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Abelian varieties isogenous to no Jacobian

By DAVID MASSER and UMBERTO ZANNIER

Abstract

We prove among other things the existence of Hodge generic abelian vari-
eties defined over the algebraic numbers and not isogenous to any Jacobian.
Actually, we also show that in various interpretations these abelian varieties
make up the majority, and we give certain uniform bounds on the possible
degree of the fields of definition. In particular, this yields a new answer (in
strong form) to a question of Katz and Oort, compared to previous work
of Chai and Oort (2012, conditional on the André-Oort Conjecture) and
by Tsimerman (2012 unconditionally); their constructions provided abelian
varieties with complex multiplication (so not “generic”). Our methods are
completely different, and they also answer a related question posed by Chai
and Oort in their paper.

1. Introduction

1.1. Preamble. In [8, p. 589] Chai and Oort raise following the question,
which they attribute to Katz (who in turn attributes it back to Oort): Is
there an abelian variety defined over the field Q of all algebraic numbers, not
isogenous to the Jacobian of any (stable) curve?

It is classically known that the dimension g of such an abelian variety must
be at least 4. This is because every abelian variety, even over C, is isogenous
to something principally polarized, and if ¢ = 1,2,3, then the latter is even
isomorphic to such a Jacobian. (Here we take the opportunity to emphasize
that, as in [8], our isogenies and isomorphisms are not required to respect
polarizations.)

But for ¢ = 4, it is also classical that the space of all principally polar-
ized abelian varieties has dimension 10, while the space of all Jacobians has
dimension 9. As the set of isogenies is countable, this implies (for example by
measure theoretic considerations) that there is a principally polarized abelian
variety over C not isogenous to any Jacobian (and even that “almost all” are
not), but it gives no further information about the field of definition. Of course
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the field can be taken as finitely generated over Q. This fits with Serre’s theme
in [39, p. 1; see also pp. 2, 3]: Il s’agit de prouver que “tout” ce qui est réalisable
sur un corps de type fini sur Q l’est aussi (par spécialisation) sur un corps de
nombres. But such a specialization seems here not straightforward, due to the
lack of information about the connecting isogeny.

The following remarks may illustrate the main difficulty. Restricting even
to Q leaves only countably many abelian varieties, which could conceivably be
covered by the infinitely many arising from isogenies acting on Jacobians or
even a single one. For example, it is not hard to prove that if A is principally
polarized with endomorphism ring Z, then A/G is principally polarized as soon
as the finite group G has order a gth power n9, and that taking n as different
primes leads to non-isomorphic quotients; or better, one may use the isogenies
that come from elements of the symplectic group szg(Q), which is dense in
Spag(R) — see [37, p. 154] — and which in turn acts transitively on the Siegel
space; see [18, p. 25].

Chai and Oort themselves gave an ingenious construction that supplied an
affirmative answer for all ¢ > 4, but was conditional on a then unproved special
case of the André-Oort Conjecture about special sets in Shimura varieties.

Shortly afterwards, Tsimerman [43] gave a no less ingenious unconditional
proof. With the help of a powerful equidistribution theorem due to Katz he
constructed an infinite sequence of so-called Weyl complex multiplication CM
fields with many small split primes and large Galois orbits. He also has to
avoid possible Siegel zeroes. Then he used a version of André-Oort due to
Klingler and Yafaev [20] but avoiding their use of the Generalized Riemann
Hypothesis. He finished as in [8], which by the way uses a different form of
equidistribution. (Later on the relevant André-Oort conjecture was proved by
Pila and Tsimerman [34] for ¢ < 6 and by Tsimerman [44] for all g.)

As done in [8] and [43], one can interpret the question (and answer it)
for any g > 2 by considering, instead of (the Torelli locus of all) Jacobians, a
general algebraic hypersurface H in the Siegel moduli space A, of all principally
polarized abelian varieties of dimension g > 2.

The abelian varieties thus constructed in [8] and [43] all have complex
multiplication CM. In several senses these are well known to be “sparse.” (For
example, the j-invariant of any CM elliptic curve must be an algebraic integer
and there are only thirteen CM elliptic curves defined over the rationals Q.)
Perhaps with this in mind, Chai and Oort [8, p. 604] also asked (in our nota-
tion): Given an algebraic (special) hypersurface H over Q in A, can we find
explicitly something in A, without CM, or with CM but not Weyl CM, that is
not isogenous to anything over Q in H?

1.2. Our results. Here we show that there certainly exist such abelian
varieties without CM, and even abelian varieties with endomorphism ring Z.
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In fact we can escape yet more from CM by using the concept of “Hodge
generic.” One can consult, for example, [36] in the more general context of
Shimura varieties; but for us it is equivalent both to the Mumford-Tate group
being GSp,, and to not being contained in any proper special subvariety of Ay.
It is thus in some strong sense the opposite of “special” as used in the standard
terminology (for example of unlikely intersections).

Back over C, the non-Hodge generic principally polarized abelian vari-
eties are contained in a countable union of proper subvarieties of A,, while
the CM varieties are themselves countable so cannot even fill a semialgebraic
curve. An abelian variety that is Hodge generic is not only simple but also has
endomorphism ring Z.

Our proofs even yield abelian varieties with the property (apparently
stronger, but conjecturally equivalent) of being “Galois generic” (see also [36]).

Our constructions also provide a set of abelian varieties that is dense, not
only in the Zariski topology but also in the euclidean topology. The abelian
varieties can even be taken as pairwise non-isogenous.

In the discussion above over C we used the words “almost all.” We can
even make these more precise over Q by counting the number of exceptions in
suitable families.

Our first result shows that we can even take the abelian varieties defined
over extensions of Q whose degree is bounded only as a function of g (so inde-
pendent of #). Note that the CM abelian varieties in [8], [43] have endomor-
phisms rings of large discriminant and then one expects their fields of definition
to be large (very likely implied by [44] — in particular, the Galois result).

THEOREM 1.1. Given an algebraic hypersurface H in Ay with g > 2, there
is A in Ay, with A defined over an extension of Q of degree at most 2169" and
Hodge generic, that is not isogenous to any B in H.

Our construction will show that even the points of order 16 are defined
over the same extension.
The following consequence is clear.

COROLLARY 1.2. For any g > 4, there is a principally polarized abelian
variety of dimension g, defined over an extension of Q of degree at most 2169
and Hodge generic, that is not isogenous to any Jacobian.

Now the dimensions counting argument above (in general we have G =
g(g + 1)/2 against 3g — 3) shows that “almost all” abelian varieties over C
will satisfy the requirements. As mentioned, such a statement over Q does not
come out of the proof in [43], because CM already holds for “almost no” A.

Our second result shows that almost all A over Q will do, even over
bounded extensions as above. To do a precise counting in A, it is convenient to
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consider rational maps (not necessarily morphisms) down to affine A defined
over Q, and to control more closely the fields arising it is best to allow maps
also from covers A, both defined over Q, of Ag. All these will be finite in the
sense of being generically finite-to-one as measured by degrees.

THEOREM 1.3. For g > 2, let A be any finite cover of Ag, U a finite map
from A to AC and H in Ay an algebraic hypersurface. Let v < 1/2. Then
there are C = C(A, U, H,) and D = D(A,¥) with the following property.
For any integer N > 1, there are at most CNC~7 elements n = (n1,...,nq)
in Z€ with 1 < nq,...,ng < N such that the projection of any element of
U~Y(n) to Ay is either
(a) not defined over an extension of Q of degree at most D

or
(b) isogenous to some B in H.

Further, there exist A, U (defined over Q) such that D(A, ¥) = 2164"

As there are N different n altogether, indeed we get almost all of them,
which we will see can also be taken as Hodge generic.

It is relatively easy to show that these ¥~1(n) represent at least Cy LNG—e
different isogeny classes for any € > 0, where Cy = Cy(¥,e) > 0 (see Sec-
tion 5.3).

By comparison it is expected that the number that have CM is at most
C1 (V) independently of N (see Section 5.4).

In fact if g is odd or g = 2,6, then we can take any v < 1.

It will turn out that

(1) D(A, ) = [F : Q][Fy : Q]Dy,

where F is the field of definition of the covering map from A to Ay, Fy is the
field of definition of ¥, and Dy is the degree of ¥. And for the particular A, ¥
mentioned in Theorem 1.3, the 2169" can be halved, arising from F=Fy=Q
and Dy < 169" 1

We have the following consequence.

COROLLARY 1.4. For any g > 4, there is a set of principally polarized
abelian varieties of dimension g, dense in the euclidean topology, with each
defined over an extension of Q of degree at most 2169" 4nd not isogenous to
any of the others or to any Jacobian.

Probably extending our method of proof will give some sort of ultrametric
density. This would also go against CM; in that case, for example when g = 1
(suitably interpreted below), we have |j|, < 1 for every p.

Finally the field degree 2169" can be greatly improved in small dimensions.
For g = 2, 3, we have unirationality over Q — that is, dominant rational maps
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from A% to Ay defined over Q. Certainly A4, A5 are unirational over C (see
[13] for example), so also over some number field; and probably for 44 the
literature implicitly yields Q. Very recently it was shown [11] that Ag is not
unirational. And Ay is of general type for g > 7, so far from unirational. Also
some diophantine conjectures of Lang-Vojta type would imply that then the
set of points over Q would not be Zariski dense.

THEOREM 1.5. For g = 2,3,4,5, assume there exists a dominant ratio-
nal map = from AC to Ay defined over Q. Let H in Ay be an algebraic
hypersurface. Then for any v < 1/2, there is C = C(Z,H,~) with the fol-
lowing property. For any integer N > 1, there are at most CNC~7 elements

n=(ni,...,ng) in Z% with 1 < nq,...,ng < N such that Z(n) is either
(a) not defined over Q
or

(b) isogenous to some B in H.

Again the Z(n) excluded from (a) and (b) can be taken as Hodge generic,
and again we get at least C ING=¢ isogeny classes (see also Section 5.3) and
at most C abelian varieties with CM (see also Section 5.4); and for g = 2,3, 5,
we can take any vy < 1.

Here are some examples of Theorem 1.5.

When g = 2, then G = 3 and we may take Z(a, b, c) as the Jacobian of

(2) y? =2+ 23 +ar® +ba +c
or of
(3) y' =2(@—1)(z —a)(z - b)(z —c)

in so-called “Rosenhain coordinates.” An example of H with geometrical (or
even physical) significance is defined by the vanishing of certain standard in-
variants I» or I of binary sextic forms. The case Iy = 0 was recently studied
by Dunajski and Penrose [12] in connection with twistor theory. (We thank
Igor Dolgachev for this reference.) It comes down to taking the coefficient of x
in (2) as —3/20, and the vanishing of a quartic polynomial for (3). Thus there
are many (a,b,c) in Z3 for which the Jacobian of (2) is not isogenous to the
Jacobian of any

(4) y2:m5+x3+Ax2—%a:+C.

When g = 3, then G = 6 and hyperelliptic examples like (2), (3) are
inadequate, as their moduli space M has dimension only 5. A better example
is Z(a, b, c,d, e, f) as the Jacobian of the non-hyperelliptic

(5) 2+ + (ax? + bz + )y + 23 +da? +ex+ f =0,
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which can be derived from Weierstrass’s Collected Works III (or see H. F.
Baker [3, p. 589] after the normalizations of his ¢ = —1,u3 = 23 +dz? +ex + f
and the replacement of y by zy to desingularize). Now one can take H = M
as above. Thus there are many (a, b, c,d, e, f) in Z°® for which the Jacobian of
(5) is not isogenous to the Jacobian of any hyperelliptic curve.

When g = 4, we therefore obtain the following (with probably superfluous
assumption).

COROLLARY 1.6. Assume Ay is unirational over Q. Then there is a
principally polarized abelian fourfold, defined over Q and Hodge generic, that
s not isogenous to any Jacobian.

In fact the problems in [8] and [43] make sense even for g = 1, where they
amount to showing that there are infinitely many isogeny classes of elliptic
curves over Q. This turns out to be a much simpler problem, as we shall see in
Section 3.1; but it becomes rather more interesting if we consider, instead of
the complex hypersurface H, a real algebraic curve in complex A; (C) identified
with R2. The identification can be conveniently done via the j-invariant in C
and elliptic curves E; defined by

277 27

17280 T j 1728

(6) y? = 4a° —

(at least for j # 0,1728) and then taking real and imaginary parts of j. Thus
we shall prove

THEOREM 1.7. Given a real algebraic curve C in A1(C) = R2, there is
C = C(C) with the following property. For any integer N > 2, there are
at most CN(log N)'% integers ni,ny with 1 < ny,ny < N such that E; for
j =mnq +ing either

(a) has complex multiplication
or
(b) is isogenous to some E¢ with ¢ in C.

Note that an elliptic curve is Hodge generic if and only if it has no complex
multiplication.

Again from the N2 possible (n1,n2) we get at least C; *N2/(log N)* dif-
ferent isogeny classes, with Cyp > 0 absolute (end of Section 2). And in fact
none of these F; have CM, thanks to the solution of the class number h = 2
problem. (This could also be achieved by applying the same arguments to
Jj= % + n1 + ingy for any fixed prime p.)

We could formulate and prove similar assertions for models other than (6);
for example, the analogue 32 = 3 + = + a of (2) or the Legendre analogue
y? = z(z — 1)(x — a) of (3), or even the Hesse version 3> + 3azy + 2> +1 = 0.
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Thus, for example, not every elliptic curve over Q is isogenous to a real
elliptic curve, or to an elliptic curve with j purely imaginary. (We will see that
the second is rather harder to treat than the first.)

1.3. About our proofs. These are necessarily quite different from those of
[8] and [43]. Here is an outline of our strategy. We observe that our main results
Theorems 1.1, 1.3, and 1.5 would become somewhat easier to prove if we could
bound in advance the degrees of any possible connecting isogenies. Of course
we cannot do this; nevertheless we start by fixing a large positive integer M,
and we construct many “candidate” Hodge generic abelian varieties A not con-
nected with anything in H by an isogeny of degree at most M. This construc-
tion uses Serre’s version of the Hilbert Irreducibility Theorem via the Frattini
subgroup to obtain the Hodge generic property (actually via p-Galois generic).

We next argue by contradiction. If there is an isogeny connecting some
A as above with some A in A, then it has degree m > M. Now “isogeny
estimates” [25] provide an upper bound for m. This bound involves among
other things some power of the degree D of the field of definition of A. If D
is too large, we can exploit this by using Galois conjugation, say by o, and so
A is connected with every A?. The corresponding connections in the Siegel
upper half-space lead to integer points p, on a certain definable variety W in
R492, inviting the use of Pila-Wilkie. Often in previous applications of this
result the so-called “algebraic part” was safely empty. Here it is not, and our
algebraic part W2 is even the whole of W, so we cannot use Pila-Wilkie as
it stands. Now W comes with a projection 7 to another definable set Z (now
in RY*+9 ), but unfortunately even Z*# can be non-empty. However using the
blocks refinement due to Pila, we can show that the cardinality of those 7(p,)
not in Z# is of order at most T for any € > 0, where 7T is an upper bound for
the entries of certain rational representations. Finally using the Hodge generic
property and results on weakly special varieties due to Pila and Tsimerman
we can show that all our 7(p,) indeed do not lie in Z8,

This approach works even in the special case ¢ = 1. But here a special role
is played by complex conjugation (and we end up in R® not R*). Here we can
avoid the general concepts of Hodge generic (which is equivalent to no CM) and
of weakly special (by using the algebraic independence of j evaluated at two
suitable algebraic functions). Here we can quite easily show that T < 2m3/2.

Then choosing € sufficiently small gives the required contradiction.

But unfortunately for g > 1 it is in principle impossible to bound 7" in
terms of the degree m alone. Here the “endomorphism estimates” [26], which
were designed to control the totality of isogenies from A to A (by interpret-
ing them as endomorphisms of the product A x A and considering certain
discriminants), do provide an isogeny with 7" suitably bounded in terms of
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certain “lengths” coming from Rosati quadratic forms, and the argument can
be concluded as above.

1.4. QOutline. This paper is arranged as follows. In Section 2 we record
some preliminary observations on elliptic curves. These are then used in Sec-
tion 3 to prove Theorem 1.7; also here we make some supplementary remarks
about this result. For example, we sketch a proof that it would become false for
real transcendental curves. Then Section 4 contains preliminaries on abelian
varieties, following the lines of Section 2 but now rather more technical. We
can then establish Theorems 1.1, 1.3, and 1.5 in Section 5; also here we in-
clude some extra remarks about transcendental hypersurfaces, products and
the Jacobian locus.

In connection with the original Jacobian question, there may be some
intuition that non-simple abelian varieties are less likely to be related to Jaco-
bians. And indeed, for example, a generic product of two elliptic curves is not
the Jacobian of a smooth irreducible curve of genus 2. But it is the Jacobian
of a stable curve, and thus in the closure of the Jacobian locus. We will show
that this holds up to genus 4, even for arbitrary products.

We may also note that the classical Legendre construction (see [7, p. 157]
for example) shows that there is an isogeny of degree 2 between the product
of any two elliptic curves and a Jacobian; and it seems plausible that a similar
assertion for three elliptic curves can be deduced from Cassels’s construction
in [6, p. 202]. We do not know if this can be done for four elliptic curves.

Chai and Oort [8, p. 605] also consider the analogous questions over F7p
(which apparently had especially interested Katz too). But see Shankar and
Tsimerman [40] for evidence that the situation then changes.

It seems likely that our methods can detect suitable abelian varieties even
inside proper algebraic subvarieties K of A,, provided K has a dense set of
Galois generic points and is not contained in any isogeny translate of H. Thus,
for example, one might be able to prove that almost all the jacobians of (3),
even with just b = 2, ¢ = 3 say, are not isogenous to the Jacobian of any (4).

We are grateful to Yves André, Bas Edixhoven, Ziyang Gao and Andrei
Yafaev for their valuable help with the relationship between weakly special
and Hodge generic in Section 5.1; and also to Yuri Zarhin for remarks leading
to the considerations about products in Section 5.4. Especially we thank Gal
Binyamini for pointing out the need for blocks throughout and Gareth Jones for
observing that our original arguments in R* for Theorem 1.7 were inadequate.

2. Preliminaries on elliptic curves

Any isogeny between elliptic curves has an integer matrix depending on
choices of representatives in the upper half-plane H. When these are taken in
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the standard fundamental domain F the entries of the matrix can be estimated
rather simply in terms of the degree of the isogeny. We use j simultaneously
for the invariant of the elliptic curve and the elliptic modular function.

LEMMA 2.1. Suppose E,E are elliptic curves related by an isogeny of
degree m, and let 7,7 be in F with j(1) = j(E), 5(7) = j(E). Then
ar +b
ct+d
for integers a, b, c,d with ad — bc = m and

maxc{]al, b, |el, |d]} < 2m/2,

7=

Proof. The relation between 7,7 is classical, coming from the existence
of k with [ZT + Z : k(Z7 + Z)] = m. We then have § = my|cr + d|=2 for
the imaginary parts y = 37,9 = 7. We may suppose y < g, for if not,
then we can switch the curves, and the matrix becomes its adjoint. Then
ler +d|?> = my/j < m. Thus also

(7) (ey)® < my/j <m,
and since y > v/3/2, we get |c| < (4/3)m'/2. Also (cx 4 d)> < m for the real
part = R7 with |z| < 1/2, so |d| < (5/3)m!/2.
Now if § > 2m/+/3, then (7) gives ¢ < 1 so ¢ = 0. Then
(8) ad =m
so |a] <m. Also & = (ax +b)/d for £ = RT, so

1 1 5
bl = d — az| < Sld|+3lal < Sm,

and we are done in this case.
Ifg < 2m/\/§, then

1
©) far 4 b7 =ler + PP < " (34 7°).

which is at most
m—|—myg} < m_|_ 2m’y < 5m2y‘
4 - 4 V3 T 23
So as above, |a| < /5/3m.
Finally, for the troublesome b (compare the b;; in Lemma 4.1 below), we
go back to (9) for

1 19
(az +b)? < m<4+g2> < —m?,

SO

19 1 /5
1 < - 3/2 \/> 2 3/2
(10) |b] < \llzm +2 g™ < 2m7%

and we are done in this case too. O
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We note that a result with exponent 10 was obtained as Lemma 5.2 of
Habegger and Pila [17, p. 19]. It might be interesting to find the best possible
exponent. In view of ad — bc = m this might be supposed to be 1/2, but there
is a counterexample 7 = i, 7 = ai with a = m and exponent 1. (Since we wrote
that, Orr has informed us that his work [30] does indeed give exponent 1; and
we were then able to get the sharp upper bound m itself.) It is true that in
Lemma 4.1 of [24, p. 10] the bound C'm'/? was obtained, but that was with
C depending on certain heights of E, E (when they are defined over Q). In
fact the extra heights would make no trouble for us, as we shall soon see in the
cases g > 1, and even the exponent of m is unimportant; still it is nice to see
a result without heights. But already for g = 2 there can be no upper bound
involving only the degree of the isogeny, even for endomorphisms of E2. In
fact for g > 1, we shall use not only the degree, but also a “length” coming
from a Rosati quadratic form.

But heights are seemingly unavoidable in the following “isogeny estimate,”
and we shall use the absolute logarithmic height h.

LEMMA 2.2. Suppose E,E are isogenous elliptic curves defined over a
number field of degree at most D > 2. Then there is an isogeny between them
of degree at most

cD*(log D)*(1 + h(j(E)))?
for ¢ absolute.

Proof. Without specifying dependence on D but with (1 + h(j(E)))* this
was proved in [24]. Gaudron and Rémond [15, p. 347] obtained the above
result even with explicit c. ([

From this result we can easily see that the F; for j = ny + ing in Theo-
rem 1.7 represent at least C; N2 /(log N)* different isogeny classes. Namely, if
some FEj is isogenous to some other fixed E also defined over Q(%), then there
is a connecting isogeny of degree m < Cj(log N)? with C; absolute. Thus E;
is isomorphic to E/G with G of cardinality at most m. We can identify G with
a subgroup of (Q/Z)? and, for example, Lemma 6.1 of [26, p. 469] shows that
there are at most m? of these. The assertion follows with Cy = C?.

3. Proof of Theorem 1.7

3.1. Preamble. The relatively simple situation with elliptic curves can well
be illustrated by a discussion about isogeny classes in general.

It is rather clear that not all complex elliptic curves are isogenous, for
instance because there are only denumerably many of them isogenous to a
given one (whereas an elliptic curve up to complex isomorphism is classified
by its j-invariant, which can be any complex number).
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This argument fails on replacing C by a denumerable subfield, like Q,
still, the fact that Q is dense in C seems to suggest our intuition that the

same assertion holds. (See, however, the remarks at the end of this section.)
In fact we also know that not all elliptic curves defined over Q are isogenous,

and there are several ways to prove this. Here are five possibilities:

(i)

(i)

(iii)

A curve with complex multiplication CM, e.g. 3% = 2% — z, cannot

be isogenous to one without CM, e.g. y?> = 2% — 2 + 1 (which indeed
cannot have CM because, e.g. its j-invariant —2833/23 is not an algebraic
integer).

If two elliptic curves are isogenous, then there is a cyclic isogeny between
them, so the corresponding invariants j1, jo satisfy some modular equation
®,,(j1,j2) = 0. Now, the modular polynomials ®,, are known to be in
Z[z,y] and monic with respect to both variables; therefore jo must be
integral over Z[j1], and it is now very easy to pick a lot of algebraic j1, jo
for which this does not hold.

Elliptic curves over Q isogenous over Q, with good reduction at a prime p,
are known to have the same number of points over F,. Now it is easy
to pick elliptic curves over F,, with different numbers of points; lifting
them to curves over Q we obtain the assertion (and likewise with finite
extensions of F, in case the isogeny is not over Q).

In a similar flavor, a well-known theorem of Serre-Tate (the easier case
of elliptic curves being sufficient) asserts that the set of primes of good
reduction is invariant by isogeny, and this easily leads to a further possi-
bility.

Suppose as above that elliptic curves of invariants ji,j2 in Q are isoge-
nous. Taking say j1 = 0 and jo = n for n = 1,2,..., N we get by
Lemma 2.2 an isogeny between them of degree m < M < (log N)?, with
absolute implied constants. Now ®,, has degree

pm) =m]] <1+;> <>Yd
plm dlm

in each variable, so the equation ®,,,(0,n) = 0 has at most ¢)(m) solutions.

As
> pm) < > d < M

m<M d<M
we get < (log N)* possible values of n, a contradiction for large enough N.

Regarding these arguments, we note that the first one is somewhat un-

satisfactory, because it considers “special” curves (in fact of the sort used in
[43]) whereas we would expect two “general” curves not to be isogenous. The

fiftth

one is by far the most demanding; however, as we shall see, it will lead to

much more substantial information.
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In any case, all of these arguments prove indeed sharper results: first, that
Q could be replaced with Q, and also that there are in fact infinitely many
isogeny classes of elliptic curves over Q (or Q), as indicated just before the
statement of Theorem 1.7.

To go one step further, let us modify the original issue by asking whether
each isogeny class of elliptic curves over Q is represented by curves whose
invariant j lies in some “natural” restricted region R of C (a kind of “ex-
tended fundamental domain” for isogeny equivalence), as simple and as small
as possible.

The above shows that such an R must be in any case infinite. Note
also that, using the correspondence between 7 in H and j = j(7) in C, and
observing (as in Lemma 2.1) that isogenous curves have corresponding 7 that
are related by a transformation in GL2(Q) (and conversely), it is not difficult
to see that if R contains an open set, then indeed it represents all isogeny
classes. So, let us think of an R that is 1-dimensional. A natural choice for
R then seems a real curve C, supposed to be algebraic, both for the sake of
simplicity of description and because then we are sure it shall contain many
algebraic points (if defined over Q).

We see however from Theorem 1.7 that an algebraic curve never suffices
(even disregarding the special CM invariants). By contrast, we note that with-
out the algebraicity assumption this fails: all isogeny classes may indeed be
represented within a suitable real-analytic curve; see the remarks at the end
of this section.

3.2. Main proof. We now proceed to prove Theorem 1.7 following the
strategy outlined in Section 1. We may clearly assume that C is absolutely
irreducible.

If C is in a standard sense modular, then we can finish rather quickly using
complex conjugation and Lemma 2.2, so that Pila-Wilkie or Pila is not needed.

Otherwise we need Galois conjugation as well and then Pila, on a definable
set W projecting down to Z as described in the introduction. But since C is
not modular, a result of Pila implies that Z?'® is empty.

Let us now carry out the details of this. We start with some elimination.

LEMMA 3.1. Given f # 0 in Clyi,y2| there is ¢ = c(f) such that for
any m, there is Gy, # 0 in Clx1,x2], of degree at most cyp(m)?, with the
property that G (&1, &) = 0 for any €, &, m, 2 in C with

P (§1,m) = Pm(&2,m2) = f(m,m2) = 0.

Proof. If f is in C, then we can take G, = 1 (vacuously). So we assume
f is not in C.

If fis in C[ys], then we can take G, as the resultant of ®,,(x2,y2) and
f(y1,y2) with respect to yo; it is well defined as ®,,,(z2,y2) involves yo and it
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is non-zero because ®,,(x2,ys2) is irreducible and f does not involve xy. This
G, has the vanishing property that we want. So we assume f is not in Clys].

Now the resultant R(x1,y2) of ®,,(x1,y1) and f(y1,y2) with respect to y;
is defined and is non-zero because f does not involve x.

If R is in C[x;], then we can take G,,, = R. If R is not in C[z], then the
resultant G,,, of ®,,(x2,y2) and R(x1,y2) with respect to ys is defined and is
non-zero because R does not involve xs.

The degree bounds are straightforward. ([

We use this with a polynomial f # 0 defining our curve C in the sense
that

flu+iv,u—iv) =0
with u = Rj,v = S for j in C. We may clearly assume that f is over Q and
absolutely irreducible. We will shortly see that GG, above has something to do
with the invariants of elliptic curves isogenous to E; for some j in C.
The next result provides plenty of candidates for the elliptic curve not
isogenous to anything coming from C. From now on in this section all constants
in <, > may depend only on f and later € > 0.

LEMMA 3.2. Given integers M > 2 and N > 1, there are only
< NM3log M

pairs n = (n1,n2) of integers with 1 < ny,ny < N such that Ey for j = ni+ing
18 isogenous to the complex conjugate of Ey, or to any E¢ for c in C, via an
isogeny of degree at most M.

Proof. The expression ®,,(n1 + ing,n1 — ing) is not identically zero in
ni,ng and so it vanishes for < ¢(m)N pairs. Summing over m we get the
contribution NM?2.

Also from ®,,(n; + ing,c) = 0 it follows that the complex conjugate
®,,(n1 —ing,€) = 0. Thus by Lemma 3.1 we deduce G,,,(n; +ing,ny—ing) = 0.
This too does not vanish identically, and so the number of pairs is < ¢(m)2N.

BRICOSESD BB 3D LI B D

m<M m<M d|m d'|m d<M d'<M

for the lowest common multiple. Converting to the highest common factor
(d,d") = e, we get

MYy (dd) < MZ@(Aj)2<<M3logM.

d<M d'<M e<M

So this part contributes N M3 log M and we are done. U
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We illustrate the use of Lemma 3.2 by proving Theorem 1.7 with C as the
real axis (so that f(y1,y2) = y1 — y2).

Suppose then that some Fy, for j = nj + ing is isogenous to some E. for
c in C. Taking complex conjugates we see that the conjugate of Ey is also
isogenous to E.. Thus F, and its conjugate are isogenous. By Lemma 2.2
there is an isogeny between them of degree at most M < (log N)? But then
by Lemma 3.2 this can happen for < N(log N)7 pairs n.

Notice here that f = ®; already defines a modular curve. A similar
argument holds for any f = &,,.

In this case complex conjugation shows that the conjugates of Fy, E. are
isogenous. But E. and its conjugate are connected by an isogeny (of degree m).
Thus as above FE, and its conjugate are isogenous.

Up to now all the arguments are effective.

In this connection we may note the following “hybrid” between our count-
ing arguments and those of [8] and [43]. Namely, if we were content with just
the existence of elliptic curves over Q not isogenous to any E., then we could
try E; with CM. It would follow that F¢ and its complex conjugate both have
CM. By André’s Theorem [1] there are at most finitely many c unless f = ®,,
(up to constants) as above; and we jump back to j using Lemma 2.2. In view
of [21] and [4] this is also effective.

Note, however, that our counting arguments to avoid CM do not work
for C as the imaginary axis, because now f(y1,y2) = y1 + y2 comes from no
®,,. Indeed for generic c, the curves E. and its complex conjugate are not
isogenous. We will exploit this fact in the following proof of Theorem 1.7
when f # ®,, up to constants.

We now choose M = [(log N)3] > 2 in Lemma 3.2, giving < N(log N)'°
exceptional n.

We next show that if NV is large enough, then outside these exceptions,
FE, for j = ni + ing works for Theorem 1.7.

LEMMA 3.3. Suppose some Ey as above is isogenous to some E = E¢ for
c in C. Then there is an isogeny between them of degree

(11) m < DT,

where D > 2 is an upper bound for the degree of the field of definition K of E.
Furthermore, log N < D?(log D)?.

Proof. By Lemma 2.2 we have
m < D*(log D)*(log N)2.

By construction we have M < 7, and there follows log N < D?(log D)? as
claimed and then (11). O
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We are going to play this (11), informally written m < DO off against
a Pila-Wilkie, or better Pila, estimate

(12) D < m°W.

From that follows D < 1 and so N < 1 as we wanted.

So the rest of the argument is devoted to a precise version of (12).

There is also an isogeny of degree m between the complex conjugates of
Ey and Ee. Take any embedding o of K in C fixing i and the coefficients of f.
Then there is an isogeny, also of degree m, from Fy, to E = Es(c)-

Similarly there is an isogeny, also of degree m, from the Galois conjugate
of the complex conjugate of F, (which is just the complex conjugate of Fy
itself) to the Galois conjugate of the complex conjugate of E¢; we call this
Galois conjugate E,(c) -

Next choose T, 7, Th, 7o in the fundamental domain F with

(13)  j(m) =m +ins, j(7s) = o(c), j(m) =m —ins, j(75) = o(c)"
We get
(14) 7~_U:a(,7'n—|—bg’7~_(,T:a£,7'1’1+b’0
CoTn +do CérTrll + déf
for a point
Po = (aaa bs, Co,dy, a:w bi;a Ciya dlg)
in Z® with a,d, — byc, = ald!, — b, =m, and by Lemma 2.1,
(15) max{|ac|, |bo|, [co|, |do|, [l ], V5], |, 1, [di |} < 2mP/2.
Write j2 for the product map from H? to C?. Now f = 0 defines a curve
Cc in C?; we define
Z=F>n () ' (Co).
For (7,7') in H?, write also W, .+ as the set of all
(16) (xayxbaxcawdvxgvxgwx,caxil)
in R® with z, 24 not both zero and z., 2, not both zero and
(a:aT +xy, 2T+ xé)
xT+xg Tl + 2

(17)

in Z.

This is a definable variety in R8. (See [35] or [46, Ch. 4] for definitions
and for these properties.) In fact Wflf, = W, because, for example, a point
(16) gives rise to a semi-algebraic curve parametrized by

(’yxaa YLy, VLcy Y, JI;, x/b7 I/cu J"/d)

for varying real v — similarly with 4" and the last four coordinates.
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These problems could probably be overcome by de-homogenizing. But
even worse, the stabilizer group of 7 in GLy(R) has dimension 2 and its ele-
ments (42 7%) multiply (72 7%) on the right, resulting in a semi-algebraic sur-
face.

Thus [35] cannot usefully be applied.

We can get around this problem using blocks as in Pila’s [32]. As we
also need uniformity in 7,7" we regard W .+ as a fibre of a set in R® x R4

corresponding, say, to the element
(18) (R, ST, N7/, I77)

of R*.

For T'> 1, let W, (T) be the set of integral points in W » with coordi-
nates bounded in absolute value by T'. Let ¢ > 0. Then Theorem 3.5(2) of [32,
p. 158] says that W, (T') is contained in basic blocks B whose cardinality is
< T¢, where the implicit constant now may depend on € (and the family of
varieties W »/) but not on T or, crucially for us, 7 and 7/. (This relies on the
fact that F, though not compact, is definable. A simple deduction of this fact
from basic general results appears in [46, Ch. 4, Notes].)

We can regard Z above (also definable) as in R?, also as in (18), and there
is an obvious map 7, . from W, . to Z obtained by taking real and imaginary
parts of (17). This is semi-algebraic, and so by Definition 3.2(2) of [32, p. 157]
the various 7, /(B) are blocks C' in Z.

We now show that all these blocks have dimension zero. Indeed, if some
C' has positive dimension, then by Proposition 3.4(2) of [32, p. 158] it would
lie in Z2s.

But in fact Z*# is empty. This could be seen using Pila’s algebraic in-
dependence results in [33, Th. 1.6]. Or we may use a version in [46, p. 113].
Namely, if I is a real algebraic arc contained in Z, then we are in the situation
of Lemma 4.4 of [46] (which in fact needs the absolute irreducibility of C, not
just the irreducibility over Q as used on p. 108). As our C is not modular
(note that f(yi1,y2) must involve both y; and ys, so vertical and horizontal
lines cannot turn up), we see that I' cannot exist.

Thus the 7, (B) indeed have dimension zero and so are points.

We apply this to (7,7') = (m,7,) above. Note that via (14) and (15)
above, each o gives rise to a point p, in W, (T) with T < m3/2. Also
Tr11(ps) = (7o, 72), of which the cardinality as o varies is > D by (13). This
po lies in some basic block B = B,, so 7 /(ps) must be the point 7, ./(B,),
of which the cardinality is < T¢. It follows that D < m3/2 as in (12) above;
fixing € < 2/21 gives, on recalling (11), the required D < 1 and N < 1.

Finally note that E} cannot have complex multiplication, otherwise so
would its complex conjugate, and with the same CM field, so they would
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after all be isogenous, also against Lemma 3.2. This completes the proof of
Theorem 1.7.

We could also have used notions equivalent to block: namely, a “maximal
semi-algebraic connected component”, or the “class of the equivalence relation
generated by the relation between two points that they are connected by a
semi-algebraic set”.

3.3. Further remarks. Theorem 1.7 can be extended from the two-para-
meter family j = nji + ing to certain one-parameter families of j. But, for
example, j = n for integers n is ruled out by taking C as the real axis R (even
though it is not difficult to show that j = n is permissible for the imaginary
axis iR). However j = n+1i does work for R. So we could consider j = n+ing
for some integer ng depending on C. In fact given f of degree at most d > 1
in each variable, we can show that there is ng with 0 < ng < 2d3 + 1 such that
j = n+ ing is permissible for the corresponding C. We proceed to sketch the
proof.

The obstacle to any specific ng comes from the proof of Lemma 3.1 and
the possibility that G,,(z + ing, z — ing) is identically zero in . For example,
with C = R we have f = y; — y2 so G1(z1,22) = 21 — x2 ruling out ng = 0.

To deal with this we have to interpret G,, geometrically as defining the
projection to C? of the curve displayed in Lemma 3.1. Then for generic x, we
would have extensions F} = C(z,m), Fo = C(z,n2) defined by

q)m(l' + i’fl(),'l’]l) =0, (I)m(x - in07772) =0

together with f(n1,n2) = 0.

Now F} is ramified only above x = —ing, 1728 —ing, 0o, and F» only above
x = ing, 1728 + ing, co. There is just one overlap (if ng # 0), and this implies
that Fy, Fy are linearly disjoint over C(x). So [C(z,n1,72) : C(x)] = ¥(m)?.
On the other hand, f = 0 shows that this degree is at most dy(m). Thus
$(m) < d.

And now ng > 1 can be chosen to avoid the above obstacle with ng — 1 at
most the total degree of G,,. By standard resultant estimates this is at most
2dip(m)? < 2d3.

Certainly the proof allows us to strengthen the theorem also by finding j
in any non-real number field K. (In the proof we used K = Q(¢) for simplicity.)
We can even insist on further properties of the E; in question, having generic
Galois group of p-power-torsion for a corresponding elliptic curve; compare
Lemma 5.1 below.

Next we sketch an argument proving the existence of a real-analytic curve
Z in C = R? such that each elliptic curve over Q is isogenous to one with j

in Z; by Theorem 1.7 this curve will necessarily be transcendental. In fact our
Z will be bounded.
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Our basic tool will be a Newton series

n—1

o
t—tm,
(19) (t) ao—l—Zanth_tm
n=1 m=0

with different tg,%1,%o,... that we will be able to keep in the real interval
[1,2]. They lead to positive €, €1, €2, ... such that F'(t) converges to an entire
function when all |a,| < €,. For given real sg, s1, so, ..., we will try to solve
F(ty,) = s, (n=0,1,2,...). Then the inequalities amount to

(20) Iso| < €0, |ci080 + s1| < €1, |ca050 + ca151 + 52| < €2, ...

with certain cjg, cog, co1, - . . depending only on tg, t1, ... .

We start our construction by enumerating as g, 71, 72, ... all 7 in H with
j(7) algebraic. Then we successively modify 7,, by multiplying by a positive
rational (automatically preserving the isogeny class) such that the resulting
Yn = ST, are all different with, say, 1 <y, < 2. Then we successively modify
7o, by adding a rational (again preserving the isogeny class as well as y,,) such
that (20) are satisfied for ¢, = y, and s,, =z, (n =0,1,2,...). Then F(y) ==
defines a real analytic curve in R? containing the modified 7, and we take Z
as part of its image under j; namely, the set of all j = j(F(y)+iy) (1 <y < 2).
As y < 2, we see that Z is bounded (and, in fact, |j| < 2079 + 7).

Can the diameter be made arbitrarily small?

Can one prove that any Z as above cannot be “too simple,” for example
v=u""?

4. Preliminaries on abelian varieties

Any isogeny between principally polarized abelian varieties of dimension
g also has an integer matrix, also depending on choices of representatives,
now in the Siegel upper half-space Hy. But even when these are taken in a
fundamental domain, it may be in principle impossible to estimate the entries
of the matrix in terms of the degree of the isogeny as in Lemma 2.1. This is
due to the possibility of non-trivial units in an endomorphism ring, which with
their powers are all isogenies of degree 1.

To overcome this problem it is convenient to use the Rosati quadratic form
(on the endomorphism ring), which is positive definite. We may informally
refer to its square root £ as the length. Thus, for example, given any L, there
are at most finitely many endomorphisms with length at most L.

As in [27] we are going to identify an isogeny between A and A of dimension
g with an endomorphism of A x A, so the dimension becomes 2g. There it was
a device allowing the estimation of all isogenies, not just one; see, for example,
(29) below.
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Generally let A be a principally polarized abelian variety of dimension g,
with a matrix 7 in Hy and z = R7, y = Q7. (We are underlining everything
in this general situation.) An endomorphism v of A gives rise to an equation

(21) ELT)=(L7)

(e

with £ = £(v) in My(C) the complex representation and p = p(v) in May(Z)
the rational representation and ¢ the identity. The Rosati involution (see [27,
pp. 643, 644]) associated with the principal polarization gives rise to a positive
quadratic form defined by

(22) U(v)* = tr(ryr'y ") = tr(pep'e™)

for the traces and transposes (of matrices, not for example with respect to
endomorphism rings) and
é =
0

for o the zero matrix. In particular, ¢(v) > 1 for all v # 0.

Here now is our partial substitute for Lemma 2.1. For technical reasons
we have to allow a domain larger than the standard fundamental domain. The
latter is defined, for example, in [18, p. 194]. If 7 = z + iy is in Hy, we write

I~ |0

y(o) for the diagonal matrix with the same diagonal entries Yyproo Y, a8 Y- We
use 7 > s or 7 > s to indicate that the (symmetric) matrix r — s is positive
semi-definite or positive definite; for example, y > o. Then the existence of
§ > 0 depending only on g (and we may take 0 < 1) with

(23) 5—1y(0) >y > 5g(0)’ y(o) > 51

follows from Corollary 2 of [18, p. 193] together with

V3
5 §y1 < --'Syg,
see [18, p. 192 and Lemma 15, p. 195].
In fact it is specifically (24) that we wish to avoid using. Namely, if A

is a product A x A and we form 7 = (] £

(24)

7 2) with 7,7 satisfying the analogues
of (24), then 7 might not, due to the ordering. So in the next result we drop
(24).

Finally the entries of x are bounded in absolute value by 1/2; see [18,
(S.3), p. 194].

LEMMA 4.1. Given g > 1 and 0 with 0 < § <1 there is C = C(g,5) with
the following property. Suppose that (23) holds for T = x + iy corresponding
to A and also that the entries of x are bounded above in absolute value by 6.
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Then for any endomorphism v of A we have for the rational representation

(%)

with entries a;j;, bij, ¢;j,d;j the estimates

laij| < C\Jy,/y L), |big| <O\ Jyy ), (6,5 =1,2,...,9)
1 ..
lcij| < C——=0(v), |dij| < C\Jy,/yl), (1,7 =1,2,....9).
9;Y;
Proof. From (21) we have k = a—7c = a—iycfor @ = a—zcand z = R(7),
so also §f = ab + igtg. Substituting these into the first equality in (22) and
ignoring the imaginary parts, we get

(25) U(v)? = tr(aya'y ™) + tr(yeyc’).

Now we have y > 5y(0), and it follows that tr(ggggt) > (5tr(y(0)gggt) using the
well-known fact that tr(rs) > 0 when r > 0, s > 0. By the same token the first
term on the right of (25) is non-negative and also

tr(yVeyc’) = tr(d'yOcy) > otr(c'yPey®)=6> > cyy..
From this follow the c-estimates in the present lemma.

Also from y < 5*1@0) it follows that QA > 5(g(0))*1, using another well-
known fact that r > s > o implies 7! < s7! (for example by simultaneous
diagonalization). So a similar argument gives

g g
tr(aya'y ") = fr(ay®a(y @) =62) Y an

From this follow the a-estimates, or rather the analogous estimates for a. But
from a = a+ zc and the fact that all entries of x are bounded in absolute value
by 6! together with y, =9 (i=1,2,...,g) and the above c-estimates, we can
easily check that the same indeed holds for a.

What about b,d? We proceed via kK = a — 7¢ = a — xc — iyc. From the
a-estimates and the c-estimates, together with the fact that the (i, j) entry of
y is at most \/@ in absolute value, we can verify that the (complex) entries
of k satisfy the same sort of inequalities as those in the a-estimates. Then we
can similarly verify that the entries of k7 satisfy the same sort of inequalities
as those in the b-estimates. But k7 = —b+7d = —b+ xd + iyd and so at once
we get these inequalities for b=0b—ad and yd. Then using d = gfl(gd) and
y‘l < 5‘1@(0))_1 we get the required d-estimates. Finally, using b = b+ zd we
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get the b-estimates, which are the worst (as in (10) above) and most dangerous
(in some applications at least). This completes the proof. O

We remark that the exponent of ¢(v) cannot be improved here because
when v is an integer n, then £(v) = y/2gn. But by using a “multiplication trick”
as in (8), e.g. |a;;di;| < €(v)?, one might hope to get bounds like |a;;| < £(v)¥
for small v = v(g) as in the elliptic case (when {(v)? is essentially the degree
of v). We do not know if such bounds actually exist. The problem is of course
vanishing entries. From (43) below we will see that there will be some, and
probably even more. This is because in the applications End(A x A) = M(Z)
is of rank only 4 in the group My,(Z).

Soon we will see how to deal with the possibly extraneous Yy, in Lemma 4.1.

To get from a product back to its factors, we need the followmg observa-
tion. For A as above, we write D(A) > 1 for the discriminant of End(A) with
respect to the Rosati form; see [27, p. 642]. Thus if End(A) has rank r over Z
and we take representations k4, ..., K, and Ppre-iP, of any basis elements, as
n (21), then as in (22), we have

D(A) = det tr(wyr"y ") = dettr(p,eple™).

We remark that D(A) is not the same discriminant as that used by Tsimer-
man [42]: first he considers only the centre of End(A) (and anyway his A has
complex multiplication) and second he uses no Rosati form, just the standard
field trace norm.

LEMMA 4.2. There is ¢ = c(g) with the following property. Let A, A
be principally polarized abelian varieties of dimension g that are isogenous.
Then there are isogenies f from A to A and f from A to A such that the
endomorphism v of A x A defined by
(26) v(a, &) = (f(a), fa))
has (v) < ¢D(A x A)Y/2,

Proof. This is implicit in the arguments of [27, §6]. Define vy, 0y in £ =
End(A x A) by

UO(aad) = (O"O)a 170(01,64) = (076‘)7
and for any v in &£, write
v = VUV + Voo

also in £. For each vNinf‘f , ther§ exist v in EndA, @ in EndA and homomor-
phisms f from A to A, f from A to A with

(27) v(e,0) = (u(a), f(a)), v(0,&) = (f(&),Ua)),
and we check

(28) v (a, @) = (f(a), f(a).
This reflects the matrix identity (6.2) of [27, p. 652].
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If r is the rank of £ over Z (with r < (4g)? from the rational representa-
tion), then the Geometry of Numbers gives vy, ..., v, in &, linearly independent
over Z, with

(29) U(v1) -+ £(vr) < D'/

with D = D(A x A) and implied constants depending only on g.
It is well known that the degree

(30) deg(mlvzéé 4+ mu?) = Plmy,...,m,)

for a polynomial P, homogeneous of degree 4g.

Here P is not identically zero because there are isogenies f, f as above,
and then we can define v by (50) with u = 0 and @ = 0. The resulting v# in
(28) has non-zero degree, leading to a non-zero value of P.

In particular, we can find myq, ..., m, between 0 and 4g with (30) non-zero.
The resulting v = myvy + - - - + m,v, has

((v) < max{l(vy),...,l(v,)} < D/?

by (29). Now {(vg) = £(99) = /2g by (22). From the multiplicativity in
Lemma 2.2 of [27, p. 644], we deduce £(v#) < £(v). Now it is v* that we need,
and the lemma is proved. O

In fact the result contains a bound for the degree of f, because by Lemma
2.3 of [27, p. 644] we have

(31) (deg f)(deg f) = degv¥ < £(v¥)".

But to apply Lemma 4.1 we need the length.

To estimate the various y. in Lemma 4.1 we need heights. For an abelian
variety A defined over Q, we use the logarithmic (semi-stable) Faltings height
h(A) (not always non-negative). Here we need even fewer properties of the
fundamental domain.

LEMMA 4.3. Given g > 1 and § with 0 < 0 <1, there is C = C(g,d) with
the following property. Suppose that for T = x+1iy corresponding to A, defined
over a number field of degree at most D, we have y > (5g(0) and Q(O) > 6L
from (23). Then

y, < CDmax{1,h(A)} (i=1,2,...,9)

Proof. We follow [25], first using the proof of Lemma 8.6 (p. 440). We start
with the observation that there exist cusp forms (1, ..., ¢, on the full modular
group I', of the same weight w and with Fourier coefficients in Q, having no
common zeroes. There is therefore a k = 1,2,...,r such that u = pr(7) # 0.
We next use Lemma 8.4 (p. 439) with » = 1 and ~; as the identity, as well as
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o as the identity, so 7(¢) can be chosen as 7. The existence of m is clear. The
conclusion with ¢t = 0, after throwing away the other conjugates, is

D™ ogmax{1, |u| '} < max{1,h(0)} < max{1,h(A)}

(for the second inequality, see (7.4) of [25] p. 436) for the origin O of A.

We next use the arguments of Lemma 20 of [18, p. 104]. The statement in-
volves y in the fundamental domain for I', but the proof works under our weaker
hypotheses on y (as Igusa himself says). It gives |u| < M exp(—2wctr(y)) for
¢ > 0 depending only on g, and M > 0 depending only on g and ¢x. So we get

v, <y ooy, = tr(y) < 1+ logul ™t < Dmax{1h(4))

gy —

as required. O

Finally, to estimate the discriminant we use the following “endomorphism
estimate” in the style of Lemma 2.2.

LEMMA 4.4. There are ¢ = c(g) and X = X(g) with the following prop-
erty. If A is defined over a number field of degree at most D, then D(A) <
cmax{D, h(A)}*.

Proof. This is the main theorem of [27, p. 641], together with an inequality
for C' (p.650) for 6 = 1. O

Recently similar problems about relating rational representations to de-
grees have turned up in work [29] of Orr. (See also arXiv 1209.3653v4 in-
corporating remarks of Dill.) The solutions there do not suffice for our own
problem, because neither A nor A is “fixed”. However a more recent paper [30]
of Orr (using finiteness results about reductive Q-algebraic groups) apparently
would suffice. This is because our A, A are Hodge generic, so have trivial endo-
morphism rings, and therefore any connecting isogeny automatically respects
polarizations as needed in [30]. We have preferred to present our own approach
via [27] (which works for any A, A and may well have other applications).

5. Proof of Theorems 1.1, 1.3 and 1.5

5.1. Main proofs. We prove Theorems 1.1 and 1.3 simultaneously by ad-
joining the extra condition

(c) not Galois generic

to (a) and (b) of Theorem 1.3, and we also include the remark about v < 1; we
call this the “strong Theorem 1.3.” (See [36, p. 274] for the fact that Galois
generic implies Hodge generic.) The proof of Theorem 1.5 runs along exactly
the same lines, so we shall say no more about it.

We follow the strategy of the proof used for Theorem 1.7, but without
any need for complex conjugation. We consider hypersurfaces obtained from
‘H by isogenies of degree at most M. With ¥ the map from a finite cover of
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A, to A% we then choose our candidates Ay, from the various ¥~!(n). If there
is an isogeny between A, and some A in H, then the analogues Lemma 4.4,
Lemma 4.2 and (31) of Lemma 2.2 show that the degree of the field of defi-
nition of A must be large. Now Pila-Wilkie-Pila applies again, but we need
Lemmas 4.1 and 4.3 to estimate the size of the integral points.

Here is our analogue of Lemma 3.2. Write D for the expression (1). From
now on all constants in <, > may depend only on AU, H (and later €,7).

It is especially convenient to use the concept of p-Galois generic (see [36,
p. 275]) for any fixed p (even p = 2 will do). This is the assertion that the group
of the division field of points of order p>° is open in GSpy,(Zyp). It is known
that this implies Galois generic; a modern reference is Cadoret [5, Th. 1.2 p. 6].

LEMMA 5.1. There is p = p(g) with the following property. Given integers
M >1 and N > 2, there are only

(32) < NC M2 1+ NCL(log N)* + N9 2 log N

elements n = (n1,...,ng) of Z¢ with 1 < ny,...,ng < N such that any A,
arising from the projection of V~1(n) to A, is either
(a) not defined over an extension of Q of degree at most D
or
(b) isogenous to some A in H via an isogeny to A of degree at most M,
or
(c) not p-Galois generic.

Furthermore, if g is odd or g = 2,6, then the last term in (32) can be omitted.

Proof. Clearly each element of ¥~!(n) has degree bigger than [Fy : Q] Dy
for <« N¢~1 possible n, and projecting from A to Ay leads at most to an extra
factor [F': Q], so we can forget about (a).

As for (b), we note that the condition for (A’, A”) in A, x A, that A’ is
isomorphic to A”/T" for some subgroup of A” with cardinality at most M is a
correspondence of degree < M?9 in the first factor, as this counts the number
of T'; for example, see again Lemma 6.1 of [26, p. 469].

Thus if A, is isomorphic to A/F as above, then we are intersecting this
correspondence with a fixed hypersurface in the second factor, so in all we
get a hypersurface in the first factor of degree < M?9 to avoid. This gives
< NE=1M29 points, so we can forget about these too.

As for (c), it follows from Serre’s famous results [39, p. 35] that any Ay
is p-Galois generic when g is odd or g = 2,6 provided EndA,, = Z. Now that
holds for the generic point of A“, and so the main theorem of [23, p. 459; see
also p. 474] gives an estimate < N%~!(log N)* for the exceptional n.

Even for ¢ = 4 it is known that endomorphism ring Z does not suffice.
But we can obtain p-Galois genericity in our situation using the following
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arguments, based on those appearing in Serre’s book [38] and his letter to
Ribet in [39].

For generic x in AY, any Ay in the projection of ¥~!(x) to A, is defined
over a finite extension kyx of Q(x). Let Kyx = kx(Ax[p™]) be the division field.
By Lemma 4.4.16 of Deligne [10, p. 56] the group G = Gal(Kx/kx) contains an
open subgroup of Spy,(Zy). So from the Weil pairing, G is open in GSpy,(Zp).

The analogue of the assumption “Ram” in Serre [38, p. 149] holds because
torsion points yield unramified extensions outside bad reduction. Thus for x
outside some hypersurface Qg in A®, the decomposition group Gy at x is the
Galois group of the corresponding residue field Kx/kx; it is a subgroup of G
(defined up to conjugation).

Let N be the Frattini subgroup of G. This is also open in GSp,,(Z;) by
Proposition (iv) of [38, p. 148; see also Example 1, p. 149]. Let Fx be the fixed
field of N in Ky, a finite extension of kx with H = Gal(Fx/kx) = G/N finite.
For the number field k = Q N ky, we can identify Fy with the function field
k(X) of a variety X irreducible over k. Then by Proposition 2 of [38, p. 123]
there is a thin set Q in k¢ such that for all y in k% outside Q (and Qp), the
decomposition group Hy is the same as H. For such y, we have Gy.N = G,
hence Gy = G by the Frattini property.

Thus Ay is p-Galois generic.

Finally by the proposition of [38, p. 128], also QN Q% is thin in Q. Thus
by Cohen’s Theorem [9, p. 229] — see also [38, p. 177] — this intersection
contains < N3 log N integral points n = (n1,...,ng) with 1 < nq,...,ng
< N. This is the last contribution to (32). In the general context of Hilbert
Irreducibility it is well known that the saving % in the exponent cannot be
improved (unless other methods such as those of [23] are available).

This completes the proof of Lemma 5.1. ([

In connection with the original question, we note that the Jacobian lo-
cus always contains something Hodge generic. (See, for example, [19], or [2,
Th. 8.1.1] even for just the hyperelliptic case.) This prevents us from answering
the question affirmatively simply by picking something in Ay4(Q) (for example
using Lemma 5.1 for M = 1) that is Hodge generic and then appealing to the
isogeny invariance of this property.

As in the proof of Theorem 1.7 we will choose M in terms of N so that
the number of exceptions in Lemma 5.1 is essentially that appearing in Theo-
rem 1.3. However the argument is a bit more elaborate than that of Lemma 3.3,
so the choice will be done after the following analogue of that lemma.

Fix any v < 1 when g is odd or g = 2, 6; and otherwise any v < 1/2. Thus
the subsequent implied constants may depend on v as well. Let A = A(g) be

as in Lemma 4.4.
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LEMMA 5.2. Suppose some A = Ap as above is isogenous to some A in H.
Then there is an isogeny f from A to A of degree

(33) m < max{D,log N}?9*,

where D > 2 is an upper bound for the degree of the field of definition K of A.
Further, we have

(34) D(A x A) < max{D,log N + h(A)}*
and
(35) max{1, h(A), h(A)} < log N + log .

Proof. In Section 3 for elliptic curves, we argued with degrees and the help
of Lemma 2.1 but in view of its analogue Lemma 4.1 we now need lengths. By
Lemma 4.2 there are isogenies f from A to A and f from A to A such that
((v) < D(A x A)'/2 for v defined by (26). In particular, by (31) we have
m = deg f < D(A x A)?9. Here Lemma 4.4 gives

D(A x A) < max{D,h(A x A)}* < max{D,log N + h(A)}*
and so (34). Also a standard property of Faltings heights yields

h(A) < h(A)+ %logm < log N +logm
and so (35). We also get
m < max{D,log N + log m}?9*.
Thus we can omit the logm on the right to end up with (33). O

We can now fix M. By our choice of n we have M < m, and so if we
choose M = [(log N)¥] for any fixed v > 2g\, we get

(36) (log N)” < 1 < D?9A.

So now the number of exceptional n is < N 7(log N)
essentially the upper bound appearing in Theorem 1.3.

29¥ which is indeed

We next show that if IV is sufficiently large, then for any n outside the
exceptional set of Lemma 5.1, the A, works for the strong Theorem 1.3. As
in the proof of Theorem 1.7, this will be via assuming that A, is isogenous to
some A in H, then using Pila [32] to get

(37) D« 1
and then the contradiction N < 1. So the rest of the argument is devoted
to (37).

We take Galois conjugates as in the proof of Theorem 1.7. But the argu-
ments are complicated by the lack of a simple analogue of Lemma 2.1; also at
the end we will have to play off Hodge generic against weakly special.
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Let o be any embedding of K in C fixing the fields of definition of A
and H. Then A? is in ‘H, and A, A are isogenous. By Lemma 4.2 there are
isogenies f, from A to A% and f, from A to A such that

(38) lo(vy) < D(A x A%)/? = D(A x A)1/?

for v, defined by (26) with f,, fo and a length £, coming from any Rosati form
on Ax A°. (Recall that all the estimates are independent of choice of principal
polarization.)

Next choose 7, and 7, in a Siegel fundamental domain F; in Hy corre-
sponding to A = A, and A” respectively. Just as in (21), the isogenies f,, fo
lead to matrix equations

(39) Ro(t Ta) = (L To)poy Ro(t To) = (¢ T)Po

- ay —bs _— Qo —BU
Po = —Co da ) Po = _éo ng .

We pause to show that

for integral

(40) det(com™ +dy) #0
and
(41) To = (g + bs)(Co™ + do)_l.

Namely, from the first of (39) we get
(42> 7~—U(CaTn + da) = QgTn + by

and then

oy —by L =T \ _ ay  To(Co™ +ds)
<—CU dy )(0 L >_(—cg CoTn + do )

If (40) fails, then there is a non-zero column p with (¢, + ds)p = 0. But
then multiplying the above on the right by (g) gives ps, (*g‘p) = 0 showing
det p, = 0. However this determinant is none other than the degree of f.

Thus (40) holds, and (23) follows from (42).

We have a natural matrix 7 = (75 5. ) for Ay X A% in Hy,. But as
explained this might not be in the standard fundamental domain Fy4, due to
the stringent condition of Minkowski-reduced on the imaginary part. Possibly

this problem can be solved just by permuting the successive minima. However
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we have
0 Ko L 0 Tn O
Ky O 0 L 0 Ty
(43) 0 Ay o —by
- L O Tn O Uy o —b, o
0 L 0 Ty 0 —C O dy
—Cy O dy 0

(Note the “skew-diagonal” and the position of the block matrices.)
We can apply Lemma 4.1 because for

S YY) (¥ o
¥ - o ST, 0 Vo

(say) and the corresponding diagonal matrices y,(lo),gg(’), we certainly have

(0) (0)

Yn' > Yn > Yn >, @(70) > Yo > g((fo) > L,

and these easily imply the same for y, g(o) as in (23). We conclude by cherry-
picking (43) that
(44) Mo = max{||ac||, ||bs]l, [lcs |, lldo||} < [lyl[€o(vo)

for the supremum norms.
Here by Lemma 4.3 we have

lyl| < Dmax{1,h(A) + h(A?)} = Dmax{1, h(A) + h(A)},
which by (35) and (36) is
< D(1+1log N +logm) < D?.
Similarly, by (38) and (34) we get
ly(vy) < max{D,log N + h(A)}*? « D2,
Thus from (44) we get
(45) M, < D2tA/2 < D

assuming A > 4.
With J from H, to A, an analogue of j, write

Z=F,NnJ YH)
containing the 7.
For 7 in Hy, also write W, as the set of all X = ( %2 "™ in the matrix
ring Ma(My(R)) = R*” with
det(z.m +24) # 0
corresponding to (40) and
T (X) = (20T + ) (TeT +20) 7"
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in Z. As in Section 3 this is definable. (See, in particular, the work [31] of
Peterzil and Starchenko.) Here too the algebraic part is full, so we use blocks
as in Section 3, with the projection 7, to Z.

All goes through as before with 7 = 7, and the integral point p, =
(_agc _dlj,a ) Using (45) we see that p, lies in the analogous set W, (T') with
T < D*, provided the associated block 7, (B,) has zero dimension. But the
latter is no longer automatic, as Z*#& might not be empty. (Indeed it might
not be if H contains a positive dimensional special variety, as was the case for
modular C in Section 3.)

We claim anyway that m-(B,) has zero dimension. It would then follow
by fixing any € < 1/A in the T from Pila’s [32], and noting that the number
of different 7, (ps) = 7, is > D, that D < 1 as in (37) above. Thus by (36)
we conclude N < 1, and we would be done.

If, on the contrary, 7, (B, ) had positive dimension, it would lie in Z alg and
s0 T;(ps) = T, also. Thus 7, lies also in some semi-algebraic curve I' in Z. Then
T lies in J~1(#H). By Theorem 6.1 of [34, p. 670] there is some weakly special
K in H with I in J~(K), and so J(7,) is in K. But J(7,) = A7 of course.

Now A is isogenous to our p-Galois generic A4, and so A is also p-Galois
generic (as isogenies change the Galois groups only up to finite index). Thus
also the Galois conjugate A7 is p-Galois generic. So A? is Hodge generic.

In fact it is known that the only weakly special K containing something
Hodge generic are points or the whole Ay. A precise reference can be found
in Gao’s appendix to a paper [2] by André, Corvaja and the second author
of the present work. Namely, K satisfies (ii) of Lemma 10.2.6 of [2]. Thus it
also satisfies (iv), which says that it is not contained in any proper bi-algebraic
variety of positive dimension. By Ullmo and Yafaev [45, Th. 1.2, p. 264] the
latter are precisely the weakly special; thus we see that indeed K is either a
point or the whole A,. Both are excluded by the fact that J(I') lies in K,
which lies in H. This justifies our claim about 7 (B ).

Note that the (closure of the) set of Jacobians (when g > 4) cannot be
weakly special because we already remarked that the Jacobian of a generic
hyperelliptic curve is Hodge generic. However it does contain many weakly
special varieties of positive dimension, for example products. Or less trivially
for g = 4 there are the Jacobians of the well-known family y° = z(z —1)(z —a)
with CM by Q(v/=5). For much more, see Moonen and Oort [28].

5.2. On degrees. To finish the proofs it remains to exhibit A, ¥ with sharp-
ened D(A, ¥) = 219"~ in (1). For v = (£ %) in T’ = Spy,(Z), write

A(v,7) = det(rr + s)
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as in the standard automorphy factor. Let A be normal of index n in I'. We
say that a function ¢ analytic on Hy is a A-form of weight k if ¢(A(7)) =
A\, 7)E@(T) for every A in A.

LEMMA 5.3. Let @ be a A-form of weight k. Then if

T =Jvt =M
=1 =1

with y1 the identity, the product

is a A-form of weight (n — 1)k and ® = p®q is a T'-form of weight nk.

Proof. We consider ® first. Write ¢;(7) = ¢(7i(7)) (i = 1,...,n). For any
v in I', there are A = A(4,7) in A and j = j(¢,7) with ~;y = Ay;; for each ~,
we get a permutation of {1,...,n}. It follows that

pi(v(1)) = e((vin) (7)) = @((M;)(7))
= A% (1) e(35(7)) = A 75 (1) (7).

Thus v permutes {¢1, ..., p,} modulo automorphy.
It follows that

n

. T n (T k
o oot = [T 52000 - [T ARB )

NGRS WNCACY)LAS
which is
T ACGOE e

where we have used the well-known composition rule
A(gh, ) = A(g, h(7))A(h, )

(an identity in g, h, 7).
Now (46) and (47) give the functional equation for I'-forms of weight nk,
and it is clear that ® is analytic on the Siegel space. So @ is indeed a I'-form.
Next &, ¢ satisfy the equations for A-forms of weights nk, k respectively,
so the same holds for &1 = ®/¢p with weight (n — 1)k. Again ®; is analytic,
so it is a A-form of weight (n — 1)k. O

Presumably & is independent of the choice of v1,...,v,.
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Given a A-form ¢ there is an integer d > 1 and a Fourier expansion (recall
g > 2, so no Koecher needed)

o(1) = a(M)exp(mitr(MT))
M

taken over all positive semi-definite symmetric matrices M with dM half-
integral in the usual sense. For ¢ # 0, we define

ord(p) = a(n]\}[i)gm tr(M) >0

(not necessarily an integer). It is easy to see that ord(pjp2) > ord(¢1) +
ord(p2). (Perhaps with a lexicographic argument one could prove equality.)
Define k4 as in Igusa [18, p. 197].

LEMMA 5.4. Let o # 0 be a A-form of weight k. Then
kgnk
4t
Proof. With @, ®; as in Lemma 5.3 we have ® # 0 too. Then

ord(p) <

ord(®) > ord(®q) + ord(p) > ord(y).
By Theorem 7 of [18, p. 206] we have ord(®) < kgnk/(4m). O

We now specialize to A = I'(e,2e) as in [25, p. 422], with e an (even)
integer (not a matrix) so that normality follows from [18, pp. 177, 178]. For
row vectors m, m* in RY, we use the standard

O (T) = Y _ exp{mi(h + m)7(h + m)" + 2mi(h + m)m*"}
h
with the sum over all row vectors h in Z9, where ¢t denotes the transpose. Here
we may regard m in the quotient (R/Z)9. Then the various 0,,0(e7)? (m in
e~129/79) of weight 1 (see [18, p. 185] or [25, p. 423]) are A-forms. It is easy
to check that we may take the d above as e.
Recall that G = g(g +1)/2.

LEMMA 5.5. Given any C-linear combinations x1, ..., XG+2 of the Omo(et),
any real W > 0 and any integer D > 0 with
(48) (D+ 1D > (G +1)!(4eW +1)°,
there is a non-zero polynomial P in C[X1,..., Xg12|, homogeneous of degree

D, with ord(p) > W for ¢ = P(x3,...,X%.s) provided ¢ # 0.
Proof. We have

(D+1)---(D+G+1) _ D+
(G +1)! = (G+1)
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coefficients at our disposal. The number of conditions is the number of M with
eM half-integral and tr(M) < W. Thus tr(eM) < e, and we get an upper
bound (4eW + 1)¢ (see [18, p. 208]). This completes the proof. O

Thus if we choose W = Wy = Nk with N = kgn/(4n) and k = D in
Lemma 5.5, we must get ¢ = 0 by Lemma 5.4. Therefore the degree of the
Zariski closure of the variety V. parametrized by the 6,,0(e7) (which is known
to be quasi-projective when 8 divides e; see [18, p. 415], where we also take e
as a square) is at most 2D.

By (48) this holds for any D with (D + 1)¢* > (G + 1)!(4eN (D + 1)¢,
which we can secure with D < (G +1)!(4eN)%. Now r, < (29/V/3)c, (see [18,
p. 197]) for the Minkowski constant

4\ 9 1\2 (9—-1)(9—2)
o< (0) (%) (3)
s 2 2
(see, for example, [22, p. 63]). Also n < ¢%9°(2¢)29” can be seen by noting that
I'(e, 2¢e) contains the group of all (2 ¢) in T" with p, s congruent to 1 mod e and
q,r congruent to 0 mod 2e (also between the principal congruence subgroups
mod e and mod 2e). We conclude with e = 16 a projective degree at most
329 _ 0 \¢ L6041
2G+1!<51290> < 2797,
( ) 71'\/5 g9
Now we take the cover A, which is algebraically Vi and analytically the quo-
tient of Hy by I'(16,32), and the map ¥ defined, for example, by a suitable
subset of the 0(e7)/0oo(er) (m # 0). This makes it clear that Dy < 264" 1
and Fy = Q in (1); also F' = Q because A, A, are both defined over Q. (For
the former, see [25, p. 415]; the latter is well known.)
This completes the proof of Theorems 1.1 and 1.3 (and Theorem 1.5).

Note that by the definition of I'(e, 2¢), the extension of Q in the above
construction is a field of definition not only for the abelian variety but also its
points of order 16.

5.3. Isogeny classes and proof of Corollary 1.4. We shall need standard
isogeny estimates from [26] generalizing Lemma 2.2. These suffice to prove the
assertions made in connection with Theorems 1.3 and 1.5 about many different
isogeny classes. We omit the details, as they follow closely the remarks at the
end of Section 2, now using (Q/Z).

To prove Corollary 1.4 we start by finding a dense set A7 of principally
polarized abelian varieties of dimension g, with each defined over an extension
of Q of degree at most 2169" and not isogenous to any Jacobian. (This cannot
be done by applying elements of Spgg(Q) to a single abelian variety because
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the field degrees would blow up.) After that we will thin it out to separate the
isogeny classes.

We take the A, ¥ in Theorem 1.3 with D(A, ¥) = 216" -1 Ty get some-
thing in Ay close to any given Ay in A4(C), we lift Ag to A in A. Then we
choose (£1,...,&q) in Q(i)C close to W(Ap) in C%. We borrow a trick some-
times used in Hilbert Irreducibility. (See, for example, Fried and Jarden [14,
p. 264].) Let d be a large positive integer, and apply Theorem 1.3 instead to
Ay oV, where

1 1
(49) Ad@H7~-’$G>::(d@a-—glr"”zﬂwc<—£c>>'

The inverse images

x= A7 m) = (64 2ot o)

dnq

are also in Q(i)®. Now for almost all n (we will need only a single one) it is
easy to see (as in the proof of (a) of Lemma 5.1) that anything in ¥~!(x) is
defined over an extension of Q of degree at most 2Dy < 21694; and so we end
up with this degree in A,. The required density follows by making d tend to
infinity.

For the thinning out, we can certainly find non-empty open subsets
U, Us, ... of Ay, whose diameters tend to zero, such that for any n > 1,
the union of Uy, Upy1, ... is Ag. We pick any Ay in A} also in Uy. By density
there are infinitely many A in A} also in Uz, but again by isogeny estimates
they cannot all be isogenous to A;. So we can pick Az in A7 also in Uz not
isogenous to A;. Then with A3 in Us not isogenous to A; or As, and so on.
The resulting subset {A1, As,...} of A7 remains dense and so completes the
proof of Corollary 1.4.

Probably extending our method of proof and using instead of (49)

z1 — &1 zg — &G
for a large prime-power p¢ will give some sort of ultrametric analogue of Corol-
lary 1.4.

5.4. Further remarks. To verify the counting assertions for ¥~!(n) and
E(n) with complex multiplication made in connection with Theorems 1.3
and 1.5, we recall that the degrees of their fields of definition are < 1, that is,
bounded independently of N. Thus by Conjecture 7.1 of Pila and Tsimerman
[34, p. 673], which has been proved by Tsimerman in [42] for g = 1,2,3,4,5,6
unconditionally and g > 7 under the Generalized Riemann Hypothesis, the
relevant discriminants are similarly < 1. Thus by Lemma 7.4 of [34, p. 675]
the number of our CM abelian varieties in A, is also < 1.
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Next we prove that there is an analytic hypersurface W in A, such that
each element of A,(Q) is isogenous to something in W. By Theorems 1.1, 1.3
and 1.5 this W is necessarily transcendental.

Before, in scalars 7 = x + iy we could express x analytically in terms
of y. Now, for matrices we try instead to express the entries of =,y in terms
of a single real “ghost parameter” t, so again we end up with something like a
real analytic curve. The positivity y > 0 makes problems, which we solve by
writing y = y'y* and using ¢ instead of y. Actually it is convenient to stay
away from y = 0 by demanding y > ¢ so that y = ¢ +ww’; we then parametrize
w (and x).

We again use the Newton series (19), but now we are able to choose
to,t1,...1n [1,2] in advance, and we assume this is done.

Any real symmetric Z > 0 can be written as Z = W' for real  that is
lower triangular. (This is closely related to the “Cholesky factorization.”) It
is known that w can be chosen continuously in Z; in fact from Theorem 4.1
of Stewart [41, p. 518], one can easily deduce that there are ¢ > 0 and C,
depending only on Z and w, such that for any z > 0 with supremum norm

||z — Z|| < ¢, there is lower triangular w with z = ww! and
(50) |lw = || < Cl[z = Z].

Much as before, we enumerate as 79,71, 72,... all 7 in Hj corresponding
to abelian varieties in A4 defined over Q.
We start the construction by picking any real zg satisfying

(51) [|Zo|| < €0
as in (20). At the same time we pick any real non-singular lower triangular g
with
(52) [[wol| < €o.
Then
7~'0 = i‘() + i(L + 11)0?1}6)

lies in Hy. Using SpQQ(Q) (automatically preserving the isogeny class) we
modify the original 7y to lie sufficiently near 73. Then

To = xo + (¢t + 20)
for xg near Zy. So, in particular, we can secure
(53) ||zl < €0

from (51).
And 2 is near wow, so also zg > 0. Thus by (50) we can find wy near wg
with zp = wowf. So, in particular, we can secure

(54) [lwol| < €0
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from (52); and we record

T0 =0 + (L + wowé).

We continue the construction by picking any real ; with

(55) llcrioo + Z1|| < €1
as in (20) and then any real non-singular lower triangular w; with
(56) Hclo’wo + U~)1|| < €1.
We define

7:0 = .fo + i(L + wowé)
in Hy. Again using Sp,,(Q) we modify the original 71 to lie sufficiently near
T1, SO

=1+t + 21),

say. In particular, we can secure
(57) Hclol‘o + 561|| < €1
from (55). Also (50) shows that 27 = wjw! for wy near w;. Now we can secure
(58) ||crowo + w1 || < €1
from (56), and we record

1=z +i(t+ wlwi).

And so on; for example, we next choose s, w2 in accordance with the
inequality in (20) involving €3, and similar arguments enable us to take

Ty = 29 + (1 + wowh)
with
(59) l|ca0mo + ca1m1 + 22| < €2, [[caowo + ca1w1 + wal| < €.

It is now clear from (53), (54), (57), (58), (59) and so on, that we can
construct matrices I}, F, of entire functions such that

T = Fi(tn), wn = Fy(ty) (n=0,1,2,...)

for

T = Tn + (L +wpwt) (n=0,1,2,...).
So 79,71, ... all lie on the image of [1, 2] under
(60) F=F,+i(t+ F,F.);

this image stays in Hy, and has all the appearance of being a real analytic curve.
The same is true of its image K in A, under J. At any rate we may without
difficulty find a complex analytic hypersurface W in A, containing K. For
example, we pick any two affine coordinates and note that the corresponding
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analytic functions of ¢ are analytically dependent locally at each point of [1, 2].
We then use compactness to reduce to a finite number of analytic equations,
and finally we multiply them together (or we can appeal to well-known results
of Remmert).

Can one take W bounded, as we could in the elliptic analogue? Even
though the SF > ¢ in (60), this does not imply the boundedness of J(F).

Finally, to check the assertions about products being in the closure of the
Jacobian locus, we use the “Igusa modular form”

Fy(7) = 29U,(7) = Vy(7)?

with

Uy(r) = Z O ()17, Vo(1) = Z O (7)°

and the sums over all row vectors m, m* in 271Z9/Z9. This is actually a I'-
form (of weight 8). For g = 1,2,3 it vanishes identically on A,. For g =
4, its vanishing defines the closure of the Jacobian locus. See, for example,

Grushevsky [16, Th. 3.8].
T = 3
o T

When
for blocks of order ¢, § respectively, it is easily seen that
Ug(7) = Uy(7)Uy(7), Vy(7) = Vg(7)V5(7).
Thus, for example, if g =4 and ¢ = g = 2, then we have
0 = Fy() = 4Us(7) — Va(7)?, 0 = Fy(7) = 4Us(F) — Va(7)?

and so Fy(7) = 0. Thus products of two principally polarized abelian surfaces
are in the closure (and, in particular, the product of four elliptic curves).
A similar proof works for the product of an elliptic curve and a principally
polarized abelian threefold.
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