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A conjecture of Erdoés, supersingular
primes and short character sums

By MICHAEL A. BENNETT and SAMIR SIKSEK

Abstract

If k is a sufficiently large positive integer, we show that the Diophantine

equation
nn+d) - (n+ (k—1)d) =y

has at most finitely many solutions in positive integers n,d,y and ¢, with
ged(n,d) = 1 and £ > 2. Our proof relies upon Frey-Hellegouarch curves
and results on supersingular primes for elliptic curves without complex
multiplication, derived from upper bounds for short character sums and
sieves, analytic and combinatorial.

1. Introduction

In 1975, Erdés and Selfridge [13] solved a long-open problem, originally
posed by Liouville [26] in 1857, proving that the product of two or more con-
secutive nonzero integers can never be a perfect power:

THEOREM 1 (Erdés - Selfridge, 1975). The Diophantine equation
(1) n(n+1) - (n+k—1) =y
has no solutions in positive integers n, k,y and £ with k, 0 > 2.

The proof, rather surprisingly, relies upon a combination of clever ele-
mentary and graph theoretic arguments. Earlier work on equation (1), from
Liouville onwards, had either depended upon results from multiplicative num-
ber theory or upon Diophantine approximation (as, for example, in oft-cited
but unpublished work of Erdés and Siegel, where a result similar to Theorem 1
was obtained for suitably large n).
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An apparently rather more difficult problem is to derive an analogue of
Theorem 1 for products of consecutive terms in arithmetic progression, and
this is the subject of the following famous conjecture, widely attributed to
Erdés (see, for example, [41]):

CONJECTURE (Erdds). There is a constant ko such that the Diophantine
equation

(2) n(n+d)(n+2d)---(n+(k-1d) =y",  ged(n,d) =1
has no solutions in positive integers n, d, k, y, £, with £ > 2 and k > k.

Without the condition ged(n,d) = 1 it is easy to construct a plethora of
artificial solutions. As pointed out by Erdés and Selfridge, equation (2) has
infinitely many solutions for (k, ) = (3,2) (satisfying ged(n, d) = 1). Note that
if we permit negative values of n, we must modify this conjecture somewhat
to allow for solutions corresponding to the identities

2

2m—1 2m—1
IT G+y={( J[@+v
j=—2m 7=0
and
2m?2+2m 2m242m—1 2
II e+y=(em+y J[ @+1 ).
j=—2m2-2m J=0

where m is a positive integer.

The literature on equation (2) is extensive, dating back to work of Euler
who proved that there are no nontrivial solutions with (k,¢) = (4,2). It is
worth observing that, via an argument of Granville (unpublished, but repro-
duced in Laishram and Shorey [24]), Erd6s’ conjecture is a consequence of the
abc-conjecture of Masser and Oesterlé. Currently, Erd6s’ conjecture has been
verified unconditionally only subject to a variety of additional assumptions.
By way of example, we now know it to be true if d is fixed (Marszalek [27]), if
both ¢ and w(d) (the number of distinct prime divisors of d) are fixed (Shorey
and Tijdeman [41]), if P(d) (the greatest prime divisor of d) is fixed and ¢ > 3
(Shorey [38]), or if n is fixed and ¢ > 7 (Shorey [39]). In subsequent work,
a number of these results have been refined and, in a number of cases, made
completely explicit (particularly for small values of k); the interested reader is
directed to the fine survey of Shorey [40] for further details on the literature
on this problem.

The papers we have mentioned so far rely upon either elementary argu-
ments in the spirit of Erdds and Selfridge, or upon lower bounds for linear
forms in logarithms (sometimes in conjunction with Diophantine inequalities
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resulting from Padé approximation to binomial functions). More recently, we
find a number of results that appeal to the modularity of Galois representations
associated to certain Frey-Hellegouarch curves to show that equation (2) has at
most finitely many solutions, again under certain additional constraints. The
possibility of this approach is implicit in the work of Darmon and Granville [9]
(where, in Corollary 2.1, the finiteness of the number of nontrivial solutions
to (2) is proved provided k and ¢ are both fixed). Explicitly, via such meth-
ods, we find a complete solution of equation (2) in case k = 3 (Gyéry [17]),
k € {4,5} (Gyéry, Hajdu and Saradha [18]), 6 < k < 11 (Bennett, Bruin,
Gyéry and Hajdu [1]) and 12 < k < 34 (Gyéry, Hajdu and Pintér [18]). In [1],
it is further proved that (2) has at most finitely many nontrivial solutions for
all k& < 82.

In this paper, we prove a somewhat weakened version of the Erdds con-
jecture, which deals also with negative solutions:

THEOREM 2. There is an effectively computable absolute constant ko such
that if k > ko is a positive integer, then any solution in integers to equation (2)
with prime exponent ¢ satisfies either y =0 or d =0 or £ < exp(10%).

It follows from Faltings’ Theorem that (2) has finitely many solutions with
k > ko and yd # 0.

Our proof of Theorem 2 follows very different lines from prior work on
this problem, and we emphasize that it bears little resemblance to an earlier
result of the authors [3], where an analogous finiteness statement for rational
points on curves corresponding to equation (1) is deduced. While our starting
point shares much in common with [1], [3] and [18], in that one is led to
study certain ternary equations with corresponding Frey-Hellegouarch curves,
the information we derive from these equations is quite distinct from that
previously considered. In particular, our proof of Theorem 2 makes essential
use of a wide array of tools from arithmetic geometry, analytic number theory
and additive combinatorics, including the following:

e the modularity of elliptic curves over Q due to Wiles, Breuil, Conrad, Dia-
mond and Taylor;
e Ribet’s level lowering theorem;

known cases of Serre’s uniformity conjecture, due to Mazur, to Bilu, Parent
and Rebolledo, to Darmon and Merel, and to Lemos;

a version of the large sieve inequality due to Selberg;

the Prime Number Theorem for Dirichlet L-functions;

gap principles for exceptional zeros of L-functions due Siegel and Landau;
an explicit version of Roth’s theorem on 3-term arithmetic progressions;

theorems on short character sums due to Burgess and to Graham and
Ringrose.
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The outline of this paper is as follows. In Section 2, we state some now
standard results deriving from the modularity of elliptic curves. In Section 3,
we detail the correspondence between solutions to (2), related ternary Dio-
phantine equations, and Frey-Hellegoaurch elliptic curves. We further discuss
why the techniques of [1] and [18] (which lead to analogues of Theorem 2 for
small values of k) will likely fail for all sufficiently large k. Sections 4 and 5
contain, respectively, an argument that guarantees that primes in (k/2, k| nec-
essarily divide d (for a solution to (2) with y # 0 and large exponent ¢), and the
consequence of this, that the primes p = 3 (mod 4) in this interval are in fact
supersingular for a certain parametrized family of elliptic curves. In Section 6,
we use this information to construct a (short) character sum that is unusually
large, corresponding to each Frey-Hellegouarch curve. Section 7 contains an
argument, based upon the Prime Number Theorem for Dirichlet characters,
that ensures the desired conclusion, provided we have suitably many elliptic
curves corresponding to our Frey-Hellegouarch curves with extremely smooth
conductors. In Section 8, we attain a like conclusion, via upper bounds for
short character sums and the large sieve, under the assumption that we have
a somewhat larger number of rather less smooth conductors. Finally, in Sec-
tions 9 and 10, we complete the proof of Theorem 2, by using a variety of
sieving arguments to show that our Frey-Hellegouarch curves correspond to
sufficiently many Dirichlet characters to guarantee that we can appeal to at
least one of the results from the preceding sections. Our addendum contains a
streamlined version of the more analytic aspects of our proof (deriving a contra-
diction from Proposition 6.1 without recourse to estimates for short character
sums or Roth’s theorem) that was communicated to us by Andrew Granville
[16] and is reproduced here with his kind permission.

Acknowledgements. We are grateful to Andrew Granville, Adam Harper,
Roger Heath-Brown, Lillian Pierce and Trevor Wooley for useful conversations.

2. Residual representations attached to elliptic curves

Let E be an elliptic curve defined over Q, with minimal discriminant A
and conductor M. For a rational prime ¢ > 3, we denote by

pE7£ : G(@ — Aut(E[ﬁ]) = GLQ(]F()

the representation describing the action of Gg := Gal(Q/Q) on the f-torsion
subgroup E[(]. Define

3) My=m/ T[
q|| M, q prime
£|ordg(A)

where we write ord,(x) for the largest power of a prime ¢ dividing a nonzero
integer x.
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The following theorem is a standard consequence of Ribet’s level lowering
theorem [33] (stated, for example, in [42, p. 157]). It was originally conditional
on the modularity of elliptic curves over QQ, a result that was subsequently
proved by Wiles, Breuil, Conrad, Diamond and Taylor (see [46] and [8]). Ad-
ditionally, it is, in fact, a special case of Serre’s Modularity Conjecture [37],
now a theorem of Khare and Wintenberger ([20] and [21]).

THEOREM 3. If E[{] is irreducible, then there is a cuspidal newform f =
> n>16nq" of weight 2 and level Mo such that pgy ~ Py, where A | £ is a
prime of the totally real field K = Q(cy,co,...).

Here, by pp s ~ py, we mean that, for almost all primes p, we have that
ap(E) = ¢y (mod \).

In fact, by comparing the traces of Frobenius for pg, and ps, we can be
rather more precise.

LEMMA 2.1. With notation as in Theorem 3, let p be a rational prime.
(i) If pt LM My, then ap(E) = ¢, (mod ).
(ii) If p1 €My and p|| M, then p+ 1 = £¢, (mod \).

The following lemma will be invaluable to us:

LEMMA 2.2. With notation as above, suppose p # £ is a prime with p || M
and, additionally, ¢ | ord,(A). Then

Y < (\/]3_|_ 1)(M0+1)/6‘
Proof. From (3), we see that p{ My. Thus by Lemma 2.1 we have

AM+1F¢)
and so
¢ | Normpg(p + 1 F ¢p).
As ¢, is bounded by 2,/p in all the real embeddings of K, we have

(< (p+1+2yp)U = (/p+1)2Q,
If we denote the dimension of S§°V (M) by g4 (Mo), then [K : Q] < gi (Mo).
By Theorem 2 of Martin [28], we have
My+1
12 7
completing the proof. O

(4) g4 (Mp) <

It is well known that if the residual characteristic £ is sufficiently large
compared to the level My, then f has rational eigenvalues and so corresponds
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to an elliptic curve over F//Q. We shall have use of a quantitative version of
this statement due to Kraus [23]. For a positive integer n, let

(5) p(n) =n H (1—!—;).

qln
q prime
Define
QQJ(H) 2
6 6
and set

H(n) = max(F(n),G(n)).
The following is Théoréme 4 of [23].

THEOREM 4 (Kraus). With notation as in Theorem 3, suppose E has full
2-torsion and that

> H(Mo)
Then there is an elliptic curve F/Q having full 2-torsion of conductor My such
that pg g ~ Pry-

3. Frey-Hellegouarch curves associated to (2)

We shall call a solution (n,d, k,y,¢) of (2) trivial if yd = 0. We shall
henceforth restrict our attention to nontrivial solutions. In this section, we will
show how a nontrivial solution to equation (2) is simultaneously a solution to
many generalized Fermat equations, both of signature (¢, ¢, ¢) and of signature
(¢,¢,2). (In fact, we can actually derive ternary equations of signature (¢, ¢, q)
for values of ¢ > 2, but these will not be of interest to us.) The following
elementary lemma is an immediate consequence of the coprimality assumption
for equation (2).

LEMMA 3.1. Let (n,d, k,y,l) be a nontrivial solution to (2) with £ prime.

(i) For0<i<j<k-—1,
ged(n +id,n+ jd) | (j —1).
(ii) Let 0 <i <k —1, and let ¢ > k be prime. Then
¢ | ordy(n + id).

Thus we may write
(6) n+id=Ayt, 0<i<k-1,

where A; are positive integers divisible only by primes < k, whereas y; are
divisible only by primes > k.
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3.1. Fermat equations of signature (£,£,¢). In general, given any integers

0§i1<i2<i3§k—1,
the identity
(i3 — d2)(n + t1d) + (i1 — i3)(n + iz2d) + (12 — 1) (n + izd) =0
leads to a ternary Diophantine equations of signature (¢, ¢, ¢). This provides us
with roughly k2/6 generalized Fermat equations to consider. For our purposes,
it will be convenient to restrict our attention to indices (i1, 72, 3) in arithmetic
progression (of which there are approximately k%/4). Let
A:{(Za]aQJ_Z) 17]72]_2 € {Ovlavk_l}v Z<]}
denote the set of nontrivial 3-term arithmetic progressions in the set {0,1,...,
k —1}. Associated to any such tuple a = (,7,25 — i) € A is the identity
(n+id) —2(n+ jd) + (n+ (25 —i)d) = 0,
from which we see that (r,s,t) = (v;,y;,¥y2j—:) is a solution to the following
generalized Fermat equation of signature (¢, ¢, ¢):
AZ”I“Z — 2Aj8€ + Agjfité =0.
We may attach to this solution a Frey-Hellegouarch curve as in Kraus [23]. For
convenience, we let

(7) g=ged (n+id, 2(n+ jd), n+ (2§ —i)d),
(8) o=y _Antid) g = Eidd
9 g g

Our corresponding Frey—Hellegouarch is
Eq: Y2 = X(X - aa)(X + Ca)'

LEMMA 3.2. The model E, is minimal and semistable at all odd primes.
Its discriminant is

28
Ay = 64(agbgce)? = E(n +id)*(n + jd)*(n + (2§ — i)d)*
In particular, for any prime p > k, we have £ | ord,(Aq).

Proof. The first part is a straightforward computation. The second follows
from Lemma 3.1. (]

LEMMA 3.3. Let £ > 7. Then pg, o ~ Py, where [ is a newform of weight
2 and level M, with

(9) My |28 AjAjAg i

and
M, <27 exp(1.000081 - k).
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Proof. As E4 has full 2-torsion and ¢ > 7, we know from the work of Mazur
[29] that F,[{] is irreducible. It follows from Theorem 3 that pg_, ~ by, where
f is a newform of weight 2 and level My given by (3). We write M, := M.
Equation (3) and Lemma 3.2 ensure that M, satisfies (9). Moreover, as the
odd part of M, is squarefree, M, divides

7] o
q<k
q prime

From Schoenfeld [35, p. 160], we have

(10) > logq < 1.000081 - k.
q<k

The lemma follows. (]
3.2. Fermat equations of signature (£,¢,2). Let
Z={(j,i1,i2,72) i1 +iz=J1+Jj2, 0<j1 <in <ipg<jp<k—1}h
To any fixed quadruple i = (ji,11, %2, J2) € Z, we can associate the identity
(n+ j1d)(n + jod) — (n +i1d) (n + izd) = (j1j2 — i1i2)d>.

It follows that (r,s,t) = (Y;,Yjs» Yi1 Yis, d) is a solution to the following gener-
alized Fermat equation with signature (¢, /,2):

(11> Alej2 : ré - Ai1Ai2 : SE = <j1j2 — i1i2) ) t2'

Following Bennett and Skinner [4], solutions to this equation also correspond
to Frey-Hellegouarch elliptic curves defined over Q. To simplify notation, write

(12) A= (n+jid)(n+ j2d), B=(n+ird)(n+izd) and k= jijs — i,
so that
(13) A — B = rd’.

Let
& :Y? = X(X? +2kdX + KkA).

LEMMA 3.4. The model & is minimal and semistable at all primes p > k
that also satisfy pt k. It has discriminant

A = —64k*A%B.
In particular, for any prime p > k with p{ K, we have £ | ord,(A;).

Proof. This again follows from a straightforward computation with the
help of Lemma 3.1. O
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LEMMA 3.5. Let £ > 11. Then pg, , ~ Py, where f is a newform of
weight 2 and level M; satisfying

M; <2735 k% exp(2.000162 - k).

Proof. As &; has a rational point of order 2 and ¢ > 11, we know from the
work of Mazur [29] that &[¢] is irreducible. It follows from Theorem 3 that
Pe,e ~ Pra Where f is a newform of weight 2 and level My given by (3). We
write M; := My. Equation (3), together with Lemma 3.4, ensures that M;

divides
2755 k2 [ o
q<k
q prime
As |k| < k2, the lemma follows from inequality (10). O

At this point, it is worth mentioning why the techniques of [1] and [18§]
are apparently insufficient to prove Theorem 2 (yet do allow one to show that
equation (2) has at most finitely many nontrivial solutions for small values
of k). Intrinsically, they rely upon the fact that for suitably small &k, and each
possible tuple

A = (Rad(Ap),Rad(A;),...,Rad(Ax_1))

(here, the A; are as in (6); the number of such tuples depends only upon k
and not £ or d), we can find i = (j1, 1,42, j2) € Z such that the corresponding
polynomial-exponential equation
(14) rty =27
where z € Q and x,y are S-units, for

S = {p prime : p | Aj, Aj, Ai, Ai, (j1J2 — ini2)}
has only “trivial” solutions. As a first step, one applies an argument to guar-
antee that

p|A1A2'--Ak_1 — p<7‘k‘

for certain 7 € (0,1]. That we may take 7 = 1 is immediate from the definition
of A;, while, for example, Lemma. 4.1 of the next section implies a like result
with 7 = 1/2. It is not especially difficult to improve this to 7 = 1/3, but it
appears to be quite hard to reduce this significantly. From a result of Erdos,
Stewart and Tijdeman (see, e.g., Theorem 4 of [14]), the number of solutions
to equation (14) with z and y rational numbers supported on primes of size at
most Tk exceeds exp (310!;2) for large enough k. Since the number of tuples
A to be treated also grows exponentially in 7k, while the cardinality of Z is

k—1 . .
0 if k is even,

5
k—j)j/2=——-——— + —, where §=
JZ::Q( D=3 % 1278 {1 if k is odd,
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our expectation is that for all sufficiently large &, there will correspond to each
choice of i € Z a tuple A for which the associated equation of the shape (14)
has nontrivial solutions.

We will proceed in a very different direction. Rather than attempting
to reduce the problem of treating equation (2) to that of solving associated
ternary equations (which, as we have noted, is likely to be futile for large k),
we will, in the next two sections, instead deduce from a nontrivial solution
to (2) the existence of a large number of elliptic curves that, on some level,
mimic the behaviour of elliptic curves with complex multiplication (despite not
possessing this property).

4. A first result on primes k/2 <p <k

We begin with an easy lemma that ensures that primes in the interval
(k/2,k] fail to divide AgA; --- Ag—1 for suitably large ¢. This apparently in-
nocuous result (a version of which first appeared in the proof of Theorem 1.5
of [1]) is actually the key first step in proving Theorem 2.

LEMMA 4.1. Let k > 108, and suppose that (n,d,k,y,t) is a nontrivial
solution to (2) with prime exponent £ > exp(10¥). Let p be a prime in the
range k/2 < p < k. Then p|d.

Proof. Suppose that p{ d. Then p divides at least one and at most two of
the terms n + d,n + 2d, ...,n + kd. Suppose first that p divides precisely one
such term, say p | n + id. It follows from (2) that

0| ordy(n + id).

Let a be any triple of indices in A containing i. It follows from Lemma 3.2
that E, is semistable at p with multiplicative reduction, and that ¢ | ord,(A,).
Applying Lemma 2.2, we see that

(< (Vp+ 1)(Ma+1)/6‘

Now the bound in Lemma 3.3 for M, contradicts the assumption £ > exp(10%).

If instead p divides divides precisely two terms, say p | n + id and p |
n+ (i 4 p)d, then we choose i = (i,i+1,i+p—1,i+p) € Z. Let A, B, k and
d be as in (3.2). From (2) and (12), we have

p| A, £|ord,(A) and p1 B.

Equation (13) thus implies that p 1 k and so the model & has multiplicative
reduction at p. Applying Lemma 2.2, we see that

/¢ S (\/]3+1)(M1+1)/6

Now the bound in Lemma 3.5 for M;j contradicts the assumption £ > exp(10%),
completing the proof of Lemma 4.1. O
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5. A closer look at the Frey-Hellegouarch curve £,

The Frey-Hellegouarch curves &; associated to i € Z have been valuable in
proving Lemma 4.1. We shall not, however, have further use for them and will
instead focus, here and henceforth, solely on the Frey-Hellegouarch curves E
associated to the 3-term arithmetic progressions a € A.

LEMMA 5.1. Let k > 108, and suppose that (n,d,k,y,t) is a nontrivial
solution to (2) with £ > exp(10%) prime. Let a € A. Then there is an elliptic
curve Fy/Q having full rational 2-torsion and conductor M, such that pg, , ~

PF, -

Proof. By Theorem 4, it is sufficient to show that ¢ > H(M,). From
Tenenbaum [44] (Theorem 9 and the remark following it), we have

1
H <1 + 7) < exp (0.27+ i) log k.
q log k

q<k
q prime

As k > 10%, we obtain

H (14—;) < 2logk.

q<k

This, together with Lemma 3.3 and its proof, shows that both u(M,) and
w(lem(M,,4)) are bounded by

28 log k - exp(1.000081 - k).

Using the previously cited estimate (4) to bound gg (M,), we easily deduce
that H(M,) < exp(10¥) < £ as required. O

Throughout the remainder of the paper, we maintain the assumption ¢ >
exp(lOk). Further, F, will always denote the elliptic curve associated to a by
Lemma 5.1.

LEMMA 5.2. With notation and assumptions as in Lemma 5.1, let p be a
prime satisfying k/2 < p < k. Then p is a prime of good reduction for both
E, and Fy, and we have a,(E,) = ap(F,). If, moreover, p = 3 (mod 4), then
ap(Fy) =0 and hence p is a prime of supersingular reduction for Fy.

Proof. By Lemma 4.1, we know that every prime k/2 < p < k divides d.
As ged(n,d) = 1 we see that p 1 (n + id) for all i. It follows from Lemma 3.2
that p is a prime of good reduction for E,. Since the conductor M, of F, is a
divisor of the conductor of E, (see equation (3)), it follows that p is a prime of
good reduction for both elliptic curves. Hence, by Lemma 2.1, we know that
ap(Eq) = ap(Fy) (mod £). By the Hasse-Weil bounds |a,(Eq) —a,(Fy)| < 4V,
whereby the inequality ¢ > exp(10¥) immediately implies that a,(Eq) = a,(F,).
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Let g be as in (7), so that the reduction of E,; modulo p is

E,:Y?=X(X —n/g)(X +n/g).
If p =3 (mod 4), then, as is well known (see, e.g., page 41 of [22]), ap(E,) =0
whereby also a,(Fy) = 0. O

Before we proceed, it is worth remarking that Lemma 5.2 implies that the
elliptic curve Fy shares supersingular primes with elliptic curves with complex
multiplication and j-invariant 1728, in the interval k£/2 < p < k. As we
shall later observe, F, cannot itself have complex multiplication. This alone,
however, is not enough to imply a contradiction; indeed the curve with model

(15) E:V?=x"-X+]]p
p<k

has precisely these properties. On the other hand, if we can deduce the exis-
tence of an a € A for which the conductor of Fj is suitably “small” (notice that
E in (15) has conductor that is exponentially large in k), then we can apply an
effective version of the Chebotarev density theorem to derive a contradiction
for large k, solely from F, having a surplus of supersingular primes in the inter-
val (k/2,k]. (See Serre [36] and Elkies [11] for upper bounds on the number of
supersingular primes in intervals, for elliptic curves without complex multipli-
cation, both conditional on the Generalized Riemann Hypothesis (GRH) and
otherwise.) As we shall observe in Section 9, we can guarantee the existence of
an a for which the conductor of F, is bounded above by k* for some absolute
positive constant A. This is sufficient to contradict the Chebotarev density
theorem under GRH, but not unconditionally. If we had an a € A for which
F, has conductor bounded by (log k)*, say, then we would have an alternative
proof of Theorem 2 via this approach. At present, we are unable to prove the
existence of such an a.

6. On a character sum associated to Fj

Henceforth, F, will denote the elliptic curve over Q having full 2-torsion
and conductor M, attached, via Lemma 5.1, to a 3-term arithmetic progression
a € A, where A corresponds to a nontrivial solution of (2). For a positive
integer N, we write N°dd = N . 27 0rd2(N) for the odd part of N. As usual, we
denote by A the von Mangoldt function

A(n) =

logp if n = p” for some prime p and integer k > 1,
0 otherwise.

PROPOSITION 6.1. Let k > 2 x 10'°, and let £ > exp(10*) be prime. Let
(n,d, k,y,£) be a nontrivial solution to equation (2), and suppose that a € A.
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Then there exists a quadratic character xo that is primitive of conductor Ny
such that

(16) > Xalm)-A(m)| > 0.1239 k.
k/2<m<k

Moreover, we have that N3 | M, and N9 # 1.

Remark. After proving Proposition 6.1, the key to the proof of Theorem 2
will be to show, for k suitably large, that if Nc‘fdd # 1 for all a, then there is
some a for which the left-hand side of the inequality (16) is much smaller than
0.1239%.

Legendre elliptic curves. Let A € Q\ {0, 1}, and write
(17) Fr:Y?=X(X —1)(X —\),

often called a Legendre elliptic curve with parameter A. For a € A, the elliptic
curve F, has full 2-torsion, and hence is a quadratic twist of a Legendre elliptic
curve I\, where there are in fact six possible choices for A. Define

6={-t:teQju{2t?:teQ}.
We partition A into two disjoint subsets, AD) and AUD.

AW This consists of a € A such that at least one of the A-invariants of F
lies outside 6.
AUD: This consists of a € A such that every A-invariant of F, is in &.
The precise construction of the character x, in the proof of Proposition 6.1
depends on whether a belongs to AL or AU but in either case it is closely
related to the A-invariants of Fj.
We require some preliminary results.

LEMMA 6.2. Let F/Q be an elliptic curve of conductor M, semistable
away from 2 (i.e., with M° squarefree), having full rational 2-torsion. Let
A € Q be any of the siz A-invariants of F'. Then the following hold:

(i) ordy(X) = ord,(1 — A) =0 for all odd primes p of good reduction for F'.
(i) Let w € {£1,£2}, and let x be the unique primitive quadratic character of
conductor N that satisfies

(18) ) = (22

p
for odd primes p with ord,(\) = 0. Then N° | M.

Proof. As F has full rational 2-torsion and is semistable away from 2, it
has a model of the form

F:Y?=X(X-a)(X —b),
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where a, b, a — b are nonzero integers with no odd prime common factors. The
primes dividing M°% are precisely the odd primes dividing ab(a — b). Since
the six associated A-invariants are

b/a7 (I/b, (a - b)/av a/(a - b)7 b/(b - (I) and (b - a)/ba
the lemma follows immediately. O

LEMMA 6.3. Let p = 3 (mod 4) be prime, and suppose that F/F, is an
elliptic curve of the form

F:Y?=XX-1)(X -7

for some n € F,\ {0,1,—1}. Then F(F,) contains a subgroup isomorphic to
7.)27 x 7,/AZ.

Proof. Since F' has full rational 2-torsion, it is enough to show that F/F,
has a point of order 4 or, in other words, that one of the three points of order
2 is 2-divisible. We know (a,b) € F(F,) is 2-divisible if a, a — 1 and a — n?
are all squares. Suppose (1,0) is not 2-divisible. Then 1 — n? is not a square.
As p = 3 (mod 4), it follows that n? — 1 is a square. Thus the point (72,0) is
2-divisible. O

We are now ready to apply this to the elliptic curves F, that arise from
solutions to (2).

LEMMA 6.4. Let k > 108, and suppose that £ > exp(10¥) is prime. As-
sume that (n,d, k,y, ) is a nontrivial solution to equation (2). Let a € A, and
let X be any of the siz A-invariants of Fy. If p =3 (mod 8) is a prime in the
interval k/2 < p < k, then

;)
— ] =-1.
p

Proof. From Lemma 5.2, we know that p is a prime of good supersingular
reduction for Fy. Lemma 6.2 tells us that ord,(\) = ord,(1 — A) = 0, whence
p is a prime of good reduction for F\. Now F) is a quadratic twist of F, and
so must also have supersingular reduction at p. In particular, a,(F\) = 0, so
that

#F)\(F,) =p+1=4 (mod 8).
On the other hand, if we suppose that A is a square modulo p, then we know
from Lemma 6.3 that 8 | #F(F,). The resulting contradiction completes the
proof. O

Proof of Proposition 6.1 for a € AD. We are ready to prove Proposi-
tion 6.1 for a € AD. Fix a Minvariant of F, with A\ ¢ &. Suppose first
that A = t2 or A\ = —2¢? for some nonzero rational t. By the results of
[32], the assumption that k& > 2 x 10'° forces the existence of (many) primes
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p = 3 (mod 8) in the interval k/2 < p < k. For each such prime, we have
(%) =1, contradicting Lemma 6.4. We may therefore suppose
(

19) Mg {2t € QYU {£2t? : t € Q).
If a and m are relatively prime integers, we write
HX;a,m) = Z log p

p<X
p=a mod m

for the first Chebychev function associated to the arithmetic progression a mod
m. Here, the sum is over primes p. By [32], using the inequality k > 2 x 1019,

we have
k
> logp = 0(ki3,8) — 9(k/23,8) > (1-3¢) - o,
k/2<p<k
p=3 mod 8
where € = 0.002811. From Lemma 6.4, we thus have
A k
20 —<f>1 > (1-30. %
) S (Yosr = 159
k/2<p<k
p=3 mod 8

Let p; be the primitive quadratic Dirichlet characters that on odd primes
p away from the support of A are given by

pi(p) = (2) p2(p) = (?) n3(p) = <2;) and p4(p) = (?)

and observe that

4 (%) if p =3 (mod 8),

pa(p) — p2(p) — ps(p) + palp) = {0 otherwise.

We may thus rewrite inequality (20) as

> (—palp) + pa(p) + p3(p) — pa(p))logp > (1 —3¢) -
k/2<p<k

N |

whereby there necessarily exists some ¢ € {1,2,3,4} such that

0| &

(21) > wi(p)log(p)| = (1 - 3e) -

k/2<p<k

We let xq = u; and write N, for its conductor. From (19), we have N2 £ 1.
Moreover, by Lemma 6.2 we have Nc‘fdd | M,. Finally, the left-hand side of
(16) agrees with the left-hand side of (21), except on m = ¢" where ¢ is prime
and r > 2. Thus the difference between the two sums is bounded by

[Y(k) = 9(k) — ¥ (k/2) +9(k/2)],
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where ¥ and ¢ are the first and second Chebychev functions. From (5.3%)
and (5.4%) of Theorem 6* of Schoenfeld [35], we have (16) as desired. This

completes the proof of Proposition 6.1 in Case (I).

Legendre elliptic curves revisited. Let A € Q\ {0, 1}, F)\ be as in (17), and
suppose that p is an odd prime satisfying ord,(A) = ord,(1 — A) = 0. We will
need to use the 2-descent homomorphism:

Oy FA(Fp) — Fp /F32 x Fi /F22 x F /F22, O4(Q) = (01(Q), 02(Q), 05(Q)).

The kernel of ©) is precisely 2F)(F,). If @ # (0,0), then 6;(Q) = J:(Q)]F;Q
If Q@ # (1,0), then 62(Q) = (z(Q) — DF;> If Q@ # (A,0), then 65(Q) =
(2(Q) — MF;?. Moreover, 61(Q)02(Q)05(Q) = 1F;? for all Q € F)(F,), which
allows us to compute ©) even for the points of order 2.

LEMMA 6.5. Let F_1 be as in (17) and p = 5 (mod 8) be prime. Then
2 || #F_1(Fy).

Proof. We use the fact that 2 represents the class of nonsquares in ),/ ]F;Q.
The images of the points of order 2 under ©_; are

0_1(0,0) = (1,1,1),  ©_1(1,0)=(1,2,2),  O_1(—1,0) = (1,2,2).

It follows that only (0,0) is 2-divisible. We find that 2(i,1 —14) = (0,0) (where
i? = —1in F,). The points of order 4 are (3,1 —1i), (i,1—1)+(0,0), (i,1—1)+
(1,0), (i,1 —4) + (—1,0). The images of all of these under ©_; have i]F;';2 as
first coordinate. This is not a square in F,, (as p =5 (mod 8)) and hence none
of the points of order 4 are 2-divisible. It follows that 23 || #£F_1(F,). O

Some preliminary results for a € AUYD. Let a € AU, The proof of
Proposition 6.1 in this case is a little harder and requires some further prepa-
ration. By the definition of AU1) | every A-invariant of F, belongs to the set &.
Note that, if A is any of the A-invariants of F, and we write

A=A A=1-Xand A3=(A—1)/\,

then the six A-invariants of F, are precisely )\Z:-H with ¢ = 1,2 and 3. If we have
that A = —t? for some rational number ¢, it follows that necessarily there exists
a rational number v such that Ay = 2v? (whence A3 = 2(v/t)?). Similarly, if we
have A\ = 2t? for t € Q, then either Ay or A3 is of the shape 2v? for rational v. In
all cases, renaming if necessary, we deduce the existence of (positive) rational
numbers ¢ and v such that

(22) A=2t? and 1—\=2v%

whereby 2t 4 20? = 1.
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LEMMA 6.6. Let k > 10%, and suppose that £ > exp(10) is prime. Let
(n,d, k,y,£) be a nontrivial solution to equation (2) with corresponding A. Let
a € A, and suppose that \, one of the six A\-invariants of F,, satisfies (22) for
positive rational numbers t andv. If p =5 (mod 8) is prime with k/2 < p < k,

then ordy(t) = ord,(v) =0 and
(£)-
p

Proof. Fix a prime p =5 (mod 8) with £/2 < p < k. By Lemma 5.2, pis a
prime of good reduction for both E, and Fy, and we have a,(Ey) = ap(Fy). By
Lemma 6.2, ordy(A\) = ord,(1—X) = 0 and so, from (22), ord,(t) = ord,(v) = 0.
From the proof of Lemma 5.2, the reduction of E; modulo p is a quadratic twist
of F_y, whereby a,(F,) = ap(Es) = £a,(F-1). On the other hand, F) is a
quadratic twist of Fy and so a,(F\) = *a,(F_1). If we consider also the
quadratic twist of Fy by 2,

F{:Y? = X(X —2)(X —2)),

since 2 is a nonsquare modulo p, it follows that a,(F}) = —a,(Fy). Thus
either a,(Fy) = ap(F-1) or a,(Fy) = ap(F_1). Since Lemma 6.5 implies that
23 || #F_1(F,), we may conclude that either 23 || #F\(F,) or 23 || #£F} (F,).

Now let © be the 2-descent map for F)/F), as given previously. From (22),
we find that

©(0,0) = (2,1,2), ©(1,0) = (1,2,2) and O(X,0)=(2,2,1).

It follows that none of the points of order 2 are 2-divisible, and so 23 { #F\(F,,).
Hence 23 || #F} (F,).

We denote the 2-descent map for F§ by ©'. The images of the points of
order 2 in F} are

©'(0,0) = (2,2,1), ©'(2,0)=(2,2,1) and ©'(2),0) = (1,1,1).

It follows that only (2, 0) is 2-divisible. Let ¢ be any square-root of —1 in F,,
and set

P = (4ivt + 2, (128iv° — 64iv*)t — 1280° + 960" — 16v%) € E(F,).

Then 2P = (2),0) and so P is a point of order 4. Writing ©’ = (0}, 05, 05), we
have that 65(P) = 4itv - IE‘;Q. Suppose

p
<m> _1
p

Then 05(P) =1 and so ©'(P) = (1,1,1) or (2,2,1). (Recall that the product
of the entries is a square.) Hence either ©'(P) = (1,1,1) or ©'(P + (0,0)) =
(1,1,1). It follows that one of the points of order 4 is 2-divisible and so F}(Fp)
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contains a subgroup isomorphic to Z/2Z x Z/8Z, contradicting the fact that
23 || #F}(F,). We therefore have that

44t
(ZQZA,
p

and hence the fact that ¢ is a nonsquare modulo p completes the proof. O

Proof of Proposition 6.1 for a € AUYD. By an easy modification of our
earlier argument, but now using Lemma 6.6 in place of Lemma 6.4, the in-
equality (16) is satisfied, where now x, is a primitive quadratic character that
for odd primes away from the support of tv is given by

Xa(p) = (w'tv>

p
for some w € {£1,+2} that depends only on a. Again we write N, for the
conductor of .
We would like to show that Né’dd | My. We may choose a model for F,
of the form Y2 = X (X — a)(X — b) where a, b and a — b are nonzero integers,
with no odd prime common factors, and we have

2t =A=b/a and 20°=1-\=(a—b)/a.

Thus the odd primes appearing in the support of w - tv are primes dividing a, b
or a—b. As xq is quadratic, N9, the odd part of its conductor, is squarefree.
On the other hand, the primes dividing M2 are precisely the odd primes
dividing ab(a — b), whereby N9 | M, as required.

Finally, we must prove that Nc?dd # 1. Suppose Nc‘fdd = 1. Then tv =
+a? or tv = 4+2a? for some positive rational o. We have chosen ¢t and v
positive, whereby necessarily tv = a2 or tv = 2a%. Write t = T/U and
v = V/U where, without loss of generality, 7', V and U are positive integers

with ged(U,V,T) = 1. Then, from (22),

277 4+ 2V? = U?,
and hence T and V are odd and coprime, while U = 2 (mod 4). In particular,
2 | ordy(tv), and so we may conclude that tv = o?. It follows that TV is a
positive integer square and hence, since T" and V are coprime and positive,

each is itself an integer square, say T = T, 02 and V = V02, where Ty and Vj are
positive. Writing U = 2Up, we thus have

Ty + Vo' =205,

whereby, from a classical descent argument, 7oy = Vp = Uy = 1, and so A = 1/2.
In particular, F, is isomorphic (possibly over a quadratic extension) to the
elliptic curve Y2 = X (X — 1)(X — 1/2) with j-invariant 1728 and complex
multiplication by Z[i]. It follows that F, has complex multiplication and hence
the image of pp, , is contained in the normalizer of a Cartan subgroup of
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GLa(Fy). As pg, s ~ Pr, s the same is trivially true for pg, ,. It follows from
the work of Lemos [25] (building on the results of Darmon and Merel [10] and
of Bilu, Parent and Rebolledo [5]) that E, also has complex multiplication. If
we let a = aq, b = by and ¢ = ¢4 be as in (8), we find that the j-invariant of
E, is
(a? — be)3

a?b?c?
Since E; has complex multiplication, j is integral. The fact that a, b and c are
coprime thus implies that each of a, b and ¢ is not divisible by odd primes. As
a+ b+ c=0, we quickly deduce that two out of a, b and c are equal. If a = b
or ¢ = b, then

j=2°

n+id=—-2(n+jd) or n+(2j —i)d=—2(n+ jd),
which imply that
3n=—(25+14)d or 3n=(i—4j)d.

Since ged(n,d) = 1, it follows that d | 3, contradicting Lemma 4.1. We thus
have @ = ¢ and so n +id = n + (2j — i)d, whence d = 0. The resulting
contradiction completes the proof of Proposition 6.1.

7. The Prime Number Theorem

Henceforth we fix a nontrivial solution (n,d, k,y, ) to equation (2) (with
corresponding A) and suppose that ¢ and k satisfy the assumptions of Propo-
sition 6.1. By this proposition, Nc?dd # 1, and therefore xq is nontrivial for
each a € A, a fact that will be crucial in obtaining a bound for k.

We shall make use of the Prime Number Theorem for Dirichlet characters.
Let us begin by defining what we mean by ezceptional conductors and excep-
tional zeros for Dirichlet L-functions; here we combine Theorems 5.26 and 5.28
of [19].

PROPOSITION 7.1. There exists an effectively computable absolute con-
stant c* > 0 such that the following hold:

(i) If x1 and x2 are distinct real, primitive quadratic characters of conductor
Ny and N, respectively, with associated L-functions L(s,x1) and L(s, x2)
having real zeros By, and By,, respectively, then

3c*

 log(N1Ny)

(ii) If x is any primitive, quadratic character of conductor N, then L(s,x) has
at most a single real zero 3, with

(23) min{ Sy, By, } <1

*

24 1—
(24) log N

< By <1
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If such a zero exists, then x is necessarily real and (3, is a simple zero. We
term B, an exceptional zero and N an exceptional conductor.

From this, if N1 < N are two exceptional conductors, with corresponding
exceptional zeros f3y, and fy,, then, combining (23) and (24),

c* 3c*
1— i 1 =
log Ny min{fy,, B} < log(N1N3)’

and so
(25) Ny > Ni.

The following quite explicit version of the Prime Number Theorem for
Dirichlet characters is Theorem 5.27 of [19].

THEOREM 5. Let x be a primitive Dirichlet character of conductor N.
Then
(26)

X Bx —clog X
A :5X—+O(X ( )-1 N4).
TY;XX(m) (m) X 5){ exp M‘i‘ IOgN ( og )

Here 6, = 0 unless x is trivial, in which case 6, = 1. Moreover, ¢ > 0 is
an absolute effective constant, and the implied constant is absolute. Also 3

denotes the exceptional zero if present, otherwise the term —XBX/BX is to be
omitted.

It is worth observing at this point that the “error term” here is actually
smaller than the main term (so that the statement in nontrivial), only for
suitably small conductor N, relative to the interval of summation X; i.e.,
only when log N < log™ X for some x < 1. We wish to apply this result
to characters of conductor roughly N,, over an interval of length k/2. The
difficulty we encounter is that, a priori, the N, can be as large as e* and, even
on average, are of size that grows polynomially in k. Further, the potential
presence of an exceptional (Siegel-Landau) zero 3, additionally complicates
matters, even when we have N, much smaller than k, as the term on the right-
hand side of (26) corresponding to (3, can, potentially, be very close to k in
size. If, however, we are able to show that we can find sufficiently many a for
which N, is “tiny,” we can use the fact that exceptional conductors are rare
(as quantified in inequality (25), a “repulsion principle” due to Landau), to
reach the desired conclusion:

PROPOSITION 7.2. Let us suppose that 0 < ¢1 < 1 is fixed and, further,
that there is a subset D of A such that the following hold:
(i) P(Ng) # P(N]) whenever a # ' belong to D;
(ii) P(Nq4) < (logk)'=¢ for all a € D;
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(iii) we have

(27) aezp P(}Va) > 0.166.

Then there exists an effectively computable constant k1, depending only upon cy,
such that k < k.

We will later apply this proposition with ¢; = 10™*. The constant 0.166 is
chosen so that, in our argument, we have enough progressions a to guarantee
that either one corresponds to a nonexceptional conductor, or, through appeal
to (25), that the smallest exceptional conductor N, we encounter satisfies Ny <
400000, contradicting work of Platt [30].

To prove Proposition 7.2, it is convenient for us to be able to deduce an
explicit upper bound upon N, given one for P(Ny).

LEMMA 7.3. Let N the conductor of a quadratic character, and let P(N)
be the largest prime factor of N. Then P(N) > 0.941log N.

Proof. We can write N = 2°Np, where Nj is squarefree and x € {0, 1, 2}.
Then
log N < rlog2+ Y logp < klog2+ 1.000081P(N),

p<P(N)
via work of Schoenfeld [35, p. 160]. We thus have
P(N) ( klog2 )
. 1-—
gy > 09999 (1=

The desired result is then immediate if x = 0 (i.e., unless 4 | N). If k = 1,
we have the claimed inequality, unless N < 105932, while, for k = 2, the
conclusion follows for all N > 1.2 x 10!%. A (relatively) short computation,
checking values of N = 4 (mod 8) up to 105932 and N = 8 (mod 16) to
1.2 x 10'° with, in each case, the odd part of N squarefree, completes the
proof; the minimum value of P(N)/log(N) is attained at N = 24. O

Proof of Proposition 7.2. Suppose there is some a € D such that the char-
acter x, is nonexceptional. By assumption (ii) and Lemma 7.3, log N, <
1.07 (log k)'=¢1. Applying Theorem 5, we have

Z Xa(m)A(m) = O (kexp (—c (log k)*) - (log k)4)
k/2<m<k

for some effectively computable positive constant ¢/, contradicting (16) for k
sufficiently large.

We may therefore suppose that y, is exceptional for every a € D. We
obtain, from assumption (i), a sequence of exceptional conductors

N1<N2<"'<NS,



376 MICHAEL BENNETT and SAMIR SIKSEK

where s = #D. From inequality (25), N; > ijil, whence, via Lemma 7.3,
P(N;) > 0.94 - 27" log Ny
for each j. By assumption (27),

s

1 2.13
0.166 < < :
- ;P(NJ) log Ny

whereby
N; < 373743,

contradicting work of Platt [30], which rules out exceptional zeros correspond-
ing to Dirichlet characters, for every conductor smaller than 400000. ([

8. Consequences of having enough characters x,
with smooth, small conductors

In the previous section, we stated a result (Proposition 7.2) that guaran-
tees an effective upper bound upon k, provided we have suitably many a with
P(Ngy) “tiny,” i.e., with Ny very smooth. In this section, we will show that, in
fact, we can reach the same conclusion if we have a (potentially) much larger
number of somewhat less smooth conductors corresponding to a € A.

PROPOSITION 8.1. Suppose that co > 10 is a constant and that there exists
a subset B C A such that
(i) #B > 17logk;
(ii) for every distinct pair a, ' € B we have Xq # Xu';
(iit) P(Ng) < k™16 for all a € B;
(iv) Ny < k2.
Then there is an effectively computable constant ko, depending only upon co,
such that k < ko.

Here, the constants 17 and 7/16 can be slightly sharpened, but this is not
of great importance for our argument.

The proof of Proposition 8.1 relies upon a combination of ingredients,
including the large sieve and upper bounds for character sums over short in-
tervals. We begin with the latter.

8.1. Character sums over short intervals. We shall need a standard the-
orem on short character sums to a smooth modulus, a variant of some results
of Graham and Ringrose [15]. Specifically, we will appeal to [19, Th. 12.13].

THEOREM 6. Let m; be characters of conductor q; for 1 < i < r. Write
q = q1, and suppose that q > 1 is squarefree with ged(q,q2q3---qr) = 1.
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Suppose, moreover, that w1 is primitive. Then, for R > Ry, where

RO = maX(q27 <o Qqr, q1/4) q5/4’

we have

> meemeoam(m)| <4AR- (T(q)TQ/q)TT,

M<m<M+R

where T(q) is the number of divisors of q.
We will prove the following:

PROPOSITION 8.2. Let ca > 0 be a constant. Then there exist effectively
computable positive constants ks and c3, each depending only on co, such that
the following holds. Let k > k3 be an integer, and suppose that x1 and x2 are
distinct primitive quadratic characters modulo N1 and No, respectively, where
the N; satisfy

(28) P(N;) < k' and N; <k for i€ {1,2}.

Then

(29) Y xalm)xa(m)| <k
k/2<m<k

Proof. Let x = x1Xx2, and write M = lem(Ny, N2) for the conductor of .
We can thus rewrite x = ny, where 7 is primitive of conductor M; and v is
principal of conductor My with M = MMy and ged(M, M) = 1. As 7 is
quadratic, we see that M4 is squarefree. Clearly, My | gcd(N1, N2), and so

M is also squarefree. From (28),
(30) P(M) < k7' and M < k%2,
We shall consider two cases, according to whether M; > 8k7/32 or M, < 8k7/32,

Case 1. Suppose first that
(31) My > 8k7/32,
so that
Mi)dd > k‘7/32.
We can write
n=m1---7s and Y =mgy1--- 7T,
where 7; is primitive of modulus ¢; for ¢ = 1,...,s and principal of modulus

gi for i = s+1,...,r. Moreover, the ¢; (which could be composite) may be
chosen to satisfy

(a‘) q1q92 - -4s = Ml and Qs+19s4+2 " Qr = MQ,
(b) a1 | M7 and so ged(q1, g2q3 - ) = 1
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(c) K732 < g <k7 fori=1,...,s—landi=s+1,...,r—1;
(d) 1 < g, < k7/16; and
(e) s>1,and if s > 1, then 1 < g < k7/16,

Now, from property (c) and (30),
r—2 <log M/log(k™/3%) < 10¢,,
whence r < 10co + 2. In the notation of Theorem 6, we have that
Ry < k7/16. (k7/16)5/4 < 03/64 k/2.

Notice here that, at least in this argument, we cannot replace the exponent
7/16 in (28) with one larger than 4/9.
We will now apply Theorem 6. Let ¢ = ¢; and note that we have (see,
e.g., page 334 of [19])
T(q) < ql/loglogSq

for all ¢ > 1. As ¢ > k7/32 and r < 10¢s + 2, we see that for k suitably large,
2
(@) < ¢"%

Appealing to Theorem 6, we thus have

2k
Y xa(m)xa(m) S A

k/2<m<k

whence inequality (29) follows from ¢ > k7/32 and r < 10¢; + 2. Explicitly, we
may take c3 = 2719¢276_ This completes the proof of Proposition 8.2 in Case 1.

Case 2. Next, suppose instead that
My < 8k7/32.
Since x1 and x2 are distinct, it follows that x = x1x2 is not principal, and so
Z x1(m)xa(m)| < M = M Ms.
k/2<m<k
To complete the proof of (29), we may thus certainly suppose that
My > B34,

Write p for the Mobius function, and recall that

Zu(d)={(1) o

i ifn>1.
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Now we can write

Yo xam)xe(m) = > n(m)(m)

k/2<m<k k/2<m<k

= > nm)

k/2<m<k
ged(m,Msz)=1

= > a(m) p(d)

k/2<m<k d|ged(m,M2)

=> > nnd)ud)

d| M3 k/2<nd<k

= ndud) > nn).

d|Ma k/(2d)<n<k/d

As 7 is nonprincipal and has conductor M; < 8k7/32, we have

Z n(n)| < My < 8k7/32,

k/(2d)<n<k/d
Thus
ST xim)xa(m)| < 7(My) - 8K7/32 < Myl 1081083 g /32,
k/2<m<k
The proof is complete for k sufficiently large as k3/4 < My < k. O

8.2. Proof of Proposition 8.1: The large sieve. We make use of the follow-
ing inequality of Bombieri (Proposition 1 of [6], attributed there to Selberg).

THEOREM 7. Ifx, y1,...,¥Ym are vectors in an inner product space, then
m m
2 2
oyl < xl? - max 43 iy
=1 7j=1

In view of (16), to prove Proposition 8.1, it clearly suffices to show that
2

(32) #152 > Xalm)-A(m)| < -k

acB |k/2<m<k

for k sufficiently large, where w = 0.1239°.
Let x = (A(m))k/2<m<i and, for each a € B, choose corresponding y, =
(Xa(m))k/2<m<k s0 that the desired inequality (32) can be rewritten as

1 2 2
(33) %Z|X'Ya| <w- k"

aeB
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Applying the large sieve (Theorem 7), we have

(31 25 Lol < [xP- m{ o S lve e }

aeB a’eB
Let us begin by noting that

Ix|*=">  A(m)?

k/2<m<k
<logk Z A(m)
k/2<m<k
_ klogk
2
from the Prime Number Theorem. Further, for each a € B, we have
k+ 1

2
As #B > 17log k (assumption (i)), it follows that
|Ya " ¥al < k+1
#B — 34logk’

Next, we would like to estimate y,-yq for a # a’ belonging to B. Assumptions

+ O(k),

’)’a Ya| <

(ii), (iii), (iv) ensure that x4, xo satisfy the conditions of Proposition 8.2,
which gives

Yo yo| = Z x1(m)x2(m)| < El—es,
k/2<m<k

Hence, from (34)

Ya'¥Y
o b val < e {222y -y}

aeB #B
35 klogk ) k + 1 1—cs
(35) = < 2 +O(k)> (3410gk:+]€ )
k2
= (L o(1)).

As 1/68 < w?, we have inequality (33), as desired, for k suitably large. This
completes the proof of Proposition 8.1.

9. Generating enough characters

We now wish to sieve the set A carefully, hoping to guarantee the exis-
tence of suitably many corresponding characters x, with conductors smooth
enough and small enough to enable us to employ either Proposition 7.2 or
Proposition 8.1. There are (at least) two approaches we can take here to find a
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reasonable quantity of smooth characters, both dependent upon leaving a pos-
itive proportion of elements in A after application of our sieve. We could, for
example, appeal to a theorem of Varnavides [45] that guarantees that a set of
positive density in {0,1,...,k— 1} contains > k? nontrivial 3-term arithmetic
progressions, and then average over these progressions. Instead, we will rely
upon an explicit version of a theorem of Roth on 3-term arithmetic progres-
sions, together with an old argument of Erdés. An apparent (small) advantage
of this approach is that it will lead to explicit and reasonably small values for
¢y in Proposition 8.1. We begin by stating

THEOREM 8 (Roth). Let 0 < 6 < 1. Then there exists a positive constant
Ko(9) such if k > Ko(0) and J C {0,1,...,k — 1} with #J > 0k, then there
is at least one nontrivial 3-term arithmetic progressions in J; i.e., there exist
integers 0 < i < j such that i,j and 25 — i all belong to J.

Note here that, following work of Rahman [31], for example, we may take
(36) Ko(8) = exp(exp(1321log(2) - 671)).

Let us define our index set I = {0,1,...,k — 1} and recall that A is the
set of 3-term arithmetic progressions (7, j,2j — i) in I, i.e., the set of integer
triples (i, 7,25 — i), satisfying 0 <14 < j and 2j — i < k. For a prime p, write

I,={iel:p|(n+id)},
so that
k
#Ip :510 <p+9p)v

1 ifptd,
Op = .
0 ifpld.

We will now use Theorem 8, together with an elementary argument of

where |0, < 1 and

Erdés, to find an element of a € A with corresponding conductor N, that is
smooth, small, and coprime to a given “thin” set of primes. We will do this in
completely explicit form to provide an indication of the size of the constants
involved here (and, in particular, to demonstrate an admissible value for ¢o in
Proposition 8.1).

PROPOSITION 9.1. Let us suppose that
(37) k > exp(exp(10°))

is an integer and that S C [1,k] is a set of primes satisfying

(38) Z; < 0.17.

peS



382 MICHAEL BENNETT and SAMIR SIKSEK

Then there exists an a € A satisfying the following:

(1) pt Na forp € S;

(II) P(Ng) < k7/15;
(II1) N, is not divisible by primes in the range ((logk)'~19"" 10*log k];
(IV) Ny < kM8,

Proof. Suppose k satisfies (37). Let us define T" as the set of primes in the
interval (k7/16 k] and U as the primes in the interval ((log k)'~0"" 10%log k].
Set

J=1\ |J 5.
peESUTUU
Notice that if a = (7, j,2j — ¢) is an arithmetic progression in J, then (n + id),
(n 4+ jd) and (n + (25 — i)d) are each not divisible by any prime p in S, T
or U. By (9) and Proposition 6.1, the conductor N, therefore satisfies (I), (II)
and (III).
Our initial goal will be to show that the set J has positive density in I.

Note that
# U LY #L+) #L+) #1
peESUTUU peES peT peU
Now
k
S#n= 3 6(tva),
peT piiloepe P

and hence we have
1 0.6k
I k -4 —
Z #lp < Z P - log &’
peT k7/16 <p<k/2

where we have used the fact that ¢, = 0 for all £/2 < p < k, Theorem 1 of
Rosser and Schoenfeld [34], which yields the inequalities

v (1+ ! )<7r($)< i (1+ k >
log = 2log log x 2logx/’

provided x > 59, and (37). From Theorem 5 of Rosser and Schoenfeld [34], we
have

1

Zl—lo logx — 7| <
6708 2log?

p<w

valid for x > 286, where 7 is an absolute constant (explicitly, 7 = 0.26149...),
and hence

128

log2) n N
2log?(k/2)  49log’k’

1
Z — < log(16/7) + log (1 ok
k7/16<p<k/2
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From (37), we thus have

S L cresen - 28

log k
k7/16<p<k/2
and hence
> 41, <log(16/7) - k.
peT
Moreover,

Zl<10 <loglogk+log104> 1
= & (1 -10"%)loglogk log? ((log k)1=107)

and so, from (37),

1 5log 10
E 7<log(1/(1—10_4))+%,
peUp og log
whence
_ 5log(10) k 4
E I, <log (1/(1-10"% o 110t log k.
#1, < log (1/( 0~") k+ log log k +10% log k

pelU

From (38), we have, crudely,

1.1k
> #I, <01Tk+7(k) < 017k + —.
log k
peS
Thus
# U I, < (log(16/7) 4+ log(1/(1 — 107%)) 4+ 0.17)k + ﬂf
p= loglogk”’

peSUTUU

and hence, from (37), we have

# | 1,<09968%E.
peESUTUU

It follows that

HJ =H#H] — # U I, > 0.0032k,
pESUTUU

so that, in particular, J is nonempty (and, as noted earlier, possesses the
property that any arithmetic progression a = (i, j, 2j—1) in J has corresponding
N, satisfying (I), (II) and (III)). From Theorem 8, it is immediate that there
exist nontrivial 3-term arithmetic progressions a in J; it remains to show that
at least one of them has property (IV), i.e., satisfies Ny < k*18.

We now follow a classic argument of Erdés (see, e.g., Lemma 3 of [12],
or, in the context of arithmetic progressions, displayed equation (3.6) of [24]),
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defining a set J; C J, obtained by deleting from J, for each prime p < k, an
index i, with the property that ord,(A4;,) is maximal. It follows that

#J; > 0.0032k — 7(k) > 0.00319k

and, more importantly for our purposes, that
IT A4l (k=)
i€J1

Since no prime p > k7/1¢ divides any of these A;, Stirling’s formula (see, e.g.,
[43] for a suitably explicit version) thus implies that

H A; < /27_‘,(]{; o 1)((]{3 o 1)/6)k—161/(12(k—1)) H p- ordp((k—l)!)‘

i€Jy k7/16 <p<k

Now

k—1 9
1 [ »o@0) > ( — 1)1 > —klogk — 5k
0og p = » ogp > 6 og 5
k:7/16<p§k k7/16<p§k

using Theorem 5 of [44], Theorem 6 of [34] and our assumption (37). Hence,
after a little work,

H A; < KOk,

i€J1
It follows, if we define Jo C J; to be the set of indices ¢ € J; with the property
that A; < k139, that #J2 > 0.00001k. Checking that in (36) we have

Ko(107%) < exp(exp(10%)),

we may thus apply Theorem 8 (Roth’s theorem) to deduce the existence of a
nontrivial 3-term arithmetic progression of indices a = (i,7,2j — i) in Jo. By
(9)

Ny < 28. AiAjAQj,i < 28 . (k‘139)3 < K418,

This concludes the proof of Proposition 9.1. O

10. Proof of Theorem 2

We are now ready to prove Theorem 2. To begin, note that there exists a
nonempty subset B C A satisfying
(i) P(Ng) # P(Ny) whenever a # o in B;
(ii) P(N,) < k7/16 for all a € B;
(iii) Nq is not divisible by primes in the range [(log k)10 10* log k], for all
aeb;
(iv) Ny < k*18 for all a € B.
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Indeed to generate such a I3 with one element, we may simply apply Proposi-
tion 9.1 with S = (). Now let B be a mazimal nonempty subset of A satisfying
(i)—(iv). If #B > 17logk, then k is effectively bounded by Proposition 8.1.
We may thus suppose that #8 < 17log k. Assume first that

D

aeB

It follows, if we let S = {P(Ny) : a € B}, that S satisfies (38). Proposi-

tion 9.1 thus yields the existence of some a € A that satisfies (ii), (iii), (iv)

and, moreover, has the property that N, is not divisible by any prime in S.

Thus P(N,) # P(N}) for o/ € B. Now the set B’ = B U {a} is strictly larger

than B and satisfies conditions (i)—(iv), contradicting the maximality of B.
We may thus assume that

1
Z > 0.17.
aeB P(Na)

< 0.17.

1
P(Na)

Define
C={aeB:P(N,) >10*logk}
and
D={aeB:P(N,) < (loghk) 10"},
Then, by condition (iii), B is the disjoint union of C and D. It follows that

= P(N,) ~— 10%*logk — 10*logk — 10%logk

whereby

> 0.1683.

>

1
acD P(Na)
We now apply Proposition 7.2 with ¢; = 107 to deduce that k is bounded.

This completes the proof of Theorem 2.

11. Concluding remarks

Much of the literature on (2) has, in fact, dealt with the somewhat more
general equation

(39) n(n+d)-- (n+ (k —1)d) = by,

where b is an integer, all of whose prime factors are bounded above by k.
The arguments we have presented here do not permit us to treat quite such
a general situation, but can be extended to handle equation (39) where P(b),
the greater prime factor of b, is at most 7k, for 7 < 1/2.

While we have given our results in Section 6 on characters attached to
nontrivial solutions to (2) only for large values of k, analogous statements
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are readily obtained for smaller k. These provide us with a way to prove
that the number of nontrivial solutions to (2) is finite that is much more
computationally efficient than that described in [1]. Since the lower bound
upon k in Theorem 2 is so large, however, there is little chance we can treat
all the remaining cases k < kg by such an approach, without the introduction
of fundamentally new ideas.

12. Addendum

In this addendum, we will sketch an approach that leads from Proposi-
tion 6.1 to a contradiction, while avoiding many of our more delicate analytic
and combinatorial arguments. This was communicated to the authors by An-
drew Granville [16] and is reproduced here with his permission.

To start, we note that via Theorem 5.26 of [19] (a result dating back to
Landau and Page), there exists a positive constant ¢ such that every zero of
every Dirichlet L-function corresponding to a primitive character of modulus
q < T (where T' > 2) necessarily has real part 3 satisfying

c
f<1— Tog T’
with at most a single exception, corresponding to, say, g1 < T. For a given
large positive integer k, let us define

(40) T:exp< clog k )

3loglogk
Further let Q(k) denote the set of integers ¢ < @ := k* for which there exists a
primitive character x (mod ¢) for which L(s, x) has a zero  + it with [t| < T
and

3loglogk c
41 >l—-———=1- .
(41) p log k log T’
PROPOSITION 12.1. The set Q(k) contains < (logk)®! elements. Its

smallest element is > logk, and all of its other elements are > |9/ loglogk
for some constant § > 0.

Proof. Let N(o,T, x) count the number of zeros p = 3+ it of L(s,x) with
B > o and |[t| < T. From a result of Selberg (referenced immediately below
the statement of Théoreme 14 of [7]), we have that, for T'> 2 and € > 0,

oY NET) < (@7 T
9<Q x (mod q)
X primitive

3loglog k

Choosing 0 =1 — Tog

and e suitably small thus implies that

#9(k) < (log k)5,
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From the choice of ¢, there is at most a single value ¢; < T with a zero with
real part satisfying (41). If this zero exists, it must be real and, via Proposition

1.11 of [2], is bounded above by 1 — ﬁ, whence
1_310g10gk 1 40 '
log k vV log? g1
It follows then that gq; > logk for suitably large k. All of the other elements
of Q(k) are necessarily at least T' = k%/1°81ogk with § = ¢/3. O

PROPOSITION 12.2. If ¢ < Q = k* and q ¢ Q(k), then

S x(m)-Alm) <

k/2<m<k

logk’

Proof. From Proposition 5.25 of [19], if x is a nonprincipal character mod-
ulo ¢ with corresponding L-function L(s,Y), we have that

dox(m)-Am)=— Y kp+o(1ogk+moqu)2>,

T
m<k L(B+it,x)=0
B>0, [¢|<T

where T is as in (40). Since q € Q(k),

3loglog k

|kP| < k'™ losk = k/(log k),

whereby it follows that

k? k 1 k
Yl Y _ .
Z ~ (logk)? . Z < log k’

L(B4+it,x)=0 P (B+it,x)=0 o
B>0, |t<Q B>0, [t|<Q

here, the last inequality follows from the standard proof of the Prime Number
Theorem in Arithmetic Progressions (see, e.g., [2]). O

From this result, in conjunction with Proposition 6.1, it suffices to show
that, for some a € A, the corresponding conductor N, ¢ Q(k) while also
N, < k*.

PRroOPOSITION 12.3. For any given coprime nonzero integers a and d, let
N}Ld denote the set of integersn, 0 < n < k—1 for which a+nd is divisible by
some integer v, where v is a diisor of some q € Q(k) with r > ¢'/3/2. Then
#Noa < k/(log k)!/4.

Proof. The number of integers in the progression

a,a+d,...,a+ (k—1)d
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divisible by r is at most k/r + O(1) < k/r, which is < k/q'/3 if r > ¢/3/2.
Therefore the number divisible by some integer r, where r is a divisor of some
q with r > ¢%/3/2, is < 7(q)k/q"/® < k/q'/*, where 7(q) denotes the number
of divisors of q. Therefore

k < k
1/4 (log k)1/4

k N B
#Na,d < 1 + Z + (]og k)61k 4loglogh

gl q€Q(k),
q>k,6/ loglog k

q

where the latter inequality is a consequence of Proposition 12.1. The result
thus follows. O

From the last result, almost all 3-term arithmetic progressions of integers
< k contain no element of N, 4. We can select one such progression, say, a,
corresponding to

n+id = Ayl n+jd= Ay}, n+ (2j —i)d = Agj_iyh; .

where, appealing to the aforementioned argument of Erdds (as in, say, [24]),
we may suppose that, say,

Ny < 8A;AjAs;—; < k.

Since N244 is the largest odd squarefree divisor of A;AjAgj_;, it follows
that
ged(Na, 4;) - ged(Na, 4;) - ged(Na, Azj—i) > Na/8
and so at least one of gcd(Ng, 4;),ged(Ng, A;) or ged(Ng, Azj—;) is a divisor
of N, that is at least N; /3 /2 in size. Since we have chosen a to contain no

element of N, 4, we necessarily have that N, ¢ Q(k), whereby Proposition 12.2
contradicts Proposition 6.1.
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