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A converse to a theorem of
Gross, Zagier, and Kolyvagin

By Christopher Skinner

Abstract

Let E be a semistable elliptic curve over Q. We prove that if E has

non-split multiplicative reduction at at least one odd prime or split multi-

plicative reduction at at least two odd primes, then

rankZE(Q) = 1 and #X(E) <∞ =⇒ ords=1L(E, s) = 1.

We also prove the corresponding result for the abelian variety associated

with a weight 2 newform f of trivial character. These, and other related

results, are consequences of our main theorem, which establishes criteria

for f and H1
f (Q, V ), where V is the p-adic Galois representation associated

with f , that ensure that ords=1L(f, s) = 1. The main theorem is proved

using the Iwasawa theory of V over an imaginary quadratic field to show

that the p-adic logarithm of a suitable Heegner point is non-zero.

1. Introduction

Let f ∈ S2(Γ0(N)) be a newform with trivial nebentypus. Associated with

f is an abelian variety Af over Q (really an isogeny class of abelian varieties)

characterized by an equality of the Hasse–Weil L-function L(Af , s) of Af and

the product of the L-functions L(fσ, s) of all the Galois conjugates fσ of f :

L(Af , s) =
∏

L(fσ, s).

The endomorphism ring End0
Q(Af ) is a totally real field Mf of degree equal to

the dimension of Af ; this is naturally identified with the subfield of C generated

over Q by the Hecke eigenvalues of f (equivalently, the Fourier coefficients of

the q-expansion of f at ∞), and so its degree [Mf : Q] is equal to the number

of conjugate forms fσ.

The celebrated Birch–Swinnerton-Dyer conjecture, as formulated for

abelian varieties, predicts that the rank of Af (Q) equals the order of vanishing
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at s = 1 of the L-function L(Af , s):

rankZAf (Q)
?
= ords=1L(Af , s).

The most spectacular result to date in the direction of this conjecture follows

from the combination of the work of Gross and Zagier [11] and Kolyvagin [15]

[16], which together prove the following: Let r = 0 or 1. Then ords=1L(f, s) =

r if and only if ords=1L(Af , s) = [Mf : Q]r, and

ords=1L(f, s) = r =⇒ rankZAf (Q) = [Mf : Q]r and #X(Af ) <∞,

where X(Af ) is the Tate–Shafarevich group of Af (conjecturally always finite).

For r = 0, the converse to this implication was established in [24] (for N not

squarefull) and in [25] (for all N). In the proofs of these converses it is only

needed that the p-primary part X(Af )[p∞] be finite for a sufficiently large

prime p such that f is ordinary with respect to some prime λ | p of Mf . In

particular, if Af is a semistable elliptic curve, then it suffices to take p ≥ 11 of

good, ordinary reduction.

For r = 1 and Af an elliptic curve having complex multiplication, a con-

verse to the above implication is a consequence of the combination of results

of Rubin, Bertrand, and Perrin-Riou; this is explained in Theorems 8.1 and

8.2 of [22]. In this paper we prove a converse for the r = 1 case for those Af
with N squarefree. If N is squarefree, then Af does not have complex multi-

plication, so the cases covered by the theorems in this paper are disjoint from

those covered by the results recalled in [22].

Let π = ⊗πv be the cuspidal automorphic representation of GL2(A) such

that L(π, s− 1/2) = L(f, s) (so N is the conductor of π).

Theorem A. Suppose N is squarefree. If there is at least one odd prime

` such that π` is the twist of the special representation by the unique unramified

quadratic character or at least two odd primes `1 and `2 such that π`1 and π`2
are special, then

rankZAf (Q) = [Mf : Q] and #X(Af ) <∞ =⇒ ords=1L(f, s) = 1.

The hypotheses on the local representations can also be formulated in

terms of the eigenvalues of the Atkin–Lehner involutions w` acting on f : either

there is at least one odd prime ` such that the eigenvalue of w` is +1 or there

are at least two odd primes `1 and `2 such that the eigenvalues of w`1 and w`2
are both −1.

Since every elliptic curve over Q is modular, Theorem A can be restated

in this case to read

Theorem A′. Suppose E is a semistable elliptic curve over Q. If there

is at least one odd prime at which E has nonsplit multiplicative reduction or



A CONVERSE TO A THEOREM OF GROSS, ZAGIER, AND KOLYVAGIN 331

at least two odd primes at which E has split multiplicative reduction, then

rankZE(Q) = 1 and #X(E) <∞ =⇒ ords=1L(E, s) = 1.

As the hypotheses on E(Q) and X(E) ensure that the root number of

E is −1 (by, for instance, Nekovář’s results toward the parity conjecture), the

hypotheses on the reduction types in Theorem A′ only exclude those semistable

curves that have conductor equal to 2` with ` an odd prime and that have

split reduction at both 2 and `. However, showing that a positive proportion

of semistable elliptic curves E, when ordered by height for example, satisfy the

hypotheses of Theorem A′ with rankZE(Q) = 1 and #X(E) <∞ remains an

open and interesting problem.

Our proof of Theorem A is similar in spirit to those of Theorems 8.1

and 8.2 of [22] insofar as it is essentially p-adic. We deduce Theorem A from

Theorem B below, which gives a p-adic criterion for Af to have both algebraic

and analytic rank [Mf : Q] over an imaginary quadratic field. However, unlike

the proofs in [22], our proof of this criterion does not make use of a p-adic

Gross–Zagier formula for the derivative of a p-adic L-function or require non-

degeneracy of p-adic heights. Instead it uses a formula expressing the value of

a p-adic L-function in terms of the formal log of a rational point on Af .

Let p be a prime and λ | p a prime of Mf . Let L = Mf,λ. Let ρf,λ :

Gal(Q/Q) → AutL(V ) be the usual two-dimensional Galois representation

associated with f and let ρ̄f,λ be its residual representation (the semisimplifi-

cation of the reduction of a Galois stable lattice in V ).

Theorem B. Suppose N is squarefree and p ≥ 5. Let K be an imaginary

quadratic field with odd discriminant D. Suppose

(a) p - N and f is ordinary with respect to λ;

(b) ρ̄f,λ is irreducible and ramified at an odd prime that is either inert or

ramified in K ;

(c) both 2 and p split in K ;

(d) if (D,N) 6= 1, then for each ` | (D,N), π` is the twist of the special rep-

resentation by the unique unramified quadratic character, and each prime

divisor of N/(D,N) splits in K ;

(e) dimLH
1
f (K,V ) = 1 and the restriction H1

f (K,V )
res→

∏
v|pH

1
f (Kv, V ) is an

injection.

Then ords=1L(f,K, s) = 1, rankZAf (K) = [Mf : Q] = ords=1L(Af/K, s), and

X(Af/K) is finite.

Here H1
f (K,V ) and H1

f (Kv, V ) are, respectively, the global and local

Bloch–Kato Selmer groups. Also, L(Af/K,s) and X(Af/K) are the L-function

and the Tate–Shafarevich group of Af/K, and L(f,K,s) = L(f, s)L(f ⊗χD, s)
with χD the quadratic character associated with K.
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The deduction of Theorem A from Theorem B, which is explained in

more detail in Section 3, goes as follows: As f is not a CM form (since N

is squarefree), condition (a) holds for some λ | p for a set of primes p of

density one, while ρ̄f,λ is irreducible if p is sufficiently large, in which case

it follows from Ribet’s work on level-lowering that ρ̄f,λ is ramified at some

odd prime q 6= p and even, for p sufficiently large, ramified at all primes

q || N . Fix such a p and λ. From the hypotheses on π` in Theorem A it

then follows that an imaginary quadratic field K can be chosen so that its

discriminant D is odd; (b), (c), and (d) hold; and L(ADf , 1) 6= 0, where ADf
is the K-twist of Af . As L(ADf , s) =

∏
L(fσ ⊗ χD, s), the existence of a

K with the desired properties follows from [9]. From the non-vanishing of

L(ADf , 1) it follows that ADf (Q) and X(ADf ) are finite. Together with Af (Q)

having rank [Mf : Q] and X(Af ) being finite, this implies that Af (K) has

rank [Mf : Q] and X(Af/K) is finite, which in turn imply (e). It then follows

from Theorem B that ords=1L(Af/K, s) = [Mf : Q] and ords=1L(f,K, s) = 1.

As L(Af/K, s) = L(Af , s)L(ADf , s) and L(f,K, s) = L(f, s)L(f ⊗ χD, s), it

follows that ords=1L(Af , s) = [Mf : Q] and ords=1L(f, s) = 1.

As the deduction of Theorem A from Theorem B shows, the hypothesis

that X(Af ) is finite can be replaced with X(Af )[p∞] finite for some suitable

prime p. It is even possible to formulate conditions on the λ-Selmer group of

Af/K that ensure that hypothesis (e) of Theorem B holds, from which one

can deduce, for example,

Theorem C. Let E be a semistable curve over Q such that there is at

least one odd prime at which E has nonsplit multiplicative reduction or at least

two odd primes at which E has split multiplicative reduction. Suppose there is

a prime p ≥ 5 at which E has good, ordinary reduction and such that

(a) E[p] is an irreducible Gal(Q/Q)-representation ;

(b) Selp(E) ∼= Z/pZ;

(c) the image of the restriction map Selp(E)→ E(Qp)/pE(Qp) does not lie in

the image of E(Qp)[p].

Then ords=1L(E, s) = 1 = rankZE(Q) and #X(E) <∞.

It is through similar variations that Theorem B plays a crucial role in a

recent proof that

Theorem D (Bhargava–Skinner [3]). When ordered by height, a positive

proportion of elliptic curves has both algebraic and analytic rank one.

To explain how to pass from the hypotheses of Theorem B to its conclu-

sion, we begin by recalling the Gross–Zagier formula. It follows from hypothesis

(e) and the parity conjecture for Selmer groups of p-ordinary modular forms
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[18] that the sign of the functional equation of L(f,K, s) is −1. It then follows

from the general Gross–Zagier formula of X. Yuan, S. Zhang, and W. Zhang [27]

that Af is a quotient of the Jacobian of some Shimura curve (possibly a modu-

lar curve) such that the Néron–Tate height of the image PK(f) ∈ Af (K)⊗Mf

of a certain 0-cycle on the curve (essentially a Heegner cycle) is related to

L′(f,K, 1) by

〈PK(f), PK(f)〉 .
= L′(f,K, 1),

where 〈·, ·〉 is the Néron–Tate height-pairing (relative to some symmetric ample

line bundle) and “
.

=” denotes equality up to a non-zero constant (which de-

pends on f and the line bundle). So if we expect to prove that ords=1L(f,K, 1)

= 1, then we should expect to prove that the height of PK(f) is non-zero or,

equivalently, that PK(f) 6= 0. If PK(f) 6= 0, then (e) together with the general

Gross–Zagier formula and the work of Kolyvagin implies the conclusions of

Theorem B. We establish Theorem B by proving that PK(f) 6= 0.

To show that PK(f) 6= 0 we do not directly show that its height is non-

zero. Instead we show that its formal logarithm at a prime of K above p does

not vanish, which is sufficient for our purposes. To do this we make use of

p-adic analogs of the Gross–Zagier formula, proved by Bertolini, Darmon, and

Prasanna and Brooks, which are analogs of a formula proved by Rubin [22] in

the CM case. Recall that p = pp̄ splits in K and that D is odd. As explained

in [2] and [6] there is a p-adic L-function LSp (f, χ), a function of certain p-adic

anti-cyclotomic Hecke characters χ of K, such that

LSp (f, 1)
.

= (logω PK(f))2,

where logω : Af (Kp)⊗L→ Kp is the formal logarithm, determined by a certain

1-form ω ∈ Ω1(Af ) ⊗Mf , and “
.

=” again denotes equality up to a non-zero

constant. Our aim then is to show that LSp (f, 1) 6= 0 under the hypotheses of

Theorem B. Our method for doing so is via Iwasawa theory.

Iwasawa theory conjecturally relates the p-adic L-function LSp (f, χ) to the

characteristic ideal of a certain p-adic Selmer group. One consequence of such

a relation would be the implication

LSp (f, 1) = 0 =⇒ H1
p (K,V ) 6= 0,

whereH1
p (K,V )⊂H1(K,V ) is the subspace of classes that vanish inH1(Kw, V )

for all places w 6= p̄. However, hypothesis (e) of Theorem B ensures that

H1
p (K,V ) = 0, so it would follow from this implication that LSp (f, 1) 6= 0

and hence that PK(f) is non-torsion. Our strategy for proving Theorem B

ultimately reduces to the above implication. The desired result from Iwasawa

theory is part of recent work of Wan [26], following the methods of [24], un-

der certain hypotheses on f , p, and K. The conditions (a)–(d) of Theorem B

ensure that these hypotheses hold.
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Following the proof of Theorem B, we include remarks emphasizing where

in the arguments the various hypotheses intervene, with an eye toward future

developments that should remove many of them. We then elaborate on the

deduction of Theorem A from Theorem B and explain how similar arguments

can be applied to the r = 0 case, giving an alternate proof of a special case of

the results in [24] and [25].

After the first version of this paper was completed, Wei Zhang released a

preprint (since published as [28]) in which he proves many cases of a conjecture

of Kolyvagin, showing that the p-adic Selmer group of Af is often spanned by

classes derived from Heegner points. As a consequence Zhang obtains a theo-

rem similar to Theorem B. This theorem does not require the restriction map

at primes above p be injective (the second half of hypothesis (e) of Theorem B)

but crucially requires that the Tamagawa factors at the primes that split in

K or are congruent to ±1 modulo p be indivisible by p. Theorem B imposes

no hypotheses on Tamagawa factors. While there is substantial overlap in the

cases covered by Theorem B and the results of [28], neither subsumes the other.

The proof of the main result in [28] also relies on Iwasawa theory, in this case

on consequences of the Main Conjecture for GL2 proved in [24].
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for helpful conversations. This work was partially supported by grants from

the National Science Foundation, including DMS-0701231 and DMS-0758379.
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the School of Mathematics at the Institute for Advanced Study.

2. The proof of Theorem B

Let Q be an algebraic closure of Q and K/Q an imaginary quadratic field

in Q. Fix an embedding Q ↪→ C. This determines a complex conjugation

c ∈ GQ = Gal(Q/Q), which induces the non-trivial automorphism on K. For

each prime l of K, let K l be an algebraic closure of Kl and fix an embedding

Q ↪→ K l; the latter realizes GKl
= Gal(K l/Kl) as a decomposition subgroup

for l in GK = Gal(Q/K). Let Il ⊂ GKl
be the inertia subgroup. Let Fl be the

residue field of Kl and Fl the residue field of K l (so Fl is an algebraic closure

of Fl); there is then a canonical isomorphism GKl
/Il

∼→ GFl
= Gal(Fl/Fl).

Let p be an odd prime.

2.1. Modular forms and abelian varieties. Let f ∈ S2(Γ0(N)) be a new-

form with trivial Nebentypus. Let Mf be the subfield of C generated by the

Hecke eigenvalues of f (equivalently, the Fourier coefficients of the q-expansion

of f at the cusp∞); this is a totally real number field, and the fixed embedding

Q ↪→ C identifies Mf with a subfield of Q.
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A construction of Eichler and Shimura associates with f an abelian variety

Af over Q of dimension [Mf : Q] and such that End0
Q(Af ) is naturally identified

with Mf and characterized (up to isogeny) by

L(Af , s) =
∏

σ:Mf ↪→C
L(fσ, s),

where fσ is the conjugate of f ; that is, the newform in S2(Γ0(N)) whose

q-expansion at ∞ has coefficients obtained by applying σ to those of f .

Let TpAf be the p-adic Tate-module of Af , and let VpAf = TpAf ⊗Zp Qp.

Let λ be a prime of Mf above p, let Mf,p = Mf ⊗ Qp, and let L be a finite

(field) extension of Mf,λ. Then

V = VpAf ⊗Mf,p
L

is a two-dimensional L-space with a continuous, L-linear GQ-action, which

we denote by ρf,λ. It is potentially semistable at p, unramified at ` - Np,
and such that V ∨ ∼= V (−1) (the −1-Tate twist of V ). Furthermore, if we

fix an embedding L ↪→ C that agrees with the inclusion Mf ↪→ C, then1

L(V ∨, s) = L(f, s).

Recall that f is ordinary with respect to λ if the eigenvalue ap(f) of the

action on f of the Hecke operator Tp, or Up if p | N (equivalently, the pth

Fourier coefficient of the q-expansion at ∞), is a unit at λ — that is, if ap(f)

is a unit in the ring of integers of L.

By the K-twist of Af we mean the abelian variety ADf over Q obtained by

twisting by the cocycle in H1(Q,AutQAf ) defined by the quadratic character

χD : GQ → {±1} ⊂ AutQAf associated with K (so GK is the kernel of χD).

Then
VD = VpA

D
f ⊗Mf,p

L ∼= V ⊗ χD
as continuous L-linear representations of GQ and2

L(ADf , s) =
∏

σ:Mf ↪→C
L(fσ ⊗ χD, s).

The natural map Af×ADf → ResK/QAf is a Q-isogeny with kernel and cokernel

annihilated by 2.

Let ε(f) ∈ {±1} be the sign of the functional equation of L(f, s). Let

L(f,K, s) = L(f, s)L(f ⊗ χD, s).

The sign of the functional equation of L(f,K, s) is then ε(f,K)=ε(f)ε(f⊗χD).

1Our conventions for L-functions of potentially semistable Galois representations of GQ

or GK are geometric: the local Euler factors are defined using the characteristic polynomials

of geometric Frobenius elements.
2For convenience we will identify the Galois character χD with the quadratic Dirichlet

character of the same conductor.
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Let π = ⊗πv be the cuspidal automorphic representation of GL2(A) such

that L(π, s − 1/2) = L(f, s). Then L(f,K, s) = L(BCK(π), s − 1/2), where

BCK(π) is the base change of π to an automorphic representation of GL2(AK).

For a prime l | ` of K over `, we also write BCKl
(π`) for the base change of π`

to an admissible representation of GL2(Kl); so BCKl
(π`) is the l-constituent

of BCK(π).

Let ε(π,K) = ε(BCK(π), 1/2) be the global root number of BCK(π).

Similarly, for a prime `, let ε`(π,K) =
∏

l|` ε(BCKl
(π`), 1/2) be the product of

the local root numbers. Then

ε(f,K) = ε(π,K) = −
∏
l

ε(BCKl
(π`), 1/2) = −

∏
`

ε`(π,K).

If ` splits in K, then ε`(π,K) = ε(π`, 1/2)2 = +1 since BCKl
(π`) ∼= π`, so the

local contribution to the global sign ε(f,K) comes only from primes that are

inert or ramified in K. Furthermore, if π` is the special representation σ`, then

ε`(π,K) = −1 if ` is inert or ramified as there is then only one prime l of K

above ` and BCKl
(σ`) is the special representation. And if π` is the twist σ`⊗ξ`

of the special representation by the unique unramified quadratic character ξ`,

then ε`(π,K) = −1 if ` is inert, as BCKl
(π`) is then the special representation,

and ε`(π,K) = +1 if ` is ramified, as BCKl
(π`) is then the twist of the special

representation by the unique unramified quadratic character of Kl. Here we

have used that the root number of the special representation is −1 and the root

number of the twist of the special representation by the unramified quadratic

extension is +1; [17] and [13, Props. 3.5 and 3.6] are useful references for these

and other facts about epsilon factors and root numbers.

2.2. Selmer groups. Bloch and Kato [4] (see also [8]) defined Selmer groups

for geometric p-adic Galois representations. For the representation V , this

Selmer group is

H1
f (K,V ) = ker{H1(K,V )

res→
∏
l

H1(Kl, V )/H1
f (Kl, V )},

where H1
f (Kl, V ) = ker{H1(Kl, V )→ H1(Kl, Bcris⊗Qp V )}, with Bcris the ring

of crystalline periods, if l | p, and H1
f (Kl, V ) = H1(Fl, V

Il) if l - p. By Tate’s

local Euler characteristic formula and local duality, if l - p, then

dimLH
1(Kl, V ) = dimLH

0(Kl, V ) + dimLH
2(Kl, V ) = 2 dimLH

0(Kl, V ),

where we have used V ∼= V ∨(1)) in the second equality. If follows from the

local-global compatibility of V with π` that H0(Kl, V ) = V GKl = 0 (cf. [19,

Lemma 3.1.3]), whence H1
f (Kl, V ) = H1(Kl, V ) = 0.

Let S be any finite set of primes containing those at which V is ramified

(so those dividing pN), and let GK,S be the Galois group over K of the maximal
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extension of K in Q that is unramified outside the prime ideals dividing those

in S. Since H1(Kl, V ) = 0 if l - p,

H1
f (K,V ) = ker{H1(GK,S , V )

res→
∏
l|p

H1(Kl, V )/H1
f (Kl, V )}.

The same definitions can, of course, be made with V replaced by VD as

well as with K replaced by Q and the primes l replaced with rational primes `.

Then the restriction map from GQ = Gal(Q/Q) to GK induces identifications

H1
f (Q, V )⊕H1

f (Q, VD)
∼→ H1

f (K,V ).

The Galois group Gal(K/Q) acts on the right-hand side above, and the left-

hand side is identified with the decomposition into the sum of the subgroups

on which Gal(K/Q) acts trivially and non-trivially, respectively.

Lemma 2.2.1. Suppose p - ND and f is ordinary with respect to λ | p. If

dimLH
1
f (K,V ) is odd, then ε(f,K) is −1.

Proof. Since

dimLH
1
f (K,V ) = dimLH

1
f (Q, V ) + dimLH

1
f (Q, VD)

is odd, one of dimLH
1
f (Q, V ) and dimLH

1
f (Q, VD) is odd and the other is

even. It then follows from the parity conjecture for the Selmer groups of

modular forms that are ordinary at λ, proved by Nekovář [18, Th. 12.2.3],

that one of the signs ε(f) and ε(f ⊗ χD) is −1 and the other is +1. Then

ε(f,K) = ε(f)ε(f ⊗ χD) = −1. �

Connections with the Selmer group of Af . Recall that the p∞-Selmer

group of Af/K is

Selp∞(Af/K) = ker{H1(K,Af [p∞])
res→

∏
l

H1(Kl, Af (K l))}

and the p-primary part of the Tate–Shafarevich group of Af/K is

X(Af/K)[p∞] = ker{H1(K,Af (Q))[p∞]
res→

∏
l

H1(Kl, Af (K l))}

and that these sit in the fundamental exact sequence:

0→ Af (K)⊗Qp/Zp → Selp∞(Af/K)→X(Af/K)[p∞]→ 0.

Let W = VpAf/TpAf = Af [p∞] (the last identification being (xn) ⊗
1
pm 7→ xm). Then Selp∞(Af/K) consists of those classes with restriction at

each prime l in the image H1
f (Kl,W ) of the Kummer map Af (Kl)⊗Qp/Zp ↪→

H1(Kl,W ). Bloch and Kato proved that this subgroup is just the image of

H1
f (Kl, VpAf ) in H1(Kl,W ), where H1

f (Kl, VpAf ) is defined just as H1
f (Kl, V ).

(Note that H1(Kl, VpAf ), H1
f (Kl, VpAf ), and H1

f (Kl,W ) are all 0 if l - p.) In
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particular, if S is a finite set of primes of K containing all those that divide

pN , then Selp∞(Af/K) ⊂ H1(GK,S ,W ) consists of those classes with restric-

tion to H1(Kl,W ) belonging to H1
f (Kl,W ) for all l ∈ S. As the image of

H1(GK,S , VpAf ) in H1(GK,S ,W ) is the maximal divisible subgroup (and has

finite index), it follows that the maximal divisible subgroup of Selp∞(Af/K)

is the image in H1(K,W ) of the characteristic zero Bloch–Kato Selmer group

H1
f (K,VpAf ).

The projective limit of the Kummer maps for the multiplication by pn-

maps yields an injection

Af (K)⊗Qp ↪→ H1
f (K,VpAf )

that is compatible with the fundamental exact sequence, so the cokernel has

Qp-dimension equal to the corank of X(Af/K)[p∞].

The connection with H1
f (K,V ) is just

H1
f (Kl, V ) = H1

f (Kl, VpAf )⊗Mf,p
L and H1

f (K,V ) = H1
f (K,VpAf )⊗Mf,p

L,

from which, together with the fact that Af (K)⊗Qp is a free Mf,p-module, we

deduce

Lemma 2.2.2. If rankZAf (K) = [Mf : Q] and #X(Af/K)[p∞] < ∞,

then dimLH
1
f (K,V ) = 1 and the restriction map H1

f (K,V )
res→ H1(Kl, V ) is

an injection for each l | p.

2.3. More Galois cohomology. Let S be any finite set of primes containing

those dividing pN , and let

H i(Kp, V ) =
∏
l|p

H i(Kl, V )

and

H1
str(K,V ) = ker{H1(GK,S , V )

res→ H1(Kp, V )}.

Note that H1
str(K,V ) (often called the “strict” Selmer group of V ) is indepen-

dent of S.

Lemma 2.3.1. dimL im{H1(GK,S , V )
res→ H1(Kp, V )} = 2.

Proof. By Tate global duality, H1
str(K,V ) is dual to H2(GK,S , V ) (here

we are using that H1(Kl, V ) = 0 if l - p and H2(Kl, V ) = 0 for all l), so

dimLH
1(GK,S , V )−dimLH

1
str(K,V )

= dimLH
1(GK,S , V )− dimLH

2(GK,S , V )

= 2,

the last equality following from H0(GK,S , V ) = 0 and Tate’s formula for the

global Euler characteristic. �
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Suppose that p splits in K:

p = pp̄.

Let

H1
p (K,V ) = ker{H1(GK,S , V )

res→ H1(Kp, V )},
and let H1

p̄ (K,V ) be defined similarly; these are independent of the finite set S.

Lemma 2.3.2. If dimL im{H1
f (K,V )

res→ H1
f (Kp, V )} = 1, then

H1
p (K,V ) = H1

str(K,V ) = H1
p̄ (K,V ).

If also dimLH
1
f (K,V ) = 1, then H1

p (K,V ) = H1
str(K,V ) = H1

p̄ (K,V ) = 0.

Proof. By Lemma 2.3.1, the image X of H1(GK,S , V ) in H1(Kp, V ) is

two-dimensional over L. Let Xp and Xp̄ be the respective images of H1
p (K,V )

and H1
p̄ (K,V ) in H1(Kp, V ); the action of the non-trivial automorphism c of

K swaps Xp and Xp̄. Let Xf be the image of H1
f (K,V ) in H1(Kp, V ); this is

stable under c and one-dimensional by hypothesis.

Suppose Xp 6= 0. Then Xp̄ 6= 0 and X = Xp ⊕Xp̄, from which it follows

that X = X+ ⊕ X− with X± = {x ± c(x) : x ∈ Xp}, and X± is one-

dimensional. Then Xf equals X+ or X−. But it then follows that Xp ⊂
H1
f (Kp̄, V ) and Xp̄ ⊂ H1

f (Kp, V ) and hence that Xf is two-dimensional, a

contradiction. Therefore, Xp = 0 = Xp̄.

If also dimLH
1
f (K,V ) = 1, then H1

str(K,V ) = 0, whence the final conclu-

sion. �

2.4. The Heegner points PK(f). We consider two cases:

I. Every prime ` | N either splits or ramifies in K.

II. N = N−N+ with N− a nontrivial product of an even number of primes

that are inert in K and N+ is the product of primes that split in K (in

particular, (D,N) = 1).

Suppose first that f and K are as in Case I. Let T be the Hecke algebra

generated over Z by the usual Hecke operators T`, for primes ` - N , acting on

the space of cuspforms S2(Γ0(N)). Let TMf
= T ⊗Mf , and let εf ∈ TMf

be

the idempotent corresponding to the projection TMf
� Mf sending T` to the

eigenvalue a`(f) of its action on the newform f . Let pf = ker εf |T.

Let X = X0(N) be the modular curve over Q. Then f determines a

differential ωf ∈ Ω1(X) ⊗ C = Ω1(X(C)): the pullback of ωf to the upper

half-plane via the usual complex uniformization of X(C) is 2πif(τ)dτ . The

operator T` can also be viewed as acting via a correspondence on X such

that T` · ωf = ωT`·f = a`(f) · ωf . The induced action of the T`’s on the

Jacobian J(X) of X realizes T as a subring of EndQ(J(X)), and ωf is a basis

for the one-dimensional Mf space εf (Ω1(J(X))⊗Mf ) (where we have identified
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Ω1(X) = Ω1(J(X)) in the usual way). The abelian variety Af is just the

quotient Af = J(X)/pfJ(X), and we let φ : J(X)→ Af be the quotient map.

We let ω ∈ Ω1(Af )⊗Mf be the 1-form such that φ∗ω = ωf .

Let OK be the integer ring of K and n ⊂ OK an ideal of norm N ; this

is possible by the hypothesis that each prime ` | N either splits or ramifies

in K. The degree N isogeny C/OK → C/n−1 (the canonical projection) of

CM elliptic curves is cyclic since N is square free (in particular, `2 - N if `

ramifies in K) and defines a point P ∈ X(H) on X over the Hilbert class

field H of K. Let DK =
∑

σ∈Gal(H/K) P
σ ∈ Div(X). For ` - N , let DK,` =

(T`− 1− `) ·DK ∈ Div0(X) (the degree of the correspondence T` is `+ 1). Let

QK(f) = 1
a`(f)−1−`εf · [DK,`] ∈ J(X)(K)⊗Mf . This is independent of ` since

εf · T` = a`(f) · εf in TMf
. Put

PK(f) = φ(QK(f)) ∈ Af (K)⊗Mf .

For the purposes of comparison with other constructions, we also consider

D0
K = DK − #Gal(H/K) · ∞ ∈ Div0(X), where ∞ ∈ X(Q) is the usual

cusp at infinity, and Q0
K = [D0

K ] =
∑

σ∈Gal(H/K)[P − ∞]σ ∈ J(X)(K). As

T` · ∞ = (1 + `) · ∞ (that is, the cusps are Eisenstein), εf · Q0
K = QK(f).

Similarly, if ξ ∈ Div(X)⊗Q is the normalized, degree one Hodge divisor defined

in [27, §§1.2.2, 3.1.3], we let Dξ
K = DK −#Gal(H/K) · ξ ∈ Div0(X)⊗Q and

QξK = [Dξ
K ] =

∑
σ∈Gal(H/K)[P − ξ]σ ∈ J(X)(K) ⊗ Q. It follows directly from

the expression in [27, §3.1.3] for the Hodge divisor in terms of the canonical

divisor that ξ is also Eisenstein, so εf ·QξK = QK(f).

In Case II we let X be the Shimura curve over Q associated with the

indefinite quaternion algebra B of discriminantN− and an Eichler orderOB,N+

of level N+ in a maximal order OB of B. Let K ↪→ B be an embedding such

that K∩OB,N+ = OK . Replacing f with its Jacquet-Langlands transfer fB to

the space of weight 2 cuspforms for the subgroup determined by OB,N+ (and

normalized as in [6, §2.8] to be defined over Mf ) and n by an integral ideal n+

of K with norm N+, there are constructions analogous to those yielding QK(f)

and PK(f) in Case I that in this case yield QK(f) = QK(fB) ∈ J(X)(K)⊗Mf

and PK(f) = PK(fB) ∈ Af (K)⊗Mf . We can also define QξK in this case, and,

just as in Case I, εf ·QξK = QK(f).

2.5. The Gross–Zagier theorem. We recall a consequence of a special case

of the general Gross–Zagier formula of Yuan, Zhang, and Zhang [27].

Consider the following hypotheses:

(sqf) N is squarefree,

(sgn) ε(f,K) = −1.
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As the central character of π is trivial, the first of these hypotheses implies that

for each ` | N , π` is either σ` or σ` ⊗ ξ`, where σ` is the special representation

and ξ` is the unramified quadratic character of Q×` . The second implies that

that the number of primes ` | N for which ε`(π,K) = −1 is even. In particular,

if (D,N) = 1 then, since ε`(π,K) = +1 if ` splits in K and ε`(π,K) = −1 if

` | N is inert in K, the number of prime divisors of N that are inert in K is

even.

Consider the additional hypothesis:

(ram)
If (D,N) 6= 1, then π` ∼= σ`⊗ ξ` for each ` | (D,N), and each

` | N
(D,N) splits in K.

If (sqf), (sgn), and (ram) hold, then f and K are as in either Case I or Case

II of Section 2.4.

Proposition 2.5.1 ([27]). Suppose (sqf), (sgn), and (ram) hold. If PK(f)

6= 0, then ords=1L(f,K, s) = 1.

We explain how Proposition 2.5.1 follows from the main result of [27]. Let

ι : Mf ↪→ C be the identity map. We first note that PK(f) = hK ·P (f1)ι, where

hK = #Gal(H/K) and P (f1) ∈ Af (K) is associated to the homomorphism

f1 = φ : J(X) → Af and the point P ∈ X(H) as in [27, §3.2.5]. Let L
be a symmetric, ample line bundle on Af and λ : Af → A∨f the associated

polarization. Then λ(PK(f)) ∈ A∨f (K) ⊗ Mf is just the point hK · P (f2)ι

as in loc. cit. with f2 = λ ◦ φ : J(X) → A∨f . Let 〈·, ·〉L be the Néron–Tate

height-pairing on Af (K) associated with the line bundle L, and let 〈·, ·〉NT be

the canonical height pairing on Af (K)⊗ R×A∨f (K)⊗ R. Then

〈PK(f), PK(f)〉L = 〈PK(f), λ(PK(f)〉NT = h2
K〈P (f1)ι, P (f2)ι〉NT

=
h2
Kζ(2)L′(f,K, 1) · (f1 ◦ f∨2 )ι

4L(χD, 1)2L(Sym2f, 2)vol(X)
,

where f1 ◦ f∨2 ∈ End0
Q(Af ) = Mf . The last equality is just [27, Th. 3.13]. As

PK(f) 6= 0 if and only if 〈PK(f), PK(f)〉L 6= 0, the proposition follows.

If PK(f) =
∑
P ⊗ rP with P running over a basis of Af (K) ⊗ Q and

rP ∈ Mf , then for any σ : Mf ↪→ R, PK(fσ) =
∑
P ⊗ σ(rP ). So PK(f) 6= 0

if and only if PK(fσ) 6= 0 for all σ. Appealing to the above proposition for all

the Galois conjugates fσ of f we deduce

Corollary 2.5.2. If PK(f) 6= 0, then ords=1L(Af/K, s) = [Mf : Q].

2.6. A p-adic L-function and a formal log of PK(f). As described in the

introduction, our proof that Pf (K) 6= 0, and hence of Theorem B, hinges on

an identity expressing the value of a certain p-adic L-function as a non-zero
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multiple of the square of a formal logarithm of PK(f). We now recall this

L-function and identity.

Let K∞/K be the anticyclotomic Zp-extension of K; so Γ = Gal(K∞/K)
∼= Zp and conjugation by c sends γ ∈ Γ to γ−1. Let Ψ : GK � Γ be the

canonical projection. We continue to assume that p = pp̄ splits in K.

We also assume that λ is the prime of Mf determined by the fixed embed-

ding Q ↪→ Kp. And for the purposes of p-adic interpolation and comparisons

with complex values, we fix an embedding Kp ↪→ C such that induced complex

embedding of Q is just the fixed one.

Given a continuous character ψ : Γ → Q×p we consider ψ to be a Ga-

lois character via composition with the projection Ψ. We say that such a

ψ is Hodge–Tate if ψ is Hodge–Tate as a representation of both GKp and

GKp̄ . As ψ is anticyclotomic (that is, ψ(c−1gc) = ψ(g)−1), ψ is Hodge–Tate

if and only if it is Hodge–Tate as a representation of one of GKp and GKp̄ ;

the respective Hodge–Tate weights must be −n and n for some integer n,

and in this case we say that ψ is Hodge–Tate of weight (−n, n). The Ga-

lois character ψ is the p-adic avatar of a unitary algebraic Hecke character

ψalg of K with infinity type znz̄−n. The character ψalg : A×K → C× is given

by ψalg((xv)) = x−np xnp̄x
n
∞x̄
−n
∞ · ψ ◦ recK((xv)), where recK : K×\A×K → GabK

is the reciprocity map of class field theory, which we normalize so that uni-

formizers correspond to geometric Frobenius elements. In particular, there is

an equality of L-functions L(ψalg, s) = L(ψ, s). The characters ψ and ψalg

are unramified at all places not dividing p. Let Σc
p be the set of crystalline

characters ψ : Γ→ Q×p of weight (−n, n) with n > 0 and n ≡ 0 mod p− 1; the

crystalline condition is equivalent to ψalg being unramified at p and p̄.

Suppose in addition to (sqf), (sgn), and (ram) that

(flt) p - N,

(odd) D is odd,

(L-lrg) L contains a large enough3 finite extension of Qp.

Let S = {` | pND}. Let O be the ring of integers of L, and let Our be the ring

of integers of the completion of the maximal unramified extension Lur of L.

There is an anticyclotomic p-adic L-function LSp (f) ∈ Our[[Γ]] such that for

ψ ∈ Σc
p,

ψ(LSp (f)) = C(f,K)w(f, ψ)e∞(f, ψ)ep(f, ψ)Ωp(ψ)
LS(f, ψalg, 1)

Ω(ψalg)
,

3It is enough that L contain the image of the Hilbert class field of K, though this is not

important here.
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where

• LS(f, ψalg, s) = LS(V ∨ ⊗ ψ, s) is the L-function with the Euler factors at

the primes of K dividing the primes in S omitted;

• Ω(ψalg) = (2πi)−2n−1(2π)1−2nΩ4nDn−1/2, with Ω a period of an elliptic

curve E0 with CM by the ring of integers of K;

• Ωp(ψ) = Ω4n
p with Ωp a p-adic period for the elliptic curve E0;

• e∞(f, ψ) = 4(2π)−2n−1Γ(n)Γ(n+ 1);

• ep(f, ψ) =
(1−ap(f)ψalg(p̄)p−1+ψalg(p̄)2p−1)
(1−ap(f)ψalg(p)p−1+ψalg(p)2p−1)

, where ap(f) is the eigenvalue for

the action of the Hecke operator Tp on f ;

• w(f, ψ) = ψ(W ) for a unit W ∈ Our[[Γ]]× and w(f, 1) = wK , the number of

roots of unity in K;

• C(f,K) is some non-zero constant depending on f and K.

For any ψ, we write LSp (f, ψ) for ψ(LSp (f)).

If there exists a prime ` | N that is inert or ramified in K, then this p-adic

L-function is constructed in [7] and in [26]. It has been constructed more gen-

erally in [2], [6], and [5]. It can be related to a specialization of a three-variable

L-function constructed by Hida [12]. (This is done in [26].) To be precise, the

functions constructed in [2] and [6] are a priori only continuous on Γ. That

they belong to the Iwasawa algebra (which follows from the constructions in

[7] and [26]) requires additional argument, essentially extending the formulas

to characters ramified at primes above p as is done in [5].

For ψ∈Σc
p, let χ be the Hecke character ofK such that χ−1 =ψalg|Nm(·)|Q,

where Nm is the norm map from AK to AQ and | · |Q is the usual absolute value

on AQ. Recall that under the assumptions (sqf), (sgn), and (ram), f and K are

as in Cases I or II of Section 2.4. Then LSp (f) is the imprimitive variant of the

p-adic L-function denoted Lp(f, χ) in [2] (in Case I) and in [6] (in Case II). By

“imprimitive variant” we mean that the Euler factors at the primes in S not

dividing p have been removed. The set of such χ for ψ ∈ Σc
p is denoted Σ

(2)
cc (n)

and Σ
(2)
cc (n+), respectively, in [2] and [6], and the interpolated values are given

in terms of the values L(f, χ−1, 0), which is just L(f, ψalg, 1). Also, still in

the notation of [2] and [6], e∞(f, ψ)wK(2πi)1+2n = C(f, χ, 1), and w(f, ψ) =

wKw(f, χ)−1. The constant we have denoted C(f,K) is denoted α(f, fGL2)−1

in [6] (wherein f denotes a form on an indefinite quaternion algebra and fGL2

is a suitably normalized Jacquet-Langlands lift of f to GL2; the quaternion

algebra depends on K).

Among the important results in [1] and [6] is the following expression for

the value of LSp (f, ψ) at the trivial character ψ = 1, which we call the BDP

point, in terms of a formal log of the Heegner point PK(f). Note that the BDP

point is not in Σc
p.
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Proposition 2.6.1 ([1], [6]). Suppose (sqf), (sgn), (ram), (flt), and (odd)

hold. Then

LSp (f, 1)
.

= (logω PK(f))2.

Recall that “
.

=” means equality up to a non-zero constant (which here

also depends on the eigenvalues at the primes in S), and ω ∈ Ω1(Af ) ⊗Mf

is a 1-form such that φ∗ω = ωf (so the action of Mf on ω through its action

on Ω1(Af ) agrees with its scalar action), and logω : Af (Kp) ⊗ L → Kp is the

formal logarithm determined by ω.

In Case I, Proposition 2.6.1 is just [1, Th. 3.12]. The formula in loc. cit. has

logω PK(f) replaced with logω Pf , where Pf =φ(Q0
K). But logω PK =logωf Q

0
K ,

and, since εf ·ωf = ωf , logωf Q
0
K = logωf εf ·Q

0
K = logωf QK(f) = logω PK(f),

whence the formula in this case. In Case II, the proposition similarly follows

from [6, Prop. 8.13].

To prove that PK(f) 6= 0, and hence that Af (K) has positive rank, it

suffices to show that logω PK(f) 6= 0 and, therefore, to show that LSp (f, 1) 6= 0.

Corollary 2.6.2. PK(f) 6= 0 if and only if LSp (f, 1) 6= 0.

In the following section we explain some other consequences of LSp (f, 1)=0.

2.7. Some Iwasawa theory for f and K . We continue to assume p = pp̄

splits in K.

Let O be the ring of integers of L, and let T ⊂ V be a GQ-stable O-lattice.

Let Λ = O[[Γ]], and let Λur = Our[[Γ]], where Our is the ring of integers of the

completion of the maximal unramified extension of L. We view the projection

Ψ : GK � Γ as a continuous Λ×-valued character. Let Λ∗ = Homcts(Λ,Qp/Zp)
be the Pontryagin dual of Λ, and let

M = T ⊗O Λ∗(Ψ−1),

that is, the discrete Λ-module T ⊗O Λ∗ with continuous GK action ρf,λ⊗Ψ−1.

Let S = {` | pND}. Let

Sel∞(f,K, S) = ker
¶
H1(GK,S ,M)

res→ H1(Ip,M)
©
.

This is a discrete Λ-module, and its Pontryagin dual

X∞(f,K, S) = HomΛ(Sel∞(f,K, S),Λ∗)

is a finitely generated Λ-module. Let ChΛ(f,K, S) be its characteristic ideal

over Λ; this is non-zero if and only if X∞(f,K, S) is a torsion Λ-module.

The Selmer group Sel∞(f,K, S) is essentially an imprimitive version of

one of Greenberg’s Selmer groups for the “big” Galois module M , as we now

explain. Let ψ ∈ Σc
p with Hodge–Tate weights (−n, n); recall n > 0. Then
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the induced representation Ind
GQ
GK

(V ⊗ ψ−1) satisfies the Panchishkin condi-

tion as in [10, §3]: its restriction to GQp is just (V ⊗ ψ−1) ⊕ (V ⊗ ψ−c),

where the first summand is identified with (V ⊗ψ−1)|GKp
and has non-negative

Hodge–Tate weights n and n− 1 while the second summand is identified with

(V ⊗ ψ−1)|GKp̄
and has negative Hodge–Tate weights −n and −n − 1; the

subspace with negative4 Hodge–Tate weights has dimension equal to the di-

mension of the +1-eigenspace for complex conjugation on the induced repre-

sentation. Furthermore, if γ ∈ Γ is a topological generator, then M [γ−ψ(γ)] ∼=
(T ⊗ψ−1)⊗ZpQp/Zp. That is, M is the discrete Galois module associated with

the deformation T ⊗Λ(Ψ−1) of T over Λ, which contains a Zariski-dense set of

specializations that satisfy the Panchishkin condition (namely, the specializa-

tions under the maps γ 7→ ψ(γ) for ψ ∈ Σc
p). This is a simple generalization

to GK-representations of the situation considered in [10, §4], and the Selmer

group Sel∞(f,K, S) is the corresponding generalization of the Selmer groups

defined in loc. cit. Analogously to [10, Conj. 4.1], assuming also

(irrK) ρ̄f,λ|GK is irreducible,

one then conjectures5

Conjecture 2.7.1. ChΛ(f,K, S) and LSp (f) generate the same ideal of

Λur ⊗O L.

This is essentially the Iwasawa–Greenberg Main Conjecture for M .

Significant progress toward this conjecture has been made by X. Wan [26],

following the methods of [24]. Suppose in addition to (sqf), (flt), (L-lrg), and

(irrK) that (sgn) and (odd) hold and that

(big) p ≥ 5,

(ord) f is ordinary with respect to λ,

(spl) both 2 and p split in K,

(res) ρ̄f,λ is ramified at some odd prime `|N that is inert or ramified in K.

Then it is proved in [26] that

Proposition 2.7.2 ([26]). Under the above assumptions, the ideal of

Λur ⊗O L generated by ChΛ(f,K, S) is contained in the ideal generated by

LSp (f).

4Our conventions for Hodge–Tate weights are the negative of those in [10].
5The order of the Selmer group for V ⊗ψ−1 is expected to be related to the L-value L(V ∨⊗

ψ, 1). This dictates which p-adic L-function should be identified with the characteristic ideal

of Sel∞(f,K, S), namely, LSp (f).
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This proposition is not explicitly given in [26], however it follows easily

from [26, Th. 1.2], as we explain.

Let π be the cuspidal automorphic representation of GL2(AQ) such that

L(π, s − 1/2) = L(f, s), and let f0 be the ordinary stabilization of the new-

form f . We fix a character ψ0 ∈ Σc
p with Hodge–Tate weights (−n0, n0) with

n0 > 6. Let ψalg be the associated algebraic Hecke character, and let ξ = ψalgω,

where ω is the finite order Hecke character ofK associated with the Teichmüller

character (the lift of the mod p reduction of the p-adic cyclotomic character).

Then π, f0, and ξ satisfy the hypotheses of [26, Th. 1.2]. (In the notation of

loc. cit., ΓK is the Galois group of the composite of all Zp-extensions of K = K,

so ΓK ∼= Z2
p and Γ is a natural quotient of ΓK.) It remains to explain how the

conclusion of that theorem (or really its proof) implies the above proposition.

The p-adic L-function LΣ
f0,K,ξ ∈ O

ur[[ΓK]] with Σ = S from [26, §7.5] is a

two-variable extension of the p-adic L-function considered herein: under the

composition

Our[[ΓK]]
ΓK�Γ−→ Λur γ 7→ψ0(γ)−1γ−→ Λur,

LΣ
f0,K,ξ maps to LSp (f). Similarly, under the base change from O[[ΓK]] to Λ given

by this map (that is, tensoring with Λ over O[[ΓK]]), the Selmer group denoted

SelΣf0,K,ξ in [26, §2.2] becomes Sel∞(f,K, S) and XΣ
f0,K,ξ becomes X∞(f,K, S).

The proof of [26, Th. 1.2] involves showing that for Σ = S, the ideal of

Our[[ΓK]] ⊗O L generated by the characteristic ideal charO[[ΓK]]X
Σ
f0,K,ξ is con-

tained in the ideal generated by LΣ
f0,K,ξ. The corresponding inclusion of the

ideal of Λur ⊗O L generated by ChΛ(f,K, S) in the ideal generated by LSp (f)

then follows easily, using that the rings Our[[ΓK]] and Λur are unique factoriza-

tion ideals and the various characteristic ideals are principal (cf. [24, Cor. 3.8]).

We now explain a simple consequence of LSp (f, 1) = 0. LetW = M [γ−1] =

T ⊗Zp Qp/Zp, and let

Selp(f,K, S) = ker
¶
H1(GK,S ,W )

res→ H1(Ip,W )
©
.

Let also

Xp(f,K, S) = HomZp(Selp(f,K, S),Qp/Zp).
Assuming (irrK),

H1(GK,S ,W ) = H1(GK,S ,M [γ − 1]) = H1(GK,S ,M)[γ − 1].

It then follows from the exactness of the bottom row of the commutative

diagram

H1(GK,S ,W ) H1(GK,S ,M)[γ − 1]

res

y res

y
(M Ip/(γ − 1)M Ip)GKp −−−−→ H1(Ip,W )GKp −−−−→ H1(Ip,M)[γ − 1]GKp
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(the bottom row comes from the long exact cohomology sequence associated

with the short exact sequence 0→ W → M
×(γ−1)→ M → 0) that Selp(f,K, S)

is contained in Sel∞(f,K, S)[γ − 1] with finite index, and therefore

(2.7.1) #Xp(f,K, S) =∞ ⇐⇒ #(X∞(f,K, S)/(γ − 1)X∞(f,K, S)) =∞.

Suppose LSp (f, 1) = 0. This means LSp (f) ∈ (γ − 1), so if the assumptions of

Proposition 2.7.2 also hold, then ChΛ(f,K, S) ⊂ (γ − 1). By basic properties

of characteristic ideals, this last inclusion implies

#(X∞(f,K, S)/(γ − 1)X∞(f,K, S)) =∞.

Combining this with (2.7.1) we conclude

(2.7.2) LSp (f, 1) = 0 =⇒ #Xp(f,K, S) =∞.

As H1(Kp, V ) ↪→ H1(Ip, V ), we have

H1
p (K,V ) = ker{H1(GK,S , V )→ H1(Ip, V )},

from which it follows easily that the image of H1
p (K,V ) in H1(GK,S ,W ) is the

maximal divisible subgroup of Selp(f,K, S). Combining this observation with

(2.7.1) and (2.7.2), we conclude that

Proposition 2.7.3. If the hypotheses of Proposition 2.7.2 hold, then

LSp (f, 1) = 0 =⇒ H1
p (K,V ) 6= 0.

2.8. An observation about hypothesis (irrK). We include a simple lemma

on the irreducibility of ρ̄f,λ|GK . Consider the hypothesis

(irr) ρ̄f,λ is an irreducible GQ-representation.

Lemma 2.8.1. If (irr) and (res) hold, then so does (irrK).

Proof. Suppose (irr) and (res) hold. Let ` | N be a prime at which ρ̄f,λ
is ramified. As ` || N , the action of I` on V is unipotent and factors through

tame inertia. In particular, if τ` is a topological generator of tame inertia at q,

then ρf,λ(τ`) is unipotent,6 hence so, too, is ρ̄f,λ(τ`); the latter is a unipotent

element of order a power of p. As τ2
` ∈ GK , it follows that the image of ρ̄f,λ|GK

contains a unipotent element of order a power of p. Let k be the residue field

of L. Suppose now that ρ̄f,λ is reducible over k̄. Then the image of ρ̄f,λ|GK is

contained in either a torus (split or non-split) or a Borel of GL2(k). The first

possibility is ruled out as the image contains a unipotent element of order a

power of p; the image of ρ̄f,λ|GK is therefore contained in a Borel. But as the

image of GK is normalized by the image of GQ, it follows easily that the image

of GQ is also contained in the Borel, contradicting (irr). �

6This follows from the local-global compatibility satisfied by ρf,λ|GQ`
.
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2.9. Finishing the proof of Theorem B. Let f , p, and K be as in Theo-

rem B. We begin by noting that (sqf), (odd), and (big) hold by hypothesis.

Hypothesis (a) of Theorem B ensures that (flt) and (ord) hold. Hypothesis (b)

is just (irr) and (res) and so (irrK) holds by Lemma 2.8.1, and hypothesis (c)

is just (spl). Hypothesis (e) then implies, by Lemma 2.2.1, that (sgn) holds.

So Propositions 2.7.2 and 2.7.3 apply that if H1
p (K,V ) = 0, then LSp (f, 1) 6= 0.

Hypothesis (e) also implies, by Lemma 2.3.2, that H1
p (K,V ) = 0. Since hy-

pothesis (d) is just (ram), it follows from Corollary 2.6.2 that PK(f) 6= 0.

The rank of Af (K) is equal to [Mf : Q] times the Mf,p-rank of the free

Mf,p-space Af (K)⊗Qp which, by the injection Af (K)⊗Qp ↪→ H1
f (K,VpAf ),

is at most the L-dimension of H1(K,VpAf ) ⊗Mf,p
L = H1

f (K,V ). The latter

has L-dimension 1 by hypothesis (e). Since PK(f) 6= 0, so Af (K)⊗Q 6= 0, it

follows that rankZAf (K) = [Mf : Q]. It also follows, by Proposition 2.5.1 and

Corollary 2.5.2, that ords=1L(f,K, s) = 1 and ords=1L(Af/K, s) = [Mf : Q].

To conclude that X(Af/K) is finite, we first observe that it is enough

to show that both X(Af ) and X(ADf ) are finite. To show these are finite

we begin by noting that since L(f,K, s) = L(f, s)L(f ⊗ χD, s) has order 1 at

s = 1, one of L(f, s) and L(f ⊗ χD, s) has order 1 at s = 1 and the other has

order 0. The finiteness of the Tate–Shafarevich groups then just follows from

the work of Gross, Zagier, and Kolyvagin, as cited in the introduction.

This completes the proof of Theorem B. �

Remark 2.9.1. We indicate how the various hypotheses of Theorem B

intervene in its proof and make some additional remarks on the theorem and

its proof.

(i) The requirement that N be squarefree is made in [26] and in [6]. (That

N be squarefree at those primes dividing (D,N) is also required in [2]

and [1].)

(ii) The hypothesis that p ≥ 5 comes from [26], where it is imposed for con-

venience.

(iii) The hypothesis that D be odd is made in [2] and [6] as well as [26] (in

which 2 is also required to split in K) and stems from some gaps in our

knowledge of the theta correspondence for local fields of residue charac-

teristic 2.

(iv) The assumption that p - N intervenes most crucially in [2], [1], and [6].

We have also used it to simplify our use of the parity conjecture [18] for

Selmer groups of modular forms (to verify (sgn)).

(v) The hypothesis that f is ordinary at some λ | p is only needed to use the

results of [26] and, again, in our appeal to [18]. In particular, f being

ordinary is not crucial for the methods employed herein: if a version of
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Proposition 2.7.2 were available7 for forms with finite non-critical slope,

for example, then all the results of this paper would hold in that case,

provided the corresponding Selmer parity result was also known. (This

is known for elliptic curves with supersingular reduction.)

(vi) The hypothesis that ρ̄f,λ is irreducible is required in [26], as is the hy-

pothesis that ρ̄f,λ is ramified at an odd prime ` 6= p that is either inert

or ramified in K. The latter ensures, among other things, that π has a

transfer to a definite unitary group U(2) (that is ramified at `) defined

using K; the primary results in [26] relate the p-adic L-function LSp (f)

to the index of an Eisenstein ideal on U(3, 1) coming from an Eisenstein

series induced from this cuspform on U(2).

(vii) The requirement that p split in K is needed to use the results in [2], [6],

and [26]. It also comes into the Galois arguments, especially the proof of

Lemma 2.3.2. It is likely one of the most difficult hypotheses to relax in

the methods employed in this paper.

(viii) The hypotheses in (d) for when (D,N) 6= 1 are needed to appeal to the

results of [2], which requires that ε`(f,K) = +1 for all primes ` | (N,D).

(ix) The hypothesis that H1
f (K,V ) is one-dimensional is used to know before-

hand that the root number ε(f,K) is −1; that is, (sgn) holds. This is

required for the results in [27], [2], [1], and [6].

(x) The injectivity of the restriction map H1
f (K,V )

res→
∏

l|pH
1(Kl, V ) is

needed to ensure that H1
p (K,V ) = 0. Conjecturally, it should be enough

that H1
f (K,V ) is one-dimensional, and then the injectivity would follow

from the conclusion that Af (K) 6= 0. In [28] Wei Zhang obtains a version

of Theorem B without requiring this injectivity, but at the expense of

requiring certain Tamagawa numbers be indivisible by p.

(xi) Many, if not all, of the local hypotheses on π and K can likely be relaxed.

For example, recent work of Y. Liu, S. Zhang, and W. Zhang essentially

establishes the identity in Proposition 2.6.1 in the general Gross–Zagier

set-up of [27] (including over a totally real field).

(xii) As recalled in the introduction, the analog of Theorem A for CM elliptic

curves is explained in [22, Ths. 8.1,8.2] as a consequence of Rubin’s proof

of the main conjecture for CM curves, Perrin-Riou’s p-adic Gross–Zagier

formula, and Bertand’s proof of the non-degeneracy of the relevant p-adic

height pairing. It is also possible to give a proof for the CM case along

the lines of the proof of Theorem B by using the Main Conjecture for CM

7Such a result has been announced in a preprint of Wan.
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forms and the analog of Proposition 2.6.1 for the CM case, which is just

[22, Th. 9.5] or [1, Th. 2].

(xiii) The methods employed to prove Theorem B in this paper can be adapted

to provide an alternative proof of the base case of the induction argu-

ment in [28] that avoids appealing to [24] and so should also work for

supersingular primes (see remark (v)). This is part of forthcoming work.

3. Theorem A follows from Theorem B

Let f and Af be as in Theorem A. In particular, f is not a CM form.

Consider the set of primes p - N that are greater than 4 and unramified

in Mf . Suppose that f is not ordinary for all λ | p for some such p. Then the

norm of ap(f), which has absolute value at most (2p1/2)[Mf :Q] by the Ramanu-

jan bounds, is an integer divisible by p[Mf :Q], so ap(f) = 0. But, as f is not a

CM form, the set of primes with ap(f) = 0 has density zero [23, §7.2, Cor. 2].

Thus the set of primes p - N such that f is ordinary with respect to some λ | p
of Mf has density 1.

If p is sufficiently large, then ρ̄f,λ is irreducible for all λ | p [20, Th. 2.1].

If for some ` | N there were arbitrarily large primes p and primes λ | p of Mf

such that ρ̄f,λ were unramified at `, then, by the finiteness of the number of

newforms of weight 2 and level dividing N and by the main result of [21], there

would be a newform g of weight 2 and level prime to ` such that f and g would

be congruent modulo primes of arbitrarily large characteristic p, in the sense

that their prime-to-Np coefficients would be congruent. It would then follow

that the prime-to-Np coefficients of f and g would be the same and hence, by

multiplicity one, that f = g, a contradiction. Thus, for sufficiently large p,

ρ̄f,λ is ramified at all primes that divide N .

By the preceding observations, we may fix a p ≥ 5, p - N , and a λ | p such

that Af is ordinary with respect to λ and ρ̄f,λ is irreducible and ramified at

all primes that divide N . The hypotheses that rankZAf (Q) = [Mf : Q] and

X(Af )[p∞] are finite imply, by the obvious analog of Lemma 2.2.2 with K

replaced by Q, that dimLH
1
f (Q, V ) = 1. It then follows from Nekovář’s work

on the parity conjecture for Selmer groups of modular forms [18, Th. 12.2.3]

that ε(f) = −1.

We choose an imaginary quadratic field K/Q of discriminant D such that

(i) 2 and p split in K (so D is odd and hypothesis (c) of Theorem B holds);

(ii) if for some odd prime ` the local representation π` is the twist of the

special representation by the unique unramified quadratic character, then

K is ramified at ` but all other prime divisors of N split in K;
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(iii) if there is no π` as in (ii) but there are two odd primes `1 and `2 such

that π`1 and π`2 are special, then `1 and `2 are inert in K and all other

prime divisors of N split in K;

(iv) L(f ⊗ χD, 1) 6= 0.

If (i) and (ii) hold, then ε(f,K) = −ε`(π,K) = −1 (as BCKl
(π`) is again

the twist of the special representation by the unique unramified quadratic

character and so has root number +1). If (i) and (iii) hold, then ε(f,K) =

−ε`1(π,K)ε`2(π,K) = −1 (as BCK`i (π`i) is again the special representation

and so has root number −1). In particular, for a K satisfying (i), (ii), and (iii)

we always have ε(f)ε(f ⊗ χD) = ε(f,K) = −1, so ε(f ⊗ χD) = −ε(f) = +1.

It then follows from [9, Th. B] that K can also be chosen to satisfy (iv). Con-

ditions (i), (ii) and (iii) imply that hypotheses (b), (c), and (d) of Theorem B

hold. By the work of Gross, Zagier, and Kolyvagin cited in the introduc-

tion (alternatively, one could appeal to results of Kato [14]) condition (iv)

implies that both ADf (Q) and X(ADf ) are finite, from which it then follows

that rankZAf (K) = [Mf : Q] and X(Af/K)[p∞] is finite. By Lemma 2.2.2,

hypothesis (e) of Theorem B then also holds. As hypothesis (a) holds by the

choice of p and λ, we conclude from Theorem B that ords=1L(f,K, s) = 1.

As L(f,K, s) = L(f, s)L(f ⊗ χD, s) and L(f ⊗ χD, 1) 6= 0, it follows that

ords=1L(f, s) = 1.

This completes the proof of Theorem A. �

The deduction of Theorem C from Theorem B is similar: Hypothesis (c)

of Theorem C is easily seen to imply that H1
f (Q, V )

∼→ H1
f (Qp, V ) ∼= Qp. The

representation E[p] must be ramified at some odd prime ` of bad reduction

for E (again by Ribet’s level-lowering results). An appropriate imaginary qua-

dratic field K that is either inert or ramified at ` is then chosen, depending on

whether E has split or non-split reduction at `.

4. A remark on the r = 0 case

The arguments used to deduce Theorem A from Theorem B can be adapted

to show that if Af (Q) and X(Af ) are finite then L(f, 1) 6= 0. This gives an

alternate proof of a special case of the results in [24] and [25] cited in the

introduction.

Theorem E. Suppose N is squarefree. If there is at least one odd prime

` such that π` is the twist of the special representation by the unique unramified

quadratic character or at least two odd primes `1 and `2 such that π`1 and π`2
are special, then

#Af (Q), #X(Af ) <∞ =⇒ ords=1L(f, s) = 0.
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The argument is virtually identical to the proof that Theorem B implies

Theorem A. The changes involved are that the hypotheses now imply that

ε(f) = +1, and K is chosen to satisfy (i), (ii), (iii), and

(iv)′ ords=1L(f ⊗ χD, s) = 1.

This is possible as ε(f⊗χD) will equal −1. We then conclude from Theorem B,

much as before, that ords=1L(f,K, s) = 1, which implies by the choice of K

that L(f, 1) 6= 0.
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[5] M. Brakočević, Anticyclotomic p-adic L-function of central critical Rankin-

Selberg L-value, Int. Math. Res. Not. IMRN 21 (2011), 4967–5018. MR 2852303.

Zbl 1267.11069. https://doi.org/10.1093/imrn/rnq275.

[6] E. H. Brooks, Shimura curves and special values of p-adic L-functions, Int.

Math. Res. Not. IMRN no. 12 (2015), 4177–4241. MR 3356751. Zbl 1378.11069.

https://doi.org/10.1093/imrn/rnu062.

[7] E. Eischen, M. Harris, J-S. Li, and C. Skinner, p-adic L-functions for uni-

tary groups, in preparation. arXiv 1602.01776.

[8] J.-M. Fontaine and B. Perrin-Riou, Autour des conjectures de Bloch et Kato:

cohomologie galoisienne et valeurs de fonctions L, in Motives (Seattle, WA, 1991),

Proc. Sympos. Pure Math. 55, Amer. Math. Soc., Providence, RI, 1994, Part 1,

pp. 599–706. MR 1265546. Zbl 0821.14013. https://doi.org/10.1090/pspum/055.

1/1265546.

[9] S. Friedberg and J. Hoffstein, Nonvanishing theorems for automorphic L-

functions on GL(2), Ann. of Math. (2) 142 no. 2 (1995), 385–423. MR 1343325.

Zbl 0847.11026. https://doi.org/10.2307/2118638.

[10] R. Greenberg, Iwasawa theory and p-adic deformations of motives, in Mo-

tives (Seattle, WA, 1991), Proc. Sympos. Pure Math. 55, Amer. Math. Soc.,

Providence, RI, 1994, Part 2, pp. 193–223. MR 1265554. Zbl 0819.11046.

https://doi.org/10.1090/pspum/055.2/1265554.

http://www.ams.org/mathscinet-getitem?mr=3001796
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1326.11026
https://doi.org/10.2140/pjm.2012.260.261
http://www.ams.org/mathscinet-getitem?mr=3053566
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1302.11043
https://doi.org/10.1215/00127094-2142056
https://doi.org/10.1215/00127094-2142056
http://www.ams.org/mathscinet-getitem?mr=3237733
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1315.11045
http://www.ams.org/mathscinet-getitem?mr=1086888
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0768.14001
https://doi.org/10.1007/978-0-8176-4574-8_9
https://doi.org/10.1007/978-0-8176-4574-8_9
http://www.ams.org/mathscinet-getitem?mr=2852303
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1267.11069
https://doi.org/10.1093/imrn/rnq275
http://www.ams.org/mathscinet-getitem?mr=3356751
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1378.11069
https://doi.org/10.1093/imrn/rnu062
http://www.arxiv.org/abs/1602.01776
http://www.ams.org/mathscinet-getitem?mr=1265546
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0821.14013
https://doi.org/10.1090/pspum/055.1/1265546
https://doi.org/10.1090/pspum/055.1/1265546
http://www.ams.org/mathscinet-getitem?mr=1343325
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0847.11026
https://doi.org/10.2307/2118638
http://www.ams.org/mathscinet-getitem?mr=1265554
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0819.11046
https://doi.org/10.1090/pspum/055.2/1265554


A CONVERSE TO A THEOREM OF GROSS, ZAGIER, AND KOLYVAGIN 353

[11] B. H. Gross and D. B. Zagier, Heegner points and derivatives of L-series,

Invent. Math. 84 no. 2 (1986), 225–320. MR 0833192. Zbl 0608.14019. https:

//doi.org/10.1007/BF01388809.

[12] H. Hida, A p-adic measure attached to the zeta functions associated with two

elliptic modular forms. II, Ann. Inst. Fourier (Grenoble) 38 no. 3 (1988), 1–83.

MR 0976685. Zbl 0645.10028. https://doi.org/10.5802/aif.1141.

[13] H. Jacquet and R. P. Langlands, Automorphic Forms on GL(2), Lecture

Notes in Math 114, Springer-Verlag, New York, 1970. MR 0401654. Zbl 0236.

12010. https://doi.org/10.1007/BFb0058988.

[14] K. Kato, p-adic Hodge theory and values of zeta functions of modu-

lar forms, in Cohomologies p-Adiques et Applications Arithmétiques. III,
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