1.

1.1.
1.2.
1.3.

2.

2.1.
2.2.
2.3.
2.4.
2.5.
2.6.
2.7.
2.8.
2.9.

3.

3.1.
3.2.
3.3.

Annals of Mathematics 191 (2020), 439-579
https://doi.org/10.4007 /annals.2020.191.2.4

Birational Calabi-Yau manifolds have
the same small quantum products

By MARK MCLEAN

Abstract

We show that any two birational projective Calabi-Yau manifolds have
isomorphic small quantum cohomology algebras after a certain change of
Novikov rings. The key tool used is a version of an algebra called symplectic
cohomology, which is constructed using Hamiltonian Floer cohomology.
Morally, the idea of the proof is to show that both small quantum products
are identical deformations of symplectic cohomology of some common open
affine subspace.
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QUESTION. What properties do birationally equivalent Calabi- Yau mani-
folds have in common?

Recall that two smooth projective varieties X, X are birationally equiv-
alent if there exist Zariski dense open subsets A € X, A C X and an iso-
morphism A — A. In this paper, by Calabi- Yau manifold, we will mean a

smooth projective variety with trivial first Chern class. Batyrev showed in

[Bat99] that birational Calabi-Yau manifolds have equal Betti numbers. More
generally, by combining ideas from [Kon95] and [DLO01] with ideas in [GS96,
§3.3], it can be shown that they have identical integral cohomology groups.
One can ask, do their cup product structures agree? It turns out that this is
false ([Fri91, Example 7.7]). However Morrison in [Mor96] conjectured that bi-
rational Calabi-Yau threefolds have identical small quantum cohomology rings,

and this was proven in [LRO1]. This leads to the following conjecture:



BIRATIONAL CALABI-YAU MANIFOLDS 441

CONJECTURE 1.1 ([Rua99]). Any two birational Calabi-Yau manifolds
have isomorphic big quantum cohomology rings up to analytic continuation.

It was shown in [LLW16a], [LLW16b] and [LLQW16] that certain bira-
tional isomorphisms called ordinary flops induce isomorphisms between big
quantum cohomology rings up to analytic continuation. In [Wan04, Conj. IV],
it was conjectured that a small perturbation of a birational isomorphism be-
tween Calabi-Yau manifolds is a sequence of ordinary flops. Hence the work
above tells us that [Wan04, Conj. IV] implies Conjecture 1.1. Kawamata in
[Kaw08] showed that birational morphisms between Calabi-Yau manifolds can
be decomposed into sequences of flops, however the structure of these flops in
general is unknown.

In order to state our main theorem precisely, we need to set up some
notation. Let ® : X --» X be a birational isomorphism between Calabi-
Yau manifolds. Fix a field K, and fix Kahler forms wx, wg on X and be
respectively so that the de Rham cohomology classes [wx] € H*(X;R), [wy] €
H 2(5(\ ;R) lift to integral cohomology classes. Then a standard argument (see
[Kaw02, Lemma 4.2] or Corollary 7.2) tells us that the map ® gives us natural
identifications H?(X;R) = HQ(X\; R) and Ho(X;Z) = Hg(jf\; Z). As a result,
we will not distinguish between these groups. Therefore we can define the
following Novikov rings:

(1.1)

Aix’w)? = {Z bit* : b; € K, a; € Hy(X;Z), min(wX(ai),w)?(ai)) — oo} ,
1€N

ASY = {Zbit‘“ b €K, a; € Ho(X;Z), wx(a;) — 00}7
€N

(1.2)
AS = {Z bit" b €K, a; € Ho(X;Z), wg(a;) — oo} :
€N
Here, the first Novikov ring is the intersection of the other two. The aim of
this paper is to prove the following theorem:

THEOREM 1.2. Let ® : X --» X be a birational equivalence between
Calabi-Yau manifolds, and let wy and ws be Kahler forms on X and X re-
spectively whose cohomology classes lift to integer cohomology classes. Then
there exists a graded A%X’w?—algebm Z and algebra isomorphisms

(13) Z@,wxwg AP = QHY(X:ARY), 20 wxwg A™ =5 QH (X Ag)

over the Novikov rings A* and A%? respectively, where QH* means small
quantum cohomology.
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Note that small quantum cohomology of a Calabi-Yau manifold can be
defined over any field K (see [Rua96]). Previous theorems identifying quan-
tum cohomology rings of birational Calabi-Yau manifolds were proven using a
degeneration argument (along with many additional ideas, such as a quantum
Leray-Hirsch theorem). We will prove our theorem using Hamiltonian Floer co-
homology. This proof has the advantage that it works in greater generality and
it explains in some sense why the result should hold. The downside, in com-
parison to previous results, is that the isomorphisms (1.3) are not explicit. In
fact, the algebra Z is not explicit either. Also, the results [Rua99], [LLW16a],
[LLW16b] and [LLQW16] identify actual enumerative invariants through an-
alytic continuation dictated by the identification Ho(X;Z) = HQ(X\ s Z2). It
might be possible to use ideas from [Seil8] and [GPS15] to extend Theorem 1.2
above so that we can identify such enumerative invariants in some special cases.
The results [LLW16a], [LLW16b] and [LLQW16] also identify big quantum co-
homology rings, whereas we only identify small quantum cohomology rings.
Finally, one may ask if higher genus invariants of birational Calabi-Yau’s are
related (see [ILLW12]). We currently do not know if the techniques in this
paper will be useful in answering this question.

We will give a sketch of the proof of Theorem 1.2 in Section 1.2. The
ideas of this proof were inspired by ongoing work of Borman and Sheridan,
and it uses a version of symplectic cohomology defined in [CFH95], [CO18],
[Grol5], [Venl18] and [Varl8]. As a corollary of the theorem above, we provide
an alternative proof of the fact that birational Calabi-Yau manifolds have the
same cohomology groups over any field.

COROLLARY 1.3. Let X, X be birational Calabi-Yau manifolds. Then
they have isomorphic cohomology groups over any field.

Proof. We wish to show that HP(X;K) = HP(X\; K) for any field K and
for each p € Z. Fix such a K and p € Z. Let I, F, F be the field of fractions of
ATIQX’W)? , A® and AE’? respectively. Then K C F, F ¢ F and F C F. Let Z be
as in Theorem 1.2, define Z := Z ®A;;X,w)? F, and let Zp be the degree p part

of this graded algebra. By the universal coefficient theorem [Wei94, 3.6.1], we
have the following isomorphisms of vector spaces:

HP(X;A%) @pox F = HP(XGF),  HP(X;A5) ® F = HP(X;F).
Hence by equation (1.3), we have isomorphisms
(1.4) Z,©:F = HY(X;F), Z,®;F=H(X;F).
By the universal coefficient theorem, we also have isomorphisms

(1.5) HP(X;K) ®x F = HP(X;F), H?(X;K)®xF =~ H?(X;F).
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Therefore by equations (1.4) and (1.5), the dimension of HP(X;K) is equal to
the dimension of HP(X;K). Hence HP(X;K) = HP(X;K). O

1.1. Ezample. Even though we do not know what the isomorphisms (1.3)
look like explicitly, we will speculate what they should look like in a particular
example when restricted to even degrees (see [Mor96, §4.3]). Suppose that X,
X are of dimension 3 and that there exists a class I € Hy(X;7Z) so that

e every connected one-dimensional subvariety in X representing I' or in X
representing —I" is isomorphic to P! with normal bundle O(—1) & O(—1);
and

e X and X are related by an Atiyah flop along all of these curves.

Since H3(X;Z) is naturally identified with HQ(X\ Z), we have by Poincaré
duality a natural identification H*(X;Q) = H* (X Q) for each even k € Z.
Hence from now on we will identify these cohomology groups. Let Ao, . Al €
H*(X;Q) be a basis so that Ao is Poincaré dual to T, and let Ag,...,A; €
H?(X;Q) be the dual basis with respect to the pairing (o, ) — fX aUpB.

We speculate that the even degree part of the algebra Z from Theorem 1.2
is isomorphic as a A%X “X_module to HeV*»(X; Aix’wg ) and the product *z on
this module is uniquely determined by the structure constants

A; xy Aj = A; Ux Aj + lé()i&)jgotr
(1.6) ’ x5 e
+3 N G (A Aj AR Art? iy j e {0, 1)
k=0 B¢ZT

By replacing the class Ag in (1.6) with 1 tF Ap and — 1 = er respectively and
the class go with (1 — tF)XO and — t*F Ao respectively, we get the isomor-

phisms in equation (1.3).

1.2. Sketch of proof. Theorem 1.2 is proven using Hamiltonian Floer co-
homology. Very roughly, Hamiltonian Floer cohomology HF*(H) is a coho-
mology ring whose chain complex is generated by 1-periodic orbits of a Hamil-
tonian H. The key property of Hamiltonian Floer cohomology is that it is
isomorphic to quantum cohomology, and hence it is sufficient for us to show
that the Hamiltonian Floer cohomology algebras of appropriate Hamiltonians
on (X,wy) and ()? ,wy) respectively are related via equations similar to (1.3).
In order to do this, we choose Zariski dense affine open subsets A C X, AcX
so that ® maps A 1somorphlcally to A. The key 1dea now is to choose Hamil-
tonians H on X and H on X so that H a4 = >*H |7 and which are constant
outside a large compact subset K of A. One also has to modify wx and wg so
that these Kahler forms agree near K. If one could ignore all 1-periodic orbits
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of H and H outside K , then their Hamiltonian Floer groups would be “iden-
tical” and hence we would be done. However it turns out that if one ignores
these orbits, one gets groups which are no longer isomorphic to quantum co-
homology. In order to get around this problem, we consider a sequence of such
Hamiltonians tending to infinity outside K. We package all of this data into
a group called symplectic cohomology and show that these groups are in fact
isomorphic to quantum cohomology. In the following subsections, we provide
a slightly more detailed sketch of the proof.

1.2.1. Hamiltonian Floer cohomology with alternative filtrations. In this
subsection, we summarize the results of Section 2. Let (M, w) be a symplec-
tic manifold with trivial first Chern class, and fix an w-tame almost complex
structure J. A contact cylinder is a codimension 0 symplectic embedding of a
subset C' = [1 —¢, 1+¢€] x C of a symplectization of a contact manifold C which
bounds a Liouville domain D (see Definition 2.3). Let H be a time dependent
Hamiltonian on M which is compatible with this contact cylinder (see Defini-
tion 2.4) whose 1-periodic orbits are non-degenerate. A capped 1-periodic orbit
of H is a l-periodic orbit v together with a certain equivalence class of sur-
faces 7 : ¥ — M with boundary equal to v (see Definition 2.1). Now to each
capped 1-periodic orbit v and to each closed 2-form @ which is “compatible”
with C' and J we can assign an action. This action depends on v, H and the
cohomology class of @ together with two additional parameters (Corollary 2.8
and Remark 2.9). Therefore one can think of the action of v as a partic-
ular function Ag () from (a certain subset Qg of) H?(M,D;R) x R x R
to R. Morally, one should think of D as the “complement” of a particular
ample divisor and that the action function A 1 (77) records the usual action
together with the intersection numbers of the capping surface 7 with various
components of this divisor. Let a+ : @+ — R be continuous functions where
Q+ C Q are certain cones in Q. We define the chain complex C'F E‘,a_,a+ (H)
to be the free abelian group generated by capped 1-periodic orbits v satisfy-
ing a- < Ag y(7)lg. and ay £ A i (7)|Qy; see Definition 2.59 for more
details. The differential is a matrix with respect to the above basis of capped
1-periodic orbits whose entries “count” solutions to a particular PDE with
boundary conditions given by these orbits (Definition 2.63). We define the
(H) to be the homology of

A§+7+

Hamiltonian Floer cohomology group HFéa

—,a4
this chain complex. This is a module over a particular Novikov ring
(Definition 2.56). Here are some key examples.

{A} The case when C is the empty set and Q_ = Q. are one-dimensional
cones spanned by ([w],1,1) € H?(M;R) x R%. In this case, one gets the
usual Hamiltonian Floer groups and the usual action filtration (used
in, say, [FH94]). The Novikov ring Ag+’+ in this case is equal to (1.2)
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where wyx is replaced by w and where only non-negative exponents are
allowed; i.e., w(a;) > 0.

{B} The case when C is non-empty, Q. is a one-dimensional cone and @ _
is a two-dimensional cone containing )+ which projects to the cone
spanned by [w] € H%(M;R). In this case the corresponding Floer
cohomology group is defined over the same Novikov ring, but since )_
is larger, one can use it to ignore certain 1-periodic orbits.

{C} Finally there is the case when @4 is a certain two-dimensional cone
and _ is a four-dimensional cone. The Novikov ring in this case is
a subring of (1.1) where only non-negative exponents are allowed; i.e.,
wx(a;),wg(a;) > 0. We will use this case to define the algebra Z.

These Hamiltonian Floer groups satisfy the following properties:
(HF1) (Definition 2.69). If H_ < Hj (plus some other conditions), then

. . . p . p —
there is a natural continuation map ®p_ - HFé,a_,a+ (H7) —
HF, (H™) which is functorial.

7a77a/+

(HF2) (Definition 2.77). If Q1L c Q% and a} < ai]Qi, then there is a natu-
ral action map HFaa‘l,ag (H) — HFé,ai,aiL (H) and these maps are
functorial and commute with continuation maps.

(HF3) (Definition 2.85). Suppose

e (HY)j—01,2 are Hamiltonians satisfying H%, H! < %HQ;
. (Q{t)jzo,lg are certain cones in H2(M, D;R) x R x R satisfying
Q3 C Q%; and
° aft : Qi — R are certain continuous functions satisfying a? <
a’ +al and a2 < min(aY +al,a® +dl).
Then there is a pair of pants product map
HFY o a H ® a2+ HEE a HY) — HFg?;;f; 2 ( H?)

commuting with all of the maps above.

1.2.2. Lower semi-continuous Hamiltonians. The next subsection sum-
marizes Section 3. A lower semi-continuous Hamiltonian is just a function
St x M — R U {co} which is lower semi-continuous. The good thing about
this condition is that the set of smooth Hamiltonians smaller than H form
a directed system with respect to the usual ordering <. For a lower semi-
continuous Hamiltonian H compatible with a contact cylinder C, we can define
HF (H) to be the direct limit of HF% (H) for all smooth C' compat-

Cia_,ay Cia—,ay
ible Hamiltonians smaller than H. These satisfy the same properties (HF1)—

(HE3) above.

1.2.3. Symplectic Cohomology. The problem with the Floer groups above
is that they do not have the correct invariance properties and they are not
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algebras. We resolve these issues in Sections 4 and 5. Let M, C', D be as
above. Let Q_ C Q4+ be two cones in Q. For a closed set K C D, we define
the symplectic cohomology algebra

*

SH o, (KCM):= @LHFCG s (Hg),
a_ a4

where we are using the directed system of continuous functions a+ : Q+ — R

with the usual ordering < for a4 and the opposite ordering for a_ and where

Hp is the lower-semi-continuous Hamiltonian
0 ifzek,

(1.7) Hg: M —RU {OO}, HK(.T) = )
oo otherwise.

This is defined over a particular Novikov ring Ag* and has a product induced
by the pair of pants product. The papers [CFH95], [CO18], [Grol5], [Venl8§]
and [Varl8] have a similar definition of symplectic cohomology. However there
are slight differences between all of these definitions (which potentially could
lead to different algebras). One main difference is that some of the definitions
above involve building a chain complex first, and then taking homology. Our
definition does not do this, but only for the sake of ease. The symplectic
cohomology algebra satisfies the following properties (see the cited definitions
and propositions/theorems for more accurate statements):

(SH1) (Definition 4.3). If Ky C K_ C D are closed subsets, then we have a

transfer map SH (Ko Cc M) — SH* (K4 C M) which

’Q 7Q

is functorial.
(SH2) (Definition 4.4). If Q1 C QY then there is an action map

SHE, go o (K C M) — SHE g1 1 (K C M).

These maps commute with continuation maps and are functorial.

(SH3) (Theorem 5.10). If K = M and C, Q4 are as in {A}, then

SHE Q0 Q4 (K Cc M)
is isomorphic to quantum cohomology. Also the “derived” version of
symplectic cohomology lim l'&ll HF é o s (Hg) vanishes.

(SH4) (Theorem 5.12). If the complement M — K is stably displaceable (i.e.,
(M — K) x St ¢ M x T*S! is displaceable by a Hamiltonian sym-
plectomorphism) and C, Q4+ are as in {A}, then the transfer map
SHQT,Q,,QJF(M C M) _>VSH$,Q7,Q+(K C M) is an isomorphism.

(SH5) (Proposition 5.24). If C, Q_, Q4 are as in {B} and the Liouville
domain D is index bounded (Definition 5.23), then the action map

SH* e (DCM)—)SHE;Q’Q (DC M)
is an isomorphlsm.
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(SH6) (Proposition 5.32). Suppose that Cy, C are index bounded contact
cylinders with associated Liouville domains Dy and D; respectively
satisfying D1 C Dy along with some other conditions. (Essentially Dy
and D; need to be “large” in some sense.) Then the transfer map

SHC‘,Qf,QJr(DO C M) — SHC‘,Q,,QJF(Dl C M) is an isomorphism

where (Q_,Q4) is as in {B}.

(SH7) (Theorem 5.39 and Proposition 11.2). Let C' be an index bounded
contact cylinder with associated Liouville domain D. Suppose we have
inclusions of rational polyhedral cones Q1 C Q% where Q! has dimen-
sion at least 2 (e.g., case {B} or {C}). Also suppose that

1
limg Y HFG,,_ . (HD) =0,

a— a4

where Hp is defined in (1.7). Then we have an isomorphism

QY =
SHE (DcCc M) ®AQ3 A" — SHE (DcCc M)
K

Q°.,QY QL,QL

induced by the action map.

(SHS8) (Proposition 2.19 and Lemma 8.3). Let C be a contact cylinder with
associated Liouville domain D. Suppose V. C M — D — C is a union
of real codimension > 4 submanifolds. Let (J+ be cones so that ¢ _
is of dimension > 2. Then the Floer trajectories and orbits defining
SHE,Qf,QJr (D C M) can be made to avoid V. Hence this group only
depends on these structures restricted to M — V.

1.2.4. Sketch of proof of Main Theorem 1.2. Here we summarize the ideas
behind the proof of Theorem 1.2 coming from Sections 6 and 7. The proof has
two parts. In part (1), we modify the symplectic forms on X and X so that
they agree on a certain large open subset and so that they admit certain index
bounded contact cylinders. In part (2), we use properties (SH1)-(SHS8) to
finish our proof.

Part (1). First of all, we choose Zariski dense affine subvarieties A C X,
A C X so that
(1) the birational morphism ® induces an isomorphism ¢ : A — ;1\; and
(2) wx and w < come from effective ample divisors with support equal to X — A
and X — A respectively (after rescaling these forms).
By Corollary 6.20, we have that X — A is stably displaceable (by an h-principle).
Hence there is a compact subset K C A so that X — K is stably displaceable.
By Proposition 6.7 we can construct an index bounded contact cylinder C' on
X whose associated Liouville domain D contains K. (Here we use the fact
that X is Calabi-Yau.) By using the ample divisors above, we can modify
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the Kéhler form wg (without changing its cohomology class up to rescaling)

so that wx and ®*wy agree near D. Again, by Corollary 6.20 we can find a

compact subset KcA containing ®(D) so that X - K is stably displaceable.
Also by Proposition 6.7 one can construct an index bounded contact cylinder
C in A whose associated Liouville domain D C A contains K.

Part (2). From now on we identify H?(X, D;R) = HQ(X,]_AD; R). We let
Quy and Qu be one-dimensional cones spanned by ([wx],1,1) and ([wg], 1,1)
respectively as in {A}. We let Q4, Qi be the corresponding enlarged cones
as in {B}. Finally we let Qi be the cones spanned by both Qi+ and Qi
(These are cones as in {C}.) (SH3) (SH4) and (SH5) we have that

SHgQ s (D C X) and SHAA o (D C X) are isomorphic to the quan-

tum cohomology rings of X and X respectlvely. By (SH6) we have that the

transfer map SH*A@ B, (ZA) C )?) — SH;(C) @+(<I>(D) c X) is an iso-

morphism. Define the Ay Y% algebra Z := SH* 633, (D C X). Now since

7*7

the regions Vx C X and V5 C X for which the birational morphisms ® and
&1 are ill defined has real codimension > 4 by Lemma 7.1, we have by (SH8)

. . WX ,Ws
an isomorphism of A" " *-algebras

(1.8) Z=SH; 5 5 (®(D) c X).

The isomorphisms (1.3) now follow from equation (1.8) combined with the
second part of (SH3) and (SH7).

1.3. Notation throughout this paper.

e We will fix a ring K.

e (M,w) will be a compact connected symplectic manifold of dimension 2n
satisfying c;(w) = 0 and where [w] € H?(M;R) lifts to an integral cohomol-
ogy class.

e Jy is a fixed almost complex structure on M taming w.

e (V;)!_, is a finite collection of (not necessarily properly embedded) subman-
ifolds of M of codimension > 4 and where V := Uélei is compact.

o T:=R/Z,1_ :=(—00,0], I} := [0, 00).

e (s,t) will be the natural coordinate system on I+ x T or R x T.

e For any manifold %, J*(Joy,V,w) is the space of smooth families of w-
tame almost complex structures J := (J,)sex smoothly parametrized by
> equipped with the C'° topology so that all the derivatives of J and Jy
agree at v for all v € V.

o J(Jo,V,w) := JP*(Jp, V,w).

e If ] is a set and W is a vector space, then W' is the vector space of maps
I — W or equivalently tuples (w;);jer of elements in W.
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2. Hamiltonian Floer cohomology and filtrations
2.1. Alternative action values of periodic orbits.

Definition 2.1. A Hamiltonian is a smooth family of functions H = (Hy)er
on a symplectic manifold. (By default this is (M,w) unless stated otherwise.)
It is autonomous if Hy does not depend on ¢, and hence we usually express
such a Hamiltonian as a single function M — R. The time t flow (¢} :
M — M)ier of a Hamiltonian H = (Hy)ser is the time ¢ flow of the unique
time dependent vector field (X/?);cr satisfying ixpw = —dHy for all t € R.
A 1-periodic orbit is a smooth map v : T — M satisfying ¥ = X/ for all
t € T. A l-periodic orbit v is non-degenerate if the linearized return map
Dqﬁ{{ : TyoyM — T0)M has no eigenvalue equal to 1. A capped loop is an
equivalence class of pairs (7,%) of smooth maps

(2.1) ¥:8— M, 5:T— 985,

where S is a smooth oriented surface with boundary, % is an orientation pre-
serving diffeomorphism and where any two such pairs (0,%), (71,%1) are
equivalent if 49 o 49 = 71 o ¥1 and if the surface obtained by gluing 7y and 3
along the boundary via the map 4y o 7y, ! is null homologous. More precisely,
this gluing is defined to be the continuous map

~ ~ = ;90 if z € SOv
(2.2) Yox1:SoUS1/ ~— M, ~yo*7i(o):= {~ i

1 otherwise,

where Sy is the domain of 7, S is the domain of 7; with the opposite orien-
tation and where the identification ~ is defined to be

850 = ﬁg(t) ~ ’v)/l(t) S 851, teT.

If (7,%) is a capped loop, then the associated loop of (7,%) is the map 7 o7 :
T —s M. We define £ (M) to be the space of capped loops equipped with
the quotient topology induced from the C*° topology on the space of pairs of
maps as in equation (2.1).

A capped 1-periodic orbit v of a Hamiltonian H is a capped loop, whose
associated loop 7 : T — M is a 1-periodic orbit of H. We call 7 the associated
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1-periodic orbit of v. A capped l-periodic orbit v is non-degenerate if the
associated 1-periodic orbit is non-degenerate.

Definition 2.2. Let K = (Ky)sex be a smooth family of functions on M
parametrized by a manifold . Let w be a closed 2-form on M — V. We say
that K is w-compatible if there is a smooth family of functions G = (G, )sen
on M —V so that

(2.3) iXKUZ‘VJ = —dGU Yoe?.

We will call G a primitive associated to (K, w).

Now let H := (H;)ier be a Hamiltonian which is @w-compatible and F =
(F})ter a primitive associated to (H,w). The (H,w, F')-action of a capped loop
v := (7,%) on M where the associated loop 7 : T — M is disjoint from V is
defined to be

1
(2.4) Anar(y) = — /S )5 + /0 Fy(y(t))dt,

where 7' : S — M is some O small perturbation of 5 away from 0S so
that its image is disjoint from V. If W extends to a smooth 2-form on M
and F' extends to a smooth family of functions on M, then we define the
(H,w, F)-action of any capped loop 7 by equation (2.4) with 5’ replaced by
~v. If (7,%) is any capped loop whose associated loop is constant, then we
define the (H,w, F')-action Ag g p(7) to be Ap g p(7y') where ' is a capped
loop disjoint from V which is smoothly isotopic to v through capped loops
with constant associated loops.

Note that the perturbations 3’ and /" above exist since V' is a finite union
of codimension > 4 submanifolds of M. Note also that such an action will
usually be computed for capped 1-periodic orbits of H.

We will only deal with very specific closed 2-forms w associated to cer-
tain contact hypersurfaces inside (M,w). We will now introduce such closed
2-forms.

Definition 2.3 (See Figure 1). A contact cylinder in M consists of a codi-
mension 0 submanifold

C=[l-¢l+efxCC M-V

so that w|s = d(rcac) where r¢ : C — [1 — ¢,1 + € is the natural projec-
tion map, and «a¢ is a contact form on C. We also require that {0} x C is
the boundary of a compact codimension 0 submanifold D so that w|p = df
for some 0 € Q'(D) satisfying 0|5 = rcac. Here r¢ is called the radial
coordinate associated to C, ac is called the contact form associated to C, and
D is called the Liouville domain associated to C. A 2-form & € Q*(M — V) is
C-compatible if
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Wle = d(fz(ro)rea)

(1+¢€/4,1+¢/2) x C

Figure 1. A contact cylinder

(a) @ is closed and Jy-tame outside D U C;
(b) @|x = d(fz(rc)rca) where fz : R — R is a smooth function satisfying

folcoogtes) =250 falptezo) = A, f5>0

for some constants Aéf > 0;
(c) W|p = Ajw; and
(d) @ = AJw if C is the empty set.

We call )\(% the scaling constants for w and f5 the scaling function for w. A
family of 2-forms w® = (07)yeyx is C-compatible if w, is C-compatible for each
o € X. If C is the empty contact cylinder, then A5 is defined to be arbitrary.
(That is, we can choose A7 to be anything we like and it is considered as part
of the data defining @.)

Definition 2.4. An autonomous Hamiltonian K : M — R is weakly
C-compatible if K|[11¢/8,14¢/2)xc = AxTc + my for some constants g and
mp. The constant Ax is called the slope of K along C, and my is called
the height of K at C. Also if C is the empty contact cylinder, then we de-
fine the slope and height of K to be 0. We say that K is C-compatible if
it is weakly C’—compatible and if K| M—(DUC) is constant. A smooth fam-
ily of autonomous Hamiltonians K, := (K, )s,ex parametrized by a manifold
Y is (weakly) C-compatible if K, is (weakly) C-compatible for each o € X,
An almost complex structure J on M is C-compatible if J € d(Jo,V,w), and
drcoJ = —a¢ inside [1+€/8,14¢€/2] x C. A smooth family of almost complex
structures Jo = (Jy)oex is C-compatible if J, is C-compatible for each o € X.

Remark 2.5. The space of 2-forms which are C-compatible is weakly con-
tractible; in fact it forms a convex subset of Q%(M). Also the space of (weakly)
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C-compatible Hamiltonians (resp. almost complex structures) is weakly con-
tractible.

By a direct calculation, we have the following lemma and corollary:

LEMMA 2.6. Let

e C be a contact cylinder with cylindrical coordinate r¢ and associated Liou-
ville domain D;

e & be a 2-form compatible with C where )\g (resp. fz) are the scaling con-
stants (resp. scaling function) for @; and

o H = (Hi)er be a weakly C—compatz’ble Hamiltonian which is C—compatz’ble
if @ is not a locally constant multiple of w outside [1 + €/4,1 + €/2] x C,
and let (Mg, )ter and (mp, )ier be the slopes and heights of (Hy)ier along C
respectively.

Then the smooth family of functions FHC® = (FHt’O":’)teqr defined by
FHCE . v 5 R, FHCS
- Hy in DU ([1,1+¢€/4] x C),
= Am, fo(re)re +Asmu,  in[l4+¢€/4,1+¢/2] x C,
M (Hy —mp,) + Asmp,  otherwise

(2.5)

is a primitive associated to (H,@) as in Definition 2.2 for all t € T; see Fig-
ure 2.

re=1rc=1+¢/4 rc=1+¢/2

\)\g(Ht — mHt) + Agm[{t

re =1
\;\/—/
D
C

Figure 2. Primitive associated to (H,)
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re=1rc=1+¢/4 rc=1+¢/2

H,

Figure 3. Primitive associated to (H,w), where H has small
derivatives outside D U ([1,1 + €/8] x C).

Remark 2.7. Most of the important Hamiltonians in Sections 5.5, 5.6, and
5.7 will have small derivatives outside D U ([1,1 + €/8] x C'). This makes our
calculations easier. It is good to keep such Hamiltonians in mind throughout
this paper since they appear in many of the most important calculations. In
this special case, Figure 2 might look like Figure 3 instead.

We have the following corollary of Lemma 2.6:

COROLLARY 2.8. As in Lemma 2.6, let C, @, H = (Hy)er, )\%, (A, )ter,
(m,)eer, FHOP = (FHC&),cp. Then for every capped loop v = (7,%)
whose associated loop 7 : T — M satisfies 57(T) C M —([1+¢/4,1+¢/2] xC),
we have
(2.6)

_ IO—I—AZEIl Zfﬁ(T) CDU([1,1+6/4] ><C')7

A s ok =
H,C,FHC, ("7) Io+)\g(11 — D)+ )\5[2 otherwise,

where
1 1
Iy ;:—/i*&, I ::/ H(75(t)))dt, I ::/ mp,dt.
S 0 0

Remark 2.9. The (H,w, FHf’C"D)—action of a capped loop ~ satisfying the
conditions of Corollary 2.8 only depends on w, H, C, )\% and the relative
cohomology class [@ — ASw] € H*(M, D;R).

The following definition packages together all the necessary action values
stated above.
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Definition 2.10. Let ws be a C-compatible 2-form with scaling constants
0 and 1 and which is equal to w outside D U ([1,1 4 ¢/2] x C). Let Qs C
H?(M, D;R) xR xR be the subset consisting of all triples (¢, \™, A") satisfying
q = [0—A"w+A"wg| for some C-compatible 2-form w € Q?(M) whose scaling
constants are AT satisfying A~ < A*. For any capped loop v = (¥,%) whose
associated loop has image disjoint from [1 — €/4,1 4 ¢/2] x C, we define the
(H,C)-action of y to be the function

Ape() Qe — R, Ay (@A A7) = Ay s prca(),
where @ € Q%(M) is a C-compatible 2-form with scaling constants A* satisfying
- A w+ A ws =gand A~ <A,
The (H, C)-action of v is well defined by Remark 2.9 and does not depend
on the choice of w.

Ezample 2.11. Let C, &, AL, (Am,)eers (ma, )rer, FHC® = (FHC®), o
be as in Lemma 2.6. Suppose that the contact cylinder C' is the empty set and
w = w. Then for each capped loop v = (7,%), we get

(2.7) Ao (@], a,1) = / e+ / Hi5

for all @ € R, which is the usual action functional defined in, say, [F1o88] (with
different sign conventions), where S is the domain of ¥ and 7 is the associated
loop of ~.

2.2. Floer trajectories. In this section we will give a definition of a Floer
trajectory converging to a collection of capped 1-periodic orbits and state some
results concerning spaces of Floer trajectories. Throughout this subsection, we
will fix a (possibly empty) contact cylinder C = [1 —¢,14¢] x C C M.

Definition 2.12. Let H*(C) be the space of smooth families of Hamil-

tonians H® = (H)sexy, parametrized by a manifold ¥ which are weakly C-
compatible and equipped with the C%, topology. Let ﬁz(é) c H¥(C) be
the subspace consisting of those H which are C-compatible. Let J*(C) be the
space of smooth families J®* = (J?),ex of almost complex structures on M

which are C-compatible equipped with the Che. topology.

Definition 2.13 (see Figure 4). A Riemann surface with n_ negative cylin-
drical ends and ny positive cylindrical ends is a Riemann surface X together
with a collection of proper embeddings

(Lj . ]Ii X T — E)je[_u[+,

where

e [_,I, are finite indexing sets and the images of ¢; are all disjoint from each
other;
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e X is biholomorphic to S—Uje I_ul, {p;} where ¥ is a closed Riemann surface
and (p;)jer_ur, are distinct points in 35 and
e for each j € I, there is a holomorphic chart U; in ¥ centered at p; so that
Im(¢;) C U; and
Iy (S, t) _ €:|:27r(s+it)
with respect to this chart.

The map ¢ is called the negative (resp. positive) cylindrical end associated
to j € I (resp. j € I;). The coordinate (s + it) o Lj_l : Im(t;) — C on
the negative (resp. positive) cylindrical end ¢; € I is called the cylindrical

coordinate associated to j € I_ L1,

I, ={0,1}

Cylindrical coordinates

Figure 4. Riemann surface with one negative cylindrical end
and two positive cylindrical ends

Definition 2.14. Let X be a Riemann surface with n_ negative cylindrical
ends and n4 positive cylindrical ends labeled by finite sets I_ and I respec-
tively. A 1-form 3 € QY(X) is X-compatible if B = kdt for all j € I_ U Iy,
where (k;)ier_ur, are positive constants. Here x; is called the weight of
at the cylindrical end corresponding to j. A smooth family of tensor fields
a = (az)zex on M (e.g., functions, differential forms, almost complex struc-
tures) is Y-compatible if there is a compact subset K, C ¥ and a smooth
family of tensors o/ := (az)teﬂl‘ on M for each j € I_ U1 so that o (s = a{
for all (s,t) € Iy x T satisfying ¢j(s,t) ¢ K, and all j € I_ U I;. Here o/
is the limit of a corresponding to j € I_ U I, and o = (Cl‘j)jej_u[+ are the
limits of o. Let @ € Q?(M) be C-compatible. A smooth family of autonomous
Hamiltonians H := (H.).ex on M is (X, C)-admissible if
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(1) H € H*(C) and H is B-compatible; and
(2) d(h*B),d(AB),d(mpB),d((h* — X)B) < 0 for all z € M, where h*, X\ and m
are maps from ¥ to R defined by

h*(o) := Hy(x), Ao):=Ag,, m(oc):=mg, Vo€,

where (Mg, )oex and (mp, ),ex are the slopes and heights of H = (H,)yen
respectively.

Let H# := (H7)jes_ 1, be a collection of Hamiltonians. We define H*(H#, C)
to be the set of (3, C')-admissible smooth families of Hamiltonians whose limits
are H7. We also define ﬁE(H#,C') = ﬁz(é) NHZ(H*,C).

Let JJ = (Jt] )teT be a smooth family of almost complex structures in
J%(C) for each j € I_ U I, and let J# := (J7);e; 1, . Define J%(J#,C) C
J*>(C) to be the subspace of Y-compatible families J = (J,).cx of almost
complex structures whose limits are J#.

Now let H € H>(H#,C) and J € J%(J#,C) for some H#,J# as above,
and let j be the natural complex structure on ¥. We say that v : ¥ — M
satisfies the Floer equation with respect to (H,J) if

(2.8) (du+ Xy, ®B)+ Jyo(du+ Xy, ®B)oj=0

at each point ¢ € ¥. A continuous map u : ¥ — M converges to capped

1-periodic orbits v = ((7/,%7))jer_ur, of (k;H?)jer 1, respectively if

o limy 1o u(ej(s,t)) =7/(t) for all j € Iy where 77 is the associated loop of
(37,%7); and

e the surface obtained by gluing the ends of u with the surfaces (37);er_ur "
is null-homologous in Hy(M;Z).

We let M(H, J,7") be the space of maps u : ¥ — M satisfying the Floer

equation with respect to (H,J) and converging to ~# equipped with the (G

topology.

Remark 2.15. The space M(H,.J,v%) also depends on 8 but we omit this
from the notation as it is either clear which 8 we are using, or if 8 is not
mentioned, then we will assume some § has been chosen.

The motivation for part (2) of the definition of a (X, C')-admissible Hamil-
tonian above is that it ensures, roughly, that the Floer complex (defined in
Section 2.5) is filtered by the (H,C)-action from Definition 2.10. See also
Lemma 10.3 combined with equation (2.5).

Definition 2.16. Each capped 1-periodic orbit v can be assigned an index
CZ(v) called the Conley-Zehnder index. Such an index is defined in the fol-
lowing way: To any path A := (A¢);e[e of symplectic matrices, we can assign
an index CZ(A) called its Conley-Zehnder index ([CZ84], [RS93] and [Gutl4]).
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We will not give a definition here, but we state some important properties (see

[Gutl4, Prop. 6], [Gutl4, Lemma 26] and [McL16, Cor. 4.9]):

(CZ1) CZ((eit)tE[O,Qﬂ-}) =2

(CZ2) CZ(A @ B) = CZ(A) + CZ(B), where A = (At)te[a,b}’ B = (Bt)te[a,b]
are paths of symplectic matrices and A ® B := (A; ® Bt)se(ap)-

(CZ3) The Conley-Zehnder index of the catenation of two paths is the sum
of their Conley-Zehnder indices.

(CZ4) If A and B are two paths of symplectic matrices which are homotopic
relative to their endpoints, then they have the same Conley-Zehnder
index. Also such an index only depends on the path up to orientation
preserving reparametrization.

(CZ5) Let

0 id

be a family of 2n x 2n matrices, where id is the identity n x n matrix

A = ( id —iB > € GL(2m;R) Vt € [0,1]

and B is a symmetric n X n matrix. Let A := (A;)icp,1) be a path
of symplectic matrices with respect to the linear symplectic form Q =
Somxr Ayf, where af, ..., x5, y5, ..., y) are the dual basis vectors
of the standard basis x1,...,Zn,¥1,...,Yn of R?". Then CZ(A) =
3Sign(B).

(CZ6) Let (At)se)o,1) be a path of symplectic matrices so that dim(ker(A;—id))
is independent of ¢. Then CZ((A¢)efo,1]) = 0.

(CZT7) Let Sp(2n) be the space of symplectic 2n x 2n matrices, and let
A € Sp(2n). Then there is a neighborhood N4 of A so that any path
(At)tepo,1) in Na with Ag = A satisfies CZ((At)se)0,1]) € [—%, %] where
k = dim ker(A —id).

The Conley-Zehnder index of a capped 1-periodic orbit v = (7, %) of H is given

by the Conley-Zehnder index of

Tls) © Dot 50y © (Tl50) ", t €0,1],
where 7 : Y*TM — S x C" is a symplectic trivialization over the domain S
of ¥ and 7|y : ¥*(T'M)|, — C™ is its restriction to the fiber o € X. We define
the index of v to be || := n— CZ(y). If (v;)er is a finite collection of capped
1-periodic orbits, then we define |(v;)jer| := > er 5]

Remark 2.17. Such an index does not depend on the choice of trivialization
7 by (CZ4) combined with the fact that m(Sp(2n)) is abelian. Also since
c1(M) = 0, the index only depends on the associated loop 7. Therefore we
will define || := |v| for any associated loop 7 of a capped 1-periodic orbit ~.

Definition 2.18. Let T be a topological space. A subset S C T is ubiqui-
tous if it contains a countable intersection of dense open sets.
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We have the following important proposition:

PROPOSITION 2.19. Let X, H, J#, (kj)jer be as in Definition 2.14. Then
there is a ubiquitous subset J>*&(H,J#* C) C J*(J#,C) so that a certain
family of linearized operators is surjective and so certain other transversality
conditions hold (see Definition 9.10).

Also, suppose that we have a collection y# := ('Yj)jel,l_lu of non-degenerate
capped 1-periodic orbits of(,'<;j1’1fj)jeLUI+ whose associated 1-periodic orbits are
disjoint from V' and so that if ¥ # Rx T, then at least two such 1-periodic orbits
of v# have distinct images. Then for each J € J™"°8(H, J#,C), M(H, J,~#)
1s an oriented k-dimensional manifold where

(2.9) k= 1()jer-l = (7 )jer +n(l Il = - + x(2)),

where x(X) is the Euler characteristic of ¥. In addition, if the dimension of
M(H, J,~*) is < 1, then we can ensure that the image of each w € M(H, J,y7)
is disjoint from V.

The proof is extremely standard using ideas from [MS98, Chs. 3 and 6] and
from [Sch95]. However for the sake of completeness, we will prove this proposi-
tion in Appendix B. Note that M(H, J,7¥#) may not be a manifold at all if any
of the capped 1-periodic orbits 47/ are degenerate even if J € > °8(H, J#, C#)
by our current definition. We also have a 1-parameter version of this proposi-
tion stated below.

Definition 2.20. Let X4 := (¥5)¢[0,1) be a smooth family of Riemann sur-
faces with n_ negative cylindrical ends and n. positive cylindrical ends labeled
by finite sets I_ and I respectively. Let (x;)jer_ur, be positive numbers and
let 85 be a ¥;-compatible 1-form so that x; is the weight of 3, at the cylindrical
end corresponding to j € I_ U I for each j € I_U I, s € [0,1] and so that
(Bs)sefo,1) is a smooth family of 1-forms.

Let H# := (H;)ier_ur, be elements of HT(C). We define H=*(H#,C)

(resp. ﬁz'(H #.C)) to be the space of smooth families of Hamiltonians H :=
(Hs,0)sel0,1],0ex, S0 that the subfamily Hso := (Hso)oex, is an element of
H>s (H#,C) (resp ﬁZS(H#, C)) for each s € [0, 1]. Similarly let g+ (J#, C) be
the space of smooth families of almost complex structures J := (Js 5 )se(0,1],0ex,
so that the subfamily Jse := (Js5)sex, is an element of §¥(J#, C) for each
s € [0,1]. For each H € H*+(H#,C) and each Y; € §%™8(H,;,, J#,C)
for j = 0,1, define 3> ((Yp, Y1), J#,C#) to be the subspace of J¥*(J#,C)
consisting of those J as above satisfying Jy e = Yp and J; 4 = Y7. For each J €
7>+ ((Yp, Y1), J#,C) as above and each tuple of capped 1-periodic orbits y# :=
(Vj)jel,uu of (’inj)jeLuIM define M(H, J,7#) := '—'se[o,l}M(Hs,o>Js,-a7#)
with the induced Cf* topology.

loc
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We then have the following parametrized version of Proposition 2.19 above.
We will not prove this since the ideas used to prove it are exactly the same as
those from Proposition 2.19.

PROPOSITION 2.21. Let X,, H*, J#, (kj)jer be as in Definition 2.20.
Suppose H € H>(H#,C), Y; € sz’reg(Hj,.,J#,C') for j = 0,1, where Hy o
is described in the previous definition. Then there is a ubiquitous subset

JEr8(H, (Yo, Y1), J#,C) C 95 (Yo, Y1), J#, O)

so that a certain family of linearized operators is surjective and so certain other
transversality conditions hold.

Suppose 'y# = ('yj)jeLUI+ are capped 1-periodic orbits of (HjHj)jel,uu
s0 that 7 is non-degenerate for each j € I_ L I, , whose associated 1-periodic
orbits are disjoint from V and so that if X # R x T, then at least two as-
sociated 1-periodic orbits of v# have distinct images. Then for each J €
J>re8(H, (Yo, Y1), 7, C), M(H, J,v") is an oriented k+ 1-dimensional mani-
fold with boundary equal to I_I}ZOM(HJ',., Y;, 7*), where k is defined as in equa-
tion (2.9). Also if the dimension of M(H, J,v*) is < 1, then we can ensure
that the image of each u € M(H, J, ") is disjoint from V.

Ezample 2.22. Let R x T = C/Z be a Riemann surface with a positive
cylindrical end indexed by I+ := {+} and a negative cylindrical end indexed by
I_ := {—} given by the natural inclusion maps into R x T. Also let 8 := dt and
k+ := 1 be the corresponding weights of 5. Here R x T along with § and x4+
is called a Riemann cylinder. Let H be (R x T, C')-compatible with associated
limits H*. Also let J* € JT(C), and let J € J®*T((J*+,J7),C). Then a
map u : R x T — M satisfying the (H, J)-Floer equation and converging to
capped 1-periodic orbits v_,v, of H~, HT respectively is called an (H,.J)-
Floer cylinder connecting v— and 7.

Definition 2.23. Let R x T be a Riemann cylinder. Let

tiam : HT(C) — U HEXT(H?, ),
H#=(H~,H+)e(HT(C))?
tepx 2 31 (C) = U JT(T#,C)

J#=(J=,JH)E@(C))?

be the natural embeddings sending (Hy)ier to (Hi)(sperxt and (Ji)ier to
(Jt) (s,t)erxT Tespectively.
Also for each (H,J) € HT(C) x JT(C) and for each pair v# := (y~,7")
of capped 1-periodic orbits of H, we define
(2.10)
M(H, J,v") := M(eam (H), tepx (), 77),  M(H, J,~%) := M(H, J,~*)/R,
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where the natural R-action is given by translation in the s coordinate. Also
for each H € HT(C), define

TS (H, C) = 97(C) 1 igh (U g e85 (), (), ).
We also have the following proposition (see [Ushll, Prop. 3.4]):

PROPOSITION 2.24. For each H € H'(C), JT™8(H,C) is a ubiquitous
subset of JT(C). Also for each pair of non-degenerate capped 1-periodic orbits
Y_, v+ of H, we have that M(H, J,%) is a manifold of dimension |y_|—|vy|—
1. If the dimension of M(H, J,y%) is < 1, then each element of M(H,.J, %)
has image disjoint from V.

Ezample 2.25. Let ¥ := P! — {0,1,00}, and let @ : ¥ — C* be a proper
holomorphic map of degree 2 with exactly one branch point at 1 € C* and so
that w1({z € C* : |2] < 1}) is connected; see Figure 5.

Branch point Jw

0

Figure 5. Branched cover of pair of pants over a cylinder.

Let I_ := {2} and I := {0,1}. Choose cylindrical ends
Lj:]IiXT—>E, jely

for ¥ so that w(j(s,t)) = e27F1H for j € I, and w(ia(s, t)) = 2m(s71+21),
Then § := w*d(arg(z)/2m) is a X-compatible 1-form so that the weight o of
B is 2 at the negative end and the weights kg, k1 are 1 at each positive end.
We call ¥ with its negative and two positive cylindrical ends above together
with the 1-form § the pair of pants.

Let H# = (H?)jeq0,1,2y where HY € HT(C) for j = 0,1,2, and let H €
HT(H#,C). Similarly let J# = (J%);c(01,2) where J7 € JT(C), where j =
0,1,2, and let J € H(J#,C'). Let v; be a capped 1-periodic orbit of x;H; for
j =0,1,2, and define 4# := (Vi) jefo0,1,2y- An (H,J)-pair of pants connecting
4% is an (H, J)-Floer trajectory connecting the capped 1-periodic orbits 7.

2.3. Directed and inverse systems. In this subsection we will give some
definitions concerning inverse/direct limits, which will be used later to define
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symplectic cohomology. A small part of this section will also be used in the
next section to define Novikov rings. Many of the main ideas come from
[MS82] and [Mar00]. We will also introduce a category of “double systems”
which, alternatively, is a category of appropriate “ind-pro” objects (i.e., direct
limits of inverse limits of modules). Such categories have appeared in [Bei87,
§A.3] and [Kat00] for example.

Definition 2.26. If (I,<p), (K,<k) are sets together relations <; and
<k, then we define (I x K, <jxx) to be the product I x K together with the
relation <;«p satisfying (i,k) <;xx (¢',k') if i <; ¢ and k <x k. Also we
define (I°P, <°P) to be the set I°P := I together with the relation <7 satisfying
1 S?p i if i <y i for all 4,4" € I°P.

A directed set (I,<y) is a set I together with a reflexive transitive binary
relation <j so that for all ig,i1 € I, there exists i € I satisfying ig,i1 <y is.
An inverse directed set (K, <) is a set K together with a relation <y so that
(K°P, <9) is a directed set.

If (I,<yp) is a directed set, then a subset I C Iis cofinal if for each a € I,
there exists @ € I satisfying a <; @ A sequence (ag)ren of elements in T
is cofinal if the set {ar : kK € N} C I is cofinal. A directed subset of I is a
subset I C I where the induced ordering makes I into a directed set. A subset
K C K is cofinal inside an inverse directed set (K, <f) if K°? C K°P is cofinal
in (K°P, <%°). A double set is a pair (I x K, <jyxk) where (I <) is a directed
set and (K, <f) is an inverse directed set.

Remark 2.27. We can think of a set with a reflexive transitive binary rela-
tion (I, <) as a category with objects I and with a unique morphism denoted
by ¢ — j for each ¢ < j and no other morphisms. Since there is at most one
morphism between any two objects, a functor F : (Ip,<) — (I1,<) is char-
acterized by the corresponding map F': Iy — I; on objects. From now on,
we will not distinguish between such functors and maps.

For ease of notation, we will sometimes just write I for a set with relation
(I,<) if it is clear what the relation is. In particular, we will write I x K
instead of (I x K, <rxx).

Definition 2.28. Let R be a commutative ring and let R-mod be the cat-
egory of Z-graded R-modules. We write Ob(R-mod) and Mor(R-mod) to be
the class of objects and morphisms of R-mod.

A directed system is a functor D : I — R-mod where (I, <j) is a directed
set. An inverse system is a functor V : K — R-mod where (K,<g) is
an inverse directed system. A double system of graded R-modules (or double
system) is a functor W : I x K — R-mod where (I x K,<;yx) is a double
set. The morphisms W ((i, k) — (¢, k")) € Mor(R-mod), (i, k) <;xx (i, k') are
called double system morphisms of W.
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Remark 2.29. We will sometimes just write down a double system W :
I x K — R-mod as a collection (W (i, k)) x)erxx of R-modules if it is clear
what the morphisms W((i, k) — (i, k")) are. We will do the same for directed
and inverse systems.

Remark 2.30. A directed system D : I — R-mod is equivalent to a
double system D : I = I x {x} — R-mod where {x} is the single element
(inverse) directed set. Similarly an inverse system is a double system V : K =
{x} x K — R-mod. We will call such double systems the double systems
associated to D (resp. V).

Ezample 2.31. The trivial double system is the double system given by
the functor ¢g : {*} X {x} — R-mod sending (%, ) to R where {x} is the di-
rected /inverse system consisting of one point. Trivial directed /inverse systems
are defined in a similar way.

Definition 2.32. For any Z graded R-module N, let (N), be the degree p
part of N for each p € Z. If W : I x K — R-mod is a double system then
we define the double system shifted by m € Z to be the unique double system
W(m] : I x K — R-mod satisfying (W [m](i,k))p, = (W (i, k))m+p for all p € Z
with the natural induced morphisms.

Definition 2.33. The direct limit of a directed system D : I — R-mod is
defined to be the graded R-module

th(z) = UierD(i)/ ~,  xy~xjpiff kst i,5 <k, and fip(x;) = fin(x)),
i€l

where fi; := D(i — j) for all i < j. We will sometimes write lim, D(i) for such
a direct limit.

Definition 2.34. The inverse limit of an inverse system V : K — R-mod
is defined to be the graded R-module @1 V where

(1&1 V)p = {(Cﬂk)kel{ S H (V(k))p 1V k, k € K s.t. k<g k, fkl}(xk) = :Ek}

keK

for each p € Z, where f,; :=V(k — k) for all k < k. We will sometimes write
@j V(j) for such an inverse limit.

We now wish to describe an appropriate category of directed /inverse/double
systems. This category should have the property that hﬂ and m are functors
and so that certain “obvious” endomorphisms of directed/inverse/double sys-
tems inducing isomorphisms on hgrl and le are in fact isomorphisms in this
category. Another important property of this category is that we require a
“derived” version of 1£1 to exist.
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Definition 2.35. Let W : [ x K — R-mod be a double system and let
¢ Wi k) — A, ¢/ : A/ — W (i, k') be morphisms in R-mod for some
i,i' € I, k,k' € K satisfying (i',k") <;xx (i,k). Then we define the W-
composition poy ¢ : A’ — A of ¢’ and ¢ to be the composition ¢o firpr 0@,
where firpip := W(({@', k') — (i,k)).

Definition 2.36. Let W; : I; x K; — R-mod, j = 0,1 be double systems.
Then we can define a new double system

MOI‘(W@,Wl) : (Il X K(())p) X (Igp X Kl) — }2—1110(17

where the object ((i1, ko), (0, k1)) is sent to Hompg_moq(Wo(io, ko), Wi (i1, k1))
and a morphism ((i1, ko), (i0, k1)) — ((¢}, k(). (44, k7)) is sent to the morphism

Hom g mod (Wo(io, ko), Wi(i1, k1)) — Hom g mea (Wo (ig, ko), Wi (i1, k1))

1 0
q> ilklillk/l o (b o fi6k6i0k07

where fj ., = W;((i,k) — (¢, k")) for all (i,k) <p,xx, (i',K), j =0,1. We
define

(2.11) MOI“(WQ, Wl) = @@@@MOI‘(WQ, Wl)((il, ]{?0), (i(), kl))
0 1 k1 ko

We define the category of double systems 2-sys-R to be the category whose
objects are double systems, whose morphisms between objects Wy and Wy are
elements of Mor(Wp, W;) and where composition is induced by composition
of R-module morphisms in the following way: If W, : I; x K; — R-mod,
7 = 0,1,2 are double systems, then since inverse and direct limits commute
with finite products, we can define the composition maps as follows:

MOI‘(Wl, WQ) X MOI"(W(), Wl)
@mhghggnl&nhgh%mHom(Wl(z’l, ]{3/1), WQ(iQ, ]{32))

o ¢ w1 d2 k1 ke ko k|
X HOHl(Wo(iQ, k‘o), Wl(il, k‘l))

= @1 hgﬂ %El hgﬂ HOHl(Wl(Z/l,k/l),WQ(ZQ,kQ))
(i0,i1) (i1,32) (k1,k2) (ko,k])
X Hom(Wo(io, ko), Wl(il, ]{71))

= lim lim lim lim Hom(Wy(i}, k), Wa(ia, k2))

(i0,31) (i1,32) (k1,k2) (Ko,k7)
iy <ri1 ki <kki

X Hom(Wo(i(], k‘o), W1 (il, ]ﬁ))

5 lim lim lim o lim Hom(Wo((io, ko), (ia, k2))) = Mor(Wo, Wa),

(i0,17) (i1,i2) (k1,k2) (ko,k})
i1 <ri1 K <kki
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where Hom := Hompg_noq. The category Ind-R of directed systems is the full
subcategory of 2-sys-R whose objects are directed systems. Similarly the cate-
gory Pro-R of inverse systems is the full subcategory whose objects are inverse
systems.

Ezample 2.37. A key example of a morphism ¢ € Mor(Wy, W;) of double
systems W, : I; x K; — R-mod, j = 0,1 is a natural transformation ¢ from
Woo (idg, x F) to Wi o (G xidk,) where F': K1 — Ko and G : Iy — I; are
functors.

If Iy = I and Ky = K7 and the natural transformation maps are double
system maps, then such a morphism is equal to the identity map in 2-sys-R.
We will call such a natural transformation a standard endomorphism.

Suppose ¢’ € Mor(W7q, Ws) is another morphism where Wy : Iy x Ky —
R-mod is a double system and where it is also given by a natural transformation
¢’ Who(idy, X F') to Wao (G’ xidg,) where F' : K9 — Kj and G : [ — Iy
are functors. Then the composition ¢’ o ¢ € Mor(Wy, Ws) can be represented
by the natural transformation

(¢/ . (idGXidKQ)) e} ((;5 . (ididIOXF’)) : WO @) (id]o X F/) — W2 e} (G X idKQ),

where o denotes vertical composition of natural transformations and - de-
notes horizontal composition and where idg means the identity natural trans-
formation from a functor @ to itself. Here we have also used the identity
(G X idKl) o] (id[o X F/) = (id[l X F/) ] (G X idKQ).

Definition 2.38. A cofinal subsystem of a double system W : [ x K —»
R-mod is the restriction W := Wi, e of W to the subcategory IXKCIxK
where I C I, K°? C K°P are cofinal subsets. The inclusion morphism is the
morphism ¢y v - W — W in 2-sys-R given by the natural transformation
between W o (id; x F') to Wo (G x idg) constructed using double system maps
where F : K — K satisfies k <x F(k) for all k € K and where G : [ — T is
the natural inclusion map. Here F' is constructed using the axiom of choice.

Remark 2.39. The inclusion map does not depend on the choice of func-
tor F'. This due to the fact that if we have a morphism L;V W W — W con-
structed in the same way, but using a different choice of functor F', then there
are standard endomorphisms E, E' : W — W so that Eovy = E' o L’W W
Since standard endomorphisms represent the identity map in 2-sys-R, we get
that = L;;[/7W.

LEMMA 2.40. The inclusion map vy, from Definition 2.38 is an iso-
morphism.

Proof of Lemma 2.40. The inverse 7 of ¢y, 1, is given by the natural trans-
formation between W o (id; x F’) to W o (G’ x idg) built from double system
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maps, where F’ : K — K is the natural inclusion map and where G’ : I —» |
satisfies ¢ <y F(i) for all i € I. The compositions 1 o vy vy, Ly w © 1 as de-
scribed in Example 2.37 are standard endomorphisms and hence Ly 1S an
isomorphism. 7 O

Definition 2.41. We define hﬂ@ to be the functor
hgl&l : 2-sys-R — R-mod, hgl@l = ®mezHomo gys r(Lr[—mM], —),

where (g is the trivial double system. We define lim : Ind-R — R-mod (resp.
im : Pro-R — R-mod) to be the restriction of this functor to the subcategory
Ind-R (resp. Pro-R).

Remark 2.42. The functor lim lim sends a double system (W (4, k)) ; k)erx x
to the limit lin, lim, W (i, k). Similarly the functors ling and lim above coincide
with hg and @1 from Definitions 2.33 and 2.34.

Definition 2.43. Let W : I; x K; — R-mod, j = 0,1 be a double systems.
We define Wy x Wy to be the double system

(Wo(i, k) % Wl(i, k))(i,i,k,k)e(loxll)x(KoxKl)
with the natural double system maps induced from the double system maps
of Wj, 7 = 0,1. We define Wy ® W to be the double system (Wy(i,k) ®pr
Wi (i, k))(i,i,k,l%)e(lo><Il)><(K0><K1) with the natural double system maps induced
from the double system maps of W;, j =0, 1.
Let Wj : fj x K j — R-mod, j = 0,1 be two additional double systems,
and let Tyyo . Wi be the natural composition

Ty, wy ey - Morasys rR(Wo, Wo) ® g Mora sys r(W1, W1)
= (lim ling Lim Lim Hom(Wo (io, ko), Wo(io, k0)))
10 ;0 l;:() ko
®p (Y ling lim lim Hom (W1 (i1, k1), Wi (i1, k1))
o4 ke k1
— Jim Jim ling ling Jim Jim ling ling (Hom(Wo (io, ko), Wo(io, ko))
0 11 20 %1 ko ];:1 ko k1
®r (Hom(Wi (i1, k1), Wi (i1, k1))
— lim lim lim lim (Hom(Wo(io, ko), Wo(io, ko)))
(i07i1) (%0,%1) (k(),/%‘l) (ko,kl)
®r (Hom(Wi (i1, k1), Wi (i1, k1))
(i07i1) (;0,;1) (ko,l;:l) (kO»kl)
x Hom (Wo(do, ko) @ Wi (i1, k1), Wo(io, ko) ®@r Wi (i1, k1))
= MOI‘(WO ® W, WO X VV1),
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where Hom = Hompg moq. For any two morphisms ®; : W; — Wj, j =01
in 2-sys-R, we define &g ® ®; := TWO,W1,W0,W1((I)O QR (I)l) S MOI‘Q-SyS_R(WQ ®
W1, Wo ® Wl)

Also, if W : I x K — R-mod is a double system, we define ryy : W ®
W — W @ W to be the morphism sending =z ® y to (—1)P?y @ = for all
ze (W(i,k))p, ye W3, K))g, (4,k), (7/,k) in I x K and p, q € Z.

These operations make 2-sys-R into a symmetric monoidal category to-
gether with the identity object ¢t due to the fact that R-mod is a symmetric
monoidal category and the fact that natural transformations ® between dou-
ble systems W; : I x K — R-mod, j = 0,1 where the morphisms of ® are
isomorphisms induce isomorphisms in 2-sys-R.

Definition 2.44. A product on W : I x K — R-mod is a morphism
w:We@W — W so that po (idy ® ) = po (u ® idy) using the natural
identification (W @ W)@ W =2 W ® (W ® W). Such a product is graded
commutative if po1 = p. The product p is unitary if there exists a morphism
L :tgp — W where tp is the trivial double system satisfying po (idy ®¢) = po
(toidyy) = idy where we identify W with W®wg and tg@W in the natural way.
A morphism of double systems Wy, Wi with products p; : W; @ W; — W,
j = 0,1 1is a morphism ® : Wy — W satisfying ® o g = p1 o (¢ ® ).
A (graded commutative) (unital) product on a directed or inverse system is a
(graded commutative) (unital) product on the corresponding double system.

Remark 2.45. From now on, all products on double systems (resp. di-
rected /inverse systems) will be unital graded commutative products. Hence
from now on, we will just call them products. We will also assume all mor-
phisms between such double systems with products preserve the unit. If W is
a double system with product 4 : W @ W — W, then we get a product

(i Jm W) @ .l n 1)
& /T n,w,w 1

m,m/ “ip[—m],Lg[—m
—

(lim Bim(W © W) ﬁi&n”lgmw

on QI&HW making it into a unital graded commutative R-algebra, where
T,

er[-m]LR[—.
identification tg = tgp ® tg. Similarly a product on a directed/inverse system

m/,w,w 18 given in Definition 2.43 and where we use the natural

gives us an induced product on its direct/inverse limit.

We will also need to show that “derived” versions of the functor hgh&l
exist. We need some preliminary definitions and lemmas before we define such
a functor.

Definition 2.46. Let F' : Pro-R — R-mod be a functor so that the
corresponding maps F : Morpyo.g(Po, P1) — Morg.med(F(Py), F(P1)) are
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R-module maps for each pair of objects Py, P; in Pro-(R). We define the func-
tor th : 2-sys-R — R-mod as follows. If W : I x K — R-mod is a
double system then lim F° (W) = lim, F° (W|;) where W/; is the inverse system
(Wik)ker- Also if W : I; x K; — R-mod, j = 0,1 are double systems, the
corresponding functor on morphisms is the following natural composition:
lim F - Mory.sys-r(Wo, W1) = lim lim Morpro. r(Wolio, Wiliy ) e
i 1
Jm lim Mor g mod (F'(Wolio ), F(Wiliy )
o i1
= Morma-r((F'(Woli))iero» (F(Whli))ier,)

li
= Mor g.mod (limy F'(Woliy ), limg F'(Wi i, ))-
20 i1

Definition 2.47. Let (K,<f) be an inverse directed set. Define R-mod®
to be the category whose objects are inverse systems V : K — R-mod and
whose morphisms are natural transformations between such objects. We define
ag : R-mod® — 2-sys-R to be the functor sending objects V to V and
sending morphisms to the induced morphisms in 2-sys-R.

Since the category R-mod® has enough injectives by [Mar00, Th. 11.18],
we have the following definition below. Technically [Mar00, Th. 11.18] proves
this for ungraded modules, but the graded case follows immediately since a
graded module is a direct sum of ungraded ones. This will also be true for
other theorems cited in [Mar00].

Definition 2.48. Let (K, <f) be an inverse directed set. For each k € N,
define @1]{ |k : R-mod® — R-mod to be the kth right derived functor of

@oa[(.

The following lemma follows immediately from Theorem 15.5 and Remark
15.6 in [Mar00].

LEMMA 2.49. There is a natural functor @k : Pro-R — R-mod satis-
fying gnk oay = l&nk | for all inverse directed sets (K, <f).

For our purposes, it does not matter how the functor &gnk is constructed.

We will only use the fact that it satisfies the property stated in the lemma
above.

Definition 2.50. For each k € N, define the direct limit of @1’“ to be the
functor hgn%ink : 2-sys-R — R-mod where hg is given as in Definition 2.46
and l&lk is constructed in Lemma 2.49.

Finally, we need a test telling us when hgllﬁnl vanishes.
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LEMMA 2.51. Suppose that W : I x K — R-mod is a double system
where (I,<y) (resp. (K, <K)) is a directed (resp. inverse directed) set. Suppose
that there is a cofinal family I C I and a countably infinite cofinal family
K C K of (K,<g)° with the property that for alli € I, k, k' € K satisfying
k <k K', we have that W ((i,k) — (i, k")) is surjective. Then hg@l W =0.

Proof of Lemma 2.51. Let W|; be the inverse system (W (i,k))rer for
each i € I, and let W|; be the inverse system (W (i,k)),c . Since K is count-
ably infinite, we can assume after passing to a cofinal subset of K that (K, <g)
is equal to the inverse directed set (N°P, <°P) by Lemma 2.40. By [Wei94,
Prop. 3.5.7] combined with [Mar00, Lemma 11.49] we have that @1 Wli=0
for each i € I. Hence by [Mar00, Th. 14.9] we have that I'Lm1 W|; = 0 for each
iel Hencelig&iirﬂW:O. (]

2.4. Nowikov rings. In this section we give a definition of a Novikov ring
(which we will define using inverse and direct limits). Novikov rings are
appropriate coefficient rings for our Hamiltonian Floer cohomology groups.
Throughout this subsection we will fix a (possibly empty) contact cylinder
C =[1—¢€,14¢] x C and we will let D C M be its associated Liouville domain.

Definition 2.52. Let W be a finite dimensional real vector space. A convex
cone is a subset Q C W so that for all z,y € Q and all positive real numbers
a, 8 > 0, we have that ax 4+ Sy € Q. Such a cone is called salient if, for each
x€Q—0, —x ¢ Q. Now suppose (A,-) is a finitely generated abelian group,
and let ) be a cone in (A ®z R)*. Define <¢ to be the binary relation on A
where z <¢ y if and only if f((y-27!)®1) >0 for all f € Q.

Remark 2.53. If Q is a closed salient cone, then (A4, <) and (A°P, jg’)
are directed sets.

Definition 2.54. Let (A,-) be a finitely generated abelian group, and let
Q C (A®z R)* be a closed salient cone. For each z € A, let FZ be the free
K-module generated by elements of the set S¢ = {a € A : x =g a}. Let
(I, <r) be the (inverse) directed set (A°P, <}). Then F<:= (FS 4 ) (oo i )EIX]
is a double system, where Ff{ zy 1= Fg / (Fﬁ N Fﬁ) and where the double
system maps are the natural compositions
Q Q Q
FI—#M— — Fx,,wﬁr — F;BL,xﬁr
for all x4, 2/, € A satisfying 2/, <g z+. Choose a function M : A2 — A
satisfying M(z,y) =g = and M(z,y) = y for all (z,y) € A% For each
2,2t 2% € A, let
,UZFC()) 2 1®KF% 2 0—>FC(2) 1

2
z,xL —T Tl ,wy —x” o Al
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be the unique K-linear map sending [ap] ® [a1] to [ag - a1] for all a; € Sfj,’
j =0,1. Then yu defines for us a product p : FQ @ F? — F? on the double
system FQ. We define the (A, Q)-Novikov ring to be the ring

(2.12) Ag? = lim lim FY

T, Ty
z_€lxziel

whose product is induced by i as in Remark 2.45. We also have a subring

(2.13) MA@t = lim B, c AR
€l

called the positive (A, Q)-Novikov ring.

Remark 2.55. We can think of A4? as the ring of formal power series

AQ’Q = {Z bit" :b; €K, a; € A ViéeN, (a;)ien is cofinal in (A, jQ)} )
€N

Intuitively, the terms in this series must “tend to infinity” in the “cone” {x €

A:0=gx}.

Definition 2.56. Let tp : H*(M,D;R) — H?(M;R) be the natural re-
striction map on cohomology. Let mp : H*(M, D;R) x Rx R — H?(M, D;R)
be the natural projection map. Let Q C H?(M, D;R) xR xR be a cone so that
Q := 1p(7p(Q)) is a closed and salient cone. Using the canonical identification

(Hy(M;Z) @2 R)" = H*(M;R),
we can define the Q-Nowvikov ring to be the (Hy(M;Z), Q)-Novikov ring

A]Icg e AHEQ(Mvz)vQ

and the positive Q-Novikov ring to be the positive (Ha(M;Z), Q)-Novikov ring

AQH = ARGt

The Novikov rings above are designed to deal with multiple action values
encoded in Definition 2.10. Note that we could have defined the above Novikov
ring A]% to be a (Ho(M, D;Z) X Z x Z, Q)-Novikov ring associated to @ instead.
Such a definition would have forced us to generalize the notion of a capped
1-periodic orbit so that the “capping” also has some boundary components
inside D. (One would have to modify the way action is calculated too and
restrict the class of Hamiltonians further.) This would have given us more
information, but would have added an extra layer of unnecessary complication.
Therefore we have decided to use this simpler definition.

Ezample 2.57. Let Gy = (;)ies be a finite collection of C-compatible 2-

forms with scaling constants (/\i)ie s, and let wgs be a C-compatible 2-form with

)
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scaling constants 0 and 1 and which is equal to w outside DU ([1,1+¢/2] x C).
Let Qz, C H?(M,D;R) x R x R be the smallest convex cone containing
([0 — A\yw + A wal, A7, AT) € HX(M,D;R) x R x R for each i € S. The
(W4 )-Novikov ring is the Novikov ring

@ Qz
AK# = Ay #

The two key examples for this paper are when

e Wy has one element w, giving us a Novikov ring AG = Ai#, which can be
thought of as the set of power series

Lﬁz: {Zbit% :biGK, aiEHQ(M;Z), @(aﬁ—)oo},
1€EN

e and when Wy has two elements @y,w1, giving us a Novikov ring A" :=

A;z#, which can be thought of as the set of power series

A%O’al = {Z bitai :b; €K, a; € HQ(M; Z), min(wg(ai),&l(ai)) — OO} .
1€N

2.5. Definition of Floer cohomology using alternative filtrations. In this
section we will give a definition of Hamiltonian Floer cohomology using the
action function in Definition 2.10. Throughout this subsection, we will fix
a (possibly empty) contact cylinder C' = [I —¢,1 4+ ¢ x C C M with as-
sociated Liouville domain D and cylindrical coordinate rc. We also let vp :
H?(M, D;R) — H?(M;R) be the natural restriction map on cohomology and
let 7p : H?>(M,D;R) x R x R — H?(M, D;R) be the natural projection map.

In order to define Hamiltonian Floer cohomology with the right properties,
we need to consider certain cones inside H?(M, D;R) x R x R.

Definition 2.58. Let ws be a C-compatible 2-form with scaling constants

0 and 1 and which is equal to w outside D U ([1,1 + ¢/2] x C). A cone Q C
H?(M,D;R) x R x R is C-compatible if

e both tp(7mp(Q)) and @ are closed and salient; and

® ) C QxU{0} where Qg is given as in Definition 2.10.
A C-compatible cone Q is called thin if mplg : Q@ — H*(M,D;R) is an
injective map. A C-compatible cone Q is called small if Q C Rlws] x R x R
and if the natural projection map

Rlwa] X R x R — Rlws] xR, (g, A=, Ay) — (g, M)

restricted to Q is injective. A pair of C-compatible cones (Q—,Q+) is called
wide if for each ¢ € mp(Q-) Ump(Q4), there exists AL _, AL , € R so that
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(Q7 )‘(:Zl;—a >‘(:]t7+) € Qi?
)\q,,, < )\i,, and )\q,’Jr = )\i’Jr.
A C-interval domain pair is a pair (Q-,Q4+) of C-compatible cones so that
(1) @+ is thin and not equal to the trivial cone {0};
(2) Q+ CQ—;and
(3) if @Q— is not small, then (Q_, Q) is wide.

For any C-compatible cone @, we define Sc(Q) to be the space of con-
tinuous functions f : @ — R satisfying f(oz) = of(x) for all z € Q
and o > 0 equipped with the Cﬁ)c—topology. A C-action interval is a pair
(a_,ay) € Sc(Q-) x Sc(Qy4) where (Q_, Q) is a C-interval domain pair. We
say that (a—, a4 ) is smallif Q_ and Q4 are small and wide if (Q—, Q4+ ) is wide.

For each subset P C Z, weakly C-compatible Hamiltonian H and C-action
interval (a_, a1 ) € Sc(Q—-)*xSc(Q+), define Fg o s (H) to be the set of capped
1-periodic orbits v of H whose associated 1—péri(3dic orbit is not contained in
[1+¢€/8,1+¢/2] x C, whose index is in P and satisfying

(2.14) a- <AyeMlo-,  ar £ AgeMlays
where Ay ~ is given in Definition 2.10.

If (a—,a4+) € Sc(Q-) x Sc(Q+) is wide, then we define the Hamiltonian
height of (a—,a4) to be

(2.15)
height(a_, a4)

(.’IT, Aﬂ:,—) )‘:I:,-i-) S Q:I:7
Ao < Ap o,
At =Ap 4

CL+(IL’, )‘+,—7 A-‘rr‘r) —a— (.’IZ‘, A—,—7 )‘—,-‘r)

= Su
P A — A

For each C-action interval (a_,ay) and each manifold ¥, define
HE(C,a_,ay) =
(2.16)
HZ(C) if (a—, a4 ) is small,
{H € WE(CV') :mp, > height(a_,ay) Vo € E} otherwise,

where H*(C) and ﬁz(é) are given in Definition 2.12 and my, is the height
of H, as in Definition 2.4 for each o € ¥ where H = (H,),ex. For each subset
P C Z, define

H°8(C,a_,ay,P) C H'(C,a_,ay)
to be the subspace of time dependent Hamiltonians H = (H;)eT so that there
exist neighborhoods N_, N of a_ and a4 in Sc(Q_) and Sc(Q.) respectively
so that for each a/, € N1, we have that



472 MARK MCLEAN

e every capped l-periodic orbit in F% o o (H) is non-degenerate;
" +

e there are no l-periodic orbits contained in [1 +¢/8,1 + ¢/2] x C; and
eI'L  (H)=TE (H).

C,a’_,a+ C.a_,ayt
Define H*8(C, a_,ay) := H*8(C,a_, a4, 7).

We have that 7(*8(C, a_,a ) is an open dense subset of HT(C,a_, ay) by
Lemma 8.3 in Appendix A. The height condition in equation (2.16) is essential
for this density property since any Hamiltonian in HT(C,a_,a,) is constant
outside D U C' if (a_,ay ) is wide. Therefore these constant orbits 4 must not
satisfy equation (2.14) because they are degenerate.

Definition 2.59. Let (a_,ay) € Sc(Q_) x Sc(Q4) be a C-action interval,
and let H € 3(**8(C,a_,ay,{p}) for some p € Z. Define CFg s (H) to be
the free K-module generated by capped 1-periodic orbits v of H of index p and
satisfying ayx < Ay #(7)|@.. Define

CF% (H) := CF% (H)/(CF% (H)NCF% (H)).

Cia_,ay C,a_,0 Cia_,00 C,a4,00

Remark 2.60. The K-module CF% (H) is naturally isomorphic to the

C,a—,ay+
(H) := rv (H). From now on we will
—,a4 C.a_,ayt
not distinguish between describing such a group as a quotient or a free module.

free K-module generated by F’é "

Definition 2.61. Let H be a time dependent Hamiltonian on M. If v =
(7,7%) is a capped 1-periodic orbit of H and v € Ha(M;Z) is a homology class,
then we define y#v := (Y#wv,7) where y#uv has the property that (Y#v)x7 is
homologous to v, where x is defined equation (2.2).

Above, we are “connect summing” v to the capping surface 7.

Remark 2.62. Let (a_,a;) € (Q_,Q4) be a C-action interval and let
H € 3°¢(C,a_,ay, {p}) for some p € Z. Define Q; := tp(7p(Q+)). The
submonoid

(2.17) St = {w € Hy(M;Z) 0=, a} C Hy(M;Z)

acts on CF g . a (H) as follows: An element v € 5'82 * represents the unique
sA—,0+

K-linear map sending an element v € I‘Ié’aﬂwr (H) to [y#(—v)] € CFg,a,,aJr (H).
As a result, the monoid ring K[S(?*] acts on CFg o a+(H).
Also, since set of 1-periodic orbits of H is a compact subset of the free

loop space of M with respect to the C'°° topology, there is an element a € S(? *
so that for each v € ng* satisfying a =5, v and each a € CF’v”a a+(H), we

-

have v-a = 0. This implies that the ]K[Sé2 *]-action extends to an action of the
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positive Q-Novikov ring AH%”Jr on C’Fg o a+(H) by equation (2.13). Hence

from now on, we will think of CFg (H) as a A%*’Jr—module.

7a7 7a+

The AH%”JF—module CF g oo, () will be the module underlying our chain
Y& — 0+
complex for our Hamiltonian Floer group. We now need to explain what the

differential on CFZ (H) is.

Cia—,ay

Definition 2.63. Let (a_,a ) be a C-action interval, and let P := {p, p+1}
for some p € Z. Let H € H"8(C,a_,a,,P), and let J € JTr°8(H, C) where
JTres(H, ), is given in Definition 2.23. We define the Floer differential

o), CFL  (H)— CFL™  (H)

C,a—,ay Cia_,ayt
to be the unique K-linear map satisfying
M) = D #EMH I Vs elh | (H),
y-ergtt o, ()

where ~ is the pair (y_, 7, ) and where #M(H, J,v) is the number of elements
in the 0-dimensional manifold M(H, J,v) from Definition 2.23 counted with
sign according to their orientation. We define 0g,j := 827) ; if it is clear which

p we are using.

The definition above uses the fact that M(H,J,v) is a compact oriented
0-dimensional manifold for all pairs of capped 1-periodic orbits v = (y—,v4) €

et (H)yxI?, (H), which follows from Propositions 2.24 and 10.5 and
Cia_,ay Cia_,ay

[Rit13, §17]. Note that one can always find J as above since JT™8(H,C) is a
ubiquitous subset of JT(C) (Definition 2.12) by Proposition 2.19. By analyzing
1-parameter families of solutions of the Floer equation for the cylinder as in
Definition 2.20, one can show that (9%1 7 = 0. This is done by a gluing theorem
[AD14, Th. 9.2.1] combined with the ézompactness result Proposition 10.5 and
the orientation conventions [Rit13, §17]. Here we have replaced the compact-
ness result [AD14, Th. 9.1.7] with Proposition 10.5. Finally, note that O s is
a A§+’+—linear differential where @, is the domain of a;. Hence we have the
following definition:

Definition 2.64. Let (a_,a;) € Sc(Q_) x Sc(Q4) be a C-action interval,
and let P:= {p—1,p,p+ 1} for some p € Z. Let H € 3**¢(C,a_,ay, P), and
let J € gTres(H, C’) We define the Hamiltonian Floer cohomology group of H
to be the AH%*’Jr—module

HFY,  (H):=ker(d))/Im(@% V).

C,a_,at
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This Hamiltonian Floer cohomology group does not depend on the choice
J by continuation map methods, which will be explained in the subsequent
section. Here are the two main examples of Hamiltonian Floer cohomology
groups which should be kept in mind.

Ezample 2.65. If C is the empty contact cylinder and Q_ = Q. is the
cone spanned by ([w], 1, 1), then we get the usual definition of Floer cohomology
with the usual action functional (see Example 2.11).

Example 2.66. Let qo,...,q € H?*(M,D;R) be classes representing
C-compatible 2-forms whose images in H 2(M;R) are linearly independent.
Suppose that @4 is the polyhedral cone spanned by (go, 1,1),...,(qx, 1,1) and
()_ is the polyhedral cone spanned by

(q07 17 1)7 R (Qk‘a 17 1)7 (q()voa l)a ceey (Qk707 1)
Then for (a_, a4 ) €Sc(Q_)*xSc(Q+) and H € H™8(C,a_,a,Z), HF} (H)

C,a_,ay
is the Hamiltonian Floer cohomology group generated by capped 1-periodic or-
bits v satisfying Ax 5 (7)(¢i,1,1) > a—(gi, 1,1) and A 5 (v)(4:,0,1) > (¢:,0,1)
for alli€{0,...,k} and Ag 1 (7)(gi,1,1) <ai(gj, 1,1) for some j€{0,...,k},
where A 5 is defined in 2.10.

2.6. Continuation maps. Again, throughout this subsection, we will fix a
(possibly empty) contact cylinder C' = [1 —¢,1 + €] x C C M with associated
Liouville domain D and cylindrical coordinate 7. We will also fix a C-action
interval (a_,a4).

Definition 2.67. Let H- = (H; )er, H™ = (H; )ier € HT(C,a_,a )
have slopes ()\Hti)te’]f and heights (mHti)te'[[‘ at C respectively. We write
H™ <4 HT if
(1) HS <H;

(2) )\Hf < )\H:r, My < Myt
(3) m;i —my; < (Hy" — Hy )l v—(Du(1,14¢/21xC)
for all t € T; see Figure 6.

The following lemma below tells us that the relation < has good prop-
erties:

LEMMA 2.68. Let H € HT(C,a_,a.). Then there is a sequence (H;)ien
of elements in HT(C,a_,ay) C™® converging to H so that for each K <& H,
there exists 1 € N so that K <x H; < H.

Proof. Suppose H = (Hy)ieT, and let Ay, and my, be the slope and height
of H; for each t € T. Let f: R — R be a smooth function satisfying

flicooa] = =2, fligse/a)y = —2—¢ f <0
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This slope bigger than this slope

H

rc = 0 This distance smaller than this distance

Figure 6. Picture of H~ and H™ satisfying H~ <5 H™.

and f(z) = —1—x for all z € [1 +¢/8,1 4 ¢/2]. Define

-2 ifx e D,
K:M-—R, K@):={f(r¢) ifzeC,

—2 — ¢ otherwise.

Then H;; = HH—%K € J-CT(C') has slope Ap, —% and height my, , == mpy, — %
Also

24+€/2
M, = M, < / < (Hi — Hit) | v—(Du((1,14¢/2)xC))-

Therefore H; := (H;+)er has the properties we want for all 7 large enough. O

Definition 2.69. Let H-,H™ € J{T(C,a_,a+) satisfy H- <s HT. A

smooth family of Hamiltonians H~+ = (H;,;r)(s,t)eRx?r (a—,ay)-connects H™
with HT if

o H T := (H;;r)te’]r is an element of HT(C,a_,ay) for all s € R;
e H;t = H¥ for all s € R satisfying Fs > 1;
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e and if ()‘H*;L)(s,t)ERX'JIW (mH*j)(s,t)ERX'ﬂ‘ are the corresponding slopes and

heights of (H;t+)(s7t)€RxT along C, then

d o+
d d
%H;f(x) < £(mH;) VzeM-—(DU([1,1+¢/2] x C))

for all t € T. We will denote the space of such families of Hamiltonians by
HNCa_,ay, H HT).

Note that H®*T(C,a_,ay, H~,H") is contractible since it is a convex
subset of the space H®*T(C,a_,ay) with at least one element equal to

(1= p(s)H + p()H ) (5,0)erxT
where p : R — R is a smooth function satisfying p’ > 0 and where p(s) is
equal to 0 for s < 0 and 1 for s > 0.

Definition 2.70. If H* € H™(C,a_,ay) and J* € JT(C) (Definition 2.12),
then we say (H-",J~ ") (a_,ay)-connects (H~,J~) with (HT,J*) if H—
(a_,ay)-connects H~ with H* and if J= € J&*T((J—,J%),0).

Definition 2.71. Let H* € 3(*8(C,a_, a4, P) (Definition 2.16) where P =
{p—1,p,p+1} for some p € Z, and let J* € JT8(H* C), where JTree(H*, C)
is given in Definition 2.23. Let H~+ € H®*T(C a_,a,, H-,H") and J~ T €
JRxTreg([1=+ (J=,JF),C) (Proposition 2.19). The family (H~,J~*) then
defines for us a continuation map

D . P - D +
<I>H_+7J_Jr : HFC,a_,a+(H ) — HFé,a_,a+ (H™)
induced from the chain level continuation map
HP . P - P +
(2.18) <I>H_+’J_+ : CFé,a_,a+ (H™) — CFC‘,a_,a+ (H™),
which is the unique K-linear map satisfying
®?{7+7J7+ (7+)
(2.19) = > #MHE Ty Ve €Ty (H),
'nyFg’a_ﬂ_F (HT)

where v = (y—,v4) and #M(H T, J~T,v) is the number of elements in the
0-dimensional manifold M(H ", J~%,~) (Definition 2.14) counted with sign
according to orientation. The set T’ oy (H™) is defined in Definition 2.58.

The map @%, + j—+ is well defined since the chain level map (2.18) induced

by equation (2.19) commutes with the differentials 8§§f)ﬁ, p_=p—1,p.=p

by the gluing theorem [Sch95, Th. 4.4.1] combined with the compactness result
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Proposition 10.5 and orientation conventions [Rit13, §17]. The same gluing the-
orem also tells us that the composition of two continuation maps is a continua-
tion map. Finally, if we have other elements K~ € H**T(C a_,ay, H-,H")
and Y=t ¢ gRxTree(K—+ (J—,JT),C), then @%,+7J,+ = (I>II)(*+,Y*+' Such
an equivalence of maps is given by a chain homotopy defined in a similar way
to equation (2.18), except that we count elements of M(F, L,v) where Y4 is
the smooth family of Riemann surfaces (R x T),¢[0,1],

F = (Fa,s,t)(a,s,t)e[o,l]XRXT € j{z.«H_v H+)7 é)

satisfies Fp s = H;t+a Pt = K5_t+ and

<F0',S,t)(s,t)€]R><T € }CRXT(év a—, G, H77 HJr) Voe [07 1]7

and where

Leg= ™ s(F (J Y 1, (J,J"),0)
(see Proposition 2.21). This map is a chain homotopy by [AD14, Prop. 11.2.8]
where we replace the compactness result [AD14, Th. 11.3.7] by Proposition 10.5.
As a result of the facts above we have the following definition:

Definition 2.72. Let H* € 3"8(C,a_,a, P) (Definition 2.58) satisfy
H~ <& H' where P = {p—1,p,p+ 1} for some p € Z. The continuation map
P . P - P +
Q- g+ HFC‘,aﬂm(H ) — HFC*,a,,M (HT)
is defined to be ®¥,_, ;. for some choice of (H~*,J~*) as in Definition 2.69.
This is a Ag+’+-module map. We also have the following important lem-
mas giving us sufficient conditions ensuring that a continuation map is an
isomorphism:

LEMMA 2.73. Let H € 3"%(C,a_,a,, P) where P ={p—1,p,p+1} for
some p € Z, and let J € JT(C). Then there is a conver neighborhood Uy C
HY(C,a_,ay) of H (Definition 2.58) and a weakly contractible neighborhood
Vy c JY(C) of J so that for all HX € Uy N H*8(C,a_,a.,P), J* € V;N
gT,reg(H:l:7 0),

(220) H_+ = (H7+)(s,t)€R><T € }CRXT(Oa a—, a+7H_7 H+)’

S

(221) ‘]_+ = (‘]7+)(S,t)€RXT € BRXT’reg(H_—F? (J_7 J+)7 é)

S’
(Proposition 2.19) satisfying (H;;r)teqr € Uy and (VSTtJr)teqp € Vy foralls € R,
the degree p chain level continuation map 5’;{_+7J_+ from equation (2.18) is
an isomorphism.

Proof. The key idea of the proof of this lemma is to use a Gromov com-
pactness result to show that the low energy solutions of the Floer equation
defining the chain level continuation map induce an isomorphism. For each
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K € 3*¢(C,a_,a,,P) and t € T, let ev; : I‘ga_’w (K) — M be the map
sending a capped 1-periodic orbit v = (7,%) to 7¥(§(t)) and define ' :=
eVO(Fg,a_,a+(K)) Define I' := I'y. Since each element of Fg,a_,a+ (H) is non-
degenerate, we have that I is a finite subset of M. Therefore we can find open
subsets N{. C Ny C M of T so that the inclusion maps I' < N[, Nf. < Np
are homotopy equivalences and so that the closure of N} is contained in Ny.
Define KTT' c H*8(C,a_, a4, P) to be the subspace of Hamiltonians K satis-
fying ¢f (T k) C ¢ (N}) for all t € T and so that the inclusion map I'x < N
is a homotopy equivalence.

For each manifold ¥ and each subset Uy ¢ HT(C) and V, ¢ J**T(C),

define

HEXT() iy 1= {(Kon) oyt € HEXT(C) 1 (Koi)ier € Uo ¥ o € T},
3EXRXT( )‘VO — {( O'St) (0,8,t) ELXRXT

S BZXRXT(C) : (Ka,s,t)(s,t)ERXT € ‘/0 Voe 2}7

see Definition 2.12. For each Uy € HT(C), define J**TL (1) ¢ J**T(C) to be
the subspace of elements Y = (Y +) (s erxT S0 that for each
o KX eHM nUp, v*elf a+(Ki);
o K € HOT(C)|yerrpy, NHET(K—,KT),C); and
e u € M(K,Y,(v—,7+)) (Definition 2.14) satisfying us; € ¢f(Nr) for all
(s,t) e Rx T,
we have that u(s,t) € ¢ff(NL.) for all (s,t) € R x T. Morally, the definition
above is used to find those almost complex structures Y for which we can select
an isolated low energy region of M(K,Y, (v—,v+)).
Since there are neighborhoods N_, Ny of a_, ay so that T'E w o H) =
" +

Fga a+(H ) for all a/, € Ny, we have by a compactness argument (such as
the one in [McL12b, Lemma 2.3]) that there exists a weakly contractible open

neighborhood U € H™(C,a_,a,) of H satisfying U € HTT. Let

Lepx ¢ HT(C) — HT(C’)v chx((jt)tGT) = (jt)(s,t)ERX’]I‘

be the natural inclusion map. By a Gromov compactness argument (such as
the one in [McL12b, Lemma 2.3]) we have, after shrinking U further, that
there is a weakly contractible open subset V C J®*T(C) of iepx(J) so that
V C 3RXT’F(U()).

As a result, for each K € U, we can define the Hamiltonian Floer co-
homology group HFP(K|n,.) in the usual way except that we only consider
capped 1-periodic orbits inside Ngerev; ' (¢ (Nr)), almost complex structures
(Ji)ter satisfying tepx((Ji)ter) € V, and Floer trajectories u : R x T — M
satisfying u(s,t) € ¢I(Nr) for all (s,t) € R x T. For topological reasons we
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get that the differential vanishes and hence HFP(K |y, ) = CFP(K|n.) where
CFP(K|ny.) is the degree p part of the chain complex defining H FP(K|n,.).
Also by only considering families of Hamiltonians inside

%RXT(CY) ‘U, g_f[O,l]XRXT(Cv) |U7

families of almost complex structures inside V and JlOU*BXT ()|, and Floer

trajectories v : R x T — M satisfying u(s,t) € ¢ (Np) for all (s,t) €
oP

R x T, one can show that the chain level continuation map ®,._, , | :

CFP(K|n.) — CFP(K|y,) is an isomorphism for each
K, KecU Kt eH T CO)ynd®>T(K—,K),0)

and
Y—+ c HRXT(O)|V N H]Rx’]l‘,reg(K’ (Y_, Y+), C)

(see [AD14, Ch. 11]). The above arguments work because Gromov compactness
[AD14, Th. 9.1.7] still holds since there are no Floer trajectories u as above
satisfying u(s,t) € N — N}, for some (s,t) € R x T. (In other words we have
selected appropriate clopen regions inside the moduli spaces of Floer cylinders
needed to construct &)%, oyt and show it is an isomorphism.)

Hence if we choose U C U to be a convex neighborhood of H and V; C
VN HT(C’) a weakly contractible neighborhood of J, then our lemma holds by
an action filtration argument. (]

Very roughly, the following lemma says that if one has a family of Hamil-
tonians whose Floer chain complexes are all the same (after possibly pulling
back by a diffeomorphism), then the corresponding continuation map is an
isomorphism.

LEMMA 2.74. Let P = [p_—1,py+1] for some p+ € Z, and let (a™,a’l') €
Sc(Q™) x Sc(QT), m € I be a finite collection of C-action intervals. Sup-
pose there exists (Hsy)(sp)erxT € HOAUXT(CY s0 that Hye := (Hgy)ier €
NmerdCe8(C,a™, a™, P) (Definition 2.16) for all s € [0,1] and Hse <5 Hse
for each s < §. Let JE e HT’reg(Hi,é), where H™ := Hy,o and HT = Hy,.
Then there exists
(2.22)

H™ € NpeHN(C a™, o H HY), T T e JTres(g=— (J7,J7),0)

so that the chain level continuation map

oHP . P - iy +
<I>H,+7J,+ : CFC‘,aT,aT(H ) — CFC,aT,a’f(H )
is an isomorphism for each p— < p < py and each m € I. In particular
: ; p . P - P +y 4
the continuation map ®p_ 4. - HFC“,aT,aT(H ) — HFC“,aT,aT(H ) is an

isomorphism for each such p and m.



480 MARK MCLEAN

Proof. Here the key idea of the proof is to chop up the homotopy

(Hs 1) (s,6)e[0,1]xT

into many small homotopies and then apply Lemma 2.73 above. Let J € HT(C' ).
Let Uy , C HT(C,a™,a™) and Vi, C dT(C,a™,a™) be open neighborhoods
of H, o and J respectively so that the conclusion of Lemma 2.73 holds with A
and (a—,a4) replaced by H,, and (a™,al") respectively for each m € I. Let
Un,. C ﬁmeIU}{”S . be a convex neighborhood of Hye and Vg, , C mmeIVITS ,a
weakly contractible open neighborhood of J for each s € [0,1]. Since [0,1]
is compact, we can choose sp = 0 < 57 < s3 < --+ < s = 1 so that
Hs;\10 € Un,, , or Hy o € Ug,  , forall 0 <j <Fk—1 Since H™ <g H*
we have, by applying Lemma 2.68 inductively, that there exists H ;eU Hy, o N
Nicr 38 (C, a” ', P), 0 < j <k satisfying ﬁj <& ﬁj+1 and ﬁj,FIjH €

UHsj,. or FIj,HjH € UHSHL. for all 0 < j < k — 1 and satisfying Hy = Hy,.
and Hj, = Hy .. Now choose J e ﬁé?zl(VHsj,. N gTree(H;,C)) and choose

—+,d —+.j RxT [~ T
H = (Hs,t ])(s,t)G]RXT € ﬂmEIg{ x (Cu CLT,CLT,Hj,Hj+1),

T = (I ) o perxr € I (HT (T, 7),0)

satisfying (H, ;" )ier € Uy, , and (V.7 )yer € Vi, , for all s € R, for some
’ ]/, 3 Sj/,.

j" € {j,j+1} (independent of s) and for all 0 < j < k—1. Then by Lemma 2.73,
}1)1—+,j,J—+,.7 from equa-
tion (2.18) is an isomorphism for all 0 < j < k — 1. By a repeated gluing
argument [AD14, Th. 11.1.16] applied to (H~ 7, J="J) forall 0 < j < k — 1,
there exists (H~T,J~ ) as in equation (2.22) so that so that the chain level
continuation map

we have that the degree p chain level continuation map ®

HP . D - iy +
<I>H_+,J_+ : CFC‘,aT,aT(H ) — CFC‘,aT,aT(H )
is an isomorphism for each p_ < p <p, and m € I. O

2.7. Action maps. Throughout this subsection, we will fix a (possibly
empty) contact cylinder C' = [1 —¢,1 4 €] x C C M with associated Liou-
ville domain D.

Definition 2.75. Let (aj_,ai) € Se(Q”) x SC(QZ’_) be a C-action interval
for j = 0,1. We say that (al,al) is smaller than (a%,a9) if Q1 C QY and if
1 <0
ay >~ ai|Qi
Remark 2.76. If (a®,al) is smaller than (a2, a%), then we have induced
QO Ql QO + Ql +
morphisms of Novikov rings Ag® — Ag™ and Ay™ — Ag™ . In particu-

1 1 0 0
lar, any Ai* (resp. Ag*’ﬂ module is naturally a Ag* (resp. Ag*’Jr) module.
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Definition 2.77. Let P = {p—1 p,p—l— 1} for some p € Z. Let ( ! a ) be
a C-action interval for J = 0,1 so that (al,al) is smaller than (a% 9r) Let
H e Nj— 19{reg(C a’_ a’ ", P). Then we have a natural chain map

OFf, 0 o (H) =5 CFY o (I)/(CF, , (H)NCF, (1))

(2.23)

B oFt

9 0 ()

+

for each ¢ € P called a chain level action map where « is the natural quotient
map and S is the natural inclusion map of K-modules. The induced map on
homology

(2.24) HE, o o (H) — HFE 1

(H)
is called an action map.

Remark 2. 78 Action maps are morphisms of Ay +’+—modules where QY 3 s
the domain of aY (see Remark 2.76). The comp081t10n of two action maps is an
action map. Action maps commute with continuation maps by Lemma 10.3.

We also have the following important lemma giving us a sufficient condi-
tion for an action map to be an isomorphism:

LEMMA 2.79. Let Q;, (a _,a+) j=0,1, P, p, H be as in Definition 2.77.
Suppose that FCa o H) = Fg Ll . (H)(Definition 2.58). Then the action
map T

P P
HE, o o (H) — HFE 1

| (H)
s an isomorphism.

Proof. This follows from the fact that the chain maps a and 8 from equa-
tion (2.23) are isomorphisms in degree p. O

2.8. Invariance under time reparametrization. Throughout this subsec-
tion, C' is a contact cylinder whose associated Liouville domain is D. We will
also fix a C-interval domain (Q_, Q).

Definition 2.80. Let F : T — T be a smooth non-decreasing map. Let
H = (Hy)ier be a smooth Hamiltonian. We define HY' = (HF )ier by H} =
F'(t)Hp) for each t € T.

ProrosiTiON 2.81. Let F' : T — T be a smooth non-decreasing map
which is homotopic to the identity map. Let (a—,ay) € Sc(Q—) x Sc(Q4+) be
a C-action interval and P := {p—1,p,p+ 1} for some p € Z. Then for each
H € 37*°8(C,a_,ay, P), there is an isomorphism

(2.25) HF} (H)= HF" (HT)

C.a_,ayt C,a_,at

which commutes with continuation maps and action maps.
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Definition 2.82. The isomorphism (2.25) will be called a reparametrization
isomorphism.

Proof of Proposition 2.81. The correspondence sending a loop v : T — M
to the loop v o F' induces a bijection between 1-periodic orbits of H and
HT respectively. Since F is isotopic through non-decreasing maps to the
identity map, we have that this correspondence lifts in a natural way to
capped 1-periodic orbits. Such a bijection induces an isomorphism of modules

C’Fg aas (H) = C’ngaﬂw(HF) for each p € P. Since F' is homotopic to the

1dent1ty map, there is a unique function G : T — R satisfying G(0) = 0 and
G'(t) = F'(t) — 1. Let J = (Jy)ier € 3"8(H,C), and define J¥ := (Jpq))er-
Then there is a bijection between (H, J)-Floer cylinders u : R x T — M and
(HY, J¥)-Floer cylinders

FARxT — M, ul'(s,t) :=u(s + G(t), F(t)).

Also JF' € grg(H¥ () since the corresponding Fredholm operators lineariz-
ing the Floer equation are canonically identified via a similar correspondence.
Putting everything together we get our isomorphism (2.25). By considering a
similar correspondence for Floer trajectories defining continuation maps as in
Definition 2.72, we see that such an isomorphism commutes with continuation
maps. Finally, since these isomorphisms preserve action we get that they also
respect action maps. O

2.9. The pair of pants product. Throughout this subsection we will fix a
(possibly empty) contact cylinder C' = [1 — ¢, 1 + €] x C C M with associated
Liouville domain D.

Definition 2.83. Let (a’_, ﬂ) € SC(Q{,Qi) be a C-action interval for
j=0,1,2. We say that (a*
7 =20,1and

,a%) is smaller than (a’,a?)j—01 if Q% C QY. for
a? < a9|Q3 + al,]Qz7 at < min(a9|Q2+ + aﬂQi’aHQi + ai\Qi).
Most of the time, it will be the case that
Qo=Q1=Q2 a®>=a"+a' and o} =min(a® +a},d} +al).
Definition 2.84. For any time dependent Hamiltonian H = (H;);er and
any k € N, define (k)H := ((k’)Ht)te'ﬂ' where (k)H; := kHy,; for all t € T.

Definition 2.85. Let (a’. a+) be a C-action interval for j = 0,1,2 so that
(a?,a%) is smaller than ( j_,a+)] —0,1. Define kg = k1 := 1 and kg := 2. Let
HI =(H])er, j = 0, 1,2 be Hamiltonians so that (kj)HI €M?_ ereg(C ak,ak)

for j = 0,1,2. Suppose that for each triple (v/);=0,12 € [Tj—012 FC (/@JHJ)
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of capped 1-periodic orbits where pg, p1,p2 € Z, we have that the associated
1-periodic orbits of at least two of them have distinct images in M.
If HI <a H? for j = 0,1, we have a natural pair of pants product map
: 0 1 + 2
Do p1og2 HFg?a(j,ag(H ) ®K HFgai,a#(H ) — HFg‘jaffai(@)H )

induced from a chain level map

(2.26) gy : CFR, a H®) @y CFE! , a HY) — CFgf:z”;i ((2)H?)

which is the unique K-linear map satisfying

E)H’J(VO@PYI) - Z #M(Hv J>7)’Y27 Vi€ e +((Iﬁ1j)Hj), 1=0,1

Ci,a_,a
ro+p
’YQGFCOJQ 1“3 (2H)

for some fixed (H, J), where

o He H>((H°,H', H?),C) where ¥ is the pair of pants as in Example 2.25;

o Jeni_od¥re(H,(J° Jt, J?) N J=(C) where JI € gTree(k;HI, O) for all
7=0,1,2; and

o v =(7)j=012-

Remark 2.86. The condition H’ < H? for j = 0,1 ensures that the
Hamiltonian H exists by considering the branched cover w from Example 2.25.
The pair of pants product is well defined since the chain level map (2.26)
commutes with the differentials by a gluing argument [Sch95, Th. 4.4.1] com-
bined with the compactness result Proposition 10.5 and orientation conven-
tions [Rit13, §17]. Since the space of families of Hamiltonians H as above
is contractible and since the space J*((J°, J', J?),C) is contractible, we have
(by looking at the moduli spaces in Definition 2.20 and Proposition 2.21) that
® o g1 g2 does not depend on 3, H or J or the choice of X-compatible 1-form.
Such a fact follows from [Sch95, §5.2] where we only consider families of Hamil-
tonians and almost complex structures from Definition 2.20 and where the
compactness result [Sch95, Prop. 5.2.3] is replaced with Proposition 10.5.

If Q) = Q}r, then ® o g1 g2 descends to a AQ% T bilinear map. A gluing
argument [Sch95, Prop. 5.4.4] together with the use of the moduli spaces in
Definition 2.20 and Proposition 2.21 tells us that this product commutes with
continuation maps and is associative. Since ® o g1 g2 only depends on the
oriented diffeomorphism type of ¥, we get that it is commutative when a. = al
(see [Sch95, §5.5.1.3]). The pair of pants product also commutes with action
maps since this product respects the filtrations on the Floer chain complexes by
Lemma 10.3. If the constant Hamiltonian min(H°) satisfies min(H°) <5 H°
for some C™ small perturbation H° of H and if a® ([@], A=, AT) < A~ min(H?)
for all ([@], A", AT) € Qo — 0 and py = 0, then this product has a left unit 1 €
HFgOaO " (H®) by [Sch95, §5.5.1.3] together with the gluing and compactness

0
A,y
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results stated above. By left unit we mean that for each H3 € 3"8(C, a%, a?)
satisfying 2H?, H? < H3, @§EQ’H3(<I>H07H17H2(1 ®x)) is the image of x under
the natural composition

HFE . (H') — HFE ,

1
alal

3 + 3
(H ) — HFg?agpjagr (H )7
where the first map is a continuation map and the second map is an action
map for each z € HF gla1 ol (H'Y). If H! satisfies similar conditions, then we
»r— +
have a right unit. Left (resp. right) units get sent to left (resp. right) units
under continuation and action maps.

3. Floer cohomology for lower semi-continuous Hamiltonians

In this section we introduce Hamiltonian Floer cohomology for certain
lower semi-continuous Hamiltonians. This will be the direct limit of Floer
cohomology groups of smooth Hamiltonians strictly smaller than such a lower
semi-continuous Hamiltonian. These modules will basically satisfy all the same
properties as the Floer groups defined in Section 2. Such ideas have been
considered in [Grol5].

3.1. Main definitions. Throughout this subsection we will fix a contact
cylinder C' = [1—¢, 14-¢] x C with associated Liouville domain D and cylindrical
coordinate rc. We will also fix a C-action interval (a_,a. ).

Definition 3.1. Recall that a function f: X — R U {oco} from a metric
space X is lower semi-continuous if for all g € X, liminf,_,,, f(x) > f(xo).
A lower semi-continuous Hamiltonian is a family of functions (H)ier from M
to RU {oo} so that the function

H:TxM-—RU{co}, H(taz):=Hx)

is lower semi-continuous. Such a Hamiltonian is continuous if H is continuous.

A lower semi-continuous Hamiltonian H = (Hy)e is weakly C -compatible
if the restriction Hy|[e/8,14¢/2]xc 18 either equal to oo or Ay, ro+mpy, for some
constants Ap,, mp, for each t € T. We also require that the maps t — Ay, and
t — mpg, from T to R are lower semi-continuous where A\g, := 0 and mpy, := oo
if Helj14e/8,14¢/21xc = o0. The slope of Hy along C is defined to be Ay, and
the height of Hy along C' is defined to be mp, for all t € T. Also the slope and
height of H; is defined to be 0 if C' is the empty contact cylinder. We say that
H is C-compatible if it is weakly C-compatible and if Hy| M—(Duc) is constant

(possibly equal to co) for each t € T. We define HT!s(C) (resp. ﬁT’l'S'(C')) to
be the set of weakly C-compatible (resp. C’—compatible) lower semi-continuous
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Hamiltonians H. Define

(3.1)
HOS(Ca_, ay)
. HTLs(C) if (a—, a4 ) is small,
N {{H € WT’LS'(C‘) :mp, > height(a_,ay) V¢ € T} otherwise,

where height(a_, a4 ) is defined as in equation (2.15) and where (mg,)ier are

the heights of H = (Hy)er. For H—, HT € HTs(C), we say H™ <g Hif

(1) Hy < H/;

(2) )‘H; < )\Ht+, M= < My

(3) My —Mpy- < (H — Hy) | v—(pu(i,14¢/2)xc) (where we define 0o — oo to
be 0)

for all ¢ € T, where ()‘Hti)tGTa (mHti)teT are the slopes and heights of H™.
For any P C Z and any H € K™ (C,a_, ay), define H™8(< 5 H,a_,ay, P)

to be the subspace of smooth Hamiltonians H = (Hy)ier € H™8(C,a_, a4, P)

(Definition 2.16) satisfying

° ﬁt < Hy;

o Ay, < Am;; mp, < mp,; and

® Myt —Mpy- < (H;" - Hy )| M- (puuire/gxc) for all t € T.

Define <; to be the relation on H"8(<s H,a_,ay,P) where H~ <, H*

if H- = HY or H- <z H'. Also define H™8(<ps H,a_,ay) := H"™8(<x

Ha_,ay,7).

LEMMA 3.2. For any P C Z and any H € H™%(C,a_,ay,P), we have
that (H™8(<x H,a—,ay,P), <) is a non-empty directed set.

Proof. 1t is clear that <. is reflexive and transitive. We now need to show
that every pair of elements has an upper bound. Now suppose H’ = (H) )ier €
H8(<x H,a—,a4,P) for j = 0,1. Let (Am,)ter, (mm,)teT (resp. ()\Hg')te'ﬂ‘ and
(mHg)tGT) be the slopes and heights of H = (H})ier (vesp. HI = (H7),er for
j =0,1). Since Ay, and mpy, vary in a lower semi-continuous way with respect
tot € T, we can find smooth families of constants (\¢)ier, (m4)teT so that
)‘H{ < A < Ag, and My < my < myg, for all t € T. Also since H is
lower semi-continuous, we can find a smooth Hamiltonian H = (Hy);eT so that
H} < H, < H, for all t € T and also so that Ht‘M—(C’uD) is constant for each

t € Tif (a—,ay) is not small. We can also choose H so that
(Hy — Hy — (ma, — me)) | v—(pu(ite/2)xc)) > 0
and '
(He = Hf = (mi = mg) - (pu(i+e/2xc)) > 0
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for all j = 0,1 and ¢t € T. Then by using a bump function on C' to interpolate
between Hy and \;rc +my in the region ((1,14¢€/16)U(14¢/2,1+3¢/4)) x C,
we can assume that Ht|[1+e/8,1+e/2]><c = Mo +my for all t € T as well. Hence
H e HY(C,a_,as) and HI <45 H Slcs H. By Lemma 2.68 combined with
the fact that HT(C,a_,a) is a ubiquitous subset of HT(C) by Lemma 8.3,
we can find H? € 3(*8(C,a_,a, ) satisfying H’ <o H? <4 H for j = 0,1.
Hence H? € H™8(<s H,a_,ay) and HY <z H? for j = 0,1. A similar
construction also shows that H*%(<~ H,a_,ay) is non-empty. This completes
our lemma. 0

Definition 3.3. Let H € HT'*(C,a_,a,;). By Lemma 3.2, we can define
P o : * g
HFCV',af,a+ (H> T . hﬂ HFC,7G7’G+ (H)
HeXHree(<xH,a—,aq ,P)
for any P containing {p — 1,p,p + 1} where the direct limit is taken with
respect to the directed system (H'8(<x~ H,a_, a4, P), <) whose morphisms
are continuation maps.

If the lower semi-continuous Hamiltonian H from Definition 3.3 is in fact
smooth and an element of H"8(Q,a_, a4, P), then it would be good to check
that Definitions 3.3 and 2.64 agree. We will do this now.

LEMMA 3.4. Let p € Z, and let H € 3*°8(C,a_,a,,P), where P =
{p—1,p,p+1}. Let Gy be equal to HFg o ay (H) from Definition 2.64, and

let G be equal to HFga - (H) from Definition 3.3. Then the natural map
Go — (G1 induced by continuation maps is an isomorphism.

As a result, we have consistent notation and we do not need to distinguish
between Definition 2.64 and Definition 3.3.

Proof of Lemma 3.4. We let HFf, a+(ﬁ) be in Definition 2.64 for any

He H*8(<xs H,a—,ay, P). By Lemma 2.40, it is sufficient for us to show that
there is a cofinal family = inside (H"#(<~ H,a_, a4, P), <) so that the natu-
ral map HF? oy (H) — G is an isomorphism for each element H of this co-

final family. Let Uy € HT(C,a_,a) be the neighborhood of H satisfying the
properties of Lemma 2.73. Define Z := UgNH"8(<x H,a_, a4, P). Then = is

a cofinal family by Lemma 2.68 and the natural map HF(, | 0 (H) — Gy is

-

an isomorphism for all H € = by Lemma 2.73. This completes the lemma. [

3.2. Continuation maps. Throughout this subsection, fix a contact cylin-
der C together with a C-action interval (a_,ay).

Definition 3.5. Let p € Z, and let P C Z satisfy {p — 1,p,p + 1} C P.
Let H,HT € H'%(C,a_,ay) satisfy H™~ SICS H™T. Then we have a natural
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inclusion of directed systems
H*8(<x H ,a—,a4,P) C H" 8 (< H" a_,ay,P)
and this induces a morphism
P . P - P +
(I)H,ﬂ+ : HFC,@?’M(H ) — HFC’,a,,aJr(H )

called a continuation map.

If H-, H from Definition 3.5 above are elements of 3™8(C,a_,a, P),
then the continuation map from this definition is equal to the continuation
map from Definition 2.72 by Lemma 3.4. The composition of two continuation
maps is a continuation map.

The following lemma is a generalization of a slightly weaker version of
Lemma 2.74 to all smooth Hamiltonians (not just ones in ™8(C,a_,a,)).

LEMMA 3.6. Let H = (Hs ) (s,t)e0,1xT be a smooth family of autonomous
smooth Hamiltonians, and define H o := (Hs)ter for all s € [0,1]. Fizp € Z.
Suppose that
(1) Hse € KT (C,a_,ay) for each s € [0,1] and Hs, o Sl(,? Hg, o for all

s1 < 823
(2) there are neighborhoods N_, N1 of a_, ay in Sc(Q-), Sc(Q+) respectively

so that

M8, o (o) =TE, ()

C,a_,a4
(Definition 2.58) for all a!y € Ny, s € [0,1] where P = [p—1—n,p+1+n];
and
(3) there are no 1-periodic orbits of Hy e contained in [1+€/8,14€/2] x C for
all s € [0,1].

Then the continuation map

Dy iy, P HEE (Hoo) — HFP® (Hy,)

C.a_,at C.a_,ayt

in degree p is an isomorphism.

Proof. This lemma will be proven by showing that for each s € [0, 1], there
is a constant €5 > 0 so that the continuation map

(3.2) HF? (Hy,) — HFZ (Hg,)

C,a—,ay C.a_,ay

is an isomorphism for all sg,s1 € [0,1] N (s — €5, 5 + €5) satisfying sop < s1. So
from now on, fix s € [0, 1].

By (3) there are constants ds,( > 0 so that for each s’ € [s — ds, 5 + d],
every l-periodic orbit of Hy o has image not intersecting N := [1 + ¢/8 — (,
1+¢€/2+ (] x C. By Lemma 2.68, there exists a cofinal family (K; ¢)icn in
H*8(<x Hgo,a—_, a4, P) which C* converges to Hy o for each s’ € [0,1].



488 MARK MCLEAN

Let F : M — R be a C-compatible autonomous Hamiltonian so that
F' is locally constant outside N and so that 0 < F. Since F' is locally
constant outside N, there is a constant 0 < 7 < ds so that for each s’ €
(s—ms,5+15) and 7 € [—ns, 14|, there is a constant Ny > 0 so that K; ¢ +7F €
HTree(C a_,a,, P) for all i > Ny by assumptions (2) and (3). Hence by
Lemma 2.74, the continuation maps
HF? (Kjg+17 F)— HFg a+(Ki’s, +71F)

C,a—,a4

are isomorphisms for all s’ € (s—ng, s+7s), 7 > Ng and 77,77 € [—ns, 1] satis-
fying 7= < 71, and hence the continuation maps H F? o a (Hy o +7 F) —

HF} o (Hy o + 77 F) are isomorphisms for all s’ € (s — ns,s + 15) and
77,71 € [-1ns,ns) satisfying 77 < 7.

Choose 0 < €; < 15 small enough so that
Hoyo = 1sF <& Hypo <& Hyy o <& Hogo + 16 F

for all sp,s1 € (s — €5,8 + €5) satisfying sg < s;. By the discussion above
combined with the fact that the composition of any two continuation maps is
a continuation map, we get that the composition of any two maps in

HF ,  (Hoe—nF) = HF - (Hgo)
— HFg’,a,,a+ (Hsl”) - HFg,a,,cw (Hso,o + 778F)

is an isomorphism. Hence « is an isomorphism for all sg,s1 € (s — €5, 5 + €5)
satisfying sg < s1. O

3.3. Action maps. We can also define action maps for lower semi-contin-
uous Hamiltonians in a similar way to Section 2.7. Throughout this section we
will fix a contact cylinder C' = [1 —¢,1+ €] x C C M with associated Liouville
domain D.

Definition 3.7. Let P ={p—1,p,p+ 1} for some p € Z. Let (aj,,ai) be
a C-action interval for j = 0,1 so that (a!,a}) is smaller than (a®,a%). Let

H e ﬂj:0713{T’1'S'(CV’, aj,,a,j) (Definition 3.1), and let 2 := Nj—g,1 H"*4(<~ H,

a’_,al.) be the directed set with relation <4. Since

P _ 1 P : o
(3.3) HFC‘,aLai(H) = hg HFCﬁaj;,ai (H), j=0,1
He=
and since action maps commute with continuation maps, we get that the action
maps HFé,a(l,ai (H) — HFaaLaL(H) for each H € = from Definition 2.77
induce a map
HFgao 0 (H) — HFg7a1 al (H)7

a_,a; —,ay
which we also call an action map.
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Again action maps commute with continuation maps. If the Hamiltonian
H is an element of ﬂj:(),l?{reg(cv',aj_,ai,{p — 1,p,p + 1}), then the action
map from Definition 2.77 is equal to the action map from Definition 3.7 by
Lemma 3.4. We also have the following analogue of Lemma 2.79:

LEMMA 3.8. Let P =[p—1— np—l—l—l—n] for somep € Z. Let( 7 ) be a
C-action mtervalforj = 0,1 so that (a1, a) is smaller than (a® ) Let H €
Nj—o1 HT(C,a’, a+) be a smooth Hamiltonian. Suppose that FO W0 g0 (H) =

" +

Fg,ai,ai(H)' Then the action map

HE, o o (H) — HF, 1\ (H)

s an tsomorphism.
Proof. By Lemma 2.68 there exists a cofinal family (H?);cy in
Mj=o, 1:}Creg(< H, (l +)

so that H® C* converges to H. Then for all i sufficiently large, we have
" —1,p,p+1 ; —1,p,p+1 ;

by (CZ7) from Definition 2.16 that F{C}?Q(L?;;Jr }(Hz) = Fgai,ﬁ) }(Hl). Hence

by Lemma 2.79, the action morphism

P i
HEE, o o (H') — HFE 1 o

1 (H)
is an isomorphism for all ¢ sufficiently large. Therefore since action maps
commute with continuation maps and since equation (3.3) holds, we get our

result. O

3.4. Invariance under time reparametrization. Throughout this subsec-
tion, C is a contact cylinder whose associated Liouville domain is D. We will
also fix a C-interval domain (Q_, Q).

Definition 3.9. Let F' : T — T be a smooth non-decreasing map. Let
H = (H;)ier be a lower semi-continuous Hamiltonian. We define H Fo—

(H] )ier by Hf = F'(t)Hp.

ProprosiTION 3.10. Let F' : T — T be a smooth non-decreasing map
which is homotopic to the identity map. Let (a—,ay) € Sc(Q-) x Sc(Q+)
be a C-action interval. Then for each H € iHTJ'S'(Cv',a,,aJr), there is an
isomorphism of A9+ -modules

(3.4) HF} (H)= HF" (HT)

C.a_,ayt C,a_,at

which commutes with continuation maps and action maps.

Definition 3.11. The isomorphism (3.4) will be called a reparametrization
isomorphism.
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Proof of Proposition 3.10. Since
74 FN _ . * T F
HFCa a4 (H )_ 5 hﬂ HFC’a a+(H )
HeHree(<xH,a—,a4,Z)

by Proposition 2.81 and since the reparametrization isomorphisms

HF: (H) = HF, (H)

C.a_,a+ a_,at

from Definition 2.82 commute with continuation maps, we get our isomor-
phism (3.4). O

3.5. Pair of pants product. Throughout this section we will fix a contact
cylinder C' = [1 —¢,1 + €] x C C M with associated Liouville domain D.

Definition 3.12. Let ( a’l, a+) be a C-action interval for j = 0,1,2 so that

(a%,a?) is smaller than (a’.

a+)j —o,1 as in Definition 2.83. Define kg = k1 :=1
and kg 1= 2. Let H/ = (H] Jter be a lower semi-continuous Hamiltonian so
that (k;)H/ € HTLs(C, a_,a+) for j = 0,1,2, where (x;)H’ is defined as in
Definition 2.84, and suppose H’ SICS H? for j =0,1.

Choose a cofinal sequence ((r;)H%);en in NZ_ H™8(< s, a", ak, (k;)HT)
(Definition 3.1) for each j = 0,1,2 so that H»J <& H?J for j = 0,1 and so
that for each triple of capped 1-periodic orbits

(")j=012€ ] ij HJ)H])
7=0,1,2

where pg, p1,p2 € Z, we have that the associated 1-periodic orbits of at least
two of them have distinct images in M. Define Q;; := HFg,a{,ai((%j)Hi’j)
for all ¢ € N and j = 0,1,2. Then the pair of pants product is the natural
composition
q’HO,Hl,H? : HFg,a(l,ag_(HO) XK HFé‘,al_,a}’_(Hl)
= (lim Qi0) @x (lim Qi1) — lim(Qi0 ®x Q1) — lim Qi
ieN ieN ieN i€N
= HF}, 2 0 (2H),

where the morphism « is the direct limit of the natural pair of pants product
map Q;0 ®k Qi1 — Qi2 as in Definition 2.85.

Remark 3.13. 1f (k;)H’ € Jres(C, aj_,ai) for j =0, 1,2, then the pair of
pants product map above is identical to the one defined in Definition 2.85 by
Lemma 3.4. Also action maps and continuation maps commute with pair of
pants product maps. Such a product is associative and graded commutative
by Remark 2.86. If the domains of agr and aﬂr agree, then this product is
A®+ T bilinear where Q. is the domain of a9r. If the constant Hamiltonian
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min(HY) satisfies min(H") glcs HO if a® ([0], A7, A7) < A~ min(HY) for all
([©], A7, A7) € Qo — 0 and if pg = 0, then it has a left unit 1 € HFY , , (H")
" +
by Remark 2.86 combined with the fact that continuation maps send left units
to left units and the fact that HFY, , , (K) has a left unit for any sufficiently
»—_ +
C? small perturbation of min(H"). By left unit we mean that for each H® €
HTLs(C,a%, a?) satisfying 2H?, H? <& H, o s (o 2 (1 © @) is
equal to the image of x under the composition
HFgfaa ,ai(Hl) — HFgfal ’a#(H3) — HFg?;;f’; 2 (H?3)
of action maps and continuation maps for each x € HF glal ol (H'). This
Al +

follows from Remark 2.86. We have a right unit under similar conditions. The
only difference is that the indexes “0” and “1” are swapped.

4. Definition of symplectic cohomology

Throughout this section we will fix a contact cylinder C' = [1 —¢, 1 +¢] x C
C M with associated Liouville domain D.

Definition 4.1. Let K C T x M be a closed set with the property that
K C T x D if D is non-empty. We define HT!s(C', K, < 0) to be the subset
of HT1s(C) (Definition 3.1) consisting of lower semi-continuous Hamiltonians
H = (H)ier with the property that Hy(z) < 0 if (¢,2) € K and Hy(z) =
oo otherwise. We define T (C', < 0) to be the union of all such subsets
HTs(C, K,< 0). For each H € K™ (C, < 0) and each C-interval domain

(@-,Q+) as in Definition 2.58, define SH, o Q+(H) to be the double system

of Z-graded Aﬂg+’+—modules (as in Definition 2.28):
SHe o o, (H) = (HEFE ,  (H))(a_a1)eSc(Q-)xSce(Q+):
where

e the ordering on Sc(Q+) is given by >; and
e the double system morphisms are action maps as in Definition 3.7.

We define symplectic cohomology of H to be
SHE':Q—’QJF (H) = hﬂ @ SHE’Q— 7Q+ (H)’

where hgﬂ&l is given in Definition 2.41. For any closed set K C T x M which

is contained in T x D if D is non-empty, define SH, Q. Qs (K CTxM) (resp.
SfC’,Q,Q+(K C T x M)) to be SH07Q71Q+(HK) (resp. SHC‘,Q,,Q+(HK))’
where

0 if(t,z) €K,

Hyi = (HK,t)tE']T; HK,t M — RU {OO}, HK,t(x) = .
oo otherwise.
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The algebra SHE,Q—,CA(
in M.

If K C M is a closed subset, which is contained in D if D is non-empty,
then we define SHE‘,Q,,QJK C M) = SHaQ,,Q+(T x K ¢ Tx M) and
SH:?,Q,,QJK CM):= SHan,QJr(T x K CTx M).

Remark 4.2. The definition of symplectic cohomology makes sense be-
cause HT(C, < 0) € HT5(C,a_,ay) for all C action intervals (a_,ay) €
Se(Q_) x Sc(Qs).

If the Hamiltonian H is autonomous, then SHY o Q+(H ) is a double

system of Z-graded AH%”Jr—modules with product induced by the pair of pants
product maps
(4.1) HF, 0 0 (H) @ A%+ HFy, 1 1 (H) — HF(, 2 2 (H),

-0 +

K C T x M) is called symplectic cohomology of K

2 2

where a? = a? +al, a2 = min(a® + ai_,al_ + ag). This product is well

defined since H is autonomous and H Slcs %H because the slope of H along

C is 0 and because H is either non-positive or co. Also SHE,Q (H) is a

Q—,Q+

A§+’+—algebra by Remark 2.45. Such an algebra is a unital graded

graded
commutative algebra by Remark 3.13.

Definition 4.3. Let (Q_,Q.) be a C-interval domain pair. Let H* ¢
HTLs(C, < 0) satisfy H~ < H*. Then H_ <5 Hy, and hence the natural
continuation maps

HF.,  (H)— HFS, . (H,)

C.a_,ay Ci,a_,a
for all C-action intervals (a—,ay) give us a morphism of double systems

SHe g, (H-) —SHe o g, (Hy)
called a transfer morphism. This also induces a morphism of algebras
SHeq =) — SHeq o, ()
called a transfer map. In particular, if K, C K_ C D are closed subsets, we

o @ E-CM)— SH; o o (Ky C M),

If Hy is autonomous, then this transfer morphism or map respects the
natural product structures on the corresponding double systems or modules
and they also send units to units.

have a transfer map SHE,

Definition 4.4. Let (Q]_, Qﬂ_) be a C-interval domain pair for j = 0,1 so
that QL C QY. Suppose H € HT1s(C, < 0). Then the action maps

HF: . (H) — HF} (H), (a—as) €Sc(QY) x Sc(Q})

_.a C,a—|-1 ,a 1
5 » A+ s ‘Q_’+|Q+
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give us a morphism of double systems SH?*

C,QQ,QS_(H) — SHY

cqr.qr ()

called an action morphism.
Again this morphism respects the product structure if H is autonomous.

Definition 4.5. Let (Q_, Q) be a C-interval domain pair, and let H €
HTIs(C,<0). Let F: T — T be a smooth non-decreasing map. Then the
reparametrization isomorphisms

HF: (H)= HF? (HT)

Cia_,ay Cia_,ay
from Definition 3.11 for each C-action interval (a_,ay) € Sc(Q_) x Sc(Q4)

gives us an isomorphism of double systems

SHY , o, (H)=SH; (H)

*7Q+ C7Q*7Q+

called a reparametrization isomorphism.

LEMMA 4.6. Let (Q_,Q.) be a C-interval domain pair, and let H €

HTLs(C, < 0). Then the A§+’+—m0dule structure on SHE, 0.0, (H) extends
uniquely to a Ag* -module structure on SHZ, Q. 0. (H) making it into a Ag*-
algebra.

Proof. Let np : H*(M, D;R) xR xR — H?(M, D;R) be the natural pro-
jection map, and let tp : H?(M, D;R) — H?(M;R) be the natural restriction
map. Let

Q = up(7p(Q+)) C H*(M;R) = (H2(M;Z) @z R)",
and let =g be the induced ordering on Hy(M;Z) as in Definition 2.52. Define
QY :={x € Hy(M;Z):0=q x} C Ho(M;Z). By Definition 2.56, we have that
Q" is naturally a submonoid of the multiplicative group (AH%+’+)X. All such

elements are invertible in Ag*. Also each element w € Ag* has the property

that there exists some element s,, € Q" satisfying s, w € Ag+’+. Therefore by
[Stal8, Tag 07JY] it is sufficient for us to show that each s € QY acts as an
automorphism on SH:?,Q,,QJH)'

We now fix such an element s. Since s € Hy(M;Z), it defines a lin-
ear function on H2(M;R) and hence by pulling back via ¢p and 7p and re-

stricting to @4, a function Lg € Sc(Q+). The map sending a capped loop v
a_—Lgs,ar—Lsg (H) — HFC*V)',af,aJr (H)
Since SHE‘,Q—,Q+(H) = lim l&na+ HFé,a_fLs,aJrfLs (H), we get that such a

to y#(—s) induces an isomorphism H FY

map induces an automorphism of SHE, H). This automorphism coin-

7Q—7Q+(
cides with the natural module action of s € AH%L’JF. Hence the AH%L’Jr—action

extends to a A%*—action. O
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Remark 4.7. Since continuation maps and action maps between symplec-
tic cohomology algebras of autonomous Hamiltonians are induced by inclu-

Q 7+
Ag*

sions of double systems, they are naturally -algebra homomorphisms

and hence Aﬂcg*—algebra homomorphisms by the lemma above.

5. Properties of symplectic cohomology
5.1. Changing contact cylinders.

PROPOSITION 5.1. Let C’j be a contact cylinder with associated Liouville
domain D; for j = 0,1 so that D1 C Dg. Suppose also that the natural
restriction map 1 := H?(M, Do;R) — H?(M, D1;R) is an isomorphism, and
define
(5.1) T: H*(M,Dy;R) x R? — H*(M,D1;R) x R?, 7:= ¢ x idge.

Let (Q_,Q4) be a wide Cy-interval domain, and let H € H™(Cp, < 0) be
autonomous. Then there is an isomorphism of double systems with product

(5.2) SHéO,Q 7Q+(H) —>SH* 7Q), (Q+)(H).

Before we prove this proposition, we need a preliminary lemma.
LEMMA 5.2. Proposition 5.1 is true when Cy and Ci are disjoint

Proof of Lemma 5.2. We let (aj,)jeN, (Gi)jeN be a cofinal family of
(Sc(@%),>) and (Sc(QY), <) respectively. After passing to a subsequence,
we can assume that the function i — height(a’ , a’,) is increasing.

Since H has slope 0 along both contact cyhnders and CoNC; = ), we can
find a cofinal family of Hamiltonians

H,; € Mk=0,1 NjeN F(Tore (< H, CL +) 1 €N
so that H;|y/—p, is constant and H;|a—p, > height(a’ ,a% ) for all i € N. Then
the Floer chain complexes computing HFY, ; ; (H;) and H FZ (H;) are
+

identical for each ¢,j € N satisfying ¢ > j by Corollary 2.8. The continuation
maps, action maps and pair of pants product maps coincide under such an

Cr.a’, 0,07 0%,
isomorphism. This gives us our isomorphism (5.2) by Lemma 2.40. U
Proof of Proposition 5.1. Let
Ci=[M—el+¢]xCj j=0,1

be our contact cylinders. By a Moser argument ([MS98, Exercise 3.36]), we
can extend them to contact cylinders

Cl=[l—-¢—01+e+6xCj j=0,1

for some 0 < § < minj—g1(€;/2). We can also assume that ¢ is small enough
so that [1 — 6,1 + 0] x C} is disjoint from [1 + €y + /2,1 + €9 + ] x Cp. We
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now apply Lemma 5.2 four times, with four different pairs of contact cylinders
in the following order:

(1) C’o, [1+60+5/2,1+60+(5] x Co;

(2) [14+e€ +9/2,14+ €+ ] x Cop; [1 = 6,14 0] x Cy;

(3) [1=0,140] xC1, [14+€ +6/2,1+ €1+ 8] x Cy; and
(4) M +e1+3/2,1+ € + 6] x Cy, Ch.

This completes the proposition. O

We also need a proposition telling us what to do when we forget the
contact cylinder.

Definition 5.3. Let C = () be the empty contact cylinder. The standard
w-cone is the cone Q,, C H?(M,(); R) xR xR defined to be the one-dimensional
cone spanned by ([w], 1,1). The standard Novikov ring A is defined to be A]%.
The standard positive Novikov ring A§’+ is defined to be Ag“f

Note that the standard Novikov ring is equal to the Novikov ring (1.2) in
the introduction with wx replaced by w.

PROPOSITION 5.4. Let C = [1 —€,1 4+ €] x C be a contact cylinder with
associated Liouville domain D. Let Q. C H?(M,D;R) x R? be the cone
spanned by ([wa],1,1) where wx is a C-compatible 2-form with scaling con-
stants 0 and 1 and which is equal to w outside DU ([1,1+¢€/2] x C'). Then for
any autonomous H € HT(C, < 0) (Definition 4.1), there is an isomorphism
of double systems with product

(5.3) SHE‘,QWC,QWC (H) — SHj o, 0., (H).

Proof. Let II: Qu,, —> Qu be the restriction of the natural map
H?*(M,D;R) x R> — H?*(M;R) x R?

induced by cohomological restriction. Choose any cofinal family of Hamilto-
nians H; € H'"°8(<s H,a_,a;). Then the isomorphism (5.3) follows from

the natural isomorphisms HFZ — o a+0H(H) = HFj, .. (H) coming from
the fact that the corresponding Floer chain complexes are identical for each
(a—,ay) € Sc(Qu) x Sc(Qu)- O

5.2. Partial independence of the Hamiltonian. Throughout this subsec-
tion, C'is a contact cylinder whose associated Liouville domain is D. We will
also fix a C-interval domain (Q_, Q).

PROPOSITION 5.5. Let K C T x M be a closed subset which is contained
in D if D is non-empty. Let HY € HTs(C, K, < 0) satisfy H; < H;'. Then
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the transfer morphism

(5.4) SHE o o, (H) — SHaQﬂQJH*)

s an tsomorphism in the category 2—SyS—AHC§+’+-

Since hﬂl&l is a functor by Definition 2.41, Proposition 5.5 implies that

0 Q+(ﬁ) — SHEQ Q+(H) is an isomorphism. Be-
fore we prove Proposition 5.5, we need some preliminary lemmas and the fol-

the transfer map SH,

lowing definition:

Definition 5.6. Let v € R be a constant. Define

L,: H*(M,D;R) x RxR — R, L,(¢,A\",A"):=A"w.

LEMMA 5.7. Let (a_,ay) € Sc(Q_) x Sc(Q+) be a C-action interval, v €
(0,00), and let H € KW' (C,a_ + L,,ay + L,). Then we have a commutative
diagram

(H)7

C,a_,a+ (Cva—va"r)

HF 7l (H)/ﬂ

C,a—+Ly,ar+Ly

HF* (H—-v) % HF*.

where « is a continuation map and B is an action map. The map v commutes
with continuation maps and action maps.

Definition 5.8. We will call the map ~ a translation isomorphism.

Proof of Lemma 5.7. We will prove this lemma in two steps. In the first
step, we will prove it in the case when H € 3*°8(C,a_ + L,,ay + L,) (Defi-
nition 2.58), and the second step will deal with the general case.

Step 1. Suppose H € H*8(C,a_ + L,,a; + L,). For N € N large enough,
we have that H — ¢ € H"8(C,a_ + Ly, a4 + L,) for all ¢ € [0, 24]. Therefore
H— (N —k+s)v/N € H*(C,a_ +kL,/N,ay + kL,/N) for all k € Z and
all s € [0,1]. Define

By, = HF}, H— (N =1)v/N)

,a_+kL,,/N,a++kLl,/N(

for all I,k € {0,..., N}. Then by Lemmas 2.74 and 2.79 we have the following
commutative diagram consisting of continuation maps and action maps (with
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the exception of v which is given as a definition):

12

Byn_1,N—1—Bn-1.N

T

ByNn-1— BnN

The map v commutes with continuation maps and action maps since the dia-
gram above is functorial with respect to continuation and action maps.

Step 2. Now suppose H € H™5(C a_ + L,,a, + L,). Then since

0y o =)=l HF o o, (H =),
Heres(Cha_+Ly,as+Ly)
HFévaf +Ly,ar+Ly (H) = hﬂ HFg’,af—i-Ly,aJr-&-Lu (H)

Hegree(Cra_+Ly,ayr+Ly)
and continuation maps commute with the translation isomorphisms constructed
in Step 1, we get our result. O

LEMMA 5.9. Let H € KT (C,<0), and let v > 0 be a constant. Then

(H—-v) — SHE,Q (H) is an isomor-

. *
the transfer morphism SHC', Q_.Q4

Q-.Q+
phism in 2—sys-A]%”+.

Proof. For each action interval (a_,a4) € Sc(Q-) x Sc(Q+), we have a
translation isomorphism

Ya_,ay - HFé,af,aJr (H N l/) — HFaa—+Lu»a++Lv (H)

Since such isomorphisms commute with continuation maps, we get an isomor-
phism

v : SHE, (H—-v) — SH

C,Q-,Q+ (H).

Q—,Q+
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Also for each action interval (a_,a4) € Sc(Q—-) x Sc(Q+), we have an action
morphism

/80‘_70"" : HFg,a—+Ly7a++LV (H) - HFéva—ra-F (H)’

and this induces an isomorphism

8 : SH, (H) —> SH* (H).

7Q—7Q+ C,Q_,Q+

(Such an isomorphism is induced by a standard endomorphism as in Exam-
ple 2.37.) Also by Lemma 5.7,

/Ba_,a+o’7a_,a+ cHFY, (H—V)—}HFT (H)

C,a_,a+ C,a—,a+

is a continuation map for all a_, a4 € Sc(Q) giving us a transfer morphism

* *
SHC,Q77Q+ (H — V) — SHC,Q77Q+ (H)
Our lemma now follows from the fact that So~y is a composition of isomorphisms
in 2—sys—Aﬂ%+. ]

Proof of Proposition 5.5. Choose a constant v > 0 so that H™ —v < H™.
Then since H* € HT!S(C, < 0), we get HT—v <5 H~. We then have transfer
morphisms

* —+ * —
SHC,Q_,Q+(H *27/) —)SHO,Q_,Q+(H *7/)
o * + * -
—SHeg o (H"—v) —8He o o (H7).

By Lemma 5.9, the composition of any two such morphisms is an isomorphism
and hence « is an isomorphism. Also by Lemma 5.9, the natural continuation
morphisms

. * + *
Bi ’ SHO7Q—7Q+ (H a V) - SHC:Q—7Q+(

are isomorphisms. Our proposition now follows from the fact that the con-

HY)

tinuation map (5.4) is equal to the following composition of isomorphisms:
Broao(B). O

5.3. Relation with quantum cup product.

THEOREM 5.10. Let Q,, Ag be the standard w-cone and standard Novikov
ring respectively as in Definition 5.3. Suppose that K is a field. Then there is
an isomorphism of Ag-algebras

SHj o..0,(M C M) = QH*(M,A}),

where QH* is quantum cohomology. Also, hﬂl&ll SH 0.0 (M c M) =0,
where hgl@nl s given in Definition 2.50.
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Proof. We identify the cone @, with [0, 00) via the identification A([w], 1, 1)
— A for all A > 0. Under this identification, Sc(Q.,) becomes the space of
linear functions a. : [0,00) — R, a.(\) :==cA, c € R.

We will first show hgl&ll SHj ., .0.,(M C M) =0 by using Lemma 2.51.
Let H : M — R be a C? small Morse function which is negative. Since [w]
lifts to an integral cohomology class in H?(M;Z), we have for all cy € % +7Z
that the continuation maps

(5.5) HF}, o (MH)— HF;, . (\H)

ey ey

are isomorphisms for all 0 < Ao < A\; < % by Lemma 2.74. Hence the double
system W := (HFj, . ()\H))CiE%JrZ
the double system (hﬂi\—m HFj, ac, ()\H)>ci€%+Z’
phic to SHy 5 o (M C M) =0 by Lemma 2.40. Therefore by Lemma 2.51 it
is sufficient for us to show that the action map

" for some small A > 0 is isomorphic to

which in turn is isomor-

(5.6) HFQT,aC_7 +()\H) — HF&GC_, (\H)

Qc Qcy —1

is surjective for each cy € % + Z. Since AH is C? small, we have by [AD14,
Th. 10.1.1] that the only Floer trajectories connecting 1-periodic orbits of AH
are Morse flowlines (i.e., ¢t independent Floer trajectories). This implies that
the natural map (5.6) is surjective for each c4 € % + Z, which in turn implies
that hﬂl&nl SHj o, .0, (M C M) =0 by Lemma 2.51.
Choose
J € ﬂCi€%+ZHT’reg()\H, Ac_, e, ).

Define
HF*(\H) := H, (@@CF&%_,%JF (AH)) )

c— cy

Since lim lim* W = 0, we have a natural isomorphism

HF*(\H) = liny lim HF;,,_, (AH)
a_ a4+
by [Wei94, Th. 3.5.8] and Lemma 2.40. Since the morphism (5.5) is an isomor-

phism for all ¢y € 1Z and 0 < Ao < A\ < 1,

we get that the natural map
HF*(\H) = ligl'&nHFéf’a_’M()\H) — hgngn hﬂ HFg,a_,a+(5‘H)
(5.7) a— ay a— a+ X0
=SHyq,.q.(M C M)

is an isomorphism for all sufficiently small A > 0. By [PSS96] and [OZ11] we
have isomorphisms

(5.8) HEF*(\H) = H*(M;A%)
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for all A > 0 small which commute with continuation maps HF*(AH) —
HF*(NH) for 0 < A < X small. These isomorphisms also commute with
the pair of pants product as follows. If A > 0 is sufficiently small, we have a
commutative diagram of A%-modules

(HF*(\H)) ® (HF*(\H)) a HF*(2)\H)
~| ~| ~|
QH*(M; Ag) © QH*(M; AZ) & QH*(M; Ag),

where « is the pair of pants product and § is the quantum cup product and
where the vertical isomorphisms are induced by (5.8). (The papers [PSS96]
and [OZ11] only prove such isomorphisms over Q, however these proofs are
identical if one just formally replaces the coefficient field “Q” with “K” in
their papers since (M,w) is semi-positive.) Therefore by equation (5.7) we
have an isomorphism of Af-algebras
SH@:QW’QW(M cCM)= hg HF*(\H) 2 QH"(M;A%)
A—=0
since the isomorphism (5.7) commutes with the pair of pants product a. [
5.4. Stably displaceable complements.

Definition 5.11. A subset B of a symplectic manifold is Hamiltonian dis-
placeable if there is a Hamiltonian symplectomorphism ¢ satisfying ¢(B) N B
= (. A subset A C M is stably displaceable if A x T C M x T*T is Hamil-
tonian displaceable inside the product symplectic manifold M x T*T where
T*T = R x T has the standard symplectic form do Ad7 where 0 : Rx T — R,
7:R X T — T are the natural projection maps.

Throughout this subsection, we fix the coordinates o, 7 above. We also let
Q. be the standard Novikov cone associated to the empty contact cylinder as
in Definition 5.3. The aim of this subsection is to prove the following theorem:

THEOREM 5.12. Let K C M be a closed set so that M — K 1is stably
displaceable. Then the transfer morphism

(5.9) SHy o 0. (M C M) — SH{ o o (K C M)

s an tsomorphism in 2—sys—A§“’+.

The proof of this proposition relies heavily on an idea due to Ginzburg in
[Ginl0]. Before we prove this proposition, we need some preliminary definitions
and lemmas.

Definition 5.13. A lower semi-continuous Hamiltonian H = (Hy)ier on
M x T*T is admissible if there is a compact subset Ky € M x T*T and a
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lower semi-continuous Hamiltonian K = (K})ier on M so that Hy(z, (0,7)) =
Ky(z) — 3|o| for all (z,(0,7)) € M x T*T — Kp.

Let Jp«T be the almost complex structure on R x T satisfying JT*T(a%) =
%. A smooth family of almost complex structures J = (J;)ier on M x T*T
is admissible if they are w + do A dr-tame and if they are equal to Jy; @ Jp«r
outside a compact subset of M x T*T where J); is an w-tame almost complex
structure on M.

For any admissible lower semi-continuous Hamiltonian H on M xT*T and
any a_,ay € Sc(Qy), we can define

HEj, . (H)
»= +
as in Definition 3.3, where we restrict ourselves to admissible Hamiltonians and

almost complex structures. We can also define continuation maps and action
maps in the same way.

Remark 5.14. Such a definition, along with the theorems, propositions
and lemmas used to construct such a definition, are identical except that M is
replaced by M x T*T and all Hamiltonians and almost complex structures in-
volved are admissible. The only additional ingredient needed is that one needs
a maximum principle to prove compactness to ensure that all Floer trajecto-
ries stay inside a fixed compact subset of M x T*T; see, for example [Oan04,
Lemma 1.5]. Also note that since the natural projection map M x T*T — M

induces an isomorphism Hy(M x T*T; Z) = Hy(M;Z), we have that Aﬂ%’ and

AH%“’JF are the correct Novikov rings to use (and not some larger Novikov rings).

From now on we identify Ho(M x T*T;Z) with Ho(M;Z) as in the remark
above.

Definition 5.15. A closed subset K C T x M x T*T is admissible if there
is a compact set Kk C T x M x T*T and a closed subset K3y C M so that
KUk = (T x Kp x T*T) U k. In other words, this closed subset is a product
T x Kp; X T*T near infinity (see Figure 7).

Figure 7. Admissible closed subset.
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Definition 5.16. For any admissible closed subset K C T x M x T*T, we
define H™* (K, < 0) to be the set of admissible lower semi-continuous Hamilto-
nians H = (Hy)ier on M x T*T satisfying Hy(x, (o, 7)) < 0 for (t,z, (0, 7)) € K
and Hy(z,(0,7)) = oo for (t,z,(0,7)) ¢ K. A closed subset K’ C M x T*T
is admissible if T x K’ is admissible. For such a K’, define HT's'(K’, < 0) :=
HELS (T x K, <0).

For any admissible closed subset K C T x M x T*T and any H €

HTs (K, < 0), we define SH; o, QW(H) to be the double system

(IJF(ZT,a,,aJr (H))a, ,a+€S¢(Qu)*
IfK Ky CTxMxT*T are admissible closed subsets satisfying K, C

K_and H* € J-CT’I'S'(Ki, < 0) satisfies H~ < H™, then the natural morphism
of double systems

* — * +
SHyo,.q.(H™) — SHjq, o,(HT)
induced by continuation maps is called a transfer morphism.

We will need the following lemma, whose proof is identical to the proof of
Lemma 3.6 in the case when C' = () and Q = Q,,, except that all Hamiltonians
and almost complex structures are admissible on M x T*T.

LEMMA 5.17. Let H = (Hst)(s)e[0,1]xT be @ smooth family of autonomous
admissible Hamiltonians on M x T*T, and define Hso := (Hsy)ter for all
s€0,1]. Fizp € Z and ax € Sc(Quw). Suppose that

o H, o« < Hg, o for all s; < s9; and
e there are neighborhoods N_, Ny of a—, at in Sc(Q.) respectively so that
(o) = T ()
(Definition 2.58) for all a!, € Ny, where P =[p—1—n,p+1+n] for all
s eR.

Then the continuation map

D . P /4
O, HEG, | (How) — HFL - (Hy)

in degree p is an isomorphism.
We also have the following proposition, whose proof is identical to the

proof of Proposition 5.5, except that all Hamiltonians, almost complex struc-
tures and closed subsets are admissible on M x T*T.

PROPOSITION 5.18. Let K C Tx M xT*T be an admissible closed subset.
Let H= Ht € H"S (K, <0) satisfy H- < HY. Then the transfer morphism

SHj g..0.,(H) — SHj o o, (HT)

s an isomorphism in 2-sys—A%w’+.
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LEMMA 5.19. Let Kj; C M be closed, define K := Ky xT*T € M xT*T,
and let H € HT'S (K, < 0). Then there is an isomorphism of double systems

where H*(T; K) is thought of as a double system (H*(T;K)) (i kyefxyx{x} where
{*} is the single element (inverse) directed set. Such a morphism commutes
with transfer maps. In other words, for any admissible closed subsets K+ =
K xT*T C K~ = Ky xT*T C M xT*T and any H* € HU!'S(K*, < 0) sat-
isfying H— < H™, we have the following commutative diagram in 2—sys—A%“+:

* - \I,K_ * - *
SHj ... (H ) ——— SHj o o (K3 € M) ®@x H*(T; K)

\I}K“'

SH; g0, (HT) SH; . o, (Kir € M) ®x H*(T;K),

where the vertical morphisms are induced by transfer morphisms.

Proof of Lemma 5.19. Let f: R — R be a smooth function so that
o f(0) =0, f"(0) <0;
e f/(x) >0 for x <0 and f'(z) <0 for x > 0; and
e f(z) = —3|z| for |z| > 1 (see Figure 8).

—1 1
- -
flz) = —1|af flz) = —1|a]

Figure 8. Graph of f.
Define
0 ifze Ky,
oo otherwise,

Hg, :M — R, Hg,(z)= {

and let mpr : M X T*T — M be the natural projection map. Then by
combining [CFHW96, Prop. 2.2] with a Kiinneth formula argument, we get an
isomorphism

(511)  HFy, . (mh(Hi,)+ f(0) — HF;, . (Hg,) ®x H*(T;K)

for all a_,ay € Sc(Qu,Qw) since the only capped 1-periodic orbits of f(o) :
T*T — R are the constant orbits at its maximum. Such an isomorphism
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commutes with action maps and continuation maps (possibly tensored with
H*(T;K)). Hence we get our isomorphism (5.10) when H = 7}3,(Hk,,)+ f(0).
For general H, this isomorphism exists by Proposition 5.18. Again because
the isomorphism (5.11) commutes with continuation maps, we get that the
isomorphism (5.10) commutes with transfer morphisms. O

LEMMA 5.20. Let Ky C M be a closed subset, and let v > 0. Let H* €
HTAs (K*, < 0), where

K_=(KyxT'T)UM x{o>v}), Ki:=KyxTT
(see Figure 9) and where H~ < Ht. Then the transfer morphism

* — * +
(5.12) SHC’,Qw,Qw(H >_>SHC',Qw,Qw(H )

18 an tsomorphism in 2—sys—A%“’+.

M xT*T
K =K, UM x{oc>v})
,,,,,, / -
fffffff T
R Ky = Kn xT°T
,,,,,, [ ]
M x{oc>v} M x{oc>v}

Figure 9. The subsets K_ and K.

Proof of Lemma 5.20. Let m: M x T*T — M be the natural projection
map. Let (K ¥)ren be a sequence of smooth functions on M so that
(1) K* < Kk for all k € N;
(2) K*|p—k,, > 0and K*|,, = 0; and
(3) for each 2 € M — Ky, K¥(x) tends to infinity as k tends to infinity.
Let p: R — R be a smooth function so that
(1) pli—v2m/2 = 15
(2) p|(—l/,u) >0, p|(—oo,—l/]U[V,oo) = 0; and
(3) pl|(—l/,—1//2) >0, pl|(l//27y) <0 (See Figure 10)
Let f: R — R be a smooth function so that
(1) f(0) =0
(2) f/|(—oo,0) >0, f/|(0,oo) < 0; and
(3) f(z) = —i|z| for x| > v (see Figure 11).
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1
p
—v —v/2 U)Q v
— —
P >0 p <0
Figure 10. Graph of p.
—v v
— —
fz) = —5la] f(z) = —3lz|

Figure 11. Graph of f.

Define
1

H . M xT*T — R, H"(z,(0,7)) = (s + (1 —5)p(0))K*(x) + f(o) — %

for each k € N and s € [0,1]. Define H*~ := H¥Y and H** := H®1. Also
define

HS:MxT'T—R, H(x,(0,7)) = {f?; ' (x;(ti’;&im’}'

By Lemma 8.5, we can choose a sequence of elements (a;);cz in Sc(Q,,) so that

e a;([w],1,1) is not in the action spectrum of H** for all k,j € N; and
e q; tends to infinity as ¢ tends to infinity and a; tends to —oo as ¢ tends
to —oo.
Then
* T+ : * k£
HF(aiﬂj)(H )= H(HF(M@]')(H )
keN

for each 4,5 € Z and such an isomorphism is induced by continuation maps.
Hence by Lemma 2.40, we have an inclusion isomorphism of double systems
(5.13) (HF, )(I:Ii))(i,j)erZ — SHJ,QW,QW(FIk’i)-

(a; A



506 MARK MCLEAN

Since all the null homologous 1-periodic orbits of H** are contained in {o = 0}
because 081;7:3 < 0 and agifﬂs = 0 away from {o = 0} for each s € [0, 1], we

have by Lemma 5.17 that the continuation map
k,— K,
is an isomorphism for each 7,7 € Z and k € N. Combining this with the fact
that the inclusion map (5.13) is an isomorphism, we have that the continuation
map
* rT— * 7+

SHyq,,.(H™) — SHyq, q,(H)
is an isomorphism. Hence by Proposition 5.18, the map (5.12) is an isomor-
phism. O

LEMMA 5.21. Let K* € M x T*T be admissible closed subsets so that
K+ Cc K=. Let H* € HU's(K*, < 0) (Definition 5.16) satisfy H- < H™,
and let H* € HTLS (T x K*)U ([0,1/2] x M x T*T), < 0) satisfy H- < HT.
Then the transfer map
— * +
SHE g,,.0,(H™) —SHe g, o, (HT)
18 an isomorphism if and only if the transfer map
. y -
SHE g,.0.(H™) —SHe g, 0, (H7)
s an tsomorphism.

Proof. By Proposition 5.18, it is sufficient for us to prove this for specific
H* and H*. Let F : T — T be a non-decreasing smooth function homotopic
to the identity so that F'(t) > 0 for ¢t € (1/2,1) and F'(¢t) = 0 for t € [0,1/2].
Choose H* and H* so that (H*)F = H*, where (H*) is given in Defini-
tion 3.9. Then our lemma follows from the fact that we have reparametrization
isomorphisms

* + * 7+
SHE 9,0, (H) = SHe g, o, ()
which commute with continuation maps. ([l

Proof of Theorem 5.12. The key idea of the proof is to use the displacing
Hamiltonian H~ to construct a family of Hamiltonians (H~ + Hse)se[0,00))
(see below) with identical orbits realizing the transfer isomorphism (5.9). One
then uses Lemma 5.17.

For each v > 0, define

K, = (K xT*T)U (M x {0 > v})
and N
K,:=(Tx K,)U(]0,1/2] x M x T*T).
By Lemmas 5.19, 5.20 and 5.21, it is sufficient for us to show that

* — * +
(5.14) SHC‘,Qw,Qw(H )HSHC,Qw,Qw(H )
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is an isomorphism for some v > 0 and some appropriate lower-semi-continuous
Hamiltonians H~ € HT's(M x T*T,< 0), H € HT'5(K,, < 0) satisfying
H-<HT.

Since (M — K) x ({0} x T) is Hamiltonian displaceable inside M x T*T,
there is a smooth admissible Hamiltonian H = (Hy)er on M x T*T and a
constant v > 0 so that ¢{¥(Q) NQ = 0 where

Q:=MxTT—K,=(M-K)x{c<uv}

By subtracting a constant from H, we can assume that H < 0. Now let F, G :
T — T be a smooth non-decreasing functions homotopic to the identity map
Satisfying F(O) = 0, F/‘[O,1/2] = 0, Fl‘(l/?,l) > 0 and G(O) = 0, G/‘[l/Q,l] =0
and G’|(071/2) > 0. Define H- := H%. We define the lower semi-continuous
Hamiltonian H* := (H, )ser by

H (z) = {Ht_(m) if (t,z) € K,,

00 otherwise.

Now choose a smooth family H = (Hs.)(s,t) € [0,1] of autonomous

Hamiltonians on M x T*T satisfying

o Hy >0, %ot >

e H,i(x) =0 if and only if (t,z) € K, or s = 0;

o dHg |, =0 for all (t,z) € IA(JZ,;

o Hyi(x) > 0o ass—ooforall (f,z) e T x M x T*T — K,.

Define Hy o := (Hs¢)teT for all s € [0,00). By Lemma 8.5, there is a sequence
(ai)iez in Sc(Qy) so that

e a;([w],1,1) = +o00 as i — +o0; and

e a;([w],1,1) is not in the action spectrum of H~ for each i € Z.

Note that the capped 1-periodic orbits of H~ and H, o+ H ™~ are identical for
all s € [0,00) since the support of H,; is contained inside (1/2,1) x @ for all
(s,t) € [0,00) x T (making Hs, and H~ Poisson commute) and since there
are no l-periodic orbits v : T — M x T*T of H™ or Hse + H™ satisfying
~v(0) € Q for each s € [0,00). Also, the corresponding actions of these capped
L-periodic orbits are the same as well since H; |, = (Hso + H ™ )t|, () for all
t € T and all 1-periodic orbits v of H~. Therefore by Lemma 5.17, the natural
continuation map

H F(*

a;,0;

)(H_) — HF(2i7aj)(Hs,o + H_)

is an isomorphism for all i, € Z and s € [0,00). Hence the induced map of
double systems

(HF;

ai\a;)

(H7)) ez — (HEF,, o (Hso + H™)) i jyez



508 MARK MCLEAN

is an isomorphism. By Lemma 2.40, this implies that
* — * +
SHe g.0,(H™) — SH o, o, (HT)
is an isomorphism. This completes our proposition. O

5.5. Symplectic cohomology and alternative filtrations. In this subsection
we will show in Proposition 5.24 below that symplectic cohomology defined
with respect to a particular wide action interval domain (Definition 2.58) is
isomorphic to one defined over an action interval domain that is not wide under
certain conditions.

Definition 5.22. Let (C, ac) be a 2n — 1-manifold with contact form. Re-
call that the Reeb vector field of ac is the unique vector field R, satisfying
iR, dac = 0 and ac(igr,,) = 1. A periodic Reeb orbit of length A > 0 is a
map v : R/A\Z — C satisfying ¥ = R,,. The Reeb flow of ac is the flow
(¢ : C — C)ter of Ry We will define length(y) := .

Now let C' = [l —¢,1+¢] x C C M be a contact cylinder inside M, and
let tc : C — M be the natural inclusion map sending z to (1,z) € C C M.
Let r¢ be the cylindrical coordinate of C, and let a be the associated con-
tact form. By abuse of notation, we will define R, to be the unique vector
field on C' which projects to Ry in C and 0 in [1 —¢,1 +¢]. We let % be
the gradient of r¢ with respect to any product metric on C' where the factor
[1—¢€,1+ €] has the standard Euclidean metric. Let « be a periodic Reeb orbit
of ac of length A so that ¢ o~y is null homologous in M. Let ¥ = (7,%) be a
capped loop so that y(At) = ¥(5(¢)) for each t € [0,1]. Then since we have a
splitting TM |~ = ker(ac) ® Span(%7 R,..) of symplectic vector bundles with
associated symplectic forms dac|ier(a) and dro A aC|Span( % Rag,) and since

Span(%, R, ) has a natural choice of symplectic trivialization, any symplec-
tic trivialization of ¥*T'M gives an induced symplectic bundle trivialization
7y ker(ac) — (R/AZ) x CL,

Let P: (R/MZ) x C"~! — C™~! be the natural projection map. The Conley-
Zehnder index CZ(7y) of ~ is defined to be the Conley-Zehnder index of the
path of symplectic matrices

Potog¢lo(Portlg)™t, te[0,).

This does not depend on the choice of trivialization 7 by (CZ4) or on the
choice of 7 since ¢1(M) = 0. The index of a Reeb orbit ~ is defined to be
7| ==n—CZ(v).

Let I'p, be the set of periodic Reeb orbits v of a¢ so that tc oy is null
homologous inside M. The index [—m,m] period spectrum of C is the set

{length(v) : v €Tap, —-m < |y[<m } CR
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Definition 5.23. The contact cylinder C as above is index bounded if for
every m > 0, there exists p,,, > 0 so that the index [—m, m] period spectrum
of C is contained in the interval (0, fi,,).

PROPOSITION 5.24. Suppose that C is an index bounded contact cylinder
with associated Liouville domain D. Let ws be a C-compatible 2-form with
scaling constants 0 and 1 and which is equal to w outside DU ([1,1+4¢€/2] x C).
Also let Q4 = Qu,, C H*(M,D;R) xR x R be the cone spanned by ([we], 1,1)
and Q— the cone spanned by ([wx],1,1) and ([wx],0,1). Then the action map

(5.15) SH,

_Q+(DCM)—>SH‘3 (DcC M)

C7Q+7Q+

18 an tsomorphism in 2—Sys-Ag+’+.

Before we prove Proposition 5.24, we need some preliminary lemmas. The
first lemma relates the indices of Reeb orbits with the indices of certain Hamil-
tonian orbits.

LEMMA 5.25. Let C = [1 —¢,1 + €] x C be an index bounded contact
cylinder with cylindrical coordinate rc and associated contact form ac. Let
7 : C — C be the natural projection map. Let f : [1 —e,1+¢ — R be a
smooth function, Ry [_y, m) the set of Reeb orbits in Lo, of length A and index
in [=m,m] and Oy [_, ., the set of 1-periodic orbits of f(rc) contained in
{rc = ()Y (N} of index in [—m,m] which are null homologous in M. Then
the map

O)\u [_m7m] — R)\7 [7m7 % 7m+%

sending v : T — C to mo~yoby is well defined where
by : [0,A] — [0,1], ba(t) := (1/N)t YVt €0,

Proof. Since Xy(,,) = f'(rc)Rac where Ry is the natural lift of the Reeb
vector field of ac to C, we see that v € Oy m,m) gets pushed forward to a Reeb
orbit v o o by of length A. Therefore all we need to do is compute the index
of v omoby.

Let & := ker(n*ac) Nker(dre) be a codimension 2 distribution inside C,
and define &+ := Span(%,Rac). Then these are symplectic subbundles of
~*T'M which are symplectically orthogonal to each other. We have a natural
symplectic trivialization T' : y*¢+ — T x C sending % to 8% and R to 8%
where z = x + iy is the natural complex coordinate on C.

Let 7 := (7, ) be a capped loop whose associated loop is v and where the
domain of ¥ is an oriented surface 3. Let ¢ : v*T'M — 7*T M be the natural
bundle inclusion map covering . Let

T:FTM — X xC" F:4% — T xCt !
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be symplectic bundle trivializations so that 7ot =7 & T after identifying 0%
with T via 4. Let Pen : ¥ x C* — C™ be the natural projection map. Let
¢t : C — C be the time ¢+ Hamiltonian flow of f(r¢). We have that

P(Cn oOTO D(z)t o] (P(Cn OT|;Y(O))71 N C’I’L — CTL

is equal to a block diagonal matrix

A 0
0 By

with respect to the splitting C* 22 C* '@ C for all t € [0, 1]. By Definition 5.22
and (CZ4) we have CZ((Ap)er) = CZ(w 0y 0 by). Also By = (1 (V") for all
t € [0,1]. Hence

(Cz2) (Cz5)

CZ(v) CZ((A¢)ter) + CZ((Bi)ter) = CZ((A¢)) +n,

where 7 = 0 or 1, and so
1
CZ(7) — CZmoyoby)| < 5,
and this completes our lemma. O

The following lemma constructs for us a smooth family of Hamiltonians
(which will compute symplectic cohomology later on) with the property that
all the 1-periodic orbits in a fixed index range and whose action is not too big
are identical.

LEMMA 5.26. Let C, D be as in Proposition 5.24. Let m > 0 be a con-
stant. Then there is a smooth family of autonomous C-compatible Hamiltoni-
ans H = (Hs)sc[0,00) 0n M so0 that

(1) Hs is locally constant outside [1 —€/2,1 4 €/8] x C and a non-decreasing
function of the radial coordinate of C inside C' which has positive derivative
near 0D,

(2) %ZOforalleM and Hg(x) — 00 as s — oo for all x € M — D;

(3) Hs|p = Holp <0 for all s € [0,00); and

(4) for each C-action interval (a_,ay) € Sc(Q_) x Sc(Q) where (Q_, Q)
is wide, there exists S > 0 (depending continuously on (a—,ay)) so that
for each s > S and each capped 1-periodic orbit (7,7) € F[(;;nfi (Hy), we

have Image(¥y o) C D, where F[szyzl (Hs) is given in Definition 2.58.

Remark 5.27. Note that every capped 1-periodic orbit of Hs whose asso-
ciated 1-periodic orbit has image in D is also a capped 1-periodic orbit of Hy
with the same C' action.
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Remark 5.28. We can in fact strengthen Lemma 5.26 slightly. We can
show that there is a constant § > 0 (independent of s € [0,00]) so that
properties (1)—(4) from Lemma 5.26 hold with Hy replaced by e”H for all
—6 < 7 < 4. The proof of this stronger lemma is exactly the same as the
proof of Lemma 5.26 below, except that the action estimates (5.16) and (5.17)
below have to be scaled appropriately. This strengthening will be needed in
Lemma 5.33 below.

Proof of Lemma 5.26. Let C = [1 —€,1 + €] x C be our contact cylinder
with cylindrical coordinate rc and contact form a¢. Since C is index bounded,
there exists a constant = > 0 so that every Reeb orbit of length greater than
= has index in Z — [-m — 2, m + 2].

Let fs:[1—¢,14+¢ — R, s € [0,00) be a smooth family of functions
satisfying the following properties (see Figure 12):

(a) df;i$) >0 for all z € M and fs(z) tends to infinity as s — oo for each
x> 1;

(b) fs(x) = fo(z) < 0 for all x < 1, and there is constant Cs > 0 so that
fs(z) = fo(x) + Cs for all x € [1 +€/16,00) and s € [0, 00);

(¢) fsl(—oo,1—e/2]Ul14¢/8,00) 18 locally constant; and

(d) fI>0and fl(x) > Eforallz € [1,14€/16] for all s > 0 (see Figure 12).

1—¢/2 1f 1+¢/16 1+¢/8
fs(z) constant N
4 N fs(x) constant

fs(x) = fo(z) <0 fi@) > 2 fo(z) = folz) + Cs

Figure 12. Graph of f for each s € [0, c0).
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Define

fo(l—¢€/2) ifzeD-C,
Hy: M — R, Hy(z):=q fs(rc) if z € C,
fs(14+¢/8) otherwise

for each s > 0. Tt is clear that (Hs)e[0,0) satisfies properties (1)—(3). Therefore
we only need to show that it satisfies (4). Let 7mp : H?*(M,D;R) x R? —
H?(M,D;R) be the natural projection map. Let (a_,a;) € Sc(Q_, Q) be
a C-action interval where (Q_, Q) is wide. Let h := height(a_,a,) as in
equation (2.15).

Choose a 1-form 6 € Q1 (M) so that df =w—ws where w is a C-compatible
2-form with scaling constants 0 and 1 and which is equal to w outside D U
(1,14 €¢/2] x C) and so that § = 0 outside D U ([1,1+ ¢/2] x C). Since C;
tends to infinity as s — oo, we can choose S > 0 so that

(5.16) min(fo) + Cs — sup/ 50 > h,
¥y JT

where the infimum is taken over all 1-periodic orbits ¥ : T — M of Hy. Now
if s> S andy=(7,%) € F[CTT_TZL(HS) is a capped l-periodic orbit. Then
by Lemma 5.25, we have that fhe’image of the 1-periodic orbit 7 o 4 does not
intersect [1,14¢€/16] x C since fi(x) > E for all x € [1,1+€/16]. Suppose, for
a contradiction, the image of ¥ o 4 does not intersect D U ([1,1 4 ¢/16] x C)
then by equation (2.6),

A, (@A 2 1) = Ag, ()@ AL AL L)

(5.17) ] 1
> (=) (min(i) + - [ 570
0
for every (g, /\i,,)\i,Jr) € Q+ satisfying )\q,,, < )\f]h, and )\17+ = )\‘1,7+. But
this contradicts equation (5.16) and the fact that v € F[(;Zini (Hs). Hence
~ o 4 must have image contained in D. O

Proof of Proposition 5.24. In this proof we will use the family of Hamil-
tonians from Lemma 5.26 to compute symplectic cohomology and show that
our action map (5.15) is an isomorphism. The key idea of the proof is to show
that the 1-periodic orbits of these Hamiltonians outside D are not needed to
compute these symplectic cohomology groups mainly by using property (4)
from Lemma 5.15.

Fix p € Z. Let (Hs)se[0,00) be as in Lemma 5.26 with m = |p[ +n + 1.
Since the 1-periodic orbits of Hy form a compact subset of C*°(T, M), there is
a non-decreasing family of positive constants (cs)se(o,00) SO that for each s > 0
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and each capped 1-periodic orbit v of Hy,

(5.18) Ap, e(wel, 1,1) = Ap, e(M([wel, 0,1)] < .
Let as : Q- — R be the unique linear map satisfying a,([ws], 1,1) = 0 an
as([wa],0,1) = —cs. Then for each C-action interval (a—,ay) € Sc(Q-— )
Sc(Q+ ), the action morphism
P P
HEL g () — HEG o (H)

is an isomorphism for each s > 0 by equation (5.18) combined with Lemma 3.8.
Also if

(5.19) a—([wea],0,1) < a—(jwal, 1,1) = co,
then there is a function v : Sc(Q-) x Sc(Q+) — [0,00) so that the action
morphism

HF?  (H;) — HF” (H;)

Ca_,ay C.a_+as,at
is an isomorphism for each § > v(a_,ay) by Lemma 5.26, part (4) combined
with equation (5.18) (with s = 0) and Lemma 3.8. Therefore we have a
commutative diagram

P } i P N P g
HFC a_ (Hs) HFC a_+as,at (Hs) HFC’ a— |Q+ ,a_,_|QJr (Hs)
p . p . p
HFC a_,a+ (HS) HFC a—+as,at+ (HS) HFC a— |Q+ ,a+|Q+ (Hs)

consisting of action maps (horizontal arrows) and continuation maps (vertical
arrows) for each (a—,ay) € Sc(Q-) x Sc(Q+) satisfying (5.19) and each s > 0
and § > s+ v(a_,ay). Therefore we have a commutative diagram

P ) P .
HES, () — HEL, | (H)

T

P
HFga o (Hs) - HFCa |Q+(HS)

for each such a_,ay,s,$. This induces an isomorphism of directed systems

(IEH Ca_,ay (HS))
(a- a1 )E5c(Q-) x5c(Q+)

(IEHFP,  a, (H5)
Therefore by Proposition 5.5, the action map

SHY o o,(DCM)—SHE, , (DC M)

) (a0, )ESe(Q)?
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is an isomorphism in 2—sys—A]%“+. U

5.6. Transfer isomorphisms between index bounded Liouville domains. In
this subsection we give some sufficient conditions for a transfer map to be an
isomorphism.

Definition 5.29. Let C be a contact cylinder with associated Liouville
domain D. A Liouville form associated to C is a 1-form § € Q(D) satisfying
df = w|p and 0|~ = rcac, where ro and a¢ are the radial coordinate and
contact form associated to C. A Liouwville vector field associated to C' is the
unique vector field Xy on D satisfying ix,w = 60 for some Liouville form 0
associated to C. The skeleton of a Liouville form 6 associated to C' is the set
of points € D where the time ¢ flow of x along Xy exists for all time ¢ € R.
A skeleton of C' is the skeleton S of # for some Liouville for 6 associated to C.
We call 0 a Liouville form associated to S.

Remark 5.30. Note that a skeleton S of a contact cylinder is not unique.
For instance one can obtain other skeletons of C' by pushing forward S via a
Hamiltonian diffeomorphism compactly supported in the interior of D. Also
note that D is a disjoint union of its skeleton and a tubular neighborhood
(—00,0] x D given by flowing 0D backwards along Xjy.

Definition 5.31. Let C' = [L — ¢,1 + ¢] x C be a contact cylinder with
associated Liouville domain D. Define ws to be a C-compatible 2-form with
scaling constants 0 and 1 and which is equal to w outside DU ([1,1+¢/2] x C).
We define Qf C H?*(M,D;R) x R x R to be the cone spanned by ([wa],1,1)
and Q the cone spanned by (lwel, 1,1) and ([we], 0, 1).

PROPOSITION 5.32. Let C; be a contact cylinder with associated Liouville
domain D;, Liouville form 0; and skeleton S; of 0; fori=0,1,2,3,4 so that

(1) D; C Dj and 0;|p, — 0; is exact fori > j;

(2) 90’D2 = 92 and 01’D4 = 94;

(3) S; is contained in the interior of Dy for all i; and
(4) Do and D3 are index bounded (see Figure 13).

Then the transfer map

(5.20) SHE, o o,(Do C M) —SHE , o (D3 C M)

s an isomorphism in 2—sys—A%r where Q4 := ng.

N LEMMA 5.33. Let C be a contact cylinder with associated Liouville domain
D, and let C = [1 —¢€ 14 ¢ xC be an index bounded contact cylinder with
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Figure 13. Schematic picture of the Liouville domains Dy, ..., Dy.

associated Liowville domain D so that DU C C D. Then the transfer map
(5.21) SHA 6QC(Du([l t"|xC) C M) —>SHA o0 C(DU([I,t’]xC) C M)

— 77

is an 1somorphism for all 1 <t <t <1+e.

Proof. Define D, := D U ([1,t] x C) for each t € [1,1+ ¢€). It is sufficient
for us to show that for each ¢ € [1,1 + ¢), there exists a constant 0 < §; < 1 so
that the transfer map

(5.22) SHéA,Qf,Q (Dt// CM) —)SHA o
is an isomorphism for each t/,¢" € [1,1 + ¢) Satlsfymg t—0 <t <t'"<t+0.
Fix t € [1,1+¢€). Let C; C C be a contact cylinder with associated
Liouville domain D; and whose cylindrical coordinate is r¢/t where r¢ is the
cylindrical coordinate associated to C. Let (H. 5)86[0700) be as in Lemma 5.26
with m = |p| +n + 1 for some p € Z and with C replaced by C;. Let A C R be
the set of action values Ag ;- (V)([wgl; 1,1) € R and A& 1o (M([wg],0,1) € Z
where  runs over all capped 1-periodic orbits of Hy whose associated 1-periodic
orbit is contained in Dy. Since A is closed and of measure 0 by Lemma 8.5,
there exist a € R and § > 0 so that (a—i—k‘—d’ a+k+d)NA=0for al
k € Z. Hence there exist a cofinal family (a’ );en in (SC(QC), >), a cofinal
family (a+)j€N in (SC(Q+), <) and neighborhoods N1 C Sc(Qi) of 0 so that
for each 7 € N and each capped 1-periodic orbit v of Hy whose associated
1-periodic orbit is contained in Dy, we have that azt (v) — ‘AaHo ('y)\Qg ¢ Ny.
Therefore by Lemma 5.26 combined with Remarks 5.27 and 5.28, there are an
increasing sequence of constants (s;);en and a constant §; € (0,1) so that

(Dt/ C M)

— mm] . [=m,m)] T
(5.23) rEnm (H) =T (),
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(see Definition 2.58) for all j € N, s > s;, ny € N1 and —6; < 7 < §; after
possibly shrinking N.

Let ¢y : M — M be the time ¢ flow of a vector field on M equal to
T% inside C for each t € R. By equation (5.23) and Lemma 3.6 combined
with the fact that Hg|p = Hy|p for each s € [0, 00), we have that the natural
continuation map

HFgaj ol ((per)Hs) — HFgaj o

bty st

((¢v)+Hs)

is an isomorphism for each ¢/, " € [1,1+¢) satisfying —6; <t <t <4, j €N
and s > s;. This implies that the continuation map

HF? . (HP")— HF? |
Ca

Cal . I al,

(1)

is an isomorphism for each ¢',t"” € [1,1 + €) satisfying ¢t — §; <t/ <t <t + &
and j € N where HP~ € HT1s(C, < 0) (Definition 4.1) is equal to (¢ )«(Hp)
inside D, and oo otherwise for each 7 € [—d,d¢]. Hence by Lemma 2.40 and
Proposition 5.5, the map (5.22) is an isomorphism. O

We wish to reduce the proof of Proposition 5.32 to Lemma 5.33 above. In
order to do this, we need to “rearrange” our contact cylinders slightly. This is
the purpose of the following two lemmas:

LEMMA 5.34. Let (C;)i=o01 be contact cylinders with associated Liouville
domains (D;)i—0,1 and skeletons (S;)i=o,1. Let (0;)i=0,1 be Liouville forms as-
soctated to (Sj)i=o,1. Suppose that D1 C Dy, Sy is contained in the interior of
Dy, S1 C Sy and that 61 — 0g|p, is exact. Suppose also that the time t flow of
Xp, sends Sy to S for allt € R. Then for each neighborhood N of Si, there
is a Hamiltonian isotopy ¢ : M — M, t € [0,1] compactly supported in the
interior of Dy satisfying ¢o = id, ¢¢(S1) = S1 for allt € [0,1] and ¢1(Sp) C N.

Proof. Let ¢! : D; — D; be the time t flow of the Liouville vector field
— Xy, for each ¢ = 0,1. Since Sy is contained in the interior of Dy, there exists
T > 0 so that ¢9(Dg) C D for all t > T. We can also assume ¢;(D;) C N for
all t > T. Define the embedding

1
w:Dy— D1, 1 :=¢foddr_,

for each t € [0,7]. Then %Lt is a Hamiltonian vector field on «(Dp) for all
te [O,T], Lo(So) =50, Lt(Sl) =S forallt € [O,T] and t7(Sp) C N. Extending
this time dependent Hamiltonian vector field to a Hamiltonian vector field on
M compactly supported in D; completes our lemma. O

LEMMA 5.35. Let C; be a contact cylinder with associated Liowville do-
main D; and associated Liouwille form 6; for i = 0,1,2. Suppose

ODQCD1CD0;
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o the skeleton of D; is contained in the interior of Dy for each i;
e Oo|p, = b2, and Oy|p, — 61 is exact.

Then there is a 1-form 50 associated to Cy so that 50 — 0y is exact, §0| Do—Dy =
00| Do—Ds, the skeleton §0 of :9\0 contains the skeleton of 61 and §0 is contained
in the interior of Ds. Also we can assume that the time t flow along X(;O of S1
is S1 for all t € R.

Proof. Let S; be the skeleton of 6; for each i. Then Sy = S3. Choose a
neighborhood N of S7 whose closure is contained in the interior of Ds. Let
f: Do — R be a smooth function with compact support in the interior of Do
so that Op|ny — 01|n = df|n. Define Bo := 6o — df. This has the properties we
want. ([l

Proof of Proposition 5.32. Let (D¢);=0,1,2,3,4 be the interiors of the Liou-
ville domains (D;)i=0,12, 34 respectively. By applying Lemma 5.35 twice we
can ﬁnd a Liouville form 9 associated to Cj w1th assocnated skeleton S SO
that 0 — 0; is exact for i« = 0,1 and so that S3 C Sl - S@ and So C D$ and
51 C Dj. Also we can assume that the time ¢ flow along Xgl of S3 is contained
in S3 and the time t flow along X ~ of Sl is contained in Sl

By Lemma 5.34, we can push forward 00 by an appropriate Hamiltonian
isotopy x¢ : M — M, t € [0,1] compactly supported in the interior of Dy
satisfying Xt(Sl) = S for all t € [0,1] so that x1(S) C D3. Hence after
replacing 00 by its pushforward by x1, we can still assume that S5 C S c So

Let ¢; : Dy —> Dg be the time ¢ flow of XOA0 and 9, : D3 — D3 the
time t flow of —Xp,. Since S3 C §0 C D3, there are constants 1,73 > 0 so
that Dy := ér1,(Do) C D3 and D3 := ¢, (D3) C Djy. Since Uyejor)#:(9Dp) is
the image of a contact cylinder in M for all T' > 0, we can apply Lemma 5.33
to show that the transfer map

H* DyC M H* . ~(DycM
SH ofo ,QCO( 0 C M) —SH, Q?O,Qio( 0 C M)
is an isomorphism. Similarly
SH * D3 c M) — SH* . (D5 C M
C0,Q0 ,QCO( 3 C M) C0,Q%0 ,Qio( 3 C M)

is an isomorphism. Since Dj C D C D3 C Dy and since the composition of
two transfer maps is a transfer map, this implies that the transfer map (5.20)
is an isomorphism. O

5.7. A chain complex for symplectic cohomology. In this section we con-
struct a double system of chain complexes from Liouville domains associated
index bounded contact cylinders. In the next section (see the proof of Theo-
rem 5.39), we will show that these double systems of chain complexes compute



518 MARK MCLEAN

symplectic cohomology in some cases. Throughout this subsection we fix an
index bounded (Definition 5.23) contact cylinder C' = [1 — ¢,1 + €] x C with
associated Liouville domain D.

LEMMA 5.36. Let (Q™, Q7 )mer be a finite collection of C-interval do-
main pairs which are wide (Definition 2.58). For each m € I, let (aj_’m)jeN,
(aﬂ’m)jeN be a cofinal family of (Sc(Q™),>) and (Sc(QT), <) respectively so
that ™ < o™ and aiﬁm < afl’m for all 5 € N. Then there are an
element Hp € HT'S(C,D,< 0) (Definition 4.1), a smooth family of au-
tonomous Hamiltonians (Hst)(s)e[1,00)xT> @ constant s, > 1 and a subset
N, C DU ([1,1+ ¢/8] x C) which is open in M for each p € N so that

(1) {Hso: s> sp} is a cofinal subset of H™8(<xs Hp,a”™,a%™, [—p,p]) (Def-
inition 3.1) for each m € I, where Hy o := (Hgt)ter and Hyo <5 Hs o for
each s < §;

(2) all 1-periodic orbits of Hy e of index in [—p,p] have image contained in N,
for each s > sp; and

(3) Hseln, +1/s = Hsel|n, +1/5 for each s,5 > s, and each p € N.

Proof. Let g : (—o0, 1] — (—00, —1] be a continuous function so that
® g|(—oo,1) is smooth and ¢'(x) > 0 for z < 1;
® gl(—s0,1—¢/16) = —2; and
e g(x)=—-1—+/1—xforax>1-¢/32.
Define

g:[14+¢€/16,00) — (1,00), g(x):=1—g(2+¢/16 —x).

Let (as)se[1,00) and (bs)se[1,00) be smooth families of constants so that
4iag) >0, L(bs) <0, as € (1—¢/32,1), by € (1+¢/16,1 + 3¢/32) for all
s>1,a5s—1,bs — 1+¢/16 and ¢'(a;) is not equal to the length of any Reeb
orbit of ac for each i € N>j. Such constants exist since the set of lengths
of Reeb orbits has measure 0 in R by [Pop93, Prop. 3.2]. Let fs : R — R,
s € [1,00) be a smooth family of smooth functions satisfying the following:

i fé >0, %fs(x) > 0;
o fs(z) = g(z) — 1 for x < ay; fs(z) = g(z) + s for z > by; and
e fsl(1,00) POIntwise tends to infinity and the function f{|(,, 5,) uniformly tends
to infinity as s tends to infinity (see Figure 14).
Let h: [1 —€,1+ €] — R satisfy
h' < 0;
h’[1—e,1+%1 =0;
h(z) = -1+ 1) for all z inside [1 +¢/8,1 + ¢/2]; and
h’[1+3e/471+s] =-—1 (see Figure 15)
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fi(x) — oo uniformly as s — oo

\%/—/
fs(@) = g(z) - 5 fslw) = g(x) + 5

Figure 14. Graph of f for each s € [1, 00).

] l—e by 1435 145 14+§5 143 1+4e

| | L
T T

1 1
T t T

R/‘_/ R/—/
hz)=—3(1+ %) h(z)=-1

Figure 15. Graph of h.

Define
—2-1/s inside D — C'
Ks: M —R, Kg:=S firc)+Lih(rc) inside C , s€llo0).
3+s— % otherwise

Then K, <5 K; for all s < 5. Let p: R — [0,1] be a smooth function equal
to 0 inside (—o0,0] and 1 inside [1,00). Define B; := (a;,a;+1) x C for each
integer i > 1 and By := D — ([a1,1] x C).
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Since C is index bounded, let =p be larger than the length of the longest
Reeb orbit of ac of index in [—p, p] for each p € N so that (Z,)pen is increasing.
Let hy := maxmer height(a”™, afy"™), where height is given in Definition 2.58.
For each p € N, choose 5, > 1 so that fé|[as,bs] > Epyn+1 for each s > 5, and

so that (3p)pen is increasing. Define
spi=hp+2+ (14 €)=, + 5.

Then by Corollary 2.8 and Lemma 5.25 we have that for each p € Z, the

1-periodic orbit associated to each element of F[(;,Z’EZ,_;{";&F”H}(HS) (Defini-

tion 2.58) has image contained in N, := D — ([as,, 1] x C) for each m € I and
s > sp. Also H; has no 1-periodic orbits in {r¢ = a;} for each ¢ € N since
¢'(a;) is not the length of any Reeb orbit of a for each i. Therefore by repeat-
edly applying Lemma 8.2, we can find smooth Hamiltonians Wy, = (W ¢)ceT,
k € N>g which are C* small (in particular, C*° tending to 0 as ¢ tends to in-
finity) and non-negative and where W; has support inside B; for each i so that
K; + E;;lo Wy € ﬂ?zlﬂireg(<é,aj_’m,aﬁm, [—7,74]) for each ¢,i € N satisfying
i > sq. Define Hy o := K —i—zggl p(s — k)Wy, for each s > 1, where |s] is the
largest integer < s. Then Hyo4 < Hjz, for all s < 3. Since Wy is C°° small
for each k, we can assume that the associated 1-periodic orbit of every element
of F[(;Z;f]m,aﬁ’m (Hs,e) has image in N, for each m € I (since the same is true
for Hy). Similarly, we can assume that Hso|p < O for all s > 1 since Wy, is
small for each £ > 0. All such orbits are non-degenerate by construction and
Hieln, + 1 = Hso|n, + 1 for each s,5 > s,. Hence properties (1)—(3) hold,
after possibly making s, larger so that i is sufficiently small. This completes
the lemma. ([

Definition 5.37. A double system of chain complexes is a double system
(Definition 2.28) W : I x J — R-mod of Z-graded R modules, where each
module W (i, j) is a chain complex over R, where the differential has de-
gree 1 and each morphism W((i,5) — (¢/,j")) is a chain map. We define
lim, T&nj W (i,j) in the same way as Definitions 2.33 and 2.34, except that

it is now a chain complex with a differential. Let (Q™,Q")mer, (aim)jeN,
HDa (Hs,t)(s,t)e[lpo)x']l‘a (HS,O)SE[I,oo)v (Sp)pGNa (Np)pGN be as in Lemma 5.36.

Choose J € Njend™ 5 (Hi e, C’) By Lemma 2.74 there exist
(5 24) Hi7_+ S ﬁmeIU{RXT(C‘, a‘ﬁm, ai,’m, Hi’., Hi+1,')a
. Ji’_+ e 3R><']1‘,reg(H—+’ (J, J), C«)

so that the chain level continuation map

(5.25)
Pimas = Ve ime  OFg i gy (Fie) = OBy n (Bl
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is an isomorphism for each i, ¢, j, 7’ € N satisfying j, j' < q,i > sp, —p < ¢ < p,
p € N and m € I. Finally define

q . q . 5 q .
(I)i—n",m,j,j’ . CFC am ai’,m (Hz,O) OFC, gdm ai,m (Hz’,o)a

q — B q o q q

isitmagg = Rir—tmgg © Pir—2migg © 0 Rivtmgg © i

for all i,q,j,7',7 € N satisfying 7,7/ < q, i >i,1> sy, -p<q¢<p,peN
and m € I where such a map is the identity map for 7 = #/. These maps give
us a directed system (C’Fév H;a))i>s, for each ¢,j,7" € N satisfying

o
J.m a] ,m

— b +
5,77 <q,—p<q<p,peNand m e I. Define
q 1 q )
Wj)j/7m T hﬂ CFC’ ajvm ajlym (HZ7.)
1>8p = T

for each q, 7,7, m as above. A compatible collection of double systems of chain
complexes for SHé om.om (D € M), m € I is defined to be the double sys-
b} —_ +

tems of chain complexes (Wj* i m)j.j’eN, m € I where the double system maps
are chain level action maps and where N has the ordering >. If I has just

one element m, then such a double system is called a double system of chain

complexes for SHC‘,QT,QT(D C M).
Remark 5.38. Suppose that I = {0,1} and that (Q1, Q") is smaller than
(Q%,QY%) (Definition 2.75). Then SH, Qm.gm (D C M) is isomorphic to the
Ly

double system (H.(W}, ,,))jjen for each m € I by Lemma 2.40 and the
action map
(DC M)

SH, oo oo (D € M) — SHY,

,Q%,Q%
is equal to the natural map
(H*(W;j/,o))j,j’eN — (H*(W;:j’,l))j,j’EN

induced by the corresponding chain level action maps under this isomorphism
of double systems.

QL.QL

5.8. Changing Novikov rings.

THEOREM 5.39. Let C' be an index bounded contact cylinder with as-
sociated Liouville domain D and let (Q]_,Qﬂ_) be a C-interval domain for
j = 0,1 so that (QL, QL) is smaller than (Q°,QY) (Definition 2.75) and

so that (Q]_, Qi_) is wide for j = 0,1 (Definition 2.58). Suppose that Aﬂcgl is a

flat AH%O -module and that hﬂl&ll (SH, Q1.0 (D C M))=0. Then the map
Lo

* Q? .
SHego 0 (P CM)® oy A" — SHE g1 1 (D€ M)

induced by the corresponding action map is an isomorphism.



522 MARK MCLEAN

Proof of Theorem 5.39. Let (W]*] m)i.j'eNs m = 0,1 be a compatible col-
lection of double systems of chain complexes for SH C amQn (DcC M), m=0,1
as in Definition 5.37. By Remark 5.38 it is sufficient for us to show that the
natural map

(526) (IA/IL ( ]]’ O)) QO A — gll# ( ]j’ 1)

induced by chain level action maps is an isomorphism.
By Remark 5.38 combined with the fact that

liﬂthH (DcCc M)=0,

C,QL.QY
we get hgn%inl(H (W2i1))jjren = 0. Hence by [Wei94, Th. 3.5.8] combined

with the fact that direct hmlts preserve short exact sequences and commute

with homology and that A is a flat A —module we get a commutative
diagram

0 0
o ! Q4 0 !
hﬂj @j/ Hy(W} i) ®AQ0+ Ag gl L Hy(Wiji1)
[ -
Q n
(lﬂ m, Wijio) @ AQO A" (l—n} L Wiy
& H,((lm fom, Wiio) ® o A’ R

(lg IL (V?]]’O)) ®AQO A +
0

O*)O*)

where the vertical morphisms form short exact sequences and the remaining
1

maps are induced by chain level action maps for each p € Z. Since A% is a
0
flat AQ+—m0dule we have that « is an isomorphism Also B is an isomorphism

since lg L kIS a free finitely generated Ay +-module for £k =0,1 and
B sends the generators of one module to the other. ([

6. Symplectic geometry of projective varieties
and singular ample divisors.

6.1. Constructing appropriate Kdahler forms. In order to show that bi-
rational Kéhler manifolds have the same small quantum groups, we need to
modify their Kdhler forms so that they are identical on some large compact
subset of a common open affine subset. This will enable us to show that var-
ious Hamiltonian Floer algebras are the same on both Calabi-Yau manifolds.
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This technical subsection is devoted to manipulating certain symplectic forms
on smooth affine varieties in order to achieve this goal. It is also needed to en-
sure that this large compact subset contains a “large” index bounded contact
cylinder (see Section 6.2).

Definition 6.1. Let wyx be a Kéhler form on a complex manifold (X, Jx).
Then for any open subset U C X and any smooth function f : U — R, we
define V,,, f to be the unique vector field on U satisfying wx (Ve f, Jx(—)) =
df (=) (that is, the gradient of f with respect to the metric wx(—, Jx(—))).

Definition 6.2. Let A be a smooth affine variety. Let J4 : TA — TA
be the complex structure on A. A smooth function p : A — R is exhausting
if it is proper and bounded from below. Define d°p := dp o J4. We say that
p is plurisubharmonic if —dd®p is a Kahler form. For each plurisubharmonic
function p, we define w, := —dd°p, and for each function f : A — R, we
define V,f :=V,, f.

A smooth function p: A — R is an algebraic plurisubharmonic function
if there exist a smooth projective variety X compactifying A, a holomorphic
line bundle L over X with a Hermitian metric | - | and a holomorphic section
s of L so that p = —log(|s]), s71(0) = X — A and p are plurisubharmonic.

A smooth function p : A — R is a partially algebraic plurisubharmonic
function if there is an algebraic plurisubharmonic function p,, : A — R and a
compact subset K C A so that p|ao-x = poo|a—K and if p is plurisubharmonic.

Algebraic plurisubharmonic functions always exist since every affine va-
riety can be compactified to a smooth projective variety X by [Hir64]. One
can then choose an ample line bundle L together with a section s satisfying
s710) = X — A. Any ample line bundle admits a positive Hermitian met-

ric | - | (e.g., a metric induced from the Fubini Study metric) which implies
that —log(|s|) is plurisubharmonic. Having said that, in general we do not
require that the metric | - | be positive outside A. Also note that all algebraic

plurisubharmonic functions are exhausting.

The following technical lemma is needed to prove Corollaries 6.5 and 6.6
below. This lemma is basically about controlling the size of the derivatives of
partially algebraic plurisubharmonic functions near infinity.

LEMMA 6.3. Let pg, p1 be two partially algebraic plurisubharmonic func-
tions on a smooth affine variety A. Define p; := po + tp1 for each t € [0,1].
Let k be a positive integer. Then there is a compact subset K C A so that

(6.1) Apu(Tppr) > o Ve [0,1]
outside K. Also there is a vector field V on A so that
(6.2) dpo(V) >0, dpi(V) >0

outside K.
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Proof. The key idea here is to reduce equations (6.1) and (6.2) to a local
estimate near each point at infinity. A similar thing has been done previously
in the proof of [Sei08, Lemma 4.3].

First of all since we only require equations (6.1) and (6.2) to hold outside a
compact set, we can assume that p; is an algebraic plurisubharmonic function
for all j = 0,1. Therefore, by definition, for each j € {0, 1}, there is

a smooth projective variety X; compactifying A;
a holomorphic line bundle Lj over Xj;

a Hermitian metric || - ||; on Lj; and
a holomorphic section 5; of L;

so that p; = —log(]|3;||;) and 5]71(0) = X; — A. By the Hironaka resolution of
singularities theorem [Hir64], there is a smooth projective variety X compact-
ifying A and morphisms 7; : X — X, j = 0,1 satisfying 7;(a) = a for each
a € A and each j = 0,1. We can also assume that X — A is a normal crossings
variety; i.e., it is locally a transverse intersection of complex hypersurfaces.
Let L; = W;Lj, |-|j = 7}l - [l; and s; = m}3; be the corresponding pullbacks
of our line bundle, metric and section to X for each j = 0,1. Then

(6.3) pj = —log(|sj|;) and s;1(0) = X — A Vj=0,1.

In order to prove equation (6.1) it is sufficient for us to show that for each
x € X — A, equation (6.1) holds on a small neighborhood of x since X — A is
compact. Similarly, in order to prove equation (6.2), it is sufficient to show that
there is a vector field V, defined in a neighborhood of x satisfying dp;(V,) > 0,
j = 0,1. This is because we can construct our desired vector field V' by patching
together finitely many such vector fields V,,, ..., V,, using partitions of unity.

Therefore fix x € X — A. Choose a holomorphic coordinates z1, ..., z, on
a small chart U, C X centered at x so that (X — A)NU; = {szl zj = 0} for
some 1 <[ < n. After shrinking U,, we can choose trivializations of the line
bundles Lo|y, and Li|y,. We will also assume that the coordinates z1,. .., z,
and trivializations above extend to a neighborhood of the closure of U, in order
to ensure that C' bounds hold. For each j = 0,1, there are smooth functions
nj : Uy — R so that |- |; = e™| - | with respect to the trivializations of
Lo|ly and Li|y above. Also for each j = 0,1, there are positive integers ai,
k=1,...,1 and a holomorphic function h; : U, — C whose norm is bounded

J
below by a positive constant so that s; = h; Hi::l zZ’“ with respect to the
trivializations above. Hence

l
. j ,
(Isjl)le, = e Wbyl [T 2l v j=0,1.
k=1
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Therefore
l
(6.4) pilv.na = ny —log(|hj) = > aflog(|z]) ¥V j=0,1.
k=1

Let Jx be the complex structure on X. Let g(—, —) be the standard Euclidean
metric on Uy, and let ||-||; be the induced norm on the cotangent bundle 7Us.
Let || - ||y, be the induced norm on T*A coming from the metric w,,(—, Jx(—))
on A. The metric wy,(—, Jx(—)) smoothly extends to a (0,2)-tensor g,, on
X (which may be degenerate along points of X — A). Since g,,(Y,Y) > 0 for
all Y € T'X, there is a constant ¢ > 0 so that g(Y,Y) > cg,,(Y,Y) for each
Y € TU,. Hence ¢|| - |lgla < || - |lpo- Therefore, by equation (6.4),

dpe(Vppe)lv.na = lldpez, = ¢lldpe;

l
>3 S e + tabya(la) |

! 202
=37 21l + tatyat ), et — 1oz

+ td(m —log(Jm|)I2) V¢ € [0,1].

Hence equat10n (6.1) holds near x since the functlon 5 grows much faster than
—log(y) and 1 yasy— 04
Let z; be the real part of z; and y; the imaginary part for each k =

1,...,n. Then z1,y1,...,2%n,y, are real coordinates on U,. Now define the
vector field V, := — Zﬁzl(xka% + yka%k) on Uy. Then by equation (6.4),
!
(6.5) dp;(Ve) = d(nj —log(|hj))(Va) + Y _aj, ¥ j=0.1,
k=1

which is positive in a neighborhood U, of x since the ||- ||, norm of the one-form
d(n; —log(|h;|)) is bounded and the g-norm of V, tends to 0 as we approach
z. Choose points z!,...,z" in X — A so that le,...,ka cover X — A.
Choose a partition of unity f: A — [0,1], f; : Uj — [0,1], 5 = 1,...,k,
subordinate to the cover 4, U1, ..., ka of X. Define V := Z?:l [iVz;. Then
since equation (6.5) holds inside U, for each 2 € X — A, we get that V satisfies

equation (6.2) outside a compact subset of X. [l

The following corollary of Lemma 6.3 will be used to construct appropriate
Kahler forms on birational Calabi-Yau manifolds so that they coincide on some
large compact set of some common affine variety. This will be used in the proof
of Theorem 1.2 in Section 7 below. Before we state this corollary, we need a
preliminary definition.
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Definition 6.4. Let p : A — R be a plurisubharmonic function on an
affine variety A. Let ¢y : A — A be the time ¢ flow of —V,p for each t > 0.
The skeleton of p is the subset

Ni>0¢(A) C A.

Note that the complement of the skeleton of p is diffeomorphic to a product
R x Y where {r} x Y is a level set of p for each » € R. As a result, one can
think of A as a “cylindrical end” R x Y with the skeleton “glued” to one side
(see Figure 16).

Skeleton

Level sets of p

“cylindrical end”

Figure 16. Skeleton of A.

COROLLARY 6.5. Let pg, p1 be two partially algebraic plurisubharmonic
functions on a smooth affine variety A. Then for any compact subset K C A,
there are a third partially algebraic plurisubharmonic function p: A — R, a
compact set Q containing K and constants k1, ke € N so that

* ol = p1|k;
e p is equal to Kk1(po — log k) outside Q; and
o the skeleton of p is equal to the skeleton of p1.

Proof. By Lemma 6.3 there is a vector field V' on A and a compact subset
Q' C A so that dpo(V) > 0 and dp1(V) > 0 outside Q’. By enlarging @',
we can assume that it contains K. Let o := max(po|q/) + log(2). Choose a
compact subset Q C A whose interior contains @’ and so that pg is greater
than max(«, 2) outside a compact subset of the interior of Q). Choose ko € N
so that max(pg|gr) < log(k2) < max(c,2). Then

polgr —log(k2) <0,  polz—g — log(k2) > 0.

Hence we can choose an integer 1 > 1 so that f := k1(po — log(k2)) satisfies
flg < p1lgr and f > p1 outside a compact subset of the interior of ). Then
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by [CE12, Prop. 3.20], we can smooth the function max(pi, f) to a plurisub-
harmonic function p : A — R so that p|gr = p1lg, pla—g@ = fla—g and
dp(V) > 0 outside a compact subset of the interior of @’. Then p has the
required properties. [l

The following technical corollary of Lemma 6.3 will be used in the proof
of Proposition 6.7 to construct certain index bounded contact cylinders.

COROLLARY 6.6. Let py, p1 be two partially algebraic plurisubharmonic
functions on a smooth affine variety A, and let K C A be a compact subset.
Then there are constants 0 < § < T < 1, a compact set Q C A containing K
and an exhausting plurisubharmonic function p on A satisfying

(1) plo = role;

(2) p is equal to pg + dp1 outside a large compact set; and

(3) for all x € A, the time T flow of x along —V ,p is contained in Q and is
disjoint from K if, in addition, x ¢ Q.

Proof. Define p; := po + tp; for each t € [0,1]. Let ¢¢, : A — A be the
time 7 flow of =V, p; for all 7 > 0 and t € [0, 1]. For each 7 > 0, define

A, = Uselo,1] 9t (A), A= Neefo,1] Pt (A).
By Lemma 6.3,
(6.6) dpi(Vpopt) > p} V€ [0,1]

outside a compact subset of A. This implies that A\T and A, are relatively
compact subsets for each 7 > 0 since (Pt)te[o,l] are exhausting functions. We
also have the following properties:

(a) Tm C A, and /1770 C A, for each 0 < 7y < 7;
(b) ¢¢.70(Ar) C Argqry and ¢y (A7) D Aryiry for each 19,71 > 0.

Choose constants 1 > 179 > 1 > 1™ > 0 so that K C /14T0, A\m C Agﬁ and
//l\ﬁ - /1272. Define T' := 271y and Q := //1\70. Let 3 : A — R be a smooth
function equal to 0 along @ and 1 outside As,,. Define p; := (1 — 8)po + Bps
for all ¢ € [0,1]. Since being plurisubharmonic is a C? open condition, there is
a constant 7 > 0 so that p; is plurisubharmonic for all ¢ € [0,7n]. Let ¢, be
the time 7 flow of —V, py for each t € [0,n]. Since p; converges to pg in the
C*. topology as t — 0 and by (a), (b) above combined with the fact that A,
A, are relatively compact for all 7 > 0, there exists § € (0,7] small enough so
that

(6.7) Vs (An) CQ, Vs (A, —QNK=0 V7e{T-n,T}
Since $71([0,1)) C Asy, and by (a), (b), we have
Yo (A= Ar) = @5, (A= Ay,) C A, — Ay,
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and hence by equation (6.7),

Ys1(A) CQ, Ysr(A-Q)NK = 1.

Hence p := ps satisfies the properties we want. O

6.2. Constructing index bounded contact cylinders. The main aim of this
section is to prove the proposition below, which constructs appropriate index
bounded contact cylinders in Calabi-Yau manifolds. Recall that a contact
cylinder is a codimension 0 symplectic embedding of a subset C' = [1 — €, 1 + €]
x C of a symplectization of a contact manifold C' which bounds a Liouville
domain D; see Definition 2.3 for more precise details. Such a contact cylinder
is index bounded if for each m > 0, there is a constant u,, > 0 so that each
Reeb orbit in C' of index in [—m, m] has length < pu,, (see Definition 5.23).

PROPOSITION 6.7. Let X be a smooth projective variety satisfying c1(X)
=0, and let A C X be an affine open subset. Let p: A — R be a partially
algebraic plurisubharmonic function as in Definition 6.2 so that —dd®p extends
to a Kahler form wx on X. Then for any compact subset K C A, there exists
an index bounded contact cylinder C of (X, wx) inside A— K whose associated
Liouville domain D satisfies K C D C A. Also C contains a contact cylinder
Cy C C whose associated Liouville domain domain Dy contains D and where
—d°p|p, is a Liouville form associated to Co.

The idea of the proof is to blow up X so that the complement of A is a
smooth normal crossing divisor. One then finds a nice symplectic neighborhood
of this divisor (after deformation) and constructs an index bounded contact
cylinder in this neighborhood. As a result we need some technical definitions
and lemmas about the symplectic geometry of normal crossing divisors.

Before that, we need a lemma about Conley-Zehnder indices of matrices.

LEMMA 6.8. Let R*™ be the standard symplectic vector space, and let L C
R?" be a fized linear Lagrangian subspace. Let A := (At)ico,1) be a smooth

family of symplectic matrices on R*™ so that Ai(x) = = for all x € L. Then
CZ(A) € [-2n,2n].

Proof. Let ©1,%2,...,Zn, Y1, -.,Yn be a basis of R?" so that the standard
linear symplectic form on it is Qg = > 1y xF Ay where o, ..., 2%, vf, ...y}
is the corresponding dual basis. We can also assume that L = {y] = y5 =
- =y = 0}. Since A¢(x;) = z; for each i = 1,...,n, there exists a smooth
family of n x n symmetric matrices (Bt);e[o,1] so that

(id -B
At—<0 i > Vtelo,1]
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with respect to the basis above, where id is the n x n identity matrix. Since the
space of symmetric n X n matrices is convex, we have that the above path of
matrices is homotopic relative to its endpoints to the catenation of the paths
A® = (AD)ieo,1) and A' = (A})tepo,1], where

0. id —(1-1t)By 1. id —tB;
(6.8) At._(o y cAl=( 0 . telo,1].

Therefore by (CZ3) and (CZ4),
(6.9) CZ(A) = CZ(A%) + Cz(AY).

Also by (CZ3), CZ(A°) = —CZ((AY_,)ie0,1)), and hence by (CZ5) and equa-
tion (6.8),

CZ(A%) = —%Sign(Bo), Cz(Al) = %Sign(Bl).
Combining this with equation (6.9) gives us
1 .. .
CZ((At)iepp,1)) = B (Sign(B1) — Sign(By)) € [—2n, 2n]. O

Definition 6.9 ([TMZ18, Def. 2.1]). Let (A;)ies be a finite collection of
transversally intersecting closed codimension 2 symplectic submanifolds of a
compact symplectic manifold (W, wy ) so that Ay := N;erA; is a symplectic
submanifold for all I € S. (Our convention is that if I = ), then A; =
W.) The symplectic orientation on Ay is the orientation on A; induced by
the symplectic form. Let NAj; be the normal bundle of A; for each I C S.
The intersection orientation on Ay is the orientation on A; coming from the
symplectic orientation on its normal bundle induced by the splitting NA; =
®ierNA;|a, and the symplectic orientation on M.

A symplectic crossings divisor or SC divisor inside a symplectic manifold
(W,ww) is a finite collection (A;);es of transversally intersecting closed sub-
manifolds of W as above so that Ay is symplectic and so that the symplectic
orientation and the intersection orientation of Ay agree for all I C S.

One of the main examples of an SC divisor to keep in mind is a union
of transversally intersecting complex hypersurfaces in a Kéhler manifold. The
definition above should be thought of as a symplectic version of such a union
of complex hypersurfaces. This definition is more flexible and will enable us to
control what the symplectic structure looks like near U;cgA; after deforming
(A;)ies. For instance, it would be nice for these A;’s to be symplectically
orthogonal to each other after deformation. The condition ensuring that the
symplectic and intersection orientation agree is crucial for such a deformation
to exist. An example where this does not happen is if W = T*R? and if
A1 is the graph of zdy and As the graph of ydr where x,y are the standard
coordinates on R2. These are two symplectic hypersurfaces which intersect
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negatively at the origin. There is no way of isotoping these linear symplectic
subspaces so that they intersect orthogonally with respect to the symplectic
form. A more sophisticated example where this orientation condition fails is
contained in [TMZ18, Example 2.7].

Definition 6.10. Let Q C W be a submanifold of a manifold W. A tubular
neighborhood of () is a smooth fibration g : Ug — @ so that

(1) Ug C W is an open subset containing Q;
(2) there is a metric g on W so that mg = mpg o exp~ !, where

DQ:={veTW|,:z€Q, g(v,v) <1, g(v,w) =0V weTQl,}

is the unit disk normal bundle, 7pg : DQ — @ is the natural projection
map and exp : DQ — W is the exponential map with respect to g so that
(3) exp is an embedding and exp(DQ) = Uyg.

Recall that an Ehresmann connection on a smooth fiber bundle 7 : £ — B
is a subbundle H C T'E so that Dn|g, : H|z — TB|;(;) is an isomorphism
for each z € E. Such a connection is complete if for every smooth embedding
p:[0,1] — B and every = € 7~ (p(0)), there is a unique lift p: [0,1] — E
of p tangent to H. In other words, points in £ do not parallel transport to
infinity in finite time.

If 7 : E — Bis asmooth fibration and 2 a closed 2-form on F making the
fibers of F symplectic, then the associated symplectic connection is defined to
be the Ehresmann connection consisting of vectors €2-orthogonal to the fibers.
That is,

Ho:={Q€e€TE|,:z€ E, QQ,A) =0V A € ker(Dr)|,}.

Let I be a finite set. A symplectic U(1)! neighborhood of a symplectic sub-
manifold @ C W of a symplectic manifold (W, wy) is a tubular neighborhood
mq : Ug — @ of ) where
(1) the fibers are symplectic submanifolds symplectomorphic to J[;c; Ds(e),

where D;(e) C C is the open symplectic disk of radius € labeled by i € I;
(2) the fiber bundle 7g has structure group U(1)! := [[,.;U(1) given by

rotating such disks in the natural way; and
(3) the associated symplectic connection is complete, and the parallel trans-

port maps induced by the symplectic connection respect the above struc-

ture group. (In other words, parallel transport maps between fibers in a

U(1)! trivialization are elements of U(1)!.)

For I' C I, let UCIQ, C Ug be the subset of points fixed under the U(1)" ¢ U(1)’

action. For each I' C I, the U(l)ll-bundle associated to m¢ is the fibration
775 Ug — Ué, whose restriction to each fiber in a U(1)? trivialization is the
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natural projection map

[IDi(e) — J] i(e)

el iel’

and with induced structure group U(1)!". This is naturally a symplectic U (1)
neighborhood of UCIQ, inside Ug.

A standard tubular neighborhood of an SC divisor (4A;);es consists of a
symplectic U(1)! neighborhood 77 : Uy — Ay for each I C S so that

(1) UrnUp = Uypyyp for all I,I'CcS;

(2) 7p(Ur) =UrnNAp forall I' C I C S; and

(3) the U(1)"'-bundle associated to 7 is equal to wp|y, : Ur — Ur N Ap as
fiber bundles with structure groups Ué, forall I’ cICS.

The radius of this standard tubular neighborhood is €. The radial coor-
dinate r; : U; — R corresponding to A; is the map whose restriction to each
fiber I;(€) of a U(1){#-trivialization of 7; is the standard radial coordinate on
this disk.

Definition 6.11. Let (W, wyw ) be a closed symplectic manifold of dimension
2n, and let (A;);es be a symplectic SC divisor in W. Define W° := W —
UjesA;. Let 8 € QY(W?°) satisfy df = ww|wo. Let N be a neighborhood of
UjesA; which deformation retracts on to UjesA;, and let 3 : N — [0, 1] be a
compactly supported smooth function equal to 1 near UjcsA;. Let w. be the
compactly supported closed 2-form on N equal to w near UjesA; and d(36)
inside NNW?°. Then since N deformation retracts onto U;csA;, the Lefschetz
dual of w, is equal to — 3, w;[A;] € Hapo(N;R) for unique real numbers
(wj)jes. The wrapping number of 0 around A; is defined to be w; for each
Jj€S. Wecall (Aj)jes a negatively wrapped divisor if there exists a 1-form 6
on W? as above so that the wrapping number of 6 around W; is negative for
each j € §5.

The next lemma gives us an important example of a negatively wrapped
divisor.

LEMMA 6.12. Let X be a complex projective variety, and let A C X be
a codimension 0 affine subvariety so that X — A is a union of transversally
intersecting complex hypersurfaces D1,...,D;. Let p: A — R be an exhaust-
ing plurisubharmonic function on A as in Definition 6.2 so that —dd®p extends
to a Kahler form wx on X. Then (Di)ézl 1$ a negatively wrapped divisor on
(X, wx).

Proof. Let § = —d°p. We will show that the wrapping number of § around
D; is negative for each ¢ € {1,...,l}. Fix such a D;. We will use a character-
ization of wrapping number in terms of embedded disks; see [McL16, Lemma
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5.5]. Let D C C be the closed unit disk, and let ¢ : D < X be a holomorphic
embedding so that

o . H(Dy) = {0}

e (D) intersects D; transversally; and

e . 1(Dj) =0 for each j #i.
Since wx is a Kéahler form and since D is contractible, there exists a smooth
function f : D — R so that t*wx = —dd°f. Since —dd®(:*p — f) = 0, we get
that —d°(:*p— f) represents a de Rham cohomology class in H*(D—{0}; R). By
[McL16, Lemma 5.5], this cohomology class determines the wrapping number
w; of § around D;. Since de Rham cohomology classes in H'(D — {0}; R) are
determined by integration around any loop wrapping once positively around
the origin, we get ([McL16, Lemma 5.5]):

1
(6.10) w; = — —d°(t*p—f).
27 oD
Let (r,9) be the standard polar coordinates on D, and let 9, := % be the
unit radial vector field on D — {0}. Define

k:D—{0} — R, kr:=dp—f)(0).

Since p is an exhausting function, we have that p(z) — f(2) tends to infinity as
|z| tends to 0. Hence there exists n € (0,1) so that

27 )
/ r(ne?)dv < 0.
0
Therefore )
/ —d('p—f) = 77/ r(ne)dy < 0.
{r=n} 0

Hence the integral (6.10) is negative, which implies that the wrapping number
of 8 around D, is negative. ([l

Definition 6.13. Let W be a manifold of dimension 2n with an almost
complex structure J. The anti-canonical bundle of (W, J) is the complex line
bundle sy, = AG(TW,J). Let (Aj)jes be a finite collection of transversally
intersecting codimension 2 submanifolds. Define W° := W — UjecsA;. Let
T : Kjylwe — W x C be a trivialization of the anti-canonical bundle of
(We,J). Let N C W be aneighborhood of UjcgA; which deformation retracts
on to UjesAj, and let s be a smooth section of /{{;V\N transverse to 0 so that
s(z) := 77 1(x,1) for all x outside a compact subset of N. Then [s~1(0)] =
—>_;a[Aj] € Hop—o(N;Z) for unique a; € Z, j € S. We define the 7-
discrepancy of Aj to be a; for each j € S. If it is clear that we are using
the trivialization 7 (up to isotopy), we will call the 7-discrepancy of A; the
discrepancy of Aj for each j € S.
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The following lemma gives us an example of an SC divisor where the
discrepancy of its components are non-negative. Before we state the lemma,
we remind the reader of some important notions in algebraic geometry.

Definition 6.14. Let Y be a compact complex manifold of complex di-
mension n. We define the canonical bundle xky of Y to be the dual of the
anti-canonical bundle of Y. Let 7 : Y — Y be a holomorphic map. We define
the relative canonical bundle of m to be

(6.11) Ry y = by @ (m*ky)*.

For any subvariety F' C Y, we say that F is contracted by 7 if the dimension
of the subvariety m(F') C Y is less than the dimension of F'.

Recall that a divisorin Y is a formal Z-linear combination D = Zézl a;D;
of codimension 1 subvarieties Dq,...,D; in Y. Such a divisor is effective
if a; > 0 for each i = 1,...,l. The support supp(D) of D is the subset
Uieq1,...13.ai20 Di- The associated homology class [D] is the sum z§:1 a;[D;] €
Hy,—o(Y;Z), where [D;] is the fundamental class of D;; see [GH94, Ch. 0, §4].
We will define [D]* € H?(Y;Z) to be the Poincaré dual of [D]. Two divisors
are numerically equivalent if they represent the same homology class. The di-
visor line bundle correspondence gives us a one-to-one correspondence between
divisors F and pairs (L, s), where L is a line bundle and s a holomorphic sec-
tion of L; see [GH94, Ch. 1, §1]. We define (s) to be the divisor associated to
(L, s) under the divisor line bundle correspondence.

Under the divisor line bundle correspondence, we have that [(s)]* = ¢;(L)
([GH94, Ch. 1, §1])). Therefore if s and § are holomorphic sections of two
line bundles L and L, then (s) is numerically equivalent to (3) if and only if
Cl(L) = Cl(L).

LEMMA 6.15. Let 7: X — X be a morphism of smooth projective vari-
eties over C. Let A C X, A c X be Zariski dense affine subvarieties so that

(6.12) Tz A— A

18 an isomorphism. Suppose X — A is a union of transversally intersecting
complex hypersurfaces Dq,...,D;. Let 7 : k%, — X x C be a trivialization
of the anti-canonical bundle of X, and let T := 7 o (7|3) be the induced triv-

ialization of the anti-canonical bundle of A. Then the T-discrepancy of D; is
non-negative for eachi=1,...,1.

Proof. Let £ and kx be the canonical bundles of X and X respectively,

and let kK ,,. be the relative canonical bundle of m. The Jacobian of 7 gives

X/X

us a holomorphic section s of k5 /X in the following way: By equation (6.11),
RS /x is naturally isomorphic to Hom(/i},ﬂ*n}), where £ and k% are the
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anti-canonical bundles of X and X respectively; see Definition 6.13. Under
this identification, the section s is given by the map sending vi A---Awvy € Iﬁ}
to Dm(v1) A -+ A Dr(vy,) € 7*K%. We have (s) = 22:1 b F; is an effective
divisor with the property that F; is contracted by 7 for each ¢ = 1,...,[. Since
(6.12) is an isomorphism, we get that F; C X — A for each i = 1,...,k. Hence
for each i = 1,...,k, there exists j; € {1,...,{} so that F; = D;,. Hence
(s) = Zi:l a;D; for some non-negative integers az, ..., q;.

Since 7 is a trivialization of the anti-canonical bundle of X, we get an
induced trivialization 7 : kx — X X C of the canonical bundle. (This is the
unique trivialization so that 7 ® 7 is the natural trivialization of Kx ® r%.)
Let 0 : X — kx be the unique smooth section satisfying 7(o(x)) = (z,1) for
each r € X. By (6.11), we have k3 = K3 x © m™*kx, and hence s ® m*0 is a
smooth section of £ 5. Let s’ be a C*° small perturbation of s ® 7*¢ which is
transverse to 0 and which is equal to s ® 7% outside a small neighborhood of
UL_,D;. Then since ¢ is nowhere zero, we get that [(s')~1(0)] is homologous
to 22:1 a;[D;]. Since k} is dual to kx, this implies that the 7-discrepancy of
D;isa; >0foreachi=1,...,1I. O

Definition 6.16. Let (W, ww ) be a closed symplectic manifold of dimension
2n, and let (A;);es be a symplectic SC divisor in W. Define W° := W —
UjesAj. Let J be an wy-tame almost complex structure, and let 7 be a
trivialization of the anti-canonical bundle of (W¢,.J).

A contact cylinder in C C W° is a contact cylinder as in Definition 2.3
with the symplectic manifold (M, w) replaced by (W, wy). We say that C' is
index bounded if it is index bounded in the sense of Definition 5.23 with (M, w)
replaced by (W° wy ) and where the symplectic trivialization used along each
Reeb orbit is induced by 7 and where we consider all Reeb orbits (not just null
homologous ones).

PROPOSITION 6.17. Let (A;)ies be a negatively wrapped symplectic SC
divisor in a closed symplectic manifold (W,ww ), and let U be an open neigh-
borhood of UjesAj in W. Let W°, J, 7 be as in Definition 6.16 above. Let
p: W —UesA; — R be an exhausting smooth function. Suppose that the
T-discrepancy of A; is non-negative for each j € S. Then there is an index
bounded contact cylinder C contained in U N W° whose associated Liouville
domain contains W — U and so that C contains a reqular level set of p.

Proof of Proposition 6.17. Let wj, a; be the wrapping number and
T-discrepancy of A; for each j € S. By [McL12a, Lemmas 5.3 and 5.14] (or by
[TMZ18, Th. 2.12]) we can assume, after smoothly deforming (A;);cs through
a family of symplectic SC divisors (which does not change the symplecto-
morphism type of the complement (W, wy ) by [McL12a, Lemma 5.15]), that
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(A;)ier admits a standard tubular neighborhood as in Definition 6.9. Therefore
welet 7y : Uy — A, I C Sand r; : Uy — R, 7 € S be as in Definition 6.9.
We can also assume after shrinking the radius e that this standard tubular
neighborhood is contained in U. Also the constants aj,w; do not change un-
der isotopy for all j € S, so we can still assume that w; < 0 and a; > 0 for all
j€S. Let Ar := Ar — Ujes_1A;, Up := UrNWe and
Ty U[—>A], 7'1'[(56) = 7T](.’L')
for all I C S. The map 7y is a symplectic fibration with fibers symplectomor-
phic to [[;¢; D; (¢) where D;(€) := () — 0 and whose structure group is given
by the natural action of U(1).
By the proof of [McL16, Lemma 5.18], we can find a smooth function

g : W — R with the property that 6 + dg restricted to any fiber [[,.; ]D),(e)
of 7y is Y, (32 + =w;)dV; after shrinking e where (r;,9;) are the natural

2r
polar coordinates on D;(€). Choose ¢ > 0 so that
132, 1
/ 5 + —w;
(6.13) e e (1(26)1”“’) Viel
€2 4 zw;
Choose € € (0, %6) small enough so that
1 |
(6.14) User {Tf < (62 -+ —wi)e*t — w,} — UieI{T’? < 62}
7r T

contains a regular level set of p. Let f :[0,¢?) — R be a smooth function so
that f(z) =1 —z for all z < %62, fliee; =0, f >0, f <0, foe) <0 and
1" >0 (see Figure 17).

Define Uy := U — U cg_; Uj and Up := U N Ur. Let H : W — R be
the unique function which satisfies H(z) = Y_,c; f(r?) for all z € Uy and all
IcsS.

Let ai”_ and 8%‘1- be the unique vector fields on U; which are tangent to the
fibers of 7y and equal to ai” and 8%,- inside the fibers ]D),(e) of 7r; respectively
where (r;,v;) are standard polar coordinates on D;(¢). Let Q; C TUr be the

Sl

Figure 17. Graph of f.
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natural symplectic connection for 7y as in Definition 6.10. Since the df-dual
Xo4dg of 0 + dg inside U7 is equal to

1 Wy 8 Wy 8
2(27%“" 27777) 377‘Z+EI_Z(T¢2+?) Tr?)—i_EI’

el i€l

where E7 is a vector field tangent to @ for all I C S, we get that dH (Xg144) >
0 inside H~((0, 00))NUscsUr. Hence Cs := H~1(§) is a compact submanifold
of U with contact form ag := (0 + dg)|g-1(5) for all sufficiently small § > 0.
For each z € W°, let ¢(z) be the time ¢ ﬂow of x along —Xg 44 for all t (when
defined). Since the region (6.14) contains a regular level set of p, we have by
equation (6.13) that the contact cylinder with image

Cs:= |J wi(Cs)
tel0,¢]

contains a regular level set of p for all sufficiently small § > 0. Equation (6.13)
also ensures that this contact cylinder is contained in U. To finish our lemma
we will now show that the contact cylinder Cj is index bounded for all § > 0
small enough by computing the Conley-Zehnder indices of the Reeb orbits of
ag for 6 > 0 small enough.

Let Rs be the Reeb vector field of ay. Inside UIO, we have that Xy =

2Zlelf (r )81% Define

b0 — R, b= L0 (i + ).

il
Then

(6.15) Rs= ' xy =3 Z f(r

(0+dg)(Xn) Py 8’192

In particular, a Reeb orbit which starts inside UIO N H~1(5) stays inside UIO N
H~(8), and all such Reeb orbits are contained in fibers of 77| p-1(5). We will
show that the Conley-Zehnder index of every Reeb orbit of a; is a bounded
above by a linear function of its length whose slope is negative when § > 0
is sufficiently small. This will be sufficient for us to show that Cj is index
bounded for all 4 > 0 sufficiently small.

Now let ¢ : R/AZ — H~'(8) be a Reeb orbit of a; of length A . Now ( is
contained inside ﬁ;l(q) for some ¢ € A; — Ujes—1Uj and I C S, and so there
exists a smooth map ¢ : D — Wfl(q) from the closed unit disk D C C so that
C(e?™*) = ((\t) for all t € [0,1]. Let d; € Z be the intersection number of ¢
with A; N7, *(q) inside 77(g) for each i € I. Define CZ(¢) to be the Conley-
Zehnder index of ¢ inside W, and let CZ(QI) be the Conley-Zehnder index
of ¢ inside a small neighborhood of w;l(q); i.e., we think of a portion of our
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contact cylinder containing this orbit as a contact cylinder in a neighborhood
of 77 1(q). By (CZ1), (CZ2) and (CZ3) we have

CZ(¢) = CZ(¢) + QZdz‘ai-
i€l
By equation (6.15) combined with the fact that f'(f~1(z)) < 0 for all small
x > 0, we see that d; < 0 for all © € I and that the length of the Reeb orbit
(¢ is bounded below by a positive constant times — ), ;d;. Therefore it is
sufficient for us to show that CZ(() is less than or equal to some fixed linear
function of ) ;. ; d; of positive slope.

Let T := T(n;'(q)) C TW be the tangent space of the fiber containing ¢,
and let T+ C TW be the set of vectors which are wy orthogonal to 7. Let
T1,Y1,- -, 2|7, Yj7| be symplectic coordinates of 71'1_1((]) coming from a U (1)!!
trivialization of this fiber, and let J be the natural complex structure coming
from this trivialization. These coordinates induce a symplectic trivialization
0 T — R/NZ x CHI of ¢*T. Define Ks := ker(a;) NT C T, and let
K (SL cT |7.r1_1 (@ be the symplectic vector subspace of T' consisting of vectors
which are wyy|p-orthogonal to K. Since Ry is contained in K (SL and K g- is a
two-dimensional vector bundle, there is a unique, up to homotopy, trivialization
TRy ¢ K — #7%(g) x C of K; which maps Rs to the constant section
whose value is ¢ € C. Hence there is a symplectic trivialization 7 : (*Ks —
R/AZ x CHI=1 5o that 7 @ 7g, gives us a trivialization of (*T = ¢*(K; @ Kj")
homotopic to 7.

Let 771 : C*T+ — R/AZ x C" Ml be a trivialization of ¢*T* which is
a restriction of a trivialization of 7%. (Such a trivialization is unique up to
homotopy since 77 '(g) is contractible.) Then

(6.16) FOTpL: C(Ks ®TH) = ¢ ker(ag) — R/AZ x C* 1

is a trivialization of (*ker(cy). This is the trivialization we need in order to
compute CZ(() since the trivialization Tg, ® 7 ® 7p1 of (*TW extends over
the disk (*TW after identifying the boundary of D with R/AZ in the natural
way as explained earlier.

If ¢ : H-1(6) — H~1(6) is the time ¢ flow of Rs, then its linearization
D¢y = ker(as)|coy — ker(as)|¢) gives us a family of symplectic matrices
(At)iefo,n) With respect to the trivialization (6.16). Equation (6.15) tells us
that D¢f respects the splitting ¢* ker(as) = (*Ks @ ¢*T+ and hence A; =
B; & Cy for some family of matrices (Bt)iep,n and (Ct)iecpo,n With respect to
the trivializations of (*Kj and ¢*T+. Also equation (6.15) tells us that Cy = id
for all t € [0, A] after homotoping 7. appropriately. By (CZ6), we have that
CZ((Ct)iefo,n) = 0. Hence by (CZ2), all we need to do is compute the Conley-
Zehnder index of (Bt).e(o, -
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In order to compute CZ((Bt)¢c[o,n) We will compute the Conley-Zehnder
index with respect to an alternative trivialization of K5 and relate it to the
trivialization 7 above. Choose a total ordering on I. This means we have a
natural identification I = {1,...,l}. Define
. 0 0
R; := (2r.f'(r})) o (2rif'(r)) o

1 1 0 1 1 0
oo (3o ) - (5 )
2" T ox ") o, — 2" T 22" By,

for all i € {1,...,1 —1}. Let L be the span of ©1,...,0;_; and L* the span
of Ry,...,R_1. Since K5 = ker(a;) = ker(d + dg) N ker(dH), we get that
R1,01,...,R;_1,0;_1 is a basis for K5. The problem with this basis is that
it is not a symplectic basis. However since L and L+ are Lagrangian, there is
a new basis Ry,...,Rj_1 of L+ so that R1,01,...,R;_1,0;_; is a symplectic
basis of Ks. Since the Poisson bracket of Rs with each of ©1,...,0;_1 is
zero by equation (6.15), we have that the flow of Rs sends ©; to ©; for each
i =1,...,0 — 1. The linearization D¢}, : Ksleo) — Ksley of the Reeb
flow ¢? of Rs is a family of symplectic matrices (Wi)tepo,n With respect to the
symplectic basis Rq,01,...,Rj_1,0;_1. Since Wi(x) = x on L with respect
to this basis for all ¢ € [0, A], we have by Lemma 6.8 that CZ((Wy)sejo,n) €
[—20 — 2,204+ 2] C [-2n +2,2n — 2).

Let 7 : (*K5 — R/A\Z x C'=! be the trivialization of ¢*Ks induced by
the symplectic basis R1,01,...,R;—1,0;-1. Then T @ 7g, is isotopic to the

(6.17)

trivialization induced by the symplectic basis

1 0 0 10 0
Hence the bundle automorphism 7 o 77! gives us a family of symplectic ma-
trices parametrized by [0, \] whose Conley-Zehnder index is 23, ; d;. Hence
by (CZ1), (CZ2) and (CZ3),

CZ((Bi)iepon) = CZ(Wohepo) + 2 dic
el
Hence by (CZ2), we get that

CZ((At)ejo,n) = CZ((Bt)iepo,n) + CZ((Ct)icon = 2 Z di + CZ(Wi)ieo,n))-
el
Hence
CZ(¢) =2 Z(ai +1)d; + CZ((Wt)tE[O,A])a
el

which is bounded above by a linear function of length of ¢ with negative slope
since we have CZ((Wi)ic0,1)) € [-2n + 2,2n — 2].  Therefore C := Cs is
index bounded. The associated Liouville domain of €' is contained in W° and
contains K since its complement is contained in U;cgUs;. [l
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Proof of Proposition 6.7. By [Hir64], we can blow up X along smooth
subvarieties above X — A giving us a variety X so that the preimage of X — A
is a smooth normal crossing variety. Let Bl : X — X be the blowdown
map. Choose an algebraic plurisubharmonic function p : A — R so that

—dd*(Bl*(p)) extends to a Kéhler form wg on X; ie., p = —ddlog(|s|) for

some appropriate section s of an ample line bundle on X with an appropriate
Hermitian metric. By Corollary 6.6 there are constants 0 < § < T' < 1 and
a compact set ) C A containing K and a plurisubharmonic function p on A
satisfying

(1) plo = rla;

(2) p=p—+ 0p outside a large compact set; and

(3) for all z € A, the time T flow of x along —V;p is contained in @ and is
disjoint from K if, in addition, x ¢ Q.

Let ¢7 : A — A be the time T flow of —V;p. By Lemmas 6.12 and 6.15
combined with Proposition 6.17, we can find an index bounded contact cylinder
Cy C BI7Y(A) with respect to the symplectic form Bl*wyx + dwy, which is
disjoint from @, whose associated Liouville domain contains ), and which
contains a regular level set p~!(C) for some C' € R. Then C := ¢7(BI(C1)) C
A is an index bounded contact cylinder with respect to wx since wx|q = wxlg
and since both of these symplectic forms are Kéhler. Also the Liouville domain
associated to C' contains K and C contains Cy := ¢7(BI(p~(C))), which is a
hypersurface transverse to V,p bounding a region containing D. By a Moser
argument ([MS98, Exercise 3.36]), we can enlarge C slightly so that it contains
a contact cylinder Cy := [1 — €g,1 + €] x Cp where {0} x Cy = Cy. The
associated Liouville domain Dy contains D, and —dp|p, is a Liouville form
associated to Cp. O

6.3. Divisors are stably displaceable. We recall from Section 1.3 that (M, w)
is a compact symplectic manifold. However the results of this section also work
when M is non-compact. We also do not require that (M, w) satisfy any other
conditions, such as the Chern class condition ¢;(M,w) = 0.

Definition 6.18. A partly stratified symplectic subset S of (M,w) is a
subset equal to a disjoint union of subsets Si,...,.5; of M so that for each

je{]‘?""l}?

® U;<;5; is a compact subset of M; and
e S; is a proper codimension > 2 symplectic submanifold of M — U;-;S;
without boundary.

We call the subsets S1,...,95; the strata of S.
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S x T*T

(S x T*T) #y (1(S x T*T))
Figure 18. Picture of V and V;, t € R.

Ezample 6.19 ([Whi65, Th. 19.2]). If M is a Kahler manifold, then any
compact codimension > 1 subvariety of M is a partly stratified symplectic
subset.

PROPOSITION 6.20. Any partly stratified symplectic subset is stably dis-
placeable as in Definition 5.11.

We have the following immediate corollary:

COROLLARY 6.21. Any compact subvariety of a Kdhler manifold of posi-
tive codimension is stably displaceable.

The rest of this subsection is devoted to the proof of Proposition 6.20.
Throughout this subsection we will let (o,7) be the natural Darboux coor-
dinates on T*T = R x T, where o is the projection map to R and 7 is the
projection map to T. We will also let (M ,w) be the symplectic manifold
(M x T*T,w + do A dr).

Let us first give a sketch of the proof of Proposition 6.20. It would be
nice if one could displace S x T using the symplectic vector field V := 8%.
However this is not a Hamiltonian vector field. What we wish to do is to
subtract another time dependent symplectic vector field V, t € R from V so
that V — V; is Hamiltonian and so that the time T flow of S x T along V — V;
is a bounded distance from the time 7" flow of S x T along V for some large
T € R. To do this, we first “curl up” S x T*T into a small neighborhood of
S x T. In other words, we find an appropriate symplectic embedding ¢ of a
neighborhood NV of S x T*T into a relatively compact subset of M x T*T. This
is done via an explicit embedding technique from [EM02, Lemma 12.1.2]. We
then define V; to be an appropriate extension of (¢} )« (¢.V), t € R to M, where
¢/, t € R is the flow of V (see Figure 18). Then V — V; is the Hamiltonian
vector field displacing S x T in M x T*T. This completes the sketch of the
proof.
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If S has only one stratum (i.e., S is a symplectic submanifold), then the
methods of [L.S94] and [GO0S, §4.3] can be used to displace S x T instead.
However it is hard to see how these methods could be used when S has singu-
larities. This is due to the fact that near certain singular points p of S (such
as normal crossing points), there is no vector field which can infinitesimally
displace a neighborhood of p in S from S. Also there are examples which seem
difficult to infinitesimally displace. For instance, a C'*° generic Hamiltonian
on CP? x T*T cannot displace (AU B) x T by an infinitesimally small amount
where A, B C CP? are distinct complex lines.

Before we prove Proposition 6.20, we need some preliminary definitions
and lemmas. We will first provide a criterion for Hamiltonian displacement in
terms of “curled up” symplectic embeddings.

Definition 6.22. For each v > 0, define
Mo, := {(z,(0,7)) € M : |o] < v}.

Let @ C M be a subset. A weak curled up embedding of Q x T*T consists of a
neighborhood N of Q@ x T*T in M and a symplectic embedding ¢ : N < M.,
so that ¢(y) = y for all y in a neighborhood of NN (M x T) C N. A curled
up embedding of Q x T*T is a weak curled up embedding as above with the
additional property that the map H'(N;R) — HY(N N (M x T);R) induced
by the inclusion map is injective.

LEMMA 6.23. Let Q@ C M be a compact subset of M so that Q@ x T*T
admits a curled up embedding. Then Q is stably displaceable.

Proof. Let ¢, N be as in Definition 6.22 above. Let V := a%. We wish
to construct Vi, t € R as described above. Define V := (V). Let #) be
the time ¢ flow of V for each ¢ € R, and similarly define ¢; (when defined).
Since «(y) = y for all y € M near N N (M x T), we get that the closed
I-form B(—) = o(V],v) — V,—) vanishes near N N (M x T). Combining
this with the fact that the map H'(N;R) — HY(N N (M x T);R) induced
by the inclusion map is injective, we have that 3 is exact. Hence V|,(n) — %
is a Hamiltonian vector field on ¢«(N) C M. Let H : «(N) — R be the
corresponding Hamiltonian. Let p : «(N) — [0,1] be a smooth compactly

supported function whose restriction to a small neighborhood of the relatively
compact set Q := 1((Q x T*T) N M.3) is 1, and define

p(y)H(y) ifyeuN),

H:M-—R, H(y):=
0 otherwise.

Define H; := ((by)*(ﬁ) for each t € R. Note that the vector field V; in the
proof sketch above is just V' — Xp,. Our claim is that H := (H;)er is the
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Q x T*T

Figure 19. Picture of M y|a4.

Hamiltonian which displaces Q. Let ¢ be the time ¢ flow of H for each ¢ € R.

Near ¢} (Q), we have
Xi, = (00)e(Xg) = (00 ) (V = V) =V + (¢} )u(~V)

for all t € R. Hence for each y € Q x T, ¢f (y) = gbf((;ﬁffi(y)) forally € @ x T

and t € [0,3]. Combining this with the fact that ¢} (¢; ¥ (v)) € ¢ (M) for
ally € Q x T and @Y (M<1) N Moy = 0, we get ¢ (Q x T) N (Q x T) = 0.
Hence @ is stably displaceable. O

Definition 6.24. Let A C M x T be a subset. For any function f: A —
R U {00}, define

Mcyjla = {(z,(0,7)) € AXT*T : |o| < f(x,7)} C M.
Let N C M be an open subset containing A. Define
(6.18) fnv:A—RU{oo}, fn(a):=sup{oc>0:{a}x[-0,0]C N}
see Figure 19. We define
Mcn|a = Mcgyla.
If A= M x T, we define

M.y = Mcy|a.

LEMMA 6.25. The function fn from Definition 6.24 is lower semi-con-
tinuous. Hence M<N’A is an open subset of M if AC M x T is open.

Proof of Lemma 6.25. Let a € A, and let (a;);en be a sequence of points
in A converging to a. Let o > 0 satisfy 0 < fy(a). Since N C M is an open
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subset and since {a} x [—0,0] is compact, we have that {a;} X [-0,0] C N for
all j sufficiently large. Hence o < fy(a;) for all j sufficiently large. Hence

liminf fy(a;) > liminf 0 = fn(a).
J—o0 o<fn(a)
Hence fy is lower semi-continuous. O

LEMMA 6.26. Let Q C M be a compact subset of M so that Q x T*T ad-
mits a weak curled up embedding. Then Q xT*T admits a curled up embedding.

Proof. Let v : N < M1 be a weak curled up embedding of Q x T*T. The
claim is that L|( Moy) 18 2 curled up embedding. To prove this, it is sufficient
to show that M.y deformation retracts onto E. This deformation retraction
is given by

Oy Moy — Moy, ®(z,(0,7)) = (z,((1 —t)o,7)), te€[0,1]. O

We need the following Moser lemma in order to construct appropriate
weak curled up embeddings of stratified symplectic subsets. The proof of this
lemma is a slight modification of [MS98, Lemma 3.14].

LEMMA 6.27. Let (W, ww ), (W,ww) be symplectic manifolds, let Q C W
be a symplectic submanifold, and let U N C W open sets satisfying U C N.
Let iy : N — W, Q1 Q — W be symplectic embeddings so that
(1) tn is a codimension O symplectic embedding;
(2) wv|nng = tolnng; and
(3) the pullback via vg of the normal bundle of 1o(Q) is isomorphic as a sym-
plectic vector bundle to the normal bundle of Q in W, and this isomorphism
coincides with the isomorphism induced by tn along N N Q.

Then there is a neighborhood V. C W of Q and a codimension 0 symplectic
embedding ¢ : UUV — W so that 1|y = 1y and t|g = g (see Figure 20).

Lemma 3.1 in [MS98] requires that @@ be compact. However this is really
not needed.

Proof of Lemma 6.27. After removing 1g(Q) — to(Q) from W we can as-
sume that ¢ is a proper embedding. Choose complete metrics g and g on W
and W respectively so that Uyg = g near U, let NQ be the symplectic normal
bundle of @ in W, and let £ — 1o(Q) be the symplectic normal bundle of
1@(Q) in W. Let expy, : NQ — W and expy B — W be the exponential
maps using g and § respectively. Let ¢ : NQ — L*QE be the isomorphism
described in (3) above. Choose small tubular neighborhoods A C N@ and
B C FE of the zero section so that expy, |4 and expy, |p are smooth embed-
dings and so that ¢(A) = B. We have a smooth family of symplectic forms
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v N

Figure 20. Embedding of U UV into W.

we == (1 —t)((expyjy )« O« expyy ww) + twyy,, ¢ € [0,1]

on B = expyi (B) after shrinking A and B. Now w; is equal to wy;, along
TW\LQ(Q) and also along some neighborhood U’ C B of UNB for each ¢ € [0, 1].
After shrinking U’, A and B, we can assume that U’ deformation retracts onto
U'Nug(Q). Hence we can find a smooth family of 1-forms oy € QI(E), te0,1]
satisfying

° %wt = doy; and

e o¢(v) =0 for each v € T, B, z € U' U t@(Q) and t € [0,1]
after shrinking U’ slightly again. Let (Xt)tep,1) be a smooth family of vector
fields satisfying oy + tx,w; = 0 for each t € [0,1]. Let ¢, be the time ¢ flow of
(Xt)tepo,1) for each t € [0,1] (if it exists). For each z € 1o(Q), we have that
X; =0 at x since o, = 0 at x. Therefore for each z € 1g(Q), there is a small
neighborhood V, C B of z so that the time ¢ flow P (y) is well defined for
each y € V, and t € [0, 1]. Hence the time ¢ flow ¢4(y) is well defined for each
y € V i=UgeVy and each t € [0, 1]. Define

N () ifzeU,
Y1 (expyy (¢(expyy) () ifz € V.

This is a symplectic embedding. Also since v1(x) = z for all z € (U N B) U
1@(Q), we have |y = 1y and t|g = vg. O

L:UUV = W, L(:c)::{

The proof of the following lemma is identical to the proof of [EM02,
Lemma 12.1.2] so we will omit it. However we will give an idea of the proof
since it will be a crucial ingredient in the proof of Proposition 6.20 below.

LEMMA 6.28. Let QQ be a symplectic submanifold of a symplectic manifold
(W,ww) of positive codimension, and let Uy N C Q be open sets so that U C N.
Let oy € QY(Q), t € [0,1] be a smooth family of 1-forms so that w := ww|rg +
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doy, t € [0,1] is a smooth family of symplectic forms on Q and so that ay|y = 0
for all t € [0,1] and ap = 0. Then there is a smooth family of symplectic
embeddings 1 : Q — (W,ww ), t € [0,1] which are arbitrarily C° close to 1y so
that Ljww = w1, o =1idg and so that wo|ly = u|y for all t € [0,1].

We will now give a hint at why the lemma above is true. The details are
contained in [EM02, Lemma 12.1.2]. First of all, we can C* approximate the
family of 1-forms ay, t € [0, 1] by a new family of 1-forms o}, ¢t € [0, 1] so that

e af = ag, o} = as;
e for each compact codimension 0 submanifold D C @, the function

0,1 — QYD), t—ajlp

is piecewise linear; and

o for each t € [0,1] where 4a/}|p is well defined, there is a relatively compact
open neighborhood Np of D so that %O&“ND is equal to rds, where r, s are
smooth functions on @ with compact support in Np — U.

See [EM02, 12.1.3]) for more details. After a bit more work, it is then sufficient
to prove Lemma 6.28 when a; = trds for some smooth compactly supported
functions 7,s on @. In this special case, the embeddings u;, t € [0,1] are
obtained by using the following lemma:

LEMMA 6.29 ([EM02, 12.1.5] (Symplectic Twisting Lemma)). Let (Q,wq)
be a symplectic manifold, and let D*(¢) C C be the open disk of radius € with the
standard symplectic form dx A dy. Then for any compactly supported smooth
functions r,s on Q, there is a smooth function ¢ : Q — D?(e) so that the
function

®:Q — QxDe), () := (g 6(q))
satisfies ®*(wq + dx A dy) = wq + dr A ds.

Proof. In order to prove this lemma, one just needs to find ¢ so that
¢o*dr Ndy = dr Nds. If € > 0 was really large, then we could just choose
¢ = (r,s). However € could be really small and such a map would not be well
defined. But this can be corrected by first finding a smooth area preserving
immersion 7 : D?(R) & D?(e) for R large and then letting ¢ = 7 o (r, s). Such
an immersion is illustrated in Figure 21 below. Here we should think of the
disk D?(R) as being “curled up” inside the disk D?(¢). Then ¢ = 7o (r,s) for
R large has the properties we want. O

Definition 6.30. Let @ be a manifold and let U C N C @) be open subsets.
A smooth embedded homotopy to N rel U is a smooth family of embeddings
1 :Q — Q,tel0,1] so that

(1) o =id;
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D*(R)

D2(e)

Figure 21. Immersion 7.

(2) ¢ is a diffeomorphism onto N; and
(3) w(u) =wufor all w € U and t € [0, 1].

LEMMA 6.31. Let (W,ww), (W,ww) be symplectic manifolds, and let
Q C W be a symplectic submanifold of positive codimension. Let UUN C W
be open sets so that U C N, and define U' := UNQ and N' := NN Q.
Suppose also that U’ is a codimension 0 submanifold of Q with the property
that H?(Q;R) — H?(U';R) is an injection, and suppose Q admits a smooth
embedded homotopy to N’ rel U'. Let 1y : N — W be a codimension 0 sym-
plectic embedding. Then there are a neighborhood V.C W of Q — U’ and a
codimension 0 symplectic embedding v : UUV < W so that t|y = tx|v.

Proof. Let v : Q@ — Q, t € [0,1] be our smooth embedded homotopy
to N’ rel U’. Since U’ C N’ is a codimension 0 submanifold, we can modify
(¢t)¢efo,1] S0 that it is a smooth embedded homotopy to N’ rel Y where Y C N’
is a neighborhood of U’. After shrinking Y, we can also ensure that Y C N’ is a
codimension 0 submanifold and that the inclusion map U’ < Y is a homotopy
equivalence. Let w; := t_,ww for each t € [0,1]. Since Y is a submanifold of
@ and since H?(Q;R) — H?(Y;R) is an injection, there is a smooth family
of 1-forms (ay)e(o,1) on @ satisfying

® w; = wp + doy; and
e ayly =0 for all t € [0,1] and o = 0.

Choose an open subset U C @ so that U’ ¢ U and U C Y. Then by
Lemma 6.28, there is a smooth family of symplectic embeddings

v QU — (W—LN(U),WI/V), t €10,1]

so that v(y) = tn(e1(y)) for each y € Q, v4(y) = tn(y) for all y € U — T’
and vfwy, = wi. Hence by Lemma 6.27, there is a neighborhood V- C W of
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M xT

S<;

boN
v — (|

N

S<j

-
U

Figure 22. Picture of M<f|ij']1‘.

Q — U’ and a codimension 0 symplectic embedding ¢ : U UV — W so that
tly = vl and ¢|g = 1. O

LEMMA 6.32. Fvery partly stratified symplectic subset S C M admits a
weak curled up embedding.

Proof. Let Si,...,5; be the strata of S. Suppose (by induction) that
S<j = Uj<;S; admits a weakly curled up embedding 7 : N < M., for some
je{l,...,1}. Since i(y) = y for each y in a neighborhood of NN(M xT) C M,
there is a neighborhood U C M.y of M x T with the property that

i(y) ify €N,

T:UUN — M, i(y):= .
y ifyeU

is a smooth map after shrinking N by an arbitrarily small amount. Let
fouw : M x T — R U {oo} be the lower semi-continuous function given in
equation (6.18) with N replaced by UUN (see Lemma 6.25). Now fz 5 = 00
along S<;. Combining this with the fact that f;; x is positive and lower semi-
continuous and the fact that S.; x T is compact, we can find a smooth function
f: (M — S<j) x T — Ry satisfying f < fyun so that for any sequence of
points (z;)jen in (M — S<;) x T converging to a point in S<; x T, we have
f(azj) — 00 as j — oo. In particular,

U = (S<_] X T*T) U ]\Z<]?|(M—S<j)><'Ir

is an open neighborhood of (M U T) U (S<; x T*T). See Figure 22.

Define @ := S; x T*T and N := M_p, 5. Define U :==UNQ, N’ =
NN Q. Then U’ is a codimension 0 submanifold of @ with the property that
H?(Q;R) — H?(U';R) is injective. Also U C N, and the manifold @ admits
a smooth embedded homotopy to N’ rel U’. Hence by Lemma 6.31 with U, N,
U', N’ and Q as above and with W = M, W = M., and 1y = 7|y, there are
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a neighborhood V € M of Q — U’ and a codimension 0 symplectic embedding
L: UUV — M.y so that |y = 7]y. Since t(y) = y for all y sufficiently near
M x T, we get that ¢ is a weakly curled up embedding of S<j11 = S<; USj.
Hence we are done by induction on j € {1,...,l}. O

Proof of Proposition 6.20. Let S be our partly stratified symplectic sub-
set. By Lemma 6.32, S x T*T admits a weak curled up embedding. Hence by
Lemma 6.26, S x T*T admits a curled up embedding. Thus by Lemma 6.23,
S is stably displaceable. O

7. Proof of the Main Theorem

By Calabi-Yau manifold, we will just mean a smooth complex projective
variety with trivial first Chern class. We have the following lemma:

LEMMA 7.1 ([Bat99, Prop. 3.1]). Let ® : X --» X be a birational equiva-
lence between smooth projective Calabi- Yau manifolds. Then there are complex
codimension > 2 subvarieties Vx C X and Vi C X and an isomorphism

X -Vx — X Vg

equal to ‘/I\)|X—VX-

Note that the Calabi-Yau condition here is crucial. For instance, if we
take a smooth projective variety and blow it up at a point, then we create a
birational variety whose second Betti number is strictly larger. Even though
the proof of Lemma 7.1 is contained in [Bat99, Prop. 3.1], we give a more
detailed version of the same proof for readers who may not be experts in
algebraic geometry. There is also a more general version of this lemma (see
[KMO98, Th. 3.52]), which proves the same statement for varieties which are
“minimal” in some sense.

Proof of Lemma 7.1. Morally, the idea of the proof is as follows If the
region where ® is not a submersion had complex codimension 1, then d would
contract a codimension 1 subvariety Z to a lower dimensional variety; see
Definition 6.14. One can then show that such a contraction would ensure that
c1(X) or ¢ (5(\ ) is non-trivial, giving us a contradiction. A similar argument
also applies to the inverse &D_l, and this gives us our result. Therefore our
proof comes in two parts:

Part (1) showing that if the region where ® is not a submersion has codimen-
sion less than 2, then ® contracts a divisor;

Part (2) showing that ¢1(X) or ¢; (5(\) is non-trivial due to the existence of
such a divisor.
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Part (1): Since X is a projective variety, we have that X is a closed sub-
variety of CPY for some N € N. Let ¢ : X < CPY be the inclusion map.
Consider the rational map f = ¢ o ®. In any holomorphic chart z1,...,z,
on X, the map f has the form [¢o(z1,...,2n),..., 0N (21, .., 2,)] in homoge-
neous coordinates on CPY where ¢, ..., ¢n are holomorphic functions. This
local description of f does not change if we multiply ¢g, ..., ¢n by a common
holomorphic function. In particular, if ¢g, ..., ¢n all vanish to the same order
along some codimension 1 subvariety, then we can remove a common factor
from all of these holomorphic functions so that ¢;'(0)N---N¢x'(0) has codi-
mension 2 or higher after shrinking the chart ([GH94, Ch. 0, §1]). As a result,
we get that there is a codimension > 2 subvariety Vy - X so that ® is well de-
fined outside Vx. Now suppose that d:X - Vx — X is not an isomorphism
onto its image. Then by [Shal3, Th. 2.16], there is a codimension 1 subvariety
Z C X — Vx which is contracted by ® as in Definition 6.14.

Part (2): Let Vx and Z be as above. We now wish to show that the
existence of the variety Z implies that either ¢;(X) or ¢; ()? ) is non-trivial,
therefore giving us a contradiction. Consider the relative canonical bundle
Ky = KX ®<T>*/<;A on X —Vx where kx and Ky are the canonical bundles of

X
X and X respectively (Definition 6.14). Then & can be identified with the

X/X
bundle Hom(x%, @*HA) where k% and /i} are the anti-canonical bundles of
X and X respectively; see Definition 6.13) Under this identification, we have

a section s of Kk, & given by the Jacobian of &3, which is the map sending

X/
vi A Avp € Ky to Dm(vi) A -+ A Dr(vy,) € (/IS*H} This holomorphic
section s vanishes along Z. Now since Vx has complex codimension > 2,
we have by using Harthog’s theorem and the Cauchy integral formula [GH94,
Ch. 0, §1], that the bundle r s and the section s extends to a holomorphic
bundle L over X together with a holomorphic section § of L. We have that
c1(L) is Poincaré dual to [(§)] by ([GH94, Ch. 1, §1]), where (3) and the
homology class [(§)] are given in Definition 6.14. Choose a Kahler form w
on X. Then w" ! is a positive volume form on the smooth locus of any
codimension 1 subvariety. Therefore the de Rham cohomology class [w"~!] on
X pairs non-trivially with the homology class [($)] since (3) is a non-trivial
effective divisor; see Definition 6.14. Hence ¢;(L) is non-zero. Since Vx is
a complex codimension > 2 subvariety, we get that the natural restriction
map H%(X;Z) — H?*(X — Vx;Z) is an isomorphism. This implies that
Cl(IQX/Xt) # 0in X — Vx. Since cl(nx/)?) = c1(kx|x-vy) — P'e1(kg), either
c1(X) or o1 (5(\ ) is non-zero giving us a contradiction. Hence ® maps X — Vi
isomorphically to its image.
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Similar reasomng can be used to s show that there is a codimension > 2
subvariety VA C X so that 1 maps X VA isomorphically to an open subset
of X containing X — Vx. Hence Vg := X - <I>(X Vx) has codimension > 2
and our lemma holds. O

We have the following immediate corollary of Lemma 7.1:

COROLLARY 7.2. Let X, )?, EI;, Vx, Vg and @ be as in Lemma 7.1. Let
D C X — Vx be a compact submanifold possibly with boundary, and let R be
any ring. Then there is a natural identification of homology and cohomology
groups

(7.1) 5 Hy(X — Vg — ®(D); B) = Hy(X — (D); R),
o : H2(X, ®(D); R) — H*(X — Vg, ®(D); R)
(7.2) % H2(X — Vy, D; R) <= H2(X, D; R).

Remark 7.3. From now on we will fix the notation ZI;, P, X, 5(\, Vx and V.
Also we will not distinguish between Hay(X —D; R) and H» ()/(\—QD(D); R) (resp.
H?(X,D;R), HQ(E(\, ®(D); R)) for each compact submanifold with boundary
D C X — Vx and each ring R.

The following lemma finds for us an appropriate common Zariski dense
affine variety on X and X. This lemma will also be used to construct appro-
priate Kéahler forms on X and X which agree on a large compact subset of this
common affine subvariety. We will use the notation from Definition 6.14.

LEMMA 7.4. Let wx and wg be Kdhler forms on X and )A( and suppose
that their corresponding de Rham cohomology classes admit lifts to integral
cohomology classes [wx] € H*(X;Z) and [wA] € H2(X Z) respectively. Then

there are effective divisors A on X and A on X and an integer p > 0 so that
(1) [A]" = plwx] and [A]" = plogl;
2) Vx Csupp(A), Vi C Supp(A);

(2)
(3) ®(supp(A) — Vx) = Supp(A); and
(4) A:= X — supp(A) and A := X - supp(A) are affine varieties.

Proof. By [GH94, Ch. 1, §2], we can find a collection Ay,...,A; of ir-
reducible codimension 1 subvarieties of X so that [Aj]*,... [A;]* generates
HYY(X)NH?(X;Z) and so that [Zl]*, e [/A\l]* generates Hl’l(j(\) ﬂHZ(E(\; Z)
where & = ®(A; — Vx) for each i = 1,...,1l. We can enlarge this collection of
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varieties so that (2) is satisfied. Choose a positive integer N > 0 large enough

so that
l !

1 N 1 1k
lwx] =+ ;[Az‘] o lwgl- ;[Az‘]
represent Kahler forms. Such an N exists since being Kéahler is an open con-
dition among (1, 1)-forms with respect to the C%topology. By the Kodaira
embedding theorem [GH94, Ch. 1, §4], we can find a positive integer m and
codimension 1 subvarieties T on X and Y/ on X so that
l l
(7.3) [Y]* = mNfwx] —m Y [AJ*, X" =mNwg] —m > [A]".
i=1 i=1

—~

Let T := O(T - Vx) and Y = &1 (Y — V). Since [A1]*, ..., [Af]* generates
HY'(X)N H*(X;Z), and [Kl]*, ce [El]* generates H1(X) N H2(X;7Z), we
have by [GH94, Ch. 1, §2] that there are integers (a;)!_,, (@;)!_; so that

l l
(7.4) Z ai[A] = [T, Z ai[A] = [X).

Now choose a positive integer m’ greater than mauxﬁz1 a; and maxéz1 a;. Define
! !
A=m'T+ 7T + Z(m'm —a)l;, A=T+m'Y + Z(m'm —a;)A;.
i=1 =1

o~

Then by equations (7.3) and (7.4), we have that [A]* = m'mNwx] and [A]* =
m'mN[wg], and hence (1) holds with u =m/mN. Also A and A are effective
divisors with support
! !
supp(A) =T UY' U U JAVE supp(Z) =TUuT U U Ki,
i=1 =1

and hence (2) and (3) are satisfied. Finally A and A are affine varieties by the
Kodaira embedding theorem [GH94, Ch. 1, §4]. O

We will now prove our main result (Theorem 1.2). Here is a statement of
this theorem:

Let wx and wg be Kdihler forms on X and X respectively whose coho-
mology classes lift to integer cohomology classes. Then there exist a graded

AEX’wf—algebm Z and algebra isomorphisms

o % W =~ * W
7@ oxox A =5 QH*(X; ALY, Z ® yexox At — QH™ (X5 Ag™Y)

over the Novikov rings A* and A%? respectively, where A?I;X wX AR* and A%?
are the Novikov rings given in Example 2.57.
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Proof of Theorem 1.2. Let n be the complex dimension of X. Let A, /A\
u, A and A be as in Lemma 7.4. By the divisor line bundle correspondence
[GH94, Ch. 1, §1], there are holomorphic line bundles L — X, L — X
with holomorphic sections s and s respectively so that we have an equality
of divisors (s71(0)) = A and (571(0)) = A respectively. Choose Hermitian
metrics | - | and |- |/ on L and L respectively so that —dd®p = pwx|a and
—dd°p = pws| 7 where p := —log(|s|) and p := —log([3]’).

By Corollary 6.21, there exists a constant C' > 0 so that X — K is stably
displaceable inside the symplectic manifold (X, uwx ) where K := p~1((—o0,C]).
Also by Lemma 6.3 we can enlarge C' so that the interior of K contains the
skeleton of p (Definition 6.4). Therefore by a Moser argument ([MS98, Exer-
cise 3.36]), there is a contact cylinder Cy C A inside the symplectic manifold
(X, pwx ) whose associated Liouville domain is D4 := K. Define Cy = d(Cy)
and 54 = @(D4).

By Proposition 6.7, there is an index bounded contact cylinder C3 =
[1 —e3,1+ €3] x C3 C A inside the symplectic manifold (X, pwx) so that the
interior of the associated Liouyville domain D3 contains D4 and is contained
in A. Define Cs := ®(C3) and D3 := ®(D3).

By Corollary 6.5, there exists a partially algebraic plurisubharmonic func-
tion p: A— R, a compact set K’ of A containing D3 U C3 so that

(1) *( v)’l)gucvg - p’DsUég;
(2) p=k1(p—log(ka)) outside ®(K') for some large k1, k2 € N; and
(3) the skeleton of ®*(p) is equal to the skeleton of p.

Define w’y := pwx and

AP R inside X — ®(K’)
X7 ] —ddp otherwise '

By Corollary 6.21, there is a compact subset K C X whose interior con-
tains ®(K') so that X — K is stably displaceable in (X, w’A). By Proposition 6.7,
there exists an index bounded contact cylinder C = [1 —€61+ e] x C in the
symplectic manifold (X w)?) which is disjoint from UJGSA and K whose asso-

ciated Liouville domain D is contained in A and whose interior contains K. By
the same proposition, we can also assume that C contains a contact cylinder Cl
whose assomated Liouville domain D1 contams K and so that a Liouville form
associated to C’1 is the restriction of —d°p to D. By a Moser argument ([MS98,
Exercise 3.36]) we can construct contact cylinders C’o =[1- €0, 1 1+ 60] X Co
and 02 inside (X w)?) whose associated Liouville domains are Do - DuC

and Dy = D — C. That is, they have boundary equal to {1 + ¢} x C' and
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{1 — €} x C respectively. Also we can assume 53 C 52 cDC 50. We define
Ci =3 1(C)), D; := & 1(D;) for i = 0,1,2 (see Figure 23).

Figure 23. Liouville domains in X and X.

Let ¢ : A — A be the time t flow of —Vp for all t > 0. Since the
skeleton of p is contained in the interior of Dy, we get that the skeleton of p
is contained in the interior of Dy by (3). Therefore we have that there is a
constant T > 0 so that ¢T(D3) C D4 for some T" > 0. Since the inclusions
D4 C Dl, ¢T(D3) C D3 and Dg C Do induce isomorphisms

H*(X,Di;R) = H*(X, Dy;R),  H*(X, D3;R) = H*(X, ér(Ds); R),

HQ(;Y\, Eo;R) = HQ(A/Y\, 52;R)7
we get that the restriction map HQ(J/(\, 5¢;R) — HQ()/(\, Ej;R) is an iso-
morphism for each 0 < ¢ < j < 4. Also we have natural isomorphisms
H2(X,Dy;R) — H2(X,D;;R) for each i = 0,1,2,3,4 by Corollary 7.2. So
from now on we will identify all of these cohomology groups.

Since the quantum cohomology groups and the associated Novikov rings
in the statement of our theorem only depend on wx and wyg up to scalar
multiplication and up to adding an exact 2-form, we can just replace wx and

wy with Wy and w’)?. Hence from now on, we will assume wy = w’ and

X
“Yx

=wl.

LetXCJ € 02(X) be a Cy-compatible 2-form which is equal to 0 inside D3
and wx outside D3 U ([1,1 4 €3/2] x C3). Let ' € (22( X) be a Cy-compatible
2-form which is equal to 0 inside Dy and wy outside DoU([1,14€0/2] x Cp). In
the unlikely event that [@] € H?(X;R) is proportional to [&] € HQ(X, R), w:
rescale @’ so that these cohomology classes are equal. (This is done to ensure
that the cones constructed below satisfy condition (1) of Definition 2.58.) Let
Q: C H*(X,D3;R) xRxR = H2(X DO,R) X R x R be the cone spanned by
([@],1,1) and ([@'],1,1). Let Q_ C H?(X, D3;R) x R x R be the cone spanned
by ([@],0,1), ([@],1,1) ([@'],0,1) and (@], 1,1). Let Q" ¢ H?(X,Ds;R) x

R x R, (resp. Qio C H?(X,D3;R) x R x R) be the one-dimensional cone
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spanned by ([@],1,1) (resp. ([&@'],1,1)). Let Q(_j?’ C H?*(X,D3;R) x R x R,

(resp. Q% c H2 (X, D3;R) x R x R) be the two-dimensional cone spanned by
([@],0,1) and ([w],1,1) (resp. ([&'],0,1), ([&'],1,1)).
Since the interior of D3 contains Dy = K, we have that X — Dj3 is stably

C3
displaceable inside (X,wx), and hence we have an isomorphism of AHC§+ =
Ag*-algebras

(7.5) SHE&Q?Q?) (D3 C X) = QH*(X,A%Y)
and

: sl * _
(7.6) lim Jim SHég,Q§3,Qf3(D3 cX)=0

by Theorems 5.10, 5.12 and Propositions 5.4 and 5.24. Similarly, we have an

Co .
isomorphism of Ag* = A;;X -algebras

(77) SH2'\07Q§07QJC:O (D[) C X) & QH*(X, AKX)
and

: s 1 * Y T\
(7.8) hgngn SH&,Q?O,QfO (Dp C X) =0.

By PrOpOSitiOD 5.32 applied to (a)i:0,1,2,3,4 and (51')1':071’2,3’4, we have that
the transfer map

* ey ¥y = * FaY v
(79) SHé\O’Q?O’QfO (D() C X) — SH@B} §07 fo (Dg C X)
is an isomorphism. Also by Proposition 5.1, we have an isomorphism
(710) SH/C'\O7Q§07 fo (D3 C X) = SHas’Qéo’ ;C:() (D3 C X)
Define
Z = SHgg,Q_,Q+(D3 C X).

Since ®(D3) = 53 and since all 1-periodic orbits and Floer trajectories used
to define Z can be made to avoid Vx and V5 by the ideas in Section 9 due to
the fact that they are unions of submanifolds of real codimension > 4, we have
an isomorphism of AEX’M’? = AH%*—algebras

(7.11) Z=SH , , (D3 X).

Since both ARX and A?Iz’? are flat AEX’W’? -modules by Proposition 11.2, by
Theorem 5.39 combined with equations (7.6) and (7.11), we have isomorphisms

w ~Y *
(712) Z ®A;X1W§ AKX = SHCV’-S’QC_?:"Qf?’ (D3 C )()7
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(713) Z ®AH";XYW§ AKX = SHEV\?”Q?S’ f3 (Dg C X)
Therefore our theorem now follows from equations (7.12) and (7.13), O

8. Appendix A: Hamiltonians and almost complex structures
compatible with contact cylinders

This section contains some lemmas allowing us to perturb Hamiltonians
so that they become non-degenerate, while retaining certain properties. It also
has a lemma telling us that a certain action spectrum has measure 0.

Definition 8.1. Let H be a Hamiltonian on M. Let I' be a collection
of 1-periodic orbits of H. The associated fixed points of I is a subset of M
denoted by

I'(0) :={z € M : 3 v € I" such that x = v(0)}.

We say that I is isolated if there is a neighborhood Nt of I'(0) so that for
each 1-periodic orbit « satisfying «(0) € Ny, we have v € I'. We call Nr an
1solating neighborhood of T'.

LEMMA 8.2. Let H = (Hy)eT be a Hamiltonian on M, and let T be a set
of 1-periodic orbits of M which is isolated with isolating neighborhood Ny. Let
N be a neighborhood of T'(0) whose closure is contained in Np. Let H(N, H) be
the space of Hamiltonians K = (Ky)ier on M satisfying Ht|¢£1(N) = Kt|¢£1(N)
for all t € [0, 1] equipped with the C* topology, and let H**8(N, H) C H(N, H)
be the subset of those Hamiltonians with the property that every 1-periodic orbit
~ not in T is non-degenerate. Then there exists a sequence (H;);cn of elements
in H"8(N, H) converging to H.

Proof. Let N’ C Nr be an open set so that N ¢ N’ and N’ ¢ Nr. By
[HS95, Th. 3.1], there is a sequence of non-degenerate Hamiltonians (H;);en
C* converging to H, where H; = (Hl'7t)t€']r for all i € N. Let p: M — [0, 1]
be a smooth function equal to 0 inside N and 1 outside N’. Define H;; :=
() (p)H; + (1 — () u(p))H, for all t € T, and define H; := (H;)er- By a
compactness argument, we have for all ¢ sufficiently large that any 1-periodic
orbit v of H; satisfying v(t) € ¢ (N’) for some t € T also satisfies vy €
I'. Therefore all 1-periodic orbits v of H; not contained in I' satisfy ~(t) ¢
' (N') for each t € T and hence are non-degenerate orbits of H;; for all i
sufficiently large. Therefore such orbits are non-degenerate orbits of H;; for
all ¢ sufficiently large. ([

LEMMA 8.3. Let C be a contact cylinder, and let (a_,a) be a C-action
interval. Then HT™8(C,a_,a ) is an open dense subset of KT (C,a_,a,); see
Definition 2.58.
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Proof. Openness is clear; we just need to prove density. Let H’ (C’ ,A_,ay)
C J{T(C' ,a_, a4 ) be the subset consisting of Hamiltonians whose average slope
along C' is not in the period spectrum of C'. This is a dense subset since the
period spectrum of both contact cylinders has measure 0 in R (see [Pop93,
Prop. 3.2]).

Now there are two cases to consider. The first case is when (a_,a) is
small, and the second case is when (a_,a) is not small. In the first case,
H'(C,a_,ay) NHT™8(C a_,a,) is dense in H'(C,a_,a;) by Lemma 8.2 ap-
plied to each H € H'(C,a_,a;) with ' = ) and Ny, N small neighborhoods
of [1 +¢/8,1+¢/2] x C containing no fixed points of ¢7. Hence our lemma is
true if (a_,ay) is small.

Now suppose (a—, a4 ) is not small. Let D C M be the Liouville domain as-
sociated to C. Then H'(C,a_,ay)NHT™8(C a_,ay) is dense in H'(C,a_,a,)
by applying Lemma 8.2 to each H € H'(C,a_,a) with ' = M — (DUC) and
N, Nr a small neighborhood of I'U ([1 +¢/8,1 4+ €¢/2] x C') combined with the
fact that the capped 1-periodic orbits whose associated 1-periodic orbit has
image in I' are not contained in Fgaﬂ% (H) by equation (2.16) combined with

equation (2.6). O

Definition 8.4. Let H be a Hamiltonian. The action spectrum of H is the
set

{Amp(v)([w],1,1) :vis a capped 1-periodic orbit of H}

(see Example 2.11).

LEMMA 8.5. The action spectrum of any Hamiltonian is closed and has
measure 0.

Proof. We will first prove that the action spectrum of a Hamiltonian H
has measure 0. Let A C M x M be the diagonal, and let N C M x M be a
neighborhood of A so that (N, —w®w) is symplectomorphic to a neighborhood
of A in T*A where such a symplectomorphism is the identity along A (see
[MS98, Th. 3.33]). Let A be the canonical 1-form on T*A, and let Ay be its
restriction to N. Let v be a capped 1-periodic orbit of H with associated
1-periodic orbit 7, and let U C M be a simply connected open neighborhood
of 7(0) so that the graph T' of ¢!|; in M x M is contained in N and so
that T' is transverse to the fibers of T*A. (This can be done after perturbing
the fibration T*A by a small Hamiltonian flow fixing A.) Then since ¢{{ is
a symplectomorphism and U is simply connected, there is a unique smooth
function f:I' — R so that

e f(7(0),7(0)) = 0; and
o df = An|r.
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Let Oy be the set of capped 1-periodic orbits of H whose associated 1-periodic
orbit starts in U. Then each orbit in Oy starts at a critical point of f. Let
Cy C R be the set of critical values of f. Then for any v9 € Oy, we have that
Arp(0) (], 1,1) = —f(30(0),70(0)) + A p(3)([w], 1,1) + k for some k € Z.
(This is because the de Rham cohomology class of w admits an integral lift.)
As a result, every capped 1-periodic orbit of H in Oy has action contained in a
translation of Ugez(Cy + k) which has measure 0 by Sard’s theorem. Since the
set of fixed points of ¢’ can be covered by a finite number of such subsets U,
we get that the action spectrum of H has measure 0.

Now we wish to show that the action spectrum of H is closed. Let a; be a
sequence of points in the action spectrum of H which converge to a € R. Since
all 1-periodic orbits of H are contained in a compact set we have a 1-periodic
orbit 7 of H and a sequence of capped 1-periodic orbits (7v;)ien = (Fi, ¥i)ieN
so that Ag p(vi)([w],1,1) = a; and so that ;0 C°° converges to Vo. Since the
actions of these capped orbits (7;);en are bounded and since their associated
1-periodic orbits converge to 7o, there is a capped 1-periodic orbit v, and
a sequence of Ho(M;7Z) classes (v;)ien satisfying w(v;) = 0 for all i« € N so
that (v;#v;)ieny converges to 7 in the natural topology on capped loops as
described in Definition 2.1 and where # is given in Definition 2.61. Hence
(a;)ien converges to App(Veo)([w],1,1) = a. Hence the action spectrum is
closed. O

9. Appendix B: Avoiding codimension > 4 submanifolds.

In this section we will show that families of Floer trajectories intersect any
countable collection of submanifolds transversely. Also, since we are working in
the semi-positive setting, we also need low dimensional families of such Floer
trajectories to avoid holomorphic spheres. (This is needed for compactness
to prevent bubbling.) These are standard arguments whose main ideas are
contained in [MS04, §6.3 and 6.7] for instance. We will mainly cite and use
the Floer theoretic machinery developed in [Sch95]. Throughout this section,
we will fix

e a (possibly empty) contact cylinder C' = [1 —¢,1 +¢] x C € M (Defini-
tion 2.3);

e a Riemann surface ¥ with n_ negative cylindrical ends and ny positive

cylindrical ends labeled by finite sets I_ and Iy respectively Definition 2.13);

a Y-compatible 1-form 8 € Q'(X) with weights (k;j)jer_ur, at the corre-

sponding cylindrical ends (Definition 2.14);

a (%,C)-compatible family of Hamiltonians H := (H,)sex with limits

H# .= (Hj)jel_u1+ as in Definition 2.14;

a tuple J# := (J7)er 1, of elements of JT(C) (Definition 2.12); and
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e I'(H) the set of tuples (77);er_ur, of non-degenerate capped 1-periodic or-
bits of (k;H7);jer_ur, respectively whose associated 1-periodic orbits are
disjoint from V so that if ¥ #% R x T, then at least two such 1-periodic
orbits have distinct images (Definition 2.1).

Definition 9.1 ([Sch95, Def. 2.1.2]). Let ¥ be a manifold with boundary
obtained by extending each cylindrical end ¢; : I_ x T < ¥ (resp. ¢; : I x T
— ) of Ltoz;:[-00,0] x T X, i€l (resp.7;: [0,00] x T — %, i € I).
We get a smooth structure on this manifold by extending the smooth charts

5
Im(¢;) — (—1,0] x T, s,t—)(,t), 1€l
() = (CLOXT, () — (==

S
Im(y;) —> [0,1) x T, (s,t —><7t> icl

on X to charts
Im(s) — [-1,0] x T, Im(¢) — [0,1] x T
respectively on 2.

Definition 9.2 ([Sch95, Def. 2.1.5]). Let k =0 or 1. Let 7 : E — X be
a C* vector bundle, and let ¢; : 1! E — (I x T) x R¥ be a C¥ trivialization
which extends to a C* trivialization of 7} E. Let II; : (I+ x T) x R¥ — R¥ be
the natural projection map for each ¢ € IL. Define

WeP(E) == {0 € WEP(Bls) : o ¢ioo o € WHP(Iy x T,RY) Vie I}

We define LY (E) := Wzo’p(E). If D C E is a subset of E, then we define
WEP(D) == {0 € WEP(E) : Im(0) € D} and L2 (D) :== WaP(D).

These are Banach spaces which do not depend on the choice of trivializa-
tions ¢;, @ € I_ U I by the paragraph after [Sch95, Def. 2.1.5].

Definition 9.3 ([Sch95, Def. 2.1.6]). Let v:= (vi)ier_ur, = ((%i, ¥))icr_ur,
be finite collection of capped loops as in Definition 2.1. A smooth map w :
Y — M converges to (Vi)ier_ur, if ti(£00,t) = 3;(Fi(t)) for all i € I, t € T,
and the surface obtained by gluing the surfaces 7;, ¢ € I_ U Iy to u is null-
homologous. Let C3° (X, M) be the space of such maps equipped with the C*
topology.

Fix a Riemannian metric on M, and let D C T'M be an open neighborhood
of M so that exp |pnr,ar is a diffeomorphism on to its image for all x € M,
where exp is the exponential map with respect to this metric. Define

(9.1) PLP(E, M) := {expov € C°(, M) : v € Wy’ (h*D), h € C*(Z, M)}

for all p > 2.
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The space (9.1) is a Banach manifold by [Sch95, Th. 2.1.7] with charts
mapping to Wy (h*D) for all h € O (%, M).

Definition 9.4. Let m : E — B be a Banach vector bundle. Let s : B— F
be a C! section, and let b € s~1(0). We say that s is transverse to zero at b if
the linear map

(92) TbB i> Ts(b)E ﬂ) ker Dﬂ—’s(b)
is surjective, where
pr: TE|p =TB @ (ker Drr|g) — ker Dr|p

is the natural projection map. We say that s is transverse to 0 if it is transverse
to 0 at every point b € s71(0). Such a section is Fredholm if the map (9.2) is
Fredholm.

Definition 9.5. For each J = (J,)sex € 3% (J#,C), we define M7 to be
the vector bundle over ¥ x M whose fiber at (o,) is the space of I(o.2)
anti-linear maps from 7,% to T, M.

PROPOSITION 9.6 ([Sch95, Th. 2.2.5, Prop. 2.3.1, Th. 3.1.31]). Let v €
T(H) and J = (J,)oes € 3°(J#,C). Then the set

(9.3) €1y 1= Uyeptogs ap {ud x LE((idg, u)*M7)

s naturally a smooth Banach bundle over fP}Y’p(E, M) for all p > 2. Also if j
is the natural complex structure on 3., then the section

(9.4) 0yt PLP(S, M) — €44,

0y (u)(0) == (du+ Xpg, ®B) + Jyo(du+ Xy, ®B)oj VoeX

is well defined (i.e., 0j(u) is an element of L% ((ids,w)*M7) for all u € P)
and 01 is a smooth Fredholm section of € ..

Definition 9.7. An element J € J¥(J#, C) is H-regular if the Fredholm
section 0 is transverse to zero for each v € I'(H).

Note that if the Hamiltonian H only has degenerate one periodic or-
bits, then every element J € §*(J7, C’) is H-regular by the definition above
since I'(H) is empty. We only care about Floer trajectories connecting non-
degenerate 1-periodic orbits.

THEOREM 9.8 ([Sch95, Ths. 4.2.2 and 3.3.11]). If J € J%(J#,C) is H-

regular, then M(H, J,vy) = 5;#(0) This set is a smooth finite dimensional

submanifold of :P};p(z, M) of dimension k, where k is defined in equation (2.9)
for each v € T'(H).
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Definition 9.9. Let f; : W; — W, j = 0,1 be two smooth maps. We say
that fy is transverse to fy if, for each wy € Wy, wy € W satisfying fo(wo) =
fi(w1), we have that the span of the subspaces D fo(Tw,Wo), D fi(Tw, W1) is
Tfo(wo)W-

Definition 9.10. For each v € T'(H), we say that J = (J,)sex € 37 (J#,C)
is (H,V,v)-regular if it is H-regular and if there is a countable collection of
smooth maps f; : W; — ¥ x M, i € N where dimg (W;) < 2n — 2 for each ¢
so that
(1) V C Uienfi(Ws);

(2) every J,-holomorphic map u : P! — M has image contained in ({o} x
M) N (U, fi(W;)) after identifying {o} x M with M in the natural way for
each o0 € X; and

(3) the evaluation map

ev: X xXM(H,J,v) — X x M, (o,u) — (o,u(0))

is smooth and transverse to f; for each i € N.

We say that J is (H,V)-regular if it is (H,V,~)-regular for each v € I'(H).

We define §>8(H, J#,C) c J(J#,C) to be the subspace of (H,V)-regular

families of almost complex structures.

We wish to show that J>"&(H, J#, C) is ubiquitous in J(J#, C') (Proposi-
tion 2.19). In order to do this we need to define an appropriate space of almost
complex structures.

Definition 9.11 ([Sch95, Defs. 4.2.6, 4.2.10, 4.2.11]). Let J € J*(J#,C).
Let U C X be a relatively compact open subset, define

U:=Ux (M~ ([14¢/8,1+¢/2] x C)),
and let m: X x M — M be the natural projection map. Let
Sy={Ae€End(n*TM): AJ+ JA =0}

be a bundle over ¥ x M, and let C°(Sy) be the space of C* sections A of

Sy so that all the derivatives of A vanish along > x V and ¥ x M — U. Let
| - || be a metric on M given by 1(w(-, J(-)) + w(J(-),-). Let € :== (&)ien be a
sequence of rapidly decreasing positive constants, and define

cu(Sr) = {A € CF(5)) « [|Alle < oo},
where [|Alc :== 3,cn €l VFA| coming from a product metric on ¥ x M. Define
Dy C2(Sy) — I7(J*,C), Dy(A) = Je,
and define
Je(Jlv) = {Ds(A) : A€ CZ(Sy), |IAll < e} € IZ(I7,C).
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By the ideas in [Sch95, 4.2.7, 4.2.9, 4.2.10] we have that CZ{;(Sy) is a

Banach space with Banach norm | - || and ®;' embeds J.(J|i) as an open
subset of this Banach space making it into a Banach manifold for e small
enough. There are a few minor differences between Definition 9.11 and [Sch95,
Def. 4.2.11]:

(1) our almost complex structures are not necessarily compatible with w, but
they do tame w;

(2) our almost complex structures and all of their derivatives agree with those
of J along some regions of X x M; and

(3) the formula for the map ®; is different.

These differences play no important role in the proof of the fact that J.(J|y) is a
Banach manifold. Also it makes no difference in the proofs of Propositions 9.13,
9.15 and 9.17, which are just modified versions of [Sch95, Prop. 4.2.4], [Sch95,
4.2.18] and [Sch95, Prop. 4.2.5] respectively. Now one of the issues with Jc(J|r)
is that it is not a topological subspace of §*(.J7#, C ). However we wish to prove
theorems with respect to the topology of §=(J#,C). Section 7.7 from [Wen16]
addresses this issue. Therefore by [Sch95, Prop. 4.2.5] (see also Proposition 9.15
below), we get the following proposition:

PRrROPOSITION 9.12. The subspace of H-regular almost complez structures
in 3 (J%,C) as in Definition 9.7 is ubiquitous.

We now wish to prove the same thing for (H,V')-regular almost complex
structures. In order to do this we need some more propositions and lemmas.
Note that every element J = (J,)gex in §*(J#, C) extends to a smooth family
of almost complex structures (J,), 5 since J is translation invariant in the
cylindrical ends at infinity. Hence, from now on we will define J, to be the
limit as ¢/ € ¥ tends to o of J, for each 0 € 9X. We will also use such
conventions for other families of objects over ¥ such as § and H.

PROPOSITION 9.13 ([Sch95, Prop. 4.2.4 and Th. 3.1.31]). Let U C X be
a relatively compact open set, € a sequence of rapidly decreasing constants,
J e JZ(J#,C) and v € T(H). Let B := J.(J|y) and P := PLYP(S, M), p > 2,
where ﬂ%’p(E, M) is defined as in equation (9.1). Then the set

(9.5) € = Uy yenxpl(Ju)} x L& ((idss, u)* M7

is naturally a smooth Banach bundle over B x P whose fiber over (J',u) is
L2 ((ids, u)*M7"). Also

pup : BXP — &, Dpup(J u) =0y, (u)

is a smooth section of &, where 5(]77 is defined in equation (9.4).
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From now on, until the proof of Proposition 2.19 below, we will fix U, e,
J, v, B, P, € and dpye from the proposition above.

Definition 9.14. Define 8§ C B x P to be the open subset of pairs (J',u) €
B x P satisfying
(9.6) UZuw (VU(l+e/8,1+¢/2] xC))U (S —supp(du — 3@ Xg)),
where supp(du — 8 ® Xp) is the support of the distribution du — Xy ® 5 €
L7 (X ® u*TM) where

X @ Blo =X, luo) ®Ble Vo €.

We also define D := 5%%;(0) N8 and let
(9.7) Iy:D— B
be the natural projection map.

PRrROPOSITION 9.15 ([Sch95, Prop. 4.2.18 and its proof]). Suppose that

(J',u) € D. Then the section dpxp above is transverse to 0 at (J',u). Also
the natural linear map

Dgf X ¢ T . * 4
(98) DJ’,u‘TJ/B : TJ/‘B = TJ/'B x 0 _B)y T(J/7U)8 L Lg((ldi, u) MJ )

linearizing Opxp at (J',u) has dense image.

Hence by combining the proposition above with the last part of Proposi-
tion 9.6 and the implicit function theorem, we get the following corollary:

COROLLARY 9.16. D is a Banach submanifold of S.

PROPOSITION 9.17 ([Sch95, Th. 3.3.11, Th. 4.2.2, Prop. 4.2.5 together
with its proof]). The map Ilg in equation (9.7) is Fredholm. The subset
(II)™e C B of regular values of g is ubiquitous as in Definition 2.18, and
Ha_l(J’) 18 a smooth manifold of dimension k, where k is defined in equa-
tion (2.9) for all J' € Ilg.

By the Sobolev embedding theorem we can think of the tangent space
T, P at a point u € P naturally as a subspace of CO(u*TM). Let tp : T,P —>
C°(u*TM) be the natural inclusion map. Then we have the following defini-
tion:

Definition 9.18. For each u € P and o € %, define the Banach subspace
TuoP C T,P to be the subspace consisting of elements v € T,7P satisfying

vp(v)(0) = 0.
LEMMA 9.19. Let 0 € X, and let (J',u) € D. Then the map

Do x . % ’
Do TpB x TyoP 5" Ty € - LA ((idsg, u)*M”")
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18 surjective.

Proof. The map
DOg . % ’
Dy uloxt,e 1 0 x TP "3 Ty oy € 2 L& ((idss, u)* M)
is Fredholm by Proposition 9.13, and hence the map Dy, o |oxT, , ¢ is Fredholm
since Ty, P C T,P is a subspace of finite codimension. This implies that the
image of Dy, , is closed. Such an image is also dense by the last part of
Proposition 9.15 and hence is surjective. O

LEMMA 9.20. The natural map
E:YxD— M, E(o,(J, u):=u(o)
15 C'°.

Note that if we extend this map to B x P in the natural way, then such a
map is not even C'.

Proof. By [Sch95, Prop. 2.5.7], we have that uw € C* (3, M) for all (J', )
€ D. By [MS04, Prop. B.4.9] combined with the Sobolov embedding theorem
[MS04, Prop. B.1.11], we have that for each (J',u) € D, and each compact codi-
mension 0 submanifold K C ¥, the natural map from 7| ;s ,,)D to T,C" (K, M)
is a well defined continuous map between Banach spaces. Since charts on map-
ping spaces are constructed using the exponential map of a metric on M, this
implies that the natural map from D to C"(K, M) is smooth for each compact
codimension 0 submanifold K C ¥ and each » > 0. Therefore our lemma
follows from the fact that the evaluation map

K x C"(K,M) — M

is C" for all compact codimension 0 submanifolds K C ¥ and all » > 0 ([Kri72,
p. 78]). O

LEMMA 9.21. Let o € X. Then the map
Elioyxp : D — M,  Elipyxp(J' u) = u(o)
1S a submersion.

Proof. Let (J',u) € D, and let W € T, ,yM. Choose w € T,P so that
w(o) = W. Since Dy, » from Lemma 9.19 is surjective, there exists (Y7, w1) €
TypB x TyoP so that Dy (Y1, w1) = Dy, (0,w), where T, ;P is defined in
Definition 9.18 and where D , is the composition

05 5 1 . /
Dy TyB x Ty® "2257 T 0 € 25 L2 ((idss, u)* M),

Therefore (=Y, w —wi) € Ty, D and (w — wy)(0) = W, and hence the map
E|{s1xp is a submersion. O
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LEMMA 9.22. The map
(9.9) ev: Y xD—Xx M, F(o(J, u)):=(o,u(o))
s smooth and a submersion.
Proof. This follows directly from Lemmas 9.20 and 9.21. O

LEMMA 9.23. Let f := (fi)ien be a countable collection of smooth maps
fi 1 Qi — X x M, i€ N. Let J(J|u,f) C B be the subset consisting of
elements J' which are H-regular with the property that ev|H£1(J,) s transverse
to fi for each i € N, where ev and Ilg are defined in equations (9.9) and (9.7)
respectively. Then Je(J|u, f) is ubiquitous in B.

Proof. Let ﬁl =ev*f;: @l — 3 X D be the pullback of f; for each ¢ € N.
(This exists by Lemma 9.22.) Since ¥ x M and @; is finite dimensional, we
have that ﬁl is a Fredholm map. Hence the composition P o ﬁl is Fredholm
by Proposition 9.17, where P : ¥ x D — B is the natural projection map.
Hence the set of regular values R; of P o IL; is ubiquitous in B. The subset of
H-regular almost complex structures Hﬁg is ubiquitous by Lemma 9.12. Our
lemma now follows from the fact that J.(J|y, f) contains the ubiquitous set
T N NienRy. O

Proof of Proposition 2.19. Let S;,U; C ¥, i € N be non-empty relatively
compact open subsets of ¥ so that U;S; = X, S; € Sjz1 and U; N S; = 0
for all i € N. For each J = (J,)sex € d7(J#,C), let MY (.J) be the set of
somewhere injective maps v : P! — ¥ x M where

(1) the image of v is contained in {o,} x M for some o, € ¥ and not contained
in ¥ x V; and

(2) v is J,,-holomorphic after identifying {o,} x M with M in the natural
way.

Then by the methods in [MS04, §3.2] we have that there is a ubiquitous subset

Ipt C 3%(J#,C) so that MY*"*(J) is a manifold whose connected components

are of dimension at most 2n — 2 where 2n is the dimension of M and so that

the evaluation map

evpr : MY (J) — X x M, evpr(u) := u(0)

is smooth. Then for each J € Hiflg, there exists a countable collection of
smooth maps f5 : W7 — ¥ x M, i € N where dim(W}) < 2n — 2 so that
for each u € M¥*(.J), we have that image(u) C Ujenf4(W?%). We can assume
that the functions f%, i € N, J € g5 have the property that if there exists
i € N so that J = (Jy)pex,J = (J))pex € HEﬁg satisfies J, = J. for all
o € S;, then Ejj, y := (f%)71(S; x M) is diffeomorphic to (f%)71(S; x M) and
f§|Esz = f§'|Esz under this identification for all £ € N. Since any manifold
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is a countable union of compact codimension 0 submanifolds with boundary,
we can assume that Wf] is a compact manifold with boundary for each i € N
as well.

We now wish to write the moduli spaces M(H, J,7) as a union of compact
sets for each H, J, in a consistent way. We will use Gromov compactness ideas

to do this. For each j € I and each non-degenerate fixed point p of qb'fj HJ, let
Nj;p be aneighborhood of p whose closure N;;, does not contain any other fixed
points of QS'fjHj. For each J € §*(J#,C) and each v = (v/)er w1, € I'(H),
let K(i,J,v) C M(H,J,7) be the subset of maps u : ¥ — M satisfying
|du| < i with respect to a fixed metric on 3 which is translation invariant on

the cylindrical ends and so that u(c;(s,t)) € d)fjH](Njﬁj(o)) for each +s > ¢
and t € T where A7 is the 1-periodic associated to 7/ for each j € I.. Then
a Gromov compactness argument (e.g., [Sch95, Th. 4.3.22]) tells us that for
each J € J%(J#,C) and v € T(H), K (i, J,v) is compact for each i € N and
the union of such subsets over all i is M(H, J, ).

Let Hl}f;g - HE(J #, O) be the subspace of H-regular almost complex struc-
tures as in Definition 9.7. This is a ubiquitous subset by Proposition 9.12. Let
(N;)ien be open subsets of M satisfying NjenN; = VU ([1+¢/8,1+¢€/2] x C).
For each i € N, J € §¥(J#,C) and v € T'(H), let M(4, J,~y) C K(i,J,7) be the
subset consisting of maps u : ¥ — M satisfying u(U;) N N; = (). Let

ev: X X M(H, J,v) — X x M, ev(o,u):= (o,u(o))

be the natural evaluation map. For each i € N, J € J5® and v € '(H), let
MY (i, J,v) € M(H,J,v) be the open subset consisting of maps u for which
there exists a neighborhood Ny, of u in M(H, J, ) so that ev|g,x n: is transverse
to fﬂEsz for each k& < 4. Let 3?5 - Hﬁg be the subset of almost complex
structures J satisfying M(i, J,y) C MY (i, J,v) for each i € N and v € T'(H).
Since M(i, J, ) is compact for each i € N, J € 5235 and v € T'(H) and since
transversality is an open condition so long as the corresponding domains are
compact, we have that J;, ‘fyg - H?}g is open. It is also dense by Lemma 9.23.
Hence vag is a ubiquitous subset of J*(J#,C) for each i € N, v € T'\(H) since
modifying J inside U; x M does not change ffﬂ By, for all k < i. Hence
gres .= ﬂmeVg is ubiquitous in J>(J#,C).

Now let J € J*® and let w € M(H, J,vy) for some v € I'(H). Since
~v € I'(H) and since U; eventually becomes disjoint from any compact subset
of ¥ for i large enough, there exists i, € N so that v € M(é, J,7) for each
i > 4,. Since J € 323;5 for each ¢ > i,, there is a neighborhood NI’M- of u in
M(H, J#,~) so that the evaluation map ev|2xN;”_ is transverse to f§|Ei,k,J for
each k£ < 7 and each ¢ > i,. Therefore since S’j C Sj41 for all j € N, we
get that ev is transverse to fﬂEsz for each 7,k € N satisfying £ < ¢ at each
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point u € M(H,J,v). Hence J*& C g*&(H,J# C), and so J*8(H, J#, C) is
ubiquitous.

Also M(H, J,+") is a manifold of dimension k, where k is defined in (2.9)
for each v# € T'(H) and each J € §"8(H, J# C) by Proposition 9.17. O

10. Appendix C: Floer trajectories, filtrations and compactness

Throughout this section we will use the following notation (see Defini-
tions 2.13 and 2.14):

e Y is a Riemann surface with n_ negative cylindrical ends and n, positive
cylindrical ends labeled by finite sets I_, I respectively;

tj : Iy x T < X is the cylindrical end corresponding to j for each j € I4;

3 is a Y-compatible 1-form and (x;)jer_ur, are the weights of 3 at each
cylindrical end;

e C is a contact cylinder with associated Liouville domain D;
o H# .= (Hj)jej_u[+ is a tuple of Hamiltonians; and
o J¥ = (J )jer_ur, is a tuple of families of almost complex structures in

% (Jo, V,w).

Definition 10.1. Let (v;)jer_ur, = (7j,7j)jer_ur, be capped loops where
v; + ¥j — M for each j € I_UII, (Definition 2.1). A smooth map u : ¥ — M
partially converges to (vj)jer_ur, if there is a sequence af,a),a},--- € (0, 00)
tending to al, € (0, 00] for each j € I and a sequence of capped loops

k ~k <k
(’Yj )jel_UL,, keN = (’Yjv’Yj )jel_UL, keN,
where &’f : Z? — M for each j € I_ U I, k € N so that

. "?f(’j/f(t)) = u(iai,t) foreacht €T, j € I+, and k € N;
e the surface u* : S, — M obtained by gluing

“‘zfuje,fLj((foo,fag;)xqr)fujewj((a;{ 00)xT)
to each oriented surface ;;7;“ , 7 € I_U 1, is null-homologous for each k € N;
and
° fyf C° converges to 7; in the space of capped loops as k — oo for each
jel_uUl..

Note that if u converges to capped l-periodic orbits (v;)jer_ur, as in
Definition 2.14, then it partially converges to these capped 1-periodic orbits.
Also note that a, does not have to be equal to co.

Definition 10.2. Let V be a vector space over R and wy € /\2 V. A
linear complex structure Jy : V. — V is wy-semi tame if wy (v, Jy(v)) > 0
for all v € V. An almost complex structure J on M is w-semi tame for some
W € Q2(M) if J|, is @|,-semi tame for all z € X. Similarly, a smooth family



BIRATIONAL CALABI-YAU MANIFOLDS 567

of almost complex structures (Jy) ey is w-semi tame if J, is w-semi tame for
each o € Y.

LEMMA 10.3. Let @ € Q*(M) be closed 2-form.

(1) Let H := (Hy)yex be a X-compatible family of smooth functions (as in
Definition 2.14) with limits H7 .

(2) Let F := (F,)sex be a smooth family of functions which is ¥-compatible
with limits F# = (Fj)jel,ul+-

(3) Let J := (Jy)oex € 35(V, Jo,w) be a B-compatible family of almost complex
structures with limits J#.

Suppose

e H is w-compatible, where F is the primitive associated to (H,o) as in Def-

inition 2.2, J is w-semi tame; and
o d(f*B) <0 for all x € M where

Y —R, f%o):=F,(z)VoeX.

Then for any solution u : ¥ — M of the (H, J)-Floer equation which partially
converges capped loops (7vj)jer_ur, , we have

(10.1) > A i o () =Y A 5oy ();
Jjel— JjelL

see equation (2.4).

Proof. The above inequality will follow from Stokes’ formula. Let Wg be
a 2-form on ¥ defined by

Wg(Z1, Za)
= w(du(Z1) — B(Z1)Xu,, du(Zs) — B(Z2)Xnu,) V Z1,Z2 € T,%, 0 € X.

In order to prove our lemma, we will show
(1) fz Wg > 0; and
(2) Js @8 < jer Awyi o, mi (V) = 2 jer, Py i oo, 53 (V)-

We will now prove (1). If j is the complex structure on X, it is sufficient
for us to show @wg(Z,jZ) > 0 for all Z € TY. Fix z € ¥ and Z € T.3.
Then Wg(Z,j(Z2)) = w(du(Z) — B(Z)Xu,,du(j(2)) — B(§(Z)XH,)). Since u
satisfies Floer’s equation (2.8), we get that the above expression is equal to
w(du(Z) — B(2)Xu,, Jo(du(Z) — f(Z)Xnu,)), which is > 0 since J is w-semi
tame.

We now need to prove (2). We will do this by first modifying @g and
then applying Stokes’ formula. Let us look at a holomorphic coordinate chart
U inside ¥ with holomorphic coordinate z = s 4 it and consider the vectors
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Os := g O := 8@ at this point. Then
5(0s,01) = B(du(dy) — B(Ds) X, du(Dr) — B(O) X )
— B(du(dy), du(dy)) + B(Ds)B(— X, du(d)))
— B0 (dul(dy), X1.) + B(Ds)BO)G(X ., Xir.)

D 5(du(@y), du(By)) + BOs)dF-(du(Dy)) — B(Oy)dF. (du(ds))
= (W' + B AudE,) (95, ).

Therefore

(10.2) Wgle =uw'w+ BAUdF, YoeX.

Define F : ¥ — R, F(0) := F,(u(0)). Since d(f*8) < 0 for all z € M,
by equation (10.2), we get

(10.3) Dgle < w@ — d(FB).

Let (%)jeLuu be the associated loops of the capped loops (v;)jer_ur, -
Since the maps 'yJ’? from Definition 10.1 C° converge to v; as k tends to infinity,
by Stokes’ formula we have

(10.4) /dFﬁ Z/@ (7, (t dt_z/ﬁj (7, (¢

Jjelt jel_
Let v; = (7;,7;) be our capped loop where 7; : ¥; — M for each j € I_UI,.
Since the surface u* from Definition 10.1 is null- homologous for each k, we get
the following equation:

(10.5) Z/ ) w+/uw—2/ )"

Jjel- jeEl+
Therefore by equations (10.3), (10.4), (10.5) and (2.4) we have

/Ewﬁ < Z ‘A/@JHJ W,k FI ’Y] Z ‘A’I{JHJ wnjFJ(’YJ)

jEI, ]€I+
Therefore (1) and (2) hold and we are done. O

Definition 10.4 (see [Sch95, Def. 4.3.20]). Let v := (v;)jer_ur, be non-
degenerate capped 1-periodic orbits of (k;H;)jer_ur,. Let H € H>(H#,C)
and J € J¥(J#,C) as in Definition 2.14. A sequence (ug)pey in M(H, J, )
(Definition 2.14) geometrically converges to a broken solution (u,v) of degree 1
where u : ¥ — M, v: R x T — M if there exist

e me Il
e a non-degenerate capped 1-periodic orbit 4 of k., H™; and
e a sequence (Sg)ren tending to oo if m € Iy and —oo if m € I

so that uy converges in Cf° to u and uy o iy, o T3 converges in CT° to v where
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u e M(H, J,7), where

. . v ifj=m,
Y= Fjerur,, V= .
v; otherwise;

v € M(kpmHp,, J™,7') (Definition 2.23), where 7' = (y,7) if m € I_ and
V= m) if m e L

Tk is the map 73 : I;, X T — Ie x T,  75(s,t) := (s+ sk, t) for each k € N,
where I, := [—s,00) if m € I} and [, := (—o0, —si] if m € I_; and
|(3)jer-| = 1(¥)jer,| = 0 and [§] = |ym| =1if m € I and |y,n| — 7] =1
ifm € I+.

We will call the capped 1-periodic orbit 74 the connecting orbit and m € I_ U1,
the connecting index.

The following proposition is inspired by ideas from [CO18, §10.1]:

PROPOSITION 10.5. Suppose I = {x} is a single element set and (see
Definitions 2.58 and 2.23)
. (aj,,ai) € Sc(Q”) x SC(QZL) is a C-action interval;
e r;jHI € HTree(C, aal), JI e HT’reg(ﬁjHj,C’); and
. Z - (HI
® v € FC‘,aJ_,aﬂr(H )

for each j € I_ U 1,. Suppose Q% C Qi for each j € Iy and

(10.6) ar < Z a{|Qi, al < ai"Qi + Z aj_l|Qjr Vel
Jely Jeli—j

Suppose that || — |(vj)jer.| = 1. Let H € HE(H#,C) (Definition 2.14),
J € JP'8(H, J# C) (Proposition 2.19), and let (uy)ren be a sequence in
M(H, J,v) where v = (vj)jer_uL, -

Then there is a subsequence (ukj )jen which geometrically converges to a
broken solution (u,v) of degree 1 as in Definition 10.4 so that the connecting
orbit 7 is an element of T'Z ,am,aT(Hm) where m 1is the connecting indez.

Proof. Suppose that there are some m € I+ and some sequence s, € It
so that the sequence of maps

lkiT—>M, t—)Lm(Sk,t)

CY converges to a 1-periodic orbit I : T — M. Let n* = (7%, 7*) be the
unique capped loop with the property that its associated 1-periodic orbit is I,
and where 7j* is given by
e the catenation of iy |(—oo s, xT and ¥ if m € I_;
e or the catenation of ¢j[[, o)xT (With the opposite orientation) and ™ if
m € I, where v, = (™, 5™).
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By a repeated Gromov compactness argument (e.g., [Sch95, Th. 4.3.22]) ap-
plied to cylinders and half cylinders, n* converges to a capped 1-periodic orbit
7 whose associated 1-periodic orbit is | after passing to a subsequence. Now
by Lemma 10.3,

> A o(y) < A o) < A e(n)
Jely
ifme I_ and
Apclm) S Agem®) <Age(n)— D Agaly)
jeElL—m
if m € I for each k € N. Hence by equation (10.6), a™ < AH,O(UkHQT and
al' £ AH,é(ﬁk)|QT for each k € N, and hence

(10.7) a <Age@ler, aff £ Age@)lor-
Therefore 7 has to be non-degenerate. Hence by using the argument above one
can show by [Sch95, Th. 4.3.21] that (after passing to a subsequence) (ug)reN
geometrically converges to a broken solution (u, v) of degree 1 with connecting
orbit 7 satisfying equation (10.7). O
Remark 10.6. There is also a parametrized version of Proposition 10.5
where we now have H = (Hso)sc(0,1]0ex, € ¥+ (H#,C) (Definition 2.20)
and J € J¥*™8(H, (Y, Y1), J#,C) (Proposition 2.21) for some smooth family
of Riemann surfaces Yo := (¢)iejo,1) where Y; = (Hjs)sex; for j = 0,1 and
|7 = [(7j)jer, | = 0. The proof is also identical.

11. Appendix D: Flatness of Novikov rings
Throughout this section we will fix a finitely generated abelian group (A4, -).

Definition 11.1. A rational polyhedral cone in (A ®z R)* is a cone of the
form

k
Q = {Z?"Z’wiiro,...,rk 20} C (A®ZR)*
1=0

for some fixed elements wo, ..., w € (A®zQ)* C (A®zR)* called generators

of Q.

Such a cone is closed. Hence if, in addition, this cone is salient (Def-
inition 2.52), then we can define the Novikov rings AQ’Q and AQ’Q”L as in
Definition 2.54. The aim of this section is to prove the following:

PROPOSITION 11.2. Suppose K is Noetherian, and let Qp, Q1 C (A®zR)*
be salient rational polyhedral cones satisfying Q1 C Qo. Then AH‘;"Ql is a flat

AQ’QO -module.



BIRATIONAL CALABI-YAU MANIFOLDS 571

The key idea of the proof is to show that there are appropriate subalgebras
of A4@i, j = 0,1 so that one is the completion of the other (Lemma 11.15) and
so that appropriate localizations of them recover A%, j=0,1 (Lemma 11.16).
Before we prove Proposition 11.2, we need a few definitions and lemmas.
Throughout this section we will assume that our ring K is Noetherian.

Definition 11.3. Let @ C (A ®z R)* be a closed salient cone. For each
x € A, let F2 be the free K-module generated by elements of the set 59 =
{a € A:z =g a} (Definition 2.54).

Remark 11.4. When z = 0, FOQ is a K-algebra with multiplication induced
from the product - on A and F? is an ideal in F(? for each z € A satisfying
0 =g .

Definition 11.5. If R is a ring and x € R, then we write (x)g for the ideal
generated by x. If it is clear which ring x lives in, then we write (z) = (z)rg.

LEMMA 11.6. Let Q C (A®zR)* be a closed salient cone. Then we have
an equality of ideals (Fg?)m = (z™) in the K-algebra F(? foreachz € A, m >0
satisfying 0 2g .

Proof. Let x € A satisfy 0 <¢ x, and let m > 0. Since z € FIQ, we have
(™) C (FE)™. Now let a € A satisfy x =@ a. Then 0 =g a-z~!, which means
that a -z~ ! € F(?. Hence a™ = (a -z~ 1)™a™ € (™). Since (Ff) is an ideal
generated by elements a™ satisfying  <¢ a, we then get that (2™) = (Fgf2 )™

U

Definition 11.7. Let Q C (A ®z R)* be a closed salient cone. A @Q-cofinal

element is an element y € A satisfying 0 <¢ y so that the sequence (y")nen is
cofinal in (4, =g).

LEMMA 11.8. Let Qp, Q1 C (A ®z R)* be closed salient cones so that
Q1 C Qo. Then there exists y € A which is both a Q¢ and Q1-cofinal element.

Proof. Since Qg is closed and salient and A is finitely generated, there
exist yo,...,yr € A generating A as a group and satisfying 0 =g, y; for each
t=0,...,k. Then 0 =g, y; for each i = 0,...,k as well since 1 C Q9. Define
Y = Hi‘c:o yi- Now suppose z € A satisfies 0 2, = for some j = 0,1. Then
there exists ly,...,lp € Z so that x = Hf:o yil Then 0 =g, r1. ymax?:o I

max?_ |1 .

and hence = <g; y Therefore y is a @ j-cofinal element. ([

Definition 11.9. Let R be a ring and I C R an ideal. We define the
completion of R along I to be the inverse limit of rings

Ry := lim R/T™.
meN
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LEMMA 11.10. Let Q C (A®z R)* be a closed salient cone, and let y be
a Q-cofinal element. The natural inclusion map of K-algebras F(? — AQ’Q’+
extends to an isomorphism

Q= AAQ+

Proof. By Lemma 11.6 combined with the fact that y is a @-cofinal ele-
ment, we have
A7 ) 1
AT = tim B /()
meN

by equation (2.13). This proves our lemma since (y™) = (y)™ for each m > 0.
O

Definition 11.11. A multiplicative subset in a commutative ring R is a
subset closed under multiplication. For a multiplicative subset S C R, we
define the localization ST'R of R along S to be the set of equivalence classes
of pairs (r,s) € R x S so that (r1,s1) ~ (re,s2) if and only if there exists a
t € S so that t(r1s2 —res1) = 0, where addition and multiplication are defined
via the formulas

(11.1) (r1,s1) + (re,s2) = (ris2 +res1, s152), (r1,s1)(re, s2) = (rire, s152).

If x € R, we define S; C R to be the smallest multiplicative subset contain-
ing x.

LEMMA 11.12. Let Q C (A®z R)* be a closed salient cone, and let y be
a QQ-cofinal element. Then the natural inclusion map AHQ’Q’JF — AQ’Q extends

to an isomorphism of K-algebras
“1AAQ+ =, 4AQ
(11.2) Sy Ag — AR

Proof. Since Fg)wl = ong for each wg,z1 € A and since y~! is —Q-
cofinal, we have a natural isomorphism

(11.3) Ag® = lim y~ ARt
meN

by equations (2.12) and (2.13), where the morphisms in the corresponding
directed system are the inclusion maps. Therefore since y is invertible in AH‘Q’Q,
we get by the definition of direct limit (Definition 2.33) that elements of the
ring (11.3) are equivalence classes of pairs (x,y™), © € AQ’Q’JF, m > 0 where
(z,y™) ~ (z/,y™) if and only if zy™+* — 2/y™+tk = 0 for some k > 0 and
where addition and multiplication satisfy formulas which are similar to (11.1).
This proves our lemma. O

We get the following immediate corollary of Lemmas 11.10 and 11.12:
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COROLLARY 11.13. Let Qo,Q1 C (A ®z R)* be closed salient cones so
that Q1 C Qo, and let y € A be a Qj-cofinal element for j = 0,1. Then we
have the following commutative diagram of K-algebras:

1 Q0 S AAR
> (}ZO W) T AT
@ S AAR
Sy (Fol(y)) At

From now on, until the end of this section, we will let Qp, Q1 C (A®zR)*
be closed salient cones so that ()1 C Qo and let y be a Qj-cofinal element for

j = 0,1 (see Lemma 11.8). We will also define R/ := FOQj and I; := (y)pj
(Definition 11.5) for j =0, 1.

LEMMA 11.14. The natural map
(11.4) K[A] = S, 'R’ — S, 'R,
18 injective.
Proof. The natural map R° — 22\010 is injective since Nypenly’ = 0.
Hence (11.4) is injective by [Stal8, Tag 00CS]. O
LEMMA 11.15. The map
(11.5) R'®po R, — Ry,

induced by the natural inclusion maps extends to an isomorphism

1%

(11.6) (R1®R0R0[0)1®y — th
Proof. The map (11.5) induces an isomorphism
(R' @po ROp)/(1©y™) = (R' @po R)/(1@y™) = R'/(y™)

for each m > 0. Taking the inverse limit as m — oo of this isomorphism gives
us the isomorphism (11.6). O

Note that we have natural inclusion maps
(11.7) R' < §;'R' = K[A] = S, 'R® — S, 'Ry,
since y is not a zero divisor in R or R! and also by Lemma 11.14.
LEMMA 11.16. The map
(11.8) U: R @po RO, — S, ROy,
induced by the natural inclusion map (11.7) extends to an isomorphism
(R' @po ROpy) — S, (ROy,).

(11.9) @S5,
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Proof. Since the map (11.8) sends 1®y to y, we get that the map ® is well
c/lsﬁned. Also the composition of the map Sl_®1y(R0 ®po ROp,) — S1_®1y (R'®po
RO;,) with @ is an isomorphism, and hence ® is surjective. Finally, suppose
c € ker(®). Then, there exists m > 0 so that ¢ := (1 ® y)™c € R ®po RYy,.

Since y is a Qp-cofinal element, we have
(11.10) (y®1)™d € R ®po ROy, = ROy,

for some large m’ > 0. Since y is not a zero divisor in R0, we get that the
inclusion map Rj, < S, 'R, is an injection and so the element (11.10) is
zero. Hence

1@y ™™ e=(y@ 1) =0e R @p RYy,.

Since 1®y is invertible in Sf(g}y(Rl @ Ro RO I,), this implies that ¢ = 0 and hence

® is injective. Hence ® is an isomorphism. (]

Proof of Proposition 11.2. Since (); is a rational polyhedral cone, we get
that R’ is a finitely generated K-algebra by Gordan’s lemma [Ful93, Prop. 1,
§1.2] and hence is Noetherian by [Stal8, Tag 00FN] for j = 0,1 since K is

Noetherian. Hence R! ®zo Rj, is Noetherian by [Stal8, Tag 0CY6], [Stals,

—

Tag 00FN] and [Stal8, Tag 05GH]. Therefore (R'® go ;2510)(1@11) is a flat R'® po
RO;,-module by [Stal8, Tag 00MB] and [Stal8, Tag 00HT (1)]. Hence R,
is a flat R' ®@po ]/%Bjo—module by Lemma 11.15. Therefore since Sy_ll/%\lh is a
flat R' ® po ]/%T)Io—module by [Stal8, Tag O0HT (1)] combined with [Stal8, Tag

o~

00HC] we get that 5;11/3\111 is a flat S;.0 (R' ®po RV, )-module by [Stal8, Tag

1®y
00HT (2)]. Hence S, 'Ry, is a flat S, (Rz,)-module by Lemma 11.16. Our
proposition now follows from Corollary 11.13. O
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