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Arthur parameters and cuspidal
automorphic modules of classical groups

By Dihua Jiang and Lei Zhang

Abstract

The endoscopic classification via the stable trace formula comparison

provides certain character relations between irreducible cuspidal automor-

phic representations of classical groups and their global Arthur parameters,

which are certain automorphic representations of general linear groups. It

is a question of J. Arthur and W. Schmid that asks how to construct con-

crete modules for irreducible cuspidal automorphic representations of clas-

sical groups in term of their global Arthur parameters? In this paper, we

formulate a general construction of concrete modules, using Bessel periods,

for cuspidal automorphic representations of classical groups with generic

global Arthur parameters. Then we establish the theory for orthogonal

and unitary groups, based on certain well expected conjectures. Among

the consequences of the theory in this paper is that the global Gan-Gross-

Prasad conjecture for those classical groups is proved in full generality in

one direction and with a global assumption in the other direction.
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1. Introduction

Let F be a number field and A be the ring of the adeles of F . Let G be

a classical group defined over F . The theory of endoscopic classification gives

a parametrization of the irreducible automorphic representations of G(A) oc-

curring in the discrete spectrum of all square-integrable automorphic functions

on G(A), up to global Arthur packets, by means of global Arthur parameters.

These parameters are formal sums of certain irreducible square-integrable au-

tomorphic representations of general linear groups. This fundamental theory

has been established by J. Arthur in [3] for G to be either symplectic groups

or F -quasisplit special orthogonal groups, with an outline on general orthog-

onal groups in [3, Ch. 9]. Following the fundamental work of Arthur ([3]),
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several authors made progress for more general classical groups. C.-P. Mok

established the theory for F -quasisplit unitary groups ([70]). More recently,

Kaletha, Minguez, Shin, and White in [52] made progress on more general

unitary groups. We refer to the work of B. Xu ([83]) for progress on the cases

of similitude classical groups GSp2n and GO2n. We remark that all those

works depend on the stabilization of the twisted trace formula, which has been

achieved through a series of works of C. Mœglin and J.-L. Waldspurger that

are now given in their books ([68] and [69]).

In Problem No. 5 in the Open Problems in honor of W. Schmid ([4]),

Arthur explains that the trace formula method establishes certain character

relation between irreducible cuspidal automorphic representations of classical

groups and their global Arthur parameters. It was Schmid who asks “What

about modules...?”. This means how to construct a concrete module for any

irreducible cuspidal automorphic representation in terms of its global Arthur

parameter. In [4], Arthur posed this question and pointed out that the work

of the first named author ([36]) has the potential to give an answer to this

question.

Our objective is to formulate, in the spirit of the constructive theory

described in [36] and also [35], a general construction (Principle 1.1) of concrete

modules for cuspidal automorphic representations of general classical groups,

which provides an answer to the question of Arthur-Schmid.

In this paper we establish the theory of concrete modules (Conjecture 6.7),

under certain well-expected conjectures (Conjecture 2.3, for instance) for cusp-

idal automorphic representations with generic global Arthur parameters (The-

orem 7.1). The key idea in the theory is to introduce the method of twisted

automorphic descents, which extends the method of automorphic descents of

Ginzburg-Rallis-Soudry ([23]) from F -quasisplit classical groups to general

classical groups, and from generic cuspidal automorphic representations to

general cuspidal automorphic representations with generic global Arthur pa-

rameters.

One of the main technical issues in the method is to establish the global

non-vanishing of the twisted automorphic descents that are constructed from

the given data. This is treated by establishing the reciprocal non-vanishing for

Bessel periods (Theorem 5.3), which depends heavily on the extension of the

global and local theory of the global zeta integrals that represent the tensor

product L-functions to the generality considered in this paper from the work

of Ginzburg, Piatetski-Shapiro and Rallis ([19]), the work of the current au-

thors ([45]), and the recent work of Soudry ([75] and [76]). Those previously

done works mainly treat the F -quasisplit classical groups. The extension of the

global theory is discussed in Section 4 of this paper, and that of the local the-

ory is given in our joint work with Soudry in [43]. Another technical issue is to
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prove the irreducibility of the concrete modules constructed via the twisted au-

tomorphic descents, which is carried out by using the local Gan-Gross-Prasad

conjecture (Conjecture 3.1) as input. As a consequence, we are able to estab-

lish one direction of the global Gan-Gross-Prasad conjecture in full generality

(Theorem 5.7), while we establish the other direction of the conjecture with a

global assumption (Theorem 6.10), except some special cases (Corollary 6.11,

and also [40]), where such a global assumption can be established.

The global Gan-Gross-Prasad conjecture that we refer to is Conjecture

24.1 (and Conjecture 26.1 for a different formulation) in [16]. It was first made

by B. Gross and D. Prasad in [24] and [25] for orthogonal groups and was re-

formulated in full generality for all classical groups, including the metaplectic

groups, by Gan, Gross and Prasad in [16]. The progress towards the proof

of the global Gan-Gross-Prasad conjecture can be traced back to the pioneer-

ing work of Harder-Langlands-Rapoport on the Tate conjecture for Hilbert-

Blumenthal modular surfaces ([26]), and it has been explained well in [16],

[15], and also in [14].

It is important to point out that the work of W. Zhang ([88] and [87])

established the global Gan-Gross-Prasad conjecture for a special family of uni-

tary groups with certain global and local constraints. The approach taken up

in [88] and [87] is to use the relative trace formula developed by H. Jacquet

and S. Rallis in [34] for unitary groups. However, such a relative trace formula

that can be used to attack the global Gan-Gross-Prasad conjecture for orthog-

onal groups is so far not known to be available. The global Gan-Gross-Prasad

conjecture for generic cuspidal automorphic representations with simple global

Arthur parameters was considered in [20], [21], and [22] for symplectic and

metaplectic groups, orthogonal groups, and unitary groups, respectively. The

method is a combination of the Bessel or Fourier-Jacobi periods of certain

residual representations with the Arthur truncation method. It was recently

discovered that there is a technical gap in the argument towards the end of the

proof, which needs to be filled up. A similar approach with the Arthur trunca-

tion replaced by the Jacquet-Lapid-Rogawski truncation is applied to the case

of Un+1 ×Un by A. Ichino and S. Yamana in [33]. We refer to Section 5.5 for

a more detailed account.

The approach taken up in this paper treats the global Gan-Gross-Prasad

conjecture uniformly for unitary groups and orthogonal groups, and it can be

used to take care of the symplectic group and metaplectic group situation by

using the Fourier-Jacobi periods ([46]). It avoids the technical difficulties that

occur in the literature ([20], [21], and [22]), which seem hopeless to be smoothly

handled when one considers general cuspidal automorphic representations with

generic global Arthur parameters and general classical groups. More impor-

tantly, the approach in this paper is much naturally related to the theory of
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twisted automorphic descents and the general Rankin-Selberg method, so that

one may regard the global Gan-Gross-Prasad conjecture as part of the theory

developed in our work. Finally, the results on the global Gan-Gross-Prasad

conjecture in this paper (Theorems 5.7 and 6.10) do not assume that the cusp-

idal multiplicity should be one, while this cuspidal multiplicity one assumption

was taken for the global Gan-Gross-Prasad conjecture in [16]. This cuspidal

multiplicity one issue was also discussed by H. Xue in [85, §6].

We also refer to [88] and [87] for a beautiful explanation of the relation

between the Gan-Gross-Prasad conjecture and certain important problems in

arithmetic and geometry, and for a more complete account of the progress on

lower rank examples and other special cases towards the global conjecture and

its refinement.

It is worthwhile to mention that the basic theoretic framework and techni-

cal results developed in this paper have been used in some recent work ([39] and

[48]) to study the automorphic branching problem and its reciprocal problem,

and to establish certain cases of the global Gan-Gross-Prasad conjecture for

non-tempered global Arthur parameters, which has been recently formulated

as [17, Conj. 9.1].

1.1. Main ideas and arguments in the theory. In order to illustrate the

main ideas and arguments of the theory in this introduction, we take G to be

an odd special orthogonal group. The general case will be discussed in the

main body of this paper.

We denote by G∗n = SO(V ∗, q∗) the F -split odd special orthogonal group

of 2n + 1 variables. Let Gn = SO(V, q) be the odd special orthogonal group

defined by a 2n+ 1 dimensional non-degenerate quadratic space (V, q) over F .

Then Gn is a pure inner form of G∗n over F , in the sense of Vogan (in [80]

and also in [16], [50] and [51]). Following the work of Arthur ([3, Ch. 9, in

particular]), the discrete spectrum of Gn are parametrized by the Gn-relevant,

global Arthur parameters of G∗n, the set of which is denoted by ‹Ψ2(G∗n)Gn . The

global Arthur parameters of G∗n are multiplicity-free formal sums of the type

(1.1) ψ = (τ1, b1) � · · ·� (τr, br) ∈ ‹Ψ2(G∗n),

where τi is an irreducible unitary self-dual cuspidal automorphic representation

of GLai(A) for i = 1, 2, . . . , r, having the property that when τi is of orthogonal

type, the integer bi must be even, and when τi is of symplectic type, the integer

bi must be odd.

Following [3], a global Arthur parameter ψ is called generic if bi = 1 for

i = 1, 2, . . . , r. The subset of the generic parameters is denoted by Φ̃2(G∗n) and

that of the Gn-relevant ones is denoted by Φ̃2(G∗n)Gn . Hence the generic global

Arthur parameters are of the form

(1.2) φ = (τ1, 1) � · · ·� (τr, 1).
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It follows that for a generic global Arthur parameter φ in (1.2), the cuspidal

automorphic representations τ1, . . . , τr are all of symplectic type and τi is not

equivalent to τj if i 6= j.

By [3], in particular, [3, Ch. 9], for any π ∈ Acusp(Gn), the set of equiva-

lence classes of irreducible automorphic representations of Gn that occur in the

cuspidal spectrum, there is aGn-relevant, global Arthur parameter ψ ∈ ‹Ψ2(G∗n)

such that π ∈ Π̃ψ(Gn), the global Arthur packet of Gn associated to ψ. One

has the following diagram,

(1.3)

‹Ψ2(G∗n)

ψ

↙ ↘

Adisc(Gn) ∩ Π̃ψ(Gn) ⇐⇒ Adisc(G
∗
n) ∩ Π̃ψ(G∗n),

where Adisc(Gn) is the set of equivalence classes of irreducible automorphic

representations of Gn(A) that occur in the discrete spectrum.

When a parameter ψ ∈ ‹Ψ2(G∗n) is generic, i.e., ψ = φ as given in (1.2),

the global packet Π̃φ(G∗n) contains an irreducible generic cuspidal automorphic

representation π0 of G∗n(A). This π0 can be constructed by the automorphic

descent of Ginzburg, Rallis and Soudry in [23] and in [42]. This construction

produces a concrete module for π0 by using only the generic global Arthur

parameter φ. However, it remains a big problem to construct other cuspidal

members in the global packet Π̃φ(G∗n), and even more generally, to construct

all cuspidal members in Π̃ψ(Gn) for all pure inner forms Gn of G∗n.

It seems clear from diagram (1.3) that one has to take more invariants of π

into consideration in order to develop a reasonable theory that constructs con-

crete modules of all cuspidal members in Π̃ψ(G) for general classical groups G.

One of the natural choices is to utilize the structure of Fourier coefficients of

cuspidal automorphic representations π, in addition to the global Arthur pa-

rameters ψ. We use F(π,G) to denote a certain piece of information about

the structure of Fourier coefficients of π. Here is the principle of the theory.

Principle 1.1 (Concrete Modules). Let G∗ be an F -quasisplit classical

group and G be a pure inner form of G∗. For an irreducible cuspidal automor-

phic representation π of G(A), assuming that π has a G-relevant global Arthur

parameter ψ ∈ ‹Ψ2(G∗), there exists a datum F(π,G) such that one is able to

construct a concrete irreducible module M(ψ,F(π,G)), depending on the data

(ψ,F(π,G)), with the property that

π ∼=M(ψ,F(π,G)).

Moreover, if π occurs in the cuspidal spectrum of G with multiplicity one, then

π =M(ψ,F(π,G)).
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We remark that if G = G∗ is F -quasisplit and π is generic, the concrete

module expected in Principle 1.1 should coincide with the module constructed

from the automorphic descents of Ginzburg-Rallis-Soudry in [23]. This will be

explained in Corollary 7.2.

We still take Gn to be an odd special orthogonal group. For the case

when the global Arthur parameter ψ is generic, we propose the Main Con-

jecture (Conjecture 6.7) of the theory developed in this paper that specifies

the Principle of Concrete Modules (Principle 1.1) with the datum F(π,Gn)

explicitly given in Conjecture 2.3. The nature of Conjecture 2.3 will be briefly

discussed in Section 2.3 and will be considered in our future work. With

F(π,Gn) as described in Conjecture 2.3, and with the generic global Arthur

parameter φ for π, the construction of the concrete module M(φ,F(π,Gn))

for the given π is carried out by the twisted automorphic descent as illustrated

in diagram (6.7).

One of the key results in this paper is Theorem 5.3, which gives a re-

ciprocal non-vanishing for Bessel periods. Such a non-vanishing property is

proved using a refined theory of the global zeta integrals for the tensor prod-

uct L-functions for Gn and a general linear group. The global theory of the

global zeta integrals goes back to the pioneering work of Ginzburg, Piatetski-

Shapiro and Rallis for orthogonal groups ([19]), which has been extended to

a more general setting, including unitary groups by the authors of this paper

in [45]. We established the global results of the global zeta integrals for the

most general situation in Section 4. In order to obtain Theorem 5.3, we need

the explicit unramified computation of the local zeta integrals. This is done

in [43], which extends the work of Soudry ([75] and [76]) for split orthogonal

groups to the generality considered in this paper.

By using the reciprocal non-vanishing for Bessel periods, we are able to

show that certain Fourier coefficient of a residual representation, which is de-

noted by FOκ0 (Eτ⊗σ), is non-zero. The notation is referred to in Theorem 5.3.

This is the candidate for the concrete module of π, as explained in the main

conjecture of the theory (Conjecture 6.7). Conjecture 6.7 for Gn asserts that

FOκ0 (Eτ⊗σ) is an irreducible cuspidal automorphic representation of Gn(A)

that is isomorphic to the given π. We note that when Gn is an even special

orthogonal group, this assertion has to be modified due to the extra outer

involution. We refer to Conjecture 6.7 for detail.

One of the main results of this paper (Theorem 7.1) is to prove that

Conjecture 6.7 holds under the assumption of Conjectures 2.3 and 3.1, In two

special cases, the results are stronger as given in Corollaries 7.2 and 7.4. It is

worthwhile to mention that by a different argument, this theory recovered the

classical Jacquet-Langlands correspondence for PGL(2) in [40].
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We remark that the irreducibility of FOκ0 (Eτ⊗σ) is deduced from Conjec-

ture 3.1, which is the local Gan-Gross-Prasad conjecture for local Vogan pack-

ets. The recent progress towards this conjecture is recorded as Theorem 3.2,

according to the work of Mœglin-Waldspurger ([67]), the work of R. Beuzart-

Plessis ([9] and [8]), the work of Gan-Ichino ([18]), the work of H. He ([28]),

and the Ph.D. thesis of Zhilin Luo ([59]).

Based on our theory, Theorem 5.7 proves one direction of the global Gan-

Gross-Prasad conjecture in full generality for the classical groups considered

in this paper, while Theorem 6.10 proves the other direction of the conjecture

with a global assumption (Conjecture 6.8), which is about a certain structure

of Fourier coefficients of the relevant residual representations. We refer to [36,

§4] and [37] for discussion of the general issue related to the conjecture.

1.2. Structure of this paper. A more detailed description of the content in

each section is in order. In Section 2.1, we discuss the family of classical groups

considered in this paper and recall their basic structures. The global Arthur

parameters and the discrete spectrum for those classical groups are discussed

in Section 2.2. We recall from [36] and [37] the general notion of Fourier co-

efficients of automorphic forms associated to the partitions or nilpotent orbits

in Section 2.3 and give a more detailed account for the special type of Fourier

coefficients, which is often called the Bessel-Fourier coefficients. Based on the

tower property for Bessel-Fourier coefficients of cuspidal automorphic forms

(Proposition 2.2), we state Conjecture 2.3. This is our starting point in the

theory of construction of concrete modules for irreducible cuspidal automor-

phic representations for general classical groups via the twisted automorphic

descents. In Section 2.4, we show (Proposition 2.6) that the construction illus-

trated by diagram (6.7) covers all the classical groups considered in this paper

as described in Section 2.1.

The local Gan-Gross-Prasad conjecture (as in Conjecture 3.1) is one of

the key inputs in the proof of the irreducibility of the constructed modules.

We recall from [16] the cases considered in this paper in Section 3, and we

state Conjecture 3.1, which is needed for one of the main results in the paper

(Theorem 7.1). The known cases of Conjecture 3.1 are stated in Theorem 3.2.

In Section 4, we consider a family of global zeta integrals, which represent

the tensor product L-functions for the classical groups defined in Section 2.1

and the general linear groups. We show that they can be written as an Eu-

ler product of local zeta integrals (Theorems 4.5 and 4.7). With the explicit

results on the unramified calculation of the local zeta integrals in terms of

the local L-factors (Theorem 4.8), the global zeta integral can be written in

a formula in (4.49). Based on what was discussed in Section 4, we estab-

lish in Section 5 the necessary analytic properties of the local zeta integrals
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in Section 5.3, which are needed to establish the reciprocal non-vanishing for

Bessel periods (Theorem 5.3). While some of the properties of the local zeta

integrals can be deduced from the global argument based on the formula in

(4.49) for the global zeta integrals, one of the most technical local results is

Proposition 5.5, which asserts a general non-vanishing of the local zeta inte-

grals for the data with certain global constraints, and which will be proved in

Appendix A. It is also important to mention that Theorem 5.1 on the analytic

properties of the normalized local intertwining operators is another key input

in this theory. We will prove Theorem 5.1 in Appendix B. As a consequence,

we obtain in Theorem 5.7 one direction of the global Gan-Gross-Prasad con-

jecture in full generality. With Conjecture 2.3 and Theorem 5.3, in addition to

Theorem 5.1, we are able to obtain the non-vanishing of the Fourier coefficient

of the particular residual representation FOκ0 (Eτ⊗σ), which is one of the key

points in the theory. The basic properties of FOκ0 (Eτ⊗σ) are established in

Section 6, which are similar to those in the automorphic descents of Ginzburg,

Rallis and Soudry ([23]) and in our previous work joint with Liu and Xu ([40]).

As a consequence, we obtain results towards another direction of the global

Gan-Gross-Prasad conjecture (Theorem 6.10).

Diagram (6.7) illustrates the main idea and process of the construction

of concrete modules for irreducible cuspidal automorphic representations of

G that have generic global Arthur parameters. In the framework of the con-

struction given by diagram (6.7), we state the main conjecture of the theory

(Conjecture 6.7). As one of the main results of this paper, we prove in Theo-

rem 7.1 that Conjecture 6.7 holds, assuming that Conjectures 2.3 and 3.1 hold.

In two special cases, Conjecture 2.3 is trivial or can be easily verified. Hence

we can have stronger results for those two special cases. The one attached to

the regular partition (Corollary 7.2) is essentially the automorphic descents in

[23], and the other attached to the subregular partition (Corollary 7.4) is new,

and is a generalization of the construction considered in [40].

There are two appendices following the main body of this paper. Ap-

pendix A proves Proposition 5.5 in a more general setting. We put this as

one of the two appendices so as to ensure a smoother logic flow in the main

body of this paper. Appendix B proves Theorem 5.1. We leave this out of the

main body because the proof needs different preparation, although there is a

possibility to put it in Section 3.

Finally, we would like to thank J. Arthur and W. Schmid for asking and

posing this very interesting and important problem in 2013, which stimulates

and encourages us to carry out the work in this paper. We hope the main

results and conjectures in this paper to be helpful towards the understanding

of the nature of their problem. We are grateful to D. Soudry for his help

in finding the proof presented in Appendix A, which works uniformly for all
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local places. We would also like to thank C. Mœglin, F. Shahidi, D. Vogan,

and B. Xu for very helpful conversations about the proof of the results in

Appendix B, and thank W. T. Gan for his helpful comments and suggestions

on several issues on the theory considered here. Last, but not least, we would

like to thank P. Sarnak for his interest in and encouraging comments on the

theory and results developed in this paper, and we thank the referee for very

important and useful comments and suggestions, which greatly improved the

exposition of the paper.

2. Discrete spectrum and Fourier coefficients

2.1. Certain classical groups. The classical groups considered in this paper

are unitary groups and special orthogonal groups that are explicitly defined

below.

Let F be a number field and A = AF be the ring of adeles of F . Let

F (
√
ς) be a quadratic field extension of F , with ς a non-square in F×. Let E

be either F or F (
√
ς), and consider the Galois group ΓE/F = Gal(E/F ). It

is trivial if E = F , and it has a unique non-trivial element ι if E = F (
√
ς).

Let (V, q) be an n-dimensional non-degenerate vector space over E, which is

Hermitian if E = F (
√
ς) and is symmetric (or quadratic) if E = F . Denote

by Gn = Isom(V, q)◦ the identity connected component of the isometry group

of the space (V, q), with n = [n2 ]. Let G∗n = Isom(V ∗, q∗)◦ be an F -quasisplit

group of the same type, so that Gn is a pure inner form of G∗n over the field F ,

following [80] and [16].

Let (V0, q) be the F -anisotropic kernel of (V, q) with dimension d0 = n−2r,

where the F -rank r = rn = r(Gn) of Gn is the same as the Witt index of (V, q).

Let V + be a maximal totally isotropic subspace of (V, q), with {e1, . . . , er}
being its basis. Choose E-linearly independent vectors {e−1, . . . , e−r} in (V, q)

such that

q(ei, e−j) = δi,j

for all 1 ≤ i, j ≤ r. Denote by V − = Span{e−1, . . . , e−r} the dual space of V +.

Then (V, q) has the following polar decomposition,

V = V + ⊕ V0 ⊕ V −,

where V0 = (V + ⊕ V −)⊥ is an F -anisotropic kernel of (V, q). We choose an

orthogonal basis {e′1, . . . , e′d0} of V0 with the property that

q(e′i, e
′
i) = di,

where di is non-zero for all 1 ≤ i ≤ d0. Set Gd0 = Isom(V0, q)
◦ with d0 = [ d02 ],

which is anisotropic over F and is regarded as an F -subgroup of Gn.
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We put the above bases together in the following order to form a basis of

(V, q):

(2.1) e1, . . . , er, e
′
1, . . . , e

′
d0 , e−r, . . . , e−1.

We fix the following full isotropic flag in (V, q),

Span{e1} ⊂ Span{e1, e2} ⊂ · · · ⊂ Span{e1, . . . , er},

which defines a minimal parabolic F -subgroup P0. Moreover, P0 contains a

maximal F -split torus S, consisting of elements

diag{t1, . . . , tr, 1, . . . , 1, t−1
r , . . . , t−1

1 },

with ti ∈ F× for i = 1, 2, . . . , r. Then the centralizer Z(S) in Gn is ResE/FS×
Gd0 , the Levi subgroup of P0, where ResE/FS is the Weil restriction of S from

E to F . Then P0 has the Levi decomposition

P0 = (ResE/FS ×Gd0) nN0,

where N0 is the unipotent radical of P0. Also, with respect to the order of the

basis in (2.1), the group Gn is also defined by the following symmetric matrix:

(2.2) Jn
r =

Ñ
1

Jn−2
r−1

1

é
n×n

and Jd0
0 = diag{d1, . . . , dd0}

as defined inductively.

Let FΦ(Gn, S) be the root system of Gn over F . Let FΦ+(Gn, S) be the

positive roots corresponding to the minimal parabolic F -subgroup P0, and let

F∆ = {α1, . . . , αr} be a set of simple roots in FΦ+(Gn, S). When Gn is an

orthogonal group, the root system FΦ(Gn, S) is of type Br unless n = 2r, in

which case it is of type Dr. When Gn is a unitary group, the root system

FΦ(Gn, S) is non-reduced of type BCr if 2r < n; otherwise, FΦ(Gn, S) is of

type Cr.

For a subset J ⊂ {1, . . . , r}, let FΦJ be the root subsystem of FΦ(Gn, S)

generated by the simple roots {αj : j ∈ J}. Let PJ = MJUJ be the standard

parabolic F -subgroup of Gn, whose Lie algebra consists of all roots spaces

gα with α ∈ FΦ+(Gn, S) ∪ FΦJ . For instance, if we set î := {1, . . . , r} \ {i},
then Pî = MîUî is the standard maximal parabolic F -subgroup of Gn, which

stabilizes the rational isotropic space V +
i , where V ±i := Span{e±1, . . . , e±i}.

Here Uî is the unipotent radical of Pî and the Levi subgroup Mî is isomorphic to

GE/F (i)×Gn−i. Following the notation of [3] and [70], GE/F (i) := ResE/FGLi
denotes the Weil restriction of E-group GLi restricted to F . Write V(i) =

(V +
i ⊕ V

−
i )⊥; hence V(r) = V0 is the F -anisotropic kernel of (V, q).

We recall simply from [16] the classification of pure inner F -forms of

F -quasisplit classical groups G∗n for a local field and then for a number field.
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For a local field F of characteristic zero, we recall the notion of a relevant

pair of classical groups. As above, we let Gn := Isom(V, q)◦ be defined for an

n-dimensional non-degenerate space (V, q) with n=[n2 ]. Take an m-dimensional

non-degenerate subspace (W, q) of (V, q) with the property that the orthogonal

complement (W⊥, q) is F -split and has an odd dimension. Define Hm :=

Isom(W, q)◦ with m = [m2 ]. By [16, §2], the pair (Gn, Hm) forms a relevant pair.

If G′n := Isom(V ′, q′)◦ and H ′m := Isom(W ′, q′)◦ form another relevant

pair, and if G′n and H ′m are pure inner F -form of Gn and Hm, respectively,

the product G′n ×H ′m is defined to be relevant to the product Gn ×Hm if the

orthogonal complement ((W ′)⊥, q′) is equivalent to the orthogonal complement

(W⊥, q), as Hermitian vector spaces. From [16, Lemma 2.2, part (i)], one can

have an easy list of all F -relevant pairs (Gn, Hm) whose product Gn ×Hm is

relevant to the F -quasisplit product G∗n ×H∗m.

For a number field F , Gn is a pure inner F -form of an F -quasisplit G∗n if

it is obtained by inner twisting by elements in the pointed set H1(F,Gn). It

follows that at every local place ν, Gn is a pure inner Fν-form ofG∗n. The notion

of relevance is defined in the same way. We will come back to this in Section 3

when we discuss Vogan packets and the Gan-Gross-Prasad conjectures.

2.2. Discrete spectrum and Arthur packets. For a reductive algebraic group

G defined over F , denote by Adisc(G) the set of equivalence classes of irre-

ducible unitary representations π of G(A) occurring in the discrete spectrum

L2
disc(G) of L2(G(F )\G(A)1), when π is restricted to G(A)1. Also denote by

Acusp(G) the subset of Adisc(G), whose elements occur in the cuspidal spec-

trum L2
cusp(G). The theory of endoscopic classification for classical groups Gn

is to parametrize the set Adisc(Gn) by means of the global Arthur parameters,

which can be realized as certain automorphic representations of general linear

groups. We recall from the work of Arthur ([3]), the work of Mok ([70]) and the

work of Kaletha, Minguez, Shin, and White ([52]) the theory for the (special)

orthogonal groups and the unitary groups considered in this paper.

First, we take an F -quasisplit classical group G∗n, of which Gn is a pure

inner F -form. Both G∗n and Gn share the same L-group LG∗n = LGn. Define

n∨ to be n if Gn is a unitary group or an even special orthogonal group, and to

be n− 1 if Gn is an odd special orthogonal group. This number n∨ is denoted

by N in [3], [70] and [52].

Following [3], [70] and [52], we denote by Ẽsim(N) (with N = n∨) the set

of the equivalence classes of simple twisted endoscopic data. Each member in

Ẽsim(N) is represented by a triple (G, s, ξ), where G is an F -quasisplit classical

group, s is a semi-simple element as described in [3, p. 11] and [70, p. 16], and

ξ is the L-embedding

LG→ LGE/F (N).
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Note that when G is an F -quasisplit unitary group, the L-embedding ξ = ξχκ
depends on κ = ±1. As in [70, p. 18], for a simple twisted endoscopic datum

(UE/F (N), ξχκ) of GE/F (N), the sign (−1)N−1 · κ is called the parity of the

datum. The set of global Arthur parameters for G∗n is denoted by ‹Ψ2(G∗n, ξ),

or simply by ‹Ψ2(G∗n) if the L-embedding ξ is well understood in the discussion.

In order to explicate the structure of the parameters in ‹Ψ2(G∗n, ξ), we

first recall from [3] and [70] the description of the conjugate self-dual, elliptic,

global Arthur parameters for GE/F (N), the set of which is denoted by ‹Ψell(N).

We refer to [3], [70] and also [52] for detailed discussion about general global

Arthur parameters. The elements of ‹Ψell(N) are denoted by ψN , which have

the form

(2.3) ψN = ψN1
1 � · · ·� ψNrr

with N =
∑r

i=1Ni. The formal summands ψNii are simple parameters of the

form

ψNii = µi � νi

with Ni = aibi, where µi = τi ∈ Acusp(GE/F (ai)) and νi is a bi-dimensional

representation of SL2(C). Following the notation used in our previous paper

[36], we also denote

ψNii = (τi, bi)

for i = 1, 2, . . . , r. A global parameter ψN is called conjugate self-dual if each

simple parameter ψNii that occurs in the decomposition of ψN is conjugate

self-dual in the sense that τi is conjugate self-dual. An irreducible cuspidal

automorphic representation τ of GE/F (a) is called conjugate self-dual if τ ∼= τ∗,

where τ∗ = ι(τ)∨ is the contragredient of ι(τ), with ι being the non-trivial

element in ΓE/F if E 6= F ; otherwise, ι = 1. The global parameter ψN is

called elliptic if it is conjugate self-dual and its decomposition into the simple

parameters is multiplicity free, i.e., ψNii and ψ
Nj
j are not equivalent if i 6= j in

the sense that either τi is not equivalent to τj , or bi 6= bj . A global parameter

ψN in ‹Ψell(N) is called generic if bi = 1 for i = 1, 2, . . . , r. The set of generic,

elliptic, global Arthur parameters for GE/F (N) is denoted by Φ̃ell(N). Hence

elements φ in Φ̃ell(N) are of the form

(2.4) φN = (τ1, 1) � · · ·� (τr, 1).

When r = 1, the parameters are called simple. The corresponding sets are de-

noted by ‹Ψsim(N) and Φ̃sim(N), respectively. It is clear that the set Φ̃sim(N)

is in one-to-one correspondence with the set of equivalence classes of the

conjugate self-dual, irreducible cuspidal automorphic representations of

GE/F (N)(AF ). By [3, Th. 1.4.1] and [70, Th. 2.4.2], for a simple parameter

φ = φa = (τ, 1) in Φ̃sim(a), there exists a unique endoscopic datum (Gφ, sφ, ξφ),
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such that the parameter φa descends to a global parameter for (Gφ, ξφ) in the

sense that there exists an irreducible automorphic representation π in A2(Gφ),

whose Satake parameters are determined by the Satake parameters of φa.

When E 6= F , Gφ = UE/F (a) is a unitary group, the L-embedding carries

a sign κa, which determines the nature of the base change from the unitary

group UE/F (a) to GE/F (a). By [70, Th. 2.5.4], the (partial) L-function

L(s, (τ, 1),Asη(τ,1))

has a (simple) pole at s = 1 with the sign η(τ,1) = κa · (−1)a−1 (see also [16,

Th. 8.1] and [70, Lemma 2.2.1]). Then the irreducible cuspidal automorphic

representation τ or equivalently the simple generic parameter (τ, 1) is called

conjugate orthogonal if η(τ,1) = 1 and conjugate symplectic if η(τ,1) = −1,

following the terminology of [16, §3] and [70, §2]. Here LS(s, (τ, 1),As+) is

the (partial) Asai L-function of τ and LS(s, (τ, 1),As−) is the (partial) Asai

L-function of τ ⊗ ωE/F , where ωE/F is the quadratic character associated to

E/F by the global class field theory.

The sign of a simple global Arthur parameter ψ = ψab = (τ, b) ∈ ‹Ψ2(ab)

can be calculated following [70, §2.4]. Fix the sign κa as before for the endo-

scopic datum (UE/F (a), ξχκa ). The sign of (τ, 1) is η(τ,1) = ητ = κa(−1)a−1.

Hence the sign of (τ, b) is given by

η(τ,b) = κa(−1)a−1+b−1 = κa(−1)a+b = ητ (−1)b−1.

As in [70, eq. (2.4.9)], define κab := κa(−1)ab−a−b+1. Then we have κab(−1)ab−1

= ητ (−1)b−1 = η(τ,b) and hence κab = ητ (−1)(a−1)b, which gives the endoscopic

datum (UE/F (ab), ξκab). More generally, for an elliptic parameter ψN as in

(2.3), following from [70, §2.1], each simple parameter ψNii determines the

simple twisted endoscopic datum (UE/F (Ni), ξχκi ) with κi = (−1)N−Ni =

ητi(−1)(ai−1)bi , and hence determines the parity of the τi ∈ Acusp(GE/F (ai))

for the simple parameter ψNii = (τi, bi).

When E = F , the notion of conjugate self-dual becomes just self-dual

in the usual sense. A self-dual τ ∈ Acusp(a) is called of symplectic type if

the (partial) exterior square L-function LS(s, τ,∧2) has a (simple) pole at

s = 1; otherwise, τ is called of orthogonal type. In the latter case, the (partial)

symmetric square L-function LS(s, τ, sym2) has a (simple) pole at s = 1.

More generally, from [3, §1.4] and [70, §2.4], for any parameter ψN in‹Ψell(N), there is a twisted elliptic endoscopic datum (G, s, ξ) ∈ Ẽell(N) such

that the set of the global parameters ‹Ψ2(G, ξ) can be identified as a subset of‹Ψell(N). We refer to [3, §1.4], [70, §2.4], and [52, §1.3] for more constructive

description of the parameters in ‹Ψ2(G, ξ). The elements of ‹Ψ2(G∗n, ξ), with
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N = n∨ and n = [n2 ], are of the form

(2.5) ψ = (τ1, b1) � · · ·� (τr, br).

Here N = N1 + · · · + Nr and Ni = ai · bi, and τi ∈ Acusp(GE/F (ai)) and bi
represents the bi-dimensional representation of SL2(C). Note that each simple

parameter ψi = (τi, bi) belongs to ‹Ψ2(G∗ni , ξi) with ni = [ni2 ] and Ni = n∨i , for

i = 1, 2, . . . , r; and for i 6= j, ψi is not equivalent to ψj . The parity for τi and bi
is discussed as above. The subset of generic elliptic global Arthur parameters

in ‹Ψ2(G∗n, ξ) is denoted by Φ̃2(G∗n, ξ), whose elements are in the form of (2.4).

Without lose of generality and for convenience, we choose ξ with sign κ = 1

throughout this paper, which is consistent with the choices in the Gan-Gross-

Prasad conjecture ([15, p. 35]) and in the automorphic descents of Ginzburg-

Rallis-Soudry ([23, p. 55]). That is, when G∗n is an odd unitary group, its

parameters are conjugate orthogonal; when G∗n is an even unitary group, its

parameters are conjugate symplectic.

The following is a simplified version of the endoscopic classification for

classical groups established in [3], [70], and [52].

Theorem 2.1 (Endoscopic Classification). For any π ∈ Adisc(Gn), there

is a Gn-relevant global Arthur parameter ψ ∈ ‹Ψ2(G∗n, ξ), such that π belongs to

the global Arthur packet, Π̃ψ(Gn), attached to the global Arthur parameter ψ.

Following [3], [70] and [52], when Gn is not an even special orthogonal

group, the multiplicity of π ∈ Adisc(Gn) realizing in the discrete spectrum

L2
disc(Gn) is expected to be one. However, when Gn is an even special or-

thogonal group, the discrete multiplicity of π ∈ Adisc(Gn) could be two. The

multiplicities of the discrete automorphic representations of classical groups

depend on the multiplicity property of local Arthur packets, which is known

for the p-adic and complex cases for general local Arthur parameters. How-

ever, for the general local Arthur packets, which is what we need in this paper,

the multiplicity property holds for all local fields. Hence the expected multi-

plicities of the automorphic representations in generic global Arthur packets

are known. In the following, we may fix a realization of π ∈ Adisc(Gn) in the

discrete spectrum L2
disc(Gn), which will be denoted by Cπ, especially when the

discrete multiplicity of π is two.

Recall the notation from the definition of [3, Ch. 8] that

(2.6) ‹O(Gn) :=fiOutN (Gn) :=fiAutN (Gn)/›IntN (Gn)

is regarded as the diagonal subgroup of fiOutN (Gn(A)). When Gn is an even

special orthogonal group, one may take ε ∈ O2n(F ) with det ε = −1 and

ε2 = I2n, such that the action of ‹O(Gn) on π can be realized as the ε-conjugate

on π, i.e., πε(g) = π(εgε−1). Hence the ‹O(Gn)-orbit of π has one or two
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elements. If ‹O(Gn) acts freely on π, following the notation in [3], we denote

the ‹O(Gn)-torsor of π by {π, π?}. When Gn is not an even special orthogonal

group, the group ‹O(Gn) is trivial, and so is its action. Hence in this case, the‹O(Gn)-orbit of π contains only π itself.

When Gn is an even special orthogonal group, an elliptic global Arthur

parameter ψN as in (2.3) may descend to two different global Arthur parame-

ters ψ and ψ? for Gn, which form an ‹O(Gn)-orbit. If the ‹O(Gn)-orbit of ψN is

an ‹O(Gn)-torsor {ψ,ψ?}, then they define different global Arthur packets and

different global Vogan packets. However, following [3], their tensor product

L-functions with any cuspidal automorphic representations of general linear

groups are the same. We refer to Chapter 8 of [3] and Section 6 of [5] for a

more detailed discussion.

In the rest of this paper, when we say that ψN is a global Arthur parameter

of an even special orthogonal group Gn, we really mean that ψN is identified

with either ψ or ψ?, through a specific twisted endoscopic datum.

2.3. Fourier coefficients and partitions. For an F -quasisplit classical group

G∗n defined by an n-dimensional non-degenerate space (V ∗, q∗) with the Witt

index n = [n2 ], the relation between Fourier coefficients of automorphic forms

ϕ of G∗n(A) and the partitions of type (n, G∗n) has been discussed with de-

tails in [36] and also in [37]. We denote by P(n, G∗n) the set of all partitions

of type (n, G∗n). The set P(n, G∗n) parametrizes the set of all F -stable nilpo-

tent adjoint orbits in the Lie algebra g∗n(F ) of G∗n(F ), and hence each partition

p ∈ P(n, G∗n) defines an F -stable nilpotent adjoint orbit Ost
p . For an F -rational

orbit Op ∈ Ost
p , the datum (p,Op) determines a datum (Vp, ψOp) for defining

Fourier coefficients as explained in [36] and [37]. Here Vp is a unipotent sub-

group of G∗n and ψOp is a non-degenerate character of Vp(A), which is trivial

on Vp(F ) and determined by a given non-trivial character ψF of F\A.

For an automorphic form ϕ on G∗n(A), the ψOp-Fourier coefficient of ϕ is

defined by the following integral:

(2.7) FψOp (ϕ)(g) :=

∫
Vp(F )\Vp(A)

ϕ(vg)ψ−1
Op(v)dv.

Let NG∗n(Vp)
ss be the connected component of the semi-simple part of the

normalizer of the subgroup Vp in G∗n. Define

(2.8) HOp := CentNG∗n (Vp)ss(ψOp)
◦,

the identity connected component of the stabilizer. It is clear that the ψOp-

Fourier coefficient of ϕ, FψOp (ϕ)(g), is left HOp(F )-invariant, smooth when

restricted on HOp(A), and of moderate growth on a Siegel set of HOp(A).
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For any π ∈ Adisc(G
∗
n), we denote by Cπ a realization of π in the discrete

spectrum L2
disc(G

∗
n). We define FOp(Cπ) (or simply FOp(π) when no confusion

is caused) to be the space spanned by all FψOp (ϕπ) with ϕπ running in the

space of Cπ, and we call FOp(Cπ) a ψOp-Fourier module of π. We note that

if the discrete multiplicity of π is one, it has a unique ψOp-Fourier module.

For a given π ∈ Adisc(G
∗
n), we denote by p(Cπ) (or simply p(π)) the subset of

P(n, G∗n) consisting of all partitions p with the property that the ψOp-Fourier

module, FOp(Cπ), is non-zero for some choice of the F -rational orbit Op in the

F -stable orbit Ost
p , and we denote by pm(π) (short for pm(Cπ)) the subset of

all maximal members in p(π). In the rest of this paper, we may write FOp(π)

to be FOp(Cπ) and pm(π) to be pm(Cπ) for a discrete realization Cπ of π.

For a pure inner F -form Gn of G∗n, a partition p in the set P(n, G∗n) is

called Gn-relevant if the unipotent subgroup Vp of Gn as algebraic groups over

the algebraic closure F is actually defined over F . We denote by P(n, G∗n)Gn
the subset of the set P(n, G∗n) consisting of all Gn-relevant partitions of type

(n, G∗n). It is easy to see that the above discussion about Fourier coefficients and

Fourier modules can be applied to all π ∈ Adisc(Gn) and all p ∈ P(n, G∗n)Gn ,

without change.

Following R. Howe ([32] and [31]), N. Kawanaka ([53]), Mœglin and Wald-

spurger ([64]), and Mœglin ([60]), one expects that the partitions p in pm(π),

the F -rational orbits Op in the F -stable orbits Ost
p , and the automorphic spec-

trum of the Fourier modules FOp(π) as representations of HOp(A) carry fun-

damental information about the given automorphic representation π of Gn(A).

However, it is usually not easy to obtain explicit information about those data

from the given π. In reality, we may consider certain special pieces of those

data that may already carry enough information for us to understand the given

representation π in the theory discussed in this paper.

We consider a family of partitions of type (n, G∗n), which leads to the

so called Bessel-Fourier coefficients of automorphic forms on Gn(A). These

partitions are of the form

(2.9) p
`

= [(2`+ 1)1n−2`−1].

They are of type (n, G∗n). The partition p
`

is Gn-relevant if ` is less than or

equal to the F -rank r of Gn. For example, if Gn is F -anisotropic, then the only

Gn-relevant partition is the trivial partition p
0

= [1n]. For π ∈ Adisc(Gn), and

for a partition p
`
∈ P(n, G∗n)Gn , the Fourier module FOp` (π) will be called the

`-th Bessel module of π. As explained before, the `-th Bessel module FOp` (π)

consists of moderately increasing automorphic functions on HOp` (A) and is a

representation of HOp` (A) by the right translation.
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To simplify the notation, we set ψO` :=ψOp
`
, HO` :=HOp` , and FO`(π) :=

FOp` (π). In this case, the F -algebraic group HO` is the classical group HO`
`− =

Isom(WO` , q)◦, where (WO` , q) is an l−-dimensional non-degenerate subspace

of (V, q) with the following properties:

• l− = n− 2`− 1 and `− = [ l
−

2 ],

• the product Gn × HO`
`− is relevant in the sense of the Gan-Gross-Prasad

conjecture ([16]), and

• the product Gn×HO``− is a pure inner F -form of an F -quasisplit G∗n×H∗`− .

We refer to Section 2.4 for more a detailed discussion. One may extend the

proof of [23, Th. 7.3] to the current case and prove the cuspidality of the

maximal Bessel module of π.

Proposition 2.2 (Cuspidality of Bessel Modules). For any π belonging

to Acusp(Gn) with a cuspidal realization Cπ , the `-th Bessel module FO`(Cπ)

of Cπ enjoys the following property : There exists an integer `0 in {0, 1, . . . , r},
where r is the F -rank of Gn, such that

(1) the `0-th Bessel module FO`0 (Cπ) of Cπ is non-zero, but for any ` ∈
{0, 1, . . . , r} with ` > `0, the `-th Bessel module FO`(Cπ) is identically

zero; and

(2) the `0-th Bessel module FO`0 (Cπ) is cuspidal in the sense that its constant

terms along all the parabolic subgroups of H
O`0
`−0

are zero.

We note that when the cuspidal multiplicity of π is two, the index `0 of π in

Proposition 2.2 may depend on a particular realization Cπ of π in the cuspidal

spectrum L2
cusp(Gn). Hence we write `0 = `0(Cπ) to be a first occurrence index

of π. Of course, if the cuspidal multiplicity of π is one, then π has the unique

first occurrence index, which may be written as `0 = `0(π).

By Proposition 2.2, for any π ∈ Acusp(Gn), the `0-th Bessel module

FO`0 (π), or more precisely, FO`0(Cπ), as a representation of H
O`0
`−0

(A), is non-

zero and can be embedded as a submodule in the cuspidal spectrum L2
cusp(H

O`0
`−0

),

and hence can be written as the following Hilbert direct sum of irreducible cus-

pidal automorphic representations of H
O`0
`−0

(A),

(2.10) FO`0 (π) = σ1 ⊕ σ2 ⊕ · · · ⊕ σt ⊕ · · · ,

where all σi ∈ Acusp(H
O`0
`−0

). By the uniqueness of local Bessel models for clas-

sical groups ([2], [77], [16] and [44]), it is easy to deduce that the decomposition

(2.10) is multiplicity free. Furthermore, we have the following conjecture.

Conjecture 2.3 (Generic Summand). Assume that π ∈ Acusp(Gn) has

a Gn-relevant, generic global Arthur parameter φ ∈ Φ̃2(G∗n). Then there exists
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a cuspidal realization Cπ of π in L2
cusp(Gn) with the first occurrence index

`0 =`0(Cπ), such that there exists an F -rational orbit O`0 =Op
`0

in the F -stable

orbits Ost
p
`0

associated to the partition p
`0

with the

Generic Summand Property:There exists at least one σ in Acusp(H
O`0
`−0

)

with an H
O`0
`−0

-relevant, generic global Arthur parameter φσ in Φ̃2(H∗
`−0

), and

with a cuspidal realization Cσ of σ in L2
cusp(H

O`0
`−0

), such that the L2-inner

product ¨
FψO`0 (ϕπ), ϕσ

∂
H
O`0
`−0

in the Hilbert space L2
cusp(H

O`0
`−0

) is non-zero for some ϕπ ∈ Cπ and ϕσ ∈ Cσ .

It is clear that the Generic Summand Conjecture seeks a refined structure

of the generalized branching law for automorphic representations with help of

the endoscopic classification theory. We introduce such a property of invariant

theoretic nature into the explicit construction of cuspidal automorphic mod-

ules. Some interesting examples of this nature are obtained through a simple

relative trace formula approach by W. Zhang in [88]. In Section 7.3, we con-

sider the situation that a cuspidal automorphic member π in Π̃φ(Gn) has the

property that pm(π) = {p
subr
}, where p

subr
is the partition associated to the

subregular nilpotent orbit. We prove in Proposition 7.3 that Conjecture 2.3

holds for this case. Further discussions on the Generic Summand Conjecture,

its variants, and applications can be found in our work ([46] and [49]). In [47],

we establish the local analogy of the Generic Summand Conjecture for orthog-

onal groups defined over p-adic local fields of characteristic zero.

2.4. Rationality of HO`
`− . We are going to make more explicit the paramet-

rization of the F -rational orbits O` in the F -stable orbit Ost
p
`

for the family

of partitions p
`
, which define the family of Bessel modules. This yields more

explicit structure about the groups HO`
`− .

For the partition p
`
=[(2`+1)1n−2`−1] of type (n, G∗n), which isGn-relevant,

the unipotent subgroup V` = Vp
`

of Gn can be chosen to consist of all unipotent

elements of the form

(2.11) V` =

v =

Ñ
z y x

In−2` y′

z∗

é
∈ Gn | z ∈ Z`

 ,

where Z` is the standard maximal (upper-triangular) unipotent subgroup of

GE/F (`). It follows that the F -rational nilpotent orbits O` in the F -stable



758 DIHUA JIANG and LEI ZHANG

nilpotent orbit Ost
p
`

are in one-to-one correspondence with the GE/F (1)×Gn−`-
orbits of F -anisotropic vectors in (En−2`, q), viewed as a subspace of (V, q).

Hence the generic character ψO` of V`(A) may also be explicitly defined as

follows. Fix a nontrivial character ψF of F\A, and define a character ψE of

E\AE by

ψE(x) :=

{
ψF (x) if E = F,

ψF (1
2trE/F ( x√

ς
)) if E = F (

√
ς).

Consider the following identification:

V`/[V`, V`] ∼= ⊕`−1
i=1gαi ⊕ E

n−2`.

Let w0 be an anisotropic vector in (En−2`, q), and define a character ψ`,w0 of

V`(AF ) by

(2.12) ψO`(v) = ψ`,w0(v) := ψE(
`−1∑
i=1

zi,i+1 + q(y`, w0)),

where y` is the last row of y as defined in (2.11). The Levi subgroup of

P{`+1,...,r} normalizes the unipotent subgroup V` and acts on the set of such

defined characters ψ`,w0 . The group HO`
`− = Hw0

`− is the identity connected

component of the stabilizer of ψ`,w0 , which is given by

(2.13)


Ñ
I`

γ

I`

é
∈ Gn | γJn−2`w0 = Jn−2`w0

 ,

where `− = [ l
−

2 ] with l− := n − 2` − 1. As introduced in Section 2.1, we

may write V(`) = En−2` and view (V(`), q) as a non-degenerate subspace of

(V, q) under the natural embedding. Hence the group HO`
`− = Hw0

`− can also be

identified as Isom(V(`) ∩w⊥0 , q)◦. Write Wl− := V(`) ∩w⊥0 so that (Wl− , q) is an

l−-dimensional non-degenerate subspace of (V, q). It follows that the dimension

d−0 of its anisotropic kernel of the space (Wl− , q) is d0 ± 1, depending on the

choice of w0. Note that (Wl− , q) is isometric to (WO` , q) as introduced in

Section 2.3. Define r− to be the Witt index of (Wl− , q), which equals r− ` or

r− `− 1, depending on d−0 = d0 − 1 or d−0 = d0 + 1, respectively.

For further explicit calculations, we may take the representative w0 of the

F -anisotropic vectors corresponding to the F -rational nilpotent orbits O` in

the F -stable nilpotent orbit Ost
p
`

as follows. The representative w0 is an F -

anisotropic vector in the space (En−2`, q), which defines the character ψ`,w0 .

Under the action of the product GE/F (1) × Gn−` on the space (En−2`, q), in

particular, on the set of F -anisotropic vectors w0, if ` < r, we may choose

(2.14) w0 = yκ = er + (−1)n+1κ

2
e−r

for some κ ∈ F×, using the following lemma.
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Lemma 2.4. If the Witt index of (V(`), q) is not zero, i.e., if ` < r, then

there exists an element g in Gn−2`(F ) = Isom(V(`), q)
◦(F ) such that

g · w0 = er + (−1)n+1κ

2
e−r

for some κ ∈ F×.

Proof. The proof is straightforward. We omit the details here. �

It is clear that if ` = r, then the subspace (En−2r, q) is F -anisotropic

and hence is not sensitive to the choice of the F -anisotropic vector w0. The

structure of HO`
`− is summarized in the following proposition.

Proposition 2.5. For the partition p
`
, let O` in Ost

p
`

be determined by the

F -anisotropic vector w0 as in Lemma 2.4. Then the classical group HO`
`− = Hw0

`−

is defined by an l−-dimensional non-degenerate subspace (Wl− , q) of (V, q) with

a (d0 − 1)-dimensional F -anisotropic kernel if y−κ belongs to the GE/F (1) ×
Gn−`-orbit of a non-zero vector in the F -anisotropic kernel (V0, q) of (V, q);

it is defined by an l−-dimensional non-degenerate subspace (Wl− , q) of (V, q)

with a (d0 + 1)-dimensional F -anisotropic kernel if y−κ does not belong to

the GE/F (1) × Gn−`-orbit of any non-zero vector in the F -anisotropic kernel

(V0, q).

Following the explicit discussions on pure inner forms of F -quasisplit clas-

sical groups in [16], it is easy to obtain the following proposition.

Proposition 2.6. Let H∗m be an F -quasisplit classical group as introduced

in Section 2.1. For any pure inner F -form Hm of H∗m, there exist
• a classical group Gn defined over F that is a pure inner form of an F -quasi-

split classical group G∗n; and

• a datum (p
`
,O`) for the Fourier coefficients for automorphic forms on

Gn(A)

such that m = `− and Hm
∼= HO`

`− . Moreover, the product Gn × Hm is a

relevant pure inner form of the F -quasisplit G∗n×H∗m in the sense of the Gan-

Gross-Prasad conjecture.

We will recall the Gan-Gross-Prasad conjecture and related notions in

Section 3.

3. The local Gan-Gross-Prasad conjecture

We recall the local Gan-Gross-Prasad conjecture from [16] for the cases

considered in this paper. The version of the local Gan-Gross-Prasad conjec-

ture, which will be stated as Conjecture 3.1, was proved by Waldspurger and by

Mœglin and Waldspurger in a series of papers (see [82] and [67], for instance)

for orthogonal groups over p-adic local fields. Over archimedean local fields,

it is proved by Z. Luo for tempered local L-parameters in [59], but the case
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of general generic local L-parameters is still in progress. For unitary groups,

Beuzart-Plessis ([9] and [8]) proves the conjecture (Conjecture 3.1) for tem-

pered local L-parameters over all local fields, and in [28], H. He proves the

conjecture for discrete representations over R via a different approach. The

extension to the generic local L-parameters was obtained by Gan and Ichino

([18]) for p-adic local fields, but over archimedean local fields, such an exten-

sion remains an open problem, as far as the authors knew. In the proof of the

main conjecture (Conjecture 6.7), we need the local Gan-Gross-Prasad conjec-

ture (as in Conjecture 3.1) for generic local parameters at all local places as

an input. In the process towards the proof of Conjecture 6.7, we are able to

prove the global Gan-Gross-Prasad conjecture (with one direction having an

extra assumption). This will be explained in Sections 5.5 and 6.3.

3.1. Generic Arthur parameters. We consider generic local Arthur param-

eters for the classical groups considered in this paper. This has been extensively

discussed in [16] and in [67]. We recall the basics for the case of orthogonal

groups, and we refer to [18] for the case of unitary groups. Let G∗n = SO(V ∗, q∗)

be the special orthogonal group defined by a non-degenerate, n-dimensional

quadratic space (V ∗, q∗) with n = [n2 ], which is F -quasisplit. We recall that

the generic global Arthur parameters for G∗n are of the form

(3.1) φ = (τ1, 1) � · · ·� (τr, 1)

as in (1.2), where τ1, . . . , τr are irreducible unitary cuspidal automorphic rep-

resentations of GLa1(A), . . . ,GLar(A), respectively, with required constraints

to make φ a global Arthur parameter of G∗n. As before, the set of generic

global Arthur parameters of G∗n is denoted by Φ̃2(G∗n). It is known that the

global Arthur packet Π̃φ(G∗n) associated to a generic global Arthur parameter

φ contains a generic member. We refer to [37, Th. 3.3] for details.

With the assumption of the Ramanujan conjecture for general linear groups,

at each local place ν of F , the localization φν of the generic global Arthur

parameter φ must be a tempered local L-parameter for G∗n(Fν). Hence with

possible failure of the Ramanujan conjecture for general linear groups, one has

to figure out the possible structure of the localization φν of the generic global

Arthur parameter φ. We recall a work of Mœglin and Waldspurger ([67]) for

special orthogonal groups and refer to [18] for the unitary group case.

For each local place ν of F , we denote by WFν the local Weil group of

Fν . The local Langlands group of Fν , which is denoted by LFν , is equal to the

local Weil-Deligne group. Hence the local Langlands group LFν , as usual, may

be taken to be WFν × SL2(C) or equivalently WFν × SU(2) if ν is a finite local

place, and to be the local Weil group WFν if ν is an archimedean local place.
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The local L-parameters for G∗n(Fν) are of the form

(3.2) φν : LFν → LG∗n

with the property that the restriction of φν to the local Weil group WFν is

Frobenius semi-simple and trivial on an open subgroup of the inertia group

IFν of Fν , and the restriction to SL2(C) is algebraic. By the local Langlands

conjecture for general linear groups ([55], [30], [27], and [71]), the localization

φν at a local place ν of F of a generic global Arthur parameter φ is a local

L-parameter, for which there exists a datum (L∗ν , φ
L∗
ν , β) with the following

properties:

(1) L∗ν is a Levi subgroup of G∗(Fν) of the form

L∗ν = GLn1 × · · · ×GLnt ×G∗n0
,

where GLn1 , . . . ,GLnt and G∗n0
depend on the local place ν;

(2) φL
∗
ν is a local L-parameter of L∗ given by

φL
∗
ν := φ1 ⊕ · · · ⊕ φt ⊕ φ0 : LFν → LL∗,

where φj is a local tempered L-parameter of GLnj for j = 1, 2, . . . , t, and

φ0 is a local tempered L-parameter of G∗n0
, with dependence on the local

place ν;

(3) β := (β1, . . . , βt) ∈ Rt, such that β1 > β2 > · · · > βt > 0, which is also

dependent of the local place ν.

With the given datum, following [67], which is expressed in terms of the para-

bolic induction, one can write

φν = (φ1 ⊗ | · |β1ν ⊕ φ∨1 ⊗ | · |−β1ν )⊕ · · · ⊕ (φt ⊗ | · |βtν ⊕ φ∨t ⊗ | · |−βtν )⊕ φ0.

Following [3] and also [67], the local L-packets can be formed for all local

L-parameters φν as displayed above, and they are denoted by Π̃φν (G∗n). A

local L-parameter φν is called generic if the associated local L-packet Π̃φν (G∗n)

contains a generic member, i.e., a member with a non-zero Whittaker model

with respect to a certain Whittaker data for G∗n. Using the notation of [3],

the set of all generic local L-parameters is denoted by Φ̃+
unit(G

∗
n(Fν)). All the

members in any generic local L-packet are irreducible and unitary. It is clear

that the localization φν of a generic global Arthur parameter φ is a generic

local L-parameter according the definition in [67] since there exists a generic

member in the local L-packet Π̃φν (G∗n). Hence, following [67], the local Gan-

Gross-Prasad conjecture can be formulated for the localization φν of all generic

global Arthur parameters φ in Φ̃2(G∗n), which will be discussed in the following

section.
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3.2. The local Gan-Gross-Prasad conjecture. We are going to recall the

local Gan-Gross-Prasad conjecture that was explicitly formulated in [16] for

general classical groups. We discuss the case of orthogonal groups with details

and refer the unitary group case to [16] and [9], [8], and [18] for the details.

Assume that in this section F is a local field of characteristic zero. Recall

that an F -quasisplit special orthogonal group G∗n = SO(V ∗, q∗) and its pure

inner F -forms Gn = SO(V, q) share the same L-group LG∗n. As explained in

[16, §7], if the dimension n = dimV = dimV ∗ is odd, one may take Spn−1(C)

to be the L-group LG∗n, and if the dimension n = dimV = dimV ∗ is even,

one may take On(C) to be LG∗n when disc(V ∗) is not a square in F× and take

SOn(C) to be LG∗n when disc(V ∗) is a square in F×.

For a relevant pair Gn = SO(V, q) and Hm = SO(W, q), and for an

F -quasisplit relevant pair G∗n = SO(V ∗, q∗) and H∗m = SO(W ∗, q∗) as recalled

in Section 2.1 from [16], we are going to discuss the local Langlands param-

eters for the group G∗n × H∗m and its relevant pure inner F -form Gn × Hm.

As in Section 3.1, we use LF to denote the local Langlands group associated

to F . We only consider the local Langlands parameters that satisfy the three

properties in Section 3.1:

(3.3) φ : LF → LG∗n × LH∗m.

Hence they are the localization of the generic global Arthur parameters for the

product of the F -quasisplit relevant pair G∗n and H∗m. The set of such local

Langlands parameters is denoted by Φ̃+
unit(G

∗
n ×H∗m). As in Section 3.1, each

local L-parameter φ in Φ̃+
unit(G

∗
n×H∗m) defines a local L-packet Π̃φ(G∗n×H∗m).

For any relevant pure inner F -formGn×Hm, if a parameter φ ∈ Φ̃+
unit(G

∗
n×H∗m)

is Gn×Hm-relevant, it defines a local L-packet Π̃φ(Gn×Hm), as in Section 3.1,

following [3] and [67]. If a parameter φ ∈ Φ̃+
unit(G

∗
n × H∗m) is not Gn × Hm-

relevant, the corresponding local L-packet Π̃φ(Gn ×Hm) is defined to be the

empty set. The local Vogan packet for a local Langlands parameter φ belonging

to Φ̃+
unit(G

∗
n×H∗m) is defined to be the union of the local L-packets Π̃φ(Gn×Hm)

over all pure inner F -forms Gn ×Hm of the F -quasisplit group G∗n ×H∗m, and

it is denoted by

(3.4) Π̃φ[G∗n ×H∗m].

In order to state the local Gan-Gross-Prasad conjecture and relevant

progress, we have to introduce the local analogue of the Fourier coefficients as

introduced in Section 2.3, which is usually called the local Bessel models. For a

given relevant pair (Gn, Hm), take a partition of the form p
`

= [(2`+1)1n−2`+1],

where 2`+1 = dimW⊥ = n−m. The F -stable nilpotent orbit Ost
p
`

correspond-

ing to the partition p
`

defines a unipotent subgroup Vp
`

and a generic character

ψO` associated to any F -rational orbit O` in the F -stable orbit Ost
p
`
. According
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to the discussion in Section 2.4, there is an F -rational orbit O` in the F -stable

orbit Ost
p
`
, such that the subgroup Hm = HO`

`− normalizes the unipotent sub-

group Vp
`

and stabilizes the character ψO` . We define the following subgroup

of Gn:

RO` := Hm n Vp
`

= HO`
`− n Vp

`
.

Let π be an irreducible admissible representation of Gn(F ) and σ be an irre-

ducible admissible representation of Hm(F ). The local functionals we consid-

ered belong to the following Hom-space:

(3.5) HomRO` (F )(π ⊗ σ, ψO`).

This is usually called the space of local Bessel functionals. The uniqueness of

local Bessel functionals asserts that

dim HomRO` (F )(π ⊗ σ, ψO`) ≤ 1.

This was proved in [2], [77], [16], and [44]. The stronger version in terms of

local Vogan packets for more general classical groups is given as follows, which

will be called as the local Gan-Gross-Prasad conjecture in the rest of the paper.

Conjecture 3.1. Let G∗n and H∗m be a relevant pair of F -quasisplit clas-

sical groups. For a given local L-parameter φ in Φ̃+
unit(G

∗
n×H∗m), the following

identity holds :

(3.6)
∑

π⊗σ∈‹Πφ[G∗n×H∗m]

dim HomRO` (F )(π ⊗ σ, ψO`) = 1.

The known cases of Conjecture 3.1 can be summarized as follows.

Theorem 3.2. Conjecture 3.1 holds for the following cases :

(1) the relevant orthogonal group pair G∗n and H∗m over a p-adic local field F ,

by Mœglin and Waldspurger in [67] for generic local L-parameters ;

(2) the relevant orthogonal group pair G∗n and H∗m over an archimedean local

field F , by Zhilin Luo in his Ph.D. thesis [59], for tempered local L-para-

meters ;

(3) the relevant unitary group pair G∗n and H∗m over a p-adic local field F or

over the real number field R, by Beuzart-Plessis in [9] and [8] for tempered

local L-parameters ; and

(4) the relevant unitary group pair G∗n and H∗m over a p-adic local field F ,

extended by Gan and Ichino in [18] to generic local L-parameters.

We remark that over the real number field R, H. He proves in [28] the

local Gan-Gross-Prasad conjecture for discrete series representations of unitary

groups via a different approach.



764 DIHUA JIANG and LEI ZHANG

4. Bessel periods and global zeta integrals

The automorphic analog of the local Bessel functionals is the notion of

Bessel periods for a pair of cuspidal automorphic forms or representations.

When one of cuspidal automorphic forms is replaced by a certain Eisenstein

series, the Bessel periods become the global zeta integrals that represent the

tensor product L-functions. We extend such a construction of the global zeta

integrals considered in our previous work ([45]) to a more general setting that

is needed for the main results of this paper. For quasi-split orthogonal groups,

a special family of the global zeta integrals was first investigated by Ginzburg,

Piatetski-Shapiro and Rallis in [19].

4.1. Global zeta integrals. The global zeta integrals that we are going to

study are defined for the following three families of classical groups:

(1) Gb = SO2b+1(V, q) and Hc = SO2c(W, q), such that the product Gb×Hc is

a relevant pure inner form of an F -quasisplit G∗b ×H∗c over F ;

(2) Gb = SO2b(V, q) and Hc = SO2c+1(W, q), such that the product Gb×Hc is

a relevant pure inner form of an F -quasisplit G∗b ×H∗c over F ;

(3) Gb = Ub(V, q) and Hc = Uc(W, q) with b and c being of different parity

and b = [ b2 ] and c = [ c2 ], such that the product Gb ×Hc is a relevant pure

inner form of an F -quasisplit G∗b ×H∗c .

In the following, we use the notation that G? = Isom(V, q)◦ and H� =

Isom(W, q)◦, such that G?×H� is a relevant pure inner form of an F -quasisplit

G∗?×H∗�. Because the global zeta integrals considered in this paper extend what

were studied for F -quasisplit groups by the authors in [45], which generalizes

the work of Ginzburg, Piatetski-Shapiro and Rallis in [19], we will try to follow

the arguments and proofs used in [45] and provide explanation only for the

steps that are necessary for understanding of the main results of this section.

In order to formulate the families of global zeta integrals, we take τ to

be an irreducible unitary automorphic representation of GE/F (a)(AF ) of the

following isobaric type,

(4.1) τ = τ1 � τ2 � · · ·� τr,

where τi ∈ Acusp(GE/F (ai)),
∑r

i=1 ai = a, and τi 6∼= τj if i 6= j.

We note that as in [45], the global unfolding of the global zeta integrals

and the unramified calculation for the unramified local zeta integrals in this

section only require the assumption that τ is a generic isobaric automorphic

representation, which means that some τi and τj could be equivalent.

Take Hm = Isom(W, q)◦ with dimW = m and m = [m2 ]. Let σ be an irre-

ducible automorphic representation of Hm(A). Note that we need not assume

the cuspidality of σ in this section.
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Let Mâ = GE/F (a)×Hm be an F -Levi subgroup of Ha+m, so that Pâ =

MâUâ is a standard parabolic F -subgroup of Ha+m. Following Section I.1.4

in [66], we denote XMâ
to be the group of continuous homomorphisms of

Mâ(A) into C× that are trivial on M1
â := ∩χ∈Hom(Mâ,Gm) ker |χ|. Since the

parabolic subgroup Pâ is maximal, the C-vector space XMâ
is one-dimensional.

As in Section 2.2 in [45], for any s ∈ C, we define λs(m,h) := | detm|sAE for

(m,h) ∈ GE/F (a)(A) × Hm(A). It is clear that λs ∈ XMâ
. Via the Iwasawa

decomposition, we may make the trivial extension of λs to be a function on

Ha+m(A).

For any

(4.2) φ = φτ⊗σ ∈ A(Uâ(A)Mâ(F )\Ha+m(A))τ⊗σ,

we may set φs := λs · φ and form the associated Eisenstein series

(4.3) E(h, φ, s) = E(h, φτ⊗σ, s) =
∑

δ∈Pâ(F )\Ha+m(F )

φs(δg).

Note that the character λs is normalized as in [72]. The theory of Langlands

on Eisenstein series ([57] and [66]) shows that E(h, φ, s) converges absolutely

for Re(s) large, has meromorphic continuation to the complex plane C, and

defines an automorphic form on Ha+m(A) when s is not a pole.

Take a family of Ha+m-relevant partitions p
`

= [(2` + 1)1m+2a−2`−1] of

type (m + 2a,H∗a+m), with ` ≤ a + rm, where rm := r(Hm) is the F -rank of

Hm and is the Witt index of m-dimensional non-degenerate space (W, q) that

defines Hm. We define the Bessel-Fourier coefficient of the Eisenstein series

E(h, φ, s) on Ha+m(A):

(4.4) Fψ`,w0 (E(·, φ, s))(h) :=

∫
N`(F )\N`(A)

E(nh, φ, s)ψ−1
`,w0

(n) dn,

where the unipotent subgroup N` of Ha+m determined by the partition p
`

is

similar to the unipotent subgroup V` of Gn considered in Section 2.3. We use

N` in this section in order to match the notation used in [45], since we have to

recall from there some technical computations of the global zeta integrals.

As in Lemma 2.4, one may choose the representative w0 that defines the

character ψ`,w0 for Fourier coefficient, as in (2.14):

(4.5) w0 = yκ = ea+rm + (−1)m+1κ

2
e−(a+rm)

for some κ ∈ F×. Following Proposition 2.6, we have that m− = [m
−

2 ] and

m− := 2a + m − 2` − 1 and ` < a + rm, and that the stabilizer Gw0

m− and

the subgroup Hm form a relevant pair in the sense of the Gan-Gross-Prasad

conjecture (see Section 3). Of course, when ` = a + rm, the representative w0

is any F -anisotropic vector in the F -anisotropic kernel (W0, q) of (W, q). It is
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clear that the pair (Gw0

m− , Hm) is relevant in this case. Note that in this case,

we must have

m− = 2a+ m− 2`− 1 = d0(W )− 1,

and the group Gw0

m− is F -anisotropic.

As in [45] we define the following semi-direct product of subgroups:

(4.6) Rw0
` := Gw0

m− nN`.

For an automorphic form ϕ2a+m on Ha+m(A), and an automorphic form ϕm−

on Gw0

m−(A), we define the Bessel period by

(4.7) Pψ`,w0 (ϕ2a+m, ϕm−) :=

∫
G
w0
m−

(F )\Gw0
m−

(A)
Fψ`,w0 (ϕ2a+m)(g)ϕm−(g) dg.

It is absolutely convergent if one of the automorphic forms ϕ2a+m and ϕm− is

cuspidal. In fact, following [66, Ch. 2], the Fourier coefficients of an automor-

phic form with moderate growth is still of moderate growth on the stabilizer of

the character that defines the Fourier coefficients. Moreover, if an automorphic

form is rapidly decreasing on a Siegel set, then its Bessel-Fourier coefficient is

also rapidly decreasing on a Siegel set of the stabilizer of the character that

defines the Bessel-Fourier coefficient. We refer to [23, Lemma 10.1], [6, Lemma

2.1] and [7] (and also [45, Prop. 2.1]) for details. Otherwise, some regulariza-

tion may be needed to define this integral in (4.7). We define the L2-inner

product of automorphic functions ϕ1 and ϕ2 over Gw0

m−(A) by

(4.8) 〈ϕ1, ϕ2〉Gw0
m−

:=

∫
G
w0
m−

(F )\Gw0
m−

(A)
ϕ1(x)ϕ2(x) dx

assuming it converges, where ϕ(x) = ϕ(x) defines the complex conjugation of

the function ϕ.

For π ∈ Acusp(Gw0

m−), the global zeta integral Z(s, φτ⊗σ, ϕπ, ψ`,w0), as in

(2.17) of [45], is defined by the following Bessel period,

(4.9) Z(s, ϕπ, φτ⊗σ, ψ`,w0) := Pψ`,w0 (E(φτ⊗σ, s), ϕπ),

where the Bessel period is written in our convention in this paper by means of

the L2-inner product as follows:

Pψ`,w0 (E(φτ⊗σ, s), ϕπ) =
〈
ϕπ,Fψ`,w0 (E(φτ⊗σ, s))

〉
G
w0
m−

.

As given in Proposition 2.1 of [45], Z(s, φτ⊗σ, ϕπ, ψ`,w0) converges absolutely

and hence is holomorphic at s where the Eisenstein series E(h, φ, s) has no

poles.

From the theory of Eisenstein series and induced representations, it is

clear that the Eisenstein series is an automorphic realization of the following
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induced representation:

(4.10) Is(τ, σ) := Ind
Ha+m(A)
Pâ(A) (τ |det |s ⊗ σ).

The global zeta integral Z(s, φτ⊗σ, ϕπ, ψ`,w0) when s is away from the pole of

E(φτ⊗σ, s) defines a global Bessel functional `aut belonging to the following

Hom-space,

(4.11) HomR
w0
` (A)(Is(τ, σ), π∨ ⊗ ψ`,w0),

which has the following restricted tensor product decomposition:

(4.12) ⊗ν HomR
w0
` (Fν)(Is(τν , σν), π∨ν ⊗ ψ`,w0,v).

By the local uniqueness of the Bessel models as proved in [2], [77], [16], and

[44], this Hom-space has dimension at most one, when Is(τν , σν) is irreducible.

Hence we expect that this global functional `aut in (4.11) can be written as an

Euler product of the local Bessel functionals

(4.13) `aut = c ·
∏
ν

`ν

with certain normalization on `ν when the data are unramified. The global

unfolding process (or the global calculation) of the global zeta integral

Z(s, φτ⊗σ, ϕπ, ψ`,w0),

when Re(s) is large, is to find explicitly the Euler product factorization in

(4.13) and an explicit formula for the local Bessel functionals `ν . This global

calculation contains two main steps. The first is to calculate the Fourier coef-

ficient of the Eisenstein series Fψ`,w0 (E(φτ⊗σ, s)) and by using the cuspidality

of π to show that Z(s, φτ⊗σ, ϕπ, ψ`,w0) is equal to an integration associated to

the Zariski open dense double coset from Pâ\Ha+m/R
w0
` . The second step is

to show that this remaining integration is in fact an Euler product of local zeta

integrals.

4.2. Fourier coefficients of Eisenstein series. The goal of this subsection

is to calculate the Fourier coefficient of the Eisenstein series as defined in (4.4).

Since the calculation is very similar to that in the proof of [45, Prop. 3.3], we

will not repeat every detail from there, but point out the key steps in the proof.

For Re(s) sufficiently large, we are able to unfold the Eisenstein series in

the integral defining the Fourier coefficient Fψ`,w0 (E(φτ⊗σ, s)). This leads to

the calculation of the double coset decomposition Pâ\Ha+m/R
w0
` . First, we

consider the generalized Bruhat decomposition Pâ\Ha+m/Pˆ̀, as a preliminary

step towards the calculation. This decomposition corresponds to the double

coset decomposition Wâ\WF∆/Wˆ̀. Here W
F∆ is the Weyl group of Ha+m

relative to F , which is generated by the simple reflections sα associated to the
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roots α ∈ F∆. Similarly, Wâ is the subgroup of W
F∆ generated by the simple

reflections sα for α ∈ F∆ r {αa}, and so is Wˆ̀.

We discuss the group Ha+m in the following four cases:

(1) If Ha+m is the quasi-split even unitary group (i.e., m = 2rm and E =

F (
√
ς)), then W

F∆ = W (Ca+rm).

(2) If Ha+m is a unitary group, but not a quasi-split even unitary group (i.e.,

2rm < m and E = F (
√
ς)), then W

F∆ = W (Ba+rm).

(3) If Ha+m is the split even special orthogonal group (i.e., m = 2rm and

E = F ), then W
F∆ = W (Da+rm).

(4) If Ha+m is a special orthogonal group but not a split even special orthog-

onal group (i.e., 2rm < m and E = F ), then W
F∆ = W (Ba+rm).

Here W (Xa+rm) is the Weyl group of the split classical group of type X with

rank a+ rm. Following from [45, §3.1], we put the double coset decomposition

Wâ\WF∆/Wˆ̀ into three cases for discussions, i.e., Case (1-1), Case (2-1) and

Case (2-2). Both Case (2-1) and Case (2-2) in [45, §3.1] are only for the

split even special orthogonal groups. The result that we are to prove here has

already been proved in [45]. Hence, we assume that Ha+m is not the split even

special orthogonal group, which is Case (1-1) in [45, §3.1]. We extend below

the proof for Case (1-1) in [45, §3.1] to the current general case considered in

this section.

In this situation, the double coset decomposition Pâ\Ha+m/Pˆ̀ is in bijec-

tion parametrized by the set of pairs of nonnegative integers

Ea,` = {εα,β | 0 ≤ α ≤ β ≤ a and a ≤ `+ β − α ≤ a+ rm}.

The representatives εα,β are chosen as in [23, §4.2]. For each double coset

Pâεα,βPˆ̀, we take a further decomposition Pâ\Pâεα,βPˆ̀/R
w0
` , where the group

Rw0
` is defined as in (4.6). It is equivalent to considering the decomposition

P
ε0,β
ˆ̀ \Pˆ̀/R

w0
` with P

ε0,β
ˆ̀ := ε−1

0,βPâε0,β ∩ Pˆ̀. Let Nβ,`,w0 be the set of represen-

tatives of P
ε0,β
ˆ̀ (F )\Pˆ̀(F )/Rw0

` (F ), and set

(4.14) W±`,i = SpanE{e±(`+1), e±(`+2), . . . , e±(`+i)}

for 1 ≤ i ≤ a + rm − `, which are totally isotropic subspaces of (Wm+2a, q).

Following the same argument in [45, Lemmas 3.1 and 3.2], we can prove that

Proposition 3.3 in [45] also holds for the more general cases in this paper that

Ha+m may not be F -quasisplit.

Proposition 4.1. For Re(s) large, the Bessel-Fourier coefficient of the

Eisenstein series as in (4.4), Fψ`,w0 (E(·, φτ⊗σ, s))(h), is equal to∑
εβ

∑
η

∑
δ

∫
Nη
` (A)\N`(A)

∫
Nη
` (F )\Nη

` (A)
φs(εβηδunh)ψ−1

`,w0
(un) dudn,
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where Nη
` = N` ∩ η−1P

ε0,β
ˆ̀ η and Gη

m− := Gw0

m− ∩ γ
−1P ′wγ, and the summations

are over the following representatives :

• εβ = ε0,β ∈ E0
a,`, which is the subset of Ea,` consisting of elements with

α = 0;

• η = diag(ε, γ, ε∗) belongs to N 0
β,`,w0

, which is the subset of Nβ,`,w0 consisting

of elements with α = 0, ε =
Ä

0 I`−t
It 0

ä
, and t = a − β, and which has the

property that if β > max {a− `, 0}, then γw0 is orthogonal to W−`,β for

γ ∈ P ′w(F )\Ha+m−`(F )/Gw0

m−(F ) where P ′w = Ha+m−` ∩ ε−1
0,βPâε0,β ; and

• δ belongs to Gη
m−(F )\Gw0

m−(F ).

4.3. Euler product decomposition. Next, we apply the expression in Propo-

sition 4.1 to the further calculation of the global zeta integral (4.9) and have

Z(s, φτ⊗σ, ϕπ, ψ`,w0)

=
∑
εβ ;η

∫
h
ϕπ(h)

∫
n

∫
[Nη
` ]
φs(εβηunh)ψ−1

`,w0
(un) dudn dh,(4.15)

where the summation over εβ and η is a finite sum as in Proposition 4.1,

and the integration
∫
h is over Gη

m−(F )\Gw0

m−(A) and
∫
n is over Nη

` (A)\N`(A).

Similar to [45, Lemma 3.4], for each η = diag(ε, γ, ε∗), if the stabilizer Gη
m− is

a proper maximal F -parabolic subgroup of Gw0

m− , then the summand over such

η vanishes due to the cuspidality of ϕπ.

To proceed with the calculation, we need to study the double coset de-

composition P ′w\Ha+m−`/G
w0

m− as given in Proposition 4.1 and extend the cal-

culation in [45, §3.2] to the current setting. With the choice of the w0, it is

easy to see that the group Ha+m−` has its F -rank greater than or equal to one.

We may apply [23, Prop. 4.4] to the current situation and show that only one

integral associated to the Zariski open dense double coset in Pâ\Ha+m/R
w0
`

remains and all other integrals in the summation are zero for any choice of

data. In other words, similar to Proposition 3.6 in [45], we still obtain the fol-

lowing expression for the global zeta integrals, which have two different forms

according to the two cases: a ≤ ` and a > `.

If a ≤ `, we must have that β=0, η=diag{ε, Im, ε∗} with ε =
Ä

0 I`−a
Ia 0

ä
and

Z(s, φτ⊗σ, ϕπ, ψ`,w0) =

∫
G
w0
m−

(F )\Gw0
m−

(A)
ϕπ(h)

∫
Nη
` (A)\N`(A)∫

[Nη
` ]
φs(ε0,βηunh)ψ−1

`,w0
(un) dudn dh,

(4.16)

where [Nη
` ] = Nη

` (F )\Nη
` (A).



770 DIHUA JIANG and LEI ZHANG

If a > `, we must have that β = a− `, η = diag{I`, γ0, I`} and

Z(s, φτ⊗σ, ϕπ, ψ`,w0) =

∫
Gη
m−

(F )\Gw0
m−

(A)
ϕπ(h)

∫
Nη
` (A)\N`(A)∫

[Nη
` ]
φs(ε0,βηunh)ψ−1

`,w0
(un) dudn dh,

(4.17)

where γ0 is a representative in the open double coset of

P ′w(F )\Ha+m−`(F )/Gw0

m−(F ),

with the property that γ0w0 is not orthogonal to W−`,β.

It remains to show that those global integrals are in fact integrals over

adelic domains and can be written as Euler products of local zeta integrals. In

order to continue the calculation, we have to recall the relevant calculations

in [45] with replacement of notation used here. Section 4.4 will deal with the

case of a > ` and hence is for the integral in (4.17). Section 4.5 will deal with

the case of a ≤ ` and hence is for the integral in (4.16).

4.4. Case a > `. We are studying the integral in (4.17). For convenience,

we recall the open coset representative ε0,β with β = a − ` in equation (4.14)

in [23],

(4.18) ε0,β = w`q ·

à
0 Ia−` 0 0 0

0 0 0 0 I`
0 0 Im 0 0

I` 0 0 0 0

0 0 0 Ia−` 0

í
.

Note that when E = F , wq is defined by
−Im+2a if m is odd,

diag{Im
2

+a−1,
(

1 0
0 −1

)
, Im

2
+a−1} if m is even and Ha+m is not split,

diag{Irm+a−1, ( 0 1
1 0 ) , Irm+a−1} if m = 2rm and Ha+m is split,

and when E = F (
√
ς), wq = Im+2a.

First, we write the integral in (4.17) as

(4.19) Z(s, φτ⊗σ, ϕπ, ψ`,w0) =

∫
Gη
m−

(F )\Gw0
m−

(A)
ϕπ(h)Φs(h) dh,

where the function Φs(h) is defined, as in [45, (3.34)], to be

(4.20) Φs(h) :=

∫
Nη
` (A)\N`(A)

∫
[Nη
` ]
φs(ε0,βηunh)ψ−1

`,w0
(un) dudn.
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To calculate the function Φs(h), we first consider (ε0,βη)u(ε0,βη)−1, similar to

Section 3.3 of [45]. Note that Nη
` consists of elements of the form

u =



c 0 0 0 y6 0 0

Irm 0 0 0 0 0

Ia−` 0 0 0 y′6
Im−2rm 0 0 0

Ia−` 0 0

Irm 0

c∗


∈ N`,

where c ∈ Z`. Then the conjugation (ε0,βη)u(ε0,βη)−1 is of the formà
Ia−` y′6

0 c∗

Im
c y6

0 Ia−`

í
.

Hence the stabilizer (ε0,βη)Nη
` (ε0,βη)−1 as a subgroup of Pâ is in fact contained

in the GE/F (a)-part of the Levi subgroup of Pâ. We denote it by Z ′`. We may

write elements of Z ′` as ẑ′ with z′ =
Ä
Ia−` y

0 z

ä
. Accordingly, the character

ψ−1
`,w0

(u) becomes

ψZ′`,κ(z′) := ψE((−1)m+1κ

2
zβ,β+1 + zβ+1,β+2 + · · ·+ za−1,a).

Hence we obtain

(4.21) Φs(h) =

∫
Nη
` (A)\N`(A)

φ
ψZ′

`
,κ

s (ε0,βηnh)ψ−1
`,w0

(n) dn,

with

(4.22) φ
ψZ′

`
,κ

s (h) :=

∫
[Z′`]

φs(ẑ
′h)ψZ′`,κ(z′) dz′.

Next, we need to calculate the integration over Gη
m−(F )\Gw0

m−(A) in (4.17)

and in (4.19), in order to show that the global zeta integral is in fact an inte-

gration over an adelic domain. Similar to the decomposition in [45, eq. (3.33)],

we also have the decomposition

Gη
m− = (GE/F (W+

rm+a−1,β−1)×H(qη−1W(a)
)) n Vβ−1,η,

where W+
rm+a−1,β−1 is defined in (4.14), W(a) = (W+

a ⊕W−a )⊥, and Vβ−1,η is

the unipotent radical of the stabilizer Gη
m− , as described on page 573 of [45].
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More precisely, in Proposition 4.1, take η = ηI,γ0 . Then Vβ−1,η consists of the

elements of the form

(4.23) η−1



I`
Iβ−1 d1 u v1 v

1 0 0 v′1
Im 0 u′

1 d′1
Iβ−1

I`


η

with d1 + (−1)m+1 κ
2v1 = 0, where d1 and v1 are column vectors of dimension

β − 1. Let Zη`,β−1 be the maximal unipotent subgroup of GE/F (W+
rm+a−1,β−1),

consisting of elements of following type:

η−1 · diag{I`, d, Im+2, d
∗, I`} · η

with d ∈ Zβ−1.

Write Nη
`,β−1 := Zη`,β−1Vβ−1,η. It is a unipotent subgroup of Gw0

m− as-

sociated to the nilpotent orbit with partition [(2(a − ` − 1) + 1)1m]. Fix-

ing the anisotropic vector y−κ that defines the character of Nη
`,β−1, we de-

duce that the corresponding stabilizer in Gw0

m− is Isom(η−1W(a), q)
◦. Hence

Isom(η−1W(a), q)
◦ = η−1Hmη. The elements of Nη

`,β−1 have the form

(4.24) (ε0,βη)−1



d d1 0 u 0 v1 v

1 0 0 0 0 v′1
I` 0 0 0 0

Im 0 0 u′

I` 0 0

1 d′1
d∗


(ε0,βη),

where d ∈ Zβ−1. Remark that Zη`,β−1 is the set of all matrices of the form (4.24)

with all entries 0 except d. Denote Zβ,η (resp. Cβ−1,η) to be the subgroup of

Nη
`,β−1 consisting of all matrices in (4.24) with all entries 0 except d and d1

(resp. with d = Iβ−1 and d1 = 0). Then Nη
`,β−1 = Zβ,ηCβ−1,η.

Similar to [45, p. 575], we have the following isomorphism,

(4.25) Cβ−1,η\Gηm− ∼= P 1
β ×Hη

m (Hη
m := η−1Hmη),

where Hη
m is a subgroup of Gw0

m−1 and P 1
β is the mirabolic subgroup of GE/F (β)

containing Zβ,η. Continuing with the global zeta integral as displayed in (4.19),

we obtain that the global zeta integral Z(s, ·) is equal to

(4.26)

∫
P 1
β (F )Hη

m(F )Cβ−1,η(A)\Gw0
m−

(A)
Φs(h)

∫
[Cβ−1,η ]

ϕπ(ch) dcdh.
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This is the integral similar to that displayed in (3.36) of [45]. We note that

there is a typo in the integration domain in equation (3.36) of [45], and the

integral in (4.26) gives the correct version.

Following closely the argument in [45], we apply the Fourier expansion on

ϕπ along the mirabolic subgroup P 1
β repeatedly and obtain the same expansion

as that displayed in equation (3.38) in [45]. Plugging the so obtained expansion

into (4.26) and combining the integrals, we obtain

Z(s, φτ⊗σ, ϕπ, ψ`,w0)

=

∫
Zβ,η(F )Hη

m(F )Cβ−1,η(A)\Gw0
m−

(A)
Φs(h)Fψ

−1
β−1,y−κ (ϕπ)(h) dh,

where Fψ
−1
β−1,y−κ (ϕπ) is the (β−1)-th Bessel coefficient with respect to ψβ−1,y−κ

(with β = a− `), as defined in (2.7), by

(4.27) Fψ
−1
β−1,y−κ (ϕπ)(h) =

∫
Nη
`,β−1(F )\Nη

`,β−1(A)
ϕπ(nh)ψβ−1,y−κ(n) dn.

Since Fψ
−1
β−1,y−κ (ϕπ) is left (Zβ,η, ψ

−1
β−1,y−κ

)-equivariant, Z(s, ·) is equal to (see

[45, (3.40)])

(4.28)∫
Hη
m(F )Nη

`,β−1(A)\Gw0
m−

(A)
Fψ

−1
β−1,y−κ (ϕπ)(h)

∫
[Zβ,η ]

Φs(zh)ψ−1
β−1,y−κ

(z) dz dh.

Let us now focus on the inner integral
∫

[Zβ,η ] Φs(zh)ψ−1
β−1,y−κ

(z) dz, which by

definition (as in (4.21)) is equal to∫
[Zβ,η ]

∫
Nη
` (A)\N`(A)

φ
ψZ′

`
,κ

s (ε0,βηnzh)ψ−1
`,w0

(n) dn ψ−1
β−1,y−κ

(z) dz.

By the definition of φ
ψZ′

`
,κ

s (see (4.22)), we may combine the two integrals

over [Zβ,η] and [Nη
` ]. As a subgroup of Pâ, (ε0,βη)Nη

` Zβ,η(ε0,βη)−1 consists of

elements of the form

d d1 (y6)′∗,∗
0 1 (y6)′β,∗
0 0 c∗

Im
c (y6)∗,β (y6)∗,∗
0 1 d′1
0 0 d


,

where the notation is the same as in [45, (3.42)]. It follows that Nη
` Zβ,η

∼= Za,

where Za is the maximal upper-triangular unipotent subgroup of GE/F (a),
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which is regarded canonically as a subgroup of Pâ. Combining the integrals

over [Zβ,η] and [Nη
` ], we define

(4.29) φZa,κs (h) :=

∫
[Za]

φs(zh)ψZa,κ(z) dz,

where the character ψZa,κ(z) is given by

(4.30) ψE(−z1,2 − · · · − zβ−1,β + (−1)m+1κ

2
zβ,β+1 + zβ+1,β+2 + · · ·+ za−1,a)

with β = a− `, which is a non-degenerate character of Za. Hence φs 7→ φZa,κs

can be regarded as an Ha+m(A)-equivariant isomorphism from the induced

representation Is(τ, σ) onto the induced representation Is(Wτ , σ), whereWτ :=

WψZa,κ
τ is the global Whittaker model of τ with respect to the non-degenerate

character ψZa,κ.

For Re(s) sufficiently large, the integrals we considered here are absolutely

convergent, which allow us to switch the order of integration. After combining

the integrals [Zβ,η] and [Nη
` ] and by (4.21), similar to [45, (3.41)], we obtain

that

(4.31)∫
[Zβ,η ]

Φs(zh)ψ−1
β−1,y−κ

(z) dz =

∫
U−a,η(A)

φZa,κs (nε0,βηh)ψ(m+a+`,a−`)(n) dn.

Here U−a,η consists of matrices of the form

(4.32)

à
Ia−`

0 I`
0 x′2 Im
x1 x3 x2 I`
0 x′1 0 0 Ia−`

í
,

which is a section for the domain of integration, Nη
` \N`, under the adjoint

action of ε0,βη. The character ψ(m+a+`,a−`) of U−a,η is given by

ψ(m+a+`,a−`)(n) = ψE(nm+a+`,a−`),

where nm+a+`,a−` = (x1)`,a−`.

Note that the adelic integration over U−a,η in (4.33) converges absolutely

due to the same reason as that of the quasi-split orthogonal group case consid-

ered in Appendix II to Section 5 of [19], and also that in [73] and [75, Th. 3.1],

for instance. Another way to confirm the absolute convergence is that after

taking the absolute value of the integrand, the integral is the product of local

intertwining operators, which converges absolutely for Re(s) sufficiently large.

From (4.31), for h ∈ Gw0

m−(A), we define

(4.33) Js(φs)(h) :=

∫
U−a,η(A)

φZa,κs (nε0,βηh)ψ(m+a+`,a−`)(n) dn.
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Following a similar argument as in Theorem 3.1 in [75] for split special orthog-

onal groups, we verify the absolute convergence of Js(φs) for Re(s) sufficiently

large in the part of the proof of the absolute convergence of local zeta integrals

for more general groups over all local fields in [43]. Moreover, the function

Js(φs) enjoys the following property.

Proposition 4.2. For Re(s) sufficiently large, the mapping

Js : φs 7→ Js(φs)

composing with the restriction to Gw0

m−(A) gives the Gw0

m−(A)-equivariant ho-

momorphism from Is(τ, σ) as defined in (4.10) to Iw0
s (ψβ−1,y−κ , σ

w`q), which is

the following smooth induction,

Iw0
s (ψβ−1,y−κ , σ

w`q) := Ind
G
w0
m−

(A)

Nη
`,β−1(A)Hη

m(A)
(ψβ−1,y−κ ⊗ σw

`
q , s),

where the character ψβ−1,y−κ is given as in (4.27).

Proof. For g ∈ Gw0

m−(A), the function Js(φs)(g) is smooth on Gw0

m−(A).

The left quasi-invariance with respect to (Nη
`,β−1, ψβ−1,y−κ) is clear from the

calculation above Proposition 4.2. It remains to check the left equivariant

property for x ∈ Hη
m(A). By definition, we have

Js(φs)(xg) =

∫
U−a,η(A)

φZa,κs (nε0,βηxg)ψ(m+a+`,a−`)(n) dn

=

∫
U−a,η(A)

φZa,κs (nε0,βηxη
−1ηg)ψ(m+a+`,a−`)(n) dn.

Since ηxη−1 belongs toHm(A), it is enough to understand the group ε0,βHmε
−1
0,β.

According to (4.18), where ε0,β is explicitly given,

ε0,βHmε
−1
0,β = w`qHmw

−`
q .

It is clear that Js(φs)(xg) = σw
`
q(x) · Js(φs)(g). We are done. �

Note that by (4.18), the adjoint action of wq on σ is trivial except when

Hm is an even special orthogonal group. In this case, det(wq) = −1 and the

adjoint action of wq is the non-trivial action of O(Wm, q)/Hm on σ. In other

words, wq restricted to O(Wm, q) is a choice of ε as defined right below (2.6)

on page 753. For simplicity, denote

(4.34) σ′ := σw
`
q .

We note that if Hm is an even special orthogonal group and ` is odd, then

{σ, σwq} is an ‹O(G)-orbit of σ as discussed on page 754. Therefore, for any

fixed h ∈ Gw0

m−(A), the function Js(φs)(xh), as a function in x, belongs to the

space Vσ′ of cuspidal automorphic forms, which is the space of the cuspidal
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automorphic representation σ, up to a twist by ε0,β. Hence we obtain the

following composition of Gw0

m−(A)-equivariant mappings:

(4.35) Is(τ, σ)→ Is(Wτ , σ)→ Iw0
s (ψβ−1,y−κ , σ

′).

We summarize the calculation above and state the formula for the global

zeta integral in the following

Proposition 4.3. With the notation above and for Re(s) large, the global

zeta integral Z(s, φτ⊗σ, ϕπ, ψ`,w0) has the following expression,

(4.36) Z(s, φτ⊗σ, ϕπ, ψ`,w0) =

∫
g

∫
[Hη
m]
Fψ

−1
β−1,y−κ (ϕπ)(xg)Js(φs)(xg) dx dg,

where dg is over Rη`,β−1(A)\Gw0

m−(A) with Rη`,β−1 := Hη
mnNη

`,β−1, and [Hη
m] :=

Hη
m(F )\Hη

m(A), as defined in (4.25).

Note that the pairing

Pψ
−1
β−1,y−κ (ϕπ, ϕσ′) =

∫
[Hη
m]
Fψ

−1
β−1,y−κ (ϕπ)(x)ϕσ′(x) dx

defines a Bessel period for the pair (π, σ′), where ϕσ′ is a cuspidal automorphic

form in Cσ under the conjugation of w`q, and belongs to the space

HomRη`,β−1(A)(π ⊗ σ′, ψ−1
β−1,y−κ

).

In this way, the inner integral of the integration formula (4.36) for the global

zeta integral Z(s, φτ⊗σ, ϕπ, ψ`,w0) can be written as

(4.37)∫
[Hη
m]
Fψ

−1
β−1,y−κ (ϕπ)(xg)Js(φs)(xg) dx = Pψ

−1
β−1,y−κ (R(g)ϕπ, Js(φs)(g)),

where R(g)ϕπ(x) := ϕπ(xg) is the right translation and Js(φs)(g) is in σ′

by Proposition 4.2. From this expression, we deduce the following easy, but

important vanishing result.

Corollary 4.4. If the Bessel period for (π, σ′) is zero, then the global

zeta integral Z(s, φτ⊗σ, ϕπ, ψ`,w0) is zero for all choices of data.

From now on, it is meaningful to assume that the Bessel period Pψ
−1
β−1,y−κ

for (π, σ′) is non-zero. By the uniqueness of local Bessel functionals, which is

proved in [2], [77], [16], and [44], we have the Euler factorization: Pψ
−1
β−1,y−κ =

⊗νP
ψ−1
β−1,y−κ

ν . It follows that the integral in (4.37) can be written as an Euler

product of local Bessel functionals when ϕπ and φs = φτ⊗σ,s are factorizable

vectors. More precisely, we take ϕπ = ⊗νϕπν and φτ⊗σ,s = ⊗νφτν⊗σν ,s. Then

(4.38) φZa,κs (h) =
∏
ν

fWκ
τν
⊗σν ,s(hν),
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where fWκ
τν
⊗σν ,s belongs to the space of induced representation

(4.39) Is,ν(Wτν , σν) = Ind
Ha+m(Fν)
Pâ(Fν) (| · |sWτν ⊗ σν).

It follows that ∫
[Hη
m]
Fψ

−1
β−1,y−κ (ϕπ)(xg)Js(φs)(xg) dx

=
∏
ν

P
ψ−1
β−1,y−κ

ν (πν(gν)ϕπν , Js,ν(φs,ν)(gν)),

(4.40)

where at each local place ν, P
ψ−1
β−1,y−κ

ν is the unique local Bessel functional

up to scalar, and Js,ν is the ν-local twisted Jacquet module associated to the

adelic integration over U−a,η(A) that defines Js in (4.33).

Now, for Re(s) sufficiently large, we define the local zeta integral for this

case by

(4.41) Zν(s, φτ⊗σ, ϕπ, ψ`,w0) :=

∫
gν

P
ψ−1
β−1,y−κ

ν (πν(gν)ϕπν , Js,ν(φs,ν)(gν)) dgν ,

where the integration is taken over Rη`,β−1(Fν)\Gw0

m−(Fν).

Theorem 4.5 (a > `). Let E(φτ⊗σ, s) be the Eisenstein series on Hm+a(A)

as in (4.3) and let π belong to Acusp(Gw0

m−). Then the global zeta integral

Z(s, φτ⊗σ, ϕπ, ψ`,w0) converges absolutely and is holomorphic at s where the

Eisenstein series E(h, φ, s) has no poles.

Assume that ϕπ = ⊗νϕπν and φs = ⊗νφτν⊗σν ,s = ⊗νφs,ν are factorizable

vectors, which yield factorization in (4.38), and that the pair (π, σ′) has a

non-zero Bessel period. Then for the real part of s sufficiently large, it can be

written as an Euler product

Z(s, φτ⊗σ, ϕπ, ψ`,w0) =
∏
ν

Zν(s, φτ⊗σ, ϕπ, ψ`,w0),

where the local zeta integral Zν(s, φτ⊗σ, ϕπ, ψ`,w0) is defined in (4.41).

Note that this Euler decomposition of the global zeta integral in terms

of the local zeta integrals is a more explicit realization of the abstract Euler

decomposition as in (4.13); further properties of the local and global zeta

integrals will be discussed in Section 5.

4.5. Case a ≤ `. Although not necessary for the current paper, for com-

pleteness and future applications, we briefly study the global zeta integral as

given in (4.16). In principle, it is similar to the case of a > `. We follow the

discussion in Section 3.4 in [45] to give necessary steps in order to show that

the global zeta integral can be factorized as an Euler product of local zeta

integrals.
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First, we have

Nη
` =



à
c 0 0 0 0

b y4 z4 0

Im+2a−2` y′4 0

b∗ 0

c∗

í
: c ∈ Za, b ∈ Z`−a

 .

Write

Na,`−a =



à
Ia 0 0 0 0

b y4 z4 0

Im+2a−2` y′4 0

b∗ 0

Ia

í
: b ∈ Z`−a

 ⊂ N`−a.

Denote ψm,`−a;yκ to be the restriction to the subgroup Na,`−a of the character

ψ`,yκ . By the decomposition Nη
` = ZaNa,`−a, the inner integration over [Nη

` ]

in (4.16) can be written as

(4.42)

∫
[Nη
` ]
φs(ε0,0ηuh)ψ−1

`,w0
(u) du = Fψ

−1
m,`−a;yκ (φ

ψZa,κ
s )(ε0,0ηh),

where

φ
ψZa,κ
s (h) =

∫
[Za]

φs(z)ψZa,κ(z) dz

with

ψZa,κ(z) = ψE(z1,2 + z2,3 + · · ·+ za−1,a).

Here Fψ
−1
m,`−a;yκ defines a Bessel-Fourier coefficient of σ. As in (4.38), we have

(4.43) φ
ψZa,κ
s (h) =

∏
ν

fWκ
τν
⊗σν ,s(hν),

with fWκ
τν
⊗σν ,s belonging to the space of induced representation

Is,ν(Wτν , σν) = Ind
Ha+m(Fν)
Pâ(Fν) (| · |sWτν ⊗ σν).

After changing variables, we obtain

Z(s, φτ⊗σ, ϕπ, ψ`,w0)

=

∫
Nη
` (A)\N`(A)

∫
[G
w0
m−

]
ϕπ(h)Fψ

−1
m,`−a;yκ (φ

ψZa,κ
s )(ε0,0ηhn)ψ−1

`,w0
(n) dhdn.

(4.44)

Note that the integral (4.44) is absolutely convergent for Re(s) sufficiently

large. The inner integration over [Gw0

m− ] converges absolutely because of rapid

decay of the cuspidal automorphic form ϕπ. The outer integration over the

quotient Nη
` (A)\N`(A) converges absolutely due to the reason that we used to

explain (4.33). For convenience, we write down explicitly the quotient Nη
` \N`
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and the restriction of ψ`,yκ . The quotient Nη
` \N` is isomorphic to the subgroup

consisting of elementsà
Ia x1 x2 x3 x4

I`−a 0 0 x′3
Im+2a−2` 0 x′2

I`−a x′1
Ia

í
.

The restriction of ψ`,yκ is ψE((x1)a,1).

It is clear that the inner integration in the variable h in (4.44) gives a

Bessel period for the pair (σ, π). Hence we obtain the following.

Corollary 4.6. If the Bessel period for (σ, π) is zero, then the global

zeta integral Z(s, φτ⊗σ, ϕπ, ψ`,w0) is zero for all choices of data.

By the uniqueness of the local Bessel models, this Bessel period may be

written as an Euler product of local Bessel functionals for factorizable input

data. More precisely, we take ϕπ = ⊗νϕπν and φs = ⊗νφs,ν and write

(4.45)

∫
[G
w0
m−

]
ϕπ(h)Js(φs)(hn) dh =

∏
ν

P
ψ−1
m,`−a;yκ,ν

ν (R(nν)fWκ
τν⊗σν ,s, ϕπν ),

where Js(φs)(hn) := Fψ
−1
m,`−a;yκ (φ

ψZa,κ
s )(ε0,0ηhn), R(·) is the right translation,

and for each local place ν, P
ψ−1
m,`−a;yκ,ν

ν is the unique functional, up to scalar,

in the space

HomG
w0
m−

(Fν)nNa,`−a(Fν)(πν ⊗ σν , ψ
−1
m,`−a;yκ,ν

).

In this way, we define the local zeta integral by

(4.46)

Zν(s, φτ⊗σ, ϕπ, ψ`,w0) :=

∫
nν

P
ψ−1
m,`−a;yκ,ν

ν (R(nν)fWκ
τν
⊗σν ,s, ϕπν )ψ−1

`,w0,ν
(nν) dnν ,

where the integration is taken over Nη
` (Fν)\N`(Fν), and obtain the following.

Theorem 4.7 (a ≤ `). With the notation as in Theorem 4.5, the global

zeta integral Z(s, φτ⊗σ, ϕπ, ψ`,w0) converges absolutely and is holomorphic at s

where the Eisenstein series E(h, φ, s) has no poles.

Assume that ϕπ = ⊗νϕπν and φs = ⊗νφτν⊗σν ,s = ⊗νφs,ν are factorizable

vectors, which yield the factorization in (4.43), and that the pair (σ, π) has a

non-zero Bessel period. Then for the real part of s sufficiently large, it can be

written as an Euler product

Z(s, φτ⊗σ, ϕπ, ψ`,w0) =
∏
ν

Zν(s, φτ⊗σ, ϕπ, ψ`,w0),

where the local zeta integral Zν(s, φτ⊗σ, ϕπ, ψ`,w0) is defined in (4.46).
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Note that this Euler decomposition of the global zeta integral in terms

of the local zeta integrals is a more explicit realization of the abstract Euler

decomposition as in (4.13). Since this case is not directly used in this paper,

we refer to Section 3.4 of [45] for a more detailed explanation of a special case.

4.6. Unramified local zeta integrals and local L-factors. We define the local

L-factors for the cases under consideration and recall the results from the

unramified computations of the local zeta integrals as considered in [45], [75],

[76] and [43].

Note that the group Gw0

m− from the construction in Section 2.4 yields all

the groups Gn as listed in the beginning of this section. Hence there exists a

datum such that Gw0

m− is isomorphic to a given Gn over F . From now on, we

assume that π ∈ Acusp(Gw0

m−) and σ ∈ Acusp(Hm) have generic global Arthur

parameters, respectively.

As in (4.1), we have τ = τ1 � τ2 � · · ·� τr, which is an irreducible generic

isobaric automorphic representation of GE/F (a)(AF ). We define

(4.47) L(s, τν , πν , σν ; ρ) =
L(s+ 1

2 , τν × πν)

L(s+ 1, τν × σν)L(2s+ 1, τν , ρ)
,

where

ρ =


Λ2 if Hm+a is an even orthogonal group;

sym2 if Hm+a is an odd orthogonal group; and

As⊗ ξm if Hm+a is a unitary group.

Some remarks on the local L-functions are in order. At archimedean local

places or at unramified local places, the local L-functions in (4.47) are well

defined. The main concern here is at the ramified finite local places. Formally,

one may take the greatest common denominator of the ramified local zeta

integrals as the definition or take the one from the normalization of the local

intertwining operators from the Eisenstein series in the global zeta integrals.

This of course needs the full theory of the local zeta integrals, which is not

available at this moment for general representations π and σ. On the other

hand, since both π and σ are assumed to be cuspidal and to have generic global

Arthur parameters ([3, Ch. 9] and [52]), in this paper we follow [3], [70] and [52]

to define the local L-functions in (4.47) at ramified finite local places in terms

of the local L-functions of the corresponding localization of the global Arthur

parameters. We refer to [63] for discussion with more general parameters when

the groups are F -quasisplit.

We note that only when Hm is an even special orthogonal group, the

twisted representation σ′ν (see (4.34)) may not be equivalent to σν if w`q 6= I.

However, their corresponding local L-parameters are Om(C)-conjugate, since

H∨m(C) = SOm is the complex dual group of Hm. Therefore L(s, τν , πν , σν ; ρ)
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and the local L-functions L(s, τν × σν) are the same when the local factors of

σν replaced by those of σ′ν .

Recall that σ′ = σw
`
q in (4.34) when a > `, and also denote σ′ = σ when

a ≤ ` for notational consistency. The Euler products in Theorems 4.5 and 4.7

can be uniformly rewritten as

Z(s, φτ⊗σ′ , ϕπ, ψ`,w0) =
∏
ν

Zν(s, φτ⊗σ′ , ϕπ, ψ`,w0).

Next, we state the result of unramified calculation for the local zeta inte-

grals. The full detail of the computation in this generality will appear in our

joint work with D. Soudry ([43]), based on the idea of Soudry as developed in

his work ([74], [75], [76]). Many special cases have been treated in [19] and

[45], for instance.

Theorem 4.8 (Unramified Computation). With all data being unrami-

fied, the local unramified zeta integral Zν(s, φτ⊗σ′ , ϕπ, ψ`,w0) has the following

expression,

(4.48) Zν(s, φτ⊗σ′ , ϕπ, ψ`,w0) = L(s, τν , πν , σν ; ρ),

where fWκ
τν
⊗σν ,s, φσν and ϕπν are the spherical vectors, which are so normalized

that the corresponding spherical functions are equal to 1 at the identity element.

Let S be a finite set of places consisting of all ramified places of relevant

data and all archimedean places such that for ν /∈ S, all data are unramified.

Following Theorem 4.8, we obtain that

Z(s, φτ⊗σ′ , ϕπ, ψ`,w0) =
∏
ν∈S
Zν(s, ·) ·

∏
ν /∈S

Zν(s, ·)

= ZS(s, ·) · LS(s, τ, π, σ; ρ).

(4.49)

Here we set Zν(s, ·) := Zν(s, φτ⊗σ′ , ϕπ, ψ`,w0), ZS(s, ·) :=
∏
ν∈S Zν(s, ·), and

LS(s, ·) :=
∏
ν /∈S L(s, ·ν).

4.7. On even special orthogonal groups. We explain with more details the

twists that we get in the case of even special orthogonal groups. We follow the

notation from Section 2 of [45]. First, Pj is the standard parabolic subgroup

of SO4a+2m with Levi subgroup isomorphic to GL` × SO4n+2m−2`(W`). Here

SO4n+2m−2`(W`) preserves the quadratic space

W` = Span{e±`+1, . . . , e
±
rm−1, e

±
rm} ⊕ V0.

G is the stabilizer of yκ preserving the quadratic space

W` ∩ y⊥κ = Span{e±`+1, . . . , e
±
rm−1, y−κ} ⊕ V0.

The anisotropic kernel of W`∩y⊥κ is a subspace of Fy−κ⊕V0. The inner period

over π is arisen from the open double coset of Pj\SO4n+2m/G ·N`. Recall that
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we choose the following representative η for this coset:

I`
0 Ij−`

Irm−j 0

IV0
0 Irm−j
Ij−` 0

I`


.

Recall thatGη = G∩(η−1Pjη). Then under the conjugation of η, SO2m(η−1Wj)

is the subgroup of Gη, which preserves

Span{e±`+1, . . . , e
±
rm−j+`} ⊕ V0.

For example, when j = ` + 1, then (G, SO2m(η−1Wj)) is the Gross-Prasad

pair. That is, SO2m(η−1Wj) is the stabilizer of the anisotropic vector y−κ.

Thus SO2m(η−1Wj) is isomorphic to SO2m(Wj).

5. Reciprocal non-vanishing of Bessel periods

The purpose of this section is to address the non-vanishing property of

the Bessel periods for the pair (Eτ⊗σ, π) and for the pair (π, σ), where Eτ⊗σ is

the iterated residue at s = 1
2 of the Eisenstein series E(·, φτ⊗σ, s) as defined in

(4.3), and σ may have to be replaced by σ′ as in (4.34).

5.1. Residue of the Eisenstein series. Here we recall the Eisenstein series

E(·, φτ⊗σ, s) from (4.3). Assume as before that σ ∈ Acusp(Hm) has a generic

global Arthur parameter φσ, and a cuspidal realization Cσ in the case when

the cuspidal multiplicity is not one. Let τ = τ1 � τ2 � · · · � τr be the irre-

ducible unitary generic isobaric automorphic representation of GE/F (a)(AF )

associated to distinct τ1, τ2, . . . , τr, as given in (4.1). Assume that the generic

global Arthur parameter φτ determined by τ has a different parity with φσ. It

follows that the L-function

L(s, τ × σ) = L(s, φτ × φσ),

as in [3], is holomorphic at s = 1
2 .

We calculate the constant terms of E(·, φτ⊗σ, s). According to the cuspidal

support of E(·, φτ⊗σ, s), among all of the constant terms that are not identically

zero, the term that carries the highest order of the pole at s = 1
2 is given by

the global intertwining operator integral

(5.1) M(ω0, τ ⊗ σ, s)(φτ⊗σ)(g) :=

∫
Uâ(A)

λsφτ⊗σ(ω−1
0 ng)dn,

where Uâ is the unipotent radical of the standard maximal parabolic subgroup

Pâ = MâUâ with Mâ = GE/F (a)×Hm, and the Weyl group element ω0 takes Uâ
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to its opposite U−â . Following the calculation of Langlands ([56] and also [72]),

one may choose the factorizable section φ = φτ⊗σ so that M(ω0, τ ⊗ σ, s)(φ)

can be written as

(5.2) M(ω0, τ ⊗ σ, s)S(φS) · LS(s, τ × σ)LS(2s, τ, ρ)

LS(1 + s, τ × σ)LS(1 + 2s, τ, ρ)
λ−sφ

S
ω0(τ⊗σ),

whereM(ω0, φτ⊗σ, s)S is the finite product of the local intertwining operators

over ν ∈ S, and φS =
∏
ν∈S φτν⊗σν and φS = ⊗ν 6∈Sφτν⊗σν . Since the cuspi-

dal automorphic representation σ is assumed to have a generic global Arthur

parameter, we define, following [3], the local L-factors at ν ∈ S in terms of

τ and the generic global Arthur parameter of σ. Then we take the Shahidi

normalization by defining, for each ν ∈ S,

(5.3) N (ω0, τ ⊗ σ, s)ν := βν(s, τ, σ, ψF ; ρ) · M(ω0, τ ⊗ σ, s)ν ,

where the local normalizing factor βν(s, τ, σ, ψF ; ρ) is defined to be

(5.4)
Lν(1 + s, τ × σ)Lν(1 + 2s, τ, ρ)εν(s, τ × σ, ψF )εν(2s, τ, ρ, ψF )

Lν(s, τ × σ)Lν(2s, τ, ρ)
.

Hence we obtain the following:

M(ω0, τ ⊗ σ, s) =
N (ω0, τ ⊗ σ, s) · L(s, τ × σ)L(2s, τ, ρ)

L(1 + s, τ × σ)L(1 + 2s, τ, ρ)ε(s, τ × σ)ε(2s, τ, ρ)
.

We call N (ω0, τ ⊗ σ, s)ν the normalized local intertwining operators.

Theorem 5.1. Let τ = τ1�· · ·�τr be the irreducible isobaric automorphic

representation of GE/F (a)(A) as in (4.1), and let σ ∈ Acusp(Hm) with a generic

global Arthur parameter φσ . Then, for each local place ν of F , the normalized

local intertwining operator N (ω0, τ⊗σ, s)ν from the induced space Ind
Ha+m(Fν)
Pâ(Fν) |·

|sτν⊗σν to Ind
Ha+m(Fν)
Pâ(Fν) |·|−sτ∗ν⊗σν is holomorphic and non-zero for Re(s) ≥ 1

2 ,

where τ∗ν = ι(τν)∨ is the contragredient of ι(τ).

We remark that when Hm is F -quasisplit, a much stronger result than

what was stated in Theorem 5.1 can be proved when σ is also assumed to be

generic; see [11], for instance, and also see [63]. We will prove Theorem 5.1 in

Appendix B.

By Theorem 5.1, we have that the normalized global intertwining opera-

tor N (ω0, τ ⊗ σ, s) is holomorphic and non-zero for Re(s) ≥ 1
2 . We are able

to study the order of the pole at s = 1
2 of the global intertwining operator

M(ω0, τ ⊗ σ, s).
In fact, it is easy to write

L(2s, τ, ρ) =

r∏
j=1

L(2s, τj , ρ) ·
∏

1≤i<j≤r
L(2s, τi × τ ιj ).
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Since τ1, . . . , τr are conjugate self-dual and distinct for all 1 ≤ i < j ≤ r,

L(2s, τi × τ ιj ) is holomorphic and non-zero at s = 1
2 . It follows that the

L-function L(2s, τ, ρ) has a pole at s = 1
2 of order r. Since the generic global

Arthur parameter φτ associated to τ and the generic global Arthur parameter

φσ associated to σ are in different parity, the L-function L(s, τ × σ) must be

of symplectic type ([16]), and it is holomorphic at s = 1
2 , but may have zero

at s = 1
2 . It follows that the global intertwining operator M(ω0, τ ⊗ σ, s) has

a pole at s = 1
2 of order at most r, and has the pole of order exactly r if and

only if the L-function L(s, τ × σ) is non-zero at s = 1
2 . This implies that the

Eisenstein series E(·, φτ⊗σ, s) has a pole at 1
2 of order at most r, and it has a

pole of order r at s = 1
2 if and only if L(s, τ × σ) is non-zero at s = 1

2 . We

summarize this result as follows.

Proposition 5.2. Assume that σ ∈ Acusp(Hm) has a generic global

Arthur parameter φσ . Let τ = τ1 � τ2 � · · · � τr be the irreducible unitary

generic isobaric automorphic representation of GE/F (a)(AF ) associated to dis-

tinct τ1, τ2, . . . , τr, as given in (4.1). Assume that the generic global Arthur pa-

rameter φτ determined by τ has a different parity with φσ . Then the L-function

L(s, τ ×σ) is holomorphic at s = 1
2 , and the Eisenstein series E(·, φτ⊗σ, s) has

a pole at s = 1
2 of order at most r. Moreover, E(·, φτ⊗σ, s) has a pole at s = 1

2

of order r if and only if L(s, τi, ρ) has a pole at s = 1 for i = 1, 2, . . . , r, and

L(s, τ × σ) is non-zero at s = 1
2 .

When the Eisenstein series E(·, φτ⊗σ, s) has a pole at s = 1
2 of order r, we

denote by Eτ⊗σ the r-th iterated residue at s = 1
2 of E(·, φτ⊗σ, s).

5.2. Special data for Bessel periods. We are going to choose a set of special

data in order to establish the reciprocal non-vanishing of the Bessel periods

for the pair (Eτ⊗σ, π) and for the pair (π, σ).

Take as before the classical group Gn = Isom(Vn, q)
◦. The group Gn is a

pure inner F -form of an F -quasisplit classical group G∗n = Isom(V ∗n , q
∗)◦ of the

same type. Here n = dimE Vn = dimE V
∗
n and n = [n2 ]. Recall from Section 2.2

that N = n∨ is n if Gn is a unitary group or an even special orthogonal group,

and it is n− 1 if Gn is an odd special orthogonal group.

Assume that π ∈ Acusp(Gn) has a Gn-relevant, generic global Arthur

parameter φ ∈ Φ̃2(G∗n). As in (1.2), the generic global Arthur parameter φ

determines an irreducible unitary generic isobaric automorphic representation

τ = τ1 � τ2 � · · ·� τr of GE/F (N)(AF ), as given in (4.1). Recall that the sign

κ of ξ is +1 for the global A-parameters of unitary groups, as explained in

Section 2.2. Take a Gn-relevant partition

(5.5) p
`∗

= [(2`∗ + 1)1n−2`∗−1],
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and consider the `∗-th Bessel module FO`∗ (π) of π, or FO`∗ (Cπ) for a cus-

pidal realization Cπ of π. Since π is irreducible and cuspidal, FO`∗ (π) con-

sists of rapidly decreasing automorphic functions on H
O`∗
`−∗

(A), and hence is

a sub-representation of H
O`∗
`−∗

(A) in the space of L2-automorphic functions on

H
O`∗
`−∗

(A). Note that the group H
O`∗
`−∗

is a pure inner F -form of an F -quasisplit

H∗
`−∗

with `−∗ = [ l
−
∗
2 ] and l−∗ = n− 2`∗ − 1.

We further assume that FO`∗ (Cπ) is non-zero and has the property that

there exists a σ ∈ Acusp(H
O`∗
`−∗

) with a generic global Arthur parameter, such

that the inner product

(5.6) PψO`∗ (ϕπ, ϕσ) =
¨
FψO`∗ (ϕπ), ϕσ

∂
H
O`∗
`−∗

6= 0

for some ϕπ ∈ Cπ and ϕσ ∈ Cσ, where Cσ is a cuspidal realization of σ.

Note that the index `∗ may not be the first occurrence index as described

in Conjecture 2.3. In this generality, the discussion in this section can also be

applied to the proof of one of the directions of the global Gan-Gross-Prasad

conjecture in Section 5.5.

In this section we take that m := `−∗ and m := l−∗ = n − 2`∗ − 1. In the

definition of global zeta integrals in Section 4.1, we take

(5.7) Hm = H
O`∗
`−∗

and a = N = n∨

and take Ha+m to be the classical group containing the Levi subgroup GE/F (a)

×Hm. To define the global zeta integrals, we take the partition

(5.8) p
κ∗

= [(2κ∗ + 1)12a+m−2κ∗−1]

with κ∗ := a− `∗ − 1. It is a partition of type (2a+ m, Ha+m).

Since a − κ∗ = `∗ + 1 > 0, we are in the situation of Section 4.4. For

any F -rational orbit Oκ∗ in the F -stable orbit Ost
p
κ∗

, we have the stabilizer

G
Oκ∗
m− = Gw∗

m− as in Proposition 4.3, with (κ∗)
− = m−. The integer m−, such

that m− = [m
−

2 ], can be calculated as follows. By definition, we have

(5.9) m− = 2a+ m− 2κ∗ − 1 = m + 2(a− κ∗)− 1.

Since a − κ∗ = `∗ + 1, we have m− = m + 2`∗ + 1. Since m = n − 2`∗ − 1,

we must have that m− = n and hence that m− = n. By Proposition 2.6, and

the relation of the three groups (Ha+m, Gn, Hm), it is not hard to find the

F -anisotropic vector w∗ corresponding to the F -rational orbit Oκ∗ such that

Gn can be identified with the stabilizer G
Oκ∗
m− = Gw∗

m− .

Recall that Eτ⊗σ is the iterated residue at s = 1
2 of the Eisenstein series

E(·, φτ⊗σ, s). The reciprocal non-vanishing of the Bessel periods for the pair

(Eτ⊗σ, π) and for the pair (π, σ′) is given below.
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Theorem 5.3 (Reciprocal non-vanishing of Bessel periods). Assume that

σ ∈ Acusp(Hm) has a generic global Arthur parameter φσ . Let τ = τ1 � τ2 �
· · ·� τr be the irreducible unitary generic isobaric automorphic representation

of GE/F (a)(AF ) with a = N = n∨, which determines a generic global Arthur

parameter φτ of G∗n. Assume that the residue Eτ⊗σ′ is non-zero and π ∈
Acusp(Gn) has a generic global Arthur parameter φτ . Then the Bessel period〈
ϕπ,FψOκ∗ (Eτ⊗σ′)

〉
Gn

for the pair (Eτ⊗σ′ , π) is non-zero for some choice of

data if and only if the Bessel period
¨
FψO`∗ (ϕπ), ϕσ

∂
Hm

for the pair (π, σ) is

non-zero for some choice of data.

By using Corollary 4.4, it is easy to prove that if the Bessel period〈
ϕπ,FψOκ∗ (Eτ⊗σ′)

〉
Gn

is non-zero for some choice of data, then the Bessel

period
¨
FψO`∗ (ϕπ), ϕσ

∂
Hm

is non-zero for some choice of data. In fact, if〈
ϕπ,FψOκ∗ (Eτ⊗σ′)

〉
Gn

is not identically zero, then by replacing the residue

Eτ⊗σ′ by the Eisenstein series E(·, φτ⊗σ′ , s), we obtain that the global zeta

integral Z(s, φτ⊗σ′ , ϕπ, ψOκ∗ ) is not identically zero for Re(s) large. Hence

by Corollary 4.4, the Bessel period
¨
FψO`∗ (ϕπ), ϕσ

∂
Hm

is non-zero for some

choice of data.

The proof of the opposite direction is more technical. We have to know

enough analytic properties of the local zeta integrals at the ramified and the

archimedean local places.

5.3. Normalization of local zeta integrals. We continue our discussion of

the global and local zeta integrals from Section 4, with special data as given in

Section 5.2. In particular, we will deal with the case where a−κ∗ = `∗+1 > 0,

which is the case of Section 4.4. Recall from (4.49) that the global zeta integral

has the following expression,

Z(s, φτ⊗σ′ , ϕπ, ψOκ∗ ) = ZS(s, φτ⊗σ′ , ϕπ, ψOκ∗ ) · L
S(s, τ, π, σ; ρ),

where ZS(s, ·) =
∏
ν∈S Zν(s, ·) is the finite Euler product with the local zeta

integral Zν(s, ·) as in (4.41), and

LS(s, τ, π, σ; ρ) =
∏
ν 6∈S
L(s, τν , πν , σν ; ρ)

with L(s, τν , πν , σν ; ρ) as in (4.47). Recall that S consists of all ramified places

of relevant data and all archimedean places such that for ν /∈ S, all data are

unramified. Hence at ν /∈ S we only consider spherical vectors in the discussion.

We normalize the local zeta integrals by

(5.10) Z∗ν (s, φτ⊗σ′ , ϕπ, ψOκ∗ ) :=
Zν(s, φτ⊗σ′ , ϕπ, ψOκ∗ )

L(s, τν , πν , σν ; ρ)
.
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By taking the finite product, we have ZS(s, ·) = Z∗S(s, ·) · LS(s, ·). Hence the

formula in (4.49) becomes

(5.11) Z(s, φτ⊗σ′ , ϕπ, ψOκ∗ ) = Z∗S(s, φτ⊗σ′ , ϕπ, ψOκ∗ ) · L(s, τ, π, σ; ρ).

Proposition 5.4. The assumption on (π, τ, σ) is taken as in Theorem 5.3.

Then the following hold :

(1) Z∗S(s, φτ⊗σ′ , ϕπ, ψOκ∗ ) is meromorphic in s ∈ C for any choice of the

smooth sections φτ⊗σ′,s.

(2) Z∗S(s, φτ⊗σ′ , ϕπ, ψOκ∗ ) is holomorphic at s = 1
2 for any choice of the smooth

sections φτ⊗σ′,s.

Note that φτ⊗σ′,s is called a smooth section if φτν⊗σ′ν ,s is a smooth holo-

morphic section at archimedean places and is a flat section at non-archimedean

places.

Proof. Recall from (4.9) that we have

Z(s, φτ⊗σ′ , ϕπ, ψOκ∗ ) =
〈
ϕπ,FψOκ∗ (E(·, φτ⊗σ′ , s))

〉
Gn
,

and hence by (5.11), we obtain

(5.12)〈
ϕπ,FψOκ∗ (E(·, φτ⊗σ′ , s))

〉
Gn

= Z∗S(s, φτ⊗σ′ , ϕπ, ψOκ∗ ) · L(s, τ, π, σ; ρ).

We first consider the right-hand side of the identity in (5.12). In the

L-function part, we have

(5.13) L(s, τ, π, σ; ρ) =
L(s+ 1

2 , τ × π)

L(s+ 1, τ × σ)L(2s+ 1, τ, ρ)
.

Since the cuspidal automorphic representations π and σ are assumed to have

generic global Arthur parameters, the complete L-functions L(s, τ × π) and

L(s, τ × σ) are defined in terms of the global Arthur parameters of π and σ,

respectively. Hence L(s, τ, π, σ; ρ) is meromorphic in s over C.

In the left-hand side of the identity in (5.12), the Fourier coefficient

FψOκ∗ (E(·, φτ⊗σ′ , s)) is meromorphic in s over C and the inner product〈
ϕπ,FψOκ∗ (E(·, φτ⊗σ′ , s))

〉
Gn

is well defined when s is away from the poles of FψOκ∗ (E(·, φτ⊗σ′ , s)), since

ϕπ is cuspidal. Hence the left-hand side of the identity is meromorphic in s

over C. It follows that the finite product of the normalized local zeta integrals,

Z∗S(s, φτ⊗σ′ , ϕπ, ψOκ∗ ), is a meromorphic function in s over C for any choice of

φτ⊗σ′ with the given ϕσ and for the given ϕπ. This proves part (1).



788 DIHUA JIANG and LEI ZHANG

In order to prove part (2), we need more specific information from both

sides. In the expression (5.13), the product

L

Å
s+

1

2
, τ × π

ã
=

r∏
i=1

L

Å
s+

1

2
, τi × π

ã
has a pole at s = 1

2 of order r, since the cuspidal automorphic representation π

has the generic global Arthur parameter φτ with τ = τ1 � · · ·� τr, as in (4.1).

It is clear that the product

L(s+ 1, τ × σ) =
r∏
i=1

L(s+ 1, τi × σ)

and the product

L(2s+ 1, τ, ρ) =
r∏
i=1

L(2s+ 1, τi, ρ)×
∏

1≤i<j≤r
L(2s+ 1, τi × τ ιj )

are holomorphic and non-zero at s = 1
2 . It follows that the L-function part

L(s, τ, π, σ; ρ) has a pole at s = 1
2 of order r.

In order to show that the finite product of the normalized local zeta in-

tegrals, Z∗S(s, φτ⊗σ′ , ϕπ, ψOκ∗ ), is holomorphic at s = 1
2 , it is enough to show

that the inner product in the left-hand side of (5.12),〈
ϕπ,FψOκ∗ (E(·, φτ⊗σ′ , s))

〉
Gn
,

has a pole at s = 1
2 of order at most r for any smooth sections φτ⊗σ′,s.

By Proposition 5.2, the Fourier coefficient FψOκ∗ (E(·, φτ⊗σ′ , s)) of the

Eisenstein series E(·, φτ⊗σ′ , s) has a pole at s = 1
2 of order at most r for any

smooth sections φτ⊗σ′,s. The inner product of the Fourier coefficient with the

cuspidal automorphic form ϕπ cannot increase the order of the pole at s = 1
2 .

It follows that the left-hand side of (5.12) has a pole at s = 1
2 of order at

most r. Therefore, we obtain that the finite product of the normalized local

zeta integrals, Z∗S(s, φτ⊗σ′ , ϕπ, ψOκ∗ ), must be holomorphic at 1
2 . This proves

part (2). �

In order to obtain more properties of the local zeta integrals or the nor-

malized ones for the global purpose in this paper, we have to introduce the

global condition that the Bessel period for (π, σ) is non-zero. For ϕπ ∈ Cπ
and ϕσ ∈ Cσ, the Bessel period

¨
FψO`∗ (ϕπ), ϕσ

∂
Hm

, as in (5.6) with the given

data, defines a non-zero element in the one-dimensional space

⊗νHomHm(Fν)(JψO`∗ (πν)⊗ σν ,C),
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where JψO`∗ (πν) is the local twisted Jacquet module of πν with respect to

(Vp
`∗
, ψO`∗ ). Let b

ψO`∗
ν be a non-zero functional in

HomHm(Fν)(JψO`∗ (πν)⊗ σν ,C),

which is unique, up to scalar. We normalize the functional b
ψO`∗
ν , so that at

the unramified local places,

b
ψO`∗
ν (ϕπν , ϕσν ) = 1,

where ϕπν and ϕσν are normalized spherical vectors in πν and σν , respectively.

Here a spherical vector is normalized if its corresponding spherical function

has value 1 at the identity. And at the ramified local places ν ∈ S, the local

functional b
ψO`∗
ν will be normalized according to (A.9) in Appendix A. Hence

we obtain the following identity: for factorizable factors ϕπ = ⊗νϕπν and

ϕσ = ⊗νϕσν ,

(5.14)
¨
FψO`∗ (ϕπ), ϕσ

∂
Hm

= cπ,σ ·
∏
ν

b
ψO`∗
ν (ϕπν , ϕσν ),

by the uniqueness of the local Bessel models ([2], [77], [16] and [44]).

Proposition 5.5. The assumption on (π, τ, σ) is taken as in Theorem 5.3.

Fix any given s = s0 ∈ C. If for every ν ∈ S, the local pairing b
ψO`∗
ν (ϕπν , ϕσν )

is non-zero for some ϕσν ∈ σν and ϕπν ∈ πν , then there exists a collection of

sections φτν⊗σ′ν with ν running in S such that the finite product of the local

zeta integrals, ZS(s, φτ⊗σ′ , ϕπ, ψOκ∗ ), is a non-zero constant at s = s0.

The proof of Proposition 5.5 will be given in Appendix A.

Proposition 5.6. The assumption on (π, τ, σ) is taken as in Theorem 5.3.

Assume further that (π, σ) has a non-zero Bessel period. Then there exist

factorizable data ϕπ , ϕσ , and φτ⊗σ′ such that Z∗S(s, φτ⊗σ′ , ϕπ, ψOκ∗ ) at s = 1
2

and the inner product
¨
FψO`∗ (ϕπ), ϕσ

∂
Hm

are simultaneously non-zero.

Proof. By assumption, the Bessel period
¨
FψO`∗ (ϕπ), ϕσ

∂
Hm

is not zero

for the pair (π, σ). By (5.14), for factorizable vectors ϕπ = ⊗νϕπν and ϕσ =

⊗νϕσν , we have¨
FψO`∗ (ϕπ), ϕσ

∂
Hm

= cπ,σ ·
∏
ν

b
ψO`∗
ν (ϕπν , ϕσν ).

Since
¨
FψO`∗ (ϕπ), ϕσ

∂
Hm

is not zero, it follows that cπ,σ 6= 0 and bν(ϕπν , ϕσν )

is non-zero for every ν. By Proposition 5.5, there exists a smooth factor-

izable section φτ⊗σ′ such that the finite product of the local zeta integral

ZS(s, φτ⊗σ′ , ϕπ, ψOκ∗ ) is non-zero at s = 1
2 .
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Recall from (5.10) that we have

ZS(s, φτ⊗σ′ , ϕπ, ψOκ∗ ) = Z∗S(s, φτ⊗σ′ , ϕπ, ψOκ∗ ) · LS(s, τ, π, σ; ρ).

By using the structures of generic unitary dual of τν , πν , and σν for each

ν ∈ S, respectively, and by following similar arguments with Appendix B, we

obtain that the normalizing factors L(s, τν , πν , σν ; ρ) as defined in (4.47) for

each ν ∈ S is holomorphic for Re(s) ≥ 1
2 . Hence the finite Euler product

LS(s, τ, π, σ; ρ) is holomorphic for Re(s) ≥ 1
2 . This proves that the normalized

Z∗S(s, φτ⊗σ′ , ϕπ, ψOκ∗ ) is also non-zero at 1
2 . �

5.4. Proof of Theorem 5.3. We already proved one direction of Theo-

rem 5.3. Now we are ready to prove the other direction of Theorem 5.3.

By the assumptions in Theorem 5.3, the equation in (5.12) reads〈
ϕπ,FψOκ∗ (E(·, φτ⊗σ′ , s))

〉
Gn

= Z∗S(s, φτ⊗σ′ , ϕπ, ψOκ∗ ) · L(s, τ, π, σ; ρ).

By Proposition 5.4, Z∗S(s, φτ⊗σ′ , ϕπ, ψOκ∗ ) is meromorphic in s and is holomor-

phic at s = 1
2 for any section φτ⊗σ′ depending on the choice of ϕπ and ϕσ with

property that the Bessel period
¨
FψO`∗ (ϕπ), ϕσ

∂
Hm

is non-zero. Furthermore,

by Proposition 5.6, there exists a choice of factorizable ϕπ, ϕσ, and ⊗νfWκ
τν⊗σ′ν

that occur in the definition of the local zeta integrals (see (4.38)), such that

both
¨
FψO`∗ (ϕπ), ϕσ

∂
Hm

is non-zero and Z∗S(s, φτ⊗σ′ , ϕπ, ψOκ∗ ) is non-zero at

s = 1
2 .

With such a choice of data, and with a factorizable φτ⊗σ′ = ⊗νφτν⊗σ′ν
corresponding to the above ⊗νfWκ

τν
⊗σ′ν , the right-hand side of (5.12) has a

pole at s = 1
2 of order r. It follows that the left-hand side of (5.12), i.e.,〈

ϕπ,FψOκ∗ (E(·, φτ⊗σ′ , s))
〉
Gn

, has a pole at s = 1
2 of order r. Since the

Eisenstein series E(·, φτ⊗σ′ , s) has a pole at s = 1
2 of order at most r, we

must have that E(·, φτ⊗σ′ , s) has a pole at s = 1
2 of order r. Since ϕπ is

cuspidal, by taking the iterated residue of
〈
ϕπ,FψOκ∗ (E(·, φτ⊗σ′ , s))

〉
Gn

at

s = 1
2 , we obtain that the Bessel period

〈
ϕπ,FψOκ∗ (Eτ⊗σ′)

〉
Gn

is non-zero

with such a chosen data where, as before, Eτ⊗σ′ denotes the iterated residue

of the Eisenstein series E(·, φτ⊗σ′ , s) at the pole s = 1
2 of order exactly equal

to r. This completes the proof of Theorem 5.3.

5.5. Global Gan-Gross-Prasad conjecture: one direction. We are ready to

derive the proof of one of the two directions of the global Gan-Gross-Prasad

conjecture (Conjectures 24.1 and 26.1 in [16]), as a continuation of the proof

of Theorem 5.3 in Section 5.4.
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Assume that the Bessel period
¨
FψO`∗ (ϕπ), ϕσ

∂
Hm

for the pair (π, σ) is

non-zero for some ϕπ and ϕσ as in (5.6). By the same proof as in Section 5.4,

we obtain that the Fourier coefficient FψOκ∗ (Eτ⊗σ̄′) is non-zero, where σ̄′ is

the complex conjugate of σ′. As a consequence, we obtain that the iterated

residual representation Eτ⊗σ̄′ is non-zero. By Proposition 5.2, we obtain that

L(s, τ × σ̄) = L(s, τ × σ̄′) is holomorphic and non-zero at s = 1
2 .

Because σ̄ is isomorphic to the contragredient σ∨ of σ, it follows that

L(s, τ × σ∨) is holomorphic and non-zero at s = 1
2 , and so is L(s, τ × σ). This

proves one direction of the global Gan-Gross-Prasad conjecture ([16]) in the

full generality for the classical groups considered in this paper.

Theorem 5.7 (Global Gan-Gross-Prasad conjecture: one direction). For

any π ∈ Acusp(Gn) with a Gn-relevant, generic global Arthur parameter in

Φ̃2(G∗n)Gn , and with a cuspidal realization Cπ of π, assume that the Bessel

period ¨
FψO`∗ (ϕπ), ϕσ

∂
Hm

is non-zero with a choice of ϕπ ∈ Cπ and ϕσ ∈ Cσ , for some σ ∈ Acusp(Hm)

with an Hm-relevant, generic global Arthur parameter in Φ̃2(H∗m)Hm , and with

a cuspidal realization Cσ of σ. Then the tensor product L-function L(s, π×σ) =

L(s, τ × σ) must be holomorphic and non-zero at s = 1
2 .

Some remarks are in order. First of all, the original global Gan-Gross-

Prasad conjecture in [16] assumes that the cuspidal multiplicity of π∈Acusp(Gn)

should be one. Theorem 5.7 takes care of the even special orthogonal group

case, where the cuspidal multiplicity of π could be two.

When Gn = G∗n and Hm = H∗m are F -quasisplit, and when both π and σ

are generic, i.e., have non-zero Whittaker-Fourier coefficients, and have simple,

generic global Arthur parameters, i.e., their Langlands functorial transfers to

the corresponding general linear groups are cuspidal, Theorem 5.7 was con-

sidered in [20], [21], and [22] by an approach mixing the Arthur truncation

method and the Rankin-Selberg method. Recently, it was noticed by experts

that there exists a gap in the proof of Proposition 5.3 in [20], which was du-

plicated in [21] and [22]. This technical gap is crucial to the complete proof of

the special case of Theorem 5.7 considered in those papers, and it needs to be

filled up.

Meanwhile, the assumption of the genericity of both π and σ and the

assumption of the cuspidality of the functorial transfer of π and σ to gen-

eral linear groups are critical to make the arguments and proofs work before

Proposition 5.3 in [20], and the same in [21] and [22]. Those restrictions dis-

appear in the approach taken in this paper. It seems to the authors of this

paper that the approach taken up using the general framework (including the
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twisted automorphic descents and the reciprocal non-vanishing for Bessel pe-

riods) considered in this paper is a more natural and conceptual way to attack

the global Gan-Gross-Prasad conjecture.

It is also very important to mention that W. Zhang proved the global Gan-

Gross-Prasad conjecture ([88] and [87]) for unitary groups Un × Un−1, with

certain local assumptions, and with the global assumption on cuspidality of

the global Langlands functorial transfers from unitary groups to general linear

groups. His approach is based on the Jacquet-Rallis relative trace formula

originally developed in [34] for unitary groups. The progress to extend the

approach of Zhang to a more general situation has been picked up by Y. Liu

([58]) and by H. Xue ([84]). However, this relative trace formula approach

is so far not known to be available for classical groups that are not unitary

groups. The approach taken up in this paper treats both unitary groups and

orthogonal groups uniformly. The same approach is expected to work for

symplectic groups and metaplectic groups with replacement of Bessel models

by Fourier-Jacobi models. We refer to our work ([46]) for more details.

The other direction of the global Gan-Gross-Prasad conjecture ([16]) is

more delicate and will be discussed in Section 6.3 with an assumption on

the structure of Fourier coefficients of the residual representation Eτ⊗σ on

Ha+m(A). See Theorem 6.10 for details.

6. Twisted automorphic descents

We develop here a basic theory of twisted automorphic descents and point

out two relevant applications. One is discussed in Section 6.2 on the explicit

construction of cuspidal automorphic modules for any irreducible cuspidal au-

tomorphic representations of Gn and another is discussed in Section 6.3 on the

other direction of the global Gan-Gross-Prasad conjecture.

6.1. Automorphic descents and certain Arthur packets. For a given π ∈
Acusp(Gn) with a Gn-relevant, generic global Arthur parameter φ = φτ ∈
Φ̃2(G∗n), we recall that φτ has the form

(τ1, 1) � (τ2, 1) � · · ·� (τr, 1) ∈ Φ̃2(G∗n).

Remark that we choose the sign κ = +1 for the unitary group case as in

Section 2.2. Take a σ ∈ Acusp(Hm) with an Hm-relevant, generic global Arthur

parameter φσ ∈ Φ̃2(H∗m), and define a non-generic global Arthur parameter by

(6.1) ψτ,σ := (τ1, 2) � (τ2, 2) � · · ·� (τr, 2) � φσ.

Clearly ψτ,σ belongs to ‹Ψ2(H∗a+m) and is Ha+m-relevant. Let Π̃ψτ,σ(Ha+m) be

the global Arthur packet attached to the global Arthur parameter ψτ,σ in (6.1).

As in [41], one may easily verify the following property.
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Proposition 6.1. The residual representation Eτ⊗σ is square integrable

and, if non-zero, belongs to the global Arthur packet Π̃ψτ,σ(Ha+m) with the

global Arthur parameter ψτ,σ given in (6.1).

From the endoscopic classification of Arthur in [3], it is expected that

the global Arthur packet Π̃ψτ,σ(Ha+m) contains some members that belong to

Adisc(Ha+m). If these automorphic members are not of residue type, they are

cuspidal. The twisted automorphic descent is an approach to understand the

structures and the properties of the global packet Π̃ψτ,σ(Ha+m), instead of a

certain individual member in the global packet Π̃ψτ,σ(Ha+m).

We assume that a Σ ∈ Adisc(Ha+m) has the global Arthur parameter ψτ,σ
as given in (6.1), and has a discrete realization CΣ. Consider Fourier coefficients

associated to the partitions of the form

p
κ

= [(2κ+ 1)12a+m−2κ−1]

of 2a+ m with 0 ≤ κ ≤ a+ rm, where rm is the F -rank of Hm. It is clear that

the partition p
κ

is of type (2a + m, H∗a+m). As in Section 2.3, we study the

ψp
κ
,Oκ-Fourier coefficient of fΣ ∈ CΣ and denote by FOκ

κ− (Σ) the κ-th Bessel

module of GOκ
κ− (A) generated by all the Fourier coefficients FψOκ (fΣ) with all

fΣ ∈ CΣ. As in [23] for the case m = 0 and in [40] for m = 1, we prove the

following proposition by investigating the local structure at one unramified

place of the global Arthur parameter ψτ,σ given in (6.1).

Proposition 6.2. Assume that a Σ ∈ Adisc(Ha+m) belongs to the global

Arthur packet Π̃ψτ,σ(Ha+m) with the parameter ψτ,σ given in (6.1). Set `0 :=
n−m−1

2 . For any integer κ with a−`0−1 < κ ≤ a+ rm, the κ-th Bessel modules

FOκ
κ− (Σ) are zero for all F -rational nilpotent orbits Oκ in the F -stable orbit

Ost
p
κ
(F ).

Proof. First, the κ-th Bessel module FOκ
κ− (Σ) produces the corresponding

local Jacquet module of Σν with respect to (Vp
κ
, ψOκ) at any finite local place ν.

At almost all finite local places, Σν is unramified and is completely determined

by the ν-component of the global Arthur parameter ψτ,σ. Taking one such

unramified finite local place ν, the generic unramified representation τν of

GE/F (a)(Fν) is conjugate self-dual and hence is completely determined by

[a2 ] unramified characters µ1, . . . , µ[a
2

], and σν is also an irreducible generic

unramified representation of Fν-quasisplit Hm(Fν). As in [23, Ch. 5] and in

the proof of Proposition 2.3 of [40], the unramified local component Σν can

be realized as the unique irreducible unramified subquotient of the following

induced representation,

(6.2) Ind
Ha+m(Fν)
Pâ(Fν) (τ ′ν ⊗ σν),
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where τ ′ν = Ind
GE/F (a)(Fν)

Q
[2
[a2 ]

]
(Fν) (µ1 ◦ det2) ⊗ · · · ⊗ (µ[a

2
] ◦ det2) in most cases, and

det2 is the determinant of GE/F (2). Refer to the discussions in the proof of

Lemma 6.5 for all cases of τ ′ν . In the rest of the proof, the argument works for

all cases of τ ′ν , although we only discuss the situation as in (6.2).

In [23, Ch. 5], the calculation of the local Jacquet modules of the induced

representation as in (6.2) with respect to (Vp
κ
, ψOκ) and for general κ has been

explicitly carried out. See [23, Th. 5.1], in particular. Hence it is not hard

to figure out, as in [40, §2], that for κ with a − `0 − 1 < κ ≤ a + rm, such a

local Jacquet module is always zero for the induced representation as in (6.2),

and so is always zero for the unramified local component Σν at the fixed local

place ν. This proves that for all κ with a− `0−1 < κ ≤ a+ rm, the κ-th Bessel

module FOκ
κ− (Σ) must be zero for all such orbits F -rational Oκ in the F -stable

orbit Ost
p
κ
(F ). �

The proof uses the structure of unramified local components of Σ and

hence is independent of the discrete realization of Σ if Σ has high discrete

multiplicity. The same happens to the proof of the following proposition, which

considers the κ0-Bessel modules FOκ0n (Σ) for the case where κ0 = a − `0 − 1

and hence κ−0 = m− = n.

Proposition 6.3. Let τ and σ be as in Proposition 6.2, and set κ0 = a−
`0−1 with `0 = n−m−1

2 . Let Σ be any automorphic member in the global Arthur

packet Π̃ψτ,σ(Ha+m). For n = κ−0 , and for all F -rational nilpotent orbits Oκ0
in the F -stable orbit Ost

p
κ0

(F ), the κ0-Bessel modules FOκ0n (Σ) are cuspidal, as

sub-representations of G
Oκ0
n (A) in the cuspidal spectrum L2

cusp(G
Oκ0
n ).

Proof. It suffices to show that the constant term of FOκ0n (Σ) along every

standard parabolic subgroup of G
Oκ0
n is zero. The proof uses essentially the

tower property developed in [23, Ch. 7]. We take, in particular, Theorem 7.3

of [23]. As in the proof of Proposition 2.5 of [40], it is enough to show the

conditions in [23, Th. 7.3] hold. Because of Proposition 6.2, the terms in [23,

eq. (7.35)] are all zero. If Σ is cuspidal, the conditions in [23, Th. 7.3] are

automatic. Hence in this case, all the constant terms are zero, and therefore,

κ0-th Bessel modules FOκ0n (Σ) are cuspidal.

When Σ in the global Arthur packet Π̃ψτ,σ(Ha+m) is not cuspidal, it must

be a residual representation with the global Arthur parameter ψτ,σ. According

to [61, Th. §1.3 ] and [62, Th. B], among the residual representations in the

global Arthur packet Π̃ψτ,σ(Ha+m), Σ = Eτ⊗σ has the least cuspidal support in

the sense that among the cuspidal supports of those residual representations,

the Levi subgroup in the cuspidal support of Eτ⊗σ is the smallest one. It is
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enough to consider the case when Σ = Eτ⊗σ. The same argument will be

applicable to the other residual representations.

For Σ = Eτ⊗σ, in formula (7.35) of [23], it follows from Proposition 6.2

that all the summands in summation are zero. Hence it is enough to check

the assumption of Theorem 7.3 of [23]. By the cuspidal support of Eτ⊗σ, if the

constant term fUp−i is zero (using the notation of [23, Th. 7.3], with f ∈ Eτ⊗σ),

we are done. It remains to consider the cases when the constant terms are not

zero. To this end, we may consider the first non-zero constant term, which

reduces to the case with τ = τ2 � · · ·� τr of GE/F (a−a1)(A). Here we refer to

(4.1) for notation. In this case, the index for the Fourier coefficient is κ0+i with

i = 0, 1, . . . , p− 1, following the notation of [23, Th. 7.3]. Since κ0 = a− `0− 1

and `0 = n−m−1
2 , we must have

κ0 + i =
(
a− n

2

)
+

m− 1

2
+ i.

On the other hand, the term (fUp−i)ψκ0+i,α is a Fourier coefficient on Ha−a1+m

with index
a− a1 + m + ε− 1

2
,

where ε = −1 if Gn is an odd special orthogonal group; otherwise, ε = 0. It

follows that

κ0 + i >
a− a1 + m + ε− 1

2
.

This is because a−ε
2 = n

2 and a1
2 + i > 0. According to the structure of the

global Arthur parameter ψτ,σ as in (6.1), the term (fUp−i)ψκ0+i,α must be zero.

Namely, the condition in [23, Th. 7.3] holds in this reduced case because of

Proposition 6.2. Hence by induction, we obtain that the κ0-th Bessel modules

FOκ0n (Σ) must also be cuspidal. This completes the proof. �

It is clear that the κ0-th Bessel modules FOκ0n (Σ) could be zero. We

assume that the cuspidal sub-representation FOκ0n (Σ) of G
Oκ0
n (A), occurring

in the cuspidal spectrum L2
cusp(G

Oκ0
n ), is non-zero, and we write it as a Hilbert

direct sum

(6.3) FOκ0n (Σ) = π1 ⊕ · · · ⊕ πk ⊕ · · · ,

where all πi are irreducible cuspidal automorphic representations of G
Oκ0
n (A).

In fact, the κ0-th Bessel modules FOκ0n (Σ) are also‹O(G
Oκ0
κ−0

)-stable, as indicated

in the following proposition.

Proposition 6.4. For Σ ∈ Adisc(Ha+m), the κ-th Bessel module FOκ
κ− (Σ)

is ‹O(GOκ
κ− )-stable.
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Proof. To prove this, it suffices to consider the case when Ha+m is an odd

special orthogonal group. In fact, for all the other cases, the stabilizer GOκ
κ− is

not an even special orthogonal group and hence ‹O(GOκ
κ− ) is trivial.

Suppose that Ha+m is an odd special orthogonal group. Then m is odd

and m = 2m + 1. In this case, the discrete multiplicity of Σ is one. We may

take the unique discrete realization CΣ of Σ in this proof.

By the definition in Section 2.4, GOκ
κ− is identified as the connected com-

ponent group Isom(V(κ) ∩ w⊥0 , q)◦, where the anisotropic vector w0 is of form

(2.14), namely,

w0 = ea+rm + (−1)n+1x

2
e−(a+rm)

for some x ∈ F×, where rm = r(Hm) is the F -rank of Hm. Recall that

Isom(V(κ), q)
◦ = Ha+m−κ is a subgroup of the Levi subgroup Mκ̂ of Ha+m.

Assume that κ > 0. Take the element

ε = diag{−Iκ, Ia+rm−κ−1,−1, Im−2rm ,−1, Ia+rm−κ−1,−Iκ}.

It is easy to check that ε ∈ Ha+m and it stabilizes w0. Note that the stabilizer

of w0 is SO(V(κ) ∩ w⊥0 , q) o 〈ε〉, which is isomorphic to O(V(κ) ∩ w⊥0 , q). The

adjoint action of 〈ε〉 on GOκ
κ− = SO(V(κ) ∩ w⊥0 , q) is the same as the action of‹O(GOκ

κ− ).

Consider the action of ε ∈ Ha+m(F ) on a discrete realization CΣ of Σ,

defined by f ε(g) := f(ε−1gε) for f ∈ CΣ. Since ε ∈ Ha+m(F ), f ε(g) also

belongs to CΣ. By the definition in (2.7), since ε stabilizes ψκ,w0 ,

Fψκ,w0 (f ε)(h) = Fψκ,w0 (f)(ε−1hε) := Fψκ,w0 (f)ε(h),

where the action of ε on h ∈ GOκ
κ− is given as above. It follows that if f ∈ CΣ,

then Fψκ,w0 (f)ε ∈ Fψκ,w0 (CΣ). As explained on page 753, the action of ε on

Fψκ,w0 (f) coincides the action of ‹O(GOκ
κ− ) on FOκ

κ− (CΣ). That is, FOκ
κ− (CΣ) is‹O(GOκ

κ− )-stable.

When κ = 0, the κ-th Bessel module FOκ
κ− (CΣ) is the restriction of CΣ

into the even special orthogonal group SO2a+m−1(w⊥0 ). Let us extend the

representation CΣ as the representation of Ha+m × 〈−I2a+m〉 = O2a+m(V ), by

letting the action be trivial on 〈−I2a+m〉. We may choose

ε = {Ia+m,−1, Ia+m}.

Then the rest of the proof is the same as that for the case κ > 0. We complete

the proof. �

The general calculation of the local Jacquet module of the induced rep-

resentation of type (6.2) (as explained in [23, Ch. 5], or more precisely, in

[23, Ths. 5.4 and 5.6], and also as in [40, §4.1]) can be adopted to prove that

those irreducible summands πi in (6.3) are actually nearly equivalent to each
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other. At almost all local finite places ν, the unramified local component πi,ν
of πi shares the same Satake parameter with the unramified local component

τν under the unramified local Langlands functorial transfer from G
Oκ0
n (Fν) to

GE/F (a)(Fν) except that G
Oκ0
n (Fν) is a split even special orthogonal group.

In this case, the unramified local component πi,ν belongs to the ‹O(G
Oκ0
n (Fν))-

orbit of the Satake parameters of G
Oκ0
n (Fν), which are the descents of the

Satake parameters of τν under the local Langlands functorial transfer.

For the sake of completeness and also for future applications, we apply

Theorems 5.4 and 5.6 in [23] to elaborate with some details the above discus-

sions. We summarize the results on the local descent at the unramified places

as the following lemma.

Lemma 6.5. Let ν be a finite place such that all data are unramified.

Assume that Σν is the unique irreducible unramified constituent of

Ind
Ha+m(Fν)
Pâ(Fν) τν |det |

1
2 ⊗ σν ,

where τν and σν are irreducible, generic and unramified local components of τ

and σ in (6.1). Then the unramified constituents of FOκ0n (Σν) have the same

Satake parameter with τν under the local Langlands functorial transfer from

G
Oκ0
n (Fν) to GE/F (Fν).

Proof. We proceed the proof for the following two different cases:

(1) Hm is special even orthogonal, or Hm is split odd orthogonal and GOκ
κ− is

split, or Hm is quasi-split odd unitary; and

(2) Hm is split special odd orthogonal and GOκ
κ− is non-split, or Hm is quasi-

split even unitary.

Case (1). Under the assumption, if Hm is split special even orthogonal,

then the assumption that the Witt index of Eνy−α + V0 is zero in [23, Th. 5.4

(1)] holds; if Hm is split special odd orthogonal and GOκ
κ− is split, then the Witt

index of Eνy−α + V0 is one, δ1
h(V ),α = 0 and δ2

h(V ),α = 1 in the notation of [23,

Th. 5.4 (2)]; otherwise, the Witt index of Eνy−α + V0 is one, and δ1
h(V ),α = 1

and δ2
h(V ),α = 0 in [23, Th. 5.4 (2)]. In Case (1), a is even by the parity of the

dimension of the Arthur parameters involved.

As in (6.2), we consider the unramified local component Σν as the unram-

ified subquotient of

(6.4) Ind
Ha+m(Fν)
P
[2
a
2 ]

(Fν) (µ1 ◦ det2)⊗ · · · ⊗ (µa
2
◦ det2)⊗ δ1 ⊗ · · · ⊗ δrm .

Here rm = r(Hm) is the Fν-rank of Hm. It follows that rm = m− 1 if Hm(Fν)

is quasi-split and non-split even orthogonal; and rm = m otherwise. As before,

P
[2
a
2 ]

is the standard parabolic subgroup ofHa+m whose Levi part is isomorphic
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to GE/F (2)×
a
2 ×GE/F (1)×rm ; and σν = IndHmBm δ1⊗ · · ·⊗ δrm . Let us substitute

the following representation for τ in [23, Th. 5.4],

(6.5) Ind
GE/F (a+rm)(Fν)

Q
[2
a
2 ]

(Fν) (µ1 ◦ det2)⊗ · · · ⊗ (µa
2
◦ det2)⊗ δ1 ⊗ · · · ⊗ δrm ,

where Q
[2
a
2 ]

is the standard parabolic subgroup GE/F (a + rm) ∩ P
[2
a
2 ]

. We

regard GE/F (a + rm) as the subgroup of the standard parabolic subgroup of

P(a+rm)∧ . The symbols m̃ and ` in [23, Th. 5.4] are replaced by a+ rm and κ

respectively in our case. Then 0 ≤ κ < a+rm, which is a part of the conditions

in [23, Th. 5.4, (1) and (2)].

If Hm is split special even orthogonal, by [23, Th. 5.4 (1)], one has

FOκ
κ− (Σν) = 0 for κ > a

2 + rm − 1, and for κ = a
2 + rm − 1,

FOκ
κ− (Σν) ≺ Ind

GOκ
κ−

BG,a
µ1 ⊗ µ2 · · · ⊗ µa

2
,

where BG,a is the Borel subgroup of GOκ
κ− , and π1 ≺ π2 means that π1 is a

subquotient of π2. Since rm = m, we have that GOκ
κ− is isomorphic to the split

odd orthogonal SOa+1.

If Hm is split odd orthogonal and GOκ
κ− is split, by [23, Th. 5.4 (2)], one

has FOκ
κ− (Σν) = 0 for κ > a

2 + rm, and for κ = a
2 + rm − 1,

FOκ
κ− (Σν) ≺ Ind

GOκ
κ−

BG,a
µ1⊗µ2 · · · ⊗µa

2
−1⊗µa

2
⊕ Ind

GOκ
κ−

BG,a
µ1⊗µ2 · · · ⊗µa

2
−1⊗µ−1

a
2
.

Since rm = m, we have that GOκ
κ− is isomorphic to the split special even or-

thogonal SOa and that the two unramified representations are ‹O(G
Oκ0
κ− (Fν))-

conjugate.

If Hm is quasi-split, but non-split, special even orthogonal or odd unitary,

following [23, Th. 5.4 (2)], one has FOκ
κ− (Σν) = 0 for κ > a

2 + rm, and for

κ = a
2 + rm,

FOκ
κ− (Σν) ≺ Ind

GOκ
κ−

BG,a
µ1 ⊗ µ2 · · · ⊗ µa

2
.

More precisely, if Hm is quasi-split, but non-split, special even orthogonal, then

rm = m− 1 and GOκ
κ− is isomorphic to the split odd orthogonal SOa+1; and if

Hm is odd unitary, then rm = m and GOκ
κ− is isomorphic to the quasi-split odd

unitary Ua+1.

Case (2). Denote ωτ,ν to be the central character of τν . Since τν is (con-

jugate) self-dual, ωτ,ν is a quadratic character — that is, ωτ,ν = 1 or λ0. Here

λ0 is the unique non-trivial unramified quadratic character of E×ν .

Assume that Hm is split odd orthogonal and GOκ
κ− is non-split. In this case,

the assumption that the Witt index of Fνy−α + V0 is zero in [23, Th. 5.4(1)]

holds and a is even.
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If ωτ,ν = 1, then the unramified local component Σν is the unramified

subquotient of the unramified induced representation as in (6.4). We substitute

the representation (6.5) for τ in [23, Th. 5.4 (1)]. Then FOκ
κ− (Σν) = 0 for

κ ≥ a
2 + m, and the descent FOκ

κ− (Σν) to the orthogonal group SOa is zero

when κ = a
2 +m. Remark that over the inert finite places, the determinant of

the local L-parameter of the quasi-split, but non-split SOa is not 1. This verifies

that if ωτ,ν = 1, then the descent FOκ
κ− (Σν) at this rational orbit Oκ is zero.

Assume that ωτ,ν = λ0. The unramified local component Σν is isomorphic

to the unramified subquotient of

Ind
Ha+m(Fν)
P
[2
a
2−1

]
(Fν)(µ1 ◦ det2)⊗ · · · ⊗ (µa

2
−1 ◦ det2)⊗ 1⊗ λ0 ⊗ δ1 ⊗ · · · ⊗ δm.

We may replace the above representation by Ind
Ha+m(Fν)
P(a+m−2)∧ (Fν)τ1 ⊗ σ1, where

σ1 is the representation of split SO5(Fν) induced from the parabolic subgroup

that preserves an isotropic line and the character λ0| · |
1
2 ⊗ 1, and

τ1 = Ind
GE/F (a+m−2)(Fν)

Q
[2
a
2 ]

(Fν) (µ1 ◦ det2)⊗ · · · ⊗ (µa
2
−1 ◦ det2)⊗ δ1 ⊗ · · · ⊗ δm.

Applying [23, Th. 5.1 (1)], after the same calculation with page 104 in [23],

one has FOκ
κ− (Σν) = 0 for κ > a

2 +m, and for κ = a
2 +m− 1,

FOκ
κ− (Σν) ≺ Ind

GOκ
κ−

BG,a
µ1 ⊗ µ2 · · · ⊗ µa

2
−1 ⊗ 1,

where 1 is the trivial representation of the anisotropic part of the torus of BG,a.

It remains to treat the case that Hm is quasi-split even unitary. In our

setting suppose that Hm is quasi-split even unitary. Then in our setting a is

odd, τν is conjugate orthogonal and ωτ,ν = 1. The unramified local component

Σν is isomorphic to the unramified subquotient of

Ind
Ha+m(Fν)
P
[2
[a2 ]

]
(Fν)(µ1 ◦ det2)⊗ · · · ⊗ (µ[a

2
] ◦ det2)⊗ | · |

1
2 ⊗ δ1 ⊗ · · · ⊗ δm.

We may replace the above induced representation by

Ind
Ha+m(Fν)
P(a+m−1)∧ (Fν)τ1 ⊗ 1,

where 1 is the trivial character of quasi-split U2(Fν) and

τ1 = Ind
GE/F (a+m−1)(Fν)

Q
[2
[a2 ]

]
(Fν) (µ1 ◦ det2)⊗ · · · ⊗ (µ[a

2
] ◦ det2)⊗ δ1 ⊗ · · · ⊗ δm.

Let us apply [23, Th. 5.1 (1)] and follow the same calculation as on page

105 in the proof of Theorem 5.6 in [23] for the case ωτ,ν = 1. Then one has

FOκ
κ− (Σν) = 0 for κ > a

2 +m. For κ = [a2 ] +m, if ωτ,ν = 1, then

(6.6) FOκ
κ− (Σν) ≺ Ind

GOκ
κ−

BG,a
µ1 ⊗ µ2 · · · ⊗ µ[a

2
]−1 ⊗ 1,

where 1 is the trivial character of U1(Fν).
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Therefore, we complete all cases involved in our discussion in this paper

and verify that πi,ν shares the same Satake parameter with τν under the unram-

ified local Langlands functorial transfer from G
Oκ0
n (Fν) to GE/F (a)(Fν). �

Now we go back to the decomposition in (6.3). By the local uniqueness of

Bessel models at all local places ([2], [77], [16], and [44]), it is easy to deduce

that πi is not equivalent to πj if i 6= j; that is, the decomposition in (6.3)

is multiplicity free. Of course, in the situation that the cuspidal spectrum is

multiplicity free, the decomposition in (6.3) will be automatically multiplicity

free. We summarize the discussion as the following theorem.

Theorem 6.6. Assume that τ and σ are as given above. For an auto-

morphic member Σ in the global Arthur packet Π̃ψτ,σ(Ha+m), assume that the

κ0-th Bessel module FOκ0n (Σ) is non-zero for some F -rational nilpotent orbit

Oκ0 in the F -stable orbit Ost
p
κ0

(F ) with `0 = n−m−1
2 , κ0 = a − `0 − 1, and

κ−0 = m− = n. Then the following hold :

(1) The κ0-th Bessel module FOκ0n (Σ) is cuspidal and can be regarded as a

sub-representation of G
Oκ0
n (A) in the cuspidal spectrum L2

cusp(G
Oκ0
n ).

(2) In the cuspidal spectrum L2
cusp(G

Oκ0
n ), FOκ0n (Σ) has a multiplicity free,

Hilbert direct sum decomposition

FOκ0n (Σ) = π1 ⊕ · · · ⊕ πk ⊕ · · · ,

where all πi belong to Acusp(G
Oκ0
n ) and have a generic global Arthur pa-

rameter belonging to the ‹O(G
Oκ0
n )-orbit of φτ , which is G

Oκ0
n -relevant and

is determined by τ . Moreover, FOκ0n (Σ) is ‹O(G
Oκ0
n )-stable.

Note that in part (2) of Theorem 6.6, the ‹O(G
Oκ0
n )-orbit of φτ contains

only one parameter unless G
Oκ0
n is an even special orthogonal group. In this

case, the ‹O(G
Oκ0
n )-orbit of φτ may contain two parameters {φ, φ?}, which are

the descents of φτ , as explained on page 754. It is worthwhile to remember that

in this case, the global Arthur packets Πφ(G
Oκ0
n ) and Πφ?(G

Oκ0
n ) are different.

We may identify the parameter φτ with either φ or φ?, as on page 754.

6.2. Construction of cuspidal automorphic modules. The main issue re-

maining from Theorem 6.6 is the non-vanishing assumption that the κ0-th

Bessel module FOκ0n (Σ) is non-zero for some automorphic member Σ in the

global Arthur packet Π̃ψτ,σ(Ha+m). We refer to Section 6.3 and Conjecture 6.8

in particular for more details.

We are instead going to discuss the impact of Conjecture 2.3 in the theory

of twisted automorphic descents. To this end, we recall the specific data sug-

gested by Conjecture 2.3. By Proposition 2.2, for a given π ∈ Acusp(Gn) with
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a Gn-relevant, generic global Arthur parameter φ = φτ ∈ Φ̃2(G∗n) and with

the cuspidal realization Cπ, there exists the first occurrence index `0 = `0(Cπ),

such that the (maximal) `0-Bessel module FO`0 (Cπ) associated to the parti-

tion p
`0

= [(2`0 + 1)1n−2`0−1] is cuspidal and non-zero, as a representation of

H
O`0
m (A) occurring in the cuspidal spectrum L2

cusp(H
O`0
m ). In this situation,

we take the data that m = `−0 , m = l−0 = n − 2`0 − 1, and Hm = H
O`0
m . By

Conjecture 2.3, there exists a σ ∈ Acusp(Hm) with an Hm-relevant, generic

global Arthur parameter φσ in Φ̃2(H∗m) and with the cuspidal realization Cσ,

such that the inner product
¨
FψO`0 (ϕπ), ϕσ′

∂
Hm

is non-zero for some ϕπ ∈ Cπ

and ϕσ′ ∈ Cσ′ , where σ′ = σw
`
q and Cσ′ = Cw

`
q

σ as defined in (4.34).

With the data associated to Conjecture 2.3, Theorem 6.6 may be illus-

trated by the following diagram:

(6.7)

Φ̃2(G∗n)Gn φσ ∈ Φ̃2(Hm) Π̃ψτ,σ(Ha+m)

=⇒
φτ (Hm, σ) Σ

m ⇑ ⇓

Π̃φτ (Gn) 3 π (?)
←→

FOκ0n (Σ) ⊂ L2
cusp(G

Oκ0
n ).

In this diagram, we starts with a generic global Arthur parameter φτ of G∗n,

which is Gn-relevant. It gives the global Arthur packet Π̃φτ (Gn) by the en-

doscopic classification theory. Now take any cuspidal member π in Π̃φτ (Gn).

By the Generic Summand Conjecture (Conjecture 2.3), it produces the pair

(Hm, σ), where σ ∈ Acusp(Hm) with a generic global Arthur parameter φσ
in Φ̃2(H∗m)Hm . Then σ and τ together produce the global Arthur packet

Π̃ψτ,σ(Ha+m). Finally, we take the Bessel-Fourier coefficient FOκ0n (Σ) for any

automorphic member Σ in Π̃ψτ,σ(Ha+m), which is a cuspidal automorphic

G
Oκ0
n (A)-module contained in L2

cusp(G
Oκ0
n ). The big question in the construc-

tion is the following: what can we say about π and FOκ0n (Σ) as representations

of Gn(A) and G
Oκ0
n (A), respectively? Theorem 6.6 gives an answer to this

question with a non-vanishing assumption.

Without the participation of σ and Hm, diagram (6.7) may be reduced to

the following diagram:

(6.8)

Φ̃2(G∗n) 3 φτ =⇒ Eτ ∈ Π̃ψτ (H∗a)

⇓ ⇓

Π̃φτ (Gn) 3 π ∼= FOκ0n (Eτ ) ⊂ L2
cusp(G

Oκ0
n ).
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When Gn = G
Oκ0
n = G∗n is F -quasisplit, and Eτ is the residual representation

of Ha(A) (with a = N = n∨) having the global Arthur parameter

ψτ = (τ1, 2) � · · ·� (τr, 2).

The reduced diagram (6.8) yields the automorphic descents of Ginzburg-Rallis-

Soudry ([23]) that construct certain generic cuspidal automorphic representa-

tions of an F -quasisplit classical group G∗n(A).

By Proposition 2.6, Gn and G
Oκ0
n are pure inner forms. If one of Gn and

G
Oκ0
n is not equal to G∗n, then the relation between π and FOκ0n (Σ) is the gener-

alized Jacquet-Langlands correspondence between Gn and G
Oκ0
n . However, as

shown in [40], this will not cover the general situation as the F -ranks of Gn and

G
Oκ0
n must satisfy the condition given in Proposition 2.5. The introduction of

σ and Hm in the construction is to avoid such restriction.

With Conjecture 2.3 and the participation of σ and Hm in the construction

as displayed in diagram (6.7), which is essential, the proposed construction may

(in principle) produce all irreducible cuspidal automorphic representations of

the classical groups Gn that are pure inner F -forms of an F -quasisplit classical

group G∗n.

In fact, we are going to show in Section 7.1 that the κ0-th Bessel mod-

ule FOκ0n (Eτ⊗σ) is non-zero, assuming Conjecture 2.3. If we assume that the

stronger uniqueness of the local Bessel models over a local Vogan packet holds

at all local places (Conjecture 3.1, the known cases of which is given in The-

orem 3.2), then FOκ0n (Eτ⊗σ) is in fact irreducible, when Gn = G
Oκ0
n is not

an even special orthogonal group. However, if Gn = G
Oκ0
n is an even special

orthogonal group, then FOκ0n (Eτ⊗σ) could be a direct sum of two irreducible

cuspidal automorphic representations that belong to the ‹O(Gn)-orbit. In any

situation, we set

(6.9) DOκ0n (τ ;σ) := FOκ0n (Eτ⊗σ)

and call DOκ0n (τ ;σ) a σ-twisted automorphic descent of τ from GE/F (N) to

G
Oκ0
n , or simply a twisted automorphic descent of τ , where N = a = n∨. The

main result in the theory of the cuspidal automorphic modules outlined in

diagram (6.7), by means of twisted automorphic descents, is to confirm that

the constructed module DOκ0n (τ ;σ) in (6.9) is in principle isomorphic to the

given irreducible cuspidal automorphic representation π.

In general, we may state the main conjecture in the theory of the cuspidal

automorphic modules via the twisted automorphic descents as follows.

Conjecture 6.7 (Main Conjecture). Let τ = τ1 � · · · � τr be an ir-

reducible isobaric representation of GE/F (a)(A) that defines a generic global
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Arthur parameter φ = φτ ∈ Φ̃2(G∗n) as in (3.1). Assume that φ is Gn-relevant.

For any π ∈ Acusp(Gn) belonging to the global Arthur packet Π̃φ(Gn), there

exists a datum (Hm, σ) with the following properties :

(1) Hm is a classical group defined over F and is a pure inner F -form of an

F -quasisplit classical group H∗m such that the pairs (Gn, Hm) and (G∗n, H
∗
m)

are relevant and the product Gn×Hm is a relevant pure inner form of the

product G∗n ×H∗m; and

(2) σ ∈ Acusp(Hm) belongs to the global Arthur packet Π̃φ′(Hm) associated to

an Hm-relevant generic global Arthur parameter φ′ ∈ Φ̃2(H∗m),

such that

(a) if Gn = G
Oκ0
n is not an even special orthogonal group, or if Gn = G

Oκ0
n

is an even special orthogonal group, but the ‹O(Gn)-orbit of π contains

only π, then the automorphic module DOκ0n (τ ;σ) that is constructed via

the twisted automorphic descent (6.9) is isomorphic to the given π,

DOκ0n (τ ;σ) ∼= π;

(b) if Gn = G
Oκ0
n is an even special orthogonal group, and the ‹O(Gn)-orbit

of π is equal to {π, π?}, then

DOκ0n (τ ;σ) ∼= π ⊕ π?.

It is not hard to see that the constructed cuspidal automorphic module

DOκ0n (τ ;σ) in Conjecture 6.7 is the special realization of the cuspidal auto-

morphic module M(ψ,F(π,G)) in Principle 1.1 in the particular case under

consideration. We remark that the construction outlined in diagram (6.7) only

uses a piece of information from the data F(π,G). We will come back to the

discussion of Conjecture 6.7 with more details in Section 7.

6.3. Global Gan-Gross-Prasad conjecture: another direction. Let τ =

τ1 � τ2 � · · · � τr be the irreducible isobaric automorphic representation of

GE/F (a)(A) as in (4.1), with a = n∨ = N , which defines a generic global

Arthur parameter φ = φτ in Φ̃2(G∗n). Let φ′ be a generic global Arthur param-

eter of H∗m. Assume that L(1
2 , φ × φ

′) 6= 0. For any member σ in the global

Vogan packet Π̃φ′ [H
∗
m], in which all the automorphic members are cuspidal

([37, §3]), we have

L

Å
1

2
, τ × σ

ã
= L

Å
1

2
, τ × σw`q

ã
= L

Å
1

2
, φ× (φ′)w

`
q

ã
= L

Å
1

2
, φ× φ′

ã
6= 0.

The direction of the global Gan-Gross-Prasad conjecture to be considered in

this section asserts that under the above assumptions, there exists a unique pair

(π, σ) in the global Vogan packet Π̃φ×φ′ [G
∗
n×H∗m] with property that (π, σ) with

the cuspidal realization (Cπ, Cσ) admits a non-zero Bessel period (depending
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on the F -rational structure of the unipotent orbits as discussed in Section 2.4).

The uniqueness follows from the local Gan-Gross-Prasad conjecture at all local

places (Conjecture 3.1). Hence the key point is the existence of such a pair

with a non-zero Bessel period.

We are going to prove this direction of the global Gan-Gross-Prasad con-

jecture by constructing such a pair via the twisted automorphic descent de-

veloped in the early sections of this paper. For a technical reason, we have to

take an assumption, which we are only able to verify for some special situation

for the time being.

Take a member σ ∈ Π̃φ′ [H
∗
m]. There is an F -inner form Hm of H∗m such

that σ ∈ Acusp(Hm) with a cuspidal realization Cσ. By Proposition 5.2, the

residual representation Eτ⊗σ of Ha+m(A) is non-zero. As discussed in [41],

Eτ⊗σ is square-integrable. By [62, Th. B], Eτ⊗σ is irreducible. Following from

[41, §6], Eτ⊗σ has the global Arthur parameter

ψτ,σ = (τ1, 2) � (τ2, 2) � · · ·� (τr, 2) � φ′.

It is expected that the structure of the Fourier coefficients of Eτ⊗σ has signifi-

cant impact to the understanding of the global Vogan packet Π̃φ×φ′ [G
∗
n×H∗m].

As in [36, §4] and as recalled in Section 2.3, the Fourier coefficients of

Eτ⊗σ are defined in terms of the Ha+m-relevant partitions of (2a+ m, H∗a+m).

We denote by p(Eτ⊗σ) the set of the Ha+m-relevant partitions with which the

residual representation Eτ⊗σ has a non-zero Fourier coefficient. To the pair

of the generic global Arthur parameters (φ, φ′) as given above, we define the

following partition:

p
φ,φ′

:=


[(a+ m− 1)(a+ 1)] if H∗m = SO2m,m = 2m,

[(a+ m)(a− 1)1] if H∗m = SO2m+1,m = 2m+ 1,

[(a+ m)a] if H∗m is a unitary group.

Note that a = n∨, and the integers a+m−1 and a+m are odd, in the respective

cases. The main conjecture in [36, §4] asserts that for all σ ∈ Π̃φ′ [H
∗
m], every

partition p ∈ p(Eτ⊗σ) has the property that p ≤ p
φ,φ′

. If we get back to the

construction of cuspidal automorphic modules as illustrated in diagram (6.7),

then we need the following partition:

p1
φ,φ′

:=

{
[(a+ m− 1)1a+1] if H∗m = SO2m,

[(a+ m)1a] otherwise.

Conjecture 6.8. With notation and assumptions as above, for the given

pair of parameters (φ, φ′), there exists a σ ∈ Π̃φ′ [H
∗
m] with a cuspidal realization

Cσ on Hm(A), such that p1
φ,φ′

belongs to p(Eτ⊗σ), where Eτ⊗σ on Ha+m(A) is

defined through Cσ .
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For m = 0, Conjecture 6.8 was proved in [23]. For m = 1 and H1 an

F -form of SO2, it is proved in [40]. Similar results can be checked for unitary

groups, but we do not discuss them here with further details.

Proposition 6.9. Conjecture 6.8 holds when m = 0 and for all F -quasi-

split classical groups H∗a , and when m = 1 for even special orthogonal groups

H2n+1 = SO2n+2,2n.

We refer to [36], [35], [37] and [38] for more discussions of Fourier coef-

ficients of automorphic representations occurring in the discrete spectrum of

classical groups, and of residual representations in particular.

Theorem 6.10 (Global Gan-Gross-Prasad Conjecture: another direc-

tion). For a = n∨ = N , take τ to be the irreducible isobaric automorphic

representation of GE/F (a)(A) as in (4.1). Let φ = φτ be a generic global

Arthur parameter in Φ̃2(G∗n) and φ′ be a generic global Arthur parameter of

H∗m. Assume that

L(
1

2
, φ× φ′) 6= 0.

Assume that Conjecture 6.8 holds for the pair of parameters (φ, (φ′)w
`
q). Then

there exist a cuspidal automorphic member π in the global Vogan packet Π̃φ[G∗n]

with a cuspidal realization Cπ , and a cuspidal automorphic member σ in the

global Arthur packet Π̃φ′(Hm) with a cuspidal realization Cσ , such that the pair

(π, σ) belongs to the global Vogan packet Π̃φ×φ′ [G
∗
n×H∗m] and the inner product¨

FψO`0 (ϕπ), ϕσ
∂
Hm
6= 0

for some ϕπ ∈ Cπ and ϕσ ∈ Cσ , where `−0 = m, and the ψO`0 -Fourier coeffi-

cient FψO`0 (ϕπ) is defined by an F -rational nilpotent orbit O`0 in the F -stable

nilpotent orbit Ost
p
`0

, associated to the partition p
`0

= [(2`0 + 1)1n−2`0−1].

Proof. By assumption, L(1
2 , φ × φ′) = L(1

2 , φ × (φ′)w
`
q) 6= 0. Let σ0

be the member in the global Vogan packet Π̃
(φ′)w

`
q
[H∗m], with which Conjec-

ture 6.8 holds, and let σ0 ∈ Acusp(Hm) for some pure inner F -form of H∗m,

having the cuspidal realization Cσ0 . By Proposition 5.2, the Eisenstein series

E(h, φτ⊗σ0 , s) produces the non-zero iterated residual representation Eτ⊗σ0 on

Ha+m(A), with a non-zero Fourier coefficient associated to the partition p1
φ,φ′

.

In other words, take

p
κ0

:= [(2κ0 + 1)12a+m−2κ0−1]

with κ0 = a− `0 − 1, `−0 = m, and κ−0 = n. Then the ψOκ0 -Fourier coefficient

FOκ0n (Eτ⊗σ0) is non-zero and cuspidal as a sub-representation of G
Oκ0
n (A) in
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the cuspidal spectrum L2
cusp(G

Oκ0
n ), where Oκ0 is an F -rational nilpotent orbit

in the F -stable nilpotent orbit Ost
p
κ0

associated to the partition p
κ0

. Note that

the group G
Oκ0
n is a pure inner F -form of G∗n, and by Theorem 6.6, the κ0-th

Bessel module FOκ0n (Eτ⊗σ0) is ‹O(G
Oκ0
n )-stable, and every irreducible summand

of FOκ0n (Eτ⊗σ0) has a global Arthur parameter belonging to the ‹O(G
Oκ0
n )-orbit

{φ = φτ , φ?} of φτ .

Take (π, Cπ) to be one of the irreducible summands, such that π belongs

to the global Arthur packet Πφ(G
Oκ0
n ). Then for some ϕπ ∈ Cπ, the Bessel

period 〈
ϕπ,F

Oκ0
n (Eτ⊗σ0)

〉
G
Oκ0
n

is non-zero. By replacing the residue Eτ⊗σ0 by the corresponding Eisenstein

series, we obtain that the global zeta integral〈
ϕπ,F

Oκ0
n (E(·, φτ⊗σ0 , s)

〉
G
Oκ0
n

is non-zero for Re(s) large. By Corollary 4.4, the pair (π, σ
w`q
0 ) admits a non-

zero Bessel period. It is clear that σ
w`q
0 belongs to the global Vogan packet

Π̃φ′ [H
∗
m]. We take σ := σ

w`q
0 . Then the pair (π, σ) belongs to the global Vogan

packet Π̃φ×φ′ [G
∗
n ×H∗m] and has the desired property. We are done. �

We note that Theorem 6.10 does not assume that the cuspidal multiplicity

of π should be one, while the global Gan-Gross-Prasad conjecture takes this

cuspidal multiplicity one assumption in [16].

Also, for F -quasisplit classical groups G, a special case of Theorem 6.10

was also considered in [20] and [21]. It is clear that within the theory of

the construction via twisted automorphic descents of concrete modules for

irreducible cuspidal automorphic representations, the proof of Theorem 6.10 is

more transparent than that in [20] or [21].

By Proposition 6.9 and [40], the assumption in Theorem 6.10 is verified

for the case of m = 1 and H1 is an F -form of SO2. Hence, Theorem 6.10 holds

without the assumption of Conjecture 6.8 for this special case. Combining with

Theorem 5.7, the global Gan-Gross-Prasad Conjecture holds for this case.

Corollary 6.11 (Global Gan-Gross-Prasad Conjecture: special case).

Let G∗n be the F -split SO2n+1 and φ = φτ be a generic global Arthur parameter

in Φ̃2(G∗n) determined by the irreducible isobaric automorphic representation τ

of GE/F (a)(A) as given in (4.1). Let φ′ be a generic global Arthur parameter

of H∗1 , which is an anisotropic SO2 over F . Then the following statements are

equivalent :
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(1) There exist an automorphic member π in Π̃φτ [G∗n] and an automorphic

member σ in Π̃φ′ [H
∗
1 ] such that the inner product¨

FψO`0 (ϕπ), ϕσ
∂
H1

is non-zero for some ϕπ ∈ π and ϕσ ∈ σ;

(2) The central L-value L(1
2 , τ × φ

′) is non-zero.

Note that the cuspidal multiplicities of π and σ in Corollary 6.11 are one.

Hence the cuspidal realizations of π and σ are unique. Also we would like to

mention that Corollary 6.11 can be proved for unitary groups, but we will not

discuss the details here. We also note that Corollary 6.11 with trivial σ was

considered in [13], via a different approach.

7. On the main conjecture

7.1. The main conjecture: general case. We are going to prove the main

conjecture (Conjecture 6.7), assuming Conjectures 2.3 and 3.1. More precisely,

we show, assuming the conjectures, that for any π ∈ Acusp(Gn) with a Gn-

relevant, generic global Arthur parameter φ in Φ̃2(G∗n), the cuspidal automor-

phic module DOκ0n (τ ;σ) = FOκ0n (Eτ⊗σ) as constructed through diagram (6.7) is

a direct sum of the two irreducible cuspidal representations in the ‹O(Gn)-orbit

of π in the cuspidal spectrum of Gn. If we assume further that the ‹O(Gn)-orbit

of π contains only π, then we have

DOκ0n (τ ;σ) ∼= π.

By Proposition 2.6, the F -rational orbit Oκ0 can be chosen such that G
Oκ0
n =

Gn. We note that the proof of Conjecture 3.1 has been well developed, the

known cases of which were explained in Theorem 3.2.

Theorem 7.1 (Cuspidal automorphic modules). Conjectures 2.3 and 3.1

imply Conjecture 6.7.

Proof. Take any cuspidal automorphic member π ∈ Π̃φ(Gn) with a cusp-

idal realization Cπ satisfying the conditions in Conjecture 2.3. It follows that

m := `−0 , Hm := H
O`0
`−0

, and σ ∈ Acusp(Hm) with a generic, Hm-relevant global

Arthur parameter φ′ ∈ Φ̃2(H∗m) and with a cuspidal realization Cσ. They have

the property that the inner product
¨
FψO`0 (ϕπ), ϕσ

∂
Hm

is non-zero for some

ϕπ ∈ Cπ and ϕσ ∈ Cσ. As proved in Section 2.4, for each local place ν of F , the

group Gn(Fν)×Hm(Fν) is relevant in the sense of the local Gan-Gross-Prasad

conjecture as discussed in Section 3.2, and the local parameter φν⊗φ′ν belongs

to Φ̃+
unit,ν(Gn ×Hm). By Conjecture 3.1, the pair (πν , σν) must be the unique

distinguished member in the local Vogan packet Π̃φν⊗φ′ν [G∗n ×H∗m] as defined
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in (3.4), such that the following space, as defined in (3.5),

HomR`0,O`0
(Fν)(πν ⊗ σν , ψO`0 ,ν)

is non-zero. Hence the pair (π, σ) is the unique distinguished member in the

global Vogan packet Π̃φ⊗φ′ [G
∗
n ×H∗m].

We apply the reciprocal non-vanishing for Bessel periods (Theorem 5.3)

to the data (Gn, Hm; τ, π, σ), following the choice in Section 5.2 and obtain

that the Bessel period 〈
ϕπ,FψOκ0 (Eτ⊗σ′)

〉
Gn
6= 0,

for some choice of data. In particular, this implies that the ψOκ0 -Fourier

coefficient FψOκ0 (Eτ⊗σ′) is non-zero.

On the other hand, by Theorem 6.6, FOκ0n (Eτ⊗σ′) with n = κ−0 is non-

zero and cuspidal as a sub-representation of Gn(A) in the cuspidal spectrum

L2
cusp(Gn), with Gn = G

Oκ0
n , and hence can be written as a multiplicity free,

Hilbert direct sum

FOκ0n (Eτ⊗σ′) = π1 ⊕ π2 ⊕ · · · ⊕ πk ⊕ · · · ,
where πi ∈ Acusp(Gn) for all i = 1, 2, . . .. Each irreducible summand πi has

a generic global Arthur parameter belonging to the ‹O(Gn)-orbit {φ = φτ , φ?}
of φτ . We apply Theorem 5.3 to πi for all i. The non-vanishing of the Bessel

period
〈
ϕπi ,F

ψOκ0 (Eτ⊗σ′)
〉
Gn

implies the inner product on the right-hand side¨
FψO`0 (ϕπi), ϕσ

∂
Hm

is non-zero for some choice of data. Following Section 2.4, the product G
Oκ0
n ×

Hm constructed as in diagram (6.7) is a pure inner F -form of an F -quasisplit

G∗n ×H∗m. Then by Theorem 6.6 again, the pair (πi, σ) belongs to either the

global Vogan packet Π̃φ⊗φ′ [G
∗
n×H∗m] or the global Vogan packet Π̃φ?⊗φ′ [G

∗
n×

H∗m]. Since the pair (π, σ) is the unique distinguished member in the global

Vogan packet Π̃φ⊗φ′ [G
∗
n×H∗m], and the pair (π?, σ) is the unique distinguished

member in the global Vogan packet Π̃φ?⊗φ′ [G
∗
n × H∗m], we must have that

for each index i, πi is isomorphic to either π or π?, under the assumption of

Conjecture 3.1.

Because the direct sum decomposition of FOκ0n (Eτ⊗σ) is multiplicity free,

it follows that FOκ0n (Eτ⊗σ) must be of the form

FOκ0n (Eτ⊗σ) ∼= π ⊕ π?,
if the ‹O(Gn)-orbit of π has two members π and π?. If the ‹O(Gn)-orbit of π

contains only π, then we must have

FOκ0n (Eτ⊗σ) ∼= π.

We are done. �
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7.2. The main conjecture: regular orbit case. In this section, we assume

that the group Gn = G∗n is F -quasisplit, and π ∈ Acusp(G∗n) is generic, i.e., has

a non-zero Whittaker-Fourier coefficient. In this case, the global Arthur param-

eter of π can be taken in the form (3.1). Then the Langlands functorial transfer

of π from G∗n to GE/F (N) is τ , which is of the form (4.1). This is essentially

proved by the work of Cogdell, Kim, Piatetski-Shapiro and Shahidi in [11], with

combination of the automorphic descent of Ginzburg-Rallis-Soudry ([23]). We

refer to [37, §3.1] for detailed discussions of this and some related issues.

In this case, Conjecture 2.3 holds automatically without (Hm, σ). The

residual representation is Eτ on the F -quasisplit H∗a(A). The automorphic

descent of Ginzburg-Rallis-Soudry in [23] shows that

DOκ0n (τ ; ∅) = FOκ0n (Eτ )

is a non-zero cuspidal automorphic representation of G∗n(A). As proved in

[42], the descent DOκ0n (τ ; ∅) is in fact irreducible for G∗n, which is an F -split

odd special orthogonal group. In general, the structure of DOκ0n (τ ; ∅) follows

from Conjecture 3.1. Hence Conjecture 6.7 is proved under Conjecture 3.1 as

a consequence of the proof of Theorem 7.1.

Corollary 7.2 (Regular orbit). Let G∗n be F -quasisplit. For any π ∈
Acusp(G∗n) to be generic with its global Arthur parameter (3.1) and τ as in

(4.1), then Conjecture 6.7 holds for π under the assumption of Conjecture 3.1.

7.3. The main conjecture: subregular orbit case. We consider in this sub-

section the irreducible cuspidal automorphic representations π of Gn(A) such

that the set pm(π) contains the partition p
subr

corresponding to the subregu-

lar nilpotent orbit of G∗n. In this situation, it is clear that pm(π) = {p
subr
}.

Conjecture 2.3 can be verified as follows. The group Hm constructed via Dia-

gram (6.7) can be determined as below.

If G∗n is an F -quasisplit SO2n, the subregular partition p
subr

is [(2n−3)3].

The partition with the first occurrence index `0 is p
`0

= [(2n − 3)13] with

`0 = n−2. Hence Hm is a pure inner F -form of SO3, where m = `−0 . According

to [38, Th. 11.2], because pm(π) = {p
subr

= [(2n−3)3]}, the `0-th Bessel module

FO`0 (π) associated to the F -rational orbit O`0 must be non-zero if Hm = H
O`0
`−0

is the split SO3. Hence Conjecture 2.3 holds for this case.

If G∗n is an F -split SO2n+1, then p
subr

is [(2n−1)12], which is the partition

with the first occurrence index `0 = n − 1. In this case, the group Hm is an

F -form of SO2, and hence Conjecture 2.3 holds.

If G∗n is an F -quasisplit U2n, then p
subr

is [(2n−1)1], which is the partition

with the first occurrence index `0 = n− 1. In this case, the group Hm is equal

to U1, and hence Conjecture 2.3 holds.
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If G∗n is an F -quasisplit U2n+1, then the subregular partition p
subr

is

[(2n)1]. The partition with the first occurrence index `0 is p
`0

= [(2n − 1)12]

with `0 = n− 1. Hence Hm is an F -form of U2. It is clear that Conjecture 2.3

also holds for this case, following the proof for the case of F -quasisplit SO2n.

We summarize this discussion as

Proposition 7.3. Let φ = φτ be the generic global Arthur parameter of

G∗n as given in (3.1) with τ as defined in (4.1). If a cuspidal automorphic

member π in the global Vogan packet Π̃φ[G∗n] has the property that pm(π) =

{p
subr
}, then Conjecture 2.3 holds for π.

As a consequence of the proof of Theorem 7.1, we have the following result.

Corollary 7.4 (Subregular orbit). Assume that π ∈ Acusp(Gn) has a

Gn-relevant, generic global Arthur parameter in Φ̃2(G∗n) and the set pm(π)

contains the subregular partition p
subr

of type (n, G∗n). Conjecture 6.7 holds for

π under the assumption of Conjecture 3.1.

Appendix A. Non-vanishing of local zeta integrals

In this appendix, we prove Proposition 5.5. It is a purely local non-

vanishing property of the finite product of the local zeta integrals

ZS(s, φτ⊗σ′ , ϕπ, ψOκ0 ).

However, the local data have constraints from the global assumption for (π, τ, σ)

from Theorem 5.3. From Proposition 5.4, ZS(s, φτ⊗σ′ , ϕπ, ψOκ0 ) converges ab-

solutely for Re(s) large, has a meromorphic continuation to s ∈ C, and is holo-

morphic at s = 1
2 . What we need to prove Theorem 5.3 is the non-vanishing at

s = 1
2 for a choice of data with certain global constraints as described in Propo-

sition 5.5. In fact, we are going to show a more general non-vanishing property

for the local zeta integral Zν(s, φτ⊗σ′ , ϕπ, ψOκ0 ) for every ν ∈ S. These lo-

cal zeta integrals converge absolutely for Re(s) large and have a meromorphic

continuation to s ∈ C. We give the proof in [43] and refer to [75] and [76] for

the case of the split special orthogonal groups.

Throughout this appendix, all algebraic groupsX are defined over Fν . The

Fν-rational points of X is simply denoted by X = X(Fν) when no confusion

is caused.

For Re(s) large, the local zeta integral in Theorem 4.5 is defined as in

(4.41) by

(A.1)

Zν(s, φτ⊗σ′ , ϕπ, ψ`,w0)=

∫
Rη`,β−1\G

w0
m−

P
ψ−1
β−1,y−κ

ν (πν(gν)ϕπν , Js,ν(φs,ν)(gν)) dgν ,
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where P
ψ−1
β−1,y−κ

ν is the unique local Bessel functional, up to scalar, in the space

(A.2) HomRη`,β−1(Fν)(πν ⊗ σν , ψ−1
β−1,y−κ

).

This Hom-space is at most one-dimensional, by the uniqueness of local Bessel

models for classical groups ([2], [77], [16] and [44]). Alternatively, for a local

Bessel functional bν in (A.2), we may rewrite Zν(s, φτ⊗σ′ , ϕπ, ψ`,w0) as

(A.3)∫
Rη`,β−1\G

w0
m−

∫
U−a,η(Fν)

bν(πν(gν)ϕπν , fWτν⊗σ′ν ,s(uεβηgν))ψm+a+`,a−`(u) dudgν ,

where fWτν⊗σ′ν ,s is determined by φτ⊗σ′ given in (4.38).

Our goal is to construct a section fWτν⊗σ′ν ,s belonging to Is,ν(Wτν , σ
′
ν)

such that the following non-vanishing holds.

Proposition A.1. Suppose that a non-zero local Bessel functional bν in

the HomRη`,β−1(Fν)-space (A.2) is not zero at some ϕπν = vπν ∈ πν and vσν ∈
σν , i.e., bν(vπν , vσν ) 6= 0. Then, for any given s = s0 ∈ C, there exists a

holomorphic section fWτν⊗σ′ν ,s in (A.3) belonging to Is,ν(Wτν , σ
′
ν) such that

the local zeta integral Zν(s, φτ⊗σ′ , ϕπ, ψ`,w0) is non-zero at s = s0.

It is clear that Proposition A.1 for split orthogonal groups over p-adic

fields is just Proposition 4.1 of [75]. In the proof of Proposition A.1, one of

the technical issues is to construct the section fWτν⊗σ′ν ,s in the space of the

induced representation Is,ν(Wτν , σ
′
ν) with the given constraints. Soudry in his

proof of [75, Prop. 4.1] uses the Iwasawa decomposition to explicitly construct

such sections fWτν⊗σ′ν ,s. We are going to use the Bruhat decomposition to

proceed the explicit construction, which works for more general groups over

local fields of characteristic 0.

We recall from Section 4.1 that Ha+m is either a special orthogonal group

or unitary group. When Ha+m is unitary and ν splits in the number field E,

Ha+m(Fν) = U2a+m(Fν) is isomorphic to GL2a+m(Fν). We defer the discussion

on this case to the end of this proof. We first consider the case that Ha+m(Fν)

is not isomorphic to GL2a+m(Fν). For convenience, we consider Js,ν as a map

(A.4) Is,ν(Wτν , σ
′
ν)→ Iw0

s,ν(ψβ−1,y−κ , σν),

which is given by the following U−a,η(Fν)-integration,

(A.5) Js,ν(fWτν⊗σ′ν ,s)(g) :=

∫
U−a,η(Fν)

fWτν⊗σ′ν ,s(nεβηg)ψm+a+`,a−`(n) dn,

as in (4.33).

It is not hard to show that the integration in (A.5) converges absolutely

for Re(s) large. It is a little bit more technical to show that it admits a

meromorphic continuation to s ∈ C in general, which will be treated in [43].
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However, for the purpose of this appendix, we are able to prove this easily for

the particular sections fWτν⊗σ′ν ,s that will be constructed below for the proof

of Proposition A.1.

Remark A.2. For further refined applications of the global zeta integrals

considered in this paper, one may be interested in the characterization of the

image of Js,ν in (A.4). However, for the purpose of this paper, we do not

need this. Hence we will leave this interesting question to be considered in our

future work.

Let bν be a non-zero local Bessel functional in the Hom-space (A.2). Take

some vπν ∈ πν and vσν ∈ σν , such that bν(vπν , vσν ) 6= 0. We are going to

construct a section fWτν⊗σ′ν ,s in

Is,ν(Wτν , σ
′
ν) = Ind

Ha+m
Pâ

(| · |sWτν ⊗ σ′ν),

which is compactly supported in the open cell PâU
−
â of Ha+m, modulo Pâ from

the left. Recall that U−â is the unipotent subgroup opposite to the unipotent

radical Uâ of Pâ, as defined in Section 4.1. We define

(A.6) fWτν⊗σ′ν ,s

ÑÑ
g

h

g∗

é
un̄′εβη

é
:= | det g|s+ρaW κ

τν (g)fν(n̄′)σ(h)vσν

with g ∈ GLa(Eν), h ∈ Hm(Fν), u ∈ Uâ(Fν), and n̄′ ∈ U−â (Fν). Here

W κ
τν (g) is a Whittaker function in Wτν , fν(n̄′) is a smooth, compactly sup-

ported function defined on U−â (Fν), and | · |2ρa is the modular character of

the parabolic subgroup Pâ. Over archimedean places, we may take fν(n̄′)

also to be a positive real-valued function. Since Ha+m(Fν) 6= GL2a+m(Fν),

GEν/Fν (a)(Fν) 6= GLa(Fν)×GLa(Fν). Hence the subgroup (ResE/FGLa)(Fν)

of the Levi part of Pâ can be written as GLa(Eν), where Eν is either Fν or

a quadratic field extension over Fν . Remark that because of the conjugation

by w`q, it is vσ on the right-hand side of (A.6), instead of vσ′ . It is clear that

the section fWτν⊗σ′ν ,s defined in (A.6) is a smooth section in Is,ν(Wτν , σ
′
ν). It

is clear that for such a constructed section fWτν⊗σ′ν ,s, the integration in (A.5)

is over a compact set. Hence the integral converges absolutely for every s ∈ C
and admits meromorphic continuation to all s ∈ C.

We may assume that the value of fWτν⊗σ′ν ,s(g) at g = εβη is

(A.7) fWτν⊗σ′ν ,s(εβη) = W κ
τν (Ia)vσν ,

where Ia is the identity matrix of GLa. It is clear that the functional bν
evaluated at (vπ, fWτν⊗σ′ν ,s(εβη)) is given by

(A.8) bν(vπ, fWτν⊗σ′ν ,s(εβη)) = W κ
τν (Ia) · bν(vπν , vσν ).
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We may take the value of W κ
τν (Ia), so that

(A.9) W κ
τν (Ia) · bν(vπν , vσν ) = 1.

This gives the normalization of the local Bessel functional bν at all ν ∈ S.

To finish the proof of Proposition A.1, we have to calculate explicitly the

relation between Rη`,β−1\G
w0

m− and the open dense set PâU
−
â — in particular,

the following domain:

(A.10) Rη`,β−1\G
w0

m− ∩ (εβη)−1(PâU
−
â )(εβη).

The group Gw0

m− is identified as a subgroup of the Levi subgroup of Pˆ̀. Ac-

cording to the structure of the stabilizer of the open cell PâεβPˆ̀ as given in

Section 4.4, the intersection (A.10) can be written as the following intersection:

(A.11) Rη`,β−1\G
w0

m− ∩Ad(η−1)(P ′wU
−
a−`).

Recall that P ′w = Ha+m−`∩ε−1
0,βPâε0,β defined in Proposition 4.1 is the standard

parabolic subgroup of Ha+m−` with Levi decomposition (GEν/Fν (a−`)×Hm)n
Ua−`, where Ua−` is the unipotent radical. More details can be found in [45,

§3.1]. Because of

Rη`,β−1 = Gw0

m− ∩ η
−1P ′wη,

the intersection set Gw0

m− ∩ Ad(η−1)(P ′wU
−
a−`) is Rη`,β−1-left stable. Thus the

intersection modulo Rη`,β−1 in (A.11) is well defined. It is clear that P ′wU
−
a−` is

an open subset of Ha+m−`.

With the above choice of fWτν⊗σ′ν ,s, the integral (A.1) can be taken over

the set (A.11). To proceed with the integral (A.1), we explicitly describe

the intersection Gw0

m− ∩ Ad(η−1)(P ′wU
−
a−`). It is enough to describe the set

Ad(η)Gw0

m− ∩ (P ′wU
−
a−`). Take

(A.12) p =

Ñ
g −Y · h−1 ι(Ẑ)g∗

h−1 −Y ′g∗
g∗

é
∈ P ′w

and

(A.13) n̄ =

Ñ
Ia−`
X ′ Im
A X Ia−`

é
∈ U−a−`,

with g ∈ GLa−`(Eν), h ∈ Hm, Y ∈ Mat(a−`)×m, Ẑ := ωa−`Z
tωa−`, Y

′ :=

−ωa−` · ι(Y )t · (Jm
m̃ )−1, and g∗ = ι(ĝ)−1. Here ωa−` is the anti-diagonal matrix

with the unit entry of the size (a− `)-by-(a− `), Jm
m̃ is defined in (2.2), and ι

is the Galois element in ΓEν/Fν (as on page 748).
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Since Gw0

m− fixes the anisotropic vector w0 = yκ defined in (4.5), Ad(η)Gw0

m−

stabilizes the vector

Ad(η)w0 =

Ñ
E1

0m
E2

é
(2(a−`)+m)×1

,

where 0m is the m-dimensional zero column vector,

E1 = (0, . . . , 0, 1)t and E2 = ((−1)m+1κ

2
, 0, . . . , 0)t in Mat(a−`)×1.

Here we consider Ad(η)w0 as an anisotropic vector in the Hermitian space

defining Ha+m−`. Then p · n̄ ∈ P ′wU−a−` is in Ad(η)Gw0

m− if and only if p · n̄ fixes

the vector Ad(η)w0. That is to say that both p and n̄ satisfy the following

equations:

(A.14) ZE2 = (Ia−` − g)E1, AE1 = (ι(ĝ)− Ia−`)E2, X
′E1 = h · Y ′E2.

Since our integral domain is a set of Rη`,β−1-right cosets, we identify the quotient

set (A.11) by choosing h = Im, g ∈ Za−`(Eν)\GLa−`(Eν),

Y =

Ç
0(m−1)×(a−`)

y

å
and ι(Ẑ)g∗ =

Ç
z1 0(a−`−1)×(a−`−1)

z2 z3

å
.

Due to (A.14) and the above choice, the vector y in Y , and zi in Z for 1 ≤ i ≤ 3

are determined by X and g, respectively. Because of this, we write YX and Zg
for Y and Z, respectively.

To separate variables, we choose

(A.15) fν

à
Ia−`

0 I`
X ′ x′2 Im
x1 x3 x2 I`
A x′1 X 0 Ia−`

í
= f1(x1, x2, x3)f2(X,A),

where f1 and f2 are smooth, compactly supported functions, and the size of

matrices X and xi are indicated by the matrix in (A.15). With the above

choices, we are able to evaluate more explicitly the function Js,ν(fWτν⊗σ′ν ,s)(g)

as defined in (A.5) for g in the set (A.11). We decompose Ad(η)g = p·n̄ as given

in (A.12) and (A.13). Let us conjugate p · n̄ by εβ. Referring to (3.6) in [45],
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as elements in Ha+m, we have

εβpε
−1
β = u(YX , Zg)m(g) =

Ö
g 0 −YX 0 ι(Ẑg)g∗

I` 0 0 0
Im 0 −Y ′Xg

∗

I` 0
g∗

è
,

εβn̄ε
−1
β =

Ñ Ia−`
0 I`
X′ 0 Im
0 0 0 I`
A 0 X 0 Ia−`

é
,

(A.16)

where

u(YX , Zg) =

Ö
Ia−` 0 −YX 0 ι(Ẑg)

I` 0 0 0
Im 0 −Y ′X

I` 0
Ia−`

è
and m(g) =

Å
g
Im+2`

g∗

ã
.

By the definition of Js,ν(fWτν⊗σ′ν ,s)(g) in (A.5), using the above decom-

position of g in the set (A.11), we have

Js,ν(fWτν⊗σ′ν ,s)(g)(A.17)

=

∫
U−a,η(Fν)

fWτν⊗σ′ν ,s(nu(YX , Zg)m(g) · εβn̄ε−1
β · εβη)ψm+a+`,a−`(n) dn.

Recall that the element in U−a,η (see (4.32)) is of form

n(x1, x2, x3) :=

Ö
Ia−`

0 I`
0 x′2 Im
x1 x3 x2 I`
0 x′1 0 0 Ia−`

è
.

By simple manipulations, one has

n(x1, x2, x3)u(YX , Zg)m(g)

= m(g) · ua(−ι(B̂)) · n(x1g, x2 − x1YX , x3 −Bx′1),

where B = x1ι(Ẑg)− x2Y
′
X and ua(−ι(B̂)) =

Ä
Ia−` −ι(B̂)

0 I`

ä
is considered as an

element in GLa as the subgroup of the Levi subgroup of Pâ. Continuing with

(A.17), by the definition of fWτν⊗σ′ν ,s in (A.6) and fν in (A.15), after changing

variables we have

Js,ν(fWτν⊗σ′ν ,s)(g) = | det g|s+ρaW κ
τν

ÇÇ
g

I`

åå
f2(X,A)vσ

×
∫
U−a,η

f1(x1, x2, x3)ψE((x1g
−1)`,a−`)ψ

−1
Za,κ

(ua(−ι(B̂1)))|det g|−` dxi,

(A.18)

where the matrices xi define the element n(x1, x2, x3) in U−a,η and B1 =

x1g
−1(ι(Ẑg) − YXY

′
X) − x2Y

′
X . Although the term B1 is complicated, after

we choose suitable X and A defining n̄(X,A), the matrices YX and Zg are

zero, so is B1. Since the function f1(x1, x2, x3) is chosen to be a smooth and
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compactly supported function and is independent of complex variable s, the

integral Js,ν is well defined over the whole complex plane for such choice of the

section fWτν⊗σ′ν ,s, and so is the local zeta integral (A.1).

Finally, by plugging the formula (A.18) into (A.1), we obtain that Zν(, ·)
equals

∫
X,A

∫
g
|det g|s+ρaW κ

τν

ÇÇ
g

I`

åå
f2(X,A)bν(π(η−1p(g,X)n̄(X,A)η)vπ, vσ)∫

U−a,η

|det g|−`f1(x1, x2, x3)ψE((x1g
−1)`,a−`)ψ

−1
Za,κ

(ua(−ι(B̂1))) dxi dg dX dA.

(A.19)

The notation in the formula is explained in order. The integration
∫
g is over

Za−`(Eν)\{g ∈ GLa−`(Eν) : ι(ĝ)E2 = AE1 + E2}, with constraints given in

(A.14). Rewrite n̄ and p to be n̄(X,A) and p(g,X) respectively to indicate

their dependence on variables X, A and g, following (A.16). The integration∫
X,A is over the set U−a−` with AE1 6= −E2, due to AE1 = (ι(ĝ) − Ia)E2 in

(A.14) and det(g) 6= 0. Indeed, because AE1 + E2 = ι(ĝ)E2, if AE1 = −E2,

then ι(ĝ)E2 = 0a−`, which implies det(g) = 0.

We are going to finish the proof based on the above expression for the local

zeta integral Zν(s, ·). Suppose that Zν(s, ·) is identically zero for all choices of

data f1 and f2 at the given s = s0. We vary the function f2(X,A) first and

consider the rest of the integral as a continuous function of X and A. Since the

integral over U−a−` is identically zero, the remaining integration in the variable

n̄ as given in (A.13) is identically zero; that is,∫
g
|det g|s+ρa−`W κ

τν

ÇÇ
g

I`

åå
bν(π(η−1pn̄η)vπ, vσ)

×
∫
U−a,η

f1(x1, x2, x3)ψE((x1g
−1)`,a−`)ψ

−1
Za,κ

(ua(−ι(B̂1))) dxi dg ≡ 0.

(A.20)

Especially, the integral on the left-hand side of (A.20) is identically zero at n̄ =

I2(a−`)+m, equivalently, at X = 0(a−`)×m and A = 0(a−`)×(a−`). Because M =

Im and X ′E1 = Y ′E2 in (A.14), we must have that YX = 0(a−`)×m due to X =

0(a−`)×m, and similarly Zg = 0(a−`)×(a−`). It follows that B1 = 0`×(a−`) and

the character ψ−1
Za,κ

(ua(−ι(B̂1))) disappears. As A = 0(a−`)×(a−`) and AE1 =

(ι(ĝ)− Ia)E2 in (A.14), g must belong to the standard mirabolic subgroup of

GLa−`(Eν); that is, Et1g = Et1. Since the integration domain of g is modulo

Za−`(Eν) and Et1g = Et1, the integral
∫
g is over Za−`−1(Eν)\GLa−`−1(Eν).

Since g is in the standard mirabolic subgroup of GLa−`(Eν), g−1 stabilizes the

character ψE((x1)`,a−`) of U−a,η, that is, (x1g
−1)`,a−` = (x1)`,a−`.
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Furthermore, one may choose a suitable smooth, compactly supported

function f1 such that

(A.21)

∫
U−a,η

f1(x1, x2, x3)ψE((x1)`,a−`) dx1 dx2 dx3 = 1.

Plugging (A.21) into (A.20), we have

(A.22)

∫
g
| det g|s+ρa−`W κ

τν

ÄÄ
g
I`+1

ää
bν

Å
π

ÅÅ
g
Im+1

g∗

ãã
vπ, vσ

ã
dg ≡ 0,

where
∫
g is over Za−`−1(Eν)\GLa−`−1(Eν).

It is clear that the left-hand side of (A.22) is exactly the same with (4.7)

in [75], up to a non-zero constant. We note that the reduction to this type

of the integrals is a key step in the proof of such non-vanishing of the local

Rankin-Selberg integrals. See [73] for instance. Applying the same inductive

argument in Sections 6 and 7 of [73] and the Dixmier-Marlliavin Lemma ([12]),

we obtain that

W κ
τν (Ia)bν(vπ, vσ) = 0.

However, this contradicts (A.9). Therefore, there must exist a choice of data

such that Zν(s, ·) is not zero at the given s = s0. This completes the proof of

Proposition A.1 when Ha+m is not isomorphic to GL2a+m(Fν).

If Ha+m(Fν) is isomorphic to GL2a+m(Fν), due to the splitness of the

group, the matrix calculation such as (A.12) and (A.13) is slight different. See

[86] for instance. However, the proof for this case is completely same. Hence

we omit the details here.

Appendix B. On local intertwining operators

Throughout this appendix, let F be a local field of characteristic 0. Recall

that H∗m is a quasi-split classical group defined over F and Hm is a pure inner

F -form of H∗m. Let φ be a local L-parameter of H∗m(F ) and Π̃φ(Hm) the

associated L-packet. Assume that φ is generic; that is, Π̃φ(H∗m) contains a

generic member, following [67]. Up to a conjugation, assume that φ is of form

as in Section 3.1,

(B.1) φ = (φ1 ⊗ | · |β1 ⊕ φ∨1 ⊗ | · |−β1)⊕ · · · ⊕ (φt ⊗ | · |βt ⊕ φ∨t ⊗ | · |−βt)⊕ φ0,

where β1 > β2 > · · · > βt > 0, all φi : LF → LGE/F (ni) for 1 ≤ i ≤ t

and φ0 : LF → LHn0 are tempered local L-parameters. Then, the L-packet

Π̃φ(Hm) is defined to be the set of the Langlands quotients of the induced

representations

(B.2) Ind
Hm(F )
P (F ) τ(φ1)| det |β1 ⊗ · · · ⊗ τ(φt)| det |βt ⊗ σ0,

where the parabolic subgroup P has the Levi subgroup isomorphic to GE/F (n1)

×· · ·×GE/F (nt)×Hn0 , σ0 runs through the tempered L-packet Π̃φ0(Hn0), and
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τ(φi) is the irreducible admissible unitary generic representation of

GE/F (ni)(F ) given by the local Langlands correspondence for the general lin-

ear groups.

Proposition B.1. If φ is a generic L-parameter of H∗m as given in (B.1),

then all representations in Π̃φ(Hm) can be written as irreducible standard mod-

ules ; that is, the induced representations displayed in (B.2) are irreducible for

all pure inner forms Hm and σ0 ∈ Π̃φ(Hn0).

Proof. If F is non-archimedean, this proposition is proved by Mœglin and

Waldspurger in [67] for orthogonal groups, by Gan and Ichino in [18, Prop. 9.1],

and by Heiermann in [29] for general reductive groups. If F is archimedean, it

is a special case of Theorem 1.24 in the book by Adams, Barbasch and Vogan

([1]). More details can be found in Chapters 14 and 15 of [1]. �

Proposition B.1 serves as a base for us to prove Theorem 5.1. Recall that

the normalized local intertwining operator N (ω0, τ ⊗ σ, s)ν takes sections in

the induced representation

(B.3) Ind
Ha+m(Fν)
Pâ(Fν) (τν |det |s ⊗ σν)

to sections in the induced representation

(B.4) Ind
Ha+m(Fν)
Pâ(Fν) (τ∗ν | det |−s ⊗ σν),

where τν is the local ν-component of the irreducible isobaric automorphic rep-

resentation τ as given in (4.1), and σν is the local ν-component of the ir-

reducible cuspidal automorphic representation σ in Acusp(Hm) with an Hm-

relevant, generic global Arthur parameter φσ as in Theorem 5.1. It is clear

that Theorem 5.1 follows from the following theorem.

Theorem B.2. Let φ+ be a local ν-component of an Hm-relevant, generic

global Arthur parameter of H∗m. If τ is an irreducible admissible unitary generic

self-dual representation of GE/F (a)(F ) and σ is an irreducible representation

in the generic local L-packet Π̃φ+(Hm), then the normalized local intertwining

operator N (ω0, τ ⊗ σ, s) is holomorphic and non-zero for Re(s) ≥ 1
2 .

Proof. First of all, the local L-packet Π̃φ+(Hm) has a generic member σ◦

([3] and [70]) when Hm = H∗m is quasisplit. If σ is generic, the proposition

follows from Theorem 11.1 in [11].

Assume now that σ is not generic. For such a generic local L-packet

Π̃φ+(Hm), by Proposition B.1, the standard modules as displayed in (B.2) are

irreducible. This is the key point for us to apply the argument in [11] in the

proof of this proposition.

According to the structure of the generic unitary dual of the general linear

groups, given by Vogan in [79] for the archimedean case and by Tadić in [78] for



ARTHUR PARAMETERS AND CUSPIDAL AUTOMORPHIC MODULES 819

the non-archimedean case, any generic member σ◦ in Π̃φ+(H∗m) is isomorphic

to the irreducible generic unitary induced representation

Ind
H∗m(F )
P (F ) τ(φ1)|det |β1 ⊗ · · · ⊗ τ(φt)|det |βt ⊗ σ0,

where

(B.5)
1

2
> β1 > β2 > · · · > βt > 0,

and all τ(φi) and σ0 are irreducible, unitary, generic, and tempered. By Propo-

sition B.1, each σ in Π̃φ+(Hm) is of form (B.2) with the exponents satisfying

(B.5).

Again, by the generic unitary dual of the general linear groups, τ is iso-

morphic to the irreducible induced representation

(B.6) Ind
GLa(E)
P ′(E) τ1|det |α1⊗· · ·⊗τd| det |αd⊗τ0⊗τ∗d | det |−αd⊗· · ·⊗τ∗1 |det |−α1 ,

where all τi are unitary, generic and tempered, and

1

2
> α1 > · · · > αd > 0.

Now we replace the representations τν and σν in (B.3) by their correspond-

ing realizations in (B.6) and (B.2), respectively. By the transitivity of parabolic

induction, the normalized local intertwining operator N (ω0, τν ⊗ σν , s) can be

expressed as a composition of the local intertwining operators of rank one,

which are of form

N (wj,i, τj ⊗ τ(φi), s± αj ± βi),(B.7)

N (w′j,i, τj ⊗ τi, 2s± αj ± αi),(B.8)

N (w′′j , τ(φi)⊗ σ0, s± αj),(B.9)

where wj,i, w
′
j,i, and w′′j are the corresponding Weyl elements. We deal with

these three types of the local intertwining operators separately.

The first two types (B.7) and (B.8) were studied by Mœglin and Wald-

spurger in [65]. For any unitary tempered τ and τ ′ of general linear groups, the

normalized intertwining operator N (w, τ ⊗ τ ′, s) is holomorphic and non-zero

for Re(s) > −1. Because of the bounds for the exponents, it follows that

N (wj,i, τj ⊗ τ(φi), s± αj ± βi) and N (w′j,i, τj ⊗ τi, 2s± αj ± αi)

are holomorphic and non-zero for Re(s) ≥ 0.

For the remaining type (B.9), by the bound 0 < αj <
1
2 , it is sufficient to

show that the normalized intertwining operator N (w′′, τ⊗σ0, s) is holomorphic

and non-zero for Re(s) > 0, when τ and σ0 are unitary tempered. Since φ0 is

a generic parameter, there is a generic representation σ◦0 in the tempered local

L-packet Π̃φ0(Hn0). Hence we have the identity of local L-factors:

L(s, τ × σ0) = L(s, τ × σ◦0).
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Referring to [54], L(s, τ × σ◦0) and L(s, τ, ρ) are holomorphic and non-zero for

Re(s) > 0, and so is the normalizing factor. In addition, following Proposition

IV.2.1 in [81] for the non-archimedean case and Lemma 4.4 in [10] for the

archimedean case, the non-normalized local intertwining operator M(w′′, τ ⊗
σ0, s) for tempered data is holomorphic and non-zero for Re(s) > 0. It follows

that both M(w′′, τj ⊗ σ0, s − αj) and L(s − αj , τj × σ0) are holomorphic and

non-zero for Re(s) ≥ 1
2 because 0 < αj <

1
2 . Therefore, the normalized local

intertwining operator N (w′′j , τ(φi) ⊗ σ0, s ± αj) is holomorphic and non-zero

for Re(s) ≥ 1
2 . Putting together the results for all three types, we complete

the proof of this proposition. �
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Zürich, 2006, pp. 1311–1325. MR 2275646. Zbl 1130.11024.

[75] D. Soudry, The unramified computation of Rankin-Selberg integrals expressed

in terms of Bessel models for split orthogonal groups: Part I, Israel J. Math.

222 no. 2 (2017), 711–786. MR 3722265. Zbl 06821078. https://doi.org/10.1007/

s11856-017-1604-x.

[76] D. Soudry, The unramified computation of Rankin-Selberg integrals expressed

in terms of Bessel models for split orthogonal groups: Part II, J. Number Theory

http://www.ams.org/mathscinet-getitem?mr=2925174
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1273.11088
https://doi.org/10.1007/s11139-012-9372-z
https://doi.org/10.1007/s11139-012-9372-z
http://www.ams.org/mathscinet-getitem?mr=0913667
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0612.22008
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0612.22008
https://doi.org/10.1007/BF01200363
http://www.ams.org/mathscinet-getitem?mr=1026752
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0696.10023
https://doi.org/10.24033/asens.1595
http://www.ams.org/mathscinet-getitem?mr=1361168
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0846.11032
https://doi.org/10.1017/CBO9780511470905
http://www.ams.org/mathscinet-getitem?mr=3155346
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1276.22007
http://www.ams.org/mathscinet-getitem?mr=3823813
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1361.11004
http://www.ams.org/mathscinet-getitem?mr=3823814
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1381.11001
http://www.ams.org/mathscinet-getitem?mr=3338302
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1316.22018
https://doi.org/10.1090/memo/1108
http://www.ams.org/mathscinet-getitem?mr=3049932
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1305.22025
https://doi.org/10.1007/s00222-012-0420-5
https://doi.org/10.1007/s00222-012-0420-5
http://www.ams.org/mathscinet-getitem?mr=2683009
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1215.11054
https://doi.org/10.1090/coll/058
http://www.ams.org/mathscinet-getitem?mr=1169228
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0805.22007
https://doi.org/10.1090/memo/0500
http://www.ams.org/mathscinet-getitem?mr=2275646
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1130.11024
http://www.ams.org/mathscinet-getitem?mr=3722265
http://www.zentralblatt-math.org/zmath/en/search/?q=an:06821078
https://doi.org/10.1007/s11856-017-1604-x
https://doi.org/10.1007/s11856-017-1604-x


826 DIHUA JIANG and LEI ZHANG

186 (2018), 62–102. MR 3758206. Zbl 07003382. https://doi.org/10.1016/j.jnt.

2017.10.026.

[77] B. Sun and C.-B. Zhu, Multiplicity one theorems: the Archimedean case, Ann.

of Math. (2) 175 no. 1 (2012), 23–44. MR 2874638. Zbl 1239.22014. https:

//doi.org/10.4007/annals.2012.175.1.2.
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