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Abstract

The endoscopic classification via the stable trace formula comparison
provides certain character relations between irreducible cuspidal automor-
phic representations of classical groups and their global Arthur parameters,
which are certain automorphic representations of general linear groups. It
is a question of J. Arthur and W. Schmid that asks how to construct con-
crete modules for irreducible cuspidal automorphic representations of clas-
sical groups in term of their global Arthur parameters? In this paper, we
formulate a general construction of concrete modules, using Bessel periods,
for cuspidal automorphic representations of classical groups with generic
global Arthur parameters. Then we establish the theory for orthogonal
and unitary groups, based on certain well expected conjectures. Among
the consequences of the theory in this paper is that the global Gan-Gross-
Prasad conjecture for those classical groups is proved in full generality in
one direction and with a global assumption in the other direction.
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Let F' be a number field and A be the ring of the adeles of F'. Let G be
a classical group defined over F'. The theory of endoscopic classification gives

a parametrization of the irreducible automorphic representations of G(A) oc-

curring in the discrete spectrum of all square-integrable automorphic functions
on G(A), up to global Arthur packets, by means of global Arthur parameters.
These parameters are formal sums of certain irreducible square-integrable au-
tomorphic representations of general linear groups. This fundamental theory
has been established by J. Arthur in [3] for G to be either symplectic groups
or F-quasisplit special orthogonal groups, with an outline on general orthog-
onal groups in [3, Ch. 9]. Following the fundamental work of Arthur ([3]),
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several authors made progress for more general classical groups. C.-P. Mok
established the theory for F-quasisplit unitary groups ([70]). More recently,
Kaletha, Minguez, Shin, and White in [52] made progress on more general
unitary groups. We refer to the work of B. Xu ([83]) for progress on the cases
of similitude classical groups GSpsy,, and GOg,. We remark that all those
works depend on the stabilization of the twisted trace formula, which has been
achieved through a series of works of C. Moeglin and J.-L. Waldspurger that
are now given in their books ([68] and [69]).

In Problem No. 5 in the Open Problems in honor of W. Schmid ([4]),
Arthur explains that the trace formula method establishes certain character
relation between irreducible cuspidal automorphic representations of classical
groups and their global Arthur parameters. It was Schmid who asks “What
about modules...?”. This means how to construct a concrete module for any
irreducible cuspidal automorphic representation in terms of its global Arthur
parameter. In [4], Arthur posed this question and pointed out that the work
of the first named author ([36]) has the potential to give an answer to this
question.

Our objective is to formulate, in the spirit of the constructive theory
described in [36] and also [35], a general construction (Principle 1.1) of concrete
modules for cuspidal automorphic representations of general classical groups,
which provides an answer to the question of Arthur-Schmid.

In this paper we establish the theory of concrete modules (Conjecture 6.7),
under certain well-expected conjectures (Conjecture 2.3, for instance) for cusp-
idal automorphic representations with generic global Arthur parameters (The-
orem 7.1). The key idea in the theory is to introduce the method of twisted
automorphic descents, which extends the method of automorphic descents of
Ginzburg-Rallis-Soudry ([23]) from F-quasisplit classical groups to general
classical groups, and from generic cuspidal automorphic representations to
general cuspidal automorphic representations with generic global Arthur pa-
rameters.

One of the main technical issues in the method is to establish the global
non-vanishing of the twisted automorphic descents that are constructed from
the given data. This is treated by establishing the reciprocal non-vanishing for
Bessel periods (Theorem 5.3), which depends heavily on the extension of the
global and local theory of the global zeta integrals that represent the tensor
product L-functions to the generality considered in this paper from the work
of Ginzburg, Piatetski-Shapiro and Rallis ([19]), the work of the current au-
thors ([45]), and the recent work of Soudry ([75] and [76]). Those previously
done works mainly treat the F-quasisplit classical groups. The extension of the
global theory is discussed in Section 4 of this paper, and that of the local the-
ory is given in our joint work with Soudry in [43]. Another technical issue is to
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prove the irreducibility of the concrete modules constructed via the twisted au-
tomorphic descents, which is carried out by using the local Gan-Gross-Prasad
conjecture (Conjecture 3.1) as input. As a consequence, we are able to estab-
lish one direction of the global Gan-Gross-Prasad conjecture in full generality
(Theorem 5.7), while we establish the other direction of the conjecture with a
global assumption (Theorem 6.10), except some special cases (Corollary 6.11,
and also [40]), where such a global assumption can be established.

The global Gan-Gross-Prasad conjecture that we refer to is Conjecture
24.1 (and Conjecture 26.1 for a different formulation) in [16]. It was first made
by B. Gross and D. Prasad in [24] and [25] for orthogonal groups and was re-
formulated in full generality for all classical groups, including the metaplectic
groups, by Gan, Gross and Prasad in [16]. The progress towards the proof
of the global Gan-Gross-Prasad conjecture can be traced back to the pioneer-
ing work of Harder-Langlands-Rapoport on the Tate conjecture for Hilbert-
Blumenthal modular surfaces ([26]), and it has been explained well in [16],
[15], and also in [14].

It is important to point out that the work of W. Zhang ([88] and [87])
established the global Gan-Gross-Prasad conjecture for a special family of uni-
tary groups with certain global and local constraints. The approach taken up
in [88] and [87] is to use the relative trace formula developed by H. Jacquet
and S. Rallis in [34] for unitary groups. However, such a relative trace formula
that can be used to attack the global Gan-Gross-Prasad conjecture for orthog-
onal groups is so far not known to be available. The global Gan-Gross-Prasad
conjecture for generic cuspidal automorphic representations with simple global
Arthur parameters was considered in [20], [21], and [22] for symplectic and
metaplectic groups, orthogonal groups, and unitary groups, respectively. The
method is a combination of the Bessel or Fourier-Jacobi periods of certain
residual representations with the Arthur truncation method. It was recently
discovered that there is a technical gap in the argument towards the end of the
proof, which needs to be filled up. A similar approach with the Arthur trunca-
tion replaced by the Jacquet-Lapid-Rogawski truncation is applied to the case
of Up41 x Uy, by A. Ichino and S. Yamana in [33]. We refer to Section 5.5 for
a more detailed account.

The approach taken up in this paper treats the global Gan-Gross-Prasad
conjecture uniformly for unitary groups and orthogonal groups, and it can be
used to take care of the symplectic group and metaplectic group situation by
using the Fourier-Jacobi periods ([46]). It avoids the technical difficulties that
occur in the literature ([20], [21], and [22]), which seem hopeless to be smoothly
handled when one considers general cuspidal automorphic representations with
generic global Arthur parameters and general classical groups. More impor-
tantly, the approach in this paper is much naturally related to the theory of
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twisted automorphic descents and the general Rankin-Selberg method, so that
one may regard the global Gan-Gross-Prasad conjecture as part of the theory
developed in our work. Finally, the results on the global Gan-Gross-Prasad
conjecture in this paper (Theorems 5.7 and 6.10) do not assume that the cusp-
idal multiplicity should be one, while this cuspidal multiplicity one assumption
was taken for the global Gan-Gross-Prasad conjecture in [16]. This cuspidal
multiplicity one issue was also discussed by H. Xue in [85, §6].

We also refer to [88] and [87] for a beautiful explanation of the relation
between the Gan-Gross-Prasad conjecture and certain important problems in
arithmetic and geometry, and for a more complete account of the progress on
lower rank examples and other special cases towards the global conjecture and
its refinement.

It is worthwhile to mention that the basic theoretic framework and techni-
cal results developed in this paper have been used in some recent work ([39] and
[48]) to study the automorphic branching problem and its reciprocal problem,
and to establish certain cases of the global Gan-Gross-Prasad conjecture for
non-tempered global Arthur parameters, which has been recently formulated
as [17, Conj. 9.1].

1.1. Main ideas and arguments in the theory. In order to illustrate the
main ideas and arguments of the theory in this introduction, we take G to be
an odd special orthogonal group. The general case will be discussed in the
main body of this paper.

We denote by G}, = SO(V*,¢*) the F-split odd special orthogonal group
of 2n + 1 variables. Let G, = SO(V,q) be the odd special orthogonal group
defined by a 2n + 1 dimensional non-degenerate quadratic space (V, q) over F.
Then G, is a pure inner form of G} over F, in the sense of Vogan (in [80]
and also in [16], [50] and [51]). Following the work of Arthur ([3, Ch. 9, in
particular]), the discrete spectrum of G,, are parametrized by the G,-relevant,
global Arthur parameters of G, the set of which is denoted by EQ(G;)GR. The
global Arthur parameters of G}, are multiplicity-free formal sums of the type

(1.1) ¢: (Tlabl)E"'Bﬂ(TmbT) GEQ(G;%

where 7; is an irreducible unitary self-dual cuspidal automorphic representation
of GLg, (A) for i = 1,2, ..., r, having the property that when 7; is of orthogonal
type, the integer b; must be even, and when 7; is of symplectic type, the integer
b; must be odd.

Following [3], a global Arthur parameter v is called generic if b; = 1 for
1=1,2,...,7. The subset of the generic parameters is denoted by &)2(G;“l) and
that of the Gy-relevant ones is denoted by ®4(G )¢, . Hence the generic global
Arthur parameters are of the form

(1.2) ¢=(r,1) 88 (r,1).
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It follows that for a generic global Arthur parameter ¢ in (1.2), the cuspidal
automorphic representations 7, ..., 7, are all of symplectic type and 7; is not
equivalent to 7; if ¢ # j.

By [3], in particular, [3, Ch. 9], for any 7 € Acusp(Gr), the set of equiva-
lence classes of irreducible automorphic representations of (G,, that occur in the
cuspidal spectrum, there is a G,,-relevant, global Arthur parameter ¢ € EQ(G;)
such that 7 € ﬁw(Gn), the global Arthur packet of G, associated to ¢. One
has the following diagram,

Ty (G5)
(G
v N
Adise(Gn) N1y (Gy) = Agise(G5) N1y (G),

where Agisc(Gr) is the set of equivalence classes of irreducible automorphic

(1.3)

representations of Gy, (A) that occur in the discrete spectrum.

When a parameter 1 € ﬁg(G;) is generic, i.e., ¥ = ¢ as given in (1.2),
the global packet ﬁ¢(G:) contains an irreducible generic cuspidal automorphic
representation mp of G (A). This 7y can be constructed by the automorphic
descent of Ginzburg, Rallis and Soudry in [23] and in [42]. This construction
produces a concrete module for my by using only the generic global Arthur
parameter ¢. However, it remains a big problem to construct other cuspidal
members in the global packet ﬁ¢(G;‘L), and even more generally, to construct
all cuspidal members in ﬁw(Gn) for all pure inner forms G,, of G7..

It seems clear from diagram (1.3) that one has to take more invariants of
into consideration in order to develop a reasonable theory that constructs con-
crete modules of all cuspidal members in ﬁw(G) for general classical groups G.
One of the natural choices is to utilize the structure of Fourier coefficients of
cuspidal automorphic representations 7, in addition to the global Arthur pa-
rameters 1. We use F(m,G) to denote a certain piece of information about
the structure of Fourier coefficients of w. Here is the principle of the theory.

PrINCIPLE 1.1 (Concrete Modules). Let G* be an F-quasisplit classical
group and G be a pure inner form of G*. For an irreducible cuspidal automor-
phic representation © of G(A), assuming that ™ has a G-relevant global Arthur
parameter | € ﬁg(G*), there exists a datum F(mw,G) such that one is able to
construct a concrete irreducible module M(¢, F(w,G)), depending on the data
(¢, F(m,G)), with the property that

T = M, F(r,GQ)).

Moreover, if m occurs in the cuspidal spectrum of G- with multiplicity one, then

=M, F(r,Qq)).
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We remark that if G = G* is F-quasisplit and 7 is generic, the concrete
module expected in Principle 1.1 should coincide with the module constructed
from the automorphic descents of Ginzburg-Rallis-Soudry in [23]. This will be
explained in Corollary 7.2.

We still take G,, to be an odd special orthogonal group. For the case
when the global Arthur parameter ¢ is generic, we propose the Main Con-
jecture (Conjecture 6.7) of the theory developed in this paper that specifies
the Principle of Concrete Modules (Principle 1.1) with the datum F(m, G,)
explicitly given in Conjecture 2.3. The nature of Conjecture 2.3 will be briefly
discussed in Section 2.3 and will be considered in our future work. With
F(m,Gy) as described in Conjecture 2.3, and with the generic global Arthur
parameter ¢ for m, the construction of the concrete module M(¢, F(w,G,))
for the given 7 is carried out by the twisted automorphic descent as illustrated
in diagram (6.7).

One of the key results in this paper is Theorem 5.3, which gives a re-
ciprocal non-vanishing for Bessel periods. Such a non-vanishing property is
proved using a refined theory of the global zeta integrals for the tensor prod-
uct L-functions for G, and a general linear group. The global theory of the
global zeta integrals goes back to the pioneering work of Ginzburg, Piatetski-
Shapiro and Rallis for orthogonal groups ([19]), which has been extended to
a more general setting, including unitary groups by the authors of this paper
in [45]. We established the global results of the global zeta integrals for the
most general situation in Section 4. In order to obtain Theorem 5.3, we need
the explicit unramified computation of the local zeta integrals. This is done
in [43], which extends the work of Soudry ([75] and [76]) for split orthogonal
groups to the generality considered in this paper.

By using the reciprocal non-vanishing for Bessel periods, we are able to
show that certain Fourier coefficient of a residual representation, which is de-
noted by 90 (£,4,), is non-zero. The notation is referred to in Theorem 5.3.
This is the candidate for the concrete module of 7, as explained in the main
conjecture of the theory (Conjecture 6.7). Conjecture 6.7 for G,, asserts that
FO%0(Er95) is an irreducible cuspidal automorphic representation of Gy, (A)
that is isomorphic to the given w. We note that when G, is an even special
orthogonal group, this assertion has to be modified due to the extra outer
involution. We refer to Conjecture 6.7 for detail.

One of the main results of this paper (Theorem 7.1) is to prove that
Conjecture 6.7 holds under the assumption of Conjectures 2.3 and 3.1, In two
special cases, the results are stronger as given in Corollaries 7.2 and 7.4. It is
worthwhile to mention that by a different argument, this theory recovered the
classical Jacquet-Langlands correspondence for PGL(2) in [40].
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We remark that the irreducibility of F90 (€, ) is deduced from Conjec-
ture 3.1, which is the local Gan-Gross-Prasad conjecture for local Vogan pack-
ets. The recent progress towards this conjecture is recorded as Theorem 3.2,
according to the work of Moeglin-Waldspurger ([67]), the work of R. Beuzart-
Plessis ([9] and [8]), the work of Gan-Ichino ([18]), the work of H. He ([28]),
and the Ph.D. thesis of Zhilin Luo ([59]).

Based on our theory, Theorem 5.7 proves one direction of the global Gan-
Gross-Prasad conjecture in full generality for the classical groups considered
in this paper, while Theorem 6.10 proves the other direction of the conjecture
with a global assumption (Conjecture 6.8), which is about a certain structure
of Fourier coefficients of the relevant residual representations. We refer to [36,
§4] and [37] for discussion of the general issue related to the conjecture.

1.2. Structure of this paper. A more detailed description of the content in
each section is in order. In Section 2.1, we discuss the family of classical groups
considered in this paper and recall their basic structures. The global Arthur
parameters and the discrete spectrum for those classical groups are discussed
in Section 2.2. We recall from [36] and [37] the general notion of Fourier co-
efficients of automorphic forms associated to the partitions or nilpotent orbits
in Section 2.3 and give a more detailed account for the special type of Fourier
coefficients, which is often called the Bessel-Fourier coefficients. Based on the
tower property for Bessel-Fourier coefficients of cuspidal automorphic forms
(Proposition 2.2), we state Conjecture 2.3. This is our starting point in the
theory of construction of concrete modules for irreducible cuspidal automor-
phic representations for general classical groups via the twisted automorphic
descents. In Section 2.4, we show (Proposition 2.6) that the construction illus-
trated by diagram (6.7) covers all the classical groups considered in this paper
as described in Section 2.1.

The local Gan-Gross-Prasad conjecture (as in Conjecture 3.1) is one of
the key inputs in the proof of the irreducibility of the constructed modules.
We recall from [16] the cases considered in this paper in Section 3, and we
state Conjecture 3.1, which is needed for one of the main results in the paper
(Theorem 7.1). The known cases of Conjecture 3.1 are stated in Theorem 3.2.
In Section 4, we consider a family of global zeta integrals, which represent
the tensor product L-functions for the classical groups defined in Section 2.1
and the general linear groups. We show that they can be written as an Eu-
ler product of local zeta integrals (Theorems 4.5 and 4.7). With the explicit
results on the unramified calculation of the local zeta integrals in terms of
the local L-factors (Theorem 4.8), the global zeta integral can be written in
a formula in (4.49). Based on what was discussed in Section 4, we estab-
lish in Section 5 the necessary analytic properties of the local zeta integrals
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in Section 5.3, which are needed to establish the reciprocal non-vanishing for
Bessel periods (Theorem 5.3). While some of the properties of the local zeta
integrals can be deduced from the global argument based on the formula in
(4.49) for the global zeta integrals, one of the most technical local results is
Proposition 5.5, which asserts a general non-vanishing of the local zeta inte-
grals for the data with certain global constraints, and which will be proved in
Appendix A. It is also important to mention that Theorem 5.1 on the analytic
properties of the normalized local intertwining operators is another key input
in this theory. We will prove Theorem 5.1 in Appendix B. As a consequence,
we obtain in Theorem 5.7 one direction of the global Gan-Gross-Prasad con-
jecture in full generality. With Conjecture 2.3 and Theorem 5.3, in addition to
Theorem 5.1, we are able to obtain the non-vanishing of the Fourier coefficient
of the particular residual representation Fx0 (£, ), which is one of the key
points in the theory. The basic properties of F0(E,4,) are established in
Section 6, which are similar to those in the automorphic descents of Ginzburg,
Rallis and Soudry ([23]) and in our previous work joint with Liu and Xu ([40]).
As a consequence, we obtain results towards another direction of the global
Gan-Gross-Prasad conjecture (Theorem 6.10).

Diagram (6.7) illustrates the main idea and process of the construction
of concrete modules for irreducible cuspidal automorphic representations of
G that have generic global Arthur parameters. In the framework of the con-
struction given by diagram (6.7), we state the main conjecture of the theory
(Conjecture 6.7). As one of the main results of this paper, we prove in Theo-
rem 7.1 that Conjecture 6.7 holds, assuming that Conjectures 2.3 and 3.1 hold.
In two special cases, Conjecture 2.3 is trivial or can be easily verified. Hence
we can have stronger results for those two special cases. The one attached to
the regular partition (Corollary 7.2) is essentially the automorphic descents in
[23], and the other attached to the subregular partition (Corollary 7.4) is new,
and is a generalization of the construction considered in [40].

There are two appendices following the main body of this paper. Ap-
pendix A proves Proposition 5.5 in a more general setting. We put this as
one of the two appendices so as to ensure a smoother logic flow in the main
body of this paper. Appendix B proves Theorem 5.1. We leave this out of the
main body because the proof needs different preparation, although there is a
possibility to put it in Section 3.

Finally, we would like to thank J. Arthur and W. Schmid for asking and
posing this very interesting and important problem in 2013, which stimulates
and encourages us to carry out the work in this paper. We hope the main
results and conjectures in this paper to be helpful towards the understanding
of the nature of their problem. We are grateful to D. Soudry for his help
in finding the proof presented in Appendix A, which works uniformly for all
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local places. We would also like to thank C. Mceeglin, F. Shahidi, D. Vogan,
and B. Xu for very helpful conversations about the proof of the results in
Appendix B, and thank W. T. Gan for his helpful comments and suggestions
on several issues on the theory considered here. Last, but not least, we would
like to thank P. Sarnak for his interest in and encouraging comments on the
theory and results developed in this paper, and we thank the referee for very
important and useful comments and suggestions, which greatly improved the
exposition of the paper.

2. Discrete spectrum and Fourier coefficients

2.1. Certain classical groups. The classical groups considered in this paper
are unitary groups and special orthogonal groups that are explicitly defined
below.

Let F' be a number field and A = Ag be the ring of adeles of F. Let
F(4/<) be a quadratic field extension of F', with ¢ a non-square in F*. Let E
be either F' or F'(1/<), and consider the Galois group I'p/p = Gal(E/F). It
is trivial if £ = F, and it has a unique non-trivial element ¢ if E = F(,/3).
Let (V,q) be an n-dimensional non-degenerate vector space over F, which is
Hermitian if £ = F(,/<) and is symmetric (or quadratic) if £ = F. Denote
by Gy, = Isom(V, ¢q)° the identity connected component of the isometry group
of the space (V,q), with n = [3]. Let Gj, = Isom(V*,¢*)° be an F-quasisplit
group of the same type, so that G,, is a pure inner form of G, over the field F,
following [80] and [16].

Let (Vy, q) be the F-anisotropic kernel of (V, ¢) with dimension 99 = n—2t,
where the F-rank vt = v, = t(G,,) of G, is the same as the Witt index of (V, ¢).
Let V* be a maximal totally isotropic subspace of (V,q), with {e1,..., e}
being its basis. Choose E-linearly independent vectors {e_1,...,e_.} in (V,q)
such that

q(ei,e—j) =i

for all 1 <4,j <t. Denote by V~ = Span{e_1,...,e_.} the dual space of V.
Then (V, q) has the following polar decomposition,

V=VteleV,

where Vy = (VT @ V)t is an F-anisotropic kernel of (V,¢). We choose an
orthogonal basis {e], ..., ey } of Vo with the property that

1)1

00

where d; is non-zero for all 1 <i <9g. Set Gy, = Isom(Vp, ¢)° with do = [7],

which is anisotropic over F' and is regarded as an F-subgroup of G,,.
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We put the above bases together in the following order to form a basis of
(V. q):
(2.1) el,...,et,ell,...,e’ao,e_t,...,e_l.
We fix the following full isotropic flag in (V q),
Span{e;} C Span{ej,es} C --- C Span{ey,..., e},

which defines a minimal parabolic F-subgroup Fy. Moreover, P, contains a
maximal F-split torus S, consisting of elements

diag{ts,...,te,1,..., L,t7 ot )

with t; € F* for i = 1,2,...,v. Then the centralizer Z(S) in G, is Resg/pS X
Gy, the Levi subgroup of Fy, where Resg/pS is the Weil restriction of S from
FE to F. Then Py has the Levi decomposition

Py = (Resg/pS x Gg,) X No,

where Ny is the unipotent radical of Py. Also, with respect to the order of the
basis in (2.1), the group G,, is also defined by the following symmetric matrix:

1
(2.2) Jt = J 2 and JJ° = diag{ds, ..., do,}
1

nxn

as defined inductively.

Let #®(G,,S) be the root system of G, over F. Let pg®*(G,,S) be the
positive roots corresponding to the minimal parabolic F-subgroup Py, and let
A = {ai,...,a} be a set of simple roots in @ (G,,S). When G, is an
orthogonal group, the root system p®(G,,S) is of type B, unless n = 2t, in
which case it is of type D,. When G,, is a unitary group, the root system
(G, S) is non-reduced of type BC; if 2v < n; otherwise, (G, S) is of
type Cx.

For a subset J C {1,...,t}, let #@; be the root subsystem of ®(G,,S)
generated by the simple roots {a;: j € J}. Let Py = M;U; be the standard
parabolic F-subgroup of G,, whose Lie algebra consists of all roots spaces
go with a € ;@1 (G,,S) U p®,. For instance, if we set 7 := {1,...,t} \ {i},
then P; = MU, is the standard maximal parabolic F-subgroup of G,, which
stabilizes the rational isotropic space Vi+, where Vii := Span{ei1,...,ex;}.
Here U: is the unipotent radical of P; and the Levi subgroup M: is isomorphic to
Gg/r(i) X Gy Following the notation of [3] and [70], Gg/p(i) := Resg,/rGL;
denotes the Weil restriction of E-group GL; restricted to F. Write V(;) =
(V:* @ V7)1 hence Vivy = Vo is the F-anisotropic kernel of (V, q).

We recall simply from [16] the classification of pure inner F-forms of
F-quasisplit classical groups G, for a local field and then for a number field.
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For a local field F' of characteristic zero, we recall the notion of a relevant
pair of classical groups. As above, we let G, :=Isom(V, ¢)° be defined for an
n-dimensional non-degenerate space (V, q) with n=[3]. Take an m-dimensional
non-degenerate subspace (W, q) of (V, q) with the property that the orthogonal
complement (W+,q) is F-split and has an odd dimension. Define H,, :=
Isom(W, q)° with m = [§]. By [16, §2], the pair (G, Hp,) forms a relevant pair.

If G, := Isom(V',¢)° and H], := Isom(W’, ¢')° form another relevant
pair, and if G}, and H], are pure inner F-form of G,, and H,,, respectively,
the product G}, x H] is defined to be relevant to the product G,, x H,, if the
orthogonal complement ((W’)*, ¢') is equivalent to the orthogonal complement
(W+,q), as Hermitian vector spaces. From [16, Lemma 2.2, part (i)], one can
have an easy list of all F-relevant pairs (G, Hy,) whose product G,, x H,, is
relevant to the F-quasisplit product G}, x H,.

For a number field F', G, is a pure inner F-form of an F-quasisplit Gj, if
it is obtained by inner twisting by elements in the pointed set H'(F,G,,). It
follows that at every local place v, Gy, is a pure inner F)-form of GG},. The notion
of relevance is defined in the same way. We will come back to this in Section 3
when we discuss Vogan packets and the Gan-Gross-Prasad conjectures.

2.2. Discrete spectrum and Arthur packets. For a reductive algebraic group
G defined over F, denote by Agisc.(G) the set of equivalence classes of irre-
ducible unitary representations 7w of G(A) occurring in the discrete spectrum

L% (G) of L*(G(F)\G(A)!), when 7 is restricted to G(A)!. Also denote by
Acusp(G) the subset of Agisc(G), whose elements occur in the cuspidal spec-
trum L2, (G). The theory of endoscopic classification for classical groups G,
is to parametrize the set Aqgisc(Gy) by means of the global Arthur parameters,
which can be realized as certain automorphic representations of general linear
groups. We recall from the work of Arthur ([3]), the work of Mok ([70]) and the
work of Kaletha, Minguez, Shin, and White ([52]) the theory for the (special)
orthogonal groups and the unitary groups considered in this paper.

First, we take an F-quasisplit classical group G, of which G,, is a pure
inner F-form. Both G} and G, share the same L-group “G% = LG,,. Define
nY to be n if G, is a unitary group or an even special orthogonal group, and to
be n — 1 if G}, is an odd special orthogonal group. This number n" is denoted
by N in [3], [70] and [52].

Following [3], [70] and [52], we denote by Eim(N) (with N = n") the set
of the equivalence classes of simple twisted endoscopic data. Each member in
gsim(N ) is represented by a triple (G, s, &), where G is an F-quasisplit classical
group, s is a semi-simple element as described in [3, p. 11] and [70, p. 16|, and

¢ is the L-embedding

LG = Gpp(N).
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Note that when G is an F-quasisplit unitary group, the L-embedding § = &,
depends on kK = £1. As in [70, p. 18], for a simple twisted endoscopic datum
(Ug/r(N),&y,.) of Ggyp(N), the sign (—1)V~1 - & is called the parity of the
datum. The set of global Arthur parameters for Gj, is denoted by 52(6’;';, €),
or simply by EﬂG;’;) if the L-embedding & is well understood in the discussion.

In order to explicate the structure of the parameters in ﬁg(G;ﬁb,é), we
first recall from [3] and [70] the description of the conjugate self-dual, elliptic,
global Arthur parameters for G, (N ), the set of which is denoted by @eu(N ).
We refer to [3], [70] and also [52] for detailed discussion about general global
Arthur parameters. The elements of Eeu(N ) are denoted by ¥, which have
the form

(2:3) YN =y BBy

with N =37 | N;. The formal summands @ZJZN ¢ are simple parameters of the
form

N = Ky
with N; = a;b;, where p; = 7; € Acusp(G / r(a;)) and v; is a b;-dimensional
representation of SLy(C). Following the notation used in our previous paper
[36], we also denote

o = (7i,bi)
for i =1,2,...,r. A global parameter ¥V is called conjugate self-dual if each
simple parameter wZN" that occurs in the decomposition of ¥ is conjugate
self-dual in the sense that 7; is conjugate self-dual. An irreducible cuspidal
automorphic representation 7 of G,/ p(a) is called conjugate self-dual if T = 77,
where 7% = (7)Y is the contragredient of ¢(7), with + being the non-trivial
element in I'g/p if E # I otherwise, ¢« = 1. The global parameter PN is
called elliptic if it is conjugate self-dual and its decomposition into the simple
zN “ and wj-vj are not equivalent if ¢ # j in
the sense that either 7; is not equivalent to 7;, or b; # b;. A global parameter
™ in Eeu(N) is called generic if b; =1 for i = 1,2,...,r. The set of generic,
elliptic, global Arthur parameters for G r(IV) is denoted by 5611(N ). Hence

parameters is multiplicity free, i.e., ¥

elements ¢ in ®.(N) are of the form
(2.4) oV = (r,1) BB (7, 1).

When r = 1, the parameters are called stmple. The corresponding sets are de-
noted by Esim(N ) and E)Sim(N ), respectively. It is clear that the set isim(N )
is in one-to-one correspondence with the set of equivalence classes of the
conjugate self-dual, irreducible cuspidal automorphic representations of
Gg/r(N)(Ap). By [3, Th. 1.4.1] and [70, Th. 2.4.2], for a simple parameter

¢ =¢*=(7,1)1in &)Sim(a), there exists a unique endoscopic datum (G, 54, &s),



752 DIHUA JIANG and LEI ZHANG

such that the parameter ¢ descends to a global parameter for (Gg,§s) in the
sense that there exists an irreducible automorphic representation 7 in Az (Gg),
whose Satake parameters are determined by the Satake parameters of ¢®.
When E # F, Gy = Ug/p(a) is a unitary group, the L-embedding carries
a sign ke, which determines the nature of the base change from the unitary
group Ug,p(a) to Gg/p(a). By [70, Th. 2.5.4], the (partial) L-function

L(s,(1,1),As"mD)

has a (simple) pole at s = 1 with the sign 7,1y = K - (=1)*"" (see also [16,
Th. 8.1] and [70, Lemma 2.2.1]). Then the irreducible cuspidal automorphic
representation 7 or equivalently the simple generic parameter (7, 1) is called
conjugate orthogonal if n 1) = 1 and conjugate symplectic if ni; ) = —1,
following the terminology of [16, §3] and [70, §2]. Here L°(s,(r,1),As™) is
the (partial) Asai L-function of 7 and L°(s,(7,1), As™) is the (partial) Asai
L-function of 7 ® wg/p, where wr/p is the quadratic character associated to
E/F by the global class field theory.

The sign of a simple global Arthur parameter 1) = ¥ = (1,b) € Eg(ab)
can be calculated following [70, §2.4]. Fix the sign x, as before for the endo-
scopic datum (Ug,p(a),§y,, ). The sign of (7,1) is 91y = 0y = Ka(—1)271,
Hence the sign of (7,b) is given by

M) = Fa(—1)"" 7 = ko (1) = (1)

Asin [70, eq. (2.4.9)], define rgp := kq(—1)%~270+1 Then we have kg (—1)201
= (1)1 = N(r,p) and hence rgp = n-(—1)(¢=Db which gives the endoscopic
datum (Ug,p(ab),&x,,). More generally, for an elliptic parameter YV as in
(2.3), following from [70, §2.1], each simple parameter @/}ZM determines the
simple twisted endoscopic datum (Ug/p(Ni), &y, ) with x; = (—DHN=Ne =
1, (—1)(@=1b “and hence determines the parity of the 7; € Acusp(G/r(ai))
for the simple parameter %N "= (13, b;).

When E = F, the notion of conjugate self-dual becomes just self-dual
in the usual sense. A self-dual 7 € Acusp(a) is called of symplectic type if
the (partial) exterior square L-function L°(s,7,A?) has a (simple) pole at
s = 1; otherwise, 7 is called of orthogonal type. In the latter case, the (partial)
symmetric square L-function L (s, 7,sym?) has a (simple) pole at s = 1.

More generally, from [3, §1.4] and [70, §2.4], for any parameter 1" in
U (N), there is a twisted elliptic endoscopic datum (G, s, &) € En(N) such
that the set of the global parameters EQ(G, €) can be identified as a subset of
U (N). We refer to [3, §1.4], [70, §2.4], and [52, §1.3] for more constructive
description of the parameters in @2(6’,&). The elements of 52(6’7*1,5), with
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N =un" and n = [§], are of the form
(2.5) Y= (m,b1)B---B (7, b).

Here N =N +---+ N, and N; = qa; - b;, and 7; € .Acusp(GE/F(ai)) and b;
represents the b;-dimensional representation of SLa(C). Note that each simple
parameter 1; = (7;,b;) belongs to ﬁg(G;i,&) with n; = [%] and N; = n}, for
i=1,2,...,r;and for i # j, v; is not equivalent to ¢;. The parity for 7; and b;
is discussed as above. The subset of generic elliptic global Arthur parameters
in Wy(Gx,€) is denoted by ®o(G, ), whose elements are in the form of (2.4).

Without lose of generality and for convenience, we choose £ with sign x = 1
throughout this paper, which is consistent with the choices in the Gan-Gross-
Prasad conjecture ([15, p. 35]) and in the automorphic descents of Ginzburg-
Rallis-Soudry ([23, p. 55]). That is, when G} is an odd unitary group, its
parameters are conjugate orthogonal; when G}, is an even unitary group, its
parameters are conjugate symplectic.

The following is a simplified version of the endoscopic classification for
classical groups established in [3], [70], and [52].

THEOREM 2.1 (Endoscopic Classification). For any m € Agisc(Gn), there
is a Gyp-relevant global Arthur parameter ¢ € Wo(G?, ), such that m belongs to
the global Arthur packet, I1,(Gy,), attached to the global Arthur parameter 1.

Following [3], [70] and [52], when G,, is not an even special orthogonal
group, the multiplicity of m € Agisc(Gy) realizing in the discrete spectrum
LﬁiSC(Gn) is expected to be one. However, when G, is an even special or-
thogonal group, the discrete multiplicity of m € Agisc(Gr) could be two. The
multiplicities of the discrete automorphic representations of classical groups
depend on the multiplicity property of local Arthur packets, which is known
for the p-adic and complex cases for general local Arthur parameters. How-
ever, for the general local Arthur packets, which is what we need in this paper,
the multiplicity property holds for all local fields. Hence the expected multi-
plicities of the automorphic representations in generic global Arthur packets
are known. In the following, we may fix a realization of 7 € Agisc(Gy) in the
discrete spectrum L3, (G,,), which will be denoted by Cr, especially when the
discrete multiplicity of 7 is two.

Recall the notation from the definition of [3, Ch. 8] that

(2.6) O(Gy) = Outy(Gr) := Auty (Gp)/Inty (G)

is regarded as the diagonal subgroup of 611/tN(Gn(A)). When G, is an even
special orthogonal group, one may take ¢ € Og,(F) with dete = —1 and
€2 = I,, such that the action of G(Gn) on 7 can be realized as the e-conjugate
on T, i.e., 7°(g) = m(ege~!). Hence the 6(Gn)—orbit of m has one or two
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elements. If G(Gn) acts freely on 7, following the notation in [3], we denote
the 6(Gn)—torsor of m by {m,m.}. When G, is not an even special orthogonal
group, the group 6(Gn) is trivial, and so is its action. Hence in this case, the
G(Gn)—orbit of 7 contains only 7 itself.

When G, is an even special orthogonal group, an elliptic global Arthur
parameter ¥V as in (2.3) may descend to two different global Arthur parame-
ters ¢ and 1, for Gy, which form an O(G,,)-orbit. If the 6(Gn)—orbit of YV is
an 6(Gn)—torsor {1,1,}, then they define different global Arthur packets and
different global Vogan packets. However, following [3], their tensor product
L-functions with any cuspidal automorphic representations of general linear
groups are the same. We refer to Chapter 8 of [3] and Section 6 of [5] for a
more detailed discussion.

In the rest of this paper, when we say that 1 is a global Arthur parameter
of an even special orthogonal group G,,, we really mean that " is identified
with either ¥ or v, through a specific twisted endoscopic datum.

2.3. Fourier coefficients and partitions. For an F-quasisplit classical group
G} defined by an n-dimensional non-degenerate space (V*,¢*) with the Witt
index n = [§], the relation between Fourier coefficients of automorphic forms
¢ of G} (A) and the partitions of type (n,G}) has been discussed with de-
tails in [36] and also in [37]. We denote by P(n,G}) the set of all partitions
of type (n,G}). The set P(n,G}) parametrizes the set of all F-stable nilpo-
tent adjoint orbits in the Lie algebra g} (F') of G} (F'), and hence each partition
p € P(n,G},) defines an F-stable nilpotent adjoint orbit O5. For an F-rational
orbit O, € (’)ff, the datum (p, Op) determines a datum (VQ, Yo,) for defining
Fourier coefficients as explained in [36] and [37]. Here V, is a unipotent sub-
group of G, and 9o, is a non-degenerate character of V;,(A), which is trivial
on V,(F) and determined by a given non-trivial character 1p of F\A.

For an automorphic form ¢ on G (A), the Yo, -Fourier coefficient of ¢ is
defined by the following integral:

(2.7) Fr(0)(9) = p(vg)bo) (v)dv.

/Vp(F)\Vp(A)

Let Ng:x (V) be the connected component of the semi-simple part of the
normalizer of the subgroup V), in Gj},. Define

(2.8) HO .= Cent, v,y (¥0,)°,

the identity connected component of the stabilizer. It is clear that the ¢o,-

Fourier coefficient of ¢, ]:woﬁ(cp)(g), is left HO®(F)-invariant, smooth when
restricted on H2(A), and of moderate growth on a Siegel set of H2(A).
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For any 7 € Agisc(G), we denote by Cr a realization of 7 in the discrete
spectrum L%, (G}). We define F O (C,) (or simply FO%(r) when no confusion
is caused) to be the space spanned by all .Fwoﬁ((pw) with ¢r running in the
space of C,, and we call fOE(CW) a Yo, -Fourier module of m. We note that
if the discrete multiplicity of 7 is one, it has a unique o, -Fourier module.
For a given m € Agisc(G},), we denote by p(Cr) (or simply p(7)) the subset of
P(n,G},) consisting of all partitions p with the property that the ¥, -Fourier
module, FO2(C,), is non-zero for some choice of the F-rational orbit Oy in the

F-stable orbit O3, and we denote by p™(7) (short for p*(Cr)) the subset of

all maximal members in p(7). In the rest of this paper, we may write F°2 ()
to be FO2(C,) and p™(7) to be p"(C,) for a discrete realization Cy of .

For a pure inner F-form G,, of G}, a partition p in the set P(n,G}) is
called G, -relevant if the unipotent subgroup V), of Gy, ‘as algebraic groups over
the algebraic closure F is actually defined over F. We denote by P(n,G%)q,
the subset of the set P(n,G}) consisting of all Gj,-relevant partitions of type
(n, G}). It is easy to see that the above discussion about Fourier coefficients and
Fourier modules can be applied to all 7 € Aqgjsc(Gr) and all p € P(n,G)a
without change.

Following R. Howe ([32] and [31]), N. Kawanaka ([53]), Moeglin and Wald-
spurger ([64]), and Moeglin ([60]), one expects that the partitions p in p"(7),
the F-rational orbits O, in the F-stable orbits O;t, and the automorphic spec-

n?

trum of the Fourier modules FO%(x) as representations of H92(A) carry fun-
damental information about the given automorphic representation 7 of G, (A).
However, it is usually not easy to obtain explicit information about those data
from the given w. In reality, we may consider certain special pieces of those
data that may already carry enough information for us to understand the given
representation 7 in the theory discussed in this paper.

We consider a family of partitions of type (n,G}), which leads to the
so called Bessel-Fourier coefficients of automorphic forms on G,,(A). These
partitions are of the form

(2.9) = [(20 4 1)1 271,

P,

They are of type (n,G}). The partition p, is Gp-relevant if £ is less than or
equal to the F-rank v of G,. For example, if G, is F-anisotropic, then the only
Gp-relevant partition is the trivial partition p, = [1"]. For m € Adgisc(Gn), and
for a partition p, € P(n, G},)¢,,, the Fourier module FOr(rr) will be called the

(-th Bessel module of 7. As explained before, the /-th Bessel module Fr ()
consists of moderately increasing automorphic functions on H O, (A) and is a
representation of H % (A) by the right translation.
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To simplify the notation, we set 1o, ::@D@BZ, HO% ::HOBe, and FO(r) :=
FOr (7). In this case, the F-algebraic group H is the classical group HZO_" =
Isom(W9, q)°, where (W%, q) is an [~-dimensional non-degenerate subspace
of (V,q) with the following properties:

e " =n-2/—1and (- =[5],

e the product G, x H 9 is relevant in the sense of the Gan-Gross-Prasad
conjecture ([16]), and

e the product G,, x Hzof is a pure inner F-form of an F-quasisplit G}, x H;_.

We refer to Section 2.4 for more a detailed discussion. One may extend the

proof of [23, Th. 7.3] to the current case and prove the cuspidality of the

maximal Bessel module of 7.

PRrROPOSITION 2.2 (Cuspidality of Bessel Modules). For any m belonging
to Acusp(Gr) with a cuspidal realization Cr, the (-th Bessel module FOr(C,)
of Cx enjoys the following property: There exists an integer €y in {0,1,... ¢},
where v is the F-rank of Gy, such that
(1) the £y-th Bessel module FO% (Cr) of Cx is mon-zero, but for any { €

{0,1,...,¢} with £ > fy, the (-th Bessel module FOt(Cy) is identically

zero; and
(2) the Lo-th Bessel module F©% (Cy) is cuspidal in the sense that its constant

terms along all the parabolic subgroups of Hefo are zero.
0

We note that when the cuspidal multiplicity of 7 is two, the index £y of 7 in
Proposition 2.2 may depend on a particular realization C; of 7 in the cuspidal
spectrum L2, (Gy). Hence we write £y = £y(Cr) to be a first occurrence index
of . Of course, if the cuspidal multiplicity of 7 is one, then 7 has the unique
first occurrence index, which may be written as £y = o(7).

By Proposition 2.2, for any m € Acusp(Gr), the £p-th Bessel module

. . (@) .
FO% (1), or more precisely, FO%(C,), as a representation of H FZO(A), is non-
0

. . @)
zero and can be embedded as a submodule in the cuspidal spectrum L2 (H Z_ZO ),
0
and hence can be written as the following Hilbert direct sum of irreducible cus-

. . . o
pidal automorphic representations of H gfo (A),
0

(2.10) Fou(n)=01®00® - Dot ®---,
where all 0; € .ACUST_)(ILIKCZ‘ZO ). By the uniqueness of local Bessel models for clas-

0
sical groups ([2], [77], [16] and [44]), it is easy to deduce that the decomposition
(2.10) is multiplicity free. Furthermore, we have the following conjecture.

CONJECTURE 2.3 (Generic Summand). Assume that m € Acusp(Gr) has
a Gp-relevant, generic global Arthur parameter ¢ € ®o(G3). Then there exists
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a cuspidal realization Cr of m in Lcusp(Gn) with the first occurrence index
lo=1o(Cr), such that there exists an F-rational orbit Oy, :Ope in the F'-stable
=0

orbits OSt associated to the partition Py, with the
0

. . o
GENERIC SUMMAND PROPERTY: There exists at least one o in ACHSP(HFZO)
0
. @ . 4
with an H 0 _relevant, generic global Arthur parameter ¢ in (I>2(HZ‘,), and
0 0
@ .
with a cuspidal realization C, of o in Lcusp(HZfO), such that the L*-inner
0
product

<F'¢'Ogo ((PTr)a ‘PJ>HO£0

‘o

(@) .
H ZO) is mon-zero for some o, € Cr and p, € Cy.

in the Hilbert space L2, ( pu
0

It is clear that the Generic Summand Conjecture seeks a refined structure
of the generalized branching law for automorphic representations with help of
the endoscopic classification theory. We introduce such a property of invariant
theoretic nature into the explicit construction of cuspidal automorphic mod-
ules. Some interesting examples of this nature are obtained through a simple
relative trace formula approach by W. Zhang in [88]. In Section 7.3, we con-
sider the situation that a cuspidal automorphic member 7 in ﬁ¢(Gn) has the
property that p™(7) = {qubr}, where p_. is the partition associated to the
subregular nilpotent orbit. We prove in Proposition 7.3 that Conjecture 2.3
holds for this case. Further discussions on the Generic Summand Conjecture,
its variants, and applications can be found in our work ([46] and [49]). In [47],
we establish the local analogy of the Generic Summand Conjecture for orthog-
onal groups defined over p-adic local fields of characteristic zero.

2.4. Rationality of H O . We are going to make more explicit the paramet-
rization of the F- ratlonal orblts Oy in the F-stable orbit OSt for the family
of partitions p,, which define the family of Bessel modules. ThlS yields more
explicit structure about the groups H ef.

For the partition p, =[(2(41) 1"=2=1 of type (n, G%), which is G,,-relevant,
the unipotent subgroup V, = VEe of G, can be chosen to consist of all unipotent
elements of the form

(2.11) Vi={v= Lo ¥ | €GulzeZy,

where Z; is the standard maximal (upper-triangular) unipotent subgroup of
Gg/ r(f). Tt follows that the F-rational nilpotent orbits Oy in the F-stable
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nilpotent orbit (’)St are in one-to-one correspondence with the G/ p(1) X Gy, -

orbits of F- amsotroplc vectors in (E"™ %,q) viewed as a subspace of (V,q).
Hence the generic character 1o, of V;(A) may also be explicitly defined as
follows. Fix a nontrivial character ¥p of F\A, and define a character ¢ of

E\Ag by
(@) = {w( ) if B =F,
T et () i B = F().

Consider the following identification:
Vi) Ve, Vi) = @1 9o, @ E™2

Let wg be an anisotropic vector in (E”_% ,q), and define a character Yy, Of
Ve(Ar) by

-1
(2.12) Y0, (V) = Yeuy (V) =YY ziir + q(ye, wo)),

i=1
where gy, is the last row of y as defined in (2.11). The Levi subgroup of
Pf41,...ry normalizes the unipotent subgroup V; and acts on the set of such
defined characters v ,,. The group Hg" = H;”_O is the identity connected
component of the stabilizer of vy ,,, which is given by

I,
(2.13) vy € Gy | YJa—20wo = Jy_o0wo p ,
I,

where ¢~ = [4] with [T := n —2¢ — 1. As introduced in Section 2.1, we
may write Viy) = E"2 and view (Viey; @) as a non-degenerate subspace of
(V, q) under the natural embedding. Hence the group HKO_" = H,* can also be
identified as Isom(V{z) N wy, q)°. Write Wi— := Viey Nwg so that (W, q) is an
[~ -dimensional non-degenerate subspace of (V, ¢). It follows that the dimension
0, of its anisotropic kernel of the space (W-,q) is 99 & 1, depending on the
choice of wg. Note that (W,-,q) is isometric to (W%, ¢q) as introduced in
Section 2.3. Define t~ to be the Witt index of (W|-, q), which equals v — £ or
t— ¢ — 1, depending on d, =0y — 1 or 0, = 0g + 1, respectively.

For further explicit calculations, we may take the representative wqg of the
F-anisotropic vectors corresponding to the F-rational nilpotent orbits Oy in
the F'-stable nilpotent orbit (’)St as follows. The representative wg is an F-

anisotropic vector in the space (En 2 q), which defines the character ty .

Under the action of the product Gg,p(1 ) X Gp_¢ on the space (E"%¢ ¢), in
particular, on the set of F-anisotropic vectors wy, if £ < t, we may choose

K
(214) wo = Yr = € + (_1)n+1§6—t

for some k € F*, using the following lemma.
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LEMMA 2.4. If the Witt index of (V(y),q) is not zero, i.e., if £ < v, then
there exists an element g in Gn_2¢(F) = Isom(V{y),q)°(F) such that

K
g-wy = € + (71)11-1-1567‘?

for some k € F*.
Proof. The proof is straightforward. We omit the details here. (]

It is clear that if £ = v, then the subspace (E"~%%, q) is F-anisotropic
and hence is not sensitive to the choice of the F-anisotropic vector wg. The
structure of Hff is summarized in the following proposition.

PROPOSITION 2.5. For the partition Py let Oy in (’);te be determined by the

F-anisotropic vector wg as in Lemma 2.4. Then the classical group ng = H;U_O
is defined by an |~ -dimensional non-degenerate subspace (W~ ,q) of (V,q) with
a (00 — 1)-dimensional F'-anisotropic kernel if y_ belongs to the Gg/p(1) x
Gn_g-orbit of a non-zero vector in the F-anisotropic kernel (Vo,q) of (V,q);
it is defined by an |~ -dimensional non-degenerate subspace (Wi-,q) of (V,q)
with a (09 + 1)-dimensional F-anisotropic kernel if y_, does not belong to
the GE/F(l) X Gp_g-orbit of any non-zero vector in the F-anisotropic kernel

Vo, q)-
Following the explicit discussions on pure inner forms of F-quasisplit clas-
sical groups in [16], it is easy to obtain the following proposition.

PROPOSITION 2.6. Let H}, be an F-quasisplit classical group as introduced
in Section 2.1. For any pure inner F-form Hy, of HY,, there exist
e q classical group G, defined over F' that is a pure inner form of an F-quasi-
split classical group Gj,; and
e a datum (p,,Og) for the Fourier coefficients for automorphic forms on
Gn(A)
such that m = ¢~ and H,, = Heof. Moreover, the product G, x H,, is a
relevant pure inner form of the F-quasisplit G}, x H}, in the sense of the Gan-
Gross-Prasad conjecture.

We will recall the Gan-Gross-Prasad conjecture and related notions in
Section 3.

3. The local Gan-Gross-Prasad conjecture

We recall the local Gan-Gross-Prasad conjecture from [16] for the cases
considered in this paper. The version of the local Gan-Gross-Prasad conjec-
ture, which will be stated as Conjecture 3.1, was proved by Waldspurger and by
Moeglin and Waldspurger in a series of papers (see [82] and [67], for instance)
for orthogonal groups over p-adic local fields. Over archimedean local fields,
it is proved by Z. Luo for tempered local L-parameters in [59], but the case
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of general generic local L-parameters is still in progress. For unitary groups,
Beuzart-Plessis ([9] and [8]) proves the conjecture (Conjecture 3.1) for tem-
pered local L-parameters over all local fields, and in [28], H. He proves the
conjecture for discrete representations over R via a different approach. The
extension to the generic local L-parameters was obtained by Gan and Ichino
([18]) for p-adic local fields, but over archimedean local fields, such an exten-
sion remains an open problem, as far as the authors knew. In the proof of the
main conjecture (Conjecture 6.7), we need the local Gan-Gross-Prasad conjec-
ture (as in Conjecture 3.1) for generic local parameters at all local places as
an input. In the process towards the proof of Conjecture 6.7, we are able to
prove the global Gan-Gross-Prasad conjecture (with one direction having an
extra assumption). This will be explained in Sections 5.5 and 6.3.

3.1. Generic Arthur parameters. We consider generic local Arthur param-
eters for the classical groups considered in this paper. This has been extensively
discussed in [16] and in [67]. We recall the basics for the case of orthogonal
groups, and we refer to [18] for the case of unitary groups. Let G}, = SO(V*, ¢%)
be the special orthogonal group defined by a non-degenerate, n-dimensional

n

quadratic space (V*,¢*) with n = [§], which is F-quasisplit. We recall that
the generic global Arthur parameters for G}, are of the form

(3.1) ¢p=(m,1)B---B(r,1)

as in (1.2), where 7q,..., 7, are irreducible unitary cuspidal automorphic rep-
resentations of GLg, (A),...,GL,, (A), respectively, with required constraints
to make ¢ a global Arthur parameter of G). As before, the set of generic
global Arthur parameters of G% is denoted by ®5(G%). It is known that the
global Arthur packet ﬁ(b(G;“L) associated to a generic global Arthur parameter
¢ contains a generic member. We refer to [37, Th. 3.3] for details.

With the assumption of the Ramanujan conjecture for general linear groups,
at each local place v of F, the localization ¢, of the generic global Arthur
parameter ¢ must be a tempered local L-parameter for G} (F,). Hence with
possible failure of the Ramanujan conjecture for general linear groups, one has
to figure out the possible structure of the localization ¢, of the generic global
Arthur parameter ¢. We recall a work of Mceglin and Waldspurger ([67]) for
special orthogonal groups and refer to [18] for the unitary group case.

For each local place v of F', we denote by Wpg, the local Weil group of
F,. The local Langlands group of F,,, which is denoted by L, , is equal to the
local Weil-Deligne group. Hence the local Langlands group L, , as usual, may
be taken to be W, x SLa(C) or equivalently Wr, x SU(2) if v is a finite local
place, and to be the local Weil group Wg, if v is an archimedean local place.
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The local L-parameters for G}, (F,) are of the form
(3.2) ¢y © L, — "G

with the property that the restriction of ¢, to the local Weil group Wg, is
Frobenius semi-simple and trivial on an open subgroup of the inertia group
Ir, of F,, and the restriction to SLo(C) is algebraic. By the local Langlands
conjecture for general linear groups ([55], [30], [27], and [71]), the localization
¢, at a local place v of F' of a generic global Arthur parameter ¢ is a local
L-parameter, for which there exists a datum (L%, %", 8) with the following

v

properties:

(1) L; is a Levi subgroup of G*(F),) of the form

L} = GLy, x - - x GLy,, x G,

no?

where GLy,,, ..., GLy, and Gy, depend on the local place v;
(2) ¢ is a local L-parameter of L* given by

Pl =@ Dy Do - L, — L7,

where ¢; is a local tempered L-parameter of GL,; for j =1,2,...,¢, and
¢o is a local tempered L-parameter of G, , with dependence on the local
place v;

(3) B := (B1,---,0:) € RY, such that B; > B > --- > B, > 0, which is also
dependent of the local place v.

With the given datum, following [67], which is expressed in terms of the para-
bolic induction, one can write

pp=(1®| [P es| e e@@| |les @] 1,7 ® o

Following [3] and also [67], the local L-packets can be formed for all local
L-parameters ¢, as displayed above, and they are denoted by ﬁ%(G’,"L). A
local L-parameter ¢, is called generic if the associated local L-packet ﬁdm (Gy)
contains a generic member, i.e., a member with a non-zero Whittaker model
with respect to a certain Whittaker data for G}. Using the notation of [3],
the set of all generic local L-parameters is denoted by &5:11%((;,’; (Fy,)). All the
members in any generic local L-packet are irreducible and unitary. It is clear
that the localization ¢, of a generic global Arthur parameter ¢ is a generic
local L-parameter according the definition in [67] since there exists a generic
member in the local L-packet ﬁ%(G?’;). Hence, following [67], the local Gan-
Gross-Prasad conjecture can be formulated for the localization ¢, of all generic
global Arthur parameters ¢ in &)Q(G;), which will be discussed in the following

section.



762 DIHUA JIANG and LEI ZHANG

3.2. The local Gan-Gross-Prasad conjecture. We are going to recall the
local Gan-Gross-Prasad conjecture that was explicitly formulated in [16] for
general classical groups. We discuss the case of orthogonal groups with details
and refer the unitary group case to [16] and [9], [8], and [18] for the details.

Assume that in this section F' is a local field of characteristic zero. Recall
that an F-quasisplit special orthogonal group G}, = SO(V*,¢*) and its pure
inner F-forms G,, = SO(V, q) share the same L-group “G?%. As explained in
[16, §7], if the dimension n = dim V' = dim V* is odd, one may take Sp,_;(C)
to be the L-group “G7, and if the dimension n = dimV = dimV* is even,
one may take O,(C) to be “G} when disc(V*) is not a square in F'* and take
SO, (C) to be “G?, when disc(V*) is a square in F*.

For a relevant pair G, = SO(V,q) and H,, = SO(W,q), and for an
F-quasisplit relevant pair G}, = SO(V*,¢*) and H}, = SO(W*,¢") as recalled
in Section 2.1 from [16], we are going to discuss the local Langlands param-
eters for the group G, x H}, and its relevant pure inner F-form G,, x Hy,.
As in Section 3.1, we use Lr to denote the local Langlands group associated
to F'. We only consider the local Langlands parameters that satisfy the three
properties in Section 3.1:

(3.3) ¢ : Lp =Tl xTH?.

Hence they are the localization of the generic global Arthur parameters for the
product of the F-quasisplit relevant pair Gy and HY,. The set of such local
Langlands parameters is denoted by @unlt(G;‘l x H} ). As in Section 3.1, each
local L-parameter ¢ in <I>umt(G* x HY ) defines a local L-packet ﬁ(b(GfL x HY).
For any relevant pure inner F-form G,, x H,,, if a 1 parameter ¢ € (I)unlt(G;kl xH})
is Gy, X H,,-relevant, it defines a local L- packet H¢,(Gn X H,,), as in Section 3.1,
following [3] and [67]. If a parameter ¢ € @unlt(G; x HY) is not Gy, X Hp-
relevant, the corresponding local L-packet H¢(G X H,,) is defined to be the
empty set. The local Vogan packet for a local Langlands parameter ¢ belonging
to <I>1'fmt(G* x H} ) is defined to be the union of the local L-packets H¢(G X Hp,)
over all pure inner F-forms G,, x Hy, of the F-quasisplit group G}, x H,, and
it is denoted by

(3.4) TI4[GE x H,).

In order to state the local Gan-Gross-Prasad conjecture and relevant
progress, we have to introduce the local analogue of the Fourier coefficients as
introduced in Section 2.3, which is usually called the local Bessel models. For a
given relevant pair (Gy, Hy, ), take a partition of the form p, = [(2¢+ 1)1n=26+1])
where 20+1 = dim W+ = n—m. The F-stable nilpotent orblt (’)St correspond-
ing to the partition p P, defines a unipotent subgroup V and a generlc character
1o, associated to any F-rational orbit Oy in the F- Stable orbit OSt According
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to the discussion in Section 2.4, there is an F-rational orbit Oy in the F-stable
orbit O;Z, such that the subgroup H,, = HEO_‘Z normalizes the unipotent sub-
group V;Z and stabilizes the character 1)p,. We define the following subgroup
of Gp:

1)
Ro, == Hp, x VB@ = Hef X VBZ'

Let 7 be an irreducible admissible representation of G, (F) and o be an irre-
ducible admissible representation of H,,(F'). The local functionals we consid-
ered belong to the following Hom-space:

(35) HomRoz(F)(ﬂ- ® o, wa)'

This is usually called the space of local Bessel functionals. The uniqueness of
local Bessel functionals asserts that

dim Homp,, (r)(7 ® 0,%0,) < 1.

This was proved in [2], [77], [16], and [44]. The stronger version in terms of
local Vogan packets for more general classical groups is given as follows, which
will be called as the local Gan-Gross-Prasad conjecture in the rest of the paper.

CONJECTURE 3.1. Let G, and H}, be a relevant pair of F'-quasisplit clas-

sical groups. For a given local L-parameter ¢ in @init(G,*I x HY)), the following
identity holds:

(3.6) Z dim HomROZ(F) (m®o0,v0,) =1.
T@oelly[Gh x Hy,]

The known cases of Conjecture 3.1 can be summarized as follows.

THEOREM 3.2. Conjecture 3.1 holds for the following cases:

(1) the relevant orthogonal group pair G}, and H}, over a p-adic local field F,
by Meglin and Waldspurger in [67] for generic local L-parameters;

(2) the relevant orthogonal group pair G}, and H}, over an archimedean local
field F', by Zhilin Luo in his Ph.D. thesis [59], for tempered local L-para-
meters;

(3) the relevant unitary group pair G, and H}, over a p-adic local field F or
over the real number field R, by Beuzart-Plessis in [9] and [8] for tempered
local L-parameters; and

(4) the relevant unitary group pair G}, and H}, over a p-adic local field F,
extended by Gan and Ichino in [18] to generic local L-parameters.

We remark that over the real number field R, H. He proves in [28] the
local Gan-Gross-Prasad conjecture for discrete series representations of unitary
groups via a different approach.
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4. Bessel periods and global zeta integrals

The automorphic analog of the local Bessel functionals is the notion of
Bessel periods for a pair of cuspidal automorphic forms or representations.
When one of cuspidal automorphic forms is replaced by a certain Eisenstein
series, the Bessel periods become the global zeta integrals that represent the
tensor product L-functions. We extend such a construction of the global zeta
integrals considered in our previous work ([45]) to a more general setting that
is needed for the main results of this paper. For quasi-split orthogonal groups,
a special family of the global zeta integrals was first investigated by Ginzburg,
Piatetski-Shapiro and Rallis in [19].

4.1. Global zeta integrals. The global zeta integrals that we are going to
study are defined for the following three families of classical groups:

(1) Gy =SO9p11(V,q) and H. = SO9.(W, q), such that the product G x H, is
a relevant pure inner form of an F-quasisplit G} x H over F;

(2) Gy =S049,(V,q) and H. = SOg.11(W, q), such that the product G} x H, is
a relevant pure inner form of an F-quasisplit G; x H; over I

(3) Gy, = Uy(V,q) and H. = U (W, q) with b and ¢ being of different parity
and b = [3] and ¢ = [§], such that the product G, x H, is a relevant pure
inner form of an F-quasisplit G; x H.

In the following, we use the notation that G, = Isom(V,q)° and Ho =
Isom (W, q)°, such that G, x Hp is a relevant pure inner form of an F-quasisplit
G x HE. Because the global zeta integrals considered in this paper extend what
were studied for F-quasisplit groups by the authors in [45], which generalizes
the work of Ginzburg, Piatetski-Shapiro and Rallis in [19], we will try to follow
the arguments and proofs used in [45] and provide explanation only for the
steps that are necessary for understanding of the main results of this section.

In order to formulate the families of global zeta integrals, we take 7 to
be an irreducible unitary automorphic representation of Gg/p(a)(Ar) of the
following isobaric type,

(4.1) T=r@n@ B,

where 7; € Acusp(Gg/r(ai)), Yoijai=a,and 7; Z 75 if i # j.

We note that as in [45], the global unfolding of the global zeta integrals
and the unramified calculation for the unramified local zeta integrals in this
section only require the assumption that 7 is a generic isobaric automorphic
representation, which means that some 7; and 7; could be equivalent.

Take H,, = Isom(W, q)° with dim W = m and m = [§]. Let ¢ be an irre-
ducible automorphic representation of H,,(A). Note that we need not assume
the cuspidality of ¢ in this section.
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Let Mz = Gg/p(a) x Hy, be an F-Levi subgroup of Hyqm, so that P =
MU, is a standard parabolic F-subgroup of Hg4y,. Following Section 1.1.4
in [66], we denote Xjs, to be the group of continuous homomorphisms of
M;(A) into C* that are trivial on M7 := Ny cHom(M, G, Ker|x|. Since the
parabolic subgroup F; is maximal, the C-vector space Xy, is one-dimensional.
As in Section 2.2 in [45], for any s € C, we define As(m, h) := |det m|j  for
(m,h) € Gg/p(a)(A) x Hy(A). Tt is clear that A\s € Xjp7,. Via the ITwasawa
decomposition, we may make the trivial extension of A\; to be a function on

Hyim(A).
For any
(4.2) ¢ = ¢prae € A(Ua(A)Ma(F)\Hatm(A))rg0,
we may set ¢s := Ag - ¢ and form the associated Eisenstein series
(4.3) E(h,¢,5) = E(h, $reo, ) = > ¢s(69)-

6P (F)\Ha+m (F)

Note that the character As is normalized as in [72]. The theory of Langlands
on Eisenstein series ([57] and [66]) shows that E(h, ¢, s) converges absolutely
for Re(s) large, has meromorphic continuation to the complex plane C, and
defines an automorphic form on Hyyp,(A) when s is not a pole.

Take a family of Hgqn-relevant partitions p, = [(2¢ + 1)1m+2a=26=17 of
type (m + 2a, H}, ), with £ < a 4 vy, where ty := v(H,,) is the F-rank of
H,, and is the Witt index of m-dimensional non-degenerate space (W, q) that
defines H,,. We define the Bessel-Fourier coefficient of the Eisenstein series
E(h,¢,s) on Hyym(A):

(4.4)  FUreo(E(,¢,5))(h) = E(nh, ¢, ), (n)dn,

/Ne(F I\Ne(4)
where the unipotent subgroup Ny of H,4,, determined by the partition P, is
similar to the unipotent subgroup V; of G, considered in Section 2.3. We use
Ny in this section in order to match the notation used in [45], since we have to
recall from there some technical computations of the global zeta integrals.

As in Lemma 2.4, one may choose the representative wqg that defines the
character 1., for Fourier coefficient, as in (2.14):

m+1”

(45) Wo = Y = ea‘i‘tm + (_1) §e*(a+tm)
for some k € F*. Following Proposition 2.6, we have that m~ = [%-] and
m~ = 2a+m—20—1and £ < a+ vy, and that the stabilizer G7° and

the subgroup H,, form a relevant pair in the sense of the Gan-Gross-Prasad
conjecture (see Section 3). Of course, when ¢ = a + ty,, the representative wq
is any F-anisotropic vector in the F-anisotropic kernel (Wy, q) of (W, q). It is
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clear that the pair (G%O_ , Hy,) is relevant in this case. Note that in this case,
we must have

mT=2a+m-—20—1=0y(W)—1,

and the group G%O_ is F-anisotropic.
As in [45] we define the following semi-direct product of subgroups:

(4.6) R/ =G0 % Ny.
For an automorphic form ¢g,1m on Hgipm(A), and an automorphic form ¢,-
on G'° (A), we define the Bessel period by

(4.7)  PYev0 (P20 tm, P ) = Fw0 (0204m)(9)om- (9) dg.

/GZ;O (F\GIO (4)
It is absolutely convergent if one of the automorphic forms @aoqm and @,- is
cuspidal. In fact, following [66, Ch. 2], the Fourier coefficients of an automor-
phic form with moderate growth is still of moderate growth on the stabilizer of
the character that defines the Fourier coefficients. Moreover, if an automorphic
form is rapidly decreasing on a Siegel set, then its Bessel-Fourier coefficient is
also rapidly decreasing on a Siegel set of the stabilizer of the character that
defines the Bessel-Fourier coefficient. We refer to [23, Lemma 10.1], [6, Lemma
2.1] and [7] (and also [45, Prop. 2.1]) for details. Otherwise, some regulariza-
tion may be needed to define this integral in (4.7). We define the L?-inner
product of automorphic functions ¢ and ¢z over G0 (A) by

(4.8) (p1,02) gm0 = p1(2)ipa () d

m /GZO (FN\G™ ()

assuming it converges, where p(x) = () defines the complex conjugation of
the function ¢.

For m € Acusp(G" ), the global zeta integral Z(s, dreo, Ons Yew,), as in
(2.17) of [45], is defined by the following Bessel period,

(49) 2(37 Py ¢’T®O’7 w@,wo) = ’Pd’é,wo (E(¢T®0'7 5)7 9071')7

where the Bessel period is written in our convention in this paper by means of
the L2-inner product as follows:

P (B(bran,s), ox) = (on Fo (E(brans)) )

Gwo -

As given in Proposition 2.1 of [45], Z(s, ¢ree, @r, Yew,) converges absolutely
and hence is holomorphic at s where the Eisenstein series E(h, ¢, s) has no
poles.

From the theory of Eisenstein series and induced representations, it is
clear that the Eisenstein series is an automorphic realization of the following
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induced representation:

(4.10) Iy(r,0) = Indp ™ (7] det |* @ o).

The global zeta integral Z(s, ¢rge, @r, Vrw,) When s is away from the pole of
E(¢rg0,s) defines a global Bessel functional £*"* belonging to the following
Hom-space,

(4.11) Hom peo 4 (Is(7, 0), 7 @ Vo),
which has the following restricted tensor product decomposition:
(4.12) Ry HomR}_,“O(F,,)(IS(TVv 0u), Ty @ Vpwow)-

By the local uniqueness of the Bessel models as proved in [2], [77], [16], and
[44], this Hom-space has dimension at most one, when I4(7,, 0,) is irreducible.
Hence we expect that this global functional 2" in (4.11) can be written as an
Euler product of the local Bessel functionals

(4.13) e =c- T

with certain normalization on ¢, when the data are unramified. The global
unfolding process (or the global calculation) of the global zeta integral

Z(Sv ¢T®U’ Py ¢Z,wo)7

when Re(s) is large, is to find explicitly the Euler product factorization in
(4.13) and an explicit formula for the local Bessel functionals ¢,. This global
calculation contains two main steps. The first is to calculate the Fourier coef-
ficient of the Eisenstein series F¥¢w0 (E(¢,g0,5)) and by using the cuspidality
of 7 to show that Z(s, ¢rge, ©r, Yrw,) is equal to an integration associated to
the Zariski open dense double coset from P;\Hg iy /R,°. The second step is
to show that this remaining integration is in fact an Euler product of local zeta
integrals.

4.2. Fourier coefficients of Fisenstein series. The goal of this subsection
is to calculate the Fourier coefficient of the Eisenstein series as defined in (4.4).
Since the calculation is very similar to that in the proof of [45, Prop. 3.3], we
will not repeat every detail from there, but point out the key steps in the proof.

For Re(s) sufficiently large, we are able to unfold the Eisenstein series in
the integral defining the Fourier coefficient F¥¢wo (E(¢rgo,s)). This leads to
the calculation of the double coset decomposition P;\Hgim/ Ré”o. First, we
consider the generalized Bruhat decomposition P3\Hoym/P;, as a preliminary
step towards the calculation. This decomposition corresponds to the double
coset decomposition Wa\W,a/W;. Here W A is the Weyl group of Hgym,
relative to F', which is generated by the simple reflections s, associated to the
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roots a € pA. Similarly, W; is the subgroup of W, A generated by the simple
reflections s, for a € pA \ {a,}, and so is W;.
We discuss the group Hg4ym in the following four cases:

(1) If Hyypy is the quasi-split even unitary group (i.e., m = 2ty and E =
F(1/3)), then WA = W (Coqry,)-

(2) If Hyyp, is a unitary group, but not a quasi-split even unitary group (i.e.,
2ty <m and E = F(,/5)), then WA = W(Bgjen)-

(3) If Hyqm is the split even special orthogonal group (i.e., m = 2ty and
E = F), then W,a = W (Das, )-

(4) If Hyy, is a special orthogonal group but not a split even special orthog-
onal group (i.e., 2tn < m and E = F), then W, A = W(Bg+,,)-

Here W (X,4+,,) is the Weyl group of the split classical group of type X with
rank a + ty. Following from [45, §3.1], we put the double coset decomposition
Wa\Wpa/W; into three cases for discussions, i.e., Case (1-1), Case (2-1) and
Case (2-2). Both Case (2-1) and Case (2-2) in [45, §3.1] are only for the
split even special orthogonal groups. The result that we are to prove here has
already been proved in [45]. Hence, we assume that Hy ., is not the split even
special orthogonal group, which is Case (1-1) in [45, §3.1]. We extend below
the proof for Case (1-1) in [45, §3.1] to the current general case considered in
this section.

In this situation, the double coset decomposition P;\Hgytm/ P; is in bijec-
tion parametrized by the set of pairs of nonnegative integers

Cr={eap|l0<a<pB<aanda</l+f—-a<a+rty}

The representatives €, g are chosen as in [23, §4.2]. For each double coset
Piea,p Py, we take a further decomposition P&\Paea,gPl;/ RZ’“, where the group
Ry" is defined as in (4.6). It is equivalent to considering the decomposition
PEO‘B\PE/RZ’O with PEO’B = Gaépaﬁo,ﬁ N P;. Let N g, be the set of represen-
tatives of PEO’B (F)\P;(F)/R,°(F), and set

(4.14) Wézf:i = SpanE{ei(Hl), €L ((42)) - 5 ei(“_i)}

for 1 < i < a+ tw — ¢, which are totally isotropic subspaces of (Wyi24,q).
Following the same argument in [45, Lemmas 3.1 and 3.2], we can prove that
Proposition 3.3 in [45] also holds for the more general cases in this paper that
H,,, may not be F-quasisplit.

PROPOSITION 4.1. For Re(s) large, the Bessel-Fourier coefficient of the
FEisenstein series as in (4.4), F¥%wo (E(-, ¢rgo,s))(h), is equal to

£rx),

/ d)s(e[gndunh)w[io (un) dudn,
) (A)\Ne(A) I N (F)\NJ (A) 7
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where N = Ny N n_lPEO’Bn and G _ := G¥° N~y~'P)y, and the summations
are over the following representatives:

®c3 = €p € @278, which is the subset of €,y consisting of elements with
a = 0;

o 1) = diag(e, v, €*) belongs to ./\/'g’&wo, which is the subset of Ng ¢, consisting

of elements with a = 0, € = (?t Ieat), and t = a — 3, and which has the
property that if B > max{a —¢,0}, then ywgy is orthogonal to W5 for

v € Py(F)\Haym—e(F)/G"(F) where Py, = Hyypm—¢ N eaéP@eoﬁ; and
e J belongs to G _(F)\G"_(F).

4.3. FEuler product decomposition. Next, we apply the expression in Propo-
sition 4.1 to the further calculation of the global zeta integral (4.9) and have

Z(S7 ¢T®O’7 Py w@,wo)
(4.15) _ .
> /h or(h) /n /[N;] ¢s(egnunh)iy y (un) dudn dh,

€siM

where the summation over eg and 7 is a finite sum as in Proposition 4.1,
and the integration [, is over G _(F)\G"° (A) and [ is over N;/(A)\Ny(A).
Similar to [45, Lemma 3.4], for each n = diag(e,~y, €*), if the stabilizer G?n_ is
a proper maximal F-parabolic subgroup of G:‘é‘l, then the summand over such
1 vanishes due to the cuspidality of ¢.

To proceed with the calculation, we need to study the double coset de-
composition P\ Hyim—¢/G)" as given in Proposition 4.1 and extend the cal-
culation in [45, §3.2] to the current setting. With the choice of the wy, it is
easy to see that the group H,y,,—¢ has its F-rank greater than or equal to one.
We may apply [23, Prop. 4.4] to the current situation and show that only one
integral associated to the Zariski open dense double coset in P;\Hyym/Ry"
remains and all other integrals in the summation are zero for any choice of
data. In other words, similar to Proposition 3.6 in [45], we still obtain the fol-
lowing expression for the global zeta integrals, which have two different forms
according to the two cases: a < ¢ and a > /.

If a < ¢, we must have that 5 =0, n=diag{e, Iy, e*} with e = ([0 126“) and

Z(S7¢T®07(P7r7w£,wo) = /w w pr(h)/
GO (FN\G™ (4) N7 (A)\Ne(A)

(4.16)
/ s (eo,gnunh)ipy, . (un) dudndh,
[N/ ’

where [N/] = NJ(F)\N/](A).
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If a > ¢, we must have that 8 = a — ¢, n = diag{Iy, 0, Iy} and

Z<37¢7’®07()07r7w€,w0) - /

G"
(4.17) m-

/ bs (fo,ﬁnunh)d}[im (un) dudndh,
[N/] ’

o (h) /
(F)\GZO_ (A) NJ(A)\Ne(A)

where 7 is a representative in the open double coset of
Poy(FI\Hatm—o(F)/GY(F),

with the property that ygowg is not orthogonal to WZB.

It remains to show that those global integrals are in fact integrals over
adelic domains and can be written as Euler products of local zeta integrals. In
order to continue the calculation, we have to recall the relevant calculations
in [45] with replacement of notation used here. Section 4.4 will deal with the
case of a > ¢ and hence is for the integral in (4.17). Section 4.5 will deal with
the case of a < ¢ and hence is for the integral in (4.16).

4.4. Case a > £. We are studying the integral in (4.17). For convenience,
we recall the open coset representative €y 3 with § = a — ¢ in equation (4.14)
in [23],

0 I, 0O 0 O
0 0 0 0 Iy
(4.18) cog=wi-| 0 0 I. 0 0
Iy 0 0O 0 0
0 0 0 I, O
Note that when E = F', w, is defined by
—1Im42a if m is odd,

diag{I%Jra_l, (5°%) ,I%Jra_l} if m is even and Hg4py, is not split,

-1
diag{linta-1,(V3), Lemta—1}  if m =2ty and Hoyp, is split,

and when E = F(\/S), wqg = Int2a-
First, we write the integral in (4.17) as

(419) Z(Sa ¢T®07 P ¢€,wo) = / (Pw(h)q)s(h) dh,
T (F\G ()

n
m

where the function ®4(h) is defined, as in [45, (3.34)], to be

(4.20) O (h) ::/ ¢5(6075nunh)¢[io(un) du dn.
N/ (A)\N¢(A) J[NJ] 7
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1

To calculate the function ®4(h), we first consider (ep gn)u(epgn)~ ", similar to

Section 3.3 of [45]. Note that N, consists of elements of the form

c 0 0 0 Y6 0 0
L. 0 0 0 0 0
IafZ 0 0 0 yé
u = Im_gtm 0 0 0 € Ny,
I, 0 O
L, 0
C*

where ¢ € Z;. Then the conjugation (e gn)u(eg sn) ! is of the form

Iaff yé
0 c*
I

c  Ys
0 Ia—f

Hence the stabilizer (e gn) N, (€9,sm) ! as a subgroup of P is in fact contained
in the G/ p(a)-part of the Levi subgroup of P;. We denote it by Z;. We may

write elements of Z; as 2/ with 2/ = (I‘ZO*Z Z) Accordingly, the character
1/1[5)0 (u) becomes

K
Vzpw(?) = Pu((=1)" 28841 + 2p11,612 + -+ 2a10);

Hence we obtain

Vgl v _
(4.21) w0 = [ 6x " (o gm0 (n) dn,
NJ(A)\N¢(A)
with
.
(4.22) o )= [ pu(E Ry () 02
[Z})

Next, we need to calculate the integration over G _ (F)\G"°_(A) in (4.17)
and in (4.19), in order to show that the global zeta integral is in fact an inte-
gration over an adelic domain. Similar to the decomposition in [45, eq. (3.33)],
we also have the decomposition

G?n_ = (GE/F(Wt:—&-a—l,,B—l) X H(Qn—lw(a))) X Vﬂ—Lm

where er‘:+a71,571 is defined in (4.14), W, = (W5 & W, )+, and Vs_y, is
the unipotent radical of the stabilizer GZ@_, as described on page 573 of [45].
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More precisely, in Proposition 4.1, take n = 77 ,. Then Vg_1, consists of the
elements of the form

Iy
Iﬁ,l Cl1 u v v
1 0 0 v
(4.23) nt Im 0 n
1 d
Ig_4

with dq + (—1)“"“%@1 = 0, where dy and vy are column vectors of dimension
B —1. Let ZZB—l be the maximal unipotent subgroup of GE/F(W:;Jraflﬁil),
consisting of elements of following type:

17_1 -diag{ly,d, Imy2,d*, I;} - n

with d € Zs_;.
Write NZB—l = ZZﬂAVB,Ln. It is a unipotent subgroup of G”° as-

sociated to the nilpotent orbit with partition [(2(a — ¢ — 1) 4+ 1)1™]. Fix-
ing the anisotropic vector y_, that defines the character of Ng g-15 We de-
duce that the corresponding stabilizer in G%O, is Isom(n_lW(a),q)o. Hence
Isom(n‘lW(a), q)° = n"'H,,n. The elements of Nlﬁﬁ—l have the form

d di 0 uw 0 v w
1 0 0 0 0 v
I, 00 0 0
(4.24) (co.5m) " Im 0 0 o' | (e0pm):
I, 0 0
1 d,
d*

where d € Z3_;. Remark that 225—1 is the set of all matrices of the form (4.24)
with all entries 0 except d. Denote Zg, (resp. Cs_1,) to be the subgroup of
N/g_, consisting of all matrices in (4.24) with all entries 0 except d and d;
(resp. with d = Ig_; and d; = 0). Then Ngﬂ—l = Z3,Cp-14-

Similar to [45, p. 575], we have the following isomorphism,
(4.25) o \Gl_ =Py HY,  (HD = Hon),

where H,), is a subgroup of G%O,l and Pﬁl is the mirabolic subgroup of Gg, r(B)
containing Z3 ,,. Continuing with the global zeta integral as displayed in (4.19),
we obtain that the global zeta integral Z(s,-) is equal to

(4.26) O (h) / or(ch)dedh.
(A) [Cﬁfl,n]

/Pg(F>HzL<F>CaM(A)\G:f



ARTHUR PARAMETERS AND CUSPIDAL AUTOMORPHIC MODULES 773

This is the integral similar to that displayed in (3.36) of [45]. We note that
there is a typo in the integration domain in equation (3.36) of [45], and the
integral in (4.26) gives the correct version.

Following closely the argument in [45], we apply the Fourier expansion on
o along the mirabolic subgroup Pﬁl repeatedly and obtain the same expansion
as that displayed in equation (3.38) in [45]. Plugging the so obtained expansion
into (4.26) and combining the integrals, we obtain

Z(S, ¢T®O’a Py wé,wo)
-1
B (h)F 10 (o) (h) dh,

/Zﬁ,n<F>H%<F>cﬁ_1,nm>\czo (4)

-1
where F/5 -1 (¢r) is the (8—1)-th Bessel coefficient with respect to g1,
(with 8 = a — {), as defined in (2.7), by

a2 Fresenm) = [ or(nh)bs-1,,_, (n) dn.

N g 1 (F)\N 5 1(A)

-1
Since F/o-1v-r (or) is left (Zgy, wﬁ_il’yim)—equivariant, Z(s,-) is equal to (see
[45, (3.40)])

(4.28)

FU e (o) () / y(zh)5t,, () dzdh.

7n(F) [ﬁ 1( )\GZO?(A) [Zﬁy’ﬂ]

Let us now focus on the inner integral f[ZB ]CDS(zh)wﬁ_il ,_.(2)dz, which by
n Y-k
definition (as in (4.21)) is equal to

/ / 0s “ (60”377n2’h)¢€_’;)0(n) dn sz_ILyw(z) dz.
ZB n NU(A \]VZ(A

By the definition of ¢ Y (see (4.22)), we may combine the two integrals
over [Zg,| and [N/]. As a subgroup of P;, (€0 3n) N, Zs ,(€0,3m) " consists of
elements of the form

d dl (yﬁ);,*

0 1 (y6)s.
0 O c*
I )
¢ (Y6)sp  (Y6)sx
0 1 d
0 0 d

where the notation is the same as in [45, (3.42)]. It follows that N;'Zg, = Z,,
where Z, is the maximal upper-triangular unipotent subgroup of G E/F(a),
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which is regarded canonically as a subgroup of P;. Combining the integrals
over [Zg ] and [N,], we define

(4.29) ¢Fer(h) = e Os(2h) bz, () dz,

where the character ¢z, ..(2) is given by

K
(4.30) Yp(—212 = —zs-15+ (D)™ 25841 + 2541842+ F Za10)

2
with 8 = a — ¢, which is a non-degenerate character of Z,. Hence ¢4 — QSSZ“’“

can be regarded as an Hgqp,(A)-equivariant isomorphism from the induced
representation I(7, o) onto the induced representation Is(W;, o), where W, :=

1/12,1,;»;

it is the global Whittaker model of 7 with respect to the non-degenerate
character Eza,m
For Re(s) sufficiently large, the integrals we considered here are absolutely
convergent, which allow us to switch the order of integration. After combining
the integrals [Zg,| and [N;] and by (4.21), similar to [45, (3.41)], we obtain
that
(4.31)

Dy(zhy3l, , (2)dz = / 675 (neo smh) s ast.a_p (m) dn.

(Z5.n] Uan(A)

Here Ua_’ n consists of matrices of the form

Iaff
0 I,
(4.32) 0 ) In :

I Tr3 X9 Ig
0 zy 0 0 I,y

which is a section for the domain of integration, N,\ Ny, under the adjoint
action of €g gn. The character Y(miqye,a—r) of U, is given by

w(m—i-a—i—é,a—l) (TL) = ¢E (nm+a+€,a—€)a
where N yarea—t = (21)e,a—e-

Note that the adelic integration over U, in (4.33) converges absolutely
due to the same reason as that of the quasi-split orthogonal group case consid-
ered in Appendix IT to Section 5 of [19], and also that in [73] and [75, Th. 3.1],
for instance. Another way to confirm the absolute convergence is that after
taking the absolute value of the integrand, the integral is the product of local

intertwining operators, which converges absolutely for Re(s) sufficiently large.
From (4.31), for h € G*°_ (A), we define

(433)  J.(6)(h) = / P (e g Ymsas iy () A
Ua,n(A)
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Following a similar argument as in Theorem 3.1 in [75] for split special orthog-
onal groups, we verify the absolute convergence of Js(¢s) for Re(s) sufficiently
large in the part of the proof of the absolute convergence of local zeta integrals
for more general groups over all local fields in [43]. Moreover, the function
Js(¢s) enjoys the following property.

PROPOSITION 4.2. For Re(s) sufficiently large, the mapping
Js 1 s Js(os)

composing with the restriction to G'°_(A) gives the G'° (A)-equivariant ho-
momorphism from 1s(7,0) as defined in (4.10) to I¥° (wg,ly_n,awg), which is
the following smooth induction,

G0 (A)

Y4 '
I°(Yp1y_,,0") = IndNZlﬁ,l(A)H?n(A) (Vp-1,y_. ® %4, 5),

where the character Yg_1,_, is given as in (4.27).

Proof. For g € G¥° (A), the function Js(¢s)(g) is smooth on G (A).
m m

The left quasi-invariance with respect to (N, ﬁ—lvlbﬁ—l,yw) is clear from the

calculation above Proposition 4.2. It remains to check the left equivariant

property for x € H,,(A). By definition, we have

Js(ds)(zg) = / pFe" (neo, a9 Vimtatia—r(n) dn
Uan(A)

=/ @7 (neo gnan” ' Ng) Y (metatt,a—ey(n) dn.
Ua,n(A)

Since nxn_l belongs to H,,,(A), it is enough to understand the group 60,5Hm€aé-
According to (4.18), where € g is explicitly given,

60,ﬁHm€67[13 = wf}Hqu_g.
It is clear that Js(¢s)(zg) = o () - Js(0s)(g). We are done. O

Note that by (4.18), the adjoint action of wq on o is trivial except when
H,, is an even special orthogonal group. In this case, det(w,) = —1 and the
adjoint action of w, is the non-trivial action of O(Wy,q)/Hy, on o. In other
words, wy restricted to O(Wy,q) is a choice of ¢ as defined right below (2.6)
on page 753. For simplicity, denote
(4.34) o = o
We note that if H,, is an even special orthogonal group and ¢ is odd, then
{o,0%} is an 6(G)—orbit of o as discussed on page 754. Therefore, for any
fixed h € G’° (A), the function Js(¢s)(2h), as a function in x, belongs to the
space Vs of cuspidal automorphic forms, which is the space of the cuspidal
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automorphic representation o, up to a twist by €y 3. Hence we obtain the
following composition of G° (A)-equivariant mappings:
m

(4.35) L(r,0) = L(Wr,0) = I (Y14 ., 0").

We summarize the calculation above and state the formula for the global
zeta integral in the following

PROPOSITION 4.3. With the notation above and for Re(s) large, the global
zeta integral Z(s, preo, Prs Yow,) has the following expression,

(430) 2G5, 600 eastim) = [ [ FT (o) @)1 (00)(ag) s,
g m

where dg is over R} 5 | (A)\G" (A) with R}
HL(F)\HL(A), as defined in (4.25).

g1 = Hnx N/ g |, and [Hp] ==

Note that the pairing
w—l w—l
PUoLv=r (Qr, pgr) = /[ F e (pn) (@) (x) da
H7,
defines a Bessel period for the pair (7, 0"), where @, is a cuspidal automorphic
form in C, under the conjugation of wé, and belongs to the space

HomRZ,B,l(A) (r®d, wgil’y%).

In this way, the inner integral of the integration formula (4.36) for the global
zeta integral Z(s, dreo, O, Yew,) can be written as
(4.37)

/ FUE 0 () (20)T4(64) (xg) dz = P10 (R(g)or, T(84)(9)).

(Hy,
where R(g)¢r(z) := @r(xg) is the right translation and Js(¢s)(g) is in o’
by Proposition 4.2. From this expression, we deduce the following easy, but
important vanishing result.

COROLLARY 4.4. If the Bessel period for (m,0’) is zero, then the global
zeta integral Z(S, droe, Pr, Yow,) 15 zero for all choices of data.

-1
From now on, it is meaningful to assume that the Bessel period Pty
for (m,0’) is non-zero. By the uniqueness of local Bessel functionals, which is

—1

proved in [2], [77], [16], and [44], we have the Euler factorization: Pty =
b5l

@, P, """ It follows that the integral in (4.37) can be written as an Euler

product of local Bessel functionals when ¢, and ¢s = ¢rgs,s are factorizable
vectors. More precisely, we take pr = ®@,¢r, and ¢rgess = v, 00,,s- Lhen

(4.38) oZo5(h) = [ fwe, @o,s(ho),
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where fW;eV@gws belongs to the space of induced representation
(4.39) lowWr,,0,) = Indp b5 Wy, ©0,).
It follows that

/Hn FOr 0 (o) (29)To(65) (xg) do
(4.40) : m}w
= 1_[7)1,371,?;—"i (Wu(gu)spny,Jsﬂ/(qﬁs’y)(gy))’

¢§i1,y
where at each local place v, P,

—K

is the unique local Bessel functional
up to scalar, and J,, is the v-local twisted Jacquet module associated to the
adelic integration over U, (A) that defines J5 in (4.33).

Now, for Re(s) sufficiently large, we define the local zeta integral for this
case by

—1

Qf/) —1ly_
(441) Zu(37¢T®aa¢W7wZ,wo) :_/ ,Puﬁ 7 K(ﬂ'y(gy)@ﬂyaJs,u((bs,u)(gy))dgm

v

where the integration is taken over R/ s 1 (NG, (F).

THEOREM 4.5 (a > {). Let E(¢rg0, s) be the Eisenstein series on Hy,q(A)
as in (4.3) and let m belong to Acusp(G-). Then the global zeta integral
Z(S, Oroo, P, Vew,) converges absolutely and is holomorphic at s where the
FEisenstein series E(h, ¢, s) has no poles.

Assume that or = Quox, and s = Qudr,00,.s = QuPs, are factorizable
vectors, which yield factorization in (4.38), and that the pair (w,0') has a
non-zero Bessel period. Then for the real part of s sufficiently large, it can be
written as an Euler product

Z(Sa ¢T®O‘a @ﬂ?lpé,wo) = HZV(S7 ¢T®0a Qpﬂ‘awf,wo)v

where the local zeta integral 2, (s, prgo, Pr, Vew,) s defined in (4.41).

Note that this FKuler decomposition of the global zeta integral in terms
of the local zeta integrals is a more explicit realization of the abstract Euler
decomposition as in (4.13); further properties of the local and global zeta
integrals will be discussed in Section 5.

4.5. Case a < £. Although not necessary for the current paper, for com-
pleteness and future applications, we briefly study the global zeta integral as
given in (4.16). In principle, it is similar to the case of a > ¢. We follow the
discussion in Section 3.4 in [45] to give necessary steps in order to show that
the global zeta integral can be factorized as an Euler product of local zeta
integrals.
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First, we have

c 0 0 0 0
b Ya z4 0
N? = Im+2a72ﬁ yil 0 1cE Za, be Zf—a
b* 0
C*
Write
I, 0O 0 0 O
b Y4 z4 0
Nop—a= T t2a—2¢ yf; 0 :b€Zp o p CNpg-
b* 0
I,

Denote 1, ¢—q.y,. to be the restriction to the subgroup N, ¢—, of the character
Yoy, By the decomposition N) = Z4uNg —q, the inner integration over [Ng]
n (4.16) can be written as

-1
(4.42) /[ ) Bs(€o0muh) iy () du = FVmt-a (¢27" ) (eo0nh),
NE
where
Ser(h) = | dy(2)tz,n(z)dz
[Za]
with

Vz,6(2) =VE(z12+ 223+ + Za—1,0)-

-1
Here FYm.-aun defines a Bessel-Fourier coefficient of o. As in (4.38), we have

(443) ;ZJZG' ® H fWK, ®O’V, 7

with fwr @,,s belonging to the space of induced representation
Ha m FZ/
Loy Ws,, ) = Indp? (|- Wy, @ 0,).

After changing variables, we obtain

Z(Sa ¢T®o’7 Py ¢€,wo)

o :/ / pr(B)FPms-won (81%0) (o omhm) 7 b, () dh d.
NJ(A)\Ne(8) J[GT0 ] 7
Note that the integral (4.44) is absolutely convergent for Re(s) sufficiently
large. The inner integration over [GZO_] converges absolutely because of rapid
decay of the cuspidal automorphic form ¢,. The outer integration over the
quotient N,(A)\Ny(A) converges absolutely due to the reason that we used to
explain (4.33). For convenience, we write down explicitly the quotient N\ N,
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and the restriction of 1)y, . The quotient N, Z \ Ny is isomorphic to the subgroup
consisting of elements

Ia T xT9 T3 T4
Ip_q 0 0
Inyoa—20 0

Ig,a :L'll

Iq

The restriction of 1y, is YE((%1)e,1)-
It is clear that the inner integration in the variable h in (4.44) gives a
Bessel period for the pair (o, 7). Hence we obtain the following.

COROLLARY 4.6. If the Bessel period for (o,7) is zero, then the global
zeta integral Z(s, preo, Prs Yew,) 15 zero for all choices of data.

By the uniqueness of the local Bessel models, this Bessel period may be
written as an Euler product of local Bessel functionals for factorizable input
data. More precisely, we take ¢ = ®, 7, and ¢5 = @, ¢, and write

w’;Ll —a;Yg vV
(4.45) /[Gwo]ww(h)Js(d)s)(hn)dh:HPV o (R(n) fi, sy, P )

where Js(¢s)(hn) := }"w;if*a%yn( ?Z”’”)(e()’onhn), R(-) is the right translation,

ml—a;yk,V

and for each local place v, 73;,/) is the unique functional, up to scalar,

in the space
—1
HomGzO— (FV)D(Na,Zfa(FV) (ﬂ',/ ® Ovs ¢m7€_a§yﬁvy) ’

In this way, we define the local zeta integral by
(4.46)

-1
Z(8, Prao, Pms Ytwo) = / Py (R(nu)foV ®0u,8) Wﬂu)wi_,io,u(nl’) dny,
Ny

where the integration is taken over N, (F,)\N¢(F),), and obtain the following.

THEOREM 4.7 (a < ¢). With the notation as in Theorem 4.5, the global
zeta integral Z(S, Groo, O, Yow,) converges absolutely and is holomorphic at s
where the Fisenstein series E(h, ¢, s) has no poles.

Assume that 7 = Qun, and ¢s = Qudr,g0,,s = Quds are factorizable
vectors, which yield the factorization in (4.43), and that the pair (o,m) has a
non-zero Bessel period. Then for the real part of s sufficiently large, it can be
written as an Euler product

Z<3a ¢T®O’7 P, wé,wo) = H Zl/(87 ¢T®aa Py w@,wo)v
v

where the local zeta integral Z,(S, dreo, P, Vow,) is defined in (4.46).
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Note that this Euler decomposition of the global zeta integral in terms
of the local zeta integrals is a more explicit realization of the abstract Euler
decomposition as in (4.13). Since this case is not directly used in this paper,
we refer to Section 3.4 of [45] for a more detailed explanation of a special case.

4.6. Unramified local zeta integrals and local L-factors. We define the local
L-factors for the cases under consideration and recall the results from the
unramified computations of the local zeta integrals as considered in [45], [75],
[76] and [43].

Note that the group G from the construction in Section 2.4 yields all
the groups G,, as listed in the beginning of this section. Hence there exists a
datum such that G;”no_ is isomorphic to a given G,, over F. From now on, we
assume that ™ € Acusp(G,"-) and o € Acysp(Hy,) have generic global Arthur
parameters, respectively.

Asin (4.1), we have 7 = 7y H o B - - - H7,., which is an irreducible generic
isobaric automorphic representation of G r(a)(Ar). We define

L(s+ %,T,, X )

(4.47) L7, 003 p) = L(s+ 1,7, x0,)L(2s+1,7,,p)’
where
A? if Hyu1q is an even orthogonal group;
p = { sym? if Hyy4q is an odd orthogonal group; and

As® ™ if Hyqq 18 a unitary group.

Some remarks on the local L-functions are in order. At archimedean local
places or at unramified local places, the local L-functions in (4.47) are well
defined. The main concern here is at the ramified finite local places. Formally,
one may take the greatest common denominator of the ramified local zeta
integrals as the definition or take the one from the normalization of the local
intertwining operators from the Eisenstein series in the global zeta integrals.
This of course needs the full theory of the local zeta integrals, which is not
available at this moment for general representations m and o. On the other
hand, since both 7 and ¢ are assumed to be cuspidal and to have generic global
Arthur parameters ([3, Ch. 9] and [52]), in this paper we follow [3], [70] and [52]
to define the local L-functions in (4.47) at ramified finite local places in terms
of the local L-functions of the corresponding localization of the global Arthur
parameters. We refer to [63] for discussion with more general parameters when
the groups are F-quasisplit.

We note that only when H,, is an even special orthogonal group, the
twisted representation o), (see (4.34)) may not be equivalent to o, if wf; # 1.
However, their corresponding local L-parameters are Oy (C)-conjugate, since
H) (C) = SOy, is the complex dual group of H,,. Therefore L(s,7,, 7y, 0u;p)
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and the local L-functions L(s,7, x 0,) are the same when the local factors of
o, replaced by those of o),.

Recall that o’ = o™ in (4.34) when a > ¢, and also denote 0/ = o when
a < { for notational consistency. The Euler products in Theorems 4.5 and 4.7
can be uniformly rewritten as

Z(Sa ¢‘r®o"7 23 ¢Z,w0) = H Zl/(57 ¢T®O'/7 'z w@,wo)-

Next, we state the result of unramified calculation for the local zeta inte-
grals. The full detail of the computation in this generality will appear in our
joint work with D. Soudry ([43]), based on the idea of Soudry as developed in
his work ([74], [75], [76]). Many special cases have been treated in [19] and
[45], for instance.

THEOREM 4.8 (Unramified Computation). With all data being unrami-
fied, the local unramified zeta integral Z,(s, re0, P, Veaw,) has the following
expression,

(448) ZV(57 ¢T®U’> 'z 1/}&11)0) = E(Su Ty, Ty, Oy, P)a

where fwr o,,5: @0, and @r, are the spherical vectors, which are so normalized
that the corresponding spherical functions are equal to 1 at the identity element.

Let S be a finite set of places consisting of all ramified places of relevant
data and all archimedean places such that for v ¢ S, all data are unramified.
Following Theorem 4.8, we obtain that

Z(S, ¢T®O‘la Vol wé,wo) = H Zl/(sa ) : H ZV(S7 )
(4.49) ves vgs

= ZS(S7 ) ' ES(S7T77T7 va)

Here we set Z,(s,-) 1= 2,(8, ¢rgo’s Om Yoy ), 25(5,) = [,eg 2v(s,-), and
ES(Sv ) = HugéS 5(57 'V)'

4.7. On even special orthogonal groups. We explain with more details the
twists that we get in the case of even special orthogonal groups. We follow the
notation from Section 2 of [45]. First, P; is the standard parabolic subgroup
of SO4q+2m With Levi subgroup isomorphic to GLy X SOy4pt2m—20(Wy). Here
SOyn+2m—20(Wy) preserves the quadratic space

Wg = Span{eﬁl,...,ei 6;‘;}@‘/0

tm—1
G is the stabilizer of y, preserving the quadratic space

i
WyNy, = Span{e}tﬂ, . ,ei‘_l,y,n} o V.

The anisotropic kernel of W, Ny~ is a subspace of F'y_, @ Vy. The inner period
over T is arisen from the open double coset of Pj\SOu4pn12m/G - Ny. Recall that
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we choose the following representative 7 for this coset:
I
0 Iy
Ii,—; 0

I,

Recall that G" = GN(n~' Pjn). Then under the conjugation of 7, SOy, (n~1W;)
is the subgroup of G", which preserves

+ +
Span{e; ;... ’etm—j—ké} o V.

For example, when j = £ + 1, then (G,SOay,(n~1Wj;)) is the Gross-Prasad
pair. That is, SOgm(n_lij) is the stabilizer of the anisotropic vector y_.
Thus SOgy, (1~ 'W;) is isomorphic to SOgp, (W).

5. Reciprocal non-vanishing of Bessel periods

The purpose of this section is to address the non-vanishing property of
the Bessel periods for the pair (€;gq, ) and for the pair (7, o), where &g, is
the iterated residue at s = % of the Eisenstein series E(-, ¢rgs, S) as defined in
(4.3), and o may have to be replaced by ¢’ as in (4.34).

5.1. Residue of the Fisenstein series. Here we recall the Eisenstein series
E(-, ¢r@0,5) from (4.3). Assume as before that o € Acusp(Hm) has a generic
global Arthur parameter ¢,, and a cuspidal realization C, in the case when
the cuspidal multiplicity is not one. Let 7 = 7 Hm H --- B 7. be the irre-
ducible unitary generic isobaric automorphic representation of Gg,r(a)(Ar)
associated to distinct 79,79, ..., 7, as given in (4.1). Assume that the generic
global Arthur parameter ¢, determined by 7 has a different parity with ¢,. It
follows that the L-function

L(s,7 x o) = L(s,¢r X ¢5),

as in [3], is holomorphic at s = 3.

We calculate the constant terms of E(-, ¢rgs, $). According to the cuspidal
support of E(+, ¢rge, ), among all of the constant terms that are not identically
zero, the term that carries the highest order of the pole at s = % is given by

the global intertwining operator integral

(51)  Mlwo,m®0,8)(breo)(g) == / Asbranleg ma)in

Us
where Uy is the unipotent radical of the standard maximal parabolic subgroup
Py = MU, with M = G/p(a)x Hy,, and the Weyl group element wy takes Us
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to its opposite U, . Following the calculation of Langlands ([56] and also [72]),
one may choose the factorizable section ¢ = ¢,g, so that M(wp, T ® o, 5)(d)
can be written as

L3(s, 7 x 0)L°(2s, T, p) 45
LS(1+s,7x0o)L5(1 + 25,7, p) ~STwo(r@0)
where M(wp, ¢rge, S)s is the finite product of the local intertwining operators

over v € S, and ¢5 = [[,cg b7, 00, and % = ®pgsPr, @0, Since the cuspi-
dal automorphic representation o is assumed to have a generic global Arthur

(52)  M(wo, 7 ®0,5)s(¢s) -

parameter, we define, following [3], the local L-factors at v € S in terms of
7 and the generic global Arthur parameter of ¢. Then we take the Shahidi
normalization by defining, for each v € S,

(53) N(WO) T® ag, S)1/ = ﬁu(sv T,0, va P) : M(WOa T® ag, S)I/v
where the local normalizing factor 5, (s, T,0,v¢F; p) is defined to be

L,(1+s,7x0)L,(1+2s,7,p)e,(s,7 X 0,¢0Fp)e, (28,7, p, YF)
L,(s,7 x a)L,(2s,7,p) '
Hence we obtain the following;:
N(wo, 7 ®0,8) - L(s,7 x 0)L(2s,T, p)
L(1+s,7x0)L(1+2s,7,p)e(s, 7 X 0)e(2s,7,p)

(5.4)

M(wo, T ® 0,8) =

We call N (wp, T ® 0, ), the normalized local intertwining operators.

THEOREM 5.1. Let T = mH- - -H7,. be the irreducible isobaric automorphic
representation of G p(a)(A) asin (4.1), and let 0 € Acusp(Hpm) with a generic

global Arthur parameter ¢,. Then, for each local place v of F', the normalized
Ha+'m(Fu) ’

local intertwining operator N (wo, T®0, s),, from the induced space Ind (7o)

Hoym(Fy) |'|—5

|°T, ®0, to Ind, ( 5 T ®0, is holomorphic and non-zero for Re(s) > %,

where 7 = (1) is the contragredient of 1(T).

We remark that when H,, is F-quasisplit, a much stronger result than
what was stated in Theorem 5.1 can be proved when o is also assumed to be
generic; see [11], for instance, and also see [63]. We will prove Theorem 5.1 in
Appendix B.

By Theorem 5.1, we have that the normalized global intertwining opera-
tor N (wp, T ® 7, ) is holomorphic and non-zero for Re(s) > 4. We are able
to study the order of the pole at s = % of the global intertwining operator
M(wp, T ® 0, ).

In fact, it is easy to write

L(2s,7,p) = HL (25,75, p) - H L(2s,7; X 7).

1<i<j<r
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Since 7,...,7 are conjugate self-dual and distinct for all 1 < ¢ < j < r,
1

L(2s,7; x 7;) is holomorphic and non-zero at s = 5. It follows that the
L-function L(2s,7,p) has a pole at s = % of order r. Since the generic global
Arthur parameter ¢, associated to 7 and the generic global Arthur parameter
¢o associated to o are in different parity, the L-function L(s,7 X o) must be
of symplectic type ([16]), and it is holomorphic at s = %, but may have zero
at s = % It follows that the global intertwining operator M (wp, T ® o, s) has
a pole at s = % of order at most r, and has the pole of order exactly r if and
only if the L-function L(s,T x o) is non-zero at s = 5. This implies that the
Eisenstein series E(-, ¢rg0, s) has a pole at % of order at most r, and it has a
pole of order r at s = % if and only if L(s,7 X o) is non-zero at s = % We

summarize this result as follows.

PROPOSITION 5.2. Assume that 0 € Acusp(Hm) has a generic global
Arthur parameter ¢,. Let 7 = 1y H o B --- B 7. be the irreducible unitary
generic isobaric automorphic representation of Ggp(a)(Ar) associated to dis-
tinct 11,72, . .., Tr, as giwven in (4.1). Assume that the generic global Arthur pa-
rameter ¢ determined by T has a different parity with ¢,. Then the L-function
L(s, 7 x o) is holomorphic at s = %, and the FEisenstein series E(-, ¢rgo,S) has
a pole at s = % of order at most r. Moreover, E(-, rgs,5) has a pole at s = %
of order r if and only if L(s,7;,p) has a pole at s =1 fori=1,2,...,r, and
L(s,7 x o) is non-zero at s =

N[ =

When the Eisenstein series E(-, ¢rg0, s) has a pole at s = % of order r, we
denote by &, g the r-th iterated residue at s = % of E(-, drgos ).

5.2. Special data for Bessel periods. We are going to choose a set of special
data in order to establish the reciprocal non-vanishing of the Bessel periods
for the pair (€,5¢,7) and for the pair (, ).

Take as before the classical group G,, = Isom(V4,q)°. The group G, is a
pure inner F-form of an F-quasisplit classical group G} = Isom(V}, ¢*)° of the
same type. Here n = dimg V;, = dimg V" and n = [§]. Recall from Section 2.2
that N =n" is n if G, is a unitary group or an even special orthogonal group,
and it is n — 1 if G, is an odd special orthogonal group.

Assume that 7 € Acusp(Gr) has a Gjp-relevant, generic global Arthur
parameter ¢ € ®(G%). As in (1.2), the generic global Arthur parameter ¢
determines an irreducible unitary generic isobaric automorphic representation
T=n @B BT of Gg/p(N)(Ar), as given in (4.1). Recall that the sign
k of £ is +1 for the global A-parameters of unitary groups, as explained in
Section 2.2. Take a G,-relevant partition

(5.5) = [(20x + 1)1,

by,
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and consider the f,-th Bessel module F () of m, or F9(C,) for a cus-
pidal realization C, of m. Since 7 is irreducible and cuspidal, F© (1) con-

sists of rapidly decreasing automorphic functions on HEO_Z* (A), and hence is

a sub-representation of HEO_Z* (A) in the space of L?-automorphic functions on

Oy,
H e

H; with (; = (%] and [[ =n— 26, — 1.

We further assume that FO% (C,) is non-zero and has the property that

(A). Note that the group HZO_E* is a pure inner F-form of an F-quasisplit

there exists a o € Acusp(Hff*) with a generic global Arthur parameter, such
that the inner product

(5.6) PYO (pr, 00) = (FP (0r), By yor, #0
o
for some @, € Cr and ¢, € C,, where C, is a cuspidal realization of o.

Note that the index £, may not be the first occurrence index as described
in Conjecture 2.3. In this generality, the discussion in this section can also be
applied to the proof of one of the directions of the global Gan-Gross-Prasad
conjecture in Section 5.5.

In this section we take that m := ¢ and m := [ = n — 2/, — 1. In the
definition of global zeta integrals in Section 4.1, we take

(5.7) Hy=H" and a=N =n"

and take Hgypm to be the classical group containing the Levi subgroup Gg, r(a)
X H,,. To define the global zeta integrals, we take the partition

(5.8) P, = (2. + 1)12emmee ]

with ks :=a — £, — 1. It is a partition of type (2a +m, Hyip)-
Since a — ke = £, +1 > 0, we are in the situation of Section 4.4. For
any F-rational orbit O, in the F-stable orbit (’)Is;t , we have the stabilizer

Gg”_* = G’* as in Proposition 4.3, with (x.)~ = m~. The integer m~, such

that m~ = [%-], can be calculated as follows. By definition, we have
(5.9) m- =2a+m-—2k, —1=m+2(a— k) — 1.

Since a — ky = £+ 1, we have m~ = m + 2/, + 1. Sincem = n — 20, — 1,
we must have that m~™ = n and hence that m™ = n. By Proposition 2.6, and
the relation of the three groups (Hg+m,Gn, Hp), it is not hard to find the
F-anisotropic vector w, corresponding to the F-rational orbit O, such that
G,, can be identified with the stabilizer Ggl’i* =G

Recall that £;g, is the iterated residue at s = % of the Eisenstein series
E(-, ¢r0, ). The reciprocal non-vanishing of the Bessel periods for the pair

(Erg0, ) and for the pair (7w, 0’) is given below.
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THEOREM 5.3 (Reciprocal non-vanishing of Bessel periods). Assume that
o € Acusp(Hm) has a generic global Arthur parameter ¢,. Let T = 7 B B
-« B 7. be the irreducible unitary generic isobaric automorphic representation
of Gg/p(a)(Ar) with a = N = n", which determines a generic global Arthur
parameter ¢r of Gr. Assume that the residue E,go is non-zero and w €
Acusp(Gr) has a generic global Arthur parameter ¢.. Then the Bessel period

<g07r,]-"¢oﬂ* (€T®Or)>G for the pair (E;g4, ) is non-zero for some choice of

data if and only if the Bessel period <]—'¢O‘»’* (@W),¢G>H for the pair (7,0) is
non-zero for some choice of data. "

By using Corollary 4.4, it is easy to prove that if the Bessel period
<90m FYow, (5T®G,)>G is non-zero for some choice of data, then the Bessel

n

period <]—'¢O‘»’* (@W),¢g>Hm is non-zero for some choice of data. In fact, if

<g07r,.7:¢‘9~* (8T®a/)>G is not identically zero, then by replacing the residue

Ergor by the Eisenstein series E(-, ¢r507,5), we obtain that the global zeta
integral Z(s, ¢rgo/, o, Yo, ) is not identically zero for Re(s) large. Hence
by Corollary 4.4, the Bessel period <]~"woé’* (@W),¢0>H is non-zero for some
choice of data. "

The proof of the opposite direction is more technical. We have to know
enough analytic properties of the local zeta integrals at the ramified and the
archimedean local places.

5.3. Normalization of local zeta integrals. We continue our discussion of
the global and local zeta integrals from Section 4, with special data as given in
Section 5.2. In particular, we will deal with the case where a — Kk, = £, +1 > 0,
which is the case of Section 4.4. Recall from (4.49) that the global zeta integral
has the following expression,

Z(S7 ¢T®a”7 807”1/}0,.;*) = ZS(S7 ¢T®a”7 (107”1/}0,{*) . £S(87 T, 7,0, P)7

where Zg(s,-) = [[,cg 2v(s,-) is the finite Euler product with the local zeta
integral Z,(s,-) as in (4.41), and

LO(s, 7,7, 05p) = H L(s, Ty, Ty, 005 p)
vgS
with L(s, 7, m,,0,;p) as in (4.47). Recall that S consists of all ramified places
of relevant data and all archimedean places such that for v ¢ S, all data are
unramified. Hence at v ¢ S we only consider spherical vectors in the discussion.
We normalize the local zeta integrals by

Zz/(Sa Gr@o’ P @Z)O&*)
£(37TV77TV70—V;p) .

(510) Z:(S, ¢T®O’l7 2 w@,g* ) =
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By taking the finite product, we have Zg(s, ) = Z§(s,-) - Ls(s,-). Hence the
formula in (4.49) becomes

(5.11) Z(8, brao, Pr: V0,.,) = Z25(8, Org0r, om0, ) - L(s,T,m,0;p).

PROPOSITION 5.4. The assumption on (m, T, o) is taken as in Theorem 5.3.
Then the following hold:

(1) Z%(s, broot, P Y0,,) is meromorphic in s € C for any choice of the
smooth sections ¢rgq s

(2) Z5(s, Proo’, Prs Yo, ) is holomorphic at s = % for any choice of the smooth
sections ¢rgg’ -

Note that ¢,gq s is called a smooth section if ¢7,g0 s is @ smooth holo-
morphic section at archimedean places and is a flat section at non-archimedean
places.

Proof. Recall from (4.9) that we have

Z(s7¢7—®o’a 907”1?(%*) = <§07F7Fpoﬂ* (E(‘7¢T®U'7s))> )

Gn
and hence by (5.11), we obtain
(5.12)

<<;07T5F¢OH* (E(a ¢T®U’a S))>G = Z;‘(S) d)’r@a'/a @wﬂﬁ@n*) : ‘C(S,Ta T, U,P)

n

We first consider the right-hand side of the identity in (5.12). In the
L-function part, we have
L(s+ 3,7 xm)
L(s+1,7x0)L(2s+1,7,p)

(5.13) L(s,T,m,0;p) =

Since the cuspidal automorphic representations = and o are assumed to have
generic global Arthur parameters, the complete L-functions L(s,7 x ) and
L(s,7 x o) are defined in terms of the global Arthur parameters of 7 and o,
respectively. Hence L(s, 7,7, 0; p) is meromorphic in s over C.

In the left-hand side of the identity in (5.12), the Fourier coefficient
FY0us (E(-, ¢rg0r, 5)) is meromorphic in s over C and the inner product

(o, FPom (B bre0,5)))

Gn

is well defined when s is away from the poles of F¥Ors (E(-, prx07,S)), since
@ is cuspidal. Hence the left-hand side of the identity is meromorphic in s
over C. It follows that the finite product of the normalized local zeta integrals,
ZE(8, 0r@0s P, Y0, ), is @ meromorphic function in s over C for any choice of
¢reo With the given ¢, and for the given ¢,. This proves part (1).
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In order to prove part (2), we need more specific information from both
sides. In the expression (5.13), the product

1 - 1
L<s+§,7><7r> :1_[1L<8—|—2,7'¢><7r)
1=

has a pole at s = % of order 7, since the cuspidal automorphic representation m
has the generic global Arthur parameter ¢, with 7 =7 H---H7,, asin (4.1).
It is clear that the product

,
L(s+ 1,7 x0) :HL(S+1,TZ' X 0)
1=1

and the product

T
L(2s+1,7,p) = HL(ZS +1,75,p) X H L(2s + 1,7 X 7j)
i=1 1<i<j<r

are holomorphic and non-zero at s = % It follows that the L-function part
L(s,T,m,0;p) has a pole at s = % of order r.

In order to show that the finite product of the normalized local zeta in-
tegrals, Z%(s, ¢roo, Pr,10,, ), is holomorphic at s = %,
that the inner product in the left-hand side of (5.12),

(or FPom (B, 6ra0r,5))) , -

n

it is enough to show

has a pole at s = % of order at most r for any smooth sections ¢rgq 5.

By Proposition 5.2, the Fourier coefficient F¥Ox« (E(-, ¢req4r,5)) of the
Eisenstein series E(-, ¢rx,7,s) has a pole at s = % of order at most r for any
smooth sections ¢,g,/ ;. The inner product of the Fourier coefficient with the
cuspidal automorphic form ¢, cannot increase the order of the pole at s = %
It follows that the left-hand side of (5.12) has a pole at s = % of order at
most r. Therefore, we obtain that the finite product of the normalized local
zeta integrals, Z(s, ¢rgo’s ©r,0,, ), must be holomorphic at % This proves

part (2). O

In order to obtain more properties of the local zeta integrals or the nor-
malized ones for the global purpose in this paper, we have to introduce the
global condition that the Bessel period for (w,0) is non-zero. For ¢, € C,
and ¢, € Cy, the Bessel period <.7:¢Of* (gow),EU>H , as in (5.6) with the given
data, defines a non-zero element in the one-dimensional space

®VH0mHm(FU)(‘7¢Oe* (m) ® 0y, C),
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where jwoé (m,) is the local twisted Jacquet module of 7, with respect to
P . .
(V},Z* Y0, ). Let b, " be a non-zero functional in

HomHm(Fu)(jwoe* (m)) ® 0,,,C),

L . . . ¥
which is unique, up to scalar. We normalize the functional byoe*, so that at
the unramified local places,

Yo,,

b, (Spﬂ’ya SOU,,) = 17
where ¢, and ¢, are normalized spherical vectors in 7, and o, respectively.
Here a spherical vector is normalized if its corresponding spherical function
has value 1 at the identity. And at the ramified local places v € S, the local

£

functional bfo will be normalized according to (A.9) in Appendix A. Hence

we obtain the following identity: for factorizable factors ¢, = ®,¢r, and
Yo = QuvPo,,

(5‘14) <‘F¢Oé* (C,Ow), ¢O'>Hm =Cro H b:foz* (‘pm,a Soay)y

by the uniqueness of the local Bessel models ([2], [77], [16] and [44]).

PROPOSITION 5.5. The assumption on (7,7, 0) is taken as in Theorem 5.3.

Fiz any given s = sq € C. If for every v € S, the local pairing bfol* (r,s Po,)
is mon-zero for some @5, € 0, and pr, € m,, then there exists a collection of
sections ¢r,gq, with v running in S such that the finite product of the local
zeta integrals, Zs(s, preq, Prs Vo, ), 15 a non-zero constant at s = sg.

The proof of Proposition 5.5 will be given in Appendix A.

PROPOSITION 5.6. The assumption on (m, T, o) is taken as in Theorem 5.3.

Assume further that (mw,0) has a non-zero Bessel period. Then there exist

factorizable data o, Yo, and ¢rge such that ZE(s, dree, Pr,Yo,,) at s = %

and the inner product <]_—1/}o£* (goﬂ),¢o>H are simultaneously non-zero.

Proof. By assumption, the Bessel period <]—'¢O€* (@W),¢U>H is not zero

for the pair (7,0). By (5.14), for factorizable vectors ¢ = ®,¢5, and p, =
R Pe,, we have

<Jr¢of* (Qpﬂ'))¢0'>Hm =Cryo H bll/poe* (()0771/7 90031)'
v

Since <.7-"woi’* (goﬂ),¢0>H is not zero, it follows that ¢, # 0 and b, (¢r,, 0, )
is non-zero for every v By Proposition 5.5, there exists a smooth factor-
izable section ¢z, such that the finite product of the local zeta integral

Z5(8, Orgors Or, 0, ) is non-zero at s = %
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Recall from (5.10) that we have

ZS(S) ¢T®o"7 80777/(#0'4*) - 25(57 ¢T®U’a @deOH*) : [’5(877—77‘-70; P)

By using the structures of generic unitary dual of 7, 7,, and o, for each
v € 5, respectively, and by following similar arguments with Appendix B, we
obtain that the normalizing factors L(s,7,,m,,0,;p) as defined in (4.47) for
each v € S is holomorphic for Re(s) > 3. Hence the finite Euler product
Ls(s,,m,0;p) is holomorphic for Re(s) > % This proves that the normalized
ZE(8, 0reo’s P, Yo, ) is also non-zero at % O

5.4. Proof of Theorem 5.3. We already proved one direction of Theo-
rem 5.3. Now we are ready to prove the other direction of Theorem 5.3.
By the assumptions in Theorem 5.3, the equation in (5.12) reads

<Q07r7 F’[pom‘ (E(7 ¢T®G”7 S))>G' = Zg(s7 ¢T®o”7 Py wom* ) ' E(Sa T,T,03 p)
By Proposition 5.4, Z§(s, ¢rge’, @, Yo, ) is meromorphic in s and is holomor-
phic at s = % for any section ¢,g, depending on the choice of ¢, and ¢, with
property that the Bessel period <]:w04* (or)s ¢U>H is non-zero. Furthermore,
by Proposition 5.6, there exists a choice of factorizable Py Yo, and @y fyve o,
that occur in the definition of the local zeta integrals (see (4.38)), such that
both <]—"w‘9@* (goﬂ),¢U>Hm is non-zero and Z§(s, ¢rgo', ©r, Y0, ) is non-zero at

_1
8—2.

With such a choice of data, and with a factorizable ¢,g, = ®v¢r,007
corresponding to the above @, fyyx o7, the right-hand side of (5.12) has a
pole at s = % of order 7. It follows that the left-hand side of (5.12), i.e.,

<<,07T,]~"‘/"9'~”~* (E(-,¢T®J/,s))>e , has a pole at s = % of order r. Since the

n

Eisenstein series E(-, ¢ros7,S) has a pole at s = % of order at most r, we

must have that E(-,¢,g.7,5) has a pole at s = % of order r. Since ¢, is

cuspidal, by taking the iterated residue of <<p7r,]-"’/’ofw (E(-,¢T®U/,s))>G at

n

2
with such a chosen data where, as before, £,5, denotes the iterated residue
of the Eisenstein series E(-, ¢,50/,S) at the pole s = % of order exactly equal
to r. This completes the proof of Theorem 5.3.

s = L we obtain that the Bessel period <g07r,]-"¢‘9~* (€T®g/)>G is non-zero

5.5. Global Gan-Gross-Prasad conjecture: one direction. We are ready to
derive the proof of one of the two directions of the global Gan-Gross-Prasad
conjecture (Conjectures 24.1 and 26.1 in [16]), as a continuation of the proof
of Theorem 5.3 in Section 5.4.
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Assume that the Bessel period <.7-"woé’* (pn), (‘0‘7>Hm for the pair (7, 0) is

non-zero for some ¢, and @, as in (5.6). By the same proof as in Section 5.4,
we obtain that the Fourier coefficient F¥Ox« (£.g4/) is non-zero, where &' is
the complex conjugate of o’. As a consequence, we obtain that the iterated
residual representation £.g5/ is non-zero. By Proposition 5.2, we obtain that
L(s,7 x &) = L(s, 7 x &) is holomorphic and non-zero at s = 3.

Because & is isomorphic to the contragredient oV of o, it follows that
%, and so is L(s, 7 x o). This
proves one direction of the global Gan-Gross-Prasad conjecture ([16]) in the

L(s,7 x ¢") is holomorphic and non-zero at s =

full generality for the classical groups considered in this paper.

THEOREM 5.7 (Global Gan-Gross-Prasad conjecture: one direction). For
any ™ € Acusp(Grn) with a Gy-relevant, generic global Arthur parameter in
®9(G?)a,,, and with a cuspidal realization Cr of m, assume that the Bessel
period

< FYu (o), %>Hm

is non-zero with a choice of pr € Cr and ¢, € Cy, for some 0 € Acusp(Hp)
with an H,,-relevant, generic global Arthur parameter in ®o(H))m,, , and with
a cuspidal realization C, of o. Then the tensor product L-function L(s, mx0) =
1

L(s, 7 x o) must be holomorphic and non-zero at s = 5.

Some remarks are in order. First of all, the original global Gan-Gross-
Prasad conjecture in [16] assumes that the cuspidal multiplicity of 7 € Acysp(Gr)
should be one. Theorem 5.7 takes care of the even special orthogonal group
case, where the cuspidal multiplicity of m could be two.

When G,, = G} and H,, = H}, are F-quasisplit, and when both 7 and o
are generic, i.e., have non-zero Whittaker-Fourier coefficients, and have simple,
generic global Arthur parameters, i.e., their Langlands functorial transfers to
the corresponding general linear groups are cuspidal, Theorem 5.7 was con-
sidered in [20], [21], and [22] by an approach mixing the Arthur truncation
method and the Rankin-Selberg method. Recently, it was noticed by experts
that there exists a gap in the proof of Proposition 5.3 in [20], which was du-
plicated in [21] and [22]. This technical gap is crucial to the complete proof of
the special case of Theorem 5.7 considered in those papers, and it needs to be
filled up.

Meanwhile, the assumption of the genericity of both 7 and ¢ and the
assumption of the cuspidality of the functorial transfer of # and o to gen-
eral linear groups are critical to make the arguments and proofs work before
Proposition 5.3 in [20], and the same in [21] and [22]. Those restrictions dis-
appear in the approach taken in this paper. It seems to the authors of this
paper that the approach taken up using the general framework (including the
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twisted automorphic descents and the reciprocal non-vanishing for Bessel pe-
riods) considered in this paper is a more natural and conceptual way to attack
the global Gan-Gross-Prasad conjecture.

It is also very important to mention that W. Zhang proved the global Gan-
Gross-Prasad conjecture ([88] and [87]) for unitary groups U, x U,_1, with
certain local assumptions, and with the global assumption on cuspidality of
the global Langlands functorial transfers from unitary groups to general linear
groups. His approach is based on the Jacquet-Rallis relative trace formula
originally developed in [34] for unitary groups. The progress to extend the
approach of Zhang to a more general situation has been picked up by Y. Liu
([58]) and by H. Xue ([84]). However, this relative trace formula approach
is so far not known to be available for classical groups that are not unitary
groups. The approach taken up in this paper treats both unitary groups and
orthogonal groups uniformly. The same approach is expected to work for
symplectic groups and metaplectic groups with replacement of Bessel models
by Fourier-Jacobi models. We refer to our work ([46]) for more details.

The other direction of the global Gan-Gross-Prasad conjecture ([16]) is
more delicate and will be discussed in Section 6.3 with an assumption on
the structure of Fourier coefficients of the residual representation &;g, on
Hgim(A). See Theorem 6.10 for details.

6. Twisted automorphic descents

We develop here a basic theory of twisted automorphic descents and point
out two relevant applications. One is discussed in Section 6.2 on the explicit
construction of cuspidal automorphic modules for any irreducible cuspidal au-
tomorphic representations of GG, and another is discussed in Section 6.3 on the
other direction of the global Gan-Gross-Prasad conjecture.

6.1. Automorphic descents and certain Arthur packets. For a given 7 €
Acusp(Gr) with a Gy-relevant, generic global Arthur parameter ¢ = ¢, €
®9(G?Y), we recall that ¢, has the form

(71,1) B (12, 1) B B (15, 1) € Do(GE).

Remark that we choose the sign x = 41 for the unitary group case as in
Section 2.2. Take a 0 € Acysp(Hy,) with an H,,-relevant, generic global Arthur
parameter ¢, € ®o(H}), and define a non-generic global Arthur parameter by

(61) w”r,(r = (7_172)53(7272)E"'E(TT72)HH¢0-
Clearly 9, » belongs to @2(H3+m) and is Hyy,-relevant. Let ﬁlpm’ (Hgt+m) be

the global Arthur packet attached to the global Arthur parameter v, , in (6.1).
As in [41], one may easily verify the following property.
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PROPOSITION 6.1. The residual representation ST®~J s square integrable
and, if non-zero, belongs to the global Arthur packet Ily_,(Haym) with the
global Arthur parameter ¢, , given in (6.1).

From the endoscopic classification of Arthur in [3], it is expected that
the global Arthur packet ﬁ¢m (Hg4m) contains some members that belong to
Adisc(Hatm)- If these automorphic members are not of residue type, they are
cuspidal. The twisted automorphic descent is an approach to understand the
structures and the properties of the global packet ﬁd,w (Hatm), instead of a
certain individual member in the global packet ﬁ%’o (Hosm)-

We assume that a ¥ € Aqgisc(Hg+m) has the global Arthur parameter ¢, »
as given in (6.1), and has a discrete realization Cyx;. Consider Fourier coefficients
associated to the partitions of the form
p,{ — [(2/€ + 1)12a+m—2n—1]

of 2a +m with 0 < k < a + ty, where vy is the F-rank of H,,. It is clear that
the partition p_is of type (2a + m, H7,,,). As in Section 2.3, we study the

Yp, ,0.-Fourier coefficient of fz € Cx and denote by .7-",?," (X) the r-th Bessel

module of Ggf (A) generated by all the Fourier coefficients F¥0x (fs;) with all
fs € Cs. As in [23] for the case m = 0 and in [40] for m = 1, we prove the
following proposition by investigating the local structure at one unramified
place of the global Arthur parameter v, , given in (6.1).

PROPOSITION 6.2. Assume that a 3 € Agisc(Ha+m) belongs to the global
Arthur packet ﬁwT’U(Haer) with the parameter V., given in (6.1). Set oy :=
wz—l' For any integer k with a — €y —1 < k < a+1ty, the k-th Bessel modules
.7-",?_"(2) are zero for all F-rational nilpotent orbits Oy in the F-stable orbit

O3 (F).

Proof. First, the k-th Bessel module ]-",?_“(E) produces the corresponding
local Jacquet module of ¥, with respect to (V,, , %0, ) at any finite local place v.
At almost all finite local places, ¥, is unramified and is completely determined
by the v-component of the global Arthur parameter v, ,. Taking one such
unramified finite local place v, the generic unramified representation 7, of
Gg/r(a)(Fy,) is conjugate self-dual and hence is completely determined by
[5] unramified characters pp,... , B8], and o, is also an irreducible generic
unramified representation of F,-quasisplit H,,(F,). As in [23, Ch. 5] and in
the proof of Proposition 2.3 of [40], the unramified local component ¥, can
be realized as the unique irreducible unramified subquotient of the following
induced representation,

(6.2) Indp’ 7 (7 @ o),
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Gg/r(a)(Fy)

where 7, = Ind o (Fo) (11 o det2) ® -+ ® (pa) o det) in most cases, and

2[5

dety is the deterr[ninf]mt of Gg/p(2). Refer to the discussions in the proof of
Lemma 6.5 for all cases of 7,,. In the rest of the proof, the argument works for
all cases of 7/, although we only discuss the situation as in (6.2).

In [23, Ch. 5], the calculation of the local Jacquet modules of the induced
representation as in (6.2) with respect to (V,, , 10, ) and for general x has been
explicitly carried out. See [23, Th. 5.1], iﬁnparticular. Hence it is not hard
to figure out, as in [40, §2], that for k with a — lp — 1 < kK < a + ty, such a
local Jacquet module is always zero for the induced representation as in (6.2),
and so is always zero for the unramified local component Y, at the fixed local
place v. This proves that for all kK with a — €y — 1 < k < a+ty, the xk-th Bessel
module .7-",?_” (3) must be zero for all such orbits F-rational O, in the F-stable
orbit O;Z(F) O

The proof uses the structure of unramified local components of ¥ and
hence is independent of the discrete realization of ¥ if 3 has high discrete
multiplicity. The same happens to the proof of the following proposition, which
considers the rko-Bessel modules .7-'7? "0 (%) for the case where kg = a — fp — 1
and hence K, =m~ = n.

PROPOSITION 6.3. Let 7 and o be as in Proposition 6.2, and set kg = a—
bo—1 with by = “7“2"71. Let ¥ be any automorphic member in the global Arthur

packet ﬁd)r,a (Hyym). Forn = kg, and for all F-rational nilpotent orbits Oy,
in the F-stable orbit O3 (F), the ko-Bessel modules Fwo (X) are cuspidal, as
Py

sub-representations of Gg”o (A) in the cuspidal spectrum LZHSP(GS"O).

Proof. Tt suffices to show that the constant term of ]:T(? "0 (%) along every

0 is zero. The proof uses essentially the

standard parabolic subgroup of Gg "
tower property developed in [23, Ch. 7]. We take, in particular, Theorem 7.3
of [23]. As in the proof of Proposition 2.5 of [40], it is enough to show the
conditions in [23, Th. 7.3] hold. Because of Proposition 6.2, the terms in [23,
eq. (7.35)] are all zero. If ¥ is cuspidal, the conditions in [23, Th. 7.3] are
automatic. Hence in this case, all the constant terms are zero, and therefore,
ko-th Bessel modules ]:,? "0(X) are cuspidal.

When ¥ in the global Arthur packet ﬁd,m (Hg4m) is not cuspidal, it must
be a residual representation with the global Arthur parameter v ,. According
to [61, Th. §1.3 | and [62, Th. B|, among the residual representations in the
global Arthur packet ﬁww (Hgt+m), ¥ = Ergo has the least cuspidal support in
the sense that among the cuspidal supports of those residual representations,
the Levi subgroup in the cuspidal support of £:g, is the smallest one. It is
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enough to consider the case when ¥ = &,g,. The same argument will be
applicable to the other residual representations.

For ¥ = &.g4, in formula (7.35) of [23], it follows from Proposition 6.2
that all the summands in summation are zero. Hence it is enough to check
the assumption of Theorem 7.3 of [23]. By the cuspidal support of &, g, if the
constant term fUr—i is zero (using the notation of [23, Th. 7.3], with f € E,g0),
we are done. It remains to consider the cases when the constant terms are not
zero. To this end, we may consider the first non-zero constant term, which
reduces to the case with 7 = o8- --B7, of Gg/p(a—a1)(A). Here we refer to
(4.1) for notation. In this case, the index for the Fourier coefficient is ko+i with
i=0,1,...,p— 1, following the notation of [23, Th. 7.3]. Since kg =a—¥{y—1

and 4y = “7‘;71, we must have

. n m—1
Ko +1= <af§) +T+Z.

On the other hand, the term (fUr—i)¥=o+ie is a Fourier coefficient on Hy_ 4, 11m
with index

a—a1+m+e—1

5 ;

where ¢ = —1 if G,, is an odd special orthogonal group; otherwise, ¢ = 0. It
follows that

a—apt+m+e—1

5 :
This is because “5¢ = § and 4 + ¢ > 0. According to the structure of the
global Arthur parameter v, , as in (6.1), the term (fUr~#)¥=o+ia must be zero.
Namely, the condition in [23, Th. 7.3] holds in this reduced case because of
Proposition 6.2. Hence by induction, we obtain that the xg-th Bessel modules

]:7? "0 (¥) must also be cuspidal. This completes the proof. O

Ko+ 1>

It is clear that the ko-th Bessel modules Fro (3) could be zero. We
assume that the cuspidal sub-representation Fro (3) of G (A), occurring

. . Ok . . .
in the cuspidal spectrum Lgusp(Gn 0), is non-zero, and we write it as a Hilbert

direct sum
Oy
where all 7; are irreducible cuspidal automorphic representations of GS "O(A).
In fact, the ko-th Bessel modules ]-}(LD "0 (X)) are also O(fo %)-stable, as indicated
0

in the following proposition.

PROPOSITION 6.4. For X € Agisc(Hatm), the k-th Bessel module ]-'Sf (%)
is O(fo)—stable.
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Proof. To prove this, it suffices to consider the case when H,,, is an odd
special orthogonal group. In fact, for all the other cases, the stabilizer fo is

not an even special orthogonal group and hence 6(GS§) is trivial.

Suppose that Hyy,, is an odd special orthogonal group. Then m is odd
and m = 2m + 1. In this case, the discrete multiplicity of 3 is one. We may
take the unique discrete realization Cyx; of ¥ in this proof.

By the definition in Section 2.4, Ggf is identified as the connected com-
ponent, group Isom(V(K) N w&, q)°, where the anisotropic vector wy is of form
(2.14), namely,

x

wWo = Catry T (_1)n+1§e*(a+rm)
for some x € F*, where v, = t(H,,) is the F-rank of H,. Recall that
Isom(V{),q)° = Haym—r is a subgroup of the Levi subgroup Mz of Hy .

Assume that k£ > 0. Take the element
€= dia‘g{_-[liu Ia+tm—n—1’ _17 Im—?tm7 _]-7 Ia+tm—n—17 _IH,}

It is easy to check that € € H,,, and it stabilizes wy. Note that the stabilizer
of wp is SO(V{,,y N wy,q) % {(€), which is isomorphic to O(Viwy N wy,q). The
adjoint action of (¢) on GSE = SO(V{,) Nwy, q) is the same as the action of
~ o
O(G ).

Consider the action of ¢ € Hyyp,(F) on a discrete realization Cy, of X,

defined by f¢(g) := f(¢7'ge) for f € Cx. Since ¢ € Hyrm(F), f5(g) also
belongs to Cx;. By the definition in (2.7), since ¢ stabilizes ¥y

Frrwo (f2)(h) = Frrwo (£)(e™ he) = Frevo(f)F (h),

where the action of € on h € GS:’" is given as above. It follows that if f € Cy,

then F¥swo(f)s € F¥=wo(Cy). As explained on page 753, the action of € on
F¥rwo (f) coincides the action of 6(6‘,?5) on ]-"Sf (Cx). That is, .7:,?,“ (Cx) is
O(G9%)-stable.

When « = 0, the k-th Bessel module .7-"’?_’”" (Cs) is the restriction of Cx
into the even special orthogonal group SOga+m_1(w0l). Let us extend the
representation Cy; as the representation of Hyyy X (—I244m) = O244m(V), by
letting the action be trivial on (—/I244m). We may choose

€= {Ia+m7 -1, Ia+m}'

Then the rest of the proof is the same as that for the case k > 0. We complete
the proof. O

The general calculation of the local Jacquet module of the induced rep-
resentation of type (6.2) (as explained in [23, Ch. 5], or more precisely, in
[23, Ths. 5.4 and 5.6], and also as in [40, §4.1]) can be adopted to prove that
those irreducible summands 7; in (6.3) are actually nearly equivalent to each
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other. At almost all local finite places v, the unramified local component 7; ,
of m; shares the same Satake parameter with the unramified local component
7, under the unramified local Langlands functorial transfer from GS "0(F,) to

Gg/r(a)(Fy) except that GS "0(F,) is a split even special orthogonal group.

In this case, the unramified local component ; ,, belongs to the G(GS "O(FY))-

orbit of the Satake parameters of Gro (F}), which are the descents of the
Satake parameters of 7, under the local Langlands functorial transfer.

For the sake of completeness and also for future applications, we apply
Theorems 5.4 and 5.6 in [23] to elaborate with some details the above discus-
sions. We summarize the results on the local descent at the unramified places
as the following lemma.

LEMMA 6.5. Let v be a finite place such that all data are unramified.
Assume that X, is the unique irreducible unramified constituent of

Indg:&”;)(F”)TA det |% ® oy,

where T, and o, are irreducible, generic and unramified local components of T
and o in (6.1). Then the unramified constituents of .7-"7?”0 (X,) have the same
Satake parameter with 1, under the local Langlands functorial transfer from

GT(LQHO (FI/) to GE/F(FV)

Proof. We proceed the proof for the following two different cases:

(1) H,, is special even orthogonal, or H,, is split odd orthogonal and fo is
split, or H,, is quasi-split odd unitary; and

2) H,, is split special odd orthogonal and GO is non-split, or H,, is quasi-

( plit sp g . plit, q
split even unitary.

Case (1). Under the assumption, if H,, is split special even orthogonal,
then the assumption that the Witt index of E,y_o + Vj is zero in [23, Th. 5.4
(1)] holds; if H,, is split special odd orthogonal and G,?f is split, then the Witt
index of E,y_o + Vy is one, 5,11(‘/)’0[ =0 and 5,21(‘/)7& =1 in the notation of [23,
Th. 5.4 (2)]; otherwise, the Witt index of E,y_, + Vj is one, and 5,11(‘/)7& =1
and 5}%(‘/)7& =0 in [23, Th. 5.4 (2)]. In Case (1), a is even by the parity of the
dimension of the Arthur parameters involved.

As in (6.2), we consider the unramified local component ¥, as the unram-

ified subquotient of

(6.4) Indﬁajﬂ(g")) (1 0 dety) ® - @ (s o dety) @ 01 ® - @ by,

[22]
Here v, = t(H,,) is the F),-rank of H,,. It follows that t,, = m — 1 if H,,(F))

is quasi-split and non-split even orthogonal; and t,, = m otherwise. As before,

P

28] is the standard parabolic subgroup of Hg4,, whose Levi part is isomorphic
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to GE/F(2)X% x Gg/p(1)*™™; and 0, = Indgsél ® - ® 0y, . Let us substitute
the following representation for 7 in [23, Th. 5.4],

G aTtm v
(6.5) IndQE{ngF:r)t IE )(,ul odety) ® -+ @ (ug odety) ® 6 @+ @ b,

(22]

where Q[ﬁ] is the standard parabolic subgroup Gg/p(a + tm) N P[Q%]. We
regard G p(a + ty) as the subgroup of the standard parabolic subgroup of
Pla4x,,)~- The symbols 7 and £ in [23, Th. 5.4] are replaced by a + t,, and &
respectively in our case. Then 0 < k < a+1t,,, which is a part of the conditions
in [23, Th. 5.4, (1) and (2)].

If H,, is split special even orthogonal, by [23, Th. 5.4 (1)], one has
f,?f(E,,) =0for k> §+1v,—1,and for k = § + 1ty — 1,

Ok

FO(2,) < Indy 1 ® g+ @ pa,

where Bg, is the Borel subgroup of Ggf, and m; < mo means that m; is a

subquotient of ms. Since t,,, = m, we have that Ggf is isomorphic to the split
odd orthogonal SOg4 1.

If H,, is split odd orthogonal and GSE is split, by [23, Th. 5.4 (2)], one
has ]:,?_“(EV) =0for K > § + 1y, and for K = § + 1, — 1,

Ok Ok

OK KT K -
Fr(Sy) < Indpf @ pz- - ®pg_y @ pe ®lndg @ pz- @ pg_1 @ g

Since t,, = m, we have that fo is isomorphic to the split special even or-

thogonal SO, and that the two unramified representations are G(foO(Fy))—
conjugate.

If H,, is quasi-split, but non-split, special even orthogonal or odd unitary,
following [23, Th. 5.4 (2)], one has ]-"Sf(zy) = 0 for Kk > § + vy, and for
K =g+ tp,

Gor
fgf(Ey) < InngTam @ pz- @ pa.
More precisely, if H,, is quasi-split, but non-split, special even orthogonal, then
t, =m — 1 and GS_” is isomorphic to the split odd orthogonal SO,11; and if
H,, is odd unitary, then t,, = m and GSE is isomorphic to the quasi-split odd
unitary Ugyq.

Case (2). Denote w;, to be the central character of 7. Since 7, is (con-
jugate) self-dual, wy, is a quadratic character — that is, w;, =1 or Ag. Here
Ao is the unique non-trivial unramified quadratic character of E*.

Assume that H,, is split odd orthogonal and Ggf is non-split. In this case,
the assumption that the Witt index of F,y_o + Vp is zero in [23, Th. 5.4(1)]
holds and a is even.
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If wrp = 1, then the unramified local component ¥, is the unramified
subquotient of the unramified induced representation as in (6.4). We substitute
the representation (6.5) for 7 in [23, Th. 5.4 (1)]. Then F%(3,) = 0 for

k > 5+ m, and the descent .7-",?:“ (X,) to the orthogonal group SO, is zero
when x = § +m. Remark that over the inert finite places, the determinant of
the local L-parameter of the quasi-split, but non-split SO, is not 1. This verifies
that if w;, = 1, then the descent ]:S_”(Z,,) at this rational orbit O, is zero.
Assume that w,, = A\g. The unramified local component ¥, is isomorphic

to the unramified subquotient of

Indg[‘;;jfiﬁy)(m odety) @+ @ (a1 0 dety) ® 1O g ® 81 @+ @ by
Ha+m(Fy)

P(a+m—2)/\ (FV)
o1 is the representation of split SO5(F), ) induced from the parabolic subgroup

We may replace the above representation by Ind 71 ® o1, where

that preserves an isotropic line and the character \g| - ]% ® 1, and

Gg/rlatm—2)(Fy)

= IndQ[Q%](Fy) (u1 odete) ® -+ ® (u%,l odety) ® 01 ® -+ ® Iy

Applying [23, Th. 5.1 (1)], after the same calculation with page 104 in [23],
one has .7-",?_"”"(2,,) =0 for k > §+m, and for k = § +m — 1,
G(’)n
f,ig—n(zu) = Inng;Ml Qpz- @ pe_1 @1,
where 1 is the trivial representation of the anisotropic part of the torus of Bg ,.
It remains to treat the case that H,, is quasi-split even unitary. In our
setting suppose that H,, is quasi-split even unitary. Then in our setting a is
odd, 7, is conjugate orthogonal and w;, = 1. The unramified local component
>, is isomorphic to the unramified subquotient of

Indga:raT((%)) (p1odet) ®-+- ® (u[%] odets) ® | - ]% RO Q- ® .
(2'27]

We may replace the above induced representation by

Ha+m(Fu)
Indp(a+m71)/\ (FV)TI ® 17

where 1 is the trivial character of quasi-split Us(F,) and
G a+m— v
QE[/F((;U) D )(,U«l o detz) Q- (N[%] o detg) R R ® I

T = Ind
5]
(2°27]

Let us apply [23, Th. 5.1 (1)] and follow the same calculation as on page
105 in the proof of Theorem 5.6 in [23] for the case w;, = 1. Then one has
]-"Sf(E,,) =0 for k > § +m. For k = [§] +m, if w,, =1, then

o Gor
(6.6) Fo(Sy) < Ind g™ pn @ pi -+ @ prygj © 1,

where 1 is the trivial character of U;(F,).
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Therefore, we complete all cases involved in our discussion in this paper
and verify that 7; , shares the same Satake parameter with 7,, under the unram-

ified local Langlands functorial transfer from Gg”o (Fy) to Ggyp(a)(F,). O

Now we go back to the decomposition in (6.3). By the local uniqueness of
Bessel models at all local places ([2], [77], [16], and [44]), it is easy to deduce
that m; is not equivalent to m; if ¢ # j; that is, the decomposition in (6.3)
is multiplicity free. Of course, in the situation that the cuspidal spectrum is
multiplicity free, the decomposition in (6.3) will be automatically multiplicity
free. We summarize the discussion as the following theorem.

THEOREM 6.6. Assume that 7 and o are as given above. For an auto-
morphic member X in the global Arthur packet Iy (Haym), assume that the

ko-th Bessel module ]:,?”0 (X) is non-zero for some F-rational nilpotent orbit
Oy, in the F-stable orbit Ozsf (F) with £y = “7"2171, ko = a— ¥y — 1, and
Py

kg =m~ =n. Then the following hold:

(1) The ko-th Bessel module Foro (X) is cuspidal and can be regarded as a

sub-representation of Gf’“ﬂ (A) in the cuspidal spectrum L2 (GS”O).

cusp
(2) In the cuspidal spectrum Lgusp(G,(L9 "), Fo "0(X) has a multiplicity free,
Hilbert direct sum decomposition

Oy
Fn O(E)Zﬁl@...@ﬁk@...,

where all m; belong to Acusp(G,?ﬁo) and have a generic global Arthur pa-

rameter belonging to the 6(Gg“°)—0rbit of ¢, which is GS”O -relevant and
is determined by T. Moreover, .7-",?“0(2) is O(GS“O)—stable.

Note that in part (2) of Theorem 6.6, the 6(GS”O )-orbit of ¢, contains

only one parameter unless Gy, ™

is an even special orthogonal group. In this
case, the G(GS "0)-orbit of ¢, may contain two parameters {¢, ¢, }, which are
the descents of ¢, as explained on page 754. It is worthwhile to remember that
in this case, the global Arthur packets qu)(G;9 "0) and Iy, (G;9 "0) are different.

We may identify the parameter ¢, with either ¢ or ¢y, as on page 754.

6.2. Construction of cuspidal automorphic modules. The main issue re-
maining from Theorem 6.6 is the non-vanishing assumption that the ko-th
Bessel module ]-"7? "0(X) is non-zero for some automorphic member ¥ in the
global Arthur packet ﬁwm (Ha4m). We refer to Section 6.3 and Conjecture 6.8
in particular for more details.

We are instead going to discuss the impact of Conjecture 2.3 in the theory
of twisted automorphic descents. To this end, we recall the specific data sug-
gested by Conjecture 2.3. By Proposition 2.2, for a given m € Acusp(Gp) with
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a Gy-relevant, generic global Arthur parameter ¢ = ¢, € 52((?;';) and with
the cuspidal realization Cr, there exists the first occurrence index ¢y = £y(Cr),
such that the (maximal) fp-Bessel module F%% (C,) associated to the parti-
tion p, = (209 4+ 1)1"2%~1] is cuspidal and non-zero, as a representation of

Oy,

o . . . . .
H,,°(A) occurring in the cuspidal spectrum LZup(Hpm™®). In this situation,

we take the data that m = {;, m = [; = n—2{y — 1, and H,, = ngo. By
Conjecture 2.3, there exists a 0 € Acusp(Hpm) with an Hy,-relevant, generic
global Arthur parameter ¢, in Dy (Hy,) and with the cuspidal realization Cy,
such that the inner product <.7-" 04 (pr), ¢U/>H is non-zero for some ¢, € C;

£
and ¢, € Cy, where 0/ = oV and Cyr = Cy? as defined in (4.34).
With the data associated to Conjecture 2.3, Theorem 6.6 may be illus-
trated by the following diagram:

O2(Gh)c,  bo € Po(Hn) Iy, , (Ham)
_—
T Hy,, %
6.7) ¢ (Hp,0)
) i 4
ﬁd)T (Gn) >m Q "T_}?NO (E) - Lgusp(GSl)Ko)‘

In this diagram, we starts with a generic global Arthur parameter ¢, of G,
which is Gj,-relevant. It gives the global Arthur packet ﬁ¢‘r (Gp) by the en-
doscopic classification theory. Now take any cuspidal member 7 in ﬁ¢T (Gp).
By the Generic Summand Conjecture (Conjecture 2.3), it produces the pair
(Hp,0), where 0 € Acyusp(Hpm) with a generic global Arthur parameter ¢,
in éz(H;"n) H,,- Then o and 7 together produce the global Arthur packet
ﬁl/,T‘U(Haer). Finally, we take the Bessel-Fourier coefficient .7-'7? "0 (%) for any

automorphic member ¥ in ﬁwT‘U(Haer), which is a cuspidal automorphic

Ok

G (A)-module contained in L2,,,(Gn"™). The big question in the construc-

tion is the following: what can we say about 7 and Fowo (X) as representations
of Gn(A) and GS "0(A), respectively? Theorem 6.6 gives an answer to this
question with a non-vanishing assumption.

Without the participation of o and H,,, diagram (6.7) may be reduced to
the following diagram:

By(GE) 30— & €Ty, (H)

(6.8) Y Y
I ~ Ok 2 Ok
H¢7—(Gn) om = Fn (6‘1’) - Lcusp(Gn )
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When G,, = GS”O = G, is F-quasisplit, and &; is the residual representation
of Hy(A) (with a = N = n") having the global Arthur parameter

vy = (m,2)B---B(1,,2).

The reduced diagram (6.8) yields the automorphic descents of Ginzburg-Rallis-
Soudry ([23]) that construct certain generic cuspidal automorphic representa-
tions of an F-quasisplit classical group G (A).

By Proposition 2.6, G, and G,? "0 are pure inner forms. If one of G,, and
GS "0 is not equal to G}, then the relation between 7 and .7-}? "0(X) is the gener-
alized Jacquet-Langlands correspondence between G,, and fo "0, However, as
shown in [40], this will not cover the general situation as the F-ranks of G, and
GS "0 must satisfy the condition given in Proposition 2.5. The introduction of
o and H,, in the construction is to avoid such restriction.

With Conjecture 2.3 and the participation of o and H,, in the construction
as displayed in diagram (6.7), which is essential, the proposed construction may
(in principle) produce all irreducible cuspidal automorphic representations of
the classical groups G,, that are pure inner F'-forms of an F-quasisplit classical
group G

In fact, we are going to show in Section 7.1 that the xg-th Bessel mod-
ule ]-}? "0 (&rg0) is non-zero, assuming Conjecture 2.3. If we assume that the
stronger uniqueness of the local Bessel models over a local Vogan packet holds
at all local places (Conjecture 3.1, the known cases of which is given in The-
orem 3.2), then Fro (Er@0) 1s in fact irreducible, when G,, = G s not
an even special orthogonal group. However, if G,, = GS "0 is an even special
orthogonal group, then ]-",? " (Erge) could be a direct sum of two irreducible
cuspidal automorphic representations that belong to the 6(Gn)—orbit. In any
situation, we set

o Ox

(69) Dy "° (T; U) =Fn " (87'@0')

and call Dy (7;0) a o-twisted automorphic descent of T from Gg/p(N) to

GS”O, or simply a twisted automorphic descent of T, where N = a = n". The
main result in the theory of the cuspidal automorphic modules outlined in
diagram (6.7), by means of twisted automorphic descents, is to confirm that
the constructed module DS "0(7;0) in (6.9) is in principle isomorphic to the
given irreducible cuspidal automorphic representation .

In general, we may state the main conjecture in the theory of the cuspidal
automorphic modules via the twisted automorphic descents as follows.

CONJECTURE 6.7 (Main Conjecture). Let 7 = 7 B --- B 7, be an ir-
reducible isobaric representation of Ggp(a)(A) that defines a generic global
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Arthur parameter ¢ = ¢r € Bo(G%) as in (3.1). Assume that ¢ is Gy -relevant.
For any m € Acusp(Gr) belonging to the global Arthur packet I14(Gy), there
exists a datum (Hy,, o) with the following properties:

(1) Hp, is a classical group defined over F' and is a pure inner F-form of an
F-quasisplit classical group HY, such that the pairs (Gr, Hy,) and (G}, HY,)
are relevant and the product G, X H,, is a relevant pure inner form of the
product G}, x H}: and

(2) 0 € Acusp(Hm) belongs to the global Arthur packet ﬁ¢/(Hm) associated to
an H,,-relevant generic global Arthur parameter ¢ € &)2(H:n),

such that
(a) if Gp = Gg“o is mot an even special orthogonal group, or if G, = GS“O

is an even special orthogonal group, but the 6(Gn)—orbz’t of ™ contains
only 7, then the automorphic module Dy, "° (1;0) that is constructed via
the twisted automorphic descent (6.9) is isomorphic to the given T,
Do (1;0) =,
(b) if Gy, = Gf“o s an even special orthogonal group, and the 6(Gn)-0rbit
of m is equal to {m,m.}, then
Df?”o (1;0) 27 @ My

It is not hard to see that the constructed cuspidal automorphic module
Do (1;0) in Conjecture 6.7 is the special realization of the cuspidal auto-
morphic module M(v, F(7,G)) in Principle 1.1 in the particular case under
consideration. We remark that the construction outlined in diagram (6.7) only
uses a piece of information from the data F(w,G). We will come back to the

discussion of Conjecture 6.7 with more details in Section 7.

6.3. Global Gan-Gross-Prasad conjecture: another direction. Let 7 =
71 B H - B 7. be the irreducible isobaric automorphic representation of
Gp/p(a)(A) as in (4.1), with @ = n¥ = N, which defines a generic global
Arthur parameter ¢ = ¢, in 52(6’;) Let ¢’ be a generic global Arthur param-
eter of H},. Assume that L(3,¢ x ¢/) # 0. For any member o in the global
Vogan packet ﬁ¢/ [H} ], in which all the automorphic members are cuspidal
([37, §3]), we have

1 1 1 1
L <,7’ X a) =1L (,T X 0“’5> =1L <,¢> X (¢/)w§> =1L (,gf) X qb') # 0.
2 2 2 2
The direction of the global Gan-Gross-Prasad conjecture to be considered in
this section asserts that under the above assumptions, there exists a unique pair

(m,0) in the global Vogan packet ﬁ¢X¢’ (G} x H | with property that (7, o) with
the cuspidal realization (Cr,C,) admits a non-zero Bessel period (depending
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on the F-rational structure of the unipotent orbits as discussed in Section 2.4).
The uniqueness follows from the local Gan-Gross-Prasad conjecture at all local
places (Conjecture 3.1). Hence the key point is the existence of such a pair
with a non-zero Bessel period.

We are going to prove this direction of the global Gan-Gross-Prasad con-
jecture by constructing such a pair via the twisted automorphic descent de-
veloped in the early sections of this paper. For a technical reason, we have to
take an assumption, which we are only able to verify for some special situation
for the time being.

Take a member o € ﬁ¢/ [H},]. There is an F-inner form H,, of H}, such
that 0 € Acusp(Hpm) with a cuspidal realization C,. By Proposition 5.2, the
residual representation & ge 0f Hgim(A) is non-zero. As discussed in [41],
Ergo 1s square-integrable. By [62, Th. B], &, is irreducible. Following from
[41, §6], £;9, has the global Arthur parameter

Vro = (11,2) B (72,2) B--- B (7,,,2) B¢

It is expected that the structure of the Fourier coefficients of £;¢, has signifi-
cant impact to the understanding of the global Vogan packet ﬁ¢x¢/ (G x H .

As in [36, §4] and as recalled in Section 2.3, the Fourier coefficients of
Ergo are defined in terms of the H,-relevant partitions of (2a +m, H; ).
We denote by p(Erx,) the set of the Hyy,,-relevant partitions with which the
residual representation &£;g, has a non-zero Fourier coefficient. To the pair
of the generic global Arthur parameters (¢, ¢’) as given above, we define the
following partition:

[(a+m—1)(a+1)] if H}, = SOy, m=2m,
atm)(a— 11 if By = SOsmpr,m=2m + 1,
[(a+m)a] if HY, is a unitary group.

Py =

Note that a = nV, and the integers a+m—1 and a+m are odd, in the respective
cases. The main conjecture in [36, §4] asserts that for all o € ﬁ¢/ [H},], every
partition p € p(€rgs) has the property that p < Py If we get back to the
construction of cuspidal automorphic modules as illustrated in diagram (6.7),
then we need the following partition:

v Jlla+m—=1)19"] if HY = SOap,
Bqﬁ,qﬁ’ T [(a +m)19] otherwise.

CONJECTURE 6.8. With notation and assumptions as above, for the given
pair of parameters (¢, ¢'), there exists a o € ﬁqy [H)] with a cuspidal realization
Cy on Hp,(A), such that }3;¢, belongs to p(Erwy), where Ergy on Hyym(A) is
defined through C,.
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For m = 0, Conjecture 6.8 was proved in [23]. For m = 1 and H; an
F-form of SOg, it is proved in [40]. Similar results can be checked for unitary
groups, but we do not discuss them here with further details.

PROPOSITION 6.9. Conjecture 6.8 holds when m = 0 and for all F'-quasi-
split classical groups H}, and when m =1 for even special orthogonal groups
Hyp 1 = SO2p42.2n.

We refer to [36], [35], [37] and [38] for more discussions of Fourier coef-
ficients of automorphic representations occurring in the discrete spectrum of
classical groups, and of residual representations in particular.

THEOREM 6.10 (Global Gan-Gross-Prasad Conjecture: another direc-
tion). For a = nY = N, take T to be the irreducible isobaric automorphic
representation of Gg/p(a)(A) as in (4.1). Let ¢ = ¢, be a generic global
Arthur parameter in 52(6’:‘1) and ¢ be a generic global Arthur parameter of
H} . Assume that

L(y6 % ¢) %0,

Assume that Conjecture 6.8 holds for the pair of parameters (¢, (d)’)wg). Then
there exist a cuspidal automorphic member w in the global Vogan packet ﬁqg[G;]
with a cuspidal realization Cr, and a cuspidal automorphic member o in the
global Arthur packet ﬁ¢/ (H,,) with a cuspidal realization Cy, such that the pair
(m,0) belongs to the global Vogan packet ﬁ¢x¢/ (G} x H},| and the inner product

(F*0 (on)s o), #0

for some ¢ € Cr and ¢, € Cy, where £, = m, and the Yo, -Fourier coeffi-

cient F'%% (pr) is defined by an F-rational nilpotent orbit Oy, in the F'-stable
1‘(1—2&)—1] .

nilpotent orbit O;Z , associated to the partition p, = (260 + 1)
Py, £

Proof. By assumption, L(3,¢ x ¢') = L(3,¢ x (¢/)w§) # 0. Let og
be the member in the global Vogan packet H(¢’)w5 [H], with which Conjec-
ture 6.8 holds, and let o¢g € Acusp(Hp,) for some pure inner F-form of H,,
having the cuspidal realization C,,. By Proposition 5.2, the Eisenstein series
E(h, ¢r20,, ) produces the non-zero iterated residual representation £;gq, on
Hgim(A), with a non-zero Fourier coefficient associated to the partition B(lj, e
In other words, take

BHO = [(250 4 1)12a+m72/€071]

with kg = a — fg — 1, {5 = m, and k; = n. Then the Yo,,-Fourier coefficient

.7-"7(? " (Erg0,) 1s non-zero and cuspidal as a sub-representation of Gg "0(A) in
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Oy, . . . .
Zusp(Gn™), where Oy, is an F-rational nilpotent orbit

in the F-stable nilpotent orbit O;t associated to the partition P, Note that

ZkQ

the cuspidal spectrum L

0

the group GS "0 is a pure inner F-form of G}, and by Theorem 6.6, the xo-th
Bessel module ]-',? "0 (Ergoy) 18 6((%? "0)-stable, and every irreducible summand
of .7-"7? "0 (&g, ) has a global Arthur parameter belonging to the G(GS "0)-orbit
{¢ = ¢r, ¢*} of ¢r.

Take (m,Cr) to be one of the irreducible summands, such that = belongs
to the global Arthur packet ch(G?? "), Then for some ¢, € C,, the Bessel
period

<907ra —7:7(19&0 (87'®0'0)>G7?m0

is non-zero. By replacing the residue &gy, by the corresponding Eisenstein
series, we obtain that the global zeta integral

(m P2 (B br000:9)) vy

£
is non-zero for Re(s) large. By Corollary 4.4, the pair (m, O'g) ) admits a non-
4
zero Bessel period. It is clear that ag) ? belongs to the global Vogan packet
~ 4
Iy [Hy]. We take o := 0, ". Then the pair (7,0) belongs to the global Vogan

packet Iy 4 [Gr x H}y| and has the desired property. We are done. O

We note that Theorem 6.10 does not assume that the cuspidal multiplicity
of m should be one, while the global Gan-Gross-Prasad conjecture takes this
cuspidal multiplicity one assumption in [16].

Also, for F-quasisplit classical groups G, a special case of Theorem 6.10
was also considered in [20] and [21]. It is clear that within the theory of
the construction via twisted automorphic descents of concrete modules for
irreducible cuspidal automorphic representations, the proof of Theorem 6.10 is
more transparent than that in [20] or [21].

By Proposition 6.9 and [40], the assumption in Theorem 6.10 is verified
for the case of m = 1 and H; is an F-form of SOs. Hence, Theorem 6.10 holds
without the assumption of Conjecture 6.8 for this special case. Combining with
Theorem 5.7, the global Gan-Gross-Prasad Conjecture holds for this case.

COROLLARY 6.11 (Global Gan-Gross-Prasad Conjecture: special case).
Let G, be the F-split SOgp,41 and ¢ = ¢, be a generic global Arthur parameter
mn &)Q(G;‘L) determined by the irreducible isobaric automorphic representation T
of Ggyr(a)(A) as given in (4.1). Let ¢' be a generic global Arthur parameter
of HY, which is an anisotropic SO2 over F'. Then the following statements are
equivalent:
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(1) There exist an automorphic member m in ﬁ¢T [Gf] and an automorphic
member o in Ily[HY] such that the inner product

<]_—1/J(9zo (or)s ('00>H1

is non-zero for some pr € T and p, € 0;
(2) The central L-value L(5,7 x ¢') is non-zero.

Note that the cuspidal multiplicities of 7 and ¢ in Corollary 6.11 are one.
Hence the cuspidal realizations of m and o are unique. Also we would like to
mention that Corollary 6.11 can be proved for unitary groups, but we will not
discuss the details here. We also note that Corollary 6.11 with trivial ¢ was
considered in [13], via a different approach.

7. On the main conjecture

7.1. The main conjecture: general case. We are going to prove the main
conjecture (Conjecture 6.7), assuming Conjectures 2.3 and 3.1. More precisely,
we show, assuming the conjectures, that for any m € Acusp(Gr) with a G-
relevant, generic global Arthur parameter ¢ in Cf)g(Gj;), the cuspidal automor-
phic module DS”O (150) = ]-}?“0 (Er@0) as constructed through diagram (6.7) is
a direct sum of the two irreducible cuspidal representations in the G(Gn)—orbit
of 7 in the cuspidal spectrum of GG,,. If we assume further that the G(Gn)-orbit
of 7 contains only 7, then we have

Do (1;0) = m.
By Proposition 2.6, the F-rational orbit Oy, can be chosen such that GS "=
Gy. We note that the proof of Conjecture 3.1 has been well developed, the
known cases of which were explained in Theorem 3.2.

THEOREM 7.1 (Cuspidal automorphic modules). Conjectures 2.3 and 3.1
imply Conjecture 6.7.

Proof. Take any cuspidal automorphic member 7 € ﬁ¢(Gn) with a cusp-
idal realization C, satisfying the conditions in Conjecture 2.3. It follows that

m = {ly, Hy = Hﬁeo, and o € Acusp(Hpm) with a generic, H,,-relevant global
0

Arthur parameter ¢ € (52(an) and with a cuspidal realization C,. They have

the property that the inner product <]: Yoy, (@W),¢U>H is non-zero for some

pr € Cr and ¢, € C,. As proved in Section 2.4, for each local place v of F', the
group Gy (F,) x Hp,(F)) is relevant in the sense of the local Gan-Gross-Prasad
conjecture as discussed in Section 3.2, and the local parameter ¢, ® ¢}, belongs
to iiniw(Gn X Hy,). By Conjecture 3.1, the pair (7,,0,) must be the unique

distinguished member in the local Vogan packet ﬁ%@% (G} x H} ] as defined
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in (3.4), such that the following space, as defined in (3.5),

Hongo’oeo (Fv) (7TV ® oy, 1/}(930,1/)

is non-zero. Hence the pair (7, o) is the unique distinguished member in the
global Vogan packet ﬁ¢®¢,/ (G x H} .

We apply the reciprocal non-vanishing for Bessel periods (Theorem 5.3)
to the data (G, Hy; 7,7, 0), following the choice in Section 5.2 and obtain
that the Bessel period

(o FPo0 (Ersr)) | #0,
for some choice of data. In particular, this nimplies that the wONO—Fourier
coefficient F¥%0 (€,5,) is non-zero.
On the other hand, by Theorem 6.6, .7-"7?”0 (Ergor) With n = k| is non-
zero and cuspidal as a sub-representation of G, (A) in the cuspidal spectrum

L2,sp(Gn), with G, = GS"O, and hence can be written as a multiplicity free,

Hilbert direct sum

Ok
Fn 0(57_®U,):771@772@...@7%@...’

where 7; € Acusp(Gr) for all ¢ = 1,2,.... Each irreducible summand ; has
a generic global Arthur parameter belonging to the 6(Gn)—0rbit {6 = dr, b}
of ¢,. We apply Theorem 5.3 to m; for all i. The non-vanishing of the Bessel
period <g0m. , FVoro (5T®0/)>G implies the inner product on the right-hand side

<]__¢ogo (o) ¢0'> H,,

is non-zero for some choice of data. Following Section 2.4, the product GS "0 %
H,, constructed as in diagram (6.7) is a pure inner F-form of an F-quasisplit
G} x H},. Then by Theorem 6.6 again, the pair (m;,0) belongs to either the
global Vogan packet ﬁ¢®¢/ [G¥ x H} ] or the global Vogan packet ﬁ¢*®¢/ (G x
H} . Since the pair (7, o) is the unique distinguished member in the global
Vogan packet ﬁ¢®¢/ [G¥ x H} ], and the pair (m,, o) is the unique distinguished
member in the global Vogan packet ﬁ¢*®¢/ (G} x HY], we must have that
for each index %, m; is isomorphic to either m or m,, under the assumption of
Conjecture 3.1.

Because the direct sum decomposition of ]-}? "0 (Erge) 1s multiplicity free,

it follows that F (Er@0) must be of the form

Ok
TFn "0 (Erge) =T D Ty,

if the 6(Gn)—orbit of 7 has two members 7 and m,. If the 6(Gn)—orbit of m

contains only 7, then we must have

FOR0 (8 00) & .

We are done. O
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7.2. The main conjecture: reqular orbit case. In this section, we assume
that the group G,, = G}, is F-quasisplit, and m € Acusp(G5,) is generic, i.e., has
a non-zero Whittaker-Fourier coefficient. In this case, the global Arthur param-
eter of m can be taken in the form (3.1). Then the Langlands functorial transfer
of 7 from Gj, to Gg/p(N) is 7, which is of the form (4.1). This is essentially
proved by the work of Cogdell, Kim, Piatetski-Shapiro and Shahidi in [11], with
combination of the automorphic descent of Ginzburg-Rallis-Soudry ([23]). We
refer to [37, §3.1] for detailed discussions of this and some related issues.

In this case, Conjecture 2.3 holds automatically without (H,,o). The
residual representation is £ on the F-quasisplit H}(A). The automorphic
descent of Ginzburg-Rallis-Soudry in [23] shows that

DSNO (1;0) = fr?mo (&)
is a non-zero cuspidal automorphic representation of G} (A). As proved in
[42], the descent Dy (1;0) is in fact irreducible for G},

», which is an F-split
odd special orthogonal group. In general, the structure of DS "0 (7;0) follows
from Conjecture 3.1. Hence Conjecture 6.7 is proved under Conjecture 3.1 as

a consequence of the proof of Theorem 7.1.

COROLLARY 7.2 (Regular orbit). Let G} be F-quasisplit. For any m €
Acusp(Gy,) to be generic with its global Arthur parameter (3.1) and T as in
(4.1), then Conjecture 6.7 holds for m under the assumption of Conjecture 3.1.

7.3. The main conjecture: subregular orbit case. We consider in this sub-
section the irreducible cuspidal automorphic representations 7 of G, (A) such
that the set p”*(m) contains the partition Py, COrresponding to the subregu-
lar nilpotent orbit of G}. In this situation, it is clear that p™(7) = {p_, }.
Conjecture 2.3 can be verified as follows. The group H,, constructed via Dia-
gram (6.7) can be determined as below.

If G}, is an F-quasisplit SO2p, the subregular partition p_ is [(2n —3)3].
The partition with the first occurrence index ¢y is Py, = [(2n — 3)13] with
lp = n—2. Hence H,, is a pure inner F-form of SO3, where m = ¢, . According
to [38, Th. 11.2], because p"* () = {p_ . = [(2n—3)3]}, the fyp-th Bessel module

Lsubr

. . . . @
FO% (1) associated to the F-rational orbit @y, must be non-zero if H,, = H Z_ZO
0

is the split SO3. Hence Conjecture 2.3 holds for this case.

If Gy, is an F-split SO2p41, then p_ | is [(2n— 1)12], which is the partition
with the first occurrence index ¢y = n — 1. In this case, the group H,, is an
F-form of SO3, and hence Conjecture 2.3 holds.

If G, is an F-quasisplit Uay, then p_ . is [(2n—1)1], which is the partition
with the first occurrence index £y = n — 1. In this case, the group H,, is equal
to Up, and hence Conjecture 2.3 holds.
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If G} is an F-quasisplit Ugy,y1, then the subregular partition Pyt is

p,, = [(2n = 1)17]
with fg = n — 1. Hence H,, is an F-form of Us. It is clear that Conjecture 2.3

[(2n)1]. The partition with the first occurrence index ¢y is

also holds for this case, following the proof for the case of F-quasisplit SOg,,.
We summarize this discussion as

PROPOSITION 7.3. Let ¢ = ¢, be the generic global Arthur parameter of
as given in (3.1) with 7 as defined in (4.1). If a cuspidal automorphic
member m in the global Vogan packet 114(GY] has the property that p™(m) =

G*

n

{Bsubr}, then Conjecture 2.3 holds for .
As a consequence of the proof of Theorem 7.1, we have the following result.

COROLLARY 7.4 (Subregular orbit). Assume that 7 € Acusp(Gr) has a
Gy -relevant, generic global Arthur parameter in ®o(G%) and the set p™(r)
contains the subregular partition p_ of type (n, G%). Conjecture 6.7 holds for
w under the assumption of Conjecture 3.1.

Appendix A. Non-vanishing of local zeta integrals

In this appendix, we prove Proposition 5.5. It is a purely local non-
vanishing property of the finite product of the local zeta integrals

ZS(Sa ¢T®U’7 Py Q;Z)O,{O )

However, the local data have constraints from the global assumption for (7, 7, o)
from Theorem 5.3. From Proposition 5.4, Z5(s, ¢roe, P, 1/1@50) converges ab-
solutely for Re(s) large, has a meromorphic continuation to s € C, and is holo-
morphic at s = % What we need to prove Theorem 5.3 is the non-vanishing at
s = % for a choice of data with certain global constraints as described in Propo-
sition 5.5. In fact, we are going to show a more general non-vanishing property
for the local zeta integral Z,(s, ¢rgo', ¢r, Y0,,) for every v € S. These lo-
cal zeta integrals converge absolutely for Re(s) large and have a meromorphic
continuation to s € C. We give the proof in [43] and refer to [75] and [76] for
the case of the split special orthogonal groups.

Throughout this appendix, all algebraic groups X are defined over F,,. The
F,-rational points of X is simply denoted by X = X (F,) when no confusion
is caused.

For Re(s) large, the local zeta integral in Theorem 4.5 is defined as in
(4.41) by
(A1)

—1

Yg_
ZZ,(S, ¢T®a’v 12 @Z)Z,wo) :/ " Py Frts (771/ (gu)@ﬂ'y 5 Js,u(¢s,u)(gu)) dgua
R} 5 \G™O
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—1

e
where P, ” """ is the unique local Bessel functional, up to scalar, in the space
-1
(A.2) HomRZﬂ_l(F,,)(ﬂ'u ® oy, wgfLy_H)'

This Hom-space is at most one-dimensional, by the uniqueness of local Bessel
models for classical groups ([2], [77], [16] and [44]). Alternatively, for a local
Bessel functional b, in (A.2), we may rewrite Z,(s, ¢rz0’, Pr, Ve,w,) 88

(A.3)

w bl/(ﬂ-l/(gl/)spmn fW—ru ®0'{,,s(ueﬂngl/))wm-&-a—i-&a—é(u) du dgl/a
Rf5-1\G, L JUan(Fy)
where fyy_ w0 s is determined by ¢rgo given in (4.38).
Our goal is to construct a section fyy, gs s belonging to I,,(Wr,,0,)

such that the following non-vanishing holds.

PropPOSITION A.1. Suppose that a non-zero local Bessel functional by, in
the HomRzﬁil(Fu)—space (A.2) is not zero at some pr, = Vg, € T, and vy, €
oy, i.e., by(vr,,v5,) # 0. Then, for any given s = sy € C, there exists a
holomorphic section fy, gq.s i (A.3) belonging to 1s,(Wr,,0,) such that
the local zeta integral 2, (s, prgo’ Prs Viaw,) 1S non-zero at s = s.

It is clear that Proposition A.l for split orthogonal groups over p-adic
fields is just Proposition 4.1 of [75]. In the proof of Proposition A.1, one of
the technical issues is to construct the section fyy_ go! s in the space of the
induced representation I, , (W, ,0,,) with the given constraints. Soudry in his
proof of [75, Prop. 4.1] uses the Iwasawa decomposition to explicitly construct
such sections fyy, wo1.s- We are going to use the Bruhat decomposition to
proceed the explicit construction, which works for more general groups over
local fields of characteristic 0.

We recall from Section 4.1 that H,,, is either a special orthogonal group
or unitary group. When H,y,, is unitary and v splits in the number field F,
Hyim(Fy)) = Uggym(F)) is isomorphic to GLagym(F,). We defer the discussion
on this case to the end of this proof. We first consider the case that H,p,(F))
is not isomorphic to GLag4m(F)). For convenience, we consider Js, as a map

(A'4) IS,V(WTw 01//) - Igg(wﬁ—l,y_m UV)a
which is given by the following U, (F} )-integration,

(A5)  Tuu(fwr,00p,0)(0) = /U o sz ana() .
a,nL'v

as in (4.33).

It is not hard to show that the integration in (A.5) converges absolutely
for Re(s) large. It is a little bit more technical to show that it admits a
meromorphic continuation to s € C in general, which will be treated in [43].
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However, for the purpose of this appendix, we are able to prove this easily for
the particular sections fyy_ o7 s that will be constructed below for the proof
of Proposition A.1.

Remark A.2. For further refined applications of the global zeta integrals
considered in this paper, one may be interested in the characterization of the
image of Js, in (A.4). However, for the purpose of this paper, we do not
need this. Hence we will leave this interesting question to be considered in our
future work.

Let b, be a non-zero local Bessel functional in the Hom-space (A.2). Take
some vy, € m, and v,, € 0,, such that b,(vs,,vs,) # 0. We are going to
construct a section fyy, gor s in

L, OV,

v

,0y) = Indp™ ™ (|- [*W,, @ a),),

which is compactly supported in the open cell PU;" of Hyypm, modulo F; from
the left. Recall that U, is the unipotent subgroup opposite to the unipotent
radical U; of P, as defined in Section 4.1. We define

g
(A'6> fWTV®J’V,s h Uﬁlfﬁn = ‘detg‘SeraW:; (g)fu(ﬁ/)g(h)vau

*

g

with g € GL4(E,), h € Hy(F,)), v € Us(F,), and 7' € U, (F,). Here
WFE (g) is a Whittaker function in W, f,(7') is a smooth, compactly sup-
ported function defined on U (F,), and | - |?« is the modular character of
the parabolic subgroup P;. Over archimedean places, we may take f,(7)
also to be a positive real-valued function. Since Hgyrm(F,) # GLogym(F)),
Gg,/r,(a)(Fy) # GLa(F,) x GL4(F),). Hence the subgroup (Resg/rGLq)(F))
of the Levi part of P; can be written as GL,(E)), where E, is either F, or
a quadratic field extension over F,. Remark that because of the conjugation
by wg, it is v, on the right-hand side of (A.6), instead of v,s. It is clear that
the section fyy, g s defined in (A.6) is a smooth section in I, ,(Wy,,0;,). It
is clear that for such a constructed section fyy, g/ s, the integration in (A.5)
is over a compact set. Hence the integral converges absolutely for every s € C
and admits meromorphic continuation to all s € C.
We may assume that the value of fyy, go! s(9) at g = egn is

(A.7) fWTV®0{,,S(€ﬂ77) = qu (Ia)vo,

where I, is the identity matrix of GL,. It is clear that the functional b,
evaluated at (vr, fw,, @o!,s(€57)) is given by

(A.8) b, (vr, fWTV®0,’,,s(€,B77)) = W;—z (Ia) - by (vr,, Vo, )-
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We may take the value of WY (I,), so that
(A.9) W;—z (Ia) : bu(vma Uou) =1

This gives the normalization of the local Bessel functional b, at all v € S.

To finish the proof of Proposition A.1, we have to calculate explicitly the
relation between RZ’ ﬂ_l\G%O, and the open dense set P;U, — in particular,
the following domain:

(A.10) R} 5 \Gro 01 (egn) ™ (PaU; ) (epn).-

The group G%O, is identified as a subgroup of the Levi subgroup of P;. Ac-

cording to the structure of the stabilizer of the open cell PiegP; as given in
Section 4.4, the intersection (A.10) can be written as the following intersection:

(A.11) Ry 5 \Go N Ad(n™)(PLU,,)-

Recall that P!, = Hg 4y, eNeg, }BP@EQ g defined in Proposition 4.1 is the standard
parabolic subgroup of Hg ¢ with Levi decomposition (G, /5, (a—£€) X Hy,) X
Uy—¢, where U,_y is the unipotent radical. More details can be found in [45,
§3.1]. Because of

Rys =GN~ Py,

the intersection set Gio> N Ad(n~)(P,U,_,) is RZ/B_l—left stable. Thus the
intersection modulo RZ gy in (A.11) is well defined. It is clear that P, U, , is
an open subset of Hyqp,—g.

With the above choice of fy, @/ s, the integral (A.1) can be taken over
the set (A.11). To proceed with the integral (A.1), we explicitly describe
the intersection G N Ad(n~')(P,U,_,). It is enough to describe the set

w~ a—4~
Ad(n)GY. N (P,U,_,). Take

w~ a—~l

(A.12) p= ht ~Y'g* | € P,
g*
and
Ia—ﬁ
(A.13) n=| X Iy €U,
A X Iy

with g € GLo_¢(E)), h € Hp, Y € Mat(q_pyxms Z = wa—tZlwoy, Y’ :=
—wa—g L(Y) - (J™) 7L, and g* = ¢(g)"!. Here w,_¢ is the anti-diagonal matrix
with the unit entry of the size (a — £)-by-(a — ), JI' is defined in (2.2), and ¢
is the Galois element in I'g, /, (as on page 748).
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Since G°_ fixes the anisotropic vector wy = y,, defined in (4.5), Ad(n)G, "
stabilizes the vector

E
Ad(n)wo = Om I
By (2(a—0)+m)x1

where 0y, is the m-dimensional zero column vector,

By =(0,...,0,1)! and By = ((—1)m+1g,0, -, 0)" in Mat(, ).

Here we consider Ad(n)wp as an anisotropic vector in the Hermitian space
defining Hypm—¢. Then p-n € P,U,",isin Ad(n)G" " if and only if p- 7 fixes

the vector Ad(n)wg. That is to say that both p and 7 satisfy the following
equations:

(A14) ZE2 = (Ia,g — g)El, AE1 = ([,(g) — Ia,g)Eg, X’El = h . Y,EQ.

Since our integral domain is a set of R} 5_1—right cosets, we identify the quotient
set (A.11) by choosing h = I, g € Zq—¢(E,)\GLy—¢(E,),

Y = (O(ml)X(af)) and L(Z)g* _ (zl O(dﬁl)x(afl)) .
Y

<2 <3

Due to (A.14) and the above choice, the vector y in Y, and z; in Z for 1 <i¢ <3
are determined by X and g, respectively. Because of this, we write Yx and Z,
for Y and Z, respectively.

To separate variables, we choose

Io—y
0 I
(A15) fl/ X/ .’L'/2 Im :fl(xlax251:3)f2(Xa A)a

Tl r3 X9 Ig
A 2 X 0 I,y

where f1 and fo are smooth, compactly supported functions, and the size of
matrices X and x; are indicated by the matrix in (A.15). With the above
choices, we are able to evaluate more explicitly the function Js . (fw,, @os’,s)(8)
as defined in (A.5) for g in the set (A.11). We decompose Ad(n)g = p-n as given
in (A.12) and (A.13). Let us conjugate p - 7 by eg. Referring to (3.6) in [45],
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as elements in Hgy,, we have

g0 —Yx 0 «(Zy)g*
I, 0 0 0

egpey’ = u(Yx, Zg)m(g) = Im 0 —Yig* |,
Iy 0
(A.16) 9"
Ty o
. 0 I
€gNEZ " = X' 0 In
A8 0 00 I,
A 0 X 01,
where
Io—e 0 =Yx 0 u(Zg)
I, 0 0 O
U(YX7 Zg) - Im O *Y/ and m Im+2£ .
L o g
Io—s
By the definition of J, . (fw,, «0,s)(g) in , using the above decom-

position of g in the set (A.11), we have
(A.17) JS,V(fWTV®a{,,s)(g)

:/U () ow®0L7s(nu(YX, Zg)m(g) . 657_16[;1 . eﬁn)wm—f—a-i-e@_z(n) dn.
ca_n Fy

Recall that the element in U, (see (4.32)) is of form

To—e
0 I
n(xy, x9, x3) 1= 0 @b Im

z1 x3 w2 Iy
0 af 0 0 I,y

By simple manipulations, one has
(w1, x2, w3)u(Yx, Zg)m(g)
=m(g) - ta(—1(B)) - n(x1g, 22 — 11Yx, 3 — Bar)),
where B = x11(Z,) — 22Y and ua(—(B)) = (I“*

0
element in GL, as the subgroup of the Levi subgroup of P;. Continuing with

(A.17), by the definition of fyy, go! s in (A.6) and f, in (A.15), after changing
variables we have

Js,V(fVW,,@a,’,,s)(g) = ‘detg’s+paW-//—€V ((g Ig)) fQ(Xa A)Ua

¢ _L](B)> is considered as an
¥4

(A.18)

< [ fiwnan ) vp((ang ez (ol -uB))| detg| * da
Uan

where the matrices z; define the element n(zq,z2,z3) in Ua:77 and By =

219~ (U(Z,) — YxY¥) — x9Y%. Although the term B; is complicated, after

we choose suitable X and A defining n(X, A), the matrices Yy and Z, are

zero, so is Bj. Since the function fi(z1,z2,23) is chosen to be a smooth and
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compactly supported function and is independent of complex variable s, the
integral J; ,, is well defined over the whole complex plane for such choice of the
section fyy_ o s, and so is the local zeta integral (A.1).

Finally, by plugging the formula (A.18) into (A.1), we obtain that Z,(,-)
equals

(A.19)
|/ |detgrs+ﬂaw;z((g I))f2(XaA)bu(ﬂ(n_lp(gaX)ﬁ(X,A)n)vw,va)
X,A l

g

/ | det g~ f1(er, w2, 23) 0 (€19 )00V, (ta(—1(B1))) dai dg X dA.

a,n

The notation in the formula is explained in order. The integration fg is over
Za—0t(Ey)\{g € GLa—¢(E)): t(§)E2 = AE; + Es}, with constraints given in
(A.14). Rewrite 7 and p to be n(X, A) and p(g, X) respectively to indicate
their dependence on variables X, A and g, following (A.16). The integration
fXA is over the set U, , with AE; # —FE, due to AE| = (1(9) — Ia)E> in
(A’.14) and det(g) # 0. Indeed, because AE; + Ey = 1(§)E», if AE] = —E»,
then ¢(g)FE2 = 04—, which implies det(g) = 0.

We are going to finish the proof based on the above expression for the local
zeta integral Z,(s,-). Suppose that Z,(s, ) is identically zero for all choices of
data f; and fo at the given s = s5. We vary the function fo(X, A) first and
consider the rest of the integral as a continuous function of X and A. Since the
integral over U,_, is identically zero, the remaining integration in the variable
7 as given in (A.13) is identically zero; that is,

/!detglw“foV ((g Ig)) b, (x(n~ ' pn)vx, vo)
) g

></U_ fl(l‘lafﬂ%$3)77Z)E((5519_1)E,a—ﬁ)wgalﬁ(ua(_b(él)))dxidgEO-

(A.20

Especially, the integral on the left-hand side of (A.20) is identically zero at n =
Iy(a—t)4+m, equivalently, at X = 0(,_g)xm and A = 0(,_g)x(a—r)- Because M =
Iy and X'Ey = Y'Ey in (A.14), we must have that Yx = 0(q—)xm due to X =
O(a—t)xm, and similarly Zy = O(q_r)x(a—r)- It follows that By = Opyx(4—¢) and
the character ¢§jjﬁ(ua(—b(31))) disappears. As A = 0(4—g)x(a—e) and AE; =
(t(9) — I,)E2 in (A.14), g must belong to the standard mirabolic subgroup of
GLo—¢(E,); that is, Elg = E!. Since the integration domain of g is modulo
Za—t(E,) and Etg = E!, the integral fg is over Z, ¢—1(E,)\GLo—¢—1(Ev).
Since g is in the standard mirabolic subgroup of GL,_¢(E,), g~' stabilizes the
character T;Z)E((l‘l)f,a—f) of Ua_,nv that is, ($1g_1)€,a—€ = (xl)ﬁ,a—ﬁ-
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Furthermore, one may choose a suitable smooth, compactly supported
function f; such that

(A.21) Ji(z1, w2, 23)YE((21)r,0—¢) dzy dro daz = 1.
Ua,n

Plugging (A.21) into (A.20), we have

(A.22) /g | det g]s+p“_€W;i ((g I )) b, <7r ((g Tnt1 - )) vmvg> dg =0,

where fg is over Z,_y_1(E,)\GLq_y_1(E,).

It is clear that the left-hand side of (A.22) is exactly the same with (4.7)
in [75], up to a non-zero constant. We note that the reduction to this type
of the integrals is a key step in the proof of such non-vanishing of the local
Rankin-Selberg integrals. See [73] for instance. Applying the same inductive
argument in Sections 6 and 7 of [73] and the Dixmier-Marlliavin Lemma ([12]),
we obtain that

WE (14)by (v, v5) = 0.
However, this contradicts (A.9). Therefore, there must exist a choice of data
such that Z,(s, ) is not zero at the given s = sg. This completes the proof of
Proposition A.1 when Hg,, is not isomorphic to GLag1m(F}).

If Hyrm(Fy) is isomorphic to GLagym(F,), due to the splitness of the
group, the matrix calculation such as (A.12) and (A.13) is slight different. See
[86] for instance. However, the proof for this case is completely same. Hence
we omit the details here.

Appendix B. On local intertwining operators

Throughout this appendix, let F' be a local field of characteristic 0. Recall
that H}, is a quasi-split classical group defined over F' and H,, is a pure inner
F-form of HY . Let ¢ be a local L-parameter of H (F') and II4(H,,) the

associated L-packet. Assume that ¢ is generic; that is, II4(H};,) contains a

generic member, following [67]. Up to a conjugation, assume that ¢ is of form
as in Section 3.1,

B1) o= (1] " adf | [)a-a(gia]["ad @ |7) e d,

where 1 > [Bo > -+ > [ > 0, all ¢;: L — LGE/F(ni) for 1 <¢ <t
and ¢g: Lr — LHn0 are tempered local L-parameters. Then, the L-packet
ﬁ¢(Hm) is defined to be the set of the Langlands quotients of the induced
representations

(B.2) Indp/ ) 7(61)|det |71 @ - @ 7(ey)| det |** @ oy,

where the parabolic subgroup P has the Levi subgroup isomorphic to G, r(n1)
XX Ggp(ne) X Hyy, 0o Tuns through the tempered L-packet ﬁ¢0 (Hp,), and
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7(¢;) is the irreducible admissible unitary generic representation of
Gg/r(ni)(F) given by the local Langlands correspondence for the general lin-
ear groups.

PROPOSITION B.1. If ¢ is a generic L-parameter of H}, as given in (B.1),
then all representations in ﬁ¢(Hm) can be written as irreducible standard mod-
ules; that is, the induced representations displayed in (B.2) are irreducible for
all pure inner forms Hy, and og € ﬁ¢(Hn0).

Proof. If F' is non-archimedean, this proposition is proved by Moeglin and
Waldspurger in [67] for orthogonal groups, by Gan and Ichino in [18, Prop. 9.1],
and by Heiermann in [29] for general reductive groups. If F' is archimedean, it
is a special case of Theorem 1.24 in the book by Adams, Barbasch and Vogan
([1]). More details can be found in Chapters 14 and 15 of [1]. O

Proposition B.1 serves as a base for us to prove Theorem 5.1. Recall that
the normalized local intertwining operator N (wp, T ® o, s), takes sections in
the induced representation

(B.3) Indp ) (7, | det |* © 0,)
to sections in the induced representation
(B.4) Indp? ) (7| det [ @ 0,),

where 7, is the local v-component of the irreducible isobaric automorphic rep-
resentation 7 as given in (4.1), and o, is the local v-component of the ir-
reducible cuspidal automorphic representation o in Acusp(Hyp,) with an Hp,-
relevant, generic global Arthur parameter ¢, as in Theorem 5.1. It is clear
that Theorem 5.1 follows from the following theorem.

THEOREM B.2. Let ¢ be a local v-component of an H,,-relevant, generic
global Arthur parameter of H,. If T is an irreducible admissible unitary generic
self-dual representation of Gg/p(a)(F) and o is an irreducible representation

in the generic local L-packet ﬁ¢+(Hm), then the normalized local intertwining
operator N (wo, T ® 0, s) is holomorphic and non-zero for Re(s) > %

Proof. First of all, the local L-packet ﬁ¢+(Hm) has a generic member ¢°
([3] and [70]) when H,, = H}, is quasisplit. If o is generic, the proposition
follows from Theorem 11.1 in [11].

Assume now that o is not generic. For such a generic local L-packet
ﬁ¢+(Hm), by Proposition B.1, the standard modules as displayed in (B.2) are
irreducible. This is the key point for us to apply the argument in [11] in the
proof of this proposition.

According to the structure of the generic unitary dual of the general linear
groups, given by Vogan in [79] for the archimedean case and by Tadi¢ in [78] for
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the non-archimedean case, any generic member ¢° in I+ (H,;,) is isomorphic
to the irreducible generic unitary induced representation

HE (F
Indp7i ) 7(61)|det |7 @ - @ 7(@y)| det |* @ oo,
where
1

(B.5) 5>61>62>-~->ﬁt>0,
and all 7(¢;) and o are irreducible, unitary, generic, and tempered. By Propo-
sition B.1, each ¢ in I 4+ (H,,) is of form (B.2) with the exponents satisfying
(B.5).

Again, by the generic unitary dual of the general linear groups, 7 is iso-
morphic to the irreducible induced representation

(B.6) Ind(itmi| det |1 @ - @7y det [* @7 @73] det |24 @- - -@rf| det |7,

where all 7; are unitary, generic and tempered, and
1
§>041>-~->04d>0.

Now we replace the representations 7, and o, in (B.3) by their correspond-
ing realizations in (B.6) and (B.2), respectively. By the transitivity of parabolic
induction, the normalized local intertwining operator A (wo, 7, ® 0., s) can be
expressed as a composition of the local intertwining operators of rank one,
which are of form

(B.7) N(wji, 7 @ 7(i), s £ aj = By),

(B.8) J\/’(w;,i,Tj ® 7,28 £ + o),

(B.9) Nl 7(¢1) © 00, 5 % ag),

where w;;, w};, and w are the corresponding Weyl elements. We deal with

these three types of the local intertwining operators separately.

The first two types (B.7) and (B.8) were studied by Mceglin and Wald-
spurger in [65]. For any unitary tempered 7 and 7/ of general linear groups, the
normalized intertwining operator N (w, T ® 7/, s) is holomorphic and non-zero
for Re(s) > —1. Because of the bounds for the exponents, it follows that

N(wji, 75 @ 7(¢i), s £ o £ ;) and N(w;ﬂ-, T @ T, 28 £ aj £ ay)
are holomorphic and non-zero for Re(s) > 0.

For the remaining type (B.9), by the bound 0 < o < %, it is sufficient to
show that the normalized intertwining operator N (w”, 7®0y, s) is holomorphic
and non-zero for Re(s) > 0, when 7 and o are unitary tempered. Since ¢y is
a generic parameter, there is a generic representation o in the tempered local

L-packet ﬁ¢0(Hno)- Hence we have the identity of local L-factors:

L(s,7 x 09) = L(s,T X 03).
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Referring to [54], L(s, 7 x o) and L(s, 7, p) are holomorphic and non-zero for
Re(s) > 0, and so is the normalizing factor. In addition, following Proposition
IV.2.1 in [81] for the non-archimedean case and Lemma 4.4 in [10] for the
archimedean case, the non-normalized local intertwining operator M(w”, 7 ®
00, s) for tempered data is holomorphic and non-zero for Re(s) > 0. It follows
that both M(w”,7; ® 09, s — «j) and L(s — o, 7j X 0p) are holomorphic and
non-zero for Re(s) > % because 0 < a; < % Therefore, the normalized local
intertwining operator (w7, 7(¢;) ® 00,5 + ;) is holomorphic and non-zero
for Re(s) > % Putting together the results for all three types, we complete
the proof of this proposition. O
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