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Birational Calabi-Yau manifolds have
the same small quantum products

By Mark McLean

Abstract

We show that any two birational projective Calabi-Yau manifolds have

isomorphic small quantum cohomology algebras after a certain change of

Novikov rings. The key tool used is a version of an algebra called symplectic

cohomology, which is constructed using Hamiltonian Floer cohomology.

Morally, the idea of the proof is to show that both small quantum products

are identical deformations of symplectic cohomology of some common open

affine subspace.
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1. Introduction

We are interested in the following broad question:

Question. What properties do birationally equivalent Calabi-Yau mani-

folds have in common?

Recall that two smooth projective varieties X, “X are birationally equiv-

alent if there exist Zariski dense open subsets A ⊂ X, Â ⊂ “X and an iso-

morphism A
∼=−→ Â. In this paper, by Calabi-Yau manifold, we will mean a

smooth projective variety with trivial first Chern class. Batyrev showed in

[Bat99] that birational Calabi-Yau manifolds have equal Betti numbers. More

generally, by combining ideas from [Kon95] and [DL01] with ideas in [GS96,

§3.3], it can be shown that they have identical integral cohomology groups.

One can ask, do their cup product structures agree? It turns out that this is

false ([Fri91, Example 7.7]). However Morrison in [Mor96] conjectured that bi-

rational Calabi-Yau threefolds have identical small quantum cohomology rings,

and this was proven in [LR01]. This leads to the following conjecture:
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Conjecture 1.1 ([Rua99]). Any two birational Calabi-Yau manifolds

have isomorphic big quantum cohomology rings up to analytic continuation.

It was shown in [LLW16a], [LLW16b] and [LLQW16] that certain bira-

tional isomorphisms called ordinary flops induce isomorphisms between big

quantum cohomology rings up to analytic continuation. In [Wan04, Conj. IV],

it was conjectured that a small perturbation of a birational isomorphism be-

tween Calabi-Yau manifolds is a sequence of ordinary flops. Hence the work

above tells us that [Wan04, Conj. IV] implies Conjecture 1.1. Kawamata in

[Kaw08] showed that birational morphisms between Calabi-Yau manifolds can

be decomposed into sequences of flops, however the structure of these flops in

general is unknown.

In order to state our main theorem precisely, we need to set up some

notation. Let Φ̂ : X 99K “X be a birational isomorphism between Calabi-

Yau manifolds. Fix a field K, and fix Kähler forms ωX , ω“X on X and “X
respectively so that the de Rham cohomology classes [ωX ] ∈ H2(X;R), [ω“X ] ∈
H2(“X;R) lift to integral cohomology classes. Then a standard argument (see

[Kaw02, Lemma 4.2] or Corollary 7.2) tells us that the map Φ̂ gives us natural

identifications H2(X;R) ∼= H2(“X;R) and H2(X;Z) ∼= H2(“X;Z). As a result,

we will not distinguish between these groups. Therefore we can define the

following Novikov rings:

Λ
ωX ,ωX̂
K =

{∑
i∈N

bit
ai : bi ∈ K, ai ∈ H2(X;Z), min(ωX(ai), ω“X(ai))→∞

}
,

(1.1)

ΛωXK =

{∑
i∈N

bit
ai : bi ∈ K, ai ∈ H2(X;Z), ωX(ai)→∞

}
,

Λ
ω
X̂
K =

{∑
i∈N

bit
ai : bi ∈ K, ai ∈ H2(X;Z), ω“X(ai)→∞

}
.

(1.2)

Here, the first Novikov ring is the intersection of the other two. The aim of

this paper is to prove the following theorem:

Theorem 1.2. Let Φ̂ : X 99K “X be a birational equivalence between

Calabi-Yau manifolds, and let ωX and ω“X be Kähler forms on X and “X re-

spectively whose cohomology classes lift to integer cohomology classes. Then

there exists a graded Λ
ωX ,ωX̂
K -algebra Z and algebra isomorphisms

(1.3) Z⊗
Λ
ωX,ωX̂
K

ΛωXK
∼=−→ QH∗(X; ΛωXK ), Z⊗

Λ
ωX,ωX̂
K

Λ
ω
X̂
K

∼=−→ QH∗(X; Λ
ω
X̂
K )

over the Novikov rings ΛωXK and Λ
ω
X̂
K respectively, where QH∗ means small

quantum cohomology.
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Note that small quantum cohomology of a Calabi-Yau manifold can be

defined over any field K (see [Rua96]). Previous theorems identifying quan-

tum cohomology rings of birational Calabi-Yau manifolds were proven using a

degeneration argument (along with many additional ideas, such as a quantum

Leray-Hirsch theorem). We will prove our theorem using Hamiltonian Floer co-

homology. This proof has the advantage that it works in greater generality and

it explains in some sense why the result should hold. The downside, in com-

parison to previous results, is that the isomorphisms (1.3) are not explicit. In

fact, the algebra Z is not explicit either. Also, the results [Rua99], [LLW16a],

[LLW16b] and [LLQW16] identify actual enumerative invariants through an-

alytic continuation dictated by the identification H2(X;Z) ∼= H2(“X;Z). It

might be possible to use ideas from [Sei18] and [GPS15] to extend Theorem 1.2

above so that we can identify such enumerative invariants in some special cases.

The results [LLW16a], [LLW16b] and [LLQW16] also identify big quantum co-

homology rings, whereas we only identify small quantum cohomology rings.

Finally, one may ask if higher genus invariants of birational Calabi-Yau’s are

related (see [ILLW12]). We currently do not know if the techniques in this

paper will be useful in answering this question.

We will give a sketch of the proof of Theorem 1.2 in Section 1.2. The

ideas of this proof were inspired by ongoing work of Borman and Sheridan,

and it uses a version of symplectic cohomology defined in [CFH95], [CO18],

[Gro15], [Ven18] and [Var18]. As a corollary of the theorem above, we provide

an alternative proof of the fact that birational Calabi-Yau manifolds have the

same cohomology groups over any field.

Corollary 1.3. Let X , “X be birational Calabi-Yau manifolds. Then

they have isomorphic cohomology groups over any field.

Proof. We wish to show that Hp(X;K) ∼= Hp(“X;K) for any field K and

for each p ∈ Z. Fix such a K and p ∈ Z. Let F̌, F, F̂ be the field of fractions of

Λ
ωX ,ωX̂
K , ΛωXK and Λ

ω
X̂
K respectively. Then K ⊂ F̌, F̌ ⊂ F and F̌ ⊂ F̂. Let Z be

as in Theorem 1.2, define Ž := Z ⊗
Λ
ωX,ωX̂
K

F̌, and let Žp be the degree p part

of this graded algebra. By the universal coefficient theorem [Wei94, 3.6.1], we

have the following isomorphisms of vector spaces:

Hp(X; ΛωXK )⊗Λ
ωX
K
F ∼= Hp(X;F), Hp(“X; Λ

ω
X̂
K )⊗

Λ
ω
X̂

K
F̂ ∼= Hp(“X; F̂).

Hence by equation (1.3), we have isomorphisms

(1.4) Žp ⊗F̌ F ∼= Hp(X;F), Žp ⊗F̌ F̂ ∼= Hp(“X; F̂).

By the universal coefficient theorem, we also have isomorphisms

(1.5) Hp(X;K)⊗K F ∼= Hp(X;F), Hp(“X;K)⊗K F̂ ∼= Hp(“X; F̂).
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Therefore by equations (1.4) and (1.5), the dimension of Hp(X;K) is equal to

the dimension of Hp(“X;K). Hence Hp(X;K) ∼= Hp(“X;K). �

1.1. Example. Even though we do not know what the isomorphisms (1.3)

look like explicitly, we will speculate what they should look like in a particular

example when restricted to even degrees (see [Mor96, §4.3]). Suppose that X,“X are of dimension 3 and that there exists a class Γ ∈ H2(X;Z) so that

• every connected one-dimensional subvariety in X representing Γ or in “X
representing −Γ is isomorphic to P1 with normal bundle O(−1) ⊕ O(−1);

and

• X and “X are related by an Atiyah flop along all of these curves.

Since H2(X;Z) is naturally identified with H2(“X;Z), we have by Poincaré

duality a natural identification Hk(X;Q) = Hk(“X;Q) for each even k ∈ Z.

Hence from now on we will identify these cohomology groups. Let Â0, . . . , Âl ∈
H4(X;Q) be a basis so that Â0 is Poincaré dual to Γ, and let A0, . . . , Al ∈
H2(X;Q) be the dual basis with respect to the pairing (α, β)→

∫
X α ∪ β.

We speculate that the even degree part of the algebra Z from Theorem 1.2

is isomorphic as a Λ
ωX ,ωX̂
K -module to Heven(X; Λ

ωX ,ωX̂
K ) and the product ∗Z on

this module is uniquely determined by the structure constants

Ai ∗Z Aj = Ai ∪X Aj + lδ0iδ0jÂ0t
Γ

+
l∑

k=0

∑
β/∈ZΓ

GWX,β
0,3 (Ai, Aj , Ak)Âkt

β, i, j ∈ {0, . . . , l}.
(1.6)

By replacing the class A0 in (1.6) with 1
1−tΓA0 and − t−Γ

1−t−ΓA0 respectively and

the class Â0 with (1 − tΓ)Â0 and −1−t−Γ

t−Γ Â0 respectively, we get the isomor-

phisms in equation (1.3).

1.2. Sketch of proof. Theorem 1.2 is proven using Hamiltonian Floer co-

homology. Very roughly, Hamiltonian Floer cohomology HF ∗(H) is a coho-

mology ring whose chain complex is generated by 1-periodic orbits of a Hamil-

tonian H. The key property of Hamiltonian Floer cohomology is that it is

isomorphic to quantum cohomology, and hence it is sufficient for us to show

that the Hamiltonian Floer cohomology algebras of appropriate Hamiltonians

on (X,ωX) and (“X,ω“X) respectively are related via equations similar to (1.3).

In order to do this, we choose Zariski dense affine open subsets A ⊂ X, Â ⊂ “X
so that Φ̂ maps A isomorphically to Â. The key idea now is to choose Hamil-

tonians H on X and “H on “X so that H|A = Φ̂∗“H|“A and which are constant

outside a large compact subset K of A. One also has to modify ωX and ω“X so

that these Kähler forms agree near K. If one could ignore all 1-periodic orbits
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of H and “H outside K, then their Hamiltonian Floer groups would be “iden-

tical” and hence we would be done. However it turns out that if one ignores

these orbits, one gets groups which are no longer isomorphic to quantum co-

homology. In order to get around this problem, we consider a sequence of such

Hamiltonians tending to infinity outside K. We package all of this data into

a group called symplectic cohomology and show that these groups are in fact

isomorphic to quantum cohomology. In the following subsections, we provide

a slightly more detailed sketch of the proof.

1.2.1. Hamiltonian Floer cohomology with alternative filtrations. In this

subsection, we summarize the results of Section 2. Let (M,ω) be a symplec-

tic manifold with trivial first Chern class, and fix an ω-tame almost complex

structure J . A contact cylinder is a codimension 0 symplectic embedding of a

subset Č = [1−ε, 1+ε]×C of a symplectization of a contact manifold C which

bounds a Liouville domain D (see Definition 2.3). Let H be a time dependent

Hamiltonian on M which is compatible with this contact cylinder (see Defini-

tion 2.4) whose 1-periodic orbits are non-degenerate. A capped 1-periodic orbit

of H is a 1-periodic orbit γ together with a certain equivalence class of sur-

faces γ̃ : Σ −→M with boundary equal to γ (see Definition 2.1). Now to each

capped 1-periodic orbit γ and to each closed 2-form ω̃ which is “compatible”

with Č and J we can assign an action. This action depends on γ, H and the

cohomology class of ω̃ together with two additional parameters (Corollary 2.8

and Remark 2.9). Therefore one can think of the action of γ as a partic-

ular function AČ,H(γ) from (a certain subset QČ of) H2(M,D;R) × R × R
to R. Morally, one should think of D as the “complement” of a particular

ample divisor and that the action function AČ,H(γ) records the usual action

together with the intersection numbers of the capping surface γ̃ with various

components of this divisor. Let a± : Q± −→ R be continuous functions where

Q± ⊂ QČ are certain cones in QČ . We define the chain complex CF ∗
Č,a−,a+

(H)

to be the free abelian group generated by capped 1-periodic orbits γ satisfy-

ing a− ≤ AČ,H(γ)|Q− and a+ � AČ,H(γ)|Q+ ; see Definition 2.59 for more

details. The differential is a matrix with respect to the above basis of capped

1-periodic orbits whose entries “count” solutions to a particular PDE with

boundary conditions given by these orbits (Definition 2.63). We define the

Hamiltonian Floer cohomology group HF ∗
Č,a−,a+

(H) to be the homology of

this chain complex. This is a module over a particular Novikov ring Λ
Q+,+
K

(Definition 2.56). Here are some key examples.

{A} The case when Č is the empty set and Q− = Q+ are one-dimensional

cones spanned by ([ω], 1, 1) ∈ H2(M ;R)×R2. In this case, one gets the

usual Hamiltonian Floer groups and the usual action filtration (used

in, say, [FH94]). The Novikov ring Λ
Q+,+
K in this case is equal to (1.2)
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where ωX is replaced by ω and where only non-negative exponents are

allowed; i.e., ω(ai) ≥ 0.

{B} The case when Č is non-empty, Q+ is a one-dimensional cone and Q−
is a two-dimensional cone containing Q+ which projects to the cone

spanned by [ω] ∈ H2(M ;R). In this case the corresponding Floer

cohomology group is defined over the same Novikov ring, but since Q−
is larger, one can use it to ignore certain 1-periodic orbits.

{C} Finally there is the case when Q+ is a certain two-dimensional cone

and Q− is a four-dimensional cone. The Novikov ring in this case is

a subring of (1.1) where only non-negative exponents are allowed; i.e.,

ωX(ai), ω“X(ai) ≥ 0. We will use this case to define the algebra Z.

These Hamiltonian Floer groups satisfy the following properties:

(HF1) (Definition 2.69). If H− ≤ H+ (plus some other conditions), then

there is a natural continuation map Φp
H−,H+ : HF p

Č,a−,a+
(H−) −→

HF p
Č,a−,a+

(H+) which is functorial.

(HF2) (Definition 2.77). If Q1
± ⊂ Q0

± and a1
± ≤ a0

±|Q1
±

, then there is a natu-

ral action map HF ∗
Č,a0
−,a

0
+

(H) −→ HF ∗
Č,a1
−,a

1
+

(H) and these maps are

functorial and commute with continuation maps.

(HF3) (Definition 2.85). Suppose

• (Hj)j=0,1,2 are Hamiltonians satisfying H0, H1 < 1
2H

2;

• (Qj±)j=0,1,2 are certain cones in H2(M,D;R) × R × R satisfying

Q2
± ⊂ Q

j
±; and

• aj± : Qj± −→ R are certain continuous functions satisfying a2
− ≤

a0
− + a1

− and a2
+ ≤ min(a0

+ + a1
−, a

0
− + a1

+).

Then there is a pair of pants product map

HF p0

Č,a0
−,a

0
+

(H0)⊗
ΛQ,+K

HF p1

Č,a1
−,a

1
+

(H1) −→ HF p0+p1

Č,a2
−,a

2
+

(H2)

commuting with all of the maps above.

1.2.2. Lower semi-continuous Hamiltonians. The next subsection sum-

marizes Section 3. A lower semi-continuous Hamiltonian is just a function

S1 ×M −→ R ∪ {∞} which is lower semi-continuous. The good thing about

this condition is that the set of smooth Hamiltonians smaller than H form

a directed system with respect to the usual ordering ≤. For a lower semi-

continuous Hamiltonian H compatible with a contact cylinder Č, we can define

HF ∗
Č,a−,a+

(H) to be the direct limit of HF ∗
Č,a−,a+

(Ȟ) for all smooth Č compat-

ible Hamiltonians smaller than H. These satisfy the same properties (HF1)–

(HF3) above.

1.2.3. Symplectic Cohomology. The problem with the Floer groups above

is that they do not have the correct invariance properties and they are not



446 MARK MCLEAN

algebras. We resolve these issues in Sections 4 and 5. Let M , Č, D be as

above. Let Q− ⊂ Q+ be two cones in QČ . For a closed set K ⊂ D, we define

the symplectic cohomology algebra

SH∗
Č,Q−,Q+

(K ⊂M) := lim−→
a−

lim←−
a+

HF ∗
Č,a−,a+

(HK),

where we are using the directed system of continuous functions a± : Q± −→ R
with the usual ordering ≤ for a+ and the opposite ordering for a− and where

HK is the lower-semi-continuous Hamiltonian

(1.7) HK : M −→ R ∪ {∞}, HK(x) :=

{
0 if x ∈ K,
∞ otherwise.

This is defined over a particular Novikov ring Λ
Q+

K and has a product induced

by the pair of pants product. The papers [CFH95], [CO18], [Gro15], [Ven18]

and [Var18] have a similar definition of symplectic cohomology. However there

are slight differences between all of these definitions (which potentially could

lead to different algebras). One main difference is that some of the definitions

above involve building a chain complex first, and then taking homology. Our

definition does not do this, but only for the sake of ease. The symplectic

cohomology algebra satisfies the following properties (see the cited definitions

and propositions/theorems for more accurate statements):

(SH1) (Definition 4.3). If K+ ⊂ K− ⊂ D are closed subsets, then we have a

transfer map SH∗
Č,Q−,Q+

(K− ⊂ M) −→ SH∗
Č,Q−,Q+

(K+ ⊂ M) which

is functorial.

(SH2) (Definition 4.4). If Q1
± ⊂ Q0

± then there is an action map

SH∗
Č,Q0

−,Q
0
+

(K ⊂M) −→ SH∗
Č,Q1

−,Q
1
+

(K ⊂M).

These maps commute with continuation maps and are functorial.

(SH3) (Theorem 5.10). If K = M and Č, Q± are as in {A}, then

SH∗
Č,Q−,Q+

(K ⊂M)

is isomorphic to quantum cohomology. Also the “derived” version of

symplectic cohomology lim−→a−
lim←−

1
a+
HF ∗

Č,a−,a+
(HK) vanishes.

(SH4) (Theorem 5.12). If the complement M −K is stably displaceable (i.e.,

(M − K) × S1 ⊂ M × T ∗S1 is displaceable by a Hamiltonian sym-

plectomorphism) and Č, Q± are as in {A}, then the transfer map

SH∗∅,Q−,Q+
(M ⊂M) −→ SH∗∅,Q−,Q+

(K ⊂M) is an isomorphism.

(SH5) (Proposition 5.24). If Č, Q−, Q+ are as in {B} and the Liouville

domain D is index bounded (Definition 5.23), then the action map

SH∗
Č,Q−,Q+

(D ⊂M) −→ SH∗
Č,Q+,Q+

(D ⊂M)

is an isomorphism.
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(SH6) (Proposition 5.32). Suppose that Č0, Č1 are index bounded contact

cylinders with associated Liouville domains D0 and D1 respectively

satisfying D1 ⊂ D0 along with some other conditions. (Essentially D0

and D1 need to be “large” in some sense.) Then the transfer map

SH∗
Č,Q−,Q+

(D0 ⊂ M) −→ SH∗
Č,Q−,Q+

(D1 ⊂ M) is an isomorphism

where (Q−, Q+) is as in {B}.
(SH7) (Theorem 5.39 and Proposition 11.2). Let Č be an index bounded

contact cylinder with associated Liouville domain D. Suppose we have

inclusions of rational polyhedral cones Q1
± ⊂ Q0

± where Q1
− has dimen-

sion at least 2 (e.g., case {B} or {C}). Also suppose that

lim−→
a−

1
lim←−
a+

HF ∗
Č,a−,a+

(HD) = 0,

where HD is defined in (1.7). Then we have an isomorphism

SH∗
Č,Q0

−,Q
0
+

(D ⊂M)⊗
Λ
Q0

+
K

Λ
Q1

+

K
∼=−→ SH∗

Č,Q1
−,Q

1
+

(D ⊂M)

induced by the action map.

(SH8) (Proposition 2.19 and Lemma 8.3). Let Č be a contact cylinder with

associated Liouville domain D. Suppose V ⊂ M − D − Č is a union

of real codimension ≥ 4 submanifolds. Let Q± be cones so that Q−
is of dimension ≥ 2. Then the Floer trajectories and orbits defining

SH∗
Č,Q−,Q+

(D ⊂ M) can be made to avoid V . Hence this group only

depends on these structures restricted to M − V .

1.2.4. Sketch of proof of Main Theorem 1.2. Here we summarize the ideas

behind the proof of Theorem 1.2 coming from Sections 6 and 7. The proof has

two parts. In part (1), we modify the symplectic forms on X and “X so that

they agree on a certain large open subset and so that they admit certain index

bounded contact cylinders. In part (2), we use properties (SH1)–(SH8) to

finish our proof.

Part (1). First of all, we choose Zariski dense affine subvarieties A ⊂ X,

Â ⊂ “X so that

(1) the birational morphism Φ̂ induces an isomorphism Φ : A −→ Â; and

(2) ωX and ω“X come from effective ample divisors with support equal to X−A
and “X − Â respectively (after rescaling these forms).

By Corollary 6.20, we have thatX−A is stably displaceable (by an h-principle).

Hence there is a compact subset K ⊂ A so that X −K is stably displaceable.

By Proposition 6.7 we can construct an index bounded contact cylinder Č on

X whose associated Liouville domain D contains K. (Here we use the fact

that “X is Calabi-Yau.) By using the ample divisors above, we can modify
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the Kähler form ω“X (without changing its cohomology class up to rescaling)

so that ωX and Φ∗ω“X agree near D. Again, by Corollary 6.20 we can find a

compact subset “K ⊂ Â containing Φ(D) so that “X − “K is stably displaceable.

Also by Proposition 6.7 one can construct an index bounded contact cylinder“C in Â whose associated Liouville domain “D ⊂ Â contains “K.

Part (2). From now on we identify H2(X,D;R) = H2(“X, “D;R). We let

QωX and Qω
X̂

be one-dimensional cones spanned by ([ωX ], 1, 1) and ([ω“X ], 1, 1)

respectively as in {A}. We let Q±, “Q± be the corresponding enlarged cones

as in {B}. Finally we let ‹Q± be the cones spanned by both Q± and “Q±.

(These are cones as in {C}.) By (SH3), (SH4) and (SH5) we have that

SH∗
Č,Q−,Q+

(D ⊂ X) and SH∗“C,“Q−,“Q+
(“D ⊂ “X) are isomorphic to the quan-

tum cohomology rings of X and “X respectively. By (SH6) we have that the

transfer map SH∗“C,“Q−,“Q+
(“D ⊂ “X) −→ SH∗

Φ(Č),“Q−,“Q+
(Φ(D) ⊂ “X) is an iso-

morphism. Define the Λ
ωX ,ωX̂
K -algebra Z := SH∗

Č,‹Q−,‹Q+
(D ⊂ X). Now since

the regions VX ⊂ X and V“X ⊂ “X for which the birational morphisms Φ̂ and

Φ̂−1 are ill defined has real codimension ≥ 4 by Lemma 7.1, we have by (SH8)

an isomorphism of Λ
ωX ,ωX̂
K -algebras

(1.8) Z ∼= SH∗
Č,‹Q−,‹Q+

(Φ(D) ⊂ “X).

The isomorphisms (1.3) now follow from equation (1.8) combined with the

second part of (SH3) and (SH7).

1.3. Notation throughout this paper.

• We will fix a ring K.

• (M,ω) will be a compact connected symplectic manifold of dimension 2n

satisfying c1(ω) = 0 and where [ω] ∈ H2(M ;R) lifts to an integral cohomol-

ogy class.

• J0 is a fixed almost complex structure on M taming ω.

• (Vi)
l
i=1 is a finite collection of (not necessarily properly embedded) subman-

ifolds of M of codimension ≥ 4 and where V := ∪li=1Vi is compact.

• T := R/Z, I− := (−∞, 0], I+ := [0,∞).

• (s, t) will be the natural coordinate system on I± × T or R× T.

• For any manifold Σ, JΣ(J0, V, ω) is the space of smooth families of ω-

tame almost complex structures J := (Jσ)σ∈Σ smoothly parametrized by

Σ equipped with the C∞ topology so that all the derivatives of J and J0

agree at v for all v ∈ V .

• J(J0, V, ω) := Jpt(J0, V, ω).

• If I is a set and W is a vector space, then W I is the vector space of maps

I −→W or equivalently tuples (wj)j∈I of elements in W .
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2. Hamiltonian Floer cohomology and filtrations

2.1. Alternative action values of periodic orbits.

Definition 2.1. A Hamiltonian is a smooth family of functions H=(Ht)t∈T
on a symplectic manifold. (By default this is (M,ω) unless stated otherwise.)

It is autonomous if Ht does not depend on t, and hence we usually express

such a Hamiltonian as a single function M −→ R. The time t flow (φHt :

M −→ M)t∈R of a Hamiltonian H ≡ (Ht)t∈T is the time t flow of the unique

time dependent vector field (XH
t )t∈R satisfying iXH

t
ω = −dHt for all t ∈ R.

A 1-periodic orbit is a smooth map γ : T −→ M satisfying γ̇ = XH
t for all

t ∈ T. A 1-periodic orbit γ is non-degenerate if the linearized return map

DφH1 : Tγ(0)M −→ Tγ(0)M has no eigenvalue equal to 1. A capped loop is an

equivalence class of pairs (γ̃, γ̌) of smooth maps

(2.1) γ̃ : S −→M, γ̌ : T −→ ∂S,

where S is a smooth oriented surface with boundary, γ̌ is an orientation pre-

serving diffeomorphism and where any two such pairs (γ̃0, γ̌0), (γ̃1, γ̌1) are

equivalent if γ̃0 ◦ γ̌0 = γ̃1 ◦ γ̌1 and if the surface obtained by gluing γ̃0 and γ̃1

along the boundary via the map γ̌0 ◦ γ̌−1
1 is null homologous. More precisely,

this gluing is defined to be the continuous map

(2.2) γ̃0 ? γ̃1 : S0 t S1/ ∼−→M, γ0 ? γ1(σ) :=

{
γ̃0 if z ∈ S0,

γ̃1 otherwise,

where S0 is the domain of γ̃0, S1 is the domain of γ̃1 with the opposite orien-

tation and where the identification ∼ is defined to be

∂S0 3 γ̌0(t) ∼ γ̌1(t) ∈ ∂S1, t ∈ T.

If (γ̃, γ̌) is a capped loop, then the associated loop of (γ̃, γ̌) is the map γ̃ ◦ γ̌ :

T −→ M . We define L̃(M) to be the space of capped loops equipped with

the quotient topology induced from the C∞ topology on the space of pairs of

maps as in equation (2.1).

A capped 1-periodic orbit γ of a Hamiltonian H is a capped loop, whose

associated loop γ : T −→M is a 1-periodic orbit of H. We call γ the associated
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1-periodic orbit of γ. A capped 1-periodic orbit γ is non-degenerate if the

associated 1-periodic orbit is non-degenerate.

Definition 2.2. Let K = (Kσ)σ∈Σ be a smooth family of functions on M

parametrized by a manifold Σ. Let ω̃ be a closed 2-form on M − V . We say

that K is ω̃-compatible if there is a smooth family of functions G = (Gσ)σ∈Σ

on M − V so that

(2.3) iXKσ ω̃ = −dGσ ∀ σ ∈ Σ.

We will call G a primitive associated to (K, ω̃).

Now let H := (Ht)t∈T be a Hamiltonian which is ω̃-compatible and F =

(Ft)t∈T a primitive associated to (H, ω̃). The (H, ω̃, F )-action of a capped loop

γ := (γ̃, γ̌) on M where the associated loop γ : T −→M is disjoint from V is

defined to be

(2.4) AH,ω̃,F (γ) := −
∫
S

(γ̃′)∗ω̃ +

∫ 1

0
Ft(γ(t))dt,

where γ̃′ : S −→ M is some C∞ small perturbation of γ̃ away from ∂S so

that its image is disjoint from V . If ω̃ extends to a smooth 2-form on M

and F extends to a smooth family of functions on M , then we define the

(H, ω̃, F )-action of any capped loop γ by equation (2.4) with γ̃′ replaced by

γ. If (γ̃, γ̌) is any capped loop whose associated loop is constant, then we

define the (H, ω̃, F )-action AH,ω̃,F (γ) to be AH,ω̃,F (γ′) where γ′ is a capped

loop disjoint from V which is smoothly isotopic to γ through capped loops

with constant associated loops.

Note that the perturbations γ̃′ and γ′ above exist since V is a finite union

of codimension ≥ 4 submanifolds of M . Note also that such an action will

usually be computed for capped 1-periodic orbits of H.

We will only deal with very specific closed 2-forms ω̃ associated to cer-

tain contact hypersurfaces inside (M,ω). We will now introduce such closed

2-forms.

Definition 2.3 (See Figure 1). A contact cylinder in M consists of a codi-

mension 0 submanifold

Č := [1− ε, 1 + ε]× C ⊂M − V

so that ω|Č = d(rCαC) where rC : Č −→ [1 − ε, 1 + ε] is the natural projec-

tion map, and αC is a contact form on C. We also require that {0} × C is

the boundary of a compact codimension 0 submanifold D so that ω|D = dθ

for some θ ∈ Ω1(D) satisfying θ|D∩Č = rCαC . Here rC is called the radial

coordinate associated to Č, αC is called the contact form associated to Č, and

D is called the Liouville domain associated to Č. A 2-form ω̃ ∈ Ω2(M − V ) is

Č-compatible if
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D

Č

{0} × C = ∂D

ω̃ = λ−ω̃ωω̃ = λ+
ω̃ω

ω̃|Č = d(fω̃(rC)rCα)

V

(1 + ε/4, 1 + ε/2)× C

Figure 1. A contact cylinder

(a) ω̃ is closed and J0-tame outside D ∪ Č;

(b) ω̃|Č = d(fω̃(rC)rCα) where fω̃ : R −→ R is a smooth function satisfying

fω̃|(−∞,1+ε/4] = λ−ω̃ , fω̃|[1+ε/2,∞) = λ+
ω̃ , f ′ω̃ ≥ 0

for some constants λ±ω̃ ≥ 0;

(c) ω̃|D = λ−ω̃ω; and

(d) ω̃ = λ+
ω̃ω if Č is the empty set.

We call λ±ω̃ the scaling constants for ω̃ and fω̃ the scaling function for ω̃. A

family of 2-forms ω̃• = (ω̃σ)σ∈Σ is Č-compatible if ω̃σ is Č-compatible for each

σ ∈ Σ. If Č is the empty contact cylinder, then λ−ω̃ is defined to be arbitrary.

(That is, we can choose λ−ω̃ to be anything we like and it is considered as part

of the data defining ω̃.)

Definition 2.4. An autonomous Hamiltonian K : M −→ R is weakly

Č-compatible if K|[1+ε/8,1+ε/2]×C = λKrC + mK for some constants λK and

mK . The constant λK is called the slope of K along Č, and mK is called

the height of K at Č. Also if Č is the empty contact cylinder, then we de-

fine the slope and height of K to be 0. We say that K is Č-compatible if

it is weakly Č-compatible and if K|M−(D∪Č) is constant. A smooth fam-

ily of autonomous Hamiltonians K• := (Kσ)σ∈Σ parametrized by a manifold

Σ is (weakly) Č-compatible if Kσ is (weakly) Č-compatible for each σ ∈ Σ.

An almost complex structure J on M is Č-compatible if J ∈ J(J0, V, ω), and

drC ◦J = −αC inside [1+ε/8, 1+ε/2]×C. A smooth family of almost complex

structures J• = (Jσ)σ∈Σ is Č-compatible if Jσ is Č-compatible for each σ ∈ Σ.

Remark 2.5. The space of 2-forms which are Č-compatible is weakly con-

tractible; in fact it forms a convex subset of Ω2(M). Also the space of (weakly)
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Č-compatible Hamiltonians (resp. almost complex structures) is weakly con-

tractible.

By a direct calculation, we have the following lemma and corollary:

Lemma 2.6. Let

• Č be a contact cylinder with cylindrical coordinate rC and associated Liou-

ville domain D;

• ω̃ be a 2-form compatible with Č where λ±ω̃ (resp. fω̃) are the scaling con-

stants (resp. scaling function) for ω̃; and

• H = (Ht)t∈T be a weakly Č-compatible Hamiltonian which is Č-compatible

if ω̃ is not a locally constant multiple of ω outside [1 + ε/4, 1 + ε/2] × C ,

and let (λHt)t∈T and (mHt)t∈T be the slopes and heights of (Ht)t∈T along Č

respectively.

Then the smooth family of functions FH,Č,ω̃ := (FHt,Č,ω̃)t∈T defined by

FHt,Č,ω̃ : M −→ R, FHt,Č,ω̃

:=


λ−ω̃Ht in D ∪ ([1, 1 + ε/4]× C),

λHtfω̃(rC)rC + λ−ω̃mHt in [1 + ε/4, 1 + ε/2]× C,
λ+
ω̃ (Ht −mHt) + λ−ω̃mHt otherwise

(2.5)

is a primitive associated to (H, ω̃) as in Definition 2.2 for all t ∈ T; see Fig-

ure 2.

Ht

D

rC = 1

rC = 1 + ε/8

rC = 1 + ε/4 rC = 1 + ε/2

FHt,Č,ω̃λ−ω̃Ht λ+
ω̃ (Ht −mHt) + λ−ω̃mHt

Slope λHt

λHtfω̃(rC)rC + λ−ω̃mHt

rC = 1 + εrC = 1 − ε

Č

Figure 2. Primitive associated to (H, ω̃)
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Ht

D

rC = 1

rC = 1 + ε/8

rC = 1 + ε/4 rC = 1 + ε/2

FHt,Č,ω̃ ≈ λ−ω̃Ht

rC = 1 + εrC = 1 − ε

Č

Figure 3. Primitive associated to (H, ω̃), where H has small

derivatives outside D ∪ ([1, 1 + ε/8]× C).

Remark 2.7. Most of the important Hamiltonians in Sections 5.5, 5.6, and

5.7 will have small derivatives outside D ∪ ([1, 1 + ε/8] × C). This makes our

calculations easier. It is good to keep such Hamiltonians in mind throughout

this paper since they appear in many of the most important calculations. In

this special case, Figure 2 might look like Figure 3 instead.

We have the following corollary of Lemma 2.6:

Corollary 2.8. As in Lemma 2.6, let Č , ω̃, H = (Ht)t∈T, λ±ω̃ , (λHt)t∈T,

(mHt)t∈T, FH,Č,ω̃ := (FHt,Č,ω̃)t∈T. Then for every capped loop γ = (γ̃, γ̌)

whose associated loop γ : T −→M satisfies γ(T) ⊂M−([1+ε/4, 1+ε/2]×C),

we have

(2.6)

AH,Č,FH,Č,‹ω(γ) =

{
I0 +λ−ω̃ I1 if γ(T) ⊂ D ∪ ([1, 1 + ε/4]× C),

I0 +λ+
ω̃ (I1 − I2) + λ−ω̃ I2 otherwise,

where

I0 := −
∫
S
γ̃∗ω̃, I1 :=

∫ 1

0
Ht(γ(t)))dt, I2 :=

∫ 1

0
mHtdt.

Remark 2.9. The (H, ω̃, FHt,Č,ω̃)-action of a capped loop γ satisfying the

conditions of Corollary 2.8 only depends on ω, H, Č, λ±ω̃ and the relative

cohomology class [ω̃ − λ−ω̃ω] ∈ H2(M,D;R).

The following definition packages together all the necessary action values

stated above.



454 MARK MCLEAN

Definition 2.10. Let ωČ be a Č-compatible 2-form with scaling constants

0 and 1 and which is equal to ω outside D ∪ ([1, 1 + ε/2] × C). Let QČ ⊂
H2(M,D;R)×R×R be the subset consisting of all triples (q, λ−, λ+) satisfying

q = [ω̃−λ−ω+λ−ωČ ] for some Č-compatible 2-form ω̃ ∈ Ω2(M) whose scaling

constants are λ± satisfying λ− ≤ λ+. For any capped loop γ = (γ̃, γ̌) whose

associated loop has image disjoint from [1 − ε/4, 1 + ε/2] × C, we define the

(H, Č)-action of γ to be the function

AH,Č(γ) : QČ −→ R, AH,Č(γ)(q, λ−, λ+) := AH,Č,FH,Č,‹ω(γ),

where ω̃ ∈ Ω2(M) is a Č-compatible 2-form with scaling constants λ± satisfying

[ω̃ − λ−ω + λ−ωČ ] = q and λ− ≤ λ+.

The (H, Č)-action of γ is well defined by Remark 2.9 and does not depend

on the choice of ωČ .

Example 2.11. Let Č, ω̃, λ±ω̃ , (λHt)t∈T, (mHt)t∈T, FH,Č,ω̃ := (FHt,Č,ω̃)t∈T
be as in Lemma 2.6. Suppose that the contact cylinder Č is the empty set and

ω̃ = ω. Then for each capped loop γ = (γ̃, γ̌), we get

(2.7) AH,∅(γ)([ω̃], a, 1) = −
∫
S
γ̃∗ω +

∫ 1

0
Ht(γ(t))dt

for all a ∈ R, which is the usual action functional defined in, say, [Flo88] (with

different sign conventions), where S is the domain of γ̃ and γ is the associated

loop of γ.

2.2. Floer trajectories. In this section we will give a definition of a Floer

trajectory converging to a collection of capped 1-periodic orbits and state some

results concerning spaces of Floer trajectories. Throughout this subsection, we

will fix a (possibly empty) contact cylinder Č = [1− ε, 1 + ε]× C ⊂M .

Definition 2.12. Let HΣ(Č) be the space of smooth families of Hamil-

tonians H• = (Hσ)σ∈Σ parametrized by a manifold Σ which are weakly Č-

compatible and equipped with the C∞loc topology. Let H
Σ

(Č) ⊂ HΣ(Č) be

the subspace consisting of those H which are Č-compatible. Let JΣ(Č) be the

space of smooth families J• = (Jσ)σ∈Σ of almost complex structures on M

which are Č-compatible equipped with the C∞loc topology.

Definition 2.13 (see Figure 4). A Riemann surface with n− negative cylin-

drical ends and n+ positive cylindrical ends is a Riemann surface Σ together

with a collection of proper embeddings

(ιj : I± × T −→ Σ)j∈I−tI+ ,

where

• I−, I+ are finite indexing sets and the images of ιj are all disjoint from each

other;
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• Σ is biholomorphic to Σ̌−∪j∈I−tI+{pj} where Σ̌ is a closed Riemann surface

and (pj)j∈I−tI+ are distinct points in Σ̌; and

• for each j ∈ I±, there is a holomorphic chart Uj in Σ̌ centered at pj so that

Im(ιj) ⊂ Uj and

ιj(s, t) = e∓2π(s+it)

with respect to this chart.

The map ιj is called the negative (resp. positive) cylindrical end associated

to j ∈ I− (resp. j ∈ I+). The coordinate (s + it) ◦ ι−1
j : Im(ιj) −→ C on

the negative (resp. positive) cylindrical end ιj ∈ I± is called the cylindrical

coordinate associated to j ∈ I− t I+.

I− = {2}

I+ = {0, 1}

s0

t0

s1

t1

s2

t2

Cylindrical coordinates

Figure 4. Riemann surface with one negative cylindrical end

and two positive cylindrical ends

Definition 2.14. Let Σ be a Riemann surface with n− negative cylindrical

ends and n+ positive cylindrical ends labeled by finite sets I− and I+ respec-

tively. A 1-form β ∈ Ω1(Σ) is Σ-compatible if ι∗jβ = κjdt for all j ∈ I− t I+,

where (κi)i∈I−tI+ are positive constants. Here κj is called the weight of β

at the cylindrical end corresponding to j. A smooth family of tensor fields

α := (αz)z∈Σ on M (e.g., functions, differential forms, almost complex struc-

tures) is Σ-compatible if there is a compact subset Kα ⊂ Σ and a smooth

family of tensors αj := (αjt )t∈T on M for each j ∈ I− t I+ so that αιj(s,t) = αjt
for all (s, t) ∈ I± × T satisfying ιj(s, t) /∈ Kα and all j ∈ I− t I+. Here αj

is the limit of α corresponding to j ∈ I− t I+ and α# := (αj)j∈I−tI+ are the

limits of α. Let ω̃ ∈ Ω2(M) be Č-compatible. A smooth family of autonomous

Hamiltonians H := (Hz)z∈Σ on M is (Σ, Č)-admissible if
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(1) H ∈ HΣ(Č) and H is Σ-compatible; and

(2) d(hxβ), d(λβ), d(mβ), d((hx − λ)β) ≤ 0 for all x ∈ M , where hx, λ and m

are maps from Σ to R defined by

hx(σ) := Hσ(x), λ(σ) := λHσ , m(σ) := mHσ ∀ σ ∈ Σ,

where (λHσ)σ∈Σ and (mHσ)σ∈Σ are the slopes and heights of H = (Hσ)σ∈Σ

respectively.

Let H# := (Hj)j∈I−tI+ be a collection of Hamiltonians. We define HΣ(H#, Č)

to be the set of (Σ, Č)-admissible smooth families of Hamiltonians whose limits

are H#. We also define H
Σ

(H#, Č) := H
Σ

(Č) ∩HΣ(H#, Č).

Let J j := (J jt )t∈T be a smooth family of almost complex structures in

JT(Č) for each j ∈ I− t I+, and let J# := (J j)j∈I−tI+ . Define JΣ(J#, Č) ⊂
JΣ(Č) to be the subspace of Σ-compatible families J = (Jz)z∈Σ of almost

complex structures whose limits are J#.

Now let H ∈ HΣ(H#, Č) and J ∈ JΣ(J#, Č) for some H#,J# as above,

and let j be the natural complex structure on Σ. We say that u : Σ −→ M

satisfies the Floer equation with respect to (H,J) if

(2.8) (du+XHσ ⊗ β) + Jσ ◦ (du+XHσ ⊗ β) ◦ j = 0

at each point σ ∈ Σ. A continuous map u : Σ −→ M converges to capped

1-periodic orbits γ# := ((γ̃j , γ̌j))j∈I−tI+ of (κjH
j)j∈I−tI+ respectively if

• lims→±∞ u(ιj(s, t)) = γj(t) for all j ∈ I± where γj is the associated loop of

(γ̃j , γ̌j); and

• the surface obtained by gluing the ends of u with the surfaces (γ̃j)j∈I−tI+
is null-homologous in H2(M ;Z).

We let M(H,J, γ#) be the space of maps u : Σ −→ M satisfying the Floer

equation with respect to (H,J) and converging to γ# equipped with the C∞loc

topology.

Remark 2.15. The space M(H,J, γ#) also depends on β but we omit this

from the notation as it is either clear which β we are using, or if β is not

mentioned, then we will assume some β has been chosen.

The motivation for part (2) of the definition of a (Σ, Č)-admissible Hamil-

tonian above is that it ensures, roughly, that the Floer complex (defined in

Section 2.5) is filtered by the (H, Č)-action from Definition 2.10. See also

Lemma 10.3 combined with equation (2.5).

Definition 2.16. Each capped 1-periodic orbit γ can be assigned an index

CZ(γ) called the Conley-Zehnder index. Such an index is defined in the fol-

lowing way: To any path A := (At)t∈[a,b] of symplectic matrices, we can assign

an index CZ(A) called its Conley-Zehnder index ([CZ84], [RS93] and [Gut14]).
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We will not give a definition here, but we state some important properties (see

[Gut14, Prop. 6], [Gut14, Lemma 26] and [McL16, Cor. 4.9]):

(CZ1) CZ((eit)t∈[0,2π]) = 2.

(CZ2) CZ(A ⊕ B) = CZ(A) + CZ(B), where A = (At)t∈[a,b], B = (Bt)t∈[a,b]

are paths of symplectic matrices and A⊕B := (At ⊕Bt)t∈[a,b].

(CZ3) The Conley-Zehnder index of the catenation of two paths is the sum

of their Conley-Zehnder indices.

(CZ4) If A and B are two paths of symplectic matrices which are homotopic

relative to their endpoints, then they have the same Conley-Zehnder

index. Also such an index only depends on the path up to orientation

preserving reparametrization.

(CZ5) Let

At =

Ç
id −tB
0 id

å
∈ GL(2n;R) ∀t ∈ [0, 1]

be a family of 2n× 2n matrices, where id is the identity n× n matrix

and B is a symmetric n × n matrix. Let A := (At)t∈[0,1] be a path

of symplectic matrices with respect to the linear symplectic form Ω =∑n
i=1 x

∗
i ∧ y∗i , where x∗1, . . . , x

∗
n, y
∗
1, . . . , y

∗
n are the dual basis vectors

of the standard basis x1, . . . , xn, y1, . . . , yn of R2n. Then CZ(A) =
1
2Sign(B).

(CZ6) Let (At)t∈[0,1] be a path of symplectic matrices so that dim(ker(At−id))

is independent of t. Then CZ((At)t∈[0,1]) = 0.

(CZ7) Let Sp(2n) be the space of symplectic 2n × 2n matrices, and let

A ∈ Sp(2n). Then there is a neighborhood NA of A so that any path

(At)t∈[0,1] in NA with A0 = A satisfies CZ((At)t∈[0,1]) ∈ [−k
2 ,

k
2 ] where

k = dim ker(A− id).

The Conley-Zehnder index of a capped 1-periodic orbit γ = (γ̃, γ̌) of H is given

by the Conley-Zehnder index of

τ |γ̌(t) ◦DφHt |γ̌(0) ◦ (τ |γ̌(0))
−1, t ∈ [0, 1],

where τ : γ̃∗TM −→ S × Cn is a symplectic trivialization over the domain S

of γ̃ and τ |σ : γ̃∗(TM)|σ −→ Cn is its restriction to the fiber σ ∈ Σ. We define

the index of γ to be |γ| := n−CZ(γ). If (γj)j∈I is a finite collection of capped

1-periodic orbits, then we define |(γj)j∈I | :=
∑

j∈I |γj |.

Remark 2.17. Such an index does not depend on the choice of trivialization

τ by (CZ4) combined with the fact that π1(Sp(2n)) is abelian. Also since

c1(M) = 0, the index only depends on the associated loop γ. Therefore we

will define |γ| := |γ| for any associated loop γ of a capped 1-periodic orbit γ.

Definition 2.18. Let T be a topological space. A subset S ⊂ T is ubiqui-

tous if it contains a countable intersection of dense open sets.
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We have the following important proposition:

Proposition 2.19. Let Σ, H , J#, (κj)j∈I be as in Definition 2.14. Then

there is a ubiquitous subset JΣ,reg(H,J#, Č) ⊂ JΣ(J#, Č) so that a certain

family of linearized operators is surjective and so certain other transversality

conditions hold (see Definition 9.10).

Also, suppose that we have a collection γ# :=(γj)j∈I−tI+ of non-degenerate

capped 1-periodic orbits of (κjH
j)j∈I−tI+ whose associated 1-periodic orbits are

disjoint from V and so that if Σ 6= R×T, then at least two such 1-periodic orbits

of γ# have distinct images. Then for each J ∈ JΣ,reg(H,J#, Č), M(H,J, γ#)

is an oriented k-dimensional manifold where

(2.9) k := |(γj)j∈I− | − |(γj)j∈I+ |+ n(|I|+ − |I|− + χ(Σ)),

where χ(Σ) is the Euler characteristic of Σ. In addition, if the dimension of

M(H,J, γ#) is ≤ 1, then we can ensure that the image of each u ∈M(H,J, γ#)

is disjoint from V .

The proof is extremely standard using ideas from [MS98, Chs. 3 and 6] and

from [Sch95]. However for the sake of completeness, we will prove this proposi-

tion in Appendix B. Note that M(H,J, γ#) may not be a manifold at all if any

of the capped 1-periodic orbits γj are degenerate even if J ∈ JΣ,reg(H,J#, Č#)

by our current definition. We also have a 1-parameter version of this proposi-

tion stated below.

Definition 2.20. Let Σ• := (Σs)s∈[0,1] be a smooth family of Riemann sur-

faces with n− negative cylindrical ends and n+ positive cylindrical ends labeled

by finite sets I− and I+ respectively. Let (κj)j∈I−tI+ be positive numbers and

let βs be a Σs-compatible 1-form so that κj is the weight of βs at the cylindrical

end corresponding to j ∈ I− t I+ for each j ∈ I− t I+, s ∈ [0, 1] and so that

(βs)s∈[0,1] is a smooth family of 1-forms.

Let H# := (Hi)i∈I−tI+ be elements of HT(Č). We define HΣ•(H#, Č)

(resp. H
Σ•

(H#, Č)) to be the space of smooth families of Hamiltonians H :=

(Hs,σ)s∈[0,1],σ∈Σs so that the subfamily Hs,• := (Hs,σ)σ∈Σs is an element of

HΣs(H#, Č) (resp H
Σs

(H#, Č)) for each s ∈ [0, 1]. Similarly let JΣ•(J#, Č) be

the space of smooth families of almost complex structures J := (Js,σ)s∈[0,1],σ∈Σs

so that the subfamily Js,• := (Js,σ)σ∈Σs is an element of JΣs(J#, Č) for each

s ∈ [0, 1]. For each H ∈ HΣ•(H#, Č) and each Yj ∈ JΣj ,reg(Hj,•, J
#, Č)

for j = 0, 1, define JΣ•((Y0, Y1), J#, Č#) to be the subspace of JΣ•(J#, Č)

consisting of those J as above satisfying J0,• = Y0 and J1,• = Y1. For each J ∈
JΣ•((Y0, Y1), J#, Č) as above and each tuple of capped 1-periodic orbits γ# :=

(γj)j∈I−tI+ of (κjH
j)j∈I−tI+ , define M(H,J, γ#) := ts∈[0,1]M(Hs,•, Js,•, γ

#)

with the induced C∞loc topology.
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We then have the following parametrized version of Proposition 2.19 above.

We will not prove this since the ideas used to prove it are exactly the same as

those from Proposition 2.19.

Proposition 2.21. Let Σ•, H
#, J#, (κj)j∈I be as in Definition 2.20.

Suppose H ∈ HΣ•(H#, Č), Yj ∈ JΣj ,reg(Hj,•, J
#, Č) for j = 0, 1, where Hs,•

is described in the previous definition. Then there is a ubiquitous subset

JΣ•,reg(H, (Y0, Y1), J#, Č) ⊂ JΣ•((Y0, Y1), J#, Č)

so that a certain family of linearized operators is surjective and so certain other

transversality conditions hold.

Suppose γ# := (γj)j∈I−tI+ are capped 1-periodic orbits of (κjH
j)j∈I−tI+

so that γj is non-degenerate for each j ∈ I− t I+, whose associated 1-periodic

orbits are disjoint from V and so that if Σ 6= R × T, then at least two as-

sociated 1-periodic orbits of γ# have distinct images. Then for each J ∈
JΣ•,reg(H, (Y0, Y1), J#, Č), M(H,J, γ#) is an oriented k+1-dimensional mani-

fold with boundary equal to t1
j=0M(Hj,•, Yj , γ

#), where k is defined as in equa-

tion (2.9). Also if the dimension of M(H,J, γ#) is ≤ 1, then we can ensure

that the image of each u ∈M(H,J, γ#) is disjoint from V .

Example 2.22. Let R × T = C/Z be a Riemann surface with a positive

cylindrical end indexed by I+ := {+} and a negative cylindrical end indexed by

I− := {−} given by the natural inclusion maps into R×T. Also let β := dt and

κ± := 1 be the corresponding weights of β. Here R × T along with β and κ±
is called a Riemann cylinder. Let H be (R×T, Č)-compatible with associated

limits H±. Also let J± ∈ JT(Č), and let J ∈ JR×T((J+, J−), Č). Then a

map u : R × T −→ M satisfying the (H,J)-Floer equation and converging to

capped 1-periodic orbits γ−, γ+ of H−, H+ respectively is called an (H,J)-

Floer cylinder connecting γ− and γ+.

Definition 2.23. Let R× T be a Riemann cylinder. Let

ιHam : HT(Č) ↪−→
⋃

H#=(H−,H+)∈(HT(Č))2

HR×T(H#, Č),

ιcpx : JT(Č) ↪−→
⋃

J#=(J−,J+)∈(JT(Č))2

JR×T(J#, Č)

be the natural embeddings sending (Ht)t∈T to (Ht)(s,t)∈R×T and (Jt)t∈T to

(Jt)(s,t)∈R×T respectively.

Also for each (H,J) ∈ HT(Č) × JT(Č) and for each pair γ# := (γ−, γ+)

of capped 1-periodic orbits of H, we define

(2.10)

M(H,J, γ#) := M(ιHam(H), ιcpx(J), γ#), M(H,J, γ#) := M(H,J, γ#)/R,
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where the natural R-action is given by translation in the s coordinate. Also

for each H ∈ HT(Č), define

JT,reg(H, Č) := JT(Č) ∩ ι−1
cpx(∪J∈JT(Č)J

R×T,reg(ιHam(H), (J, J), Č)).

We also have the following proposition (see [Ush11, Prop. 3.4]):

Proposition 2.24. For each H ∈ HT(Č), JT,reg(H, Č) is a ubiquitous

subset of JT(Č). Also for each pair of non-degenerate capped 1-periodic orbits

γ−, γ+ of H , we have that M(H,J, γ#) is a manifold of dimension |γ−|−|γ+|−
1. If the dimension of M(H,J, γ#) is ≤ 1, then each element of M(H,J, γ#)

has image disjoint from V .

Example 2.25. Let Σ := P1 − {0, 1,∞}, and let $ : Σ −→ C∗ be a proper

holomorphic map of degree 2 with exactly one branch point at 1 ∈ C∗ and so

that $−1({z ∈ C∗ : |z| < 1}) is connected; see Figure 5.

Branch point

Σ

C∗

$

1

Figure 5. Branched cover of pair of pants over a cylinder.

Let I− := {2} and I+ := {0, 1}. Choose cylindrical ends

ιj : I± × T −→ Σ, j ∈ I±
for Σ so that $(ιj(s, t)) = e2π(s+1+it) for j ∈ I+ and $(ι2(s, t)) = e2π(s−1+2it).

Then β := $∗d(arg(z)/2π) is a Σ-compatible 1-form so that the weight κ2 of

β is 2 at the negative end and the weights κ0, κ1 are 1 at each positive end.

We call Σ with its negative and two positive cylindrical ends above together

with the 1-form β the pair of pants.

Let H# = (Hj)j∈{0,1,2} where Hj ∈ HT(Č) for j = 0, 1, 2, and let H ∈
HT(H#, Č). Similarly let J# = (J i)i∈{0,1,2} where J j ∈ JT(Č), where j =

0, 1, 2, and let J ∈ J(J#, Č). Let γj be a capped 1-periodic orbit of κjHj for

j = 0, 1, 2, and define γ# := (γj)j∈{0,1,2}. An (H,J)-pair of pants connecting

γ# is an (H,J)-Floer trajectory connecting the capped 1-periodic orbits γ#.

2.3. Directed and inverse systems. In this subsection we will give some

definitions concerning inverse/direct limits, which will be used later to define
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symplectic cohomology. A small part of this section will also be used in the

next section to define Novikov rings. Many of the main ideas come from

[MS82] and [Mar00]. We will also introduce a category of “double systems”

which, alternatively, is a category of appropriate “ind-pro” objects (i.e., direct

limits of inverse limits of modules). Such categories have appeared in [Bĕı87,

§A.3] and [Kat00] for example.

Definition 2.26. If (I,≤I), (K,≤K) are sets together relations ≤I and

≤K , then we define (I ×K,≤I×K) to be the product I ×K together with the

relation ≤I×K satisfying (i, k) ≤I×K (i′, k′) if i ≤I i′ and k ≤K k′. Also we

define (Iop,≤op) to be the set Iop := I together with the relation ≤op
I satisfying

i ≤op
I i′ if i′ ≤I i for all i, i′ ∈ Iop.

A directed set (I,≤I) is a set I together with a reflexive transitive binary

relation ≤I so that for all i0, i1 ∈ I, there exists i2 ∈ I satisfying i0, i1 ≤I i2.

An inverse directed set (K,≤K) is a set K together with a relation ≤K so that

(Kop,≤op
K ) is a directed set.

If (I,≤I) is a directed set, then a subset Ǐ ⊂ I is cofinal if for each a ∈ I,

there exists ǎ ∈ Ǐ satisfying a ≤I ǎ. A sequence (ak)k∈N of elements in I

is cofinal if the set {ak : k ∈ N} ⊂ I is cofinal. A directed subset of I is a

subset Ǐ ⊂ I where the induced ordering makes Ǐ into a directed set. A subset

Ǩ ⊂ K is cofinal inside an inverse directed set (K,≤K) if Ǩop ⊂ Kop is cofinal

in (Kop,≤op
K ). A double set is a pair (I ×K,≤I×K) where (I ≤I) is a directed

set and (K,≤K) is an inverse directed set.

Remark 2.27. We can think of a set with a reflexive transitive binary rela-

tion (I,≤) as a category with objects I and with a unique morphism denoted

by i → j for each i ≤ j and no other morphisms. Since there is at most one

morphism between any two objects, a functor F : (I0,≤) −→ (I1,≤) is char-

acterized by the corresponding map F : I0 −→ I1 on objects. From now on,

we will not distinguish between such functors and maps.

For ease of notation, we will sometimes just write I for a set with relation

(I,≤) if it is clear what the relation is. In particular, we will write I × K

instead of (I ×K,≤I×K).

Definition 2.28. Let R be a commutative ring and let R-mod be the cat-

egory of Z-graded R-modules. We write Ob(R-mod) and Mor(R-mod) to be

the class of objects and morphisms of R-mod.

A directed system is a functor D : I −→ R-mod where (I,≤I) is a directed

set. An inverse system is a functor V : K −→ R-mod where (K,≤K) is

an inverse directed system. A double system of graded R-modules (or double

system) is a functor W : I ×K −→ R-mod where (I ×K,≤I×K) is a double

set. The morphisms W ((i, k)→ (i′, k′)) ∈ Mor(R-mod), (i, k) ≤I×K (i′, k′) are

called double system morphisms of W .
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Remark 2.29. We will sometimes just write down a double system W :

I ×K −→ R-mod as a collection (W (i, k))(i,k)∈I×K of R-modules if it is clear

what the morphisms W ((i, k)→ (i′, k′)) are. We will do the same for directed

and inverse systems.

Remark 2.30. A directed system D : I −→ R-mod is equivalent to a

double system D : I = I × {?} −→ R-mod where {?} is the single element

(inverse) directed set. Similarly an inverse system is a double system V : K =

{?} × K −→ R-mod. We will call such double systems the double systems

associated to D (resp. V ).

Example 2.31. The trivial double system is the double system given by

the functor ιR : {?} × {?} −→ R-mod sending (?, ?) to R where {?} is the di-

rected/inverse system consisting of one point. Trivial directed/inverse systems

are defined in a similar way.

Definition 2.32. For any Z graded R-module N , let (N)p be the degree p

part of N for each p ∈ Z. If W : I ×K −→ R-mod is a double system then

we define the double system shifted by m ∈ Z to be the unique double system

W [m] : I×K −→ R-mod satisfying (W [m](i, k))p = (W (i, k))m+p for all p ∈ Z
with the natural induced morphisms.

Definition 2.33. The direct limit of a directed system D : I −→ R-mod is

defined to be the graded R-module

lim−→
i∈I

D(i) := ti∈ID(i)/ ∼, xi ∼ xj iff ∃ k s.t. i, j ≤ k, and fik(xi) = fjk(xj),

where fij := D(i→ j) for all i ≤ j. We will sometimes write lim−→i
D(i) for such

a direct limit.

Definition 2.34. The inverse limit of an inverse system V : K −→ R-mod

is defined to be the graded R-module lim←−V where

(lim←−V )p :=

{
(xk)k∈K ∈

∏
k∈K

(V (k))p : ∀ k, ǩ ∈ K s.t. k ≤K ǩ, fkǩ(xk) = xǩ

}

for each p ∈ Z, where fkǩ := V (k → ǩ) for all k ≤ ǩ. We will sometimes write

lim←−j V (j) for such an inverse limit.

We now wish to describe an appropriate category of directed/inverse/double

systems. This category should have the property that lim−→ and lim←− are functors

and so that certain “obvious” endomorphisms of directed/inverse/double sys-

tems inducing isomorphisms on lim−→ and lim←− are in fact isomorphisms in this

category. Another important property of this category is that we require a

“derived” version of lim←− to exist.
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Definition 2.35. Let W : I × K −→ R-mod be a double system and let

φ : W (i, k) −→ A, φ′ : A′ −→ W (i′, k′) be morphisms in R-mod for some

i, i′ ∈ I, k, k′ ∈ K satisfying (i′, k′) ≤I×K (i, k). Then we define the W -

composition φ◦W φ′ : A′ −→ A of φ′ and φ to be the composition φ◦fi′k′ik ◦φ′,
where fi′k′ik := W ((i′, k′)→ (i, k)).

Definition 2.36. Let Wj : Ij ×Kj −→ R-mod, j = 0, 1 be double systems.

Then we can define a new double system

Mor(W0,W1) : (I1 ×Kop
0 )× (Iop

0 ×K1) −→ R-mod,

where the object ((i1, k0), (i0, k1)) is sent to HomR-mod(W0(i0, k0),W1(i1, k1))

and a morphism ((i1, k0), (i0, k1))→ ((i′1, k
′
0), (i′0, k

′
1)) is sent to the morphism

HomR-mod(W0(i0, k0),W1(i1, k1)) −→ HomR-mod(W0(i′0, k
′
0),W1(i′1, k

′
1))

Φ −→ f1
i1k1i′1k

′
1
◦ Φ ◦ f0

i′0k
′
0i0k0

,

where f jiki′k′ := Wj((i, k) → (i′, k′)) for all (i, k) ≤Ij×Kj (i′, k′), j = 0, 1. We

define

(2.11) Mor(W0,W1) := lim←−
i0

lim−→
i1

lim←−
k1

lim−→
k0

Mor(W0,W1)((i1, k0), (i0, k1)).

We define the category of double systems 2-sys-R to be the category whose

objects are double systems, whose morphisms between objects W0 and W1 are

elements of Mor(W0,W1) and where composition is induced by composition

of R-module morphisms in the following way: If Wj : Ij × Kj −→ R-mod,

j = 0, 1, 2 are double systems, then since inverse and direct limits commute

with finite products, we can define the composition maps as follows:

Mor(W1,W2)×Mor(W0,W1)

lim←−
i0

lim←−
i′1

lim−→
i1

lim−→
i2

lim←−
k1

lim←−
k2

lim−→
k0

lim−→
k′1

Hom(W1(i′1, k
′
1),W2(i2, k2))

×Hom(W0(i0, k0),W1(i1, k1))

= lim←−
(i0,i′1)

lim−→
(i1,i2)

lim←−
(k1,k2)

lim−→
(k0,k′1)

Hom(W1(i′1, k
′
1),W2(i2, k2))

×Hom(W0(i0, k0),W1(i1, k1))

= lim←−
(i0,i′1)

lim−→
(i1,i2)
i′1≤I i1

lim←−
(k1,k2)

lim−→
(k0,k′1)
k′1≤Kk1

Hom(W1(i′1, k
′
1),W2(i2, k2))

×Hom(W0(i0, k0),W1(i1, k1))

◦W1−→ lim←−
(i0,i′1)

lim−→
(i1,i2)
i′1≤I i1

lim←−
(k1,k2)

lim−→
(k0,k′1)
k′1≤Kk1

Hom(W0((i0, k0), (i2, k2))) = Mor(W0,W2),
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where Hom := HomR-mod. The category Ind-R of directed systems is the full

subcategory of 2-sys-R whose objects are directed systems. Similarly the cate-

gory Pro-R of inverse systems is the full subcategory whose objects are inverse

systems.

Example 2.37. A key example of a morphism φ ∈ Mor(W0,W1) of double

systems Wj : Ij ×Kj −→ R-mod, j = 0, 1 is a natural transformation φ from

W0 ◦ (idI0 ×F ) to W1 ◦ (G× idK1) where F : K1 −→ K0 and G : I0 −→ I1 are

functors.

If I0 = I1 and K0 = K1 and the natural transformation maps are double

system maps, then such a morphism is equal to the identity map in 2-sys-R.

We will call such a natural transformation a standard endomorphism.

Suppose φ′ ∈ Mor(W1,W2) is another morphism where W2 : I2 ×K2 −→
R-mod is a double system and where it is also given by a natural transformation

φ′ : W1 ◦ (idI1×F ′) to W2 ◦ (G′× idK2) where F ′ : K2 −→ K1 and G : I1 −→ I2

are functors. Then the composition φ′ ◦ φ ∈ Mor(W0,W2) can be represented

by the natural transformation

(φ′ · (idG×idK2
)) ◦ (φ · (ididI0×F ′)) : W0 ◦ (idI0 × F ′) −→W2 ◦ (G× idK2),

where ◦ denotes vertical composition of natural transformations and · de-

notes horizontal composition and where idQ means the identity natural trans-

formation from a functor Q to itself. Here we have also used the identity

(G× idK1) ◦ (idI0 × F ′) = (idI1 × F ′) ◦ (G× idK2).

Definition 2.38. A cofinal subsystem of a double system W : I × K −→
R-mod is the restriction W̌ := W |Ǐ×Ǩ of W to the subcategory Ǐ× Ǩ ⊂ I×K
where Ǐ ⊂ I, Ǩop ⊂ Kop are cofinal subsets. The inclusion morphism is the

morphism ιW̌ ,W : W̌ −→ W in 2-sys-R given by the natural transformation

between W̌ ◦ (idǏ ×F ) to W ◦ (G× idK) constructed using double system maps

where F : K −→ Ǩ satisfies k ≤K F (k) for all k ∈ K and where G : Ǐ −→ I is

the natural inclusion map. Here F is constructed using the axiom of choice.

Remark 2.39. The inclusion map does not depend on the choice of func-

tor F . This due to the fact that if we have a morphism ι′
W̌ ,W

: W̌ −→W con-

structed in the same way, but using a different choice of functor F , then there

are standard endomorphisms E,E′ : W −→W so that E ◦ ιW̌ ,W = E′ ◦ ι′
W̌ ,W

.

Since standard endomorphisms represent the identity map in 2-sys-R, we get

that ιW̌ ,W = ι′
W̌ ,W

.

Lemma 2.40. The inclusion map ιW̌ ,W from Definition 2.38 is an iso-

morphism.

Proof of Lemma 2.40. The inverse η of ιW̌ ,W is given by the natural trans-

formation between W ◦ (idI × F ′) to W̌ ◦ (G′ × idK) built from double system
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maps, where F ′ : Ǩ −→ K is the natural inclusion map and where G′ : I −→ Ǐ

satisfies i ≤I F (i) for all i ∈ I. The compositions η ◦ ιW̌ ,W , ιW̌ ,W ◦ η as de-

scribed in Example 2.37 are standard endomorphisms and hence ιW̌ ,W is an

isomorphism. �

Definition 2.41. We define lim−→ lim←− to be the functor

lim−→ lim←− : 2-sys-R −→ R-mod, lim−→ lim←− := ⊕m∈ZHom2-sys-R(ιR[−m],−),

where ιR is the trivial double system. We define lim−→ : Ind-R −→ R-mod (resp.

lim←− : Pro-R −→ R-mod) to be the restriction of this functor to the subcategory

Ind-R (resp. Pro-R).

Remark 2.42. The functor lim−→ lim←− sends a double system (W (i, k))(i,k)∈I×K
to the limit lim−→i

lim←−kW (i, k). Similarly the functors lim−→ and lim←− above coincide

with lim−→ and lim←− from Definitions 2.33 and 2.34.

Definition 2.43. LetWj : Ij×Kj −→ R-mod, j = 0, 1 be a double systems.

We define W0 ×W1 to be the double system

(W0(i, k)×W1(̌i, ǩ))(i,̌i,k,ǩ)∈(I0×I1)×(K0×K1)

with the natural double system maps induced from the double system maps

of Wj , j = 0, 1. We define W0 ⊗W1 to be the double system (W0(i, k) ⊗R
W1(̌i, ǩ))(i,̌i,k,ǩ)∈(I0×I1)×(K0×K1) with the natural double system maps induced

from the double system maps of Wj , j = 0, 1.

Let W̌j : Ǐj × Ǩj −→ R-mod, j = 0, 1 be two additional double systems,

and let TW0,W1,W̌0,W̌1
be the natural composition

TW0,W1,W̌0,W̌1
: Mor2-sys-R(W0, W̌0)⊗R Mor2-sys-R(W1, W̌1)

= (lim←−
i0

lim−→̌
i0

lim←−
ǩ0

lim−→
k0

Hom(W0(i0, k0), W̌0(̌i0, ǩ0)))

⊗R (lim←−
i1

lim−→̌
i1

lim←−
ǩ1

lim−→
k1

Hom(W1(i1, k1), W̌1(̌i1, ǩ1)))

→ lim←−
i0

lim←−
i1

lim−→̌
i0

lim−→̌
i1

lim←−
ǩ0

lim←−
ǩ1

lim−→
k0

lim−→
k1

(Hom(W0(i0, k0), W̌0(̌i0, ǩ0)))

⊗R (Hom(W1(i1, k1), W̌1(̌i1, ǩ1)))

→ lim←−
(i0,i1)

lim−→
(̌i0 ,̌i1)

lim←−
(ǩ0,ǩ1)

lim−→
(k0,k1)

(Hom(W0(i0, k0), W̌0(̌i0, ǩ0)))

⊗R (Hom(W1(i1, k1), W̌1(̌i1, ǩ1)))

→ lim←−
(i0,i1)

lim−→
(̌i0 ,̌i1)

lim←−
(ǩ0,ǩ1)

lim−→
(k0,k1)

×Hom
(
W0(i0, k0)⊗RW1(i1, k1), W̌0(̌i0, ǩ0)⊗R W̌1(̌i1, ǩ1)

)
= Mor(W0 ⊗W1, W̌0 ⊗ W̌1),
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where Hom = HomR-mod. For any two morphisms Φj : Wj −→ W̌j , j = 0, 1

in 2-sys-R, we define Φ0 ⊗ Φ1 := TW0,W1,W̌0,W̌1
(Φ0 ⊗R Φ1) ∈ Mor2-sys-R(W0 ⊗

W1, W̌0 ⊗ W̌1).

Also, if W : I × K −→ R-mod is a double system, we define τW : W ⊗
W −→ W ⊗ W to be the morphism sending x ⊗ y to (−1)pqy ⊗ x for all

x ∈ (W (i, k))p, y ∈ (W (i′, k′))q, (i, k), (i′, k′) in I ×K and p, q ∈ Z.

These operations make 2-sys-R into a symmetric monoidal category to-

gether with the identity object ιR due to the fact that R-mod is a symmetric

monoidal category and the fact that natural transformations Φ between dou-

ble systems Wj : I × K −→ R-mod, j = 0, 1 where the morphisms of Φ are

isomorphisms induce isomorphisms in 2-sys-R.

Definition 2.44. A product on W : I × K −→ R-mod is a morphism

µ : W ⊗W −→ W so that µ ◦ (idW ⊗ µ) = µ ◦ (µ ⊗ idW ) using the natural

identification (W ⊗ W ) ⊗ W ∼= W ⊗ (W ⊗ W ). Such a product is graded

commutative if µ ◦ τ = µ. The product µ is unitary if there exists a morphism

ι : ιR −→W where ιR is the trivial double system satisfying µ◦ (idW ⊗ ι) = µ◦
(ι◦idW ) = idW where we identify W with W⊗ιR and ιR⊗W in the natural way.

A morphism of double systems W0, W1 with products µj : Wj ⊗Wj −→ Wj ,

j = 0, 1 is a morphism Φ : W0 −→ W1 satisfying Φ ◦ µ0 = µ1 ◦ (Φ ⊗ Φ).

A (graded commutative) (unital) product on a directed or inverse system is a

(graded commutative) (unital) product on the corresponding double system.

Remark 2.45. From now on, all products on double systems (resp. di-

rected/inverse systems) will be unital graded commutative products. Hence

from now on, we will just call them products. We will also assume all mor-

phisms between such double systems with products preserve the unit. If W is

a double system with product µ : W ⊗W −→W , then we get a product

(lim−→ lim←−W )⊗R (lim−→ lim←−W )

⊕m,m′TιR[−m],ιR[−m′],W,W−→ (lim−→ lim←−(W ⊗W ))
lim−→ lim←−µ
−→ lim−→ lim←−W

on lim−→ lim←−W making it into a unital graded commutative R-algebra, where

TιR[−m],ιR[−.m′],W,W is given in Definition 2.43 and where we use the natural

identification ιR ∼= ιR ⊗ ιR. Similarly a product on a directed/inverse system

gives us an induced product on its direct/inverse limit.

We will also need to show that “derived” versions of the functor lim−→ lim←−
exist. We need some preliminary definitions and lemmas before we define such

a functor.

Definition 2.46. Let F : Pro-R −→ R-mod be a functor so that the

corresponding maps F : MorPro-R(P0, P1) −→ MorR-mod(F (P0), F (P1)) are
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R-module maps for each pair of objects P0, P1 in Pro-(R). We define the func-

tor lim−→F : 2-sys-R −→ R-mod as follows. If W : I × K −→ R-mod is a

double system then lim−→F (W ) := lim−→i
F (W |i) where W |i is the inverse system

(Wi,k)k∈K . Also if Wj : Ij ×Kj −→ R-mod, j = 0, 1 are double systems, the

corresponding functor on morphisms is the following natural composition:

lim−→F : Mor2-sys-R(W0,W1) = lim←−
i0

lim−→
i1

MorPro-R(W0|i0 ,W1|i1)
lim←−i0 lim−→i1

F

−→

lim←−
i0

lim−→
i1

MorR-mod(F (W0|i0), F (W1|i1))

= MorInd-R((F (W0|i))i∈I0 , (F (W1|i))i∈I1)

lim−→−→ MorR-mod(lim−→
i0

F (W0|i0), lim−→
i1

F (W1|i1)).

Definition 2.47. Let (K,≤K) be an inverse directed set. Define R-modK

to be the category whose objects are inverse systems V : K −→ R-mod and

whose morphisms are natural transformations between such objects. We define

αK : R-modK −→ 2-sys-R to be the functor sending objects V to V and

sending morphisms to the induced morphisms in 2-sys-R.

Since the category R-modK has enough injectives by [Mar00, Th. 11.18],

we have the following definition below. Technically [Mar00, Th. 11.18] proves

this for ungraded modules, but the graded case follows immediately since a

graded module is a direct sum of ungraded ones. This will also be true for

other theorems cited in [Mar00].

Definition 2.48. Let (K,≤K) be an inverse directed set. For each k ∈ N,

define lim←−
k |K : R-modK −→ R-mod to be the kth right derived functor of

lim←−◦αK .

The following lemma follows immediately from Theorem 15.5 and Remark

15.6 in [Mar00].

Lemma 2.49. There is a natural functor lim←−
k : Pro-R −→ R-mod satis-

fying lim←−
k ◦αK = lim←−

k |K for all inverse directed sets (K,≤K).

For our purposes, it does not matter how the functor lim←−
k is constructed.

We will only use the fact that it satisfies the property stated in the lemma

above.

Definition 2.50. For each k ∈ N, define the direct limit of lim←−
k to be the

functor lim−→ lim←−
k : 2-sys-R −→ R-mod where lim−→ is given as in Definition 2.46

and lim←−
k is constructed in Lemma 2.49.

Finally, we need a test telling us when lim−→ lim←−
1 vanishes.
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Lemma 2.51. Suppose that W : I × K −→ R-mod is a double system

where (I,≤I) (resp. (K,≤K)) is a directed (resp. inverse directed) set. Suppose

that there is a cofinal family Ǐ ⊂ I and a countably infinite cofinal family

Ǩ ⊂ K of (K,≤K)op with the property that for all i ∈ Ǐ , k, k′ ∈ Ǩ satisfying

k ≤K k′, we have that W ((i, k) −→ (i, k′)) is surjective. Then lim−→ lim←−
1W = 0.

Proof of Lemma 2.51. Let W |i be the inverse system (W (i, k))k∈K for

each i ∈ I, and let W̌ |i be the inverse system (W (i, k))k∈Ǩ . Since Ǩ is count-

ably infinite, we can assume after passing to a cofinal subset of Ǩ that (Ǩ,≤K)

is equal to the inverse directed set (Nop,≤op) by Lemma 2.40. By [Wei94,

Prop. 3.5.7] combined with [Mar00, Lemma 11.49] we have that lim←−
1 W̌ |i = 0

for each i ∈ Ǐ. Hence by [Mar00, Th. 14.9] we have that lim←−
1W |i = 0 for each

i ∈ Ǐ. Hence lim−→ lim←−
1W = 0. �

2.4. Novikov rings. In this section we give a definition of a Novikov ring

(which we will define using inverse and direct limits). Novikov rings are

appropriate coefficient rings for our Hamiltonian Floer cohomology groups.

Throughout this subsection we will fix a (possibly empty) contact cylinder

Č = [1−ε, 1+ε]×C and we will let D ⊂M be its associated Liouville domain.

Definition 2.52. Let W be a finite dimensional real vector space. A convex

cone is a subset Q ⊂ W so that for all x, y ∈ Q and all positive real numbers

α, β > 0, we have that αx + βy ∈ Q. Such a cone is called salient if, for each

x ∈ Q− 0, −x /∈ Q. Now suppose (A, ·) is a finitely generated abelian group,

and let Q be a cone in (A ⊗Z R)∗. Define �Q to be the binary relation on A

where x �Q y if and only if f((y · x−1)⊗ 1) ≥ 0 for all f ∈ Q.

Remark 2.53. If Q is a closed salient cone, then (A,�Q) and (Aop,�op
Q )

are directed sets.

Definition 2.54. Let (A, ·) be a finitely generated abelian group, and let

Q ⊂ (A ⊗Z R)∗ be a closed salient cone. For each x ∈ A, let FQx be the free

K-module generated by elements of the set SQx := {a ∈ A : x �Q a}. Let

(I,≤I) be the (inverse) directed set (Aop,�op
Q ). Then FQ :=(FQx−,x+)(x−,x+)∈I×I

is a double system, where FQx−,x+ := FQx−/(F
Q
x− ∩ F

Q
x+) and where the double

system maps are the natural compositions

FQx−,x+
−→ FQ

x−,x′+
−→ FQ

x′−,x
′
+

for all x±, x
′
± ∈ A satisfying x′± �Q x±. Choose a function M : A2 −→ A

satisfying M(x, y) �Q x and M(x, y) �Q y for all (x, y) ∈ A2. For each

x0
−, x

1
−, x

2
+ ∈ A, let

µ : FQ
x0
−,x

2
+−x1

−
⊗K FQx1

−,x
2
+−x0

−
−→ FQ

x0
−·x1
−,x

2
+
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be the unique K-linear map sending [a0] ⊗ [a1] to [a0 · a1] for all aj ∈ SQ
xj−

,

j = 0, 1. Then µ defines for us a product µ : FQ ⊗ FQ −→ FQ on the double

system FQ. We define the (A,Q)-Novikov ring to be the ring

(2.12) ΛA,QK := lim−→
x−∈I

lim←−
x+∈I

FQx−,x+

whose product is induced by µ as in Remark 2.45. We also have a subring

(2.13) ΛA,Q,+K := lim←−
x+∈I

FQ0,x+
⊂ ΛA,QK

called the positive (A,Q)-Novikov ring.

Remark 2.55. We can think of ΛA,Q as the ring of formal power series

ΛA,QK =

{∑
i∈N

bit
ai : bi ∈ K, ai ∈ A ∀ i ∈ N, (ai)i∈N is cofinal in (A,�Q)

}
.

Intuitively, the terms in this series must “tend to infinity” in the “cone” {x ∈
A : 0 �Q x}.

Definition 2.56. Let ιD : H2(M,D;R) −→ H2(M ;R) be the natural re-

striction map on cohomology. Let πD : H2(M,D;R)×R×R −→ H2(M,D;R)

be the natural projection map. Let Q ⊂ H2(M,D;R)×R×R be a cone so that

Q̌ := ιD(πD(Q)) is a closed and salient cone. Using the canonical identification

(H2(M ;Z)⊗Z R)∗ = H2(M ;R),

we can define the Q-Novikov ring to be the (H2(M ;Z), Q̌)-Novikov ring

ΛQK := Λ
H2(M ;Z),Q̌
K

and the positive Q-Novikov ring to be the positive (H2(M ;Z), Q̌)-Novikov ring

ΛQ,+K := Λ
H2(M ;Z),Q̌,+
K .

The Novikov rings above are designed to deal with multiple action values

encoded in Definition 2.10. Note that we could have defined the above Novikov

ring ΛQK to be a (H2(M,D;Z)×Z×Z, Q)-Novikov ring associated to Q instead.

Such a definition would have forced us to generalize the notion of a capped

1-periodic orbit so that the “capping” also has some boundary components

inside D. (One would have to modify the way action is calculated too and

restrict the class of Hamiltonians further.) This would have given us more

information, but would have added an extra layer of unnecessary complication.

Therefore we have decided to use this simpler definition.

Example 2.57. Let ω̃# = (ω̃i)i∈S be a finite collection of Č-compatible 2-

forms with scaling constants (λ±i )i∈S , and let ωČ be a Č-compatible 2-form with
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scaling constants 0 and 1 and which is equal to ω outside D∪ ([1, 1+ ε/2]×C).

Let Qω̃#
⊂ H2(M,D;R) × R × R be the smallest convex cone containing

([ω̃i − λ−i ω + λ−i ωČ ], λ−i , λ
+
i ) ∈ H2(M,D;R) × R × R for each i ∈ S. The

(ω̃#)-Novikov ring is the Novikov ring

Λ
ω̃#

K := Λ
Q‹ω#

K .

The two key examples for this paper are when

• ω̃# has one element ω̃, giving us a Novikov ring Λω̃K := Λ
ω̃#

K , which can be

thought of as the set of power series

Λω̃K =

{∑
i∈N

bit
ai : bi ∈ K, ai ∈ H2(M ;Z), ω̃(ai)→∞

}
;

• and when ω̃# has two elements ω̃0,ω̃1, giving us a Novikov ring Λω̃0,ω̃1

K :=

Λ
ω̃#

K , which can be thought of as the set of power series

Λω̃0,ω̃1

K =

{∑
i∈N

bit
ai : bi ∈ K, ai ∈ H2(M ;Z), min(ω̃0(ai), ω̃1(ai))→∞

}
.

2.5. Definition of Floer cohomology using alternative filtrations. In this

section we will give a definition of Hamiltonian Floer cohomology using the

action function in Definition 2.10. Throughout this subsection, we will fix

a (possibly empty) contact cylinder Č = [1 − ε, 1 + ε] × C ⊂ M with as-

sociated Liouville domain D and cylindrical coordinate rC . We also let ιD :

H2(M,D;R) −→ H2(M ;R) be the natural restriction map on cohomology and

let πD : H2(M,D;R)×R×R −→ H2(M,D;R) be the natural projection map.

In order to define Hamiltonian Floer cohomology with the right properties,

we need to consider certain cones inside H2(M,D;R)× R× R.

Definition 2.58. Let ωČ be a Č-compatible 2-form with scaling constants

0 and 1 and which is equal to ω outside D ∪ ([1, 1 + ε/2] × C). A cone Q ⊂
H2(M,D;R)× R× R is Č-compatible if

• both ιD(πD(Q)) and Q are closed and salient; and

• Q ⊂ QČ ∪ {0} where QČ is given as in Definition 2.10.

A Č-compatible cone Q is called thin if πD|Q : Q −→ H2(M,D;R) is an

injective map. A Č-compatible cone Q is called small if Q ⊂ R[ωČ ] × R × R
and if the natural projection map

R[ωČ ]× R× R −→ R[ωČ ]× R, (q, λ−, λ+) −→ (q, λ−)

restricted to Q is injective. A pair of Č-compatible cones (Q−, Q+) is called

wide if for each q ∈ πD(Q−) ∪ πD(Q+), there exists λq±,−, λ
q
±,+ ∈ R so that
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(q, λq±,−, λ
q
±,+) ∈ Q±,

λq−,− < λq+,− and λq−,+ = λq+,+.

A Č-interval domain pair is a pair (Q−, Q+) of Č-compatible cones so that

(1) Q+ is thin and not equal to the trivial cone {0};
(2) Q+ ⊂ Q−; and

(3) if Q− is not small, then (Q−, Q+) is wide.

For any Č-compatible cone Q, we define Sc(Q) to be the space of con-

tinuous functions f : Q −→ R satisfying f(σx) = σf(x) for all x ∈ Q

and σ ≥ 0 equipped with the C0
loc-topology. A Č-action interval is a pair

(a−, a+) ∈ Sc(Q−)× Sc(Q+) where (Q−, Q+) is a Č-interval domain pair. We

say that (a−, a+) is small if Q− and Q+ are small and wide if (Q−, Q+) is wide.

For each subset P ⊂ Z, weakly Č-compatible Hamiltonian H and Č-action

interval (a−, a+) ∈ Sc(Q−)×Sc(Q+), define ΓP
Č,a−,a+

(H) to be the set of capped

1-periodic orbits γ of H whose associated 1-periodic orbit is not contained in

[1 + ε/8, 1 + ε/2]× C, whose index is in P and satisfying

(2.14) a− ≤ AH,Č(γ)|Q− , a+ � AH,Č(γ)|Q+ ,

where AH,Č is given in Definition 2.10.

If (a−, a+) ∈ Sc(Q−) × Sc(Q+) is wide, then we define the Hamiltonian

height of (a−, a+) to be

height(a−, a+)

:= sup

a+(x, λ+,−, λ+,+)− a−(x, λ−,−, λ−,+)

λ+,− − λ−,−
:

(x, λ±,−, λ±,+) ∈ Q±,
λ−,− < λ+,−,

λ−,+ = λ+,+

 .

(2.15)

For each Č-action interval (a−, a+) and each manifold Σ, define

HΣ(Č, a−, a+) :=

(2.16)HΣ(Č) if (a−, a+) is small,{
H ∈ H

Σ
(Č) : mHσ > height(a−, a+) ∀ σ ∈ Σ

}
otherwise,

where HΣ(Č) and H
Σ

(Č) are given in Definition 2.12 and mHσ is the height

of Hσ as in Definition 2.4 for each σ ∈ Σ where H = (Hσ)σ∈Σ. For each subset

P ⊂ Z, define

Hreg(Č, a−, a+, P ) ⊂ HT(Č, a−, a+)

to be the subspace of time dependent Hamiltonians H = (Ht)t∈T so that there

exist neighborhoods N−, N+ of a− and a+ in Sc(Q−) and Sc(Q+) respectively

so that for each a′± ∈ N±, we have that
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• every capped 1-periodic orbit in ΓZ
Č,a′−,a

′
+

(H) is non-degenerate;

• there are no 1-periodic orbits contained in [1 + ε/8, 1 + ε/2]× C; and

• ΓP
Č,a′−,a

′
+

(H) = ΓP
Č,a−,a+

(H).

Define Hreg(Č, a−, a+) := Hreg(Č, a−, a+,Z).

We have that Hreg(Č, a−, a+) is an open dense subset of HT(Č, a−, a+) by

Lemma 8.3 in Appendix A. The height condition in equation (2.16) is essential

for this density property since any Hamiltonian in HT(Č, a−, a+) is constant

outside D ∪ Č if (a−, a+) is wide. Therefore these constant orbits γ must not

satisfy equation (2.14) because they are degenerate.

Definition 2.59. Let (a−, a+) ∈ Sc(Q−)× Sc(Q+) be a Č-action interval,

and let H ∈ Hreg(Č, a−, a+, {p}) for some p ∈ Z. Define CF p
Č,a±,∞

(H) to be

the free K-module generated by capped 1-periodic orbits γ of H of index p and

satisfying a± ≤ AH,Č(γ)|Q± . Define

CF p
Č,a−,a+

(H) := CF p
Č,a−,∞

(H)/(CF p
Č,a−,∞

(H) ∩ CF p
Č,a+,∞

(H)).

Remark 2.60. The K-module CF p
Č,a−,a+

(H) is naturally isomorphic to the

free K-module generated by Γp
Č,a−,a+

(H) := Γ
{p}
Č,a−,a+

(H). From now on we will

not distinguish between describing such a group as a quotient or a free module.

Definition 2.61. Let H be a time dependent Hamiltonian on M . If γ =

(γ̃, γ̌) is a capped 1-periodic orbit of H and v ∈ H2(M ;Z) is a homology class,

then we define γ#v := (γ̃#v, γ̌) where γ̃#v has the property that (γ̃#v) ? γ̃ is

homologous to v, where ? is defined equation (2.2).

Above, we are “connect summing” v to the capping surface γ̃.

Remark 2.62. Let (a−, a+) ∈ (Q−, Q+) be a Č-action interval and let

H ∈ Hreg(Č, a−, a+, {p}) for some p ∈ Z. Define Q̌+ := ιD(πD(Q+)). The

submonoid

(2.17) S
Q+

0 := {x ∈ H2(M ;Z) : 0 �Q̌+
x} ⊂ H2(M ;Z)

acts on CF p
Č,a−,a+

(H) as follows: An element v ∈ SQ+

0 represents the unique

K-linear map sending an element γ∈Γp
Č,a−,a+

(H) to [γ#(−v)]∈CF p
Č,a−,a+

(H).

As a result, the monoid ring K[S
Q+

0 ] acts on CF p
Č,a−,a+

(H).

Also, since set of 1-periodic orbits of H is a compact subset of the free

loop space of M with respect to the C∞ topology, there is an element a ∈ SQ+

0

so that for each v ∈ SQ+

0 satisfying a �Q̌+
v and each α ∈ CF p

Č,a−,a+
(H), we

have v ·α = 0. This implies that the K[S
Q+

0 ]-action extends to an action of the
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positive Q+-Novikov ring Λ
Q+,+
K on CF p

Č,a−,a+
(H) by equation (2.13). Hence

from now on, we will think of CF p
Č,a−,a+

(H) as a Λ
Q+,+
K -module.

The Λ
Q+,+
K -module CF p

Č,a−,a+
(H) will be the module underlying our chain

complex for our Hamiltonian Floer group. We now need to explain what the

differential on CF p
Č,a−,a+

(H) is.

Definition 2.63. Let (a−, a+) be a Č-action interval, and let P := {p, p+1}
for some p ∈ Z. Let H ∈ Hreg(Č, a−, a+, P ), and let J ∈ JT,reg(H, Č) where

JT,reg(H, Č), is given in Definition 2.23. We define the Floer differential

∂
(p)
H,J : CF p

Č,a−,a+
(H) −→ CF p+1

Č,a−,a+
(H)

to be the unique K-linear map satisfying

∂
(p)
H,J(γ+) =

∑
γ−∈Γp+1

Č,a−,a+
(H)

#M(H,J, γ)γ− ∀ γ+ ∈ Γp
Č,a−,a+

(H),

where γ is the pair (γ−, γ+) and where #M(H,J, γ) is the number of elements

in the 0-dimensional manifold M(H,J, γ) from Definition 2.23 counted with

sign according to their orientation. We define ∂H,J := ∂
(p)
H,J if it is clear which

p we are using.

The definition above uses the fact that M(H,J, γ) is a compact oriented

0-dimensional manifold for all pairs of capped 1-periodic orbits γ = (γ−, γ+) ∈
Γp+1

Č,a−,a+
(H)×Γp

Č,a−,a+
(H), which follows from Propositions 2.24 and 10.5 and

[Rit13, §17]. Note that one can always find J as above since JT,reg(H, Č) is a

ubiquitous subset of JT(Č) (Definition 2.12) by Proposition 2.19. By analyzing

1-parameter families of solutions of the Floer equation for the cylinder as in

Definition 2.20, one can show that ∂2
H,J = 0. This is done by a gluing theorem

[AD14, Th. 9.2.1] combined with the compactness result Proposition 10.5 and

the orientation conventions [Rit13, §17]. Here we have replaced the compact-

ness result [AD14, Th. 9.1.7] with Proposition 10.5. Finally, note that ∂H,J is

a Λ
Q+,+
K -linear differential where Q+ is the domain of a+. Hence we have the

following definition:

Definition 2.64. Let (a−, a+) ∈ Sc(Q−)× Sc(Q+) be a Č-action interval,

and let P := {p− 1, p, p+ 1} for some p ∈ Z. Let H ∈ Hreg(Č, a−, a+, P ), and

let J ∈ JT,reg(H, Č). We define the Hamiltonian Floer cohomology group of H

to be the Λ
Q+,+
K -module

HF p
Č,a−,a+

(H) := ker(∂
(p)
H,J)/Im(∂

(p−1)
H,J ).
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This Hamiltonian Floer cohomology group does not depend on the choice

J by continuation map methods, which will be explained in the subsequent

section. Here are the two main examples of Hamiltonian Floer cohomology

groups which should be kept in mind.

Example 2.65. If Č is the empty contact cylinder and Q− = Q+ is the

cone spanned by ([ω], 1, 1), then we get the usual definition of Floer cohomology

with the usual action functional (see Example 2.11).

Example 2.66. Let q0, . . . , qk ∈ H2(M,D;R) be classes representing

Č-compatible 2-forms whose images in H2(M ;R) are linearly independent.

Suppose that Q+ is the polyhedral cone spanned by (q0, 1, 1), . . . , (qk, 1, 1) and

Q− is the polyhedral cone spanned by

(q0, 1, 1), . . . , (qk, 1, 1), (q0, 0, 1), . . . , (qk, 0, 1).

Then for (a−, a+)∈Sc(Q−)×Sc(Q+) andH∈Hreg(Č, a−, a+,Z), HF ∗
Č,a−,a+

(H)

is the Hamiltonian Floer cohomology group generated by capped 1-periodic or-

bits γ satisfying AČ,H(γ)(qi, 1, 1) ≥ a−(qi, 1, 1) and AČ,H(γ)(qi, 0, 1) ≥ (qi, 0, 1)

for all i∈{0, . . . , k} and AČ,H(γ)(qi, 1, 1)≤a+(qj , 1, 1) for some j∈{0, . . . , k},
where AČ,H is defined in 2.10.

2.6. Continuation maps. Again, throughout this subsection, we will fix a

(possibly empty) contact cylinder Č = [1− ε, 1 + ε]× C ⊂M with associated

Liouville domain D and cylindrical coordinate rC . We will also fix a Č-action

interval (a−, a+).

Definition 2.67. Let H− = (H−t )t∈T, H
+ = (H+

t )t∈T ∈ HT(Č, a−, a+)

have slopes (λH±t
)t∈T and heights (mH±t

)t∈T at Č respectively. We write

H− <Č H
+ if

(1) H−t < H+
t ;

(2) λH−t
< λH+

t
, mH−t

< mH+
t

;

(3) m+
t −m

−
t < (H+

t −H
−
t )|M−(D∪([1,1+ε/2]×C)

for all t ∈ T; see Figure 6.

The following lemma below tells us that the relation <Č has good prop-

erties:

Lemma 2.68. Let H ∈ HT(Č, a−, a+). Then there is a sequence (Hi)i∈N
of elements in HT(Č, a−, a+) C∞ converging to H so that for each K <Č H ,

there exists i ∈ N so that K <Č Hi <Č H .

Proof. Suppose H = (Ht)t∈T, and let λHt and mHt be the slope and height

of Ht for each t ∈ T. Let f : R −→ R be a smooth function satisfying

f |(−∞,1] = −2, f |[1+3ε/4,∞) = −2− ε, f ′ ≤ 0
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rC = 0

rC = 1rC = 1− ε rC = 1 + ε

H+
t

H−t

This slope bigger than this slope

Č

D

This distance smaller than this distance

m+
t −m

−
t

H+
t −H

−
t

Figure 6. Picture of H− and H+ satisfying H− <Č H
+.

and f(x) = −1− x for all x ∈ [1 + ε/8, 1 + ε/2]. Define

K : M −→ R, K(x) :=


−2 if x ∈ D,
f(rC) if x ∈ Č,
−2− ε otherwise.

Then Hi,t := Ht+
1
iK ∈ HT(Č) has slope λHt− 1

i and height mHi,t := mHt− 1
i .

Also

mHt −mHi,t <
2 + ε/2

i
≤ (Ht −Hi,t)|M−(D∪([1,1+ε/2]×C)).

Therefore Hi := (Hi,t)t∈T has the properties we want for all i large enough. �

Definition 2.69. Let H−, H+ ∈ HT(Č, a−, a+) satisfy H− <Č H+. A

smooth family of Hamiltonians H−+ = (H−+
s,t )(s,t)∈R×T (a−, a+)-connects H−

with H+ if

• H−+
s := (H−+

s,t )t∈T is an element of HT(Č, a−, a+) for all s ∈ R;

• H−+
s = H± for all s ∈ R satisfying ∓s� 1;
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• and if (λH−+
s,t

)(s,t)∈R×T, (mH−+
s,t

)(s,t)∈R×T are the corresponding slopes and

heights of (H−+
s,t )(s,t)∈R×T along Č, then

d

ds
H−+
s,t (x) ≤ 0 ∀ x ∈M,

d

ds
λH−+

s,t
≤ 0,

d

ds
mH−+

s,t
≤ 0,

d

ds
H−+
s,t (x) ≤ d

ds
(mH−+

s,t
) ∀ x ∈M − (D ∪ ([1, 1 + ε/2]× C))

for all t ∈ T. We will denote the space of such families of Hamiltonians by

HR×T(Č, a−, a+, H
−, H+).

Note that HR×T(Č, a−, a+, H
−, H+) is contractible since it is a convex

subset of the space HR×T(Č, a−, a+) with at least one element equal to

((1− ρ(s))H+
t + ρ(s)H−t )(s,t)∈R×T,

where ρ : R −→ R is a smooth function satisfying ρ′ ≥ 0 and where ρ(s) is

equal to 0 for s� 0 and 1 for s� 0.

Definition 2.70. IfH± ∈ HT(Č, a−, a+) and J± ∈ JT(Č) (Definition 2.12),

then we say (H−+, J−+) (a−, a+)-connects (H−, J−) with (H+, J+) if H−+

(a−, a+)-connects H− with H+ and if J−+ ∈ JR×T((J−, J+), Č).

Definition 2.71. Let H± ∈ Hreg(Č, a−, a+, P ) (Definition 2.16) where P =

{p−1, p, p+1} for some p ∈ Z, and let J± ∈ JT,reg(H±, Č), where JT,reg(H±, Č)

is given in Definition 2.23. Let H−+ ∈ HR×T(Č, a−, a+, H
−, H+) and J−+ ∈

JR×T,reg(H−+, (J−, J+), Č) (Proposition 2.19). The family (H−+, J−+) then

defines for us a continuation map

Φp
H−+,J−+ : HF p

Č,a−,a+
(H−) −→ HF p

Č,a−,a+
(H+)

induced from the chain level continuation map

(2.18) Φ̃p
H−+,J−+ : CF p

Č,a−,a+
(H−) −→ CF p

Č,a−,a+
(H+),

which is the unique K-linear map satisfying

Φ̃p
H−+,J−+(γ+)

:=
∑

γ−∈Γp
Č,a−,a+

(H+)

#M(H−+, J−+, γ)γ− ∀ γ+ ∈ Γp
Č,a−,a+

(H−),(2.19)

where γ = (γ−, γ+) and #M(H−+, J−+, γ) is the number of elements in the

0-dimensional manifold M(H−+, J−+, γ) (Definition 2.14) counted with sign

according to orientation. The set Γp
Č,a−,a+

(H−) is defined in Definition 2.58.

The map Φp
H−+,J−+ is well defined since the chain level map (2.18) induced

by equation (2.19) commutes with the differentials ∂
(p±)
H±,J± , p− = p−1, p+ = p

by the gluing theorem [Sch95, Th. 4.4.1] combined with the compactness result
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Proposition 10.5 and orientation conventions [Rit13, §17]. The same gluing the-

orem also tells us that the composition of two continuation maps is a continua-

tion map. Finally, if we have other elements K−+ ∈ HR×T(Č, a−, a+, H
−, H+)

and Y −+ ∈ JR×T,reg(K−+, (J−, J+), Č), then Φp
H−+,J−+ = Φp

K−+,Y −+ . Such

an equivalence of maps is given by a chain homotopy defined in a similar way

to equation (2.18), except that we count elements of M(F,L, γ) where Σ• is

the smooth family of Riemann surfaces (R× T)σ∈[0,1],

F = (Fσ,s,t)(σ,s,t)∈[0,1]×R×T ∈ HΣ•((H−, H+), Č)

satisfies F0,s,t = H−+
s,t , F1,s,t = K−+

s,t and

(Fσ,s,t)(s,t)∈R×T ∈ HR×T(Č, a−, a+, H
−, H+) ∀ σ ∈ [0, 1],

and where

L ∈ JΣ•,reg(F, (J−+, Y −+), (J−, J+), Č)

(see Proposition 2.21). This map is a chain homotopy by [AD14, Prop. 11.2.8]

where we replace the compactness result [AD14, Th. 11.3.7] by Proposition 10.5.

As a result of the facts above we have the following definition:

Definition 2.72. Let H± ∈ Hreg(Č, a−, a+, P ) (Definition 2.58) satisfy

H− <Č H
+ where P = {p− 1, p, p+ 1} for some p ∈ Z. The continuation map

Φp
H−,H+ : HF p

Č,a−,a+
(H−) −→ HF p

Č,a−,a+
(H+)

is defined to be Φp
H−+,J−+ for some choice of (H−+, J−+) as in Definition 2.69.

This is a Λ
Q+,+
K -module map. We also have the following important lem-

mas giving us sufficient conditions ensuring that a continuation map is an

isomorphism:

Lemma 2.73. Let H ∈ Hreg(Č, a−, a+, P ) where P = {p− 1, p, p+ 1} for

some p ∈ Z, and let J ∈ JT(Č). Then there is a convex neighborhood UH ⊂
HT(Č, a−, a+) of H (Definition 2.58) and a weakly contractible neighborhood

VJ ⊂ JT(Č) of J so that for all H± ∈ UH ∩ Hreg(Č, a−, a+, P ), J± ∈ VJ ∩
JT,reg(H±, Č),

H−+ = (H−+
s,t )(s,t)∈R×T ∈ HR×T(Č, a−, a+, H

−, H+),(2.20)

J−+ = (J−+
s,t )(s,t)∈R×T ∈ JR×T,reg(H−+, (J−, J+), Č)(2.21)

(Proposition 2.19) satisfying (H−+
s,t )t∈T ∈ UH and (V −+

s,t )t∈T ∈ VJ for all s ∈ R,

the degree p chain level continuation map Φ̃p
H−+,J−+ from equation (2.18) is

an isomorphism.

Proof. The key idea of the proof of this lemma is to use a Gromov com-

pactness result to show that the low energy solutions of the Floer equation

defining the chain level continuation map induce an isomorphism. For each
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K ∈ Hreg(Č, a−, a+, P ) and t ∈ T, let evt : ΓP
Č,a−,a+

(K) −→ M be the map

sending a capped 1-periodic orbit γ = (γ̃, γ̌) to γ̃(γ̌(t)) and define ΓK :=

ev0(ΓP
Č,a−,a+

(K)). Define Γ := ΓH . Since each element of ΓP
Č,a−,a+

(H) is non-

degenerate, we have that Γ is a finite subset of M . Therefore we can find open

subsets N ′Γ ⊂ NΓ ⊂ M of Γ so that the inclusion maps Γ ↪→ N ′Γ, N ′Γ ↪→ NΓ

are homotopy equivalences and so that the closure of N ′Γ is contained in NΓ.

Define HT,Γ ⊂ Hreg(Č, a−, a+, P ) to be the subspace of Hamiltonians K satis-

fying φKt (ΓK) ⊂ φHt (N ′Γ) for all t ∈ T and so that the inclusion map ΓK ↪→ N ′Γ
is a homotopy equivalence.

For each manifold Σ and each subset U0 ⊂ HT(Č) and V0 ⊂ JR×T(Č),

define

HΣ×T(Č)|U0 := {(Kσ,t)(σ,t)∈Σ×T ∈ HΣ×T(Č) : (Kσ,t)t∈T ∈ U0 ∀ σ ∈ Σ},

JΣ×R×T(Č)|V0 := {(Kσ,s,t)(σ,s,t)∈Σ×R×T

∈ JΣ×R×T(Č) : (Kσ,s,t)(s,t)∈R×T ∈ V0 ∀ σ ∈ Σ};

see Definition 2.12. For each U0 ⊂ HT(Č), define JR×T,Γ(U0) ⊂ JR×T(Č) to be

the subspace of elements Y = (Ys,t)(s,t)∈R×T so that for each

• K± ∈ HT,Γ ∩ U0, γ± ∈ ΓP
Č,a−,a+

(K±);

• K ∈ HR×T(Č)|HT,Γ∩U0
∩HR×T((K−,K+), Č); and

• u ∈ M(K,Y, (γ−, γ+)) (Definition 2.14) satisfying us,t ∈ φHt (NΓ) for all

(s, t) ∈ R× T,

we have that u(s, t) ∈ φHt (N ′Γ) for all (s, t) ∈ R × T. Morally, the definition

above is used to find those almost complex structures Y for which we can select

an isolated low energy region of M(K,Y, (γ−, γ+)).

Since there are neighborhoods N−, N+ of a−, a+ so that ΓP
Č,a′−,a

′
+

(H) =

ΓP
Č,a−,a+

(H) for all a′± ∈ N±, we have by a compactness argument (such as

the one in [McL12b, Lemma 2.3]) that there exists a weakly contractible open

neighborhood U ⊂ HT(Č, a−, a+) of H satisfying U ⊂ HT,Γ. Let

ιcpx : JT(Č) ↪−→ JT(Č), ιcpx((J̌t)t∈T) := (J̌t)(s,t)∈R×T

be the natural inclusion map. By a Gromov compactness argument (such as

the one in [McL12b, Lemma 2.3]) we have, after shrinking U further, that

there is a weakly contractible open subset V ⊂ JR×T(Č) of ιcpx(J) so that

V ⊂ JR×T,Γ(U0).

As a result, for each K ∈ U , we can define the Hamiltonian Floer co-

homology group HF p(K|NΓ
) in the usual way except that we only consider

capped 1-periodic orbits inside ∩t∈Tev−1
t (φHt (NΓ)), almost complex structures

(Jt)t∈T satisfying ιcpx((Jt)t∈T) ∈ V , and Floer trajectories u : R × T −→ M

satisfying u(s, t) ∈ φHt (NΓ) for all (s, t) ∈ R × T. For topological reasons we
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get that the differential vanishes and hence HF p(K|NΓ
) = CF p(K|NΓ

) where

CF p(K|NΓ
) is the degree p part of the chain complex defining HF p(K|NΓ

).

Also by only considering families of Hamiltonians inside

HR×T(Č)|U , H[0,1]×R×T(Č)|U ,

families of almost complex structures inside V and J[0,1]×R×T(Č)|V and Floer

trajectories u : R × T −→ M satisfying u(s, t) ∈ φHt (NΓ) for all (s, t) ∈
R × T, one can show that the chain level continuation map Φ̃p

K−+,Y −+ :

CF p(K|NΓ
) −→ CF p(Ǩ|NΓ

) is an isomorphism for each

K, Ǩ ∈ U, K−+ ∈ HR×T(Č)|U ∩HR×T((K−,K+), Č)

and

Y −+ ∈ JR×T(Č)|V ∩ JR×T,reg(K, (Y −, Y +), Č)

(see [AD14, Ch. 11]). The above arguments work because Gromov compactness

[AD14, Th. 9.1.7] still holds since there are no Floer trajectories u as above

satisfying u(s, t) ∈ NΓ −N ′Γ for some (s, t) ∈ R× T. (In other words we have

selected appropriate clopen regions inside the moduli spaces of Floer cylinders

needed to construct Φ̃p
K−+,Y −+ and show it is an isomorphism.)

Hence if we choose UH ⊂ U to be a convex neighborhood of H and VJ ⊂
V ∩ JT(Č) a weakly contractible neighborhood of J , then our lemma holds by

an action filtration argument. �

Very roughly, the following lemma says that if one has a family of Hamil-

tonians whose Floer chain complexes are all the same (after possibly pulling

back by a diffeomorphism), then the corresponding continuation map is an

isomorphism.

Lemma 2.74. Let P = [p−−1, p++1] for some p± ∈ Z, and let (am− , a
m
+ ) ∈

Sc(Qm− ) × Sc(Qm+ ), m ∈ I be a finite collection of Č-action intervals. Sup-

pose there exists (Hs,t)(s,t)∈R×T ∈ H[0,1]×T(Č) so that Hs,• := (Hs,t)t∈T ∈
∩m∈IHreg(Č, am− , a

m
+ , P ) (Definition 2.16) for all s ∈ [0, 1] and Hs,• <Č Hš,•

for each s < š. Let J± ∈ JT,reg(H±, Č), where H− := H0,• and H+ := H1,•.

Then there exists

(2.22)

H−+ ∈ ∩m∈IHR×T(Č, am− , a
m
+ , H

−, H+), J−+ ∈ JR×T,reg(H−+, (J−, J+), Č)

so that the chain level continuation map

Φ̃p
H−+,J−+ : CF p

Č,am− ,a
m
+

(H−) −→ CF p
Č,am− ,a

m
+

(H+)

is an isomorphism for each p− ≤ p ≤ p+ and each m ∈ I . In particular

the continuation map Φp
H−,H+ : HF p

Č,am− ,a
m
+

(H−) −→ HF p
Č,am− ,a

m
+

(H+) is an

isomorphism for each such p and m.
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Proof. Here the key idea of the proof is to chop up the homotopy

(Hs,t)(s,t)∈[0,1]×T

into many small homotopies and then apply Lemma 2.73 above. Let J ∈ JT(Č).

Let UmHs,• ⊂ HT(Č, am− , a
m
+ ) and V m

Hs,•
⊂ JT(Č, am− , a

m
+ ) be open neighborhoods

of Hs,• and J respectively so that the conclusion of Lemma 2.73 holds with H

and (a−, a+) replaced by Hs,• and (am− , a
m
+ ) respectively for each m ∈ I. Let

UHs,• ⊂ ∩m∈IUmHs,• be a convex neighborhood of Hs,• and VHs,• ⊂ ∩m∈IV m
Hs,•

a

weakly contractible open neighborhood of J for each s ∈ [0, 1]. Since [0, 1]

is compact, we can choose s0 = 0 < s1 < s2 < · · · < sk = 1 so that

Hsj+1,• ∈ UHsj ,• or Hsj ,• ∈ UHsj+1,•
for all 0 ≤ j ≤ k − 1. Since H− <Č H+

we have, by applying Lemma 2.68 inductively, that there exists Ȟj ∈ UHsj ,• ∩
∩i∈IHreg(Č, am− , a

m
+ , P ), 0 ≤ j ≤ k satisfying Ȟj <Č Ȟj+1 and Ȟj , Ȟj+1 ∈

UHsj ,• or Ȟj , Ȟj+1 ∈ UHsj+1,•
for all 0 ≤ j ≤ k − 1 and satisfying Ȟ0 = H0,•

and Ȟk = H1,•. Now choose J̃ ∈ ∩kj=1(VHsj ,• ∩ JT,reg(Ȟj , Č)) and choose

H−+,j = (H−+,j
s,t )(s,t)∈R×T ∈ ∩m∈IHR×T(Č, am− , a

m
+ , Ȟj , Ȟj+1),

J−+,j = (J−+,j
s,t )(s,t)∈R×T ∈ JR×T,reg(H−+, (J̃ , J̃), Č)

satisfying (H−+,j
s,t )t∈T ∈ UHsj′ ,• and (V −+,j

s,t )t∈T ∈ VHsj′ ,• for all s ∈ R, for some

j′ ∈ {j, j+1} (independent of s) and for all 0 ≤ j ≤ k−1. Then by Lemma 2.73,

we have that the degree p chain level continuation map Φ̃p
H−+,j ,J−+,j from equa-

tion (2.18) is an isomorphism for all 0 ≤ j ≤ k − 1. By a repeated gluing

argument [AD14, Th. 11.1.16] applied to (H−+,j , J−+,j) for all 0 ≤ j ≤ k − 1,

there exists (H−+, J−+) as in equation (2.22) so that so that the chain level

continuation map

Φ̃p
H−+,J−+ : CF p

Č,am− ,a
m
+

(H−) −→ CF p
Č,am− ,a

m
+

(H+)

is an isomorphism for each p− ≤ p ≤ p+ and m ∈ I. �

2.7. Action maps. Throughout this subsection, we will fix a (possibly

empty) contact cylinder Č = [1 − ε, 1 + ε] × C ⊂ M with associated Liou-

ville domain D.

Definition 2.75. Let (aj−, a
j
+) ∈ Sc(Qj−) × Sc(Qj+) be a Č-action interval

for j = 0, 1. We say that (a1
−, a

1
+) is smaller than (a0

−, a
0
+) if Q1

± ⊂ Q0
± and if

a1
± ≤ a0

±|Q1
±

.

Remark 2.76. If (a1
−, a

1
+) is smaller than (a0

−, a
0
+), then we have induced

morphisms of Novikov rings Λ
Q0

+

K −→ Λ
Q1

+

K and Λ
Q0

+,+

K −→ Λ
Q1

+,+

K . In particu-

lar, any Λ
Q1

+

K (resp. Λ
Q1

+,+

K ) module is naturally a Λ
Q0

+

K (resp. Λ
Q0

+,+

K ) module.
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Definition 2.77. Let P = {p− 1, p, p+ 1} for some p ∈ Z. Let (aj−, a
j
+) be

a Č-action interval for j = 0, 1 so that (a1
−, a

1
+) is smaller than (a0

−, a
0
+). Let

H ∈ ∩j=0,1H
reg(Č, aj−, a

j
+, P ). Then we have a natural chain map

CF q
Č,a0
−,a

0
+

(H)
α−→ CF q

Č,a0
−,∞

(H)/(CF q
Č,a0
−,∞

(H) ∩ CF q
Č,a1

+,∞
(H))

β−→ CF q
Č,a1
−,a

1
+

(H)
(2.23)

for each q ∈ P called a chain level action map where α is the natural quotient

map and β is the natural inclusion map of K-modules. The induced map on

homology

(2.24) HF p
Č,a0
−,a

0
+

(H) −→ HF p
Č,a1
−,a

1
+

(H)

is called an action map.

Remark 2.78. Action maps are morphisms of Λ
Q0

+,+

K -modules where Q0
+ is

the domain of a0
+ (see Remark 2.76). The composition of two action maps is an

action map. Action maps commute with continuation maps by Lemma 10.3.

We also have the following important lemma giving us a sufficient condi-

tion for an action map to be an isomorphism:

Lemma 2.79. Let Qj , (aj−, a
j
+), j = 0, 1, P , p, H be as in Definition 2.77.

Suppose that ΓP
Č,a0
−,a

0
+

(H) = ΓP
Č,a1
−,a

1
+

(H)(Definition 2.58). Then the action

map

HF p
Č,a0
−,a

0
+

(H) −→ HF p
Č,a1
−,a

1
+

(H)

is an isomorphism.

Proof. This follows from the fact that the chain maps α and β from equa-

tion (2.23) are isomorphisms in degree p. �

2.8. Invariance under time reparametrization. Throughout this subsec-

tion, Č is a contact cylinder whose associated Liouville domain is D. We will

also fix a Č-interval domain (Q−, Q+).

Definition 2.80. Let F : T −→ T be a smooth non-decreasing map. Let

H = (Ht)t∈T be a smooth Hamiltonian. We define HF = (HF
t )t∈T by HF

t :=

F ′(t)HF (t) for each t ∈ T.

Proposition 2.81. Let F : T −→ T be a smooth non-decreasing map

which is homotopic to the identity map. Let (a−, a+) ∈ Sc(Q−) × Sc(Q+) be

a Č-action interval and P := {p− 1, p, p + 1} for some p ∈ Z. Then for each

H ∈ Hreg(Č, a−, a+, P ), there is an isomorphism

(2.25) HF ∗
Č,a−,a+

(H) ∼= HF ∗
Č,a−,a+

(HF )

which commutes with continuation maps and action maps.
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Definition 2.82. The isomorphism (2.25) will be called a reparametrization

isomorphism.

Proof of Proposition 2.81. The correspondence sending a loop γ : T−→M

to the loop γ ◦ F induces a bijection between 1-periodic orbits of H and

HF respectively. Since F is isotopic through non-decreasing maps to the

identity map, we have that this correspondence lifts in a natural way to

capped 1-periodic orbits. Such a bijection induces an isomorphism of modules

CF p
Č,a−,a+

(H) ∼= CF p
Č,a−,a+

(HF ) for each p ∈ P . Since F is homotopic to the

identity map, there is a unique function G : T −→ R satisfying G(0) = 0 and

G′(t) = F ′(t) − 1. Let J = (Jt)t∈T ∈ Jreg(H, Č), and define JF := (JF (t))t∈T.

Then there is a bijection between (H,J)-Floer cylinders u : R× T −→M and

(HF , JF )-Floer cylinders

uF : R× T −→M, uF (s, t) := u(s+G(t), F (t)).

Also JF ∈ Jreg(HF , Č) since the corresponding Fredholm operators lineariz-

ing the Floer equation are canonically identified via a similar correspondence.

Putting everything together we get our isomorphism (2.25). By considering a

similar correspondence for Floer trajectories defining continuation maps as in

Definition 2.72, we see that such an isomorphism commutes with continuation

maps. Finally, since these isomorphisms preserve action we get that they also

respect action maps. �

2.9. The pair of pants product. Throughout this subsection we will fix a

(possibly empty) contact cylinder Č = [1− ε, 1 + ε]× C ⊂M with associated

Liouville domain D.

Definition 2.83. Let (aj−, a
j
+) ∈ Sc(Qj−, Q

j
+) be a Č-action interval for

j = 0, 1, 2. We say that (a2
−, a

2
+) is smaller than (aj−, a

j
+)j=0,1 if Q2

± ⊂ Q
j
± for

j = 0, 1 and

a2
− ≤ a0

−|Q2
−

+ a1
−|Q2

−
, a2

+ ≤ min(a0
−|Q2

+
+ a1

+|Q2
+
, a1
−|Q2

+
+ a0

+|Q2
+

).

Most of the time, it will be the case that

Q0 = Q1 = Q2, a2
− = a0

− + a1
− and a2

+ = min(a0
− + a1

+, a
0
+ + a1

−).

Definition 2.84. For any time dependent Hamiltonian H = (Ht)t∈T and

any k ∈ N, define (k)H := ((k)Ht)t∈T where (k)Ht := kHkt for all t ∈ T.

Definition 2.85. Let (aj−, a
j
+) be a Č-action interval for j = 0, 1, 2 so that

(a2
−, a

2
+) is smaller than (aj−, a

j
+)j=0,1. Define κ0 = κ1 := 1 and κ2 := 2. Let

Hj =(Hj
t )t∈T, j = 0, 1, 2 be Hamiltonians so that (κj)H

j∈∩2
k=0H

reg(Č, ak−, a
k
+)

for j = 0, 1, 2. Suppose that for each triple (γj)j=0,1,2∈
∏
j=0,1,2 Γ

pj

Č,aj−,a
j
+

(κjH
j)
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of capped 1-periodic orbits where p0, p1, p2 ∈ Z, we have that the associated

1-periodic orbits of at least two of them have distinct images in M .

If Hj <Č H
2 for j = 0, 1, we have a natural pair of pants product map

ΦH0,H1,H2 : HF p0

Č,a0
−,a

0
+

(H0)⊗K HF p1

Č,a1
−,a

1
+

(H1) −→ HF p0+p1

Č,a2
−,a

2
+

((2)H2)

induced from a chain level map

(2.26) Φ̃H,J : CF p0

Č,a0
−,a

0
+

(H0)⊗K CF p1

Č,a1
−,a

1
+

(H1) −→ CF p0+p1

Č,a2
−,a

2
+

((2)H2)

which is the unique K-linear map satisfying

Φ̃H,J(γ0⊗γ1) =
∑

γ2∈Γ
p0+p1
Č,a2
−,a

2
+

(2H)

#M(H,J, γ)γ2, γj ∈ Γ
pj
Č,a−,a+

((κj)Hj), j = 0, 1

for some fixed (H,J), where

• H ∈ HΣ((H0, H1, H2), Č) where Σ is the pair of pants as in Example 2.25;

• J ∈ ∩2
k=0J

Σ,reg(H, (J0, J1, J2)) ∩ JΣ(Č) where J j ∈ JT,reg(κjH
j , Č) for all

j = 0, 1, 2; and

• γ = (γj)j=0,1,2.

Remark 2.86. The condition Hj <Č H2 for j = 0, 1 ensures that the

Hamiltonian H exists by considering the branched cover $ from Example 2.25.

The pair of pants product is well defined since the chain level map (2.26)

commutes with the differentials by a gluing argument [Sch95, Th. 4.4.1] com-

bined with the compactness result Proposition 10.5 and orientation conven-

tions [Rit13, §17]. Since the space of families of Hamiltonians H as above

is contractible and since the space JΣ((J0, J1, J2), Č) is contractible, we have

(by looking at the moduli spaces in Definition 2.20 and Proposition 2.21) that

ΦH0,H1,H2 does not depend on Σ, H or J or the choice of Σ-compatible 1-form.

Such a fact follows from [Sch95, §5.2] where we only consider families of Hamil-

tonians and almost complex structures from Definition 2.20 and where the

compactness result [Sch95, Prop. 5.2.3] is replaced with Proposition 10.5.

If Q0
+ = Q1

+, then ΦH0,H1,H2 descends to a ΛQ
0
+,+-bilinear map. A gluing

argument [Sch95, Prop. 5.4.4] together with the use of the moduli spaces in

Definition 2.20 and Proposition 2.21 tells us that this product commutes with

continuation maps and is associative. Since ΦH0,H1,H2 only depends on the

oriented diffeomorphism type of Σ, we get that it is commutative when a0
± = a1

±
(see [Sch95, §5.5.1.3]). The pair of pants product also commutes with action

maps since this product respects the filtrations on the Floer chain complexes by

Lemma 10.3. If the constant Hamiltonian min(H0) satisfies min(H0) <Č Ȟ0

for some C∞ small perturbation Ȟ0 of H and if a0
−([ω̃], λ−, λ+) < λ−min(H0)

for all ([ω̃], λ−, λ+) ∈ Q0 − 0 and p0 = 0, then this product has a left unit 1 ∈
HF p0

Č,a0
−,a

0
+

(H0) by [Sch95, §5.5.1.3] together with the gluing and compactness
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results stated above. By left unit we mean that for each H3 ∈ Hreg(Č, a2
−, a

2
+)

satisfying 2H2, H2 <Č H
3, Φp1

2H2,H3(ΦH0,H1,H2(1⊗x)) is the image of x under

the natural composition

HF p1

Č,a1
−,a

1
+

(H1) −→ HF p1

Č,a1
−,a

1
+

(H3) −→ HF p0+p1

Č,a2
−,a

2
+

(H3),

where the first map is a continuation map and the second map is an action

map for each x ∈ HF p1

Č,a1
−,a

1
+

(H1). If H1 satisfies similar conditions, then we

have a right unit. Left (resp. right) units get sent to left (resp. right) units

under continuation and action maps.

3. Floer cohomology for lower semi-continuous Hamiltonians

In this section we introduce Hamiltonian Floer cohomology for certain

lower semi-continuous Hamiltonians. This will be the direct limit of Floer

cohomology groups of smooth Hamiltonians strictly smaller than such a lower

semi-continuous Hamiltonian. These modules will basically satisfy all the same

properties as the Floer groups defined in Section 2. Such ideas have been

considered in [Gro15].

3.1. Main definitions. Throughout this subsection we will fix a contact

cylinder Č = [1−ε, 1+ε]×C with associated Liouville domain D and cylindrical

coordinate rC . We will also fix a Č-action interval (a−, a+).

Definition 3.1. Recall that a function f : X −→ R ∪ {∞} from a metric

space X is lower semi-continuous if for all x0 ∈ X, lim infx→x0 f(x) ≥ f(x0).

A lower semi-continuous Hamiltonian is a family of functions (Ht)t∈T from M

to R ∪ {∞} so that the function“H : T×M −→ R ∪ {∞}, “H(t, x) := Ht(x)

is lower semi-continuous. Such a Hamiltonian is continuous if “H is continuous.

A lower semi-continuous Hamiltonian H = (Ht)t∈T is weakly Č-compatible

if the restriction Ht|[1+ε/8,1+ε/2]×C is either equal to∞ or λHtrC+mHt for some

constants λHt , mHt for each t ∈ T. We also require that the maps t→ λHt and

t→ mHt from T to R are lower semi-continuous where λHt := 0 and mHt :=∞
if Ht|[1+ε/8,1+ε/2]×C = ∞. The slope of Ht along Č is defined to be λHt and

the height of Ht along Č is defined to be mHt for all t ∈ T. Also the slope and

height of Ht is defined to be 0 if Č is the empty contact cylinder. We say that

H is Č-compatible if it is weakly Č-compatible and if Ht|M−(D∪Č) is constant

(possibly equal to ∞) for each t ∈ T. We define HT,l.s.(Č) (resp. H
T,l.s.

(Č)) to

be the set of weakly Č-compatible (resp. Č-compatible) lower semi-continuous
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Hamiltonians H. Define

HT,l.s.(Č, a−, a+)

:=

{
HT,l.s.(Č) if (a−, a+) is small,

{H ∈ H
T,l.s.

(Č) : mHt > height(a−, a+) ∀ t ∈ T} otherwise,

(3.1)

where height(a−, a+) is defined as in equation (2.15) and where (mHt)t∈T are

the heights of H = (Ht)t∈T. For H−, H+ ∈ HT,l.s.(Č), we say H− ≤l.s.
Č
H+ if

(1) H−t ≤ H
+
t ;

(2) λH−t
≤ λH+

t
, mH−t

≤ mH+
t

;

(3) mH+
t
−mH−t

≤ (H+
t −H

−
t )|M−(D∪([1,1+ε/2]×C) (where we define ∞−∞ to

be 0)

for all t ∈ T, where (λH±t
)t∈T, (mH±t

)t∈T are the slopes and heights of H±.

For any P ⊂Z and anyH∈HT,l.s.(Č, a−, a+), define Hreg(<Č H, a−, a+, P )

to be the subspace of smooth Hamiltonians Ȟ = (Ȟt)t∈T ∈ Hreg(Č, a−, a+, P )

(Definition 2.16) satisfying

• Ȟt < Ht;

• λȞt < λHt ; mȞt
< mHt ; and

• mH+
t
−mH−t

< (H+
t −H

−
t )|M−(D∪([1,1+ε/2]×C) for all t ∈ T.

Define ≤Č to be the relation on Hreg(<Č H, a−, a+, P ) where H− ≤Č H+

if H− = H+ or H− <Č H+. Also define Hreg(<Č H, a−, a+) := Hreg(<Č
H, a−, a+,Z).

Lemma 3.2. For any P ⊂ Z and any H ∈ HT,l.s.(Č, a−, a+, P ), we have

that (Hreg(<Č H, a−, a+, P ),≤Č) is a non-empty directed set.

Proof. It is clear that ≤Č is reflexive and transitive. We now need to show

that every pair of elements has an upper bound. Now suppose Hj = (Hj
t )t∈T ∈

Hreg(<Č H, a−, a+, P ) for j = 0, 1. Let (λHt)t∈T, (mHt)t∈T (resp. (λ
Hj
t
)t∈T and

(m
Hj
t
)t∈T) be the slopes and heights of H = (Ht)t∈T (resp. Hj = (Hj

t )t∈T for

j = 0, 1). Since λHt and mHt vary in a lower semi-continuous way with respect

to t ∈ T, we can find smooth families of constants (λt)t∈T, (mt)t∈T so that

λ
Hj
t
< λt < λHt and m

Hj
t
< mt < mHt for all t ∈ T. Also since H is

lower semi-continuous, we can find a smooth Hamiltonian Ȟ = (Ȟt)t∈T so that

Hj
t < Ȟt < Ht for all t ∈ T and also so that Ȟt|M−(Č∪D) is constant for each

t ∈ T if (a−, a+) is not small. We can also choose Ȟ so that

(Ht − Ȟt − (mHt −mt))|M−(D∪([1,1+ε/2]×C)) > 0

and

(Ȟt −Hj
t − (mt −mHj

t
))|M−(D∪([1,1+ε/2]×C)) > 0
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for all j = 0, 1 and t ∈ T. Then by using a bump function on Č to interpolate

between Ȟt and λtrC +mt in the region ((1, 1+ ε/16)∪ (1+ ε/2, 1+3ε/4))×C,

we can assume that Ȟt|[1+ε/8,1+ε/2]×C = λtrC +mt for all t ∈ T as well. Hence

Ȟ ∈ HT(Č, a−, a+) and Hj <Č Ȟ ≤l.s.
Č

H. By Lemma 2.68 combined with

the fact that HT(Č, a−, a+) is a ubiquitous subset of HT(Č) by Lemma 8.3,

we can find H2 ∈ Hreg(Č, a−, a+) satisfying Hj <Č H2 <Č Ȟ for j = 0, 1.

Hence H2 ∈ Hreg(<Č H, a−, a+) and Hj <Č H2 for j = 0, 1. A similar

construction also shows that Hreg(<Č H, a−, a+) is non-empty. This completes

our lemma. �

Definition 3.3. Let H ∈ HT,l.s.(Č, a−, a+). By Lemma 3.2, we can define

HF p
Č,a−,a+

(H) := lim−→
Ȟ∈Hreg(<ČH,a−,a+,P )

HF ∗
Č,a−,a+

(Ȟ)

for any P containing {p − 1, p, p + 1} where the direct limit is taken with

respect to the directed system (Hreg(<Č H, a−, a+, P ),≤Č) whose morphisms

are continuation maps.

If the lower semi-continuous Hamiltonian H from Definition 3.3 is in fact

smooth and an element of Hreg(Q, a−, a+, P ), then it would be good to check

that Definitions 3.3 and 2.64 agree. We will do this now.

Lemma 3.4. Let p ∈ Z, and let H ∈ Hreg(Č, a−, a+, P ), where P =

{p − 1, p, p + 1}. Let G1 be equal to HF p
Č,a−,a+

(H) from Definition 2.64, and

let G2 be equal to HF p
Č,a−,a+

(H) from Definition 3.3. Then the natural map

G2 −→ G1 induced by continuation maps is an isomorphism.

As a result, we have consistent notation and we do not need to distinguish

between Definition 2.64 and Definition 3.3.

Proof of Lemma 3.4. We let HF p
Č,a−,a+

(Ȟ) be in Definition 2.64 for any

Ȟ ∈ Hreg(<Č H, a−, a+, P ). By Lemma 2.40, it is sufficient for us to show that

there is a cofinal family Ξ inside (Hreg(<Č H, a−, a+, P ),≤Č) so that the natu-

ral map HF p
Č,a−,a+

(Ȟ) −→ G1 is an isomorphism for each element Ȟ of this co-

final family. Let UH ⊂ HT(Č, a−, a+) be the neighborhood of H satisfying the

properties of Lemma 2.73. Define Ξ := UH ∩Hreg(<Č H, a−, a+, P ). Then Ξ is

a cofinal family by Lemma 2.68 and the natural map HF ∗
Č,a−,a+

(Ȟ) −→ G1 is

an isomorphism for all Ȟ ∈ Ξ by Lemma 2.73. This completes the lemma. �

3.2. Continuation maps. Throughout this subsection, fix a contact cylin-

der Č together with a Č-action interval (a−, a+).

Definition 3.5. Let p ∈ Z, and let P ⊂ Z satisfy {p − 1, p, p + 1} ⊂ P .

Let H−, H+ ∈ Hl.s.(Č, a−, a+) satisfy H− ≤l.s.
Č

H+. Then we have a natural
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inclusion of directed systems

Hreg(<Č H
−, a−, a+, P ) ⊂ Hreg(<Č H

+, a−, a+, P )

and this induces a morphism

Φp
H−,H+ : HF p

Č,a−,a+
(H−) −→ HF p

Č,a−,a+
(H+)

called a continuation map.

If H−, H+ from Definition 3.5 above are elements of Hreg(Č, a−, a+, P ),

then the continuation map from this definition is equal to the continuation

map from Definition 2.72 by Lemma 3.4. The composition of two continuation

maps is a continuation map.

The following lemma is a generalization of a slightly weaker version of

Lemma 2.74 to all smooth Hamiltonians (not just ones in Hreg(Č, a−, a+)).

Lemma 3.6. Let H = (Hs,t)(s,t)∈[0,1]×T be a smooth family of autonomous

smooth Hamiltonians, and define Hs,• := (Hs,t)t∈T for all s ∈ [0, 1]. Fix p ∈ Z.

Suppose that

(1) Hs,• ∈ HT,l.s.(Č, a−, a+) for each s ∈ [0, 1] and Hs1,• ≤l.s.
Č

Hs2,• for all

s1 ≤ s2;

(2) there are neighborhoods N−, N+ of a−, a+ in Sc(Q−), Sc(Q+) respectively

so that

ΓP
Č,a−,a+

(Hs,•) = ΓP
Č,a′−,a

′
+

(Hs,•)

(Definition 2.58) for all a′± ∈ N±, s ∈ [0, 1] where P = [p−1−n, p+1+n];

and

(3) there are no 1-periodic orbits of Hs,• contained in [1 + ε/8, 1 + ε/2]×C for

all s ∈ [0, 1].

Then the continuation map

Φp
H0,•,H1,•

: HF p
Č,a−,a+

(H0,•) −→ HF p
Č,a−,a+

(H1,•)

in degree p is an isomorphism.

Proof. This lemma will be proven by showing that for each s ∈ [0, 1], there

is a constant εs > 0 so that the continuation map

(3.2) HF p
Č,a−,a+

(Hs0) −→ HF p
Č,a−,a+

(Hs1)

is an isomorphism for all s0, s1 ∈ [0, 1] ∩ (s− εs, s+ εs) satisfying s0 ≤ s1. So

from now on, fix s ∈ [0, 1].

By (3) there are constants δs, ζ > 0 so that for each s′ ∈ [s − δs, s + δs],

every 1-periodic orbit of Hs′,• has image not intersecting N := [1 + ε/8 − ζ,

1 + ε/2 + ζ] × C. By Lemma 2.68, there exists a cofinal family (Ki,s′)i∈N in

Hreg(<Č Hs,•, a−, a+, P ) which C∞ converges to Hs′,• for each s′ ∈ [0, 1].
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Let F : M −→ R be a Č-compatible autonomous Hamiltonian so that

F is locally constant outside N and so that 0 <Č F . Since F is locally

constant outside N , there is a constant 0 < ηs < δs so that for each s′ ∈
(s−ηs, s+ηs) and τ ∈ [−ηs, ηs], there is a constant Ns′ > 0 so that Ki,s′+τF ∈
HT,reg(Č, a−, a+, P ) for all i ≥ Ns′ by assumptions (2) and (3). Hence by

Lemma 2.74, the continuation maps

HF p
Č,a−,a+

(Ki,s′ + τ−F ) −→ HF p
Č,a−,a+

(Ki,s′ + τ+F )

are isomorphisms for all s′ ∈ (s−ηs, s+ηs), i ≥ Ns′ and τ−, τ+ ∈ [−ηs, ηs] satis-

fying τ− < τ+, and hence the continuation maps HF p
Č,a−,a+

(Hs′,•+ τ−F ) −→
HF p

Č,a−,a+
(Hs′,• + τ+F ) are isomorphisms for all s′ ∈ (s − ηs, s + ηs) and

τ−, τ+ ∈ [−ηs, ηs] satisfying τ− ≤ τ+.

Choose 0 < εs < ηs small enough so that

Hs1,• − ηsF ≤l.s.
Č
Hs0,• ≤l.s.

Č
Hs1,• ≤l.s.

Č
Hs0,• + ηsF

for all s0, s1 ∈ (s − εs, s + εs) satisfying s0 ≤ s1. By the discussion above

combined with the fact that the composition of any two continuation maps is

a continuation map, we get that the composition of any two maps in

HF p
Č,a−,a+

(Hs1,• − ηsF )→ HF p
Č,a−,a+

(Hs0,•)

α−→ HF p
Č,a−,a+

(Hs1,•)→ HF p
Č,a−,a+

(Hs0,• + ηsF )

is an isomorphism. Hence α is an isomorphism for all s0, s1 ∈ (s − εs, s + εs)

satisfying s0 ≤ s1. �

3.3. Action maps. We can also define action maps for lower semi-contin-

uous Hamiltonians in a similar way to Section 2.7. Throughout this section we

will fix a contact cylinder Č = [1− ε, 1 + ε]×C ⊂M with associated Liouville

domain D.

Definition 3.7. Let P = {p− 1, p, p+ 1} for some p ∈ Z. Let (aj−, a
j
+) be

a Č-action interval for j = 0, 1 so that (a1
−, a

1
+) is smaller than (a0

−, a
0
+). Let

H ∈ ∩j=0,1H
T,l.s.(Č, aj−, a

j
+) (Definition 3.1), and let Ξ := ∩j=0,1H

reg(<Č H,

aj−, a
j
+) be the directed set with relation ≤Č . Since

(3.3) HF p
Č,aj−,a

j
+

(H) = lim−→
Ȟ∈Ξ

HF p
Č,aj−,a

j
+

(Ȟ), j = 0, 1

and since action maps commute with continuation maps, we get that the action

maps HF ∗
Č,a0
−,a

0
+

(Ȟ) −→ HF ∗
Č,a1
−,a

1
+

(Ȟ) for each Ȟ ∈ Ξ from Definition 2.77

induce a map

HF p
Č,a0
−,a

0
+

(H) −→ HF p
Č,a1
−,a

1
+

(H),

which we also call an action map.
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Again action maps commute with continuation maps. If the Hamiltonian

H is an element of ∩j=0,1H
reg(Č, aj−, a

j
+, {p − 1, p, p + 1}), then the action

map from Definition 2.77 is equal to the action map from Definition 3.7 by

Lemma 3.4. We also have the following analogue of Lemma 2.79:

Lemma 3.8. Let P = [p−1−n, p+1+n] for some p ∈ Z. Let (aj−, a
j
+) be a

Č-action interval for j = 0, 1 so that (a1
−, a

1
+) is smaller than (a0

−, a
0
+). Let H ∈

∩j=0,1H
T,l.s.(Č, aj−, a

j
+) be a smooth Hamiltonian. Suppose that ΓP

Č,a0
−,a

0
+

(H) =

ΓP
Č,a1
−,a

1
+

(H). Then the action map

HF p
Č,a0
−,a

0
+

(H) −→ HF p
Č,a1
−,a

1
+

(H)

is an isomorphism.

Proof. By Lemma 2.68 there exists a cofinal family (H i)i∈N in

∩j=0,1H
reg(<Č H, a

j
−, a

j
+)

so that H i C∞ converges to H. Then for all i sufficiently large, we have

by (CZ7) from Definition 2.16 that Γ
{p−1,p,p+1}
Č,a0
−,a

0
+

(H i) = Γ
{p−1,p,p+1}
Č,a1
−,a

1
+

(H i). Hence

by Lemma 2.79, the action morphism

HF p
Č,a0
−,a

0
+

(H i) −→ HF p
Č,a1
−,a

1
+

(H i)

is an isomorphism for all i sufficiently large. Therefore since action maps

commute with continuation maps and since equation (3.3) holds, we get our

result. �

3.4. Invariance under time reparametrization. Throughout this subsec-

tion, Č is a contact cylinder whose associated Liouville domain is D. We will

also fix a Č-interval domain (Q−, Q+).

Definition 3.9. Let F : T −→ T be a smooth non-decreasing map. Let

H = (Ht)t∈T be a lower semi-continuous Hamiltonian. We define HF =

(HF
t )t∈T by HF

t := F ′(t)HF (t).

Proposition 3.10. Let F : T −→ T be a smooth non-decreasing map

which is homotopic to the identity map. Let (a−, a+) ∈ Sc(Q−) × Sc(Q+)

be a Č-action interval. Then for each H ∈ HT,l.s.(Č, a−, a+), there is an

isomorphism of ΛQ+,+-modules

(3.4) HF ∗
Č,a−,a+

(H) ∼= HF ∗
Č,a−,a+

(HF )

which commutes with continuation maps and action maps.

Definition 3.11. The isomorphism (3.4) will be called a reparametrization

isomorphism.
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Proof of Proposition 3.10. Since

HF p
Č,a−,a+

(HF ) = lim−→
Ȟ∈Hreg(<ČH,a−,a+,Z)

HF ∗
Č,a−,a+

(ȞF )

by Proposition 2.81 and since the reparametrization isomorphisms

HF ∗
Č,a−,a+

(Ȟ) ∼= HF ∗
Č,a−,a+

(ȞF )

from Definition 2.82 commute with continuation maps, we get our isomor-

phism (3.4). �

3.5. Pair of pants product. Throughout this section we will fix a contact

cylinder Č = [1− ε, 1 + ε]× C ⊂M with associated Liouville domain D.

Definition 3.12. Let (aj−, a
j
+) be a Č-action interval for j = 0, 1, 2 so that

(a2
−, a

2
+) is smaller than (aj−, a

j
+)j=0,1 as in Definition 2.83. Define κ0 = κ1 := 1

and κ2 := 2. Let Hj = (Hj
t )t∈T be a lower semi-continuous Hamiltonian so

that (κj)H
j ∈ HT,l.s.(Č, aj−, a

j
+) for j = 0, 1, 2, where (κj)H

j is defined as in

Definition 2.84, and suppose Hj ≤l.s.
Č
H2 for j = 0, 1.

Choose a cofinal sequence ((κj)Ȟ
i,j)i∈N in ∩2

k=0H
reg(<Č , a

k
−, a

k
+, (κj)H

j)

(Definition 3.1) for each j = 0, 1, 2 so that Ȟ i,j <Č Ȟ2,j for j = 0, 1 and so

that for each triple of capped 1-periodic orbits

(γj)j=0,1,2 ∈
∏

j=0,1,2

Γ
pj

Č,aj−,a
j
+

((κj)H
j),

where p0, p1, p2 ∈ Z, we have that the associated 1-periodic orbits of at least

two of them have distinct images in M . Define Qi,j := HF ∗
Č,aj−,a

j
+

((κj)Ȟ
i,j)

for all i ∈ N and j = 0, 1, 2. Then the pair of pants product is the natural

composition

ΦH0,H1,H2 : HF ∗
Č,a0
−,a

0
+

(H0)⊗K HF ∗Č,a1
−,a

1
+

(H1)

= (lim−→
i∈N

Qi,0)⊗K (lim−→
i∈N

Qi,1) −→ lim−→
i∈N

(Qi,0 ⊗K Qi,1)
α−→ lim−→

i∈N
Qi,2

= HF ∗
Č,a2
−,a

2
+

(2H2),

where the morphism α is the direct limit of the natural pair of pants product

map Qi,0 ⊗K Qi,1 −→ Qi,2 as in Definition 2.85.

Remark 3.13. If (κj)H
j ∈ Hreg(Č, aj−, a

j
+) for j = 0, 1, 2, then the pair of

pants product map above is identical to the one defined in Definition 2.85 by

Lemma 3.4. Also action maps and continuation maps commute with pair of

pants product maps. Such a product is associative and graded commutative

by Remark 2.86. If the domains of a0
+ and a1

+ agree, then this product is

ΛQ+,+-bilinear where Q+ is the domain of a0
+. If the constant Hamiltonian
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min(H0) satisfies min(H0) ≤l.s.
Č

H0, if a0
−([ω̃], λ−, λ+) < λ−min(H0) for all

([ω̃], λ−, λ+) ∈ Q0− 0 and if p0 = 0, then it has a left unit 1 ∈ HF p0

Č,a0
−,a

0
+

(H0)

by Remark 2.86 combined with the fact that continuation maps send left units

to left units and the fact that HF ∗
Č,a0
−,a

0
+

(K) has a left unit for any sufficiently

C2 small perturbation of min(H0). By left unit we mean that for each H3 ∈
HT,l.s.(Č, a2

−, a
2
+) satisfying 2H2, H2 ≤l.s.

Č
H3, Φp1

2H2,H3(ΦH0,H1,H2(1 ⊗ x)) is

equal to the image of x under the composition

HF p1

Č,a1
−,a

1
+

(H1) −→ HF p1

Č,a1
−,a

1
+

(H3) −→ HF p0+p1

Č,a2
−,a

2
+

(H3)

of action maps and continuation maps for each x ∈ HF p1

Č,a1
−,a

1
+

(H1). This

follows from Remark 2.86. We have a right unit under similar conditions. The

only difference is that the indexes “0” and “1” are swapped.

4. Definition of symplectic cohomology

Throughout this section we will fix a contact cylinder Č = [1−ε, 1+ε]×C
⊂M with associated Liouville domain D.

Definition 4.1. Let K ⊂ T ×M be a closed set with the property that

K ⊂ T × D if D is non-empty. We define HT,l.s.(Č,K,≤ 0) to be the subset

of HT,l.s.(Č) (Definition 3.1) consisting of lower semi-continuous Hamiltonians

H = (Ht)t∈T with the property that Ht(x) ≤ 0 if (t, x) ∈ K and Ht(x) =

∞ otherwise. We define HT,l.s.(Č,≤ 0) to be the union of all such subsets

HT,l.s.(Č,K,≤ 0). For each H ∈ HT,l.s.(Č,≤ 0) and each Č-interval domain

(Q−, Q+) as in Definition 2.58, define SH∗
Č,Q−,Q+

(H) to be the double system

of Z-graded Λ
Q+,+
K -modules (as in Definition 2.28):

SH∗
Č,Q−,Q+

(H) = (HF ∗
Č,a−,a+

(H))(a−,a+)∈Sc(Q−)×Sc(Q+),

where

• the ordering on Sc(Q±) is given by ≥; and

• the double system morphisms are action maps as in Definition 3.7.

We define symplectic cohomology of H to be

SH∗
Č,Q−,Q+

(H) := lim−→ lim←− SH
∗
Č,Q−,Q+

(H),

where lim−→ lim←− is given in Definition 2.41. For any closed set K ⊂ T×M which

is contained in T×D if D is non-empty, define SH∗
Č,Q−,Q+

(K ⊂ T×M) (resp.

SH∗
Č,Q−,Q+

(K ⊂ T × M)) to be SH∗
Č,Q−,Q+

(HK) (resp. SH∗
Č,Q−,Q+

(HK)),

where

HK = (HK,t)t∈T, HK,t : M −→ R ∪ {∞}, HK,t(x) :=

{
0 if (t, x) ∈ K,
∞ otherwise.
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The algebra SH∗
Č,Q−,Q+

(K ⊂ T ×M) is called symplectic cohomology of K

in M .

If K ⊂ M is a closed subset, which is contained in D if D is non-empty,

then we define SH∗
Č,Q−,Q+

(K ⊂ M) := SH∗
Č,Q−,Q+

(T × K ⊂ T × M) and

SH∗
Č,Q−,Q+

(K ⊂M) := SH∗
Č,Q−,Q+

(T×K ⊂ T×M).

Remark 4.2. The definition of symplectic cohomology makes sense be-

cause HT,l.s.(Č,≤ 0) ⊂ HT,l.s.(Č, a−, a+) for all Č action intervals (a−, a+) ∈
Sc(Q−)× Sc(Q+).

If the Hamiltonian H is autonomous, then SH∗
Č,Q−,Q+

(H) is a double

system of Z-graded Λ
Q+,+
K -modules with product induced by the pair of pants

product maps

(4.1) HF ∗
Č,a0
−,a

0
+

(H)⊗
Λ
Q+,+

K
HF ∗

Č,a1
−,a

1
+

(H) −→ HF ∗
Č,a2
−,a

2
+

(H),

where a2
− = a0

− + a1
−, a2

+ = min(a0
− + a1

+, a
1
− + a0

+). This product is well

defined since H is autonomous and H ≤l.s.
Č

1
2H because the slope of H along

Č is 0 and because H is either non-positive or ∞. Also SH∗
Č,Q−,Q+

(H) is a

graded Λ
Q+,+
K -algebra by Remark 2.45. Such an algebra is a unital graded

commutative algebra by Remark 3.13.

Definition 4.3. Let (Q−, Q+) be a Č-interval domain pair. Let H± ∈
HT,l.s.(Č,≤ 0) satisfy H− ≤ H+. Then H− ≤Č H+, and hence the natural

continuation maps

HF ∗
Č,a−,a+

(H−) −→ HF ∗
Č,a−,a+

(H+)

for all Č-action intervals (a−, a+) give us a morphism of double systems

SH∗
Č,Q−,Q+

(H−) −→ SH∗
Č,Q−,Q+

(H+)

called a transfer morphism. This also induces a morphism of algebras

SH∗
Č,Q−,Q+

(H−) −→ SH∗
Č,Q−,Q+

(H+)

called a transfer map. In particular, if K+ ⊂ K− ⊂ D are closed subsets, we

have a transfer map SH∗
Č,Q−,Q+

(K− ⊂M) −→ SH∗
Č,Q−,Q+

(K+ ⊂M).

If H± is autonomous, then this transfer morphism or map respects the

natural product structures on the corresponding double systems or modules

and they also send units to units.

Definition 4.4. Let (Qj−, Q
j
+) be a Č-interval domain pair for j = 0, 1 so

that Q1
± ⊂ Q0

±. Suppose H ∈ HT,l.s.(Č,≤ 0). Then the action maps

HF ∗
Č,a−,a+

(H) −→ HF ∗
Č,a−|Q1

−
,a+|Q1

+

(H), (a−, a+) ∈ Sc(Q0
−)× Sc(Q0

+)
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give us a morphism of double systems SH∗
Č,Q0

−,Q
0
+

(H) −→ SH∗
Č,Q1

−.Q
1
+

(H)

called an action morphism.

Again this morphism respects the product structure if H is autonomous.

Definition 4.5. Let (Q−, Q+) be a Č-interval domain pair, and let H ∈
HT,l.s.(Č,≤ 0). Let F : T −→ T be a smooth non-decreasing map. Then the

reparametrization isomorphisms

HF ∗
Č,a−,a+

(H) ∼= HF ∗
Č,a−,a+

(HF )

from Definition 3.11 for each Č-action interval (a−, a+) ∈ Sc(Q−) × Sc(Q+)

gives us an isomorphism of double systems

SH∗
Č,Q−,Q+

(H) ∼= SH∗
Č,Q−,Q+

(HF )

called a reparametrization isomorphism.

Lemma 4.6. Let (Q−, Q+) be a Č-interval domain pair, and let H ∈
HT,l.s.(Č,≤ 0). Then the Λ

Q+,+
K -module structure on SH∗

Č,Q−,Q+
(H) extends

uniquely to a Λ
Q+

K -module structure on SH∗
Č,Q−,Q+

(H) making it into a Λ
Q+

K -

algebra.

Proof. Let πD : H2(M,D;R)×R×R −→ H2(M,D;R) be the natural pro-

jection map, and let ιD : H2(M,D;R) −→ H2(M ;R) be the natural restriction

map. Let

Q := ιD(πD(Q+)) ⊂ H2(M ;R) = (H2(M ;Z)⊗Z R)∗,

and let �Q be the induced ordering on H2(M ;Z) as in Definition 2.52. Define

Q∨ := {x ∈ H2(M ;Z) : 0 �Q x} ⊂ H2(M ;Z). By Definition 2.56, we have that

Q∨ is naturally a submonoid of the multiplicative group (Λ
Q+,+
K )×. All such

elements are invertible in Λ
Q+

K . Also each element w ∈ Λ
Q+

K has the property

that there exists some element sw ∈ Q∨ satisfying sww ∈ Λ
Q+,+
K . Therefore by

[Sta18, Tag 07JY] it is sufficient for us to show that each s ∈ Q∨ acts as an

automorphism on SH∗
Č,Q−,Q+

(H).

We now fix such an element s. Since s ∈ H2(M ;Z), it defines a lin-

ear function on H2(M ;R) and hence by pulling back via ιD and πD and re-

stricting to Q+, a function Ls ∈ Sc(Q+). The map sending a capped loop γ

to γ#(−s) induces an isomorphism HF ∗
Č,a−−Ls,a+−Ls

(H)
∼=−→ HF ∗

Č,a−,a+
(H).

Since SH∗
Č,Q−,Q+

(H) = lim−→a−
lim←−a+

HF ∗
Č,a−−Ls,a+−Ls

(H), we get that such a

map induces an automorphism of SH∗
Č,Q−,Q+

(H). This automorphism coin-

cides with the natural module action of s ∈ Λ
Q+,+
K . Hence the Λ

Q+,+
K -action

extends to a Λ
Q+

K -action. �
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Remark 4.7. Since continuation maps and action maps between symplec-

tic cohomology algebras of autonomous Hamiltonians are induced by inclu-

sions of double systems, they are naturally Λ
Q+,+
K -algebra homomorphisms

and hence Λ
Q+

K -algebra homomorphisms by the lemma above.

5. Properties of symplectic cohomology

5.1. Changing contact cylinders.

Proposition 5.1. Let Čj be a contact cylinder with associated Liouville

domain Dj for j = 0, 1 so that D1 ⊂ D0. Suppose also that the natural

restriction map ι := H2(M,D0;R) −→ H2(M,D1;R) is an isomorphism, and

define

(5.1) ι̃ : H2(M,D0;R)× R2 −→ H2(M,D1;R)× R2, ι̃ := ι× idR2 .

Let (Q−, Q+) be a wide Č0-interval domain, and let H ∈ HT,l.s.(Č1,≤ 0) be

autonomous. Then there is an isomorphism of double systems with product

(5.2) SH∗
Č0,Q−,Q+

(H)
∼=−→ SH∗

Č1,ι̃(Q−),ι̃(Q+)
(H).

Before we prove this proposition, we need a preliminary lemma.

Lemma 5.2. Proposition 5.1 is true when Č0 and Č1 are disjoint

Proof of Lemma 5.2. We let (aj−)j∈N, (aj+)j∈N be a cofinal family of

(Sc(Q0
−),≥) and (Sc(Q0

+),≤) respectively. After passing to a subsequence,

we can assume that the function i→ height(ai−, a
i
+) is increasing.

Since H has slope 0 along both contact cylinders and Č0∩ Č1 = ∅, we can

find a cofinal family of Hamiltonians

Hi ∈ ∩k=0,1 ∩j∈N HT,reg(<Čk H, a
j
−, a

j
+), i ∈ N

so that Hi|M−D1 is constant and Hi|M−D1 > height(ai−, a
i
+) for all i ∈ N. Then

the Floer chain complexes computing HF ∗
Č1,a

j
−,a

j
+

(Hi) and HF ∗
Č0,a

j
−,a

j
+

(Hi) are

identical for each i, j ∈ N satisfying i ≥ j by Corollary 2.8. The continuation

maps, action maps and pair of pants product maps coincide under such an

isomorphism. This gives us our isomorphism (5.2) by Lemma 2.40. �

Proof of Proposition 5.1. Let

Čj = [1− εj , 1 + εj ]× Cj , j = 0, 1

be our contact cylinders. By a Moser argument ([MS98, Exercise 3.36]), we

can extend them to contact cylinders

Č ′j = [1− εj − δ, 1 + εj + δ]× Cj , j = 0, 1

for some 0 < δ < minj=0,1(εj/2). We can also assume that δ is small enough

so that [1 − δ, 1 + δ] × C1 is disjoint from [1 + ε0 + δ/2, 1 + ε0 + δ] × C0. We
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now apply Lemma 5.2 four times, with four different pairs of contact cylinders

in the following order:

(1) Č0, [1 + ε0 + δ/2, 1 + ε0 + δ]× C0;

(2) [1 + ε0 + δ/2, 1 + ε0 + δ]× C0; [1− δ, 1 + δ]× C1;

(3) [1− δ, 1 + δ]× C1, [1 + ε1 + δ/2, 1 + ε1 + δ]× C1; and

(4) [1 + ε1 + δ/2, 1 + ε1 + δ]× C1, Č1.

This completes the proposition. �

We also need a proposition telling us what to do when we forget the

contact cylinder.

Definition 5.3. Let Č = ∅ be the empty contact cylinder. The standard

ω-cone is the cone Qω ⊂ H2(M, ∅;R)×R×R defined to be the one-dimensional

cone spanned by ([ω], 1, 1). The standard Novikov ring ΛωK is defined to be ΛQωK .

The standard positive Novikov ring Λω,+K is defined to be ΛQω ,+K .

Note that the standard Novikov ring is equal to the Novikov ring (1.2) in

the introduction with ωX replaced by ω.

Proposition 5.4. Let Č = [1 − ε, 1 + ε] × C be a contact cylinder with

associated Liouville domain D. Let QωČ ⊂ H2(M,D;R) × R2 be the cone

spanned by ([ωČ ], 1, 1) where ωČ is a Č-compatible 2-form with scaling con-

stants 0 and 1 and which is equal to ω outside D∪ ([1, 1 + ε/2]×C). Then for

any autonomous H ∈ HT,l.s.(Č,≤ 0) (Definition 4.1), there is an isomorphism

of double systems with product

(5.3) SH∗
Č,Qω

Č
,Qω

Č

(H)
∼=−→ SH∗∅,Qω ,Qω(H).

Proof. Let Π : QωČ −→ Qω be the restriction of the natural map

H2(M,D;R)× R2 −→ H2(M ;R)× R2

induced by cohomological restriction. Choose any cofinal family of Hamilto-

nians Hi ∈ HT,reg(<Č H, a−, a+). Then the isomorphism (5.3) follows from

the natural isomorphisms HF ∗
Č,a−◦Π,a+◦Π

(H) ∼= HF ∗∅,a−,a+
(H) coming from

the fact that the corresponding Floer chain complexes are identical for each

(a−, a+) ∈ Sc(Qω)× Sc(Qω). �

5.2. Partial independence of the Hamiltonian. Throughout this subsec-

tion, Č is a contact cylinder whose associated Liouville domain is D. We will

also fix a Č-interval domain (Q−, Q+).

Proposition 5.5. Let K ⊂ T×M be a closed subset which is contained

in D if D is non-empty. Let H± ∈ HT,l.s.(Č,K,≤ 0) satisfy H−t ≤ H
+
t . Then
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the transfer morphism

(5.4) SH∗
Č,Q−,Q+

(H−) −→ SH∗
Č,Q−,Q+

(H+)

is an isomorphism in the category 2-sys-Λ
Q+,+
K .

Since lim−→ lim←− is a functor by Definition 2.41, Proposition 5.5 implies that

the transfer map SH∗
Č,Q−,Q+

(Ȟ) −→ SH∗
Č,Q−,Q+

(H) is an isomorphism. Be-

fore we prove Proposition 5.5, we need some preliminary lemmas and the fol-

lowing definition:

Definition 5.6. Let ν ∈ R be a constant. Define

Lν : H2(M,D;R)× R× R −→ R, Lν(q, λ−, λ+) := λ−ν.

Lemma 5.7. Let (a−, a+) ∈ Sc(Q−)×Sc(Q+) be a Č-action interval, ν ∈
(0,∞), and let H ∈ HT,l.s.(Č, a−+Lν , a+ +Lν). Then we have a commutative

diagram

HF ∗
(Č,a−,a+)

(H),HF ∗
Č,a−,a+

(H − ν)

HF ∗
Č,a−+Lν ,a++Lν

(H)
∼=

α

β
γ

where α is a continuation map and β is an action map. The map γ commutes

with continuation maps and action maps.

Definition 5.8. We will call the map γ a translation isomorphism.

Proof of Lemma 5.7. We will prove this lemma in two steps. In the first

step, we will prove it in the case when H ∈ Hreg(Č, a− + Lν , a+ + Lν) (Defi-

nition 2.58), and the second step will deal with the general case.

Step 1. Suppose H ∈ Hreg(Č, a−+Lν , a+ +Lν). For N ∈ N large enough,

we have that H − c ∈ Hreg(Č, a− + Lν , a+ + Lν) for all c ∈ [0, 2ν
N ]. Therefore

H − (N − k + s)ν/N ∈ Hreg(Č, a− + kLν/N, a+ + kLν/N) for all k ∈ Z and

all s ∈ [0, 1]. Define

Bk,l := HF ∗
Č,a−+kLν/N,a++kLν/N

(H − (N − l)ν/N)

for all l, k ∈ {0, . . . , N}. Then by Lemmas 2.74 and 2.79 we have the following

commutative diagram consisting of continuation maps and action maps (with
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the exception of γ which is given as a definition):

B0,0

B1,0

B1,1

B2,1

B2,2

B3,2

BN−1,N−1

BN,N−1

BN,N

B0,N

B1,N

B1,N

B2,N

B2,N

B3,N

BN−1,N

BN,N

α

β

γ

∼=

∼=

∼=
∼=

∼=
∼=

∼=

∼=

∼= ......
...

The map γ commutes with continuation maps and action maps since the dia-

gram above is functorial with respect to continuation and action maps.

Step 2. Now suppose H ∈ HT,l.s.(Č, a− + Lν , a+ + Lν). Then since

HF ∗
Č,a−,a+

(H − ν) = lim−→
Ȟ∈Hreg(Č,a−+Lν ,a++Lν)

HF ∗
Č,a−,a+

(Ȟ − ν),

HF ∗
Č,a−+Lν ,a++Lν

(H) = lim−→
Ȟ∈Hreg(Č,a−+Lν ,a++Lν)

HF ∗
Č,a−+Lν ,a++Lν

(Ȟ)

and continuation maps commute with the translation isomorphisms constructed

in Step 1, we get our result. �

Lemma 5.9. Let H ∈ HT,l.s.(Č,≤ 0), and let ν > 0 be a constant. Then

the transfer morphism SH∗
Č,Q−,Q+

(H − ν) −→ SH∗
Č,Q−,Q+

(H) is an isomor-

phism in 2-sys-Λ
Q+,+
K .

Proof. For each action interval (a−, a+) ∈ Sc(Q−) × Sc(Q+), we have a

translation isomorphism

γa−,a+ : HF ∗
Č,a−,a+

(H − ν) −→ HF ∗
Č,a−+Lν ,a++Lν

(H).

Since such isomorphisms commute with continuation maps, we get an isomor-

phism

γ : SH∗
Č,Q−,Q+

(H − ν) −→ SH∗
Č,Q−,Q+

(H).
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Also for each action interval (a−, a+) ∈ Sc(Q−) × Sc(Q+), we have an action

morphism

βa−,a+ : HF ∗
Č,a−+Lν ,a++Lν

(H) −→ HF ∗
Č,a−,a+

(H),

and this induces an isomorphism

β : SH∗
Č,Q−,Q+

(H) −→ SH∗
Č,Q−,Q+

(H).

(Such an isomorphism is induced by a standard endomorphism as in Exam-

ple 2.37.) Also by Lemma 5.7,

βa−,a+ ◦ γa−,a+ : HF ∗
Č,a−,a+

(H − ν) −→ HF ∗
Č,a−,a+

(H)

is a continuation map for all a−, a+ ∈ Sc(Q) giving us a transfer morphism

SH∗
Č,Q−,Q+

(H − ν) −→ SH∗
Č,Q−,Q+

(H).

Our lemma now follows from the fact that β◦γ is a composition of isomorphisms

in 2-sys-ΛQ,+K . �

Proof of Proposition 5.5. Choose a constant ν > 0 so that H+− ν ≤ H−.

Then since H± ∈ HT,l.s.(Č,≤ 0), we get H+−ν ≤Č H−. We then have transfer

morphisms

SH∗
Č,Q−,Q+

(H+ − 2ν) −→ SH∗
Č,Q−,Q+

(H− − ν)

α−→ SH∗
Č,Q−,Q+

(H+ − ν) −→ SH∗
Č,Q−,Q+

(H−).

By Lemma 5.9, the composition of any two such morphisms is an isomorphism

and hence α is an isomorphism. Also by Lemma 5.9, the natural continuation

morphisms

β± : SH∗
Č,Q−,Q+

(H± − ν) −→ SH∗
Č,Q−,Q+

(H±)

are isomorphisms. Our proposition now follows from the fact that the con-

tinuation map (5.4) is equal to the following composition of isomorphisms:

β+ ◦ α ◦ (β−)−1. �

5.3. Relation with quantum cup product.

Theorem 5.10. Let Qω , ΛωK be the standard ω-cone and standard Novikov

ring respectively as in Definition 5.3. Suppose that K is a field. Then there is

an isomorphism of ΛωK-algebras

SH∗∅,Qω ,Qω(M ⊂M) ∼= QH∗(M,ΛωK),

where QH∗ is quantum cohomology. Also, lim−→ lim←−
1 SH∗∅,Qω ,Qω(M ⊂ M) = 0,

where lim−→ lim←−
1 is given in Definition 2.50.
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Proof. We identify the cone Qω with [0,∞) via the identification λ([ω], 1, 1)

−→ λ for all λ ≥ 0. Under this identification, Sc(Qω) becomes the space of

linear functions ac : [0,∞) −→ R, ac(λ) := cλ, c ∈ R.

We will first show lim−→ lim←−
1 SH∗∅,Qω ,Qω(M ⊂M) = 0 by using Lemma 2.51.

Let H : M −→ R be a C2 small Morse function which is negative. Since [ω]

lifts to an integral cohomology class in H2(M ;Z), we have for all c± ∈ 1
2 + Z

that the continuation maps

(5.5) HF ∗∅,ac− ,ac+
(λ1H) −→ HF ∗∅,ac− ,ac+

(λ2H)

are isomorphisms for all 0 < λ2 ≤ λ1 ≤ 1
4 by Lemma 2.74. Hence the double

system W := (HF ∗∅,ac− ,ac+
(λH))c±∈ 1

2
+Z for some small λ > 0 is isomorphic to

the double system (lim−→λ̌→0
HF ∗∅,ac− ,ac+

(λ̌H))c±∈ 1
2

+Z, which in turn is isomor-

phic to SH∗∅,Qω ,Qω(M ⊂M) = 0 by Lemma 2.40. Therefore by Lemma 2.51 it

is sufficient for us to show that the action map

(5.6) HF ∗∅,ac− ,ac+
(λH) −→ HF ∗∅,ac− ,ac+−1

(λH)

is surjective for each c± ∈ 1
2 + Z. Since λH is C2 small, we have by [AD14,

Th. 10.1.1] that the only Floer trajectories connecting 1-periodic orbits of λH

are Morse flowlines (i.e., t independent Floer trajectories). This implies that

the natural map (5.6) is surjective for each c± ∈ 1
2 + Z, which in turn implies

that lim−→ lim←−
1 SH∗∅,Qω ,Qω(M ⊂M) = 0 by Lemma 2.51.

Choose

J ∈ ∩c±∈ 1
2

+ZJ
T,reg(λH, ac− , ac+).

Define

HF ∗(λH) := H∗

(
lim−→
c−

lim←−
c+

CF ∗∅,ac− ,ac+
(λH)

)
.

Since lim lim1W = 0, we have a natural isomorphism

HF ∗(λH) = lim−→
a−

lim←−
a+

HF ∗∅,a−,a+
(λH)

by [Wei94, Th. 3.5.8] and Lemma 2.40. Since the morphism (5.5) is an isomor-

phism for all c± ∈ 1
2Z and 0 < λ2 < λ1 ≤ 1

4 , we get that the natural map

HF ∗(λH) = lim−→
a−

lim←−
a+

HF ∗∅,a−,a+
(λH) −→ lim−→

a−

lim←−
a+

lim−→
λ̌→0

HF ∗∅,a−,a+
(λ̌H)

= SH∗∅,Qω ,Qω(M ⊂M)
(5.7)

is an isomorphism for all sufficiently small λ > 0. By [PSS96] and [OZ11] we

have isomorphisms

(5.8) HF ∗(λH) ∼= H∗(M ; ΛωK)
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for all λ > 0 small which commute with continuation maps HF ∗(λH) −→
HF ∗(λ′H) for 0 < λ < λ′ small. These isomorphisms also commute with

the pair of pants product as follows. If λ > 0 is sufficiently small, we have a

commutative diagram of ΛωK-modules

(HF ∗(λH))⊗ (HF ∗(λH)) HF ∗(2λH)

QH∗(M ; ΛωK)⊗QH∗(M ; ΛωK) QH∗(M ; ΛωK),

∼= ∼= ∼=

α

β

where α is the pair of pants product and β is the quantum cup product and

where the vertical isomorphisms are induced by (5.8). (The papers [PSS96]

and [OZ11] only prove such isomorphisms over Q, however these proofs are

identical if one just formally replaces the coefficient field “Q” with “K” in

their papers since (M,ω) is semi-positive.) Therefore by equation (5.7) we

have an isomorphism of ΛωK-algebras

SH∗∅,Qω ,Qω(M ⊂M) = lim−→
λ→0

HF ∗(λH) ∼= QH∗(M ; ΛωK)

since the isomorphism (5.7) commutes with the pair of pants product α. �
5.4. Stably displaceable complements.

Definition 5.11. A subset B of a symplectic manifold is Hamiltonian dis-

placeable if there is a Hamiltonian symplectomorphism φ satisfying φ(B) ∩ B
= ∅. A subset A ⊂ M is stably displaceable if A × T ⊂ M × T ∗T is Hamil-

tonian displaceable inside the product symplectic manifold M × T ∗T where

T ∗T = R×T has the standard symplectic form dσ∧dτ where σ : R×T −→ R,

τ : R× T −→ T are the natural projection maps.

Throughout this subsection, we fix the coordinates σ, τ above. We also let

Qω be the standard Novikov cone associated to the empty contact cylinder as

in Definition 5.3. The aim of this subsection is to prove the following theorem:

Theorem 5.12. Let K ⊂ M be a closed set so that M −K is stably

displaceable. Then the transfer morphism

(5.9) SH∗∅,Qω ,Qω(M ⊂M) −→ SH∗∅,Qω ,Qω(K ⊂M)

is an isomorphism in 2-sys-ΛQω ,+K .

The proof of this proposition relies heavily on an idea due to Ginzburg in

[Gin10]. Before we prove this proposition, we need some preliminary definitions

and lemmas.

Definition 5.13. A lower semi-continuous Hamiltonian H = (Ht)t∈T on

M × T ∗T is admissible if there is a compact subset KH ⊂ M × T ∗T and a
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lower semi-continuous Hamiltonian K = (Kt)t∈T on M so that Ht(x, (σ, τ)) =

Kt(x)− 1
2 |σ| for all (x, (σ, τ)) ∈M × T ∗T−KH .

Let JT ∗T be the almost complex structure on R×T satisfying JT ∗T( ∂
∂σ ) =

∂
∂τ . A smooth family of almost complex structures J = (Jt)t∈T on M × T ∗T
is admissible if they are ω + dσ ∧ dτ -tame and if they are equal to JM ⊕ JT ∗T
outside a compact subset of M × T ∗T where JM is an ω-tame almost complex

structure on M .

For any admissible lower semi-continuous Hamiltonian H on M×T ∗T and

any a−, a+ ∈ Sc(Qω), we can define

HF ∗∅,a−,a+
(H)

as in Definition 3.3, where we restrict ourselves to admissible Hamiltonians and

almost complex structures. We can also define continuation maps and action

maps in the same way.

Remark 5.14. Such a definition, along with the theorems, propositions

and lemmas used to construct such a definition, are identical except that M is

replaced by M × T ∗T and all Hamiltonians and almost complex structures in-

volved are admissible. The only additional ingredient needed is that one needs

a maximum principle to prove compactness to ensure that all Floer trajecto-

ries stay inside a fixed compact subset of M × T ∗T; see, for example [Oan04,

Lemma 1.5]. Also note that since the natural projection map M ×T ∗T −→M

induces an isomorphism H2(M×T ∗T;Z)
∼=−→ H2(M ;Z), we have that ΛQωK and

ΛQω ,+K are the correct Novikov rings to use (and not some larger Novikov rings).

From now on we identify H2(M×T ∗T;Z) with H2(M ;Z) as in the remark

above.

Definition 5.15. A closed subset K ⊂ T×M × T ∗T is admissible if there

is a compact set κ ⊂ T ×M × T ∗T and a closed subset KM ⊂ M so that

K ∪ κ = (T×KM × T ∗T) ∪ κ. In other words, this closed subset is a product

T×KM × T ∗T near infinity (see Figure 7).

M × T ∗T
KM × T ∗T

κ

K

Figure 7. Admissible closed subset.
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Definition 5.16. For any admissible closed subset K ⊂ T×M × T ∗T, we

define HT,l.s.(K,≤ 0) to be the set of admissible lower semi-continuous Hamilto-

nians H = (Ht)t∈T on M×T ∗T satisfying Ht(x, (σ, τ)) ≤ 0 for (t, x, (σ, τ)) ∈ K
and Ht(x, (σ, τ)) = ∞ for (t, x, (σ, τ)) /∈ K. A closed subset K ′ ⊂ M × T ∗T
is admissible if T×K ′ is admissible. For such a K ′, define HT,l.s.(K ′,≤ 0) :=

HT,l.s.(T×K ′,≤ 0).

For any admissible closed subset K ⊂ T × M × T ∗T and any H ∈
HT,l.s.(K,≤ 0), we define SH∗∅,Qω ,Qω(H) to be the double system

(HF ∗∅,a−,a+
(H))a−,a+∈Sc(Qω).

If K−,K+ ⊂ T×M × T ∗T are admissible closed subsets satisfying K+ ⊂
K− and H± ∈ HT,l.s.(K±,≤ 0) satisfies H− ≤ H+, then the natural morphism

of double systems

SH∗∅,Qω ,Qω(H−) −→ SH∗∅,Qω ,Qω(H+)

induced by continuation maps is called a transfer morphism.

We will need the following lemma, whose proof is identical to the proof of

Lemma 3.6 in the case when Č = ∅ and Q = Qω, except that all Hamiltonians

and almost complex structures are admissible on M × T ∗T.

Lemma 5.17. Let H = (Hs,t)(s,t)∈[0,1]×T be a smooth family of autonomous

admissible Hamiltonians on M × T ∗T, and define Hs,• := (Hs,t)t∈T for all

s ∈ [0, 1]. Fix p ∈ Z and a± ∈ Sc(Qω). Suppose that

• Hs1,• ≤ Hs2,• for all s1 ≤ s2; and

• there are neighborhoods N−, N+ of a−, a+ in Sc(Qω) respectively so that

ΓP∅,a−,a+
(Hs,•) = ΓP∅,a′−,a′+

(Hs,•)

(Definition 2.58) for all a′± ∈ N±, where P = [p− 1− n, p+ 1 + n] for all

s ∈ R.

Then the continuation map

Φp
H0,•,H1,•

: HF p
Č,a−,a+

(H0,•) −→ HF p
Č,a−,a+

(H1,•)

in degree p is an isomorphism.

We also have the following proposition, whose proof is identical to the

proof of Proposition 5.5, except that all Hamiltonians, almost complex struc-

tures and closed subsets are admissible on M × T ∗T.

Proposition 5.18. Let K ⊂ T×M×T ∗T be an admissible closed subset.

Let H−, H+ ∈ HT,l.s.(K,≤ 0) satisfy H− ≤ H+. Then the transfer morphism

SH∗∅,Qω ,Qω(H−) −→ SH∗∅,Qω ,Qω(H+)

is an isomorphism in 2-sys-ΛQω ,+K .
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Lemma 5.19. Let KM ⊂M be closed, define K := KM×T ∗T ⊂M×T ∗T,

and let H ∈ HT,l.s.(K,≤ 0). Then there is an isomorphism of double systems

(5.10) ΨK : SH∗∅,Qω ,Qω(H) −→ SH∗∅,Qω ,Qω(KM ⊂M)⊗K H∗(T;K),

where H∗(T;K) is thought of as a double system (H∗(T;K))(i,k)∈{?}×{?} where

{?} is the single element (inverse) directed set. Such a morphism commutes

with transfer maps. In other words, for any admissible closed subsets K+ =

K+
M×T ∗T ⊂ K− = K−M×T ∗T ⊂M×T ∗T and any H± ∈ HT,l.s.(K±,≤ 0) sat-

isfying H− ≤ H+, we have the following commutative diagram in 2-sys-ΛQω ,+K :

SH∗∅,Qω ,Qω(H−) SH∗∅,Qω ,Qω(K−M ⊂M)⊗K H∗(T;K)

SH∗∅,Qω ,Qω(H+) SH∗∅,Qω ,Qω(K+
M ⊂M)⊗K H∗(T;K),

ΨK−

ΨK+

where the vertical morphisms are induced by transfer morphisms.

Proof of Lemma 5.19. Let f : R −→ R be a smooth function so that

• f(0) = 0, f ′′(0) < 0;

• f ′(x) > 0 for x < 0 and f ′(x) < 0 for x > 0; and

• f(x) = −1
2 |x| for |x| ≥ 1 (see Figure 8).

−1 1

f(x) = −1
2 |x| f(x) = −1

2 |x|

Figure 8. Graph of f .

Define

HKM : M −→ R, HKM (x) =

{
0 if x ∈ KM ,

∞ otherwise,

and let πM : M × T ∗T −→ M be the natural projection map. Then by

combining [CFHW96, Prop. 2.2] with a Künneth formula argument, we get an

isomorphism

(5.11) HF ∗∅,a−,a+
(π∗M (HKM ) + f(σ))

∼=−→ HF ∗∅,a−,a+
(HKM )⊗K H∗(T;K)

for all a−, a+ ∈ Sc(Qω, Qω) since the only capped 1-periodic orbits of f(σ) :

T ∗T −→ R are the constant orbits at its maximum. Such an isomorphism
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commutes with action maps and continuation maps (possibly tensored with

H∗(T;K)). Hence we get our isomorphism (5.10) when H = π∗M (HKM )+f(σ).

For general H, this isomorphism exists by Proposition 5.18. Again because

the isomorphism (5.11) commutes with continuation maps, we get that the

isomorphism (5.10) commutes with transfer morphisms. �

Lemma 5.20. Let KM ⊂ M be a closed subset, and let ν > 0. Let H± ∈
HT,l.s.(K±,≤ 0), where

K− := (KM × T ∗T) ∪ (M × {σ ≥ ν}), K+ := KM × T ∗T

(see Figure 9) and where H− ≤ H+. Then the transfer morphism

(5.12) SH∗
Č,Qω ,Qω

(H−) −→ SH∗
Č,Qω ,Qω

(H+)

is an isomorphism in 2-sys-ΛQω ,+K .

M × T ∗T

K+ = KM × T ∗T

M × {σ ≥ ν} M × {σ ≥ ν}

K− = K+ ∪ (M × {σ ≥ ν})

Figure 9. The subsets K− and K+.

Proof of Lemma 5.20. Let π : M × T ∗T −→M be the natural projection

map. Let (Kk)k∈N be a sequence of smooth functions on M so that

(1) Kk ≤ Kk+1 for all k ∈ N;

(2) Kk|M−KM > 0 and Kk|KM = 0; and

(3) for each x ∈M −KM , Kk(x) tends to infinity as k tends to infinity.

Let ρ : R −→ R be a smooth function so that

(1) ρ|[−ν/2,ν/2] = 1;

(2) ρ|(−ν,ν) > 0, ρ|(−∞,−ν]∪[ν,∞) = 0; and

(3) ρ′|(−ν,−ν/2) > 0, ρ′|(ν/2,ν) < 0 (see Figure 10).

Let f : R −→ R be a smooth function so that

(1) f(0) = 0;

(2) f ′|(−∞,0) > 0, f ′|(0,∞) < 0; and

(3) f(x) = −1
2 |x| for |x| ≥ ν (see Figure 11).
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ρ

−ν −ν/2 ν/2 ν

1

ρ′ > 0 ρ′ < 0

Figure 10. Graph of ρ.

−ν ν

f(x) = −1
2 |x| f(x) = −1

2 |x|

Figure 11. Graph of f .

Define

Hk,s : M × T ∗T −→ R, Hk,s(x, (σ, τ)) := (s+ (1− s)ρ(σ))Kk(x) + f(σ)− 1

k

for each k ∈ N and s ∈ [0, 1]. Define Hk,− := Hk,0 and Hk,+ := Hk,1. Also

define

Ȟ± : M × T ∗T −→ R, Ȟ±(x, (σ, τ)) :=

®
∞ if (x, (σ, τ)) /∈ K±,
f(σ) otherwise

´
.

By Lemma 8.5, we can choose a sequence of elements (ai)i∈Z in Sc(Qω) so that

• ai([ω], 1, 1) is not in the action spectrum of Hk,± for all k, j ∈ N; and

• ai tends to infinity as i tends to infinity and ai tends to −∞ as i tends

to −∞.

Then

HF ∗(ai,aj)(Ȟ
±) = lim−→

k∈N
(HF ∗(ai,aj)(H

k,±))

for each i, j ∈ Z and such an isomorphism is induced by continuation maps.

Hence by Lemma 2.40, we have an inclusion isomorphism of double systems

(5.13) (HF ∗(ai,aj)(Ȟ
±))(i,j)∈Z×Z

∼=−→ SH∗∅,Qω ,Qω(Ȟk,±).
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Since all the null homologous 1-periodic orbits of Hk,s are contained in {σ = 0}
because σ ∂H

k,s

∂σ < 0 and ∂Hk,s

∂τ = 0 away from {σ = 0} for each s ∈ [0, 1], we

have by Lemma 5.17 that the continuation map

HF ∗(ai,aj)(H
k,−) −→ HF ∗(ai,aj)(H

k,+)

is an isomorphism for each i, j ∈ Z and k ∈ N. Combining this with the fact

that the inclusion map (5.13) is an isomorphism, we have that the continuation

map

SH∗∅,Qω ,Qω(Ȟ−) −→ SH∗∅,Qω ,Qω(Ȟ+)

is an isomorphism. Hence by Proposition 5.18, the map (5.12) is an isomor-

phism. �

Lemma 5.21. Let K± ⊂ M × T ∗T be admissible closed subsets so that

K+ ⊂ K−. Let H± ∈ HT,l.s.(K±,≤ 0) (Definition 5.16) satisfy H− ≤ H+,

and let Ȟ± ∈ HT,l.s.((T×K±)∪ ([0, 1/2]×M × T ∗T),≤ 0) satisfy Ȟ− ≤ Ȟ+.

Then the transfer map

SH∗
Č,Qω ,Qω

(H−) −→ SH∗
Č,Qω ,Qω

(H+)

is an isomorphism if and only if the transfer map

SH∗
Č,Qω ,Qω

(Ȟ−) −→ SH∗
Č,Qω ,Qω

(Ȟ+)

is an isomorphism.

Proof. By Proposition 5.18, it is sufficient for us to prove this for specific

H± and Ȟ±. Let F : T −→ T be a non-decreasing smooth function homotopic

to the identity so that F ′(t) > 0 for t ∈ (1/2, 1) and F ′(t) = 0 for t ∈ [0, 1/2].

Choose H± and Ȟ± so that (H±)F = Ȟ±, where (H±)F is given in Defini-

tion 3.9. Then our lemma follows from the fact that we have reparametrization

isomorphisms

SH∗
Č,Qω ,Qω

(H±) −→ SH∗
Č,Qω ,Qω

(Ȟ±)

which commute with continuation maps. �

Proof of Theorem 5.12. The key idea of the proof is to use the displacing

Hamiltonian H− to construct a family of Hamiltonians (H− + Hs,•)s∈[0,∞))

(see below) with identical orbits realizing the transfer isomorphism (5.9). One

then uses Lemma 5.17.

For each ν > 0, define“Kν := (K × T ∗T) ∪ (M × {σ ≥ ν})

and ‹Kν := (T× “Kν) ∪ ([0, 1/2]×M × T ∗T).

By Lemmas 5.19, 5.20 and 5.21, it is sufficient for us to show that

(5.14) SH∗
Č,Qω ,Qω

(H−) −→ SH∗
Č,Qω ,Qω

(H+)
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is an isomorphism for some ν > 0 and some appropriate lower-semi-continuous

Hamiltonians H− ∈ HT,l.s.(M × T ∗T,≤ 0), H+ ∈ HT,l.s.(‹Kν ,≤ 0) satisfying

H− ≤ H+.

Since (M −K)× ({0} × T) is Hamiltonian displaceable inside M × T ∗T,

there is a smooth admissible Hamiltonian Ȟ = (Ȟt)t∈T on M × T ∗T and a

constant ν > 0 so that φȞ1 (Q) ∩Q = ∅ where

Q := M × T ∗T− “Kν = (M −K)× {σ < ν}.

By subtracting a constant from Ȟ, we can assume that Ȟ < 0. Now let F,G :

T −→ T be a smooth non-decreasing functions homotopic to the identity map

satisfying F (0) = 0, F ′|[0,1/2] = 0, F ′|(1/2,1) > 0 and G(0) = 0, G′|[1/2,1] = 0

and G′|(0,1/2) > 0. Define H− := ȞG. We define the lower semi-continuous

Hamiltonian H+ := (H+
t )t∈T by

H+
t (x) :=

{
H−t (x) if (t, x) ∈ ‹Kν ,

∞ otherwise.

Now choose a smooth family H = (Hs,t)(s, t) ∈ [0, 1] of autonomous

Hamiltonians on M × T ∗T satisfying

• Hs,t ≥ 0,
∂Hs,t
∂s ≥ 0;

• Hs,t(x) = 0 if and only if (t, x) ∈ ‹Kν or s = 0;

• dHs,t|x = 0 for all (t, x) ∈ ‹Kν ;

• Hs,t(x)→∞ as s→∞ for all (t, x) ∈ T×M × T ∗T− ‹Kν .

Define Hs,• := (Hs,t)t∈T for all s ∈ [0,∞). By Lemma 8.5, there is a sequence

(ai)i∈Z in Sc(Qω) so that

• ai([ω], 1, 1)→ ±∞ as i→ ±∞; and

• ai([ω], 1, 1) is not in the action spectrum of H− for each i ∈ Z.

Note that the capped 1-periodic orbits of H− and Hs,• +H− are identical for

all s ∈ [0,∞) since the support of Hs,t is contained inside (1/2, 1) ×Q for all

(s, t) ∈ [0,∞) × T (making Hs,• and H− Poisson commute) and since there

are no 1-periodic orbits γ : T −→ M × T ∗T of H− or Hs,• + H− satisfying

γ(0) ∈ Q for each s ∈ [0,∞). Also, the corresponding actions of these capped

1-periodic orbits are the same as well since H−t |γ(t) = (Hs,• +H−)t|γ(t) for all

t ∈ T and all 1-periodic orbits γ of H−. Therefore by Lemma 5.17, the natural

continuation map

HF ∗(ai,aj)(H
−) −→ HF ∗(ai,aj)(Hs,• +H−)

is an isomorphism for all i, j ∈ Z and s ∈ [0,∞). Hence the induced map of

double systems

(HF ∗(ai,aj)(H
−))(i,j)∈Z −→ (HF ∗(ai,aj)(Hs,• +H−))(i,j)∈Z
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is an isomorphism. By Lemma 2.40, this implies that

SH∗
Č,Qω ,Qω

(H−) −→ SH∗
Č,Qω ,Qω

(H+)

is an isomorphism. This completes our proposition. �

5.5. Symplectic cohomology and alternative filtrations. In this subsection

we will show in Proposition 5.24 below that symplectic cohomology defined

with respect to a particular wide action interval domain (Definition 2.58) is

isomorphic to one defined over an action interval domain that is not wide under

certain conditions.

Definition 5.22. Let (C,αC) be a 2n− 1-manifold with contact form. Re-

call that the Reeb vector field of αC is the unique vector field RαC satisfying

iRαC dαC = 0 and αC(iRαC ) = 1. A periodic Reeb orbit of length λ > 0 is a

map γ : R/λZ −→ C satisfying γ̇ = RαC . The Reeb flow of αC is the flow

(φαt : C −→ C)t∈R of RαC . We will define length(γ) := λ.

Now let Č = [1 − ε, 1 + ε] × C ⊂ M be a contact cylinder inside M , and

let ιC : C −→ M be the natural inclusion map sending x to (1, x) ∈ Č ⊂ M .

Let rC be the cylindrical coordinate of Č, and let αC be the associated con-

tact form. By abuse of notation, we will define RαC to be the unique vector

field on Č which projects to RαC in C and 0 in [1 − ε, 1 + ε]. We let ∂
∂rC

be

the gradient of rC with respect to any product metric on Č where the factor

[1− ε, 1 + ε] has the standard Euclidean metric. Let γ be a periodic Reeb orbit

of αC of length λ so that ιC ◦ γ is null homologous in M . Let γ̂ = (γ̃, γ̌) be a

capped loop so that γ(λt) = γ̃(γ̌(t)) for each t ∈ [0, 1]. Then since we have a

splitting TM |Č = ker(αC)⊕Span( ∂
∂rC

, RαC ) of symplectic vector bundles with

associated symplectic forms dαC |ker(αC) and drC ∧ αC |Span( ∂
∂rC

,RαC ) and since

Span( ∂
∂rC

, RαC ) has a natural choice of symplectic trivialization, any symplec-

tic trivialization of γ̃∗TM gives an induced symplectic bundle trivialization

τ : γ∗ ker(αC) −→ (R/λZ)× Cn−1.

Let P : (R/λZ)×Cn−1 −→ Cn−1 be the natural projection map. The Conley-

Zehnder index CZ(γ) of γ is defined to be the Conley-Zehnder index of the

path of symplectic matrices

P ◦ τ ◦ φαt ◦ (P ◦ τ |0)−1, t ∈ [0, λ].

This does not depend on the choice of trivialization τ by (CZ4) or on the

choice of γ̂ since c1(M) = 0. The index of a Reeb orbit γ is defined to be

|γ| := n− CZ(γ).

Let ΓαC be the set of periodic Reeb orbits γ of αC so that ιC ◦ γ is null

homologous inside M . The index [−m,m] period spectrum of Č is the set

{ length(γ) : γ ∈ ΓαC , −m ≤ |γ| ≤ m } ⊂ R.
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Definition 5.23. The contact cylinder Č as above is index bounded if for

every m > 0, there exists µm > 0 so that the index [−m,m] period spectrum

of Č is contained in the interval (0, µm).

Proposition 5.24. Suppose that Č is an index bounded contact cylinder

with associated Liouville domain D. Let ωČ be a Č-compatible 2-form with

scaling constants 0 and 1 and which is equal to ω outside D∪ ([1, 1+ ε/2]×C).

Also let Q+ = QωČ ⊂ H
2(M,D;R)×R×R be the cone spanned by ([ωČ ], 1, 1)

and Q− the cone spanned by ([ωČ ], 1, 1) and ([ωČ ], 0, 1). Then the action map

(5.15) SH∗
Č,Q−,Q+

(D ⊂M) −→ SH∗
Č,Q+,Q+

(D ⊂M)

is an isomorphism in 2-sys-Λ
Q+,+
K .

Before we prove Proposition 5.24, we need some preliminary lemmas. The

first lemma relates the indices of Reeb orbits with the indices of certain Hamil-

tonian orbits.

Lemma 5.25. Let Č = [1 − ε, 1 + ε] × C be an index bounded contact

cylinder with cylindrical coordinate rC and associated contact form αC . Let

π : Č −→ C be the natural projection map. Let f : [1 − ε, 1 + ε] −→ R be a

smooth function, Rλ,[−m,m] the set of Reeb orbits in ΓαC of length λ and index

in [−m,m] and Oλ,[−m,m] the set of 1-periodic orbits of f(rC) contained in

{rC = (f ′)−1(λ)} of index in [−m,m] which are null homologous in M . Then

the map

Oλ,[−m,m] −→ Rλ,[−m− 1
2
,m+ 1

2
]

sending γ : T −→ Č to π ◦ γ ◦ bλ is well defined where

bλ : [0, λ] −→ [0, 1], bλ(t) := (1/λ)t ∀ t ∈ [0, λ].

Proof. Since Xf(rC) = f ′(rC)RαC where RαC is the natural lift of the Reeb

vector field of αC to Č, we see that γ ∈ Oλ,[m,m] gets pushed forward to a Reeb

orbit γ ◦ π ◦ bλ of length λ. Therefore all we need to do is compute the index

of γ ◦ π ◦ bλ.

Let ξ := ker(π∗αC) ∩ ker(drC) be a codimension 2 distribution inside Č,

and define ξ⊥ := Span( ∂
∂rC

, RαC ). Then these are symplectic subbundles of

γ∗TM which are symplectically orthogonal to each other. We have a natural

symplectic trivialization T : γ∗ξ⊥ −→ T × C sending ∂
∂r to ∂

∂x and R to ∂
∂y

where z = x+ iy is the natural complex coordinate on C.

Let γ̂ := (γ̃, γ̌) be a capped loop whose associated loop is γ and where the

domain of γ̃ is an oriented surface Σ. Let ι : γ∗TM −→ γ̃∗TM be the natural

bundle inclusion map covering γ̌. Let

τ : γ̃∗TM −→ Σ× Cn, τ̌ : γ∗ξ −→ T× Cn−1
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be symplectic bundle trivializations so that τ ◦ ι = τ̌ ⊕ T after identifying ∂Σ

with T via γ̌. Let PCn : Σ × Cn −→ Cn be the natural projection map. Let

φt : Č −→ Č be the time t Hamiltonian flow of f(rC). We have that

PCn ◦ τ ◦Dφt ◦ (PCn ◦ τ |γ̌(0))
−1 : Cn −→ Cn

is equal to a block diagonal matrixÇ
At 0

0 Bt

å
with respect to the splitting Cn ∼= Cn−1⊕C for all t ∈ [0, 1]. By Definition 5.22

and (CZ4) we have CZ((At)t∈T) = CZ(π ◦ γ ◦ bλ). Also Bt =
Ä

1 f ′′(r)t
0 1

ä
for all

t ∈ [0, 1]. Hence

CZ(γ)
(CZ2)

= CZ((At)t∈T) + CZ((Bt)t∈T)
(CZ5)

= CZ((At)) + η,

where η = 0 or ±1
2 , and so

|CZ(γ)− CZ(π ◦ γ ◦ bλ)| ≤ 1

2
,

and this completes our lemma. �

The following lemma constructs for us a smooth family of Hamiltonians

(which will compute symplectic cohomology later on) with the property that

all the 1-periodic orbits in a fixed index range and whose action is not too big

are identical.

Lemma 5.26. Let Č,D be as in Proposition 5.24. Let m > 0 be a con-

stant. Then there is a smooth family of autonomous Č-compatible Hamiltoni-

ans H = (Hs)s∈[0,∞) on M so that

(1) Hs is locally constant outside [1 − ε/2, 1 + ε/8] × C and a non-decreasing

function of the radial coordinate of Č inside Č which has positive derivative

near ∂D,

(2) dHs(x)
ds ≥ 0 for all x ∈M and Hs(x)→∞ as s→∞ for all x ∈M −D;

(3) Hs|D = H0|D < 0 for all s ∈ [0,∞); and

(4) for each Č-action interval (a−, a+) ∈ Sc(Q−) × Sc(Q+) where (Q−, Q+)

is wide, there exists S ≥ 0 (depending continuously on (a−, a+)) so that

for each s ≥ S and each capped 1-periodic orbit (γ̃, γ̌) ∈ Γ
[−m,m]

Č,a−,a+
(Hs), we

have Image(γ̃ ◦ γ̌) ⊂ D, where Γ
[−m,m]

Č,a−,a+
(Hs) is given in Definition 2.58.

Remark 5.27. Note that every capped 1-periodic orbit of Hs whose asso-

ciated 1-periodic orbit has image in D is also a capped 1-periodic orbit of H0

with the same Č action.
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Remark 5.28. We can in fact strengthen Lemma 5.26 slightly. We can

show that there is a constant δ > 0 (independent of s ∈ [0,∞]) so that

properties (1)–(4) from Lemma 5.26 hold with Hs replaced by eτHs for all

−δ ≤ τ ≤ δ. The proof of this stronger lemma is exactly the same as the

proof of Lemma 5.26 below, except that the action estimates (5.16) and (5.17)

below have to be scaled appropriately. This strengthening will be needed in

Lemma 5.33 below.

Proof of Lemma 5.26. Let Č = [1 − ε, 1 + ε] × C be our contact cylinder

with cylindrical coordinate rC and contact form αC . Since Č is index bounded,

there exists a constant Ξ > 0 so that every Reeb orbit of length greater than

Ξ has index in Z− [−m− 2,m+ 2].

Let fs : [1 − ε, 1 + ε] −→ R, s ∈ [0,∞) be a smooth family of functions

satisfying the following properties (see Figure 12):

(a) dfs(x)
ds ≥ 0 for all x ∈ M and fs(x) tends to infinity as s→∞ for each

x > 1;

(b) fs(x) = f0(x) < 0 for all x ≤ 1, and there is constant Cs ≥ 0 so that

fs(x) = f0(x) + Cs for all x ∈ [1 + ε/16,∞) and s ∈ [0,∞);

(c) fs|(−∞,1−ε/2]∪[1+ε/8,∞) is locally constant; and

(d) f ′s ≥ 0 and f ′s(x) > Ξ for all x ∈ [1, 1+ε/16] for all s ≥ 0 (see Figure 12).

1 1 + ε/16 1 + ε/81− ε/2

f0(x)

fs(x)

f ′s(x) > Ξ fs(x) = f0(x) + Csfs(x) = f0(x) < 0

fs(x) constant

fs(x) constant

Figure 12. Graph of fs for each s ∈ [0,∞).
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Define

Hs : M −→ R, Hs(x) :=


f0(1− ε/2) if x ∈ D − Č,
fs(rC) if x ∈ Č,
fs(1 + ε/8) otherwise

for each s ≥ 0. It is clear that (Hs)s∈[0,∞) satisfies properties (1)–(3). Therefore

we only need to show that it satisfies (4). Let πD : H2(M,D;R) × R2 −→
H2(M,D;R) be the natural projection map. Let (a−, a+) ∈ Sc(Q−, Q+) be

a Č-action interval where (Q−, Q+) is wide. Let h := height(a−, a+) as in

equation (2.15).

Choose a 1-form θ∈Ω1(M) so that dθ=ω−ωČ where ωČ is a Č-compatible

2-form with scaling constants 0 and 1 and which is equal to ω outside D ∪
([1, 1 + ε/2] × C) and so that θ = 0 outside D ∪ ([1, 1 + ε/2] × C). Since Cs
tends to infinity as s→∞, we can choose S ≥ 0 so that

(5.16) min(f0) + CS − sup
γ̆

∫
T
γ̆∗θ > h,

where the infimum is taken over all 1-periodic orbits γ̆ : T −→M of H0. Now

if s ≥ S and γ = (γ̃, γ̌) ∈ Γ
[−m,m]

Č,a−,a+
(Hs) is a capped 1-periodic orbit. Then

by Lemma 5.25, we have that the image of the 1-periodic orbit γ̃ ◦ γ̌ does not

intersect [1, 1 + ε/16]×C since f ′s(x) > Ξ for all x ∈ [1, 1 + ε/16]. Suppose, for

a contradiction, the image of γ̃ ◦ γ̌ does not intersect D ∪ ([1, 1 + ε/16] × C)

then by equation (2.6),

|AHs,Č
(γ)(q, λq+,−, λ

q
+,+)−AHs,Č

(γ)(q, λq−,−, λ
q
−,+)|

≥ (λq+,− − λ
q
−,−)

Ç
min(f0) + Cs −

∫ 1

0
γ̌∗θ

å
(5.17)

for every (q, λq±,−, λ
q
±,+) ∈ Q± satisfying λq−,− < λq+,− and λq+,+ = λq−,+. But

this contradicts equation (5.16) and the fact that γ ∈ Γ
[−m,m]

Č,a−,a+
(Hs). Hence

γ̃ ◦ γ̌ must have image contained in D. �

Proof of Proposition 5.24. In this proof we will use the family of Hamil-

tonians from Lemma 5.26 to compute symplectic cohomology and show that

our action map (5.15) is an isomorphism. The key idea of the proof is to show

that the 1-periodic orbits of these Hamiltonians outside D are not needed to

compute these symplectic cohomology groups mainly by using property (4)

from Lemma 5.15.

Fix p ∈ Z. Let (Hs)s∈[0,∞) be as in Lemma 5.26 with m = |p| + n + 1.

Since the 1-periodic orbits of Hs form a compact subset of C∞(T,M), there is

a non-decreasing family of positive constants (cs)s∈[0,∞) so that for each s ≥ 0
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and each capped 1-periodic orbit γ of Hs,

(5.18)
∣∣∣AHs,Č

(γ)([ωČ ], 1, 1)−AHs,Č
(γ)([ωČ ], 0, 1)

∣∣∣ < cs.

Let as : Q− −→ R be the unique linear map satisfying as([ωČ ], 1, 1) = 0 and

as([ωČ ], 0, 1) = −cs. Then for each Č-action interval (a−, a+) ∈ Sc(Q−) ×
Sc(Q+), the action morphism

HF p
Č,a−+as,a+

(Hs) −→ HF p
Č,a−|Q+

,a+|Q+

(Hs)

is an isomorphism for each s ≥ 0 by equation (5.18) combined with Lemma 3.8.

Also if

(5.19) a−([ωČ ], 0, 1) < a−([ωČ ], 1, 1)− c0,

then there is a function v : Sc(Q−) × Sc(Q+) −→ [0,∞) so that the action

morphism

HF p
Č,a−,a+

(Hš) −→ HF p
Č,a−+as,a+

(Hš)

is an isomorphism for each š ≥ v(a−, a+) by Lemma 5.26, part (4) combined

with equation (5.18) (with s = 0) and Lemma 3.8. Therefore we have a

commutative diagram

HF p
Č,a−,a+

(Hs)

HF p
Č,a−,a+

(Hš)

HF p
Č,a−|Q+

,a+|Q+

(Hs)

HF p
Č,a−|Q+

,a+|Q+

(Hš)

HF p
Č,a−+as,a+

(Hs)

HF p
Č,a−+as,a+

(Hš)

∼=

∼=

consisting of action maps (horizontal arrows) and continuation maps (vertical

arrows) for each (a−, a+) ∈ Sc(Q−)× Sc(Q+) satisfying (5.19) and each s ≥ 0

and š ≥ s+ v(a−, a+). Therefore we have a commutative diagram

HF p
Č,a−,a+

(Hs)

HF p
Č,a−,a+

(Hš)

HF p
Č,a−|Q+

(Hs)

HF p
Č,a−|Q+

,a+|Q+

(Hš)

for each such a−, a+, s, š. This induces an isomorphism of directed systemsÇ
lim−→
s

HF p
Č,a−,a+

(Hs)

å
(a−,a+)∈Sc(Q−)×Sc(Q+)

∼=
Ç

lim−→
s

HF p
Č,a′−,a

′
+

(Hs)

å
(a′−,a

′
+)∈Sc(Q+)2

.

Therefore by Proposition 5.5, the action map

SH∗
Č,Q−,Q+

(D ⊂M) −→ SH∗
Č,Q+,Q+

(D ⊂M)
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is an isomorphism in 2-sys-Λ
Q+,+
K . �

5.6. Transfer isomorphisms between index bounded Liouville domains. In

this subsection we give some sufficient conditions for a transfer map to be an

isomorphism.

Definition 5.29. Let Č be a contact cylinder with associated Liouville

domain D. A Liouville form associated to Č is a 1-form θ ∈ Ω1(D) satisfying

dθ = ω|D and θ|D∩Č = rCαC , where rC and αC are the radial coordinate and

contact form associated to Č. A Liouville vector field associated to Č is the

unique vector field Xθ on D satisfying iXθω = θ for some Liouville form θ

associated to Č. The skeleton of a Liouville form θ associated to Č is the set

of points x ∈ D where the time t flow of x along Xθ exists for all time t ∈ R.

A skeleton of Č is the skeleton S of θ for some Liouville for θ associated to Č.

We call θ a Liouville form associated to S.

Remark 5.30. Note that a skeleton S of a contact cylinder is not unique.

For instance one can obtain other skeletons of Č by pushing forward S via a

Hamiltonian diffeomorphism compactly supported in the interior of D. Also

note that D is a disjoint union of its skeleton and a tubular neighborhood

(−∞, 0]× ∂D given by flowing ∂D backwards along Xθ.

Definition 5.31. Let Č = [1 − ε, 1 + ε] × C be a contact cylinder with

associated Liouville domain D. Define ωČ to be a Č-compatible 2-form with

scaling constants 0 and 1 and which is equal to ω outside D∪ ([1, 1+ ε/2]×C).

We define QČ+ ⊂ H2(M,D;R) × R × R to be the cone spanned by ([ωČ ], 1, 1)

and QČ− the cone spanned by ([ωČ ], 1, 1) and ([ωČ ], 0, 1).

Proposition 5.32. Let Či be a contact cylinder with associated Liouville

domain Di, Liouville form θi and skeleton Si of θi for i = 0, 1, 2, 3, 4 so that

(1) Di ⊂ Dj and θj |Di − θi is exact for i ≥ j;
(2) θ0|D2 = θ2 and θ1|D4 = θ4;

(3) Si is contained in the interior of D4 for all i; and

(4) D0 and D3 are index bounded (see Figure 13).

Then the transfer map

(5.20) SH∗
Č0,Q−,Q+

(D0 ⊂M) −→ SH∗
Č0,Q−,Q+

(D3 ⊂M)

is an isomorphism in 2-sys-Λ
Q+

K where Q± := QČ0
± .

Lemma 5.33. Let “C be a contact cylinder with associated Liouville domain“D, and let Č := [1 − ε, 1 + ε] × C be an index bounded contact cylinder with
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D0D1D2D3D4

θ0|D2 = θ2

θ1|D4 = θ4

S1 = S4S0 = S2

Figure 13. Schematic picture of the Liouville domains D0, . . . , D4.

associated Liouville domain D so that D ∪ Č ⊂ “D. Then the transfer map

(5.21) SH∗“C,Q“C−,Q“C+(D∪([1, t′′]×C) ⊂M) −→ SH∗“C,Q“C−,Q“C+(D∪([1, t′]×C) ⊂M)

is an isomorphism for all 1 ≤ t′ ≤ t′′ < 1 + ε.

Proof. Define Dt := D ∪ ([1, t]× C) for each t ∈ [1, 1 + ε). It is sufficient

for us to show that for each t ∈ [1, 1 + ε), there exists a constant 0 < δt < 1 so

that the transfer map

(5.22) SH∗“C,Q−,Q+
(Dt′′ ⊂M) −→ SH∗“C,Q−,Q+

(Dt′ ⊂M)

is an isomorphism for each t′, t′′ ∈ [1, 1 + ε) satisfying t− δt ≤ t′ ≤ t′′ ≤ t+ δt.

Fix t ∈ [1, 1 + ε). Let Čt ⊂ Č be a contact cylinder with associated

Liouville domain Dt and whose cylindrical coordinate is rC/t where rC is the

cylindrical coordinate associated to Č. Let (Hs)s∈[0,∞) be as in Lemma 5.26

with m = |p|+n+ 1 for some p ∈ Z and with Č replaced by Čt. Let A ⊂ R be

the set of action values A“C,H0
(γ)([ω“C ], 1, 1) ∈ R and A“C,H0

(γ)([ω“C ], 0, 1) ∈ Z
where γ runs over all capped 1-periodic orbits ofH0 whose associated 1-periodic

orbit is contained in D0. Since A is closed and of measure 0 by Lemma 8.5,

there exist a ∈ R and δ′ > 0 so that (a + k − δ′, a + k + δ′) ∩ A = ∅ for all

k ∈ Z. Hence there exist a cofinal family (aj−)j∈N in (Sc(Q
“C
−),≥), a cofinal

family (aj+)j∈N in (Sc(Q
“C
+),≤) and neighborhoods N± ⊂ Sc(Q

“C
±) of 0 so that

for each j ∈ N and each capped 1-periodic orbit γ of H0 whose associated

1-periodic orbit is contained in D0, we have that aj±(γ)−A“C,H0
(γ)|

Q
“C
±
/∈ N±.

Therefore by Lemma 5.26 combined with Remarks 5.27 and 5.28, there are an

increasing sequence of constants (sj)j∈N and a constant δt ∈ (0, 1) so that

(5.23) Γ
[−m,m]“C,aj−,aj+(eτHs) = Γ

[−m,m]“C,aj−+n−,a
j
++n+

(eτHs),
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(see Definition 2.58) for all j ∈ N, s > sj , n± ∈ N± and −δt ≤ τ ≤ δt after

possibly shrinking N±.

Let φt : M −→ M be the time t flow of a vector field on M equal to

r ∂∂r inside Č for each t ∈ R. By equation (5.23) and Lemma 3.6 combined

with the fact that Hs|D = H0|D for each s ∈ [0,∞), we have that the natural

continuation map

HF p“C,aj−,aj+((φt′′)∗Hs) −→ HF p“C,aj−,aj+((φt′)∗Hs)

is an isomorphism for each t′, t′′ ∈ [1, 1 + ε) satisfying −δt ≤ t′ < t′′ ≤ δt, j ∈ N
and s > sj . This implies that the continuation map

HF p“C,aj−,aj+(HDt′′ ) −→ HF p“C,aj−,aj+(HDt′ )

is an isomorphism for each t′, t′′ ∈ [1, 1 + ε) satisfying t− δt ≤ t′ < t′′ ≤ t+ δt
and j ∈ N where HDτ ∈ HT,l.s.(Č,≤ 0) (Definition 4.1) is equal to (φτ )∗(H0)

inside Dτ and ∞ otherwise for each τ ∈ [−δt, δt]. Hence by Lemma 2.40 and

Proposition 5.5, the map (5.22) is an isomorphism. �

We wish to reduce the proof of Proposition 5.32 to Lemma 5.33 above. In

order to do this, we need to “rearrange” our contact cylinders slightly. This is

the purpose of the following two lemmas:

Lemma 5.34. Let (Či)i=0,1 be contact cylinders with associated Liouville

domains (Di)i=0,1 and skeletons (Si)i=0,1. Let (θi)i=0,1 be Liouville forms as-

sociated to (Si)i=0,1. Suppose that D1 ⊂ D0, S0 is contained in the interior of

D1, S1 ⊂ S0 and that θ1 − θ0|D1 is exact. Suppose also that the time t flow of

Xθ0 sends S1 to S1 for all t ∈ R. Then for each neighborhood N of S1, there

is a Hamiltonian isotopy φt : M −→ M , t ∈ [0, 1] compactly supported in the

interior of D1 satisfying φ0 = id, φt(S1) = S1 for all t ∈ [0, 1] and φ1(S0) ⊂ N .

Proof. Let φit : Di −→ Di be the time t flow of the Liouville vector field

−Xθi for each i = 0, 1. Since S0 is contained in the interior of D1, there exists

T > 0 so that φ0
t (D0) ⊂ D1 for all t ≥ T . We can also assume φ1

t (D1) ⊂ N for

all t ≥ T . Define the embedding

ιt : D0 −→ D1, ιt := φ1
t ◦ φ0

2T−t

for each t ∈ [0, T ]. Then d
dt ιt is a Hamiltonian vector field on ιt(D0) for all

t ∈ [0, T ], ι0(S0) = S0, ιt(S1) = S1 for all t ∈ [0, T ] and ιT (S0) ⊂ N . Extending

this time dependent Hamiltonian vector field to a Hamiltonian vector field on

M compactly supported in D1 completes our lemma. �

Lemma 5.35. Let Či be a contact cylinder with associated Liouville do-

main Di and associated Liouville form θi for i = 0, 1, 2. Suppose

• D2 ⊂ D1 ⊂ D0;
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• the skeleton of Di is contained in the interior of D2 for each i;

• θ0|D2 = θ2, and θ0|D1 − θ1 is exact.

Then there is a 1-form θ̂0 associated to Č0 so that θ̂0− θ0 is exact, θ̂0|D0−D2 =

θ0|D0−D2 , the skeleton Ŝ0 of θ̂0 contains the skeleton of θ1 and Ŝ0 is contained

in the interior of D2. Also we can assume that the time t flow along X
θ̂0

of S1

is S1 for all t ∈ R.

Proof. Let Si be the skeleton of θi for each i. Then S0 = S2. Choose a

neighborhood N of S1 whose closure is contained in the interior of D2. Let

f : D0 −→ R be a smooth function with compact support in the interior of D2

so that θ0|N − θ1|N = df |N . Define θ̂0 := θ0 − df . This has the properties we

want. �

Proof of Proposition 5.32. Let (Do
i )i=0,1,2,3,4 be the interiors of the Liou-

ville domains (Di)i=0,1,2,3,4 respectively. By applying Lemma 5.35 twice we

can find a Liouville form θ̂i associated to Či with associated skeleton Ŝi so

that θ̂i − θi is exact for i = 0, 1 and so that S3 ⊂ Ŝ1 ⊂ Ŝ0 and Ŝ0 ⊂ Do
2 and

Ŝ1 ⊂ Do
4. Also we can assume that the time t flow along Xθ1 of S3 is contained

in S3 and the time t flow along X
θ̂0

of Ŝ1 is contained in Ŝ1.

By Lemma 5.34, we can push forward θ̂0 by an appropriate Hamiltonian

isotopy χt : M −→ M , t ∈ [0, 1] compactly supported in the interior of D1

satisfying χt(Ŝ1) = Ŝ1 for all t ∈ [0, 1] so that χ1(Ŝ0) ⊂ Do
4. Hence after

replacing θ̂0 by its pushforward by χ1, we can still assume that S3 ⊂ Ŝ1 ⊂ Ŝ0.

Let φt : D0 −→ D0 be the time t flow of −X
θ̂0

and ψt : D3 −→ D3 the

time t flow of −Xθ3 . Since S3 ⊂ Ŝ0 ⊂ Do
4, there are constants T0, T3 > 0 so

that D′0 := φT0(D0) ⊂ D3 and D′3 := ψT3(D3) ⊂ D′0. Since ∪t∈[0,T ]φt(∂D0) is

the image of a contact cylinder in M for all T > 0, we can apply Lemma 5.33

to show that the transfer map

SH∗
Č0,Q

Č0
− ,Q

Č0
+

(D0 ⊂M) −→ SH∗
Č0,Q

Č0
− ,Q

Č0
+

(D′0 ⊂M)

is an isomorphism. Similarly

SH∗
Č0,Q

Č0
− ,Q

Č0
+

(D3 ⊂M) −→ SH∗
Č0,Q

Č0
− ,Q

Č0
+

(D′3 ⊂M)

is an isomorphism. Since D′3 ⊂ D′0 ⊂ D3 ⊂ D0 and since the composition of

two transfer maps is a transfer map, this implies that the transfer map (5.20)

is an isomorphism. �

5.7. A chain complex for symplectic cohomology. In this section we con-

struct a double system of chain complexes from Liouville domains associated

index bounded contact cylinders. In the next section (see the proof of Theo-

rem 5.39), we will show that these double systems of chain complexes compute
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symplectic cohomology in some cases. Throughout this subsection we fix an

index bounded (Definition 5.23) contact cylinder Č = [1 − ε, 1 + ε] × C with

associated Liouville domain D.

Lemma 5.36. Let (Qm− , Q
m
+ )m∈I be a finite collection of Č-interval do-

main pairs which are wide (Definition 2.58). For each m ∈ I , let (aj,m− )j∈N,

(aj,m+ )j∈N be a cofinal family of (Sc(Qm− ),≥) and (Sc(Qm+ ),≤) respectively so

that aj+1,m
− ≤ aj,m− and aj,m+ ≤ aj+1,m

+ for all j ∈ N. Then there are an

element HD ∈ HT,l.s.(Č,D,≤ 0) (Definition 4.1), a smooth family of au-

tonomous Hamiltonians (Hs,t)(s,t)∈[1,∞)×T, a constant sp ≥ 1 and a subset

Np ⊂ D ∪ ([1, 1 + ε/8]× C) which is open in M for each p ∈ N so that

(1) {Hs,• : s ≥ sp} is a cofinal subset of Hreg(<Č HD, a
p,m
− , ap,m+ , [−p, p]) (Def-

inition 3.1) for each m ∈ I , where Hs,• := (Hs,t)t∈T and Hs,• <Č Hš,• for

each s < š;

(2) all 1-periodic orbits of Hs,• of index in [−p, p] have image contained in Np

for each s ≥ sp; and

(3) Hs,•|Np + 1/s = Hš,•|Np + 1/š for each s, š ≥ sp and each p ∈ N.

Proof. Let g : (−∞, 1] −→ (−∞,−1] be a continuous function so that

• g|(−∞,1) is smooth and g′(x) ≥ 0 for x < 1;

• g|(−∞,1−ε/16) = −2; and

• g(x) = −1−
√

1− x for x ≥ 1− ε/32.

Define

g̃ : [1 + ε/16,∞) −→ (1,∞), g̃(x) := 1− g(2 + ε/16− x).

Let (as)s∈[1,∞) and (bs)s∈[1,∞) be smooth families of constants so that
d
ds(as) > 0, d

ds(bs) < 0, as ∈ (1 − ε/32, 1), bs ∈ (1 + ε/16, 1 + 3ε/32) for all

s ≥ 1, as → 1, bs → 1 + ε/16 and g′(ai) is not equal to the length of any Reeb

orbit of αC for each i ∈ N≥1. Such constants exist since the set of lengths

of Reeb orbits has measure 0 in R by [Pop93, Prop. 3.2]. Let fs : R −→ R,

s ∈ [1,∞) be a smooth family of smooth functions satisfying the following:

• f ′s ≥ 0, d
dsfs(x) > 0;

• fs(x) = g(x)− 1
s for x ≤ as; fs(x) = g̃(x) + s for x ≥ bs; and

• fs|(1,∞) pointwise tends to infinity and the function f ′s|[as,bs] uniformly tends

to infinity as s tends to infinity (see Figure 14).

Let h : [1− ε, 1 + ε] −→ R satisfy

• h′ ≤ 0;

• h|[1−ε,1+ 3ε
32

] = 0;

• h(x) = −1
4(1 + x

1+ε) for all x inside [1 + ε/8, 1 + ε/2]; and

• h|[1+3ε/4,1+ε] = −1 (see Figure 15).
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1as1− ε
16

bs 1 + ε
81 + ε

16

s

1
s

fs(x)

g(x)

x

g̃(x)

fs(x) = g̃(x) + sfs(x) = g(x)− 1
s

f ′s(x)→∞ uniformly as s→∞

Figure 14. Graph of fs for each s ∈ [1,∞).

x
1− ε 1 + 3ε

32
1 + ε

8 1 + ε
2 1 + 3ε

4 1 + ε

h(x)

h(x) = −1h(x) = −1
4(1 + x

1+ε)

bs

Figure 15. Graph of h.

Define

Ks : M −→ R, Ks :=


−2− 1/s inside D − Č
fs(rC) + 1

sh(rC) inside Č

3 + s− 1
s otherwise

 , s ∈ [1,∞).

Then Ks <Č Kš for all s < š. Let ρ : R −→ [0, 1] be a smooth function equal

to 0 inside (−∞, 0] and 1 inside [1,∞). Define Bi := (ai, ai+1) × C for each

integer i ≥ 1 and B0 := D − ([a1, 1]× C).
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Since Č is index bounded, let Ξp be larger than the length of the longest

Reeb orbit of αC of index in [−p, p] for each p ∈ N so that (Ξp)p∈N is increasing.

Let hp := maxm∈I height(ap,m− , ap,m+ ), where height is given in Definition 2.58.

For each p ∈ N, choose šp ≥ 1 so that f ′s|[as,bs] > Ξp+n+1 for each s ≥ šp and

so that (šp)p∈N is increasing. Define

sp := hp + 2 + (1 + ε)Ξp + šp.

Then by Corollary 2.8 and Lemma 5.25 we have that for each p ∈ Z, the

1-periodic orbit associated to each element of Γ
[−p−n−1,p+n+1]

Č,ap,m− ,ap,m+

(Hs) (Defini-

tion 2.58) has image contained in Np := D− ([asp , 1]× Č) for each m ∈ I and

s ≥ sp. Also Hi has no 1-periodic orbits in {rC = ai} for each i ∈ N since

g′(ai) is not the length of any Reeb orbit of αC for each i. Therefore by repeat-

edly applying Lemma 8.2, we can find smooth Hamiltonians Wk = (Wk,t)t∈T,

k ∈ N≥0 which are C∞ small (in particular, C∞ tending to 0 as i tends to in-

finity) and non-negative and where Wi has support inside Bi for each i so that

Ki +
∑i−1

k=0Wk ∈ ∩qj=1H
reg(<Č , a

j,m
− , aj,m+ , [−j, j]) for each q, i ∈ N satisfying

i ≥ sq. Define Hs,• := Ks+
∑bsc−1

k=0 ρ(s−k)Wk for each s ≥ 1, where bsc is the

largest integer ≤ s. Then Hs,• <Č Hš,• for all s < š. Since Wk is C∞ small

for each k, we can assume that the associated 1-periodic orbit of every element

of Γ
[−p,p]
Č,ap,m− ,ap,m+

(Hs,•) has image in Np for each m ∈ I (since the same is true

for Hs). Similarly, we can assume that Hs,•|D < 0 for all s ≥ 1 since Wk is

small for each k ≥ 0. All such orbits are non-degenerate by construction and

Hs,•|Np + 1
s = Hš,•|Np + 1

š for each s, š ≥ sp. Hence properties (1)–(3) hold,

after possibly making sp larger so that 1
sp

is sufficiently small. This completes

the lemma. �

Definition 5.37. A double system of chain complexes is a double system

(Definition 2.28) W : I × J −→ R-mod of Z-graded R modules, where each

module W (i, j) is a chain complex over R, where the differential has de-

gree 1 and each morphism W ((i, j) −→ (i′, j′)) is a chain map. We define

lim−→i
lim←−jW (i, j) in the same way as Definitions 2.33 and 2.34, except that

it is now a chain complex with a differential. Let (Qm− , Q
m
+ )m∈I , (aj,m± )j∈N,

HD, (Hs,t)(s,t)∈[1,∞)×T, (Hs,•)s∈[1,∞), (sp)p∈N, (Np)p∈N be as in Lemma 5.36.

Choose J ∈ ∩i∈NJreg(Hi,•, Č). By Lemma 2.74 there exist

H i,−+ ∈ ∩m∈IHR×T(Č, aj,m− , aj
′,m

+ , Hi,•, Hi+1,•),

J i,−+ ∈ JR×T,reg(H−+, (J, J), Č)
(5.24)

so that the chain level continuation map

(5.25)

Φq
i,m,j,j′ := Φ̃q

Ȟi,−+,J̌i,−+ : CF q
Č,aj,m− ,aj

′,m
+

(Hi,•) −→ CF q
Č,aj,m− ,aj

′,m
+

(Hi+1,•)
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is an isomorphism for each i, q, j, j′ ∈ N satisfying j, j′ ≤ q, i ≥ sp, −p ≤ q ≤ p,
p ∈ N and m ∈ I. Finally define

Φq
i→i′,m,j,j′ : CF q

Č,aj,m− ,aj
′,m

+

(Hi,•) −→ CF q
Č,aj,m− ,aj

′,m
+

(Hi′,•),

Φq
i→i′,m,j,j′ := Φq

i′−1,m,j,j′ ◦ Φq
i′−2,m,j,j′ ◦ · · · ◦ Φq

i+1,m,j,j′ ◦ Φq
i,m,j,j′

for all i, q, j, j′, i′ ∈ N satisfying j, j′ ≤ q, i′ ≥ i, i > sp, −p ≤ q ≤ p, p ∈ N
and m ∈ I where such a map is the identity map for i = i′. These maps give

us a directed system (CF q
Č,aj,m− ,aj

′,m
+

(Hi,•))i≥sp for each q, j, j′ ∈ N satisfying

j, j′ ≤ q, −p ≤ q ≤ p, p ∈ N and m ∈ I. Define

W q
j,j′,m := lim−→

i≥sp
CF q

Č,aj,m− ,aj
′,m

+

(Hi,•)

for each q, j, j′,m as above. A compatible collection of double systems of chain

complexes for SH∗
Č,Qm− ,Q

m
+

(D ⊂ M), m ∈ I is defined to be the double sys-

tems of chain complexes (W ∗j,j′,m)j,j′∈N, m ∈ I where the double system maps

are chain level action maps and where N has the ordering ≥. If I has just

one element m, then such a double system is called a double system of chain

complexes for SH∗
Č,Qm− ,Q

m
+

(D ⊂M).

Remark 5.38. Suppose that I = {0, 1} and that (Q1
−, Q

1
+) is smaller than

(Q0
−, Q

0
+) (Definition 2.75). Then SH∗

Č,Qm− ,Q
m
+

(D ⊂ M) is isomorphic to the

double system (H∗(W
∗
j,j′,m))j,j′∈N for each m ∈ I by Lemma 2.40 and the

action map

SH∗
Č,Q0

−,Q
0
+

(D ⊂M) −→ SH∗
Č,Q1

−,Q
1
+

(D ⊂M)

is equal to the natural map

(H∗(W
∗
j,j′,0))j,j′∈N −→ (H∗(W

∗
j,j′,1))j,j′∈N

induced by the corresponding chain level action maps under this isomorphism

of double systems.

5.8. Changing Novikov rings.

Theorem 5.39. Let Č be an index bounded contact cylinder with as-

sociated Liouville domain D and let (Qj−, Q
j
+) be a Č-interval domain for

j = 0, 1 so that (Q1
−, Q

1
+) is smaller than (Q0

−, Q
0
+) (Definition 2.75) and

so that (Qj−, Q
j
+) is wide for j = 0, 1 (Definition 2.58). Suppose that ΛQ

1

K is a

flat ΛQ
0

K -module and that lim−→ lim←−
1(SH∗

Č,Q1
−,Q

1
+

(D ⊂M)) = 0. Then the map

SH∗
Č,Q0

−,Q
0
+

(D ⊂M)⊗
Λ
Q0

+
K

Λ
Q1

+

K −→ SH∗
Č,Q1

−,Q
1
+

(D ⊂M)

induced by the corresponding action map is an isomorphism.
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Proof of Theorem 5.39. Let (W ∗j,j′,m)j,j′∈N, m = 0, 1 be a compatible col-

lection of double systems of chain complexes for SH∗
Č,Qm− ,Q

m
+

(D ⊂M), m = 0, 1

as in Definition 5.37. By Remark 5.38 it is sufficient for us to show that the

natural map

(5.26) (lim−→
j

lim←−
j′
H∗(W

∗
j,j′,0))⊗

Λ
Q0

+
K

Λ
Q1

+

K −→ lim−→
j

lim←−
j′
H∗(W

∗
j,j′,1)

induced by chain level action maps is an isomorphism.

By Remark 5.38 combined with the fact that

lim−→
1

lim←− SH
p

Č,Q1
−,Q

1
+

(D ⊂M) = 0,

we get lim−→ lim←−
1(H∗(W

∗
j,j′,1))j,j′∈N = 0. Hence by [Wei94, Th. 3.5.8] combined

with the fact that direct limits preserve short exact sequences and commute

with homology and that Λ
Q1

+

K is a flat Λ
Q0

+

K -module, we get a commutative

diagram

(lim−→j
lim←−

1
j′
Hp−1(W ∗j,j′,0))⊗

Λ
Q0

+
K

Λ
Q1

+

K

0

Hp(lim−→j
lim←−j′W

∗
j,j′,0)⊗

Λ
Q0

+
K

Λ
Q1

+

K

0

lim−→j
lim←−j′ Hp(W

∗
j,j′,0)⊗

Λ
Q0

+
K

Λ
Q1

+

K

Hp((lim−→j
lim←−j′W

∗
j,j′,0)⊗

Λ
Q0

+
K

Λ
Q1

+

K )

0

Hp(lim−→j
lim←−j′W

∗
j,j′,1)

lim−→j
lim←−j′ Hp(W

∗
j,j′,1)

0

0

α β

δ

η

where the vertical morphisms form short exact sequences and the remaining

maps are induced by chain level action maps for each p ∈ Z. Since Λ
Q1

+

K is a

flat Λ
Q0

+

K -module, we have that α is an isomorphism. Also β is an isomorphism

since lim−→j
lim←−j′W

p
j,j′,k is a free finitely generated Λ

Qk+
K -module for k = 0, 1 and

β sends the generators of one module to the other. �

6. Symplectic geometry of projective varieties

and singular ample divisors.

6.1. Constructing appropriate Kähler forms. In order to show that bi-

rational Kähler manifolds have the same small quantum groups, we need to

modify their Kähler forms so that they are identical on some large compact

subset of a common open affine subset. This will enable us to show that var-

ious Hamiltonian Floer algebras are the same on both Calabi-Yau manifolds.
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This technical subsection is devoted to manipulating certain symplectic forms

on smooth affine varieties in order to achieve this goal. It is also needed to en-

sure that this large compact subset contains a “large” index bounded contact

cylinder (see Section 6.2).

Definition 6.1. Let ωX be a Kähler form on a complex manifold (X, JX).

Then for any open subset U ⊂ X and any smooth function f : U −→ R, we

define ∇ωXf to be the unique vector field on U satisfying ωX(∇ωXf, JX(−)) =

df(−) (that is, the gradient of f with respect to the metric ωX(−, JX(−))).

Definition 6.2. Let A be a smooth affine variety. Let JA : TA −→ TA

be the complex structure on A. A smooth function ρ : A −→ R is exhausting

if it is proper and bounded from below. Define dcρ := dρ ◦ JA. We say that

ρ is plurisubharmonic if −ddcρ is a Kähler form. For each plurisubharmonic

function ρ, we define ωρ := −ddcρ, and for each function f : A −→ R, we

define ∇ρf := ∇ωρf .

A smooth function ρ : A −→ R is an algebraic plurisubharmonic function

if there exist a smooth projective variety X compactifying A, a holomorphic

line bundle L over X with a Hermitian metric | · | and a holomorphic section

s of L so that ρ = − log(|s|), s−1(0) = X −A and ρ are plurisubharmonic.

A smooth function ρ : A −→ R is a partially algebraic plurisubharmonic

function if there is an algebraic plurisubharmonic function ρ∞ : A −→ R and a

compact subset K ⊂ A so that ρ|A−K = ρ∞|A−K and if ρ is plurisubharmonic.

Algebraic plurisubharmonic functions always exist since every affine va-

riety can be compactified to a smooth projective variety X by [Hir64]. One

can then choose an ample line bundle L together with a section s satisfying

s−1(0) = X − A. Any ample line bundle admits a positive Hermitian met-

ric | · | (e.g., a metric induced from the Fubini Study metric) which implies

that − log(|s|) is plurisubharmonic. Having said that, in general we do not

require that the metric | · | be positive outside A. Also note that all algebraic

plurisubharmonic functions are exhausting.

The following technical lemma is needed to prove Corollaries 6.5 and 6.6

below. This lemma is basically about controlling the size of the derivatives of

partially algebraic plurisubharmonic functions near infinity.

Lemma 6.3. Let ρ0, ρ1 be two partially algebraic plurisubharmonic func-

tions on a smooth affine variety A. Define ρt := ρ0 + tρ1 for each t ∈ [0, 1].

Let k be a positive integer. Then there is a compact subset K ⊂ A so that

(6.1) dρt(∇ρtρt) > ρkt ∀ t ∈ [0, 1]

outside K . Also there is a vector field V on A so that

(6.2) dρ0(V ) > 0, dρ1(V ) > 0

outside K .
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Proof. The key idea here is to reduce equations (6.1) and (6.2) to a local

estimate near each point at infinity. A similar thing has been done previously

in the proof of [Sei08, Lemma 4.3].

First of all since we only require equations (6.1) and (6.2) to hold outside a

compact set, we can assume that ρj is an algebraic plurisubharmonic function

for all j = 0, 1. Therefore, by definition, for each j ∈ {0, 1}, there is

• a smooth projective variety Xj compactifying A;

• a holomorphic line bundle Ľj over Xj ;

• a Hermitian metric ‖ · ‖j on Ľj ; and

• a holomorphic section šj of Ľj

so that ρj = − log(‖šj‖j) and š−1
j (0) = Xj −A. By the Hironaka resolution of

singularities theorem [Hir64], there is a smooth projective variety X compact-

ifying A and morphisms πj : X −→ Xj , j = 0, 1 satisfying πj(a) = a for each

a ∈ A and each j = 0, 1. We can also assume that X −A is a normal crossings

variety; i.e., it is locally a transverse intersection of complex hypersurfaces.

Let Lj = π∗j Ľj , | · |j = π∗j ‖ · ‖j and sj = π∗j šj be the corresponding pullbacks

of our line bundle, metric and section to X for each j = 0, 1. Then

(6.3) ρj = − log(|sj |j) and s−1
j (0) = X −A ∀ j = 0, 1.

In order to prove equation (6.1) it is sufficient for us to show that for each

x ∈ X − A, equation (6.1) holds on a small neighborhood of x since X − A is

compact. Similarly, in order to prove equation (6.2), it is sufficient to show that

there is a vector field Vx defined in a neighborhood of x satisfying dρj(Vx) > 0,

j = 0, 1. This is because we can construct our desired vector field V by patching

together finitely many such vector fields Vx1 , . . . , Vxk using partitions of unity.

Therefore fix x ∈ X −A. Choose a holomorphic coordinates z1, . . . , zn on

a small chart Ux ⊂ X centered at x so that (X −A)∩Ux =
¶∏l

j=1 zj = 0
©

for

some 1 ≤ l ≤ n. After shrinking Ux, we can choose trivializations of the line

bundles L0|Ux and L1|Ux . We will also assume that the coordinates z1, . . . , zn
and trivializations above extend to a neighborhood of the closure of Ux in order

to ensure that C1 bounds hold. For each j = 0, 1, there are smooth functions

ηj : Ux −→ R so that | · |j = e−ηj | · | with respect to the trivializations of

L0|U and L1|U above. Also for each j = 0, 1, there are positive integers ajk,

k = 1, . . . , l and a holomorphic function hj : Ux −→ C whose norm is bounded

below by a positive constant so that sj = hj
∏l
k=1 z

ajk
k with respect to the

trivializations above. Hence

(|sj |j)|Ux = e−ηj |hj |
l∏

k=1

|zk|a
j
k ∀ j = 0, 1.
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Therefore

(6.4) ρj |Ux∩A = ηj − log(|hj |)−
l∑

k=1

ajk log(|zk|) ∀ j = 0, 1.

Let JX be the complex structure on X. Let g(−,−) be the standard Euclidean

metric on Ux, and let ‖·‖g be the induced norm on the cotangent bundle T ∗Ux.

Let ‖ · ‖ρ0 be the induced norm on T ∗A coming from the metric ωρ0(−, JX(−))

on A. The metric ωρ0(−, JX(−)) smoothly extends to a (0, 2)-tensor gρ0 on

X (which may be degenerate along points of X − A). Since gρ0(Y, Y ) ≥ 0 for

all Y ∈ TX, there is a constant c > 0 so that g(Y, Y ) ≥ cgρ0(Y, Y ) for each

Y ∈ TUx. Hence c‖ · ‖g|A ≤ ‖ · ‖ρ0 . Therefore, by equation (6.4),

dρt(∇ρtρt)|Ux∩A = ‖dρt‖2ρt ≥ c
2‖dρt‖2g

≥
l∑

k=1

c2

|zk|2
∥∥(a0

k + ta1
k)d(|zk|)

∥∥2

g

−
l∑

k=1

2c2

|zk|

(∥∥(a0
k + ta1

k)d(|zk|)
∥∥
g
‖d(η0 − log(|h0|)

+ td(η1 − log(|h1|))‖2g
)
∀ t ∈ [0, 1].

Hence equation (6.1) holds near x since the function 1
y2 grows much faster than

− log(y) and 1
y as y → 0+.

Let xk be the real part of zk and yk the imaginary part for each k =

1, . . . , n. Then x1, y1, . . . , xn, yn are real coordinates on Ux. Now define the

vector field Vx := −
∑n

k=1(xk
∂
∂xk

+ yk
∂
∂yk

) on Ux. Then by equation (6.4),

(6.5) dρj(Vx) = d(ηj − log(|hj |))(Vx) +

l∑
k=1

ajk ∀ j = 0, 1,

which is positive in a neighborhood Ǔx of x since the ‖·‖g norm of the one-form

d(ηj − log(|hj |)) is bounded and the g-norm of Vx tends to 0 as we approach

x. Choose points x1, . . . , xk in X − A so that Ǔx1 , . . . , Ǔxk cover X − A.

Choose a partition of unity f : A −→ [0, 1], fj : Ǔj −→ [0, 1], j = 1, . . . , k,

subordinate to the cover A, Ǔx1 , . . . , Ǔxk of X. Define V :=
∑k

j=1 fjVxj . Then

since equation (6.5) holds inside Ǔx for each x ∈ X−A, we get that V satisfies

equation (6.2) outside a compact subset of X. �

The following corollary of Lemma 6.3 will be used to construct appropriate

Kähler forms on birational Calabi-Yau manifolds so that they coincide on some

large compact set of some common affine variety. This will be used in the proof

of Theorem 1.2 in Section 7 below. Before we state this corollary, we need a

preliminary definition.
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Definition 6.4. Let ρ : A −→ R be a plurisubharmonic function on an

affine variety A. Let φt : A −→ A be the time t flow of −∇ρρ for each t ≥ 0.

The skeleton of ρ is the subset

∩t>0φt(A) ⊂ A.

Note that the complement of the skeleton of ρ is diffeomorphic to a product

R × Y where {r} × Y is a level set of ρ for each r ∈ R. As a result, one can

think of A as a “cylindrical end” R× Y with the skeleton “glued” to one side

(see Figure 16).

Skeleton

A

“cylindrical end”

Level sets of ρ

Figure 16. Skeleton of A.

Corollary 6.5. Let ρ0, ρ1 be two partially algebraic plurisubharmonic

functions on a smooth affine variety A. Then for any compact subset K ⊂ A,

there are a third partially algebraic plurisubharmonic function ρ : A −→ R, a

compact set Q containing K and constants κ1, κ2 ∈ N so that

• ρ|K = ρ1|K ;

• ρ is equal to κ1(ρ0 − log κ2) outside Q; and

• the skeleton of ρ is equal to the skeleton of ρ1.

Proof. By Lemma 6.3 there is a vector field V on A and a compact subset

Q′ ⊂ A so that dρ0(V ) > 0 and dρ1(V ) > 0 outside Q′. By enlarging Q′,

we can assume that it contains K. Let α := max(ρ0|Q′) + log(2). Choose a

compact subset Q ⊂ A whose interior contains Q′ and so that ρ0 is greater

than max(α, 2) outside a compact subset of the interior of Q. Choose κ2 ∈ N
so that max(ρ0|Q′) < log(κ2) < max(α, 2). Then

ρ0|Q′ − log(κ2) < 0, ρ0|A−Q − log(κ2) > 0.

Hence we can choose an integer κ1 � 1 so that f := κ1(ρ0 − log(κ2)) satisfies

f |Q′ < ρ1|Q′ and f > ρ1 outside a compact subset of the interior of Q. Then
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by [CE12, Prop. 3.20], we can smooth the function max(ρ1, f) to a plurisub-

harmonic function ρ : A −→ R so that ρ|Q′ = ρ1|Q′ , ρ|A−Q = f |A−Q and

dρ(V ) > 0 outside a compact subset of the interior of Q′. Then ρ has the

required properties. �

The following technical corollary of Lemma 6.3 will be used in the proof

of Proposition 6.7 to construct certain index bounded contact cylinders.

Corollary 6.6. Let ρ0, ρ1 be two partially algebraic plurisubharmonic

functions on a smooth affine variety A, and let K ⊂ A be a compact subset.

Then there are constants 0 < δ � T � 1, a compact set Q ⊂ A containing K

and an exhausting plurisubharmonic function ρ on A satisfying

(1) ρ|Q = ρ0|Q;

(2) ρ is equal to ρ0 + δρ1 outside a large compact set ; and

(3) for all x ∈ A, the time T flow of x along −∇ρρ is contained in Q and is

disjoint from K if, in addition, x /∈ Q.

Proof. Define ρt := ρ0 + tρ1 for each t ∈ [0, 1]. Let φt,τ : A −→ A be the

time τ flow of −∇ρtρt for all τ ≥ 0 and t ∈ [0, 1]. For each τ ≥ 0, define

Âτ := ∪t∈[0,1]φt,τ (A), Ǎτ := ∩t∈[0,1]φt,τ (A).

By Lemma 6.3,

(6.6) dρt(∇ρtρt) > ρ2
t ∀t ∈ [0, 1]

outside a compact subset of A. This implies that Âτ and Ǎτ are relatively

compact subsets for each τ > 0 since (ρt)t∈[0,1] are exhausting functions. We

also have the following properties:

(a) Âτ0 ⊂ Âτ1 and Ǎτ0 ⊂ Ǎτ1 for each 0 ≤ τ1 < τ2;

(b) φt,τ0(Ǎτ1) ⊂ Âτ0+τ1 and φt,τ0(Âτ1) ⊃ Ǎτ0+τ1 for each τ0, τ1 ≥ 0.

Choose constants 1 � τ0 � τ1 � τ2 > 0 so that K ⊂ Ǎ4τ0 , Âτ0 ⊂ Ǎ2τ1 and

Âτ1 ⊂ Ǎ2τ2 . Define T := 2τ0 and Q := Âτ0 . Let β : A −→ R be a smooth

function equal to 0 along Q and 1 outside Ǎ2τ1 . Define ρ̌t := (1 − β)ρ0 + βρt
for all t ∈ [0, 1]. Since being plurisubharmonic is a C2 open condition, there is

a constant η > 0 so that ρ̌t is plurisubharmonic for all t ∈ [0, η]. Let ψt,τ be

the time τ flow of −∇ρ̌t ρ̌t for each t ∈ [0, η]. Since ρt converges to ρ0 in the

C∞loc topology as t→ 0 and by (a), (b) above combined with the fact that Âτ ,

Ǎτ are relatively compact for all τ > 0, there exists δ ∈ (0, η] small enough so

that

(6.7) ψδ,τ (Ǎτ2) ⊂ Q, ψδ,τ (Ǎτ2 −Q) ∩K = ∅ ∀ τ ∈ {T − τ1, T}.

Since β−1([0, 1)) ⊂ Ǎ2τ1 and by (a), (b), we have

ψδ,τ1(A− Âτ1) = φδ,τ1(A− Âτ1) ⊂ Âτ1 − Ǎ2τ1
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and hence by equation (6.7),

ψδ,T (A) ⊂ Q, ψδ,T (A−Q) ∩K = ∅.

Hence ρ := ρ̌δ satisfies the properties we want. �

6.2. Constructing index bounded contact cylinders. The main aim of this

section is to prove the proposition below, which constructs appropriate index

bounded contact cylinders in Calabi-Yau manifolds. Recall that a contact

cylinder is a codimension 0 symplectic embedding of a subset Č = [1− ε, 1 + ε]

× C of a symplectization of a contact manifold C which bounds a Liouville

domain D; see Definition 2.3 for more precise details. Such a contact cylinder

is index bounded if for each m > 0, there is a constant µm > 0 so that each

Reeb orbit in C of index in [−m,m] has length < µm (see Definition 5.23).

Proposition 6.7. Let X be a smooth projective variety satisfying c1(X)

= 0, and let A ⊂ X be an affine open subset. Let ρ : A −→ R be a partially

algebraic plurisubharmonic function as in Definition 6.2 so that −ddcρ extends

to a Kähler form ωX on X . Then for any compact subset K ⊂ A, there exists

an index bounded contact cylinder Č of (X,ωX) inside A−K whose associated

Liouville domain D satisfies K ⊂ D ⊂ A. Also Č contains a contact cylinder

Č0 ⊂ Č whose associated Liouville domain domain D0 contains D and where

−dcρ|D0 is a Liouville form associated to Č0.

The idea of the proof is to blow up X so that the complement of A is a

smooth normal crossing divisor. One then finds a nice symplectic neighborhood

of this divisor (after deformation) and constructs an index bounded contact

cylinder in this neighborhood. As a result we need some technical definitions

and lemmas about the symplectic geometry of normal crossing divisors.

Before that, we need a lemma about Conley-Zehnder indices of matrices.

Lemma 6.8. Let R2n be the standard symplectic vector space, and let L ⊂
R2n be a fixed linear Lagrangian subspace. Let A := (At)t∈[0,1] be a smooth

family of symplectic matrices on R2n so that At(x) = x for all x ∈ L. Then

CZ(A) ∈ [−2n, 2n].

Proof. Let x1, x2, . . . , xn, y1, . . . , yn be a basis of R2n so that the standard

linear symplectic form on it is Ωstd =
∑n

i=1 x
∗
i ∧ y∗i where x∗1, . . . , x

∗
n, y
∗
1, . . . , y

∗
n

is the corresponding dual basis. We can also assume that L = {y∗1 = y∗2 =

· · · = y∗n = 0}. Since At(xi) = xi for each i = 1, . . . , n, there exists a smooth

family of n× n symmetric matrices (Bt)t∈[0,1] so that

At =

Ç
id −Bt
0 id

å
∀ t ∈ [0, 1]
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with respect to the basis above, where id is the n×n identity matrix. Since the

space of symmetric n × n matrices is convex, we have that the above path of

matrices is homotopic relative to its endpoints to the catenation of the paths

A0 = (A0
t )t∈[0,1] and A1 = (A1

t )t∈[0,1], where

(6.8) A0
t :=

Ç
id −(1− t)B0

0 id

å
, A1

t :=

Ç
id −tB1

0 id

å
, t ∈ [0, 1].

Therefore by (CZ3) and (CZ4),

(6.9) CZ(A) = CZ(A0) + CZ(A1).

Also by (CZ3), CZ(A0) = −CZ((A0
1−t)t∈[0,1]), and hence by (CZ5) and equa-

tion (6.8),

CZ(A0) = −1

2
Sign(B0), CZ(A1) =

1

2
Sign(B1).

Combining this with equation (6.9) gives us

CZ((At)t∈[0,1]) =
1

2
(Sign(B1)− Sign(B0)) ∈ [−2n, 2n]. �

Definition 6.9 ([TMZ18, Def. 2.1]). Let (∆i)i∈S be a finite collection of

transversally intersecting closed codimension 2 symplectic submanifolds of a

compact symplectic manifold (W,ωW ) so that ∆I := ∩i∈I∆i is a symplectic

submanifold for all I ⊂ S. (Our convention is that if I = ∅, then ∆I =

W .) The symplectic orientation on ∆I is the orientation on ∆I induced by

the symplectic form. Let N∆I be the normal bundle of ∆I for each I ⊂ S.

The intersection orientation on ∆I is the orientation on ∆I coming from the

symplectic orientation on its normal bundle induced by the splitting N∆I =

⊕i∈IN∆i|∆I
and the symplectic orientation on M .

A symplectic crossings divisor or SC divisor inside a symplectic manifold

(W,ωW ) is a finite collection (∆i)i∈S of transversally intersecting closed sub-

manifolds of W as above so that ∆I is symplectic and so that the symplectic

orientation and the intersection orientation of ∆I agree for all I ⊂ S.

One of the main examples of an SC divisor to keep in mind is a union

of transversally intersecting complex hypersurfaces in a Kähler manifold. The

definition above should be thought of as a symplectic version of such a union

of complex hypersurfaces. This definition is more flexible and will enable us to

control what the symplectic structure looks like near ∪i∈S∆i after deforming

(∆i)i∈S . For instance, it would be nice for these ∆i’s to be symplectically

orthogonal to each other after deformation. The condition ensuring that the

symplectic and intersection orientation agree is crucial for such a deformation

to exist. An example where this does not happen is if W = T ∗R2 and if

∆1 is the graph of xdy and ∆2 the graph of ydx where x, y are the standard

coordinates on R2. These are two symplectic hypersurfaces which intersect
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negatively at the origin. There is no way of isotoping these linear symplectic

subspaces so that they intersect orthogonally with respect to the symplectic

form. A more sophisticated example where this orientation condition fails is

contained in [TMZ18, Example 2.7].

Definition 6.10. Let Q ⊂W be a submanifold of a manifold W . A tubular

neighborhood of Q is a smooth fibration πQ : UQ −→ Q so that

(1) UQ ⊂W is an open subset containing Q;

(2) there is a metric g on W so that πQ = πDQ ◦ exp−1, where

DQ := {v ∈ TW |x : x ∈ Q, g(v, v) < 1, g(v, w) = 0 ∀ w ∈ TQ|x}

is the unit disk normal bundle, πDQ : DQ −→ Q is the natural projection

map and exp : DQ −→W is the exponential map with respect to g so that

(3) exp is an embedding and exp(DQ) = UQ.

Recall that an Ehresmann connection on a smooth fiber bundle π : E−→B

is a subbundle H ⊂ TE so that Dπ|H|x : H|x −→ TB|π(x) is an isomorphism

for each x ∈ E. Such a connection is complete if for every smooth embedding

p : [0, 1] −→ B and every x ∈ π−1(p(0)), there is a unique lift p̃ : [0, 1] −→ E

of p tangent to H. In other words, points in E do not parallel transport to

infinity in finite time.

If π : E −→ B is a smooth fibration and Ω a closed 2-form on E making the

fibers of E symplectic, then the associated symplectic connection is defined to

be the Ehresmann connection consisting of vectors Ω-orthogonal to the fibers.

That is,

HΩ := {Q ∈ TE|x : x ∈ E, Ω(Q,A) = 0 ∀ A ∈ ker(Dπ)|x}.

Let I be a finite set. A symplectic U(1)I neighborhood of a symplectic sub-

manifold Q ⊂W of a symplectic manifold (W,ωW ) is a tubular neighborhood

πQ : UQ −→ Q of Q where

(1) the fibers are symplectic submanifolds symplectomorphic to
∏
i∈I Di(ε),

where Di(ε) ⊂ C is the open symplectic disk of radius ε labeled by i ∈ I;

(2) the fiber bundle πQ has structure group U(1)I :=
∏
i∈I U(1) given by

rotating such disks in the natural way; and

(3) the associated symplectic connection is complete, and the parallel trans-

port maps induced by the symplectic connection respect the above struc-

ture group. (In other words, parallel transport maps between fibers in a

U(1)I trivialization are elements of U(1)I .)

For I ′ ⊂ I, let U I
′
Q ⊂ UQ be the subset of points fixed under the U(1)I

′ ⊂ U(1)I

action. For each I ′ ⊂ I, the U(1)I
′
-bundle associated to πQ is the fibration

πI
′
Q : UQ −→ U I

′
Q whose restriction to each fiber in a U(1)I trivialization is the
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natural projection map ∏
i∈I
Di(ε) −→

∏
i∈I′

Di(ε)

and with induced structure group U(1)I
′
. This is naturally a symplectic U(1)I

′

neighborhood of U I
′
Q inside UQ.

A standard tubular neighborhood of an SC divisor (∆i)i∈S consists of a

symplectic U(1)I neighborhood πI : UI −→ ∆I for each I ⊂ S so that

(1) UI ∩ UI′ = UI∪I′ for all I, I ′ ⊂ S;

(2) πI′(UI) = UI ∩∆I′ for all I ′ ⊂ I ⊂ S; and

(3) the U(1)I
′
-bundle associated to πI is equal to πI′ |UI : UI −→ UI ∩∆I′ as

fiber bundles with structure groups U I
′
Q for all I ′ ⊂ I ⊂ S.

The radius of this standard tubular neighborhood is ε. The radial coor-

dinate ri : Ui −→ R corresponding to ∆i is the map whose restriction to each

fiber Di(ε) of a U(1){i}-trivialization of πi is the standard radial coordinate on

this disk.

Definition 6.11. Let (W,ωW ) be a closed symplectic manifold of dimension

2n, and let (∆i)i∈S be a symplectic SC divisor in W . Define W o := W −
∪j∈S∆j . Let θ ∈ Ω1(W o) satisfy dθ = ωW |W o . Let N be a neighborhood of

∪j∈S∆j which deformation retracts on to ∪j∈S∆j , and let β : N −→ [0, 1] be a

compactly supported smooth function equal to 1 near ∪j∈S∆j . Let ωc be the

compactly supported closed 2-form on N equal to ω near ∪j∈S∆j and d(βθ)

inside N ∩W o. Then since N deformation retracts onto ∪j∈S∆j , the Lefschetz

dual of ωc is equal to −
∑

j wj [∆j ] ∈ H2n−2(N ;R) for unique real numbers

(wj)j∈S . The wrapping number of θ around ∆j is defined to be wj for each

j ∈ S. We call (∆j)j∈S a negatively wrapped divisor if there exists a 1-form θ

on W o as above so that the wrapping number of θ around Wj is negative for

each j ∈ S.

The next lemma gives us an important example of a negatively wrapped

divisor.

Lemma 6.12. Let X be a complex projective variety, and let A ⊂ X be

a codimension 0 affine subvariety so that X − A is a union of transversally

intersecting complex hypersurfaces D1, . . . , Dl. Let ρ : A −→ R be an exhaust-

ing plurisubharmonic function on A as in Definition 6.2 so that −ddcρ extends

to a Kähler form ωX on X . Then (Di)
l
i=1 is a negatively wrapped divisor on

(X,ωX).

Proof. Let θ = −dcρ. We will show that the wrapping number of θ around

Di is negative for each i ∈ {1, . . . , l}. Fix such a Di. We will use a character-

ization of wrapping number in terms of embedded disks; see [McL16, Lemma
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5.5]. Let D ⊂ C be the closed unit disk, and let ι : D ↪→ X be a holomorphic

embedding so that

• ι−1(Di) = {0};
• ι(D) intersects Di transversally; and

• ι−1(Dj) = ∅ for each j 6= i.

Since ωX is a Kähler form and since D is contractible, there exists a smooth

function f : D −→ R so that ι∗ωX = −ddcf . Since −ddc(ι∗ρ− f) = 0, we get

that −dc(ι∗ρ−f) represents a de Rham cohomology class in H1(D−{0};R). By

[McL16, Lemma 5.5], this cohomology class determines the wrapping number

wi of θ around Di. Since de Rham cohomology classes in H1(D − {0};R) are

determined by integration around any loop wrapping once positively around

the origin, we get ([McL16, Lemma 5.5]):

(6.10) wi =
1

2π

∫
∂D
−dc(ι∗ρ− f).

Let (r, ϑ) be the standard polar coordinates on D, and let ∂r := ∂
∂r be the

unit radial vector field on D− {0}. Define

κ : D− {0} −→ R, κ := d(ι∗ρ− f) (∂r) .

Since ρ is an exhausting function, we have that ρ(z)− f(z) tends to infinity as

|z| tends to 0. Hence there exists η ∈ (0, 1) so that∫ 2π

0
κ(ηeiϑ)dϑ < 0.

Therefore ∫
{r=η}

−dc(ι∗ρ− f) = η

∫ 2π

0
κ(ηeiϑ)dϑ < 0.

Hence the integral (6.10) is negative, which implies that the wrapping number

of θ around Di is negative. �

Definition 6.13. Let W be a manifold of dimension 2n with an almost

complex structure J . The anti-canonical bundle of (W,J) is the complex line

bundle κ∗W := ∧nC(TW, J). Let (∆j)j∈S be a finite collection of transversally

intersecting codimension 2 submanifolds. Define W o := W − ∪j∈S∆j . Let

τ : κ∗W |W o −→ W o × C be a trivialization of the anti-canonical bundle of

(W o, J). Let N ⊂W be a neighborhood of ∪j∈S∆j which deformation retracts

on to ∪j∈S∆j , and let s be a smooth section of κ∗W |N transverse to 0 so that

s(x) := τ−1(x, 1) for all x outside a compact subset of N . Then [s−1(0)] =

−
∑

j aj [∆j ] ∈ H2n−2(N ;Z) for unique aj ∈ Z, j ∈ S. We define the τ -

discrepancy of ∆j to be aj for each j ∈ S. If it is clear that we are using

the trivialization τ (up to isotopy), we will call the τ -discrepancy of ∆j the

discrepancy of ∆j for each j ∈ S.
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The following lemma gives us an example of an SC divisor where the

discrepancy of its components are non-negative. Before we state the lemma,

we remind the reader of some important notions in algebraic geometry.

Definition 6.14. Let Y be a compact complex manifold of complex di-

mension n. We define the canonical bundle κY of Y to be the dual of the

anti-canonical bundle of Y . Let π : Y̌ −→ Y be a holomorphic map. We define

the relative canonical bundle of π to be

(6.11) κ‹Y /Y := κ‹Y ⊗ (π∗κY )∗.

For any subvariety F ⊂ Y̌ , we say that F is contracted by π if the dimension

of the subvariety π(F ) ⊂ Y is less than the dimension of F .

Recall that a divisor in Y is a formal Z-linear combination D =
∑l

i=1 aiDi

of codimension 1 subvarieties D1, . . . , Dl in Y . Such a divisor is effective

if ai ≥ 0 for each i = 1, . . . , l. The support supp(D) of D is the subset⋃
i∈{1,...,l},ai 6=0Di. The associated homology class [D] is the sum

∑l
i=1 ai[Di] ∈

H2n−2(Y ;Z), where [Di] is the fundamental class of Di; see [GH94, Ch. 0, §4].

We will define [D]∗ ∈ H2(Y ;Z) to be the Poincaré dual of [D]. Two divisors

are numerically equivalent if they represent the same homology class. The di-

visor line bundle correspondence gives us a one-to-one correspondence between

divisors E and pairs (L, s), where L is a line bundle and s a holomorphic sec-

tion of L; see [GH94, Ch. 1, §1]. We define (s) to be the divisor associated to

(L, s) under the divisor line bundle correspondence.

Under the divisor line bundle correspondence, we have that [(s)]∗ = c1(L)

([GH94, Ch. 1, §1])). Therefore if s and š are holomorphic sections of two

line bundles L and Ľ, then (s) is numerically equivalent to (š) if and only if

c1(L) = c1(Ľ).

Lemma 6.15. Let π : ‹X −→ X be a morphism of smooth projective vari-

eties over C. Let A ⊂ X , Ã ⊂ ‹X be Zariski dense affine subvarieties so that

(6.12) π|‹A : Ã −→ A

is an isomorphism. Suppose ‹X − Ã is a union of transversally intersecting

complex hypersurfaces D1, . . . , Dl. Let τ : κ∗X −→ X × C be a trivialization

of the anti-canonical bundle of X , and let τ̃ := τ ◦ (π|‹A) be the induced triv-

ialization of the anti-canonical bundle of Ã. Then the τ̃ -discrepancy of Di is

non-negative for each i = 1, . . . , l.

Proof. Let κ‹X and κX be the canonical bundles of ‹X and X respectively,

and let κ‹X/X be the relative canonical bundle of π. The Jacobian of π gives

us a holomorphic section s of κ‹X/X in the following way: By equation (6.11),

κ‹X/X is naturally isomorphic to Hom(κ∗‹X , π∗κ∗X), where κ∗‹X and κ∗X are the
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anti-canonical bundles of ‹X and X respectively; see Definition 6.13. Under

this identification, the section s is given by the map sending v1 ∧ · · · ∧ v1 ∈ κ∗‹X
to Dπ(v1) ∧ · · · ∧ Dπ(vn) ∈ π∗κ∗X . We have (s) =

∑l
i=1 biFi is an effective

divisor with the property that Fi is contracted by π for each i = 1, . . . , l. Since

(6.12) is an isomorphism, we get that Fi ⊂ ‹X − Ã for each i = 1, . . . , k. Hence

for each i = 1, . . . , k, there exists ji ∈ {1, . . . , l} so that Fi = Dji . Hence

(s) =
∑l

i=1 aiDi for some non-negative integers a1, . . . , al.

Since τ is a trivialization of the anti-canonical bundle of X, we get an

induced trivialization τ̌ : κX −→ X × C of the canonical bundle. (This is the

unique trivialization so that τ̌ ⊗ τ is the natural trivialization of κX ⊗ κ∗X .)

Let σ : X −→ κX be the unique smooth section satisfying τ̌(σ(x)) = (x, 1) for

each x ∈ X. By (6.11), we have κ‹X = κ‹X/X ⊗ π∗κX , and hence s ⊗ π∗σ is a

smooth section of κ‹X . Let s′ be a C∞ small perturbation of s⊗ π∗σ which is

transverse to 0 and which is equal to s⊗ π∗σ outside a small neighborhood of

∪li=1Di. Then since σ is nowhere zero, we get that [(s′)−1(0)] is homologous

to
∑l

i=1 ai[Di]. Since k∗‹X is dual to kX , this implies that the τ -discrepancy of

Di is ai ≥ 0 for each i = 1, . . . , l. �

Definition 6.16. Let (W,ωW ) be a closed symplectic manifold of dimension

2n, and let (∆i)i∈S be a symplectic SC divisor in W . Define W o := W −
∪j∈S∆j . Let J be an ωW -tame almost complex structure, and let τ be a

trivialization of the anti-canonical bundle of (W o, J).

A contact cylinder in Č ⊂ W o is a contact cylinder as in Definition 2.3

with the symplectic manifold (M,ω) replaced by (W o, ωW ). We say that Č is

index bounded if it is index bounded in the sense of Definition 5.23 with (M,ω)

replaced by (W o, ωW ) and where the symplectic trivialization used along each

Reeb orbit is induced by τ and where we consider all Reeb orbits (not just null

homologous ones).

Proposition 6.17. Let (∆i)i∈S be a negatively wrapped symplectic SC

divisor in a closed symplectic manifold (W,ωW ), and let U be an open neigh-

borhood of ∪j∈S∆j in W . Let W o, J, τ be as in Definition 6.16 above. Let

ρ : W − ∪i∈S∆i −→ R be an exhausting smooth function. Suppose that the

τ -discrepancy of ∆j is non-negative for each j ∈ S. Then there is an index

bounded contact cylinder Č contained in U ∩ W o whose associated Liouville

domain contains W − U and so that Č contains a regular level set of ρ.

Proof of Proposition 6.17. Let wj , aj be the wrapping number and

τ -discrepancy of ∆j for each j ∈ S. By [McL12a, Lemmas 5.3 and 5.14] (or by

[TMZ18, Th. 2.12]) we can assume, after smoothly deforming (∆i)i∈S through

a family of symplectic SC divisors (which does not change the symplecto-

morphism type of the complement (W o, ωW ) by [McL12a, Lemma 5.15]), that
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(∆i)i∈I admits a standard tubular neighborhood as in Definition 6.9. Therefore

we let πI : UI −→ ∆I , I ⊂ S and ri : Ui −→ R, i ∈ S be as in Definition 6.9.

We can also assume after shrinking the radius ε that this standard tubular

neighborhood is contained in U . Also the constants aj , wj do not change un-

der isotopy for all j ∈ S, so we can still assume that wj < 0 and aj ≥ 0 for all

j ∈ S. Let ∆̇I := ∆I − ∪j∈S−I∆j , U̇I := UI ∩W o and

π̇I : U̇I −→ ∆̇I , π̇I(x) := πI(x)

for all I ⊂ S. The map π̇I is a symplectic fibration with fibers symplectomor-

phic to
∏
i∈I Ḋi(ε) where Ḋi(ε) := Di(ε)−0 and whose structure group is given

by the natural action of U(1)I .

By the proof of [McL16, Lemma 5.18], we can find a smooth function

g : W −→ R with the property that θ + dg restricted to any fiber
∏
i∈I Ḋi(ε)

of π̇I is
∑

i∈I(
1
2r

2
i + 1

2πwi)dϑi after shrinking ε where (ri, ϑi) are the natural

polar coordinates on Di(ε). Choose t′ > 0 so that

(6.13) et
′ ∈
Ç

1,
(1

2ε)
2 + 1

πwi

ε2 + 1
πwi

å
∀ i ∈ I.

Choose ε̌ ∈ (0, 1
2ε) small enough so that

(6.14) ∪i∈I
ß
r2
i < (ε̌2 +

1

π
wi)e

−t′ − 1

π
wi

™
− ∪i∈I{r2

i ≤ ε̌2}

contains a regular level set of ρ. Let f : [0, ε2) −→ R be a smooth function so

that f(x) = 1− x for all x ≤ 1
2 ε̌

2, f |[ε̌2,ε2] = 0, f ≥ 0, f ′ ≤ 0, f ′|(0,ε̌2) < 0 and

f ′′ ≥ 0 (see Figure 17).

Define UoI := UI −
⋃
j∈S−I Uj and U̇oI := UoI ∩ U̇I . Let H : W −→ R be

the unique function which satisfies H(x) =
∑

i∈I f(r2
i ) for all x ∈ UoI and all

I ⊂ S.
Let ∂

∂ri
and ∂

∂ϑi
be the unique vector fields on U̇i which are tangent to the

fibers of π̇I and equal to ∂
∂ri

and ∂
∂ϑi

inside the fibers Ḋi(ε) of π̇i respectively

where (ri, ϑi) are standard polar coordinates on Di(ε). Let QI ⊂ TUI be the

ε2ε̌2
1
2 ε̌

2

Figure 17. Graph of f .
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natural symplectic connection for πI as in Definition 6.10. Since the dθ-dual

Xθ+dg of θ + dg inside U̇oI is equal to∑
i∈I

Å
1

2
ri +

wi
2πri

ã
∂

∂ri
+ EI =

∑
i∈I

(
r2
i +

wi
π

) ∂

∂(r2
i )

+ EI ,

where EI is a vector field tangent to QI for all I ⊂ S, we get that dH(Xθ+dg) >

0 inside H−1((0,∞))∩∪I⊂SU̇I . Hence Cδ := H−1(δ) is a compact submanifold

of U with contact form αδ := (θ + dg)|H−1(δ) for all sufficiently small δ > 0.

For each x ∈W o, let ψt(x) be the time t flow of x along −Xθ+dg for all t (when

defined). Since the region (6.14) contains a regular level set of ρ, we have by

equation (6.13) that the contact cylinder with image

Čδ :=
⋃

t∈[0,t′]

ψt(Cδ)

contains a regular level set of ρ for all sufficiently small δ > 0. Equation (6.13)

also ensures that this contact cylinder is contained in U . To finish our lemma

we will now show that the contact cylinder Čδ is index bounded for all δ > 0

small enough by computing the Conley-Zehnder indices of the Reeb orbits of

αδ for δ > 0 small enough.

Let Rδ be the Reeb vector field of αδ. Inside U̇oI , we have that XH =

2
∑

i∈I f
′(r2

i )
∂
∂ϑi . Define

b : U̇oI −→ R, b :=
∑
i∈I

f ′(r2
i )
(
r2
i +

wi
π

)
.

Then

(6.15) Rδ =
1

(θ + dg)(XH)
XH =

2

b

∑
i∈I

f ′(r2
i )

∂

∂ϑi
.

In particular, a Reeb orbit which starts inside U̇oI ∩H−1(δ) stays inside U̇oI ∩
H−1(δ), and all such Reeb orbits are contained in fibers of π̇I |H−1(δ). We will

show that the Conley-Zehnder index of every Reeb orbit of αδ is a bounded

above by a linear function of its length whose slope is negative when δ > 0

is sufficiently small. This will be sufficient for us to show that Čδ is index

bounded for all δ > 0 sufficiently small.

Now let ζ : R/λZ −→ H−1(δ) be a Reeb orbit of αδ of length λ . Now ζ is

contained inside π̇−1
I (q) for some q ∈ ∆I − ∪j∈S−IUj and I ⊂ S, and so there

exists a smooth map ζ̌ : D −→ π−1
I (q) from the closed unit disk D ⊂ C so that

ζ̌(e2πit) = ζ(λt) for all t ∈ [0, 1]. Let di ∈ Z be the intersection number of ζ̌

with ∆i ∩ π−1
I (q) inside π−1(q) for each i ∈ I. Define CZ(ζ) to be the Conley-

Zehnder index of ζ inside W o, and let CZ(ζ̌) be the Conley-Zehnder index

of ζ inside a small neighborhood of π−1
I (q); i.e., we think of a portion of our
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contact cylinder containing this orbit as a contact cylinder in a neighborhood

of π−1
I (q). By (CZ1), (CZ2) and (CZ3) we have

CZ(ζ) = CZ(ζ̌) + 2
∑
i∈I

diai.

By equation (6.15) combined with the fact that f ′(f−1(x)) < 0 for all small

x > 0, we see that di < 0 for all i ∈ I and that the length of the Reeb orbit

ζ is bounded below by a positive constant times −
∑

i∈I di. Therefore it is

sufficient for us to show that CZ(ζ) is less than or equal to some fixed linear

function of
∑

i∈I di of positive slope.

Let T := T (π−1
I (q)) ⊂ TW be the tangent space of the fiber containing ζ,

and let T⊥ ⊂ TW be the set of vectors which are ωW orthogonal to T . Let

x1, y1, . . . , x|I|, y|I| be symplectic coordinates of π−1
I (q) coming from a U(1)|I|

trivialization of this fiber, and let J be the natural complex structure coming

from this trivialization. These coordinates induce a symplectic trivialization

τT : ζ∗T −→ R/λZ × C|I| of ζ∗T . Define Kδ := ker(αδ) ∩ T ⊂ T , and let

K⊥δ ⊂ T |π̇−1
I (q) be the symplectic vector subspace of T consisting of vectors

which are ωW |T -orthogonal to Kδ. Since Rδ is contained in K⊥δ and K⊥δ is a

two-dimensional vector bundle, there is a unique, up to homotopy, trivialization

τRδ : K⊥δ −→ π̇−1
I (q) × C of K⊥δ which maps Rδ to the constant section

whose value is i ∈ C. Hence there is a symplectic trivialization τ̌ : ζ∗Kδ −→
R/λZ× C|I|−1 so that τ̌ ⊕ τRδ gives us a trivialization of ζ∗T = ζ∗(Kδ ⊕K⊥δ )

homotopic to τT .

Let τT⊥ : ζ∗T⊥ −→ R/λZ × Cn−|I| be a trivialization of ζ∗T⊥ which is

a restriction of a trivialization of T⊥. (Such a trivialization is unique up to

homotopy since π−1
I (q) is contractible.) Then

(6.16) τ̌ ⊕ τT⊥ : ζ∗(Kδ ⊕ T⊥) = ζ∗ ker(αδ) −→ R/λZ× Cn−1

is a trivialization of ζ∗ ker(αδ). This is the trivialization we need in order to

compute CZ(ζ̌) since the trivialization τRδ ⊕ τ̌ ⊕ τT⊥ of ζ∗TW extends over

the disk ζ̌∗TW after identifying the boundary of ∂D with R/λZ in the natural

way as explained earlier.

If φδt : H−1(δ) −→ H−1(δ) is the time t flow of Rδ, then its linearization

Dφt : ker(αδ)|ζ(0) −→ ker(αδ)|ζ(t) gives us a family of symplectic matrices

(At)t∈[0,λ] with respect to the trivialization (6.16). Equation (6.15) tells us

that Dφδt respects the splitting ζ∗ ker(αδ) = ζ∗Kδ ⊕ ζ∗T⊥ and hence At =

Bt ⊕ Ct for some family of matrices (Bt)t∈[0,λ] and (Ct)t∈[0,λ] with respect to

the trivializations of ζ∗Kδ and ζ∗T⊥. Also equation (6.15) tells us that Ct = id

for all t ∈ [0, λ] after homotoping τT⊥ appropriately. By (CZ6), we have that

CZ((Ct)t∈[0,λ]) = 0. Hence by (CZ2), all we need to do is compute the Conley-

Zehnder index of (Bt)t∈[0,λ].
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In order to compute CZ((Bt)t∈[0,λ]) we will compute the Conley-Zehnder

index with respect to an alternative trivialization of Kδ and relate it to the

trivialization τ̌ above. Choose a total ordering on I. This means we have a

natural identification I = {1, . . . , l}. Define

Ři :=
(
2rlf

′(r2
l )
) ∂

∂ri
−
(
2rif

′(r2
i )
) ∂

∂rl
,

Θi :=

Å
1

2
r2
l +

1

2π
wl

ã
∂

∂ϑi
−
Å

1

2
r2
i +

1

2π
wi

ã
∂

∂ϑl

(6.17)

for all i ∈ {1, . . . , l − 1}. Let L be the span of Θ1, . . . ,Θl−1 and L⊥ the span

of Ř1, . . . , Řl−1. Since Kδ = ker(αδ) = ker(θ + dg) ∩ ker(dH), we get that

Ř1,Θ1, . . . , Řl−1,Θl−1 is a basis for Kδ. The problem with this basis is that

it is not a symplectic basis. However since L and L⊥ are Lagrangian, there is

a new basis R1, . . . , Rl−1 of L⊥ so that R1,Θ1, . . . , Rl−1,Θl−1 is a symplectic

basis of Kδ. Since the Poisson bracket of Rδ with each of Θ1, . . . ,Θl−1 is

zero by equation (6.15), we have that the flow of Rδ sends Θi to Θi for each

i = 1, . . . , l − 1. The linearization Dφδt |Kδ : Kδ|ζ(0) −→ Kδ|ζ(t) of the Reeb

flow φδt of Rδ is a family of symplectic matrices (Wt)t∈[0,λ] with respect to the

symplectic basis R1,Θ1, . . . , Rl−1,Θl−1. Since Wt(x) = x on L with respect

to this basis for all t ∈ [0, λ], we have by Lemma 6.8 that CZ((Wt)t∈[0,λ]) ∈
[−2l − 2, 2l + 2] ⊂ [−2n+ 2, 2n− 2].

Let τ̂ : ζ∗Kδ −→ R/λZ × Cl−1 be the trivialization of ζ∗Kδ induced by

the symplectic basis R1,Θ1, . . . , Rl−1,Θl−1. Then τ̂ ⊕ τRδ is isotopic to the

trivialization induced by the symplectic basis

1

r1

∂

∂r1
,
∂

∂θ1
, . . . ,

1

rl

∂

∂rl
,
∂

∂θl
.

Hence the bundle automorphism τ̌ ◦ τ̂−1 gives us a family of symplectic ma-

trices parametrized by [0, λ] whose Conley-Zehnder index is 2
∑

i∈I di. Hence

by (CZ1), (CZ2) and (CZ3),

CZ((Bt)t∈[0,λ]) = CZ((Wt)t∈[0,λ]) + 2
∑
i∈I

di.

Hence by (CZ2), we get that

CZ((At)t∈[0,λ]) = CZ((Bt)t∈[0,λ]) + CZ((Ct)t∈[0,λ] = 2
∑
i∈I

di + CZ((Wt)t∈[0,λ]).

Hence
CZ(ζ) = 2

∑
i∈I

(ai + 1)di + CZ((Wt)t∈[0,λ]),

which is bounded above by a linear function of length of ζ with negative slope

since we have CZ((Wt)t∈[0,1]) ∈ [−2n + 2, 2n − 2]. Therefore Č := Čδ is

index bounded. The associated Liouville domain of Č is contained in W o and

contains K since its complement is contained in ∪i∈SUi. �
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Proof of Proposition 6.7. By [Hir64], we can blow up X along smooth

subvarieties above X −A giving us a variety ‹X so that the preimage of X −A
is a smooth normal crossing variety. Let Bl : ‹X −→ X be the blowdown

map. Choose an algebraic plurisubharmonic function ρ̃ : A −→ R so that

−ddc(Bl∗(ρ̃)) extends to a Kähler form ω‹X on ‹X; i.e., ρ̃ = −ddc log(|s|) for

some appropriate section s of an ample line bundle on ‹X with an appropriate

Hermitian metric. By Corollary 6.6 there are constants 0 < δ � T � 1 and

a compact set Q ⊂ A containing K and a plurisubharmonic function ρ̂ on A

satisfying

(1) ρ̂|Q = ρ|Q;

(2) ρ̂ = ρ+ δρ̃ outside a large compact set; and

(3) for all x ∈ A, the time T flow of x along −∇ρ̂ρ̂ is contained in Q and is

disjoint from K if, in addition, x /∈ Q.

Let φT : A −→ A be the time T flow of −∇ρ̂ρ̂. By Lemmas 6.12 and 6.15

combined with Proposition 6.17, we can find an index bounded contact cylinder

Č1 ⊂ Bl−1(A) with respect to the symplectic form Bl∗ωX + δω‹X , which is

disjoint from Q, whose associated Liouville domain contains Q, and which

contains a regular level set ρ̂−1(C) for some C ∈ R. Then Č := φT (Bl(Č1)) ⊂
A is an index bounded contact cylinder with respect to ωX since ωX |Q = ω‹X |Q
and since both of these symplectic forms are Kähler. Also the Liouville domain

associated to Č contains K and Č contains C0 := φT (Bl(ρ̂−1(C))), which is a

hypersurface transverse to ∇ρρ bounding a region containing D. By a Moser

argument ([MS98, Exercise 3.36]), we can enlarge Č slightly so that it contains

a contact cylinder Č0 := [1 − ε0, 1 + ε0] × C0 where {0} × C0 = C0. The

associated Liouville domain D0 contains D, and −dcρ|D0 is a Liouville form

associated to Č0. �

6.3. Divisors are stably displaceable. We recall from Section 1.3 that (M,ω)

is a compact symplectic manifold. However the results of this section also work

when M is non-compact. We also do not require that (M,ω) satisfy any other

conditions, such as the Chern class condition c1(M,ω) = 0.

Definition 6.18. A partly stratified symplectic subset S of (M,ω) is a

subset equal to a disjoint union of subsets S1, . . . , Sl of M so that for each

j ∈ {1, . . . , l},

• ∪i≤jSi is a compact subset of M ; and

• Sj is a proper codimension ≥ 2 symplectic submanifold of M − ∪i<jSi
without boundary.

We call the subsets S1, . . . , Sl the strata of S.
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S × T ∗T

ι(S × T ∗T) φVt (ι(S × T ∗T))

V

V0V0

Vt

Vt

S × T

Figure 18. Picture of V and Vt, t ∈ R.

Example 6.19 ([Whi65, Th. 19.2]). If M is a Kähler manifold, then any

compact codimension ≥ 1 subvariety of M is a partly stratified symplectic

subset.

Proposition 6.20. Any partly stratified symplectic subset is stably dis-

placeable as in Definition 5.11.

We have the following immediate corollary:

Corollary 6.21. Any compact subvariety of a Kähler manifold of posi-

tive codimension is stably displaceable.

The rest of this subsection is devoted to the proof of Proposition 6.20.

Throughout this subsection we will let (σ, τ) be the natural Darboux coor-

dinates on T ∗T = R × T, where σ is the projection map to R and τ is the

projection map to T. We will also let (M̌, ω̌) be the symplectic manifold

(M × T ∗T, ω + dσ ∧ dτ).

Let us first give a sketch of the proof of Proposition 6.20. It would be

nice if one could displace S × T using the symplectic vector field V := ∂
∂σ .

However this is not a Hamiltonian vector field. What we wish to do is to

subtract another time dependent symplectic vector field Vt, t ∈ R from V so

that V − Vt is Hamiltonian and so that the time T flow of S ×T along V − Vt
is a bounded distance from the time T flow of S × T along V for some large

T ∈ R. To do this, we first “curl up” S × T ∗T into a small neighborhood of

S × T. In other words, we find an appropriate symplectic embedding ι of a

neighborhood N of S×T ∗T into a relatively compact subset of M×T∗T. This

is done via an explicit embedding technique from [EM02, Lemma 12.1.2]. We

then define Vt to be an appropriate extension of (φVt )∗(ι∗V ), t ∈ R to M̌ , where

φVt , t ∈ R is the flow of V (see Figure 18). Then V − Vt is the Hamiltonian

vector field displacing S × T in M × T ∗T. This completes the sketch of the

proof.
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If S has only one stratum (i.e., S is a symplectic submanifold), then the

methods of [LS94] and [G0̈8, §4.3] can be used to displace S × T instead.

However it is hard to see how these methods could be used when S has singu-

larities. This is due to the fact that near certain singular points p of S (such

as normal crossing points), there is no vector field which can infinitesimally

displace a neighborhood of p in S from S. Also there are examples which seem

difficult to infinitesimally displace. For instance, a C∞ generic Hamiltonian

on CP2× T ∗T cannot displace (A∪B)×T by an infinitesimally small amount

where A,B ⊂ CP2 are distinct complex lines.

Before we prove Proposition 6.20, we need some preliminary definitions

and lemmas. We will first provide a criterion for Hamiltonian displacement in

terms of “curled up” symplectic embeddings.

Definition 6.22. For each ν > 0, define

M̌<ν := {(x, (σ, τ)) ∈ M̌ : |σ| < ν}.

Let Q ⊂M be a subset. A weak curled up embedding of Q× T ∗T consists of a

neighborhood N of Q× T ∗T in M̌ and a symplectic embedding ι : N ↪→ M̌<1

so that ι(y) = y for all y in a neighborhood of N ∩ (M × T) ⊂ N . A curled

up embedding of Q × T ∗T is a weak curled up embedding as above with the

additional property that the map H1(N ;R) −→ H1(N ∩ (M × T);R) induced

by the inclusion map is injective.

Lemma 6.23. Let Q ⊂ M be a compact subset of M so that Q × T ∗T
admits a curled up embedding. Then Q is stably displaceable.

Proof. Let ι, N be as in Definition 6.22 above. Let V := ∂
∂σ . We wish

to construct Vt, t ∈ R as described above. Define ‹V := ι∗(V ). Let φVt be

the time t flow of V for each t ∈ R, and similarly define φ
‹V
t (when defined).

Since ι(y) = y for all y ∈ M̌ near N ∩ (M × T), we get that the closed

1-form β(−) := ω̌(V |ι(N) − ‹V ,−) vanishes near N ∩ (M × T). Combining

this with the fact that the map H1(N ;R) −→ H1(N ∩ (M × T);R) induced

by the inclusion map is injective, we have that β is exact. Hence V |ι(N) − ‹V
is a Hamiltonian vector field on ι(N) ⊂ M̌ . Let Ȟ : ι(N) −→ R be the

corresponding Hamiltonian. Let ρ : ι(N) −→ [0, 1] be a smooth compactly

supported function whose restriction to a small neighborhood of the relatively

compact set ‹Q := ι((Q× T ∗T) ∩ M̌<3) is 1, and define‹H : M̌ −→ R, ‹H(y) :=

{
ρ(y)Ȟ(y) if y ∈ ι(N),

0 otherwise.

Define Ht := (φVt )∗(‹H) for each t ∈ R. Note that the vector field Vt in the

proof sketch above is just V − XHt . Our claim is that H := (Ht)t∈R is the
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A

M × T

Q× T ∗T
N

M̌<N |A

Figure 19. Picture of M̌<N |A.

Hamiltonian which displaces Q. Let φHt be the time t flow of H for each t ∈ R.

Near φVt (‹Q), we have

XHt = (φVt )∗(X‹H) = (φVt )∗(V − ‹V ) = V + (φVt )∗(−‹V )

for all t ∈ R. Hence for each y ∈ Q×T, φHt (y) = φVt (φ−
‹V

t (y)) for all y ∈ Q×T
and t ∈ [0, 3]. Combining this with the fact that φVt (φ−

‹V
t (y)) ∈ φVt (M̌<1) for

all y ∈ Q × T and φV3 (M̌<1) ∩ M̌<1 = ∅, we get φH3 (Q × T) ∩ (Q × T) = ∅.
Hence Q is stably displaceable. �

Definition 6.24. Let A ⊂M × T be a subset. For any function f : A −→
R ∪ {∞}, define

M̌<f |A := {(x, (σ, τ)) ∈ A× T ∗T : |σ| < f(x, τ)} ⊂ M̌.

Let N ⊂ M̌ be an open subset containing A. Define

(6.18) fN : A −→ R ∪ {∞}, fN (a) := sup{σ > 0 : {a} × [−σ, σ] ⊂ N};

see Figure 19. We define

M̌<N |A := M̌<fN |A.

If A = M × T, we define

M̌<N := M̌<N |A.

Lemma 6.25. The function fN from Definition 6.24 is lower semi-con-

tinuous. Hence M̌<N |A is an open subset of M̌ if A ⊂M × T is open.

Proof of Lemma 6.25. Let a ∈ A, and let (ai)i∈N be a sequence of points

in A converging to a. Let σ > 0 satisfy σ < fN (a). Since N ⊂ M̌ is an open
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subset and since {a}× [−σ, σ] is compact, we have that {aj}× [−σ, σ] ⊂ N for

all j sufficiently large. Hence σ < fN (aj) for all j sufficiently large. Hence

lim inf
j→∞

fN (aj) ≥ lim inf
σ<fN (a)

σ = fN (a).

Hence fN is lower semi-continuous. �

Lemma 6.26. Let Q ⊂M be a compact subset of M so that Q× T ∗T ad-

mits a weak curled up embedding. Then Q×T ∗T admits a curled up embedding.

Proof. Let ι : N ↪→ M̌<1 be a weak curled up embedding of Q×T ∗T. The

claim is that ι|(M̌<N ) is a curled up embedding. To prove this, it is sufficient

to show that M̌<N deformation retracts onto E. This deformation retraction

is given by

Φt : M̌<N −→ M̌<N , Φ(x, (σ, τ)) := (x, ((1− t)σ, τ)), t ∈ [0, 1]. �

We need the following Moser lemma in order to construct appropriate

weak curled up embeddings of stratified symplectic subsets. The proof of this

lemma is a slight modification of [MS98, Lemma 3.14].

Lemma 6.27. Let (W,ωW ), (W̌ , ωW̌ ) be symplectic manifolds, let Q ⊂W
be a symplectic submanifold, and let U,N ⊂ W open sets satisfying U ⊂ N .

Let ιN : N ↪→ W̌ , ιQ : Q ↪→ W̌ be symplectic embeddings so that

(1) ιN is a codimension 0 symplectic embedding ;

(2) ιN |N∩Q = ιQ|N∩Q; and

(3) the pullback via ιQ of the normal bundle of ιQ(Q) is isomorphic as a sym-

plectic vector bundle to the normal bundle of Q in W , and this isomorphism

coincides with the isomorphism induced by ιN along N ∩Q.

Then there is a neighborhood V ⊂ W of Q and a codimension 0 symplectic

embedding ι : U ∪ V ↪→ W̌ so that ι|U = ιU and ι|Q = ιQ (see Figure 20).

Lemma 3.1 in [MS98] requires that Q be compact. However this is really

not needed.

Proof of Lemma 6.27. After removing ιQ(Q)− ιQ(Q) from W̌ we can as-

sume that ιQ is a proper embedding. Choose complete metrics g and ǧ on W

and W̌ respectively so that ι∗N ǧ = g near U , let NQ be the symplectic normal

bundle of Q in W , and let E −→ ιQ(Q) be the symplectic normal bundle of

ιQ(Q) in W̌ . Let expW : NQ −→ W and expW̌ : E −→ W̌ be the exponential

maps using g and ǧ respectively. Let φ : NQ −→ ι∗QE be the isomorphism

described in (3) above. Choose small tubular neighborhoods A ⊂ NQ and

B ⊂ E of the zero section so that expW |A and expW̌ |B are smooth embed-

dings and so that φ(A) = B. We have a smooth family of symplectic forms
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N

U
QV

Figure 20. Embedding of U ∪ V into W̌ .

ωt := (1− t)((expW̌ )∗φ∗ exp∗W ωW ) + tωW̌ , t ∈ [0, 1]

on ‹B := expW̌ (B) after shrinking A and B. Now ωt is equal to ωW̌ along

TW̌ |ιQ(Q) and also along some neighborhood U ′ ⊂ ‹B of U∩‹B for each t ∈ [0, 1].

After shrinking U ′, A and B, we can assume that U ′ deformation retracts onto

U ′∩ιQ(Q). Hence we can find a smooth family of 1-forms σt ∈ Ω1(‹B), t ∈ [0, 1]

satisfying

• d
dtωt = dσt; and

• σt(v) = 0 for each v ∈ Tx‹B, x ∈ U ′ ∪ ιQ(Q) and t ∈ [0, 1]

after shrinking U ′ slightly again. Let (Xt)t∈[0,1] be a smooth family of vector

fields satisfying σt + ιXtωt = 0 for each t ∈ [0, 1]. Let ψt be the time t flow of

(Xt)t∈[0,1] for each t ∈ [0, 1] (if it exists). For each x ∈ ιQ(Q), we have that

Xt = 0 at x since σt = 0 at x. Therefore for each x ∈ ιQ(Q), there is a small

neighborhood Vx ⊂ ‹B of x so that the time t flow ψt(y) is well defined for

each y ∈ Vx and t ∈ [0, 1]. Hence the time t flow ψt(y) is well defined for each

y ∈ V := ∪x∈QVx and each t ∈ [0, 1]. Define

ι : U ∪ V ↪→ W̌ , ι(x) :=

{
ιN (x) if x ∈ U,
ψ1(expW̌ (φ(exp−1

W (x))) if x ∈ V.

This is a symplectic embedding. Also since ψ1(x) = x for all x ∈ (U ∩ ‹B) ∪
ιQ(Q), we have ι|U = ιU and ι|Q = ιQ. �

The proof of the following lemma is identical to the proof of [EM02,

Lemma 12.1.2] so we will omit it. However we will give an idea of the proof

since it will be a crucial ingredient in the proof of Proposition 6.20 below.

Lemma 6.28. Let Q be a symplectic submanifold of a symplectic manifold

(W,ωW ) of positive codimension, and let U,N ⊂ Q be open sets so that U ⊂ N .

Let αt ∈ Ω1(Q), t ∈ [0, 1] be a smooth family of 1-forms so that ωt := ωW |TQ+
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dαt, t ∈ [0, 1] is a smooth family of symplectic forms on Q and so that αt|N = 0

for all t ∈ [0, 1] and α0 = 0. Then there is a smooth family of symplectic

embeddings ιt : Q ↪→ (W,ωW ), t ∈ [0, 1] which are arbitrarily C0 close to ι0 so

that ι∗1ωW = ω1, ι0 = idQ and so that ι0|U = ιt|U for all t ∈ [0, 1].

We will now give a hint at why the lemma above is true. The details are

contained in [EM02, Lemma 12.1.2]. First of all, we can C1 approximate the

family of 1-forms αt, t ∈ [0, 1] by a new family of 1-forms α′t, t ∈ [0, 1] so that

• α′0 = α0, α′1 = α1;

• for each compact codimension 0 submanifold D ⊂ Q, the function

[0, 1] −→ Ω1(D), t→ α′t|D

is piecewise linear; and

• for each t ∈ [0, 1] where d
dtα
′
t|D is well defined, there is a relatively compact

open neighborhood ND of D so that d
dtα
′
t|ND is equal to rds, where r, s are

smooth functions on Q with compact support in ND − U .

See [EM02, 12.1.3]) for more details. After a bit more work, it is then sufficient

to prove Lemma 6.28 when αt = trds for some smooth compactly supported

functions r, s on Q. In this special case, the embeddings ιt, t ∈ [0, 1] are

obtained by using the following lemma:

Lemma 6.29 ([EM02, 12.1.5] (Symplectic Twisting Lemma)). Let (Q,ωQ)

be a symplectic manifold, and let D2(ε) ⊂ C be the open disk of radius ε with the

standard symplectic form dx ∧ dy. Then for any compactly supported smooth

functions r, s on Q, there is a smooth function φ : Q −→ D2(ε) so that the

function

Φ : Q −→ Q× D2(ε), Φ(q) := (q, φ(q))

satisfies Φ∗(ωQ + dx ∧ dy) = ωQ + dr ∧ ds.

Proof. In order to prove this lemma, one just needs to find φ so that

φ∗dx ∧ dy = dr ∧ ds. If ε > 0 was really large, then we could just choose

φ = (r, s). However ε could be really small and such a map would not be well

defined. But this can be corrected by first finding a smooth area preserving

immersion τ : D2(R)# D2(ε) for R large and then letting φ = τ ◦ (r, s). Such

an immersion is illustrated in Figure 21 below. Here we should think of the

disk D2(R) as being “curled up” inside the disk D2(ε). Then φ = τ ◦ (r, s) for

R large has the properties we want. �

Definition 6.30. Let Q be a manifold and let U ⊂ N ⊂ Q be open subsets.

A smooth embedded homotopy to N rel U is a smooth family of embeddings

ιt : Q ↪→ Q, t ∈ [0, 1] so that

(1) ι0 = id;
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D2(ε)

D2(R)

Figure 21. Immersion τ .

(2) ι1 is a diffeomorphism onto N ; and

(3) ιt(u) = u for all u ∈ U and t ∈ [0, 1].

Lemma 6.31. Let (W,ωW ), (W̌ , ωW̌ ) be symplectic manifolds, and let

Q ⊂W be a symplectic submanifold of positive codimension. Let U,N ⊂ W

be open sets so that U ⊂ N , and define U ′ := U ∩ Q and N ′ := N ∩ Q.

Suppose also that U ′ is a codimension 0 submanifold of Q with the property

that H2(Q;R) −→ H2(U ′;R) is an injection, and suppose Q admits a smooth

embedded homotopy to N ′ rel U ′. Let ιN : N ↪→ W̌ be a codimension 0 sym-

plectic embedding. Then there are a neighborhood V ⊂ W of Q − U ′ and a

codimension 0 symplectic embedding ι : U ∪ V ↪→ W̌ so that ι|U = ιN |U .

Proof. Let ιt : Q −→ Q, t ∈ [0, 1] be our smooth embedded homotopy

to N ′ rel U ′. Since U ′ ⊂ N ′ is a codimension 0 submanifold, we can modify

(ιt)t∈[0,1] so that it is a smooth embedded homotopy to N ′ rel Y where Y ⊂ N ′

is a neighborhood of U ′. After shrinking Y , we can also ensure that Y ⊂ N ′ is a

codimension 0 submanifold and that the inclusion map U ′ ↪→ Y is a homotopy

equivalence. Let ωt := ι∗1−tωW for each t ∈ [0, 1]. Since Y is a submanifold of

Q and since H2(Q;R) −→ H2(Y ;R) is an injection, there is a smooth family

of 1-forms (αt)t∈[0,1] on Q satisfying

• ωt = ω0 + dαt; and

• αt|Y = 0 for all t ∈ [0, 1] and α0 = 0.

Choose an open subset Ǔ ⊂ Q so that U ′ ⊂ Ǔ and Ǔ ⊂ Y . Then by

Lemma 6.28, there is a smooth family of symplectic embeddings

νt : Q− U ′ ↪→ (W̌ − ιN (U), ωW̌ ), t ∈ [0, 1]

so that ν0(y) = ιN (ι1(y)) for each y ∈ Q, νt(y) = ιN (y) for all y ∈ Ǔ − U ′
and ν∗1ωW̌ = ω1. Hence by Lemma 6.27, there is a neighborhood V ⊂ W of
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Ǔ

Ň

Ň

σ = f̃(x, τ)U

S<j

S<j

M × T

Figure 22. Picture of M̌<f |Sj×T.

Q − U ′ and a codimension 0 symplectic embedding ι : U ∪ V −→ W̌ so that

ι|U = ιN |U and ι|Q = ν1. �

Lemma 6.32. Every partly stratified symplectic subset S ⊂ M admits a

weak curled up embedding.

Proof. Let S1, . . . , Sl be the strata of S. Suppose (by induction) that

S<j := ∪i<jSi admits a weakly curled up embedding ι̌ : Ň ↪→ M̌<1 for some

j ∈ {1, . . . , l}. Since ι̌(y) = y for each y in a neighborhood of Ň∩(M×T) ⊂ M̌ ,

there is a neighborhood Ǔ ⊂ M̌<1 of M × T with the property that

ι̃ : Ǔ ∪ Ň −→ M̌, ι̃(y) :=

{
ι̌(y) if y ∈ Ň ,
y if y ∈ Ǔ

is a smooth map after shrinking Ň by an arbitrarily small amount. Let

fǓ∪Ň : M × T −→ R ∪ {∞} be the lower semi-continuous function given in

equation (6.18) with N replaced by Ǔ ∪ Ň (see Lemma 6.25). Now fǓ∪Ň =∞
along S<j . Combining this with the fact that fǓ∪Ň is positive and lower semi-

continuous and the fact that S<j×T is compact, we can find a smooth function

f̃ : (M − S<j) × T −→ R>0 satisfying f̃ < fǓ∪Ň so that for any sequence of

points (xj)j∈N in (M − S<j) × T converging to a point in S<j × T, we have

f̃(xj)→∞ as j →∞. In particular,

U := (S<j × T ∗T) ∪ M̌
<f̃
|(M−S<j)×T

is an open neighborhood of (M ∪ T) ∪ (S<j × T ∗T). See Figure 22.

Define Q := Sj × T ∗T and N := M̌<Ǔ∪Ň . Define U ′ := U ∩ Q, N ′ :=

N ∩Q. Then U ′ is a codimension 0 submanifold of Q with the property that

H2(Q;R) −→ H2(U ′;R) is injective. Also U ⊂ N , and the manifold Q admits

a smooth embedded homotopy to N ′ rel U ′. Hence by Lemma 6.31 with U , N ,

U ′, N ′ and Q as above and with W = M̌ , W̌ = M̌<1 and ιN = ι̃|N , there are



548 MARK MCLEAN

a neighborhood V ⊂ M̌ of Q−U ′ and a codimension 0 symplectic embedding

ι : U ∪ V −→ M̌<1 so that ι|U = ι̃|U . Since ι(y) = y for all y sufficiently near

M × T, we get that ι is a weakly curled up embedding of S<j+1 = S<j ∪ Sj .
Hence we are done by induction on j ∈ {1, . . . , l}. �

Proof of Proposition 6.20. Let S be our partly stratified symplectic sub-

set. By Lemma 6.32, S × T ∗T admits a weak curled up embedding. Hence by

Lemma 6.26, S × T ∗T admits a curled up embedding. Thus by Lemma 6.23,

S is stably displaceable. �

7. Proof of the Main Theorem

By Calabi-Yau manifold, we will just mean a smooth complex projective

variety with trivial first Chern class. We have the following lemma:

Lemma 7.1 ([Bat99, Prop. 3.1]). Let Φ̂ : X 99K “X be a birational equiva-

lence between smooth projective Calabi-Yau manifolds. Then there are complex

codimension ≥ 2 subvarieties VX ⊂ X and V“X ⊂ “X and an isomorphism

Φ : X − VX
∼=−→ “X − V“X

equal to Φ̂|X−VX .

Note that the Calabi-Yau condition here is crucial. For instance, if we

take a smooth projective variety and blow it up at a point, then we create a

birational variety whose second Betti number is strictly larger. Even though

the proof of Lemma 7.1 is contained in [Bat99, Prop. 3.1], we give a more

detailed version of the same proof for readers who may not be experts in

algebraic geometry. There is also a more general version of this lemma (see

[KM98, Th. 3.52]), which proves the same statement for varieties which are

“minimal” in some sense.

Proof of Lemma 7.1. Morally, the idea of the proof is as follows. If the

region where Φ̂ is not a submersion had complex codimension 1, then Φ̂ would

contract a codimension 1 subvariety Z to a lower dimensional variety; see

Definition 6.14. One can then show that such a contraction would ensure that

c1(X) or c1(“X) is non-trivial, giving us a contradiction. A similar argument

also applies to the inverse Φ̂−1, and this gives us our result. Therefore our

proof comes in two parts:

Part (1) showing that if the region where Φ̂ is not a submersion has codimen-

sion less than 2, then Φ̂ contracts a divisor;

Part (2) showing that c1(X) or c1(“X) is non-trivial due to the existence of

such a divisor.
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Part (1): Since “X is a projective variety, we have that “X is a closed sub-

variety of CPN for some N ∈ N. Let ι : “X ↪→ CPN be the inclusion map.

Consider the rational map f = ι ◦ Φ̂. In any holomorphic chart z1, . . . , zn
on X, the map f has the form [φ0(z1, . . . , zn), . . . , φN (z1, . . . , zn)] in homoge-

neous coordinates on CPN where φ0, . . . , φN are holomorphic functions. This

local description of f does not change if we multiply φ0, . . . , φN by a common

holomorphic function. In particular, if φ0, . . . , φN all vanish to the same order

along some codimension 1 subvariety, then we can remove a common factor

from all of these holomorphic functions so that φ−1
0 (0)∩ · · · ∩ φ−1

N (0) has codi-

mension 2 or higher after shrinking the chart ([GH94, Ch. 0, §1]). As a result,

we get that there is a codimension ≥ 2 subvariety VX ⊂ X so that Φ̂ is well de-

fined outside VX . Now suppose that Φ̂ : X − VX −→ “X is not an isomorphism

onto its image. Then by [Sha13, Th. 2.16], there is a codimension 1 subvariety

Z ⊂ X − VX which is contracted by Φ̂ as in Definition 6.14.

Part (2): Let VX and Z be as above. We now wish to show that the

existence of the variety Z implies that either c1(X) or c1(“X) is non-trivial,

therefore giving us a contradiction. Consider the relative canonical bundle

κ
X/“X := κX⊗ Φ̂∗κ“X on X−VX where κX and κ“X are the canonical bundles of

X and “X respectively (Definition 6.14). Then κ
X/“X can be identified with the

bundle Hom(κ∗X , Φ̂
∗κ∗“X) where κ∗X and κ∗“X are the anti-canonical bundles of

X and “X respectively; see Definition 6.13) Under this identification, we have

a section s of κ
X/“X given by the Jacobian of Φ̂, which is the map sending

v1 ∧ · · · ∧ v1 ∈ κ∗X to Dπ(v1) ∧ · · · ∧ Dπ(vn) ∈ Φ̂∗κ∗“X . This holomorphic

section s vanishes along Z. Now since VX has complex codimension ≥ 2,

we have by using Harthog’s theorem and the Cauchy integral formula [GH94,

Ch. 0, §1], that the bundle κ
X/“X and the section s extends to a holomorphic

bundle L over X together with a holomorphic section š of L. We have that

c1(L) is Poincaré dual to [(š)] by ([GH94, Ch. 1, §1]), where (š) and the

homology class [(š)] are given in Definition 6.14. Choose a Kähler form ω

on X. Then ωn−1 is a positive volume form on the smooth locus of any

codimension 1 subvariety. Therefore the de Rham cohomology class [ωn−1] on

X pairs non-trivially with the homology class [(š)] since (š) is a non-trivial

effective divisor; see Definition 6.14. Hence c1(L) is non-zero. Since VX is

a complex codimension ≥ 2 subvariety, we get that the natural restriction

map H2(X;Z) −→ H2(X − VX ;Z) is an isomorphism. This implies that

c1(κ
X/“X) 6= 0 in X − VX . Since c1(κ

X/“X) = c1(κX |X−VX ) − Φ̂∗c1(κ“X), either

c1(X) or c1(“X) is non-zero giving us a contradiction. Hence Φ̂ maps X − VX
isomorphically to its image.
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Similar reasoning can be used to show that there is a codimension ≥ 2

subvariety V̌“X ⊂ “X so that Φ̂−1 maps “X−V̌“X isomorphically to an open subset

of X containing X − VX . Hence V“X := “X − Φ̂(X − VX) has codimension ≥ 2

and our lemma holds. �

We have the following immediate corollary of Lemma 7.1:

Corollary 7.2. Let X , “X , Φ̂, VX , V“X and Φ be as in Lemma 7.1. Let

D ⊂ X − VX be a compact submanifold possibly with boundary, and let R be

any ring. Then there is a natural identification of homology and cohomology

groups

Φ∗ : H2(X −D;R)
∼=←− H2(X − VX −D;R)
∼=−→
Φ∗

H2(“X − V“X − Φ(D);R)
∼=−→ H2(“X − Φ(D);R),

(7.1)

Φ∗ : H2(“X,Φ(D);R)
∼=−→ H2(“X − V“X ,Φ(D);R)
∼=−→
Φ∗

H2(X − VX , D;R)
∼=←− H2(X,D;R).

(7.2)

Remark 7.3. From now on we will fix the notation Φ̂,Φ, X, “X,VX and V“X .

Also we will not distinguish between H2(X−D;R) and H2(“X−Φ(D);R) (resp.

H2(X,D;R), H2(“X,Φ(D);R)) for each compact submanifold with boundary

D ⊂ X − VX and each ring R.

The following lemma finds for us an appropriate common Zariski dense

affine variety on X and “X. This lemma will also be used to construct appro-

priate Kähler forms on X and “X which agree on a large compact subset of this

common affine subvariety. We will use the notation from Definition 6.14.

Lemma 7.4. Let ωX and ω“X be Kähler forms on X and “X , and suppose

that their corresponding de Rham cohomology classes admit lifts to integral

cohomology classes [ωX ] ∈ H2(X;Z) and [ω“X ] ∈ H2(“X;Z) respectively. Then

there are effective divisors ∆ on X and “∆ on “X and an integer µ > 0 so that

(1) [∆]∗ = µ[ωX ] and [“∆]∗ = µ[ω“X ];

(2) VX ⊂ supp(∆), V“X ⊂ supp(“∆);

(3) Φ(supp(∆)− VX) = supp(“∆); and

(4) A := X − supp(∆) and Â := “X − supp(“∆) are affine varieties.

Proof. By [GH94, Ch. 1, §2], we can find a collection ∆1, . . . ,∆l of ir-

reducible codimension 1 subvarieties of X so that [∆1]∗, . . . , [∆l]
∗ generates

H1,1(X)∩H2(X;Z) and so that [“∆1]∗, . . . , [“∆l]
∗ generates H1,1(“X)∩H2(“X;Z)

where ∆̂i = Φ(∆i − VX) for each i = 1, . . . , l. We can enlarge this collection of
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varieties so that (2) is satisfied. Choose a positive integer N > 0 large enough

so that

[ωX ]− 1

N

l∑
i=1

[∆i]
∗, [ω“X ]− 1

N

l∑
i=1

[“∆i]
∗

represent Kähler forms. Such an N exists since being Kähler is an open con-

dition among (1, 1)-forms with respect to the C0-topology. By the Kodaira

embedding theorem [GH94, Ch. 1, §4], we can find a positive integer m and

codimension 1 subvarieties Υ on X and “Υ′ on “X so that

(7.3) [Υ]∗ = mN [ωX ]−m
l∑

i=1

[∆i]
∗, [“Υ′]∗ = mN [ω“X ]−m

l∑
i=1

[“∆i]
∗.

Let “Υ := Φ(Υ− VX) and Υ′ = Φ−1(“Υ′ − V“X). Since [∆1]∗, . . . , [∆l]
∗ generates

H1,1(X) ∩ H2(X;Z), and [“∆1]∗, . . . , [“∆l]
∗ generates H1,1(“X) ∩ H2(“X;Z), we

have by [GH94, Ch. 1, §2] that there are integers (ai)
l
i=1, (âi)

l
i=1 so that

(7.4)
l∑

j=1

ai[∆i] = [Υ′],
l∑

j=1

âi[“∆i] = [“Υ].

Now choose a positive integer m′ greater than maxli=1 ai and maxli=1 âi. Define

∆ := m′Υ + Υ′ +
l∑

i=1

(m′m− ai)∆i, “∆ := “Υ +m′“Υ′ + l∑
i=1

(m′m− âi)“∆i.

Then by equations (7.3) and (7.4), we have that [∆]∗ = m′mN [ωX ] and [“∆]∗ =

m′mN [ω“X ], and hence (1) holds with µ = m′mN . Also ∆ and “∆ are effective

divisors with support

supp(∆) = Υ ∪Υ′ ∪
l⋃

i=1

∆i, supp(“∆) = “Υ ∪“Υ′ ∪ l⋃
i=1

“∆i,

and hence (2) and (3) are satisfied. Finally A and Â are affine varieties by the

Kodaira embedding theorem [GH94, Ch. 1, §4]. �

We will now prove our main result (Theorem 1.2). Here is a statement of

this theorem:

Let ωX and ω“X be Kähler forms on X and “X respectively whose coho-

mology classes lift to integer cohomology classes. Then there exist a graded

Λ
ωX ,ωX̂
K -algebra Z and algebra isomorphisms

Z ⊗
Λ
ωX,ωX̂
K

ΛωXK
∼=−→ QH∗(X; ΛωXK ), Z ⊗

Λ
ωX,ωX̂
K

Λ
ω
X̂
K

∼=−→ QH∗(X; Λ
ω
X̂
K )

over the Novikov rings ΛωXK and Λ
ω
X̂
K respectively, where Λ

ωX ,ωX̂
K , ΛωXK and Λ

ω
X̂
K

are the Novikov rings given in Example 2.57.
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Proof of Theorem 1.2. Let n be the complex dimension of X. Let ∆, “∆,

µ, A and Â be as in Lemma 7.4. By the divisor line bundle correspondence

[GH94, Ch. 1, §1], there are holomorphic line bundles L −→ X, L̂ −→ “X
with holomorphic sections s and ŝ respectively so that we have an equality

of divisors (s−1(0)) = ∆ and (ŝ−1(0)) = “∆ respectively. Choose Hermitian

metrics | · | and | · |′ on L and L̂ respectively so that −ddcρ = µωX |A and

−ddcρ̂ = µω“X |“A where ρ := − log(|s|) and ρ̂ := − log(|ŝ|′).
By Corollary 6.21, there exists a constant C > 0 so that X −K is stably

displaceable inside the symplectic manifold (X,µωX) whereK :=ρ−1((−∞,C]).

Also by Lemma 6.3 we can enlarge C so that the interior of K contains the

skeleton of ρ (Definition 6.4). Therefore by a Moser argument ([MS98, Exer-

cise 3.36]), there is a contact cylinder Č4 ⊂ A inside the symplectic manifold

(X,µωX) whose associated Liouville domain is D4 := K. Define “C4 := Φ(Č4)

and ‹D4 := Φ(D4).

By Proposition 6.7, there is an index bounded contact cylinder Č3 =

[1 − ε3, 1 + ε3] × C3 ⊂ A inside the symplectic manifold (X,µωX) so that the

interior of the associated Liouville domain D3 contains D4 and is contained

in A. Define “C3 := Φ(Č3) and ‹D3 := Φ(D3).

By Corollary 6.5, there exists a partially algebraic plurisubharmonic func-

tion ρ̌ : Â −→ R, a compact set K ′ of A containing D3 ∪ Č3 so that

(1) Φ∗(ρ̌)|D3∪Č3
= ρ|D3∪Č3

;

(2) ρ̌ = κ1(ρ̂− log(κ2)) outside Φ(K ′) for some large κ1, κ2 ∈ N; and

(3) the skeleton of Φ∗(ρ̌) is equal to the skeleton of ρ.

Define ω′X := µωX and

ω′“X :=

®
κ1µω“X inside X − Φ(K ′)

−ddcρ̌ otherwise

´
.

By Corollary 6.21, there is a compact subset “K ⊂ “X whose interior con-

tains Φ(K ′) so thatX−“K is stably displaceable in (“X,ω′“X). By Proposition 6.7,

there exists an index bounded contact cylinder “C = [1 − ε, 1 + ε] × C in the

symplectic manifold (“X,ω′“X) which is disjoint from ∪j∈S“∆j and “K, whose asso-

ciated Liouville domain “D is contained in Â and whose interior contains “K. By

the same proposition, we can also assume that “C contains a contact cylinder “C1

whose associated Liouville domain ‹D1 contains “K and so that a Liouville form

associated to “C1 is the restriction of −dcρ̌ to ‹D. By a Moser argument ([MS98,

Exercise 3.36]) we can construct contact cylinders “C0 := [1 − ε0, 1 + ε0] × C0

and “C2 inside (“X,ω′“X) whose associated Liouville domains are “D0 = “D ∪ “C
and ‹D2 = “D − “C. That is, they have boundary equal to {1 + ε} × C and
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{1− ε}×C respectively. Also we can assume ‹D3 ⊂ ‹D2 ⊂ ‹D1 ⊂ ‹D0. We define

Či := Φ−1(“Ci), Di := Φ−1(‹Di) for i = 0, 1, 2 (see Figure 23).

∆

D0
D1

D2

D3

D4

X

Φ

“∆
‹D0
‹D1

‹D2

‹D3

‹D4

“X

Figure 23. Liouville domains in X and “X.

Let φt : Â −→ Â be the time t flow of −∇ρ̌ρ̌ for all t ≥ 0. Since the

skeleton of ρ is contained in the interior of D4, we get that the skeleton of ρ̌

is contained in the interior of ‹D4 by (3). Therefore we have that there is a

constant T > 0 so that φT (‹D3) ⊂ ‹D4 for some T > 0. Since the inclusions‹D4 ⊂ ‹D1, φT (‹D3) ⊂ ‹D3 and ‹D2 ⊂ ‹D0 induce isomorphisms

H2(“X, ‹D1;R) ∼= H2(“X, ‹D4;R), H2(“X, ‹D3;R) ∼= H2(“X,φT (‹D3);R),

H2(“X, ‹D0;R) ∼= H2(“X, ‹D2;R),

we get that the restriction map H2(“X, ‹Di;R) −→ H2(“X, ‹Dj ;R) is an iso-

morphism for each 0 ≤ i ≤ j ≤ 4. Also we have natural isomorphisms

H2(X,Di;R) −→ H2(“X, ‹Di;R) for each i = 0, 1, 2, 3, 4 by Corollary 7.2. So

from now on we will identify all of these cohomology groups.

Since the quantum cohomology groups and the associated Novikov rings

in the statement of our theorem only depend on ωX and ω“X up to scalar

multiplication and up to adding an exact 2-form, we can just replace ωX and

ω“X with ω′X and ω′“X . Hence from now on, we will assume ωX = ω′X and

ω“X = ω′“X .

Let ω̃ ∈ Ω2(X) be a Č2-compatible 2-form which is equal to 0 inside D3

and ωX outside D3 ∪ ([1, 1 + ε3/2]× C3). Let ω̃′ ∈ Ω2(“X) be a Č0-compatible

2-form which is equal to 0 inside ‹D0 and ω“X outside ‹D0∪([1, 1+ε0/2]×C0). In

the unlikely event that [ω̃] ∈ H2(X;R) is proportional to [ω̃′] ∈ H2(“X;R), we

rescale ω̃′ so that these cohomology classes are equal. (This is done to ensure

that the cones constructed below satisfy condition (1) of Definition 2.58.) Let

Q+ ⊂ H2(X,D3;R)×R×R = H2(“X, ‹D0;R)×R×R be the cone spanned by

([ω̃], 1, 1) and ([ω̃′], 1, 1). Let Q− ⊂ H2(X,D3;R)×R×R be the cone spanned

by ([ω̃], 0, 1), ([ω̃], 1, 1) ([ω̃′], 0, 1) and ([ω̃′], 1, 1). Let QČ3
+ ⊂ H2(X,D3;R) ×

R × R, (resp. Q
“C0
+ ⊂ H2(X,D3;R) × R × R) be the one-dimensional cone
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spanned by ([ω̃], 1, 1) (resp. ([ω̃′], 1, 1)). Let QČ3
− ⊂ H2(X,D3;R) × R × R,

(resp. Q
“C0
− ⊂ H2(X,D3;R)×R×R) be the two-dimensional cone spanned by

([ω̃], 0, 1) and ([ω̃], 1, 1) (resp. ([ω̃′], 0, 1), ([ω̃′], 1, 1)).

Since the interior of D3 contains D4 = K, we have that X −D3 is stably

displaceable inside (X,ωX), and hence we have an isomorphism of Λ
Q
Č3
+

K =

ΛωXK -algebras

(7.5) SH∗
Č3,Q

Č3
− ,Q

Č3
+

(D3 ⊂ X) ∼= QH∗(X,ΛωXK )

and

(7.6) lim−→ lim←−
1SH∗

Č3,Q
Č3
− ,Q

Č3
+

(D3 ⊂ X) = 0

by Theorems 5.10, 5.12 and Propositions 5.4 and 5.24. Similarly, we have an

isomorphism of Λ
Q
“C0
+

K = Λ
ω
X̂
K -algebras

(7.7) SH∗“C0,Q
“C0
− ,Q

“C0
+

(‹D0 ⊂ “X) ∼= QH∗(X,Λ
ω
X̂
K )

and

(7.8) lim−→ lim←−
1SH∗“C0,Q

“C0
− ,Q

“C0
+

(‹D0 ⊂ “X) = 0.

By Proposition 5.32 applied to (“Ci)i=0,1,2,3,4 and (‹Di)i=0,1,2,3,4, we have that

the transfer map

(7.9) SH∗“C0,Q
“C0
− ,Q

“C0
+

(‹D0 ⊂ “X)
∼=−→ SH∗“C0,Q

“C0
− ,Q

“C0
+

(‹D3 ⊂ “X)

is an isomorphism. Also by Proposition 5.1, we have an isomorphism

(7.10) SH∗“C0,Q
“C0
− ,Q

“C0
+

(‹D3 ⊂ “X) ∼= SH∗“C3,Q
“C0
− ,Q

“C0
+

(‹D3 ⊂ “X).

Define

Z := SH∗
Č3,Q−,Q+

(D3 ⊂ X).

Since Φ(D3) = ‹D3 and since all 1-periodic orbits and Floer trajectories used

to define Z can be made to avoid VX and V“X by the ideas in Section 9 due to

the fact that they are unions of submanifolds of real codimension ≥ 4, we have

an isomorphism of Λ
ωX ,ωX̂
K = Λ

Q+

K -algebras

(7.11) Z ∼= SH∗“C3,Q−,Q+
(‹D3 ⊂ “X).

Since both ΛωXK and Λ
ω
X̂
K are flat Λ

ωX ,ωX̂
K -modules by Proposition 11.2, by

Theorem 5.39 combined with equations (7.6) and (7.11), we have isomorphisms

(7.12) Z ⊗
Λ
ωX,ωX̂
K

ΛωXK
∼= SH∗

Č3,Q
Č3
− ,Q

Č3
+

(D3 ⊂ X),
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(7.13) Z ⊗
Λ
ωX,ωX̂
K

Λ
ω
X̂
K
∼= SH∗“C3,Q

“C3
− ,Q

“C3
+

(‹D3 ⊂ “X).

Therefore our theorem now follows from equations (7.12) and (7.13), �

8. Appendix A: Hamiltonians and almost complex structures

compatible with contact cylinders

This section contains some lemmas allowing us to perturb Hamiltonians

so that they become non-degenerate, while retaining certain properties. It also

has a lemma telling us that a certain action spectrum has measure 0.

Definition 8.1. Let H be a Hamiltonian on M . Let Γ be a collection

of 1-periodic orbits of H. The associated fixed points of Γ is a subset of M

denoted by

Γ(0) := {x ∈M : ∃ γ ∈ Γ such that x = γ(0)}.

We say that Γ is isolated if there is a neighborhood NΓ of Γ(0) so that for

each 1-periodic orbit γ satisfying γ(0) ∈ NΓ, we have γ ∈ Γ. We call NΓ an

isolating neighborhood of Γ.

Lemma 8.2. Let H = (Ht)t∈T be a Hamiltonian on M , and let Γ be a set

of 1-periodic orbits of M which is isolated with isolating neighborhood NΓ. Let

N be a neighborhood of Γ(0) whose closure is contained in NΓ. Let H(N,H) be

the space of Hamiltonians K = (Kt)t∈T on M satisfying Ht|φHt (N) = Kt|φHt (N)

for all t ∈ [0, 1] equipped with the C∞ topology, and let Hreg(N,H) ⊂ H(N,H)

be the subset of those Hamiltonians with the property that every 1-periodic orbit

γ not in Γ is non-degenerate. Then there exists a sequence (Hi)i∈N of elements

in Hreg(N,H) converging to H .

Proof. Let N ′ ⊂ NΓ be an open set so that N ⊂ N ′ and N ′ ⊂ NΓ. By

[HS95, Th. 3.1], there is a sequence of non-degenerate Hamiltonians (Ȟi)i∈N
C∞ converging to H, where Ȟi = (Ȟi,t)t∈T for all i ∈ N. Let ρ : M −→ [0, 1]

be a smooth function equal to 0 inside N and 1 outside N ′. Define Hi,t :=

(φHt )∗(ρ)Ȟi,t + (1− (φHt )∗(ρ))Ht for all t ∈ T, and define Hi := (Hi,t)t∈T. By a

compactness argument, we have for all i sufficiently large that any 1-periodic

orbit γ of Hi satisfying γ(t) ∈ φHt (N ′) for some t ∈ T also satisfies γ ∈
Γ. Therefore all 1-periodic orbits γ of Hi not contained in Γ satisfy γ(t) /∈
φHt (N ′) for each t ∈ T and hence are non-degenerate orbits of Ȟi,t for all i

sufficiently large. Therefore such orbits are non-degenerate orbits of Hi,t for

all i sufficiently large. �

Lemma 8.3. Let Č be a contact cylinder, and let (a−, a+) be a Č-action

interval. Then HT,reg(Č, a−, a+) is an open dense subset of HT(Č, a−, a+); see

Definition 2.58.
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Proof. Openness is clear; we just need to prove density. Let H′(Č, a−, a+)

⊂ HT(Č, a−, a+) be the subset consisting of Hamiltonians whose average slope

along Č is not in the period spectrum of Č. This is a dense subset since the

period spectrum of both contact cylinders has measure 0 in R (see [Pop93,

Prop. 3.2]).

Now there are two cases to consider. The first case is when (a−, a+) is

small, and the second case is when (a−, a+) is not small. In the first case,

H′(Č, a−, a+) ∩HT,reg(Č, a−, a+) is dense in H′(Č, a−, a+) by Lemma 8.2 ap-

plied to each H ∈ H′(Č, a−, a+) with Γ = ∅ and NΓ, N small neighborhoods

of [1 + ε/8, 1 + ε/2]×C containing no fixed points of φH1 . Hence our lemma is

true if (a−, a+) is small.

Now suppose (a−, a+) is not small. Let D ⊂M be the Liouville domain as-

sociated to Č. Then H′(Č, a−, a+)∩HT,reg(Č, a−, a+) is dense in H′(Č, a−, a+)

by applying Lemma 8.2 to each H ∈ H′(Č, a−, a+) with Γ = M − (D∪ Č) and

N , NΓ a small neighborhood of Γ∪ ([1 + ε/8, 1 + ε/2]×C) combined with the

fact that the capped 1-periodic orbits whose associated 1-periodic orbit has

image in Γ are not contained in ΓZ
Č,a−,a+

(H) by equation (2.16) combined with

equation (2.6). �

Definition 8.4. Let H be a Hamiltonian. The action spectrum of H is the

set

{AH,∅(γ)([ω], 1, 1) : γ is a capped 1-periodic orbit of H}

(see Example 2.11).

Lemma 8.5. The action spectrum of any Hamiltonian is closed and has

measure 0.

Proof. We will first prove that the action spectrum of a Hamiltonian H

has measure 0. Let ∆ ⊂ M ×M be the diagonal, and let N ⊂ M ×M be a

neighborhood of ∆ so that (N,−ω⊕ω) is symplectomorphic to a neighborhood

of ∆ in T ∗∆ where such a symplectomorphism is the identity along ∆ (see

[MS98, Th. 3.33]). Let λ be the canonical 1-form on T ∗∆, and let λN be its

restriction to N . Let γ be a capped 1-periodic orbit of H with associated

1-periodic orbit γ̂, and let U ⊂ M be a simply connected open neighborhood

of γ̂(0) so that the graph Γ of φH1 |U in M × M is contained in N and so

that Γ is transverse to the fibers of T ∗∆. (This can be done after perturbing

the fibration T ∗∆ by a small Hamiltonian flow fixing ∆.) Then since φH1 is

a symplectomorphism and U is simply connected, there is a unique smooth

function f : Γ −→ R so that

• f(γ̂(0), γ̂(0)) = 0; and

• df = λN |Γ.
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Let OU be the set of capped 1-periodic orbits of H whose associated 1-periodic

orbit starts in U . Then each orbit in OU starts at a critical point of f . Let

CU ⊂ R be the set of critical values of f . Then for any γ0 ∈ OU , we have that

AH,∅(γ0)([ω], 1, 1) = −f(γ̂0(0), γ̂0(0)) + AH,∅(γ)([ω], 1, 1) + k for some k ∈ Z.

(This is because the de Rham cohomology class of ω admits an integral lift.)

As a result, every capped 1-periodic orbit of H in OU has action contained in a

translation of ∪k∈Z(CU +k) which has measure 0 by Sard’s theorem. Since the

set of fixed points of φH1 can be covered by a finite number of such subsets U ,

we get that the action spectrum of H has measure 0.

Now we wish to show that the action spectrum of H is closed. Let ai be a

sequence of points in the action spectrum of H which converge to a ∈ R. Since

all 1-periodic orbits of H are contained in a compact set we have a 1-periodic

orbit γ̂∞ of H and a sequence of capped 1-periodic orbits (γi)i∈N = (γ̃i, γ̌i)i∈N
so that AH,∅(γi)([ω], 1, 1) = ai and so that γ̃i◦γ̌ C∞ converges to γ̂∞. Since the

actions of these capped orbits (γi)i∈N are bounded and since their associated

1-periodic orbits converge to γ̂∞, there is a capped 1-periodic orbit γ∞ and

a sequence of H2(M ;Z) classes (vi)i∈N satisfying ω(vi) = 0 for all i ∈ N so

that (γi#vi)i∈N converges to γ∞ in the natural topology on capped loops as

described in Definition 2.1 and where # is given in Definition 2.61. Hence

(ai)i∈N converges to AH,∅(γ∞)([ω], 1, 1) = a. Hence the action spectrum is

closed. �

9. Appendix B: Avoiding codimension ≥ 4 submanifolds.

In this section we will show that families of Floer trajectories intersect any

countable collection of submanifolds transversely. Also, since we are working in

the semi-positive setting, we also need low dimensional families of such Floer

trajectories to avoid holomorphic spheres. (This is needed for compactness

to prevent bubbling.) These are standard arguments whose main ideas are

contained in [MS04, §6.3 and 6.7] for instance. We will mainly cite and use

the Floer theoretic machinery developed in [Sch95]. Throughout this section,

we will fix

• a (possibly empty) contact cylinder Č = [1 − ε, 1 + ε] × C ⊂ M (Defini-

tion 2.3);

• a Riemann surface Σ with n− negative cylindrical ends and n+ positive

cylindrical ends labeled by finite sets I− and I+ respectively Definition 2.13);

• a Σ-compatible 1-form β ∈ Ω1(Σ) with weights (κj)j∈I−tI+ at the corre-

sponding cylindrical ends (Definition 2.14);

• a (Σ, Č)-compatible family of Hamiltonians H := (Hσ)σ∈Σ with limits

H# := (Hj)j∈I−tI+ as in Definition 2.14;

• a tuple J# := (J j)j∈I−tI+ of elements of JT(Č) (Definition 2.12); and
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• Γ(H) the set of tuples (γj)j∈I−tI+ of non-degenerate capped 1-periodic or-

bits of (κjH
j)j∈I−tI+ respectively whose associated 1-periodic orbits are

disjoint from V so that if Σ 6= R × T, then at least two such 1-periodic

orbits have distinct images (Definition 2.1).

Definition 9.1 ([Sch95, Def. 2.1.2]). Let Σ be a manifold with boundary

obtained by extending each cylindrical end ιi : I− × T ↪→ Σ (resp. ιi : I+ × T
↪→ Σ) of Σ to ιi : [−∞, 0]×T ↪→ Σ, i ∈ I− (resp. ιi : [0,∞]×T −→ Σ, i ∈ I+).

We get a smooth structure on this manifold by extending the smooth charts

Im(ιi) −→ (−1, 0]× T, (s, t) −→
Å

s√
1 + s2

, t

ã
, i ∈ I−,

Im(ιi) −→ [0, 1)× T, (s, t) −→
Å

s√
1 + s2

, t

ã
, i ∈ I+

on Σ to charts

Im(ιi) −→ [−1, 0]× T, Im(ιi) −→ [0, 1]× T

respectively on Σ.

Definition 9.2 ([Sch95, Def. 2.1.5]). Let k = 0 or 1. Let π : E −→ Σ be

a Ck vector bundle, and let φi : ι∗iE −→ (I± × T)× Rk be a Ck trivialization

which extends to a Ck trivialization of ι∗iE. Let Πi : (I± × T) × Rk � Rk be

the natural projection map for each i ∈ I±. Define

W k,p
Σ (E) :=

¶
σ ∈W k,p

loc (E|Σ) : Πi ◦ φi ◦ σ ◦ ιi ∈W k,p(I± × T,Rk) ∀ i ∈ I±
©
.

We define LpΣ(E) := W 0,p
Σ (E). If D ⊂ E is a subset of E, then we define

W k,p
Σ (D) := {σ ∈W k,p

Σ (E) : Im(σ) ⊂ D} and LpΣ(D) := W 0,p
Σ (D).

These are Banach spaces which do not depend on the choice of trivializa-

tions φi, i ∈ I− t I+ by the paragraph after [Sch95, Def. 2.1.5].

Definition 9.3 ([Sch95, Def. 2.1.6]). Let γ := (γi)i∈I−tI+ = ((γ̃i, γ̌i))i∈I−tI+
be finite collection of capped loops as in Definition 2.1. A smooth map u :

Σ −→M converges to (γi)i∈I−tI+ if ιi(±∞, t) = γ̃i(γ̌i(t)) for all i ∈ I±, t ∈ T,

and the surface obtained by gluing the surfaces γ̃i, i ∈ I− t I+ to u is null-

homologous. Let C∞γ (Σ,M) be the space of such maps equipped with the C∞

topology.

Fix a Riemannian metric onM , and letD ⊂ TM be an open neighborhood

of M so that exp |D∩TxM is a diffeomorphism on to its image for all x ∈ M ,

where exp is the exponential map with respect to this metric. Define

(9.1) P1,p
γ (Σ,M) := {exp ◦v ∈ C0(Σ,M) : v ∈W 1,p

Σ (h∗D), h ∈ C∞γ (Σ,M)}

for all p > 2.
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The space (9.1) is a Banach manifold by [Sch95, Th. 2.1.7] with charts

mapping to W 1,p
Σ (h∗D) for all h ∈ C∞γ (Σ,M).

Definition 9.4. Let π : E−→B be a Banach vector bundle. Let s : B−→E

be a C1 section, and let b ∈ s−1(0). We say that s is transverse to zero at b if

the linear map

(9.2) TbB
s−→ Ts(b)E

pr−→ kerDπ|s(b)

is surjective, where

pr : TE|B = TB ⊕ (kerDπ|B) −→ kerDπ|B

is the natural projection map. We say that s is transverse to 0 if it is transverse

to 0 at every point b ∈ s−1(0). Such a section is Fredholm if the map (9.2) is

Fredholm.

Definition 9.5. For each J = (Jσ)σ∈Σ ∈ JΣ(J#, Č), we define MJ to be

the vector bundle over Σ × M whose fiber at (σ, x) is the space of J |(σ,x)

anti-linear maps from TσΣ to TxM .

Proposition 9.6 ([Sch95, Th. 2.2.5, Prop. 2.3.1, Th. 3.1.31]). Let γ ∈
Γ(H) and J = (Jσ)σ∈Σ ∈ JΣ(J#, Č). Then the set

(9.3) EJ,γ := t
u∈P1,p

γ (Σ,M)
{u} × LpΣ((idΣ, u)∗MJ)

is naturally a smooth Banach bundle over P
1,p
γ (Σ,M) for all p > 2. Also if j

is the natural complex structure on Σ, then the section

(9.4) ∂J,γ : P1,p
γ (Σ,M) −→ EJ,γ ,

∂J,γ(u)(σ) := (du+XHσ ⊗ β) + Jσ ◦ (du+XHσ ⊗ β) ◦ j ∀ σ ∈ Σ

is well defined (i.e., ∂J,γ(u) is an element of LpΣ((idΣ, u)∗MJ) for all u ∈ P)

and ∂J,γ is a smooth Fredholm section of EJ,γ .

Definition 9.7. An element J ∈ JΣ(J#, Č) is H-regular if the Fredholm

section ∂J,γ is transverse to zero for each γ ∈ Γ(H).

Note that if the Hamiltonian H only has degenerate one periodic or-

bits, then every element J ∈ JΣ(J#, Č) is H-regular by the definition above

since Γ(H) is empty. We only care about Floer trajectories connecting non-

degenerate 1-periodic orbits.

Theorem 9.8 ([Sch95, Ths. 4.2.2 and 3.3.11]). If J ∈ JΣ(J#, Č) is H-

regular, then M(H,J, γ) = ∂
−1
J,γ(0). This set is a smooth finite dimensional

submanifold of P1,p
γ (Σ,M) of dimension k, where k is defined in equation (2.9)

for each γ ∈ Γ(H).
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Definition 9.9. Let fj : Wj −→W , j = 0, 1 be two smooth maps. We say

that f0 is transverse to f1 if, for each w0 ∈ W0, w1 ∈ W1 satisfying f0(w0) =

f1(w1), we have that the span of the subspaces Df0(Tw0W0), Df1(Tw1W1) is

Tf0(w0)W .

Definition 9.10. For each γ ∈ Γ(H), we say that J = (Jσ)σ∈Σ ∈ JΣ(J#, Č)

is (H,V, γ)-regular if it is H-regular and if there is a countable collection of

smooth maps fi : Wi −→ Σ ×M , i ∈ N where dimR(Wi) ≤ 2n − 2 for each i

so that

(1) V ⊂ ∪i∈Nfi(Wi);

(2) every Jσ-holomorphic map u : P1 −→ M has image contained in ({σ} ×
M) ∩ (∪ifi(Wi)) after identifying {σ} ×M with M in the natural way for

each σ ∈ Σ; and

(3) the evaluation map

ev : Σ×M(H,J, γ) −→ Σ×M, (σ, u) −→ (σ, u(σ))

is smooth and transverse to fi for each i ∈ N.

We say that J is (H,V )-regular if it is (H,V, γ)-regular for each γ ∈ Γ(H).

We define JΣ,reg(H,J#, Č) ⊂ J(J#, Č) to be the subspace of (H,V )-regular

families of almost complex structures.

We wish to show that JΣ,reg(H,J#, Č) is ubiquitous in J(J#, Č) (Proposi-

tion 2.19). In order to do this we need to define an appropriate space of almost

complex structures.

Definition 9.11 ([Sch95, Defs. 4.2.6, 4.2.10, 4.2.11]). Let J ∈ JΣ(J#, Č).

Let U ⊂ Σ be a relatively compact open subset, define‹U := U × (M − ([1 + ε/8, 1 + ε/2]× C)),

and let π : Σ×M −→M be the natural projection map. Let

SJ := {A ∈ End(π∗TM) : AJ + JA = 0}

be a bundle over Σ ×M , and let C∞U (SJ) be the space of C∞ sections A of

SJ so that all the derivatives of A vanish along Σ × V and Σ ×M − ‹U . Let

‖ · ‖ be a metric on M given by 1
2(ω(·, J(·)) + ω(J(·), ·). Let ε := (εi)i∈N be a

sequence of rapidly decreasing positive constants, and define

C∞ε,U (SJ) := {A ∈ C∞U (SJ) : ‖A‖ε <∞},

where ‖A‖ε :=
∑

i∈N εi‖∇kA‖ coming from a product metric on Σ×M . Define

ΦJ : C∞ε,U (SJ) −→ JΣ(J#, Č), ΦJ(A) := JeA,

and define

Jε(J |U ) := {ΦJ(A) : A ∈ C∞ε,U (SJ), ‖A‖ < ε0} ⊂ JΣ(J#, Č).
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By the ideas in [Sch95, 4.2.7, 4.2.9, 4.2.10] we have that C∞ε,U (SJ) is a

Banach space with Banach norm ‖ · ‖ε and Φ−1
J embeds Jε(J |U ) as an open

subset of this Banach space making it into a Banach manifold for ε small

enough. There are a few minor differences between Definition 9.11 and [Sch95,

Def. 4.2.11]:

(1) our almost complex structures are not necessarily compatible with ω, but

they do tame ω;

(2) our almost complex structures and all of their derivatives agree with those

of J along some regions of Σ×M ; and

(3) the formula for the map ΦJ is different.

These differences play no important role in the proof of the fact that Jε(J |U ) is a

Banach manifold. Also it makes no difference in the proofs of Propositions 9.13,

9.15 and 9.17, which are just modified versions of [Sch95, Prop. 4.2.4], [Sch95,

4.2.18] and [Sch95, Prop. 4.2.5] respectively. Now one of the issues with Jε(J |U )

is that it is not a topological subspace of JΣ(J#, Č). However we wish to prove

theorems with respect to the topology of JΣ(J#, Č). Section 7.7 from [Wen16]

addresses this issue. Therefore by [Sch95, Prop. 4.2.5] (see also Proposition 9.15

below), we get the following proposition:

Proposition 9.12. The subspace of H-regular almost complex structures

in JΣ(J#, Č) as in Definition 9.7 is ubiquitous.

We now wish to prove the same thing for (H,V )-regular almost complex

structures. In order to do this we need some more propositions and lemmas.

Note that every element J = (Jσ)σ∈Σ in JΣ(J#, Č) extends to a smooth family

of almost complex structures (Jσ)σ∈Σ since J is translation invariant in the

cylindrical ends at infinity. Hence, from now on we will define Jσ to be the

limit as σ′ ∈ Σ tends to σ of Jσ′ for each σ ∈ ∂Σ. We will also use such

conventions for other families of objects over Σ such as β and H.

Proposition 9.13 ([Sch95, Prop. 4.2.4 and Th. 3.1.31]). Let U ⊂ Σ be

a relatively compact open set, ε a sequence of rapidly decreasing constants,

J ∈ JΣ(J#, Č) and γ ∈ Γ(H). Let B := Jε(J |U ) and P := P
1,p
γ (Σ,M), p > 2,

where P
1,p
γ (Σ,M) is defined as in equation (9.1). Then the set

(9.5) E := t(J ′,u)∈B×P{(J ′, u)} × LpΣ((idΣ, u)∗MJ ′)

is naturally a smooth Banach bundle over B × P whose fiber over (J ′, u) is

LpΣ((idΣ, u)∗MJ ′). Also

∂B×P : B× P −→ E, ∂B×P(J ′, u) := ∂J ′,γ(u)

is a smooth section of E, where ∂J,γ is defined in equation (9.4).
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From now on, until the proof of Proposition 2.19 below, we will fix U , ε,

J , γ, B, P, E and ∂B×E from the proposition above.

Definition 9.14. Define S ⊂ B×P to be the open subset of pairs (J ′, u) ∈
B× P satisfying

(9.6) U * u−1(V ∪ ([1 + ε/8, 1 + ε/2]× C)) ∪ (Σ− supp(du− β ⊗XH)),

where supp(du − β ⊗ XH) is the support of the distribution du − XH ⊗ β ∈
Lploc(Σ⊗ u

∗TM) where

XH ⊗ β|σ := XHσ |u(σ) ⊗ β|σ ∀ σ ∈ Σ.

We also define D := ∂
−1
B×P(0) ∩ S and let

(9.7) ΠB : D −→ B

be the natural projection map.

Proposition 9.15 ([Sch95, Prop. 4.2.18 and its proof]). Suppose that

(J ′, u) ∈ D. Then the section ∂B×P above is transverse to 0 at (J ′, u). Also

the natural linear map

(9.8) DJ ′,u|TJ′B : TJ ′B = TJ ′B× 0
D∂B×P−→ T(J ′,u)E

pr−→ LpΣ((idΣ, u)∗MJ ′)

linearizing ∂B×P at (J ′, u) has dense image.

Hence by combining the proposition above with the last part of Proposi-

tion 9.6 and the implicit function theorem, we get the following corollary:

Corollary 9.16. D is a Banach submanifold of S.

Proposition 9.17 ([Sch95, Th. 3.3.11, Th. 4.2.2, Prop. 4.2.5 together

with its proof]). The map ΠB in equation (9.7) is Fredholm. The subset

(ΠB)reg ⊂ B of regular values of ΠB is ubiquitous as in Definition 2.18, and

Π−1
J (J ′) is a smooth manifold of dimension k, where k is defined in equa-

tion (2.9) for all J ′ ∈ ΠB.

By the Sobolev embedding theorem we can think of the tangent space

TuP at a point u ∈ P naturally as a subspace of C0(u∗TM). Let ιP : TuP −→
C0(u∗TM) be the natural inclusion map. Then we have the following defini-

tion:

Definition 9.18. For each u ∈ P and σ ∈ Σ, define the Banach subspace

Tu,σP ⊂ TuP to be the subspace consisting of elements v ∈ TuP satisfying

ιP(v)(σ) = 0.

Lemma 9.19. Let σ ∈ Σ, and let (J ′, u) ∈ D. Then the map

DJ ′,u,σ : TJ ′B× Tu,σP
D∂B×P−→ T(J ′,u)E

pr−→ LpΣ((idΣ, u)∗MJ ′)
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is surjective.

Proof. The map

DJ ′,u|0×TuP : 0× TuP
D∂B×P−→ T(J ′,u)E

pr−→ LpΣ((idΣ, u)∗MJ ′)

is Fredholm by Proposition 9.13, and hence the map DJ ′,u,σ|0×Tu,σP is Fredholm

since Tu,σP ⊂ TuP is a subspace of finite codimension. This implies that the

image of DJ ′,u,σ is closed. Such an image is also dense by the last part of

Proposition 9.15 and hence is surjective. �

Lemma 9.20. The natural map

E : Σ×D −→M, E(σ, (J ′, u)) := u(σ)

is C∞.

Note that if we extend this map to B×P in the natural way, then such a

map is not even C1.

Proof. By [Sch95, Prop. 2.5.7], we have that u ∈ C∞(Σ,M) for all (J ′, u)

∈ D. By [MS04, Prop. B.4.9] combined with the Sobolov embedding theorem

[MS04, Prop. B.1.11], we have that for each (J ′, u) ∈ D, and each compact codi-

mension 0 submanifold K ⊂ Σ, the natural map from T(J ′,u)D to TuC
r(K,M)

is a well defined continuous map between Banach spaces. Since charts on map-

ping spaces are constructed using the exponential map of a metric on M , this

implies that the natural map from D to Cr(K,M) is smooth for each compact

codimension 0 submanifold K ⊂ Σ and each r ≥ 0. Therefore our lemma

follows from the fact that the evaluation map

K × Cr(K,M) −→M

is Cr for all compact codimension 0 submanifolds K ⊂ Σ and all r ≥ 0 ([Kri72,

p. 78]). �

Lemma 9.21. Let σ ∈ Σ. Then the map

E|{σ}×D : D −→M, E|{σ}×D(J ′, u) = u(σ)

is a submersion.

Proof. Let (J ′, u) ∈ D, and let W ∈ Tu(σ)M . Choose w ∈ TuP so that

w(σ) = W . Since DJ ′,u,σ from Lemma 9.19 is surjective, there exists (Y1, w1) ∈
TJ ′B × Tu,σP so that DJ ′,u(Y1, w1) = DJ ′,u(0, w), where Tu,σP is defined in

Definition 9.18 and where DJ ′,u is the composition

DJ ′,u : TJ ′B× TuP
D∂B×P−→ T(J ′,u)E

pr−→ LpΣ((idΣ, u)∗MJ ′).

Therefore (−Y1, w − w1) ∈ TJ ′,uD and (w − w1)(σ) = W , and hence the map

E|{σ}×D is a submersion. �
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Lemma 9.22. The map

(9.9) ev : Σ×D −→ Σ×M, F (σ, (J ′, u)) := (σ, u(σ))

is smooth and a submersion.

Proof. This follows directly from Lemmas 9.20 and 9.21. �

Lemma 9.23. Let f := (fi)i∈N be a countable collection of smooth maps

fi : Qi −→ Σ × M , i ∈ N. Let Jε(J |U , f) ⊂ B be the subset consisting of

elements J ′ which are H-regular with the property that ev|Π−1
B

(J ′) is transverse

to fi for each i ∈ N, where ev and ΠB are defined in equations (9.9) and (9.7)

respectively. Then Jε(J |U , f) is ubiquitous in B.

Proof. Let Π̃i := ev∗fi : ‹Qi −→ Σ×D be the pullback of fi for each i ∈ N.

(This exists by Lemma 9.22.) Since Σ ×M and Qi is finite dimensional, we

have that Π̃i is a Fredholm map. Hence the composition P ◦ Π̃i is Fredholm

by Proposition 9.17, where P : Σ × D −→ B is the natural projection map.

Hence the set of regular values Ri of P ◦ Π̃i is ubiquitous in B. The subset of

H-regular almost complex structures J
reg
H is ubiquitous by Lemma 9.12. Our

lemma now follows from the fact that Jε(J |U , f) contains the ubiquitous set

J
reg
H ∩ ∩i∈NRi. �

Proof of Proposition 2.19. Let Si, Ui ⊂ Σ, i ∈ N be non-empty relatively

compact open subsets of Σ so that ∪iSi = Σ, Si ⊂ Si+1 and Ui ∩ Si = ∅
for all i ∈ N. For each J = (Jσ)σ∈Σ ∈ JΣ(J#, Č), let Mvert(J) be the set of

somewhere injective maps v : P1 −→ Σ×M where

(1) the image of v is contained in {σv}×M for some σv ∈ Σ and not contained

in Σ× V ; and

(2) v is Jσv -holomorphic after identifying {σv} ×M with M in the natural

way.

Then by the methods in [MS04, §3.2] we have that there is a ubiquitous subset

J
reg
P1 ⊂ JΣ(J#, Č) so that Mvert(J) is a manifold whose connected components

are of dimension at most 2n− 2 where 2n is the dimension of M and so that

the evaluation map

evP1 : Mvert(J) −→ Σ×M, evP1(u) := u(0)

is smooth. Then for each J ∈ J
reg
P1 , there exists a countable collection of

smooth maps f iJ : W i
J −→ Σ ×M , i ∈ N where dim(W i

J) ≤ 2n − 2 so that

for each u ∈Mvert(J), we have that image(u) ⊂ ∪i∈Nf iJ(W i
J). We can assume

that the functions f iJ , i ∈ N, J ∈ J
reg
P1 have the property that if there exists

i ∈ N so that J = (Jσ)σ∈Σ, J
′ = (J ′σ)σ∈Σ ∈ J

reg
P1 satisfies Jσ = J ′σ for all

σ ∈ Si, then Ei,k,J := (fkJ )−1(Si×M) is diffeomorphic to (fkJ ′)
−1(Si×M) and

fkJ |Ei,k,J = fkJ ′ |Ei,k,J under this identification for all k ∈ N. Since any manifold
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is a countable union of compact codimension 0 submanifolds with boundary,

we can assume that W i
J is a compact manifold with boundary for each i ∈ N

as well.

We now wish to write the moduli spaces M(H,J, γ) as a union of compact

sets for each H,J, γ in a consistent way. We will use Gromov compactness ideas

to do this. For each j ∈ I± and each non-degenerate fixed point p of φ
κjH

j

1 , let

Nj,p be a neighborhood of p whose closure Nj,p does not contain any other fixed

points of φ
κjH

j

1 . For each J ∈ JΣ(J#, Č) and each γ = (γj)j∈I−tI+ ∈ Γ(H),

let K(i, J, γ) ⊂ M(H,J, γ) be the subset of maps u : Σ −→ M satisfying

|du| ≤ i with respect to a fixed metric on Σ which is translation invariant on

the cylindrical ends and so that u(ιj(s, t)) ∈ φ
κjH

j

t (Nj,γ̂j(0)) for each ±s ≥ i

and t ∈ T where γ̂j is the 1-periodic associated to γj for each j ∈ I±. Then

a Gromov compactness argument (e.g., [Sch95, Th. 4.3.22]) tells us that for

each J ∈ JΣ(J#, Č) and γ ∈ Γ(H), K(i, J, γ) is compact for each i ∈ N and

the union of such subsets over all i is M(H,J, γ).

Let J
reg
H ⊂ JΣ(J#, Č) be the subspace of H-regular almost complex struc-

tures as in Definition 9.7. This is a ubiquitous subset by Proposition 9.12. Let

(Ni)i∈N be open subsets of M satisfying ∩i∈NNi = V ∪ ([1 + ε/8, 1 + ε/2]×C).

For each i ∈ N, J ∈ JΣ(J#, Č) and γ ∈ Γ(H), let M(i, J, γ) ⊂ K(i, J, γ) be the

subset consisting of maps u : Σ −→M satisfying u(Ui) ∩Ni = ∅. Let

ev : Σ×M(H,J, γ) −→ Σ×M, ev(σ, u) := (σ, u(σ))

be the natural evaluation map. For each i ∈ N, J ∈ J
reg
H and γ ∈ Γ(H), let

Mtr(i, J, γ) ⊂ M(H,J, γ) be the open subset consisting of maps u for which

there exists a neighborhood N ′u of u in M(H,J, γ) so that ev|Si×N ′u is transverse

to fkJ |Ei,k,J for each k ≤ i. Let J
reg
i,γ ⊂ J

reg
H be the subset of almost complex

structures J satisfying M(i, J, γ) ⊂ Mtr(i, J, γ) for each i ∈ N and γ ∈ Γ(H).

Since M(i, J, γ) is compact for each i ∈ N, J ∈ J
reg
i,γ and γ ∈ Γ(H) and since

transversality is an open condition so long as the corresponding domains are

compact, we have that J reg
i,γ ⊂ J

reg
H is open. It is also dense by Lemma 9.23.

Hence J
reg
i,γ is a ubiquitous subset of JΣ(J#, Č) for each i ∈ N, γ ∈ Γ(H) since

modifying J inside Ui × M does not change fkJ |Ei,k,J for all k ≤ i. Hence

Jreg := ∩i,γJreg
i,γ is ubiquitous in JΣ(J#, Č).

Now let J ∈ Jreg and let u ∈ M(H,J, γ) for some γ ∈ Γ(H). Since

γ ∈ Γ(H) and since Ui eventually becomes disjoint from any compact subset

of Σ for i large enough, there exists iu ∈ N so that u ∈ M(i, J, γ) for each

i ≥ iu. Since J ∈ J
reg
i,γ for each i ≥ iu, there is a neighborhood N ′u,i of u in

M(H,J#, γ) so that the evaluation map ev|Σ×N ′u,i is transverse to fkJ |Ei,k,J for

each k ≤ i and each i ≥ iu. Therefore since Sj ⊂ Sj+1 for all j ∈ N, we

get that ev is transverse to fkJ |Ei,k,J for each i, k ∈ N satisfying k ≤ i at each
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point u ∈ M(H,J, γ). Hence Jreg ⊂ Jreg(H,J#, Č), and so Jreg(H,J#, Č) is

ubiquitous.

Also M(H,J, γ#) is a manifold of dimension k, where k is defined in (2.9)

for each γ# ∈ Γ(H) and each J ∈ JΣ,reg(H,J#, Č) by Proposition 9.17. �

10. Appendix C: Floer trajectories, filtrations and compactness

Throughout this section we will use the following notation (see Defini-

tions 2.13 and 2.14):

• Σ is a Riemann surface with n− negative cylindrical ends and n+ positive

cylindrical ends labeled by finite sets I−, I+ respectively;

• ιj : I± × T ↪→ Σ is the cylindrical end corresponding to j for each j ∈ I±;

• β is a Σ-compatible 1-form and (κj)j∈I−tI+ are the weights of β at each

cylindrical end;

• Č is a contact cylinder with associated Liouville domain D;

• H# := (Hj)j∈I−tI+ is a tuple of Hamiltonians; and

• J# := (J j)j∈I−tI+ is a tuple of families of almost complex structures in

JT(J0, V, ω).

Definition 10.1. Let (γj)j∈I−tI+ = (γ̃j , γ̌j)j∈I−tI+ be capped loops where

γ̃j : Σj −→M for each j ∈ I−tI+ (Definition 2.1). A smooth map u : Σ −→M

partially converges to (γj)j∈I−tI+ if there is a sequence aj1, a
j
2, a

j
3, · · · ∈ (0,∞)

tending to aj∞ ∈ (0,∞] for each j ∈ I± and a sequence of capped loops

(γkj )j∈I−tI+, k∈N = (γ̃kj , γ̌
k
j )j∈I−tI+,k∈N,

where γ̃kj : Σk
j −→M for each j ∈ I− t I+, k ∈ N so that

• γ̃kj (γ̌kj (t)) = u(±ajk, t) for each t ∈ T, j ∈ I±, and k ∈ N;

• the surface uk : Sk −→M obtained by gluing

u|
Σ−∪j∈I− ιj((−∞,−a

j
k)×T)−∪j∈I+ ιj((a

j
k,∞)×T)

to each oriented surface γ̃kj , j ∈ I− t I+ is null-homologous for each k ∈ N;

and

• γkj C0 converges to γj in the space of capped loops as k −→ ∞ for each

j ∈ I− t I+.

Note that if u converges to capped 1-periodic orbits (γj)j∈I−tI+ as in

Definition 2.14, then it partially converges to these capped 1-periodic orbits.

Also note that aj∞ does not have to be equal to ∞.

Definition 10.2. Let V be a vector space over R and ωV ∈
∧2 V ∗. A

linear complex structure JV : V −→ V is ωV -semi tame if ωV (v, JV (v)) ≥ 0

for all v ∈ V . An almost complex structure J on M is ω̃-semi tame for some

ω̃ ∈ Ω2(M) if J |x is ω̃|x-semi tame for all x ∈ X. Similarly, a smooth family
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of almost complex structures (Jσ)σ∈Σ′ is ω̃-semi tame if Jσ is ω̃-semi tame for

each σ ∈ Σ′.

Lemma 10.3. Let ω̃ ∈ Ω2(M) be closed 2-form.

(1) Let H := (Hσ)σ∈Σ be a Σ-compatible family of smooth functions (as in

Definition 2.14) with limits H#.

(2) Let F := (Fσ)σ∈Σ be a smooth family of functions which is Σ-compatible

with limits F# = (F j)j∈I−tI+ .

(3) Let J := (Jσ)σ∈Σ ∈ JΣ(V, J0, ω) be a Σ-compatible family of almost complex

structures with limits J#.

Suppose

• H is ω̃-compatible, where F is the primitive associated to (H, ω̃) as in Def-

inition 2.2, J is ω̃-semi tame; and

• d(fxβ) ≤ 0 for all x ∈M where

fx : Σ −→ R, fx(σ) := Fσ(x) ∀σ ∈ Σ.

Then for any solution u : Σ −→M of the (H,J)-Floer equation which partially

converges capped loops (γj)j∈I−tI+ , we have

(10.1)
∑
j∈I−

AκjHj ,ω̃,κjF j (γj) ≥
∑
j∈I+

AκjHj ,ω̃,κjF j (γj);

see equation (2.4).

Proof. The above inequality will follow from Stokes’ formula. Let ω̂β be

a 2-form on Σ defined by

ω̂β(Z1, Z2)

:= ω̃(du(Z1)− β(Z1)XHσ , du(Z2)− β(Z2)XHσ) ∀ Z1, Z2 ∈ TσΣ, σ ∈ Σ.

In order to prove our lemma, we will show

(1)
∫

Σ ω̂β ≥ 0; and

(2)
∫

Σ ω̂β ≤
∑

j∈I− AκjHj ,ω̃,κjF j (γj)−
∑

j∈I+ AκjHj ,ω̃,κjF j (γj).

We will now prove (1). If j is the complex structure on Σ, it is sufficient

for us to show ω̂β(Z, jZ) ≥ 0 for all Z ∈ TΣ. Fix z ∈ Σ and Z ∈ TzΣ.

Then ω̂β(Z, j(Z)) = ω̃(du(Z) − β(Z)XHσ , du(j(Z)) − β(j(Z)XHσ)). Since u

satisfies Floer’s equation (2.8), we get that the above expression is equal to

ω̃(du(Z) − β(Z)XHσ , Jσ(du(Z) − β(Z)XHσ)), which is ≥ 0 since J is ω̃-semi

tame.

We now need to prove (2). We will do this by first modifying ω̂β and

then applying Stokes’ formula. Let us look at a holomorphic coordinate chart

U inside Σ with holomorphic coordinate z = s + it and consider the vectors
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∂s := ∂
∂s , ∂t := ∂

∂t at this point. Then

ω̂β(∂s, ∂t) = ω̃(du(∂s)− β(∂s)XHz , du(∂t)− β(∂t)XHz)

= ω̃(du(∂s), du(∂t)) + β(∂s)ω̃(−XHz , du(∂t))

− β(∂t)ω̃(du(∂s), XHz) + β(∂s)β(∂t)ω̃(XHz , XHz)

(2.3)
= ω̃(du(∂s), du(∂t)) + β(∂s)dFz(du(∂t))− β(∂t)dFz(du(∂s))

= (u∗ω̃ + β ∧ u∗dFz) (∂s, ∂t).

Therefore

(10.2) ω̂β|σ = u∗ω̃ + β ∧ u∗dFσ ∀ σ ∈ Σ.

Define “F : Σ −→ R, “F (σ) := Fσ(u(σ)). Since d(fxβ) ≤ 0 for all x ∈ M ,

by equation (10.2), we get

(10.3) ω̂β|σ ≤ u∗ω̃ − d(“Fβ).

Let (γj)j∈I−tI+ be the associated loops of the capped loops (γj)j∈I−tI+ .

Since the maps γkj from Definition 10.1 C0 converge to γj as k tends to infinity,

by Stokes’ formula we have

(10.4)

∫
Σ
d(“Fβ) =

∑
j∈I+

∫ 1

0
κjF

j
t (γj(t))dt−

∑
j∈I−

∫ 1

0
κjF

j
t (γj(t))dt.

Let γj = (γ̃j , γ̌j) be our capped loop where γ̃j : Σj −→M for each j ∈ I−t I+.

Since the surface uk from Definition 10.1 is null-homologous for each k, we get

the following equation:

(10.5)
∑
j∈I−

∫
Σj

(γ̃j)
∗ω̃ +

∫
Σ
u∗ω̃ =

∑
j∈I+

∫
Σj

(γ̃j)
∗ω̃.

Therefore by equations (10.3), (10.4), (10.5) and (2.4) we have∫
Σ
ω̂β ≤

∑
j∈I−

AκjHj ,ω̃,κjF j (γj)−
∑
j∈I+

AκjHj ,ω̃,κjF j (γj).

Therefore (1) and (2) hold and we are done. �

Definition 10.4 (see [Sch95, Def. 4.3.20]). Let γ := (γj)j∈I−tI+ be non-

degenerate capped 1-periodic orbits of (κjHj)j∈I−tI+ . Let H ∈ HΣ(H#, Č)

and J ∈ JΣ(J#, Č) as in Definition 2.14. A sequence (uk)k∈N in M(H,J, γ)

(Definition 2.14) geometrically converges to a broken solution (u, v) of degree 1

where u : Σ −→M , v : R× T −→M if there exist

• m ∈ I±;

• a non-degenerate capped 1-periodic orbit γ̂ of κmH
m; and

• a sequence (sk)k∈N tending to ∞ if m ∈ I+ and −∞ if m ∈ I−
so that uk converges in C∞loc to u and uk ◦ ιm ◦ τk converges in C∞loc to v where
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• u ∈M(H,J, γ̌), where

γ̌ = (γ̌j)j∈I−tI+ , γ̌j =

{
γ̂ if j = m,

γj otherwise;

• v ∈M(κmHm, J
m, γ′) (Definition 2.23), where γ′ = (γm, γ̂) if m ∈ I− and

γ′ = (γ̂, γm) if m ∈ I+;

• τk is the map τk : Isk×T −→ I±×T, τk(s, t) := (s+sk, t) for each k ∈ N,

where Isk := [−sk,∞) if m ∈ I+ and Isk := (−∞,−sk] if m ∈ I−; and

• |(γ̌j)j∈I− | − |(γ̌j)j∈I+ | = 0 and |γ̂| − |γm| = 1 if m ∈ I− and |γm| − |γ̂| = 1

if m ∈ I+.

We will call the capped 1-periodic orbit γ̂ the connecting orbit and m ∈ I−tI+

the connecting index.

The following proposition is inspired by ideas from [CO18, §10.1]:

Proposition 10.5. Suppose I− = {?} is a single element set and (see

Definitions 2.58 and 2.23)

• (aj−, a
j
+) ∈ Sc(Qj−)× Sc(Qj+) is a Č-action interval ;

• κjHj ∈ HT,reg(Č, aj−, a
j
+), J j ∈ JT,reg(κjH

j , Č); and

• γj ∈ ΓZ
Č,aj−,a

j
+

(Hj)

for each j ∈ I− t I+. Suppose Q?± ⊂ Q
j
± for each j ∈ I+ and

(10.6) a?− ≤
∑
j∈I+

aj−|Q?− , a?+ ≤ a
j
+|Q?+ +

∑
j′∈I+−j

aj
′

−|Q?+ ∀ j ∈ I+.

Suppose that |γ?| − |(γj)j∈I+ | = 1. Let H ∈ HΣ(H#, Č) (Definition 2.14),

J ∈ JΣ,reg(H,J#, Č) (Proposition 2.19), and let (uk)k∈N be a sequence in

M(H,J, γ) where γ = (γj)j∈I−tI+ .

Then there is a subsequence (ukj )j∈N which geometrically converges to a

broken solution (u, v) of degree 1 as in Definition 10.4 so that the connecting

orbit γ̂ is an element of ΓZ
Č,am− ,a

m
+

(Hm) where m is the connecting index.

Proof. Suppose that there are some m ∈ I± and some sequence sk ∈ I±
so that the sequence of maps

lk : T −→M, t→ ιm(sk, t)

C0 converges to a 1-periodic orbit l : T −→ M . Let ηk = (η̃k, η̌k) be the

unique capped loop with the property that its associated 1-periodic orbit is lk
and where η̃k is given by

• the catenation of ιm|(−∞,sm]×T and γ̃m if m ∈ I−;

• or the catenation of ιj |[sj ,∞)×T (with the opposite orientation) and γ̃m if

m ∈ I+ where γm = (γ̃m, γ̌m).
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By a repeated Gromov compactness argument (e.g., [Sch95, Th. 4.3.22]) ap-

plied to cylinders and half cylinders, ηk converges to a capped 1-periodic orbit

γ̂ whose associated 1-periodic orbit is l after passing to a subsequence. Now

by Lemma 10.3, ∑
j∈I+

AH,Č(γj) ≤ AH,Č(ηk) ≤ AH,Č(γ?)

if m ∈ I− and

AH,Č(γm) ≤ AH,Č(ηk) ≤ AH,Č(γ?)−
∑

j∈I+−m
AH,Č(γj)

if m ∈ I+ for each k ∈ N. Hence by equation (10.6), am− ≤ AH,Č(ηk)|Qm− and

am+ � AH,Č(ηk)|Qm+ for each k ∈ N, and hence

(10.7) am− ≤ AH,Č(γ̂)|Qm− , am+ � AH,Č(γ̂)|Qm+ .
Therefore γ̂ has to be non-degenerate. Hence by using the argument above one

can show by [Sch95, Th. 4.3.21] that (after passing to a subsequence) (uk)k∈N
geometrically converges to a broken solution (u, v) of degree 1 with connecting

orbit γ̂ satisfying equation (10.7). �

Remark 10.6. There is also a parametrized version of Proposition 10.5

where we now have H = (Hs,σ)s∈[0,1],σ∈Σs ∈ HΣ•(H#, Č) (Definition 2.20)

and J ∈ JΣ•,reg(H, (Y0, Y1), J#, Č) (Proposition 2.21) for some smooth family

of Riemann surfaces Σ• := (Σt)t∈[0,1] where Yj = (Hj,s)s∈Σj for j = 0, 1 and

|γ?| − |(γj)j∈I+ | = 0. The proof is also identical.

11. Appendix D: Flatness of Novikov rings

Throughout this section we will fix a finitely generated abelian group (A, ·).

Definition 11.1. A rational polyhedral cone in (A ⊗Z R)∗ is a cone of the

form

Q :=

{
k∑
i=0

riwi : r0, . . . , rk ≥ 0

}
⊂ (A⊗Z R)∗

for some fixed elements w0, . . . , wk ∈ (A⊗ZQ)∗ ⊂ (A⊗Z R)∗ called generators

of Q.

Such a cone is closed. Hence if, in addition, this cone is salient (Def-

inition 2.52), then we can define the Novikov rings ΛA,QK and ΛA,Q,+K as in

Definition 2.54. The aim of this section is to prove the following:

Proposition 11.2. Suppose K is Noetherian, and let Q0, Q1 ⊂ (A⊗ZR)∗

be salient rational polyhedral cones satisfying Q1 ⊂ Q0. Then ΛA,Q1

K is a flat

ΛA,Q0

K -module.
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The key idea of the proof is to show that there are appropriate subalgebras

of ΛA,Qj , j = 0, 1 so that one is the completion of the other (Lemma 11.15) and

so that appropriate localizations of them recover ΛA,Qj, j=0, 1 (Lemma 11.16).

Before we prove Proposition 11.2, we need a few definitions and lemmas.

Throughout this section we will assume that our ring K is Noetherian.

Definition 11.3. Let Q ⊂ (A ⊗Z R)∗ be a closed salient cone. For each

x ∈ A, let FQx be the free K-module generated by elements of the set SQx :=

{a ∈ A : x �Q a} (Definition 2.54).

Remark 11.4. When x = 0, FQ0 is a K-algebra with multiplication induced

from the product · on A and FQx is an ideal in FQ0 for each x ∈ A satisfying

0 �Q x.

Definition 11.5. If R is a ring and x ∈ R, then we write (x)R for the ideal

generated by x. If it is clear which ring x lives in, then we write (x) = (x)R.

Lemma 11.6. Let Q ⊂ (A⊗Z R)∗ be a closed salient cone. Then we have

an equality of ideals (FQx )m = (xm) in the K-algebra FQ0 for each x ∈ A, m > 0

satisfying 0 �Q x.

Proof. Let x ∈ A satisfy 0 �Q x, and let m > 0. Since x ∈ FQx , we have

(xm) ⊂ (FQx )m. Now let a ∈ A satisfy x �Q a. Then 0 �Q a ·x−1, which means

that a · x−1 ∈ FQ0 . Hence am = (a · x−1)mxm ∈ (xm). Since (FQx ) is an ideal

generated by elements am satisfying x �Q a, we then get that (xm) = (FQx )m.

�

Definition 11.7. Let Q ⊂ (A⊗Z R)∗ be a closed salient cone. A Q-cofinal

element is an element y ∈ A satisfying 0 �Q y so that the sequence (yn)n∈N is

cofinal in (A,�Q).

Lemma 11.8. Let Q0, Q1 ⊂ (A ⊗Z R)∗ be closed salient cones so that

Q1 ⊂ Q0. Then there exists y ∈ A which is both a Q0 and Q1-cofinal element.

Proof. Since Q0 is closed and salient and A is finitely generated, there

exist y0, . . . , yk ∈ A generating A as a group and satisfying 0 �Q0 yi for each

i = 0, . . . , k. Then 0 �Q1 yi for each i = 0, . . . , k as well since Q1 ⊂ Q0. Define

y :=
∏k
i=0 yi. Now suppose x ∈ A satisfies 0 �Qj x for some j = 0, 1. Then

there exists l0, . . . , lk ∈ Z so that x =
∏k
i=0 y

li
i . Then 0 �Qj x−1 · ymaxki=0 |li|

and hence x �Qj ymaxki=0 |li|. Therefore y is a Qj-cofinal element. �

Definition 11.9. Let R be a ring and I ⊂ R an ideal. We define the

completion of R along I to be the inverse limit of rings

R̂I := lim←−
m∈N

R/Im.
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Lemma 11.10. Let Q ⊂ (A ⊗Z R)∗ be a closed salient cone, and let y be

a Q-cofinal element. The natural inclusion map of K-algebras FQ0 ↪→ ΛA,Q,+K
extends to an isomorphism ”

FQ0 (y)

∼=−→ ΛA,Q,+K .

Proof. By Lemma 11.6 combined with the fact that y is a Q-cofinal ele-

ment, we have

ΛA,Q,+K = lim←−
m∈N

FQ0 /(y
m)

by equation (2.13). This proves our lemma since (ym) = (y)m for each m > 0.

�

Definition 11.11. A multiplicative subset in a commutative ring R is a

subset closed under multiplication. For a multiplicative subset S ⊂ R, we

define the localization S−1R of R along S to be the set of equivalence classes

of pairs (r, s) ∈ R × S so that (r1, s1) ∼ (r2, s2) if and only if there exists a

t ∈ S so that t(r1s2− r2s1) = 0, where addition and multiplication are defined

via the formulas

(11.1) (r1, s1) + (r2, s2) = (r1s2 + r2s1, s1s2), (r1, s1)(r2, s2) = (r1r2, s1s2).

If x ∈ R, we define Sx ⊂ R to be the smallest multiplicative subset contain-

ing x.

Lemma 11.12. Let Q ⊂ (A ⊗Z R)∗ be a closed salient cone, and let y be

a Q-cofinal element. Then the natural inclusion map ΛA,Q,+K ↪→ ΛA,QK extends

to an isomorphism of K-algebras

(11.2) S−1
y ΛA,Q,+K

∼=−→ ΛA,QK .

Proof. Since FQx0x1 = x0F
Q
x1 for each x0, x1 ∈ A and since y−1 is −Q-

cofinal, we have a natural isomorphism

(11.3) ΛA,QK = lim−→
m∈N

y−mΛA,Q,+K

by equations (2.12) and (2.13), where the morphisms in the corresponding

directed system are the inclusion maps. Therefore since y is invertible in ΛA,QK ,

we get by the definition of direct limit (Definition 2.33) that elements of the

ring (11.3) are equivalence classes of pairs (x, ym), x ∈ ΛA,Q,+K , m > 0 where

(x, ym) ∼ (x′, ym
′
) if and only if xym

′+k − x′ym+k = 0 for some k ≥ 0 and

where addition and multiplication satisfy formulas which are similar to (11.1).

This proves our lemma. �

We get the following immediate corollary of Lemmas 11.10 and 11.12:
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Corollary 11.13. Let Q0, Q1 ⊂ (A ⊗Z R)∗ be closed salient cones so

that Q1 ⊂ Q0, and let y ∈ A be a Qj-cofinal element for j = 0, 1. Then we

have the following commutative diagram of K-algebras :

S−1
y (
‘
FQ0

0 (y)) ΛA,Q0

K

S−1
y (
‘
FQ1

0 (y)) ΛA,Q1

K .

∼=

∼=

From now on, until the end of this section, we will let Q0, Q1 ⊂ (A⊗ZR)∗

be closed salient cones so that Q1 ⊂ Q0 and let y be a Qj-cofinal element for

j = 0, 1 (see Lemma 11.8). We will also define Rj := F
Qj
0 and Ij := (y)Rj

(Definition 11.5) for j = 0, 1.

Lemma 11.14. The natural map

(11.4) K[A] = S−1
y R0 −→ S−1

y R̂0
I0

is injective.

Proof. The natural map R0 −→ R̂0
I0 is injective since ∩m∈NIm0 = 0.

Hence (11.4) is injective by [Sta18, Tag 00CS]. �

Lemma 11.15. The map

(11.5) R1 ⊗R0 R̂0
I0 −→ R̂1

I1

induced by the natural inclusion maps extends to an isomorphism

(11.6) (R1÷⊗R0R̂0
I0)1⊗y

∼=−→ R̂1
I1

Proof. The map (11.5) induces an isomorphism

(R1 ⊗R0 R̂0
I0)/(1⊗ ym) = (R1 ⊗R0 R0)/(1⊗ ym) ∼= R1/(ym)

for each m > 0. Taking the inverse limit as m→∞ of this isomorphism gives

us the isomorphism (11.6). �

Note that we have natural inclusion maps

(11.7) R1 ↪→ S−1
y R1 = K[A] = S−1

y R0 ↪→ S−1
y R̂0

I0

since y is not a zero divisor in R0 or R1 and also by Lemma 11.14.

Lemma 11.16. The map

(11.8) Ψ : R1 ⊗R0 R̂0
I0 −→ S−1

y R̂0
I0

induced by the natural inclusion map (11.7) extends to an isomorphism

(11.9) Φ : S−1
1⊗y(R

1 ⊗R0 R̂0
I0)

∼=−→ S−1
y (R̂0

I0).
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Proof. Since the map (11.8) sends 1⊗y to y, we get that the map Φ is well

defined. Also the composition of the map S−1
1⊗y(R

0⊗R0 R̂0
I0) −→ S−1

1⊗y(R
1⊗R0

R̂0
I0) with Φ is an isomorphism, and hence Φ is surjective. Finally, suppose

c ∈ ker(Φ). Then, there exists m > 0 so that c′ := (1 ⊗ y)mc ∈ R1 ⊗R0 R̂0
I0 .

Since y is a Q0-cofinal element, we have

(11.10) (y ⊗ 1)m
′
c′ ∈ R0 ⊗R0 R̂0

I0 = R̂0
I0

for some large m′ > 0. Since y is not a zero divisor in R̂0
I0 , we get that the

inclusion map R̂0
I0 ↪→ S−1

y R̂0
I0 is an injection and so the element (11.10) is

zero. Hence

(1⊗ y)m+m′c = (y ⊗ 1)m
′
c′ = 0 ∈ R1 ⊗R0 R̂0

I0 .

Since 1⊗y is invertible in S−1
1⊗y(R

1⊗R0 R̂0
I0), this implies that c = 0 and hence

Φ is injective. Hence Φ is an isomorphism. �

Proof of Proposition 11.2. Since Qj is a rational polyhedral cone, we get

that Rj is a finitely generated K-algebra by Gordan’s lemma [Ful93, Prop. 1,

§1.2] and hence is Noetherian by [Sta18, Tag 00FN] for j = 0, 1 since K is

Noetherian. Hence R1 ⊗R0 R̂0
I0 is Noetherian by [Sta18, Tag 0CY6], [Sta18,

Tag 00FN] and [Sta18, Tag 05GH]. Therefore (R1÷⊗R0R̂0
I0)(1⊗y) is a flatR1⊗R0

R̂0
I0-module by [Sta18, Tag 00MB] and [Sta18, Tag 00HT (1)]. Hence R̂1

I1

is a flat R1 ⊗R0 R̂0
I0-module by Lemma 11.15. Therefore since S−1

y R̂1
I1 is a

flat R1 ⊗R0 R̂0
I0-module by [Sta18, Tag 00HT (1)] combined with [Sta18, Tag

00HC] we get that S−1
y R̂1

I1 is a flat S−1
1⊗y(R

1⊗R0 R̂0
I0)-module by [Sta18, Tag

00HT (2)]. Hence S−1
y R̂1

I1 is a flat S−1
y (R̂0

I0)-module by Lemma 11.16. Our

proposition now follows from Corollary 11.13. �
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Math. 201, Birkhäuser, Basel, 2001, pp. 327–348. MR 1905328. Zbl 1079.

14003. https://doi.org/10.1007/978-3-0348-8268-2 19.

[EM02] Y. Eliashberg and N. Mishachev, Introduction to the h-Principle,

Grad. Stud. Math. 48, Amer. Math. Soc., Providence, RI, 2002.

MR 1909245. Zbl 1008.58001. https://doi.org/10.1090/gsm/048.

[Flo88] A. Floer, The unregularized gradient flow of the symplectic action,

Comm. Pure Appl. Math. 41 no. 6 (1988), 775–813. MR 0948771.

Zbl 0633.53058. https://doi.org/10.1002/cpa.3160410603.

[FH94] A. Floer and H. Hofer, Symplectic homology. I. Open sets in Cn,

Math. Z. 215 no. 1 (1994), 37–88. MR 1254813. Zbl 0810.58013. https:

//doi.org/10.1007/BF02571699.

[Fri91] R. Friedman, On threefolds with trivial canonical bundle, in Com-

plex Geometry and Lie Theory (Sundance, UT, 1989), Proc. Sympos.

Pure Math. 53, Amer. Math. Soc., Providence, RI, 1991, pp. 103–

134. MR 1141199. Zbl 0753.14035. https://doi.org/10.1090/pspum/053/

1141199.

[Ful93] W. Fulton, Introduction to Toric Varieties, Ann. of Math. Stud. 131,

Princeton Univ. Press, Princeton, NJ, 1993, The William H. Roever Lec-

tures in Geometry. MR 1234037. Zbl 0813.14039. https://doi.org/10.

1515/9781400882526.

http://www.ams.org/mathscinet-getitem?mr=0923134
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0651.14009
https://doi.org/10.1007/BFb0078366
https://doi.org/10.1007/BFb0078366
http://www.ams.org/mathscinet-getitem?mr=3012475
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1262.32026
https://doi.org/10.1090/coll/059
http://www.ams.org/mathscinet-getitem?mr=1312580
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0869.58011
https://doi.org/10.1007/BF02571891
http://www.ams.org/mathscinet-getitem?mr=1408861
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0869.58013
https://doi.org/10.1007/PL00004267
https://doi.org/10.1007/PL00004267
http://www.ams.org/mathscinet-getitem?mr=3797062
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1392.53093
https://doi.org/10.2140/agt.2018.18.1953
http://www.ams.org/mathscinet-getitem?mr=0733717
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0559.58019
https://doi.org/10.1002/cpa.3160370204
https://doi.org/10.1002/cpa.3160370204
http://www.ams.org/mathscinet-getitem?mr=1905328
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1079.14003
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1079.14003
https://doi.org/10.1007/978-3-0348-8268-2_19
http://www.ams.org/mathscinet-getitem?mr=1909245
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1008.58001
https://doi.org/10.1090/gsm/048
http://www.ams.org/mathscinet-getitem?mr=0948771
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0633.53058
https://doi.org/10.1002/cpa.3160410603
http://www.ams.org/mathscinet-getitem?mr=1254813
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0810.58013
https://doi.org/10.1007/BF02571699
https://doi.org/10.1007/BF02571699
http://www.ams.org/mathscinet-getitem?mr=1141199
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0753.14035
https://doi.org/10.1090/pspum/053/1141199
https://doi.org/10.1090/pspum/053/1141199
http://www.ams.org/mathscinet-getitem?mr=1234037
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0813.14039
https://doi.org/10.1515/9781400882526
https://doi.org/10.1515/9781400882526


576 MARK MCLEAN

[GPS15] S. Ganatra, T. Perutz, and N. Sheridan, Mirror symmetry: from

categories to curve counts, 2015. arXiv 1510.03839.
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