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A k-linear triangulated category
without a model

By Alice Rizzardo and Michel Van den Bergh

Abstract

In this paper we give an example of a triangulated category, linear over a

field of characteristic zero, which does not carry a DG-enhancement. The

only previous examples of triangulated categories without a model have

been constructed by Muro, Schwede and Strickland. These examples are

however not linear over a field.

1. Introduction

1.1. Main result. The only known examples of triangulated categories

without model (not even topological) are given in [9]. The examples in loc.

cit. are not linear over a field and furthermore they depend on some special

properties of the number 2. In particular, they satisfy 2 6= 0 but 4 = 0.

In this paper we discuss triangulated categories over a field k of character-

istic zero.1 In this case the appropriate notion of a model is a DG-enhancement

[3], [4], [8], or what amounts to the same thing2: an A∞-enhancement (see

Section 10). Our main result is an example of a k-linear triangulated cate-

gory which does not carry an A∞-enhancement. This, in particular, answers

positively what is described as a challenging question in the survey [4] by

Canonaco and Stellari, namely, Question 3.8. Our example also provides a

negative answer to Question 3.3 of their survey.
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To describe the example we have to introduce some notation. Fix a natu-

ral number n ≥ 3 and let k be either a field of characteristic zero or an infinite

field of characteristic > n. Let R = k[x1, . . . , xn], and let K be the quotient

field of R. Furthermore let R[ε] be the R-linear DG-algebra with |ε| = −n+ 2,

ε2 = 0, dε = 0. Let C(R,R) be the Hochschild cochain complex of R and

let HHn(R,R) = Hn(C(R,R)). Let TnR/k = ∧nR Derk(R,R). The HKR theo-

rem furnishes an inclusion TnR/k ⊂ ZnC(R,R) which induces an isomorphism

TnR/k
∼= HHn(R,R). For η ∈ TnR/k we let Rη be the k[ε]-linear A∞-deformation

of R[ε] whose only non-trivial higher multiplication is given by εη.

Theorem 1.1 (see Section 10.3). Assume n ≥ 14 and η 6= 0. Then there

exists a triangulated category without A∞-enhancement with semi-orthogonal

decomposition 〈D(K), D(Rη)〉.

In the next few sections we discuss in more detail the ingredients that go

into the construction of this example.

1.2. Pre-triangulated An-categories. An A∞-category [7] is a DG-graph

equipped with higher compositions (mi)i≥1 which satisfy certain natural qua-

dratic relations.3 If only mi with i ≤ n are defined, then we obtain the corre-

sponding notion of an An-category. As a general principle, for any A∞-notion,

there is a corresponding An-notion in which we consider only operations with

≤ n arguments, and we require the axioms to only hold for expressions with

≤ n arguments. Facts about A∞-categories remain valid for An-categories as

long as they only involve such expressions. It is useful to note that if a is

an An-category for n ≥ 3, then its “homotopy category” H0(a) is an honest

category.

A DG-category is an A∞-category with mi = 0 for i > 2. In their semi-

nal paper [3] Bondal and Kapranov introduced pre-triangulated DG-categories

which, in particular, have the property that their homotopy category is canon-

ically triangulated. Their most striking insight is that, whereas a triangulated

category is an additive category with extra structure, a pre-triangulated DG-

category is a DG-category with extra properties.

It is well understood how to define the analogous notion of a pre-triangu-

lated A∞-category (see [1]). An A∞-category is pre-triangulated if the natural

functor a→ Tw a is a quasi-equivalence, where Tw a is the category of twisted

complexes over a. It is easy to see that this is equivalent to a being closed

under suspensions, desuspensions and cones of closed maps, up to isomorphism

3We also have to specify the compatibility with units. As specified in Section 4, throughout

in this paper we will use A∞-categories (and An-categories) that are strictly unital.
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in H0(Tw a). Stating these properties explicitly requires only a finite number

of higher operations on a and so they make sense for An-categories for n� 0.

For any A∞-category a, H0(Tw a) is canonically triangulated. Hence if

a is pre-triangulated, then H0(a) is also canonically triangulated. (Note: In

this introduction we will follow tradition by viewing a triangulated category

as an additive category. However in the main body of the paper we will equip

a triangulated category with its canonical graded enrichement. This means, in

particular, that we use H∗(a) rather than H0(a). See Section 2 for the rationale

for this choice.) Now it is intuitively clear that it should be possible to prove

this using only a finite number of the higher operations on a. It then follows

that it must be possible to define for n � 0 a notion of a pre-triangulated

An-category which induces a canonical triangulation on its homotopy category.

Unfortunately, carrying out this program naively using explicit equations

seems to be a nightmare. Therefore we are forced carry over some more ad-

vanced technology from the A∞-context. This is done in Sections 4 and 5.

The main difficulty we face is that the definition of Tw a depends on higher

compositions in a of unbounded arity and therefore does not generalize to

An-categories. Luckily this issue can be solved by considering twisted com-

plexes of uniformly bounded length. In fact we only need Tw≤1 a, which con-

sists of twisted complexes of length two. This leads to our first main result.

Theorem 1.2 (Lemma 5.6, Definition 5.10, Theorem 7.3). If a is an An-

category, then Tw≤1 a is an Ab(n−1)/2c-category. If n ≥ 7, then we say that

a is pre-triangulated if H∗(a) → H∗(Tw≤1 a) is a graded equivalence. If a is

pre-triangulated and n ≥ 13, then H0(a) is canonically triangulated.

The number 13 seems quite high. We are rather curious if it can be re-

duced.

1.3. Gluing. We have already pointed out that if a is an An-category,

then its “pre-triangulated hull” Tw a is not well defined. So while we have

a satisfactory theory of pre-triangulated An-categories, it is unclear how to

actually construct non-trivial examples of them. Luckily there is one approach

which works very well. It turns out that pre-triangulated An-categories admit

a “gluing” procedure, and starting from pre-triangulated A∞-categories we can

in this way produce pre-triangulated An-categories which are not themselves

A∞-categories.

Let us first review gluing in the context of triangulated categories. If A, B
are triangulated categories andM is a B−A-bimodule (an additive bifunctor

A◦ × B → Ab), then a gluing of A, B across M is a triangulated category C
together with a semi-orthogonal decomposition C = 〈A,B〉 such that C(A,B) =

M(A,B) for A ∈ Ob(A), B ∈ Ob(B). The data (A,B,M) determines the

objects of C up to isomorphism and there is a long exact sequence relating the
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Hom-spaces in C to those in A, B and the elements of M. However this is

as far as it goes. Triangulated categories are too flabby to allow one to fully

construct C from the triple (A,B,M).

On the other hand, if a, b are A∞-categories and M is an A∞-b-a-module,

then it is a routine matter to define an A∞-gluing category c = a
∐
M b such

that if a, b are pre-triangulated, then so is c and there is a semi-orthogonal

decomposition H0(c) = 〈H0(a), H0(b)〉 with associated bimodule H0(M).

To prove that c is pre-triangulated we have to prove it is closed under cones

of closed maps. Again it is clear that this will only involve a finite number of

higher operations. Hence the theory can be developed for An-categories. This

leads to our next main result.

Theorem 1.3 (Theorem 8.5). Assume that n ≥ 13, that a, b are pretri-

angulated An-categories, and that M is an An-b-a-bimodule. Then a
∐
M b is a

pre-triangulated An−1 category. If n ≥ 14, so that H0(a
∐
M b) is triangulated

by Theorem 1.2, then we have a semi-orthogonal decomposition H0(a
∐
M b) =

〈H0(a), H0(b)〉 whose associated bimodule is H0(M).

1.4. The counterexample. The counterexample we describe in Theorem 1.1

will be more specifically of the form D = H0(a
∐
M b), where a, b are pre-

triangulated A∞-categories and M is an An-b-a-bimodule. We will in fact

assume that M is obtained from an An−1-functor F : a → b via M(A,B) =

b(FA,B). By Theorems 1.2 and 1.3, D is canonically triangulated for n� 0.

Moreover any A∞-enhancement on D induces A∞-enhancements a′, b′ on

H0(a), H0(b) as well as an A∞-functor F ′ : a′ → b′ such that H0(F ′) = H0(F ).

One may hope to be able to prove that such F ′ does not exist. This then implies

that an A∞-enhancement on D does not exist.

We carry out this program with a, b being the standard A∞-enhancements

of D(K), D(Rη) for η 6= 0 (see Section 10). The exact functor

f : D(K)→ D(Rη) : K → Kη

(defined using the fact that D(K) is the category of graded K-vector spaces,

equipped with its unique triangulation) lifts to an An−1-functor F : by [12,

Lemma 7.2.1] this follows from the fact that H i(Kη) = 0 for i = 0, . . . ,−n+ 3.

However, using the fact that η 6= 0 one deduces that f does not lift to an

A∞-functor, even if we are allowed to change enhancements. This follows from

the fact that the enhancement on D(Rη) is actually unique in a weak, but suffi-

cient, sense. This is proved using higher Toda brackets (see Proposition 10.8).

This finishes the proof that an A∞-enhancement on D does not exist.

Acknowledgement. The authors thank Alexey Bondal and Dmitri Orlov

for several interesting discussions around the possibility of gluing a non-

enhanceable functor to obtain a triangulated category without model.
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2. Notation and conventions

Below k is an arbitrary field, except in Section 10.3 where it will be subject

to some restrictions. Unless otherwise specified, categories are pre-additive

(enriched in abelian groups), except when we are in an An-context. In that

case we assume all objects and constructions are k-linear.

Triangulated categories will be equipped with their canonical graded en-

hancement (see Section 3.4). The motivation for this is that the principal “ho-

motopy invariant” associated to an An-category a is H∗(a) as H0(a) loses too

much information in general. If a is pre-triangulated, then H∗(a) can be recov-

ered from H0(a) together with a “shift functor” but, since the shift functor is

not canonical (despite being unique up to unique isomorphism), this extra step

creates some complications, notably with signs, which are often unnecessary.

In any case, not all An-categories we will encounter will be pre-triangulated.

In situations where the shift functor is canonical we will use it. The most

obvious case is graded objects over an abelian category A. If A• = (Ai)i∈Z is

such an object, then we put Σn(A•)i = Ai+n. If f : A• → B• has degree i,

then we put Σnf = (−1)nif . If A• is a graded object over Ab and x ∈ Ai,
then we write sx for x considered as an element of (ΣA•)i−1. The “degree

change operator” s makes it easy to find the correct sign in formulas using the

Koszul convention.

3. Preliminaries on triangulated categories

3.1. Graded categories. For us a graded category is a category enriched in

Z-graded abelian groups. Assume that a is a graded category, and let X ∈
Ob(a). A suspension of X is a pair (Y, η) where Y ∈ Ob(a) and η ∈ a(X,Y )−1

is invertible. Conversely we call (X, η) a desuspension of Y . (De)suspensions

are clearly functorial if they exist. So if every object X has a suspension (Y, η),

we may define a functor Σ : a→ a by putting ΣX = Y and requiring for maps

f ∈ a(X,X ′) that the diagram

X
η //

f
��

ΣX

Σf
��

X ′
η
// ΣX

commutes up to a sign (−1)|f |. It is clear that Σ is unique up to unique

equivalence. We say that a has a shift functor Σ if every object has a suspension

and a desuspension and Σ is as above. In this case Σ is an auto-equivalence.

3.2. Graded categories from pre-additive categories with shift functor. Now

assume that a is a pre-additive category (i.e., a category enriched in abelian

groups) equipped with an auto-equivalence Σ. Then we can make a into a
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graded category ã with the same objects by putting, for n ∈ Z,

ã(A,B)n := a(A,ΣnB)

and with compositions

ã(B,C)m × ã(A,B)n → ã(A,C)m+n : (g, f) 7→ (−1)nmΣng ◦ f.

We obtain that Σ is a shift functor on ã in the sense of Section 3.1.

3.3. Triangles. A triangle in a graded category a is a diagram

C
h

(1)��
A

f
// B

g
``

with A,B,C ∈ Ob(a) and |f | = |g| = 0, |h| = 1. To save space a triangle will

usually be written in linear form

A
f−→ B

g−→ C
h−−→

(1)
A.

If a is equipped with a shift functor, then a triangle can also be written in

“traditional” form

A
f−→ B

g−→ C
h−→ ΣA.

A morphism of triangles is given by three degree zero morphisms fitting into

the obvious commutative diagram.

3.4. Triangulated categories as graded categories. We will assume that the

reader is familiar with the standard axioms for triangulated categories [14]. If

(T ,Σ) is triangulated category in the traditional sense, then it can be made

into a graded category as in Section 3.2. In this section we will reformulate

the usual axioms of triangulated categories in such a way that they do not

explicitly refer to a shift functor.

Definition 3.1. A triangulated category T is a graded category equipped

with a collection of “distinguished” triangles such that4

(TR0) T admits (possibly empty) finite direct sums and every object has a

suspension and a desuspension.

(TR1) • For any object X ∈ Ob(T ), the following triangle is distinguished:

X
idX−−→ X

00−→ 0
01−−→
(1)

X,

4Morphisms in a graded category whose degree is not specified are assumed to have degree

zero. This convention is maintained throughout this document.
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where 0 is a zero object (which exists by (TR0)) and where 0i is

the zero morphism in T (U, V )i.

• For any morphism u : X → Y in T of degree zero, there is an

object Z (called a mapping cone of the morphism u) fitting into a

distinguished triangle

X
u−→Y −→ Z −−→

(1)
X.

• Any triangle isomorphic to a distinguished triangle is distinguished.

(TR2) If

Z
w

(1)~~
X

u
// Y

v
__

is a distinguished triangle, then so are the two “rotated triangles”

Z
ηw

~~
X ′

(1)

−uη−1
// Y,

v

__ Z ′

−wγ

~~
X

u
// Y,

γ−1v

(1)

``

where X
η−→ X ′ is a suspension of X and Z ′

γ−→ Z is a desuspension

of Z.

(TR3) A commutative diagram of solid arrows

X

��

// Y

��

// Z

��

(1)
// X

��
X ′ // Y ′ // Z ′

(1)
// X ′

in which the rows are distinguished can be completed with the dotted

arrow.

(TR4) For every upper cap of an octahedron (drawn on the left) there is a

corresponding lower cap (drawn on the right)

Z // X ′

(1)

~~
(1)

��

d

	 Y

``

  

	

d

X

OO

>>

Z ′
(1)

oo

Z //

  

X ′

(1)

��

	

d Y ′

>>

(1)

~~

d

	

X

OO

Z ′
(1)

oo

``(3.1)
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such that in addition the compositions Y → Z → Y ′ and Y → Z ′ → Y ′

are the same and similarly the compositions Y ′ → X → Y and Y ′ →
X ′ → Y are the same. In the diagram the triangles marked d are

distinguished and those marked with 	 are commutative,

4. Preliminaries about An-categories

Let n ≥ 0. As a general principle, for any A∞-notion there is a correspond-

ing An-notion in which we consider only operations with ≤ n arguments and

we require the axioms to only hold for expressions with ≤ n arguments. Facts

about A∞-categories remain valid for An-categories as long as they only in-

volve such expressions. We discuss this below. Throughout we place ourselves

in the strictly unital context.

4.1. An-categories and functors.

Definition 4.1 ([7]). An An-category a is the data of the following:

• A set of objects Ob(a).

• For each couple (A,A′) of objects of a, a graded vector space of morphisms

a(A,A′). We call a(A,A′) the Hom-space between A and A′. A (homoge-

neous) element of a(A,A′) is called a morphism (or sometimes an arrow).

• For each sequence (A0, . . . , Ai) of objects of a with 1 ≤ i ≤ n, “higher”

compositions

bi : Σa(Ai−1, Ai)⊗ . . .⊗ Σa(A0, A1)→ Σa(A0, Ai)

of degree 1 verifying (∗)i of [7, Def. 1.2.1.1].

• For each object A, an identity (or unit) element idA ∈ a(A,A)0 satisfying

bi(. . . , s idA, . . . ) = 0 (for i = 1 and 3 ≤ i ≤ n),

b2(sf, s idA) = (−1)|f |sf if n ≥ 2,

b2(s idA, sg) = sg if n ≥ 2.

If the identities hold for every i, then we get the notion of an A∞-category.

Below an An-category will be silently considered as an Am-category for all

m ≤ n.

As for A∞-categories, it is sometimes more convenient to express the

higher compositions as operations

mi : a(Ai−1, Ai)⊗ . . .⊗ a(A0, A1)→ a(A0, Ai)
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of degree 2 − n where (mn)n and (bn)n are related by bn = s−n+1mn so that,

in particular, using the Koszul convention we obtain

(4.1)

b1(sf) = −sm1(f),

b2(sg, sf) = (−1)|g|sm2(g, f),

b3(sh, sg, sf) = (−1)|g|+1sm3(h, g, f).

Sometimes we write df = m1(f) and gf = m2(g, f). It is useful to consider

the case of low n.

(1) An A0-category is simply a directed graph (with distinguished “identity

arrows”) whose Hom-spaces are graded vector spaces. We call this a graded

graph.

(2) An A1-category is a graded graph whose arrows form complexes of vector

spaces. (The differential is given by m1 and it annihilates identity arrows.)

We call this a DG-graph. A DG-graph a has an associated graded graph

H∗(a) obtained by replacing the Hom-spaces in a by their cohomology. A

morphism f in a is called closed if m1(f) = 0. We denote by Z0a the

k-linear graph which has the same objects as a and whose morphisms are

the closed morphisms of degree zero.

(3) An A2 category is a DG-graph equipped with a bilinear composition of

arrows given by m2 (for which the identity arrows behave as unit elements)

which is compatible with m1. In particular, m2 descends to well-defined

operations on H∗(a) and Z0a.

(4) For n ≥ 3, the composition on H∗(a) induced by m2 is associative and

hence, in particular, H∗(a) is a graded category.

Definition 4.2. An An-functor f : a→ b between two An-categories a and

b is the data of

• a map on objects f : Ob(a)→ Ob(b);

• for each sequence (A0, . . . , Ai) of objects of a with i ≤ n, compositions

fi : Σa(Ai−1, Ai)⊗ . . .⊗ Σa(A0, A1)→ Σb(f(A0), f(Ai))

of degree zero verifying (∗∗)i of [7, Def. 1.2.1.2] for i = 1, . . . , n;

• if n ≥ 1, then for each A ∈ Ob(a) we have f1(s idA) = s idf(A) and

fn(. . . , s idA, . . .) = 0 for n ≥ 2.

Again it is instructive to unravel this definition for small values of n.

(1) An A0-functor is just a map between sets of objects (there is no compati-

bility with morphisms).

(2) An A1-functor f : a → b is a morphism of DG-graphs. In particular, we

have an induced morphism of graded graphs H∗(f) := H∗(f1).
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(3) If f is an An-functor for n ≥ 2, then H∗(f) is compatible with compo-

sitions. In particular, if f is an A2-functor between A3-categories, then

H∗(f) is a graded functor.

Like A∞-notions, one may also approach An-notions via cocategories. Let a

be a graded graph. Then (Ba)≤n is the graded cocategory with Hom-spaces

(4.2)

(Ba)≤n(A,B) =

n⊕
i=1

(Σa)⊗i(A,B),

(Σa)⊗i(A,B) =
⊕

A=A0,...,Ai=B

Σa(Ai−1, Ai)⊗ . . .⊗ Σa(A0, A1)

equipped with the usual bar coproduct. That is, if (sfi−1| · · · |sf0) := sfi−1 ⊗
· · · ⊗ sf0 ∈ (Σa)⊗i, then

∆(sfi−1| · · · |sf0) =
i−1∑
j=1

(sfi−1| · · · |sfj)⊗ (sfj−1| · · · |sf0).

If we ignore the compatibility with units, then an An-structure on a is the same

as a codifferential on (Ba)≤n, i.e., a coderivation b of degree one satisfying

b ◦ b = 0. Similarly, ignoring units, an An-functor f : a → b is the same as

a cofunctor (Ba)≤n → (Bb)≤n commuting with the codifferentials on (Ba)≤n
and (Bb)≤n. With this observation one may define the composition of An-

functors simply as the composition of the corresponding cofunctors.

4.2. Some auxilliary definitions.

Definition 4.3. Let f : a → b be an Am-functor between An-categories,

for m ≤ n. Then

(1) f is strict provided m ≥ 1 and fi = 0 for i ≥ 2. Equivalently, f1 commutes

with higher compositions with arity at most m.

(2) f is fully faithful if it is strict, and for all A,A′ ∈ Ob(a), we have that

a(A,A′)→ b(fA, fA′) is an isomorphism of graded vector spaces.

(3) f is a quasi-fully faithful if m ≥ 2, n ≥ 3 and H∗(f) : H∗(a) → H∗(b) is

fully faithful.

(4) f is a quasi-isomorphism if m ≥ 2, n ≥ 3 and H∗(f) : H∗(a) → H∗(b) is

an isomorphism.

(5) f is a quasi-equivalence if m ≥ 2, n ≥ 3 and H∗(f) : H∗(a)→ H∗(b) is an

equivalence.

4.3. The category of functors between An-categories. Here we discuss some

concepts from [7, Ch. 8]. As indicated above, the (decomposable) arrows of

(Ba)≤n are usually written as (sfi−1| · · · |sf0) for a path of 1 ≤ i ≤ n compos-

able arrows f0, . . . , fi−1 in a. We let (B+a)≤n be the coaugmented cocategory
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obtained by also admitting empty paths ()A starting and ending in A ∈ Ob(a)

(see Section 2.1.2 in loc. cit.). More precisely, we have

(B+a)≤n(A,B) =

{
(Ba)≤n(A,B) if A 6= B,

k()A ⊕ (Ba)≤n(A,A) if A = B

with |()A| = 0. The coproduct ∆+(t) for t ∈ (Ba)≤n(A,B) is defined as

∆+(t) = ()B ⊗ t+ t⊗ ()A + ∆(t),

where ∆ is the coproduct on (Ba)≤n and furthermore ∆+(()A) = ()A⊗ ()A. If

(Ba)≤n is equipped with a codifferential b, then we extend it to (B+a)≤n by

putting b(()A) = 0 ∈ a(A,A).

Given two An-categories c and d, denote by An(c, d) the set of An-functors

c→ d. Now assume that a, b are respectively Am, An-categories for m ≤ n−1.

We will equip Am(a, b) with the structure of an An−m-category as follows.

Definition 4.4 (Morphisms in Am(a, b)). Assume m ≤ n − 1. Let f1, f2 :

a → b be Am-functors. We view these as cofunctors (B+a)≤m → Bb≤n by

putting fi,0()A := fi,0(()A) = 0. Then

Σ Hom(f1, f2)

= {h ∈ coDerf1,f2(B+a≤m, Bb≤n) | ∀A ∈ Ob(a) : h(· · · ⊗ s idA⊗ · · · ) = 0}.

Here coDerf1,f2((B+a)≤m, Bb≤n) consists of collections k-linear morphisms

h(A,A′) : B+a≤m(A,A′) → Bb≤n(f1(A), f2(A′)) such that h = h(A,A′)A,A′

satisfies the following identity for u ∈ (B+a)≤m:

∆(h(u)) =
∑
(u)

(f2 ⊗ h+ h⊗ f1)(u(1) ⊗ u(2)),

where (using the Sweedler notation) ∆+(u) =
∑

(u) u(1) ⊗ u(2). It follows that

h ∈ Σ Hom(f1.f2) is determined by the “Taylor coefficients”

(4.3)

hk : Σa(Ak−1, Ak)⊗Σa(Ak−2, Ak−1)⊗ · · · ⊗Σa(A0, A1)→ Σb(f1(A0), f2(Ak))

for 1 ≤ k ≤ m as well as for each A ∈ Ob(a) an element h()A := h0(()A) ∈
Σb(f1(A), f2(A)). The corresponding coderivation is given by

(4.4) h =
∑

∑q
t=1 jt+

∑p
s=1 is+k≤m

f2,jq ⊗ · · · ⊗ f2,j1 ⊗ hk ⊗ f1,ip ⊗ · · · ⊗ f1,i1 ,

where the right-hand side is restricted to terms which have ≤ m arguments.

Note that h sends (B+a)≤m to (Bb)≤m+1 (as the f ’s take at least one argument

but h0 takes zero arguments). So since m ≤ n− 1, h is indeed well defined.
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Definition 4.5 (The differential on Am(a, b)). If m ≤ n − 1 and h ∈
Σ Hom(f1, f2), then b1(h) = [b, h] = b ◦ h− (−1)|h|h ◦ b. Concretely,

b1(h)k =
∑

∑q
t=1 jt+

∑p
s=1 is+l=k

bp+q+1 ◦(f2,jq⊗ · · · ⊗f2,j1⊗hl⊗ f1,ip ⊗ · · · ⊗ f1,i1)

− (−1)|h|
∑

a0+a1+l=k

h1+a0+a1 ◦ (id⊗a0 ⊗bl ⊗ id⊗a1).

(4.5)

Definition 4.6 (The higher multiplications on Am(a, b)). Assume we have

morphisms

f0
h1−→ f1

h2−→ · · · hk−→ fk

represented by

hi ∈ coDerfi−1,fi(B
+a≤m, Bb≤n),

and assume 2 ≤ k ≤ n−m. Then we put

(4.6) hk ∪ · · · ∪ h1 =
∑

fk,ik,pk ⊗ · · · ⊗ fk,ik1 ⊗ hk,uk ⊗ fk−1,ik−1,pk−1
⊗ · · ·

· · · ⊗ fk−1,ik−1,1
⊗ · · · ⊗ f1,i1p1

⊗ · · · ⊗ f1,i11 ⊗ h1,u1 ⊗ f0,i0p0
⊗ · · · ⊗ f0,i01

and bk(hk, . . . , h1)l = (b◦(hk∪· · ·∪h1))l, where (−)l denotes Taylor coefficients.

Note that on the right-hand side of (4.6) the f ’s take at least one argument

but the h’s may take zero arguments. It follows that hk∪· · ·∪h1 maps B+a≤m
to Bb≤m+k, and hence by the hypothesis k ≤ n−m is a well-defined element of

Hom(B+a≤m, Bb≤n). It is however not a coderivation. Instead is it inductively

characterized by the following property for u ∈ (B+a)≤m (using again the

Sweedler notation):

∆((hk ∪ · · · ∪ h1)(u)) =
∑
(u)

Å
fk ⊗ (hk ∪ · · · ∪ h1) + (hk ∪ · · · ∪ h1)⊗ f1

+
∑

1≤j≤k
(hk ∪ · · · ∪ hj+1)⊗(hj ∪ · · · ∪ h1)

ã
(u(1) ⊗ u(2)).

One checks

Lemma 4.7. The collection of maps (bi)i=1,...,n−m makes Am(a, b) into an

An−m-category.

4.4. Homotopies and homotopic functors. Let a, b be An-categories, let

1 ≤ m ≤ n − 1 (thus n ≥ 2), and let h ∈ Z0ΣAm(a, b)(f1, f2). Then

h ∈ coDerf1,f2(B+a≤m, Bb≤n)−1 and [b, h] = 0. Let (hk)k=0,...,m be the Tay-

lor coefficients of h. Specializing (4.5) to k = 0, 1 we find that h0()A ∈
(Σb(f1A, f2A))−1 = b(f1A, f2A)0 satisfies d(h0()A) = 0 and

b1 ◦ h1 + b2 ◦ (h0 ⊗ f1 + f2 ⊗ h0) + h1 ◦ b1 = 0.
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Evaluating this on st for t ∈ a(A,B) we find

b1(h1(st)) + b2(h0()B, f1(st))

+ (−1)|t|+1b2(f2(st), h0()A) + h1(b1(st)) = 0.
(4.7)

Put h0()A = sh0,A. Using the usual sign convention h1(st) = −sh1(t), etc.

together with (4.1), this may be rewritten as

m1(h1(t)) +m2(h0,B, f1(t)) + (−1)|t|+1(−1)|t|m2(f2(t), h0,A) + h1(m1(t)) = 0.

So we find, in particular, that H∗(h0) defines a natural transformation

H∗(f1)→ H∗(f2).

Definition 4.8. Let h, f1, f2 be as above but assume n ≥ 3. We say that

h is a homotopy h : f1 → f2 if H∗(h0) is a natural isomorphism, i.e., if for

all A ∈ Ob(a), H∗(h0,A) ∈ H∗(a)(A,A) is invertible. We say that f1, f2 are

homotopic if there exists a homotopy h : f1 → f2.

Lemma 4.9. Assume 1 ≤ m ≤ n − 3. Then h : f1 → f2 is a homotopy

if and only if H∗(h) is invertible in H∗(Am(a, b)). (The latter is a genuine

category because of the restriction on m,n.) In particular, the relation of being

homotopic is an equivalence relation.

Proof. We have (hh′)0 = h0h
′
0. So if h is invertible, then it is a homotopy.

Assume now h0 is invertible. Consider the morphism of complexes

S : Am(a, b)(f2, f1)→ Am(b, b)(f2, f2) : h′ 7→ m2(h, h′).

Using an appropriate spectral sequence one finds that S is a quasi-isomorphism.

Hence there exists h′ ∈ Z0Am(a, b)(f2, f1) such that m2(h, h′)− idf2 has zero

image in H∗(Am(a, b)(f2, f2)). �

4.5. Inverting quasi-equivalences. We prove some An-versions of results

which are well known in the A∞-setting (e.g., [7, Th. 9.2.0.4]).

Lemma 4.10. Let a, b be An categories for n ≥ 3, and let f : a → b

be an An-functor which is a quasi-equivalence. There exists an An−1-quasi-

equivalence g : b → a such that fg and idb are homotopic. Moreover the

quasi-inverse H∗(g1) to H∗(f1) may be chosen freely.

Proof. If a is an An-category, then we define ā as the DG-graph obtained

from a by dividing out identities. That is,

ā(A,B) =

{
a(A,B) if A 6= B,

a(A,A)/k idA if A = B.

Note that formally f is a cofunctor Ba≤n → Bb≤n such that [b, f ] = 0. Like-

wise g should be a cofunctor Bb≤n−1 → Ba≤n−1 satisfying [b, g] = 0 and the

homotopy h : fg → idb should be an element of coDerfg,idb
(B+b≤n−1, Bb≤n)
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of degree −1 satisfying [b, h] = 0 such that H∗(h0) is a natural isomorphism

H∗(fg)→ idH∗(b).

We will construct g and h step by step. The existence of g1 and h0, h1

follows simply from the fact that f is a quasi-equivalence: we choose a unit

preserving graded graph homomorphism g1 : b → a commuting with differen-

tials such that there is a natural isomorphism H∗(f1)H∗(g1) → idH∗(b). We

choose h0 : (Bb)0 → b in such away that this natural isomorphism is of the

form H∗(h0), and then we choose h1 such that equation (4.7) holds.

Assume that for 1 ≤ m < n − 1, we have constructed a cofunctor g≤m :

(Bb)≤m → (Bb)≤m satisfying [b, g≤m] = 0 and a homotopy h≤m : fg≤m → idb.

We will extend the maps (g≤m, h≤m) to maps (g≤m+1, h≤m+1) with the same

properties.

As a first approximation we extend g≤m, h≤m to respectively a cofunc-

tor g≤m+1 : Bb≤m+1 → Ba≤m+1 and a (fg≤m+1, idb)-coderivation h≤m+1 :

B+b≤m+1 → Bbm+1 by setting gm+1, hm+1 : (Σb̄)⊗m+1 → Σa equal to zero;

see (4.2) for the definition of Σb̄⊗m+1. Here π = [b, g≤m+1] is zero on (Σb)⊗i,

i ≤ m and hence it may be regarded as a map (Σb̄)⊗m+1 → Σa. Moreover 0 =

[b, π] = [b1, π]. So π is closed for the b1-differential, and since fπ = [b, fg≤m+1]

is zero on cohomology and f is a quasi-isomorphism, π is equal to zero in co-

homology as well. In other words, there exists δm+1 : b̄⊗m+1 → a such that

π = [b1, δm+1]. We now replace gm+1 by gm+1 − δm+1. Then [b, g≤m+1] = 0.

In other words, g≤m+1 is an Am+1-morphism.

Put D = [b, h≤m+1] (see (4.5)). Then D is a (fg≤m+1, idb)-coderivation

(B+b)≤m+1 → Bb≤n which is zero on (Bb)≤m, and hence it can be considered

as a map (Σb̄)⊗m+1 → Σb. Hence we have

(4.8) [b1, D] = [b,D] = 0.

We will now try to choose σm+1 : (Σb)⊗m+1 → Σa, τm+1 : (Σb)⊗m+1 → Σb

such that for g′m+1 = gm+1 + σm+1, h′m+1 = hm+1 + τm+1, g′i = gi, h
′
i = h1

for i ≤ m, we have [b, g′≤m+1] = 0, [b′, h′≤m+1] = 0, where here [b′,−] is the

differential (4.5) computed with f1 = fg′≤m+1 and f2 = idb. The conditions

we have to satisfy are

0 = [b, g′≤m+1] = [b1, σm+1],(4.9)

0 = [b′, h′≤m+1] = D + b2 ◦ (h0 ⊗ f1(gm+1 + σm+1)) + [b1, τm+1].(4.10)

We claim these equations have a solution. First note that (4.10) may be written

as

(4.11) b2 ◦ (h0 ⊗ f1σm+1) = −D − b2 ◦ (h0 ⊗ f1gm+1) mod im[b1,−].

Recall that here we have [b1, D] = 0, b1 ◦ h0 = 0 (see Section 4.4) and

[b1, f1gm+1] = 0. Hence if we have a solution σm+1 to (4.9) and (4.11) and

we replace σm+1 by σm+1 + [b1, s], then it is still a solution.
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It follows that we may combine (4.9) and (4.11) into a single equation

(4.12) b̄2 ◦ (h̄0 ⊗ f̄1σ̄m+1) = −D − b2 ◦ (h0 ⊗ f1gm+1)

in

H∗(Hom((Σb̄)⊗m+1,Σb) = Hom(ΣH∗(b̄)⊗m+1,ΣH∗(b)),

where ? denotes cohomology classes or actions on cohomology. Using the fact

that f̄1 = H∗(f1) is an equivalence and H∗(h0) is a natural isomorphism, one

easily sees that (4.12) has a (unique) solution. �

We will need the following variant of Lemma 4.10, which is proved in a

similar way.

Lemma 4.11. Let a, b be An categories for n ≥ 3, and let f : a→ b be a

fully faithful An-functor which is also a quasi-equivalence. Then there exists an

An−1-quasi-equivalence g : b→ a such that fg and idb are homotopic and such

that gf = ida. Moreover the quasi-inverse H∗(g1) to H∗(f1) may be chosen

freely.

4.6. The category Free(a).

Definition 4.12. Given an An-category a, Free(a) is obtained from a by

formally adding finite (possibly empty) direct sums and shifts of objects in a;

i.e., an object of Free(a) is given by

(4.13) A = ⊕i∈I ΣaiAi,

where Ai ∈ Ob(a), ai ∈ Z, |I| < ∞. We allow |I| = ∅. Morphisms in a are

defined as

Free(a)(⊕iΣaiAi,⊕jΣbiBj) = ⊕i,jΣbi−aia(Ai, Bj).

An element f ∈ a(A,B) considered as an element of Free(a)(ΣaA,ΣbB) will

be written as σb−af such that |σb−af | = |f | − (b− a).

If a is an An-category, we can then make Free(a) into an An-category. We

need to define the higher compositions between morphisms between objects

of the form ΣaA. (The case of more complicated objects is done by linear

extension.) So if we have maps in a,

A0
f1−→ A1

f2−→ · · · fn−→ An,

and corresponding maps in Free(a),

Σa0A0
σa1−a0f1−−−−−−→ Σa1A1

σa2−a1f2−−−−−−→ · · · σ
an−an−1fn−−−−−−−−→ ΣbnAn,

then

bn(sσan−an−1fn, . . . , sσ
a2−a1f2, sσ

a1−a0f1) = ±σan−a0bn(sfn, . . . , sf2, sf1),
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where the sign is determined by the usual Koszul sign convention (used with

the rule sσ = −σs).

The An-category Free(a) is equipped with a strict An-endo functor Σ such

that on objects we have

(4.14) Σ (⊕iΣaiAi) = ⊕iΣai+1Ai

and on morphisms Σ is given by Σ(σaf) = (−1)aσaf for f a morphism in a.

We will call Σ the shift functor on Free(a). Likewise Free(a) is equipped with

an (associative) operation ⊕ with an obvious definition. We will call it the

“direct sum.” Finally if I = ∅ in (4.13), then the resulting object is denoted

by 0 and is called the “zero object.”

5. Truncated twisted complexes

From now on let a be an An-category.

5.1. Higher cone categories. Let a⊕m be the graded graph whose objects

are formal direct sums of precisely m objects in a:

(5.1) A = A0 ⊕A1 ⊕ . . .⊕Am−1.

Morphisms are given by

(5.2) a⊕m(A,B) = ⊕m−1
i,j=0a(Ai, Bj).

We extend the higher operations on a linearly to a⊕m so that a⊕m becomes an

An-category.

Remark 5.1. Below we usually think of objects in a⊕m as column vectors

and similarly of morphisms in a⊕m as matrices acting on those column vectors.

Definition 5.2 (Higher cone categories). Assume m ≤ n + 1. The graded

graph a∗m is defined as follows.

• Objects are given by couples (A, δA) such that A ∈ Ob(a⊕m) and δA ∈
a⊕m(A,A)1 is a “Maurer-Cartan element” with strictly lower triangular

matrix; i.e., it satisfies

(5.3)
∑

i≤m−1

bi(sδA, . . . , sδA) = 0.

• Morphisms are given by

(5.4) a∗m((A, δA), (B, δB)) = a⊕m(A,B).
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Lemma 5.3. Assume m ≤ n+ 1. The graded graph a∗m has the structure

of an Abn−m+1
m c-category with higher multiplications given by

ba∗m,i(sgi, . . . , sg1) =
∑
l0,...,li

h=i+Σlj≤n

ba⊕m,h(sδi, . . . , sδi︸ ︷︷ ︸
li

, sgi, sδi−1, . . . , sδi−1︸ ︷︷ ︸
li−1

, . . .

. . . , sδ1, . . . , sδ1︸ ︷︷ ︸
l1

, sg1, sδ0, . . . , sδ0︸ ︷︷ ︸
l0

)

(5.5)

for any set

(B0, δ0)
g1−→ (B1, δ1)

g2−→ · · · gi−→ (Bi, δi)

of i ≤ b(n−m+ 1)/mc composable arrows in a∗m.

Proof. We need to check ba∗m ◦ ba∗m = 0 on i composable arrows for

i ≤ b(n − m + 1)/mc as well as the correct behavior of identities. We will

concentrate on the first condition as it is the most interesting one. As we will

use similar facts several times below we present the argument in some detail.

If we expand (ba∗m ◦ba∗m)i, then it becomes the sum of multilinear expres-

sions evaluated on lists of arguments of the form

(5.6) sδi, . . . , sδi︸ ︷︷ ︸
li

, sgi, sδi−1, . . . , sδi−1︸ ︷︷ ︸
li−1

, . . . , sδ1, . . . , sδ1︸ ︷︷ ︸
l1

, sg1, sδ0, . . . , sδ0︸ ︷︷ ︸
l0

.

The crucial point is that those multilinear expression are obtained by linear

expansion of the corresponding expressions evaluated on composable arrows

in a. Now for each element (A, δA) ∈ a∗m, the Maurer-Cartan element δA is a

strictly lower triangular m ×m-matrix, and hence such extended expressions

are zero on (5.6) whenever one of the lj is ≥ m.

By the assumption

i ≤
õ
n−m+ 1

m

û
we obtain that the length of the relevant lists of arguments in (5.6) is

≤ (m− 1)(i+ 1) + i

= mi+m− 1

≤ m
õ
n−m+ 1

m

û
+m− 1

≤ n−m+ 1 +m− 1

= n.

Now the condition ba∗m ◦ ba∗m = combined with (5.3) becomes ba⊕m ◦ ba⊕m = 0

when evaluated on lists of ≤ n arguments. This holds since a⊕m is an An-

category. �
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Below we call a∗m a higher cone category. This is motivated by Defini-

tion 5.8 below.

Lemma 5.4 (Functoriality of ∗). Given An-categories a and b and t ≤
m+ 1 ≤ n+ 1, we obtain a strict Ap-functor

∗t : Am(a, b)→ Abm−t+1
t c(a

∗t, b∗t)

for p = b(n − t + 1)/tc − b(m − t + 1)/tc. Moreover ∗t is strictly compatible

with the compositions

Am(b, c)×Am(a, b)→ Am(a, c).

Proof. Since we are defining a strict functor, we only need to define (∗t)1.

We will write (−)∗
t

for (∗t)1(−).

First of all we define the functor on “objects.” For an element f ∈
Ob(Am(a, b)) and (A, δA) ∈ Ob(a∗t), define

f∗t(A, δA) = (f(A),
∑
i≤t−1

f(sδA, . . . , sδA)),

where f is understood to be extended linearly to direct sums. For a sequence

of composable arrows

(5.7) (A0, δ0)
a1−→ (A1, δ1)

a2−→ · · · ad−→ (Ad, δd),

put

(f∗t)d(sad, . . . , sa1) =
∑

fd+i0+···+id(sδ
⊗id
d , sad, sδ

⊗id−1

d , . . . , sa1, sδ
⊗i0
0 ).

To show that ∗t sends an Am-functor to an Ab(m−t+1)/tc-functor (i.e., an el-

ement of Ob(Ab(m−t+1)/tc(a
∗t, b∗t)), one proceeds in the same way as in the

proof of Lemma 5.3.

Now we define (∗t)1 on Hom-spaces in Am(a, b). Given f, g ∈ Am(a, b)

and h ∈ Am(a, b)(f, g) we define h∗t ∈ Hom(f∗t, g∗t) as follows: for a sequence

of composable arrows as in (5.7), we have

(h∗t)d(sad, . . . , sa1) =
∑

hd+i0+···+id(sδ
⊗id
d , sad, sδ

⊗id−1

d−1 , . . . , sa1, sδ
⊗i0
0 ).

One verifies that (∗t)1 commutes with the higher operations on Am(a, b) and

Ab(m−t+1)/tc(a
∗t, b∗t) (see Lemma 4.7) and hence defines a strict functor. It

is an Ap-functor since Abm−t+1
t c(a

∗t, b∗t) is an Ap-category by Lemmas 5.3

and 4.7. The strict compatibility with compositions is also a standard verifi-

cation. �
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5.2. Truncated twisted complexes. In theAn-category setting, untruncated

twisted complexes are not well behaved as they form only a graded graph.

Indeed even the definition of the differential on morphisms between twisted

complexes involves higher operations of unbounded arity. Therefore in this

section we introduce truncated twisted complexes over an An-category. In this

case the resulting object is still an Ap-category for some p, although p is much

smaller than n.

Definition 5.5 (Truncated twisted complexes). Assume m ≤ n. We define

the truncated twisted complexes over a as

Tw≤m a = Free(a)∗m+1.

The map

(A, δA) 7→ (A⊕ 0, (δA, 0))

defines a fully faithful functor Tw≤m a → Tw≤m+1 a, which we will treat as

an inclusion. With this convention we write Tw a for
⋃
m Tw≤m a in case

a is an A∞-category. In a similar vein we define the fully faithful functor

Φ : a → Tw≤m a : A 7→ (A ⊕ 0 ⊕ · · · , 0), which again we will treat as an

inclusion.

From Lemma 5.3 we obtain

Lemma 5.6. Assume m ≤ n. The category of truncated twisted complexes

Tw≤m a has a structure of an Abn−mm+1 c-category.

Lemma 5.7 (Functoriality of Tw). Let F : a → b be an Am-functor be-

tween two An-categories with a ≤ m ≤ n. Then we obtain a corresponding

Abm−aa+1 c functor

Tw≤a F : Tw≤a a→ Tw≤a b.

Moreover Tw≤a(−) is strictly compatible with compositions of An-functors.

Proof. This follows immediately from Lemma 5.4. �

5.3. Distinguished triangles.

Definition 5.8. Assume f : A → B is a closed morphism in a of degree

zero. Then C(f) is the object (ΣA⊕B, δC(f)) ∈ Tw≤1 a such that

δC(f) =

Ç
0 0

σ−1f 0

å
.

(Recall that we write objects as column vectors and morphisms as matrices;

see Remark 5.1.)
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Definition 5.9. Let f : A → B be a morphism in Z0a. The associated

standard distinguished triangle δf in Tw≤1 a is given by

(5.8) A
f−→ B

i−→ (C(f), δC(f))
p−−→

(1)
A,

where

i =

Ç
0

idB

å
p =

(
σ−1 idA 0

)
.

The image of δf in H0(Tw≤1 a) is written as δ̄f . It is also called a standard

distinguished triangle.

Definition 5.10. Let a be an An-category with n ≥ 7. A triangle in H∗(a)

is said to be distinguished if its image under H∗(Φ) is isomorphic to a standard

distinguished triangle in H∗(Tw≤1 a).

From this definition we immediately obtain

Theorem 5.11. Let ρ : a → b be an Am-functor between An-categories

for m ≥ 5, n ≥ 7. Then H∗(ρ) preserves distinguished triangles.

Proof. It is clear that there is a commutative diagram

a
Φ //

ρ

��

Tw≤1 a

Tw≤1 ρ

��
b

Φ
// Tw≤1 b.

By Lemma 5.6, Tw≤1 a and Tw≤1 b are A3-categories, and by Lemma 5.7,

Tw≤1 ρ is an A2-functor. Hence H∗(Tw≤1 ρ) is a graded functor (see Sec-

tion 4.1). One checks H∗(Tw≤1 ρ)(δ̄f ) = δ̄ρ1(f). This implies what we want.

�

6. DG-categories

6.1. Generalities. Recall that a DG-category is an A∞-category such that

mi = 0 for i ≥ 3. It that case Tw a is also a DG-category. We recall the

following definition.

Definition 6.1 ([3]). A DG-category is pre-triangulated if the DG-functor

Φ : a→ Tw a is a quasi-equivalence.

The main result concerning pre-triangulated DG-categories is

Theorem 6.2 ([3]). If a is pre-triangulated, then H∗(a), when equipped

with distinguished triangles as in Definition 5.10, is triangulated.
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Proof. Assume first that a is a general DG-category. Then Tw a is equipped

with a natural cone functor C(f) and a notion of standard triangles δf for any

closed map f : A→ B:

A
f−→ B

i−→ C(f)
p−−→

(1)
A.

A triangle in Tw a is called distinguished if it is isomorphic to a standard

triangle. In [3] it is proved that H∗(Tw a) is triangulated when equipped

with this class of distinguished triangles. If a is pre-triangulated, then H∗(a)

inherits the triangulated structure from H∗(Tw a). We have to prove that the

distinguished triangles are the same as those in Definition 5.10. Assume that

δ̄ : A
f−→ B → C −−→

(1)
A

is a triangle in H∗(a) distinguished in the sense of [3]; i.e., Φ(δ̄) is distinguished

in H∗(Tw a). Now δ̄Φ(f) ∈ H∗(Tw≤1 a) is a distinguished triangle in H∗(Tw a)

which has the same base as δ̄f . By the axioms for triangulated categories we

conclude that Φ(δ̄) ∼= δ̄Φ(f). Hence δ̄ is distinguished in the sense of Defini-

tion 5.10. The opposite direction is similar. �

6.2. Some small DG-categories.

Definition 6.3. Let n ≥ 0. Then In is the DG-category with objects

(xi)
n
i=0 such that

In(xi, xj) =


kaij if i < j,

k idxi if i = j,

0 otherwise,

with |aij | = 0, ajlaij = ail and daij = 0. We will write ai = ai,i+1 for

i = 0, . . . n− 1.

Lemma 6.4. Tw≤1 In is pre-triangulated.

Proof. Since Tw In is pre-triangulated [3], it is sufficient to prove that

H∗(Tw≤1 In) → H∗(Tw In) is essentially surjective. This is essentially [13,

Prop. 7.27]. For the convenience of the reader we repeat the argument. The

Yoneda embedding realizes H∗(Tw In) as the bounded derived category

Db(rep(In)) of the representations of In, viewed as a quiver. Since rep(In) is a

hereditary category, every object inDb(rep(In)) is the direct sum of its (shifted)

cohomology objects which are in rep(In). Moreover every object in rep(In) has

projective dimension one, and so it is isomorphic to a single cone of objects in

Free(In). In other words, it is in the essential image of H∗(Tw≤1 In). �

Remark 6.5. Assume n = 0. Then rep(I0) has global dimension zero and

we have in fact that Free(I0) = Tw≤0 I0 is pre-triangulated.
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7. Pre-triangulated An-categories

From now on let a be an An-category. The purpose of this section is

to define what it means for a to be pre-triangulated and to show that this

definition implies that H∗(a) is triangulated.

Definition 7.1. AnAn-category a, with n ≥ 7, is said to be pre-triangulated

if the inclusion a
Φ−→ Tw≤1 a is a quasi-equivalence.

Remark 7.2. The lower bound n ≥ 7 comes from the fact that we want

H∗(Tw≤1 a) to be an honest category. This happens when Tw≤1 a is an

A3-category. For this to be true, a needs to be at least an A7-category by

Lemma 5.6.

Theorem 7.3. Let a be a pre-triangulated An-category for n ≥ 13. When

equipped with the collection of distinguished triangles as in Definition 5.10,

H∗(a) is a triangulated category.

Proof. Here is the “strategy”: we have to prove thatH∗(a) satisfies (TR0)–

(TR4) as in Section 3.4. For the (TR1)–(TR4) axioms, we will translate their

input into a suitable An-functor µ : Im → a, for m ≤ 2, which is then ex-

tended to an Ab(n−1)/2c-functor Tw≤1 µ : Tw≤1 Im → Tw≤1 a. Then we

use that Tw≤1 Im is pre-triangulated by Lemma 6.4 and hence, in particu-

lar, H∗(Tw≤1 Im) is triangulated by Theorem 6.2. Roughly speaking we then

transfer the output of the (TR1)–(TR4)-axioms for H∗(Tw≤1 Im) to H∗(a) by

using Theorem 5.11.

To accomplish the last step we will pick an Ap-functor π : Tw≤1 a → a,

for p = b(n− 1)/2c − 1 = b(n− 3)/2c, which is a homotopy inverse to Φ such

that πΦ is the identity (see Lemmas 5.6 and 4.11). In particular, we have

that H∗(Φ) and H∗(π) are quasi-inverses to each other. Since n ≥ 13, Tw≤1 µ

is at least an A6-functor and π is at least an A5-functor. So H∗(πTw≤1 µ)

preserves distinguished triangles by Theorem 5.11. To avoid making some

arguments needlessly cumbersome we will in fact also use that H∗(Tw≤1 µ)

preserves standard distinguished triangles and that H∗(π) sends a standard

distinguished triangle in H∗(Tw≤1 a) to a distinguished triangle in H∗(a). The

latter follows easily from the fact that H∗(π) is a quasi-inverse to H∗(Φ).

Note that the intermediate category Tw≤1 a may be only an A6-category so,

with our current definitions, we cannot talk about distinguished triangles in5

H∗(Tw≤1 a).

(TR0) Like Free(a) (see Section 4.6), Tw≤1 a is equipped with canonical oper-

ations Σ and ⊕. These descend to operations on H∗(Tw≤1 a) which one

5We could have eliminated this minor technical complication by simply requiring n ≥ 15.
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easily checks to be to be the categorical direct sum and shift functor.

Since H∗(a)→ H∗(Tw≤1 a) is an equivalence, the direct sum and shift

functor defined on H∗(Tw≤1 a) descend to H∗(a).

(TR1) First we note that the triangle

(7.1) A
idA−−→ A −→ 0 −−→

(1)
A

is distinguished. Indeed the functor µ : I0 → a : x0 7→ A extends

to a functor6 µ : Tw≤1 I0 → Tw≤1 a, and (7.1) is the image under

H∗(πTw≤1 µ) of the distinguished triangle in H∗(Tw≤1 I0) (which sat-

isfies (TR1))

x0
idx0−−→ x0

0−→ 0
0−−→

(1)
x0.

Now we prove the second part of the (TR1) conditions: the existence

of distinguished triangles with a given base. Consider a map A
f−→ B

in H∗(a), and put δ̄ = H∗(π)(δ̄f ). Since δ̄f is a standard distinguished

triangle in Tw≤1 a, δ̄ is distinguished.

Finally, the fact that any triangle isomorphic to a distinguished tri-

angle is distinguished follows immediately from Definition 5.10.

TR2 Let δ̄ be a distinguished triangle in H∗(a). Then there exists an isomor-

phism with a standard triangle H∗(Φ)(δ̄) ∼= δ̄f and hence, in particular,

δ̄ ∼= H∗(π)(δ̄f ) := δ̄′. There is a strict An-functor µ : I1 → a which

sends a0 to f , and δ̄f is the image of δ̄a0 ∈ H∗(Tw≤1 I1) under the

morphism H∗(Tw≤1 µ). Since H∗(Tw≤1 I1) satisfies (TR2), the rotated

versions of δ̄a0 are distinguished in H∗(Tw≤1 I1) and we obtain rotated

versions of δ̄′ by applying H∗(πTw≤1 µ). (Note that a graded functor

preserves suspensions and desuspensions.) By (TR1) the corresponding

rotated versions of δ̄ are also distinguished.

(TR3) Suppose we have a diagram of distinguished triangles in H0(a):

(7.2) A
f //

u
��

B //

v
��

C
(1)
// A

u
��

A′
f ′
// B′ // C ′

(1)
// A′.

Up to composing with an isomorphism of triangles, we can assume

that the two distinguished triangles in the diagram are standard dis-

tinguished triangles in Tw≤1 a so that C = C(f), C ′ = C(f ′). Hence

6The reader will note that here the literal execution of our “strategy” is a bit uneconomical

and that by Remark 6.5 we could have used Tw≤0 I0.
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we have to construct the dotted arrow in

A
f //

u

��

B //

v

��

C(f)

w

��

(1)
// A

u

��
A′

f ′
// B′ // C(f ′)

(1)
// A′.

It is easy to give a formula for w. Alternatively one may lift the square

on the left to an An-functor I⊗ I → a and then proceed by considering

the induced functor Tw≤1(I ⊗ I)→ Tw≤1 a.

We will give instead a proof compatible with our “strategy.” By

writing the solid square as a composition of 2 squares it is sufficient to

consider the case in which either u or v is the identity. The two cases

are similar, so we will consider the first one. Now the diagram is

(7.3) A
f // B //

v

��

C(f)

w

��

(1)
// A

A
f ′u
// B′ // C(f ′u)

(1)
// A.

We may construct an An-morphism µ : I2 → a such that µ1(a0) = f ,

µ1(a1) = v, µ1(a1a0) = f ′u. (Note that we need a non-trivial µ2 as vf

is not necessarily equal to f ′u in a.) Inside H∗(Tw≤1 I2) we have the

diagram

x0
a0 // x1

//

a1

��

C(a0)

��

(1)
// x0

x0 a1a0
// x2

// C(a1a0)
(1)

// x0,

where now the dotted arrow exists as H∗(Tw≤1 I2) satisfies (TR3).

Applying H∗(Tw≤1 µ) we obtain (7.3).

(TR4) Since we have shown (TR1)–(TR3), by [2, 1.1.6] it suffices to show that

any composable pair of degree zero morphisms X → Y → Z in H∗(a)

can be completed to an octahedron as in (3.1).

A composable pair of degree zero morphisms in H∗(a) can be lifted to

an An-functor µ : I2 → a. The image of the octahedron in H∗(Tw≤1 I2)

built on x0
a0−→ x1

a1−→ x2 under H∗(πTw≤1 µ) is now the sought octa-

hedron in H∗(a). �
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8. Gluing An-categories

8.1. Bimodules. Let a, b be An-categories. For m ≤ n, an Am+1-b-a-

bimodule is a collection of graded vector spaces M(A,B), A ∈ Ob(a), B ∈
Ob(b) together with a codifferential on (B+b ⊗ M ⊗ B+a)≤m+1, where the

latter is regarded as a DG-(B+a)≤m−(B+b)≤m-bicomodule. In other words,

such a bimodule is equipped with higher operations of degree one

bM : Σb(Bp−1, Bp)⊗ · · · ⊗ Σb(Ba+1, Ba+2)⊗M(Aa, Ba+1)

⊗ Σb(Aa−1, Aa)⊗ · · · ⊗ Σb(A0, A1)→M(A0, Bp)
(8.1)

for (Ai)i=0,...,a ∈ Ob(a), (Bj)j=a+1,...,p ∈ Ob(b), p ≤ m+ 1 such that b ◦ b = 0.

In addition we require that the higher operations vanish on identities, when

appropriate. If a = b, then the identity An-a-bimodule is given by M(A,A′) =

a(A,A′) and the higher operations are those of a.

If a1, a2, b1, b2 are An-categories, fi : ai → bi are An-functors and M

is an Am+1- b2-b1-bimodule for some m ≤ n, then we write f1Mf2 for the

a2-a1-bimodule which is the pullback of M along (f1, f2). For A1 ∈ Ob(a1),

A2 ∈ Ob(a2), we have f1Mf2(A1, A2) = M(f1(A1), f2(A2)), and the higher

operations on f1Mf2 are schematically given by the following formula for m ∈
f1Mf2(A1, A2):

b
f1
Mf2

(. . . ,m, . . .) =
∑
±bM (f2(. . .), . . . , f2(. . .),m, f1(. . .), . . . , f1(. . . )).

(The sign is given by the Koszul convention.) It is easy to see that f1Mf2 is an

Am+1-bimodule. If f1 or f2 is the identity, then we omit it from the notation.

8.2. The arrow category.

Definition 8.1 (The arrow category). Let a, b be An-categories, and let

M be a b-a-An-bimodule. The arrow category c = a
M−→ b has Ob(c) =

Ob(b)
∐

Ob(a) and morphisms for B,B′ ∈ Ob(b), A,A′ ∈ Ob(b) given by

c(A,A′) = a(A,A′), c(B,B′) = b(B,B′) and c(A,B) = M(A,B), c(B,A) = 0.

It is easy to see that a
M−→ b becomes an An-category by combining the

higher multiplications on a, b and M (as in (8.1)).

Assume that we have An-categories a, b, a′, b′ and b-a and b′-a′ bimodules

M and M ′. Below it will be convenient to consider the category A◦m(a
M−→ b,

a′
M ′−−→ b′) of Am-functors F : (a

M−→ b) → (a′
M ′−−→ b′) such that F (Ob(a)) ⊂

Ob(a′), F (Ob(b)) ⊂ Ob(b′). It is easy to see that F contains the same data as

Am-functors Fa : a→ a′, Fb : b→ b′ together with an Am-bimodule morphism

FM : M → FaM
′
Fb

. Sometimes we will write F = (Fa, FM , Fb).
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8.3. The gluing category.

Definition 8.2 (The gluing category). Assume that n ≥ 1. Let a, b be

An-categories, and let M be a b-a-An-bimodule. The gluing category a
∐
M b

is the full graded subgraph of (a
M−→ b)∗2 given by objects of the form (A ⊕

B, δ) with A ∈ Ob(a) and B ∈ Ob(b). (Note that δ is simply an element of

Z1M(A,B).)

Lemma 8.3. The gluing category a
∐
M b has the structure of an An−1

category with higher multiplications given by (5.5).

Proof. The proof is as in Lemma 5.3 except that now in the relevant argu-

ment lists in (5.6), we can have at most one δ, as the (gj)j are now represented

by lower triangular 2× 2-matrices. �

Remark 8.4. An alternative way of defining a
∐
M b is as follows. Let J1

be defined like I1 (see Section 6.2) except that we put |a0| = 1. Then a
∐
M b

may be identified with the full subcategory of A1(J1, a
M−→ b) consisting of

A1-functors F : J1 → (a
M−→ b) such that F (x0) ∈ Ob(a), F (x1) ∈ Ob(b). It

then follows from Lemma 4.7 that a
∐
M b is indeed an An−1-category.

The following will be our main result in this section.

Theorem 8.5. Assume that n ≥ 13, that a, b are pre-triangulated

An-categories and that M is an An-b-a-bimodule. Then a
∐
M b is a pre-

triangulated An−1 category. Moreover the obvious fully faithful functors ϕa :

H∗(a) → H∗(a
∐
M b), ϕb : H∗(b) → H∗(a

∐
M b) preserve distinguished tri-

angles. If n ≥ 14 so that H∗(a
∐
M b) is triangulated by Theorem 7.3 and

Lemma 8.3, then ϕa, ϕb give rise to a semi-orthogonal decomposition

(8.2) H∗(a
∐
M b) = 〈H∗(a), H∗(b)〉

whose associated bimodule (see Section 1.3) is H∗(M).

The proof of this theorem requires some preparation. We start with

Proposition 8.6 (Functoriality of gluing). Assume we have An-categories

a, b, a′, b′ and b-a and b′ − a′ bimodules M and M ′. Then for m ≤ n, there

is a strict An−m-functor

φ : A◦m(a
M−→ b, a′

M ′−−→ b′)→ Am−1(a
∐
M b, a′

∐
M ′ b

′).

Moreover φ is strictly compatible with compositions.

Proof. This is proved like Lemma 5.4, which also gives the relevant for-

mulas (where we take into account that in this case at most one δ can appear

in the relevant arguments lists in (5.6)). �
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Corollary 8.7. Let 3 ≤ m ≤ n− 3, and let a, b, a′, b′, M , M ′ be as in

Proposition 8.6. Let F ∈ A◦m(a
M−→ b, a′

M ′−−→ b′). If F is a quasi-equivalence,

then so is φ(F ).

Proof. Note that F is a quasi-equivalence if and only if Fa, Fb are quasi-

equivalences and FM is a quasi-isomorphism. By Lemma 4.10 we may choose

an inverse G ∈ A◦m−1(a′
M ′−−→ b′, a

M−→ b) to F , up to homotopy (making use

of the fact that the quasi-inverse to H∗(F1) may be chosen freely). Note that

H∗(G) is a functor as m− 1 ≥ 2.

Since H∗(φ) also being a functor (as n−m ≥ 3) preserves invertible maps,

we conclude by Lemma 4.9 that it preserves homotopies. Hence φ(G) is an

inverse to φ(F ) up to homotopy. It follows that H∗(φ(F )) is an equivalence

H∗(a
∐
M b)→ H∗(a′

∐
M ′ b

′). �

For the next few results we assume that a, b are An-categories and that

M is an An-b-a-bimodule. We define M∗2 as the b∗b-a∗a bimodule such that

M∗2((A0 ⊕A1, δA), (B0 ⊕B1, δB))

= M(A0, B0)⊕M(A0, B1)⊕M(A1, B0)⊕M(A1, B1),

where the higher operations on M∗2 are obtained from those of M by “inserting

Maurer-Cartan elements” like in Lemma 5.3. In a similar way as Lemma 5.4

one proves

Lemma 8.8. M∗2 is a Ab(n−1)/2c-bimodule.

Lemma 8.9. Let n ≥ 3, and let a, b, M be as above. We have a fully

faithful functor of Ab(n−1)/2c−1-categories

(8.3) (a
∐
M b)∗(a

∐
M b)→ a∗a

∐
M∗2 b∗b

Proof. An object in (a
∐
M b)∗(a

∐
M b) is of the form

((A0 ⊕B0, δ0)⊕ (A1 ⊕B1, δ1), δ),

where δ = (δ00, δ10, δ11) ∈ a(A0, A1)1 ⊕M(A0, B1)1 ⊕ b(B0, B1)1 is such that

δ =

Ü
0 0 0 0

0 0 0 0

δ00 0 0 0

δ01 δ11 0 0

ê
acting on

Ü
A0

B0

A1

B1

ê
is a Maurer-Cartan element in (a

∐
M b)⊕2. One verifies that the matrix

∆ =

Ü
0 0 0 0

δ0 0 0 0

δ00 0 0 0

δ01 δ11 δ1 0

ê
acting on

Ü
A0

B0

A1

B1

ê
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defines a Maurer-Cartan element in (a
M−→ b)⊕4. Rearranging ∆ we get a

different Maurer-Cartan element in (a
M−→ b)⊕4

∆∗ =

Ü
0 0 0 0

δ00 0 0 0

δ0 0 0 0

δ01 δ1 δ11 0

ê
acting on

Ü
A0

A1

B0

B1

ê
,

which is a block-matrix representation for an object in (a∗a)
∐
M∗2(b∗b). This

construction defines and injection

Ob

((
a
∐
M

b

)
∗

(
a
∐
M

b

))
↪→ Ob

(
a∗a

∐
M∗2

b∗b

)
(but not a bijection) which is compatible with Hom-sets. It is now an easy

verification (but messy to write down) that we also get compatibility with

higher operations. �

The bimoduleM may be extended to a Free(b)-Free(a)-An-bimodule, which

we denote by Free(M).

Lemma 8.10. We have a fully faithful functor of An−1-categories

Free(a
∐
M b)→ Free(a)

∐
Free(M) Free(b).

Proof. An object in Free(a
∐
M b) is of the form

⊕
i∈I Σai(Ai⊕Bi, δi). We

send it to (
⊕

i ΣaiAi ⊕
⊕

i ΣaiBi,⊕iδi). It is easy to see that this operation is

fully faithful. �

Now we put Tw≤1M = (FreeM)∗2. From Lemma 8.8 we obtain

Lemma 8.11. Tw≤1M is a Ab(n−1)/2c-bimodule.

Corollary 8.12. Assume n ≥ 3. There is a fully faithful functor of

Ab(n−1)/2c−1-categories

(8.4) Tw≤1(a
∐
M b)→ Tw≤1 a

∐
Tw≤1M

Tw≤1 b

whose restriction to a
∐
M b is (Φ, I,Φ∗), where Φ : a → Tw≤1 a, is as in

Definition 5.5, Φ∗ : b → Tw≤1 b is the related map B 7→ (0 ⊕ B, 0) and

I : M → Φ Tw≤1MΦ∗ is the obvious inclusion.

Proof. The existence of (8.4) follows by combining Lemmas 8.9 and 8.10.

The fact that the restriction to a
∐
M b has the indicated form follows from the

construction of the map. �

Proof of Theorem 8.5. If n ≥ 13, then Tw≤1 a, Tw≤1 b are at least A6-

categories by Lemma 5.6. By Lemma 8.11, Tw≤1M is at least an A6-bimodule.
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We can use Corollary 8.7 with n = 6 and m = 3, together with Lemma 8.13

below, to conclude that the composition

a
∐
M b→ Tw≤1(a

∐
M b)→ Tw≤1 a

∐
Tw≤1M

Tw≤1 b

(which is equal to (Φ, I,Φ∗) by Corollary 8.12) is a quasi-equivalence. Since

both functors are fully faithful (the second one by Corollary 8.12), the first one

must be a quasi-equivalence as well.

Put c = a
∐
M b. The claim about the exactness of ϕa, ϕb follows from

Theorem 5.11. We clearly also have H∗(c)(H∗(b), H∗(a)) = 0. So to show

that we have a semi-orthogonal decomposition as in (8.2) we have show that

every object C in H∗(c) is of the form C ∼= cone(Ca → Cb) with Ca ∈ Ob(a),

Cb ∈ Ob(b). Assume C = (A⊕B, δ). We have a fully faithful functor a
∐
M b ⊂

Free a
∐

FreeM Free b, and the latter category is also pre-triangulated (as “Free”

preserves A-ness). Again by Theorem 5.11 this functor is exact. The following

triangle

Σ−1A
σδ−→ B

i−→ C
p−−→

(1)
Σ−1A

is distinguished in H∗(Free a
∐

FreeM Free b) as it is trivially isomorphic to

the standard triangle δ̄σδ in H∗(Tw≤1(Free a
∐

FreeM Free b)). Choose A′ ∈
Ob(a) such that A′ ∼= Σ−1A in Free a (A′ is a desuspension of A). Then

by the axioms of triangulated categories we obtain cone(A′ → B) ∼= C in

H∗(Free a
∐

FreeM Free b). By fully faithfulness this isomorphism also holds in

H∗(a
∐
M b).

The fact that the corresponding bimodule is as given is clear. �

Lemma 8.13. Let a be an An-category. The strict Ab(n−1)/2c functors

Φ,Φ∗ : a → Tw≤1 a given by Φ(A) = (A ⊕ 0, 0), Φ∗(A) = (0 ⊕ A, 0) are

homotopic.

Proof. The homotopy h is such that hn = 0 for n ≥ 1 and h0 is the matrix

( 0 1
1 0 ). �

9. Higher Toda brackets in triangulated and A∞-categories

9.1. Postnikov systems. Let

(9.1) X• : X0 → X1 → · · · → Xn

be a complex in a triangulated category T , i.e., a sequence of composable

morphisms in T such that the composition of any two consecutive morphisms
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is zero. A Postnikov system for X• is any exact diagram in T of the form

(9.2)

Y0

��

Y1
(1)

oo

��

Y2
(1)

oo

��

Yn−1

��

Yn
(1)

oo

� d � d � � d

X0
// X1

FF

// X2
//

FF

X3 · · · Xn−1

BB

// Xn,

EE

where the triangles marked with � are commutative and the triangles marked

with d are distinguished. This means that we should have the distinguished

triangles

(9.3) Yi → Xi+1 → Yi+1 −−→
(1)

Yi

with X0 = Y0. A Postnikov system need not exist, and if it exists, it may not

be unique. If a Postnikov system exists, then the object Yn will be called a

convolution of X•.

Remark 9.1. Sometimes it is helpful to think of a convolution Yn as an

object with an ascending filtration with subquotients (starting from the bot-

tom) Xn,ΣXn−1,Σ
2Xn−2, . . . ,Σ

nX0. In particular, the convolution Yn comes

with maps

(9.4) Yn
p

(n)~~
X0 Xn

i
aa

where i is as (9.2) and p it the composition Yn → Yn−1 → · · · → Y0 = X0 in

that same diagram. Note that pi = 0.

9.2. Existence. Some existence and functoriality results for Postnikov sys-

tems are stated in [10, Lemmas 1.5, 1.6] but since they require the vanishing

of arbitrary negatives Ext’s between suitable objects, they are not completely

sufficient for our purposes. So we give some slightly strengthened versions in

the next two sections.

Lemma 9.2. Assume X• is a complex in a triangulated category T such

that

(9.5) T (Xa, Xb)−(b−a)+2 = 0 for b ≥ a+ 3.

Then X• may be extended to a Postikov system. Moreover if the condition

(9.6) T (Xa, Xb)−(b−a)+1 = 0 for b ≥ a+ 2

holds, then such an extension is unique, up to non-unique isomorphism.
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Proof. The Posnikov system built on X• will be constructed inductively.

Assume we have constructed the part involving X0, X1, . . . , Xi, Y0, Y1, . . . , Yi
(so this is a Postnikov system on X0 → · · · → Xi). To lift the map Xi → Xi+1

to a map Yi → Xi+1 we need that the composition

Yi−1 → Xi → Xi+1

is zero. Since the composition of Xi−1 → Xi → Xi+1 is zero by definition,

it follows from (9.3) that it is sufficient to have T (Yi−2, Xi+1)−1 = 0. Using

Remark 9.1 we see that this condition is implied by (9.5).

Once we have lifted to Xi → Xi+1 to Yi → Xi+1 we may construct Yi+1

via the the distinguished triangle (9.3).

To obtain uniqueness we note that if X• can be extended to two Postnikov

systems, then by Lemma 9.3 below the identity on X• can be extended to a

morphism between these Postnikov systems. It is then easy to see that this

extension must be an isomorphism. �

9.3. Weak functoriality.

Lemma 9.3. Assume we have a morphism of complexes in a triangulated

category T ,

(9.7) X0
//

��

X1
//

��

X2
//

��

· · · // Xn

��
X ′0

// X ′1
// X ′2

// · · · // X ′n,

such that there exist Postnikov systems for X• and (X ′)• and the following

conditions hold :

T (Xa, X
′
b)−(b−a)+1 = 0 for b ≥ a+ 2.(9.8)

Then, given a choice of Postnikov systems for X• and (X ′)•, the diagram (9.7)

can be extended to a map of Postnikov systems (not necessarily uniquely).

Proof. We work inductively. Assume we have defined the extended map on

Y0, . . . , Yi with the required commutativity holding on Y0, . . . , Yi, X0, . . . , Xi.

We perform the induction step. We have a diagram

(9.9) Yi //

��
δ
!!

Xi+1
//

��

Yi+1
(1)

// Yi

��
Y ′i

// X ′i+1
// Y ′i+1 (1)

// Y ′i .

We do not know that the left most square is commutative, so let the dot-

ted arrow denote the difference of the two compositions. From the following
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diagram,

Xi
//

��

Yi

δ
""

//

��

Xi+1

��
X ′i

// Y ′i
// X ′i+1,

we obtain that the composition of δ with Xi → Yi is zero. So in view of the

distinguished triangle

Yi−1 → Xi → Yi −−→
(1)

Yi−1,

δ will be zero provided T (Yi−1, X
′
i+1)−1 = 0. This follows from Remark 9.1

and the hypothesis (9.8).

So δ = 0 and the square in (9.9) is commutative. We now finish by

invoking (TR3). �

9.4. Higher Toda brackets. In this section we define higher Toda brackets.

One may verify that they are the same as those defined in [5].

Definition 9.4. Let X• = ((Xi)
n
i=0, (di)

n−1
i=0 ) for n ≥ 3 be a complex in a

triangulated category T . The (higher) Toda bracket 〈X•〉 ⊂ T (X0, Xn)−n+2

of X• is the collection of compositions βα where α, β fit in the following

commutative diagram:

(9.10) Y
p

(n−2)~~

β

%%
X0

α

(−n+2)

//

d0

// X1 Xn−1
dn−1

//

i

bb

Xn,

where Y is a convolution of (Xi)
n−1
i=1 and p, i are as in (9.4).

Note that if n > 3, then 〈X•〉 may be empty.

Theorem 9.5. Let X• be as in Definition 9.4.

(1) If t ∈ 〈X•〉, then t+ dn−1T (X0, Xn−1)−n+2 + T (X1, Xn)−n+2d0 ⊂ 〈X•〉.
(2) If

(9.11) T (Xa, Xb)−(b−a)+2 = 0 for b− a ∈ [3, n− 1],

then 〈X•〉 6= ∅.
(3) If, moreover,

(9.12) T (Xa, Xb)−(b−a)+1 = 0 for b− a ∈ [2, n− 2],

then 〈X•〉 is a coset of dn−1T (X0, Xn−1)−n+2 + T (X1, Xn)−n+2d0.

Proof.
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(1) If φ ∈ T (X0, Xn−1)−n+2, then as piφ = 0, adding to iφ to α still keeps

the diagram (9.10) commutative. Since βiφ = dn−1φ, we obtain that

t + dn−1φ ∈ 〈X•〉. A similar reasoning applies if we start with φ ∈
T (X1, Xn)−n+2.

(2) Note that (9.11) implies, in particular, (9.5) for (Xi)
n−1
i=1 . So a convolution

Y as in (9.10) exists, and we have to verify the existence of α and β. We

will now introduce notation similar to Section 9.1. So we will denote the

Postnikov systems giving rise to Y by Y1, . . . , Yn−1, where Yn−1 = Y and

Y1 = X1.

We first consider the existence of β. We have a distinguished triangle

(9.13) Yn−2 → Xn−1
i−→ Yn−1 → .

Thus in order for the map dn−1 : Xn−1 → Xn to factor through Yn−1 we

have to prove that the composition Yn−2 → Xn−1 → Xn is zero. Since we

already know that the composition Xn−2 → Yn−2 → Xn−1 → Xn is zero

and there is a distinguished triangle

Xn−2 → Yn−2 → ΣYn−3 →,

it is sufficient to show that T (ΣYn−3, Xn)0 = 0. Now by Remark 9.1,

ΣYn−3 has subquotients ΣXn−3, . . . ,Σ
n−3X1. The conclusion now follows

from (9.11).

Now we look at the existence of α. We will successively liftX0
d0−→X1 =Y1

to maps X0
(−1)−−−→ Y2, . . . . X0

(−n+2)−−−−−→ Yn−1. The last map is the sought α.

First we look at the distinguished triangle

X1 → X2 → Y2 → .

Since the composition X0 → X1 → X2 is zero, the map d0 factors through

Σ−1Y2. To continue we use the distinguished triangles

Yi−1 → Xi → Yi →

for 3 ≤ i ≤ n− 1. Assume we have constructed the map X0 → Σ−i+2Yi−1.

From (9.11). we obtain that the composition X0 → Σ−i+2Yi−1 → Σ−i+2Xi

is zero, and hence X0 → Σ−i+2Yi−1 factors through Σ−i+1Yi and we can

continue.

(3) First we observe that (9.12) implies, in particular, (9.6) and hence the Post-

nikov system built on (Xi)
n−1
1 is unique. To prove the asserted statement

we have to investigate the freedom in choosing α and β.

Again we will discuss β first. The map β is determined up to an element

of the kernel of T (Yn−1, Xn)0 → T (Xn−1, Xn)0. Using the distinguished

triangle (9.13) we see that β is determined up to a composition of the

form Yn−1 → ΣYn−2
γ−→ Xn. Using Remark 9.1 we see that ΣYn−2 has
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subquotients ΣXn−2,Σ
2Xn−3, . . .Σ

n−2X1. Hence by (9.12) any morphism

ΣYn−2 → Xn factors through Σn−2X1. It follows that β is determined up

to a composition of the form Yn−1
p−→ Σn−2X1

γ′−→ Xn. Composing with α

we see as in (1) that changing β in this way changes βα by an element of

T (X1, Xn)−n+2d0.

Now we discuss α, which is determined up to an element of

ker(T (X0, Yn−1)−n+2 → T (X0, X1)0.

Define Y ′i = Σ−1 cone(Yi → Σi−1X1) so that, in particular, Y ′1 =0, Y ′2 =X2.

Using the octahedral axiom we may construct commutative diagrams for

i = 2, . . . , n− 1,

ΣY ′i−1

OO

// ΣYi−1
//

OO

Σi−1X1
//

Y ′i

OO

// Yi //

OO

Σi−1X1
//

Xi

OO

Xi

OO

with rows and columns that are distinguished triangles, where the maps

not involving Y ′’s are taken from the Postnikov system. Hence similar to

Remark 9.1, Y ′i has subquotients Xi,ΣXi−1, . . . ,Σ
i−2X2.

We have a distinguished triangle

Y ′n−1 → Yn−1 → Σn−2X1 →,

and hence α is determined up to a composition X0
δ−→ Σ−n+2Y ′n−1 →

Σ−n+2Yn−1. Now Σ−n+2Y ′n−1 has subquotients Σ−n+2Xn−1, . . . ,Σ
−1X2,

and hence by (9.12) we obtain that any map X0
δ−→ Σ−n+2Y ′n−1 factors

through Σ−n+2Xn−1. Hence we obtain that α is determined up to a com-

position X0
δ′−→ Σ−n+2Xn−1 → Σ−n+2Y ′n−1 → Σ−n+2Yn−1, which by con-

struction is the same as a composition X0
δ′−→ Σ−n+2Xn−1

Σ−n+2i−−−−−→ Yn−1.

We now finish as for β. �

9.5. Postnikov systems associated to twisted complexes. In this section a

is an A∞-category.

9.5.1. More on the category Free(a). Recall that in Section 4.6 we intro-

duced the strict endo-functor Σ of Free(a). Below we introduce some more

notation concerning the category Free(a). If X ∈ Ob(a), then we let ηX,a,b :
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ΣaX → ΣbX be given by σb−a idX . We similarly define ηX,a,b : ΣaX → ΣbX

for X ∈ Free(a): for each summand ΣxiXi of X, ηX,a,b : Σa+xiXi → Σb+xiXi

is given by σb−a idXi . Note that m2(ηX,b,c, ηX,a,b) = ηX,a,c. All operations on

a, except m2, vanish when one of its arguments is of the form ηX,b,c. Moreover

we have formulas

mn(. . . , f,m2(ηX,a,b, g), . . .) = mn(. . . ,m2(f, ηX,a,b), g, . . .),

mn(m2(ηX,a,b, f), . . . ) = (−1)(−2+n)(b−a)m2(ηX,a,b,mn(f, . . .)),

mn(. . . ,m2(g, ηX,a,b))) = m2(mn(. . . , g), ηX,a,b),

and their b-versions which are useful for computations:

(9.14)

bn(. . . , sf, sm2(ηX,a,b, g), . . .) = (−1)b−abn(. . . , sm2(f, ηX,a,b), sg, . . .),

bn(sm2(ηX,a,b, f), . . . ) = m2(ηX,a,b, bn(sf, . . .)),

bn(. . . , sm2(g, ηX,a,b))) = m2(bn(. . . , sg), ηX,a,b).

Below we usually write ηX,a,bg for m2(ηX,a,b, g) and similarly m2(g, ηX,a,b).

By the vanishing of m3 on arguments involving ηX,a,b this will not lead to

confusion. Sometimes we also write η−1
X,a,b for ηX,b,a. One verifies using the

definition of the functor Σ (see Section 4.6) that for f : ΣaX → ΣbZ, one has

(9.15) Σnf = (−1)n|f |ηZ,b,b+nfηX,a+n,a.

Finally we put ηX = ηX,0,1.

9.5.2. More on the triangulated structure of Tw a. Let f : (A, δA) →
(B, δB) be a closed morphism of degree 0 in Tw a. To f we associate a triangle

in H∗(Tw a),

(9.16) (A, δA)
f−→ (B, δB)

i−→ (C(f), δC(f))
p−−→

(1)
(A, δA),

where C(f) = ΣA⊕B and

δC(f) =

Ç
ΣδA 0

fη−1
A δB

å
and, furthermore,

(9.17) i =

Ç
0

idB

å
, p = (η−1

A 0).

The following lemma is an easy verification:

Lemma 9.6. The triangles (9.16) are distinguished according to Defini-

tion 5.10.
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9.5.3. Postnikov systems from objects in Tw a.

Proposition 9.7. A twisted complex in Tw a,

Yn = (ΣnX0 ⊕ Σn−1X1 ⊕ · · · ⊕Xn, δ)

with Xi ∈ Free(a), gives rise to a Postnikov system in H∗(Tw a) built on the

complex

X0
d0−→ X1

d1−→ · · · dn−1−−−→ Xn

with

dj−1 = (−1)n−jηXj ,n−j,0 · δj,j−1 · ηXj−1,0,n−j+1,

where δj,j−1 : Σn−j+1Xj−1 → Σn−jXj is the (j, j − 1) entry of the matrix δ;

the ·’s are for easier reading.

In the Postnikov system we also have

Yj = (ΣjX0 ⊕ Σj−1X1 ⊕ · · · ⊕Xj , δYj )

such that Σn−jδYi is given by the upper left j + 1× j + 1-square in the matrix

representing δ.

Finally the maps p : Yn
(n)−−→ X0, i : Xn → Yn as in (9.4) are given by

(9.18) i =

Ö
0
...

idXn

è
, p = (ηX0,n,0, 0, . . . , 0).

Proof. We may write

δYj =

Ç
ΣδYj−1 0

fjη
−1
Yj−1

0

å
,

where fj : (Yj−1, δYj−1)→ Xj is the closed map in Tw a with matrix

((δYj )j,0ηΣj−1X0
, . . . , (δYj )j,j−1ηXj−1).

Clearly Yj = C(fj) so that we have standard triangles

(9.19) Yj−1
fj−→ Xj

ij−→ Yj
pj−−→
(1)

Yj−1,

where (ij , pj) are as in (9.17). In particular, i = in is given by the formula

(9.18). We compute the composition

Xj−1
ij−1−−→ Yj−1

fj−→ Xj .

It is given by the matrix multiplications
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((δYj )j,0ηΣj−1X0
, . . . , (δYj )j,j−1ηXj−1)

á
0
...

0

idXj−1

ë
= (δYj )j,j−1ηXj−1 ,

which is equal to (Σ−(n−j)(δYn)j,j−1)ηXj−1 . One computes using (9.15) that

the latter expression is equal to dj−1.

Finally to show p is as in (9.18), we use p = p1 · · · pn−1pn by the description

in Remark 9.1. Then we use the formula (9.17) for pj . �

9.6. Higher Toda brackets in A∞-categories. We prove the following result:

Theorem 9.8. Let a be a pre-triangulated A∞-category, and let X0
d0−→

X1
d1−→ · · · dn−1−−−→ Xn be a complex in T = H∗(a). Assume the following

conditions hold :

(1) The A∞-subcategory of a spanned by the objects (Xi)i is minimal (i.e.,

b1 = 0).

(2) a(Xi, Xj)u = 0 for −n+ 2 < u < 0.

Using (1) we may regard di as closed arrows in a. With this convention we

have that 〈X•〉 is the coset for dn−1T (X0, Xn−1)−n+2+T (X1, Xn)−n+2d0 given

by s−1bn(sdn−1, . . . , sd0).

Proof. Since (9.11) and (9.12) hold, it is sufficient to produce a single ele-

ment of 〈X•〉. Since higher Toda brackets are obviously invariant under equiv-

alences of triangulated categories, we may perform the calculation in Tw a. We

start with the Postnikov system built on X1
d1−→ X2

d2−→ · · · dn−2−−−→ Xn−1. By

Proposition 9.7 it is obtained from the twisted complex

Y = (Σn−2X1 ⊕ · · · ⊕Xn−1, δ),

where the only non-zero entries of δ are δj,j−1 for j = 2, . . . , n− 1 and δj,j−1 is

given by

δj,j−1 = (−1)n−1−jηXj ,0,n−1−j · dj−1 · ηXj−1,n−j,0.

Using the formulas for i and p (see (9.18)) it is then easy to see that we may

take

α =

Ö
ηX1,0,n−2d0

...

0

è
, β = (0, 0, . . . , dn−1).
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Then mTw a,2(β, α)∈〈X•〉. It will be more convenient to compute bTw a,2(sβ, sα)

= smTw a,2(β, α). We have

bTw a,2(sβ, sα) = ba,n(sβ, sδ, . . . , sδ︸ ︷︷ ︸
n−2

, sα)

= ba,n(sdn−1, sdn−2 · ηXn−2,1,0, . . .

. . . , (−1)n−1−jsηXj ,0,n−1−j · dj−1 · ηXj−1,n−j,0, . . .

. . . , (−1)n−3sηX2,0,n−3 · d1 · ηX1,n−2,0, sηX1,0,n−2d0)

= ba,n(sdn−1, sdn−2, . . . , sd1, sd0),

where in the last line we have used (9.14). �

10. Triangulated categories without models

If A is a triangulated category, then an A∞-enhancement on A is a pair

consisting of a pre-triangulated A∞-category a such that Ob(a) = Ob(A) and

an isomorphism of triangulated categories H∗(a) → A inducing the identity

on objects. The following proposition will be the basis for constructing a

triangulated category that does not admit an A∞-enhancement.

Proposition 10.1. Let a, b be pre-triangulated A∞-categories. Suppose

we have an An-functor F : a → b for n ≥ 13 such that H∗(F ) does not lift

to an A∞-functor for any A∞-enhancements on H∗(a), H∗(b). Let c be the

gluing category c = a
∐
M b, where M = Fb (see Section 8.1). Then H∗(c) is

a triangulated category which does not admit an A∞-enhancement.

Proof. By the discussion in Section 8.1, M is an A14-bimodule. Therefore

by Theorem 8.5, c is a pre-triangulated A13-category. Hence by Theorem 7.3,

H∗(c) is triangulated.

Suppose that an A∞-enhancement d on H∗(c) exists. Since H∗(a), H∗(b)

are full exact subcategories of H∗(c) (see Theorem 8.5), it follows that the

A∞-structure on d induces A∞-enhancements a′, b′, on H∗(a) and H∗(b). By

H∗(d) ∼= H∗(c) it follows that d(A,B)A,B for A ∈ Ob(H∗(a)), B ∈ Ob(H∗(b))

defines an A∞-b′-a′-bimodule which is a co-quasi-functor in the sense of Sec-

tion 10.1 below. Hence by Lemma 10.4, d induces an A∞-functor F ′ : a′ → b′

such that H∗(F ′) ∼= F . This contradicts the hypotheses on F . �

Remark 10.2. The idea of creating a triangulated category without model

by gluing a non-enhanceable functor was suggested to us by Bondal and Orlov

on a number of occasions. In fact, the idea of translating an enhancement

of the glued category into an A∞-enhancement of the gluing functor, thereby

obtaining a contradiction, was specifically suggested to us by Orlov.
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10.1. Co-quasi-functors. To fill in a missing ingredient in the proof of

Proposition 10.1 we use an A∞-version of the notion of a (co)-quasi-functor

(see [6]). In the rest of this section we assume that a, b are A∞-categories.

Definition 10.3. An A∞-b-a-bimodule M is a co-quasi-functor a → b if

for every object A ∈ Ob(a), there exists fA ∈ Ob(b) together with an el-

ement φ̄A ∈ (H∗M)(A, fA)0 inducing an isomorphism for all B ∈ Ob(b):

φ̃A : H∗(b)(fA,B)→ (H∗M)(A,B) : u 7→ uφ̄A.

It is clear from the definition that being a co-quasi-functor depends only

on the structure of H∗M as graded H∗(a) − H∗(b)-bimodule. A co-quasi-

functor induces an actual functor f◦ : H∗(a)→ H∗(b). Indeed for u : A→ A′

in H∗(a), f◦u : fA → fA′ is defined to be the unique morphism such that

H∗(b)(f◦u,−) is the composition

H∗(b)(fA′,−)
φ̃A′−−→∼= (H∗M)(A′,−)

H∗M(f,−)−−−−−−−→ (H∗M)(A,−)
φ̃−1
A−−→∼= H∗(b)(fA,−).

Moreover is is clear that different choices of (φA, f
◦A) lead to naturally iso-

morphic functors.

Lemma 10.4. Assume that M is a co-quasi-functor a → b, and let f◦ :

H∗(a) → H∗(b) be the induced functor as explained above. Then there exists

an A∞-functor f : a→ b such that H∗(f) = f◦.

Proof. Let Cl∞(b) be the DG-category of strictly unital left A∞-b-modules

[7, Ch. 5], and let Y : b → Cl∞(b)◦ : B 7→ b(B,−) be the Yoneda embedding.

Furthermore let b̃ ⊂ Cl∞(b)◦ be the full subcategory spanned by A∞-modules

M which are A∞-quasi-isomorphic to some b-module of the form b(B,−).

Clearly we have that Y corestricts to an A∞-quasi-equivalence Y c : b → b̃.

Since M is a co-quasi-functor, the image of the A∞-functor F : a → Cl∞(b)◦ :

A 7→M(A,−) lies in b̃. Let F c : a→ b̃ be the corestriction of F .

Choose an A∞-quasi-inverse W : b̃→ b to the quasi-equivalence Y c : b→ b̃

which sends M(A,−) to fA for A ∈ Ob a and u to (a representative of) f◦u

for u : A → A′ a closed map in a. By Lemma 4.10 this is possible. Then one

easily verifies that f◦ = H∗(F cW ). �

Remark 10.5. It is also easy to prove that we have a quasi-isomorphism

of A∞-bimodules fb ∼= M . However we will not need this.

10.2. Localization of triangulated categories. The following result is well

known, although we did not find the precise statement we require. Since the

proof is short, we include it for the convenience of the reader.

Proposition 10.6. Let T be a triangulated category admitting arbitrary

coproducts, and let T ∈ Ob(T ) be a compact generator for T . Let S ⊂ T (T, T )
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be a graded right Ore set, and let TS be the full subcategory of T spanned by the

objects X such that T (s,X) is an isomorphism for all s ∈ S, or equivalently

the objects for which

(10.1) T (T,X)→ T (T,X)S

is an isomorphism. Then TS is a triangulated subcategory of T and moreover

the inclusion functor TS → T has a left adjoint, denoted by (−)S such that for

Y ∈ Ob(T ), the induced map

(−)S : T (T, Y )→ TS(TS , YS)

factors uniquely through an isomorphism

(10.2) T (T, Y )S ∼= TS(TS , YS).

Proof. The fact that TS is triangulated follows trivially from the 5-lemma.

Let us now discuss the existence of the adjoint. Let C be the full subcategory

of T spanned by objects X such that all morphisms T → X (not necessarily

of degree zero) are annihilated after composing with some s : T → T ∈ S, or

equivalently

(10.3) T (T,X)S = 0.

It is clear that C is triangulated and closed under arbitrary coproducts (the

latter by the compactness of T ).

For s ∈ S, let C(s) be the cone of the morphism s : T → Σ|s|T . It is clear

that TS = 〈C(s)s∈S〉⊥. By the Ore condition on S the objects C(s) are in C.
Moreover as 〈C(s)s∈S〉⊥ ∩ C = TS ∩ C and it is easy to see that TS ∩ C = 0, we

obtain that C is in fact generated by 〈C(s)s∈S〉. This yields C⊥ = TS .

Hence, in particular, C is compactly generated, and using the Brown rep-

resentability theorem we obtain that the inclusion functor C → T has a right

adjoint U : T → C such that every X ∈ T fits in a unique distinguished triangle

(10.4) UX → X → V X →,

where V X ∈ C⊥=TS . It follows easily thatX → V X is a functor T → C⊥=TS .

Applying T (−, Z) for Z ∈ TS to (10.4) we obtain that V is the sought left

adjoint (−)S to the inclusion TS → T .

Finally we discuss the formula (10.2). As cone(Y → YS) = ΣUY ∈ C we

have T (T, cone(Y → YS))S = 0 by (10.3). Hence (−)S induces an isomorphism

T (T, Y )S
∼=−→ T (T, YS)S

(10.1)
= T (T, YS) = TS(TS , YS) where the last equality is

adjointness. �
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10.3. A non-enhanceable functor. Now let k be either a field of character-

istic zero or an infinite field of characteristic > n ≥ 3. Put R = k[x1, . . . , xn],

and let K be the quotient field of R. Furthermore let R[ε] be the R-linear

DG-algebra with |ε| = −n+ 2, ε2 = 0, dε = 0. Let C(R,R) be the Hochschild

complex of R, and let HHn(R,R) = Hn(C(R,R)). Let TnR/k = ∧nR Derk(R,R).

The HKR theorem gives an inclusion TnR/k ⊂ ZnC(R,R) which induces an

isomorphism TnR/k
∼= HHn(K,K). For η ∈ TnR/k, we let Rη be the k[ε]-linear

A∞-deformation of R[ε] whose only higher multiplication is given by εη.

As above, for an A∞-algebra A, let Cr∞(A) be the DG-category of strictly

unital right A∞-modules over A [7]. We put D(A) = H∗(Cr∞(A)). This is

one of the many realizations for the derived category of an A∞-algebra (see [7,

Th. 4.1.3.1(D2)]) for which we consider Cr∞(A) to be its standard enhancement.

Remark 10.7. A is an A-A-bimodule, and hence the left A-action on A de-

fines A∞-quasi-isomorphism (see [7, Lemma 5.3.0.1]) A→ Cr∞(A)(A,A) which

is however not an isomorphism.

Proposition 10.8. Assume T is a triangulated category with arbitrary

coproducts and T is compact generator of T such that T (T, T ) = R[ε]. Assume

a is some A∞-enhancement of T . Then there is an A∞-quasi-equivalence a ∼=
Cr∞(Rη) for a suitable η ∈ TnR/k which sends T to an object isomorphic to

Rη in H∗(Cr∞(Rη)) = D(Rη) such that the induced map R[ε] = T (T, T ) ∼=
D(Rη)(Rη, Rη) = R[ε] is the identity. Moreover η is uniquely determined by

the triangulated structure on T and, in particular, is independent of the chosen

quasi-equivalence.

Proof. Let R = a(T, T ). By [6, §4.3] as formulated in the work of Porta

[11], the A∞-functor

Y : a→ Cr∞(R) : X 7→ a(T,X)

is a quasi-equivalence which sends T to R. Indeed Cr∞(R) is pre-triangulated

and so is a by the definition of enhancement. So H∗(Y ) is exact. Since the

essential image of H∗(Y ) contains a generator of H∗(Cr∞(R)) (namely, R), it

is sufficient to show that L := H∗(Y ) is fully faithful. By the Brown repre-

sentability theorem L has a right adjoint R which moreover commutes with

coproducts. (This follows from the fact that L send the compact generator

T to the compact object R.) Hence the full subcategory of H∗(a) spanned by

objects X such that X → RLX is an isomorphism is closed under shifts, cones,

summands and arbitrary coproducts. Moreover applying H∗(a)(T,−) we see

that it contains T . Hence it must be H∗(a) itself. From this one deduces that

L is fully faithful.



434 ALICE RIZZARDO and MICHEL VAN DEN BERGH

Now R is a DG-algebra with cohomology R[ε], so it is A∞-isomorphic

to a minimal A∞-structure on R[ε] with m2 being the usual multiplication.

For degree reasons, the only such A∞-structures are (up to A∞-isomorphism)

of the form Rη. Hence after choosing an A∞-quasi-isomorphism Rη → R

we obtain a quasi-equivalence Cr∞(R) → Cr∞(Rη) which sends R to an object

quasi-isomorphic to Rη in a way which induces the identity on cohomology.

Composing with Y completes the proof of the first part of the proposition.

For λ ∈ kn, let K•λ be the R-Koszul complex on (x1−λ1, . . . , xn−λn). This

is a resolution of Rλ := R/((xi−λi)i). Put K•λ,T = K•λ⊗RT . This is a complex

in T . Conditions (9.11) and (9.12) hold for K•λ,T , and hence the higher Toda

bracket 〈K•λ,T 〉 is a coset of
∑

i T (T, T )−n+2(xi − λi) in T (T, T )−n+2 = Rε.

We define ηλ,T ∈ Rλ such that ηλ,T ε is the sole element of the image of 〈K•λ,T 〉
in Rλ.

By the constructed quasi-equivalence we have ηλ,T = ηλ,Rη . Alas we can-

not immediately apply Theorem 9.8 to the right-hand side of this equality

as the A∞-category spanned by the terms of the complex K•λ,Rη (finite di-

rect sums of Rη) is not minimal (see Remark 10.7). To work around this let

S = Cr∞(Rη)(Rη, Rη), which we regard as a one object A∞-category (S, •).
As in Remark 10.7 we obtain an A∞-quasi-isomorphism Rη → S. Com-

posing with (S, •) → Cr∞(Rη) : • 7→ Rη we obtain a quasi-fully faithful

A∞-functor (Rη, •) → Cr∞(Rη) : • 7→ Rη which gives rise to a quasi-fully

faithful A∞-functor

TwRη → Tw Cr∞(Rη) ∼= Cr∞(Rη)

which sends K•λ,Rη ∈ TwRη to K•λ,Rη ∈ C
r
∞(Rη). It follows that we may

perform the calculation of ηλ,Rη in TwRη. As the A∞-subcategory of TwRη
spanned by direct sums of Rη is minimal, we are now in a position to apply

Theorem 9.8. We obtain that, up to a global sign, ηλ,Rη is the image of∑
σ∈Sn(−1)ση(xσ(1)−λσ(1), . . . , xσ(n)−λσ(n)) in Rλ. Since TnR/k = R

∧
i ∂/∂xi,

this is the same as the image of n!η(x1, . . . , xn). We obtain by varying λ that

η is uniquely determined. �

Theorem 10.9. Choose 0 6= η ∈ TnR/k, and put a = Cr∞(K), b = Cr∞(Rη).

After extending η to TnK/k = TnR/k ⊗R K , we consider Kη as an object in b.

There is an An−1-functor

F : a→ b

which sends K to Kη . The corresponding functor

H∗(F ) : D(K)→ D(Rη)

does not lift to an An-functor, even after changing the enhancements on D(K)

and D(Rη).
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Before giving the proof of this theorem we show that it implies Theo-

rem 1.1 in the introduction.

Proof of Theorem 1.1. From Theorem 10.9 we obtain that the hypotheses

of Proposition 10.1 are satisfied for (a, b, F ) (with n replaced by n− 1). Thus

for n ≥ 14, we obtain a triangulated category D = H∗(a
∐

F b
b) without A∞-

enhancement with a semi-orthogonal decomposition

D = 〈D(K), D(Rη)〉. �

Proof of Theorem 10.9. We first discuss the construction of the functor F .

To be compatible with Propositions 10.6 and 10.8, put T = D(Rη) =

H∗(Cr∞(Rη)) and let T be the object Rη. Put S = R − {0}. It is easy to

see that TS = Kη. Indeed Kη is in TS and cone(Rη → Kη) is in C by (10.3).

In particular, it follows by (10.2) that T (Kη,Kη) = K[ε].

Choosing homotopies we obtain an A2-functor

(10.5) F : K → Cr∞(Rη) : K 7→ Kη,

and the obstructions against extending µ to an Ai-functor are in

HHj(K, T (Kη,Kη)−j+2)

for 3 ≤ j ≤ i; see, e.g., [12, Lemma 7.2.1]. Since T (Kη,Kη) = K[ε], the

obstructions vanish for j < n. So F extends to an An−1-functor. Let Freẽ (−)

be defined as Free(−) but allowing arbitrary formal direct sums. If a is an

An-category, then so is Freẽ (a), and a similar statement is true for func-

tors. We then obtain an An−1-functor Freẽ (F ) : Freẽ (K) → Freẽ (Cr∞(Rη)).

Since Freẽ (K) is quasi-equivalent to C∞(K) (both are models for D(K) which

is semi-simple) and the direct sum defines an A∞-functor Freẽ (Cr∞(Rη)) →
Cr∞(Rη), after choosing a suitable A∞-quasi-inverse to the first functor we ob-

tain the sought An−1-functor F : Cr∞(K)→ Cr∞(Rη) which sends K to Kη.

We claim that F does not lift to an An-functor, even if we change en-

hancements. It if did, the A2-functor (10.5) would also lift to an An-functor,

as by Proposition 10.8 the enhancement on Cr∞(Rη) is (weakly) unique and

(as we have shown in the first paragraph) the object Kη is determined by the

triangulated structure. If this were possible, then it would induce the structure

of an An-functor on the corestriction

K
µ−→ c ⊂ Cr∞(Rη),

where c is the full subcategory of Cr∞(Rη) spanned by the single object Kη.

Put K = Cr∞(Rη)(Kη,Kη). Since Kη is an Kη-Rη-bimodule, the left Kη-action

on Kη induces an A∞-quasi-isomorphism Kη → K = c. Taking an A∞-quasi-

inverse and composing with K
µ−→ c we obtain and An-morphism K → Kη such

that H∗(K)→ H∗(Kη) = K[ε] is the natural inclusion. Such an An-morphism

does not exist as η 6= 0 [7, Ch. B]. �
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