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Singularity of random Bernoulli matrices

By Konstantin Tikhomirov

Abstract

For each n, let Mn be an n × n random matrix with independent ±1

entries. We show that P{Mn is singular} = (1/2 + on(1))n, which settles

an old problem. Some generalizations are considered.

1. Introduction

Let X1, X2, . . . , Xn be independent vectors, with each Xi uniformly dis-

tributed on vertices of the discrete cube {−1, 1}n. What is the probability that

X1, . . . , Xn are linearly independent?

The question has attracted considerable attention in the literature. It can

be equivalently restated as a question about singularity of an n×n matrix Mn

with independent ±1 entries. J. Komlós [7] showed that P{Mn is singular} =

on(1). Much later, the bound P{Mn is singular} ≤ 0.999n was obtained by

J. Kahn, J. Komlós and E. Szemerédi in [5]. The upper bound was sequentially

improved to 0.939n in [15] and (3/4+on(1))n in [16] by T. Tao and V. Vu, and

to (1/
√

2 + on(1))n by J. Bourgain, V. Vu and P. Wood in [3].

It has been conjectured that

(1) P{Mn is singular} =

Å
1

2
+ on(1)

ãn
.

(See, for example, [3, Conj. 1.1], [20, Conj. 7.1], [21, Conj. 2.1] as well as

some stronger conjectures in [2].) In this paper, we confirm the conjecture

and, moreover, provide quantitative small ball probability estimates for the

smallest singular value of Mn. We extend our analysis to random matrices

with Bernoulli(p) independent entries. Let 1n denote the n-dimensional vector

of all ones. The main result of this paper can be formulated as follows.

Theorem A. For every p ∈ (0, 1/2] and ε > 0, there are np,ε, Cp,ε > 0

depending only on p and ε with the following property. Let n ≥ np,ε, and
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let an Bn(p) be n × n random matrix with independent entries bij , such that

P{bij = 1} = p and P{bij = 0} = 1− p. Then for any s ∈ [−1, 0],

P
{
smin(Bn(p) + s 1n1>n ) ≤ t/

√
n
}
≤
(
1− p+ ε

)n
+ Cp,ε t, t > 0.

It is easy to see that the probability that the first column of Bn(p) is equal

to zero is (1− p)n. Thus, the theorem implies that, for a fixed p ∈ (0, 1/2],

P
{
Bn(p) is singular

}
=
(
1− p+ on(1)

)n
,

and further, when applied with p = 1/2 and s = −1/2, it gives (1).

2. Proof strategy

The proof of upper bounds on the probability of singularity of random

discrete matrices (i.e., matrices with entries taking a finite number of values)

developed in [5] and later in [15], [16], [3] uses, as a starting point, the relation

P
{

the matrix with columns X1, . . . , Xn is singular
}

= eon(n) P
{

the matrix has rank n− 1
}

= eon(n)
∑
V

P(AV ),

which holds under rather broad assumptions on the distributions of the dis-

crete random vectors X1, . . . , Xn [3]. Here, the summation is taken over

(finitely many) hyperplanes V such that the probability of AV — the event that

X1, . . . , Xn span V — is non-zero. The set of the hyperplanes V is then parti-

tioned according to the value of the combinatorial dimension which is defined

as the number d(V ) ∈ 1
nZ such that max

i
P{Xi ∈ V } ∈

(
C−d(V )−1/n, C−d(V )

]
,

where C is some constant depending on the distribution of Xi’s. The sum of

probabilities corresponding to a given combinatorial dimension is estimated in

terms of probabilities P{Yi ∈ V } for specially constructed random vectors Yi.

For some discrete distributions, in particular, for matrices with independent

and identically distributed entries with the probability mass function

f(m) =

{
1
4 if m = ±1,
1
2 if m = 0,

upper bounds for the singularity obtained using the strategy are asymptotically

sharp as was shown in [3].

Methods providing strong quantitative information on the smallest sin-

gular value of a random matrix were proposed in the papers [12], [18]. As a

further development, the work [13] established small ball probability estimates

on smin of any n × n matrix An with independent and identically distributed

normalized subgaussian entries of the form P{smin(An) ≤ t/
√
n} ≤ cn + Ct,

t > 0, where C > 0 and c ∈ (0, 1) depend only on the subgaussian moment.
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Thus, [13] recovered the result of [5], possibly with a worse constant. The key

notion of [13] is the essential least common denominator (LCD) which mea-

sures “unstructuredness” of a fixed vector (x1, . . . , xn) and is defined as the

smallest λ such that the distance from λx to the integer lattice Zn does not

exceed min(c′λ‖x‖2, c
√
n). LCD can be used to characterize anticoncentration

properties of random sums
∑

i aijxi. (In that respect the approach of [13]

is related to the earlier paper [18], where the anticoncentration properties of

discrete random sums were connected with existence of generalized arithmetic

progressions containing almost all of {x1, . . . , xn}.) It was proved in [13] that

for any unit vector x, P
{∣∣∑

i aijxi
∣∣ ≤ t

}
≤ Ct + C

LCD(x) + e−cn for any t > 0

(see also [14]). This relation, combined with the assertion that the LCD of a

random unit vector normal to the linear span of the first n−1 columns of An is

exponential in n, already implies that An is singular with probability at most

e−cn. Moreover, an efficient averaging procedure (which we recall below) used

in [13] allows one to obtain strong quantitative bounds on smin(An). The LCD

of the random unit normal is estimated with the help of an elaborate ε-net

argument.

The approach that we use in this paper is partially based on the methods

used in [13] (and in [8]), while the principal difference lies in estimating anti-

concentration properties of random sums. The starting point is the relation

(taken from [13])

P
{
smin(An) ≤ t/

√
n
}
≤ P

{
‖Anx‖2 ≤ t/

√
n for some x ∈ Compn(δ, ν)

}
+ P

{
‖Anx‖2 ≤ t/

√
n for some x ∈ Incompn(δ, ν)

}
≤ P

{
‖Anx‖2 ≤ t/

√
n for some x ∈ Compn(δ, ν)

}
+

1

δ
P
{
|〈coln(An), Yn〉| ≤ t/ν}

}
,

valid for any n × n random matrix An with the distribution invariant under

permutations of columns. Here,

• Yn is a random unit vector orthogonal to the linear span of col1(An), . . . ,

coln−1(An);

• Compn(δ, ν) is the set of compressible unit vectors defined as those with the

Euclidean distance at most ν to the set of δn-sparse vectors; and

• Incompn(δ, ν) = Sn−1 \ Compn(δ, ν) is the set of incompressible vectors.

In the above formula, δ, ν ∈ (0, 1] can be arbitrary, although for our proof we

take both parameters small (depending on the choice of ε in the statement of

our main result).

The first summand in the rightmost expression — the small ball proba-

bility for inf
x∈Compn

‖Ax‖2 — can be bounded with help of an argument which
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is completely standard by now. For the reader’s convenience, we provide the

estimate together with a complete proof in Section 3.

The second term — P
{
|〈coln(An), Yn〉| ≤ t/ν

}
— crucially depends on the

structure of the random normal Yn. In [13], the authors provided an explicit

characterization of “unstructured” vectors in terms of the LCD. In contrast,

in our approach we make no attempt to obtain a geometric description of

vectors with good anticoncentration properties. For each unit vector x and

a parameter L, we introduce the threshold Tp(x, L) which is defined as the

supremum of all t ∈ (0, 1] such that L
(∑n

i=1 bixi, t
)
> Lt, where, b1, . . . , bn

are independent Bernoulli(p) random variables. Here, L(·, ·) denotes the Lévy

concentration function, defined as L(Z, t) := supλ∈R P{|Z − λ| ≤ t}, t ≥ 0, for

any real valued random variable Z. The threshold can be viewed as a lower

bound of the range of t’s for which a corresponding random linear combination

admits “good” anticoncentration estimates. Thus, to show that Bn(p)+s1n1>n
is singular with probability (1 − p + on(1))n, it is sufficient to check that the

threshold of the random normal Yn is at most (1−p+on(1))n with probability

at least 1 − (1 − p + on(1))n. Note that this approach can be related to the

inverse Littlewood–Offord theory started in [18], although here we are only

interested in estimating from above the “size” of the set of potential normal

vectors with large thresholds, rather than giving an explicit description of this

set. (In that respect, our strategy can be related to theorems in [17, §3],

however, the actual proofs are very different.)

To estimate the threshold, we apply a procedure which can be called

“inversion of randomness” and which we briefly describe below. We would like

to make the description as non-technical as possible, and for this reason we

omit any discussion of the choice of parameters and other issues of secondary

importance. Take any T with T−1 � (1 − p + on(1))−n, and let DT be the

set of all (δ, ν)-incompressible unit vectors with the threshold falling into the

interval [T, 2T ). In order to show that the probability of the event {Yn ∈ DT }
is close to zero, we construct a discrete approximation NT of DT , which is a

subset of elements of an n-dimensional lattice having the threshold of order T ,

and coordinates in a certain range. We then show that the event {Yn ∈ DT }
is contained in

ENT :=
{

There is a vector x ∈ NT “almost orthogonal” to col1, . . . , coln−1
}
,

where “almost orthogonal” should be understood in a specific sense which we

prefer not to discuss here. This implies

P{Yn ∈ DT } ≤ P(ENT )

≤ |NT | max
x∈NT

P
{
x is “almost orthogonal” to col1, . . . , coln−1

}
,
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and the proof is reduced to efficiently bounding from above the cardinality

of the discretization NT . The “inversion of randomness” is used to solve the

problem. We consider a random vector ξ uniformly distributed on a subset of

the lattice (whose cardinality is much easier to compute) containing NT , and

we show that with probability superexponentially close to one, the threshold

of ξ is much less than T , so that ξ /∈ NT . This allows one to bound |NT |
in terms of the cardinality of the range of ξ, times the factor e−ω(n). Thus,

instead of studying anticoncentration of random sums with fixed coefficients

satisfying certain structural assumptions, we consider typical anticoncentration

properties of sums with random coefficients ξi. It will be convenient to work

with the expression

Lb
( n∑
i=1

biξi, t
)

:= sup
λ∈R

∑
(vj)nj=1∈{0,1}n

p
∑
j vj (1− p)n−

∑
j vj1[−t,t]

(
λ+ v1ξ1 + · · ·+ vnξn

)
,

which is interpreted as the Lévy concentration function with respect to the

randomness of the vector b = (b1, . . . , bn) of independent Bernoulli(p) compo-

nents.

Let us state, as an illustration, a corollary of the main technical result of

this paper, Theorem 4.2, which deals with rescaled vectors distributed on the

integer lattice Zn:

Theorem B. Let δ ∈ (0, 1], p ∈ (0, 1/2], ε ∈ (0, p), M ≥ 1. There

exist nB = nB(δ, ε, p,M) ≥ 1 depending on δ, ε, p,M and LB = LB(δ, ε, p) > 0

depending only on δ, ε, p (and not on M ) with the following property. Take

n ≥ nB, 1 ≤ N ≤ (1− p+ ε)−n, and let

A := {−2N, . . . ,−N − 1, N + 1, . . . , 2N}bδnc × {−N,−N + 1, . . . , N}n−bδnc.

Further, assume that a random vector ξ = (ξ1, . . . , ξn) is uniform on A. Then

Pξ
{
Lb
(
b1ξ1 + · · ·+ bnξn,

√
n
)
> LBN

−1} ≤ e−M n.

Here, Lb(·, ·) denotes the Lévy concentration function with respect to b =

(b1, . . . , bn), a random vector with independent Bernoulli(p) components.

The crucial point of this theorem is that LB does not depend on M .

Essentially, this means that the probability can be made superexponentially

small in n as n grows, while LB stays constant. Because of the “inversion

of randomness,” a statement of this kind is translated into bounds for the

cardinality of the discretization of the sets of vectors DT with large thresholds

considered above.
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3. Preliminaries

Denote by ‖ · ‖q the standard `q-norm, so that∥∥(x1, x2, . . . )
∥∥
q

=

Å∑
i

|xi|q
ã1/q

, 1 ≤ q <∞,

and ∥∥(x1, x2, . . . )
∥∥
∞ = max

i
|xi|.

In particular, by `1(Z) we denote the space of all functions g : Z → R with∑
i |g(i)| <∞. We will say that a mapping g : Z→ R is L-Lipschitz for some

L > 0 if |g(t)− g(t+ 1)| ≤ L for all t ∈ Z.

The unit Euclidean sphere in Rn will be denoted by Sn−1. The support

of a vector y = (y1, . . . , yn) ∈ Rn is supp y := |{i ≤ n : yi 6= 0}|. The n-dimen-

sional vector of all ones is denoted by 1n. For an n× n matrix A, coli(A) and

rowi(A) are its columns and rows, respectively, and ‖A‖ is the spectral norm

of A. The smallest singular value of A is denoted by smin(A). We will rely on

the standard representation smin(A) = min
x∈Sn−1

‖Ax‖2.
The indicator of a subset of R or an event S is denoted by 1S . For any

positive integer m, [m] denotes the integer interval {1, 2, . . . ,m}. Further, for

any two subsets I, J ⊂ Z, we write I < J if i < j for all i ∈ I and j ∈ J . The

Minkowski sum of two subsets A,B of Rm is defined as the set of all vectors of

the form a+ b, where a ∈ A and b ∈ B. For a real number r, by brc we denote

the largest integer less than or equal to r, and by dre, the smallest integer

greater than or equal to r.

Everywhere in this paper, Bn(p) is the matrix with independent and iden-

tically distributed Bernoulli(p) entries, i.e., random variables taking value 1

with probability p and 0 with probability 1− p. Further, by B1
n(p) we denote

the (n− 1)× n matrix obtained from Bn(p) by removing the last row.

The Lévy concentration function L(ξ, ·) of a random variable ξ is defined

by

L
(
ξ, t
)

:= sup
λ∈R

P
{
|ξ − λ| ≤ t

}
, t ≥ 0.

We will need the following classical inequality.

Lemma 3.1 (Lévy–Kolmogorov–Rogozin [11]). Let ξ1, . . . , ξm be indepen-

dent real valued random variables. Then for any real numbers r1, . . . , rm > 0

and r ≥ maxi≤m ri,

L
( m∑
i=1

ξi, r
)
≤ C3.1r»∑m

i=1(1− L(ξi, ri))r2i

.

Here, C3.1 > 0 is a universal constant.
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We recall some definitions from [13]. Given δ ∈ (0, 1] and ν ∈ (0, 1],

denote by Compn(δ, ν) the set of all unit vectors x ∈ Rn such that there

is y = y(x) ∈ Rn with |supp y| ≤ δn and ‖x − y‖2 ≤ ν. (In [13], such

vectors are called compressible.) Further, we define the complementary set of

incompressible vectors Incompn(δ, ν) := Sn−1 \ Compn(δ, ν). We note that a

similar partition of the unit vectors was used earlier in [8].

Following an approach developed in [13], for any random matrix An with

the distribution invariant under permutations of columns, we can write

P
{
smin(An) ≤ t/

√
n
}
≤ P

{
‖Anx‖2 ≤ t/

√
n for some x ∈ Compn(δ, ν)

}
+ P

{
‖Anx‖2 ≤ t/

√
n for some x ∈ Incompn(δ, ν)

}
≤ P

{
‖Anx‖2 ≤ t/

√
n for some x ∈ Compn(δ, ν)

}
+

1

δ
P
{
|〈coln(An), Yn〉| ≤ t/ν}

}
,

(2)

where δ, ν are arbitrary numbers in (0, 1) (see [13, formula (3.2), Lemma 3.5])

and Yn is a random unit vector orthogonal to the first n − 1 columns of An.

A satisfactory estimate for the first term for sufficiently small δ and ν can be

obtained as a simple compilation of known results; see Proposition 3.6 below.

The following is a version of the tensorization lemma from [13].

Lemma 3.2. Let ξ1, . . . , ξm be independent random variables.

(i) Assume that for some ε0 > 0, K > 0 and all ε ≥ ε0 and k ≤ m, we have

P
{
|ξk| ≤ ε} ≤ Kε.

Then for each ε ≥ ε0,

P
{
‖(ξ1, ξ2, . . . , ξm)‖2 ≤ ε

√
m
}
≤ (C3.2K ε)m,

where C3.2 > 0 is a universal constant.

(ii) Assume that for some η>0, τ >0 and all k≤m, we have P
{
|ξk|≤η}≤τ .

Then for every ε ∈ (0, 1],

P
{
‖(ξ1, ξ2, . . . , ξm)‖2 ≤ η

√
εm
}
≤
Å
e

ε

ãεm
τm−εm.

Remark 3.3. The second assertion of the lemma follows immediately by

noting that the condition ‖(ξ1, ξ2, . . . , ξm)‖2 ≤ η
√
εm implies that |{i ≤ m :

|ξi| > η}| ≤ εm. For a proof of the first assertion, see [13].

Further, we recall a standard estimate for the spectral norm of random

matrices with independent and identically distributed subgaussian entries; for

a proof, see, for example, [19, Th. 5.39].



600 KONSTANTIN TIKHOMIROV

Lemma 3.4. For any M,L ≥ 1, there is CM,L > 0 depending only on M

and L with the following property. Let n ≥ 1, and let A be an n × n random

matrix with independent and identically distributed entries aij of zero mean,

and such that (E|aij |q)1/q ≤M
√
q for all q ≥ 1. Then with probability at least

1− exp(−Ln), we have ‖A‖ ≤ CM,L

√
n.

The following is an easy consequence of Lemma 3.2:

Lemma 3.5. For any p ∈ (0, 1/2], there is γ3.5 > 0 which may only depend

on p, such that for every ε ∈ (0, 1], n ≥ 2 and arbitrary s ∈ R and x ∈ Sn−1,

P
{∥∥(B1

n(p) + s 1n−11
>
n )x

∥∥
2
≤ γ3.5

√
εn
}
≤
Å
e

ε

ãε(n−1)
(1− p)(n−1)(1−ε).

Proof. Let b1, . . . , bn be independent identically distributed Bernoulli(p)

random variables. It is not difficult to check that

(3) L
( n∑
i=1

bixi, r
)
≤ 1− p

for some r > 0 which may only depend on p. For a proof of this fact, one may

consider two possibilities: first when the vector x has a “large” `∞-norm, in

which case the assertion follows by conditioning on all bi’s except the one cor-

responding to the largest component of x, and, second, when the vector x has

a “small” `∞-norm in which case, by the Central Limit Theorem, the random

linear combination is approximately normally distributed; see, for example, [4,

Lemma 2.1].

Applying the second assertion of the Tensorization Lemma to (3), we get

the statement. �

By combining Lemma 3.5 with an ε-net argument, we obtain a small

ball probability estimate for compressible vectors. The only difference from a

standard argument here is due to the fact that for s 6= −p, the matrix B1
n(p) +

s 1n−11
>
n has typical spectral norm of order Θ((s+ p)n) rather than Θ(

√
n) in

the simplest setting of a centered random matrix with normalized independent

entries. The net therefore has to be made “denser” in the direction 1n.

Proposition 3.6. For any ε ∈ (0, 1] and p ∈ (0, 1/2], there are n3.6 ∈ N,

γ3.6 > 0 and δ3.6, ν3.6 ∈ (0, 1) depending only on ε and p such that for n ≥ n3.6

and arbitrary s ∈ R,

P
{∥∥(B1

n(p) + s 1n−11
>
n )x

∥∥
2
≤ γ3.6

√
n

for some

x ∈ Compn(δ3.6, ν3.6)
}
≤
(
1− p+ ε

)n
.
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Proof. Choose any ε ∈ (0, 1] and p ∈ (0, 1/2], and fix s ∈ R. It will be

convenient to work with parameter s̃ := s + p. Without loss of generality, we

can assume that s̃ 6= 0. By Lemma 3.4, there is L > 0 which may only depend

on p such that for every n ≥ 2, the event

E :=
{
‖B1

n(p)− p 1n−11
>
n ‖ ≤ L

√
n
}

has probability at least 1− 2−n.

Given an ε̃ ∈ (0, 1] (which will be chosen later), define

δ := ε̃, γ := γ3.5
√
ε̃, ν :=

γ

32L
.

We shall partition the set Compn(δ, ν) into subsets S` of the form

S` := Compn(δ, ν) ∩
{
x ∈ Rn :

∑n

i=1
xi ∈

[ γ`
4|s̃|

,
γ(`+ 1)

4|s̃|

)}
, ` ∈ Z.

First, we observe that a standard volumetric argument, together with the

definition of compressible vectors, implies that for any ` ∈ Z, the set S` admits

a Euclidean
( γ
16L + 2ν

)
-net N` ⊂ S` of cardinality at most

( n
bδnc
)(

C′L
γ

)bδnc
, for

some universal constant C ′ > 0. By the definition of N` and S`, for any x ∈ S`
there is y ∈ N` such that ‖x−y‖2 ≤

( γ
16L+2ν

)
= γ

8L and
∣∣∑n

i=1(xi−yi)
∣∣ ≤ γ

4|s̃| ,

implying that∥∥(B1
n(p)− p 1n−11

>
n + s̃ 1n−11

>
n )(x− y)

∥∥
2

≤ ‖B1
n(p)− p 1n−11

>
n ‖

γ

8L
+ |s̃|

√
n− 1

γ

4|s̃|
<
γ
√
n

2

everywhere on E . Hence,

P
({∥∥(B1

n(p)− p 1n−11
>
n + s̃ 1n−11

>
n )x

∥∥
2
≤ γ

2

√
n for some x ∈ S`

}
∩ E
)

≤ |N`| max
x∈N`

P
{∥∥(B1

n(p)− p 1n−11
>
n + s̃ 1n−11

>
n )x

∥∥
2
≤ γ
√
n
}

≤
Ç

n

bδnc

åÅ
C ′L

γ

ãbδncÅe
ε̃

ãε̃(n−1)
(1− p)(n−1)(1−ε̃).

Observe further that for all vectors x ∈ Sn−1 with
∣∣∑n

i=1 xi
∣∣ ≥ 2L+2γ

|s̃| ,

everywhere on the event E we have

∥∥(B1
n(p)− p 1n−11

>
n + s̃ 1n−11

>
n )x

∥∥
2
≥ |s̃|

√
n− 1

∣∣∣ n∑
i=1

xi

∣∣∣− L√n > γ
√
n.

Thus, everywhere on E ,
∥∥(B1

n(p) − p 1n−11
>
n + s̃ 1n−11

>
n )x

∥∥
2
≥ γ
√
n for all

x ∈ S` with ` ≥ 8(L+γ)
γ or ` ≤ −8(L+γ)

γ −1. Combining all the above estimates,
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for some universal constant C > 0 we obtain

P
{∥∥(B1

n(p)− p 1n−11
>
n + s̃ 1n−11

>
n )x

∥∥
2
≤ γ

2

√
n for some x ∈ Compn(δ, ν)

}
≤ C(L+ γ)

γ

Ç
n

bδnc

åÅ
C ′L

γ

ãbδncÅe
ε̃

ãε̃(n−1)
(1− p)(n−1)(1−ε̃) + 2−n.

It remains to note that by choosing ε̃ = ε̃(ε) sufficiently small, we can

guarantee that the right-hand side of the above inequality is less than

C(L+ γ)

γ

Å
1− p+

ε

2

ãn−1
+ 2−n

for every n ≥ 2. Then the desired estimate will follow for all sufficiently large

n satisfying C(L+γ)
γ

(
1− p+ ε

2

)n−1
+ 2−n ≤

(
1− p+ ε

)n
. �

4. Random averaging in `1(Z)

The main goal of this section is to provide upper bounds on the cardinali-

ties of discretizations of sets of vectors with a given threshold Tp(·, L), discussed

in the second part of Section 2. According to our “inversion of randomness,”

we consider a random vector uniformly distributed on a subset of the integer

lattice Zn. We want to show that with probability 1−e−ω(n) the scalar product

of this vector with a vector of independent Bernoulli(p) variables has a small

threshold value (with respect to the randomness of the Bernoulli vector). First,

we define the range of the random vector on the lattice.

Let N,n ≥ 1 be some integers, and let δ ∈ (0, 1] and K ≥ 1 be some real

numbers. We say that a subset A ⊂ Zn is (N,n,K, δ)-admissible if

• A = A1 × A2 × · · · × An, where every Ai (i = 1, 2, . . . , n) is an origin-

symmetric subset of Z;

• Ai is an integer interval of cardinality at least 2N + 1 for every i > δn;

• Ai is a union of two integer intervals of total cardinality at least 2N and

Ai ∩ [−N,N ] = ∅ for all i ≤ δn;

• |A1| · |A2| · . . . · |An| ≤ (KN)n;

• maxAi < nN for all 1 ≤ i ≤ n.

Remark 4.1. The condition Ai ∩ [−N,N ] = ∅ for i ≤ δn, subject to

appropriate rescaling, is equivalent to the fact that the “potential” normal

vectors we consider are (δ, ν)-incompressible, hence at least bδnc components

of those vectors are separated from zero by ν/
√
n.

Let A = A1 × A2 × · · · × An ⊂ Zn be an (N,n,K, δ)-admissible set, and

let f(t) be any real valued function on Z. Fix any p ∈ (0, 1), and assume

that X1, X2, . . . , Xn are independent integer random variables, where each Xi
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is uniform in Ai. For every ` ≤ n, we define a random function fA,p,` by

fA,p,`(t) := Eb f
(
t+
∑̀
j=1

bjXj

)
=

∑
(vj)`j=1∈{0,1}`

p
∑
j vj (1− p)`−

∑
j vjf

(
t+ v1X1 + · · ·+ v`X`

)
,

(4)

t ∈ Z, where Eb denotes the expectation with respect to the randomness of the

vector b = (b1, . . . , bn) with independent Bernoulli(p) components. The central

statement of the section is the following theorem.

Theorem 4.2. For any δ ∈ (0, 1], p ∈ (0, 1/2], ε ∈ (0, p), K,M ≥ 1, there

are n4.2 = n4.2(δ, ε, p,K,M) ≥ 1, η4.2 = η4.2(δ, ε, p,K,M) ∈ (0, 1] depending

on δ, ε, p,K,M and L4.2 = L4.2(δ, ε, p,K) > 0 depending only on δ, ε, p,K

(and not on M ) with the following property. Take

n ≥ n4.2, 1 ≤ N ≤ (1− p+ ε)−n,

let A be an (N,n,K, δ)-admissible set, and let f(t) be a non-negative function

in `1(Z) with ‖f‖1 = 1 and such that log2 f is η4.2-Lipschitz. Then, with fA,p,n
defined above, we have

P
{
‖fA,p,n‖∞ > L4.2(N

√
n)−1

}
≤ exp(−M n).

The crucial feature of the theorem and the most important technical el-

ement of this paper is that the bound L4.2(N
√
n)−1 on the `∞-norm of the

averaged function does not depend on the parameter M which controls the

probability estimate. In other words, for a given choice of δ, ε, p,K, which

determine the value of L4.2, the probability bound can be made superexponen-

tially small in n.

It is not difficult to check that with the only assumption ‖f‖1 = 1 on the

function f the above statement is false. For example, take f to be the indicator

of {0}, and assume that

A = {−2N,−2N + 1, . . . ,−N − 1, N + 1, . . . , 2N}bδnc

× {−N,−N + 1, . . . , N}n−bδnc.

It can be shown that for any natural q < N , on the one hand, the event

Eq := {Xi ∈ q Z, i = 1, 2, . . . , n} has probability at least (2q)−n, and, on

the other hand, everywhere on Eq we have ‖fA,p,n‖∞ ≥ cpq (N
√
n)−1, because

fA,p,n is supported on q Z and (by standard concentration results) has most of

its mass located within a (random) integer interval of length Op(N
√
n). Thus,

the probability cannot be made superexponentially small in n without taking

q, hence the lower bound for ‖fA,p,n‖∞ · (N
√
n), to infinity. The condition
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that the logarithm of the function is η4.2-Lipschitz, employed in the theorem,

is designed to rule out such situations.

Before proving the theorem, we shall consider the corollary which was (in

a somewhat different form) stated in the introduction as Theorem B and which

will be used in our net-argument in the next section.

Corollary 4.3. Let δ, ε ∈ (0, 1], p ∈ (0, 1/2], K,M ≥ 1. There exist n4.3

= n4.3(δ, ε, p,K,M) ≥ 1 depending on δ, ε, p,K,M and L4.3 = L4.3(δ, ε, p,K)

> 0 depending only on δ, ε, p,K (and not on M ) with the following property.

Take n ≥ n4.3, 1 ≤ N ≤ (1− p+ ε)−n, and let A be an (N,n,K, δ)-admissible

set. Further, assume that b1, b2, . . . , bn are independent and identically dis-

tributed Bernoulli(p) random variables. Then∣∣∣∣ßx ∈ A : L
( n∑
i=1

bixi,
√
n
)
≥ L4.3N

−1
™∣∣∣∣ ≤ e−M n |A|.

Proof. Take n ≥ max
(
n4.2, 1/η

2
4.2

)
, let 1 ≤ N ≤ (1 − p + ε)−n, and let A

be an (N,n,K, δ)-admissible set. Define the function f ∈ `1(Z) as

f(t) :=
1

m0
2−|t|/

√
n, t ∈ Z,

where m0 =
∑

t∈Z 2−|t|/
√
n. Obviously, ‖f‖1 = 1, and log2 f is n−1/2-Lipschitz,

hence, by the assumptions on n, log2 f is η4.2-Lipschitz.

Applying Theorem 4.2 to f , we get

P
{
‖fA,p,n‖∞ > L4.2(N

√
n)−1

}
≤ exp(−M n).

The definition of fA,p,n allows us to rewrite the above inequality as∣∣∣∣ßx ∈ A : sup
t∈Z

Eb f
(
t+

n∑
j=1

bjxj

)
> L4.2(N

√
n)−1

™∣∣∣∣ ≤ e−M n |A|.

On the other hand, since

f(t) ≥ c√
n

1[−
√
n−1,

√
n+1](t), t ∈ Z,

for some universal constant c > 0, the last relation implies∣∣∣∣ßx ∈ A : sup
t∈Z

Eb 1[−
√
n−1,

√
n+1]

(
t+

n∑
j=1

bjxj

)
>
L4.2

cN

™∣∣∣∣ ≤ e−M n |A|.

For every t and x = (x1, x2, . . . , xn), the expression

Eb 1[−
√
n−1,

√
n+1]

(
t+

n∑
j=1

bjxj

)
is the probability that the random sum t +

∑n
j=1 bjxj falls into the interval

[−
√
n − 1,

√
n + 1]. Thus, together with elementary relation sup

t∈Z
P{|t + Y | ≤
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H + 1} ≥ L(Y,H), valid for any H ≥ 0 and any random variable Y , the

previous inequality gives∣∣∣∣ßx ∈ A : L
(
b1x1 + · · ·+ bnxn,

√
n) >

L4.2

cN

™∣∣∣∣ ≤ e−M n |A|.

The statement follows. �

In our proof of Theorem 4.2, we will gradually improve delocalization

estimates for the functions fA,p,`. Our first (simple) step — Lemma 4.4 — is

to obtain estimates on the `1-norm of the truncated function fA,p,` 1I (with

` of order n) for an arbitrary integer interval I of length at most N . Upper

bounds of the order Op,δ(‖f‖1 /
√
n) will follow from the Lévy–Kolmogorov–

Rogozin inequality stated in the preliminaries as Lemma 3.1. At the second

step, Proposition 4.5 below, we prove a weaker version of Theorem 4.2 where

the parameter L is allowed to depend on M . At the third step, we remove the

dependence of L on M by using the Lipschitzness of f . A discussion of that

part of the proof is given after Proposition 4.5.

Lemma 4.4. There is a universal constant C4.4 > 0 with the following

property. Let p ∈ (0, 1), δ0 ∈ (0, 1), let f ∈ `1(Z) be a non-negative function

with ‖f‖1 = 1, and let A be an (N,n,K, δ)-admissible set for some parameters

N , δ ∈ [δ0, 1), n ≥ 1/δ0 and K . Further, let ` > δ0n. Then deterministically∑
t∈I

fA,p,`(t) ≤ C4.4√
δ0n min(p,1−p)

for any integer interval I ⊂ Z with |I| ≤ N . In

turn, this implies ∑
t∈J

fA,p,`(t) ≤
2C4.4|J |√

δ0n min(p, 1− p)N
for any integer interval J of cardinality at least N .

Proof. Let X1, . . . , X` be the random variables from (4). Fix any realiza-

tion of X1, . . . , X` (so that |Xi| > N for all i ≤ δ0n, by the definition of an

admissible set and since δ ≥ δ0) and any integer interval I of cardinality at

most N . Since

fA,p,`(t) =
∑

(vi)`i=1∈{0,1}`
p
∑
i vi(1− p)`−

∑
i vif

(
t+ v1X1 + · · ·+ v`X`

)
,

we obtain∑
t∈I

fA,p,`(t) =
∑

(vi)`i=1∈{0,1}`

∑
t∈I

p
∑
i vi(1− p)`−

∑
i vif

(
t+ v1X1 + · · ·+ v`X`

)
=

∑
(vi)`i=1∈{0,1}`

∑
t∈Z

p
∑
i vi(1− p)`−

∑
i vif(t)1I+v1X1+···+v`X`(t)

=
∥∥∥f ∑

(vi)`i=1∈{0,1}`
p
∑
i vi(1− p)`−

∑
i vi1I+v1X1+···+v`X`

∥∥∥
1
.
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For any t ∈ Z,∑
(vi)`i=1∈{0,1}`

p
∑
i vi(1− p)`−

∑
i vi1I+v1X1+···+v`X`(t)

= P
{
b1X1 + · · ·+ b`X` ∈ t− I|X1, . . . , X`

}
,

where b1, . . . , b` are Bernoulli(p) random variables jointly independent with

X1, . . . , X`. It remains to note that the Lévy–Kolmogorov–Rogozin inequality

(Lemma 3.1), together with the condition |Xi| > N for all i ≤ δ0n, implies

that for every t ∈ Z,

P
{
b1X1 + · · ·+ b`X` ∈ t− I | X1, . . . , X`

}
≤ C√

δ0n min(p, 1− p)
for some universal constant C > 0. The result follows. �

Proposition 4.5. For any M > 0, p ∈ (0, 1/2], δ ∈ (0, 1) and ε ∈ (0, p),

there are L4.5 = L4.5(M,p, δ, ε) > 0 and n4.5 = n4.5(M,p, δ, ε) ∈ N (depending

on M , p, δ and ε) with the following property. Let f ∈ `1(Z) be a non-negative

function with ‖f‖1 = 1, let n ≥ n4.5, n/2 ≤ ` ≤ n, and let A be an (N,n,K, δ)-

admissible set for some parameters N ≤ 2n and K > 0. Then

P
{
‖fA,p,`‖∞ > max

(
L4.5(N

√
n)−1, (1− p+ ε)` ‖f‖∞

)}
≤ exp(−Mn),

where fA,p,` is defined by (4).

The crucial difference between the above statement and Theorem 4.2 is

that L4.5 in the proposition is allowed to depend on M . The proof essentially

follows by estimating probabilities that

fA,p,`(t) > max
(
L4.5(N

√
n)−1, (1− p+ ε)` ‖f‖∞

)
for a fixed t ∈ Z and taking the union bound over t, although the actual

argument is more involved. We will need the following definitions.

Let R > 0 be a parameter, let N , A, f , ` and p be as in the above

proposition, and let m ∈ {1, 2, . . . , `}. We say that a point t ∈ Z decays at

time m if

fA,p,m−1(t+Xm) ≤ R

N
√
n

and fA,p,m−1(t−Xm) ≤ R

N
√
n
.

Further, given any t ∈ Z and a sequence (vi)
`
i=1 ∈ {0, 1}`, the descendant

sequence for t with respect to (vi)
`
i=1 is a random sequence (ti)

`
i=0, where

ti = t −
∑i

j=1 vjXj , 1 ≤ i ≤ ` (and where we set t0 := t). The connection of

the above statement with these definitions is provided by the following fact:

the event that the `∞-norm of fA,p,` is “large” is contained within the event

that there exists a descendant sequence such that a proportional number of its

elements do not decay. More precisely, we have
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Lemma 4.6. Let N , A, f , `, ε and p be as in Proposition 4.5, let L > 0,

and set R := εL
2p . Define an event E as the subset the probability space such

that there exists a sequence (vi)
`
i=1 ∈ {0, 1}` and a point t ∈ Z so that the

descendant sequence (ti)
`
i=0 for t with respect to (vi)

`
i=1 satisfies∣∣{1 ≤ i ≤ ` : ti−1 does not decay at time i

}∣∣
≥ −

n log
(
(1− p+ ε)/(1− p+ ε/2)

)
2 log

(
1− p+ ε/2

) .
(5)

Then E ⊃
{
‖fA,p,`‖∞ > max

(
L(N
√
n)−1, (1− p+ ε)` ‖f‖∞

)}
.

Proof. Fix a realization of X1, . . . , X` such that

‖fA,p,`‖∞ > max
(
L(N
√
n)−1, (1− p+ ε)` ‖f‖∞

)
.

(If such a realization does not exist, then there is nothing to prove.) We will

construct a sequence of integers (ti)
`
i=0 inductively in inverse order as follows.

Take t` to be any integer such that

fA,p,`(t`) > max
(
L(N
√
n)−1, (1− p+ ε)` ‖f‖∞

)
.

At (`−i+1)-st step (1 ≤ i ≤ `) we assume that ti has been defined and satisfies

fA,p,i(ti) > max
(
L(N
√
n)−1, (1− p+ ε)` ‖f‖∞

)
. In view of the relation

(6) fA,p,i(t) := (1− p) fA,p,i−1(t) + p fA,p,i−1(t+Xi), t ∈ Z,

which follows immediately from the definition of fA,p,i, we get that

fA,p,i−1(ti + viXi) ≥ fA,p,i(ti)

for some vi ∈ {0, 1}. Then we set ti−1 := ti + viXi.

Clearly, the sequence (ti)
`
i=0 constructed this way is the descendant se-

quence for t0 with respect to (vi)
`
i=1, which satisfies the conditions

(a) fA,p,i−1(ti−1) ≥ fA,p,i(ti) for all 1 ≤ i ≤ `;
(b) fA,p,`(t`) > max

(
L(N
√
n)−1, (1− p+ ε)` ‖f‖∞

)
.

We will show that these conditions imply (5). Assume that 1 ≤ i ≤ ` is such

that ti−1 decays at time i. According to (6) and the relation between ti and

ti−1, we have

fA,p,i(ti) = (1− p)fA,p,i−1(ti) + p fA,p,i−1(ti +Xi)

= (1− p)fA,p,i−1(ti−1 − viXi) + p fA,p,i−1(ti−1 + (1− vi)Xi).

Both fA,p,i−1(ti−1 +Xi) and fA,p,i−1(ti−1−Xi) are less than R
N
√
n

by our def-

inition of decay at time i, and hence less than ε
2p fA,p,i−1(ti−1) by the rela-

tion between L and R and conditions (a) and (b). Thus, one of the values
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fA,p,i−1(ti−1 − viXi) or fA,p,i−1(ti−1 + (1 − vi)Xi

)
is at most ε

2p fA,p,i−1(ti−1)

while the other is equal to fA,p,i−1(ti−1). This gives

fA,p,i(ti) ≤
( ε

2p
· p+ 1− p

)
fA,p,i−1(ti−1).

Applying the last relation for all i where there is a decay and using the mono-

tonicity of the sequence
(
fA,p,j(tj)

)`
j=0

, for u = |{1 ≤ i ≤ ` : ti−1 decays at

time i}|, we get

(1− p+ ε)` ‖f‖∞ < fA,p,`(t`) ≤ (1− p+ ε/2)u ‖f‖∞,

whence

(1− p+ ε/2)`−u <
(
(1− p+ ε/2)/(1− p+ ε)

)n/2
.

This implies the required lower bound for

`− u = |{1 ≤ i ≤ ` : ti−1 does not decay at time i}|. �

Proof of Proposition 4.5. Let L > 0 be a parameter to be chosen later.

Set

η := min

Å
δ,−

log
(
(1− p+ ε)/(1− p+ ε/2)

)
2 log

(
1− p+ ε/2

) ã
; R :=

εL

2p
.

We will assume that ηn/2 ≥ 1. Let X1, X2, . . . , X` be independent random

variables, each Xi uniform on Ai, where A = A1 ×A2 × · · · ×An.

The proposition follows by applying Lemma 4.6 and a union bound. Ob-

serve that for any point t ∈ Z such that the last element of a descendant

sequence (ti)
`
i=0 (with respect to some sequence in {0, 1}` and with t0 = t)

satisfies fA,p,`(t`) > (N
√
n)−1, we have

t ∈
{
s ∈ Z : f(s) > (N

√
n)−1

}
+(A1∪{0}+A1∪{0})+· · ·+(A`∪{0}+A`∪{0}).

Indeed, the definition of the descendant sequence implies that for some (ṽi)
`
i=1 ∈

{0, 1}`,

t = t` + ṽ1X1 + · · ·+ ṽ`X` ∈ t` +A1 ∪ {0}+ · · ·+A` ∪ {0},

while at the same time the condition fA,p,`(t`) > (N
√
n)−1 and the definition

of fA,p,` implies that f(t`+x1+x2 · · ·+x`) > (N
√
n)−1 for some xi ∈ Ai∪{0},

i = 1, . . . , `, hence

t` ∈
{
s ∈ Z : f(s) > (N

√
n)−1

}
−A1 ∪ {0} − · · · −A` ∪ {0}

=
{
s ∈ Z : f(s) > (N

√
n)−1

}
+A1 ∪ {0}+ · · ·+A` ∪ {0}.

Set

D :=
{
s ∈ Z : f(s) > (N

√
n)−1

}
+ (A1 ∪ {0}+A1 ∪ {0}) + · · ·+ (A` ∪ {0}+A` ∪ {0}),
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and observe that, in view of the upper bound on maxAi’s from the definition

of an admissible set, and the assumption ‖f‖1 = 1,

|D| ≤ N
√
n
∣∣(A1 ∪ {0}+A1 ∪ {0}) + · · ·+ (A` ∪ {0}+A` ∪ {0})

∣∣
≤ 4N

√
n `nN ≤ 4N2n5/2.

Set H := ηn. Then, with the event E defined in Lemma 4.6, we can write

P(E) ≤ 2`|D| sup
t∈D, (vi)`i=1∈{0,1}`

P
{

The descendant sequence (ti)
`
i=0 for t

w.r.t (vi)
`
i=1 satisfies |{1 ≤ i ≤ ` : ti−1

does not decay at i}| ≥ H

}

≤ 2`+2N2n5/2
Ç

n

dHe

å
sup

I⊂[`], |I|=dHe
t∈D, (vi)`i=1∈{0,1}`

P
{

For descendant sequence

(ti)
`
i=0 w.r.t (vi), ti−1 does

not decay for all i ∈ I

}
.

Finally, fix any I ⊂ [`] with |I| = dHe, t ∈ D and (vi)
`
i=1 ∈ {0, 1}`. Let (ti)

`
i=0

be the (random) descendant sequence for t with respect to (vi). (Note that ti
is measurable with respect to X1, . . . , Xi.) Take any i ∈ I with i − 1 > H/2.

Conditioned on any realization ofX1, . . . , Xi−1, the variable ti−1+Xi is uniform

on ti−1 +Ai, and

E
(
fA,p,i−1(ti−1 +Xi) | X1, . . . , Xi−1

)
=

1

|Ai|
∑

s∈ti−1+Ai

fA,p,i−1(s)

≤ 4

N

C4.4√
pηn/2

,

where at the last step we applied Lemma 4.4 with δ0 := η/2 and used that

Ai is either an integer interval or a union of two integer intervals. The same

estimate is valid for

E
(
fA,p,i−1(ti−1 −Xi) | X1, . . . , Xi−1

)
.

Hence, by Markov’s inequality,

P
{
ti−1 does not decay at i | X1, . . . , Xi−1

}
= P

{
fA,p,i−1(ti−1 +Xi)>

R
N
√
n

or fA,p,i−1(ti−1 −Xi)>
R

N
√
n

∣∣∣ X1, . . . , Xi−1

}
≤ 8

N

C4.4√
pηn/2

N
√
n

R
=

8C4.4√
pη/2R

.

Applying this estimate for all i ∈ I \ [1, H/2 + 1], we obtain

P
{

For desc. sequence (ti)
`
i=0, ti−1 does not decay at i for all i ∈ I

}
≤
Å

8C4.4√
pη/2R

ãdHe−H/2−2
,
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whence

P(E) ≤ 2`+2N2n5/2
Ç

n

dHe

åÅ
16C4.4p√
pη/2 εL

ãdHe−H/2−2
,

where, we recall, H=ηn. Finally, we observe that by choosing L = L(M,p, δ, ε)

large enough, we can make the last expression less than exp(−Mn) for all

sufficiently large n. This completes the proof of the proposition. �

The above result is too weak to be useful for our purposes. The rest of the

section is devoted to “refining” the proposition by removing the dependence

on M from the lower bound on the `∞-norm of the averaged function.

Let us informally describe the idea behind the argument and provide some

simple examples. The magnitude of the `∞-norm of fA,p,n essentially depends

on how efficient in removing spikes is the averaging step given by the relation

fA,p,i(t) = (1−p) fA,p,i−1(t)+p fA,p,i−1(t+Xi). One may hope that if at every

step i, the number of spikes (coordinates with large magnitudes) is decreased

significantly with a probability close to one, then the resulting function fA,p,n
would have a small `∞-norm with a very large probability (superexponentially

close to one).

For the moment, it will be convenient to drop the assumption of a bounded

`1-norm. Consider a family of functions gN,d,I,η on Z, indexed by natural

numbers N, d, an integer interval I, and η > 0, and defined as

gN,d,I,η(t) := exp
(
− η dist (t, I + dZ)

)
, t ∈ Z,

where we impose the following restrictions on parameters:

• N ≥ d;

• the function gN,d,I,η is “essentially non-constant” in the sense that

‖gN,d,I,η1J‖1 ≤ 1
2 |J | for any integer interval J of length at least N .

Note that log gN,d,I,η is η-Lipschitz and that the second assumption implies

|I| ≤ d/2. Assume that a random variable X is uniformly distributed on

{0, 1, . . . , N}, and define the random average

gavN,d,I,η(t) :=
1

2
gN,d,I,η(t) +

1

2
gN,d,I,η(t+X), t ∈ Z.

We are interested in estimating the proportion RN,d,I,η of spikes preserved by

the averaging, with

RN,d,I,η := lim
k→∞

|{t ∈ Z ∩ [−k, k] : gavN,d,I,η(t) = 1}|
|{t ∈ Z ∩ [−k, k] : gN,d,I,η(t) = 1}|

.

A simple computation taking into account the condition |I| ≤ d/2, gives

P
{

1−RN,d,I,η ≤ ε
}

= Θ
(ε|I|
d

+
1

d

)
, ε ∈ (0, 1/2]

and, for ε = 0,

P
{

1−RN,d,I,η = 0
}

= Θ
(1

d

)
.
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Thus, the efficiency of the averaging, i.e., the small ball probability estimate

for 1−RN,d,I,η, is influenced by the magnitude of d or, equivalently, the length

d − |I| of the “valleys” separating the clusters of spikes in gN,d,I,η. Now, let

us discuss how this is related to the Lipschitzness of the logarithm. It is not

difficult to check that, in order to satisfy the condition of being “essentially

non-constant,” we must choose d at least of order 1/η. Thus, the smaller η is,

the wider the valleys between the clusters of spikes, and the stronger the small

ball probability estimates for 1−RN,d,I,η must be. In a sense, the Lipschitzness

of the logarithm of gN,d,I,η, together with the essential non-constantness, affects

the averaging indirectly, by influencing the structure of spikes and valleys.

In our actual model, a similar phenomenon holds, although the argument

is more complicated, first because the pattern of spikes does not have to be

as regular as in the above example, and second because the spikes are defined

as points where the function exceeds a certain threshold rather than points

where it takes a specific value. Our measurement of the efficiency of the av-

eraging is more complicated compared to the above example. For a function

with relatively many spikes, we compare the `2-norms of the original function

and the average. A crucial step towards proving Theorem 4.2 is the following

proposition.

Proposition 4.7. Let R > 0, p ∈ (0, 1), µ ∈ (0, 1/64] and N ∈ N.

Further, assume that g1, g2 are non-negative functions in `1(Z) and that g1
satisfies the following conditions :

• log2 g1 is µ4-Lipschitz ;

•
∑
t∈I

g1(t) ≤ RN for any integer interval I of cardinality N ;

• there is interval I0⊂Z with |I0|=N , such that |{t ∈ I0 : g1(t)≥ 8R}|≥µN .

Let Y be a random variable uniformly distributed on an integer interval J of

cardinality at least N . Then

P
{∥∥(1− p) g1(·) + p g2(·+ Y ))

∥∥2
2

≤
(
(1− p)‖g1‖22 + p‖g2‖22

)
− c4.7p(1− p)µ6R2N

}
≥ 1− C4.7µ.

Here, C4.7, c4.7 > 0 are universal constants.

Before proving the proposition, we consider two lemmas.

Lemma 4.8. Let f, g ∈ `2(Z), and assume that κ > 0 and k ∈ N are such

that ∣∣{t ∈ Z : |f(t)− g(t)| ≥ κ
}∣∣ ≥ k.

Let p ∈ (0, 1). Then
∥∥pf + (1− p)g

∥∥2
2
≤
(
p‖f‖22 + (1− p)‖g‖22

)
− p(1− p)κ2k.
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Proof. For any t ∈ Z, we have(
pf(t) + (1− p)g(t)

)2
= pf(t)2 + (1− p)g(t)2 −

(
p(1− p)f(t)2 − 2p(1− p)f(t)g(t) + p(1− p)g(t)2

)
= pf(t)2 + (1− p)g(t)2 − p(1− p)

(
f(t)− g(t)

)2
,

which implies the estimate. �

Lemma 4.9. Let f, g ∈ `1(Z) and δ, κ > 0. Further, assume that I ⊂ Z
is an integer interval and I1 ∪ I2 ∪ I3 = I is a partition of I into three subsets

(not necessarily subintervals) such that |I3| ∈
[
δ|I|/2, δ|I|

]
, |I2| ≤ δ|I|, and

f(t1) ≥ κ + f(t3) for all t1 ∈ I1 and t3 ∈ I3. Further, assume that X is

an integer random variable uniformly distributed on an interval J ⊂ Z of

cardinality at least |I|. Then

P
{∣∣{t ∈ I : |f(t)− g(t+X)| ≥ κ/2

}∣∣ < δ|I|/4
}
≤ 64δ.

Proof. Without loss of generality, δ ≤ 1/64. Fix any subinterval J̃ ⊂ J

of cardinality at least |I|/2 and at most |I|. We will prove the probability

estimate under the condition that X belongs to J̃ . Then the required result

will easily follow by partitioning J into subintervals and combining estimates

for corresponding conditional probabilities.

Set

w3 := max
t3∈I3

f(t3), w1 := min
t1∈I1

f(t1),

and define

Q :=
{
i ∈ J̃ :

∣∣{t ∈ I : g(t+ i) ≤ (w1 + w3)/2
}∣∣ ≤ 4δ|I|

}
.

Observe that in view of the assumption w1 ≥ w3 + κ, for any point i ∈ J̃ \Q,

we have∣∣{t ∈ I : |f(t)− g(t+ i)| ≥ κ/2
}∣∣ ≥ 4δ|I| − |I2| − |I3| ≥ 2δ|I|.

Thus, if Q = ∅ then, conditioned on X ∈ J̃ ,∣∣{t ∈ I : |f(t)− g(t+X)| ≥ κ/2
}∣∣ < δ|I|/4

holds with probability zero, and the statement follows. Below, we assume that

Q 6= ∅.
Set S := {minQ,minQ+ 1, . . . ,maxQ}. Since |J̃ | ≤ |I|, we have S + I =

(minQ+ I) ∪ (maxQ+ I), whence∣∣{s ∈ S + I : g(s) ≤ (w1 + w3)/2
}∣∣

≤
∣∣{t ∈ I : g(t+ minQ) ≤ (w1 + w3)/2

}∣∣
+
∣∣{t ∈ I : g(t+ maxQ) ≤ (w1 + w3)/2

}∣∣
≤ 8δ|I|.
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The above estimate immediately gives∣∣∣{(t, i) ∈ I3 × S : g(t+ i) ≤ w1 + w3

2

}∣∣∣ ≤ 8δ|I| · |I3| ≤ 8δ2|I|2.

Hence, the number of points i ∈ S such that

(7)
∣∣∣{t ∈ I3 : g(t+ i) ≤ w1 + w3

2

}∣∣∣ > δ|I|/4

is at most 32δ|I|. On the other hand, for every i ∈ S such that (7) does not

hold, we clearly have∣∣{t ∈ I : |f(t)− g(t+ i)| ≥ κ/2
}∣∣ ≥ |I3| − δ|I|/4 ≥ δ|I|/4.

Summarizing, we obtain∣∣∣{i ∈ J̃ :
∣∣{t ∈ I : |f(t)− g(t+ i)| ≥ κ/2

}∣∣ < δ|I|/4
}∣∣∣ ≤ 32δ|I|,

whence

P
{∣∣{t ∈ I : |f(t)− g(t+X)| ≥ κ/2

}∣∣ < δ|I|/4 | X ∈ J̃
}
≤ 64δ.

The result follows. �

Proof of Proposition 4.7. Let δ := 8µ, ε := µ4 and Ĩ := I0 +{0, 1, . . . , N},
so that |Ĩ| = 2N . It is not difficult to see that there is a real interval of the

form (a, 2µ
2
a], where 4R ≤ a ≤ 2−µ

2 · 8R and such that

(8)
∣∣∣{t ∈ Ĩ : g1(t) ∈

(
a, 2µ

2
a
]}∣∣∣ ≤ 2N

b1/µ2c
.

We will inductively construct a finite sequence of integer intervals I ′1, I
′
2, . . . , I

′
h

as follows.

At the first step, let t`1 := min{t ∈ Ĩ : g1(t) ≥ 2µ
2
a},

tr1 := max
{
t ∈ Ĩ : t ≥ t`1; |{s ∈ {t`1, . . . , t} : g1(s) ≤ a}| ≤ δ(t− t`1 + 1)

}
,

and define I ′1 := {t`1, t`1+1, . . . , tr1}. (Note that by the definition of I0, t
`
1 exists.)

That is, we choose tr1 to be the largest integer in Ĩ such that the number of

the elements s ∈ I ′1 corresponding to “small” values g1(s) ≤ a is at most δ|I ′1|.
If max I ′1 ≥ max I0 or if g1(t) < 2µ

2
a for all tr1 = max I ′1 < t ≤ max I0, then we

set h := 1 and complete the process. Otherwise, we go to the second step.

At the k-th step, k > 1, we define t`k > I ′k−1 to be the smallest integer in

(max I ′k−1,∞) such that g1(t
`
k) ≥ 2µ

2
a. (The previous step of the construction

guarantees that such t`k exists and belongs to I0.) We set

trk := max
{
t ∈ Ĩ : t ≥ t`k; |{s ∈ {t`k, . . . , t} : g1(s) ≤ a}| ≤ δ(t− t`k + 1)

}
and I ′k := {t`k, t`k + 1, . . . , trk}. If max I ′k ≥ max I0 or if gk(t) < 2µ

2
a for all

trk = max I ′k < t ≤ max I0, then set h := k and complete; otherwise go to the

next step.
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Next, we observe some important properties of the constructed sequence.

(a) The left-points of all intervals are contained in I0, and the union
⋃h
k=1 I

′
k

contains the set {t ∈ I0 : g1(t) ≥ 2µ
2
a}; in particular, cardinality of the

union is at least µN .

(b) The cardinality of any interval I ′k cannot exceed N since our assumption

on the function g1, together with the definition of I ′k, gives

2R|I ′k| ≤ a|I ′k|/2 ≤ a(|I ′k| − δ|I ′k|) ≤
∑
t∈I′k

g1(t) ≤
∑
t∈Ĩ

g1(t) ≤ 2RN.

In particular, this implies that max I ′h is strictly less than max Ĩ.

(c) The condition that log2 g1 is ε-Lipschitz implies that for any k ≤ h, |I ′k| ≥
bµ2/εc > 1

4µ . Indeed, since g1(t + 1) ≥ 2−εg1(t) for all t ∈ Z, we have

g1(t) > 2−µ
2
g1(t

`
k) ≥ a whenever 0 ≤ t − t`k < µ2/ε. On the other hand,

the last conclusion in property (b) implies that |{s ∈ {t`k, . . . , trk + 1} :

g1(s) ≤ a}| > δ(trk + 1− t`k + 1) > δ|I ′k|, as trk + 1 ∈ Ĩ.

(d) Property (c), in its turn, implies that for any k ≤ h, we have 1 ≤ δ|I ′k|/2,

whence |{t ∈ I ′k : g1(t) ≤ a}| ≥ δ|I ′k|/2.

Our goal is to apply Lemma 4.9 to the constructed intervals. For each

k ≤ h, we define the partition I ′k = I ′k,1 ∪ I ′k,2 ∪ I ′k,3, where

I ′k,1 :=
{
t ∈ I ′k : g1(t) ≥ 2µ

2
a
}
,

I ′k,3 :=
{
t ∈ I ′k : g1(t) ≤ a

}
,

I ′k,2 := I ′k \ (I ′k,1 ∪ I ′k,3).

Additionally, set κ :=
(
2µ

2 − 1
)
· 4R. We define subset of good indices G ⊂ [h]

as

G :=
{
k ≤ h : |I ′k,2| ≤ δ|I ′k|

}
.

Note that (8), together with property (a) of the intervals, implies that∑
k∈G
|I ′k| ≥ µN −

∑
k∈[h]\G

|I ′k| ≥ µN −
1

δ

2N

b1/µ2c
≥ µN/2.

By Lemma 4.9, for every k ∈ G the event

Ek :=
{∣∣{t ∈ I ′k : |g1(t)− g2(t+ Y )| ≥ κ/2

}∣∣ < δ|I ′k|/4
}

has probability at most 64δ. Hence, the expectation of the sum∑
k∈G
|I ′k|1Ek
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is at most 64δ ·
∑
k∈G
|I ′k|, and in view of Markov’s inequality and the lower bound

for
∑
k∈G
|I ′k|,

P
{∑
k∈G
|I ′k|1Eck ≥

µN

4

}
= 1− P

{∑
k∈G
|I ′k|1Ek >

∑
k∈G
|I ′k| −

µN

4

}
≥ 1−

64δ
∑

k∈G |I ′k|
1
2

∑
k∈G |I ′k|

= 1− 128δ.

As the final remark, for any realization of Y such that
∑
k∈G
|I ′k|1Eck ≥

µN
4 ,

we have
∣∣{t ∈ Ĩ : |g1(t) − g2(t + Y )| ≥ κ/2

}∣∣ ≥ δ
4
µN
4 , whence, in view of

Lemma 4.8∥∥(1− p) g1(·) + p g2(·+ Y )
∥∥2
2
≤
(
(1− p) ‖g1‖22 + p ‖g2‖22

)
− p(1− p) κ24

µN
4
δ
4 .

The result follows. �

The estimate on the `2-norm of the average in Proposition 4.7 involves

the parameter µ which, roughly speaking, determines the cardinality of the

largest cluster of spikes in g1. If the cardinality is small, the estimate given

by the proposition becomes weaker. Even assuming best possible values for µ,

n applications of the averaging to obtain fA,p,n from f would not provide a

bound on ‖fA,p,n‖2 which could be translated into a meaningful estimate for

the `∞-norm of the average.

Returning to the example which we discussed on page 610, if the function

gN,d,I,η is such that |I| is much less than d, i.e., the spikes are rare, then with

probability 1−Θ( |I|d ) ≈ 1 the averaged function gavN,d,I,η will not have any spikes

left. When the spikes are located in an irregular fashion, such a strong property

does not hold, but the following phenomenon can still be observed: if the spikes

are rare, then with a probability close to one the averaged function will have

much fewer (by a large factor) spikes. In other words, in the regime when there

are few points where the function is large, rather than measuring the `2-norm

of the average, it is more useful to consider how the cardinality of the set of

spikes shrinks under averaging. Combining this idea with Proposition 4.7, we

can derive the following statement.

Proposition 4.10. For any p ∈ (0, 1/2], ε ∈ (0, 1), R̃ ≥ 1, L0 ≥
16R̃ and M ≥ 1, there are n4.10 = n4.10(p, ε, L0, R̃,M) > 0 and η4.10 =

η4.10(p, ε, L0, R̃,M) ∈ (0, 1) with the following property. Let L0 ≥ L ≥ 16R̃,

and let n ≥ n4.10, N ≤ 2n, let g ∈ `1(Z) be a non-negative function satisfying

• ‖g‖1 = 1;

• log2 g is η4.10-Lipschitz ;
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•
∑
t∈I

g(t) ≤ ‹R√
n

for any integer interval I of cardinality N ;

• ‖g‖∞ ≤ L
N
√
n

.

For each i ≤ bεnc, let Xi be a random variable uniform on some disjoint

union of integer intervals of cardinality at least N each, and assume that

X1, . . . , Xbεnc are independent. Define a random function g̃ ∈ `1(Z) as

g̃(t) := Eb g
(
t+

bεnc∑
i=1

biXi

)
=

∑
(vi)
bεnc
i=1 ∈{0;1}bεnc

p
∑
i vi(1− p)bεnc−

∑
i vi g

(
t+ v1X1 + · · ·+ vbεncXbεnc

)
,

where b = (b1, . . . , bn) is the vector of independent Bernoulli(p) components.

Then

P
{
‖g̃‖∞ > (p/

√
2+1−p)L
N
√
n

}
≤ exp(−Mn).

That is, the above proposition tells us that, given a “preprocessed” func-

tion g with ‖g‖∞ ≤ L
N
√
n

, after εn averagings the `∞-norm of the function

drops at least by the factor p/
√

2+1−p with a probability superexponentially

close to one. By applying the proposition several times to a “preprocessed”

function given by Proposition 4.5, we will be able to complete the proof of the

theorem.

Before proving the proposition, let us consider a simple lemma.

Lemma 4.11. Let f ∈ `1(Z) be a non-negative function, let m,N ∈ N,

p ∈ (0, 1), H,µ > 0, and assume that ‖f‖∞ ≤ 2H and that for any integer

interval I of cardinality N , we have∣∣{t ∈ I : f(t) ≥ H
}∣∣ ≤ µN.

Choose any integers x1, x2, . . . , xm, and set

f̃(t) := Eb f
(
t+ b1x1 + · · ·+ bmxm

)
,

where b = (b1, . . . , bm) is the vector of independent Bernoulli(p) random vari-

ables. Then for any integer interval J of cardinality N , we have∣∣{t ∈ J : f̃(t) ≥
√

2H
}∣∣ ≤ µN/(√2− 1

)
.

Proof. Take any point t ∈ Z such that f̃(t) ≥
√

2H. We have
√

2H ≤ f̃(t) ≤ Eb 1{f(·+b1x1+···+bmxm)≥H}(t) · 2H
+ Eb 1{f(·+b1x1+···+bmxm)<H}(t) ·H

= H +H Eb 1{f(·+b1x1+···+bmxm)≥H}(t),
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so that

(9) Eb 1{f(·+b1x1+···+bmxm)≥H}(t) ≥
√

2− 1.

On the other hand, for any interval J of cardinality N and any choice of

(vi)
m
i=1 ∈ {0, 1}m, we have, by the assumptions of the lemma,∑

s∈J
1{f(·+v1x1+···+vmxm)≥H}(s) ≤ µN,

whence ∑
s∈J

Eb 1{f(·+b1y1+···+bmym)≥H}(s) ≤ µN.

Combining the last inequality with condition (9), we get the statement. �

Proof of Proposition 4.10. Fix any admissible parameters ε, p, R̃, L, N

and M , and set

µ :=
1

24C4.7

exp

Å
− 16M

ε

ã
, η := µ4.

We will assume that n is sufficiently large so that εn/4 ≥ 1 and, moreover,

(10) c4.7p(1− p)bεn/2cµ6R̃2/2 > L0

√
n.

Set

m := bεn/2c, H :=
L

2N
√
n
.

We fix any function g ∈ `1(Z) satisfying conditions of the proposition with

parameters η, R̃, N , L, n. Note that ‖g‖∞ ≤ 2H. Define g0 := g,

gk(t) := p gk−1(t+Xk) + (1− p) gk−1(t), k = 1, 2, . . . , bεnc, t ∈ Z,

so that either g̃ = g2m (if bεnc is even) or g̃ = g2m+1 (if bεnc is odd). It is easy

to see that log2 gk is η-Lipschitz (because the log-Lipschitzness is preserved

under taking convex combinations) and ‖gk‖1 = 1 for all admissible k.

For each i ≤ m, define events

Ei :=
{∣∣{t ∈ I : gi(t) ≥ H

}∣∣ ≤ µN
for any integer interval I of cardinality N

}
and

Ẽi :=
{
‖gi‖22 ≤ ‖gi−1‖22 − c4.7p(1− p)µ6R̃2n−1N−1

}
.

(We can formally extend the first definition to i = 0.) Clearly, for each i, Ei and

Ẽi are measurable with respect to the sigma-algebra generated by X1, . . . , Xi.

Condition for a moment on any realization of X1, . . . , Xi−1, and observe that

one of the following two assertions is true:

• Ei−1 holds;
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•
∣∣{t ∈ I : gi(t) ≥ 8R

}∣∣ ≥ µN for some integer interval I of cardinality N ,

where we set R :=
‹R

N
√
n

. Then, applying Proposition 4.7, we get PXi(Ẽi) ≥
1− C4.7µ.

Hence,

P
(
Ei−1 ∪ Ẽi | X1, . . . , Xi−1

)
≥ 1− C4.7µ, i = 1, 2, . . . ,m.

This implies that for any r ∈ [m], the probability that
(
Ei−1 ∪ Ẽi

)c
holds for at

least r indices i can be estimated as

P
( ⋃
S⊂[m],|S|=r

⋂
i∈S

(
Ei−1 ∪ Ẽi

)c) ≤ Çm
r

å(
C4.7µ

)r
.

Note that the definition of gk’s and the triangle inequality imply that the

sequence
(
‖gk‖2

)
k≥0 is non-increasing. Hence, taking r := dm/2e in the above

formula and in view of our choice of µ, we get that with probability at least

1− exp(−2Mn) at least one of the following two conditions is satisfied:

(a) there is i ≤ m such that
∣∣{t ∈ I : gi(t) ≥ H

}∣∣ ≤ µN for any integer

interval I of cardinality N ; or

(b) ‖gm‖22 ≤ ‖g‖22 − c4.7p(1− p)mµ6R̃2n−1N−1/2.

It can be checked, however, that condition (b) is improbable. Indeed, in view

of the restrictions on the `1- and `∞-norms of g, and Hölder’s inequality,

‖g‖22 ≤ 1 · L

N
√
n
,

whence, applying (10), we get ‖g‖22 − c4.7p(1− p)mµ6R̃2n−1N−1/2 < 0.

Thus, only (a) may hold, so the event

E :=
{

There is i ≤ m such that
∣∣{t ∈ I : gi(t) ≥ H

}∣∣ ≤ µN
for any integer interval I of cardinality N

}
has probability at least 1 − exp(−2Mn). Applying Lemma 4.11 we get that

everywhere on the event,∣∣{t ∈ I : gi(t) ≥
√

2H
}∣∣

≤ 3µN for any interval I of cardinality N and i ≥ m+ 1.
(11)

The second part of our proof resembles the proof of Proposition 4.5, al-

though the argument here is simpler. We observe that there exists a random

sequence of integers (ti)
2m
i=m satisfying

• the sequence
(
gi(ti)

)2m
i=m

is non-increasing;

• g2m(t2m) = ‖g2m‖∞;

• ti ∈ {ti−1, ti−1 −Xi} for all m < i ≤ 2m.
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On the event

Ê :=
{
‖gbεnc‖∞ ≥ (

√
2p+ 2(1− p))H

}
,

we necessarily have ‖gi‖∞ ≥ (
√

2p+ 2(1− p))H, i ≤ 2m, hence, in view of the

recursive relation gi(ti) = p gi−1(ti+Xi)+(1−p)gi−1(ti) and the deterministic

upper bound ‖gi−1‖∞ ≤ 2H, we have gi−1(ti+Xi) ≥
√

2H and gi−1(ti) ≥
√

2H

for all m < i ≤ 2m. Thus,

Ê ⊂
{
gi−1(ti +Xi) ≥

√
2H and gi−1(ti) ≥

√
2H for all m < i ≤ 2m

}
.

We will show that the probability of the latter event is small by considering a

union bound over non-random sequences.

Fix any realizations X0
1 , . . . , X

0
m of X1, . . . , Xm such that the event E

defined above holds. Take any non-random sequence (vi)
2m
i=m+1 ∈ {0, 1}m and

any fixed sm ∈ Z such that gm(sm) ≥
√

2H (if such sm exists). Further, we

define random numbers si := si−1 − viXi, i = m + 1, . . . , 2m. Then for any

i ≥ m+ 1, we have

P
{
gi−1(si +Xi) ≥

√
2H

and gi−1(si) ≥
√

2H | X1 = X0
1 , . . . , Xm = X0

m;Xm+1, . . . , Xi−1
}

= P
{
gi−1(si−1 + (1− vi)Xi) ≥

√
2H and gi−1(si−1 − viXi)

≥
√

2H | X1 = X0
1 , . . . , Xm = X0

m;Xm+1, . . . , Xi−1
}

≤ P
{
gi−1(si−1 +Xi) ≥

√
2H or

gi−1(si−1 −Xi) ≥
√

2H | X1 = X0
1 , . . . , Xm = X0

m;Xm+1, . . . , Xi−1
}

≤ 2 · 2 · 3µ,

in view of (11) and our assumption about the distribution of Xi’s. Hence,

P
{
gi−1(si +Xi) ≥

√
2H and gi−1(si) ≥

√
2H

for all m < i ≤ 2m | X1 = X0
1 , . . . , Xm = X0

m

}
is at most (12µ)m. This, together with the obvious observation |{s ∈ Z :

gm(s) ≥
√

2H}| ≤ (
√

2H)−1, allows us to estimate the probability of Ê as

P(Ê) ≤ P(Ec) + 2m(
√

2H)−1(12µ)m ≤ exp(−2Mn) + 2m(
√

2H)−1(12µ)m.

By our definition of the parameters µ,H,m, the rightmost quantity is less than

exp(−Mn) for all sufficiently large n. The proof is complete. �

Proof of Theorem 4.2. Fix any admissible parameters

δ ∈ (0, 1], p ∈ (0, 1/2], ε ∈ (0, p), K,M ≥ 1.

The proof of the theorem is essentially a combination of Proposition 4.5, which

provides a rough bound on the `∞-norm which depends on M , and subsequent

application of Proposition 4.10 to get a refined bound.
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We define

L := L4.5(2M,p, δ, ε/2), R̃ :=
C4.4√

min(δ, 1/2) p

and let q be the smallest positive integer such that
(
p/
√

2 + 1 − p
)q ≤ L−1.

Further, define α = α(p, ε) as the smallest number in [1/2, 1) which satisfies

(1− p+ ε)1−α ≥
Å

1− p+ ε/2

1− p+ ε

ã1/4
,

and set ε̃ := (1− α)/(2q). Now, we fix any n satisfying

min(δ, ε̃, 1/2)n ≥ 1, n
1
2n ≤

Å
1− p+ ε

1− p+ ε/2

ã1/4
,

n ≥ n4.10

(
p, ε̃,max(16R̃, L), R̃, 2M

)
, n ≥ n4.5(2M,p, δ, ε/2),

fix 1 ≤ N ≤ (1− p+ ε)−n, and define ` := dαne. It can be checked that with

the above assumptions on parameters, we have (1−p+ε/2)` ≤ (1−p+ε)n/
√
n.

Further, we fix any non-negative function f ∈ `1(Z) with ‖f‖1 = 1 and

such that log2 f is η-Lipschitz for η = η4.10(p, ε̃,max(16R̃, L), R̃, 2M). Note

that, by the above, (1− p+ ε/2)` ‖f‖∞ ≤ L(N
√
n)−1, and by Proposition 4.5,

the event

E4.5 :=
{
‖fA,p,`‖∞ ≤ L(N

√
n)−1

}
has probability at least 1− exp(−2Mn).

Further, we split the integer interval {`, ` + 1, . . . , n} into q subintervals,

each of cardinality at least n−αn
2q = ε̃n. Let ` ≤ i1 < i2 < · · · < iq = n be the

right endpoints of corresponding subintervals. Observe that by Lemma 4.4, for

any k ≥ ` and any integer interval I of cardinality N , we have the deterministic

relation ∑
t∈I

fA,p,k(t) ≤
C4.4√

min(δ, 1/2)n p
=

R̃√
n

by our definition of R. This enables us to apply Proposition 4.10. Applying

Proposition 4.10 to the first subinterval, we get that, conditioned on the event

E0 := E4.5, the event

E1 :=
{
‖fA,p,i1‖∞ ≤

max(16‹R,(p/√2+1−p)L)
N
√
n

}
has probability at least 1 − exp(−2Mn). More generally, for the j-th sub-

interval, the application of Proposition 4.10 gives

P
(
Ej | Ej−1

)
≥ 1− exp(−2Mn),

where for each 1 ≤ j ≤ q,

Ej :=
{
‖fA,p,ij‖∞ ≤

max(16‹R,(p/√2+1−p)jL)
N
√
n

}
.
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Taking into account our definition of q,

Eq =
{
‖fA,p,n‖∞ ≤ 16‹R

N
√
n

}
.

In view of the above, the probability of this event can be estimated from below

by 1−(q+1) exp(−2Mn), which is greater than 1−exp(−Mn) for all sufficiently

large n. It remains to choose

L4.2 := 16R̃. �

5. Proof of Theorem A

Let us recall the definition of a threshold which we considered in Sec-

tion 2. For any p ∈ (0, 1/2], any vector x ∈ Sn−1 and any parameter L > 0,

we define the threshold Tp(x, L) as the supremum of all t ∈ (0, 1] such that

L
(∑n

i=1 bixi, t
)
> Lt, where b1, . . . , bn are independent Bernoulli(p) random

variables. Note that Tp(x, L) ≥ 1
L(1−p)n. On the other hand, as a consequence

of the Lévy–Kolmogorov–Rogozin inequality (Lemma 3.1), we obtain

Lemma 5.1. For every p∈(0, 1/2], δ, ν∈(0, 1], there are K5.1 =K5.1(p, δ, ν)

> 0 and L5.1 = L5.1(p, δ, ν) ≥ 1 with the following property. Let n ≥ 2,

L ≥ L5.1, and let x ∈ Incompn(δ, ν). Then Tp(x, L) ≤ K5.1√
n

.

Proof. Take any vector x ∈ Incompn(δ, ν), and let I ⊂ [n] be a subset of

cardinality bδnc corresponding to the largest (by absolute value) coordinates

of x, i.e., such that |xi| ≥ |x`| for all i ∈ I and ` ∈ [n] \ I. Since x is (δ, ν)-

incompressible, we have ‖x1[n]\I‖2 ≥ ν, whence there is ` ∈ [n] \ I such that

|x`| ≥ ν/
√
n. Thus, |xi| ≥ ν/

√
n for all i ∈ I. Applying Lemma 3.1, we get

L
( n∑
i=1

bixi,
νt√
n

)
≤ L

(∑
i∈I

bixi,
νt√
n

)
= L

(√
n
ν

∑
i∈I

bixi, t
)
≤ Ct√

bδnc

for all t ≥ 1 for some C ≥ 1 depending only on p. It remains to choose

L5.1 := C

ν
√
δ/2

and K5.1 := max
(
δ−1/2, ν

)
. The result follows by the definition

of the threshold. �

Remark 5.2. The above lemma can also be obtained by applying results

of [13], namely, the property that the least common denominator of an incom-

pressible vector is of order at least
√
n.

Let us discuss what is left in order to complete the proof of Theorem A.

The standard decomposition of Sn−1 into sets of compressible and incompress-

ible vectors and the reduction of invertibility over the incompressible vectors

to the distance problem for the random normal (see description in Section 2),

leave the following question: given a number T � (1− p+ ε)n, show that the

probability of the event {Tp(Yn, L) ∈ [T, 2T )} is close to zero. Here, Yn is a



622 KONSTANTIN TIKHOMIROV

unit normal vector to the first n − 1 columns of the matrix Bn(p) + s 1n1>n .

Assuming that NT is a discrete approximation of the set of incompressible

vectors with the threshold in [T, 2T ), we can write

P
{
Tp(Yn, L) ∈ [T, 2T )

}
≤ |NT | max

x∈NT
P
{
x is “almost orthogonal” to col1, . . . , coln−1

}
.

(We prefer not to specify at this stage what “almost orthogonal” means quan-

titatively.) Most of the work related to estimating the cardinality of NT was

done in Section 4. Here, we combine Corollary 4.3 with a simple counting

argument giving an estimate of the cardinality of a part of the integer lattice

Zn with prescribed bounds on the vector coordinates; see Corollary 5.5. The

probability estimate for the event{
x is “almost orthogonal” to col1, . . . , coln−1

}
would follow as a simple consequence of the Tensorization Lemma 3.2 and

individual small ball probability bounds for 〈x, coli〉. Note that if the threshold

of the vector x was contained in the range [0, C T ), such estimates would

immediately follow from the definition of the threshold. However, the vector

x ∈ NT is only an approximation of another vector with a small threshold.

Thus, to make the conclusion, we will need a statement which asserts that for

a given vector, one can find its lattice approximation which preserves (to some

extent) the anticoncentration properties of the corresponding random linear

combination:

Lemma 5.3. Let p ∈ (0, 1/2], let y = (y1, . . . , yn) ∈ Rn be a vector, and

let L > 0, λ ∈ R be numbers such that for mutually independent Bernoulli(p)

random variables b1, . . . , bn, we have P{
∣∣∑n

i=1 biyi − λ
∣∣ ≤ t} ≤ Lt for all

t ≥
√
n. Then there exists a vector y′ = (y′1, . . . , y

′
n) ∈ Zn having the following

properties :

• ‖y − y′‖∞ ≤ 1;

• P
{∣∣∑n

i=1 biy
′
i − λ

∣∣ ≤ t} ≤ C5.3 Lt for all t ≥
√
n;

• L
(∑n

i=1 biy
′
i,
√
n
)
≥ c5.3 L

(∑n
i=1 biyi,

√
n
)
;

•
∣∣∑n

i=1 yi −
∑n

i=1 y
′
i

∣∣ ≤ C5.3

√
n.

Here, C5.3, c5.3 > 0 are universal constants.

The first and the last property of y′ will be used to estimate the Euclidean

norm of (Bn(p) + s 1n1>n )(y − y′): the bound on ‖y − y′‖∞ provides control of

‖(Bn(p) − p 1n1>n )(y − y′)‖2 while the relation
∣∣∑n

i=1 yi −
∑n

i=1 y
′
i

∣∣ ≤ C5.3

√
n

implies
∥∥(s+ p) 1n1>n (y − y′)

∥∥
2
≤ C5.3|s+ p|n.

The proof of Lemma 5.3 is based on a well-known concept of the random-

ized rounding [10]. (See also [1], [6], [9] for some recent applications.) The
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first use of this method in the context of matrix invertibility is, to the best of

author’s knowledge, due to G. V. Livshyts [9]. In [9], the randomized rounding

is used to choose a best lattice approximation for a vector, which in turn is

applied to construction of ε-nets; our work follows the same principle. We

note that, unlike [9], in the present paper we need to explicitly control the

Lévy concentration function and the small ball probability estimates for the

approximating vector (the second and the third property in the statement).

Proof of Lemma 5.3. Fix a vector y ∈ Rn, and let b1, . . . , bn be indepen-

dent Bernoulli(p) random variables. Further, let ξ1, . . . , ξn be random variables

jointly independent with b1, . . . , bn, such that for each i ≤ n, ξi takes values

byic and byic+ 1 with probabilities byic+ 1− yi and yi−byic, respectively (so

that E ξi = yi). Define random vector ỹ := (ξ1, . . . , ξn), and observe that with

probability one, ‖y − ỹ‖∞ ≤ 1.

Fix for a moment any w > 0, and denote by S(2w) the collection of all

(vi)
n
i=1 ∈ {0, 1}n such that

∣∣∑n
i=1 viyi − λ

∣∣ > 2w. Take any (vi)
n
i=1 ∈ S(2w).

Note that
∑n

i=1 vi(yi − ỹi) is the sum of independent variables, each of mean

zero and variance at most 1/4. Hence, by Markov’s inequality,

P
{∣∣∣ n∑

i=1

viỹi − λ
∣∣∣ ≤ w} ≤ P

{∣∣∣ n∑
i=1

vi(yi − ỹi)
∣∣∣ > w

}
≤ n

4w2
.

Thus, if S̃(w) is the (random) collection of all vectors (vi)
n
i=1 ∈ {0, 1}n such

that
∣∣∑n

i=1 viỹi − λ
∣∣ > w, then the above estimate immediately implies the

following for an arbitrary subset E ⊂ {0, 1}n:

E
∑

(vi)ni=1∈(S(2w)\E)\S̃(w)

p
∑
i vi(1− p)n−

∑
i vi

= EEb 1{(bi)ni=1∈(S(2w)\E)\S̃(w)}

≤ n

4w2
Eb 1{(bi)ni=1∈S(2w)\E}

=
n

4w2

∑
(vi)ni=1∈S(2w)\E

p
∑
i vi(1− p)n−

∑
i vi .

We take E = S(4w) in the above relation and apply it for w = 2j−1t, j ≥ 1,

so that

E
∑

(vi)ni=1∈S(2t)\S̃(t)

p
∑
i vi(1− p)n−

∑
i vi

= E
∞∑
j=1

∑
(vi)ni=1∈(S(2jt)\S(2j+1t))\S̃(t)

p
∑
i vi(1− p)n−

∑
i vi



624 KONSTANTIN TIKHOMIROV

≤ E
∞∑
j=1

∑
(vi)ni=1∈(S(2jt)\S(2j+1t))\S̃(2j−1t)

p
∑
i vi(1− p)n−

∑
i vi

≤
∞∑
j=1

n

22jt2

∑
(vi)ni=1∈S(2jt)\S(2j+1t)

p
∑
i vi(1− p)n−

∑
i vi

≤
∞∑
j=1

nL 2j+1t

22jt2

=
2Ln

t

for any t ≥
√
n, where we have used that, by the assumption on y,∑

(vi)ni=1∈S(2jt)\S(2j+1t)

p
∑
i vi(1−p)n−

∑
i vi ≤ P

{∣∣∣ n∑
i=1

biyi−λ
∣∣∣ ≤ 2j+1t

}
≤ L 2j+1t.

The relation implies that for all t ≥
√
n,

Emax

Å
0,

∑
(vi)ni=1∈{0,1}n\S̃(t)

p
∑
i vi(1− p)n−

∑
i vi

−
∑

(vi)ni=1∈{0,1}n\S(2t)

p
∑
i vi(1− p)n−

∑
i vi

ã
≤ 2Ln

t
.

An application of Markov’s inequality, with t =
√
n, 2
√
n, 4
√
n, . . . , gives

P
{

There exists integer k ≥ 0 such that∑
(vi)ni=1∈{0,1}n

p
∑
i vi(1− p)n−

∑
i vi1{|

∑n
i=1 viỹi−λ|≤2k

√
n} ≥ 23L 2k

√
n

+
∑

(vi)ni=1∈{0,1}n\S(21+k
√
n)

p
∑
i vi(1− p)n−

∑
i vi
}

≤ 1

4

∞∑
k=0

2−2k <
7

16
.

Together with the condition on the small ball probability of random sums∑n
i=1 biyi − λ, this implies that there is an event E1 measurable with respect

to ỹ and with P(E1) > 9/16 such that for any realization ỹ0 of ỹ from E1,

P
{∣∣∣ n∑

i=1

biỹi − λ
∣∣∣ ≤ t ∣∣ ỹ = ỹ0

}
≤ CL for all t ≥

√
n

for some universal constant C > 0.
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Further, we will derive lower bounds on the anticoncentration function of

the sum
∑n

i=1 biỹi. The argument is very similar to the one above, and we will

skip some details. Let λ′ ∈ R be a number such that

L
( n∑
i=1

biyi,
√
n
)

=
∑

(vi)ni=1∈{0,1}n\Sλ′ (
√
n)

p
∑
i vi(1− p)n−

∑
i vi ,

where

Sλ′(
√
n) :=

{
(vi)

n
i=1 ∈ {0, 1}n :

∣∣∣ n∑
i=1

viyi − λ′
∣∣∣ > √n}.

Further, denote

S̃λ′(2
√
n) :=

{
(vi)

n
i=1 ∈ {0, 1}n :

∣∣∣ n∑
i=1

viỹi − λ′
∣∣∣ > 2

√
n
}
.

Take any (vi)
n
i=1 ∈ {0, 1}n \ Sλ′(

√
n). Since the variance of the random sum∑n

i=1 vi(yi − ỹi) is at most n/4, we get

P
{∣∣∣ n∑

i=1

viỹi − λ′
∣∣∣ > 2

√
n
}
≤ P

{∣∣∣ n∑
i=1

vi(yi − ỹi)
∣∣∣ > √n} ≤ 1

4
.

Hence,

E
∑

(vi)∈({0,1}n\Sλ′ (
√
n))∩S̃λ′ (2

√
n)

p
∑
i vi(1− p)n−

∑
i vi

≤ 1

4

∑
(vi)∈{0,1}n\Sλ′ (

√
n)

p
∑
i vi(1− p)n−

∑
i vi ,

so that with probability at least 2/3, we have∑
(vi)∈({0,1}n\Sλ′ (

√
n))∩S̃λ′ (2

√
n)

p
∑
i vi(1− p)n−

∑
i vi

≤ 3

4

∑
(vi)∈{0,1}n\Sλ′ (

√
n)

p
∑
i vi(1− p)n−

∑
i vi .

(12)

Denote by E2 the event that (12) holds. (Observe that the event is measurable

with respect to ỹ.) Note that for any realization ỹ0 of ỹ from the event E2, we
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have ∑
(vi)∈{0,1}n

p
∑
i vi(1− p)n−

∑
i vi1{|

∑n
i=1 viỹ

0
i−λ′|≤2

√
n}

≥ 1

4

∑
(vi)∈{0,1}n\Sλ′ (

√
n)

p
∑
i vi(1− p)n−

∑
i vi

=
1

4
L
( n∑
i=1

biyi,
√
n
)
.

This immediately implies

L
( n∑
i=1

biỹ
0
i ,
√
n
)
≥ 1

8
L
( n∑
i=1

biyi,
√
n
)
.

As the last step of the proof, we note that since the variance of the sum∑n
i=1(yi− ỹi) is at most n/4, there is an event E3 measurable with respect to ỹ

and of probability at least 37/48 such that everywhere on E3,
∣∣∑n

i=1(yi− ỹi)
∣∣ ≤√

12n/11.

Finally, since 3 − P(E1) − P(E2) − P(E3) < 1, there exists a realization y′

of the random vector ỹ from the intersection E1 ∩E2 ∩E3. It is straightforward

to check that y′ satisfies all conditions of the lemma. �

Given any p ∈ (0, 1/2], s ∈ [−1, 0], any x ∈ Sn−1 and L ≥ 1, we construct

integer vector Y(p, x, L, s) ∈ Zn as follows: Take y = (y1, . . . , yn) :=
√
n

Tp(x,L) x,

and observe that, by the definition of the threshold,

P
{∣∣∣ n∑

i=1

biyi + s

n∑
i=1

yi

∣∣∣ ≤ t} ≤ L Tp(x, L)√
n

t for all t ≥
√
n.

Hence, by Lemma 5.3, there is a vector Y(p, x, L, s) ∈ Zn satisfying

•
∥∥ √

n
Tp(x,L) x−Y(p, x, L, s)

∥∥
∞ ≤ 1;

• P
{∣∣∑n

i=1 biYi(p, x, L, s)+
s
√
n

Tp(x,L)
∑n

i=1 xi
∣∣≤ t}≤ C5.3 L Tp(x,L)√

n
t for all t≥

√
n;

• L
(∑n

i=1 biYi(p, x, L, s),
√
n
)
≥ c5.3 L Tp(x, L);

•
∣∣ √

n
Tp(x,L)

∑n
i=1 xi −

∑n
i=1 Yi(p, x, L, s)

∣∣ ≤ C5.3

√
n.

The vector with the above properties does not have to be unique, however,

from now on we fix a single admissible vector for each 4-tuple (p, x, L, s).

Lemma 5.4. For any n ≥ 2, there is a subset Π of permutations on [n]

with |Π| ≤ Cn5.4, having the following property. Let p ∈ (0, 1/2], δ ∈ (0, 1/2],

s ∈ [−1, 0], ν ∈ (0, 1], L ≥ 1, and let x ∈ Incompn(δ, ν). Then there is

σ = σ(x) ∈ Π such that the vector ỹ =
(
Yσ(i)(p, x, L, s)

)n
i=1

satisfies

|ỹi| >
ν

Tp(x, L)
− 1 for all i ≤ δn
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and

|ỹi| ≤
2(j+1)/2

√
δ Tp(x, L)

+ 1, i > 2−jδn, 0 ≤ j ≤ log2(δn).

Here, C5.4 > 0 is a universal constant.

Proof. If δn < 1, then the statement is empty, and Π can be chosen

arbitrarily. We will therefore assume that δn ≥ 1. We start by defining the

collection of permutations Π. Let j0 ≥ 0 be the largest integer such that

δn ≥ 2j0 . For every collection of subsets [n] ⊃ I0 ⊃ · · · ⊃ Ij0 with |Ij | =

b2−jδnc, j = 0, . . . , j0, take any permutation σ such that σ
([
b2−jδnc

])
= Ij ,

j = 0, . . . , j0. We then compose Π of all such permutations (where we pick a

single admissible permutation for every collection of subsets). It is not difficult

to check that the total number of admissible collections [n] ⊃ I0 ⊃ · · · ⊃ Ij0 ,

hence the cardinality of Π, is bounded above by Cn for a universal constant

C > 0.

It remains to check the properties of Π. Take any vector x∈ Incompn(δ, ν),

and let [n] ⊃ I0(x) ⊃ · · · ⊃ Ij0(x) be sets of indices corresponding to largest

(by absolute value) coordinates of x. Namely, Ij(x) is a subset of cardinality

b2−jδnc such that |xi| ≥ |x`| for all i ∈ Ij(x) and ` ∈ [n] \ Ij(x). Let σ ∈ Π be

a permutation such that

σ
([
b2−jδnc

])
= Ij(x), j = 0, . . . , j0.

Set ỹ :=
(
Yσ(i)(p, x, L, s)

)n
i=1

.

By our construction, |xσ(i)| ≥ |xσ(`)| for all i ≤ δn < `. Since x is

incompressible, ∑
`>δn

x2σ(`) ≥ ν
2,

whence there exists an index ` > δn such that |xσ(`)| > ν/
√
n. Thus, |xσ(i)| >

ν/
√
n for all i ≤ δn, whence, in view of the definition of vector ỹ,

|ỹi| >
ν

Tp(x, L)
− 1 for all i ≤ δn.

The upper bounds on coordinates ỹi are obtained in a similar fashion.

Take any j ∈ {0, . . . , j0}. Since |xσ(i)| ≤ |xσ(`)| for all ` ≤ 2−jδn < i, and x

has Euclidean norm one, we get

|xσ(i)| ≤
1√
b2−jδnc

, i > 2−jδn.

Hence,

|ỹi| ≤
1√
b2−jδnc

√
n

Tp(x, L)
+ 1 ≤ 2(j+1)/2

√
δ Tp(x, L)

+ 1, i > 2−jδn. �
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Let n ≥ 2, δ ∈ [1/n, 1/2] and ν ∈ (0, 1]. Further, let T ∈ (0, 1] be a

number such that
ν

T
≥ 2.

Define a subset A(n, δ, ν, T ) ⊂ Zn as follows: We take A(n, δ, ν, T ) = A1 ×
A2 × · · · ×An, where

• for all 1 ≤ j ≤ log2(δn) and 2−jδn < i ≤ 2−j+1δn, we have

Ai := Z ∩
[
−
⌈
2(j+3)/2
√
δ T

⌉
− 1,

⌈
2(j+3)/2
√
δ T

⌉
+ 1
]
\
[
1−

⌊ ν
T

⌋
,
⌊ ν
T

⌋
− 1
]
;

• for i > δn, we have

Ai := Z ∩
[
−
⌈ √

8√
δ T

⌉
− 1,

⌈ √
8√
δ T

⌉
+ 1
]
;

• A1 := Z ∩
[
−
⌈
2
√
n

T

⌉
− 1,

⌈
2
√
n

T

⌉
+ 1
]
\
[
1−

⌊
ν
T

⌋
,
⌊
ν
T

⌋
− 1
]
.

Lemma 5.4 immediately implies

Corollary 5.5. For any n ≥ 2, there is a subset Π of permutations

on [n] with |Π| ≤ Cn5.4, having the following property. Let p ∈ (0, 1/2], δ ∈
[1/n, 1/2], s ∈ [−1, 0], ν ∈ (0, 1], L ≥ 1, T > 0, and let x ∈ Incompn(δ, ν)

be such that T/2 ≤ Tp(x, L) ≤ T . Then there is σ = σ(x) ∈ Π such that the

vector
(
Yσ(i)(p, x, L, s)

)n
i=1

belongs to A(n, δ, ν, T ).

The next crucial observation, which will enable us to apply results from

Section 4, is

Lemma 5.6. For any δ ∈ (0, 1/2], ν ∈ (0, 1], there are n5.6 = n5.6(δ, ν) ≥
1 and K5.6 = K5.6(δ, ν) ≥ 1 with the following property. Take any n ≥ n5.6,

T ∈ (0, ν/2], and set N :=
⌊
ν
T

⌋
−1. Then the subset A(n, δ, ν, T ) defined above

is (N,n,K5.6, δ)-admissible (with the notion taken from Section 4).

Now, everything is ready to prove the main result of the paper.

Proof of Theorem A. Fix any p ∈ (0, 1/2], ε ∈ (0, p/2], and assume that

n ≥ n3.6(ε, p) and
√
n ≥ 2K5.1/ν3.6(ε, p). (We will impose additional restric-

tions on n as the proof goes on.) Fix any s ∈ [−1, 0]. Our goal is to estimate

from above

P
{
smin(Bn(p) + s 1n1>n ) ≤ t/

√
n
}

for any t > 0. Set

δ := δ3.6(ε, p), ν := ν3.6(ε, p), γ := γ3.6(ε, p).

Applying formula (2) and Proposition 3.6, for any t ≤ γn, we get

P
{
smin(Bn(p) + s 1n1>n ) ≤ t/

√
n
}

≤
(
1− p+ ε

)n
+

1

δ
P
{
|〈coln(Bn(p) + s 1n1>n ), Yn〉| ≤ t/ν

}
,
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where Yn is a unit random vector measurable with respect to

col1(Bn(p)), . . . , coln−1(Bn(p))

and orthogonal to

span {col1(Bn(p) + s 1n1>n ), . . . , coln−1(Bn(p) + s 1n1>n )}.

Applying Proposition 3.6 the second time, we obtain that the event
{
Yn ∈

Compn(δ, ν)
}

has probability at most
(
1 − p + ε

)n
. Further, for every vector

x ∈ Incompn(δ, ν), according to Lemma 5.1, Tp(x, L) ≤ K5.1√
n

whenever L ≥
L5.1. Set

L := max

Å
L5.1,

4L4.3

c5.3ν

ã
.

Then, in view of the above, we have

P
{
smin(Bn(p) + s 1n1>n ) ≤ t/

√
n
}
≤
(
1 + δ−1

)(
1− p+ ε

)n
+

1

δ

∞∑
j=0

P
{
Yn ∈ Incompn(δ, ν) and |〈coln(Bn(p) + s 1n1>n ), Yn〉| ≤ t/ν

and 2−j−1K5.1√
n

< Tp(Yn, L) ≤ 2−jK5.1√
n

}
.

Further, for any j ≥ 0, using the independence of Yn and coln(Bn(p) + s 1n1>n )

and the definition of the threshold, we can write

P
{
|〈coln(Bn(p) + s 1n1>n ), Yn〉| ≤ t/ν and 2−j−1K5.1√

n
< Tp(Yn, L) ≤ 2−jK5.1√

n

}
≤ L max

(2−jK5.1√
n

, tν
)
P
{

2−j−1K5.1√
n

<Tp(Yn, L) ≤ 2−jK5.1√
n

}
.

Hence, for every t ≤ γn,

P
{
smin(Bn(p) + s 1n1>n ) ≤ t/

√
n
}

≤
(
1 + δ−1

)(
1− p+ ε

)n
+
L

δ
max

Å
(1− p+ ε)nK5.1√

n
,
t

ν

ã
+

1

δ

b−n log2(1−p+ε)c∑
j=0

P
{
Yn∈ Incompn(δ, ν) and 2−j−1K5.1√

n
<Tp(Yn, L)≤ 2−jK5.1√

n

}
.

Fix any j ∈ {0, 1, . . . , b−n log2(1− p+ ε)c}. Set T := 2−jK5.1√
n

and

N :=
⌊ ν
T

⌋
− 1, A := A(n, δ, ν, T ),

M := log
(
8(C + C5.3)C3.2C5.3(1 + C5.3)C5.4 L5.6Lν

)
,

where C > 0 denotes the constant such that

P
{
‖B1

n(p)− p 1n−11
>
n ‖ ≥ C

√
n
}
≤ 2−n
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(which exists, according to Lemma 3.4). Further, let Π be the set of per-

mutations from Corollary 5.5. Take any x ∈ Incompn(δ, ν) such that T/2 <

Tp(x, L) ≤ T . Then the vector Y(p, x, L, s) satisfies (see page 626)

(a)
∥∥ √

n
Tp(x,L) x−Y(p, x, L, s)

∥∥
∞ ≤ 1;

(b) P
{∣∣∑n

i=1 bi Yi(p, x, L, s) + s
√
n

Tp(x,L)
∑n

i=1 xi
∣∣ ≤ τ} ≤ C5.3 LT√

n
τ for all

τ ≥
√
n;

(c) L
(∑n

i=1 bi Yi(p, x, L, s),
√
n
)
≥ c5.3 L Tp(x, L) ≥ c5.3

2 LT ≥ c5.3Lν
4N ;

(d)
∣∣∑n

i=1

√
n

Tp(x,L) xi −
∑n

i=1 Yi(p, x, L, s)
∣∣ ≤ C5.3

√
n.

Note that a combination of (b) and (d) gives

P
{∣∣∣ n∑

i=1

bi Yi(p, x, L, s) + s

n∑
i=1

Yi(p, x, L, s)
∣∣∣ ≤ τ}

≤ C5.3(1 + C5.3)LT√
n

τ for all τ ≥
√
n.

Define the subset D ⊂ A as

D :=
{
y ∈ A : L

( n∑
i=1

biyi,
√
n
)
≥ c5.3Lν

4N
and

P
{∣∣∣ n∑

i=1

biyi + s
n∑
i=1

yi

∣∣∣ ≤ τ} ≤ C5.3(1 + C5.3)LT√
n

τ for all τ ≥
√
n
}
,

and let NT be defined as

NT :=
{
y ∈ Zn : (yσ(i))

n
i=1 ∈ D for some σ ∈ Π

}
.

Then, by Corollary 5.5 and the above remarks, Y(p, x, L, s) ∈ NT for every

x ∈ Incompn(δ, ν) with T/2 < Tp(x, L) ≤ T . Set Q :=
{
z ∈ Rn :

∣∣∑n
i=1 zi

∣∣ ≤
C5.3

√
n
}

. Then the last assertion, together with properties (a) and (d) above,

implies{ √
n

Tp(x, L)
x : x ∈ Incompn(δ, ν), T/2 < Tp(x, L) ≤ T

}
⊂ NT + [−1, 1]n ∩Q.

Thus, we obtain the relation

P
{
Yn ∈ Incompn(δ, ν) and 2−j−1K5.1√

n
< Tp(Yn, L) ≤ 2−jK5.1√

n

}
≤ P

{
There exists y ∈ NT + [−1, 1]n ∩Q

such that (B1
n(p) + s 1n−11

>
n )y = 0

}
.
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Now, let us estimate the probability that ‖(B1
n(p) + s 1n−11

>
n )y‖2 is small

for a fixed y ∈ NT . By our definition of the set NT , we have

P
{∣∣〈rowk(B

1
n(p) + s 1n−11

>
n ), y〉

∣∣ ≤ τ}
≤ C5.3(1+C5.3)LT√

n
τ for all τ ≥

√
n and k ≤ n− 1.

Hence, applying Lemma 3.2, we get

P
{
‖(B1

n(p) + s 1n−11
>
n )y‖2 ≤ τ

√
n− 1

}
≤
(
C3.2

C5.3(1+C5.3)LT√
n

τ
)n−1

for all τ ≥
√
n.

Observe that for any z ∈ [−1, 1]n ∩Q, we have

‖(B1
n(p) + s 1n−11

>
n )z‖2 ≤ ‖z‖2 ‖B1

n(p)− p 1n−11
>
n ‖+ |s+ p| ‖1n−11>n z‖2

≤
√
n ‖B1

n(p)− p 1n−11
>
n ‖+ C5.3n,

where we have used that s ∈ [−1, 0]. Then the above relations, together with

a net argument, imply

P
{

There exists y ∈ NT + [−1, 1]n ∩Q such that (B1
n(p) + s 1n−11

>
n )y = 0

}
≤ P

{
‖B1

n(p)− p 1n−11
>
n ‖

≥ C
√
n
}

+ |NT | max
y∈NT

P
{
‖(B1

n(p) + s 1n−11
>
n )y‖2 ≤ Cn+ C5.3n

}
≤ 2−n + |NT |

(
2(C + C5.3)C3.2C5.3(1 + C5.3)LT

)n−1
.

The last — and the most important — step of the proof is to bound from

above the cardinality of NT . In view of Corollary 5.5 and the definition of D

and NT , we have

|NT | ≤ Cn5.4|D|.

Further, observe that by Lemma 5.6, the set A is (N,n,K5.6, δ)-admissible.

Hence, Corollary 4.3 is applicable, and the definition of D gives, for all n large

enough,

|D| ≤ e−Mn|A| ≤ e−Mn(K5.6N)n.

Combining this with the above relations and recalling that N =
⌊
ν
T

⌋
− 1, we

obtain

P
{

There exists y ∈ NT + [−1, 1]n ∩Q such that (B1
n(p) + s 1n−11

>
n )y = 0

}
≤ 2−n + e−Mn(K5.6N)nCn5.4

(
2(C + C5.3)C3.2C5.3(1 + C5.3)LT

)n−1
≤ 2−n + e−Mn(

√
n2n/K5.1)

(
2(C + C5.3)C3.2C5.3(1 + C5.3)C5.4K5.6Lν

)n
≤ 2−n +

√
n2−n/K5.1

for all sufficiently large n, where the last relation follows from the choice of M .
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Returning to the small ball probability for smin(Bn(p) + s 1n1>n ), we get

P
{
smin(Bn(p) + s 1n1>n ) ≤ t/

√
n
}
≤
(
1 + δ−1

)(
1− p+ ε

)n
+
L

δ
max

Å
(1− p+ ε)nK5.1√

n
,
t

ν

ã
+
n

δ

(
2−n +

√
n2−n/K5.1

)
≤
(
1− p+ 2ε

)n
+ Cε,p t

for all sufficiently large n. Since ε ∈ (0, p/2] was chosen arbitrarily, the result

follows. �
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