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Singularity of random Bernoulli matrices

By KONSTANTIN TIKHOMIROV

Abstract

For each n, let M, be an n x n random matrix with independent +1
entries. We show that P{M,, is singular} = (1/2 + 0,(1))", which settles
an old problem. Some generalizations are considered.

1. Introduction

Let X1, Xs,..., X, be independent vectors, with each X; uniformly dis-
tributed on vertices of the discrete cube {—1,1}". What is the probability that
X1,..., X, are linearly independent?

The question has attracted considerable attention in the literature. It can
be equivalently restated as a question about singularity of an n x n matrix M,
with independent +1 entries. J. Komlés [7] showed that P{M,, is singular} =
on(1). Much later, the bound P{M,, is singular} < 0.999" was obtained by
J. Kahn, J. Komlés and E. Szemerédi in [5]. The upper bound was sequentially
improved to 0.939" in [15] and (3/4+ 0,(1))" in [16] by T. Tao and V. Vu, and
to (1/v/2 4 0,(1))" by J. Bourgain, V. Vu and P. Wood in [3].

It has been conjectured that

2

(See, for example, [3, Conj. 1.1], [20, Conj. 7.1], [21, Conj. 2.1] as well as
some stronger conjectures in [2].) In this paper, we confirm the conjecture

(1) P{M,, is singular} = (1 + on(l))n.

and, moreover, provide quantitative small ball probability estimates for the
smallest singular value of M,. We extend our analysis to random matrices
with Bernoulli(p) independent entries. Let 1,, denote the n-dimensional vector
of all ones. The main result of this paper can be formulated as follows.

THEOREM A. For every p € (0,1/2] and € > 0, there are n,.,C,. > 0
depending only on p and € with the following property. Let n > n,., and
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let an By, (p) be n x n random matriz with independent entries b;j, such that
P{b;; = 1} = p and P{b;; =0} =1 —p. Then for any s € [—1,0],

P{Smin(Bn(p) +s1,1,) <t/v/n} < (1—p+e)"+Cpet, t>0.

It is easy to see that the probability that the first column of By, (p) is equal
to zero is (1 — p)™. Thus, the theorem implies that, for a fixed p € (0,1/2],

P{B,(p) is singular} = (1 — p+ 0,(1))",
and further, when applied with p = 1/2 and s = —1/2, it gives (1).

2. Proof strategy

The proof of upper bounds on the probability of singularity of random
discrete matrices (i.e., matrices with entries taking a finite number of values)
developed in [5] and later in [15], [16], [3] uses, as a starting point, the relation

IF’{the matrix with columns Xi,...,X,, is singular}

— eon(n) P{the matrix has rank n — 1}
— Y B(ay)
%

which holds under rather broad assumptions on the distributions of the dis-
crete random vectors Xi,...,X, [3]. Here, the summation is taken over
(finitely many) hyperplanes V' such that the probability of Ay — the event that
X1,..., X, span V — is non-zero. The set of the hyperplanes V is then parti-
tioned according to the value of the combinatorial dimension which is defined
as the number d(V) € 1Z such that maxP{X; € V} € (C~4V)=1/n c=dV)],
where C' is some constant depending O;l the distribution of X;’s. The sum of
probabilities corresponding to a given combinatorial dimension is estimated in
terms of probabilities P{Y; € V'} for specially constructed random vectors Y;.
For some discrete distributions, in particular, for matrices with independent
and identically distributed entries with the probability mass function

-]

upper bounds for the singularity obtained using the strategy are asymptotically

if m =41,

ifm=20,

N[ =

sharp as was shown in [3].

Methods providing strong quantitative information on the smallest sin-
gular value of a random matrix were proposed in the papers [12], [18]. As a
further development, the work [13] established small ball probability estimates
On Smin Of any n X n matrix A, with independent and identically distributed
normalized subgaussian entries of the form P{smin(4,) < t/v/n} < " + Ct,
t > 0, where C' > 0 and ¢ € (0,1) depend only on the subgaussian moment.
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Thus, [13] recovered the result of [5], possibly with a worse constant. The key
notion of [13] is the essential least common denominator (LCD) which mea-
sures “unstructuredness” of a fixed vector (x1,...,x,) and is defined as the
smallest A such that the distance from Az to the integer lattice Z" does not
exceed min(c’A||z]|2, cy/n). LCD can be used to characterize anticoncentration
properties of random sums ), a;jz;. (In that respect the approach of [13]
is related to the earlier paper [18], where the anticoncentration properties of
discrete random sums were connected with existence of generalized arithmetic
progressions containing almost all of {z1,...,2,}.) It was proved in [13] that
for any unit vector =z, ]P’{| > aijxi| < t} < Ct+ Lc%(x) + e~ for any t > 0
(see also [14]). This relation, combined with the assertion that the LCD of a
random unit vector normal to the linear span of the first n — 1 columns of A,, is
exponential in n, already implies that A, is singular with probability at most
e~ ™. Moreover, an efficient averaging procedure (which we recall below) used
in [13] allows one to obtain strong quantitative bounds on smin(A,). The LCD
of the random unit normal is estimated with the help of an elaborate e-net
argument.

The approach that we use in this paper is partially based on the methods
used in [13] (and in [8]), while the principal difference lies in estimating anti-
concentration properties of random sums. The starting point is the relation
(taken from [13])

P{smin(An) < t/v/n} <P{||Anz|2 < t/v/n for some z € Comp, (6,v)}
+ P{||Anz||2 < t/v/n for some x € Incomp,,(6,v)}
< P{||Anz||2 < t/+/n for some 2z € Comp, (6,v)}

+ %P{’<C01n(An)7Yn>’ < t/V}}’

valid for any n x n random matrix A, with the distribution invariant under
permutations of columns. Here,

e Y, is a random unit vector orthogonal to the linear span of col;(4,),...,
coly,—1(An);

e Comp,, (9, ) is the set of compressible unit vectors defined as those with the
Euclidean distance at most v to the set of dn-sparse vectors; and

e Incomp,,(§,v) = S*~ 1\ Comp,, (8, v) is the set of incompressible vectors.

In the above formula, 6, € (0, 1] can be arbitrary, although for our proof we

take both parameters small (depending on the choice of € in the statement of
our main result).

The first summand in the rightmost expression — the small ball proba-

bility for  inf | Az|l2 — can be bounded with help of an argument which
x€Comp,,
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is completely standard by now. For the reader’s convenience, we provide the
estimate together with a complete proof in Section 3.

The second term — P{|(col,(Ay), Yy)| < t/v} — crucially depends on the
structure of the random normal Y,,. In [13], the authors provided an explicit
characterization of “unstructured” vectors in terms of the LCD. In contrast,
in our approach we make no attempt to obtain a geometric description of
vectors with good anticoncentration properties. For each unit vector z and
a parameter L, we introduce the threshold T,(z, L) which is defined as the
supremum of all ¢ € (0,1] such that E(Z?Zl bz-xz-,t) > Lt, where, by,...,b,
are independent Bernoulli(p) random variables. Here, L(,-) denotes the Lévy
concentration function, defined as £(Z,t) :=sup g P{|Z — A| < t}, t >0, for
any real valued random variable Z. The threshold can be viewed as a lower
bound of the range of t’s for which a corresponding random linear combination
admits “good” anticoncentration estimates. Thus, to show that B, (p) +sln1;
is singular with probability (1 — p + 0,(1))", it is sufficient to check that the
threshold of the random normal Y, is at most (1 —p+o0,(1))"™ with probability
at least 1 — (1 — p + 0,(1))™. Note that this approach can be related to the
inverse Littlewood—Offord theory started in [18], although here we are only
interested in estimating from above the “size” of the set of potential normal
vectors with large thresholds, rather than giving an explicit description of this
set. (In that respect, our strategy can be related to theorems in [17, §3],
however, the actual proofs are very different.)

To estimate the threshold, we apply a procedure which can be called
“inversion of randomness” and which we briefly describe below. We would like
to make the description as non-technical as possible, and for this reason we
omit any discussion of the choice of parameters and other issues of secondary
importance. Take any T with 771 < (1 — p + 0,(1))™", and let Dy be the
set of all (4, v)-incompressible unit vectors with the threshold falling into the
interval [T, 2T"). In order to show that the probability of the event {Y,, € Dp}
is close to zero, we construct a discrete approximation N7 of Dy, which is a
subset of elements of an n-dimensional lattice having the threshold of order T,
and coordinates in a certain range. We then show that the event {Y,, € Dr}
is contained in

Eny = {There is a vector x € N “almost orthogonal” to coly, ..., coln,l},

where “almost orthogonal” should be understood in a specific sense which we
prefer not to discuss here. This implies

P{Y,, € Dr} <P(Eny)

< |N7| ;Ielja\;; }P’{m is “almost orthogonal” to coly,... ,coln_l},
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and the proof is reduced to efficiently bounding from above the cardinality
of the discretization Np. The “inversion of randomness” is used to solve the
problem. We consider a random vector & uniformly distributed on a subset of
the lattice (whose cardinality is much easier to compute) containing N7, and
we show that with probability superexzponentially close to one, the threshold
of ¢ is much less than 7', so that & ¢ Np. This allows one to bound |N7p|
in terms of the cardinality of the range of £, times the factor e (™. Thus,
instead of studying anticoncentration of random sums with fixed coefficients
satisfying certain structural assumptions, we consider typical anticoncentration
properties of sums with random coefficients &;. It will be convenient to work
with the expression

oY biet)
1=1

‘= sup Z ij vi(] — p)n—zj v 14y (/\ + &+ -+ vngn)7
AR () efo,13n

which is interpreted as the Lévy concentration function with respect to the
randomness of the vector b = (by,...,b,) of independent Bernoulli(p) compo-
nents.

Let us state, as an illustration, a corollary of the main technical result of
this paper, Theorem 4.2, which deals with rescaled vectors distributed on the
integer lattice Z":

THEOREM B. Let § € (0,1], p € (0,1/2], ¢ € (0,p), M > 1. There
exist ng = np(d,e,p, M) > 1 depending on d,e,p, M and Ly = Lp(d,e,p) >0
depending only on 6,e,p (and not on M) with the following property. Take
n>ng, 1< N<(1—p+e)™", and let

A:={=2N,...,~N—1,N+1,... 2N} « (- N, —N +1,..., N}l
Further, assume that a random vector & = (&1, ...,&y,) is uniform on A. Then
Pe{Ly(b1&r + -+ bp&n,v/n) > LpN 1 < e M.

Here, Ly(-,-) denotes the Lévy concentration function with respect to b =
(b1,...,bn), a random vector with independent Bernoulli(p) components.

The crucial point of this theorem is that Ly does not depend on M.
Essentially, this means that the probability can be made superexponentially
small in n as n grows, while Ly stays constant. Because of the “inversion
of randomness,” a statement of this kind is translated into bounds for the
cardinality of the discretization of the sets of vectors Dr with large thresholds
considered above.
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3. Preliminaries

Denote by || - || the standard £,-norm, so that

1/q
H(xla:EZa"')Hq:(Z|xiq) ) 1§Q<OO,
i

and

H(:Ul,:cQ7 . )Hoo = m?x|xi].

In particular, by ¢1(Z) we denote the space of all functions g : Z — R with
> i 19(i)] < co. We will say that a mapping g : Z — R is L-Lipschitz for some
L>0if|g(t)—g(t+1)] <L forallteZ

The unit Euclidean sphere in R™ will be denoted by S”~!. The support
of a vector y = (y1,...,yn) € R"issuppy := [{i <n: y; # 0}|. The n-dimen-
sional vector of all ones is denoted by 1,,. For an n x n matrix A, col;(A) and
row;(A) are its columns and rows, respectively, and ||A|| is the spectral norm
of A. The smallest singular value of A is denoted by spin(A). We will rely on
the standard representation spyin(A) = glgin X || Az]|2.

seSn—

The indicator of a subset of R or an event S is denoted by 1g. For any
positive integer m, [m] denotes the integer interval {1,2,...,m}. Further, for
any two subsets I,J C Z, we write I < Jifi < jforalli € [ and j € J. The
Minkowski sum of two subsets A, B of R™ is defined as the set of all vectors of
the form a + b, where a € A and b € B. For a real number 7, by || we denote
the largest integer less than or equal to r, and by [r], the smallest integer
greater than or equal to r.

Everywhere in this paper, B, (p) is the matrix with independent and iden-
tically distributed Bernoulli(p) entries, i.e., random variables taking value 1
with probability p and 0 with probability 1 — p. Further, by B.(p) we denote
the (n — 1) x n matrix obtained from B, (p) by removing the last row.

The Lévy concentration function L(&,-) of a random variable £ is defined
by

L(Et) :=supP{| — A <t}, t>0.
AER

We will need the following classical inequality.

LEMMA 3.1 (Lévy—Kolmogorov—Rogozin [11]). Let &1, ..., &y, be indepen-
dent real valued random variables. Then for any real numbers ri,...,1rym > 0
and r > max;<m i,

Csar
<Z£Z7 ) \/Zz (1=L 51,7“@))

Here, C3; > 0 is a universal constant.
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We recall some definitions from [13]. Given § € (0,1] and v € (0,1],
denote by Comp,,(d,r) the set of all unit vectors x € R™ such that there
is y = y(r) € R" with [suppy| < dn and ||z — y|l2 < v. (In [13], such
vectors are called compressible.) Further, we define the complementary set of
incompressible vectors Incomp,, (8, ) := S"~!\ Comp, (4, ). We note that a
similar partition of the unit vectors was used earlier in [8].

Following an approach developed in [13], for any random matrix A, with
the distribution invariant under permutations of columns, we can write

(2)
P{smin(An) < t/v/n} <P{||Anz|2 < t/v/n for some z € Comp,,(6,v)}
+ P{||Anz|]2 < t/v/n for some x € Incomp,, (6, v)}
< P{||Anz|l2 < t/+/n for some x € Comp,, (d,v)}

+ %P{KCOln(An)vYnH < t/V}}’

where 0, v are arbitrary numbers in (0, 1) (see [13, formula (3.2), Lemma 3.5])
and Y, is a random unit vector orthogonal to the first n — 1 columns of A,.
A satisfactory estimate for the first term for sufficiently small § and v can be
obtained as a simple compilation of known results; see Proposition 3.6 below.
The following is a version of the tensorization lemma from [13].

LEMMA 3.2. Let &1,...,&n be independent random variables.
(i) Assume that for some g > 0, K > 0 and all € > g9 and k < m, we have
P{|&k| < e} < Ke.

Then for each € > €y,

]P){H(€17£27 cee 7§m)H2 S 6%} S (CS.2K€)m7

where C3.5 > 0 is a universal constant.
(ii) Assume that for some n>0, 7>0 and all k<m, we have P{|&|<n} <.
Then for every e € (0,1],

PUIE &, &)l < nvem) < (£) 7o

Remark 3.3. The second assertion of the lemma follows immediately by
noting that the condition [[(&1,&2,...,&m)ll2 < nv/em implies that [{i < m :
|€&i] > n}| < em. For a proof of the first assertion, see [13].

Further, we recall a standard estimate for the spectral norm of random
matrices with independent and identically distributed subgaussian entries; for
a proof, see, for example, [19, Th. 5.39].
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LEMMA 3.4. For any M,L > 1, there is Cp,, > 0 depending only on M
and L with the following property. Let n > 1, and let A be an n X n random
matriz with independent and identically distributed entries a;; of zero mean,
and such that (Ela;;|9)'/7 < M./q for all ¢ > 1. Then with probability at least
1 — exp(—Ln), we have || Al < Cypv/n.

The following is an easy consequence of Lemma 3.2:

LEMMA 3.5. For anyp € (0,1/2], there is 3.5 > 0 which may only depend
on p, such that for every ¢ € (0,1], n > 2 and arbitrary s € R and x € S"71,

e(n—1)
PUIBAD) + 5 1a a1 D)el, < smavan) < (£) (- p)ei0-9),

Proof. Let by,...,b, be independent identically distributed Bernoulli(p)
random variables. It is not difficult to check that

(3) E(ibixi,r> <1-p

for some 7 > 0 which may only depend on p. For a proof of this fact, one may
consider two possibilities: first when the vector z has a “large” f.-norm, in
which case the assertion follows by conditioning on all b;’s except the one cor-
responding to the largest component of x, and, second, when the vector = has
a “small” fo-norm in which case, by the Central Limit Theorem, the random
linear combination is approximately normally distributed; see, for example, [4,

Lemma 2.1].
Applying the second assertion of the Tensorization Lemma to (3), we get
the statement. 0

By combining Lemma 3.5 with an e-net argument, we obtain a small
ball probability estimate for compressible vectors. The only difference from a
standard argument here is due to the fact that for s # —p, the matrix B} (p) +
51,11, has typical spectral norm of order ©((s + p)n) rather than ©(y/n) in
the simplest setting of a centered random matrix with normalized independent
entries. The net therefore has to be made “denser” in the direction 1,,.

PROPOSITION 3.6. For any € € (0,1] and p € (0,1/2], there are nz s € N,
v3.6 > 0 and 036,36 € (0,1) depending only on € and p such that forn > nsz
and arbitrary s € R,

P{|(Bn(p) + s 1n—112)$H2 < Y3.6VN

for some

x € Comp,, (936, 1/3_6)} < (1 —p+ 5)".
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Proof. Choose any € € (0,1] and p € (0,1/2], and fix s € R. It will be
convenient to work with parameter s := s + p. Without loss of generality, we
can assume that s 0. By Lemma 3.4, there is L > 0 which may only depend
on p such that for every n > 2, the event

€:={IBy(p) = pla-rlnll < Lv/n}

has probability at least 1 — 27",
Given an € € (0, 1] (which will be chosen later), define

- - 0%
(S = = 9 = = —
€, ¥ 73,0\[5, v oY

We shall partition the set Comp,,(d,r) into subsets S; of the form

Sy := Comp,,(6,v) N {1: eR™: Z;l xi € L;T;’ W>}7 te .

First, we observe that a standard volumetric argument, together with the
definition of compressible vectors, implies that for any ¢ € Z, the set Sp admits
a Euclidean (16 7+ 2u) net Ny C Sy of cardinality at most (L on J) ( )wnJ for
some universal constant C’ > 0. By the definition of Ay and Sy, for any x € .Sy
there is y € NV such that |z —yll2 < (Zz+2v) = gr and | 210 (zi—ys)| < ﬁ,
implying that

|(BL(p) — pla-1l, + 51,11, ) (z — y)]],

N YN
sHBi(p)—pln_lllllg +||ﬁ4|~| S

everywhere on £. Hence,

({H 11T+sln 11 H2< 3+/n for somexGSg}ﬁé')
< Wel gé%ﬂ’{\\ V() = ploal) + 51,1 )|, < vv/n}

< () (G (8 ampeien

Observe further that for all vectors z € S"~1 with |Z?:1 :BZ| > 2L|+|27,
everywhere on the event £ we have

— Lv/n > yv/n.

n
[(BL(D) = pluily + 5L a1z, > 3§V —1 ‘ 3
i=1

Thus, everywhere on &, H(B}L(p) —pl, 1) + §1n,11;)xH2 > ~4/n for all
r € Sy with £ > W or f < —@ — 1. Combining all the above estimates,
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for some universal constant C' > 0 we obtain

]P’{H(B}l(p) —pl,1) + '§1n_11;):pH2 < Z+/n for some 2 € Comp,,(4,v)}

C(L + n C'L [6n] e g(n—1) - - .
= (7/w<mm><,y) QJ (1 =p) b 2

It remains to note that by choosing ¢ = £(¢) sufficiently small, we can
guarantee that the right-hand side of the above inequality is less than

C(L+ e\" bt
(w<1—p+) +2"
2
for every n > 2. Then the desired estimate will follow for all sufficiently large
n satisfying @(1 —p+%)n_l +27n < (1—p+5)n. O

4. Random averaging in /¢,(Z)

The main goal of this section is to provide upper bounds on the cardinali-
ties of discretizations of sets of vectors with a given threshold 7,(-, L), discussed
in the second part of Section 2. According to our “inversion of randomness,”
we consider a random vector uniformly distributed on a subset of the integer
lattice Z". We want to show that with probability 1 —e~“(™ the scalar product
of this vector with a vector of independent Bernoulli(p) variables has a small
threshold value (with respect to the randomness of the Bernoulli vector). First,
we define the range of the random vector on the lattice.

Let N,n > 1 be some integers, and let § € (0,1] and K > 1 be some real
numbers. We say that a subset A C Z" is (N, n, K, d)-admissible if

e A = A5 x Ay x --- x A, where every A; (i = 1,2,...,n) is an origin-
symmetric subset of Z;

A; is an integer interval of cardinality at least 2IN + 1 for every ¢ > dn;

A; is a union of two integer intervals of total cardinality at least 2V and
A;N[=N,N] =0 for all i < on;

|A1] - |As] ... [Ap| < (KN)™

maxA; <nN foralll <i<n.

Remark 4.1. The condition A; N [-N,N] = ( for i« < dn, subject to
appropriate rescaling, is equivalent to the fact that the “potential” normal
vectors we consider are (d,v)-incompressible, hence at least |dn| components
of those vectors are separated from zero by v//n.

Let A= A) x Ay x --- x A, CZ" be an (N,n, K, §)-admissible set, and
let f(t) be any real valued function on Z. Fix any p € (0,1), and assume
that X1, Xo,..., X, are independent integer random variables, where each X;
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is uniform in A;. For every ¢ < n, we define a random function f4 ,, by

¢

Fape®) =B f(t+>5;X;)

(4) =

= Z P> (1 —p) T2 f(E+ v Xy + -+ upXy),
(vj)lee{(],l}é

t € Z, where [E; denotes the expectation with respect to the randomness of the
vector b = (b1, ...,b,) with independent Bernoulli(p) components. The central
statement of the section is the following theorem.

THEOREM 4.2. Foranyé € (0,1],p € (0,1/2],¢ € (0,p), K, M > 1, there
are nyo = nao(,e,p, K, M) > 1, nao = naa(d,e,p, K, M) € (0,1] depending
on 0,e,p, K, M and L, = Ly5(d,e,p, K) > 0 depending only on 6,e,p, K
(and not on M) with the following property. Take

n>nse 1<SN<(1-p+e) ",

let A be an (N, n, K, d)-admissible set, and let f(t) be a non-negative function
in 01(Z) with || f|l1 = 1 and such that logy f is n4.o-Lipschitz. Then, with fa,n
defined above, we have

]P{”fA,p,nHoo > L4.2(N\/77l)71} S eXp(—Mn).

The crucial feature of the theorem and the most important technical el-
ement of this paper is that the bound L,,(N+/n)~! on the £y -norm of the
averaged function does not depend on the parameter M which controls the
probability estimate. In other words, for a given choice of §,¢,p, K, which
determine the value of L, 5, the probability bound can be made superexponen-
tially small in n.

It is not difficult to check that with the only assumption || f||1 = 1 on the
function f the above statement is false. For example, take f to be the indicator
of {0}, and assume that

A={-2N,—2N +1,...,.—N —1,N+1,...,2N}L"
x {—N,=N +1,..., N}l

It can be shown that for any natural ¢ < N, on the one hand, the event
& ={X; € qZ, i = 1,2,...,n} has probability at least (2¢)™", and, on
the other hand, everywhere on &, we have || fapnlloo > cpq (N+/n)~L, because
fapn is supported on ¢ Z and (by standard concentration results) has most of
its mass located within a (random) integer interval of length O,(N+/n). Thus,
the probability cannot be made superexponentially small in n without taking

g, hence the lower bound for |[f4pnllec - (N4/n), to infinity. The condition
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that the logarithm of the function is 7, ,-Lipschitz, employed in the theorem,
is designed to rule out such situations.

Before proving the theorem, we shall consider the corollary which was (in
a somewhat different form) stated in the introduction as Theorem B and which
will be used in our net-argument in the next section.

COROLLARY 4.3. Letd,e € (0,1], p € (0,1/2], K, M > 1. There exist ny 3
=ny3(0,e,p, K, M) > 1 depending on 0,e,p, K, M and Ly 3 = L,3(d,¢,p, K)
> 0 depending only on 0,e,p, K (and not on M) with the following property.
Taken >ny3, 1< N<(1—p+e)™", and let A be an (N,n, K, §)-admissible
set. Further, assume that by, ba, ... b, are independent and identically dis-
tributed Bernoulli(p) random variables. Then

{x €A: E(Zn:bixi,\/ﬁ) > L4_3N1}’ <eMn|g|.
=1

Proof. Take n > max (n4_2, 1/n§_2), let 1< N<(1-—p+e)™" and let A
be an (N,n, K, §)-admissible set. Define the function f € ¢1(Z) as

1
f(t) = —271/Vr ey,
mo
where mg = 3, 2711/V™. Obviously, || f|1 = 1, and log, f is n~'/2-Lipschitz,

hence, by the assumptions on n, log, f is 1,»-Lipschitz.
Applying Theorem 4.2 to f, we get

P{Hf/l,p,n loo > L4.2(N\/ﬁ)_1} < exp(—Mn).
The definition of f4, , allows us to rewrite the above inequality as

’{x cA: supEbf<t + En:bjxj) > L4.2(N\/ﬁ)_1}
j=1

<e Mn|4l

teZ

On the other hand, since
c
ft) = 7\/51[7\/571,\/%1](75)7 teZ,

for some universal constant ¢ > 0, the last relation implies

n I B
{ZEEAZ SupEbl[_\/ﬁ—l,\/ﬁﬁ-l}<t+2b]xj>>64]\[2}‘36 Mn‘A|
Jj=1

teZ

For every ¢t and © = (z1,x9,...,Ty), the expression

Eb 1[*\/5*1,\/H+1] (t + Z b].%']>
7j=1

is the probability that the random sum ¢ + 2?21 bjx; falls into the interval
[—v/n — 1,y/n + 1]. Thus, together with elementary relation sup P{|t + Y| <
teZ
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H + 1} > L(Y,H), valid for any H > 0 and any random variable Y, the
previous inequality gives

{IL’ S .Ai ﬁ(bll?l + - +bnxn7\/ﬁ) > IC“L]VQ}' S ean |.A|

The statement follows. [l

In our proof of Theorem 4.2, we will gradually improve delocalization
estimates for the functions fy4,¢. Our first (simple) step — Lemma 4.4 — is
to obtain estimates on the /;-norm of the truncated function f4,,1; (with
¢ of order n) for an arbitrary integer interval I of length at most N. Upper
bounds of the order O, s(||f|l1 /+/n) will follow from the Lévy-Kolmogorov-
Rogozin inequality stated in the preliminaries as Lemma 3.1. At the second
step, Proposition 4.5 below, we prove a weaker version of Theorem 4.2 where
the parameter L is allowed to depend on M. At the third step, we remove the
dependence of L on M by using the Lipschitzness of f. A discussion of that
part of the proof is given after Proposition 4.5.

LEMMA 4.4. There is a universal constant Cy, > 0 with the following
property. Let p € (0,1), do € (0,1), let f € ¢1(Z) be a non-negative function
with || f]l1 = 1, and let A be an (N, n, K, J)-admissible set for some parameters
N, 0 € [0p,1), n > 1/d9 and K. Further, let £ > don. Then deterministically
Yo fape(t) < —— Y44 for any integer interval I C 7 with |[I| < N. In

tel \/don min(p,1—p)

turn, this implies

2C,.4|J|
Jape(t) < .
tGZJ b \/5on min(p,1 — p)N

for any integer interval J of cardinality at least N.

Proof. Let Xi,..., X, be the random variables from (4). Fix any realiza-
tion of Xi,..., Xy (so that |X;| > N for all i < dgn, by the definition of an
admissible set and since § > dp) and any integer interval I of cardinality at
most N. Since

fape®) = > pZi(—p) TR f(t+ 01Xy 4+ 0pXy),
(vi)lee{o,l}é
we obtain

S fape®y = D> DT pEUA—p) T (0 X+ + 0 X)

tel (vi)f:le{O,l}e tel

= > SR ) T O Ly, (1)

vi)f_,€{0,1}¢ t€Z

(
- ‘ f Z pZi vi(l _p)é_zi vi1]+v1X1+~~~+wX£
(vi)i_,€{0,1}*

1.
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For any t € Z,

Z pzi vi(l *p)e_zi vi11+v1X1+---+veXe (t)
(Ui)lee{o,l}é
:]P){lel + -+ be Xy € t—I|X1,...,Xg},

where by, ...,b; are Bernoulli(p) random variables jointly independent with
X1,..., Xy It remains to note that the Lévy—-Kolmogorov-Rogozin inequality
(Lemma 3.1), together with the condition |X;| > N for all i < dgn, implies
that for every t € Z,

C

\/5071 min(p, 1 — p)
for some universal constant C' > 0. The result follows. O

P{o1 X1+ +bXpet—1|Xy,..., X} <

PROPOSITION 4.5. For any M >0, p € (0,1/2], 6 € (0,1) and € € (0,p),
there are Ly s = Lys(M,p,0,e) >0 and ny5 = ny5(M,p,0,e) € N (depending
on M, p, § and €) with the following property. Let f € ¢1(Z) be a non-negative
function with ||f|1 = 1, letn > ny5, n/2 <€ <n, and let A be an (N,n, K, §)-
admissible set for some parameters N < 2™ and K > 0. Then

P{|| fapelloo > max (Las(Nvn) ™ (1= p+e) | flloo) } < exp(—Mn),
where fape ts defined by (4).

The crucial difference between the above statement and Theorem 4.2 is
that L, 5 in the proposition is allowed to depend on M. The proof essentially
follows by estimating probabilities that

Fape(t) >max (Los(Nvn) ™ (1 —p+e) | flloo)

for a fixed t € Z and taking the union bound over ¢, although the actual
argument is more involved. We will need the following definitions.

Let R > 0 be a parameter, let N, A, f, £ and p be as in the above
proposition, and let m € {1,2,...,¢}. We say that a point ¢ € Z decays at
time m if

R R

Nyvn Nyn'

Further, given any ¢ € Z and a sequence (v;){_, € {0,1}¢, the descendant
sequence for t with respect to (v;)¢_; is a random sequence (t;)¢_,, where
ti=1— Z;-:l v;X;, 1 <i < ¢ (and where we set ¢y := t). The connection of
the above statement with these definitions is provided by the following fact:
the event that the f,-norm of fy4,, is “large” is contained within the event
that there exists a descendant sequence such that a proportional number of its

fA,p,m—l(t + Xm) < and fA,p,m—l(t - Xm) <

elements do not decay. More precisely, we have
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LEMMA 4.6. Let N, A, f, ¢, € and p be as in Proposition 4.5, let L > 0,
and set R := %. Define an event € as the subset the probability space such

that there exists a sequence (v;)i_; € {0,1}* and a point t € Z so that the
descendant sequence (t;)t_, for t with respect to (v;)f_, satisfies

|{1 <1< {: t;_1 does not decay at time z}|
(5) >_nlog((l—p+€)/(1—p+5/2))
- 2log (1 —p+¢/2)
Then € > {||fapelloc > max (L(Ny/R)™!, (L=p+e)" [ flloo) }-
Proof. Fix a realization of X7,..., X, such that

£ ap.elloe > max (L(Nv/R) ™! (1= p+ )" || flloo)-

(If such a realization does not exist, then there is nothing to prove.) We will

construct a sequence of integers (ti)fzo inductively in inverse order as follows.

Take t; to be any integer such that

Fape(te) >max (L(NvR) ™ (L —p+e)' || flleo)-

At (—i+1)-st step (1 < i < ¥) we assume that ¢; has been defined and satisfies
fapi(t;) > max (L(Ny/n)™, (1 —p+e) [fllso)- In view of the relation

(6) fapi(t) =1 =p) fapi-1(t) +pfapi-1(t+Xi), teZ,

which follows immediately from the definition of f4,;, we get that

fapi-1(ti +viX;) > fapi(ti)

for some v; € {0,1}. Then we set ;1 :=t; + v; X;.
Clearly, the sequence (ti)fzo constructed this way is the descendant se-
quence for to with respect to (v;){_;, which satisfies the conditions

(&) fapi-1(ti-1) = fapi(t;) for all 1 <i <4
(b) fape(te) > max (L(NvR) ™", (1= p+e)' || flloc)-
We will show that these conditions imply (5). Assume that 1 <4 < / is such

that ¢;_1 decays at time i. According to (6) and the relation between t; and
ti_1, we have

fapi(ti) = (1 —p)fapi-1(t:) +p fapi-1(t + X;)
=1 —p)fapi-1(tic1 —viXq) +p fapi-1(ti-1 + (1 —v;)X;).
Both fapi-1(ti-1+X;) and fa,-1(ti-1 —X;) are less than NLQE by our def-

inition of decay at time 7, and hence less than 2673 fapi-1(ti—1) by the rela-
tion between L and R and conditions (a) and (b). Thus, one of the values
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fapi-1(ti-n —viX;) or fapi-1(ti-n + (1 —v;)X;) is at most o fapi—1(ti-1)
while the other is equal to f4,p;—1(ti—1). This gives
€
fapiti) < (% p+1- p) fapi-1(ti-1).
Applying the last relation for all ¢ where there is a decay and using the mono-
L ¢ :

tonicity of the sequence (fA,p,j(tj))j:07 foru=1{1<1i</¢: ti—y decays at
time i}|, we get

(L =p+e) [Ifllo < fapelte) < (L —p+e/2)"||flloo,

whence

(1—p+e/2) " < ((1—p+e/2)/(1—p+e)"

This implies the required lower bound for

C—u=|{1<i<{: t;_y does not decay at time i}|. O
Proof of Proposition 4.5. Let L > 0 be a parameter to be chosen later.
Set
_ < log((l—p+6)/(1—p+e/2))> eL
7 :=min ( J, — ; =
2log (1—p+¢/2) 2p

We will assume that nn/2 > 1. Let X1, Xo,..., X, be independent random
variables, each X; uniform on A;, where A = A1 X Ay x -+ X A,.

The proposition follows by applying Lemma 4.6 and a union bound. Ob-
serve that for any point ¢ € Z such that the last element of a descendant
sequence (t;)f_, (With respect to some sequence in {0,1}* and with ¢, = ¢)
satisfies fa,¢(te) > (Ny/n)~!, we have

te{seZ: f(s)> (Nvn) ' }+(A1U{0}+A;U{0})+- - -+(AU{0} +AU{0}).
Indeed, the definition of the descendant sequence implies that for some (v;)¢_, €
{0,1},
t=tr+uXa+---+ouX,etr+ A U{0} +---+ A, U {0},
while at the same time the condition fa,(t¢) > (Ny/n)~! and the definition
of faps implies that f(tg+x1+z2---+x¢) > (Ny/n)~! for some z; € A;U{0},
i=1,...,£ hence
tee{s€Z: f(s)>(Nvn)"'} — A4 Uu{0}—-- — 4, U{0}
={s€Z: f(s)>(Nyn) '} + 44 U{0}+ -+ A, U{0}.
Set
D:i={s€Z: f(s)>(Nyn)'}
+ (A1 U {0} + A, U{0}) + - + (A, U {0} + A, U{0}),
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and observe that, in view of the upper bound on max A;’s from the definition
of an admissible set, and the assumption || f||; = 1,

|D| < Nvn|(A1U{0} + A1 U{0}) + - + (A, U {0} + A, U {0})]
< 4N\/nlnN < AN?p5/2.
Set H := nn. Then, with the event £ defined in Lemma 4.6, we can write

P(E) < 24D sup P{The descendant sequence (t;)f_, for t}
teD, (vi)i_ €{0,1}  yrt (v;)¢_, satisfies [{1 <i < £: t;4
does not decay at i}| > H

< 212 N2p5/ 2( " > sup ]P’{For descendant sequence}.
[HT)  1cio, 1=

¢
teD, (vy)f_,€{0,1}* (ti)i—o Wt (vi), ti—1 does

not decay for all i € I

Finally, fix any I C [(] with |I| = [H], t € D and (v;){_; € {0,1}%. Let (t;)_,
be the (random) descendant sequence for ¢ with respect to (v;). (Note that t;
is measurable with respect to Xi,...,X;.) Take any i € I with i —1 > H/2.
Conditioned on any realization of X1, ..., X;_1, the variable t;_14X; is uniform
on t;_1 + A;, and

1
E(fapi-1(ti-n+X3) | X1y, Xim1) = ] Y. fapi-i(s)
st 1+A;
<d G
N \/pnn/2

where at the last step we applied Lemma 4.4 with dg := 7/2 and used that
A; is either an integer interval or a union of two integer intervals. The same
estimate is valid for

E(fapi-1(ti-n — Xi) | X1,..., Xi1).
Hence, by Markov’s inequality,
P{ti_l does not decay at i | Xy, .. .,Xz-_l}

= P{fA,pJ—l(ti—l + Xi)> Nii/ﬁ or fapi-1(ti-1 —X;)> NL\% Xi,... 7Xz'—1}
8 04.4 N\/ﬁ o 804.4

SN\/pnn/? R \/m/2R

Applying this estimate for all i € I'\ [1, H/2 + 1], we obtain

IP’{For desc. sequence (t;)f_,, t;—1 does not decay at i for all i € I}
- ( 8C, ., >|'H'|—H/2—2

Vpn/2R

)
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whence e
P(E) <2£+2N2n5/2( n )( 16C,.4p )f 1=H/2=

[HT) \\/pn/2¢L

where, we recall, H =nn. Finally, we observe that by choosing L = L(M, p, 0, )
large enough, we can make the last expression less than exp(—Mn) for all
sufficiently large n. This completes the proof of the proposition. O

The above result is too weak to be useful for our purposes. The rest of the
section is devoted to “refining” the proposition by removing the dependence
on M from the lower bound on the /,.-norm of the averaged function.

Let us informally describe the idea behind the argument and provide some
simple examples. The magnitude of the fo.-norm of f4 ., essentially depends
on how efficient in removing spikes is the averaging step given by the relation
fapi(t) = (1=p) fapi-1(t)+p fapi-1(t+X;). One may hope that if at every
step i, the number of spikes (coordinates with large magnitudes) is decreased
significantly with a probability close to one, then the resulting function f4,n,
would have a small /,-norm with a very large probability (superexponentially
close to one).

For the moment, it will be convenient to drop the assumption of a bounded
¢1-norm. Consider a family of functions gy 47, on Z, indexed by natural
numbers N, d, an integer interval I, and 1 > 0, and defined as

9N, 1.5(t) :=exp ( —ndist (¢, 1 + dZ)), teZ,
where we impose the following restrictions on parameters:
o N >d;
e the function gy 41, is “essentially non-constant” in the sense that
lgn.a, 151011 < 3|J| for any integer interval J of length at least .

Note that log gy 4,7, is n-Lipschitz and that the second assumption implies
|I|] < d/2. Assume that a random variable X is uniformly distributed on
{0,1,..., N}, and define the random average

1 1
INa1,(t) = §9N,d,1,n(t) + 59N,d,1,n(t +X), teZ.

We are interested in estimating the proportion Ry 41, of spikes preserved by
the averaging, with

R — lim {t e ZN[—k,k|: g§y;,(t) =1}
Nl ot € LN [~k K] = gnarn(t) =1}
A simple computation taking into account the condition |I| < d/2, gives
I 1
P{1— Ryary<c}= @(€’d| +-), £ 0,1/
and, for e =0,

P{1— Ryasy=0}= @(%).
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Thus, the efficiency of the averaging, i.e., the small ball probability estimate
for 1 —"Rn.4,1, is influenced by the magnitude of d or, equivalently, the length
d — |I| of the “valleys” separating the clusters of spikes in gnqr,. Now, let
us discuss how this is related to the Lipschitzness of the logarithm. It is not
difficult to check that, in order to satisfy the condition of being “essentially
non-constant,” we must choose d at least of order 1/n. Thus, the smaller 7 is,
the wider the valleys between the clusters of spikes, and the stronger the small
ball probability estimates for 1—Rx 4,1, must be. In a sense, the Lipschitzness
of the logarithm of g 4 1,,, together with the essential non-constantness, affects
the averaging indirectly, by influencing the structure of spikes and valleys.

In our actual model, a similar phenomenon holds, although the argument
is more complicated, first because the pattern of spikes does not have to be
as regular as in the above example, and second because the spikes are defined
as points where the function exceeds a certain threshold rather than points
where it takes a specific value. Our measurement of the efficiency of the av-
eraging is more complicated compared to the above example. For a function
with relatively many spikes, we compare the fo-norms of the original function
and the average. A crucial step towards proving Theorem 4.2 is the following
proposition.

PRrOPOSITION 4.7. Let R > 0, p € (0,1), p € (0,1/64] and N € N.
Further, assume that g1,gs are non-negative functions in €1(Z) and that g
satisfies the following conditions:

e log, g1 is p*-Lipschitz;

e > gi(t) < RN for any integer interval I of cardinality N;
tel
e there is interval Iy C Z with |Iy| = N, such that |{t € Iy : g1(t) >8R}| > uN.

Let Y be a random variable uniformly distributed on an integer interval J of
cardinality at least N. Then

2
P{[[(1 =) () +pgal- + 1))
< (@ =p)llgrl3 + pllg2ll3) — carp(l — p)u6R2N} >1—Cyrpe
Here, Cy.7,cq.7 > 0 are universal constants.

Before proving the proposition, we consider two lemmas.

LEMMA 4.8. Let f,g € l5(Z), and assume that k > 0 and k € N are such
that

{teZ: |f(t) - g(t)| > K}| > k.

Let p € (0,1). Then ||pf + (1 —pg|s < (0113 + (1 —p)lgl3) — p(1 — p)2k.



612 KONSTANTIN TIKHOMIROV

Proof. For any t € Z, we have
(pf(t) + (1 = p)g(t))*
= pf(t)* + (1 —p)g(t)* — (p(1 = p) F(t)* — 2p(1 = p) F(t)g(t) + p(1 — p)g(1)°)
= pf()* + (1= p)g(t)* = p(1 = p)(F(t) — 9(1))",

which implies the estimate. U

LEMMA 4.9. Let f,g € {1(Z) and 6,k > 0. Further, assume that I C 7Z
is an integer interval and Iy U Iy U Is = I is a partition of I into three subsets
(not necessarily subintervals) such that |13| € [8|I|/2,0|I|], |I2| < 6|I|, and
f(t1) > w4+ f(ts) for all t1 € I; and t3 € I3. Further, assume that X is
an integer random wvariable uniformly distributed on an interval J C 7Z of
cardinality at least |I|. Then

P{[{tel: |f(t)—g(t+X)|>r/2}| <6|I|/4} <640

Proof. Without loss of generality, 6 < 1/64. Fix any subinterval JcJ
of cardinality at least |/|/2 and at most |I|. We will prove the probability
estimate under the condition that X belongs to J. Then the required result
will easily follow by partitioning J into subintervals and combining estimates
for corresponding conditional probabilities.

Set

= t = mi t
w3 glg;;f(s)), wy gggfm,

and define
Q:={ied: [{tel: g(t+1i) < (wi+ws)/2}| <48|1]}.

Observe that in view of the assumption wy; > w3 + &, for any point ¢ € J \ @,
we have

H{tel: |f(t)—g(t+i)|>r/2}|>46/I] — || — |I3] > 26|1].
Thus, if Q = () then, conditioned on X € J,
{tel: |f(t)—g(t+X)|>r/2}| <dI|/4

holds with probability zero, and the statement follows. Below, we assume that

Q0. i
Set S:= {min@, min@Q +1,...,maxQ}. Since |J| < |I|, we have S+ I =
(min@ + I) U (max @ + I), whence

{seS+1:g(s) < (w1 +ws)/2}]
<|{tel:g(t+minQ) < (wi+ws)/2}]
+|{tel:g(t+maxQ) < (wy + ws)/2}|
< 84|1].
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The above estimate immediately gives
{@ienxs: gu+i)< W}‘ < 83|1| - |I3] < 852|T|.
Hence, the number of points ¢ € S such that

w1+w3}‘
2

(7) Ht €ly: g(t+4) < > o|1]/4

is at most 32d|I|. On the other hand, for every i € S such that (7) does not
hold, we clearly have

[{tel: |f(t)—g(t+i)| > r/2}| > |Is] = d|I|/4 > 6|1]/4.
Summarizing, we obtain
Hz eJ: [{tel: |f(t)—glt+i)|>r/2}| < 5|1\/4}‘ < 320/1],
whence
P{{tel: |f(t)—g(t+X)|>r/2}| <d|I|/4|X €T} < 640.
The result follows. O

Proof of Proposition 4.7. Let § := 8u, ¢ := p* and I:= Iy+{0,1,...,N},
so that |[I| = 2N. It is not difficult to see that there is a real interval of the
form (a, 2" a), where 4R < a < 27#* . 8R and such that

~ 2 2N
(8) Hte[: gi(t) € a,2“a}‘§7.
(o251 = 7
We will inductively construct a finite sequence of integer intervals I7, I, ..., I},
as follows.

At the first step, let t ;== min{t € I : ¢,(t) > 20%a},
Ti=max{teT: t>t; [{se{th,...,t}: gi(s) <a}| <o(t—t] +1)},

and define I} := {t{,t{+1,...,t]}. (Note that by the definition of Iy, ¢} exists.)
That is, we choose t] to be the largest integer in T such that the number of
the elements s € I corresponding to “small” values ¢1(s) < a is at most d|I7].
If max I} > max I or if g1 (¢) < 2% g, for all t7 = max I] < ¢t < max Iy, then we
set h := 1 and complete the process. Otherwise, we go to the second step.

At the k-th step, k > 1, we define ti > I, to be the smallest integer in
(max I},_,,00) such that g (tf) > 2% a. (The previous step of the construction
guarantees that such tf; exists and belongs to Iy.) We set

tro=max{t€T: t >t {s€{th,....t}: gi(s) <a}| <t —th+1)}

and I} := {t{ t¢ +1,...,t7}. If max I, > max/y or if gi(t) < 24°q for all
t; = max I}, <t < max Iy, then set h := k and complete; otherwise go to the
next step.
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Next, we observe some important properties of the constructed sequence.

(a) The left-points of all intervals are contained in Iy, and the union UZ:I I,
contains the set {t € Iy : gi(t) > 2"2a}; in particular, cardinality of the
union is at least u/V.

(b) The cardinality of any interval I; cannot exceed N since our assumption
on the function gi, together with the definition of I, gives

2RI < alTl/2 < a1}l — 311D < S an(t) < 3 gn(r) < 2RN.
tel;, tel

In particular, this implies that max I is strictly less than max 1.
(c) The condition that log, g1 is e-Lipschitz implies that for any k& < h, |I}| >
\u?/e| > i. Indeed, since g1(t + 1) > 27%g;(t) for all ¢t € Z, we have

gi(t) > 271 g (t{) > a whenever 0 < t — t¢ < p%/s. On the other hand,
the last conclusion in property (b) implies that |{s € {th, .t + 1}
gi1(s) <a}| >t +1—t, +1) > 0|I}|, as t, + 1 € I.

(d) Property (c), in its turn, implies that for any k& < h, we have 1 < §|I;]/2,
whence |{t € I}.: g1(t) < a}| > d|I}]/2.

Our goal is to apply Lemma 4.9 to the constructed intervals. For each
k < h, we define the partition I, = I} | U I} , U I} 5, where

I, = {tel,: q(t)> 2“2a},
Iz:={tel: g(t) <a},
Tho =T\ (I UL 3)

Additionally, set x := (2“2 —1) - 4R. We define subset of good indices G C [h]
as

g1
g1

G :={k<h: |Il o <o|I|}.
Note that (8), together with property (a) of the intervals, implies that
1 2N
Z 1| > uN — Z |I;| > uN — =T a7 = #N/2.
keG ke[h\G 0 Ll/ﬂ J
By Lemma 4.9, for every k € G the event
E={|{teLi: |gi(t) — g2t +Y)| = 6/2}| < 8|I;|/4}

has probability at most 646. Hence, the expectation of the sum

Z ‘Il/c|15k

keG
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is at most 640+ > |1} |, and in view of Markov’s inequality and the lower bound

keG
for > [,
keG
uN uN
P{ D g > T} =1 —P{ e, > > G - T}
ked keG keG
646 I,
R LieG |/k| =1 — 1286.
2 ZkeG ’Ik’

As the final remark, for any realization of Y such that } |I;[|1ge > %,
keG

we have |{t € I: |gi(t) — g2t +Y)| > k/2}| > g%, whence, in view of
Lemma 4.8

(1= p)g1() +pg2(- + V)| < (1= p) lg1l3 +pllg2l13) — p(1 — p) & 2N 2,

The result follows. O

The estimate on the fo-norm of the average in Proposition 4.7 involves
the parameter p which, roughly speaking, determines the cardinality of the
largest cluster of spikes in g;. If the cardinality is small, the estimate given
by the proposition becomes weaker. Even assuming best possible values for p,
n applications of the averaging to obtain f4,, from f would not provide a
bound on ||f4n,|l2 which could be translated into a meaningful estimate for
the £oo-norm of the average.

Returning to the example which we discussed on page 610, if the function
gN,d,1,y is such that |I] is much less than d, i.e., the spikes are rare, then with
probability 1—@(%) ~ 1 the averaged function INd, I will not have any spikes
left. When the spikes are located in an irregular fashion, such a strong property
does not hold, but the following phenomenon can still be observed: if the spikes
are rare, then with a probability close to one the averaged function will have
much fewer (by a large factor) spikes. In other words, in the regime when there
are few points where the function is large, rather than measuring the f2-norm
of the average, it is more useful to consider how the cardinality of the set of
spikes shrinks under averaging. Combining this idea with Proposition 4.7, we
can derive the following statement.

PROPOSITION 4.10. For any p € (0,1/2], ¢ € (0,1), R > 1, Lg
16R and M > 1, there are ny190 = n410(p,€, Lo, R, M) > 0 and n4.10
Na10(ps €, Lo, R, M) € (0,1) with the following property. Let Ly > L > 16R,

and let n > ny 10, N <27, let g € £1(Z) be a non-negative function satisfying

v

e [lgll =1;
e logy g @5 My.10-Lipschitz;
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e > g(t) < % for any integer interval I of cardinality N;
tel

o llgllo < 7oz

For each i < |en|, let X; be a random variable uniform on some disjoint
union of integer intervals of cardinality at least N each, and assume that
X1,...,X|ep) are independent. Define a random function g € (1(Z) as

g(t) == Ebg<t + % biXi>

i=1
= > pi V(1 — p)E T2 g (t o Xy 4 4 0 X on))
()i efonylend
where b = (by,...,by) is the vector of independent Bernoulli(p) components.
Then
~ V2+1-p)L
P{HgHoo > %} < exp(—Mn).

That is, the above proposition tells us that, given a “preprocessed” func-

tion g with [|g]|ec < NL\/E’ after en averagings the f,-norm of the function

drops at least by the factor p/v/2+ 1 —p with a probability superexponentially
close to one. By applying the proposition several times to a “preprocessed”
function given by Proposition 4.5, we will be able to complete the proof of the
theorem.

Before proving the proposition, let us consider a simple lemma.

LEMMA 4.11. Let f € ¢1(Z) be a non-negative function, let m, N € N,
p € (0,1), Hyp > 0, and assume that ||f|lcc < 2H and that for any integer
interval I of cardinality N, we have

[{tel: f(t)>H}| < uN.
Choose any integers x1,x2,...,Tm, and set
F@) =By f(t+ b1y 4 - + b)),

where b = (b1, ...,by,) is the vector of independent Bernoulli(p) random vari-
ables. Then for any integer interval J of cardinality N, we have

[{teJ: f(t)>V2H}| < uN/(V2-1).
Proof. Take any point ¢t € Z such that f(t) > \/2H. We have
V2H < f(t) < By Lif(apar s tbmanm)sm) () - 2H

=H+ HE, 1{f('+ble1+"-+bm:L"m)2H} (t),
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so that

(9) Eb L{f(- byt by =0} (1) > V2 = 1.

On the other hand, for any interval J of cardinality N and any choice of
(vi)i*4 € {0,1}™, we have, by the assumptions of the lemma,

Z 1{f('+v1$1+---+vmxm)2]-[}(8) < uN,
seJ

whence
Z Eb L f(+bryst-tbmym)> 1} (8) < N
sed
Combining the last inequality with condition (9), we get the statement. H

Proof of Proposition 4.10. Fix any admissible parameters ¢, p, R, L, N
and M, and set

1 16M 4
We will assume that n is sufficiently large so that en/4 > 1 and, moreover,
(10) carp(1 —p)len/2) ubR%/2 > Lov/n.
Set
L

m:= |len/2], H :=

2N/n’
We fix any function g € ¢1(Z) satisfying conditions of the proposition with
parameters 1, R, N, L, n. Note that ||g|cc < 2H. Define gy := g,

gk(t) :pgk—l(t+Xk)+(l_p)gk—l(t)? k:172>"'7l_5nJ7 t€Z7

so that either g = gap, (if |en] is even) or g = gomy1 (if |en| is odd). It is easy
to see that log, gx is m-Lipschitz (because the log-Lipschitzness is preserved
under taking convex combinations) and ||gx|[s = 1 for all admissible k.

For each ¢ < m, define events

&= {|{t el: g(t) > H}’ < uN
for any integer interval I of cardinality NV }

and
&= {119:1B < lgi 113 — canp(1 — pus BP0~ N1}
(We can formally extend the first definition to ¢ = 0.) Clearly, for each ¢, & and

&; are measurable with respect to the sigma-algebra generated by Xq,...,X;.
Condition for a moment on any realization of Xq,..., X; 1, and observe that

one of the following two assertions is true:
e &1 holds;
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° |{t el: g(t) > SRH > uN for some integer interval I of cardinality IV,

where we set R := NLQE' Then, applying Proposition 4.7, we get Px; (E’l) >
1—=Cyrp.
Hence,

P(E_1UE& | X1,y Xi1) 21— Cuzp, i=1,2,...,m.

This implies that for any r € [m], the probability that (&_1U g)c holds for at
least r indices ¢ can be estimated as

(U NEava)) < (7)o

SClm),|S|=r i€S

Note that the definition of gi’s and the triangle inequality imply that the
sequence (||gkll2) s, is non-increasing. Hence, taking 7 := [m/2] in the above
formula and in view of our choice of u, we get that with probability at least
1 —exp(—2Mmn) at least one of the following two conditions is satisfied:

(a) there is i < m such that |{t € I : gi(t) > H}| < uN for any integer

interval I of cardinality IV; or
(b) llgml3 < llgll3 — carp(l = p)mp® R*n~'N~1/2.

It can be checked, however, that condition (b) is improbable. Indeed, in view
of the restrictions on the ¢1- and /,.-norms of g, and Holder’s inequality,

L
2 1. =
ol <1- 7=

whence, applying (10), we get ||g]13 — c1-p(1 — p)muS R*n~'N~1/2 < 0.

Thus, only (a) may hold, so the event

£ = {There is 7 < m such that |{t el: g(t) > H}| < uN
for any integer interval I of cardinality NV }

has probability at least 1 — exp(—2Mn). Applying Lemma 4.11 we get that
everywhere on the event,
H{tel: g(t)> \/§H}|

< 3uN for any interval I of cardinality N and i > m + 1.

(11)

The second part of our proof resembles the proof of Proposition 4.5, al-
though the argument here is simpler. We observe that there exists a random
sequence of integers (¢;)#™  satisfying

2m . . .
e the sequence (gi(ti))i:m is non-increasing;

1 g2m(t2m) = ||92m||oo;
e {; € {tz;l,tifl — Xz} for all m < i < 2m.
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On the event
&= {HgLan Hoo > (\/§p+ 2(1 _p))H}7

we necessarily have ||gi|loo > (v2p +2(1 —p))H, i < 2m, hence, in view of the
recursive relation g;(¢;) = pgi—1(t; + Xi) + (1 —p)gi—1(t;) and the deterministic
upper bound ||g;—1lco < 2H, we have g;_1(t;+X;) > v2H and g;_1(t;) > vV2H
for all m < ¢ < 2m. Thus,

€C{gl 1(ti + X3) > V2H and g;_1(t )>\foorallm<z<2m}

We will show that the probability of the latter event is small by considering a
union bound over non-random sequences.

Fix any realizations XV,..., X% of Xi,...,X,, such that the event &
defined above holds. Take any non-random sequence (v;)#™ 41 €1{0,1}™ and
any fixed s,, € Z such that g, (s,) > v2H (if such s,, exists). Further, we
define random numbers s; := s;_1 — v; X;, ¢ = m+ 1,...,2m. Then for any
i > m+ 1, we have

P{gi—1(si + Xi) > V2H
and gi—1(s;) > V2H | X1 = X7, ..., Xon = X0 X1, -+, Xic1 }
=P{gi—1(si—1 + (1 —v:)X;) > V2H and g;—1(si—1 — v X;)
>V2H | X1 = X7, X = X0 X1, -, Xic1 )
< P{gi-1(si-1 + Xi) > V2H or
Gic1(sic1 — Xi) > V2H | X1 = X7, .., Xon = X0 X1, -+ X1}
<2-2-3pu,
in view of (11) and our assumption about the distribution of X;’s. Hence,
P{gi_l(si +X;) > V2H and gi—1(si) > V2H
forallm <i<2m|X;=X7,..., X, =Xp}

is at most (12x)™. This, together with the obvious observation |{s € Z :
gm(s) > V2HY| < (v/2H)™!, allows us to estimate the probability of £ as

P(E) < P(E°) + 2™ (V2H) L (120)™ < exp(—2Mn) + 2™ (V2H) ™ (12p)™

By our definition of the parameters u, H, m, the rightmost quantity is less than
exp(—Mmn) for all sufficiently large n. The proof is complete. O

Proof of Theorem 4.2. Fix any admissible parameters
€ (0,1, pe(0,1/2], e€(0,p), K,M>1.

The proof of the theorem is essentially a combination of Proposition 4.5, which
provides a rough bound on the /,,-norm which depends on M, and subsequent
application of Proposition 4.10 to get a refined bound.
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We define
C'4.4

min(d,1/2) p

and let ¢ be the smallest positive integer such that (JD/\/§ +1— p)q < L7h
Further, define a = a(p, €) as the smallest number in [1/2,1) which satisfies

_ 1—p+e/2\/*
(1=p+e) “"\N1l-p+e

and set € := (1 — a)/(2q). Now, we fix any n satisfying

L:= L4.5(2M7p75a€/2)7 E::

_ 11— 1/4

min(4,¢,1/2)n > 1, na < <p—|—€) ,
1—p+e/2

n > N4.10 (pv gv ma’X(16§a L)v éa 2M), n > ’I’L4'5(2M,p, 5’ 8/2)7

fix 1 <N <(1-p+e)™", and define ¢ := [an]. It can be checked that with
the above assumptions on parameters, we have (1—p-+¢/2)¢ < (1—p+e)*//n.

Further, we fix any non-negative function f € ¢1(Z) with || f|; = 1 and
such that logy f is n-Lipschitz for n = n4.10(p, €, max(16}~2, L),é, 2M). Note
that, by the above, (1 —p+¢/2)!||fllce < L(N+/n)~!, and by Proposition 4.5,
the event

Eis = {HfA,p,ZHoo < L(N\/ﬁ)il}

has probability at least 1 — exp(—2Mn).

Further, we split the integer interval {¢,¢ + 1,...,n} into ¢ subintervals,
each of cardinality at least ”52‘” =en. Let £ <141 <ip <--- < iy =n be the
right endpoints of corresponding subintervals. Observe that by Lemma 4.4, for

any k > £ and any integer interval I of cardinality IV, we have the deterministic
relation

Cus _ R
2 ) < e s~ Vi

by our definition of R. This enables us to apply Proposition 4.10. Applying

Proposition 4.10 to the first subinterval, we get that, conditioned on the event
&y := &4 5, the event

&1 i= {1l < 2R EE) |

has probability at least 1 — exp(—2Mn). More generally, for the j-th sub-
interval, the application of Proposition 4.10 gives

P(Sj | Sj_l) >1—exp(—2Mn),

where for each 1 < j < g,
max IGE, V2+1-p)L
SwZ{W%mﬂmﬁ x( %%i M)}
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Taking into account our definition of g,

€4 = {Ifapnlloe < AL},

In view of the above, the probability of this event can be estimated from below
by 1—(g+1) exp(—2Mn), which is greater than 1—exp(—Mn) for all sufficiently
large n. It remains to choose

L4_2 = 16E U

5. Proof of Theorem A

Let us recall the definition of a threshold which we considered in Sec-
tion 2. For any p € (0,1/2], any vector z € S~ ! and any parameter L > 0,
we define the threshold T,(x,L) as the supremum of all ¢ € (0, 1] such that
E(Z?Zl bixi,t) > Lt, where bq,...,b, are independent Bernoulli(p) random
variables. Note that 7,(x, L) > %(1 —p)™. On the other hand, as a consequence
of the Lévy—Kolmogorov—Rogozin inequality (Lemma 3.1), we obtain

LEMMA 5.1. For everype (0,1/2], §,v€(0,1], there are K51 = K5 1(p, d,v)
> 0 and Ly = Ls1(p,d,v) > 1 with the following property. Let n > 2,

L > L5, and let x € Incomp,, (0, ). Then T,(x,L) < %

Proof. Take any vector = € Incomp,,(d,v), and let I C [n] be a subset of
cardinality |én] corresponding to the largest (by absolute value) coordinates
of z, i.e., such that |z;| > |z/| for all i € I and ¢ € [n]\ I. Since z is (4, v)-
incompressible, we have ||z 1},)\7[|2 > v, whence there is £ € [n] \ I such that
|z¢| > v/v/n. Thus, |z;| > v/y/n for all i € I. Applying Lemma 3.1, we get

ﬁ(;bil’iv%) §£<;bz‘xi,\%) :‘C(\/u?lgbiwi,t) Sistnj

for all t > 1 for some C' > 1 depending only on p. It remains to choose

Ly, = o and K5, := max (5 1/2, V). The result follows by the definition
of the threshold. O

Remark 5.2. The above lemma can also be obtained by applying results
of [13], namely, the property that the least common denominator of an incom-
pressible vector is of order at least /n.

Let us discuss what is left in order to complete the proof of Theorem A.
The standard decomposition of S”~! into sets of compressible and incompress-
ible vectors and the reduction of invertibility over the incompressible vectors
to the distance problem for the random normal (see description in Section 2),
leave the following question: given a number T > (1 — p + €)™, show that the
probability of the event {7,(Yy,L) € [T,2T)} is close to zero. Here, Y, is a
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unit normal vector to the first n — 1 columns of the matrix B, (p) + s 1,1, .
Assuming that N is a discrete approximation of the set of incompressible
vectors with the threshold in [T',2T"), we can write

P{7,(Y,, L) € [T,2T)}

< |N7| felj%/}; IP’{:U is “almost orthogonal” to coly,... ,coln_l}.

(We prefer not to specify at this stage what “almost orthogonal” means quan-
titatively.) Most of the work related to estimating the cardinality of Ny was
done in Section 4. Here, we combine Corollary 4.3 with a simple counting
argument giving an estimate of the cardinality of a part of the integer lattice
Z™ with prescribed bounds on the vector coordinates; see Corollary 5.5. The
probability estimate for the event

{CL‘ is “almost orthogonal” to coly, ..., coln,l}

would follow as a simple consequence of the Tensorization Lemma 3.2 and
individual small ball probability bounds for (x, col;). Note that if the threshold
of the vector x was contained in the range [0,CT), such estimates would
immediately follow from the definition of the threshold. However, the vector
x € Nr is only an approximation of another vector with a small threshold.
Thus, to make the conclusion, we will need a statement which asserts that for
a given vector, one can find its lattice approximation which preserves (to some
extent) the anticoncentration properties of the corresponding random linear
combination:

LEMMA 5.3. Let p € (0,1/2], let y = (y1,-..,yn) € R™ be a vector, and
let L >0, A € R be numbers such that for mutually independent Bernoulli(p)
random variables by,...,b,, we have IP’{| Yo by — )\| < t} < Lt for all
t > \/n. Then there exists a vector y' = (y,...,y.,) € Z" having the following
properties:
1Y = ¥/ lloc < 15
P{| > by, — M| <t} < Css Lt for all t > \/n;

ﬁ( oy by, \/ﬁ) > Cs.3 E( Yoy biyi, \/ﬁ)a
| DY~ i y{‘ < Cs3v/n.

Here, Cs.3,c53 > 0 are universal constants.

The first and the last property of ¢/ will be used to estimate the Euclidean
norm of (B, (p) + 51,1, )(y —%): the bound on ||y — /||« provides control of
|(Bu(p) = p1u1])(y — ') l2 while the relation | 37, s — S0, g < Cov/m
implies ||(s + p) 1,1,) (y — y’)”2 < Cs3|s + p|n.

The proof of Lemma 5.3 is based on a well-known concept of the random-

ized rounding [10]. (See also [1], [6], [9] for some recent applications.) The
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first use of this method in the context of matrix invertibility is, to the best of
author’s knowledge, due to G. V. Livshyts [9]. In [9], the randomized rounding
is used to choose a best lattice approximation for a vector, which in turn is
applied to construction of e-nets; our work follows the same principle. We
note that, unlike [9], in the present paper we need to explicitly control the
Lévy concentration function and the small ball probability estimates for the
approximating vector (the second and the third property in the statement).

Proof of Lemma 5.3. Fix a vector y € R™, and let b1, ...,b, be indepen-
dent Bernoulli(p) random variables. Further, let &1,. .., &, be random variables
jointly independent with bq,...,b,, such that for each i < n, & takes values
|yi| and |y;] + 1 with probabilities |y; | + 1 —y; and y; — |y; ], respectively (so
that E&; = y;). Define random vector 3 := (&1,...,&,), and observe that with
probability one, ||y — ¥lloco < 1.

Fix for a moment any w > 0, and denote by S(2w) the collection of all
(vi)i—; € {0,1}™ such that | Y1 | viy; — A| > 2w. Take any (v;)l; € S(2w).
Note that > ;" ; vi(y; — ¥;) is the sum of independent variables, each of mean
zero and variance at most 1/4. Hence, by Markov’s inequality,

P{‘im@ —/\‘ < w} SP{‘iUz‘(yi—gi)

Thus, if S(w) is the (random) collection of all vectors (vi)~y € {0,1}" such
that |Z?:1 Vil — )\| > w, then the above estimate immediately implies the
following for an arbitrary subset E C {0,1}™:

E Z pzi vi(l — p)nfzi v
(071 E(S@w)\ B\ (w)
=EE1in, e(su)\BNG(w))

n
= o2 B Lo, eseu)\B}

n (% n— - Vg
(v))_ 1 €ESCW)\E

> }<—”
w .
~ 4uw?

We take E = S(4w) in the above relation and apply it for w = 2771, j > 1,
so that

By pTea gy
(vi)7_, €S(26)\S(¢)

I=1 (vi)p_, €(SI\S(2T+1)\S (1)



624 KONSTANTIN TIKHOMIROV

=K Z Z pzi yi(l — p)n*Z,- v;
Jj=1 (vi)?:le(S(Qjt)\S(2j+1t))\§(2j_1t)
00 n . e
= Z_; 22542 Z pi (1—p) 2

(vi), €S(290)\S(29+11)

n L2+t
- Z 22542

B 2Ln
ot
for any t > /n, where we have used that, by the assumption on vy,
n
> T (1—p) e < P{| Y by —A| < 271t} < L2t
i=1

(i) €S(P\S (1)
The relation implies that for all ¢ > \/n,

E max (O, Z pi V(1 — p)nT X
(v, €{0,1}"\S(t)
- >, pEivi(l—p)n X vi)
(vi)7,€{0,1}"\S(2t)

2Ln
< —.
. 7

An application of Markov’s inequality, with ¢t = v/n, 2y/n,4y/n, ..., gives

P{There exists integer £ > 0 such that

> ) TR gy 2 2L 2VR

(vi)?:le{(),l}"
LY s
(vi)j €{0,1}"\S (21 TF /n)

1 7
—2k
<3 2 < R
k=0
Together with the condition on the small ball probability of random sums
>y biyi — A, this implies that there is an event £ measurable with respect
to 3 and with P(£1) > 9/16 such that for any realization 3° of 3 from &1,

P{)ibigi—A) gt\g:gﬂ} <CL forallt>n
=1

for some universal constant C' > 0.
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Further, we will derive lower bounds on the anticoncentration function of

the sum > ; b;y;. The argument is very similar to the one above, and we will
skip some details. Let \' € R be a number such that

E(Z biyi, ﬁ) - Z p2i V(1 — )"
=1 (v:)7= 1 €{0,1}"\ Sy (V)

where

Sy (v/n) == {(vi)?zl e {0,1}": ‘iviyi -

> \/ﬁ}
Further, denote
Sy (2vn) == {(vi);gl e {0,1)" : \Zn:vg - /\” > 2\/5}.
i=1

Take any (v;)"_; € {0,1}" \ Sy (y/n). Since the variance of the random sum
Sy viys — ¥s) is at most n/4, we get

P{‘ > il — /\" > 2\/5} < IP’{‘ > wilyi — )| > \/ﬁ} < %
i=1 i=1
Hence,
E > P (L p) TR
(v:)€({0,13™\Sy (vn))NSy/ (2y/7)
= i Z piVi(1 — )T,

(vi)€{0,1}"\ Sy (v/n)
so that with probability at least 2/3, we have

Z pZi vi(1 — p)”—zi v
(v:)€({0,1}\ Sy (vn))NSys (2¢/n)

3 Vi n—>.v;
< 1 Z le (1-p) 2%,
(vi)€{0,1}"\ S/ (v/n)

(12)

Denote by &; the event that (12) holds. (Observe that the event is measurable
with respect to 3.) Note that for any realization 3° of 7 from the event &, we
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have

Yo pE (=) TR s a0 vi<aymy

(vi)e{0, 1}
S R R
(vi)€{0,1}"\ S/ (V')

= iﬁ(ébiyi, \/ﬁ)

This immediately implies

£(35000) 2 (S ),

As the last step of the proof, we note that since the variance of the sum

|

Yoy (yi — i) is at most n/4, there is an event £3 measurable with respect to y
and of probability at least 37/48 such that everywhere on &s, | Yo (i —§1)| <

V12n/11.

Finally, since 3 — P(&1) — P(&2) — P(€3) < 1, there exists a realization 3’
of the random vector y from the intersection & N& N Es. It is straightforward
to check that y satisfies all conditions of the lemma. ([

Given any p € (0,1/2], s € [-1,0], any z € S" ! and L > 1, we construct
integer vector Y (p,x, L, s) € Z" as follows: Take y = (y1,...,Yyn) := % x,
and observe that, by the definition of the threshold,

L
<t} LTy, )t for all t > /n.

{’szyz—i—sz% NG

Hence, by Lemma 5.3, there is a vector Y (p,x, L, s) € Z" satisfying
Vn
e~ Yo L),
Cs5.3LTp(x,L
® P{| Zz 10:Y5 (p, @, L 3)"‘7’(9;[,) Zz 1xz| <t}<753 \/f(m )tforallt>\f
4 E(Zizl szz(p7xaL>3)a \/>) > C5_3L7;)(.’L',L)7
hd {% E?:l Ti — Z?:l Yi(p7$7 L7 S)’ < C’E).S\/ﬁ-

The vector with the above properties does not have to be unique, however,

from now on we fix a single admissible vector for each 4-tuple (p,z, L, s).

LEMMA 5.4. For any n > 2, there is a subset I1 of permutations on [n]
with |II| < C?,, having the following property. Let p € (0,1/2], 6 € (0,1/2],
s € [-1,0], v € (0,1], L > 1, and let x € Incompn(é v). Then there is

o = o(x) € II such that the vector i = (Y, (p,z, L, s)) ., satisfies
~ 14

> - 1 | <
’y’>7;,(a:,L) for all i < on
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and
il 9(i+1)/2
Yi| < —=———
N Tp(z, L)

Here, Cs.4 > 0 is a universal constant.

+1, i>2776n, 0<j<logy(dn).

Proof. If én < 1, then the statement is empty, and IT can be chosen
arbitrarily. We will therefore assume that dn > 1. We start by defining the
collection of permutations II. Let jo > 0 be the largest integer such that
én > 270, For every collection of subsets [n] D Iy D -+ D I, with |[;| =
|2776n], 7 =0,...,jo, take any permutation ¢ such that U(HZ_jénH) =1,
j=0,...,750. We then compose II of all such permutations (where we pick a
single admissible permutation for every collection of subsets). It is not difficult
to check that the total number of admissible collections [n] D Iy D --- D I,
hence the cardinality of II, is bounded above by C™ for a universal constant
C > 0.

It remains to check the properties of II. Take any vector = € Incomp,, (6, v/),
and let [n] D Ip(x) D -+ D Ij,(x) be sets of indices corresponding to largest
(by absolute value) coordinates of x. Namely, I;(x) is a subset of cardinality
|2776n | such that |x;| > |z,| for all i € I;(z) and ¢ € [n]\ I;(x). Let o € IT be
a permutation such that

o([[2776n]]) = I;(z), j=0,....j.
Set g = (Ya(i)(pax)lh 8))?:1'
By our construction, |z,;)| > [z for all i < dn < £. Since z is

> T =V

{>6n

incompressible,

whence there exists an index £ > dn such that |z, > v/y/n. Thus, |z, ] >
v/y/n for all i < dn, whence, in view of the definition of vector 7,
v
Uil > =——<—1 forall i <dn.
|yl| 7;)(33’ L) —=
The upper bounds on coordinates y; are obtained in a similar fashion.
Take any j € {0,...,jo}. Since |[7,(;| < 24| for all £ < 2796n < i, and x
has Euclidean norm one, we get

Zo(s)| < L2116J’ i>2776n.
~Ion

1 NV el
V[2776n] Tp(x, L) T V8 Ty(z, L)

+1, i>2790n. O
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Let n > 2,0 € [1/n,1/2] and v € (0,1]. Further, let 7' € (0,1] be a
number such that 5
T > 2.
Define a subset A(n,d,v,T) C Z" as follows: We take A(n,d,v,T) = A; X
Ay x -+ x A, where
e for all 1 < j <logy(én) and 2776n < i < 279+15n, we have

e [- [£52] 1 (252 ]\ o | 4.2 1)
e for ¢ > dn, we have

A =7nN {— {%-‘ -1, {%-‘4_1];

v [= 4] [ = 1) 1] -]

Lemma 5.4 immediately implies

COROLLARY 5.5. For any n > 2, there is a subset II of permutations
on [n] with |II| < C?,, having the following property. Let p € (0,1/2], ¢ €
[1/n,1/2], s € [-1,0], v € (0,1], L > 1, T > 0, and let x € Incomp,,(d,v)
be such that T/2 < Tp(x,L) < T. Then there is 0 = o(z) € II such that the
vector (YU(i) (p,x, L, s))?zl belongs to A(n,d,v,T).

The next crucial observation, which will enable us to apply results from
Section 4, is

LEMMA 5.6. For any ¢ € (0,1/2], v € (0,1], there are ns.¢ = ns6(0,v) >
1 and K56 = K54(0,v) > 1 with the following property. Take any n > ns.g,
T € (0,v/2], and set N := | %| —1. Then the subset A(n,d,v,T) defined above
is (N, n, K5.,0)-admissible (with the notion taken from Section 4).

Now, everything is ready to prove the main result of the paper.

Proof of Theorem A. Fix any p € (0,1/2], ¢ € (0,p/2], and assume that
n > nze(e,p) and /n > 2K5,/v36(e,p). (We will impose additional restric-
tions on n as the proof goes on.) Fix any s € [—1,0]. Our goal is to estimate

from above
P{Smin(Bn(p) + s1,1,) < t/v/n}
for any t > 0. Set
d:=d35(e,p), v:i=vs6(e,p), 7 :="36(c,D)
Applying formula (2) and Proposition 3.6, for any ¢ < yn, we get
P{smin(Ba(p) +51a1,) < t/vn}
<(1-p+e)"+ %]P’{Kcoln(Bn(p) +51,1)),Y,)| < t/v},
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where Y,, is a unit random vector measurable with respect to

coly(Br(p)), ..., col,—1(Bn(p))

and orthogonal to
span {coly (B, (p) + s1,1)),...,col,_1(Bn(p) + s 1,1,)}.

Applying Proposition 3.6 the second time, we obtain that the event {Yn €
Comp,, (9, 1/)} has probability at most (1 —-p+ E)n. Further, for every vector
z € Incomp,,(d,v), according to Lemma 5.1, Ty(z,L) < If‘)fnl whenever L >

L5‘1 . Set

4Ly )

Cr 3V

L := max <L5‘1,
Then, in view of the above, we have

P{smin(Bn(p) + 5 1a1,) <t/vn} < (1+6 ) (1-p+e)"

1 [o.¢]
+ 5 ]P’{Yn ¢ Incomp,,(6,v) and |(col,(B,(p) + s1,1,)),¥,)| < t/v
Jj=0

and % < Tp(Yn,L) < %}

Further, for any j > 0, using the independence of Y;, and col,, (B, (p) +s1,1,)
and the definition of the threshold, we can write

ot

T 27 7-1Kx 271 K5 1
IP’{|<coln(Bn(p) +51,10), Ya)l < t/v and 2S5l < (v, 1) < 2K }

< Lmax (B ) B{ 2 < T (Y, 1) < 27

——

Hence, for every t < yn,

P{smin(Bn(p) + s1,1,) < t/v/n}

((1 —pJ\;;L‘)”Ks.l’ Z)

<(+6N(1-pte)" + Cmax
1 [ -7 logy(1—p+e)]

+ 3 ]P’{Yn € Incomp,, (4, ) and % <Tp(Yp, L)< 2_jK5.1}_

B

j=0
Fix any j € {0,1,...,|—nlogy(1 —p+¢)]}. Set T := % and

N = {%J -1, A:=An,dvT),

M :=log (8(0 + C5.3)C5.2C5.5(1 + C5.3)Cs.4 LS.GLV)a
where C' > 0 denotes the constant such that

P{|B}(p) —pl,_1l)|| > Cy/n} <277
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(which exists, according to Lemma 3.4). Further, let II be the set of per-
mutations from Corollary 5.5. Take any = € Incomp,,(d,v) such that T'/2 <
Tp(z, L) < T. Then the vector Y (p,z, L, s) satisfies (see page 626)
(@) |25 2= Y, L,s)| < 1;
n n n Chs. s

(b) P{| X1y b Yi(p,a, L,s) +s % S <7} < %RLT 7 for all

T >
(¢) L(X0 b Yi(p,a, L, s),/n) > 55 LTp(a, L) > S3LT > B3l
(d) | > % zi— > Yi(p,x, L, s)| < Cs3v/n.

Note that a combination of (b) and (d) gives

P{‘ zn:biYi(P,ﬂfyLvS) ts Zn:Yi(p’ﬁ’L’ S)) = T}
i=1 i=1

< Cs35(14+Cs3) LT
- Vn

7 for all 7 > /n.

Define the subset D C A as

cs3 Ly

AN and

Di={yeA; ﬁ(ibiyiy\/ﬁ) >
i=1

P{( ibiyi +s iyz
i=1 i=1

and let N7 be defined as

Css(1+Cos) LT
< <
= T} = NG

7 for all 7'2\/5},

Nr:={y €Z": (You))i=; € D for some o € II}.

Then, by Corollary 5.5 and the above remarks, Y (p,z,L,s) € N for every
z € Incomp,, (6, v) with T/2 < Tp(z, L) <T. Set Q@ :={z € R": |Y 1" 2| <
Cs3y/n}. Then the last assertion, together with properties (a) and (d) above,
implies

vnooo )
{%(x,L)x : x € Incomp,,(d,v), T/2 <Ty(z,L) < T} CNr+[-1,1]"nQ.

Thus, we obtain the relation

P{Yn € Incomp,, (0, v) and % < Tp(Yn, L) < 2_3K5.1}

<l

< P{There exists y € N7 + [-1,1]" N Q
such that (B (p) + s1,-11, )y = 0}.
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Now, let us estimate the probability that ||(B}(p) + s 1,11, )yl|2 is small
for a fixed y € Np. By our definition of the set N, we have

P{|(rowi(Bp(p) + s 1n11),9)| < 7}

<M\/C%5'3)LTT forall 7>+/n and k<n-—1.

Hence, applying Lemma 3.2, we get

P{|[(Br(p) + s Ln-11,)ylls < 7v/n =1}

< (Cs2 L\%“)LT T)n_l for all 7 > /n.

n

Observe that for any z € [—1,1]" N Q, we have
I(Bh(p) + 5 1n-11,)zll2 < [|2]l2 | Ba(p) = pLa—1ly [l + |5 + ol [[1a-11, 2l2
< \/EHB’I]’-L<p) _pln—lle + Cs.3m,

where we have used that s € [—1,0]. Then the above relations, together with
a net argument, imply

PP{There exists y € N7 + [—1,1]" N Q such that (B}(p) + s Ly11])y = 0}
< P{[By(p) —pln-1l, |
> Cv/n} + INr| max P{|[(B,(p) + s 1n-11,)yll> < Cn+ Csn}
YeNT

< 27" 4 [N | (2(C + C5.3)Cy5Cs5(1 + Cs5) LT)"

The last — and the most important — step of the proof is to bound from
above the cardinality of N7. In view of Corollary 5.5 and the definition of D
and Np, we have

INT| < CF4|D].

Further, observe that by Lemma 5.6, the set A is (IV,n, K5, 0)-admissible.
Hence, Corollary 4.3 is applicable, and the definition of D gives, for all n large
enough,

|D| < e MM A| < e MM (K5 N

Combining this with the above relations and recalling that N = L%J — 1, we
obtain

P{There exists y € N7 + [~1,1]" N Q such that (B, (p) +s1,-11, )y = 0}
<27" 4 e_Mn(Ks.GN)nC?.aL (2(0 + C5.3)C3.2C055(1 + Cs.5) LT)TL?l
<27+ e MM (V2" Ks ) (2(C + C5.3)Cs2C55(1 + Cs.5)Csa K s L)
<27+ VN2 Ks,

for all sufficiently large n, where the last relation follows from the choice of M.
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Returning to the small ball probability for smin(Bn(p) + 51,1, ), we get
P{smin(Bn(p) + s1al,) <t/vn} < (1467 (1-pte)"

L (1—p+5)nK51 t)
+ 0 max( vn ‘v
nio—n -n
5(2 +vn27"/Ks.1)
<(1—p+2e)" +C.pt

_|_

all sufficiently large n. Since € € (0, p/2] was chosen arbitrarily, the result
OWS. U
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