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Abelian varieties isogenous to no Jacobian

By David Masser and Umberto Zannier

Abstract

We prove among other things the existence of Hodge generic abelian vari-

eties defined over the algebraic numbers and not isogenous to any Jacobian.

Actually, we also show that in various interpretations these abelian varieties

make up the majority, and we give certain uniform bounds on the possible

degree of the fields of definition. In particular, this yields a new answer (in

strong form) to a question of Katz and Oort, compared to previous work

of Chai and Oort (2012, conditional on the André-Oort Conjecture) and

by Tsimerman (2012 unconditionally); their constructions provided abelian

varieties with complex multiplication (so not “generic”). Our methods are

completely different, and they also answer a related question posed by Chai

and Oort in their paper.

1. Introduction

1.1. Preamble. In [8, p. 589] Chai and Oort raise following the question,

which they attribute to Katz (who in turn attributes it back to Oort): Is

there an abelian variety defined over the field Q of all algebraic numbers, not

isogenous to the Jacobian of any (stable) curve?

It is classically known that the dimension g of such an abelian variety must

be at least 4. This is because every abelian variety, even over C, is isogenous

to something principally polarized, and if g = 1, 2, 3, then the latter is even

isomorphic to such a Jacobian. (Here we take the opportunity to emphasize

that, as in [8], our isogenies and isomorphisms are not required to respect

polarizations.)

But for g = 4, it is also classical that the space of all principally polar-

ized abelian varieties has dimension 10, while the space of all Jacobians has

dimension 9. As the set of isogenies is countable, this implies (for example by

measure theoretic considerations) that there is a principally polarized abelian

variety over C not isogenous to any Jacobian (and even that “almost all” are

not), but it gives no further information about the field of definition. Of course
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the field can be taken as finitely generated over Q. This fits with Serre’s theme

in [39, p. 1; see also pp. 2, 3]: Il s’agit de prouver que “tout” ce qui est réalisable

sur un corps de type fini sur Q l’est aussi (par spécialisation) sur un corps de

nombres. But such a specialization seems here not straightforward, due to the

lack of information about the connecting isogeny.

The following remarks may illustrate the main difficulty. Restricting even

to Q leaves only countably many abelian varieties, which could conceivably be

covered by the infinitely many arising from isogenies acting on Jacobians or

even a single one. For example, it is not hard to prove that if A is principally

polarized with endomorphism ring Z, then A/G is principally polarized as soon

as the finite group G has order a gth power ng, and that taking n as different

primes leads to non-isomorphic quotients; or better, one may use the isogenies

that come from elements of the symplectic group Sp2g(Q), which is dense in

Sp2g(R) — see [37, p. 154] — and which in turn acts transitively on the Siegel

space; see [18, p. 25].

Chai and Oort themselves gave an ingenious construction that supplied an

affirmative answer for all g ≥ 4, but was conditional on a then unproved special

case of the André-Oort Conjecture about special sets in Shimura varieties.

Shortly afterwards, Tsimerman [43] gave a no less ingenious unconditional

proof. With the help of a powerful equidistribution theorem due to Katz he

constructed an infinite sequence of so-called Weyl complex multiplication CM

fields with many small split primes and large Galois orbits. He also has to

avoid possible Siegel zeroes. Then he used a version of André-Oort due to

Klingler and Yafaev [20] but avoiding their use of the Generalized Riemann

Hypothesis. He finished as in [8], which by the way uses a different form of

equidistribution. (Later on the relevant André-Oort conjecture was proved by

Pila and Tsimerman [34] for g ≤ 6 and by Tsimerman [44] for all g.)

As done in [8] and [43], one can interpret the question (and answer it)

for any g ≥ 2 by considering, instead of (the Torelli locus of all) Jacobians, a

general algebraic hypersurfaceH in the Siegel moduli spaceAg of all principally

polarized abelian varieties of dimension g ≥ 2.

The abelian varieties thus constructed in [8] and [43] all have complex

multiplication CM. In several senses these are well known to be “sparse.” (For

example, the j-invariant of any CM elliptic curve must be an algebraic integer

and there are only thirteen CM elliptic curves defined over the rationals Q.)

Perhaps with this in mind, Chai and Oort [8, p. 604] also asked (in our nota-

tion): Given an algebraic (special) hypersurface H over Q in Ag , can we find

explicitly something in Ag without CM, or with CM but not Weyl CM, that is

not isogenous to anything over Q in H?

1.2. Our results. Here we show that there certainly exist such abelian

varieties without CM, and even abelian varieties with endomorphism ring Z.
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In fact we can escape yet more from CM by using the concept of “Hodge

generic.” One can consult, for example, [36] in the more general context of

Shimura varieties; but for us it is equivalent both to the Mumford-Tate group

being GSp2g and to not being contained in any proper special subvariety of Ag.
It is thus in some strong sense the opposite of “special” as used in the standard

terminology (for example of unlikely intersections).

Back over C, the non-Hodge generic principally polarized abelian vari-

eties are contained in a countable union of proper subvarieties of Ag, while

the CM varieties are themselves countable so cannot even fill a semialgebraic

curve. An abelian variety that is Hodge generic is not only simple but also has

endomorphism ring Z.

Our proofs even yield abelian varieties with the property (apparently

stronger, but conjecturally equivalent) of being “Galois generic” (see also [36]).

Our constructions also provide a set of abelian varieties that is dense, not

only in the Zariski topology but also in the euclidean topology. The abelian

varieties can even be taken as pairwise non-isogenous.

In the discussion above over C we used the words “almost all.” We can

even make these more precise over Q by counting the number of exceptions in

suitable families.

Our first result shows that we can even take the abelian varieties defined

over extensions of Q whose degree is bounded only as a function of g (so inde-

pendent of H). Note that the CM abelian varieties in [8], [43] have endomor-

phisms rings of large discriminant and then one expects their fields of definition

to be large (very likely implied by [44] — in particular, the Galois result).

Theorem 1.1. Given an algebraic hypersurface H in Ag with g ≥ 2, there

is A in Ag , with A defined over an extension of Q of degree at most 216g4 and

Hodge generic, that is not isogenous to any B in H.

Our construction will show that even the points of order 16 are defined

over the same extension.

The following consequence is clear.

Corollary 1.2. For any g ≥ 4, there is a principally polarized abelian

variety of dimension g, defined over an extension of Q of degree at most 216g4

and Hodge generic, that is not isogenous to any Jacobian.

Now the dimensions counting argument above (in general we have G =

g(g + 1)/2 against 3g − 3) shows that “almost all” abelian varieties over C

will satisfy the requirements. As mentioned, such a statement over Q does not

come out of the proof in [43], because CM already holds for “almost no” A.

Our second result shows that almost all A over Q will do, even over

bounded extensions as above. To do a precise counting in Ag it is convenient to
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consider rational maps (not necessarily morphisms) down to affine AG defined

over Q, and to control more closely the fields arising it is best to allow maps

also from covers Ã, both defined over Q, of Ag. All these will be finite in the

sense of being generically finite-to-one as measured by degrees.

Theorem 1.3. For g ≥ 2, let Ã be any finite cover of Ag , Ψ a finite map

from Ã to AG and H in Ag an algebraic hypersurface. Let γ < 1/2. Then

there are C = C(Ã,Ψ,H, γ) and D = D(Ã,Ψ) with the following property.

For any integer N ≥ 1, there are at most CNG−γ elements n = (n1, . . . , nG)

in ZG with 1 ≤ n1, . . . , nG ≤ N such that the projection of any element of

Ψ−1(n) to Ag is either

(a) not defined over an extension of Q of degree at most D

or

(b) isogenous to some B in H.

Further, there exist Ã,Ψ (defined over Q) such that D(Ã,Ψ) = 216g4 .

As there are NG different n altogether, indeed we get almost all of them,

which we will see can also be taken as Hodge generic.

It is relatively easy to show that these Ψ−1(n) represent at least C−1
0 NG−ε

different isogeny classes for any ε > 0, where C0 = C0(Ψ, ε) > 0 (see Sec-

tion 5.3).

By comparison it is expected that the number that have CM is at most

C1(Ψ) independently of N (see Section 5.4).

In fact if g is odd or g = 2, 6, then we can take any γ < 1.

It will turn out that

(1) D(Ã,Ψ) = [F̃ : Q][FΨ : Q]DΨ,

where F̃ is the field of definition of the covering map from Ã to Ag, FΨ is the

field of definition of Ψ, and DΨ is the degree of Ψ. And for the particular Ã,Ψ
mentioned in Theorem 1.3, the 216g4 can be halved, arising from F̃ = FΨ = Q

and DΨ ≤ 216g4−1.

We have the following consequence.

Corollary 1.4. For any g ≥ 4, there is a set of principally polarized

abelian varieties of dimension g, dense in the euclidean topology, with each

defined over an extension of Q of degree at most 216g4 and not isogenous to

any of the others or to any Jacobian.

Probably extending our method of proof will give some sort of ultrametric

density. This would also go against CM; in that case, for example when g = 1

(suitably interpreted below), we have |j|p ≤ 1 for every p.

Finally the field degree 216g4 can be greatly improved in small dimensions.

For g = 2, 3, we have unirationality over Q — that is, dominant rational maps
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from AG to Ag defined over Q. Certainly A4,A5 are unirational over C (see

[13] for example), so also over some number field; and probably for A4 the

literature implicitly yields Q. Very recently it was shown [11] that A6 is not

unirational. And Ag is of general type for g ≥ 7, so far from unirational. Also

some diophantine conjectures of Lang-Vojta type would imply that then the

set of points over Q would not be Zariski dense.

Theorem 1.5. For g = 2, 3, 4, 5, assume there exists a dominant ratio-

nal map Ξ from AG to Ag defined over Q. Let H in Ag be an algebraic

hypersurface. Then for any γ < 1/2, there is C = C(Ξ,H, γ) with the fol-

lowing property. For any integer N ≥ 1, there are at most CNG−γ elements

n = (n1, . . . , nG) in ZG with 1 ≤ n1, . . . , nG ≤ N such that Ξ(n) is either

(a) not defined over Q

or

(b) isogenous to some B in H.

Again the Ξ(n) excluded from (a) and (b) can be taken as Hodge generic,

and again we get at least C−1
0 NG−ε isogeny classes (see also Section 5.3) and

at most C1 abelian varieties with CM (see also Section 5.4); and for g = 2, 3, 5,

we can take any γ < 1.

Here are some examples of Theorem 1.5.

When g = 2, then G = 3 and we may take Ξ(a, b, c) as the Jacobian of

(2) y2 = x5 + x3 + ax2 + bx+ c

or of

(3) y2 = x(x− 1)(x− a)(x− b)(x− c)

in so-called “Rosenhain coordinates.” An example of H with geometrical (or

even physical) significance is defined by the vanishing of certain standard in-

variants I2 or I4 of binary sextic forms. The case I2 = 0 was recently studied

by Dunajski and Penrose [12] in connection with twistor theory. (We thank

Igor Dolgachev for this reference.) It comes down to taking the coefficient of x

in (2) as −3/20, and the vanishing of a quartic polynomial for (3). Thus there

are many (a, b, c) in Z3 for which the Jacobian of (2) is not isogenous to the

Jacobian of any

(4) y2 = x5 + x3 +Ax2 − 3

20
x+ C.

When g = 3, then G = 6 and hyperelliptic examples like (2), (3) are

inadequate, as their moduli space M has dimension only 5. A better example

is Ξ(a, b, c, d, e, f) as the Jacobian of the non-hyperelliptic

(5) xy3 + y2 + (ax2 + bx+ c)y + x3 + dx2 + ex+ f = 0,



640 DAVID MASSER and UMBERTO ZANNIER

which can be derived from Weierstrass’s Collected Works III (or see H. F.

Baker [3, p. 589] after the normalizations of his c = −1, u3 = x3 +dx2 + ex+ f

and the replacement of y by xy to desingularize). Now one can take H =M
as above. Thus there are many (a, b, c, d, e, f) in Z6 for which the Jacobian of

(5) is not isogenous to the Jacobian of any hyperelliptic curve.

When g = 4, we therefore obtain the following (with probably superfluous

assumption).

Corollary 1.6. Assume A4 is unirational over Q. Then there is a

principally polarized abelian fourfold, defined over Q and Hodge generic, that

is not isogenous to any Jacobian.

In fact the problems in [8] and [43] make sense even for g = 1, where they

amount to showing that there are infinitely many isogeny classes of elliptic

curves over Q. This turns out to be a much simpler problem, as we shall see in

Section 3.1; but it becomes rather more interesting if we consider, instead of

the complex hypersurfaceH, a real algebraic curve in complex A1(C) identified

with R2. The identification can be conveniently done via the j-invariant in C

and elliptic curves Ej defined by

(6) y2 = 4x3 − 27j

j − 1728
x− 27j

j − 1728

(at least for j 6= 0, 1728) and then taking real and imaginary parts of j. Thus

we shall prove

Theorem 1.7. Given a real algebraic curve C in A1(C) = R2, there is

C = C(C) with the following property. For any integer N ≥ 2, there are

at most CN(logN)10 integers n1, n2 with 1 ≤ n1, n2 ≤ N such that Ej for

j = n1 + in2 either

(a) has complex multiplication

or

(b) is isogenous to some Ec with c in C.

Note that an elliptic curve is Hodge generic if and only if it has no complex

multiplication.

Again from the N2 possible (n1, n2) we get at least C−1
0 N2/(logN)4 dif-

ferent isogeny classes, with C0 > 0 absolute (end of Section 2). And in fact

none of these Ej have CM, thanks to the solution of the class number h = 2

problem. (This could also be achieved by applying the same arguments to

j = 1
p + n1 + in2 for any fixed prime p.)

We could formulate and prove similar assertions for models other than (6);

for example, the analogue y2 = x3 + x + a of (2) or the Legendre analogue

y2 = x(x− 1)(x− a) of (3), or even the Hesse version y3 + 3axy + x3 + 1 = 0.
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Thus, for example, not every elliptic curve over Q is isogenous to a real

elliptic curve, or to an elliptic curve with j purely imaginary. (We will see that

the second is rather harder to treat than the first.)

1.3. About our proofs. These are necessarily quite different from those of

[8] and [43]. Here is an outline of our strategy. We observe that our main results

Theorems 1.1, 1.3, and 1.5 would become somewhat easier to prove if we could

bound in advance the degrees of any possible connecting isogenies. Of course

we cannot do this; nevertheless we start by fixing a large positive integer M ,

and we construct many “candidate” Hodge generic abelian varieties A not con-

nected with anything in H by an isogeny of degree at most M . This construc-

tion uses Serre’s version of the Hilbert Irreducibility Theorem via the Frattini

subgroup to obtain the Hodge generic property (actually via p-Galois generic).

We next argue by contradiction. If there is an isogeny connecting some

A as above with some Ã in H, then it has degree m̃ > M . Now “isogeny

estimates” [25] provide an upper bound for m̃. This bound involves among

other things some power of the degree D̃ of the field of definition of Ã. If D̃

is too large, we can exploit this by using Galois conjugation, say by σ, and so

A is connected with every Ãσ. The corresponding connections in the Siegel

upper half-space lead to integer points ρσ on a certain definable variety W in

R4g2 , inviting the use of Pila-Wilkie. Often in previous applications of this

result the so-called “algebraic part” was safely empty. Here it is not, and our

algebraic part W alg is even the whole of W , so we cannot use Pila-Wilkie as

it stands. Now W comes with a projection π to another definable set Z (now

in Rg2+g), but unfortunately even Zalg can be non-empty. However using the

blocks refinement due to Pila, we can show that the cardinality of those π(ρσ)

not in Zalg is of order at most T ε for any ε > 0, where T is an upper bound for

the entries of certain rational representations. Finally using the Hodge generic

property and results on weakly special varieties due to Pila and Tsimerman

we can show that all our π(ρσ) indeed do not lie in Zalg.

This approach works even in the special case g = 1. But here a special role

is played by complex conjugation (and we end up in R8 not R4). Here we can

avoid the general concepts of Hodge generic (which is equivalent to no CM) and

of weakly special (by using the algebraic independence of j evaluated at two

suitable algebraic functions). Here we can quite easily show that T ≤ 2m̃3/2.

Then choosing ε sufficiently small gives the required contradiction.

But unfortunately for g > 1 it is in principle impossible to bound T in

terms of the degree m̃ alone. Here the “endomorphism estimates” [26], which

were designed to control the totality of isogenies from A to Ã (by interpret-

ing them as endomorphisms of the product A × Ã and considering certain

discriminants), do provide an isogeny with T suitably bounded in terms of
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certain “lengths” coming from Rosati quadratic forms, and the argument can

be concluded as above.

1.4. Outline. This paper is arranged as follows. In Section 2 we record

some preliminary observations on elliptic curves. These are then used in Sec-

tion 3 to prove Theorem 1.7; also here we make some supplementary remarks

about this result. For example, we sketch a proof that it would become false for

real transcendental curves. Then Section 4 contains preliminaries on abelian

varieties, following the lines of Section 2 but now rather more technical. We

can then establish Theorems 1.1, 1.3, and 1.5 in Section 5; also here we in-

clude some extra remarks about transcendental hypersurfaces, products and

the Jacobian locus.

In connection with the original Jacobian question, there may be some

intuition that non-simple abelian varieties are less likely to be related to Jaco-

bians. And indeed, for example, a generic product of two elliptic curves is not

the Jacobian of a smooth irreducible curve of genus 2. But it is the Jacobian

of a stable curve, and thus in the closure of the Jacobian locus. We will show

that this holds up to genus 4, even for arbitrary products.

We may also note that the classical Legendre construction (see [7, p. 157]

for example) shows that there is an isogeny of degree 2 between the product

of any two elliptic curves and a Jacobian; and it seems plausible that a similar

assertion for three elliptic curves can be deduced from Cassels’s construction

in [6, p. 202]. We do not know if this can be done for four elliptic curves.

Chai and Oort [8, p. 605] also consider the analogous questions over Fp
(which apparently had especially interested Katz too). But see Shankar and

Tsimerman [40] for evidence that the situation then changes.

It seems likely that our methods can detect suitable abelian varieties even

inside proper algebraic subvarieties K of Ag, provided K has a dense set of

Galois generic points and is not contained in any isogeny translate of H. Thus,

for example, one might be able to prove that almost all the jacobians of (3),

even with just b = 2, c = 3 say, are not isogenous to the Jacobian of any (4).

We are grateful to Yves André, Bas Edixhoven, Ziyang Gao and Andrei

Yafaev for their valuable help with the relationship between weakly special

and Hodge generic in Section 5.1; and also to Yuri Zarhin for remarks leading

to the considerations about products in Section 5.4. Especially we thank Gal

Binyamini for pointing out the need for blocks throughout and Gareth Jones for

observing that our original arguments in R4 for Theorem 1.7 were inadequate.

2. Preliminaries on elliptic curves

Any isogeny between elliptic curves has an integer matrix depending on

choices of representatives in the upper half-plane H. When these are taken in
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the standard fundamental domain F the entries of the matrix can be estimated

rather simply in terms of the degree of the isogeny. We use j simultaneously

for the invariant of the elliptic curve and the elliptic modular function.

Lemma 2.1. Suppose E, Ẽ are elliptic curves related by an isogeny of

degree m, and let τ, τ̃ be in F with j(τ) = j(E), j(τ̃) = j(Ẽ). Then

τ̃ =
aτ + b

cτ + d
for integers a, b, c, d with ad− bc = m and

max{|a|, |b|, |c|, |d|} ≤ 2m3/2.

Proof. The relation between τ, τ̃ is classical, coming from the existence

of κ with [Zτ + Z : κ(Zτ̃ + Z)] = m. We then have ỹ = my|cτ + d|−2 for

the imaginary parts y = =τ, ỹ = =τ̃ . We may suppose y ≤ ỹ, for if not,

then we can switch the curves, and the matrix becomes its adjoint. Then

|cτ + d|2 = my/ỹ ≤ m. Thus also

(7) (cy)2 ≤ my/ỹ ≤ m,
and since y ≥

√
3/2, we get |c| ≤ (4/3)m1/2. Also (cx + d)2 ≤ m for the real

part x = <τ with |x| ≤ 1/2, so |d| ≤ (5/3)m1/2.

Now if ỹ > 2m/
√

3, then (7) gives c2 < 1 so c = 0. Then

(8) ad = m

so |a| ≤ m. Also x̃ = (ax+ b)/d for x̃ = <τ̃ , so

|b| = |dx̃− ax| ≤ 1

2
|d|+ 1

2
|a| < 5

3
m,

and we are done in this case.

If ỹ ≤ 2m/
√

3, then

(9) |aτ + b|2 = |cτ + d|2|τ̃ |2 ≤ my

ỹ

Å
1

4
+ ỹ2

ã
,

which is at most

m

4
+myỹ ≤ m

4
+

2m2y√
3
≤ 5m2y

2
√

3
.

So as above, |a| ≤
√

5/3m.

Finally, for the troublesome b (compare the bij in Lemma 4.1 below), we

go back to (9) for

(ax+ b)2 ≤ m

Å
1

4
+ ỹ2

ã
≤ 19

12
m3,

so

(10) |b| ≤
…

19

12
m3/2 +

1

2

…
5

3
m < 2m3/2,

and we are done in this case too. �
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We note that a result with exponent 10 was obtained as Lemma 5.2 of

Habegger and Pila [17, p. 19]. It might be interesting to find the best possible

exponent. In view of ad− bc = m this might be supposed to be 1/2, but there

is a counterexample τ = i, τ̃ = ai with a = m and exponent 1. (Since we wrote

that, Orr has informed us that his work [30] does indeed give exponent 1; and

we were then able to get the sharp upper bound m itself.) It is true that in

Lemma 4.1 of [24, p. 10] the bound Cm1/2 was obtained, but that was with

C depending on certain heights of E, Ẽ (when they are defined over Q). In

fact the extra heights would make no trouble for us, as we shall soon see in the

cases g > 1, and even the exponent of m is unimportant; still it is nice to see

a result without heights. But already for g = 2 there can be no upper bound

involving only the degree of the isogeny, even for endomorphisms of E2. In

fact for g > 1, we shall use not only the degree, but also a “length” coming

from a Rosati quadratic form.

But heights are seemingly unavoidable in the following “isogeny estimate,”

and we shall use the absolute logarithmic height h.

Lemma 2.2. Suppose E, Ẽ are isogenous elliptic curves defined over a

number field of degree at most D ≥ 2. Then there is an isogeny between them

of degree at most

cD2(logD)2(1 + h(j(E)))2

for c absolute.

Proof. Without specifying dependence on D but with (1 + h(j(E)))4 this

was proved in [24]. Gaudron and Rémond [15, p. 347] obtained the above

result even with explicit c. �

From this result we can easily see that the Ej for j = n1 + in2 in Theo-

rem 1.7 represent at least C−1
0 N2/(logN)4 different isogeny classes. Namely, if

some Ej is isogenous to some other fixed E also defined over Q(i), then there

is a connecting isogeny of degree m ≤ C1(logN)2 with C1 absolute. Thus Ej
is isomorphic to E/G with G of cardinality at most m. We can identify G with

a subgroup of (Q/Z)2 and, for example, Lemma 6.1 of [26, p. 469] shows that

there are at most m2 of these. The assertion follows with C0 = C2
1 .

3. Proof of Theorem 1.7

3.1. Preamble. The relatively simple situation with elliptic curves can well

be illustrated by a discussion about isogeny classes in general.

It is rather clear that not all complex elliptic curves are isogenous, for

instance because there are only denumerably many of them isogenous to a

given one (whereas an elliptic curve up to complex isomorphism is classified

by its j-invariant, which can be any complex number).
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This argument fails on replacing C by a denumerable subfield, like Q,

say; still, the fact that Q is dense in C seems to suggest our intuition that the

same assertion holds. (See, however, the remarks at the end of this section.)

In fact we also know that not all elliptic curves defined over Q are isogenous,

and there are several ways to prove this. Here are five possibilities:

(i) A curve with complex multiplication CM, e.g. y2 = x3 − x, cannot

be isogenous to one without CM, e.g. y2 = x3 − x + 1 (which indeed

cannot have CM because, e.g. its j-invariant −2833/23 is not an algebraic

integer).

(ii) If two elliptic curves are isogenous, then there is a cyclic isogeny between

them, so the corresponding invariants j1, j2 satisfy some modular equation

Φm(j1, j2) = 0. Now, the modular polynomials Φm are known to be in

Z[x, y] and monic with respect to both variables; therefore j2 must be

integral over Z[j1], and it is now very easy to pick a lot of algebraic j1, j2
for which this does not hold.

(iii) Elliptic curves over Q isogenous over Q, with good reduction at a prime p,

are known to have the same number of points over Fp. Now it is easy

to pick elliptic curves over Fp with different numbers of points; lifting

them to curves over Q we obtain the assertion (and likewise with finite

extensions of Fp in case the isogeny is not over Q).

(iv) In a similar flavor, a well-known theorem of Serre-Tate (the easier case

of elliptic curves being sufficient) asserts that the set of primes of good

reduction is invariant by isogeny, and this easily leads to a further possi-

bility.

(v) Suppose as above that elliptic curves of invariants j1, j2 in Q are isoge-

nous. Taking say j1 = 0 and j2 = n for n = 1, 2, . . . , N we get by

Lemma 2.2 an isogeny between them of degree m ≤M � (logN)2, with

absolute implied constants. Now Φm has degree

ψ(m) = m
∏
p|m

Å
1 +

1

p

ã
≤
∑
d|m

d

in each variable, so the equation Φm(0, n) = 0 has at most ψ(m) solutions.

As ∑
m≤M

ψ(m) ≤
∑
d≤M

d ≤ M2,

we get� (logN)4 possible values of n, a contradiction for large enoughN .

Regarding these arguments, we note that the first one is somewhat un-

satisfactory, because it considers “special” curves (in fact of the sort used in

[43]) whereas we would expect two “general” curves not to be isogenous. The

fifth one is by far the most demanding; however, as we shall see, it will lead to

much more substantial information.
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In any case, all of these arguments prove indeed sharper results: first, that

Q could be replaced with Q, and also that there are in fact infinitely many

isogeny classes of elliptic curves over Q (or Q), as indicated just before the

statement of Theorem 1.7.

To go one step further, let us modify the original issue by asking whether

each isogeny class of elliptic curves over Q is represented by curves whose

invariant j lies in some “natural” restricted region R of C (a kind of “ex-

tended fundamental domain” for isogeny equivalence), as simple and as small

as possible.

The above shows that such an R must be in any case infinite. Note

also that, using the correspondence between τ in H and j = j(τ) in C, and

observing (as in Lemma 2.1) that isogenous curves have corresponding τ that

are related by a transformation in GL2(Q) (and conversely), it is not difficult

to see that if R contains an open set, then indeed it represents all isogeny

classes. So, let us think of an R that is 1-dimensional. A natural choice for

R then seems a real curve C, supposed to be algebraic, both for the sake of

simplicity of description and because then we are sure it shall contain many

algebraic points (if defined over Q).

We see however from Theorem 1.7 that an algebraic curve never suffices

(even disregarding the special CM invariants). By contrast, we note that with-

out the algebraicity assumption this fails: all isogeny classes may indeed be

represented within a suitable real-analytic curve; see the remarks at the end

of this section.

3.2. Main proof. We now proceed to prove Theorem 1.7 following the

strategy outlined in Section 1. We may clearly assume that C is absolutely

irreducible.

If C is in a standard sense modular, then we can finish rather quickly using

complex conjugation and Lemma 2.2, so that Pila-Wilkie or Pila is not needed.

Otherwise we need Galois conjugation as well and then Pila, on a definable

set W projecting down to Z as described in the introduction. But since C is

not modular, a result of Pila implies that Zalg is empty.

Let us now carry out the details of this. We start with some elimination.

Lemma 3.1. Given f 6= 0 in C[y1, y2] there is c = c(f) such that for

any m, there is Gm 6= 0 in C[x1, x2], of degree at most cψ(m)2, with the

property that Gm(ξ1, ξ2) = 0 for any ξ1, ξ2, η1, η2 in C with

Φm(ξ1, η1) = Φm(ξ2, η2) = f(η1, η2) = 0.

Proof. If f is in C, then we can take Gm = 1 (vacuously). So we assume

f is not in C.

If f is in C[y2], then we can take Gm as the resultant of Φm(x2, y2) and

f(y1, y2) with respect to y2; it is well defined as Φm(x2, y2) involves y2 and it
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is non-zero because Φm(x2, y2) is irreducible and f does not involve x2. This

Gm has the vanishing property that we want. So we assume f is not in C[y2].

Now the resultant R(x1, y2) of Φm(x1, y1) and f(y1, y2) with respect to y1

is defined and is non-zero because f does not involve x1.

If R is in C[x1], then we can take Gm = R. If R is not in C[x1], then the

resultant Gm of Φm(x2, y2) and R(x1, y2) with respect to y2 is defined and is

non-zero because R does not involve x2.

The degree bounds are straightforward. �

We use this with a polynomial f 6= 0 defining our curve C in the sense

that

f(u+ iv, u− iv) = 0

with u = <j, v = =j for j in C. We may clearly assume that f is over Q and

absolutely irreducible. We will shortly see that Gm above has something to do

with the invariants of elliptic curves isogenous to Ej for some j in C.
The next result provides plenty of candidates for the elliptic curve not

isogenous to anything coming from C. From now on in this section all constants

in �,� may depend only on f and later ε > 0.

Lemma 3.2. Given integers M ≥ 2 and N ≥ 1, there are only

� NM3 logM

pairs n = (n1, n2) of integers with 1 ≤ n1, n2 ≤ N such that En for j = n1+in2

is isogenous to the complex conjugate of En, or to any Ec for c in C, via an

isogeny of degree at most M .

Proof. The expression Φm(n1 + in2, n1 − in2) is not identically zero in

n1, n2 and so it vanishes for � ψ(m)N pairs. Summing over m we get the

contribution NM2.

Also from Φm(n1 + in2, c) = 0 it follows that the complex conjugate

Φm(n1−in2, c) = 0. Thus by Lemma 3.1 we deduce Gm(n1+in2, n1−in2) = 0.

This too does not vanish identically, and so the number of pairs is� ψ(m)2N .

Now ∑
m≤M

ψ(m)2 ≤
∑
m≤M

∑
d|m

∑
d′|m

dd′ ≤
∑
d≤M

∑
d′≤M

dd′M

[d, d′]

for the lowest common multiple. Converting to the highest common factor

(d, d′) = e, we get

M
∑
d≤M

∑
d′≤M

(d, d′) ≤ M
∑
e≤M

e

Å
M

e

ã2

�M3 logM.

So this part contributes NM3 logM and we are done. �
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We illustrate the use of Lemma 3.2 by proving Theorem 1.7 with C as the

real axis (so that f(y1, y2) = y1 − y2).

Suppose then that some En for j = n1 + in2 is isogenous to some Ec for

c in C. Taking complex conjugates we see that the conjugate of En is also

isogenous to Ec. Thus En and its conjugate are isogenous. By Lemma 2.2

there is an isogeny between them of degree at most M � (logN)2 But then

by Lemma 3.2 this can happen for � N(logN)7 pairs n.

Notice here that f = Φ1 already defines a modular curve. A similar

argument holds for any f = Φm.

In this case complex conjugation shows that the conjugates of En, Ec are

isogenous. But Ec and its conjugate are connected by an isogeny (of degree m).

Thus as above En and its conjugate are isogenous.

Up to now all the arguments are effective.

In this connection we may note the following “hybrid” between our count-

ing arguments and those of [8] and [43]. Namely, if we were content with just

the existence of elliptic curves over Q not isogenous to any Ec, then we could

try Ej with CM. It would follow that Ec and its complex conjugate both have

CM. By André’s Theorem [1] there are at most finitely many c unless f = Φm

(up to constants) as above; and we jump back to j using Lemma 2.2. In view

of [21] and [4] this is also effective.

Note, however, that our counting arguments to avoid CM do not work

for C as the imaginary axis, because now f(y1, y2) = y1 + y2 comes from no

Φm. Indeed for generic c, the curves Ec and its complex conjugate are not

isogenous. We will exploit this fact in the following proof of Theorem 1.7

when f 6= Φm up to constants.

We now choose M = [(logN)3] ≥ 2 in Lemma 3.2, giving � N(logN)10

exceptional n.

We next show that if N is large enough, then outside these exceptions,

En for j = n1 + in2 works for Theorem 1.7.

Lemma 3.3. Suppose some En as above is isogenous to some Ẽ = Ec for

c in C. Then there is an isogeny between them of degree

(11) m̃� D̃7,

where D̃ ≥ 2 is an upper bound for the degree of the field of definition K̃ of Ẽ.

Furthermore, logN � D̃2(log D̃)2.

Proof. By Lemma 2.2 we have

m̃� D̃2(log D̃)2(logN)2.

By construction we have M < m̃, and there follows logN � D̃2(log D̃)2 as

claimed and then (11). �
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We are going to play this (11), informally written m̃� D̃O(1), off against

a Pila-Wilkie, or better Pila, estimate

(12) D̃ � m̃o(1).

From that follows D̃ � 1 and so N � 1 as we wanted.

So the rest of the argument is devoted to a precise version of (12).

There is also an isogeny of degree m̃ between the complex conjugates of

En and Ec. Take any embedding σ of K̃ in C fixing i and the coefficients of f .

Then there is an isogeny, also of degree m̃, from En to Ẽσ = Eσ(c).

Similarly there is an isogeny, also of degree m̃, from the Galois conjugate

of the complex conjugate of En (which is just the complex conjugate of En

itself) to the Galois conjugate of the complex conjugate of Ec; we call this

Galois conjugate Eσ(c)′ .

Next choose τn, τ̃σ, τ
′
n, τ̃
′
σ in the fundamental domain F with

(13) j(τn) = n1 + in2, j(τ̃σ) = σ(c), j(τ ′n) = n1 − in2, j(τ̃
′
σ) = σ(c)′.

We get

(14) τ̃σ =
aστn + bσ
cστn + dσ

, τ̃ ′σ =
a′στ

′
n + b′σ

c′στ
′
n + d′σ

for a point

ρσ = (aσ, bσ, cσ, dσ, a
′
σ, b
′
σ, c
′
σ, d
′
σ)

in Z8 with aσdσ − bσcσ = a′σd
′
σ − b′σc′σ = m̃, and by Lemma 2.1,

(15) max{|aσ|, |bσ|, |cσ|, |dσ|, |a′σ|, |b′σ|, |c′σ|, |d′σ|} ≤ 2m̃3/2.

Write j2 for the product map from H2 to C2. Now f = 0 defines a curve

CC in C2; we define

Z = F2 ∩ (j2)−1(CC).

For (τ, τ ′) in H2, write also Wτ,τ ′ as the set of all

(16) (xa, xb, xc, xd, x
′
a, x
′
b, x
′
c, x
′
d)

in R8 with xc, xd not both zero and x′c, x
′
d not both zero and

(17)

Å
xaτ + xb
xcτ + xd

,
x′aτ

′ + x′b
x′cτ
′ + x′d

ã
in Z.

This is a definable variety in R8. (See [35] or [46, Ch. 4] for definitions

and for these properties.) In fact W alg
τ,τ ′ = Wτ,τ ′ because, for example, a point

(16) gives rise to a semi-algebraic curve parametrized by

(γxa, γxb, γxc, γxd, x
′
a, x
′
b, x
′
c, x
′
d)

for varying real γ — similarly with γ′ and the last four coordinates.



650 DAVID MASSER and UMBERTO ZANNIER

These problems could probably be overcome by de-homogenizing. But

even worse, the stabilizer group of τ in GL2(R) has dimension 2 and its ele-

ments ( γa γbγc γd ) multiply ( xa xbxc xd ) on the right, resulting in a semi-algebraic sur-

face.

Thus [35] cannot usefully be applied.

We can get around this problem using blocks as in Pila’s [32]. As we

also need uniformity in τ, τ ′ we regard Wτ,τ ′ as a fibre of a set in R8 × R4

corresponding, say, to the element

(18) (<τ,=τ,<τ ′,=τ ′)

of R4.

For T ≥ 1, let Wτ,τ ′(T ) be the set of integral points in Wτ,τ ′ with coordi-

nates bounded in absolute value by T . Let ε > 0. Then Theorem 3.5(2) of [32,

p. 158] says that Wτ,τ ′(T ) is contained in basic blocks B whose cardinality is

� T ε, where the implicit constant now may depend on ε (and the family of

varieties Wτ,τ ′) but not on T or, crucially for us, τ and τ ′. (This relies on the

fact that F , though not compact, is definable. A simple deduction of this fact

from basic general results appears in [46, Ch. 4, Notes].)

We can regard Z above (also definable) as in R4, also as in (18), and there

is an obvious map πτ,τ ′ from Wτ,τ ′ to Z obtained by taking real and imaginary

parts of (17). This is semi-algebraic, and so by Definition 3.2(2) of [32, p. 157]

the various πτ,τ ′(B) are blocks C in Z.

We now show that all these blocks have dimension zero. Indeed, if some

C has positive dimension, then by Proposition 3.4(2) of [32, p. 158] it would

lie in Zalg.

But in fact Zalg is empty. This could be seen using Pila’s algebraic in-

dependence results in [33, Th. 1.6]. Or we may use a version in [46, p. 113].

Namely, if Γ is a real algebraic arc contained in Z, then we are in the situation

of Lemma 4.4 of [46] (which in fact needs the absolute irreducibility of C, not

just the irreducibility over Q as used on p. 108). As our C is not modular

(note that f(y1, y2) must involve both y1 and y2, so vertical and horizontal

lines cannot turn up), we see that Γ cannot exist.

Thus the πτ,τ ′(B) indeed have dimension zero and so are points.

We apply this to (τ, τ ′) = (τn, τ
′
n) above. Note that via (14) and (15)

above, each σ gives rise to a point ρσ in Wτ,τ ′(T ) with T � m̃3/2. Also

πτ,τ ′(ρσ) = (τ̃σ, τ̃
′
σ), of which the cardinality as σ varies is � D̃ by (13). This

ρσ lies in some basic block B = Bσ, so πτ,τ ′(ρσ) must be the point πτ,τ ′(Bσ),

of which the cardinality is � T ε. It follows that D̃ � m̃3ε/2 as in (12) above;

fixing ε < 2/21 gives, on recalling (11), the required D̃ � 1 and N � 1.

Finally note that En cannot have complex multiplication, otherwise so

would its complex conjugate, and with the same CM field, so they would
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after all be isogenous, also against Lemma 3.2. This completes the proof of

Theorem 1.7.

We could also have used notions equivalent to block: namely, a “maximal

semi-algebraic connected component”, or the “class of the equivalence relation

generated by the relation between two points that they are connected by a

semi-algebraic set”.

3.3. Further remarks. Theorem 1.7 can be extended from the two-para-

meter family j = n1 + in2 to certain one-parameter families of j. But, for

example, j = n for integers n is ruled out by taking C as the real axis R (even

though it is not difficult to show that j = n is permissible for the imaginary

axis iR). However j = n+ i does work for R. So we could consider j = n+ in0

for some integer n0 depending on C. In fact given f of degree at most d ≥ 1

in each variable, we can show that there is n0 with 0 ≤ n0 ≤ 2d3 + 1 such that

j = n + in0 is permissible for the corresponding C. We proceed to sketch the

proof.

The obstacle to any specific n0 comes from the proof of Lemma 3.1 and

the possibility that Gm(x+ in0, x− in0) is identically zero in x. For example,

with C = R we have f = y1 − y2 so G1(x1, x2) = x1 − x2 ruling out n0 = 0.

To deal with this we have to interpret Gm geometrically as defining the

projection to C2 of the curve displayed in Lemma 3.1. Then for generic x, we

would have extensions F1 = C(x, η1), F2 = C(x, η2) defined by

Φm(x+ in0, η1) = 0, Φm(x− in0, η2) = 0

together with f(η1, η2) = 0.

Now F1 is ramified only above x = −in0, 1728−in0,∞, and F2 only above

x = in0, 1728 + in0,∞. There is just one overlap (if n0 6= 0), and this implies

that F1, F2 are linearly disjoint over C(x). So [C(x, η1, η2) : C(x)] = ψ(m)2.

On the other hand, f = 0 shows that this degree is at most dψ(m). Thus

ψ(m) ≤ d.

And now n0 ≥ 1 can be chosen to avoid the above obstacle with n0− 1 at

most the total degree of Gm. By standard resultant estimates this is at most

2dψ(m)2 ≤ 2d3.

Certainly the proof allows us to strengthen the theorem also by finding j

in any non-real number field K. (In the proof we used K = Q(i) for simplicity.)

We can even insist on further properties of the Ej in question, having generic

Galois group of p-power-torsion for a corresponding elliptic curve; compare

Lemma 5.1 below.

Next we sketch an argument proving the existence of a real-analytic curve

Z in C = R2 such that each elliptic curve over Q is isogenous to one with j

in Z; by Theorem 1.7 this curve will necessarily be transcendental. In fact our

Z will be bounded.
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Our basic tool will be a Newton series

(19) F (t) = a0 +

∞∑
n=1

an

n−1∏
m=0

t− tm
tn − tm

with different t0, t1, t2, . . . that we will be able to keep in the real interval

[1, 2]. They lead to positive ε0, ε1, ε2, . . . such that F (t) converges to an entire

function when all |an| ≤ εn. For given real s0, s1, s2, . . ., we will try to solve

F (tn) = sn (n = 0, 1, 2, . . .). Then the inequalities amount to

(20) |s0| < ε0, |c10s0 + s1| < ε1, |c20s0 + c21s1 + s2| < ε2, . . .

with certain c10, c20, c21, . . . depending only on t0, t1, . . . .

We start our construction by enumerating as τ0, τ1, τ2, . . . all τ in H with

j(τ) algebraic. Then we successively modify τn by multiplying by a positive

rational (automatically preserving the isogeny class) such that the resulting

yn = =τn are all different with, say, 1 ≤ yn ≤ 2. Then we successively modify

τn by adding a rational (again preserving the isogeny class as well as yn) such

that (20) are satisfied for tn = yn and sn = xn (n = 0, 1, 2, . . .). Then F (y) = x

defines a real analytic curve in R2 containing the modified τn, and we take Z

as part of its image under j; namely, the set of all j = j(F (y)+iy) (1 ≤ y ≤ 2).

As y ≤ 2, we see that Z is bounded (and, in fact, |j| ≤ 2079 + e4π).

Can the diameter be made arbitrarily small?

Can one prove that any Z as above cannot be “too simple,” for example

v = uπ?

4. Preliminaries on abelian varieties

Any isogeny between principally polarized abelian varieties of dimension

g also has an integer matrix, also depending on choices of representatives,

now in the Siegel upper half-space Hg. But even when these are taken in a

fundamental domain, it may be in principle impossible to estimate the entries

of the matrix in terms of the degree of the isogeny as in Lemma 2.1. This is

due to the possibility of non-trivial units in an endomorphism ring, which with

their powers are all isogenies of degree 1.

To overcome this problem it is convenient to use the Rosati quadratic form

(on the endomorphism ring), which is positive definite. We may informally

refer to its square root ` as the length. Thus, for example, given any L, there

are at most finitely many endomorphisms with length at most L.

As in [27] we are going to identify an isogeny betweenA and Ã of dimension

g with an endomorphism of A× Ã, so the dimension becomes 2g. There it was

a device allowing the estimation of all isogenies, not just one; see, for example,

(29) below.
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Generally let A be a principally polarized abelian variety of dimension g,

with a matrix τ in Hg and x = <τ , y = =τ . (We are underlining everything

in this general situation.) An endomorphism v of A gives rise to an equation

(21) κ(ι τ) = (ι τ)ρ

with κ = κ(v) in Mg(C) the complex representation and ρ = ρ(v) in M2g(Z)

the rational representation and ι the identity. The Rosati involution (see [27,

pp. 643, 644]) associated with the principal polarization gives rise to a positive

quadratic form defined by

(22) `(v)2 = tr(κyκty−1) = tr(ρερtε−1)

for the traces and transposes (of matrices, not for example with respect to

endomorphism rings) and

ε =

Ç
o −ι
ι o

å
for o the zero matrix. In particular, `(v) ≥ 1 for all v 6= 0.

Here now is our partial substitute for Lemma 2.1. For technical reasons

we have to allow a domain larger than the standard fundamental domain. The

latter is defined, for example, in [18, p. 194]. If τ = x + iy is in Hg, we write

y(0) for the diagonal matrix with the same diagonal entries y
1
, . . . , y

g
as y. We

use r ≥ s or r > s to indicate that the (symmetric) matrix r − s is positive

semi-definite or positive definite; for example, y > o. Then the existence of

δ > 0 depending only on g (and we may take δ ≤ 1) with

(23) δ−1y(0) ≥ y ≥ δy(0), y(0) ≥ δι

follows from Corollary 2 of [18, p. 193] together with

(24)

√
3

2
≤ y

1
≤ · · · ≤ y

g
;

see [18, p. 192 and Lemma 15, p. 195].

In fact it is specifically (24) that we wish to avoid using. Namely, if A

is a product A × Ã and we form τ = ( τ oo τ̃ ) with τ, τ̃ satisfying the analogues

of (24), then τ might not, due to the ordering. So in the next result we drop

(24).

Finally the entries of x are bounded in absolute value by 1/2; see [18,

(S.3), p. 194].

Lemma 4.1. Given g ≥ 1 and δ with 0 < δ ≤ 1 there is C = C(g, δ) with

the following property. Suppose that (23) holds for τ = x + iy corresponding

to A and also that the entries of x are bounded above in absolute value by δ−1.
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Then for any endomorphism v of A we have for the rational representation

ρ =

Ç
a −b
−c d

å
with entries aij , bij , cij , dij the estimates

|aij | ≤ C
»
y
i
/y

j
`(v), |bij | ≤ C

»
y
i
y
j
`(v), (i, j = 1, 2, . . . , g)

|cij | ≤ C
1√
y
i
y
j

`(v), |dij | ≤ C
»
y
j
/y

i
`(v), (i, j = 1, 2, . . . , g).

Proof. From (21) we have κ = a−τc = ã−iyc for ã = a−xc and x = <(τ),

so also κt = ãt + icty. Substituting these into the first equality in (22) and

ignoring the imaginary parts, we get

(25) `(v)2 = tr(ãyãty−1) + tr(ycyct).

Now we have y ≥ δy(0), and it follows that tr(ycyct) ≥ δtr(y(0)cyct) using the

well-known fact that tr(rs) ≥ 0 when r ≥ o, s ≥ o. By the same token the first

term on the right of (25) is non-negative and also

tr(y(0)cyct) = tr(cty(0)cy) ≥ δtr(cty(0)cy(0)) = δ

g∑
i=1

g∑
j=1

c2
ijyiyj .

From this follow the c-estimates in the present lemma.

Also from y ≤ δ−1y(0) it follows that y−1 ≥ δ(y(0))−1, using another well-

known fact that r ≥ s > o implies r−1 ≤ s−1 (for example by simultaneous

diagonalization). So a similar argument gives

tr(ãyãty−1) ≥ δ2tr(ãy(0)ãt(y(0))−1) = δ2

g∑
i=1

g∑
j=1

ã2
ij

y
j

y
i

.

From this follow the a-estimates, or rather the analogous estimates for ã. But

from a = ã+xc and the fact that all entries of x are bounded in absolute value

by δ−1 together with y
i
≥ δ (i = 1, 2, . . . , g) and the above c-estimates, we can

easily check that the same indeed holds for a.

What about b, d? We proceed via κ = a − τc = a − xc − iyc. From the

a-estimates and the c-estimates, together with the fact that the (i, j) entry of

y is at most
√
y
i
y
j

in absolute value, we can verify that the (complex) entries

of κ satisfy the same sort of inequalities as those in the a-estimates. Then we

can similarly verify that the entries of κτ satisfy the same sort of inequalities

as those in the b-estimates. But κτ = −b+ τd = −b+ xd+ iyd and so at once

we get these inequalities for b̃ = b − xd and yd. Then using d = y−1(yd) and

y−1 ≤ δ−1(y(0))−1 we get the required d-estimates. Finally, using b = b̃+xd we
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get the b-estimates, which are the worst (as in (10) above) and most dangerous

(in some applications at least). This completes the proof. �

We remark that the exponent of `(v) cannot be improved here because

when v is an integer n, then `(v) =
√

2gn. But by using a “multiplication trick”

as in (8), e.g. |aijdij | � `(v)2, one might hope to get bounds like |aij | � `(v)ν

for small ν = ν(g) as in the elliptic case (when `(v)2 is essentially the degree

of v). We do not know if such bounds actually exist. The problem is of course

vanishing entries. From (43) below we will see that there will be some, and

probably even more. This is because in the applications End(A× Ã) = M2(Z)

is of rank only 4 in the group M4g(Z).

Soon we will see how to deal with the possibly extraneous y
i
in Lemma 4.1.

To get from a product back to its factors, we need the following observa-

tion. For A as above, we write D(A) ≥ 1 for the discriminant of End(A) with

respect to the Rosati form; see [27, p. 642]. Thus if End(A) has rank r over Z

and we take representations κ1, . . . , κr and ρ
1
, . . . , ρ

r
of any basis elements, as

in (21), then as in (22), we have

D(A) = det
i,j

tr(κiyκj
ty−1) = det

i,j
tr(ρ

i
ερt
j
ε−1).

We remark that D(A) is not the same discriminant as that used by Tsimer-

man [42]: first he considers only the centre of End(A) (and anyway his A has

complex multiplication) and second he uses no Rosati form, just the standard

field trace norm.

Lemma 4.2. There is c = c(g) with the following property. Let A, Ã

be principally polarized abelian varieties of dimension g that are isogenous.

Then there are isogenies f from A to Ã and f̃ from Ã to A such that the

endomorphism v of A× Ã defined by

(26) v(α, α̃) = (f̃(α̃), f(α))

has `(v) ≤ cD(A× Ã)1/2.

Proof. This is implicit in the arguments of [27, §6]. Define v0, ṽ0 in E =

End(A× Ã) by
v0(α, α̃) = (α, 0), ṽ0(α, α̃) = (0, α̃),

and for any v in E , write

v# = v0vṽ0 + ṽ0vv0

also in E . For each v in E , there exist u in EndA, ũ in EndÃ and homomor-

phisms f from A to Ã, f̃ from Ã to A with

(27) v(α, 0) = (u(α), f(α)), v(0, α̃) = (f̃(α̃), ũ(α̃)),

and we check

(28) v#(α, α̃) = (f̃(α̃), f(α)).

This reflects the matrix identity (6.2) of [27, p. 652].
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If r is the rank of E over Z (with r ≤ (4g)2 from the rational representa-

tion), then the Geometry of Numbers gives v1, . . . , vr in E , linearly independent

over Z, with

(29) `(v1) · · · `(vr)� D1/2

with D = D(A× Ã) and implied constants depending only on g.

It is well known that the degree

(30) deg(m1v
#
1 + · · ·+mrv

#
r ) = P (m1, . . . ,mr)

for a polynomial P , homogeneous of degree 4g.

Here P is not identically zero because there are isogenies f, f̃ as above,

and then we can define v by (50) with u = 0 and ũ = 0. The resulting v# in

(28) has non-zero degree, leading to a non-zero value of P .

In particular, we can find m1, . . . ,mr between 0 and 4g with (30) non-zero.

The resulting v = m1v1 + · · ·+mrvr has

`(v)� max{`(v1), . . . , `(vr)} � D1/2

by (29). Now `(v0) = `(ṽ0) =
√

2g by (22). From the multiplicativity in

Lemma 2.2 of [27, p. 644], we deduce `(v#)� `(v). Now it is v# that we need,

and the lemma is proved. �

In fact the result contains a bound for the degree of f , because by Lemma

2.3 of [27, p. 644] we have

(31) (deg f)(deg f̃) = deg v# ≤ `(v#)4g.

But to apply Lemma 4.1 we need the length.

To estimate the various y
i

in Lemma 4.1 we need heights. For an abelian

variety A defined over Q, we use the logarithmic (semi-stable) Faltings height

h(A) (not always non-negative). Here we need even fewer properties of the

fundamental domain.

Lemma 4.3. Given g ≥ 1 and δ with 0 < δ ≤ 1, there is C = C(g, δ) with

the following property. Suppose that for τ = x+ iy corresponding to A, defined

over a number field of degree at most D, we have y ≥ δy(0) and y(0) ≥ δι

from (23). Then

y
i
≤ CDmax{1, h(A)} (i = 1, 2, . . . , g).

Proof. We follow [25], first using the proof of Lemma 8.6 (p. 440). We start

with the observation that there exist cusp forms ϕ1, . . . , ϕr on the full modular

group Γ, of the same weight w and with Fourier coefficients in Q, having no

common zeroes. There is therefore a k = 1, 2, . . . , r such that u = ϕk(τ) 6= 0.

We next use Lemma 8.4 (p. 439) with r = 1 and γ1 as the identity, as well as
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σ as the identity, so τ(σ) can be chosen as τ . The existence of m is clear. The

conclusion with t = 0, after throwing away the other conjugates, is

D−1 log max{1, |u|−1} � max{1, h(O)} � max{1, h(A)}

(for the second inequality, see (7.4) of [25] p. 436) for the origin O of A.

We next use the arguments of Lemma 20 of [18, p. 104]. The statement in-

volves y in the fundamental domain for Γ, but the proof works under our weaker

hypotheses on y (as Igusa himself says). It gives |u| ≤ M exp(−2πctr(y)) for

c > 0 depending only on g, and M > 0 depending only on g and ϕk. So we get

y
i
≤ y

1
+ · · ·+ y

g
= tr(y)� 1 + log |u|−1 � Dmax{1, h(A)}

as required. �

Finally, to estimate the discriminant we use the following “endomorphism

estimate” in the style of Lemma 2.2.

Lemma 4.4. There are c = c(g) and λ = λ(g) with the following prop-

erty. If A is defined over a number field of degree at most D, then D(A) ≤
cmax{D,h(A)}λ.

Proof. This is the main theorem of [27, p. 641], together with an inequality

for C (p.650) for δ = 1. �

Recently similar problems about relating rational representations to de-

grees have turned up in work [29] of Orr. (See also arXiv 1209.3653v4 in-

corporating remarks of Dill.) The solutions there do not suffice for our own

problem, because neither A nor Ã is “fixed”. However a more recent paper [30]

of Orr (using finiteness results about reductive Q-algebraic groups) apparently

would suffice. This is because our A, Ã are Hodge generic, so have trivial endo-

morphism rings, and therefore any connecting isogeny automatically respects

polarizations as needed in [30]. We have preferred to present our own approach

via [27] (which works for any A, Ã and may well have other applications).

5. Proof of Theorems 1.1, 1.3 and 1.5

5.1. Main proofs. We prove Theorems 1.1 and 1.3 simultaneously by ad-

joining the extra condition

(c) not Galois generic

to (a) and (b) of Theorem 1.3, and we also include the remark about γ < 1; we

call this the “strong Theorem 1.3.” (See [36, p. 274] for the fact that Galois

generic implies Hodge generic.) The proof of Theorem 1.5 runs along exactly

the same lines, so we shall say no more about it.

We follow the strategy of the proof used for Theorem 1.7, but without

any need for complex conjugation. We consider hypersurfaces obtained from

H by isogenies of degree at most M . With Ψ the map from a finite cover of

http://www.arxiv.org/abs/1209.3653v4
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Ag to AG we then choose our candidates An from the various Ψ−1(n). If there

is an isogeny between An and some Ã in H, then the analogues Lemma 4.4,

Lemma 4.2 and (31) of Lemma 2.2 show that the degree of the field of defi-

nition of Ã must be large. Now Pila-Wilkie-Pila applies again, but we need

Lemmas 4.1 and 4.3 to estimate the size of the integral points.

Here is our analogue of Lemma 3.2. Write D for the expression (1). From

now on all constants in �,� may depend only on Ã,Ψ,H (and later ε, γ).

It is especially convenient to use the concept of p-Galois generic (see [36,

p. 275]) for any fixed p (even p = 2 will do). This is the assertion that the group

of the division field of points of order p∞ is open in GSp2g(Zp). It is known

that this implies Galois generic; a modern reference is Cadoret [5, Th. 1.2 p. 6].

Lemma 5.1. There is µ = µ(g) with the following property. Given integers

M ≥ 1 and N ≥ 2, there are only

(32) � NG−1M2g +NG−1(logN)µ +NG− 1
2 logN

elements n = (n1, . . . , nG) of ZG with 1 ≤ n1, . . . , nG ≤ N such that any An

arising from the projection of Ψ−1(n) to Ag is either

(a) not defined over an extension of Q of degree at most D

or

(b) isogenous to some Ã in H via an isogeny to Ã of degree at most M ,

or

(c) not p-Galois generic.

Furthermore, if g is odd or g = 2, 6, then the last term in (32) can be omitted.

Proof. Clearly each element of Ψ−1(n) has degree bigger than [FΨ : Q]DΨ

for� NG−1 possible n, and projecting from Ã to Ag leads at most to an extra

factor [F̃ : Q], so we can forget about (a).

As for (b), we note that the condition for (A′, A′′) in Ag × Ag that A′ is

isomorphic to A′′/Γ for some subgroup of A′′ with cardinality at most M is a

correspondence of degree �M2g in the first factor, as this counts the number

of Γ; for example, see again Lemma 6.1 of [26, p. 469].

Thus if An is isomorphic to Ã/Γ as above, then we are intersecting this

correspondence with a fixed hypersurface in the second factor, so in all we

get a hypersurface in the first factor of degree � M2g to avoid. This gives

� NG−1M2g points, so we can forget about these too.

As for (c), it follows from Serre’s famous results [39, p. 35] that any An

is p-Galois generic when g is odd or g = 2, 6 provided EndAn = Z. Now that

holds for the generic point of AG, and so the main theorem of [23, p. 459; see

also p. 474] gives an estimate � NG−1(logN)µ for the exceptional n.

Even for g = 4 it is known that endomorphism ring Z does not suffice.

But we can obtain p-Galois genericity in our situation using the following
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arguments, based on those appearing in Serre’s book [38] and his letter to

Ribet in [39].

For generic x in AG, any Ax in the projection of Ψ−1(x) to Ag is defined

over a finite extension kx of Q(x). Let Kx = kx(Ax[p∞]) be the division field.

By Lemma 4.4.16 of Deligne [10, p. 56] the group G = Gal(Kx/kx) contains an

open subgroup of Sp2g(Zp). So from the Weil pairing, G is open in GSp2g(Zp).

The analogue of the assumption “Ram” in Serre [38, p. 149] holds because

torsion points yield unramified extensions outside bad reduction. Thus for x

outside some hypersurface Ω0 in AG, the decomposition group Gx at x is the

Galois group of the corresponding residue field Kx/kx; it is a subgroup of G

(defined up to conjugation).

Let N be the Frattini subgroup of G. This is also open in GSp2g(Zp) by

Proposition (iv) of [38, p. 148; see also Example 1, p. 149]. Let Fx be the fixed

field of N in Kx, a finite extension of kx with H = Gal(Fx/kx) = G/N finite.

For the number field k = Q ∩ kx, we can identify Fx with the function field

k(X) of a variety X irreducible over k. Then by Proposition 2 of [38, p. 123]

there is a thin set Ω in kG such that for all y in kG outside Ω (and Ω0), the

decomposition group Hy is the same as H. For such y, we have Gy.N = G,

hence Gy = G by the Frattini property.

Thus Ay is p-Galois generic.

Finally by the proposition of [38, p. 128], also Ω∩QG is thin in QG. Thus

by Cohen’s Theorem [9, p. 229] — see also [38, p. 177] — this intersection

contains � NG− 1
2 logN integral points n = (n1, . . . , nG) with 1 ≤ n1, . . . , nG

≤ N . This is the last contribution to (32). In the general context of Hilbert

Irreducibility it is well known that the saving 1
2 in the exponent cannot be

improved (unless other methods such as those of [23] are available).

This completes the proof of Lemma 5.1. �

In connection with the original question, we note that the Jacobian lo-

cus always contains something Hodge generic. (See, for example, [19], or [2,

Th. 8.1.1] even for just the hyperelliptic case.) This prevents us from answering

the question affirmatively simply by picking something in Ag(Q) (for example

using Lemma 5.1 for M = 1) that is Hodge generic and then appealing to the

isogeny invariance of this property.

As in the proof of Theorem 1.7 we will choose M in terms of N so that

the number of exceptions in Lemma 5.1 is essentially that appearing in Theo-

rem 1.3. However the argument is a bit more elaborate than that of Lemma 3.3,

so the choice will be done after the following analogue of that lemma.

Fix any γ < 1 when g is odd or g = 2, 6; and otherwise any γ < 1/2. Thus

the subsequent implied constants may depend on γ as well. Let λ = λ(g) be

as in Lemma 4.4.
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Lemma 5.2. Suppose some A = An as above is isogenous to some Ã in H.

Then there is an isogeny f from A to Ã of degree

(33) m̃� max{D̃, logN}2gλ,

where D̃ ≥ 2 is an upper bound for the degree of the field of definition K̃ of Ã.

Further, we have

(34) D(A× Ã)� max{D̃, logN + h(Ã)}λ

and

(35) max{1, h(A), h(Ã)} � logN + log m̃.

Proof. In Section 3 for elliptic curves, we argued with degrees and the help

of Lemma 2.1 but in view of its analogue Lemma 4.1 we now need lengths. By

Lemma 4.2 there are isogenies f from A to Ã and f̃ from Ã to A such that

`(v) � D(A × Ã)1/2 for v defined by (26). In particular, by (31) we have

m̃ = deg f � D(A× Ã)2g. Here Lemma 4.4 gives

D(A× Ã)� max{D̃, h(A× Ã)}λ � max{D̃, logN + h(Ã)}λ

and so (34). Also a standard property of Faltings heights yields

h(Ã) ≤ h(A) +
1

2
log m̃� logN + log m̃

and so (35). We also get

m̃� max{D̃, logN + log m̃}2gλ.

Thus we can omit the log m̃ on the right to end up with (33). �

We can now fix M . By our choice of n we have M < m̃, and so if we

choose M = [(logN)ν ] for any fixed ν > 2gλ, we get

(36) (logN)ν � m̃� D̃2gλ.

So now the number of exceptional n is � NG−γ(logN)2gν , which is indeed

essentially the upper bound appearing in Theorem 1.3.

We next show that if N is sufficiently large, then for any n outside the

exceptional set of Lemma 5.1, the An works for the strong Theorem 1.3. As

in the proof of Theorem 1.7, this will be via assuming that An is isogenous to

some Ã in H, then using Pila [32] to get

(37) D̃ � 1

and then the contradiction N � 1. So the rest of the argument is devoted

to (37).

We take Galois conjugates as in the proof of Theorem 1.7. But the argu-

ments are complicated by the lack of a simple analogue of Lemma 2.1; also at

the end we will have to play off Hodge generic against weakly special.
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Let σ be any embedding of K̃ in C fixing the fields of definition of A

and H. Then Ãσ is in H, and A, Ãσ are isogenous. By Lemma 4.2 there are

isogenies fσ from A to Ãσ and f̃σ from Ãσ to A such that

(38) `σ(vσ)� D(A× Ãσ)1/2 = D(A× Ã)1/2

for vσ defined by (26) with fσ, f̃σ and a length `σ coming from any Rosati form

on A×Ãσ. (Recall that all the estimates are independent of choice of principal

polarization.)

Next choose τn and τ̃σ in a Siegel fundamental domain Fg in Hg corre-

sponding to A = An and Ãσ respectively. Just as in (21), the isogenies fσ, f̃σ
lead to matrix equations

(39) κσ(ι τn) = (ι τ̃σ)ρσ, κ̃σ(ι τ̃σ) = (ι τn)ρ̃σ

for integral

ρσ =

Ç
aσ −bσ
−cσ dσ

å
, ρ̃σ =

Ç
ãσ −b̃σ
−c̃σ d̃σ

å
.

We pause to show that

(40) det(cστn + dσ) 6= 0

and

(41) τ̃σ = (aστn + bσ)(cστn + dσ)−1.

Namely, from the first of (39) we get

(42) τ̃σ(cστn + dσ) = aστn + bσ

and then Ç
aσ −bσ
−cσ dσ

åÇ
ι −τn
o ι

å
=

Ç
aσ τ̃σ(cστn + dσ)

−cσ cστn + dσ

å
.

If (40) fails, then there is a non-zero column p with (cστn + dσ)p = 0. But

then multiplying the above on the right by
(
0
p

)
gives ρσ

(−τnp
p

)
= 0 showing

det ρσ = 0. However this determinant is none other than the degree of fσ.

Thus (40) holds, and (23) follows from (42).

We have a natural matrix τ =
( τn o
o τ̃σ

)
for An × Ãσ in H2g. But as

explained this might not be in the standard fundamental domain F2g, due to

the stringent condition of Minkowski-reduced on the imaginary part. Possibly

this problem can be solved just by permuting the successive minima. However
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we have Ç
o κ̃σ
κσ o

åÇ
ι o τn o

o ι o τ̃σ

å
=

Ç
ι o τn o

o ι o τ̃σ

åÜ o ãσ o −b̃σ
aσ o −bσ o

o −c̃σ o d̃σ
−cσ o dσ o

ê
.

(43)

(Note the “skew-diagonal” and the position of the block matrices.)

We can apply Lemma 4.1 because for

y = =τ =

Ç
=τn o

o =τ̃σ

å
=

Ç
yn o

o ỹσ

å
(say) and the corresponding diagonal matrices y

(0)
n , ỹ

(0)
σ , we certainly have

y
(0)
n � yn � y

(0)
n � ι, ỹ(0)

σ � ỹσ � ỹ(0)
σ � ι,

and these easily imply the same for y, y(0) as in (23). We conclude by cherry-

picking (43) that

(44) Mσ = max{||aσ||, ||bσ||, ||cσ||, ||dσ||} � ||y||`σ(vσ)

for the supremum norms.

Here by Lemma 4.3 we have

||y|| � D̃max{1, h(A) + h(Ãσ)} = D̃max{1, h(A) + h(Ã)},

which by (35) and (36) is

� D̃(1 + logN + log m̃)� D̃2.

Similarly, by (38) and (34) we get

`σ(vσ)� max{D̃, logN + h(Ã)}λ/2 � D̃λ/2.

Thus from (44) we get

(45) Mσ � D̃2+λ/2 � D̃λ

assuming λ ≥ 4.

With J from Hg to Ag an analogue of j, write

Z = Fg ∩ J−1(H)

containing the τ̃σ.

For τ in Hg, also write Wτ as the set of all X =
( xa −xb
−xc xd

)
in the matrix

ring M2(Mg(R)) = R4g2 with

det(xcτ + xd) 6= 0

corresponding to (40) and

πτ (X) = (xaτ + xb)(xcτ + xd)
−1
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in Z. As in Section 3 this is definable. (See, in particular, the work [31] of

Peterzil and Starchenko.) Here too the algebraic part is full, so we use blocks

as in Section 3, with the projection πτ to Z.

All goes through as before with τ = τn and the integral point ρσ =Ä
aσ −bσ
−cσ dσ

ä
. Using (45) we see that ρσ lies in the analogous set Wτ (T ) with

T � D̃λ, provided the associated block πτ (Bσ) has zero dimension. But the

latter is no longer automatic, as Zalg might not be empty. (Indeed it might

not be if H contains a positive dimensional special variety, as was the case for

modular C in Section 3.)

We claim anyway that πτ (Bσ) has zero dimension. It would then follow

by fixing any ε < 1/λ in the T ε from Pila’s [32], and noting that the number

of different πτ (ρσ) = τ̃σ is � D̃, that D̃ � 1 as in (37) above. Thus by (36)

we conclude N � 1, and we would be done.

If, on the contrary, πτ (Bσ) had positive dimension, it would lie in Zalg, and

so πτ (ρσ) = τ̃σ also. Thus τ̃σ lies also in some semi-algebraic curve Γ in Z. Then

Γ lies in J−1(H). By Theorem 6.1 of [34, p. 670] there is some weakly special

K in H with Γ in J−1(K), and so J(τ̃σ) is in K. But J(τ̃σ) = Ãσ of course.

Now Ã is isogenous to our p-Galois generic A, and so Ã is also p-Galois

generic (as isogenies change the Galois groups only up to finite index). Thus

also the Galois conjugate Ãσ is p-Galois generic. So Ãσ is Hodge generic.

In fact it is known that the only weakly special K containing something

Hodge generic are points or the whole Ag. A precise reference can be found

in Gao’s appendix to a paper [2] by André, Corvaja and the second author

of the present work. Namely, K satisfies (ii) of Lemma 10.2.6 of [2]. Thus it

also satisfies (iv), which says that it is not contained in any proper bi-algebraic

variety of positive dimension. By Ullmo and Yafaev [45, Th. 1.2, p. 264] the

latter are precisely the weakly special; thus we see that indeed K is either a

point or the whole Ag. Both are excluded by the fact that J(Γ) lies in K,

which lies in H. This justifies our claim about πτ (Bσ).

Note that the (closure of the) set of Jacobians (when g ≥ 4) cannot be

weakly special because we already remarked that the Jacobian of a generic

hyperelliptic curve is Hodge generic. However it does contain many weakly

special varieties of positive dimension, for example products. Or less trivially

for g = 4 there are the Jacobians of the well-known family y5 = x(x−1)(x−a)

with CM by Q(
√
−5). For much more, see Moonen and Oort [28].

5.2. On degrees. To finish the proofs it remains to exhibit Ã,Ψ with sharp-

ened D(Ã,Ψ) = 216g4−1 in (1). For γ = ( p qr s ) in Γ = Sp2g(Z), write

∆(γ, τ) = det(rτ + s)
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as in the standard automorphy factor. Let Λ be normal of index n in Γ. We

say that a function ϕ analytic on Hg is a Λ-form of weight k if ϕ(λ(τ)) =

∆(λ, τ)kϕ(τ) for every λ in Λ.

Lemma 5.3. Let ϕ be a Λ-form of weight k. Then if

Γ =

n⋃
i=1

γiΛ =

n⋃
i=1

Λγi

with γ1 the identity, the product

Φ1(τ) =

n∏
i=2

ϕ(γi(τ))

∆(γi, τ)k

is a Λ-form of weight (n− 1)k and Φ = ϕΦ1 is a Γ-form of weight nk.

Proof. We consider Φ first. Write ϕi(τ) = ϕ(γi(τ)) (i = 1, . . . , n). For any

γ in Γ, there are λ = λ(i, γ) in Λ and j = j(i, γ) with γiγ = λγj ; for each γ,

we get a permutation of {1, . . . , n}. It follows that

ϕi(γ(τ)) = ϕ((γiγ)(τ)) = ϕ((λγj)(τ))

= ∆(λ, γj(τ))kϕ(γj(τ)) = ∆(λ, γj(τ))kϕj(τ).

Thus γ permutes {ϕ1, . . . , ϕn} modulo automorphy.

It follows that

(46) Φ(γ(τ)) =

n∏
i=1

ϕi(γ(τ))

∆(γi, γ(τ))k
=

n∏
i=1

∆(λ, γj(τ))k

∆(γi, γ(τ))k
ϕj(τ),

which is

(47) Φ(τ)
n∏
i=1

∆(λ, γj(τ))k

∆(γi, γ(τ))k
∆(γj , τ)k = Φ(τ)∆(γ, τ)nk,

where we have used the well-known composition rule

∆(gh, τ) = ∆(g, h(τ))∆(h, τ)

(an identity in g, h, τ).

Now (46) and (47) give the functional equation for Γ-forms of weight nk,

and it is clear that Φ is analytic on the Siegel space. So Φ is indeed a Γ-form.

Next Φ, ϕ satisfy the equations for Λ-forms of weights nk, k respectively,

so the same holds for Φ1 = Φ/ϕ with weight (n − 1)k. Again Φ1 is analytic,

so it is a Λ-form of weight (n− 1)k. �

Presumably Φ is independent of the choice of γ1, . . . , γn.



ABELIAN VARIETIES ISOGENOUS TO NO JACOBIAN 665

Given a Λ-form ϕ there is an integer d ≥ 1 and a Fourier expansion (recall

g ≥ 2, so no Koecher needed)

ϕ(τ) =
∑
M

a(M) exp(πitr(Mτ))

taken over all positive semi-definite symmetric matrices M with dM half-

integral in the usual sense. For ϕ 6= 0, we define

ord(ϕ) = min
a(M)6=0

tr(M) ≥ 0

(not necessarily an integer). It is easy to see that ord(ϕ1ϕ2) ≥ ord(ϕ1) +

ord(ϕ2). (Perhaps with a lexicographic argument one could prove equality.)

Define κg as in Igusa [18, p. 197].

Lemma 5.4. Let ϕ 6= 0 be a Λ-form of weight k. Then

ord(ϕ) ≤ κgnk

4π
.

Proof. With Φ,Φ1 as in Lemma 5.3 we have Φ 6= 0 too. Then

ord(Φ) ≥ ord(Φ1) + ord(ϕ) ≥ ord(ϕ).

By Theorem 7 of [18, p. 206] we have ord(Φ) ≤ κgnk/(4π). �

We now specialize to Λ = Γ(e, 2e) as in [25, p. 422], with e an (even)

integer (not a matrix) so that normality follows from [18, pp. 177, 178]. For

row vectors m,m∗ in Rg, we use the standard

θmm∗(τ) =
∑
h

exp{πi(h+m)τ(h+m)t + 2πi(h+m)m∗t}

with the sum over all row vectors h in Zg, where t denotes the transpose. Here

we may regard m in the quotient (R/Z)g. Then the various θm0(eτ)2 (m in

e−1Zg/Zg) of weight 1 (see [18, p. 185] or [25, p. 423]) are Λ-forms. It is easy

to check that we may take the d above as e.

Recall that G = g(g + 1)/2.

Lemma 5.5. Given any C-linear combinations χ1, . . . , χG+2 of the θm0(eτ),

any real W ≥ 0 and any integer D ≥ 0 with

(48) (D + 1)G+1 > (G+ 1)!(4eW + 1)G,

there is a non-zero polynomial P in C[X1, . . . , XG+2], homogeneous of degree

D, with ord(ϕ) ≥W for ϕ = P (χ2
1, . . . , χ

2
G+2) provided ϕ 6= 0.

Proof. We have

(D + 1) · · · (D +G+ 1)

(G+ 1)!
≥ (D + 1)G+1

(G+ 1)!
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coefficients at our disposal. The number of conditions is the number of M with

eM half-integral and tr(M) ≤ W . Thus tr(eM) ≤ eW , and we get an upper

bound (4eW + 1)G (see [18, p. 208]). This completes the proof. �

Thus if we choose W = W0 = Nk with N = κgn/(4π) and k = D in

Lemma 5.5, we must get ϕ = 0 by Lemma 5.4. Therefore the degree of the

Zariski closure of the variety Ve parametrized by the θm0(eτ) (which is known

to be quasi-projective when 8 divides e; see [18, p. 415], where we also take e

as a square) is at most 2D.

By (48) this holds for any D with (D + 1)G+1 > (G + 1)!(4eN(D + 1)G,

which we can secure with D ≤ (G+ 1)!(4eN)G. Now κg ≤ (2g/
√

3)cg (see [18,

p. 197]) for the Minkowski constant

cg ≤
Å

4

π

ãg
Γ

Å
g + 1

2

ã2 Å3

2

ã(g−1)(g−2)

(see, for example, [22, p. 63]). Also n ≤ e2g2(2e)2g2 can be seen by noting that

Γ(e, 2e) contains the group of all ( p qr s ) in Γ with p, s congruent to 1 mod e and

q, r congruent to 0 mod 2e (also between the principal congruence subgroups

mod e and mod 2e). We conclude with e = 16 a projective degree at most

2(G+ 1)!

Å
32g

π
√

3
5122g2cg

ãG
≤ 216g4−1.

Now we take the cover Ã, which is algebraically V16 and analytically the quo-

tient of Hg by Γ(16, 32), and the map Ψ defined, for example, by a suitable

subset of the θm0(eτ)/θ00(eτ) (m 6= 0). This makes it clear that DΨ ≤ 216g4−1

and FΨ = Q in (1); also F̃ = Q because Ã,Ag are both defined over Q. (For

the former, see [25, p. 415]; the latter is well known.)

This completes the proof of Theorems 1.1 and 1.3 (and Theorem 1.5).

Note that by the definition of Γ(e, 2e), the extension of Q in the above

construction is a field of definition not only for the abelian variety but also its

points of order 16.

5.3. Isogeny classes and proof of Corollary 1.4. We shall need standard

isogeny estimates from [26] generalizing Lemma 2.2. These suffice to prove the

assertions made in connection with Theorems 1.3 and 1.5 about many different

isogeny classes. We omit the details, as they follow closely the remarks at the

end of Section 2, now using (Q/Z)2g.

To prove Corollary 1.4 we start by finding a dense set A∗g of principally

polarized abelian varieties of dimension g, with each defined over an extension

of Q of degree at most 216g4 and not isogenous to any Jacobian. (This cannot

be done by applying elements of Sp2g(Q) to a single abelian variety because
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the field degrees would blow up.) After that we will thin it out to separate the

isogeny classes.

We take the Ã,Ψ in Theorem 1.3 with D(Ã,Ψ) = 216g4−1. To get some-

thing in Ag close to any given A0 in Ag(C), we lift A0 to Ã0 in Ã. Then we

choose (ξ1, . . . , ξG) in Q(i)G close to Ψ(Ã0) in CG. We borrow a trick some-

times used in Hilbert Irreducibility. (See, for example, Fried and Jarden [14,

p. 264].) Let d be a large positive integer, and apply Theorem 1.3 instead to

Λd ◦Ψ, where

(49) Λd(x1, . . . , xG) =

Å
1

d(x1 − ξ1)
, . . . ,

1

d(xG − ξG)

ã
.

The inverse images

x = Λ−1
d (n) =

Å
ξ1 +

1

dn1
, . . . , ξG +

1

dnG

ã
are also in Q(i)G. Now for almost all n (we will need only a single one) it is

easy to see (as in the proof of (a) of Lemma 5.1) that anything in Ψ−1(x) is

defined over an extension of Q of degree at most 2DΨ ≤ 216g4 ; and so we end

up with this degree in Ag. The required density follows by making d tend to

infinity.

For the thinning out, we can certainly find non-empty open subsets

U1, U2, . . . of Ag, whose diameters tend to zero, such that for any n ≥ 1,

the union of Un, Un+1, . . . is Ag. We pick any A1 in A∗g also in U1. By density

there are infinitely many A in A∗g also in U2, but again by isogeny estimates

they cannot all be isogenous to A1. So we can pick A2 in A∗g also in U2 not

isogenous to A1. Then with A3 in U3 not isogenous to A1 or A2, and so on.

The resulting subset {A1, A2, . . .} of A∗g remains dense and so completes the

proof of Corollary 1.4.

Probably extending our method of proof and using instead of (49)Å
x1 − ξ1

pe
, . . . ,

xG − ξG
pe

ã
for a large prime-power pe will give some sort of ultrametric analogue of Corol-

lary 1.4.

5.4. Further remarks. To verify the counting assertions for Ψ−1(n) and

Ξ(n) with complex multiplication made in connection with Theorems 1.3

and 1.5, we recall that the degrees of their fields of definition are � 1, that is,

bounded independently of N . Thus by Conjecture 7.1 of Pila and Tsimerman

[34, p. 673], which has been proved by Tsimerman in [42] for g = 1, 2, 3, 4, 5, 6

unconditionally and g ≥ 7 under the Generalized Riemann Hypothesis, the

relevant discriminants are similarly � 1. Thus by Lemma 7.4 of [34, p. 675]

the number of our CM abelian varieties in Ag is also � 1.
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Next we prove that there is an analytic hypersurface W in Ag such that

each element of Ag(Q) is isogenous to something in W . By Theorems 1.1, 1.3

and 1.5 this W is necessarily transcendental.

Before, in scalars τ = x + iy we could express x analytically in terms

of y. Now, for matrices we try instead to express the entries of x, y in terms

of a single real “ghost parameter” t, so again we end up with something like a

real analytic curve. The positivity y > 0 makes problems, which we solve by

writing y = y′y′t and using y′ instead of y. Actually it is convenient to stay

away from y = 0 by demanding y > ι so that y = ι+wwt; we then parametrize

w (and x).

We again use the Newton series (19), but now we are able to choose

t0, t1, . . . in [1, 2] in advance, and we assume this is done.

Any real symmetric z̃ > 0 can be written as z̃ = w̃w̃t for real w̃ that is

lower triangular. (This is closely related to the “Cholesky factorization.”) It

is known that w̃ can be chosen continuously in z̃; in fact from Theorem 4.1

of Stewart [41, p. 518], one can easily deduce that there are c > 0 and C,

depending only on z̃ and w̃, such that for any z > 0 with supremum norm

||z − z̃|| < c, there is lower triangular w with z = wwt and

(50) ||w − w̃|| ≤ C||z − z̃||.

Much as before, we enumerate as τ0, τ1, τ2, . . . all τ in Hg corresponding

to abelian varieties in Ag defined over Q.

We start the construction by picking any real x̃0 satisfying

(51) ||x̃0|| < ε0

as in (20). At the same time we pick any real non-singular lower triangular w̃0

with

(52) ||w̃0|| < ε0.

Then

τ̃0 = x̃0 + i(ι+ w̃0w̃
t
0)

lies in Hg. Using Sp2g(Q) (automatically preserving the isogeny class) we

modify the original τ0 to lie sufficiently near τ̃0. Then

τ0 = x0 + i(ι+ z0)

for x0 near x̃0. So, in particular, we can secure

(53) ||x0|| < ε0

from (51).

And z0 is near w̃0w̃
t
0, so also z0 > 0. Thus by (50) we can find w0 near w̃0

with z0 = w0w
t
0. So, in particular, we can secure

(54) ||w0|| < ε0
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from (52); and we record

τ0 = x0 + i(ι+ w0w
t
0).

We continue the construction by picking any real x̃1 with

(55) ||c10x0 + x̃1|| < ε1

as in (20) and then any real non-singular lower triangular w̃1 with

(56) ||c10w0 + w̃1|| < ε1.

We define

τ̃0 = x̃0 + i(ι+ w̃0w̃
t
0)

in Hg. Again using Sp2g(Q) we modify the original τ1 to lie sufficiently near

τ̃1, so

τ1 = x1 + i(ι+ z1),

say. In particular, we can secure

(57) ||c10x0 + x1|| < ε1

from (55). Also (50) shows that z1 = w1w
t
1 for w1 near w̃1. Now we can secure

(58) ||c10w0 + w1|| < ε1

from (56), and we record

τ1 = x1 + i(ι+ w1w
t
1).

And so on; for example, we next choose x̃2, w̃2 in accordance with the

inequality in (20) involving ε2, and similar arguments enable us to take

τ2 = x2 + i(ι+ w2w
t
2)

with

(59) ||c20x0 + c21x1 + x2|| < ε2, ||c20w0 + c21w1 + w2|| < ε2.

It is now clear from (53), (54), (57), (58), (59) and so on, that we can

construct matrices Fx, Fw of entire functions such that

xn = Fx(tn), wn = Fw(tn) (n = 0, 1, 2, . . .)

for

τn = xn + i(ι+ wnw
t
n) (n = 0, 1, 2, . . .).

So τ0, τ1, . . . all lie on the image of [1, 2] under

(60) F = Fx + i(ι+ FwF
t
w);

this image stays in Hg and has all the appearance of being a real analytic curve.

The same is true of its image K in Ag under J . At any rate we may without

difficulty find a complex analytic hypersurface W in Ag containing K. For

example, we pick any two affine coordinates and note that the corresponding
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analytic functions of t are analytically dependent locally at each point of [1, 2].

We then use compactness to reduce to a finite number of analytic equations,

and finally we multiply them together (or we can appeal to well-known results

of Remmert).

Can one take W bounded, as we could in the elliptic analogue? Even

though the =F ≥ ι in (60), this does not imply the boundedness of J(F ).

Finally, to check the assertions about products being in the closure of the

Jacobian locus, we use the “Igusa modular form”

Fg(τ) = 2gUg(τ)− Vg(τ)2

with

Ug(τ) =
∑
mm∗

θmm∗(τ)16, Vg(τ) =
∑
mm∗

θmm∗(τ)8

and the sums over all row vectors m,m∗ in 2−1Zg/Zg. This is actually a Γ-

form (of weight 8). For g = 1, 2, 3 it vanishes identically on Ag. For g =

4, its vanishing defines the closure of the Jacobian locus. See, for example,

Grushevsky [16, Th. 3.8].

When

τ =

Ç
τ̇ o

o τ̈

å
for blocks of order ġ, g̈ respectively, it is easily seen that

Ug(τ) = Uġ(τ̇)Ug̈(τ̈), Vg(τ) = Vġ(τ̇)Vg̈(τ̈).

Thus, for example, if g = 4 and ġ = g̈ = 2, then we have

0 = F2(τ̇) = 4U2(τ̇)− V2(τ̇)2, 0 = F2(τ̈) = 4U2(τ̈)− V2(τ̈)2

and so F4(τ) = 0. Thus products of two principally polarized abelian surfaces

are in the closure (and, in particular, the product of four elliptic curves).

A similar proof works for the product of an elliptic curve and a principally

polarized abelian threefold.
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