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The Conway knot is not slice

By Lisa Piccirillo

Abstract

A knot is said to be slice if it bounds a smooth properly embedded disk
in B4. We demonstrate that the Conway knot is not slice. This completes
the classification of slice knots under 13 crossings and gives the first example
of a non-slice knot which is both topologically slice and a positive mutant
of a slice knot.

1. Introduction

The classical study of knots in S3 is 3-dimensional; a knot is defined to be
trivial if it bounds an embedded disk in S3. Concordance, first defined by Fox
in [Fox62], is a 4-dimensional extension; a knot in S3 is trivial in concordance
if it bounds an embedded disk in B4. In four dimensions one has to take care
about what sort of disks are permitted. A knot is slice if it bounds a smoothly
embedded disk in B4 and topologically slice if it bounds a locally flat disk in B4.
There are many slice knots which are not the unknot and many topologically
slice knots which are not slice.

It is natural to ask how characteristics of 3-dimensional knotting interact
with concordance, and questions of this sort are prevalent in the literature.
Modifying a knot by positive mutation is particularly difficult to detect in
concordance; we define positive mutation now.

A Conway sphere for an oriented knot K is an embedded S2 in S3 that
meets the knot transversely in four points. The Conway sphere splits S3 into
two 3-balls, B1 and B2, and K into two tangles KB1 and KB2 . Any knot K∗

obtained from KB1 and KB2 after regluing B1 to B2 via an involution of the
Conway sphere is called amutant ofK. If the involution respects the orientation
on K, then K∗ is a positive mutant of K. See Figure 1 for an example.1

Positive mutation preserves many three dimensional invariants of a knot,
including the Alexander, Jones, HOMFLY, and Kauffman polynomials [MT88],
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1All colored figures are viewable in the online version of the article https://doi.org/10.
4007/annals.2020.191.1.5.

581

http://annals.math.princeton.edu/about
https://doi.org/10.4007/annals.2020.191.2.5
https://doi.org/10.4007/annals.2020.191.1.5
https://doi.org/10.4007/annals.2020.191.1.5


582 LISA PICCIRILLO

Figure 1. Positive mutation from the Conway knot (left) to the
Kinoshita-Teresaka knot.

the S-equivalence class [KL01], hyperbolic volume [Rub87], and 2-fold branched
cover. Other powerful invariants are conjectured to be preserved by mutation,
such as Khovanov homology [BN05] and the δ-graded knot Floer groups [BL12].
Studying the sliceness of knots which arise as a positive mutant of a slice
knot is even trickier: all abelian and all but the subtlest metabelian sliceness
obstructions vanish for such a knot, Rasmussen’s s-invariant is conjectured
to vanish [BN02], and it is unknown whether any Heegaard Floer sliceness
obstructions can detect such a knot.

The smallest pair of positive mutant knots, the 11 crossing Conway knot
C and Kinoshita-Teresaka knot, were discovered by Conway in [Con70]; see
Figure 1. These knots are also the smallest nontrivial knots with Alexander
polynomial 1, hence all of their abelian and metabelian sliceness obstructions
vanish, and by Freedman [Fre84] both knots are topologically slice. The Con-
way and Kinoshita-Teresaka knots were first distinguished in isotopy by Riley
in [Ril71] via careful study of their groups, and later their Seifert genera were
distinguished by Gabai [Gab86]. One can readily show that the Kinoshita-
Teresaka knot is slice. Despite the wealth of sliceness obstructions constructed
in the past 20 years which are not known to be mutation invariant and do
not necessarily vanish for Alexander polynomial 1 knots, it has remained open
whether the Conway knot is slice.

In 2001 Kirk and Livingston gave the first examples of non-slice knots
which are positive mutants of slice knots [KL01], and other examples have
appeared since [KL05], [HKL10], [Mil17]. All of these works rely on careful
analysis of metabelian sliceness obstructions. Since metabelian obstructions
obstruct topological sliceness, these techniques cannot detect any topologically
slice knot which is a mutant of a slice knot, and they are especially poorly
suited to an Alexander polynomial 1 knot such as the Conway knot.

Theorem 1.1. The Conway knot is not slice.

This completes the classification of slice knots of under 13 crossings [CL05]
and gives the first example of a non-slice knot which is both topologically slice
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and a positive mutant of a slice knot.
Since there are no sliceness obstructions known to be well suited to detect-

ing the Conway knot, we abandon the Conway knot. We will instead construct
a knot K ′ such that the Conway knot is slice if and only if K ′ is slice, and we
concern ourselves with detecting the sliceness of this K ′. (Experts will note
that our K ′ is not concordant to the Conway knot.) To construct such a K ′

we will be interested in the following manifold.

Definition 1.2. A knot traceX(K) is a four manifold obtained by attaching
a 0-framed 2-handle to B4 with attaching sphere K.

We will use ∼= to denote diffeomorphisms of manifolds. The following
observation is folklore; for an early, use see [KM78].

Lemma 1.3. K is slice if and only if X(K) smoothly embeds in S4 .

Proof. For the “only if ” direction. Consider S4 and a smooth S3 therein
which decomposes S4 into the union of two 4-balls B1 and B2. Consider K
sitting in this S3. Since K is slice, we can find a smoothly embedded disk DK

which K bounds in B1. Observe now that B2 ∪ ν(DK) ∼= X(K) is smoothly
embedded in S4.

For the “if ” direction. Let F : S2 → X(K) be a piecewise linear embedding
such that the image of F consists of the union of the cone on K with the
core of the 2-handle. Notice that F is smooth away from the cone point p.
Let i : X(K) → S4 be a smooth embedding. Then (i ◦ F ) is a piecewise
linear embedding of S2 in S4, which is smooth away from i(p). Note that
W := S4 r ν(i(p)) ∼= B4 and that the restriction of (i ◦ F ) to the complement
of a small neighborhood of F−1(p) in S2 is a smooth embedding of D2 in
W ∼= B4. Further, if we choose this neighborhood to be the inverse image of a
sufficiently small neighborhood of i(p), we have that (i ◦ F )(D2 r ν(F−1(p)))

intersects ∂W in the knot K. �

Then for any knots K and K ′ with X(K) ∼= X(K ′), K is slice if and only
if K ′ is slice. There exists a small body of literature on producing pairs of
knots K and K ′ with X(K) ∼= X(K ′). We will rely here on the dualizable
patterns construction which was pioneered by Akbulut in [Akb77], developed
by Lickorish [Lic79] and Gompf-Miyazaki [GM95], and recently re-interpreted
by the author [Pic19]. Unknotting number one knots fit into this construction
(a related statement appears in [AJOT13]); using this we prove the following.

Proposition 1.4. The knot K ′ in Figure 2 has X(Conway) ∼= X(K ′).

Thus it suffices to prove that K ′ is not slice. The advantage of this per-
spective is that we do not have any reason to expect K ′ to be a mutant of a
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Figure 2. The knot K ′ shares a trace with the Conway knot.

slice knot, so we hope that not all slice obstructions for K ′ will vanish. This
hope is complicated by the fact that K ′ has Alexander polynomial 1, thus all
its abelian and metabelian sliceness invariants vanish. In general it is diffi-
cult to distinguish knots with diffeomorphic traces in concordance (see [Kir78,
Prob. 1.21]), however, recent work of the author [Pic19] and Miller and the
author [MP18] demonstrates that Rasmussen’s s-invariant and the Heegaard
Floer correction terms of the double branched covers can be used to distinguish
such knots. Using the s-invariant, we show

Theorem 1.5. K ′ is not slice.

The s-invariant shares many formal properties with Ozsváth-Szabó’s
τ -invariant. However, it follows from recent work of Hayden, Mark, and the
author [HMP19] that for any K ′ with X(Conway) ∼= X(K ′), ε(K ′) = 0 and
hence τ(K ′) = 0.

In Section 2 we construct K ′ and prove Proposition 1.4. In Section 3 we
compute s(K ′) and prove Theorem 1.5. We will assume familiarity with handle
calculus; for details see [GS99].

Acknowledgments. The author was reminded of this problem during Shelly
Harvey’s talk at Bob Gompf’s birthday conference. The author is in frequent
conversation with Allison N. Miller, and those insightful conversations inform
this work. The author is deeply indebted to her advisor John Luecke, whose
constant encouragement, context, and insights are indispensable to her work.

2. Constructing K′ which shares a trace with the Conway knot

We begin by recalling the dualizable patterns construction, as presented
in [Pic19]. Let L be a three component link with (blue, green, and red) compo-
nents B,G, and R such that the following hold: the sublink B ∪ R is isotopic
in S3 to the link B ∪µB, where µB denotes a meridian of B, the sublink G∪R
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is isotopic to the link G ∪ µG, and lk(B,G) = 0. We will call such a link a
dualizable link. From a dualizable link we can define an associated four mani-
fold X by thinking of R as a 1-handle, in dotted circle notation, and B and G
as attaching spheres of 0-framed 2-handles. A dualizable link L also defines a
pair of associated knots K and K ′; we will give the association in the proof of
Theorem 2.1.

Theorem 2.1 ([Pic19]). If L is a dualizable link with X the associated
4-manifold and K and K ′ the associated knots, then X ∼= X(K) ∼= X(K ′).

Proof. Isotope L to a diagram in which R has no self crossings (hence such
that R bounds a disk DR in the diagram) and in which B ∩ DR is a single
point. Slide G over B as needed to remove the intersections of G with DR.
After the slides we can cancel the 2-handle with attaching circle B with the
1-handle, and we are left with a handle description for a 0-framed knot trace;
this knot is K ′.

To construct K and see X ∼= X(K), perform the above again with the
roles of B and G reversed. �

Proposition 2.2. For any unknotting number 1 knot C , there exists a du-
alizable link L such that 4-manifold X associated to L is diffeomorphic to X(C).

Proof. We will prove the claim for C admitting a positive unknotting cross-
ing c; the proof for c negative is similar. Define knots R and G in S3r ν(C) as
in the left frame of Figure 3, where R is a blackboard parallel of D outside of
the diagram. Define X to be the four manifold obtained by thinking of R as a
1-handle in dotted circle notation, and attaching 0-framed 2-handles along K
and G. Since G and R are a canceling 1-2 pair, we see that X ∼= X(K). To
finish the proof we will perform handle slides to get a dualizable link L such
that X is the associated 4-manifold.

To this end, slide C over R as indicated in Figure 3 to get a handle de-
scription for X as in the center frame. Observe that the attaching sphere for

Figure 3. Constructing a dualizable link L associated to an un-
knotting number 1 knot C. Here D denotes a (blue) diagram of
C with a positive unknotting crossing c, and w(D) denotes the
writhe of D.



586 LISA PICCIRILLO

the curve indicated in blue in the center frame is isotopic to a meridian of R.
As such, performing the indicated slide to get the right frame will yield a link
L with 0-framed blue attaching sphere B which can be isotoped so that B ∪R
is isotopic to B ∪ µB, and one observes that lk(B,G) = 0. �

Thus for any unknotting number one knot C, one can produce a link L
as in Theorem 2.1 and use L to produce a knot K ′ with X(K ′) ∼= X(C). We
remark that the unknotting number one knot C is in fact isotopic to the knot
K produced from L as in the proof of Theorem 2.1, though we will not rely on
that here.

Proof of Proposition 1.4. We now produce such a K ′ for the Conway knot.
We proceed as in the proofs of Proposition 2.2 and Theorem 2.1; in order to
produce a diagram ofK ′ with small crossing number, we will perform additional
isotopies throughout. See Figure 4.

�

3. Showing K’ is not slice

In [Kho00] Khovanov introduced a link invariant Khi,j(L) which is the
(co)homology of a finitely generated bigraded chain complex (Ci,j(DL), d). In
our notation, DL denotes a diagram of L and i is referred to as the homological
grading and j, the quantum grading. Later Lee [Lee02] introduced a modi-
fication of the Khovanov differential: she considered instead a graded filtered
complex (Ci,j(DL), d′), such that d′ raises homological grading by 1 and for any
homogeneous v ∈ Ci,j(DL), the quantum grading of every monomial in d′(v) is
greater than or equal to the quantum grading of v. As a consequence of her con-
struction, there exists a spectral sequence with (Ei,j

1 (DL), d1) = (Ci,j(DL), d)

and Ei,j
2 = Khi,j(L) which converges to the homology of the Lee complex for L.

We will denote this homology group KhLi,j(L). It will be relevant for us that
the differentials dn of the spectral sequence have bidegree (1, 4(n − 1)) (see
[Ras10]). Lee proves that for any knot K, KhL(K) = Q⊕Q where both gen-
erators are located in grading i = 0. Rasmussen used this to define an integer
valued knot invariant s(K) as follows.

Theorem 3.1 ([Ras10]). For any knot K , the generators of Lee homology
are located in gradings (i, j) = (0, s(K)± 1). If K is slice, then s(K) = 0.

Proof of Theorem 1.5. Let K ′ be the knot from Proposition 1.4; to show
K ′ is not slice we will calculate s(K ′). To begin, we compute the Khovanov
homology of K ′, using Bar-Natan’s Fast-Kh routines available at [KAT]. These
routines produce the polynomial Kh(K)(t, q) := Σi,jt

iqjrank(Khi,j(K) ⊗ Q).
We plot the values rank(Khi,j(K ′)⊗Q) in Table 1.

Since the Lee homology is supported in grading i = 0, we see that s(K ′) ∈
{0, 2}. To demonstrate that in fact s(K ′) = 2, we will use the fact that all
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higher differentials in the spectral sequence to the Lee homology have bidegree
(1, 4(n − 1)). Consider a generator x of Kh0,3(K ′). If x were to die on the
nth page of the spectral sequence (n ≥ 2), we would need to have that either
dn(x) 6= 0 or there exists a y with dn(y) = x. SinceKhi,j(K ′) has no generators
in gradings {1, 4(n− 1) + 3} or {−1,−4(n− 1) + 3} for any n ≥ 2, neither of
these can happen. As such, x survives to the E∞ page, and s(K ′) = 2. �

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4. Handle calculus exhibiting a diffeomorphism from
X(C) toX(K ′) whereK ′ is the knot defined in Figure 2. Handle
slides are denoted with arrows, the transition from (L) to (M)

includes canceling a 1-2 pair, and all other changes are isotopies.
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(j) (k)

(l) (m)

(n) (o)

Figure 4. continued
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-3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
49 1
47
45 1 1 1
43 1 1
41 1 1 1 1
39 1 1 1 2 1
37 1 1 2 1
35 1 1 3 2 1 1
33 2 3 2 1 1
31 1 2 3 2 2 1
29 2 2 4 4 1
27 1 2 4 4 2 1
25 2 3 5 3 2 1
23 1 4 4 3 4 2
21 2 3 4 4 3 1
19 3 4 6 4 1 1
17 1 4 6 4 2 1
15 2 4 5 3 2 1
13 3 4 5 4 1
11 3 5 4 2
9 1 3 5 3 1
7 2 3 3 3
5 1 3 3 2
3 1 3 3
1 2 2 2
-1 1 1
-3 2
-5 1

Table 1
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