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A converse to a theorem of
Gross, Zagier, and Kolyvagin

By CHRISTOPHER SKINNER

Abstract

Let E be a semistable elliptic curve over Q. We prove that if E has
non-split multiplicative reduction at at least one odd prime or split multi-
plicative reduction at at least two odd primes, then

rankz E(Q) = 1 and #III(F) < co = ords—1L(E,s) = 1.

We also prove the corresponding result for the abelian variety associated
with a weight 2 newform f of trivial character. These, and other related
results, are consequences of our main theorem, which establishes criteria
for f and H;(Q,V), where V is the p-adic Galois representation associated
with f, that ensure that ords=1L(f,s) = 1. The main theorem is proved
using the Iwasawa theory of V' over an imaginary quadratic field to show
that the p-adic logarithm of a suitable Heegner point is non-zero.

1. Introduction

Let f € S2(T'p(NN)) be a newform with trivial nebentypus. Associated with
f is an abelian variety Ay over Q (really an isogeny class of abelian varieties)
characterized by an equality of the Hasse-Weil L-function L(Ay,s) of Ay and
the product of the L-functions L(f?, s) of all the Galois conjugates f7 of f:

L(Ay,s) = [ L(f7, 5).

The endomorphism ring End?Q(A ) is a totally real field My of degree equal to
the dimension of Ay; this is naturally identified with the subfield of C generated
over Q by the Hecke eigenvalues of f (equivalently, the Fourier coefficients of
the g-expansion of f at co), and so its degree [M; : Q] is equal to the number
of conjugate forms f°.

The celebrated Birch—Swinnerton-Dyer conjecture, as formulated for
abelian varieties, predicts that the rank of Af(Q) equals the order of vanishing
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at s = 1 of the L-function L(Ay,s):

rankz A¢(Q) < ordg—1L(Ay, s).

The most spectacular result to date in the direction of this conjecture follows
from the combination of the work of Gross and Zagier [11] and Kolyvagin [15]
[16], which together prove the following: Let » = 0 or 1. Then ords—1 L(f, s) =
r if and only if ords—1 L(Ay,s) = [M; : Q]r, and

ords—1L(f,s) =r = rankzA¢(Q) = [My : Q)r and #II(Ay) < o0,

where III(Ay) is the Tate-Shafarevich group of As (conjecturally always finite).
For r = 0, the converse to this implication was established in [24] (for N not
squarefull) and in [25] (for all N). In the proofs of these converses it is only
needed that the p-primary part II(Af)[p>] be finite for a sufficiently large
prime p such that f is ordinary with respect to some prime XA | p of My. In
particular, if Ay is a semistable elliptic curve, then it suffices to take p > 11 of
good, ordinary reduction.

For r = 1 and Ay an elliptic curve having complex multiplication, a con-
verse to the above implication is a consequence of the combination of results
of Rubin, Bertrand, and Perrin-Riou; this is explained in Theorems 8.1 and
8.2 of [22]. In this paper we prove a converse for the r = 1 case for those Ay
with N squarefree. If N is squarefree, then Ay does not have complex multi-
plication, so the cases covered by the theorems in this paper are disjoint from
those covered by the results recalled in [22].

Let m = ®m, be the cuspidal automorphic representation of GLg(A) such
that L(w,s —1/2) = L(f,s) (so N is the conductor of 7).

THEOREM A. Suppose N is squarefree. If there is at least one odd prime
£ such that 7y is the twist of the special representation by the unique unramified
quadratic character or at least two odd primes {1 and {2 such that my, and T,
are special, then

rankzA¢(Q) = [My : Q] and #I(Af) < oo = orde—1L(f,s) = 1.

The hypotheses on the local representations can also be formulated in
terms of the eigenvalues of the Atkin—Lehner involutions wy acting on f: either
there is at least one odd prime £ such that the eigenvalue of wy is +1 or there
are at least two odd primes ¢; and ¢ such that the eigenvalues of wy, and wy,
are both —1.

Since every elliptic curve over Q is modular, Theorem A can be restated
in this case to read

THEOREM A’. Suppose E is a semistable elliptic curve over Q. If there
1s at least one odd prime at which E has nonsplit multiplicative reduction or
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at least two odd primes at which E has split multiplicative reduction, then
rankz E(Q) =1 and #II(F) < co = ords—1 L(E,s) = 1.

As the hypotheses on F(Q) and II(F) ensure that the root number of
E is —1 (by, for instance, Nekovai’s results toward the parity conjecture), the
hypotheses on the reduction types in Theorem A’ only exclude those semistable
curves that have conductor equal to 2¢ with ¢ an odd prime and that have
split reduction at both 2 and ¢. However, showing that a positive proportion
of semistable elliptic curves F, when ordered by height for example, satisfy the
hypotheses of Theorem A’ with ranky F(Q) = 1 and #1I(F) < co remains an
open and interesting problem.

Our proof of Theorem A is similar in spirit to those of Theorems 8.1
and 8.2 of [22] insofar as it is essentially p-adic. We deduce Theorem A from
Theorem B below, which gives a p-adic criterion for Ay to have both algebraic
and analytic rank [My : Q] over an imaginary quadratic field. However, unlike
the proofs in [22], our proof of this criterion does not make use of a p-adic
Gross—Zagier formula for the derivative of a p-adic L-function or require non-
degeneracy of p-adic heights. Instead it uses a formula expressing the value of
a p-adic L-function in terms of the formal log of a rational point on A;.

Let p be a prime and A | p a prime of My. Let L = My ). Let py ) :
Gal(Q/Q) — Autz(V) be the usual two-dimensional Galois representation
associated with f and let ps ) be its residual representation (the semisimplifi-
cation of the reduction of a Galois stable lattice in V).

THEOREM B. Suppose N is squarefree and p > 5. Let K be an imaginary
quadratic field with odd discriminant D. Suppose

(a) pt N and f is ordinary with respect to X,

(b) pga is irreducible and ramified at an odd prime that is either inert or
ramified in K;

(¢) both 2 and p split in K,

(d) of (D,N) # 1, then for each £ | (D,N), 7 is the twist of the special rep-
resentation by the unique unramified quadratic character, and each prime
divisor of N/(D, N) splits in K;

(e) dimyp, H}(K, V) =1 and the restriction H}(K7 V)= [L, H}(Kv, V) is an
injection.

Then ords—1 L(f, K,s) = 1, rankz Af(K) = [M; : Q] = ords—1 L(A¢/K, s), and

I(As/K) is finite.

Here H} (K,V) and H} (K,,V) are, respectively, the global and local
Bloch-Kato Selmer groups. Also, L(Af/K,s) and III(Af/K) are the L-function
and the Tate-Shafarevich group of A¢/K, and L(f,K,s) = L(f,s)L(f®xp, )
with yp the quadratic character associated with K.
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The deduction of Theorem A from Theorem B, which is explained in
more detail in Section 3, goes as follows: As f is not a CM form (since N
is squarefree), condition (a) holds for some A | p for a set of primes p of
density one, while pyy is irreducible if p is sufficiently large, in which case
it follows from Ribet’s work on level-lowering that py\ is ramified at some
odd prime ¢ # p and even, for p sufficiently large, ramified at all primes
g || N. Fix such a p and A. From the hypotheses on m; in Theorem A it
then follows that an imaginary quadratic field K can be chosen so that its
discriminant D is odd; (b), (c), and (d) hold; and L(A]l?, 1) # 0, where AJL?
is the K-twist of Af. As L(A?,S) = [[IL(f° ® xp,s), the existence of a
K with the desired properties follows from [9]. From the non-vanishing of
L(A]’?7 1) it follows that A?(Q) and H_I(A]f?) are finite. Together with Af(Q)
having rank [M; : Q] and II(Ay) being finite, this implies that A;(K’) has
rank [My : Q] and II(A/K) is finite, which in turn imply (e). It then follows
from Theorem B that ords—1 L(A¢/K,s) = [My : Q] and ords—1 L(f, K, s) = 1.
As L(Af/K,s) = L(Af,s)L(A7,s) and L(f,K,s) = L(f,s)L(f ® xp,s), it
follows that ords—1L(Ay,s) = [M; : Q] and ords—1 L(f,s) = 1.

As the deduction of Theorem A from Theorem B shows, the hypothesis
that III(Ay) is finite can be replaced with III(Af)[p>] finite for some suitable
prime p. It is even possible to formulate conditions on the A-Selmer group of
A¢/K that ensure that hypothesis (e) of Theorem B holds, from which one
can deduce, for example,

THEOREM C. Let E be a semistable curve over Q such that there is at
least one odd prime at which E has nonsplit multiplicative reduction or at least
two odd primes at which E has split multiplicative reduction. Suppose there is
a prime p > 5 at which E has good, ordinary reduction and such that

(a) E[p] is an irreducible Gal(Q/Q)-representation;

(b) Sely(E) = 7/y2;

(c) the image of the restriction map Sel,(E) — E(Q))/pE(Q,) does not lie in
the image of E(Qp)[p].

Then ords—1 L(FE,s) = 1 = rankz F(Q) and #1I(E) < oc.

It is through similar variations that Theorem B plays a crucial role in a
recent proof that

THEOREM D (Bhargava—Skinner [3]). When ordered by height, a positive
proportion of elliptic curves has both algebraic and analytic rank one.

To explain how to pass from the hypotheses of Theorem B to its conclu-
sion, we begin by recalling the Gross—Zagier formula. It follows from hypothesis
(e) and the parity conjecture for Selmer groups of p-ordinary modular forms
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[18] that the sign of the functional equation of L(f, K, s) is —1. It then follows
from the general Gross—Zagier formula of X. Yuan, S. Zhang, and W. Zhang [27]
that Ay is a quotient of the Jacobian of some Shimura curve (possibly a modu-
lar curve) such that the Néron-Tate height of the image Px (f) € A¢(K)® My
of a certain O-cycle on the curve (essentially a Heegner cycle) is related to
L'(f, K,1) by
<PK(f)7PK(f)> = L/(f7K71)7

where (-, -) is the Néron—Tate height-pairing (relative to some symmetric ample
line bundle) and “=” denotes equality up to a non-zero constant (which de-
pends on f and the line bundle). So if we expect to prove that ords—1 L(f, K, 1)
= 1, then we should expect to prove that the height of Pk (f) is non-zero or,
equivalently, that Pr(f) # 0. If Px(f) # 0, then (e) together with the general
Gross—Zagier formula and the work of Kolyvagin implies the conclusions of
Theorem B. We establish Theorem B by proving that Pg(f) # 0.

To show that Pg(f) # 0 we do not directly show that its height is non-
zero. Instead we show that its formal logarithm at a prime of K above p does
not vanish, which is sufficient for our purposes. To do this we make use of
p-adic analogs of the Gross—Zagier formula, proved by Bertolini, Darmon, and
Prasanna and Brooks, which are analogs of a formula proved by Rubin [22] in
the CM case. Recall that p = pp splits in K and that D is odd. As explained
in [2] and [6] there is a p-adic L-function Lf (f,x), a function of certain p-adic
anti-cyclotomic Hecke characters y of K, such that

L (1) = (log,, Pr(f)),

where log,, : Af(Kp)®L — K is the formal logarithm, determined by a certain
1-form w € Ql(Af) ® My, and “=" again denotes equality up to a non-zero
constant. Qur aim then is to show that Lf (f,1) # 0 under the hypotheses of
Theorem B. Our method for doing so is via Iwasawa theory.

Iwasawa theory conjecturally relates the p-adic L-function Lf (f, x) to the
characteristic ideal of a certain p-adic Selmer group. One consequence of such
a relation would be the implication

LI(f,1) =0 = H)(K,V)#0,

where le (K,V)C H(K,V) is the subspace of classes that vanish in H! (K, V)
for all places w # p. However, hypothesis (e) of Theorem B ensures that
le(K, V) = 0, so it would follow from this implication that Lf(f, 1) #0
and hence that Pg(f) is non-torsion. Our strategy for proving Theorem B
ultimately reduces to the above implication. The desired result from Iwasawa
theory is part of recent work of Wan [26], following the methods of [24], un-
der certain hypotheses on f, p, and K. The conditions (a)—(d) of Theorem B
ensure that these hypotheses hold.
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Following the proof of Theorem B, we include remarks emphasizing where
in the arguments the various hypotheses intervene, with an eye toward future
developments that should remove many of them. We then elaborate on the
deduction of Theorem A from Theorem B and explain how similar arguments
can be applied to the » = 0 case, giving an alternate proof of a special case of
the results in [24] and [25].

After the first version of this paper was completed, Wei Zhang released a
preprint (since published as [28]) in which he proves many cases of a conjecture
of Kolyvagin, showing that the p-adic Selmer group of A; is often spanned by
classes derived from Heegner points. As a consequence Zhang obtains a theo-
rem similar to Theorem B. This theorem does not require the restriction map
at primes above p be injective (the second half of hypothesis (e) of Theorem B)
but crucially requires that the Tamagawa factors at the primes that split in
K or are congruent to =1 modulo p be indivisible by p. Theorem B imposes
no hypotheses on Tamagawa factors. While there is substantial overlap in the
cases covered by Theorem B and the results of [28], neither subsumes the other.
The proof of the main result in [28] also relies on Iwasawa theory, in this case
on consequences of the Main Conjecture for GLg proved in [24].

Acknowledgements. The author thanks Kartik Prasanna and Xin Wan
for helpful conversations. This work was partially supported by grants from
the National Science Foundation, including DMS-0701231 and DMS-0758379.
The first version of this paper was written while the author was a visitor in
the School of Mathematics at the Institute for Advanced Study.

2. The proof of Theorem B

Let Q be an algebraic closure of Q and K/Q an imaginary quadratic field
in Q. Fix an embedding Q < C. This determines a complex conjugation
¢ € Gg = Gal(Q/Q), which induces the non-trivial automorphism on K. For
each prime [ of K, let K| be an algebraic closure of K| and fix an embedding
Q < Kj; the latter realizes G, = Gal(K/K;) as a decomposition subgroup
for [ in Gx = Gal(Q/K). Let I; C Gk, be the inertia subgroup. Let F; be the
residue field of K| and F; the residue field of K| (so F; is an algebraic closure
of y); there is then a canonical isomorphism Gg,/I; = Gy, = Gal(F/F).

Let p be an odd prime.

2.1. Modular forms and abelian varieties. Let f € Sa(Io(IN)) be a new-
form with trivial Nebentypus. Let My be the subfield of C generated by the
Hecke eigenvalues of f (equivalently, the Fourier coefficients of the g-expansion

of f at the cusp c0); this is a totally real number field, and the fixed embedding
Q = C identifies M ¢ with a subfield of Q.
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A construction of Eichler and Shimura associates with f an abelian variety
Ay over Q of dimension [M : Q] and such that End?Q(A ) is naturally identified
with My and characterized (up to isogeny) by

LAps)= [ L9,
o:My—C
where f? is the conjugate of f; that is, the newform in Sy(T'g(/N)) whose
g-expansion at oo has coefficients obtained by applying o to those of f.

Let T, Ay be the p-adic Tate-module of Ay, and let V,Ay =T, Ay ®z, Q.
Let A be a prime of My above p, let My, = M; ® Qp, and let L be a finite
(field) extension of My y. Then

V=VAr® My, L
is a two-dimensional L-space with a continuous, L-linear Gg-action, which
we denote by pr . It is potentially semistable at p, unramified at ¢ { Np,
and such that VV = V(—1) (the —1-Tate twist of V). Furthermore, if we
fix an embedding L — C that agrees with the inclusion M; — C, then!
L(VVY,s)=L(f,s).

Recall that f is ordinary with respect to A if the eigenvalue a,(f) of the
action on f of the Hecke operator T}, or U, if p | N (equivalently, the pth
Fourier coefficient of the g-expansion at co), is a unit at A — that is, if a,(f)
is a unit in the ring of integers of L.

By the K-twist of Ay we mean the abelian variety A]lc) over Q obtained by
twisting by the cocycle in H'(Q, AutgAy) defined by the quadratic character
xp : Gg — {£1} C AutgA; associated with K (so Gk is the kernel of xp).
Then

Vp =V, AP @, L=V @ xp
as continuous L-linear representations of Gg and?
L2 = I U7 @xp9).
o:My—C
The natural map Ay x A’J? — Resg /Ay is a Q-isogeny with kernel and cokernel

annihilated by 2.
Let €(f) € {1} be the sign of the functional equation of L(f,s). Let

L(f7 K7 S) - L(f7 3>L(f & XD S)'
The sign of the functional equation of L(f, K, s) is then e(f, K) =¢(f)e(f®xDp)-

'Our conventions for L-functions of potentially semistable Galois representations of Gg
or Gk are geometric: the local Euler factors are defined using the characteristic polynomials
of geometric Frobenius elements.

2For convenience we will identify the Galois character xp with the quadratic Dirichlet
character of the same conductor.
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Let m = ®m, be the cuspidal automorphic representation of GLg(A) such
that L(m,s —1/2) = L(f,s). Then L(f,K,s) = L(BCk(m),s — 1/2), where
BCk(m) is the base change of 7 to an automorphic representation of GLa(Af).
For a prime [ | £ of K over ¢, we also write BC, () for the base change of 7,
to an admissible representation of GLa(K(); so BC,(m) is the l-constituent
of BCK (7T)

Let e(m,K) = ¢(BCk(m),1/2) be the global root number of BCk (7).
Similarly, for a prime ¢, let €,(m, K) = [ [, e(BCk,(7¢),1/2) be the product of
the local root numbers. Then

e(f, K) =e(m, K) = — [[ e(BCk,(m0),1/2) = = [ ] ee(, K).
[ [

If ¢ splits in K, then €y(m, K) = €(m, 1/2)? = +1 since BCk, () = my, so the
local contribution to the global sign €(f, K) comes only from primes that are
inert or ramified in K. Furthermore, if 7y is the special representation o, then
eo(m, K) = —1 if ¢ is inert or ramified as there is then only one prime [ of K
above ¢ and BCk, (o¢) is the special representation. And if 7y is the twist o,®&;
of the special representation by the unique unramified quadratic character &,
then €y(m, K) = —1if £ is inert, as BCk, () is then the special representation,
and ey(m, K') = +1 if £ is ramified, as BCk, () is then the twist of the special
representation by the unique unramified quadratic character of K. Here we
have used that the root number of the special representation is —1 and the root
number of the twist of the special representation by the unramified quadratic
extension is +1; [17] and [13, Props. 3.5 and 3.6] are useful references for these
and other facts about epsilon factors and root numbers.

2.2. Selmer groups. Bloch and Kato [4] (see also [8]) defined Selmer groups
for geometric p-adic Galois representations. For the representation V', this
Selmer group is

H}(K,V) =ker{H'(K,V) = HH (K., V)/H} (K, V)},

where Hp(K;,V) = ker{H' (K, V) = H'(Ki, Beris ©g, V)}, with Beyis the ring
of crystalline periods, if I | p, and H}(K;,V) = H'(F,, V") if [{p. By Tate’s
local Euler characteristic formula and local duality, if [{ p, then

dimy HY (K, V) = dimy H*(K,, V) + dimy, H*(K,V) = 2dim; H*(K,V),

where we have used V' 2 VV(1)) in the second equality. If follows from the
local-global compatibility of V with m, that HO(K,V) = VE& = 0 (cf. [19,
Lemma 3.1.3]), whence H (K, V) = H' (K, V) = 0.

Let S be any finite set of primes containing those at which V is ramified
(so those dividing pN), and let Gk s be the Galois group over K of the maximal
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extension of K in Q that is unramified outside the prime ideals dividing those
in S. Since HY(K,V) = 0if [{p,
H{(K,V) =ker{H" (Gk,5, V)3 [[ H' (K, V)/H} (K, V)}.
llp

The same definitions can, of course, be made with V' replaced by Vp as
well as with K replaced by Q and the primes [ replaced with rational primes ¢.
Then the restriction map from Gg = Gal(Q/Q) to G induces identifications

H{(Q,V)® H}(Q,Vp) = H{ (K, V).

The Galois group Gal(K/Q) acts on the right-hand side above, and the left-
hand side is identified with the decomposition into the sum of the subgroups
on which Gal(K/Q) acts trivially and non-trivially, respectively.

LEMMA 2.2.1. Suppose pt ND and f is ordinary with respect to A | p. If
dimyp, H}(K, V') is odd, then e(f,K) is —1.

Proof. Since
dimy H{(K,V) = dimy H}(Q,V) + dimy H{(Q, Vp)

is odd, one of dimyp, H}(Q, V) and dimyp, H}(Q, Vp) is odd and the other is
even. It then follows from the parity conjecture for the Selmer groups of
modular forms that are ordinary at A, proved by Nekovar [18, Th. 12.2.3],
that one of the signs e(f) and e(f ® xp) is —1 and the other is +1. Then

e(f, K) = e(f)e(f @ xp) = 1. O

Connections with the Selmer group of Ay. Recall that the p>-Selmer
group of A;/K is

Sely (Ay/K) = ker{H' (K, A [p>]) = [ [ H' (K1, A7 (K0)}
[

and the p-primary part of the Tate-Shafarevich group of A;/K is
(A /K)[p™] = ker{H' (K, A;(Q))[p™] = HH (K1, Ap(K0)}

and that these sit in the fundamental exact sequence:
0—= Ay(K)®Qp/Zy — Selpe (Ap/K) — II(Ay/K)[p™] — 0.

Let W = V,Ap/T,Ar = Af[p™] (the last identification being (z,) ®
me — ). Then Selp~(As/K) consists of those classes with restriction at
each prime [ in the image H} (K, W) of the Kummer map Ay (K;) ® Qp/Zy, —
H'(K,W). Bloch and Kato proved that this subgroup is just the image of
H (K, VpAg) in HY (K, W), where H(Kj, V,Ay) is defined just as H (K, V).
(Note that H'(Ky, VpAy), H(Ki, VyAy), and H (K, W) are all 0 if [{ p.) In
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particular, if S is a finite set of primes of K containing all those that divide
pN, then Sely(Ar/K) C H'(Gk,s,W) consists of those classes with restric-
tion to H'(K{, W) belonging to H}(K[,W) for all [ € S. As the image of
HY(Gk.s,V,Af) in HY (G g, W) is the maximal divisible subgroup (and has
finite index), it follows that the maximal divisible subgroup of Sely~(As/K)
is the image in H'(K, W) of the characteristic zero Bloch-Kato Selmer group
H}(K, V)

The projective limit of the Kummer maps for the multiplication by p"-
maps yields an injection

Ap(K) @ Qp — Hj(K, V,Ay)

that is compatible with the fundamental exact sequence, so the cokernel has
Qp-dimension equal to the corank of III(A/K)[p™].

The connection with H} (K, V) is just
Hi(K,V) = Hj(K,V,Af) @u,, L and Hj(K,V) = H}(K,V,Ap) @, L,
from which, together with the fact that A¢(K)® Q, is a free My -module, we
deduce

LEMMA 2.2.2. If rankzAf(K) = [My : Q] and #II(A;/K)[p™] < oo,
then dimyp, H}(K, V) = 1 and the restriction map H}(K, V)2 HYK,V) is
an ingjection for each I| p.

2.3. More Galois cohomology. Let S be any finite set of primes containing
those dividing pN, and let

HY(K,,V)=][H K.,V
llp

and
res

Hg, (K, V) = ker{H (Gk,5,V) = H'(Kp, V)}.

Note that H}, (K, V) (often called the “strict” Selmer group of V) is indepen-

str
dent of S.
LemMA 2.3.1. dimp, im{H"(Gk.5, V)= HY(K,,V)} =

Proof. By Tate global duality, HL,(K,V) is dual to HQ(GKS,V) (here

we are using that H'(K;, V) = 0if [{p and H?(K,V) =0 for all [), so
dimy, H (G5, V)—dimy, HY (K, V)
= dim;, H (Ggs,V) — dim;, H*(Ggs,V)
=2,

the last equality following from H°(G k.5, V) = 0 and Tate’s formula for the
global Euler characteristic. U
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Suppose that p splits in K:

p = pp.
Let
Hy(K,V)=ker{H'(Gks,V) = H'(K,;,V)},
and let Hﬁ1 (K, V) be defined similarly; these are independent of the finite set S.

res

LEMMA 2.3.2. If dimy im{H}(K,V) = H(Kp,V)} =1, then
Hy(K,V) = Hg, (K, V) = Hy (K., V).
If also dimy, H} (K, V) =1, then H, (K,V) = Hy,(K,V) = Hy(K,V) = 0.

Proof. By Lemma 2.3.1, the image X of H(Ggs,V) in HY(K,,V) is
two-dimensional over L. Let X, and Xj be the respective images of H& (K,V)
and Hﬁ1 (K,V) in HY(K,,V); the action of the non-trivial automorphism ¢ of
K swaps X, and Xj. Let Xy be the image of H}(K, V) in HY(K,V); this is
stable under ¢ and one-dimensional by hypothesis.

Suppose X, # 0. Then Xj # 0 and X = X, ® Xj, from which it follows
that X = X* ® X~ with X* = {z £ c(z) : = € X,}, and X7 is one-
dimensional. Then Xy equals X * or X~. But it then follows that X, C
H}(Kﬁ,V) and X C H}(KF,V) and hence that X is two-dimensional, a
contradiction. Therefore, X, = 0 = Xj.

If also dimyp, H}(K, V) =1, then HL, (K,V) = 0, whence the final conclu-
sion. U

2.4. The Heegner points Pk (f). We consider two cases:

I. Every prime ¢ | N either splits or ramifies in K.

II. N = N-N7T with N~ a nontrivial product of an even number of primes
that are inert in K and NV is the product of primes that split in K (in
particular, (D, N) = 1).

Suppose first that f and K are as in Case I. Let T be the Hecke algebra
generated over Z by the usual Hecke operators Ty, for primes ¢4 N, acting on
the space of cuspforms Sa(I'o(N)). Let Ty, = T ® My, and let ey € Ty, be
the idempotent corresponding to the projection Ty, — My sending Ty to the
eigenvalue a,(f) of its action on the newform f. Let py = kerey|r.

Let X = Xo(N) be the modular curve over Q. Then f determines a
differential wy € Q1(X) ® C = Q'(X(C)): the pullback of ws to the upper
half-plane via the usual complex uniformization of X(C) is 2wif(7)dr. The
operator T, can also be viewed as acting via a correspondence on X such
that Ty - wf = wr,.p = ae(f) - wy. The induced action of the T)’s on the
Jacobian J(X) of X realizes T as a subring of Endg(J(X)), and wy is a basis
for the one-dimensional M space € (2! (J(X))®My) (where we have identified
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QN(X) = Q1(J(X)) in the usual way). The abelian variety A is just the
quotient Ay = J(X)/psJ(X), and we let ¢ : J(X) — A be the quotient map.
We let w € Q(Af) ® My be the 1-form such that ¢*w = wy.

Let Ok be the integer ring of K and n C Ok an ideal of norm N; this
is possible by the hypothesis that each prime ¢ | N either splits or ramifies
in K. The degree N isogeny C/O — C/n~! (the canonical projection) of
CM elliptic curves is cyclic since N is square free (in particular, ¢2 { N if ¢
ramifies in K) and defines a point P € X(H) on X over the Hilbert class
field H of K. Let Dx = >, cca(m/x) P’ € Div(X). For £1 N, let Dy =
(T;—1—1{)- Dk € Div’(X) (the degree of the correspondence Ty is £+ 1). Let
Qk(f) = mef [Di ) € J(X)(K)® Mjy. This is independent of ¢ since
Ef- T, = ag(f) CEf in TMf‘ Put

Pr(f) = ¢(Qk(f)) € Af(K) @ M.

For the purposes of comparison with other constructions, we also consider
DY = D — #Gal(H/K) - 0o € Div?(X), where co € X(Q) is the usual
cusp at infinity, and Q% = [D%] = Yoecam/) P — o<)7 € J(X)(K). As
Ty - 00 = (1+£)- oo (that is, the cusps are Eisenstein), ¢; - Q% = Qx(f).
Similarly, if £ € Div(X)®Q is the normalized, degree one Hodge divisor defined
in [27, §§1.2.2, 3.1.3], we let D% = Dy — #Gal(H/K) - ¢ € Div?(X) ® Q and
Q% = [D¥] = Y eqaa P — €7 € J(X)(K) ® Q. It follows directly from
the expression in [27, §3.1.3] for the Hodge divisor in terms of the canonical
divisor that £ is also Eisenstein, so ey - Q% =Qxr(f).

In Case II we let X be the Shimura curve over Q associated with the
indefinite quaternion algebra B of discriminant N~ and an Eichler order Op n+
of level NT in a maximal order Op of B. Let K < B be an embedding such
that KNOp ny+ = Ok. Replacing f with its Jacquet-Langlands transfer fp to
the space of weight 2 cuspforms for the subgroup determined by Op y+ (and
normalized as in [6, §2.8] to be defined over M) and n by an integral ideal n™
of K with norm N, there are constructions analogous to those yielding Qx (f)
and P (f) in Case I that in this case yield Qx (f) = Qk (fB) € J(X)(K)® M/
and Pr(f) = Pr(fB) € Af(K)® M. We can also define Q?K in this case, and,
just as in Case I, € - Q% = Qxr(f).

2.5. The Gross—Zagier theorem. We recall a consequence of a special case
of the general Gross—Zagier formula of Yuan, Zhang, and Zhang [27].
Consider the following hypotheses:

(sqf) N is squarefree,

(sgn) e(f,K)=-1.
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As the central character of 7 is trivial, the first of these hypotheses implies that
for each ¢ | N, my is either oy or oy ® &, where oy is the special representation
and & is the unramified quadratic character of Q;. The second implies that
that the number of primes ¢ | N for which ¢;(7, K) = —1 is even. In particular,
if (D, N) = 1 then, since ¢/(m, K) = +1 if ¢ splits in K and ¢y(m, K) = —1 if
¢| N is inert in K, the number of prime divisors of N that are inert in K is
even.
Consider the additional hypothesis:

If (D,N) # 1, then mp = 0y ® & for each ¢ | (D, N), and each
(ram) | % splits in K.
If (sqf), (sgn), and (ram) hold, then f and K are as in either Case I or Case
IT of Section 2.4.

PROPOSITION 2.5.1 ([27]). Suppose (sqf), (sgn), and (ram) hold. If Pk (f)
# 0, then ords—1 L(f, K, s) = 1.

We explain how Proposition 2.5.1 follows from the main result of [27]. Let
¢ : My — C be the identity map. We first note that Px(f) = hi-P(f1)", where
hx = #Gal(H/K) and P(f1) € Af(K) is associated to the homomorphism
fi = ¢ J(X) = As and the point P € X(H) as in [27, §3.2.5]. Let L
be a symmetric, ample line bundle on Ay and A : Ay — A}/ the associated
polarization. Then A(Pg(f)) € AJY(K) ® My is just the point hg - P(f2)"
as in loc. cit. with fo = Ao ¢ : J(X) — A}/. Let (-,-)z be the Néron—Tate
height-pairing on Ay (K) associated with the line bundle £, and let (-,-) y7 be
the canonical height pairing on A¢(K) ® R x A}(K) ® R. Then

(P (f), Pr(f))c = (P& (f), M\Pr (f))nT = B3 (P(f1)", P(f2)") N7

_ MRC@L(f, K1) - (fro fy)
4L(xp,1)2L(Sym? f,2)vol(X)’

where fi o fy € End?Q(Af) = Mjy. The last equality is just [27, Th. 3.13]. As
Pr(f) # 0 if and only if (Pr(f), Px(f))r # 0, the proposition follows.

If Pk(f) = > P ®rp with P running over a basis of A¢(K) ® Q and
rp € My, then for any o : My — R, Px(f?) = > P ®o(rp). So Px(f) #0
if and only if Px(f?) # 0 for all 0. Appealing to the above proposition for all
the Galois conjugates f? of f we deduce

COROLLARY 2.5.2. If P (f) # 0, then ords—1 L(Ay/K,s) = [M; : QJ.

2.6. A p-adic L-function and a formal log of Px(f). As described in the
introduction, our proof that P;(K) # 0, and hence of Theorem B, hinges on
an identity expressing the value of a certain p-adic L-function as a non-zero
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multiple of the square of a formal logarithm of Pg(f). We now recall this
L-function and identity.

Let K« /K be the anticyclotomic Z,-extension of K; so I' = Gal(K/K)
= Zp and conjugation by ¢ sends v € I" to vl Let U : Gg — T be the
canonical projection. We continue to assume that p = pp splits in K.

We also assume that A is the prime of My determined by the fixed embed-
ding Q — Fp. And for the purposes of p-adic interpolation and comparisons
with complex values, we fix an embedding K, < C such that induced complex
embedding of Q is just the fixed one.

Given a continuous character ¢ : I' — Q' we consider ¢ to be a Ga-
lois character via composition with the projection W. We say that such a
¢ is Hodge-Tate if 1 is Hodge-Tate as a representation of both G, and
G- As ¢ is anticyclotomic (that is, P(c tge) = ¥(g)~h), ¢ is Hodge Tate
if and only if it is Hodge-Tate as a representation of one of G, and Gg;
the respective Hodge—Tate weights must be —n and n for some integer n,
and in this case we say that ¢ is Hodge—Tate of weight (—n,n). The Ga-
lois character 3 is the p-adic avatar of a unitary algebraic Hecke character
Y28 of K with infinity type 2"z~". The character ¥ : A% — C* is given
by 28 ((z,)) = zy "wpal 7l - P oreck ((wy)), where reck @ KX\Ag — Gab
is the reciprocity map of class field theory, which we normalize so that uni-
formizers correspond to geometric Frobenius elements. In particular, there is
an equality of L-functions L(1)*®,s) = L(1,s). The characters 1) and ¢#
are unramified at all places not dividing p. Let X be the set of crystalline
characters ¢ : I' = Q' of weight (—n,n) with n > 0 and n = 0mod p — 1; the
crystalline condition is equivalent to ¢*8 being unramified at p and p.

Suppose in addition to (sqf), (sgn), and (ram) that

(fit) ptN,
(odd) D is odd,
(L-Irg) L contains a large enough?® finite extension of Q.

Let S = {¢|pND}. Let O be the ring of integers of L, and let O™ be the ring
of integers of the completion of the maximal unramified extension L"" of L.
There is an anticyclotomic p-adic L-function LpS (f) € O"[I] such that for
Y€ Xy,

LS(f’ walg7 1)

V() = O KJwl e (f0)en(F )% (1) g gy =

31t is enough that L contain the image of the Hilbert class field of K, though this is not
important here.
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where

o Lo(f, 48 5) = L9(VV ® 1), s) is the L-function with the Euler factors at
the primes of K dividing the primes in S omitted;

o Q(y28) = (2mi)~ 21 (2m) 24 D" 1/2 with Q a period of an elliptic
curve Fy with CM by the ring of integers of K;

o Q,(1) = Qﬁ" with €, a p-adic period for the elliptic curve Fp;

o ool fot)) = 42m) AT ()T (0 + 1)

o e)(f, 1) = (1=ap(fv8(E)p~ " +¢=8(p)%p~ ")

T (—ap(f)yels(p)pt+yele(p)2p=1)’
the action of the Hecke operator T}, on f;

o w(f,v)=yv(W) for a unit W € O™[I']* and w(f,1) = wg, the number of
roots of unity in K;

where a,(f) is the eigenvalue for

e C(f, K) is some non-zero constant depending on f and K.

For any 1, we write Lps(f,w) for w(Lf(f)).
If there exists a prime ¢ | N that is inert or ramified in K, then this p-adic

L-function is constructed in [7] and in [26]. It has been constructed more gen-
erally in [2], [6], and [5]. It can be related to a specialization of a three-variable
L-function constructed by Hida [12]. (This is done in [26].) To be precise, the
functions constructed in [2] and [6] are a priori only continuous on I'. That
they belong to the Iwasawa algebra (which follows from the constructions in
[7] and [26]) requires additional argument, essentially extending the formulas
to characters ramified at primes above p as is done in [5].

For ¢ €335, let x be the Hecke character of K such that =18 Nm(-)|q,
where Nm is the norm map from Ag to Ag and |- |g is the usual absolute value
on Ag. Recall that under the assumptions (sqf), (sgn), and (ram), f and K are
as in Cases I or II of Section 2.4. Then L;? (f) is the imprimitive variant of the
p-adic L-function denoted Ly (f, x) in [2] (in Case I) and in [6] (in Case II). By
“imprimitive variant” we mean that the Fuler factors at the primes in S not
dividing p have been removed. The set of such x for ¢ € X is denoted Zg) (n)

and £ (n™), respectively, in [2] and [6], and the interpolated values are given
in terms of the values L(f,x~!,0), which is just L(f,4*# 1). Also, still in
the notation of [2] and [6], eco(f, ¥)wi (2mi)1 T2 = C(f,x, 1), and w(f,¢) =
wrw(f,x)" . The constant we have denoted C(f, K) is denoted a(f, far,) "
in [6] (wherein f denotes a form on an indefinite quaternion algebra and far,
is a suitably normalized Jacquet-Langlands lift of f to GLg; the quaternion
algebra depends on K).

Among the important results in [1] and [6] is the following expression for
the value of Lf (f,%) at the trivial character ¢» = 1, which we call the BDP
point, in terms of a formal log of the Heegner point Pk (f). Note that the BDP
point is not in X.
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PROPOSITION 2.6.1 ([1], [6]). Suppose (sqf), (sgn), (ram), (flt), and (odd)
hold. Then

Ly (f,1) = (log,, Pk (f))*.

Recall that “=” means equality up to a non-zero constant (which here
also depends on the eigenvalues at the primes in S), and w € Q!(Af) @ My
is a 1-form such that ¢*w = wy (so the action of My on w through its action
on Q(Ay) agrees with its scalar action), and log,, : Af(K,) ® L — K, is the
formal logarithm determined by w.

In Case I, Proposition 2.6.1 is just [1, Th. 3.12]. The formula in loc. cit. has
log,, Pk (f) replaced with log,, Py, where Py =¢(QY% ). But log,, Pk =log,, QY%
and, since €7-wy = wy, logwf Q% = logwf er-Q% = logwf Qk(f) =log, Px(f),
whence the formula in this case. In Case II, the proposition similarly follows
from [6, Prop. 8.13].

To prove that Pk (f) # 0, and hence that A;(K) has positive rank, it
suffices to show that log,, Px(f) # 0 and, therefore, to show that Lf(f, 1) #0.

COROLLARY 2.6.2. Px(f) # 0 if and only if L7 (f,1) # 0.
In the following section we explain some other consequences of LpS (f,1)=0.

2.7. Some Iwasawa theory for f and K. We continue to assume p = pp
splits in K.

Let O be the ring of integers of L, and let T' C V' be a Gg-stable O-lattice.
Let A = O[I'], and let A" = O™ [I'], where O" is the ring of integers of the
completion of the maximal unramified extension of L. We view the projection
U : G — I as a continuous A*-valued character. Let A* = Home,s(A, Qp/Zp)
be the Pontryagin dual of A, and let

M =T ®0 A*(T1),

that is, the discrete A-module T'®p A* with continuous Gk action py ) ® v
Let S ={¢|pND}. Let

Seloo(f, K, S) = ker { H' (G5, M) 5 H (I, M)} .
This is a discrete A-module, and its Pontryagin dual
Xoo(f7 K, S) = HomA(Seloo(f, K, S)v A*)

is a finitely generated A-module. Let Chy(f, K,S) be its characteristic ideal
over A; this is non-zero if and only if X (f, K,.S) is a torsion A-module.

The Selmer group Selo(f, K, S) is essentially an imprimitive version of
one of Greenberg’s Selmer groups for the “big” Galois module M, as we now
explain. Let ¢ € ¢ with Hodge-Tate weights (—n,n); recall n > 0. Then
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the induced representation Indgg (V ® ¢~ 1) satisfies the Panchishkin condi-
tion as in [10, §3]: its restriction to Gg, is just (V@ ¢ ™) & (V ® ¢ ),
where the first summand is identified with (V ®~1)|q x, and has non-negative
Hodge—Tate weights n and n — 1 while the second summand is identified with
(Ve® w_l)\GKﬁ and has negative Hodge—Tate weights —n and —n — 1; the
subspace with negative® Hodge Tate weights has dimension equal to the di-
mension of the +1-eigenspace for complex conjugation on the induced repre-
sentation. Furthermore, if v € T' is a topological generator, then M [y —1)(~)] =
(T@yp 1) ®z, Qp/Zy. That is, M is the discrete Galois module associated with
the deformation T ® A(¥~1) of T over A, which contains a Zariski-dense set of
specializations that satisfy the Panchishkin condition (namely, the specializa-
tions under the maps « + () for ¢ € ¥7). This is a simple generalization
to Gi-representations of the situation considered in [10, §4], and the Selmer
group Selo (f, K, S) is the corresponding generalization of the Selmer groups
defined in loc. cit. Analogously to [10, Conj. 4.1], assuming also

(irrg) Pralay is irreducible,

one then conjectures5

CONJECTURE 2.7.1. Cha(f, K,S) and Lf(f) generate the same ideal of
AY ®o L.

This is essentially the Iwasawa—Greenberg Main Conjecture for M.

Significant progress toward this conjecture has been made by X. Wan [26],
following the methods of [24]. Suppose in addition to (sqf), (flt), (L-lrg), and
irrg) that (sgn) and (odd) hold and that

(
(
(ord) f is ordinary with respect to A,
(spl) both 2 and p split in K,

(

res) py is ramified at some odd prime ¢|N that is inert or ramified in K.

Then it is proved in [26] that

PROPOSITION 2.7.2 ([26]). Under the above assumptions, the ideal of
A" ®o L generated by Chp(f, K,S) is contained in the ideal generated by

L (f)-

“Our conventions for Hodge-Tate weights are the negative of those in [10].

5The order of the Selmer group for V®¢v_1 is expected to be related to the L-value L(Vv ®
1, 1). This dictates which p-adic L-function should be identified with the characteristic ideal
of Selw (f, K, S), namely, Lf(f).
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This proposition is not explicitly given in [26], however it follows easily
from [26, Th. 1.2], as we explain.

Let 7 be the cuspidal automorphic representation of GLa(Ag) such that
L(m,s —1/2) = L(f,s), and let fp be the ordinary stabilization of the new-
form f. We fix a character ¢y € ¥y with Hodge-Tate weights (—ng,no) with
no > 6. Let 1218 be the associated algebraic Hecke character, and let & = 8w,
where w is the finite order Hecke character of K associated with the Teichmiiller
character (the lift of the mod p reduction of the p-adic cyclotomic character).
Then 7, fo, and & satisfy the hypotheses of [26, Th. 1.2]. (In the notation of
loc. cit., ' is the Galois group of the composite of all Z,-extensions of K = K,
so ' = ZZQ, and I' is a natural quotient of I'x.) It remains to explain how the
conclusion of that theorem (or really its proof) implies the above proposition.
The p-adic L-function £} . € O"[Ix] with ¥ = S from [26, §7.5] is a
two-variable extension of the p-adic L-function considered herein: under the
composition

OY[I'k] Pl pur 'YH%—(VQ_IW A,
/J?m K¢ Maps to Lg (f). Similarly, under the base change from O[I'x] to A given
by this map (that is, tensoring with A over O[I'x]), the Selmer group denoted
Sel%)’,c’g in [26, §2.2] becomes Sels (f, K, S) and X?o,lc,g becomes X (f, K, S).
The proof of [26, Th. 1.2] involves showing that for ¥ = S, the ideal of
O"M[I'k] ®o L generated by the characteristic ideal chaur(g[p,d]X?O’,Cyg is con-
tained in the ideal generated by ﬁ?o,lc,g' The corresponding inclusion of the
ideal of A" ®p L generated by Chy(f, K,S) in the ideal generated by Lf (f)
then follows easily, using that the rings O™ [I'x] and A" are unique factoriza-
tion ideals and the various characteristic ideals are principal (cf. [24, Cor. 3.8]).

We now explain a simple consequence of Ly (f,1) = 0. Let W = M[y—1] =

T ®z, Qp/Zyp, and let

Sely(f, K, 8) = ker { H' (G, W) ™S H'(I,, W)} .
Let also
Xp(fv K7 S) = HomZp(Selp(f» Kv S)a QP/ZP)
Assuming (irrg),
HY Gk 5,W)=H" (G5, M}y —1]) = H (G5, M)[y — 1].

It then follows from the exactness of the bottom row of the commutative
diagram

H'(Gg,5,W) == HY(Ggs, M)[y—1]

res J{ res l

(M5 /(y = 1)MP) 80— HY(Iy, W) %0 —— H(Iy, M)[y — 1%
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(the bottom row comes from the long exact cohomology sequence associated

with the short exact sequence 0 = W — M R VN 0) that Sel,(f, K, S)

is contained in Sely(f, K, S)[y — 1] with finite index, and therefore
(2.7.1) #Xo(f, K,S) =00 <= #(Xuo(f, K,59)/(v — 1) Xx(f, K, S)) = 0.

Suppose Lf(f, 1) = 0. This means Lf(f) € (y — 1), so if the assumptions of
Proposition 2.7.2 also hold, then Chy(f, K,S) C (v — 1). By basic properties
of characteristic ideals, this last inclusion implies

B(Xeol f, K, 8)/ (7 — 1) X (£, K, 8)) = 0.
Combining this with (2.7.1) we conclude
(2.7.2) Ly(f1) =0 = #X,(f,K,S) = .
As HY(K,,V) < HY(I,,V), we have

Hy(K,V) =ker{H"(Gk,s,V) = H'(I,,V)},

from which it follows easily that the image of H, (K, V) in H'(Gg s, W) is the
maximal divisible subgroup of Sel,(f, K, S). Combining this observation with
(2.7.1) and (2.7.2), we conclude that

PROPOSITION 2.7.3. If the hypotheses of Proposition 2.7.2 hold, then
L(f,1)=0 = Hy(K,V)#0.

2.8. An observation about hypothesis (irrg ). We include a simple lemma
on the irreducibility of pf x|, . Consider the hypothesis

(irr) Py is an irreducible Gg-representation.
LEMMA 2.8.1. If (irr) and (res) hold, then so does (irrg).

Proof. Suppose (irr) and (res) hold. Let £ | N be a prime at which py
is ramified. As ¢ || N, the action of I; on V is unipotent and factors through
tame inertia. In particular, if 7 is a topological generator of tame inertia at g,
then pyx(7¢) is unipotent,® hence so, too, is ps(7¢); the latter is a unipotent
element of order a power of p. As TZQ € Gk, it follows that the image of pf x|,
contains a unipotent element of order a power of p. Let k be the residue field
of L. Suppose now that py ) is reducible over k. Then the image of p falag 1s
contained in either a torus (split or non-split) or a Borel of GLa(k). The first
possibility is ruled out as the image contains a unipotent element of order a
power of p; the image of pf x|, is therefore contained in a Borel. But as the
image of Gk is normalized by the image of G, it follows easily that the image
of G is also contained in the Borel, contradicting (irr). O

5This follows from the local-global compatibility satisfied by py, >‘|G@e'
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2.9. Finishing the proof of Theorem B. Let f, p, and K be as in Theo-
rem B. We begin by noting that (sqf), (odd), and (big) hold by hypothesis.
Hypothesis (a) of Theorem B ensures that (flt) and (ord) hold. Hypothesis (b)
is just (irr) and (res) and so (irrx) holds by Lemma 2.8.1, and hypothesis (c)
is just (spl). Hypothesis (e) then implies, by Lemma 2.2.1, that (sgn) holds.
So Propositions 2.7.2 and 2.7.3 apply that if le (K,V) =0, then Lg(f, 1) #0.
Hypothesis (e) also implies, by Lemma 2.3.2, that le(K, V) = 0. Since hy-
pothesis (d) is just (ram), it follows from Corollary 2.6.2 that Px(f) # 0.

The rank of A¢(K) is equal to [My : Q] times the My ,-rank of the free
M -space A¢(K)® Qp, which, by the injection Af(K)® Q, — H} (K, VpAy),
is at most the L-dimension of H'(K,V,Ay) @, L = H}(K, V). The latter
has L-dimension 1 by hypothesis (e). Since Pg(f) # 0,50 A¢(K)® Q # 0, it
follows that rankzAf(K) = [M; : Q. It also follows, by Proposition 2.5.1 and
Corollary 2.5.2, that ords—1 L(f, K,s) = 1 and ords—1 L(A;/K,s) = [M; : Q.

To conclude that II(A;/K) is finite, we first observe that it is enough
to show that both II(A;) and LH(AJI? ) are finite. To show these are finite
we begin by noting that since L(f, K,s) = L(f,s)L(f ® xp,s) has order 1 at
s =1, one of L(f,s) and L(f ® xp,s) has order 1 at s = 1 and the other has
order 0. The finiteness of the Tate-Shafarevich groups then just follows from
the work of Gross, Zagier, and Kolyvagin, as cited in the introduction.

This completes the proof of Theorem B. ([

Remark 2.9.1. We indicate how the various hypotheses of Theorem B
intervene in its proof and make some additional remarks on the theorem and
its proof.

(i) The requirement that N be squarefree is made in [26] and in [6]. (That

N be squarefree at those primes dividing (D, N) is also required in [2]
and [1].)

(ii) The hypothesis that p > 5 comes from [26], where it is imposed for con-
venience.

(iii) The hypothesis that D be odd is made in [2] and [6] as well as [26] (in
which 2 is also required to split in K) and stems from some gaps in our
knowledge of the theta correspondence for local fields of residue charac-
teristic 2.

(iv) The assumption that p { N intervenes most crucially in [2], [1], and [6].
We have also used it to simplify our use of the parity conjecture [18] for
Selmer groups of modular forms (to verify (sgn)).

(v) The hypothesis that f is ordinary at some A | p is only needed to use the
results of [26] and, again, in our appeal to [18]. In particular, f being
ordinary is not crucial for the methods employed herein: if a version of
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Proposition 2.7.2 were available’ for forms with finite non-critical slope,
for example, then all the results of this paper would hold in that case,
provided the corresponding Selmer parity result was also known. (This
is known for elliptic curves with supersingular reduction.)

The hypothesis that py is irreducible is required in [26], as is the hy-
pothesis that py\ is ramified at an odd prime ¢ # p that is either inert
or ramified in K. The latter ensures, among other things, that 7 has a
transfer to a definite unitary group U(2) (that is ramified at ¢) defined
using K; the primary results in [26] relate the p-adic L-function Lf (f)
to the index of an Eisenstein ideal on U(3,1) coming from an Eisenstein
series induced from this cuspform on U(2).

The requirement that p split in K is needed to use the results in [2], [6],
and [26]. Tt also comes into the Galois arguments, especially the proof of
Lemma 2.3.2. It is likely one of the most difficult hypotheses to relax in
the methods employed in this paper.

The hypotheses in (d) for when (D, N) # 1 are needed to appeal to the
results of [2], which requires that ¢,(f, K') = +1 for all primes ¢ | (N, D).

The hypothesis that H }(K , V) is one-dimensional is used to know before-
hand that the root number €(f, K) is —1; that is, (sgn) holds. This is
required for the results in [27], [2], [1], and [6].

The injectivity of the restriction map H}(K,V) = [y, H' (K, V) is
needed to ensure that Hg(K , V) = 0. Conjecturally, it should be enough
that H} (K, V) is one-dimensional, and then the injectivity would follow
from the conclusion that A¢(K) # 0. In [28] Wei Zhang obtains a version
of Theorem B without requiring this injectivity, but at the expense of
requiring certain Tamagawa numbers be indivisible by p.

Many, if not all, of the local hypotheses on m and K can likely be relaxed.
For example, recent work of Y. Liu, S. Zhang, and W. Zhang essentially
establishes the identity in Proposition 2.6.1 in the general Gross—Zagier
set-up of [27] (including over a totally real field).

As recalled in the introduction, the analog of Theorem A for CM elliptic
curves is explained in [22, Ths. 8.1,8.2] as a consequence of Rubin’s proof
of the main conjecture for CM curves, Perrin-Riou’s p-adic Gross—Zagier
formula, and Bertand’s proof of the non-degeneracy of the relevant p-adic
height pairing. It is also possible to give a proof for the CM case along
the lines of the proof of Theorem B by using the Main Conjecture for CM

"Such a result has been announced in a preprint of Wan.



350 CHRISTOPHER SKINNER

forms and the analog of Proposition 2.6.1 for the CM case, which is just
[22, Th. 9.5] or [1, Th. 2].

(xiii) The methods employed to prove Theorem B in this paper can be adapted
to provide an alternative proof of the base case of the induction argu-
ment in [28] that avoids appealing to [24] and so should also work for
supersingular primes (see remark (v)). This is part of forthcoming work.

3. Theorem A follows from Theorem B

Let f and Ay be as in Theorem A. In particular, f is not a CM form.

Consider the set of primes p t N that are greater than 4 and unramified
in My. Suppose that f is not ordinary for all A | p for some such p. Then the
norm of a,(f), which has absolute value at most (2p'/2)[Ms:Q by the Ramanu-
jan bounds, is an integer divisible by p!Mr@ 5o ap(f) = 0. But, as f is not a
CM form, the set of primes with a,(f) = 0 has density zero [23, §7.2, Cor. 2].
Thus the set of primes p { N such that f is ordinary with respect to some A | p
of My has density 1.

If p is sufficiently large, then py  is irreducible for all A | p [20, Th. 2.1].
If for some ¢ | N there were arbitrarily large primes p and primes A | p of My
such that py\ were unramified at ¢, then, by the finiteness of the number of
newforms of weight 2 and level dividing N and by the main result of [21], there
would be a newform g of weight 2 and level prime to ¢ such that f and g would
be congruent modulo primes of arbitrarily large characteristic p, in the sense
that their prime-to-Np coefficients would be congruent. It would then follow
that the prime-to-Np coefficients of f and g would be the same and hence, by
multiplicity one, that f = g, a contradiction. Thus, for sufficiently large p,
pf,x is ramified at all primes that divide N.

By the preceding observations, we may fix a p > 5, pf N, and a A | p such
that Ay is ordinary with respect to A and py ) is irreducible and ramified at
all primes that divide N. The hypotheses that rankzA;(Q) = [M; : Q] and
II(Af)[p>] are finite imply, by the obvious analog of Lemma 2.2.2 with K
replaced by Q, that dimp, H} (Q,V) = 1. It then follows from Nekovéi’s work
on the parity conjecture for Selmer groups of modular forms [18, Th. 12.2.3]
that e(f) = —1.

We choose an imaginary quadratic field K/Q of discriminant D such that

(i) 2 and p split in K (so D is odd and hypothesis (c¢) of Theorem B holds);

(ii) if for some odd prime ¢ the local representation 7y is the twist of the
special representation by the unique unramified quadratic character, then
K is ramified at ¢ but all other prime divisors of N split in K;
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(iii) if there is no 7, as in (ii) but there are two odd primes ¢; and ¢ such
that my, and m,, are special, then ¢; and /¢ are inert in K and all other
prime divisors of N split in K;

(iv) L(f ® xp,1) # 0.

If (i) and (ii) hold, then e(f,K) = —ei(m,K) = —1 (as BCk,(m) is again

the twist of the special representation by the unique unramified quadratic

character and so has root number +1). If (i) and (iii) hold, then €(f, K) =

—e, (7, K)eg, (7, K) = —1 (as BCk, (my,) is again the special representation

and so has root number —1). In particular, for a K satisfying (i), (ii), and (iii)

we always have e(f)e(f @ xp) = e(f, K) = —1, so e(f ® xp) = —€(f) = +1.

It then follows from [9, Th. B] that K can also be chosen to satisfy (iv). Con-

ditions (i), (ii) and (iii) imply that hypotheses (b), (c), and (d) of Theorem B

hold. By the work of Gross, Zagier, and Kolyvagin cited in the introduc-

tion (alternatively, one could appeal to results of Kato [14]) condition (iv)

implies that both A?(@) and HI(AJQ ) are finite, from which it then follows

that rankz Af(K) = [My : Q] and II(As/K)[p*™] is finite. By Lemma 2.2.2,

hypothesis (e) of Theorem B then also holds. As hypothesis (a) holds by the

choice of p and A, we conclude from Theorem B that ords—; L(f, K,s) = 1.

As L(f,K,s) = L(f,s)L(f ® xp,s) and L(f ® xp,1) # 0, it follows that

ords—1L(f,s) = 1.

This completes the proof of Theorem A. O

The deduction of Theorem C from Theorem B is similar: Hypothesis (c)
of Theorem C is easily seen to imply that H}(Q, V)5S H} (Qp,V) = Qp. The
representation E[p] must be ramified at some odd prime ¢ of bad reduction
for E (again by Ribet’s level-lowering results). An appropriate imaginary qua-
dratic field K that is either inert or ramified at ¢ is then chosen, depending on
whether F has split or non-split reduction at £.

4. A remark on the » =0 case

The arguments used to deduce Theorem A from Theorem B can be adapted
to show that if A;(Q) and III(A¢) are finite then L(f,1) # 0. This gives an
alternate proof of a special case of the results in [24] and [25] cited in the
introduction.

THEOREM E. Suppose N is squarefree. If there is at least one odd prime
£ such that 7y is the twist of the special representation by the unique unramified
quadratic character or at least two odd primes {1 and {9 such that my, and m,
are special, then

#A4(Q), #1I(Af) < 0o = ords—1L(f,s) =0.
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The argument is virtually identical to the proof that Theorem B implies

Theorem A. The changes involved are that the hypotheses now imply that
€(f) = +1, and K is chosen to satisfy (i), (ii), (iii), and

(iv)" ords—1 L(f ® xp,s) = 1.

This is possible as €(f ® xp) will equal —1. We then conclude from Theorem B,

much as before, that ords—1 L(f, K,s) = 1, which implies by the choice of K
that L(f,1) # 0.
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