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A k-linear triangulated category
without a model

By ALICE R1ZZARDO and MICHEL VAN DEN BERGH

Abstract

In this paper we give an example of a triangulated category, linear over a
field of characteristic zero, which does not carry a DG-enhancement. The
only previous examples of triangulated categories without a model have
been constructed by Muro, Schwede and Strickland. These examples are
however not linear over a field.

1. Introduction

1.1. Main result. The only known examples of triangulated categories
without model (not even topological) are given in [9]. The examples in loc.
cit. are not linear over a field and furthermore they depend on some special
properties of the number 2. In particular, they satisfy 2 # 0 but 4 = 0.

In this paper we discuss triangulated categories over a field k of character-
istic zero.! In this case the appropriate notion of a model is a DG-enhancement
[3], [4], [8], or what amounts to the same thing?: an As-enhancement (see
Section 10). Our main result is an example of a k-linear triangulated cate-
gory which does not carry an Aso-enhancement. This, in particular, answers
positively what is described as a challenging question in the survey [4] by
Canonaco and Stellari, namely, Question 3.8. Our example also provides a
negative answer to Question 3.3 of their survey.
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'Notwithstanding what we say here, almost everything we do is valid in arbitrary charac-
teristic. However in finite characteristic we would also have to consider topological enhance-
ments, and we do not discuss these in the current paper.

We can always transform an A..-enhancement into a DG-enhancement by taking its
DG-hull. See [7, p. 127] or [12, App. C].
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To describe the example we have to introduce some notation. Fix a natu-
ral number n > 3 and let k be either a field of characteristic zero or an infinite
field of characteristic > n. Let R = k[z1,...,zy], and let K be the quotient
field of R. Furthermore let R[] be the R-linear DG-algebra with |¢| = —n+2,
€2 =0, de = 0. Let C(R,R) be the Hochschild cochain complex of R and
let HH"(R,R) = H"(C(R, R)). Let Tg/k = A% Derg(R, R). The HKR theo-
rem furnishes an inclusion T} /k C Z"™C(R, R) which induces an isomorphism

ry = HH"(R, R). For n € Ty, we let Ry be the E[e]-linear Aso-deformation
of R[e] whose only non-trivial higher multiplication is given by en.

THEOREM 1.1 (see Section 10.3). Assume n > 14 and n # 0. Then there
exists a triangulated category without As-enhancement with semi-orthogonal
decomposition (D(K), D(Ry)).

In the next few sections we discuss in more detail the ingredients that go
into the construction of this example.

1.2. Pre-triangulated A, -categories. An A.-category [7] is a DG-graph
equipped with higher compositions (m;);>1 which satisfy certain natural qua-
dratic relations.? If only m; with i < n are defined, then we obtain the corre-
sponding notion of an A,-category. As a general principle, for any As.-notion,
there is a corresponding A,-notion in which we consider only operations with
< m arguments, and we require the axioms to only hold for expressions with
< n arguments. Facts about A..-categories remain valid for A,-categories as
long as they only involve such expressions. It is useful to note that if a is
an Ap-category for n > 3, then its “homotopy category” H°(a) is an honest
category.

A DG-category is an As.-category with m; = 0 for ¢ > 2. In their semi-
nal paper [3] Bondal and Kapranov introduced pre-triangulated DG-categories
which, in particular, have the property that their homotopy category is canon-
ically triangulated. Their most striking insight is that, whereas a triangulated
category is an additive category with extra structure, a pre-triangulated DG-
category is a DG-category with extra properties.

It is well understood how to define the analogous notion of a pre-triangu-
lated Aso-category (see [1]). An A-category is pre-triangulated if the natural
functor a — T'w a is a quasi-equivalence, where Tw a is the category of twisted
complexes over a. It is easy to see that this is equivalent to a being closed
under suspensions, desuspensions and cones of closed maps, up to isomorphism

3We also have to specify the compatibility with units. As specified in Section 4, throughout
in this paper we will use A-categories (and A,-categories) that are strictly unital.
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in H°(Twa). Stating these properties explicitly requires only a finite number
of higher operations on a and so they make sense for A,-categories for n > 0.
For any As-category a, H°(Twa) is canonically triangulated. Hence if
a is pre-triangulated, then H°(a) is also canonically triangulated. (Note: In
this introduction we will follow tradition by viewing a triangulated category
as an additive category. However in the main body of the paper we will equip
a triangulated category with its canonical graded enrichement. This means, in
particular, that we use H*(a) rather than H"(a). See Section 2 for the rationale
for this choice.) Now it is intuitively clear that it should be possible to prove
this using only a finite number of the higher operations on a. It then follows
that it must be possible to define for n > 0 a notion of a pre-triangulated
Ajp-category which induces a canonical triangulation on its homotopy category.
Unfortunately, carrying out this program naively using explicit equations
seems to be a nightmare. Therefore we are forced carry over some more ad-
vanced technology from the A.,-context. This is done in Sections 4 and 5.
The main difficulty we face is that the definition of Twa depends on higher
compositions in a of unbounded arity and therefore does not generalize to
Ap-categories. Luckily this issue can be solved by considering twisted com-
plexes of uniformly bounded length. In fact we only need Tw<; a, which con-
sists of twisted complexes of length two. This leads to our first main result.

THEOREM 1.2 (Lemma 5.6, Definition 5.10, Theorem 7.3). If a is an A,,-
category, then Tw<ya is an A|(,_1)/2|-category. If n > 7, then we say that
a is pre-triangulated if H*(a) — H*(Tw<y a) is a graded equivalence. If a is
pre-triangulated and n > 13, then H°(a) is canonically triangulated.

The number 13 seems quite high. We are rather curious if it can be re-
duced.

1.3. Gluing. We have already pointed out that if a is an A,-category,
then its “pre-triangulated hull” Twa is not well defined. So while we have
a satisfactory theory of pre-triangulated A,-categories, it is unclear how to
actually construct non-trivial examples of them. Luckily there is one approach
which works very well. It turns out that pre-triangulated A,-categories admit
a “gluing” procedure, and starting from pre-triangulated A.-categories we can
in this way produce pre-triangulated A,-categories which are not themselves
Ao-categories.

Let us first review gluing in the context of triangulated categories. If A, B
are triangulated categories and M is a B — A-bimodule (an additive bifunctor
A° x B — Ab), then a gluing of A, B across M is a triangulated category C
together with a semi-orthogonal decomposition C = (A, B) such that C(4, B) =
M(A,B) for A € Ob(A), B € Ob(B). The data (A, B, M) determines the
objects of C up to isomorphism and there is a long exact sequence relating the
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Hom-spaces in C to those in A, B and the elements of M. However this is
as far as it goes. Triangulated categories are too flabby to allow one to fully
construct C from the triple (A, B, M).

On the other hand, if a, b are A,-categories and M is an A,-b-a-module,
then it is a routine matter to define an A,.-gluing category ¢ = a][,, b such
that if a, b are pre-triangulated, then so is ¢ and there is a semi-orthogonal
decomposition H’(¢) = (H"(a), H'(b)) with associated bimodule H°(M).

To prove that ¢ is pre-triangulated we have to prove it is closed under cones
of closed maps. Again it is clear that this will only involve a finite number of
higher operations. Hence the theory can be developed for A,-categories. This
leads to our next main result.

THEOREM 1.3 (Theorem 8.5). Assume that n > 13, that a, b are pretri-
angulated A, -categories, and that M is an Ap-b-a-bimodule. Then a]],,; b is a
pre-triangulated A,_1 category. If n > 14, so that H(a]],, b) is triangulated
by Theorem 1.2, then we have a semi-orthogonal decomposition H°(a][,,b) =
(H%(a), H°(b)) whose associated bimodule is H°(M).

1.4. The counterexample. The counterexample we describe in Theorem 1.1
will be more specifically of the form D = H°(a[],,;b), where a, b are pre-
triangulated Ay,-categories and M is an Ap,-b-a-bimodule. We will in fact
assume that M is obtained from an A,_;-functor F' : a — b via M(A, B) =
b(FA, B). By Theorems 1.2 and 1.3, D is canonically triangulated for n > 0.
Moreover any A.-enhancement on D induces As.-enhancements a’, b’ on
H(a), HY(b) as well as an Ay-functor F” : ' — b’ such that HO(F') = HY(F).
One may hope to be able to prove that such F’ does not exist. This then implies
that an A..-enhancement on D does not exist.

We carry out this program with a, b being the standard As.-enhancements
of D(K), D(R,) for n # 0 (see Section 10). The exact functor

f:D(K)— D(R,)) : K — K,

(defined using the fact that D(K) is the category of graded K-vector spaces,
equipped with its unique triangulation) lifts to an A,_;-functor F: by [12,
Lemma 7.2.1] this follows from the fact that H*(K,) =0fori =0,...,—n+3.
However, using the fact that n # 0 one deduces that f does not lift to an
Ao-functor, even if we are allowed to change enhancements. This follows from
the fact that the enhancement on D(R,) is actually unique in a weak, but suffi-
cient, sense. This is proved using higher Toda brackets (see Proposition 10.8).
This finishes the proof that an A,.-enhancement on D does not exist.

Acknowledgement. The authors thank Alexey Bondal and Dmitri Orlov
for several interesting discussions around the possibility of gluing a non-
enhanceable functor to obtain a triangulated category without model.
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2. Notation and conventions

Below k is an arbitrary field, except in Section 10.3 where it will be subject
to some restrictions. Unless otherwise specified, categories are pre-additive
(enriched in abelian groups), except when we are in an A,-context. In that
case we assume all objects and constructions are k-linear.

Triangulated categories will be equipped with their canonical graded en-
hancement (see Section 3.4). The motivation for this is that the principal “ho-
motopy invariant” associated to an A,-category a is H*(a) as H%(a) loses too
much information in general. If a is pre-triangulated, then H*(a) can be recov-
ered from H(a) together with a “shift functor” but, since the shift functor is
not canonical (despite being unique up to unique isomorphism), this extra step
creates some complications, notably with signs, which are often unnecessary.
In any case, not all A,-categories we will encounter will be pre-triangulated.

In situations where the shift functor is canonical we will use it. The most
obvious case is graded objects over an abelian category A. If A®* = (A;);ez is
such an object, then we put ¥"(A®); = Ajyn. If f: A* — B*® has degree 1,
then we put X"f = (—1)"f. If A® is a graded object over Ab and z € A;,
then we write sz for x considered as an element of (XA®);_;. The “degree
change operator” s makes it easy to find the correct sign in formulas using the
Koszul convention.

3. Preliminaries on triangulated categories

3.1. Graded categories. For us a graded category is a category enriched in
Z-graded abelian groups. Assume that a is a graded category, and let X €
Ob(a). A suspension of X is a pair (Y,n) where Y € Ob(a) and n € a(X,Y)_1
is invertible. Conversely we call (X,n) a desuspension of Y. (De)suspensions
are clearly functorial if they exist. So if every object X has a suspension (Y, 7),
we may define a functor 3 : a — a by putting XX =Y and requiring for maps
f € a(X, X’) that the diagram

X" yx

| s

X’TEX

commutes up to a sign (—1)‘f |, Tt is clear that ¥ is unique up to unique
equivalence. We say that a has a shift functor X if every object has a suspension
and a desuspension and X is as above. In this case ¥ is an auto-equivalence.

3.2. Graded categories from pre-additive categories with shift functor. Now
assume that a is a pre-additive category (i.e., a category enriched in abelian
groups) equipped with an auto-equivalence Y. Then we can make a into a
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graded category a with the same objects by putting, for n € Z,
a(A, B)y :=a(A,X"B)
and with compositions
a(B,C)m x a(A,B)y, — a(A, C)mtn : (g, f) = (=1)""E g o f.
We obtain that ¥ is a shift functor on a in the sense of Section 3.1.

3.3. Triangles. A triangle in a graded category a is a diagram

C
Y N
1
B
f

with A, B,C € Ob(a) and |f| = |g| = 0, |h| = 1. To save space a triangle will
usually be written in linear form

A

ALBs o ﬁ A
1
If a is equipped with a shift functor, then a triangle can also be written in
“traditional” form
ALBsolya
A morphism of triangles is given by three degree zero morphisms fitting into
the obvious commutative diagram.

3.4. Triangulated categories as graded categories. We will assume that the
reader is familiar with the standard axioms for triangulated categories [14]. If
(T,%) is triangulated category in the traditional sense, then it can be made
into a graded category as in Section 3.2. In this section we will reformulate
the usual axioms of triangulated categories in such a way that they do not
explicitly refer to a shift functor.

Definition 3.1. A triangulated category T is a graded category equipped
with a collection of “distinguished” triangles such that*

(TRO) 7 admits (possibly empty) finite direct sums and every object has a

suspension and a desuspension.
(TR1) e For any object X € Ob(T), the following triangle is distinguished:

x ldx, X0—°>0(0—1)>X,
1

“Morphisms in a graded category whose degree is not specified are assumed to have degree
zero. This convention is maintained throughout this document.
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where 0 is a zero object (which exists by (TR0)) and where 0; is
the zero morphism in 7 (U, V);.
e For any morphism v : X — Y in 7T of degree zero, there is an
object Z (called a mapping cone of the morphism u) fitting into a
distinguished triangle
X5Y - 72 o X.
1
e Any triangle isomorphic to a distinguished triangle is distinguished.
(TR2) If
Z

VRN
m Y

is a distinguished triangle, then so are the two “rotated triangles”

X

A A
V X —y )
(1)
X/ (1)71 Y, X ” Y,
—un

where X 2 X' is a suspension of X and Z’ 5 Zisa desuspension
of Z.
(TR3) A commutative diagram of solid arrows

(1)

X Y A X
A
X' Y’ z' X’

1)

in which the rows are distinguished can be completed with the dotted
arrow.

(TR4) For every upper cap of an octahedron (drawn on the left) there is a
corresponding lower cap (drawn on the right)

Z X Z X'
AR
A
7!
(3.1) O Y O 1 d Vv N d (1)

(1)

d O
L

X 7 X -7
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such that in addition the compositionsY — 7 - Y’ and Y — 7/ — Y’
are the same and similarly the compositions Y/ — X — Y and Y/ —
X' — Y are the same. In the diagram the triangles marked d are
distinguished and those marked with © are commutative,

4. Preliminaries about A,-categories

Let n > 0. As a general principle, for any A..-notion there is a correspond-
ing A,-notion in which we consider only operations with < n arguments and
we require the axioms to only hold for expressions with < n arguments. Facts
about As-categories remain valid for A,-categories as long as they only in-
volve such expressions. We discuss this below. Throughout we place ourselves
in the strictly unital context.

4.1. A, -categories and functors.
Definition 4.1 ([7]). An A,-category a is the data of the following:

A set of objects Ob(a).

e For each couple (A, A’) of objects of a, a graded vector space of morphisms
a(A, A”). We call a(A, A’) the Hom-space between A and A’. A (homoge-
neous) element of a(A, A’) is called a morphism (or sometimes an arrow).

e For each sequence (Ay,...,A4;) of objects of a with 1 < i < n, “higher”

compositions

b; : Ea(Ai,l, Al) ®...Q EG(AO, Al) — Ea(Ao, Al)

of degree 1 verifying (x); of [7, Def. 1.2.1.1].
e For each object A, an identity (or unit) element ida € a(A, A)g satisfying

bi(...,sidy,...) =0 (fori =1and 3 <i<n),
ba(sf,sidy) = (—1)Hlsf ifn>2,
ba(sida, sg) = sg ifn>2.

If the identities hold for every ¢, then we get the notion of an A..-category.
Below an A,-category will be silently considered as an A,,-category for all
m < n.

As for A..-categories, it is sometimes more convenient to express the
higher compositions as operations

m; - G(Aifl,Ai) X...xQ a(A(], Al) — a(Ao,Ai)
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—nt+lm,, so that,

in particular, using the Koszul convention we obtain

(4.

bi(sf) = —sma(f),
1) bg(Sg,Sf) (_1)‘g|5m2(gaf)u
bs(sh, sg,sf) = (=1)19"* smy(h, g, f).
)

Sometimes we write df = mq(f) and gf = ma(g, f). It is useful to consider
the case of low n.

(1)

(2)

(4)

An Ap-category is simply a directed graph (with distinguished “identity
arrows” ) whose Hom-spaces are graded vector spaces. We call this a graded
graph.

An Aj-category is a graded graph whose arrows form complexes of vector
spaces. (The differential is given by m; and it annihilates identity arrows.)
We call this a DG-graph. A DG-graph a has an associated graded graph
H*(a) obtained by replacing the Hom-spaces in a by their cohomology. A
morphism f in a is called closed if mi(f) = 0. We denote by Z%a the
k-linear graph which has the same objects as a and whose morphisms are
the closed morphisms of degree zero.

An As category is a DG-graph equipped with a bilinear composition of
arrows given by mg (for which the identity arrows behave as unit elements)
which is compatible with mi. In particular, mo descends to well-defined
operations on H*(a) and Z'a.

For n > 3, the composition on H*(a) induced by mg is associative and
hence, in particular, H*(a) is a graded category.

Definition 4.2. An A,-functor f : a — b between two A,-categories a and

b is the data of

(1)
(2)

a map on objects f : Ob(a) — Ob(b);
for each sequence (Ao, ..., A4;) of objects of a with ¢ < n, compositions

fi : Za(Ai—hAi) ®X...xQ Ea(Ao,Al) — Eb(f(Ao), f(Az))

of degree zero verifying (xx); of [7, Def. 1.2.1.2] for i = 1,...,n;
if n > 1, then for each A € Ob(a) we have fi(sids) = sidg4) and
fn(o..,sida,...) =0 for n > 2.

Again it is instructive to unravel this definition for small values of n.

An Ap-functor is just a map between sets of objects (there is no compati-
bility with morphisms).

An Aj-functor f : a — b is a morphism of DG-graphs. In particular, we
have an induced morphism of graded graphs H*(f) := H*(f1).
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(3) If f is an Ay,-functor for n > 2, then H*(f) is compatible with compo-
sitions. In particular, if f is an As-functor between Ags-categories, then
H*(f) is a graded functor.

Like Ao-notions, one may also approach A,-notions via cocategories. Let a
be a graded graph. Then (Ba)<,, is the graded cocategory with Hom-spaces

(Ba)SH(A’ B) = é(za)®i(Aa B),
(4.2) =1
(Z0)®(4,B)= P  Ta(di1,4)®...0 Ta(dy, A)
A=Ao,...,A;=B

equipped with the usual bar coproduct. That is, if (sfi—1|---|sfo) := sfi1 ®
- ® 5fo € (Xa)®, then

i—1

A(sfical---|sfo) =Y (sfical---|sf;) @ (sfial -+~ |sfo).

Jj=1

If we ignore the compatibility with units, then an A,-structure on a is the same
as a codifferential on (Ba)<p, i.e., a coderivation b of degree one satisfying
bob = 0. Similarly, ignoring units, an A,-functor f : a — b is the same as
a cofunctor (Ba)<, — (Bb)<, commuting with the codifferentials on (Ba)<y,
and (Bb)<,. With this observation one may define the composition of A,-
functors simply as the composition of the corresponding cofunctors.

4.2. Some auxilliary definitions.

Definition 4.3. Let f : a — b be an A,,-functor between A,-categories,
for m < n. Then

(1) fis strict provided m > 1 and f; = 0 for ¢ > 2. Equivalently, f; commutes
with higher compositions with arity at most m.

(2) f is fully faithful if it is strict, and for all A, A" € Ob(a), we have that
a(A, A") — b(fA, fA) is an isomorphism of graded vector spaces.

(3) f is a quasi-fully faithful if m > 2, n > 3 and H*(f) : H*(a) — H*(b) is
fully faithful.

(4) f is a quasi-isomorphism if m > 2, n > 3 and H*(f) : H*(a) — H*(b) is
an isomorphism.

(5) f is a quasi-equivalence if m > 2, n >3 and H*(f) : H*(a) — H*(b) is an
equivalence.

4.3. The category of functors between A, -categories. Here we discuss some
concepts from [7, Ch. 8]. As indicated above, the (decomposable) arrows of
(Ba)<y, are usually written as (sfi_1|---|sfo) for a path of 1 < i < n compos-
able arrows fo, ..., fi—1 in a. We let (B¥a)<,, be the coaugmented cocategory
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obtained by also admitting empty paths ()4 starting and ending in A € Ob(a)
(see Section 2.1.2 in loc. cit.). More precisely, we have

(Ba)<n(4, B) if A # B,

(BTa)<n(A4,B) = {k()A @ (Ba)<p(A,A) if A=B

with () 4] = 0. The coproduct A*(¢) for t € (Ba)<p(A, B) is defined as
A(t)=(p@t+t® ()a+A),

where A is the coproduct on (Ba)<, and furthermore AT (()4) = )4 ® ()a. If
(Ba)<,, is equipped with a codifferential b, then we extend it to (B*a)<, by
putting b(()a) =0 € a(A4, A).

Given two A, -categories ¢ and d, denote by A, (c,0) the set of A,-functors
¢ — 0. Now assume that a, b are respectively A,,, A,-categories for m <n—1.
We will equip A,,(a,b) with the structure of an A,,_,,-category as follows.

Definition 4.4 (Morphisms in A,,(a,b)). Assume m <n — 1. Let fi, fo:
a — b be A,,-functors. We view these as cofunctors (B*a)<,, — Bb<, by
putting fio()a := fi0(()a) = 0. Then

% Hom(f1, f2)
= {h € coDerfth(BJraSm, Bbgn) ‘ VA € Ob(a) : h( S ®sidg®-- ) = 0}.
Here coDery, 1, ((B*a)<m, Bb<;,) consists of collections k-linear morphisms

h(A,A") : BTacy (A, A") — Bb<p(fi(A), f2(A4")) such that h = h(A, A" )4 a
satisfies the following identity for u € (Bt a)<:

Ah(w) = (2@h+h® fi)(ug) ®ug),
(W

where (using the Sweedler notation) A™(u) = 2 () W) @ () 1t follows that
h € ¥ Hom(fi.f2) is determined by the “Taylor coefficients”

(4.3)

by : Xa(Ag_1, Ax) @ Ba(Ag_2, Ap—1) ® --- @ Xa(Ag, A1) — Xb(f1(Ao), f2(Ar))

for 1 < k < m as well as for each A € Ob(a) an element h()4 := ho(()a) €
Yb(f1(A), f2(A)). The corresponding coderivation is given by

44 h= Z f2, @ ® fo 5 @ hi @ f14, @ @ fra,
Sl G0 is+k<m

where the right-hand side is restricted to terms which have < m arguments.
Note that h sends (BT a)<, to (Bb)<m+1 (as the f’s take at least one argument
but hg takes zero arguments). So since m < n — 1, h is indeed well defined.



404 ALICE RIZZARDO and MICHEL VAN DEN BERGH

Definition 4.5 (The differential on A,,(a,b)). If m < n —1 and h €
> Hom(fi, fa), then by(h) = [b,h] =boh — (—1)/"/h o b. Concretely,

(4.5)
bl(h)k — Z bp_l,.q_l,.l o) (f27]q ® . e ®f27]1 ®hl ® fl,ip ® e ® f1711)
S AP s H=k
_ (—1)|h| Z h1+a0+a1 o (id®ao Qb ® id®al),
apta1+l=k

Definition 4.6 (The higher multiplications on A,,(a,b)). Assume we have

morphisms
h1

Jfo— f1 i

LENLINA
represented by
h; € coDerfFl’fi(BJraSm, Bbgn),

and assume 2 < k < n —m. Then we put

(4.6) hyU---Uhy = Z Fring, ® @ fiing ® Py @ frotip 1, ®
@ foti 1, @ @ [l @ @ friin @ R @ foig,, @ @ fojin
and b (h, ..., h1); = (bo(hgU- - -Uhq));, where (—); denotes Taylor coefficients.

Note that on the right-hand side of (4.6) the f’s take at least one argument
but the h’s may take zero arguments. It follows that hgU---Uh; maps B*agm
to Bb<,+, and hence by the hypothesis k¥ < n—m is a well-defined element of
Hom (B a<,, Bb<y,). It is however not a coderivation. Instead is it inductively
characterized by the following property for u € (BTa)<,, (using again the
Sweedler notation):

A((hkU”-Uh1)(u)):Z(fk@)(hku'“Uhl)—l—(hkU-”Uh1)®f1
(u)

+ Z (hkU'”Uhj+1)®(hjU-~Uh1)>(U(1)®U(2)).
1<j<k

One checks

LEMMA 4.7. The collection of maps (b;)i=1,...n—m makes Ay, (a,b) into an

Ay _m-category.

4.4. Homotopies and homotopic functors. Let a, b be A,-categories, let
1 <m < n-—1(thusn > 2), and let h € Z°SA,,(a,b)(f1, f2). Then
h € coDery, f,(BTa<pm, Bb<y)—1 and [b,h] = 0. Let (h)g=o,. m be the Tay-
lor coefficients of h. Specializing (4.5) to k = 0,1 we find that ho()a €
(Xb(f14, f2A))_1 = b(f1A, f2A)o satisfies d(ho()4) = 0 and

b1Ohl+b20(h0®f1+f2®h0)+h10b1:0.
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Evaluating this on st for ¢ € a(A, B) we find
b1(hi(st)) + b2(ho() B, fi(st))
+ (=D by fa(st), ho()a) + b (bi(st) = 0.
Put ho()a = sho,a. Using the usual sign convention hi(st) = —shi(t), etc.
together with (4.1), this may be rewritten as
mi(h (1)) +ma(ho,p, f1(8)) + (1)1 (=1)lma (fa(2), ho,a) + ha(ma(2)) = 0.
So we find, in particular, that H*(hg) defines a natural transformation

H*(f1) = H*(f2).

Definition 4.8. Let h, f1, fo be as above but assume n > 3. We say that
h is a homotopy h : fi — fo if H*(hg) is a natural isomorphism, i.e., if for
all A € Ob(a), H*(ho,a) € H*(a)(A, A) is invertible. We say that fi, fo are
homotopic if there exists a homotopy h : fi — fo.

(4.7)

LEMMA 4.9. Assume 1 < m <n —3. Then h: fi — fo is a homotopy
if and only if H*(h) is invertible in H*(Ap(a,b)). (The latter is a genuine
category because of the restriction on m,n.) In particular, the relation of being
homotopic is an equivalence relation.

Proof. We have (hh')g = hoh{,. So if h is invertible, then it is a homotopy.
Assume now hg is invertible. Consider the morphism of complexes

S : Am(a, b)(fg, fl) — Am(b, b)(fz, fg) ch TTLQ(h, h,).
Using an appropriate spectral sequence one finds that S is a quasi-isomorphism.
Hence there exists ' € Z°A,,(a,b)(fa, f1) such that ma(h, k') — idy, has zero
image in H*(A,,(a,b)(f2, f2)). O

4.5. Inverting quasi-equivalences. We prove some A,-versions of results
which are well known in the A-setting (e.g., [7, Th. 9.2.0.4]).

LEMMA 4.10. Let a, b be A, categories forn > 3, and let f : a — b
be an A,-functor which is a quasi-equivalence. There exists an A,_1-quasi-
equivalence g : b — a such that fg and idy, are homotopic. Moreover the
quasi-inverse H*(g1) to H*(f1) may be chosen freely.

Proof. If a is an A,-category, then we define a as the DG-graph obtained
from a by dividing out identities. That is,

A, B if A#B
a(A,A)/kidy if A= B.
Note that formally f is a cofunctor Ba<, — Bb<, such that [b, f] = 0. Like-

wise g should be a cofunctor Bb<,_1 — Ba<,_; satisfying [b, g] = 0 and the
homotopy h : fg — idp should be an element of coDergiq, (BT b<p—1, Bb<y,)
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of degree —1 satisfying [b, h] = 0 such that H*(ho) is a natural isomorphism
H*(fg) — idg=(p)-

We will construct g and h step by step. The existence of g1 and hg, hy
follows simply from the fact that f is a quasi-equivalence: we choose a unit
preserving graded graph homomorphism ¢g; : b — a commuting with differen-
tials such that there is a natural isomorphism H*(f1)H*(g1) — idg«@p). We
choose hg : (Bb)y — b in such away that this natural isomorphism is of the
form H*(hgp), and then we choose hy such that equation (4.7) holds.

Assume that for 1 < m < n — 1, we have constructed a cofunctor g<, :
(Bb)<m — (Bb) <y, satistying [b, g<m] = 0 and a homotopy h<p, : fg<m — idp.
We will extend the maps (g<m, h<m) to maps (g<m+1, h<m+1) with the same
properties.

As a first approximation we extend g<m,h<m to respectively a cofunc-
tor g<m+1 @ Bb<my1 — Ba<yyr and a (fg<m+1,idp)-coderivation h<p,yq :
BTb<pmi1 — Bbyg1 by setting g1, hmt1 @ (20)2™ L — Sa equal to zero;
see (4.2) for the definition of S6®™*1. Here 7 = [b, g<m11] is zero on (Xb)®,
i < m and hence it may be regarded as a map (Xb)®™*! — Ya. Moreover 0 =
[b, ] = [b1,7]. So 7 is closed for the b;-differential, and since fm = [b, fg<m—+1]
is zero on cohomology and f is a quasi-isomorphism, 7 is equal to zero in co-
homology as well. In other words, there exists d,,41 : b¥™T! — a such that
T = [b1,0m+1). We now replace gmi1 by gm+1 — 6mi1. Then [b, g<pmy1] = 0.
In other words, g<m+1 is an A,,41-morphism.

Put D = [b, h<mm+1] (see (4.5)). Then D is a (fg<m~+1,idp)-coderivation
(B*b)<m+1 — Bb<,, which is zero on (Bb)<,,, and hence it can be considered
as a map (Xb)®™ ! — ¥b. Hence we have

(4.8) (b1, D] = [b, D] = 0.

We will now try to choose o1 @ (X0)®™FE — Sa, 7,01 ¢ (Z0)®™ L — ¥b
such that for g;, .1 = gm+1 + Om+1, Ay = g1 + Tnta, 97 = gis By = M
for i < m, we have [b,g%,,,4] = 0, [t/,hL,, 1] = 0, where here [b', —] is the
differential (4.5) computed with f; = fg-,, ., and fo = ids. The conditions
we have to satisfy are

(4.9) 0= [b7g/§m+1] = [b1, Om1)s

(4.10)  0=[V",hlp 1] =D +b20 (ho ® f1(gm+1 + Om1)) + b1, Tmpa].

We claim these equations have a solution. First note that (4.10) may be written
as

(4.11)  bao(ho® fioms1) = —D —bao (ho @ figm+1) mod im[by, —].

Recall that here we have [b;, D] = 0, by o hg = 0 (see Section 4.4) and
[b1, figm+1] = 0. Hence if we have a solution 0,41 to (4.9) and (4.11) and
we replace 011 by o1 + [b1, 8], then it is still a solution.
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It follows that we may combine (4.9) and (4.11) into a single equation

(4.12) l_)g o (;LO X f15m+1) =—-D—byo (ho X flgm+1)

in

H*(Hom(($6)®™ " $b) = Hom(XH*(b)*™ !, S H*(b)),

where ? denotes cohomology classes or actions on cohomology. Using the fact
that fi1 = H*(f1) is an equivalence and H*(hg) is a natural isomorphism, one
easily sees that (4.12) has a (unique) solution. O

We will need the following variant of Lemma 4.10, which is proved in a
similar way.

LEMMA 4.11. Let a, b be A, categories form > 3, and let f:a— b be a
fully faithful A, -functor which is also a quasi-equivalence. Then there exists an
An_1-quasi-equivalence g : b — a such that fg and idy are homotopic and such
that gf = idq. Moreover the quasi-inverse H*(g1) to H*(f1) may be chosen

freely.

4.6. The category Free(a).

Definition 4.12. Given an Ap-category a, Free(a) is obtained from a by
formally adding finite (possibly empty) direct sums and shifts of objects in a;
i.e., an object of Free(a) is given by
(4.13) A= ®Bier B A;,
where A; € Ob(a), a; € Z, |I| < co. We allow |I| = (). Morphisms in a are
defined as

Free(a)(@iE“iAi, @ijiBj) = EBiijb"_‘“a(Ai, BJ)

An element f € a(A, B) considered as an element of Free(a)(X%A, X?B) will
be written as ¢~%f such that |¢®~%f| = |f| — (b — a).

If a is an A,-category, we can then make Free(a) into an A, -category. We
need to define the higher compositions between morphisms between objects
of the form X*A. (The case of more complicated objects is done by linear
extension.) So if we have maps in a,

LN L N LN

and corresponding maps in Free(a),

g=a1fy  g%mOn-lf,

50 4, L0 s 4, e A,

then

bp(so =1 f . 809N fo 50T f1) = 0T Oby (Sfn, -, Sf2,5f1),
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where the sign is determined by the usual Koszul sign convention (used with
the rule so = —os).

The A,-category Free(a) is equipped with a strict A,-endo functor ¥ such
that on objects we have

(4.14) Y (5% A;) = @;n% T A,

and on morphisms ¥ is given by X(c%f) = (=1)%¢*f for f a morphism in a.
We will call 3 the shift functor on Free(a). Likewise Free(a) is equipped with
an (associative) operation @ with an obvious definition. We will call it the
“direct sum.” Finally if I = () in (4.13), then the resulting object is denoted
by 0 and is called the “zero object.”

5. Truncated twisted complexes
From now on let a be an A,-category.

5.1. Higher cone categories. Let a®™ be the graded graph whose objects
are formal direct sums of precisely m objects in a:

(5.1) A=400 A1 ®...0Ap1.

Morphisms are given by

(5.2) a®™(A, B) = &]"_ya(A;, By).

We extend the higher operations on a linearly to a®” so that a®™ becomes an
Aj,-category.

Remark 5.1. Below we usually think of objects in a®™ as column vectors
and similarly of morphisms in a®™ as matrices acting on those column vectors.

Definition 5.2 (Higher cone categories). Assume m < n + 1. The graded
graph a*™ is defined as follows.

e Objects are given by couples (A,d4) such that A € Ob(a®™) and 4 €
a®m(A, A)y is a “Maurer-Cartan element” with strictly lower triangular
matrix; i.e., it satisfies

(5.3) Z bi(sda,...,s04)=0.

i<m—1
e Morphisms are given by

(5.4) a*™((A,54), (B,65)) = a®™(A, B).
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LEMMA 5.3. Assume m <n+ 1. The graded graph a*™ has the structure
of an ALn_m+1J -category with higher multiplications given by

(5.5)
ba*mJ(sgi,...,sgl) = Z baeam’h(S(Si,...,S(si, sgi,séi_l,...,s&_l,...
Wi S < b lima
...,851,...,551,891,8(50,...,8(59)
I lo
for any set

(Bo, o) L5 (B1,61) & - 25 (By, 6)

of i < [(n—m++1)/m| composable arrows in a*™.

Proof. We need to check bg«m o bg=m = (0 on ¢ composable arrows for
i < [(n—m+ 1)/m] as well as the correct behavior of identities. We will
concentrate on the first condition as it is the most interesting one. As we will
use similar facts several times below we present the argument in some detail.

If we expand (bg+m 0 bg=m);, then it becomes the sum of multilinear expres-
sions evaluated on lists of arguments of the form

(5.6) 80y ... ,80i,8Giy 80i_1y...,80;_1,...,801,...,801,891,S00,...,S00 .
. —_———
l; li—1 I lo

The crucial point is that those multilinear expression are obtained by linear
expansion of the corresponding expressions evaluated on composable arrows
in a. Now for each element (A,04) € a*™, the Maurer-Cartan element 4 is a
strictly lower triangular m X m-matrix, and hence such extended expressions
are zero on (5.6) whenever one of the [; is > m.

By the assumption

1 <

Ln —m+ 1J
m
we obtain that the length of the relevant lists of arguments in (5.6) is

<(m-1)@G+1)+1
=mi+m—1

=)

<m +m—1

<n—-m+14+m-—-1
= nNn.

Now the condition bg«m o bg=m = combined with (5.3) becomes byom © byam = 0
when evaluated on lists of < n arguments. This holds since a®™ is an A,,-
category. U
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Below we call a*™ a higher cone category. This is motivated by Defini-
tion 5.8 below.

LEMMA 5.4 (Functoriality of x). Given Ay-categories a and b and t <
m+1<n+1, we obtain a strict Ay-functor

x0 Am(a, b) — AmetqtlJ (a*t, b*t)
T

forp=|(n—t+1)/t] —|(m —t+1)/t]. Moreover %' is strictly compatible
with the compositions

Am(b,¢) X Apy(a,b) = Ap(a,c).

Proof. Since we are defining a strict functor, we only need to define (x);.
We will write (—)*" for (!);(—).

First of all we define the functor on “objects.” For an element f €
Ob(A,,(a,b)) and (A,54) € Ob(a*!), define

f*t(Av 5A) = (f(A)’ Z f(S(SA’ e 75514))7

1<t—1

where f is understood to be extended linearly to direct sums. For a sequence
of composable arrows

(5.7) (Ao, 00) =5 (A1,01) 2 - 24 (Ag, q),
put
(f*(saq,...,sa1) = Z fd+i0+...+id(56§§id, sag, séfidfl, ..., sa1, 55891'0)'

To show that *! sends an A,,-functor to an Al (m—t+1)¢)-functor (i.e., an el-
ement of Ob(AL(m_tH)/tJ(a*t, b*')), one proceeds in the same way as in the
proof of Lemma 5.3.

Now we define (¥!); on Hom-spaces in A,,(a,b). Given f,g € A,(a,b)
and h € A, (a,b)(f,g) we define h** € Hom(f*, g**) as follows: for a sequence
of composable arrows as in (5.7), we have

. s .
(h*4(saq, ..., sa1) = Z hd+i0+...+id(85§”d, 8aq, 80, 47", ..., sa1, s657°).

One verifies that (x*); commutes with the higher operations on A,,(a,b) and
A (m—t41)/t) (@™, 6*) (see Lemma 4.7) and hence defines a strict functor. It
is an Ap-functor since Atm%m ] (a*,b*) is an A,-category by Lemmas 5.3
and 4.7. The strict compatibility with compositions is also a standard verifi-
cation. (]
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5.2. Truncated twisted complexes. Inthe A,-category setting, untruncated
twisted complexes are not well behaved as they form only a graded graph.
Indeed even the definition of the differential on morphisms between twisted
complexes involves higher operations of unbounded arity. Therefore in this
section we introduce truncated twisted complexes over an A,-category. In this
case the resulting object is still an A,-category for some p, although p is much
smaller than n.

Definition 5.5 (Truncated twisted complexes). Assume m < n. We define
the truncated twisted complexes over a as

Tw< a = Free(a) 1.

The map
(A,04) = (A©0,(04,0))

defines a fully faithful functor Tw<,, a = Tw<;,+1 a, which we will treat as
an inclusion. With this convention we write Twa for J,, Tw<, a in case
a is an Ag-category. In a similar vein we define the fully faithful functor
®:a— Tweppa: A= (A0 ---,0), which again we will treat as an
inclusion.

From Lemma 5.3 we obtain

LEMMA 5.6. Assume m < n. The category of truncated twisted complexes
Tw<m a has a structure of an ALMJ -category.
- m+1

LEMMA 5.7 (Functoriality of Tw). Let F' : a — b be an Ay,-functor be-
tween two Ajp-categories with a < m < n. Then we obtain a corresponding
ALMJ functor

a+1
Tweo F: Twesa — Tw<,b.
Moreover Tw<,(—) is strictly compatible with compositions of Ay, -functors.
Proof. This follows immediately from Lemma 5.4. O

5.3. Distinguished triangles.

Definition 5.8. Assume f : A — B is a closed morphism in a of degree
zero. Then C(f) is the object (XA @ B, d¢(y)) € Tw< a such that

0 0
dotn=\o-1f o)

(Recall that we write objects as column vectors and morphisms as matrices;
see Remark 5.1.)
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Definition 5.9. Let f : A — B be a morphism in Z%. The associated
standard distinguished triangle d; in Tw<y a is given by

(5.8) AL BL (), 0cp) (% A,

where

. 0 1.
Z:(id3> p:(a Lidy O).
The image of d; in H°(Tw<; a) is written as d;. It is also called a standard

distinguished triangle.

Definition 5.10. Let a be an A,-category with n > 7. A triangle in H*(a)
is said to be distinguished if its image under H*(®) is isomorphic to a standard
distinguished triangle in H*(Tw<; a).

From this definition we immediately obtain

THEOREM 5.11. Let p : a — b be an A,,-functor between A, -categories
form >5,n>7. Then H*(p) preserves distinguished triangles.

Proof. 1t is clear that there is a commutative diagram

P
a — Tw<ia

pl iTw<1p

b e Tw<1b.

By Lemma 5.6, Tw<;a and Tw<; b are Ag-categories, and by Lemma 5.7,
Tw<y p is an Ag-functor. Hence H*(Tw<;p) is a graded functor (see Sec-
tion 4.1). One checks H*(Tw<1 p)(0f) = 6,,(f)- This implies what we want.

O

6. DG-categories

6.1. Generalities. Recall that a DG-category is an A..-category such that
m; = 0 for ¢ > 3. It that case Twa is also a DG-category. We recall the
following definition.

Definition 6.1 ([3]). A DG-category is pre-triangulated if the DG-functor
® : a — Twa is a quasi-equivalence.

The main result concerning pre-triangulated DG-categories is

THEOREM 6.2 ([3]). If a is pre-triangulated, then H*(a), when equipped
with distinguished triangles as in Definition 5.10, is triangulated.



A k-LINEAR TRIANGULATED CATEGORY WITHOUT A MODEL 413

Proof. Assume first that a is a general DG-category. Then Tw a is equipped
with a natural cone functor C(f) and a notion of standard triangles d; for any
closed map f: A — B:

AL B4 o) % A
1
A triangle in Twa is called distinguished if it is isomorphic to a standard
triangle. In [3] it is proved that H*(Twa) is triangulated when equipped
with this class of distinguished triangles. If a is pre-triangulated, then H*(a)
inherits the triangulated structure from H*(Tw a). We have to prove that the
distinguished triangles are the same as those in Definition 5.10. Assume that
5:ALBoC U) A
1
is a triangle in H*(a) distinguished in the sense of [3]; i.e., () is distinguished
in H*(Twa). Now dg(s) € H*(Tw<1 ) is a distinguished triangle in H*(Tw a)
which has the same base as 0 ¢- By the axioms for triangulated categories we
conclude that ®(0) = dg(s). Hence § is distinguished in the sense of Defini-
tion 5.10. The opposite direction is similar. ([

6.2. Some small DG-categories.

Definition 6.3. Let n > 0. Then I, is the DG-category with objects
(x;)?, such that
ka;;  iti <y,
In(xi, ) = C kid,, ifi=j,
0 otherwise,

with |a;j| = 0, aja;; = ay and da;; = 0. We will write a; = a;;41 for
i=0,...n—1.

LEMMA 6.4. Tw<y I, is pre-triangulated.

Proof. Since Tw I,, is pre-triangulated [3], it is sufficient to prove that
H*(Tw<11,) — H*(Twl,) is essentially surjective. This is essentially [13,
Prop. 7.27]. For the convenience of the reader we repeat the argument. The
Yoneda embedding realizes H*(Tw I,) as the bounded derived category
DP(rep(I,)) of the representations of I,,, viewed as a quiver. Since rep(I,,) is a
hereditary category, every object in D?(rep(1,,)) is the direct sum of its (shifted)
cohomology objects which are in rep(1,,). Moreover every object in rep(Iy,) has
projective dimension one, and so it is isomorphic to a single cone of objects in
Free(I,,). In other words, it is in the essential image of H*(Tw<q I,,). O

Remark 6.5. Assume n = 0. Then rep(Ip) has global dimension zero and
we have in fact that Free(ly) = Tw<q Iy is pre-triangulated.
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7. Pre-triangulated A,-categories

From now on let a be an A,-category. The purpose of this section is
to define what it means for a to be pre-triangulated and to show that this
definition implies that H*(a) is triangulated.

Definition 7.1. An A,-category a, with n > 7, is said to be pre-triangulated
if the inclusion a 2 Tw<1 a is a quasi-equivalence.

Remark 7.2. The lower bound n > 7 comes from the fact that we want
H*(Tw<jia) to be an honest category. This happens when Tw<ja is an
As-category. For this to be true, a needs to be at least an Ar-category by
Lemma 5.6.

THEOREM 7.3. Let a be a pre-triangulated A, -category for n > 13. When
equipped with the collection of distinguished triangles as in Definition 5.10,
H*(a) is a triangulated category.

Proof. Here is the “strategy”: we have to prove that H*(a) satisfies (TRO)—
(TR4) as in Section 3.4. For the (TR1)—(TR4) axioms, we will translate their
input into a suitable A,-functor u : I, — a, for m < 2, which is then ex-
tended to an A|(,_1)/p-functor Tw<yp @ Tw<i Iy — Tw<ia. Then we
use that Tw<j I, is pre-triangulated by Lemma 6.4 and hence, in particu-
lar, H*(Tw< I;,) is triangulated by Theorem 6.2. Roughly speaking we then
transfer the output of the (TR1)—(TR4)-axioms for H*(Tw<; I,,) to H*(a) by
using Theorem 5.11.

To accomplish the last step we will pick an Aj,-functor 7 : Tw<;a — a,
forp=1[(n—1)/2] —1=|(n—3)/2], which is a homotopy inverse to ¢ such
that 7@ is the identity (see Lemmas 5.6 and 4.11). In particular, we have
that H*(®) and H*(m) are quasi-inverses to each other. Since n > 13, Tw<; p
is at least an Ag-functor and 7 is at least an As-functor. So H*(w Tw<q )
preserves distinguished triangles by Theorem 5.11. To avoid making some
arguments needlessly cumbersome we will in fact also use that H*(Tw<; u)
preserves standard distinguished triangles and that H*(7) sends a standard
distinguished triangle in H*(Tw<; a) to a distinguished triangle in H*(a). The
latter follows easily from the fact that H*(w) is a quasi-inverse to H*(®).
Note that the intermediate category Tw<; a may be only an Ag-category so,
with our current definitions, we cannot talk about distinguished triangles in®
H* (ngl Cl).

(TRO) Like Free(a) (see Section 4.6), Tw< a is equipped with canonical oper-
ations ¥ and @. These descend to operations on H*(Tw<; a) which one

®We could have eliminated this minor technical complication by simply requiring n > 15.
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easily checks to be to be the categorical direct sum and shift functor.
Since H*(a) - H*(Tw<1 a) is an equivalence, the direct sum and shift
functor defined on H*(Tw<; a) descend to H*(a).
First we note that the triangle
A4 450 U} A
1

is distinguished. Indeed the functor p : Iy — a : g — A extends
to a functor® p : Tw<; Iy — Tw<ia, and (7.1) is the image under
H*(m Tw<y p) of the distinguished triangle in H*(Tw<; Ip) (which sat-
isfies (TR1))

idggD 0 0

rg —> 29— 0 6) x-.

Now we prove the second part of the (TR1) conditions: the existence

of distinguished triangles with a given base. Consider a map A B
in H*(a), and put § = H*(m)(d¢). Since & is a standard distinguished
triangle in Tw<; @, § is distinguished.

Finally, the fact that any triangle isomorphic to a distinguished tri-
angle is distinguished follows immediately from Definition 5.10.
Let & be a distinguished triangle in H*(a). Then there exists an isomor-
phism with a standard triangle H*(®)(J) 2 §; and hence, in particular,
§ = H*(m)(0y) := &'. There is a strict A,-functor p : I — a which
sends ag to f, and dy is the image of &,y € H*(Tw<i 1) under the
morphism H*(Tw<; p). Since H*(Tw< I;) satisfies (TR2), the rotated
versions of d,, are distinguished in H*(Tw<; 1) and we obtain rotated
versions of &' by applying H* (7w Tw<i ). (Note that a graded functor
preserves suspensions and desuspensions.) By (TR1) the corresponding
rotated versions of § are also distinguished.

Suppose we have a diagram of distinguished triangles in H%(a):
A1 p Ry
A B’ c’ A’
f (1)

Up to composing with an isomorphism of triangles, we can assume
that the two distinguished triangles in the diagram are standard dis-
tinguished triangles in Tw<; a so that C = C(f), C' = C(f’). Hence

5The reader will note that here the literal execution of our “strategy” is a bit uneconomical

and that by Remark 6.5 we could have used Tw<g lo.
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we have to construct the dotted arrow in

Al.p_opntaag

A/—I>B/—>C( "N —= A
f (1)

It is easy to give a formula for w. Alternatively one may lift the square
on the left to an A,-functor I ® I — a and then proceed by considering
the induced functor Tw<;(I ® I) — Tw<; a.

We will give instead a proof compatible with our “strategy.” By
writing the solid square as a composition of 2 squares it is sufficient to
consider the case in which either u or v is the identity. The two cases
are similar, so we will consider the first one. Now the diagram is

At o Laa

v

A= B —> O(f') >

We may construct an A,-morphism p : Iy — a such that ui(ag) = f,
pi(ar) = v, pi(arag) = f'u. (Note that we need a non-trivial us as vf
is not necessarily equal to f'u in a.) Inside H*(Tw<; I2) we have the
diagram

x0 ST ry ——= C(ao) L Zo

al
4

20 o> v2 — Clarao) o o

where now the dotted arrow exists as H*(Tw<; I2) satisfies (TR3).
Applying H*(Tw<; p) we obtain (7.3).

Since we have shown (TR1)-(TR3), by [2, 1.1.6] it suffices to show that
any composable pair of degree zero morphisms X — Y — Z in H*(a)
can be completed to an octahedron as in (3.1).

A composable pair of degree zero morphisms in H*(a) can be lifted to
an Ap-functor p : Iy — a. The image of the octahedron in H*(Tw<; I2)
built on 2o =% 1 =% x4 under H*(m Tw<y p) is now the sought octa-
hedron in H*(a). O
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8. Gluing A, -categories

8.1. Bimodules. Let a, b be A,-categories. For m < n, an A,,4+1-b-a-
bimodule is a collection of graded vector spaces M (A, B), A € Ob(a), B €
Ob(b) together with a codifferential on (B*Tb ® M ® Bta)<;+1, where the
latter is regarded as a DG-(B*a)<y,—(BTb)<;,-bicomodule. In other words,
such a bimodule is equipped with higher operations of degree one

b - Eb<Bp—l7Bp) QK- ® Eb(Ba+1; Ba+2) & M(Aa7Ba+1)
&® Eb(Aafl, Aa) R X Eb(Ao,Al) — M(Ao, Bp)

for (Ai)i:O,...,a S Ob(a), (Bj)j:a+1,...,p S Ob(b), p < m+ 1 such that bob=0.
In addition we require that the higher operations vanish on identities, when
appropriate. If a = b, then the identity A, -a-bimodule is given by M (A, A’") =
a(A, A’) and the higher operations are those of a.

If ay,a9,by,by are A,-categories, f; : a; — b; are A,-functors and M
is an A,,41- ba-bi-bimodule for some m < n, then we write y My, for the
ag-a;-bimodule which is the pullback of M along (fi, f2). For A; € Ob(ay),
Ay € Ob(ag), we have f My, (A1, A2) = M(f1(A1), f2(A2)), and the higher
operations on f, My, are schematically given by the following formula for m €
1My, (A1, Az):

byagy, (-oomy ) = Eby(falon)se s fal)my Al ), Ail)

(The sign is given by the Koszul convention.) It is easy to see that ¢ My, is an
Apy1-bimodule. If f1 or fy is the identity, then we omit it from the notation.

8.2. The arrow category.

Definition 8.1 (The arrow category). Let a, b be A, -categories, and let

M be a b-a-A,-bimodule. The arrow category ¢ = a 2, b has Ob(c) =
Ob(b) [JOb(a) and morphisms for B, B’ € Ob(b), A, A’ € Ob(b) given by
(A, A) =a(A A", «(B,B") =b(B,B’) and ¢(A,B) = M(A, B), ¢(B,A) =0.

It is easy to see that a M. b becomes an Ap-category by combining the
higher multiplications on a, b and M (as in (8.1)).

Assume that we have A,,-categories a, b, a’, b’ and b-a and b’-a’ bimodules
M and M’. Below it will be convenient to consider the category A5 (a M, b,
o b’) of A,,-functors F : (a X, b) — (d ECIN b’) such that F(Ob(a)) C
Ob(a’), F(Ob(b)) C Ob(b’). It is easy to see that F contains the same data as
Ap-functors Fy : a — o', Fy : b — b’ together with an A,,-bimodule morphism
Fy M — FaMll'fb- Sometimes we will write F' = (Fy, Far, Fp).
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8.3. The gluing category.

Definition 8.2 (The gluing category). Assume that n > 1. Let a, b be
Ap-categories, and let M be a b-a-A,-bimodule. The gluing category a[],, b

is the full graded subgraph of (a M, b)*? given by objects of the form (A @
B,¢§) with A € Ob(a) and B € Ob(b). (Note that ¢ is simply an element of
Z'M(A, B).)

LEMMA 8.3. The gluing category a]],;b has the structure of an Ap—1
category with higher multiplications given by (5.5).

Proof. The proof is as in Lemma 5.3 except that now in the relevant argu-
ment lists in (5.6), we can have at most one J, as the (g;); are now represented
by lower triangular 2 x 2-matrices. (]

Remark 8.4. An alternative way of defining a[],, b is as follows. Let J;
be defined like I; (see Section 6.2) except that we put |ag| = 1. Then a[],, b

may be identified with the full subcategory of Aj(Jy,a M, b) consisting of
Aj-functors F' : J; — (a M, b) such that F'(xz¢) € Ob(a), F(x1) € Ob(b). It
then follows from Lemma 4.7 that a][,, b is indeed an A,,_;-category.

The following will be our main result in this section.

THEOREM 8.5. Assume that n > 13, that a, b are pre-triangulated
Ay, -categories and that M is an Ap-b-a-bimodule. Then a[],,b is a pre-
triangulated A,_1 category. Moreover the obvious fully faithful functors @q :
H*(a) = H*(a[],,b), wo : H*(b) = H*(a]],,b) preserve distinguished tri-
angles. If n > 14 so that H*(a]],,;b) is triangulated by Theorem 7.3 and
Lemma 8.3, then ¢q, @y give Tise to a semi-orthogonal decomposition

(82) H*(a]ly b) = (H*(a), H*(b))
whose associated bimodule (see Section 1.3) is H*(M).
The proof of this theorem requires some preparation. We start with

PROPOSITION 8.6 (Functoriality of gluing). Assume we have A,,-categories
a, b, a’, b/ and b-a and b’ — o’ bimodules M and M'. Then for m < n, there
is a strict A,_m-functor

b A% (a2 b0 2 0) o Ap1(a]l,, 6,0 L1y o)
Moreover ¢ is strictly compatible with compositions.

Proof. This is proved like Lemma 5.4, which also gives the relevant for-
mulas (where we take into account that in this case at most one d can appear
in the relevant arguments lists in (5.6)). O
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COROLLARY 8.7. Let3<m <n—3, and leta, b, a’, b', M, M’ be as in
Proposition 8.6. Let F € A2 (a M, b,d A b'). If F is a quasi-equivalence,
then so is ¢(F).

Proof. Note that F' is a quasi-equivalence if and only if £y, Fy are quasi-
equivalences and Fjs is a quasi-isomorphism. By Lemma 4.10 we may choose
an inverse G € A5 _(d M, b, a M, b) to F, up to homotopy (making use
of the fact that the quasi-inverse to H*(F}) may be chosen freely). Note that
H*(G) is a functor as m — 1 > 2.

Since H*(¢) also being a functor (as n—m > 3) preserves invertible maps,
we conclude by Lemma 4.9 that it preserves homotopies. Hence ¢(G) is an
inverse to ¢(F) up to homotopy. It follows that H*(¢(F)) is an equivalence

H*(a][,,b0) = H*(a' [T, ). O

For the next few results we assume that a, b are A,-categories and that
M is an A,-b-a-bimodule. We define M*? as the bxb-axa bimodule such that

M*2((Ao ® A1,04), (Bo ® B1,05))
= M(Ag, By) ® M(Ag, By) ® M(Ay, By) ® M(Ay, By),

where the higher operations on M*2 are obtained from those of M by “inserting
Maurer-Cartan elements” like in Lemma 5.3. In a similar way as Lemma 5.4
one proves

LEMMA 8.8. M*? is a A|(n—-1)/2| -bimodule.

LEMMA 8.9. Let n > 3, and let a, b, M be as above. We have a fully
faithful functor of A|_1)/2)—1-categories
(8.3) (a[Tps 0)x(a]lp b) = axa ]y bxb
Proof. An object in (a]],, b)x(a]],, b) is of the form
((Ao ® Bo, o) @ (A1 @ By,61),0),
where 6 = (oo, d10,011) € a(Ag, 41)1 B M(AO,Bl)l @ b(By, By)1 is such that

A
By
Ay
(511 0 0 By

acting on

is a Maurer-Cartan element in a]_[ b)®2. One verifies that the matrix

0 0 Ag
0 0 . By
0 0 acting on A
(511 (51 0 Bl
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defines a Maurer-Cartan element in (a M, 6)®4. Rearranging A we get a

different Maurer-Cartan element in (a M, b)®4

0 0 0 0 Ao

« [ %0 O 0 0 . A4
A = 5% 0 0 0 acting on B, |

do1 61 611 O B

which is a block-matrix representation for an object in (axa) ][, (b*b). This
construction defines and injection

Ob ((a]}\_} b) * <a]]\_/[I b)) < Ob (a*aj]w_[w b*b)

(but not a bijection) which is compatible with Hom-sets. It is now an easy
verification (but messy to write down) that we also get compatibility with
higher operations. O

The bimodule M may be extended to a Free(b)-Free(a)-A,-bimodule, which
we denote by Free(M).

LEMMA 8.10. We have a fully faithful functor of A,—1-categories

Free(a]],, b) — Free(a) [Tpyee(ar) Free(b).

Proof. An object in Free(a],, b) is of the form @, ; £ (A; ® B;, d;). We
send it to (P, X% A; @ @, X B;, ®;0;). It is easy to see that this operation is
fully faithful. O

Now we put Tw<; M = (Free M)*2. From Lemma 8.8 we obtain
LEMMA 8.11. Tw<1 M is a AL(n_l)/QJ -bimodule.

COROLLARY 8.12. Assume n > 3. There is a fully faithful functor of
A|(n—1)/2|-1-categories

(8.4) TWSl(a HM [J) — Tng aHngl M Tng b

whose restriction to a[[,,b is (®,1,D*), where ® : a — Tw<yia, is as in
Definition 5.5, ®* : b — Tw<i b is the related map B — (0@ B,0) and
I: M — ¢ Tw<i Mg+ is the obvious inclusion.

Proof. The existence of (8.4) follows by combining Lemmas 8.9 and 8.10.
The fact that the restriction to a[],, b has the indicated form follows from the
construction of the map. O

Proof of Theorem 8.5. If n > 13, then Tw<; a, Tw<; b are at least Ag-
categories by Lemma 5.6. By Lemma 8.11, Tw<; M is at least an Ag-bimodule.
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We can use Corollary 8.7 with n = 6 and m = 3, together with Lemma 8.13
below, to conclude that the composition

CIHM b— TWSl(aHM b) — TWSl a]—[TWSlMngl b

(which is equal to (®,1,®*) by Corollary 8.12) is a quasi-equivalence. Since
both functors are fully faithful (the second one by Corollary 8.12), the first one
must be a quasi-equivalence as well.

Put ¢ = a]];;b. The claim about the exactness of ¢q, ¢p follows from
Theorem 5.11. We clearly also have H*(¢)(H*(b), H*(a)) = 0. So to show
that we have a semi-orthogonal decomposition as in (8.2) we have show that
every object C' in H*(c) is of the form C' = cone(Cy — Cj) with Cy € Ob(a),
Cp € Ob(b). Assume C' = (A® B, §). We have a fully faithful functor a],, b C
Free a [ [0 o7 Free b, and the latter category is also pre-triangulated (as “Free”
preserves A-ness). Again by Theorem 5.11 this functor is exact. The following
triangle

saZ BL e % |

is distinguished in H*(Freea][p.. s Freeb) as it is trivially isomorphic to
the standard triangle 0,5 in H*(Tw<i(Free a] g, Freeb)). Choose A’ €
Ob(a) such that A’ = ¥71A in Freea (A’ is a desuspension of A). Then
by the axioms of triangulated categories we obtain cone(A’ — B) = C in
H*(Free a [ [p,ee as Free b). By fully faithfulness this isomorphism also holds in
H*(a]],,b).

The fact that the corresponding bimodule is as given is clear. ]

LEMMA 8.13. Let a be an Ap-category. The strict A|,—1)/2) functors
¢, 9* : a — Tw<ya given by ®(A) = (A 0,0), 2 (A) = (04 A,0) are

homotopic.

Proof. The homotopy h is such that h,, = 0 for n > 1 and hg is the matrix
(96)- 0

9. Higher Toda brackets in triangulated and A.,-categories

9.1. Postnikov systems. Let
(9.1) X Xo—=>X1—> =X,

be a complex in a triangulated category T, i.e., a sequence of composable
morphisms in 7 such that the composition of any two consecutive morphisms
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is zero. A Postnikov system for X*® is any exact diagram in 7 of the form
(9.2)

1 1 1
Yy 1) Y, (1) Yy Y, | (1) Y,
TAVAVAN SN/
Xo X1 Xo Xz 0 Xp Xn,
where the triangles marked with O are commutative and the triangles marked

with d are distinguished. This means that we should have the distinguished
triangles

(9-3) Yi = Xiy1 = Y W Y;
with Xo = Y5. A Postnikov system need not exist, and if it exists, it may not

be unique. If a Postnikov system exists, then the object Y, will be called a
convolution of X°.

Remark 9.1. Sometimes it is helpful to think of a convolution Y, as an
object with an ascending filtration with subquotients (starting from the bot-
tom) X, X X,_1, ¥2X,_2,...,5"Xy. In particular, the convolution Y;, comes

with maps
Y,
AN
(n)
Xo X,

(9.4)
where 7 is as (9.2) and p it the composition Y, = Y1 — -+ = ¥y = X in
that same diagram. Note that pi = 0.

9.2. Euxistence. Some existence and functoriality results for Postnikov sys-
tems are stated in [10, Lemmas 1.5, 1.6] but since they require the vanishing
of arbitrary negatives Ext’s between suitable objects, they are not completely
sufficient for our purposes. So we give some slightly strengthened versions in
the next two sections.

LEMMA 9.2. Assume X® is a complex in a triangulated category T such
that

(9.5) T(Xa, Xb)—(b—a)—i—Q =0 forb>a+3.
Then X*® may be extended to a Postikov system. Moreover if the condition
(9.6) T(Xa, Xb)—(p—a)+1 =0 forb>a+2

holds, then such an extension is unique, up to non-unique isomorphism.
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Proof. The Posnikov system built on X*® will be constructed inductively.
Assume we have constructed the part involving Xo, X1,...,X;, Yo,Y1,....,Y;
(so this is a Postnikov system on Xg — --- — X;). To lift the map X; — X;+1
to a map Y; — X;1 we need that the composition

Yi1— X — Xip

is zero. Since the composition of X;_ 1 — X; — X;41 is zero by definition,
it follows from (9.3) that it is sufficient to have T (Y;—2, X;+1)—1 = 0. Using
Remark 9.1 we see that this condition is implied by (9.5).

Once we have lifted to X; — X;41 to Y; — X;11 we may construct Y
via the the distinguished triangle (9.3).

To obtain uniqueness we note that if X® can be extended to two Postnikov
systems, then by Lemma 9.3 below the identity on X*® can be extended to a
morphism between these Postnikov systems. It is then easy to see that this
extension must be an isomorphism. O

9.3. Weak functoriality.

LEMMA 9.3. Assume we have a morphism of complexes in a triangulated
category T,

(9.7) Xo X, X X,

such that there exist Postnikov systems for X® and (X')® and the following
conditions hold:

(9.8) T (Xa» Xp)—(p—a)+1 =0 forb>a+2.

Then, given a choice of Postnikov systems for X® and (X')®, the diagram (9.7)
can be extended to a map of Postnikov systems (not necessarily uniquely).

Proof. We work inductively. Assume we have defined the extended map on
Yo, ..., Y; with the required commutativity holding on Yy,...,Y;, Xo,..., X;.
We perform the induction step. We have a diagram

(1)

(9.9) Y —= Xin Yit Y;
l . l l
"
Yz’/ - Xz{+1 Yz‘/+1 & Y;/~

We do not know that the left most square is commutative, so let the dot-
ted arrow denote the difference of the two compositions. From the following
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diagram,

Xi—=Y, — Xin1

! ! /
X, —Y, —Xi .,

we obtain that the composition of § with X; — Y; is zero. So in view of the
distinguished triangle

Y2-71—>Xi—>Yi(—)>Y¢71,
1

6 will be zero provided T(Yj—1,X;,;)-1 = 0. This follows from Remark 9.1
and the hypothesis (9.8).

So 0 = 0 and the square in (9.9) is commutative. We now finish by
invoking (TR3). O

9.4. Higher Toda brackets. In this section we define higher Toda brackets.
One may verify that they are the same as those defined in [5].

Definition 9.4. Let X* = ((X;)7_g, (d;)?=) for n > 3 be a complex in a
triangulated category 7. The (higher) Toda bracket (X®) C T(Xo, Xn)—n+t2
of X* is the collection of compositions Sa where «, ( fit in the following
commutative diagram:

(9.10) Qe >V e B

X, -

do -1
where Y is a convolution of (X;)?~' and p, i are as in (9.4).
Note that if n > 3, then (X*) may be empty.
THEOREM 9.5. Let X*® be as in Definition 9.4.
(1) Ifte(X®), thent + dp—1T (Xo, Xpn—1)—nt+2 + T (X1, Xn)—nt2do C (X*).
(2) If

(9.11) T(Xa, Xb)—(p—a)42 =0 forb—ae€[3,n—1],
then (X*®) # 0.

(3) If, moreover,

(9.12) T(Xa, Xb)—(p—a)+1 =0 forb—a € [2,n—2],
then (X*) is a coset of dp—1T (Xo, Xn—-1)-n+2 + T (X1, X)) —n+2do.
Proof.
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If ¢ € T(Xo,Xn-1)—n+2, then as pi¢p = 0, adding to i¢ to « still keeps
the diagram (9.10) commutative. Since [i¢ = d,—_1¢, we obtain that
t+ dp—1¢ € (X°®). A similar reasoning applies if we start with ¢ €
T (X1, X0n)—nt2-

Note that (9.11) implies, in particular, (9.5) for (X;)?~'. So a convolution
Y asin (9.10) exists, and we have to verify the existence of « and 5. We
will now introduce notation similar to Section 9.1. So we will denote the
Postnikov systems giving rise to Y by Y1,...,Y,_1, where Y,,_1 =Y and
Y1 = X;.

We first consider the existence of 3. We have a distinguished triangle

(913) Yn_g — Xn—l i> Yn—l — .

Thus in order for the map d,_1 : X,,—1 — X, to factor through Y,,_1 we
have to prove that the composition Y,, s — X,,_1 — X,, is zero. Since we
already know that the composition X,,—o — Y, 2 — X,,_1 — X, is zero
and there is a distinguished triangle

Xn,Q — Yn,Q — EYn,g), —,

it is sufficient to show that 7 (XY,—3,X,)o = 0. Now by Remark 9.1,
YY,,_3 has subquotients X,,_3, ..., X" 3X;. The conclusion now follows
from (9.11).

Now we look at the existence of a. We will successively lift Xg o, x 1=Y]

to maps Xg ﬂ) Yy, ... Xo ﬂ)% Y, —1. The last map is the sought «.

First we look at the distinguished triangle
X 1 — X2 — Y2 — .

Since the composition Xg — X7 — Xs is zero, the map dy factors through
¥~ 1Y;. To continue we use the distinguished triangles

Yioi = Xi =Y —

for 3 <i <mn—1. Assume we have constructed the map Xy — X 7"T2Y;_;.
From (9.11). we obtain that the composition X — L7+2Y; | — N7+2X;
is zero, and hence Xg — X 72Y;_; factors through ¥ ~*1Y; and we can
continue.

First we observe that (9.12) implies, in particular, (9.6) and hence the Post-
nikov system built on (X;)} ™! is unique. To prove the asserted statement
we have to investigate the freedom in choosing o and .

Again we will discuss 3 first. The map [ is determined up to an element
of the kernel of T(Y,—1,Xn)o = T (Xn-1,Xn)o. Using the distinguished
triangle (9.13) we see that ( is determined up to a composition of the
form Y,,_1 — XY, o uR X,. Using Remark 9.1 we see that XY,,_o has
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subquotients ¥X,, o, %2X,, 3,...3" 2X;. Hence by (9.12) any morphism
YY,_» — X, factors through £"2X;. It follows that 3 is determined up

to a composition of the form Y,_; & " 2X; X5 X,,. Composing with «
we see as in (1) that changing f in this way changes Sa by an element of
T(Xh Xn)—n—I—ZdO-

Now we discuss «, which is determined up to an element of

ker(T(Xo, Yn—l)—n+2 — T(X(), Xl)O-

Define Y/ = 7! cone(Y; — X971 X;) so that, in particular, Y{ =0, Yy = X».
Using the octahedral axiom we may construct commutative diagrams for
i=2,....n—1,

XY/ | —=3%Y g ——= 371X ——

Y/ Y; DX ——

X; ——— X,

with rows and columns that are distinguished triangles, where the maps
not involving Y”’s are taken from the Postnikov system. Hence similar to
Remark 9.1, Y/ has subquotients X;, %X, _1,..., 22X,

We have a distinguished triangle

Y,

1= Y= anQXl —,

and hence « is determined up to a composition Xy LN yty! o
Y2y, 4. Now Y 7"*2Y/ | has subquotients L 7"+2X, ... Y71 Xy,
and hence by (9.12) we obtain that any map Xj LN »nF2y! | factors
through Y ~"*+2X, ;. Hence we obtain that « is determined up to a com-
position X LIN N2X, o — RTP2Y) | — %77F2Y,, 4, which by con-

. . 8 e ynt2g
struction is the same as a composition Xy — 2 7"2X,,_ = LYY, 4.

We now finish as for . O

9.5. Postnikov systems associated to twisted compleres. In this section a

is an A..-category.

9.5.1. More on the category Free(a). Recall that in Section 4.6 we intro-

duced the strict endo-functor ¥ of Free(a). Below we introduce some more

notation concerning the category Free(a). If X € Ob(a), then we let nx qp :
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$%X — ¥PX be given by ¢*~*idx. We similarly define Nx,ap @ 24X — LD'e
for X € Free(a): for each summand %% X; of X, nxqp : 200 X; — B2 X
is given by ob—@ idx,. Note that ma(nxp.c:x,ap) = NX,a,c- All operations on
a, except mg, vanish when one of its arguments is of the form nx .. Moreover
we have formulas

mn( .. 7f) m?(nXﬂ,bvg)a .- ) = mn(' ) m2(f7 77X7a7b)’g’ © ')’
M (ma(nx.ap, f),---) = (=)D my(ny o, ma(f, ),
mn(' ) m2(gv 77X,a,b))> - mQ(mn< e 79)7 77X,a,b)7
and their b-versions which are useful for computations:
(_1)b_abn(- .. ,sz(f, nX,a,b)u 59, .- ')7

(Mx,0,0:bn(sf,---)),
(bn( R Sg)v nX,a,b)-

bu(....sf, sma(Nx,ap:9)s---)
(9.14) bn(sma(nx,ap, f)s---)
bn( ) SmQ(ga UX,a,b)))

m2

m2

Below we usually write 7x 49 for ma(nx.ap,9) and similarly ma(g,7x,6.5)-
By the vanishing of m3 on arguments involving 7x . this will not lead to
confusion. Sometimes we also write n)_(}a,b for nxp.q. One verifies using the
definition of the functor ¥ (see Section 4.6) that for f : ¥°X — X°Z, one has

(915) an = (_1)n‘f|nZ,b,b+nf77X,a+n,a-
Finally we put nx = 7x.,0,1-

9.5.2. More on the triangulated structure of Twa. Let f : (A4,54) —
(B, dp) be a closed morphism of degree 0 in Twa. To f we associate a triangle
in H*(Twa),

(9.16) (4,64) L (B, 65) 5 (C(f),50(p) 29 (4,04),

where C(f) = XA ® B and

5 04 0
D=\t s
and, furthermore,

(9.17) i= ( ! ) p=(n3" 0).

idp
The following lemma is an easy verification:

LEMMA 9.6. The triangles (9.16) are distinguished according to Defini-
tion 5.10.
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9.5.3. Postnikov systems from objects in Tw a.

PROPOSITION 9.7. A twisted complex in Tw a,
V,=(E"Xo0 "' X1 @ ® Xp,0)

with X; € Free(a), gives rise to a Postnikov system in H*(Twa) built on the
complex
Xo % x, B L,
with
dji1 = (=1)"0x;m5.0 " 0jj—1° NX;_1.0m—jt15

where §; j_1 : SVITIX, | — S X s the (j,j — 1) entry of the matriz §;
the -’s are for easier reading.
In the Postnikov system we also have

Vi=EXoa Y X185 @ Xj,0y,)

such that XI5y, is given by the upper left j + 1 x j + 1-square in the matriz
representing 6.

Finally the maps p : Yy, ﬂ Xo, i: X5, = Y, as in (9.4) are given by

0

(9.18) i C s p=(x0m0,0,-.,0).
idx,

Yoy, 0
dy, = It ,
K (fﬂ]yjl_l 0)

where f; : (Yj-1,0y, ;) — X is the closed map in Twa with matrix

Proof. We may write

((519)]‘,0?73]'—1)(0, ) (5Yj)j,j—177Xj—1)'

Clearly Y; = C(f;) so that we have standard triangles
(9.19) Vi 2 X Y 2 Y,

where (i;,p;) are as in (9.17). In particular, i = i, is given by the formula
(9.18). We compute the composition

X,y B x

It is given by the matrix multiplications
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((0y;)5.0M5i-1x0> - - - » (0} )jj—171X,_,) 0 = (0y;)jj—11X,_1>

idy, ,

which is equal to (X~ (9v,)j.j-1)nx,_,- One computes using (9.15) that
the latter expression is equal to d;_;.

Finally to show pis asin (9.18), we use p = pj - - - pp—1Pn by the description
in Remark 9.1. Then we use the formula (9.17) for p;. O

9.6. Higher Toda brackets in A -categories. We prove the following result:

THEOREM 9.8. Let a be a pre-triangulated Aoo-category, and let Xg o,

X, L N SN Xy be a complex in T = H*(a). Assume the following

conditions hold:

(1) The Ax-subcategory of a spanned by the objects (X;); is minimal (i.e.,
by =0).

(2) a(X;, Xj)u=0 for -n+2 <u<0.

Using (1) we may regard d; as closed arrows in a. With this convention we

have that (X*®) is the coset for dn—1T (Xo, Xn—1)—n+2+T (X1, Xpn)—nt2do given

by s1by(sdp—1,...,sdp).

Proof. Since (9.11) and (9.12) hold, it is sufficient to produce a single ele-
ment of (X*). Since higher Toda brackets are obviously invariant under equiv-
alences of triangulated categories, we may perform the calculation in Tw a. We

dn—2

start with the Postnikov system built on X3 d—1> X5 d—2> -oo — X,—1. By

Proposition 9.7 it is obtained from the twisted complex
Y =2" 22X, @ ® X,_1,0),
where the only non-zero entries of 6 are d; ;1 for j =2,...,n—1and §; ;1 is
given by
3jj—1= (=1)"""nx; 0m-1-5 - dj1 01X, n—j0-

Using the formulas for i and p (see (9.18)) it is then easy to see that we may
take
1nX1,0,n—2do
o= , ,8:(0,0,...,dn_1).
0
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Then mry a2(8, @) € (X*®). It will be more convenient to compute bry 4 2(s8, sa)
= sMTwa2(6, ). We have

brwa,2(80, sa) = ban(sB, 86, ..., 56, sa)
—_——

n—2

= ba,n(Sdn—la 5dn—2 : an_Q,l,(b s
i (
(

)

n—1—j
(=1 Tsnx; 01—  dj—1 " NX;_1 n—j05 -
-3
s (1) snx,0m—3 - d1 s X 02,05 SX,0,n—200)
= ba,n(Sdn—la Sdn—27 e 73d17 Sd0)7

where in the last line we have used (9.14). O

10. Triangulated categories without models

If A is a triangulated category, then an A,,-enhancement on A is a pair
consisting of a pre-triangulated A.o-category a such that Ob(a) = Ob(A) and
an isomorphism of triangulated categories H*(a) — A inducing the identity
on objects. The following proposition will be the basis for constructing a
triangulated category that does not admit an As.-enhancement.

ProPOSITION 10.1. Let a, b be pre-triangulated A -categories. Suppose
we have an Ay-functor F : a — b for n > 13 such that H*(F') does not lift
to an Aso-functor for any As-enhancements on H*(a), H*(b). Let ¢ be the
gluing category ¢ = a]],,; b, where M = pb (see Section 8.1). Then H*(c) is
a triangulated category which does not admit an As-enhancement.

Proof. By the discussion in Section 8.1, M is an A4-bimodule. Therefore
by Theorem 8.5, ¢ is a pre-triangulated Ais-category. Hence by Theorem 7.3,
H*(c) is triangulated.

Suppose that an As-enhancement ? on H*(¢) exists. Since H*(a), H*(b)
are full exact subcategories of H*(¢) (see Theorem 8.5), it follows that the
Axo-structure on 9 induces Ay-enhancements o', b’, on H*(a) and H*(b). By
H*(0) = H*(c) it follows that 9(A, B)a p for A € Ob(H*(a)), B € Ob(H*(b))
defines an A,o-b’-a’-bimodule which is a co-quasi-functor in the sense of Sec-
tion 10.1 below. Hence by Lemma 10.4, ? induces an A-functor F’ : a’ — b’
such that H*(F') = F. This contradicts the hypotheses on F'. (]

Remark 10.2. The idea of creating a triangulated category without model
by gluing a non-enhanceable functor was suggested to us by Bondal and Orlov
on a number of occasions. In fact, the idea of translating an enhancement
of the glued category into an A..-enhancement of the gluing functor, thereby
obtaining a contradiction, was specifically suggested to us by Orlov.
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10.1. Co-quasi-functors. To fill in a missing ingredient in the proof of
Proposition 10.1 we use an As-version of the notion of a (co)-quasi-functor
(see [6]). In the rest of this section we assume that a, b are A-categories.

Definition 10.3. An As-b-a-bimodule M is a co-quasi-functor a — b if
for every object A € Ob(a), there exists fA € Ob(b) together with an el-
ement ¢4 € (H*M)(A, fA)y inducing an isomorphism for all B € Ob(b):
ba: H*(0)(fA,B) — (H*M)(A,B) : u > uda.

It is clear from the definition that being a co-quasi-functor depends only
on the structure of H*M as graded H*(a) — H*(b)-bimodule. A co-quasi-
functor induces an actual functor f°: H*(a) — H*(b). Indeed for u: A — A’
in H*(a), f°u : fA — fA’is defined to be the unique morphism such that
H*(b)(f°u,—) is the composition

P (6)(F4', =) 225 (b (), ) 22

71
H*M)(A, —) 2 H* (6)(fA, -).
Moreover is is clear that different choices of (¢4, f°A) lead to naturally iso-
morphic functors.

LEMMA 10.4. Assume that M is a co-quasi-functor a — b, and let f° :
H*(a) — H*(b) be the induced functor as explained above. Then there exists
an Aso-functor f :a — b such that H*(f) = f°.

Proof. Let C(l)o(b) be the DG-category of strictly unital left A,-b-modules
[7, Ch. 5], and let Y : b — C._(b)° : B+ b(B,—) be the Yoneda embedding.
Furthermore let b C C! (b)° be the full subcategory spanned by As-modules
M which are As-quasi-isomorphic to some b-module of the form b(B,—).
Clearly we have that Y corestricts to an As.-quasi-equivalence Y€ : b — b.
Since M is a co-quasi-functor, the image of the Ay -functor F : a — C,_(b)° :
A M(A,—) lies in b. Let F°: a — b be the corestriction of F.

Choose an Ano-quasi-inverse W : b— b to the quasi-equivalence Y : b — b
which sends M (A, —) to fA for A € Oba and u to (a representative of) f°u
for u: A — A’ a closed map in a. By Lemma 4.10 this is possible. Then one
easily verifies that f© = H*(FW). O

Remark 10.5. It is also easy to prove that we have a quasi-isomorphism
of As-bimodules ;b = M. However we will not need this.

10.2. Localization of triangulated categories. The following result is well
known, although we did not find the precise statement we require. Since the
proof is short, we include it for the convenience of the reader.

PRrROPOSITION 10.6. Let T be a triangulated category admitting arbitrary
coproducts, and let T € Ob(T) be a compact generator for T. Let S C T(T,T)
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be a graded right Ore set, and let Tg be the full subcategory of T spanned by the
objects X such that T (s, X) is an isomorphism for all s € S, or equivalently
the objects for which

(10.1) T(T,X)—->T(T,X)s

is an isomorphism. Then Tg is a triangulated subcategory of T and moreover
the inclusion functor Ts — T has a left adjoint, denoted by (—)s such that for
Y € Ob(T), the induced map

(=)s: T(T,Y) = Ts(Ts,Ys)
factors uniquely through an isomorphism

(10.2) T(T,Y)s = Ts(Ts,Ys).

Proof. The fact that Tg is triangulated follows trivially from the 5-lemma.
Let us now discuss the existence of the adjoint. Let C be the full subcategory
of T spanned by objects X such that all morphisms 7" — X (not necessarily
of degree zero) are annihilated after composing with some s : T'— T € S, or
equivalently

(10.3) T(T, X)s = 0.

It is clear that C is triangulated and closed under arbitrary coproducts (the
latter by the compactness of T').

For s € S, let C(s) be the cone of the morphism s : T — ZISIT. Tt is clear
that 7s = (C(s)ses)™. By the Ore condition on S the objects C(s) are in C.
Moreover as (C(s)ses)™ NC = Tg NC and it is easy to see that Tg NC = 0, we
obtain that C is in fact generated by (C(s)scs). This yields C*+ = Tg.

Hence, in particular, C is compactly generated, and using the Brown rep-
resentability theorem we obtain that the inclusion functor C — 7 has a right
adjoint U : T — C such that every X € T fits in a unique distinguished triangle

(10.4) UX - X > VX —,

where VX € Ct=Tg. It follows easily that X — V X is a functor T — C*+="Ts.
Applying T(—, %) for Z € Tg to (10.4) we obtain that V is the sought left
adjoint (—)g to the inclusion Tg — T.

Finally we discuss the formula (10.2). As cone(Y — Yg) = YUY € C we
have T (T, cone(Y — Yg))s = 0 by (10.3). Hence (—)g induces an isomorphism
T(T,Y)s =N T(T,Ys)s (b T(T,Ys) = Ts(Ts,Ys) where the last equality is
adjointness. O
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10.3. A non-enhanceable functor. Now let k be either a field of character-
istic zero or an infinite field of characteristic > n > 3. Put R = k[z1,...,zy],
and let K be the quotient field of R. Furthermore let R[e| be the R-linear
DG-algebra with |e| = —n + 2, €2 = 0, de = 0. Let C(R, R) be the Hochschild
complex of R, and let HH" (R, R) = H"(C(R, R)). Let Try, =Nk Derg(R, R).
The HKR theorem gives an inclusion Ty, C Z"C (R, R) which induces an
isomorphism T% , = HH" (K, K). Forn € Ty we let Ry be the k[e]-linear
Aso-deformation of R[e] whose only higher multiplication is given by en.

As above, for an Ay-algebra A, let C (A) be the DG-category of strictly
unital right As-modules over A [7]. We put D(A) = H*(C,,(A)). This is
one of the many realizations for the derived category of an A..-algebra (see [7,
Th. 4.1.3.1(D2)]) for which we consider C (A) to be its standard enhancement.

Remark 10.7. A is an A-A-bimodule, and hence the left A-action on A de-
fines Ay-quasi-isomorphism (see [7, Lemma 5.3.0.1]) A — C. (A)(A, A) which
is however not an isomorphism.

PRrROPOSITION 10.8. Assume T is a triangulated category with arbitrary
coproducts and T is compact generator of T such that T (T,T) = R[e]. Assume
a is some Aso-enhancement of T. Then there is an Ao -quasi-equivalence a =
CL.(Ry) for a suitable n € Tg/k which sends T to an object isomorphic to
R, in H*(CL,(R;)) = D(R,) such that the induced map R[] = T(T,T) =
D(R,)(Ry, R,) = Rle] is the identity. Moreover n is uniquely determined by
the triangulated structure on T and, in particular, is independent of the chosen
quasi-equivalence.

Proof. Let R = a(T,T). By [6, §4.3] as formulated in the work of Porta
[11], the Aoo-functor

Y:ia—-CL(R): X — a(T,X)

is a quasi-equivalence which sends 7" to R. Indeed C. (R) is pre-triangulated
and so is a by the definition of enhancement. So H*(Y') is exact. Since the
essential image of H*(Y') contains a generator of H*(C. (R)) (namely, R), it
is sufficient to show that L := H*(Y) is fully faithful. By the Brown repre-
sentability theorem L has a right adjoint R which moreover commutes with
coproducts. (This follows from the fact that L send the compact generator
T to the compact object R.) Hence the full subcategory of H*(a) spanned by
objects X such that X — RLX is an isomorphism is closed under shifts, cones,
summands and arbitrary coproducts. Moreover applying H*(a)(7T, —) we see
that it contains 7. Hence it must be H*(a) itself. From this one deduces that
L is fully faithful.
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Now R is a DG-algebra with cohomology R[e], so it is As-isomorphic
to a minimal As-structure on R[e] with mg being the usual multiplication.
For degree reasons, the only such A.o-structures are (up to As-isomorphism)
of the form R,. Hence after choosing an A-quasi-isomorphism R, — R
we obtain a quasi-equivalence C5 (R) — CL (R,) which sends R to an object
quasi-isomorphic to I, in a way which induces the identity on cohomology.
Composing with Y completes the proof of the first part of the proposition.

For A € k", let K} be the R-Koszul complex on (1 —A1,...,Z,—Ay,). This
is a resolution of Ry := R/((z;—\;);). Put K3} = K{®pT. This is a complex
in 7. Conditions (9.11) and (9.12) hold for K3 5., and hence the higher Toda
bracket (K3 7) is a coset of >, T(T,T)—pi2(zi — i) in T(T,T)-ny2 = Re.
We define n) 7 € Ry such that n) ¢ is the sole element of the image of (K3 1)
in R)\. ’

By the constructed quasi-equivalence we have n\ r = n\ g, - Alas we can-
not immediately apply Theorem 9.8 to the right-hand side of this equality
as the A.-category spanned by the terms of the complex K3, Ry (finite di-
rect sums of R,) is not minimal (see Remark 10.7). To work around this let
S = CL(R,)(R,, Ry), which we regard as a one object A.-category (S,e).
As in Remark 10.7 we obtain an A,-quasi-isomorphism R, — S. Com-
posing with (S,e) — CJ (R,) : e — R, we obtain a quasi-fully faithful
Ao-functor (R,,e) — CL (R,) : ® — R, which gives rise to a quasi-fully
faithful A..-functor

Tw R, — TwCl(R,) = C(R,)

which sends K3 p € TwRy to K3 € CL(Ry). It follows that we may
perform the calculation of 7y g, in Tw R;. As the Ax-subcategory of Tw R,
spanned by direct sums of R, is minimal, we are now in a position to apply
Theorem 9.8. We obtain that, up to a global sign, 7, g, is the image of
Zaesn(—l)gn(xg(l) - /\U(l)a ey xa(n) —)\U(n)) in R,\. Since Tg/k = R/\z 8/8%’2,
this is the same as the image of n!n(z1,...,x,). We obtain by varying A that
7 is uniquely determined. ([

THEOREM 10.9. Choose 0 # n € Ty )y and put a = CL(K), b=CL(Ry).
After extending n to T}é/k = Tg/k ®r K, we consider K, as an object in b.
There is an A,_1-functor

F:a—0
which sends K to K. The corresponding functor

H*(F): D(K) — D(R,)

does not lift to an A, -functor, even after changing the enhancements on D(K)
and D(R,).
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Before giving the proof of this theorem we show that it implies Theo-
rem 1.1 in the introduction.

Proof of Theorem 1.1. From Theorem 10.9 we obtain that the hypotheses
of Proposition 10.1 are satisfied for (a, b, F') (with n replaced by n — 1). Thus
for n > 14, we obtain a triangulated category D = H*(a ][, b) without Au.-
enhancement with a semi-orthogonal decomposition

D = (D(K), D(R,)). O

Proof of Theorem 10.9. We first discuss the construction of the functor F'.
To be compatible with Propositions 10.6 and 10.8, put 7 = D(R,) =
H*(CL,(Ry;)) and let T' be the object R,. Put S = R — {0}. It is easy to
see that Ts = K. Indeed K, is in Tg and cone(R, — K,) is in C by (10.3).
In particular, it follows by (10.2) that T (K, K,) = K|e].

Choosing homotopies we obtain an As-functor

(10.5) F:K —C(Ry) : K — K,
and the obstructions against extending u to an A;-functor are in
HH (K, T (K, Ky)-j42)

for 3 < j < i; see, e.g., [12, Lemma 7.2.1]. Since T (K,, K,) = Kle|, the
obstructions vanish for j < n. So F extends to an A,_;-functor. Let Free™(—)
be defined as Free(—) but allowing arbitrary formal direct sums. If a is an
Ap-category, then so is Free™(a), and a similar statement is true for func-
tors. We then obtain an A,_;-functor Free (F) : Free (K) — Free (CL (Ry)).
Since Free™(K) is quasi-equivalent to Coo (K') (both are models for D(K') which
is semi-simple) and the direct sum defines an A -functor Free (C5 (R,)) —
CL.(Ry), after choosing a suitable A-quasi-inverse to the first functor we ob-
tain the sought A,_;-functor F': CJ (K) — C. (R,) which sends K to K.

We claim that F' does not lift to an A,-functor, even if we change en-
hancements. It if did, the As-functor (10.5) would also lift to an A,-functor,
as by Proposition 10.8 the enhancement on CL (R,) is (weakly) unique and
(as we have shown in the first paragraph) the object K, is determined by the
triangulated structure. If this were possible, then it would induce the structure
of an A,-functor on the corestriction

K& cc CL(Ry),
where ¢ is the full subcategory of CL (R,) spanned by the single object Kj,.
Put K = CL (R,) (K, K;). Since K, is an K,-R,-bimodule, the left K, -action
on K, induces an A, -quasi-isomorphism K, — K = ¢. Taking an A,-quasi-
inverse and composing with K £ ¢ we obtain and Ap-morphism K — K, such

that H*(K) — H*(K,) = K|e] is the natural inclusion. Such an A,-morphism
does not exist as n # 0 [7, Ch. B]. O
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