the annulus

{|t|b ≤ |z| ≤ 1} is controlled uniformly for all 1 ≤ b ≤ B.

Putting all the pieces together,

E∞(s, t)

log |t|−1
=

1

2

Å∫
(bϕ(s, z)− ϕ(t, z)) dµt +

∫
(ϕ(t, z)− bϕ(s, z)) dµst

ã
is within ε of

E0(µ̂1, µ̂b) =
1

2

Å∫
(ϕ̂b − ϕ̂1) dµ̂1 +

∫
(ϕ̂1 − ϕ̂b) dµ̂b

ã
=

(b− 1)2

6b

for all t sufficiently small and all s with |s| = |t|b for any 1 ≤ b ≤ B. �

Here is an equivalent restatement of Theorem 5.2, expressed in terms of

the growth of |t|:
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Theorem 5.4. Given ε > 0, there exists δ > 0 such thatÅ
(b− 1)2

6b
− b ε

ã
log |t|−1 ≤ E∞(s, t) ≤

Å
(b− 1)2

6b
+ b ε

ã
log |t|−1

for all s, t satisfying 0 < |s| ≤ |t| < δ, where b = (log |s|)/(log |t|) ≥ 1.

Comparing Theorem 5.4 to the statement of Proposition 5.3, we see that

we lose the ability to bound the energy within a uniform ε when b becomes

large.

Proof of Theorems 5.4 and 5.2. Fix ε > 0.

As in the proof of Proposition 5.3, we make use of the weak convergence

of measures µt → µ̂1 and convergence of the potentials ϕ(t, z) → ϕ̂1 in the

hybrid space as t→ 0. Recalling the formula for ϕ̂f from (4.8), we have∫
ϕ̂f dµ̂f =

∫ 1

0

Å
−a+

a2

2

ã
da = −1

3
,

since the measure µ̂f is the uniform distribution on the interval [0, 1] in the a

coordinates, as described in Section 4.1.

Choose r satisfying 0 < r < ε/100. There is a δ2 such that

µt({|z| ≤ |t|}) < ε/50,

|ϕ(t, z)| < ε/50 for |z| ≥ |t|r,
and

|ϕ(t, z)| < 1

2
+ ε/50 for all z

for all |t| < δ2. Thus, for s ∈ C∗ with |s| = |t|b and b > 1/r, we have

|bϕ(s, z)| < b ε/50 for |z| ≥ |t|

and

|bϕ(s, z)| < b

2
+ b ε/50 for all z

for all |t| < δ2. By shrinking δ2 further if necessary, we appeal to the weak

convergence of measures µt → µ̂1 in the hybrid space to deduce that

(5.6)

∣∣∣∣∫ ϕ(t, z) dµt +
1

3

∣∣∣∣ =

∣∣∣∣∫ ϕ(t, z) dµt −
∫
ϕ̂1 dµ̂1

∣∣∣∣ < ε/10

for all |t| < δ2.

Now fix B > 1/r, and recall that r < ε/100, so that

(5.7)

∣∣∣∣(b− 1)2

6 b
− b

6

∣∣∣∣ < b ε/50

for all b ≥ B. For this B, we can find a δB > 0 such that Proposition 5.3

is satisfied for all 0 < |s| = |t|b ≤ |t| < δB with 1 ≤ b ≤ B. Choose any

δ ≤ min{δB, δ2}, and we obtain the theorem for b ≤ B.
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Now suppose b ≥ B. We will estimate

E∞(s, t)

log |t|−1
=

1

2

Å∫
(bϕ(s, z)− ϕ(t, z)) dµt +

∫
(ϕ(t, z)− bϕ(s, z)) dµst

ã
for all |t| < δ and any s with |s| = |t|b by estimating the two integrals sepa-

rately.

As shown above,

|bϕ(s, z)− ϕ(t, z)| ≤ 1/2 + ε/50 + b ε/50 < b ε/10

for all |z| ≥ |t| and 0 < |s| = |t|b ≤ |t| < δ with b ≥ B, and

|bϕ(s, z)− ϕ(t, z)| ≤ 1/2 + ε/50 + b/2 + b ε/50

for all z and 0 < |s| = |t|b ≤ |t| < δ. Writing the first integral as∫
(bϕ(s, z)− ϕ(t, z)) dµt =

∫
|z|≥|t|

(bϕ(s, z)− ϕ(t, z)) dµt

+

∫
|z|≤|t|

(bϕ(s, z)− ϕ(t, z)) dµt,

it follows that∣∣∣∣∫ (bϕ(s, z)− ϕ(t, z)) dµt

∣∣∣∣ ≤ b ε/10 + (1/2 + ε/50 + b/2 + b ε/50)(ε/50) < b ε/5

for all b ≥ B and 0 < |s| = |t|b ≤ |t| < δ.

Write the second integral as∫
(ϕ(t, z)− bϕ(s, z)) dµst =

∫
ϕ(t, z) dµst −

∫
bϕ(s, z) dµst .

As |ϕ(t, z)| is bounded by 1/2 + ε/50, we have∣∣∣∣∫ ϕ(t, z) dµst

∣∣∣∣ ≤ 1

2
+ ε/50 < b ε/25

for all b ≥ B. On the other hand, we have∫
bϕ(s, z) dµst = b

∫
ϕ(s, z) dµs

so that ∣∣∣∣∫ bϕ(s, z) dµst +
b

3

∣∣∣∣ < b ε/10

for all 0 < |s| = |t|b ≤ |t| < δ from (5.6).

We conclude that ∣∣∣∣E∞(s, t)

log |t|−1
− b

6

∣∣∣∣ < b ε/2

for all b sufficiently large and all |t| < δ. On the other hand, we also have∣∣∣∣ b6 − (b− 1)2

6b

∣∣∣∣ < b ε/50
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for all b ≥ B by our choice of B, so the theorem is proved. �

5.3. Parameters escaping to different cusps.

Theorem 5.5. Given ε > 0, there exists δ > 0 such thatÅ
1

6

Å
1 +

1

b

ã
− ε
ã

log |s|−1 ≤ E∞(s, t) ≤
Å

1

6

Å
1 +

1

b

ã
+ ε

ã
log |s|−1

for all s, t ∈ C satisfying |t| > 1/δ and 0 < |s| ≤ 1/|t|, where

b = −(log |s|)/(log |t|).

Proof. The proof is nearly identical to that of Theorem 5.2, working in

the hybrid space over a unit disk that we will parametrize by u ∈ D. For fixed

b ≥ 1, t = 1/u and any s satisfying |s| = |u|b, consider the functions

gu(z) =
GF1/u

(z, 1)

log |u|−1
=
GFt(z, 1)

log |t|
and

bgs(z) = b
GFs(z, 1)

log |s|−1

in the fiber {u} × P1.

As computed in Proposition 3.3, the limit of gu(z) as u→ 0 with |z| = |u|a
is

ĝ∞(a) :=


−a for a ≤ −1,

(a2 + 1)/2 for − 1 ≤ a ≤ 0,

1/2 for a ≥ 0.

As u → 0, the measures µ1/u on {u} × P1 will to converge the canonical

measure µ̂∞ for the map f = f1/U on the Berkovich projective line, working

over the field C((U)); the measure µ̂∞ is uniformly distributed on the interval

[ζ0,1, ζ0,|U |−1
0

].

As s→ 0 with |s| = 1/|t|b = |u|b, b ≥ 1, we have

bgs(z)→ ĝb(ζ0,|U |a0 )

for |z| = |u|a, exactly as in (5.3). The non-archimedean local energy is com-

puted in Theorem 3.1 as

E(µ̂∞, µ̂b) =
b+ 1

6
.

We conclude as in the proof of Theorem 5.2 that, for all given ε > 0, there

exists δ > 0 such thatÅ
b+ 1

6
− b ε

ã
log |t| ≤ E∞(s, t) ≤

Å
b+ 1

6
+ b ε

ã
log |t|

for all |t| > 1/δ and |s| = 1/|t|b. This completes the proof of Theorem 5.5. �
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6. Proof of Theorems 1.6 and 1.7

In this section, we first prove Theorem 1.7, which states there exist con-

stants α, β > 0 such that

ĥt1 · ĥt2 ≥ αh(t1, t2)− β

for all t1 6= t2 in Q\{0, 1}. We then use this lower bound to prove Theorem 1.6

and Proposition 1.9.

6.1. Balancing local contributions. Fix any r such that

0 < r ≤ 1/16.

Fix t1, t2 ∈ Q \ {0, 1}, and let K be any number field containing t1 and t2.

We split the places MK into “good” and “bad” subsets, depending on the pair

t1, t2 and the choice of r. Let Mgood(t1, t2) be the set of places v ∈MK with

| log |t2/t1|v| ≥ r ·max{| log |t2|v|, | log |t1|v|},

and set Mbad(t1, t2) = MK\Mgood(t1, t2). We further decompose Mgood(t1, t2)

into its archimedean (M∞good) and non-archimedean (M0
good) places.

Lemma 6.1. There exists a constant C0 > 0 such that

6Ev(t1, t2) ≥ 3r

4
| log |t1/t2|v| − C0

for any choice of t1 and t2 in Q \ {0, 1} and for all v ∈M∞good(t1, t2).

Proof. Let

ε =
r2

24
,

and let δ1 be the minimum of the δ’s from Theorems 5.2 and 5.5 for this choice

of ε. Let δ2 be the δ of Theorem 5.1 for the compact set

{t ∈ C : δ1 ≤ |t| ≤ 1/δ1 and |t− 1| ≥ δ1}

in C \ {0, 1}. Let δ0 be the minimum of δ1 and δ2, and let C0 be any real

number larger than log(1/δ0).

Now fix t1, t2 and any number field K containing t1 and t2, and fix a place

v ∈M∞good(t1, t2) ⊂MK . If δ0 ≤ |ti|v ≤ 1/δ0 for i = 1, 2, we have

6Ev(t1, t2) ≥ 0 ≥ 3r

4
| log |t1/t2|v| − C0.

As v ∈M∞good, if |t2|v ≤ |t1|v < 1, then

|t2|v = |t1|bv < |t1|v for
b− 1

b
≥ r
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and therefore, by Theorem 5.2, if additionally |t1|v < δ1, then we have

6Ev(t1, t2)≥
Å

(b− 1)2

b2
− 6ε

ã
| log |t1|bv|

≥
Å

(b− 1)r

b
− r2

4

ã
| log |t1|bv|

≥ 3r

4

b− 1

b
| log |t1|bv| =

3r

4
| log |t1/t2|v|.

If |t1|v < δ1 and |t2|v = 1/|t1|bv for some b ≥ 1, then by Theorem 5.5,

6Ev(t1, t2) ≥
Å

(b+ 1)

b
− 6ε

ã
| log |t1|bv|

≥ 3(b+ 1)r

4
| log |t1|v| =

3r

4
| log |t1/t2|v|;

if δ1 ≤ |t1|v ≤ 1/δ1, |t1− 1|v ≥ δ1 and |t2|v < δ0, we have by Theorem 5.1 that

6Ev(t1, t2) ≥ (1− 6ε)| log |t2|v| ≥
3r

4
| log |t1/t2|v| − C0.

Combining the above inequalities with the symmetry relations of Proposi-

tion 2.3, we obtain

6Ev(t1, t2) ≥ 3r

4
| log |t1/t2|v| − C0. �

Lemma 6.2. There is a constant C > 0 such that∑
v∈Mgood(t1,t2)

3rvEv(t1, t2) ≥ 3r

4
h(t2/t1)− 3r2

2
h(t1, t2)− C

for any t1 6= t2 ∈ Q\{0, 1}.

Proof. Fix t1 and t2 and any number field K containing them. For the

non-archimedean places v ∈M0
good(t1, t2), by Theorem 3.1, we have

6Ev(t1, t2) ≥ r · | log |t2/t1|v| − 8 log+ |1/2|v,

and thus

(6.1) ∑
v∈M0

good(t1,t2)

6rvEv(t1, t2) ≥
∑

v∈M0
good(t1,t2)

rv
(
r · | log |t2/t1|v| − 8 log+ |1/2|v

)
.

Now choose any integer N0 so that logN0 is larger than the C0 of Lemma 6.1

for each archimedean v ∈M∞good(t1, t2). We have

6Ev(t1, t2) ≥ 3r

4
| log |t2/t1|v| − logN0
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for all v ∈M∞good(t1, t2). With h the naive logarithmic height on Q, we set

C = 4h(2) +
1

2
h(N0) =

1

2
log(28N0).

Then, we have∑
v∈Mgood(t1,t2)

6rvEv(t1, t2) =
∑

v∈M∞good(t1,t2)

6rvEv(t1, t2)

+
∑

v∈M0
good(t1,t2)

6rvEv(t1, t2)

≥
∑

v∈Mgood(t1,t2)

rv
3r

4
| log |t2/t1|v| −

∑
v∈MK

rv
(
8 log+ |2|v + log+ |N0|v

)
=

∑
v∈Mgood(t1,t2)

rv
3r

4
| log |t2/t1|v| − 2C

=
∑
v∈MK

rv
3r

4
| log |t2/t1|v| −

∑
v∈Mbad(t1,t2)

rv
3r

4
| log |t2/t1|v| − 2C

≥
∑
v∈MK

3rvr

4
| log |t2/t1|v|

−
∑

v∈Mbad(t1,t2)

3r2rv
4

max{| log |t2|v|, | log |t1|v|} − 2C

≥ 3r

4
2h(t2/t1)− 3r2

4
· 4h(t2, t1)− 2C.

For the last inequality, we use the facts that 2h(x) =
∑

v∈MK
rv| log |x|v| for

nonzero x ∈ K and∑
v∈MK

rv max{| log |t2|v|, | log |t1|v|} ≤ 2 (h(t2) + h(t1)) ≤ 4h(t2, t1). �

6.2. Proof of Theorem 1.7. We begin with a standard lemma.

Lemma 6.3. There is a constant C > 0, such that

h

Å
t2
t1
,

1− t2
1− t1

ã
≥ 1

2
h(t1, t2)− C

for t1 6= t2 ∈ Q \ {0, 1}. Here the h is the naive logarithmic height on A2(Q).

Proof. Consider the birational transformation g : P2 99K P2 defined in

affine coordinates by g(x1, x2) = (x2/x1, (1− x2)/(1− x1)), with inverse

g−1(y1, y2) =

Å
1− y2

y1 − y2
,
y1(1− y2)

y1 − y2

ã
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of degree d = 2. There exists a constant C such that

h(g−1(x : y : z)) ≤ (deg g−1)h(x : y : z) + C = 2h(x : y : z) + C

outside of the indeterminacy set for g−1 in P2 [HS00, Th. B.2.5]. The inde-

terminacy set for g−1 is {(0 : 1 : 0), (1 : 0 : 0), (1 : 1 : 1)}. Therefore, letting

(t1 : t2 : 1) = g−1(x : y : 1) for some point (x : y : 1), we obtain

h(t1, t2) ≤ 2h(g(t1, t2)) + C

for all t1 6= t2 in Q \ {0, 1}. In other words,

h

Å
t2
t1
,
t2 − 1

t1 − 1

ã
≥ 1

2
h(t1, t2)− 1

2
C. �

Now fix t1 6= t2 in Q\{0, 1}. From Lemma 6.2, we know there is a constant

C (independent of t1 and t2) such that

3 ĥt1 · ĥt2 = 3
∑
v∈MK

rv Ev(t1, t2)

≥ 3
∑

v∈Mgood(t1,t2)

rv Ev(t1, t2)

≥ 3r

4
h(t2/t1)− 3r2

2
h(t2, t1)− C

(6.2)

for any t1 6= t2 ∈ Q\{0, 1}. Replacing ti in inequality (6.2) with 1 − ti, for

i = 1, 2, we also have

3 ĥ1−t1 · ĥ1−t2 ≥
3r

4
h

Å
1− t2
1− t1

ã
− 3r2

2
h(1− t2, 1− t1)− C.

Combining this with Proposition 2.3, we find that

(6.3) 3 ĥt1 · ĥt2 ≥
3r

4
h

Å
1− t2
1− t1

ã
− 3r2

2
h(1− t2, 1− t1)− C.

Consequently, by adding the inequalities (6.2) and (6.3), we have

6 ĥt1 · ĥt2 ≥
3r

4

Å
h(t2/t1) + h

Å
1− t2
1− t1

ãã
− 3r2

2
(h(t2, t1) + h(1− t2, 1− t1))− 2C.

Observe that there is a constant C ′ > 0 from Lemma 6.3 such that

h(t2/t1) + h

Å
1− t2
1− t1

ã
≥ h
Å
t2
t1
,
1− t2
1− t1

ã
≥ 1

2
· h(t1, t2)− C ′.

Since |h(1− t2, 1− t1)−h(t1, t2)| is uniformly bounded over all pairs t1, t2 ∈ Q,

we may combine the above inequality with the previous to conclude that

6 ĥt1 · ĥt2 ≥
3r

8
h(t1, t2)− 3r2 · h(t1, t2)− 6C ′′.
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In other words,

ĥt1 · ĥt2 ≥ (r/16− r2/2)h(t2, t1)− C ′′,

and the proof of Theorem 1.7 is complete by taking α = r/16 − r2/2 and

β = C ′′. �

Remark 6.4. If we set r = 1/16, the constant α > 0 in Theorem 1.7 can

be taken to be α = 1/512.

6.3. Proof of Theorem 1.6. We will use Theorem 1.7 to deduce a uniform

lower bound on the height pairing ĥs · ĥt for all s 6= t in Q \ {0, 1}.
Suppose there exist parameters sn 6= tn ∈ Q such that

ĥsn · ĥtn → 0 as n→∞.

Fix ε > 0. For each n, choose a number field Kn containing sn and tn. By

assumption and non-negativity of the local energies Ev (Proposition 2.2), there

is N ∈ N such that for all n > N , the archimedean contribution to the pairing

is less than ε; that is, for n > N ,∑
v∈M∞Kn

rv Ev(sn, tn) < ε,

recalling that rv = [Knv :Qv ]
[Kn:Q] now depends on n.

Let Mn be the set of archimedean places v in M∞Kn
such that Ev(sn, tn)<2ε,

noting that for n > N , we have ∑
v∈Mn

rv ≥
1

2
.

Recall that the local energy Ev(s, t) is continuous in s and t, and it vanishes

if and only if s = t. So there exists a δ, depending only on ε, so that, for each

n > N and for each place v ∈Mn, one of the following must hold:

(1) |tn − sn|v < δ;

(2) min{|sn|v, |tn|v} < δ;

(3) min{|sn − 1|v, |tn − 1|v} < δ;

(4) max{|sn|v, |tn|v} > 1/δ.

Note that we can take δ → 0 as ε→ 0. We may then, for each n > N , choose a

subset M ′n of Mn for which sn and tn satisfy the same one of the four conditions

at all places v ∈M ′n, and such that∑
v∈M ′n

rv ≥
1

8
.

We conclude by the product formula that

max{h(sn − tn), h(sn, tn), h(sn − 1, tn − 1)} > 1

8
log

1

δ
.
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It then follows from the triangle inequality, combined with shrinking our choice

of ε, that we have h(sn, tn)→∞. The inequality of Theorem 1.7 implies that

ĥsn ·ĥtn →∞ as well, a contradiction. This completes the proof of Theorem 1.6.

6.4. Proof of Proposition 1.9. Fix a number field K, and fix t1 6= t2 in

K\{0, 1}. Let ‖·‖i denote the adelic metric on the line bundleOP1(1) associated

to the height ĥti . Let L denote the line bundle OP1(1) equipped with the metric

(‖ · ‖1‖ · ‖2)1/2; its associated height function is

hL(x) =
1

2

Ä
ĥt1(x) + ĥt2(x)

ä
.

Zhang’s inequality on the essential minimum of a height function implies that

lim inf
n→∞

hL(xn) ≥ (hL · hL)/(2 degL) =
1

2

(
hL · hL

)
along any infinite sequence of distinct points xn ∈ P1(Q) [Zha95, Th. 1.10]. In

particular, the set

{x ∈ P1(Q) : ĥt1(x) + ĥt2(x) ≤ b}

is finite for any choice of b < hL · hL.

By the linearity of the intersection pairing, we see that

hL · hL =
1

4
ĥt1 · ĥt1 +

1

2
ĥt1 · ĥt2 +

1

4
ĥt2 · ĥt2 =

1

2
ĥt1 · ĥt2 .

Therefore, we may choose any b < δ/2 for the δ of Theorem 1.6, and the

proposition is proved.

7. Proof of Theorem 1.8

Fix any b ≥ 0 such that b < δ/2 for the δ of Theorem 1.6. Recall from

Proposition 1.9 that the set

(7.1) S(b, t1, t2) := {x ∈ P1(Q) : ĥt1(x) + ĥt2(x) ≤ b}

is finite for every pair t1 6= t2 ∈ Q \ {0, 1}. Note that {0, 1,∞} ⊂ S(0, t1, t2) so

that |S(b, t1, t2)| ≥ 3 for all t1 6= t2 in Q \ {0, 1} and all b ≥ 0. In this section,

we prove the following generalization of Theorem 1.8.

Theorem 7.1. Let b ≥ 0 be chosen so that b < δ/2 for the δ of Theo-

rem 1.6. For all ε > 0, there exists a constant C(ε) so that

ĥt1 · ĥt2 ≤ 4b+

Å
ε+

C(ε)

|S(b, t1, t2)|

ã
(h(t1, t2) + 1),

for all t1 6= t2 in Q \ {0, 1}, for the set S(b, t1, t2) defined by (7.1).

Note that Theorem 1.8 follows from Theorem 7.1 by setting b = 0.
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7.1. Adelic measures and heights associated to a finite set. Fix a number

field K, and suppose that F is a finite set in K that is Gal(K/K)-invariant.

Let η be a collection of positive real numbers

η := {ηv}v∈MK

with ηv = 1 for all but finitely many v ∈ MK . For archimedean v ∈ MK and

x ∈ F , we let mx,v denote the Lebesgue probability measure on the circle of

radius ηv centered at the point x ∈ F . We then set

mF,η,v =
1

|F |
∑
x∈F

mx,v.

Similarly, for each non-archimedean v ∈ MK , we let mF,η,v denote the proba-

bility measure distributed uniformly on the points ζx,ηv in A1,an
v over all x ∈ F .

Then mF,η = {mF,η,v}v∈MK
is an adelic measure in the sense of [FRL06]. It

gives rise to a unique height hF,η on P1(Q) associated to a continuous and semi-

positive adelic metric on OP1(1) with curvature distributions given by mF,η,v

and satisfying

(7.2) hF,η · hF,η = 0.

Its local heights are given by

λF,η,v(z) = αv +
1

|F |
∑
x∈F

log max{|z − x|v, ηv}

for z ∈ Cv and suitable constants αv; taking

αv = − 1

2 |F |
∑
x∈F

∫
log max{|z − x|v, ηv} dmF,η,v

gives (7.2).

Remark 7.2. The height hF,η will generally not admit sequences of “small”

points, meaning sequences xn ∈ P1(Q) with hF,η(xn) → 0. In fact, for any

choices of F and η such that
∑

v rv αv 6= 0, the essential minimum of hF,η is

positive.

7.2. An upper bound on the height pairing. Now suppose that t1 and t2
lie in K \ {0, 1}. Recall that µt and ĥt respectively denote the measure and

height associated to the curve Et. By the triangle inequality for the distance

function of Section 2.8, we have

(7.3)
Ä
ĥt1 · ĥt2

ä1/2
≤
Ä
ĥt1 · hF,η

ä1/2
+
Ä
ĥt2 · hF,η

ä1/2
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for any choice of F and η. By symmetry and bilinearity of the mutual energy,

ĥti · hF,η =
1

2

∑
v∈MK

rv (µti,v −mF,η,v, µti,v −mF,η,v)v

=
1

2

∑
v∈MK

rv ((µti,v, µti,v)v − 2 (mF,η,v, µti,v)v + (mF,η,v,mF,η,v)v)

for i = 1, 2. For fixed i, writing the local height for ĥti as λti,v = log |z|v + cv +

o(1) for |z|v →∞ yields∑
v

rv (µti,v, µti,v)v = −
∑
v

rv

∫
(λti,v − cv) dµti,v = 0

from (2.11). Therefore,

ĥti · hF,η =
1

2

∑
v∈MK

rv (−2(µti,v,mF,η,v)v + (mF,η,v,mF,η,v)v) .

Recall from Section 2.7 that [F ]v is the probability measure on P1,an
v dis-

tributed equally on the elements of F for each v ∈ MK . By [FRL06, Lemma

4.11] and [Fil17, Lemma 12], we have

(mF,η,v,mF,η,v)v ≤ ([F ]v, [F ]v)v +
− log ηv
|F |

.

It follows that

ĥti · hF,η ≤
1

2

∑
v∈MK

rv ·
Å
−2 (µti,v,mF,η,v)v + ([F ]v, [F ]v)v +

− log ηv
|F |

ã
=

1

2

∑
v∈MK

rv ·
Å
−2 (µti,v,mF,η,v)v +

− log ηv
|F |

ã(7.4)

with the final equality following from (2.16).

Proposition 7.3. Suppose t 6= 0, 1 lies in a number field K . Assume

that F is a finite, Gal(K/K)-invariant set of points. Then

ĥt · hF,η ≤ ĥt(F ) +
∑
v∈MK

rv

Å
−(µt,v,mF,η,v)v + (µt,v, [F ]v)v +

− log ηv
2 |F |

ã
for any choice of η = {ηv}v with ηv = 1 for all but finitely many v ∈MK .

Proof. The height of F is computed as

ĥt(F ) =
1

|F |
∑
x∈F

ĥt(x) = ĥt(∞)−
∑
v∈MK

rv (µt,v, [F ]v)v = −
∑
v∈MK

rv (µt,v, [F ]v)v,

and therefore we may add ĥt(F ) +
∑

v rv (µt,v, [F ]v)v to the right-hand side

of (7.4). �
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7.3. Proof of Theorem 7.1. Fix 0 ≤ b < δ/2 so that Proposition 1.9 is

satisfied for all t1 6= t2 in Q\{0, 1}. Now fix t1 6= t2 in Q\{0, 1} and a number

field K containing t1 and t2. Set

F = {x ∈ P1(Q) : ĥt1(x) + ĥt2(x) ≤ b} \ {∞} = S(b, t1, t2) \ {∞},
so F is a finite, Gal(K/K)-invariant set with

ĥti(F ) ≤ b
for i = 1, 2. At each non-archimedean place v of K, we set

ηv := min{1, |t1(t1 − 1)|v, |t2(t2 − 1)|v}.

Now fix ε′ > 0. For each archimedean v, we set

ηv := c(ε′) min
i=1,2

min{|ti|2v, |ti − 1|2v, |ti|−2
v },

where the constant c(ε′) is from Proposition 4.4. Let η = {ηv}v; observe that

ηv = 1 for all but finitely many v, and

(7.5)
∑
v∈MK

−rv log ηv ≤ 2 (h(t1) + h(1− t1) + h(t2) + h(1− t2))−1

2
log c(ε′).

For non-archimedean v, the explicit form of the measure µti,v (described

in Section 3) implies that

(µti,v,mF,η,v)v = (µti,v, [F ]v)v

for this choice of η, because the potentials for µti,v are constant on disks of

radius ηv.

We thus obtain from Proposition 7.3 that

ĥti · hF,η ≤ b+
∑
v∈M0

K

rv
− log ηv

2|F |

+
∑

v∈M∞K

rv

Å
−(µti,v,mF,η,v)v + (µti,v, [F ]v)v +

− log ηv
2|F |

ã
for i = 1, 2, where M0

K denotes the non-archimedean places and M∞K the

archimedean places.

We have for v ∈M∞K that

−(µti,v,mF,η,v)v + (µti , [F ]v)v ≤ ε′ log max{|ti|v, |ti|−1
v , |ti − 1|−1

v }
for i = 1, 2 by Proposition 4.4.

Since the logarithmic Weil height satisfies 2h(x) =
∑

v | log |x|v|, we thus

obtain

ĥti · hF,η ≤ b+ 2ε′ (h(ti) + h(ti − 1))

+
2 (h(t1) + h(1− t1) + h(t2) + h(1− t2))− 1

2 log c(ε′)

|F |
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for i = 1, 2. Since h(1 − ti) ≤ h(ti) + log 2 ≤ h(t1, t2) + log 2 for i = 1, 2, this

inequality becomes

ĥti · hF,η ≤ b+ 2ε′ (2h(t1, t2) + log 2) +
1

|F |

Å
8h(t1, t2) + 4 log 2− 1

2
log c(ε′)

ã
for i = 1, 2.

By the triangle inequality (7.3), we haveÄ
ĥt1 · ĥt2

ä1/2
≤
Ä
ĥt1 · hF,η

ä1/2
+
Ä
ĥt2 · hF,η

ä1/2

≤ 2

Å
b+ 2ε′ (2h(t1, t2) + log 2) +

1

|F |
(8h(t1, t2) + 4 log 2− 1

2
log c(ε′))

ã1/2

,

so

ĥt1 · ĥt2 ≤ 4

Å
b+2ε′(2h(t1, t2) + log 2)+

1

|F |
(8h(t1, t2)+4 log 2− 1

2
log c(ε′))

ã
= 4b+

Å
32

|F |
+ 16ε′

ã
h(t1, t2) +

16 log 2− 2 log c(ε′)

|F |
+ 8ε′ log 2.

(7.6)

Fix any ε > 0, and choose ε′ < ε/16. Since |F | = |S(b, t1, t2)| − 1 ≥ 2, we

can find a large constant C(ε) satisfying

32

|F |
+ 16ε′ ≤ ε+

C(ε)

|S(b, t1, t2)|
and

16 log 2− 2 log c(ε′)

|F |
+ 8ε′ log 2 ≤ ε+

C(ε)

|S(b, t1, t2)|
.

The inequality (7.6) then yields

ĥt1 · ĥt2 ≤ 4b+

Å
ε+

C(ε)

|S(b, t1, t2)|

ã
(h(t1, t2) + 1),

concluding the proof of Theorem 7.1.

8. Proof of Theorem 1.5

In this section, we deduce Theorem 1.5 from Theorems 1.6, 1.7 and 1.8 for

algebraic values of t1 and t2; we then extend the result to hold for parameters

ti in C, via a specialization argument. In fact, we prove the following stronger

result over Q:

Theorem 8.1. There exist constants B and b > 0 so that∣∣{x ∈ P1(Q) : ĥt1(x) + ĥt2(x) ≤ b}
∣∣ ≤ B

for all t1 6= t2 in Q \ {0, 1}.
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Finally, in Section 8.4, we observe that there is no uniform bound on the

order of the torsion points on Et1 and Et2 that can share an x-coordinate, even

if Theorem 1.5 provides a uniform bound on the total number of such points.

8.1. Proof of Theorem 8.1. Let δ > 0 be as in Theorem 1.6 so that

ĥt1 · ĥt2 ≥ δ

for all t1 6= t2 in Q \ {0, 1}. Fix

0 < b < δ/8

so that, from Proposition 1.9, the set

S(b, t1, t2) = {x ∈ P1(Q) : ĥt1(x) + ĥt2(x) ≤ b}

is finite for all t1 6= t2 in Q\{0, 1}. Let h(t1, t2) be the naive logarithmic height

on A2(Q). Fix H > 2β
α for the α, β of Theorem 1.7 and such that

(8.1)
H − 8b/α

H + 1
> 3/4.

Suppose that t1 6= t2 ∈ Q satisfy h(t1, t2) ≥ H. Then for ε = α
4 , there

exists by Theorem 7.1 a constant C such that

ĥt1 · ĥt2 ≤ 4b+

Å
α

4
+

C

|S(b, t1, t2)|

ã
(h(t1, t2) + 1).

On the other hand, by Theorem 1.7 and the choice of H, we have
α

2
h(t1, t2) ≤ αh(t1, t2)− β ≤ ĥt1 · ĥt2 .

Therefore

α

2
h(t1, t2) ≤ 4b+

Å
α

4
+

C

|S(b, t1, t2)|

ã
(h(t1, t2) + 1),

and so

|S(b, t1, t2)| ≤ CÄ
αh/2−4b
h+1

ä
− α

4

=
C

α
2

Ä
h−8b/α
h+1

ä
− α

4

≤ 8C

α

for h := h(t1, t2) ≥ H, from (8.1).

Suppose now that t1 6= t2 ∈ Q satisfy h(t1, t2) < H. Set ε′ = δ
4(H+1) , and

find a constant C ′ as in Theorem 7.1 so that

ĥt1 · ĥt2 ≤ 4b+

Å
ε′ +

C ′

|S(b, t1, t2)|

ã
(h(t1, t2) + 1),

and thus, since b < δ/8, we have

δ/2 < δ − 4b ≤
Å
ε′ +

C ′

|S(b, t1, t2)|

ã
(h(t1, t2) + 1).

We conclude that

|S(b, t1, t2)| ≤ 4(H + 1)C ′

δ
,
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providing a uniform bound also for t1 and t2 satisfying h(t1, t2) < H. This

completes the proof of Theorem 8.1.

8.2. Specialization : proof of Theorem 1.5. We implement a standard spe-

cialization argument to deduce Theorem 1.5 from Theorem 8.1. Note that

the division polynomials for the Legendre curve Et have coefficients in Q[t];

see, for example, [Sil09, Exer. 3.7]. Let B be the uniform bound obtained in

Theorem 8.1, so that

(8.2) |π(Etors
t1 ) ∩ π(Etors

t2 )| =
∣∣{x ∈ P1(Q) : ĥt1(x) = ĥt2(x) = 0}

∣∣ ≤ B
for all t1 6= t2 ∈ Q \ {0, 1}. Assume that there exist t1 6= t2 ∈ C \ {0, 1} with

N(t1, t2) := |π(Etors
t1 ) ∩ π(Etors

t2 )| > B

and t1 transcendental. If x ∈ π(Etors
t1 ) ∩ P1(Q), then x ∈ π(Etors

t ) for all

t ∈ C \ {0, 1} as it is a root of a division polynomial. It follows that there is at

least one non-algebraic point x ∈ π(Etors
t1 ) ∩ π(Etors

t2 ), as only x = 0, 1,∞ are

torsion images for all t ∈ C \ {0, 1} [DWY16, Prop. 1.4].

Now let

S := {x1, x2, . . . , xN} = π(Etors
t1 ) ∩ π(Etors

t2 ),

where N = N(t1, t2), and assume that x1 is transcendental. Because it is a

torsion image for both parameters, Q(x1, t1, t2) and therefore also the field

L := Q(t1, t2, x1, . . . , xN )

are of transcendence degree one. Consequently L is isomorphic to a function

field k = K(X) for a number field K and an algebraic curve X defined over Q.

Via the identification of L with k, there exists an algebraic point γ ∈ X(K)

with distinct specializations xi(γ) ∈ P1(Q) for i = 1, . . . , N and

t1(γ) 6= t2(γ) ∈ Q \ {0, 1}.

The division relations in L imply that the specializations Et1(γ) and Et2(γ) have

at least N common torsion images, contradicting (8.2). Therefore, we must

have

|π(Etors
t1 ) ∩ π(Etors

t2 )| ≤ B
for all t1 6= t2 ∈ C \ {0, 1}, and the proof of Theorem 1.5 is complete. �

8.3. Common torsion images. We obtain the following immediate corol-

lary of Theorem 1.5, which is a special case of Conjecture 1.4. Recall that

a standard projection from elliptic curve E to P1 is any degree-two branched

cover that identifies each point P ∈ E with its inverse −P .

Corollary 8.2. There exists a uniform bound B such that

|π1(Etors
1 ) ∩ π2(Etors

2 )| ≤ B
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for any pair of elliptic curves Ei over C and any pair of standard projections

πi for which

|π1(E1[2]) ∩ π2(E2[2])| = 3.

Proof. By fixing coordinates on P1, we may assume that π1(E1[2]) ∩
π2(E2[2]) = {0, 1,∞}. For each e ∈ Ei[2], the composition πei (P ) = πi(P+e) is

again a standard projection and satisfies πei (E
tors
i ) = πi(E

tors
i ). Therefore, we

may assume that πi(Oi) =∞ for the origin Oi of Ei, i = 1, 2. Putting each Ei
into Legendre form now shows that the corollary follows from Theorem 1.5. �

8.4. No uniform bound on the torsion order. We conclude this section by

observing that there cannot be a uniform bound on the order of the torsion

points that lie in the intersections in Theorem 1.5.

Proposition 8.3. Let Et be the Legendre elliptic curve with equation

(1.2) and π(x, y) = x. For every N > 0 and for every x0 ∈ Q \ {0, 1}, there

exist t1 6= t2 in Q \ {0, 1} so that the points

Pi =
(
x0, ±

»
x0(x0 − 1)(x0 − ti)

)
are torsion points on Eti of order ≥ N for i = 1, 2.

Proof. Fix x0 ∈ Q \ {0, 1} and N > 0. Let

Pt =
(
x0, ±

»
x0(x0 − 1)(x0 − t)

)
be the points on Et with x-coordinate equal to x0. The set

Tor(x0) := {t ∈ Q \ {0, 1} : Pt is torsion on Et}

is an infinite but proper subset of Q \ {0, 1}. See, for example, [DWY16,

Th. 1.2] for a proof, taking a = b = x0 in the statement of the theorem. The

fact that Pt is not torsion for every t is a consequence of Proposition 1.4 of

[DWY16] and the remark that follows it; it follows that Tor(x0) is a set of

bounded height, and so not equal to all of Q \ {0, 1}. Consequently, there

are only finitely many elements of Tor(x0) corresponding to points Pt of order

≤ N , so we can find t1 6= t2 where the point Pti has order at least N . This

proves the proposition. �

9. Proof of Theorems 1.1 and 1.10

Throughout this section, we let L2 denote the hypersurface in the moduli

space M2 consisting of all genus 2 curves X over C that admit a degree-two

map to an elliptic curve; see, e.g., [SV04] for details on L2. The surface L2 con-

sists of all X whose Jacobians admit real multiplication by the real quadratic

order of discriminant 4, as explained in the proof of [McM07, Th. 4.10].
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For any smooth, compact, genus 2 curve over C, and for any Weierstrass

point P on X,

|jP (X) ∩ J(X)tors| ≥ 6

as the difference of two Weierstrass points is torsion. On the other hand, any

curve X of genus g ≥ 2 has |jP (X)∩ J(X)tors| ≤ 2 for all but finitely many P ,

by Baker and Poonen [BP01], so an Abel-Jacobi map based at a Weierstrass

point has in this sense a large number of torsion images.

In this section we deduce Theorem 1.1 from Corollary 8.2, providing a

uniform upper bound on |jP (X) ∩ J(X)tors| for all X in L2. We also deduce

Theorem 1.10 from Theorem 8.1.

9.1. Genus 2 curve from a pair of elliptic curves. Suppose π1 : E1 → P1

and π2 : E2 → P1 are standard projections on elliptic curves Ei such that

|π1(E1[2]) ∩ π2(E2[2])| = 3,

as in Corollary 8.2. Recall that standard projections are degree-two branched

covers π : E → P1 such that π(P ) = π(−P ) for all points P ∈ E, and so they

have simple critical points at the four points of E[2]. Consider the diagonal

D ⊂ P1×P1, and lift D to a curve C ⊂ E1×E2 via Π = π1×π2. Let ν : X → C

normalize C, noting that the degree four map Π ◦ ν : X → D has branch locus

π1(E1[2]) ∪ π2(E2[2]), with each branch point the image of two points in X,

each of multiplicity two. By Riemann-Hurwitz, the genus of X is 2, and by

construction, the curve X is in L2 in M2. Note that X maps to both of the

elliptic curves E1 and E2 with degree 2.

9.2. A pair of elliptic curves from a genus 2 curve. Here we observe that

every X ∈ L2 arises from the construction described in Section 9.1. In partic-

ular, admitting a degree-two branched cover X → E1 to an elliptic curve E1

implies that X also admits a second degree-two branched cover X → E2. The

proof of the following proposition shows how the curve E2 arises:

Proposition 9.1. Every X ∈ L2 is the lift of the diagonal under a prod-

uct of standard projections πi on elliptic curves Ei for which

|π1(E1[2]) ∩ π2(E2[2])| = 3.

Moreover, there are a Weierstrass point Q ∈ X(C) and a degree-four isogeny

Φ : J(X)→ E1 × E2 such that

Φ ◦ jQ(X) = (π1 × π2)−1D in E1 × E2,

where D is the diagonal in P1 × P1, J(X) is the Jacobian of X , and jQ is the

Abel-Jacobi embedding associated to Q.
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Proof. As noted by [SV04] and attributed to Jacobi [Jac32], each curve

X ∈ L2 has an affine model

C : y2 = x6 − s1x
4 + s2x

2 − 1,

where the polynomial on the right has non-zero discriminant. Here C admits

degree two maps (x, y) 7→ (x2, y) and (x, y) 7→ (1/x2, iy/x3) to elliptic curves

with affine presentation

E1 : y2 = x3 − s1x
2 + s2x− 1

and

E2 : y2 = x3 − s2x
2 + s1x− 1,

respectively, defining a map ν : X → E1 × E2. For each of these curves,

the x-coordinate projection πx is standard, so π1 := πx and π2 := 1/πx are

standard projections for E1 and E2 respectively. The projection π1 ramifies

over {∞, r1, r2, r3} and π2 ramifies over {0, r1, r2, r3}, where {r1, r2, r3} are the

distinct, nonzero roots of x3 − s1x
2 + s2x− 1. Thus

|π1(E1[2]) ∩ π2(E2[2])| = 3.

Define Π := π1 × π2, noting that for (x, y) ∈ C, we have

Π ◦ ν(x, y) = Π(x2, 1/x2) = (x2, x2).

Thus Π ◦ ν(X) = D, where D ⊂ P1 × P1 is the diagonal.

Fix r ∈ π1(E1[2]) ∩ π2(E2[2]), and equip each Ei with a group structure

such that the identity lies above r. Observe that the [−1]-involution on E1×E2

induces the hyperelliptic involution on X. In particular, the Weierstrass points

on X are the six preimages of π1(E1[2])∩π2(E2[2]) under Π◦ν. Choose Q ∈ X
such that Π(ν(Q)) = (r, r), so that Q is Weierstrass and ν factors as Φ ◦ jQ
for some isogeny Φ : J(X) → E1 × E2. The nontrivial elements of the kernel

of Φ are precisely the three 2-torsion points in J(X) that are differences of

Weierstrass points mapping to the same point in the diagonal D ⊂ P1 × P1.

Thus Φ is degree four as claimed, completing the proof. �

9.3. Proof of Theorem 1.1. Fix X ∈ L2. From Proposition 9.1, we have

elliptic curves E1 and E2 and a Weierstrass point Q ∈ X such that

|jQ(X) ∩ J(X)tors| ≤ 16 |π1(Etors
1 ) ∩ π2(Etors

2 )|

for a pair of standard projections πi : Ei → P1 satisfying |π1(E1[2])∩π2(E2[2])|
= 3. Given any other Weierstrass point P ∈ X, we have [P − Q] ∈ J(X)tors,

so we conclude that

|jP (X) ∩ J(X)tors| = |jQ(X) ∩ J(X)tors| ≤ 16B,

where B is the constant of Corollary 8.2.
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9.4. Proof of Theorem 1.10. Fix X ∈ L2 ⊂ M2, defined over Q. From

Proposition 9.1 there are a pair t1 6= t2 in Q\{0, 1} and an isogeny Φ : J(X)→
Et1 × Et2 of degree 4 so that Π ◦ Φ ◦ jQ(X) is the diagonal in P1 × P1, where

Π = π × π and Q is a Weierstrass point on X. Recall from Section 2.1 that

the Néron-Tate canonical height on ĥEt on Et satisfies

ĥEt(P ) =
1

2
ĥt(π(P ))

for all P ∈ Et(Q) and each t ∈ Q \ {0, 1}.
Let

D = {O1} × Et2 + Et1 × {O2}
be a divisor on Et1×Et2 , where Oi denotes the identity element of Eti , and let

LD be the associated line bundle. Let LX = Φ∗LD on J(X), and let ĥLX
be

the associated Néron-Tate canonical height on J(X)(Q). By the functoriality

of canonical heights [HS00, Th. B.5.6], we have

ĥLX
(x) = ĥLD

(Φ(x))

= ĥEt1
(Φ(x)1) + ĥEt2

(Φ(x)2)

=
1

2

Ä
ĥt1(π(Φ(x)1)) + ĥt2(π(Φ(x)2))

ä
,

where Φ(x) = (Φ(x)1,Φ(x)2) in Et1 × Et2 . Restricting to the points x ∈
jP (X)(Q), so that π(Φ(x)1) = π(Φ(x)2) in P1, the theorem now follows from

Theorem 8.1. �

9.5. No uniform bound on the torsion order. We conclude the article with

the observation that there cannot be a uniform bound on the order of the

torsion points that lie in the intersections in Theorem 1.1. It is an immediate

consequence of Propositions 8.3 and 9.1.

Proposition 9.2. Given any N > 0, there exist a curve X ∈ L2 defined

over Q and a Weierstrass point P ∈ X so that the intersection

jP (X) ∩ J(X)tors

contains a point of order ≥ N in the Jacobian J(X).

Proof. Fix N > 0. From Proposition 8.3, we can find t1 6= t2 in Q \ {0, 1}
and torsion points Pti ∈ Eti , i = 1, 2, having the same x-coordinate and torsion

orders ≥ N . Let x0 denote the x-coordinate of Pti . Let X be the normalization

of the curve C ⊂ Et1 ×Et2 that is the lift of the diagonal in P1×P1 under the

projection π× π. From Proposition 9.1, we know that X is of genus 2 and lies

in L2, and there is a Weierstrass point Q ∈ X so that jQ(X) maps to the curve

C under a degree-four isogeny Φ : J(X)→ Et1 × Et2 . Let w be a preimage in

J(X) of the point (x0, x0) in P1 × P1 under the map (π × π) ◦ Φ. Then w has

order at least N . �
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