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A conjecture of Erdős, supersingular
primes and short character sums

By Michael A. Bennett and Samir Siksek

Abstract

If k is a sufficiently large positive integer, we show that the Diophantine

equation

n(n + d) · · · (n + (k − 1)d) = y`

has at most finitely many solutions in positive integers n, d, y and `, with

gcd(n, d) = 1 and ` ≥ 2. Our proof relies upon Frey-Hellegouarch curves

and results on supersingular primes for elliptic curves without complex

multiplication, derived from upper bounds for short character sums and

sieves, analytic and combinatorial.

1. Introduction

In 1975, Erdős and Selfridge [13] solved a long-open problem, originally

posed by Liouville [26] in 1857, proving that the product of two or more con-

secutive nonzero integers can never be a perfect power:

Theorem 1 (Erdős - Selfridge, 1975). The Diophantine equation

(1) n(n+ 1) · · · (n+ k − 1) = y`

has no solutions in positive integers n, k, y and ` with k, ` ≥ 2.

The proof, rather surprisingly, relies upon a combination of clever ele-

mentary and graph theoretic arguments. Earlier work on equation (1), from

Liouville onwards, had either depended upon results from multiplicative num-

ber theory or upon Diophantine approximation (as, for example, in oft-cited

but unpublished work of Erdős and Siegel, where a result similar to Theorem 1

was obtained for suitably large n).
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An apparently rather more difficult problem is to derive an analogue of

Theorem 1 for products of consecutive terms in arithmetic progression, and

this is the subject of the following famous conjecture, widely attributed to

Erdős (see, for example, [41]):

Conjecture (Erdős). There is a constant k0 such that the Diophantine

equation

(2) n(n+ d)(n+ 2d) · · · (n+ (k − 1)d) = y`, gcd(n, d) = 1

has no solutions in positive integers n, d, k, y, `, with ` ≥ 2 and k ≥ k0.

Without the condition gcd(n, d) = 1 it is easy to construct a plethora of

artificial solutions. As pointed out by Erdős and Selfridge, equation (2) has

infinitely many solutions for (k, `) = (3, 2) (satisfying gcd(n, d) = 1). Note that

if we permit negative values of n, we must modify this conjecture somewhat

to allow for solutions corresponding to the identities

2m−1∏
j=−2m

(2j + 1) =

Ñ
2m−1∏
j=0

(2j + 1)

é2

and

2m2+2m∏
j=−2m2−2m

(2j + 1) =

Ñ
(2m+ 1)

2m2+2m−1∏
j=0

(2j + 1)

é2

,

where m is a positive integer.

The literature on equation (2) is extensive, dating back to work of Euler

who proved that there are no nontrivial solutions with (k, `) = (4, 2). It is

worth observing that, via an argument of Granville (unpublished, but repro-

duced in Laishram and Shorey [24]), Erdős’ conjecture is a consequence of the

abc-conjecture of Masser and Oesterlé. Currently, Erdős’ conjecture has been

verified unconditionally only subject to a variety of additional assumptions.

By way of example, we now know it to be true if d is fixed (Marszalek [27]), if

both ` and ω(d) (the number of distinct prime divisors of d) are fixed (Shorey

and Tijdeman [41]), if P (d) (the greatest prime divisor of d) is fixed and ` ≥ 3

(Shorey [38]), or if n is fixed and ` ≥ 7 (Shorey [39]). In subsequent work,

a number of these results have been refined and, in a number of cases, made

completely explicit (particularly for small values of k); the interested reader is

directed to the fine survey of Shorey [40] for further details on the literature

on this problem.

The papers we have mentioned so far rely upon either elementary argu-

ments in the spirit of Erdős and Selfridge, or upon lower bounds for linear

forms in logarithms (sometimes in conjunction with Diophantine inequalities
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resulting from Padé approximation to binomial functions). More recently, we

find a number of results that appeal to the modularity of Galois representations

associated to certain Frey-Hellegouarch curves to show that equation (2) has at

most finitely many solutions, again under certain additional constraints. The

possibility of this approach is implicit in the work of Darmon and Granville [9]

(where, in Corollary 2.1, the finiteness of the number of nontrivial solutions

to (2) is proved provided k and ` are both fixed). Explicitly, via such meth-

ods, we find a complete solution of equation (2) in case k = 3 (Győry [17]),

k ∈ {4, 5} (Győry, Hajdu and Saradha [18]), 6 ≤ k ≤ 11 (Bennett, Bruin,

Győry and Hajdu [1]) and 12 ≤ k ≤ 34 (Győry, Hajdu and Pintér [18]). In [1],

it is further proved that (2) has at most finitely many nontrivial solutions for

all k ≤ 82.

In this paper, we prove a somewhat weakened version of the Erdős con-

jecture, which deals also with negative solutions:

Theorem 2. There is an effectively computable absolute constant k0 such

that if k ≥ k0 is a positive integer, then any solution in integers to equation (2)

with prime exponent ` satisfies either y = 0 or d = 0 or ` ≤ exp(10k).

It follows from Faltings’ Theorem that (2) has finitely many solutions with

k ≥ k0 and yd 6= 0.

Our proof of Theorem 2 follows very different lines from prior work on

this problem, and we emphasize that it bears little resemblance to an earlier

result of the authors [3], where an analogous finiteness statement for rational

points on curves corresponding to equation (1) is deduced. While our starting

point shares much in common with [1], [3] and [18], in that one is led to

study certain ternary equations with corresponding Frey-Hellegouarch curves,

the information we derive from these equations is quite distinct from that

previously considered. In particular, our proof of Theorem 2 makes essential

use of a wide array of tools from arithmetic geometry, analytic number theory

and additive combinatorics, including the following:

• the modularity of elliptic curves over Q due to Wiles, Breuil, Conrad, Dia-

mond and Taylor;

• Ribet’s level lowering theorem;

• known cases of Serre’s uniformity conjecture, due to Mazur, to Bilu, Parent

and Rebolledo, to Darmon and Merel, and to Lemos;

• a version of the large sieve inequality due to Selberg;

• the Prime Number Theorem for Dirichlet L-functions;

• gap principles for exceptional zeros of L-functions due Siegel and Landau;

• an explicit version of Roth’s theorem on 3-term arithmetic progressions;

• theorems on short character sums due to Burgess and to Graham and

Ringrose.
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The outline of this paper is as follows. In Section 2, we state some now

standard results deriving from the modularity of elliptic curves. In Section 3,

we detail the correspondence between solutions to (2), related ternary Dio-

phantine equations, and Frey-Hellegoaurch elliptic curves. We further discuss

why the techniques of [1] and [18] (which lead to analogues of Theorem 2 for

small values of k) will likely fail for all sufficiently large k. Sections 4 and 5

contain, respectively, an argument that guarantees that primes in (k/2, k] nec-

essarily divide d (for a solution to (2) with y 6= 0 and large exponent `), and the

consequence of this, that the primes p ≡ 3 (mod 4) in this interval are in fact

supersingular for a certain parametrized family of elliptic curves. In Section 6,

we use this information to construct a (short) character sum that is unusually

large, corresponding to each Frey-Hellegouarch curve. Section 7 contains an

argument, based upon the Prime Number Theorem for Dirichlet characters,

that ensures the desired conclusion, provided we have suitably many elliptic

curves corresponding to our Frey-Hellegouarch curves with extremely smooth

conductors. In Section 8, we attain a like conclusion, via upper bounds for

short character sums and the large sieve, under the assumption that we have

a somewhat larger number of rather less smooth conductors. Finally, in Sec-

tions 9 and 10, we complete the proof of Theorem 2, by using a variety of

sieving arguments to show that our Frey-Hellegouarch curves correspond to

sufficiently many Dirichlet characters to guarantee that we can appeal to at

least one of the results from the preceding sections. Our addendum contains a

streamlined version of the more analytic aspects of our proof (deriving a contra-

diction from Proposition 6.1 without recourse to estimates for short character

sums or Roth’s theorem) that was communicated to us by Andrew Granville

[16] and is reproduced here with his kind permission.

Acknowledgements. We are grateful to Andrew Granville, Adam Harper,

Roger Heath-Brown, Lillian Pierce and Trevor Wooley for useful conversations.

2. Residual representations attached to elliptic curves

Let E be an elliptic curve defined over Q, with minimal discriminant ∆

and conductor M . For a rational prime ` ≥ 3, we denote by

ρE,` : GQ → Aut(E[`]) ∼= GL2(F`)
the representation describing the action of GQ := Gal(Q/Q) on the `-torsion

subgroup E[`]. Define

(3) M0 = M
/ ∏
q ‖M, q prime
` | ordq(∆)

q,

where we write ordq(x) for the largest power of a prime q dividing a nonzero

integer x.
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The following theorem is a standard consequence of Ribet’s level lowering

theorem [33] (stated, for example, in [42, p. 157]). It was originally conditional

on the modularity of elliptic curves over Q, a result that was subsequently

proved by Wiles, Breuil, Conrad, Diamond and Taylor (see [46] and [8]). Ad-

ditionally, it is, in fact, a special case of Serre’s Modularity Conjecture [37],

now a theorem of Khare and Wintenberger ([20] and [21]).

Theorem 3. If E[`] is irreducible, then there is a cuspidal newform f =∑
n≥1 cnq

n of weight 2 and level M0 such that ρE,` ∼ ρf,λ, where λ | ` is a

prime of the totally real field K = Q(c1, c2, . . . ).

Here, by ρE,` ∼ ρf,λ we mean that, for almost all primes p, we have that

ap(E) ≡ cp (mod λ).

In fact, by comparing the traces of Frobenius for ρE,` and ρf,λ, we can be

rather more precise.

Lemma 2.1. With notation as in Theorem 3, let p be a rational prime.

(i) If p - `MM0, then ap(E) ≡ cp (mod λ).

(ii) If p - `M0 and p ‖M , then p+ 1 ≡ ±cp (mod λ).

The following lemma will be invaluable to us:

Lemma 2.2. With notation as above, suppose p 6= ` is a prime with p ‖M
and, additionally, ` | ordp(∆). Then

` ≤ (
√
p+ 1)(M0+1)/6.

Proof. From (3), we see that p -M0. Thus by Lemma 2.1 we have

λ | (p+ 1∓ cp)

and so

` | NormK/Q(p+ 1∓ cp).
As cp is bounded by 2

√
p in all the real embeddings of K, we have

` ≤ (p+ 1 + 2
√
p)[K:Q] = (

√
p+ 1)2[K:Q].

If we denote the dimension of Snew
2 (M0) by g+

0 (M0), then [K : Q] ≤ g+
0 (M0).

By Theorem 2 of Martin [28], we have

(4) g+
0 (M0) ≤ M0 + 1

12
,

completing the proof. �

It is well known that if the residual characteristic ` is sufficiently large

compared to the level M0, then f has rational eigenvalues and so corresponds
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to an elliptic curve over F/Q. We shall have use of a quantitative version of

this statement due to Kraus [23]. For a positive integer n, let

(5) µ(n) = n
∏
q|n

q prime

Å
1 +

1

q

ã
.

Define

F (n) =

( 
µ(n)

6
+ 1

)2g+0 (n)

, G(n) =

( 
µ(lcm(n, 4))

6
+ 1

)2

,

and set

H(n) = max(F (n), G(n)).

The following is Théorème 4 of [23].

Theorem 4 (Kraus). With notation as in Theorem 3, suppose E has full

2-torsion and that

` > H(M0).

Then there is an elliptic curve F/Q having full 2-torsion of conductor M0 such

that ρE,` ∼ ρF,`.

3. Frey-Hellegouarch curves associated to (2)

We shall call a solution (n, d, k, y, `) of (2) trivial if yd = 0. We shall

henceforth restrict our attention to nontrivial solutions. In this section, we will

show how a nontrivial solution to equation (2) is simultaneously a solution to

many generalized Fermat equations, both of signature (`, `, `) and of signature

(`, `, 2). (In fact, we can actually derive ternary equations of signature (`, `, q)

for values of q > 2, but these will not be of interest to us.) The following

elementary lemma is an immediate consequence of the coprimality assumption

for equation (2).

Lemma 3.1. Let (n, d, k, y, `) be a nontrivial solution to (2) with ` prime.

(i) For 0 ≤ i < j ≤ k − 1,

gcd(n+ id, n+ jd) | (j − i).

(ii) Let 0 ≤ i ≤ k − 1, and let q ≥ k be prime. Then

` | ordq(n+ id).

Thus we may write

(6) n+ id = Ai y
`
i , 0 ≤ i ≤ k − 1,

where Ai are positive integers divisible only by primes < k, whereas yi are

divisible only by primes ≥ k.
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3.1. Fermat equations of signature (`, `, `). In general, given any integers

0 ≤ i1 < i2 < i3 ≤ k − 1,

the identity

(i3 − i2)(n+ i1d) + (i1 − i3)(n+ i2d) + (i2 − i1)(n+ i3d) = 0

leads to a ternary Diophantine equations of signature (`, `, `). This provides us

with roughly k3/6 generalized Fermat equations to consider. For our purposes,

it will be convenient to restrict our attention to indices (i1, i2, i3) in arithmetic

progression (of which there are approximately k2/4). Let

A = {(i, j, 2j − i) : i, j, 2j − i ∈ {0, 1, . . . , k − 1}, i < j}
denote the set of nontrivial 3-term arithmetic progressions in the set {0, 1, . . . ,
k − 1}. Associated to any such tuple a = (i, j, 2j − i) ∈ A is the identity

(n+ id)− 2(n+ jd) + (n+ (2j − i)d) = 0,

from which we see that (r, s, t) = (yi, yj , y2j−i) is a solution to the following

generalized Fermat equation of signature (`, `, `):

Air
` − 2Ajs

` +A2j−it
` = 0.

We may attach to this solution a Frey-Hellegouarch curve as in Kraus [23]. For

convenience, we let

(7) g = gcd (n+ id, 2(n+ jd), n+ (2j − i)d) ,

(8) aa =
n+ id

g
, ba =

−2(n+ jd)

g
and ca =

n+ (2j − i)d
g

.

Our corresponding Frey–Hellegouarch is

Ea : Y 2 = X(X − aa)(X + ca).

Lemma 3.2. The model Ea is minimal and semistable at all odd primes.

Its discriminant is

∆a = 64(aabaca)
2 =

28

g6
(n+ id)2(n+ jd)2(n+ (2j − i)d)2.

In particular, for any prime p ≥ k, we have ` | ordp(∆a).

Proof. The first part is a straightforward computation. The second follows

from Lemma 3.1. �

Lemma 3.3. Let ` ≥ 7. Then ρEa,` ∼ ρf,λ, where f is a newform of weight

2 and level Ma, with

(9) Ma | 28 ·AiAjA2j−i

and

Ma ≤ 27 · exp(1.000081 · k).
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Proof. As Ea has full 2-torsion and ` ≥ 7, we know from the work of Mazur

[29] that Ea[`] is irreducible. It follows from Theorem 3 that ρEa,` ∼ ρf,λ, where

f is a newform of weight 2 and level M0 given by (3). We write Ma := M0.

Equation (3) and Lemma 3.2 ensure that Ma satisfies (9). Moreover, as the

odd part of Ma is squarefree, Ma divides

27
∏
q≤k

q prime

q.

From Schoenfeld [35, p. 160], we have

(10)
∑
q≤k

log q < 1.000081 · k.

The lemma follows. �

3.2. Fermat equations of signature (`, `, 2). Let

I = {(j1, i1, i2, j2) : i1 + i2 = j1 + j2, 0 ≤ j1 < i1 ≤ i2 < j2 ≤ k − 1}.

To any fixed quadruple i = (j1, i1, i2, j2) ∈ I, we can associate the identity

(n+ j1d)(n+ j2d)− (n+ i1d)(n+ i2d) = (j1j2 − i1i2)d2.

It follows that (r, s, t) = (yj1yj2 , yi1yi2 , d) is a solution to the following gener-

alized Fermat equation with signature (`, `, 2):

(11) Aj1Aj2 · r` −Ai1Ai2 · s` = (j1j2 − i1i2) · t2.

Following Bennett and Skinner [4], solutions to this equation also correspond

to Frey-Hellegouarch elliptic curves defined over Q. To simplify notation, write

(12) A = (n+ j1d)(n+ j2d), B = (n+ i1d)(n+ i2d) and κ = j1j2 − i1i2,

so that

(13) A−B = κd2.

Let

Ei : Y 2 = X(X2 + 2κdX + κA).

Lemma 3.4. The model Ei is minimal and semistable at all primes p ≥ k
that also satisfy p - κ. It has discriminant

∆i = −64κ3A2B.

In particular, for any prime p ≥ k with p - κ, we have ` | ordp(∆i).

Proof. This again follows from a straightforward computation with the

help of Lemma 3.1. �
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Lemma 3.5. Let ` ≥ 11. Then ρEi,` ∼ ρf,λ, where f is a newform of

weight 2 and level Mi satisfying

Mi ≤ 27 · 35 · k4 · exp(2.000162 · k).

Proof. As Ei has a rational point of order 2 and ` ≥ 11, we know from the

work of Mazur [29] that Ei[`] is irreducible. It follows from Theorem 3 that

ρEi,` ∼ ρf,λ where f is a newform of weight 2 and level M0 given by (3). We

write Mi := M0. Equation (3), together with Lemma 3.4, ensures that Mi

divides

27 · 35 · κ2 ·
∏
q≤k

q prime

q2.

As |κ| < k2, the lemma follows from inequality (10). �

At this point, it is worth mentioning why the techniques of [1] and [18]

are apparently insufficient to prove Theorem 2 (yet do allow one to show that

equation (2) has at most finitely many nontrivial solutions for small values

of k). Intrinsically, they rely upon the fact that for suitably small k, and each

possible tuple

A = (Rad(A0),Rad(A1), . . . ,Rad(Ak−1))

(here, the Ai are as in (6); the number of such tuples depends only upon k

and not ` or d), we can find i = (j1, i1, i2, j2) ∈ I such that the corresponding

polynomial-exponential equation

(14) x+ y = z2,

where z ∈ Q and x, y are S-units, for

S = {p prime : p | Aj1Aj2Ai1Ai2(j1j2 − i1i2)} ,

has only “trivial” solutions. As a first step, one applies an argument to guar-

antee that

p | A1A2 · · ·Ak−1 =⇒ p < τk

for certain τ ∈ (0, 1]. That we may take τ = 1 is immediate from the definition

of Ai, while, for example, Lemma 4.1 of the next section implies a like result

with τ = 1/2. It is not especially difficult to improve this to τ = 1/3, but it

appears to be quite hard to reduce this significantly. From a result of Erdős,

Stewart and Tijdeman (see, e.g., Theorem 4 of [14]), the number of solutions

to equation (14) with x and y rational numbers supported on primes of size at

most τk exceeds exp
Ä
3
√
τk

log k

ä
for large enough k. Since the number of tuples

A to be treated also grows exponentially in τk, while the cardinality of I is

k−1∑
j=2

(k − j) [j/2] =
k3

12
− k2

8
− k

12
+
δ

8
, where δ =

{
0 if k is even,

1 if k is odd,
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our expectation is that for all sufficiently large k, there will correspond to each

choice of i ∈ I a tuple A for which the associated equation of the shape (14)

has nontrivial solutions.

We will proceed in a very different direction. Rather than attempting

to reduce the problem of treating equation (2) to that of solving associated

ternary equations (which, as we have noted, is likely to be futile for large k),

we will, in the next two sections, instead deduce from a nontrivial solution

to (2) the existence of a large number of elliptic curves that, on some level,

mimic the behaviour of elliptic curves with complex multiplication (despite not

possessing this property).

4. A first result on primes k/2 < p ≤ k

We begin with an easy lemma that ensures that primes in the interval

(k/2, k] fail to divide A0A1 · · ·Ak−1 for suitably large `. This apparently in-

nocuous result (a version of which first appeared in the proof of Theorem 1.5

of [1]) is actually the key first step in proving Theorem 2.

Lemma 4.1. Let k ≥ 108, and suppose that (n, d, k, y, `) is a nontrivial

solution to (2) with prime exponent ` > exp(10k). Let p be a prime in the

range k/2 < p ≤ k. Then p | d.

Proof. Suppose that p - d. Then p divides at least one and at most two of

the terms n+ d, n+ 2d, . . . , n+ kd. Suppose first that p divides precisely one

such term, say p | n+ id. It follows from (2) that

` | ordp(n+ id).

Let a be any triple of indices in A containing i. It follows from Lemma 3.2

that Ea is semistable at p with multiplicative reduction, and that ` | ordp(∆a).

Applying Lemma 2.2, we see that

` ≤ (
√
p+ 1)(Ma+1)/6.

Now the bound in Lemma 3.3 for Ma contradicts the assumption ` > exp(10k).

If instead p divides divides precisely two terms, say p | n + id and p |
n+ (i+ p)d, then we choose i = (i, i+ 1, i+ p− 1, i+ p) ∈ I. Let A, B, κ and

d be as in (3.2). From (2) and (12), we have

p | A, ` | ordp(A) and p - B.

Equation (13) thus implies that p - κ and so the model Ei has multiplicative

reduction at p. Applying Lemma 2.2, we see that

` ≤ (
√
p+ 1)(Mi+1)/6.

Now the bound in Lemma 3.5 for Mi contradicts the assumption ` > exp(10k),

completing the proof of Lemma 4.1. �
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5. A closer look at the Frey-Hellegouarch curve Ea

The Frey-Hellegouarch curves Ei associated to i ∈ I have been valuable in

proving Lemma 4.1. We shall not, however, have further use for them and will

instead focus, here and henceforth, solely on the Frey-Hellegouarch curves Ea

associated to the 3-term arithmetic progressions a ∈ A.

Lemma 5.1. Let k ≥ 108, and suppose that (n, d, k, y, `) is a nontrivial

solution to (2) with ` > exp(10k) prime. Let a ∈ A. Then there is an elliptic

curve Fa/Q having full rational 2-torsion and conductor Ma such that ρEa,` ∼
ρFa,`.

Proof. By Theorem 4, it is sufficient to show that ` > H(Ma). From

Tenenbaum [44] (Theorem 9 and the remark following it), we have∏
q≤k

q prime

Å
1 +

1

q

ã
≤ exp

Å
0.27 +

5

log k

ã
· log k.

As k ≥ 108, we obtain ∏
q≤k

Å
1 +

1

q

ã
≤ 2 log k.

This, together with Lemma 3.3 and its proof, shows that both µ(Ma) and

µ(lcm(Ma, 4)) are bounded by

28 log k · exp(1.000081 · k).

Using the previously cited estimate (4) to bound g+
0 (Ma), we easily deduce

that H(Ma) < exp(10k) < ` as required. �

Throughout the remainder of the paper, we maintain the assumption ` >

exp(10k). Further, Fa will always denote the elliptic curve associated to a by

Lemma 5.1.

Lemma 5.2. With notation and assumptions as in Lemma 5.1, let p be a

prime satisfying k/2 < p ≤ k. Then p is a prime of good reduction for both

Ea and Fa, and we have ap(Ea) = ap(Fa). If, moreover, p ≡ 3 (mod 4), then

ap(Fa) = 0 and hence p is a prime of supersingular reduction for Fa.

Proof. By Lemma 4.1, we know that every prime k/2 < p ≤ k divides d.

As gcd(n, d) = 1 we see that p - (n + id) for all i. It follows from Lemma 3.2

that p is a prime of good reduction for Ea. Since the conductor Ma of Fa is a

divisor of the conductor of Ea (see equation (3)), it follows that p is a prime of

good reduction for both elliptic curves. Hence, by Lemma 2.1, we know that

ap(Ea) ≡ ap(Fa) (mod `). By the Hasse–Weil bounds |ap(Ea)−ap(Fa)| ≤ 4
√
k,

whereby the inequality ` > exp(10k) immediately implies that ap(Ea) = ap(Fa).
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Let g be as in (7), so that the reduction of Ea modulo p is

Ẽa : Y 2 = X(X − n/g)(X + n/g).

If p ≡ 3 (mod 4), then, as is well known (see, e.g., page 41 of [22]), ap(Ea) = 0

whereby also ap(Fa) = 0. �

Before we proceed, it is worth remarking that Lemma 5.2 implies that the

elliptic curve Fa shares supersingular primes with elliptic curves with complex

multiplication and j-invariant 1728, in the interval k/2 < p ≤ k. As we

shall later observe, Fa cannot itself have complex multiplication. This alone,

however, is not enough to imply a contradiction; indeed the curve with model

(15) E : Y 2 = X3 −X +
∏
p≤k

p

has precisely these properties. On the other hand, if we can deduce the exis-

tence of an a ∈ A for which the conductor of Fa is suitably “small” (notice that

E in (15) has conductor that is exponentially large in k), then we can apply an

effective version of the Chebotarev density theorem to derive a contradiction

for large k, solely from Fa having a surplus of supersingular primes in the inter-

val (k/2, k]. (See Serre [36] and Elkies [11] for upper bounds on the number of

supersingular primes in intervals, for elliptic curves without complex multipli-

cation, both conditional on the Generalized Riemann Hypothesis (GRH) and

otherwise.) As we shall observe in Section 9, we can guarantee the existence of

an a for which the conductor of Fa is bounded above by kλ for some absolute

positive constant λ. This is sufficient to contradict the Chebotarev density

theorem under GRH, but not unconditionally. If we had an a ∈ A for which

Fa has conductor bounded by (log k)λ, say, then we would have an alternative

proof of Theorem 2 via this approach. At present, we are unable to prove the

existence of such an a.

6. On a character sum associated to Fa

Henceforth, Fa will denote the elliptic curve over Q having full 2-torsion

and conductor Ma attached, via Lemma 5.1, to a 3-term arithmetic progression

a ∈ A, where A corresponds to a nontrivial solution of (2). For a positive

integer N , we write Nodd = N · 2− ord2(N) for the odd part of N . As usual, we

denote by Λ the von Mangoldt function

Λ(n) =

{
log p if n = pk for some prime p and integer k ≥ 1,

0 otherwise.

Proposition 6.1. Let k ≥ 2 × 1010, and let ` > exp(10k) be prime. Let

(n, d, k, y, `) be a nontrivial solution to equation (2), and suppose that a ∈ A.
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Then there exists a quadratic character χa that is primitive of conductor Na

such that

(16)

∣∣∣∣∣∣ ∑
k/2<m≤k

χa(m) · Λ(m)

∣∣∣∣∣∣ > 0.1239 k.

Moreover, we have that Nodd
a |Ma and Nodd

a 6= 1.

Remark. After proving Proposition 6.1, the key to the proof of Theorem 2

will be to show, for k suitably large, that if Nodd
a 6= 1 for all a, then there is

some a for which the left-hand side of the inequality (16) is much smaller than

0.1239k.

Legendre elliptic curves. Let λ ∈ Q \ {0, 1}, and write

(17) Fλ : Y 2 = X(X − 1)(X − λ),

often called a Legendre elliptic curve with parameter λ. For a ∈ A, the elliptic

curve Fa has full 2-torsion, and hence is a quadratic twist of a Legendre elliptic

curve Fλ, where there are in fact six possible choices for λ. Define

S =
{
−t2 : t ∈ Q

}
∪
{

2t2 : t ∈ Q
}
.

We partition A into two disjoint subsets, A(I) and A(II).

A(I): This consists of a ∈ A such that at least one of the λ-invariants of Fa

lies outside S.

A(II): This consists of a ∈ A such that every λ-invariant of Fa is in S.

The precise construction of the character χa in the proof of Proposition 6.1

depends on whether a belongs to A(I) or A(II), but in either case it is closely

related to the λ-invariants of Fa.

We require some preliminary results.

Lemma 6.2. Let F/Q be an elliptic curve of conductor M , semistable

away from 2 (i.e., with Modd squarefree), having full rational 2-torsion. Let

λ ∈ Q be any of the six λ-invariants of F . Then the following hold :

(i) ordp(λ) = ordp(1− λ) = 0 for all odd primes p of good reduction for F .

(ii) Let ω ∈ {±1,±2}, and let χ be the unique primitive quadratic character of

conductor N that satisfies

(18) χ(p) =

Å
ω · λ
p

ã
for odd primes p with ordp(λ) = 0. Then Nodd |M .

Proof. As F has full rational 2-torsion and is semistable away from 2, it

has a model of the form

F : Y 2 = X(X − a)(X − b),
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where a, b, a− b are nonzero integers with no odd prime common factors. The

primes dividing Modd are precisely the odd primes dividing ab(a − b). Since

the six associated λ-invariants are

b/a, a/b, (a− b)/a, a/(a− b), b/(b− a) and (b− a)/b,

the lemma follows immediately. �

Lemma 6.3. Let p ≡ 3 (mod 4) be prime, and suppose that F/Fp is an

elliptic curve of the form

F : Y 2 = X(X − 1)(X − η2)

for some η ∈ Fp \ {0, 1,−1}. Then F (Fp) contains a subgroup isomorphic to

Z/2Z× Z/4Z.

Proof. Since F has full rational 2-torsion, it is enough to show that F/Fp
has a point of order 4 or, in other words, that one of the three points of order

2 is 2-divisible. We know (a, b) ∈ F (Fp) is 2-divisible if a, a − 1 and a − η2

are all squares. Suppose (1, 0) is not 2-divisible. Then 1− η2 is not a square.

As p ≡ 3 (mod 4), it follows that η2 − 1 is a square. Thus the point (η2, 0) is

2-divisible. �

We are now ready to apply this to the elliptic curves Fa that arise from

solutions to (2).

Lemma 6.4. Let k ≥ 108, and suppose that ` > exp(10k) is prime. As-

sume that (n, d, k, y, `) is a nontrivial solution to equation (2). Let a ∈ A, and

let λ be any of the six λ-invariants of Fa. If p ≡ 3 (mod 8) is a prime in the

interval k/2 < p ≤ k, then Å
λ

p

ã
= −1.

Proof. From Lemma 5.2, we know that p is a prime of good supersingular

reduction for Fa. Lemma 6.2 tells us that ordp(λ) = ordp(1− λ) = 0, whence

p is a prime of good reduction for Fλ. Now Fλ is a quadratic twist of Fa and

so must also have supersingular reduction at p. In particular, ap(Fλ) = 0, so

that

#Fλ(Fp) = p+ 1 ≡ 4 (mod 8).

On the other hand, if we suppose that λ is a square modulo p, then we know

from Lemma 6.3 that 8 | #Fλ(Fp). The resulting contradiction completes the

proof. �

Proof of Proposition 6.1 for a ∈ A(I). We are ready to prove Proposi-

tion 6.1 for a ∈ A(I). Fix a λ-invariant of Fa with λ 6∈ S. Suppose first

that λ = t2 or λ = −2t2 for some nonzero rational t. By the results of

[32], the assumption that k ≥ 2 × 1010 forces the existence of (many) primes
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p ≡ 3 (mod 8) in the interval k/2 < p ≤ k. For each such prime, we haveÄ
λ
p

ä
= 1, contradicting Lemma 6.4. We may therefore suppose

(19) λ 6∈ {±t2 : t ∈ Q} ∪ {±2t2 : t ∈ Q}.

If a and m are relatively prime integers, we write

ϑ(X; a,m) =
∑
p≤X

p≡a mod m

log p

for the first Chebychev function associated to the arithmetic progression a mod

m. Here, the sum is over primes p. By [32], using the inequality k ≥ 2× 1010,

we have ∑
k/2<p≤k
p≡3 mod 8

log p = ϑ(k; 3, 8)− ϑ(k/2; 3, 8) ≥ (1− 3ε) · k
8
,

where ε = 0.002811. From Lemma 6.4, we thus have

(20)
∑

k/2<p≤k
p≡3 mod 8

−
Å
λ

p

ã
log p ≥ (1− 3ε) · k

8
.

Let µi be the primitive quadratic Dirichlet characters that on odd primes

p away from the support of λ are given by

µ1(p) =

Å
λ

p

ã
, µ2(p) =

Å−λ
p

ã
, µ3(p) =

Å
2λ

p

ã
and µ4(p) =

Å−2λ

p

ã
,

and observe that

µ1(p)− µ2(p)− µ3(p) + µ4(p) =

{
4
Ä
λ
p

ä
if p ≡ 3 (mod 8),

0 otherwise.

We may thus rewrite inequality (20) as∑
k/2<p≤k

(−µ1(p) + µ2(p) + µ3(p)− µ4(p)) log p ≥ (1− 3ε) · k
2
,

whereby there necessarily exists some i ∈ {1, 2, 3, 4} such that

(21)

∣∣∣∣∣∣ ∑
k/2<p≤k

µi(p) log(p)

∣∣∣∣∣∣ ≥ (1− 3ε) · k
8
.

We let χa = µi and write Na for its conductor. From (19), we have Nodd
a 6= 1.

Moreover, by Lemma 6.2 we have Nodd
a | Ma. Finally, the left-hand side of

(16) agrees with the left-hand side of (21), except on m = qr where q is prime

and r ≥ 2. Thus the difference between the two sums is bounded by

|ψ(k)− ϑ(k)− ψ(k/2) + ϑ(k/2)|,
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where ϑ and ψ are the first and second Chebychev functions. From (5.3*)

and (5.4*) of Theorem 6* of Schoenfeld [35], we have (16) as desired. This

completes the proof of Proposition 6.1 in Case (I).

Legendre elliptic curves revisited. Let λ ∈ Q\{0, 1}, Fλ be as in (17), and

suppose that p is an odd prime satisfying ordp(λ) = ordp(1− λ) = 0. We will

need to use the 2-descent homomorphism:

Θλ : Fλ(Fp)→ F∗p/F∗p
2×F∗p/F∗p

2×F∗p/F∗p
2, Θλ(Q) = (θ1(Q), θ2(Q), θ3(Q)).

The kernel of Θλ is precisely 2Fλ(Fp). If Q 6= (0, 0), then θ1(Q) = x(Q)F∗p2.

If Q 6= (1, 0), then θ2(Q) = (x(Q) − 1)F∗p2. If Q 6= (λ, 0), then θ3(Q) =

(x(Q)− λ)F∗p2. Moreover, θ1(Q)θ2(Q)θ3(Q) = 1F∗p2 for all Q ∈ Fλ(Fp), which

allows us to compute Θλ even for the points of order 2.

Lemma 6.5. Let F−1 be as in (17) and p ≡ 5 (mod 8) be prime. Then

23 ‖#F−1(Fp).

Proof. We use the fact that 2 represents the class of nonsquares in F∗p/F∗p2.

The images of the points of order 2 under Θ−1 are

Θ−1(0, 0) = (1, 1, 1), Θ−1(1, 0) = (1, 2, 2), Θ−1(−1, 0) = (1, 2, 2).

It follows that only (0, 0) is 2-divisible. We find that 2(i, 1− i) = (0, 0) (where

i2 = −1 in Fp). The points of order 4 are (i, 1− i), (i, 1− i) + (0, 0), (i, 1− i) +

(1, 0), (i, 1 − i) + (−1, 0). The images of all of these under Θ−1 have iF∗p2 as

first coordinate. This is not a square in Fp (as p ≡ 5 (mod 8)) and hence none

of the points of order 4 are 2-divisible. It follows that 23 ‖#F−1(Fp). �

Some preliminary results for a ∈ A(II). Let a ∈ A(II). The proof of

Proposition 6.1 in this case is a little harder and requires some further prepa-

ration. By the definition of A(II), every λ-invariant of Fa belongs to the set S.

Note that, if λ is any of the λ-invariants of Fa and we write

λ1 = λ, λ2 = 1− λ and λ3 = (λ− 1)/λ,

then the six λ-invariants of Fa are precisely λ±1
i with i = 1, 2 and 3. If we have

that λ = −t2 for some rational number t, it follows that necessarily there exists

a rational number v such that λ2 = 2v2 (whence λ3 = 2(v/t)2). Similarly, if we

have λ = 2t2 for t ∈ Q, then either λ2 or λ3 is of the shape 2v2 for rational v. In

all cases, renaming if necessary, we deduce the existence of (positive) rational

numbers t and v such that

(22) λ = 2t2 and 1− λ = 2v2,

whereby 2t2 + 2v2 = 1.
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Lemma 6.6. Let k ≥ 108, and suppose that ` > exp(10k) is prime. Let

(n, d, k, y, `) be a nontrivial solution to equation (2) with corresponding A. Let

a ∈ A, and suppose that λ, one of the six λ-invariants of Fa, satisfies (22) for

positive rational numbers t and v. If p ≡ 5 (mod 8) is prime with k/2 < p ≤ k,

then ordp(t) = ordp(v) = 0 and Å
tv

p

ã
= 1.

Proof. Fix a prime p ≡ 5 (mod 8) with k/2 < p ≤ k. By Lemma 5.2, p is a

prime of good reduction for both Ea and Fa, and we have ap(Ea) = ap(Fa). By

Lemma 6.2, ordp(λ) = ordp(1−λ) = 0 and so, from (22), ordp(t) = ordp(v) = 0.

From the proof of Lemma 5.2, the reduction of Ea modulo p is a quadratic twist

of F−1, whereby ap(Fa) = ap(Ea) = ±ap(F−1). On the other hand, Fλ is a

quadratic twist of Fa and so ap(Fλ) = ±ap(F−1). If we consider also the

quadratic twist of Fλ by 2,

F ′λ : Y 2 = X(X − 2)(X − 2λ),

since 2 is a nonsquare modulo p, it follows that ap(F
′
λ) = −ap(Fλ). Thus

either ap(Fλ) = ap(F−1) or ap(F
′
λ) = ap(F−1). Since Lemma 6.5 implies that

23 ‖#F−1(Fp), we may conclude that either 23 ‖#Fλ(Fp) or 23 ‖#F ′λ(Fp).
Now let Θ be the 2-descent map for Fλ/Fp as given previously. From (22),

we find that

Θ(0, 0) = (2, 1, 2), Θ(1, 0) = (1, 2, 2) and Θ(λ, 0) = (2, 2, 1).

It follows that none of the points of order 2 are 2-divisible, and so 23 - #Fλ(Fp).
Hence 23 ‖#F ′λ(Fp).

We denote the 2-descent map for F ′λ by Θ′. The images of the points of

order 2 in F ′λ are

Θ′(0, 0) = (2, 2, 1), Θ′(2, 0) = (2, 2, 1) and Θ′(2λ, 0) = (1, 1, 1).

It follows that only (2λ, 0) is 2-divisible. Let i be any square-root of −1 in Fp
and set

P =
(
4ivt+ 2λ, (128iv5 − 64iv3)t− 128v6 + 96v4 − 16v2

)
∈ E(Fp).

Then 2P = (2λ, 0) and so P is a point of order 4. Writing Θ′ = (θ′1, θ
′
2, θ
′
3), we

have that θ′3(P ) = 4itv · F∗p2. SupposeÅ
4itv

p

ã
= 1.

Then θ′3(P ) = 1 and so Θ′(P ) = (1, 1, 1) or (2, 2, 1). (Recall that the product

of the entries is a square.) Hence either Θ′(P ) = (1, 1, 1) or Θ′(P + (0, 0)) =

(1, 1, 1). It follows that one of the points of order 4 is 2-divisible and so F ′λ(Fp)
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contains a subgroup isomorphic to Z/2Z × Z/8Z, contradicting the fact that

23 ‖#F ′λ(Fp). We therefore have thatÅ
4itv

p

ã
= −1,

and hence the fact that i is a nonsquare modulo p completes the proof. �

Proof of Proposition 6.1 for a ∈ A(II). By an easy modification of our

earlier argument, but now using Lemma 6.6 in place of Lemma 6.4, the in-

equality (16) is satisfied, where now χa is a primitive quadratic character that

for odd primes away from the support of tv is given by

χa(p) =

Å
ω · tv
p

ã
for some ω ∈ {±1,±2} that depends only on a. Again we write Na for the

conductor of χa.

We would like to show that Nodd
a | Ma. We may choose a model for Fa

of the form Y 2 = X(X − a)(X − b) where a, b and a− b are nonzero integers,

with no odd prime common factors, and we have

2t2 = λ = b/a and 2v2 = 1− λ = (a− b)/a.

Thus the odd primes appearing in the support of ω · tv are primes dividing a, b

or a− b. As χa is quadratic, Nodd
a , the odd part of its conductor, is squarefree.

On the other hand, the primes dividing Modd
a are precisely the odd primes

dividing ab(a− b), whereby Nodd
a |Ma as required.

Finally, we must prove that Nodd
a 6= 1. Suppose Nodd

a = 1. Then tv =

±α2 or tv = ±2α2 for some positive rational α. We have chosen t and v

positive, whereby necessarily tv = α2 or tv = 2α2. Write t = T/U and

v = V/U where, without loss of generality, T , V and U are positive integers

with gcd(U, V, T ) = 1. Then, from (22),

2T 2 + 2V 2 = U2,

and hence T and V are odd and coprime, while U ≡ 2 (mod 4). In particular,

2 | ord2(tv), and so we may conclude that tv = α2. It follows that TV is a

positive integer square and hence, since T and V are coprime and positive,

each is itself an integer square, say T = T 2
0 and V = V 2

0 , where T0 and V0 are

positive. Writing U = 2U0, we thus have

T 4
0 + V 4

0 = 2U2
0 ,

whereby, from a classical descent argument, T0 = V0 = U0 = 1, and so λ = 1/2.

In particular, Fa is isomorphic (possibly over a quadratic extension) to the

elliptic curve Y 2 = X(X − 1)(X − 1/2) with j-invariant 1728 and complex

multiplication by Z[i]. It follows that Fa has complex multiplication and hence

the image of ρFa,` is contained in the normalizer of a Cartan subgroup of
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GL2(F`). As ρEa,` ∼ ρFa,`, the same is trivially true for ρEa,`. It follows from

the work of Lemos [25] (building on the results of Darmon and Merel [10] and

of Bilu, Parent and Rebolledo [5]) that Ea also has complex multiplication. If

we let a = aa, b = ba and c = ca be as in (8), we find that the j-invariant of

Ea is

j = 28 (a2 − bc)3

a2b2c2
.

Since Ea has complex multiplication, j is integral. The fact that a, b and c are

coprime thus implies that each of a, b and c is not divisible by odd primes. As

a+ b+ c = 0, we quickly deduce that two out of a, b and c are equal. If a = b

or c = b, then

n+ id = −2(n+ jd) or n+ (2j − i)d = −2(n+ jd),

which imply that

3n = −(2j + i)d or 3n = (i− 4j)d.

Since gcd(n, d) = 1, it follows that d | 3, contradicting Lemma 4.1. We thus

have a = c and so n + id = n + (2j − i)d, whence d = 0. The resulting

contradiction completes the proof of Proposition 6.1.

7. The Prime Number Theorem

Henceforth we fix a nontrivial solution (n, d, k, y, `) to equation (2) (with

corresponding A) and suppose that ` and k satisfy the assumptions of Propo-

sition 6.1. By this proposition, Nodd
a 6= 1, and therefore χa is nontrivial for

each a ∈ A, a fact that will be crucial in obtaining a bound for k.

We shall make use of the Prime Number Theorem for Dirichlet characters.

Let us begin by defining what we mean by exceptional conductors and excep-

tional zeros for Dirichlet L-functions; here we combine Theorems 5.26 and 5.28

of [19].

Proposition 7.1. There exists an effectively computable absolute con-

stant c∗ > 0 such that the following hold :

(i) If χ1 and χ2 are distinct real, primitive quadratic characters of conductor

N1 and N2, respectively, with associated L-functions L(s, χ1) and L(s, χ2)

having real zeros βχ1 and βχ2 , respectively, then

(23) min{βχ1 , βχ2} < 1− 3c∗

log(N1N2)
.

(ii) If χ is any primitive, quadratic character of conductor N , then L(s, χ) has

at most a single real zero βχ with

(24) 1− c∗

logN
< βχ < 1.
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If such a zero exists, then χ is necessarily real and βχ is a simple zero. We

term βχ an exceptional zero and N an exceptional conductor.

From this, if N1 < N2 are two exceptional conductors, with corresponding

exceptional zeros βχ1 and βχ2 , then, combining (23) and (24),

1− c∗

logN1
< min{βχ1 , βχ2} < 1− 3c∗

log(N1N2)
,

and so

(25) N2 > N2
1 .

The following quite explicit version of the Prime Number Theorem for

Dirichlet characters is Theorem 5.27 of [19].

Theorem 5. Let χ be a primitive Dirichlet character of conductor N .

Then

(26)∑
m≤X

χ(m)Λ(m) = δχX −
Xβχ

βχ
+O

Å
X exp

Å −c logX√
logX + logN

ã
· (logN)4

ã
.

Here δχ = 0 unless χ is trivial, in which case δχ = 1. Moreover, c > 0 is

an absolute effective constant, and the implied constant is absolute. Also βχ
denotes the exceptional zero if present, otherwise the term −Xβχ/βχ is to be

omitted.

It is worth observing at this point that the “error term” here is actually

smaller than the main term (so that the statement in nontrivial), only for

suitably small conductor N , relative to the interval of summation X; i.e.,

only when logN � logκX for some κ < 1. We wish to apply this result

to characters of conductor roughly Na, over an interval of length k/2. The

difficulty we encounter is that, a priori, the Na can be as large as ek and, even

on average, are of size that grows polynomially in k. Further, the potential

presence of an exceptional (Siegel-Landau) zero βχ additionally complicates

matters, even when we have Na much smaller than k, as the term on the right-

hand side of (26) corresponding to βχ can, potentially, be very close to k in

size. If, however, we are able to show that we can find sufficiently many a for

which Na is “tiny,” we can use the fact that exceptional conductors are rare

(as quantified in inequality (25), a “repulsion principle” due to Landau), to

reach the desired conclusion:

Proposition 7.2. Let us suppose that 0 < c1 < 1 is fixed and, further,

that there is a subset D of A such that the following hold :

(i) P (Na) 6= P (N ′a) whenever a 6= a′ belong to D;

(ii) P (Na) < (log k)1−c1 for all a ∈ D;
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(iii) we have

(27)
∑
a∈D

1

P (Na)
≥ 0.166.

Then there exists an effectively computable constant k1, depending only upon c1,

such that k ≤ k1.

We will later apply this proposition with c1 = 10−4. The constant 0.166 is

chosen so that, in our argument, we have enough progressions a to guarantee

that either one corresponds to a nonexceptional conductor, or, through appeal

to (25), that the smallest exceptional conductor Na we encounter satisfies Na ≤
400000, contradicting work of Platt [30].

To prove Proposition 7.2, it is convenient for us to be able to deduce an

explicit upper bound upon Na, given one for P (Na).

Lemma 7.3. Let N the conductor of a quadratic character, and let P (N)

be the largest prime factor of N . Then P (N) > 0.94 logN .

Proof. We can write N = 2κN1, where N1 is squarefree and κ ∈ {0, 1, 2}.
Then

logN ≤ κ log 2 +
∑

p≤P (N)

log p < κ log 2 + 1.000081P (N),

via work of Schoenfeld [35, p. 160]. We thus have

P (N)

log(N)
> 0.9999

Å
1− κ log 2

log(N)

ã
.

The desired result is then immediate if κ = 0 (i.e., unless 4 | N). If κ = 1,

we have the claimed inequality, unless N ≤ 105932, while, for κ = 2, the

conclusion follows for all N ≥ 1.2 × 1010. A (relatively) short computation,

checking values of N ≡ 4 (mod 8) up to 105932 and N ≡ 8 (mod 16) to

1.2 × 1010 with, in each case, the odd part of N squarefree, completes the

proof; the minimum value of P (N)/ log(N) is attained at N = 24. �

Proof of Proposition 7.2. Suppose there is some a ∈ D such that the char-

acter χa is nonexceptional. By assumption (ii) and Lemma 7.3, logNa <

1.07 (log k)1−c1 . Applying Theorem 5, we have∑
k/2<m≤k

χa(m)Λ(m) = O
(
k exp

(
−c′(log k)c1

)
· (log k)4

)
for some effectively computable positive constant c′, contradicting (16) for k

sufficiently large.

We may therefore suppose that χa is exceptional for every a ∈ D. We

obtain, from assumption (i), a sequence of exceptional conductors

N1 < N2 < · · · < Ns,
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where s = #D. From inequality (25), Nj > N2j−1

1 , whence, via Lemma 7.3,

P (Nj) > 0.94 · 2j−1 logN1

for each j. By assumption (27),

0.166 ≤
s∑
j=1

1

P (Nj)
<

2.13

logN1
,

whereby

N1 ≤ 373743,

contradicting work of Platt [30], which rules out exceptional zeros correspond-

ing to Dirichlet characters, for every conductor smaller than 400000. �

8. Consequences of having enough characters χa

with smooth, small conductors

In the previous section, we stated a result (Proposition 7.2) that guaran-

tees an effective upper bound upon k, provided we have suitably many a with

P (Na) “tiny,” i.e., with Na very smooth. In this section, we will show that, in

fact, we can reach the same conclusion if we have a (potentially) much larger

number of somewhat less smooth conductors corresponding to a ∈ A.

Proposition 8.1. Suppose that c2 > 10 is a constant and that there exists

a subset B ⊂ A such that

(i) #B > 17 log k;

(ii) for every distinct pair a, a′ ∈ B we have χa 6= χa′ ;

(iii) P (Na) ≤ k7/16 for all a ∈ B;

(iv) Na < kc2 .

Then there is an effectively computable constant k2, depending only upon c2,

such that k ≤ k2.

Here, the constants 17 and 7/16 can be slightly sharpened, but this is not

of great importance for our argument.

The proof of Proposition 8.1 relies upon a combination of ingredients,

including the large sieve and upper bounds for character sums over short in-

tervals. We begin with the latter.

8.1. Character sums over short intervals. We shall need a standard the-

orem on short character sums to a smooth modulus, a variant of some results

of Graham and Ringrose [15]. Specifically, we will appeal to [19, Th. 12.13].

Theorem 6. Let πi be characters of conductor qi for 1 ≤ i ≤ r. Write

q = q1, and suppose that q > 1 is squarefree with gcd(q, q2q3 · · · qr) = 1.
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Suppose, moreover, that π1 is primitive. Then, for R ≥ R0, where

R0 = max(q2, . . . , qr, q
1/4) q5/4,

we have ∣∣∣∣∣∣
∑

M<m≤M+R

π1 · · ·πr−1πr(m)

∣∣∣∣∣∣ ≤ 4R ·
Ä
τ(q)r

2
/q
ä2−r

,

where τ(q) is the number of divisors of q.

We will prove the following:

Proposition 8.2. Let c2 > 0 be a constant. Then there exist effectively

computable positive constants k3 and c3, each depending only on c2, such that

the following holds. Let k ≥ k3 be an integer, and suppose that χ1 and χ2 are

distinct primitive quadratic characters modulo N1 and N2, respectively, where

the Ni satisfy

(28) P (Ni) ≤ k7/16 and Ni ≤ kc2 for i ∈ {1, 2}.

Then

(29)

∣∣∣∣∣∣
∑

k/2<m≤k

χ1(m)χ2(m)

∣∣∣∣∣∣ ≤ k1−c3 .

Proof. Let χ = χ1χ2, and write M = lcm(N1, N2) for the conductor of χ.

We can thus rewrite χ = ηψ, where η is primitive of conductor M1 and ψ is

principal of conductor M2 with M = M1M2 and gcd(M1,M2) = 1. As η is

quadratic, we see that Modd
1 is squarefree. Clearly, M2 | gcd(N1, N2), and so

Modd
2 is also squarefree. From (28),

(30) P (M) ≤ k7/16 and M ≤ k2c2 .

We shall consider two cases, according to whether M1 ≥ 8k7/32 or M1 < 8k7/32.

Case 1. Suppose first that

(31) M1 ≥ 8k7/32,

so that

Modd
1 ≥ k7/32.

We can write

η = π1 · · ·πs and ψ = πs+1 · · ·πr,
where πi is primitive of modulus qi for i = 1, . . . , s and principal of modulus

qi for i = s+ 1, . . . , r. Moreover, the qi (which could be composite) may be

chosen to satisfy

(a) q1q2 · · · qs = M1 and qs+1qs+2 · · · qr = M2;

(b) q1 |Modd
1 and so gcd(q1, q2q3 · · · qr) = 1;
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(c) k7/32 ≤ qi ≤ k7/16, for i = 1, . . . , s− 1 and i = s+ 1, . . . , r − 1;

(d) 1 < qr ≤ k7/16; and

(e) s ≥ 1, and if s > 1, then 1 ≤ qs ≤ k7/16.

Now, from property (c) and (30),

r − 2 ≤ logM/ log(k7/32) < 10c2,

whence r < 10c2 + 2. In the notation of Theorem 6, we have that

R0 ≤ k7/16 · (k7/16)5/4 ≤ k63/64 < k/2.

Notice here that, at least in this argument, we cannot replace the exponent

7/16 in (28) with one larger than 4/9.

We will now apply Theorem 6. Let q = q1 and note that we have (see,

e.g., page 334 of [19])

τ(q) ≤ q1/ log log 3q

for all q ≥ 1. As q ≥ k7/32 and r < 10c2 + 2, we see that for k suitably large,

τ(q)r
2
< q1/2.

Appealing to Theorem 6, we thus have∣∣∣∣∣∣
∑

k/2<m≤k

χ1(m)χ2(m)

∣∣∣∣∣∣ ≤ 2k

q1/2r+1 ,

whence inequality (29) follows from q ≥ k7/32 and r < 10c2 + 2. Explicitly, we

may take c3 = 2−10c2−6. This completes the proof of Proposition 8.2 in Case 1.

Case 2. Next, suppose instead that

M1 < 8k7/32.

Since χ1 and χ2 are distinct, it follows that χ = χ1χ2 is not principal, and so∣∣∣∣∣∣ ∑
k/2<m≤k

χ1(m)χ2(m)

∣∣∣∣∣∣ < M = M1M2.

To complete the proof of (29), we may thus certainly suppose that

M2 > k3/4.

Write µ for the Möbius function, and recall that

∑
d|n

µ(d) =

{
1 if n = 1,

0 if n > 1.
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Now we can write∑
k/2<m≤k

χ1(m)χ2(m) =
∑

k/2<m≤k

η(m)ψ(m)

=
∑

k/2<m≤k
gcd(m,M2)=1

η(m)

=
∑

k/2<m≤k

η(m)
∑

d|gcd(m,M2)

µ(d)

=
∑
d|M2

∑
k/2<nd≤k

η(nd)µ(d)

=
∑
d|M2

η(d)µ(d)
∑

k/(2d)<n≤k/d

η(n).

As η is nonprincipal and has conductor M1 < 8k7/32, we have∣∣∣∣∣∣ ∑
k/(2d)<n≤k/d

η(n)

∣∣∣∣∣∣ < M1 < 8k7/32.

Thus ∣∣∣∣∣∣ ∑
k/2<m≤k

χ1(m)χ2(m)

∣∣∣∣∣∣ < τ(M2) · 8k7/32 ≤M1/ log log 3M2

2 · 8k7/32.

The proof is complete for k sufficiently large as k3/4 < M2 < kc2 . �

8.2. Proof of Proposition 8.1: The large sieve. We make use of the follow-

ing inequality of Bombieri (Proposition 1 of [6], attributed there to Selberg).

Theorem 7. If x, y1, . . . ,ym are vectors in an inner product space, then

m∑
i=1

|x · yi|2 ≤ ‖x‖2 · max
1≤i≤m


m∑
j=1

|yi · yj |

 .

In view of (16), to prove Proposition 8.1, it clearly suffices to show that

(32)
1

#B
∑
a∈B

∣∣∣∣∣∣
∑

k/2<m≤k

χa(m) · Λ(m)

∣∣∣∣∣∣
2

≤ $ · k2

for k sufficiently large, where $ = 0.12392.

Let x = (Λ(m))k/2<m≤k and, for each a ∈ B, choose corresponding ya =

(χa(m))k/2<m≤k so that the desired inequality (32) can be rewritten as

(33)
1

#B
∑
a∈B
|x · ya|2 ≤ $ · k2.
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Applying the large sieve (Theorem 7), we have

(34)
1

#B
∑
a∈B
|x · ya|2 ≤ ‖x‖2 ·max

a∈B

{
1

#B
∑
a′∈B
|ya · ya′ |

}
.

Let us begin by noting that

‖x‖2 =
∑

k/2<m≤k

Λ(m)2

≤ log k
∑

k/2<m≤k

Λ(m)

=
k log k

2
+O(k),

from the Prime Number Theorem. Further, for each a ∈ B, we have

|ya · ya| ≤
k + 1

2
.

As #B ≥ 17 log k (assumption (i)), it follows that

|ya · ya|
#B

≤ k + 1

34 log k
.

Next, we would like to estimate ya ·ya′ for a 6= a′ belonging to B. Assumptions

(ii), (iii), (iv) ensure that χa, χa′ satisfy the conditions of Proposition 8.2,

which gives

|ya · ya′ | =

∣∣∣∣∣∣ ∑
k/2<m<k

χ1(m)χ2(m)

∣∣∣∣∣∣ ≤ k1−c3 .

Hence, from (34),

1

#B
∑
a∈B
|x · ya|2 ≤ ‖x‖2 ·max

a∈B

ß |ya · ya|
#B

+ max
a′ 6=a
|ya · ya′ |

™
≤
Å
k log k

2
+O(k)

ã
·
Å
k + 1

34 log k
+ k1−c3

ã
=
k2

68
· (1 + o(1)) .

(35)

As 1/68 < $2, we have inequality (33), as desired, for k suitably large. This

completes the proof of Proposition 8.1.

9. Generating enough characters

We now wish to sieve the set A carefully, hoping to guarantee the exis-

tence of suitably many corresponding characters χa with conductors smooth

enough and small enough to enable us to employ either Proposition 7.2 or

Proposition 8.1. There are (at least) two approaches we can take here to find a
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reasonable quantity of smooth characters, both dependent upon leaving a pos-

itive proportion of elements in A after application of our sieve. We could, for

example, appeal to a theorem of Varnavides [45] that guarantees that a set of

positive density in {0, 1, . . . , k− 1} contains� k2 nontrivial 3-term arithmetic

progressions, and then average over these progressions. Instead, we will rely

upon an explicit version of a theorem of Roth on 3-term arithmetic progres-

sions, together with an old argument of Erdős. An apparent (small) advantage

of this approach is that it will lead to explicit and reasonably small values for

c2 in Proposition 8.1. We begin by stating

Theorem 8 (Roth). Let 0 < δ < 1. Then there exists a positive constant

K0(δ) such if k ≥ K0(δ) and J ⊂ {0, 1, . . . , k − 1} with #J ≥ δk, then there

is at least one nontrivial 3-term arithmetic progressions in J ; i.e., there exist

integers 0 ≤ i < j such that i, j and 2j − i all belong to J .

Note here that, following work of Rahman [31], for example, we may take

(36) K0(δ) = exp(exp(132 log(2) · δ−1)).

Let us define our index set I = {0, 1, . . . , k − 1} and recall that A is the

set of 3-term arithmetic progressions (i, j, 2j − i) in I, i.e., the set of integer

triples (i, j, 2j − i), satisfying 0 ≤ i < j and 2j − i < k. For a prime p, write

Ip = {i ∈ I : p | (n+ id)},

so that

#Ip = δp

Å
k

p
+ θp

ã
,

where |θp| < 1 and

δp =

{
1 if p - d,
0 if p | d.

We will now use Theorem 8, together with an elementary argument of

Erdős, to find an element of a ∈ A with corresponding conductor Na that is

smooth, small, and coprime to a given “thin” set of primes. We will do this in

completely explicit form to provide an indication of the size of the constants

involved here (and, in particular, to demonstrate an admissible value for c2 in

Proposition 8.1).

Proposition 9.1. Let us suppose that

(37) k ≥ exp(exp(106))

is an integer and that S ⊂ [1, k] is a set of primes satisfying

(38)
∑
p∈S

1

p
< 0.17.
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Then there exists an a ∈ A satisfying the following :

(I) p - Na for p ∈ S;

(II) P (Na) ≤ k7/16;

(III) Na is not divisible by primes in the range ((log k)1−10−4
, 104 log k];

(IV) Na < k418.

Proof. Suppose k satisfies (37). Let us define T as the set of primes in the

interval (k7/16, k] and U as the primes in the interval ((log k)1−10−4
, 104 log k].

Set

J = I \
⋃

p∈S∪T∪U
Ip.

Notice that if a = (i, j, 2j − i) is an arithmetic progression in J , then (n+ id),

(n + jd) and (n + (2j − i)d) are each not divisible by any prime p in S, T

or U . By (9) and Proposition 6.1, the conductor Na therefore satisfies (I), (II)

and (III).

Our initial goal will be to show that the set J has positive density in I.

Note that

#
⋃

p∈S∪T∪U
Ip ≤

∑
p∈S

#Ip +
∑
p∈T

#Ip +
∑
p∈U

#Ip.

Now ∑
p∈T

#Ip =
∑

k7/16<p≤k

δp

Å
k

p
+ θp

ã
,

and hence we have ∑
p∈T

#Ip < k
∑

k7/16<p≤k/2

1

p
+

0.6k

log k
,

where we have used the fact that δp = 0 for all k/2 < p ≤ k, Theorem 1 of

Rosser and Schoenfeld [34], which yields the inequalities

x

log x

Å
1 +

1

2 log x

ã
< π(x) <

x

log x

Å
1 +

3

2 log x

ã
,

provided x ≥ 59, and (37). From Theorem 5 of Rosser and Schoenfeld [34], we

have ∣∣∣∣∣∣∑p≤x
1

p
− log log x− τ

∣∣∣∣∣∣ < 1

2 log2 x
,

valid for x ≥ 286, where τ is an absolute constant (explicitly, τ = 0.26149 . . .),

and hence∑
k7/16<p≤k/2

1

p
< log(16/7) + log

Å
1− log 2

log k

ã
+

1

2 log2(k/2)
+

128

49 log2 k
.
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From (37), we thus have ∑
k7/16<p≤k/2

1

p
< log(16/7)− 0.6

log k

and hence ∑
p∈T

#Ip ≤ log(16/7) · k.

Moreover, ∑
p∈U

1

p
< log

Å
log log k + log 104

(1− 10−4) log log k

ã
+

1

log2
(
(log k)1−10−4

)
and so, from (37), ∑

p∈U

1

p
< log

(
1/(1− 10−4)

)
+

5 log 10

log log k
,

whence ∑
p∈U

#Ip ≤ log
(
1/(1− 10−4)

)
k +

5 log(10) k

log log k
+ 104 log k.

From (38), we have, crudely,∑
p∈S

#Ip ≤ 0.17 k + π(k) < 0.17k +
1.1k

log k
.

Thus

#
⋃

p∈S∪T∪U
Ip ≤ (log(16/7) + log(1/(1− 10−4)) + 0.17)k +

12k

log log k
f,

and hence, from (37), we have

#
⋃

p∈S∪T∪U
Ip < 0.9968 k.

It follows that

#J = #I −#
⋃

p∈S∪T∪U
Ip > 0.0032k,

so that, in particular, J is nonempty (and, as noted earlier, possesses the

property that any arithmetic progression a = (i, j, 2j−i) in J has corresponding

Na satisfying (I), (II) and (III)). From Theorem 8, it is immediate that there

exist nontrivial 3-term arithmetic progressions a in J ; it remains to show that

at least one of them has property (IV), i.e., satisfies Na ≤ k418.

We now follow a classic argument of Erdős (see, e.g., Lemma 3 of [12],

or, in the context of arithmetic progressions, displayed equation (3.6) of [24]),
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defining a set J1 ⊂ J , obtained by deleting from J , for each prime p ≤ k, an

index ip with the property that ordp(Aip) is maximal. It follows that

#J1 > 0.0032k − π(k) > 0.00319k

and, more importantly for our purposes, that∏
i∈J1

Ai | (k − 1)!.

Since no prime p ≥ k7/16 divides any of these Ai, Stirling’s formula (see, e.g.,

[43] for a suitably explicit version) thus implies that∏
i∈J1

Ai ≤
»

2π(k − 1)((k − 1)/e)k−1e1/(12(k−1))
∏

k7/16<p≤k

p− ordp((k−1)!).

Now

log

Ñ ∏
k7/16<p≤k

pordp((k−1)!)

é
≥

∑
k7/16<p≤k

Å
k − 1

p
− 1

ã
log p ≥ 9

16
k log k − 5k

using Theorem 5 of [44], Theorem 6 of [34] and our assumption (37). Hence,

after a little work, ∏
i∈J1

Ai < k0.44k.

It follows, if we define J2 ⊂ J1 to be the set of indices i ∈ J1 with the property

that Ai ≤ k139, that #J2 > 0.00001k. Checking that in (36) we have

K0(10−5) < exp(exp(106)),

we may thus apply Theorem 8 (Roth’s theorem) to deduce the existence of a

nontrivial 3-term arithmetic progression of indices a = (i, j, 2j − i) in J2. By

(9)

Na ≤ 28 ·AiAjA2j−i ≤ 28 · (k139)3 < k418.

This concludes the proof of Proposition 9.1. �

10. Proof of Theorem 2

We are now ready to prove Theorem 2. To begin, note that there exists a

nonempty subset B ⊂ A satisfying

(i) P (Na) 6= P (Na′) whenever a 6= a′ in B;

(ii) P (Na) ≤ k7/16 for all a ∈ B;

(iii) Na is not divisible by primes in the range [(log k)1−10−4
, 104 log k], for all

a ∈ B;

(iv) Na < k418 for all a ∈ B.
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Indeed to generate such a B with one element, we may simply apply Proposi-

tion 9.1 with S = ∅. Now let B be a maximal nonempty subset of A satisfying

(i)–(iv). If #B > 17 log k, then k is effectively bounded by Proposition 8.1.

We may thus suppose that #B ≤ 17 log k. Assume first that∑
a∈B

1

P (Na)
< 0.17.

It follows, if we let S = {P (Na) : a ∈ B}, that S satisfies (38). Proposi-

tion 9.1 thus yields the existence of some a ∈ A that satisfies (ii), (iii), (iv)

and, moreover, has the property that Na is not divisible by any prime in S.

Thus P (Na) 6= P (N ′a) for a′ ∈ B. Now the set B′ = B ∪ {a} is strictly larger

than B and satisfies conditions (i)–(iv), contradicting the maximality of B.

We may thus assume that∑
a∈B

1

P (Na)
≥ 0.17.

Define

C = {a ∈ B : P (Na) > 104 log k}
and

D = {a ∈ B : P (Na) < (log k)1−10−4}.
Then, by condition (iii), B is the disjoint union of C and D. It follows that∑

a∈C

1

P (Na)
≤ #C

104 log k
≤ #B

104 log k
≤ 17 log k

104 log k
= 0.0017,

whereby ∑
a∈D

1

P (Na)
≥ 0.1683.

We now apply Proposition 7.2 with c1 = 10−4 to deduce that k is bounded.

This completes the proof of Theorem 2.

11. Concluding remarks

Much of the literature on (2) has, in fact, dealt with the somewhat more

general equation

(39) n(n+ d) · · · (n+ (k − 1)d) = by`,

where b is an integer, all of whose prime factors are bounded above by k.

The arguments we have presented here do not permit us to treat quite such

a general situation, but can be extended to handle equation (39) where P (b),

the greater prime factor of b, is at most τk, for τ < 1/2.

While we have given our results in Section 6 on characters attached to

nontrivial solutions to (2) only for large values of k, analogous statements
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are readily obtained for smaller k. These provide us with a way to prove

that the number of nontrivial solutions to (2) is finite that is much more

computationally efficient than that described in [1]. Since the lower bound

upon k in Theorem 2 is so large, however, there is little chance we can treat

all the remaining cases k ≤ k0 by such an approach, without the introduction

of fundamentally new ideas.

12. Addendum

In this addendum, we will sketch an approach that leads from Proposi-

tion 6.1 to a contradiction, while avoiding many of our more delicate analytic

and combinatorial arguments. This was communicated to the authors by An-

drew Granville [16] and is reproduced here with his permission.

To start, we note that via Theorem 5.26 of [19] (a result dating back to

Landau and Page), there exists a positive constant c such that every zero of

every Dirichlet L-function corresponding to a primitive character of modulus

q ≤ T (where T ≥ 2) necessarily has real part β satisfying

β < 1− c

log T
,

with at most a single exception, corresponding to, say, q1 ≤ T . For a given

large positive integer k, let us define

(40) T = exp

Å
c log k

3 log log k

ã
.

Further let Q(k) denote the set of integers q ≤ Q := k4 for which there exists a

primitive character χ (mod q) for which L(s, χ) has a zero β + it with |t| ≤ T
and

(41) β > 1− 3 log log k

log k
= 1− c

log T
.

Proposition 12.1. The set Q(k) contains � (log k)61 elements. Its

smallest element is ≥ log k, and all of its other elements are ≥ kδ/ log log k

for some constant δ > 0.

Proof. Let N(σ, T, χ) count the number of zeros ρ = β+ it of L(s, χ) with

β ≥ σ and |t| ≤ T . From a result of Selberg (referenced immediately below

the statement of Théorème 14 of [7]), we have that, for T ≥ 2 and ε > 0,∑
q≤Q

∑
χ (mod q)
χ primitive

N(σ, T, χ)�ε

(
Q5+εT 3+ε

)1−σ
.

Choosing σ = 1− 3 log log k
log k and ε suitably small thus implies that

#Q(k)� (log k)61.
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From the choice of c, there is at most a single value q1 ≤ T with a zero with

real part satisfying (41). If this zero exists, it must be real and, via Proposition

1.11 of [2], is bounded above by 1− 40√
q1 log2 q1

, whence

1− 3 log log k

log k
< 1− 40

√
q1 log2 q1

.

It follows then that q1 > log k for suitably large k. All of the other elements

of Q(k) are necessarily at least T = kδ/ log log k with δ = c/3. �

Proposition 12.2. If q ≤ Q = k4 and q 6∈ Q(k), then∑
k/2<m≤k

χ(m) · Λ(m)� k

log k
.

Proof. From Proposition 5.25 of [19], if χ is a nonprincipal character mod-

ulo q with corresponding L-function L(s, χ), we have that∑
m≤k

χ(m) · Λ(m) = −
∑

L(β+it,χ)=0
β>0, |t|≤T

kρ

ρ
+O

Å
log k +

k(log qk)2

T

ã
,

where T is as in (40). Since q 6∈ Q(k),

|kρ| ≤ k1− 3 log log k
log k = k/(log k)3,

whereby it follows that∣∣∣∣∣∣∣∣∣
∑

L(β+it,χ)=0
β>0, |t|≤Q

kρ

ρ

∣∣∣∣∣∣∣∣∣ ≤
k

(log k)3

∑
L(β+it,χ)=0
β>0, |t|≤Q

1

|ρ|
� k

log k
;

here, the last inequality follows from the standard proof of the Prime Number

Theorem in Arithmetic Progressions (see, e.g., [2]). �

From this result, in conjunction with Proposition 6.1, it suffices to show

that, for some a ∈ A, the corresponding conductor Na 6∈ Q(k) while also

Na ≤ k4.

Proposition 12.3. For any given coprime nonzero integers a and d, let

Na,d denote the set of integers n, 0 ≤ n ≤ k−1 for which a+nd is divisible by

some integer r, where r is a divisor of some q ∈ Q(k) with r ≥ q1/3/2. Then

#Na,d � k/(log k)1/4.

Proof. The number of integers in the progression

a, a+ d, . . . , a+ (k − 1)d
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divisible by r is at most k/r + O(1) � k/r, which is � k/q1/3 if r ≥ q1/3/2.

Therefore the number divisible by some integer r, where r is a divisor of some

q with r ≥ q1/3/2, is � τ(q)k/q1/3 � k/q1/4, where τ(q) denotes the number

of divisors of q. Therefore

#Na,d �
k

q
1/4
1

+
∑

q∈Q(k),

q>kδ/ log log k

k

q1/4
� k

(log k)1/4
+ (log k)61k

1− δ
4 log log k ,

where the latter inequality is a consequence of Proposition 12.1. The result

thus follows. �

From the last result, almost all 3-term arithmetic progressions of integers

≤ k contain no element of Na,d. We can select one such progression, say, a,

corresponding to

n+ id = Aiy
`
i , n+ jd = Ajy

`
j , n+ (2j − i)d = A2j−iy

`
2j−i,

where, appealing to the aforementioned argument of Erdős (as in, say, [24]),

we may suppose that, say,

Na ≤ 8AiAjA2j−i ≤ k4.

Since Nodd
a is the largest odd squarefree divisor of AiAjA2j−i, it follows

that

gcd(Na, Ai) · gcd(Na, Aj) · gcd(Na, A2j−i) ≥ Na/8

and so at least one of gcd(Na, Ai), gcd(Na, Aj) or gcd(Na, A2j−i) is a divisor

of Na that is at least N
1/3
a /2 in size. Since we have chosen a to contain no

element of Na,d, we necessarily have that Na 6∈ Q(k), whereby Proposition 12.2

contradicts Proposition 6.1.
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no. 18 (1987), 103 pp. MR 0891718. Zbl 0618.10042. Available at http://www.

numdam.org/item/AST 1987 18 1 0/.

[8] C. Breuil, B. Conrad, F. Diamond, and R. Taylor, On the modular-

ity of elliptic curves over Q: wild 3-adic exercises, J. Amer. Math. Soc. 14

no. 4 (2001), 843–939. MR 1839918. Zbl 0982.11033. https://doi.org/10.1090/

S0894-0347-01-00370-8.

[9] H. Darmon and A. Granville, On the equations zm = F (x, y) and Axp +

Byq = Czr, Bull. London Math. Soc. 27 no. 6 (1995), 513–543. MR 1348707.

Zbl 0838.11023. https://doi.org/10.1112/blms/27.6.513.

[10] H. Darmon and L. Merel, Winding quotients and some variants of Fermat’s

last theorem, J. Reine Angew. Math. 490 (1997), 81–100. MR 1468926. Zbl 0976.

11017. https://doi.org/10.1515/crll.1997.490.81.

[11] N. D. Elkies, Distribution of supersingular primes, in Journées Arithmétiques,
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J. Math. 49 no. 6 (1997), 1139–1161. MR 1611640. Zbl 0908.11017. https://doi.

org/10.4153/CJM-1997-056-2.

[24] S. Laishram and T. N. Shorey, Perfect powers in arithmetic progressions, J.

Comb. Number Theory 7 no. 2 (2015), 95–110. MR 3537553. Zbl 1386.11062.

[25] P. Lemos, Serre’s uniformity conjecture for elliptic curves with rational cyclic

isogenies, Trans. Amer. Math. Soc. 371 no. 1 (2019), 137–146. MR 3885140.

Zbl 06993229. https://doi.org/10.1090/tran/7198.

[26] J. Liouville, Sur le produit m(m+1)(m+2) . . . (m+n−1), J. Math. Pures Appl.

2 (1857), 277–278. Available at https://gallica.bnf.fr/ark:/12148/bpt6k164012/

f285n2.capture.

[27] R. Marsza lek, On the product of consecutive elements of an arithmetic progres-

sion, Monatsh. Math. 100 no. 3 (1985), 215–222. MR 0812613. Zbl 0582.10011.

https://doi.org/10.1007/BF01299269.

[28] G. Martin, Dimensions of the spaces of cusp forms and newforms on Γ0(N) and

Γ1(N), J. Number Theory 112 no. 2 (2005), 298–331. MR 2141534. Zbl 1095.

11026. https://doi.org/10.1016/j.jnt.2004.10.009.

[29] B. Mazur, Rational isogenies of prime degree (with an appendix by D. Goldfeld),

Invent. Math. 44 no. 2 (1978), 129–162. MR 0482230. Zbl 0386.14009. https:

//doi.org/10.1007/BF01390348.

[30] D. J. Platt, Numerical computations concerning the GRH, Math. Comp. 85

no. 302 (2016), 3009–3027. MR 3522979. Zbl 1345.11064. https://doi.org/10.

1090/mcom/3077.

[31] M. Rahman, Roth’s theorem on 3-term arithmetic progressions. Available at

https://pdfs.semanticscholar.org/34d5/e5d802d1107b68f1aa76dff994e8b23341c2.

pdf.
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