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Minimal surfaces and the Allen–Cahn
equation on 3-manifolds: index,

multiplicity, and curvature estimates

By Otis Chodosh and Christos Mantoulidis

Abstract

The Allen–Cahn equation is a semilinear PDE which is deeply linked

to the theory of minimal hypersurfaces via a singular limit. We prove

curvature estimates and strong sheet separation estimates for stable solu-

tions (building on recent work of Wang–Wei) of the Allen–Cahn equation

on a 3-manifold. Using these, we are able to show that for generic met-

rics on a 3-manifold, minimal surfaces arising from Allen–Cahn solutions

with bounded energy and bounded Morse index are two-sided and occur

with multiplicity one and the expected Morse index. This confirms, in

the Allen–Cahn setting, a strong form of the multiplicity one-conjecture

and the index lower bound conjecture of Marques–Neves in 3-dimensions

regarding min-max constructions of minimal surfaces.

Allen–Cahn min-max constructions were recently carried out by Guaraco

and Gaspar–Guaraco. Our resolution of the multiplicity-one and the index

lower bound conjectures shows that these constructions can be applied to

give a new proof of Yau’s conjecture on infinitely many minimal surfaces in

a 3-manifold with a generic metric (recently proven by Irie–Marques–Neves)

with new geometric conclusions. Namely, we prove that a 3-manifold with

a generic metric contains, for every p = 1, 2, 3, . . ., a two-sided embedded

minimal surface with Morse index p and area ∼ p
1
3 , as conjectured by

Marques–Neves.
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1. Introduction

Minimal surfaces—critical points of the area functional with respect to

local deformations—are fundamental objects in Riemannian geometry due to

their intrinsic interest and richness, as well as deep and surprising applica-

tions to the study of other geometric problems. Because many manifolds do

not contain any area-minimizing hypersurfaces, one is quickly led to the study

of surfaces that are only critical points of the area functional. Such surfaces

are naturally constructed by min-max (i.e., mountain-pass) type methods. To

this end, Almgren and Pitts [Pit81] have developed a far-reaching theory of

existence and regularity (cf. [SS81]) of min-max (unstable) minimal hypersur-

faces. In particular, their work implies that any closed Riemannian manifold

(Mn, g) contains at least one minimal hypersurface Σn−1. (In sufficiently high

dimensions, Σ may have a thin singular set.) This result motivates a well-

known question of Yau: “do all 3-manifolds contain infinitely many immersed

minimal surfaces?” [Yau82].

Recently, there have been several amazing applications of Almgren–Pitts

theory to geometric problems, including the proof of the Willmore conjecture
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by Marques–Neves [MN14] and the resolution of Yau’s conjecture for generic

metrics in dimensions 3 through 7 by Irie–Marques–Neves [IMN18]. In spite of

this, certain basic questions concerning the Almgren–Pitts construction remain

unresolved, including whether or not the limiting minimal surfaces can arise

with multiplicity (for a generic metric) as well as whether or not one-sided

minimal surfaces can arise as limits of an “oriented” min-max sequence (see,

however, [KMN16], [MN16a]).1

Guaraco [Gua18] has proposed an alternative to Almgren–Pitts theory,

later extended by Gaspar–Guaraco [GG18], which is based on study of a semi-

linear PDE known as the Allen–Cahn equation

(1.1) ε2∆gu = W ′(u)

and its singular limit as ε ↘ 0. There is a well-known expectation that,

in ε ↘ 0 limit, solutions to (1.1) produce minimal surfaces whose regularity

reflects the solutions’ variational properties. In particular,

(1) It is known that the Allen–Cahn functional Γ-converges to the perimeter

functional [Mod87], [Ste88], so minimizing solutions to (1.1) converge as

ε ↘ 0 to minimizing hypersurfaces (and are thus regular away from a

codimension 7 singular set).

(2) Under weaker assumptions on the sequence of solutions, one obtains dif-

ferent results. In general, solutions to (1.1) on a Riemannian manifold

(Mn, g) have a naturally associated (n−1)-varifold obtained by “smearing

out” their level sets of u, weighted by the gradient,

V [u](ϕ) , h−1
0

∫
ϕ(x, Tx{u = u(x)}) ε|∇u(x)|2 dµg(x), ϕ ∈ C0

c (Grn−1(M)).

Here, h0 > 0 is a constant that is canonically associated with W (see Sec-

tion 1.3). A deep result of Hutchinson–Tonegawa [HT00, Th. 1] ensures

that V limits to a varifold with almost every integer density as ε ↘ 0.

If, in addition, one assumes that the solutions are stable, Tonegawa–

Wickramasekera [TW12] have shown that the limiting varifold is stable

and satisfies the conditions of Wickramasekera’s deep regularity theory

[Wic14]; thus the limiting varifold is a smooth stable minimal hypersur-

face (outside of a codimension 7 singular set). In two dimensions, this was

shown by Tonegawa [Ton05].

1Added in proof: There has been dramatic progress in Almgren–Pitts theory since we

first posted this article. In particular, we note that A. Song [Son18] has proved the full

Yau conjecture in dimensions 3 through 7, and X. Zhou [Zho19] proved the multiplicity-one

conjecture in the Almgren–Pitts setting, also in dimensions 3 through 7.
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Guaraco’s approach has certain advantages when compared with Almgren–

Pitts theory:

(1) A key difficulty in the work of Almgren–Pitts is a lack of a Palais–Smale

condition, which is usually fundamental in mountain pass constructions.

On the other hand, the Allen–Cahn equation does satisfy the usual Palais–

Smale condition for each ε > 0 (see [Gua18, Prop. 4.4]), so this aspect of

the theory is much simpler.

We note, however, that the bulk of the regularity theory in Guaraco’s

work is applied after taking the limit ε ↘ 0 and thus relies on the deep

works of Wickaramsekera [Wic14] and Tonegawa–Wickramasekera [TW12].

This places a more serious burden on regularity theory than Almgren–Pitts.

(2) In Almgren–Pitts theory, there is no “canonical” approximation of the

limiting min-max surface by nearby elements of a sweepout. On the other

hand, Allen–Cahn provides a canonical approximation built out of the

function u (which satisfies a PDE). It is thus natural to suspect that this

might be useful when studying the geometric properties of the limiting

surface.

For example, Hiesmayr [Hie18] and Gaspar [Gas17] have shown that

index upper bounds for Allen–Cahn solutions directly pass to the limiting

surface. (We note that the Almgren–Pitts version of this result has been

proven by Marques–Neves [MN16a]). Moreover, the second-named author

has recently shown [Man17] that one-parameter Allen–Cahn min-max on

a surface produces a smooth immersed curve with at most one point of

self-intersection; in general, Almgren–Pitts on a surface will only produce

a geodesic net (cf. [Aie19]).

Our main contributions in this work are as follows:

(1) We show (see Theorem 1.3 below) that the individual level sets of stable

solutions to the Allen–Cahn equation on a 3-manifold with energy bounds

satisfy a priori curvature estimates (similar to stable minimal surfaces).

Using this, we can avoid the regularity theory of Wickramasekera and

Tonegawa–Wickramasekera entirely, making the whole theory considerably

more self-contained.

(2) More fundamentally, our curvature estimates (and strong sheet separa-

tion estimates, which we will discuss below) allow us to study geometric

properties of the limiting minimal surface using the “canonical” PDE ap-

proximations that exist prior to taking the ε↘ 0 limit. In particular, we

will prove the multiplicity-one conjecture of Marques–Neves [MN16a] in

the Allen–Cahn setting (see Theorem 1.7 below) for min-max sequences

on 3-manifolds. In fact, we prove a strengthened version of the conjecture

by ruling out (generically) stable components and one-sided surfaces.
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As an application of our multiplicity-one results we are able to give a

new proof of Yau’s conjecture on infinitely many minimal surfaces in a 3-

manifold, when the metric is bumpy (see Corollary 1.10 below). This has been

recently proven using Almgren–Pitts theory2 by Irie–Marques–Neves [IMN18]

for a slightly different class of metrics; their proof works in (Mn, g) for 3 ≤
n ≤ 7 and proves, in addition, that the minimal surfaces are dense. Our proof

establishes several new geometric properties of the surfaces; in particular, we

show that they are two-sided and that their area and Morse index behave as

one would expect, based on the theory of p-widths [Gro03], [Gut09], [MN17],

[GG18].

We wish to emphasize two things:

(1) Our results work at the level of sequences of critical points of the Allen–

Cahn energy functional with uniform energy and Morse index bounds. At

no point do we use any min-max characterization of the limiting surface;

min-max is merely used as a tool to construct non-trivial sequences of

critical points with energy and index bounds.

(2) Our results highlight the philosophy that the solutions to Allen–Cahn pro-

vide a “canonical” approximation of the min-max surfaces.

1.1. Notation. In all that follows, (Mn, g) is a smooth Riemannian man-

ifold.

Definition 1.1. A function W ∈ C∞(R) is a double-well potential if

(1) W is non-negative and vanishes precisely at ±1;

(2) W satisfies W ′(0) = 0, tW ′(t) < 0 for |t| ∈ (0, 1), and W ′′(0) 6= 0;

(3) W ′′(±1) = 2;

(4) W (t) = W (−t).

The standard double-well potential is W (t) = 1
4(1 − t2)2, in which case

(1.1) becomes ε2∆gu = u3 − u.

The Allen–Cahn equation, (1.1), is the Euler–Lagrange equation for the

energy functional

Eε[u] =

∫
M

Å
ε

2
|∇u|2 +

W (u)

ε

ã
dµg.

Depending on what we wish to emphasize, we will go back and forth between

saying that a function u is a solution of (1.1) on M (or in a domain U ⊂ M)

or a critical point of Eε (resp. of Eε U). The second variation of Eε is easily

2We note that after the first version of this work was posted, Gaspar–Guaraco [GG19]

gave a new proof of Yau’s conjecture for generic metrics (in the spirit of Irie–Marques–Neves

[IMN18]) by proving a Weyl law for their Allen–Cahn p-widths.
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computed (for ζ, ψ ∈ C∞c (M)) to be

(1.2) δ2Eε[u]{ζ, ψ} =

∫
M

Å
ε〈∇ζ,∇ψ〉+

W ′′(u)

ε
ζψ

ã
dµg.

We are thus led to the notion of stability and Morse index (with respect to

Dirichlet eigenvalues).

Definition 1.2. For (Mn, g) a complete Riemannian manifold and U ⊂
M\∂M open, we say that a critical point of Eε U is stable on U if δ2Eε[u]{ζ, ζ}
≥ 0 for all ζ ∈ C∞c (U). More generally, we say u has Morse index k, denoted

ind(u) = k, if

max{dimV : δ2Eε[u]{ζ, ζ} < 0 for all ζ ∈ V \ {0}} = k,

where the maximum is taken over all subspaces V ⊂ C∞c (U). Sometimes we

will write ind(u;U)=k to emphasize the underlying set. Note that ind(u;U)=0

if and only if u is stable on U .

When u is a solution of (1.1) and ∇u(x) 6= 0, we will write

(1) ν(x) = ∇u(x)
|∇u(x)| for the unit normal of the level set of u through x;

(2) II(x) for the second fundamental form of the level set of u through x;

(3) A(x) for the “Allen–Cahn” or “enhanced” second fundamental form of the

level set

A =
∇2u−∇2u(·, ν)⊗ ν[

|∇u|

Å
= ∇

Å ∇u
|∇u|

ã
(x)

ã
.

One may check that

|A(x)|2 = | II(x)|2 + |∇T log |∇u(x)||2,

where ∇T represents the gradient in the directions orthogonal to ∇u; in other

words, |A| strictly dominates the second fundamental form of the level sets.

Finally, we will often use Fermi coordinates centered on a hypersurface.

To avoid confusion about which hypersurface the coordinates are associated

to, we will define a function

ZΣ(y, z) , expy(zνΣ(y)), y ∈ Σ, z ∈ R,

where νΣ will denote a distinguished normal vector to Σ. In this paper, νΣ is

generally taken to be the upward pointing unit normal. Note that the pullback

of the metric g along ZΣ has the form gz + dz2, which is the setting that most

of our analysis will take place below.

1.2. Main results.
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1.2.1. Curvature estimates for stable solutions of (1.1) on 3-manifolds.

We start this section by discussing the concept of stability applied to minimal

surfaces, since that guides some aspects of our work in the Allen–Cahn setting.

We recall that a two-sided minimal surface Σ2 ⊂ (M3, g) with normal

vector ν is said to be stable if it satisfies

(1.3)

∫
Σ

(
|∇Σζ|2 − (| IIΣ |2 + Ricg(ν, ν))ζ2

)
dµg ≥ 0

for ζ ∈ C∞c (Σ). Here, we briefly recall the well-known curvature estimates of

Schoen [Sch83] for stable minimal surfaces. If Σ2 ⊂ (M3, g) is a complete,

two-sided stable minimal surface, then the second fundamental form of Σ, IIΣ,

satisfies

(1.4) | IIΣ |(x)d(x, ∂Σ) ≤ C = C(M, g).

Observe that (1.4) readily implies a stable Bernstein theorem: “a complete two-

sided stable minimal surfaces Σ in R3 without boundary must be a flat plane.”

On the other hand, the stable Bernstein theorem (proven in [FCS80], [dCP79],

[Pog81]) implies (1.4) by a well-known blow-up argument: if (1.4) failed for a

sequence of stable minimal surfaces Σj , then by choosing a point of (nearly)

maximal curvature and rescaling appropriately (cf. [Whi16]), we can produce

Σ̃j a sequence of minimal surfaces in manifolds (M3
j , gj) that are converging on

compact sets to R3 with the flat metric, and so that dgj (0, ∂Σj) → ∞, | IIΣj |
uniformly bounded on compact sets, and | IIΣj |(0) = 1. The second fundamen-

tal form bounds yield local C2 bounds for the surfaces Σj , which may then be

upgraded to Ck bounds for all k. Thus, passing to a subsequence, the surfaces

Σj converge smoothly to a complete stable minimal surface Σ∞ without bound-

ary in R3. Because the convergence occurs in C2, we see that | IIΣ∞ |(0) = 1,

so Σ∞ is non-flat. This contradicts the stable Bernstein theorem.

As such, before discussing curvature estimates for stable solution to Allen–

Cahn, we must discuss the stable Bernstein theorem for complete solutions

on R3. In general, it is not known if there are stable solutions to Allen–Cahn

∆u = W ′(u) on R3 with non-flat level sets. However, under the additional

assumption of quadratic energy growth, i.e.,

(E1 BR(0))[u] ≤ ΛR2,

it follows from the work of Ambrosio–Cabre [AC00] (see also [FMV13]) that u

has flat level sets. We note that the corresponding stable Bernstein theorem

on R2 is known to hold without any energy growth assumption; see the works

of Ghoussoub–Gui [GG98] and Ambrosio–Cabre [AC00].

As such, one may expect that the blow-up argument described above

may be used to prove curvature estimates. However, there is a fundamental

difficulty present in the Allen–Cahn setting: if ui are stable solutions of (1.1)
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on (M3, g) whose curvature (we will make this precise below) is diverging,

then rescaling by a factor λi →∞ in a blow-up argument changes εi to λiεi. If

λiεi converges to a non-zero constant, then standard elliptic regularity implies

the rescaled functions limit smoothly to an entire stable solution of Allen–

Cahn on R3. The smooth convergence guarantees that this solution will have

non-flat level sets. If the original functions ui has uniformly bounded energy,

we can show that the limit has quadratic area growth, which contradicts the

aforementioned Bernstein theorem. However, if λiεi still converges to zero, we

must argue differently. In this case, we have a sequence of solutions to Allen–

Cahn whose level sets are uniformly bounded in a C2-sense. This can be used

to show that the level sets converge to a plane (possibly with multiplicity) in

the C1,α-sense. If the level sets behaved precisely like minimal surfaces, we

could upgrade this C1,α-convergence using elliptic regularity, to conclude that

the limit was not flat. However, in this situation, the level sets themselves do

not satisfy a good PDE, so this becomes a significant obstacle.

Recently, a fundamental step in understanding this issue has been under-

taken by Wang–Wei [WW19a]. They have developed a technique for gaining

geometric control of solutions to Allen–Cahn whose level sets are converging

with Lipschitz bounds. Using this (and the 2-dimensional stable Bernstein the-

orem) they have proven curvature estimates for individual level sets of stable

solutions on two-dimensional surfaces. Moreover, they have shown that if one

cannot upgrade C2 bounds to C2,α convergence, then by appropriately rescal-

ing the height functions of the nodal sets, one obtains a non-trivial solution to

the a system of PDE’s known as the Toda system (see [WW19a, Rem. 14.1]).

Finally, their proof of curvature estimates in 2-dimensions points to the crucial

observation that it is necessary to use stability to upgrade the regularity of the

convergence of the level sets.

This brings us to our first main result here, which is an extension of the

Wang–Wei curvature estimates to 3-dimensions. Our 3-dimensional curvature

estimates can be roughly stated as follows (see Theorem 3.4 for a slightly more

refined statement and the proof):

Theorem 1.3. For a complete Riemannian metric on B2(0) ⊂ R3 and a

stable solution u to (1.1) with Eε(u) ≤ E0, the enhanced second fundamental

form of u satisfies

sup
B1(0)∩{|u|<1−β}

|A|(x) ≤ C = C(g,E0,W, β)

as long as ε > 0 is sufficiently small.

We emphasize that Wang–Wei’s 2-dimensional estimates [WW19a, Th. 3.7]

do not require the energy bound. (See also [Man17, Th. 4.13] for the Riemann-

ian modifications of this result.) Note that we cannot expect to prove estimates

with a constant that tends to 0 as ε ↘ 0 (which was the case in [WW19a])
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since—unlike geodesics—minimal surfaces do not necessarily have vanishing

second fundamental form.

We note that due to our curvature estimates, it is not hard to see that

stable (and more generally, uniformly bounded index) solutions to the Allen–

Cahn equation (with uniformly bounded energy) in a 3-manifold limit to a

C1,α surface that has vanishing (weak) mean curvature. Standard arguments

thus show that the surface is smooth. Thus, our estimates show that it is

possible to completely avoid the regularity results of Wickramasekera and

Wickramasekera–Tonegawa [Wic14], [TW12] in the setting of Allen–Cahn min-

max on a 3-manifold (cf. [Gua18]).

Remark 1.4. We briefly remark on the possibility of extending curvature

estimates to higher dimensions:

(1) For n ≥ 8, curvature estimates fail for stable (and even minimizing) solu-

tions to the Allen–Cahn equation; see [PW13], [LWW17].

(2) For 4 ≤ n ≤ 7, the Allen–Cahn stable Bernstein result is not known (even

with an energy growth condition).

Even if the stable Bernstein theorem were to be established in dimensions

4 ≤ n ≤ 7, we note that our proof currently uses the dimension restriction

n = 3 in one other place: we use a logarithmic cutoff function in the proof of

our sheet separation estimates (Propositions 3.1 and 3.2).3

On the other hand, we remark that the curvature estimate for minimiz-

ing solutions can be proven using the “multiplicity-one” nature of minimizers

[HT00, Th. 2], together with [WW19a, §15] (or Remark 2.6).

We note that the case of complete minimizers is closely related to the

well known “De Giorgi conjecture.” See [GG98], [AC00], [Sav09], [dPKW11],

[Wan17].

1.2.2. Strong sheet separation estimates for stable solutions. A key ingre-

dient in the proof of our curvature estimates is showing that distinct sheets

of the nodal set of a stable solution to the Allen–Cahn equation remain suffi-

ciently far apart. This aspect was already present in the work of Wang–Wei.

For our applications to the case of uniformly bounded Morse index (and thus

min-max theory), we must go beyond the sheet separation estimates proven in

[WW19a]. We prove in Proposition 3.2 that distinct sheets of nodal sets of a

stable solution to the Allen–Cahn equation must be separated by a sufficiently

large distance so that the location of the nodal sets becomes “mean curvature

dominated.”

3Added in proof: Wang–Wei have recently found [WW19b] the appropriate higher dimen-

sional replacement for the log-cutoff argument used here. We note that the stable Bernstein

problem for Allen–Cahn remains open in dimensions 4 ≤ n ≤ 7.
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In particular, as a consequence of these estimates, we show in Theorem 4.1

that if a sequence of stable solutions to the Allen–Cahn equation converge

with multiplicity to a closed two-sided minimal surface Σ, then there is a

positive Jacobi field along Σ (which implies that Σ is stable). It is interesting

to compare this to the examples constructed by del Pino–Kowalczyk–Wei–Yang

of minimal surfaces in 3-manifolds with positive Ricci curvature that are the

limit with multiplicity of solutions to the Allen–Cahn equation [dPKWY10].

Note that such a minimal surface cannot admit a positive Jacobi field, so

the point here is that the Allen–Cahn solutions are not stable. (In fact, our

Theorem 4.1 implies that they have diverging Morse index.) Note that the

separation D between the sheets of the examples constructed in [dPKWY10]

satisfy, as ε↘ 0,

D ∼
√

2ε| log ε| − 1√
2
ε log | log ε|,

while we prove in Proposition 3.2 that stability implies that the separation

satisfies

D −
Å√

2ε| log ε| − 1√
2
ε log | log ε|

ã
→ −∞.

We emphasize that the improved separation estimates here are not contained

in the work of Wang–Wei [WW19a] and are fundamental for the subsequent

applications of our results.

1.2.3. The multiplicity one-conjecture for limits of the Allen–Cahn equa-

tion in 3-manifolds. In their recent work [MN16a], Marques–Neves make the

following conjecture:

Conjecture 1.5 (Multiplicity one conjecture). For generic metrics on

(Mn, g), 3 ≤ n ≤ 7, two-sided unstable components of closed minimal hyper-

surfaces obtained by min-max methods must have multiplicity one.

In [MN16a], Marques–Neves confirm this in the case of a one parameter

Almgren–Pitts sweepout. The one parameter case had been previously con-

sidered for metrics of positive Ricci curvature by Marques–Neves [MN12] and

subsequently by Zhou [Zho15]. See also [Gua18, Cor. E] and [GG18, Th. 1]

for results comparing the Allen–Cahn setting to the Almgren–Pitts setting

which establish multiplicity one for hypersurfaces obtained by a one parameter

Allen–Cahn min-max method in certain settings. We also note that Ketover–

Liokumovich–Song [KLS19] have proven multiplicity (and index) estimates for

one parameter families in the Simon–Smith [Smi82] variant of Almgren–Pitts

in 3-manifolds.4

We recall the following standard definition:

4Added in proof: As noted before, the full multiplicity-one conjecture for Almgren–Pitts

(in dimensions 3 through 7) has now been proven by X. Zhou [Zho19].
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Definition 1.6. We say that a metric g on a Riemannian manifold Mn

is bumpy if there is no immersed closed minimal hypersurface Σn−1 with a

non-trivial Jacobi field.

By work of White [Whi91], [Whi17], bumpy metrics are generic in the

sense of Baire category. Here, “generic” will always mean in the Baire category

sense.

We are able to prove a strong version of the multiplicity-one conjecture

(when n = 3) for minimal surfaces obtained by Allen–Cahn min-max methods

with an arbitrary number of parameters. Such a method was set up by Gaspar–

Guaraco [GG18].

Indeed, we prove that for any metric g on a closed 3-manifold, the unsta-

ble components of such a surface are multiplicity one. Moreover, for a generic

metric, we show that each component of the surface occurs with multiplic-

ity one (not just the unstable components). Finally, we are able to show for

generic metrics on a 3-mainifold, the minimal surfaces constructed by Allen–

Cahn min-max methods are two-sided. For a one-parameter Almgren–Pitts

sweepout in an n-manifold 3 ≤ n ≤ 7 with positive Ricci curvature, this was

proven by Ketover–Marques–Neves [KMN16]. More precisely, our main results

here are as follows. (See Theorem 4.1 and Corollary 6.1 for the full statements.)

Theorem 1.7 (Multiplicity and two-sidedness of minimal surfaces con-

structed via Allen–Cahn min-max). Let Σ2 ⊂ (M3, g) denote a smooth embed-

ded minimal surface constructed as the ε ↘ 0 limit of solutions to the Allen–

Cahn equation on a 3-manifold with uniformly bounded index and energy. If Σ

occurs with multiplicity or is one-sided, then it carries a positive Jacobi field

(on its two-sided double cover, in the second case).

Note that positive Jacobi fields do not occur when g is bumpy or when g

has positive Ricci curvature. Thus, in either of these cases, each component of

Σ is two-sided and occurs with multiplicity one.

Remark 1.8. We re-emphasize that our theorem applies generally to se-

quences of Allen–Cahn solutions with uniformly bounded energy and Morse

index. Thus, unlike the proofs in the Almgren–Pitts setting, we do not need to

make use of any min-max characterization of the limiting surface to rule out

multiplicity.

Our proof here is modeled on the study of bounded index minimal hy-

persurfaces in a Riemannian manifold. Indeed, Sharp has shown that minimal

hypersurfaces in (Mn, g) for 3 ≤ n ≤ 7 with uniformly bounded area and

index are smoothly compact away from finitely many points where the index

can concentrate [Sha17]. (See also White’s proof [Whi87] of the Choi–Schoen

compactness theorem [CS85].) A crucial point there is to prove that higher

multiplicity of the limiting surface produces a positive Jacobi field (even across
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the points of index concentration (where the convergence of the hypersurfaces

need not occur smoothly). This can be handled via an elegant argument of

White, based on the construction of a local foliation by minimal surfaces to

use as a barrier for the limiting surfaces (cf. [Whi18]).

In the minimal surface setting, the existence of the foliation is a simple

consequence of the implicit function theorem. However, in the Allen–Cahn

setting, the singular limit ε ↘ 0 limit complicates this argument. Instead,

we construct barriers by a more involved fixed point method in Theorem 7.4.

Once that theorem is proven, we show how the barriers can be used to bound

the Jacobi fields along the points of index concentration in the process of the

proof of Theorem 4.1 by carrying out a new sliding plane type argument for

the Allen–Cahn equation on Riemannian manifolds. Our proof of Theorem 7.4

is modeled on the work of Pacard [Pac12] (with appropriate extension to the

case of Dirichlet boundary conditions), but there is a significant technical ob-

struction here: we do not know that the level sets of the solution Allen–Cahn

converge smoothly, but only in C2,α. To apply the fixed point argument, we

need some control on higher derivatives. By an observation of Wang–Wei

[WW19a, Lemma 8.1], we control one higher derivative of the level sets, but

only by a constant that is O(ε−1) (see (7.4)). This complicates the proof of

Theorem 7.4.

1.2.4. Index lower bounds. Lower semicontinuity of the Morse index along

the singular limit ε↘ 0 of a sequence of solutions to the Allen–Cahn equation

is proven by Hiesmayr [Hie18] (for two-sided surfaces) and Gaspar [Gas17]

without assuming two-sidedness (see also [Le11]). On the other hand, upper

semicontinuity of the index does not hold in general (cf. Example 5.2). Here,

we establish upper semicontinuity of the index, in all dimensions, under the

a priori assumption that the limiting surface is multiplicity one.5 In particular,

we prove (see Theorem 5.11 for the full statement)

Theorem 1.9 (Upper semicontinuity of the index in the multiplicity one

case). Suppose that a smooth embedded minimal hypersurface Σn−1 ⊂ (Mn, g)

is the multiplicity-one limit as ε↘ 0 of a sequence of solutions u to the Allen–

Cahn equation. Then for ε > 0 sufficiently small,

nul(Σ) + ind(Σ) ≥ nul(u) + ind(u).

To prove this upper semicontinuity, we need to delve deeper into the

equation that controls the level sets of u and obtain a more accurate approxi-

mation. What was done for Theorem 1.3—while well suited to understanding

the phenomenon of multiplicity—does not suffice for Theorem 1.9.

5We note that Marques–Neves had previously announced the analogous index uppper-

semicontinuity result for multiplicity-one Almgren–Pitts limits and that their proof [MN18]

appeared shortly after the first version of this paper.
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1.2.5. Applications related to Yau’s conjecture on infinitely many minimal

surfaces. A well-known conjecture of Yau posits that any closed 3-manifold ad-

mits infinitely many immersed minimal surfaces [Yau82]. By considering the

p-widths introduced by Gromov [Gro03] (see also [Gut09]), Marques–Neves

proved [MN17] that a closed Riemannian manifold (Mn, g) (for 3 ≤ n ≤ 7)

with positive Ricci curvature admits infinitely many minimal surfaces. More-

over, by an ingenious application of the Weyl law for the p-widths proven by

Liokumovich–Marques–Neves [LMN18], Irie–Marques–Neves [IMN18] (see also

the recent work of Gaspar–Guaraco [GG19] that appeared after the first ver-

sion of this paper was posted) have recently shown that the set of metrics on a

closed Riemannian manifold (Mn, g) (with 3 ≤ n ≤ 7) with the property that

the set of minimal surfaces is dense in the manifold is generic; see also [MNS19].

We note that the arguments in each of [MN17], [IMN18], [GG19] to prove

the existence of infinitely many minimal surfaces are necessarily indirect, as

they do not rule out the p-widths being achieved with higher multiplicity.

Having overcome this obstacle, we may give a “direct” proof (for n = 3) of

Yau’s conjecture for bumpy metrics6 with some new geometric conclusions; see

Corollaries 6.1 and 6.2 for proofs.

Corollary 1.10 (Yau’s conjecture for bumpy metrics and geometric

properties of the minimal surfaces). Let (M3, g) denote a closed 3-manifold

with a bumpy metric. Then, there are C = C(M, g,W ) > 0 and a smooth

embedded minimal surfaces Σp for each positive integer p > 0 so that

• each component of Σp is two-sided,

• the area of Σp satisfies C−1p
1
3 ≤ areag(Σp) ≤ Cp

1
3 ,

• the index of Σp is satisfies ind(Σp) = p, and

• the genus of Σp satisfies genus(Σp) ≥ p
6 − Cp

1
3 .

In particular, thanks to the index estimate, all of the Σp are geometrically

distinct.

We emphasize that each of the bullet points in the preceding corollary

do not follow from the work of Irie–Marques–Neves [IMN18]. Some of these

properties were conjectured by Marques and Neves in [Mar14, p. 24], [Nev14,

p. 17] and [MN16b, Conj. 6.2]. In particular, they conjectured that a generic

Riemannian manifold contains an embedded two-sided minimal surface of each

positive Morse index.

Remark 1.11 (Yau’s conjecture for 3-manifolds with positive Ricci cur-

vature). We note that because the multiplicity-one property also holds even

6We note that [IMN18] and [GG19] prove Yau’s conjecture for a different (also generic)

set of metrics.
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for non-bumpy metrics of positive Ricci curvature, we may also give a “di-

rect” proof of Yau’s conjecture for a 3-manifold with positive Ricci curvature.

(This was proven by Marques–Neves [MN17] in dimensions 3 ≤ n ≤ 7 using

Almgren–Pitts theory.) We obtain, exactly as in Corollary 6.2, the new conclu-

sions that the surfaces Σp are two-sided, have area(Σp) ∼ p
1
3 , ind(Σp) ≤ p and

nul(Σp) + ind(Σp) ≥ p. 1 Moreover, approximating the metric by a sequence

of bumpy metrics and passing to the limit (the limit occurs smoothly and with

multiplicity one due to the positivity of the Ricci curvature; cf. [Sha17]), we

find that there is a sequence Σ′p (we do not know if this is the same sequence

as Σp) with these properties and additionally satisfies the genus bound (note

that Σp is connected by Frankel’s theorem) for possibly a larger constant C

genus(Σ′p) ≥
p

6
− Cp

1
3 .

It is interesting to observe that when (M3, g) is the round 3-sphere, combining

our bound ind(Σ′p) ≤ p with work of Savo [Sav10] implies that

genus(Σ′p) ≤ 2p− 8

as long as p is sufficiently large to guarantee that genus(Σ′p) ≥ 1. Similar

conclusions can be derived in certain other 3-manifolds embedded in Euclidean

spaces by [ACS18].

There has been significant activity concerning the index of the minimal

surfaces constructed in [MN17], but before the present work, all that was

known was that for a bumpy metric of positive Ricci curvature, there are closed

embedded minimal surfaces of arbitrarily large Morse index [LZ16], [CKM17],

[Car17], albeit without information on their area.

Remark 1.12 (Connected components in Corollary 1.10). Unless (M, g)

has the Frankel property (e.g., when it has positive Ricci curvature), the min-

imal surfaces Σp obtained in Corollary 1.10 may be disconnected. In this case,

every connected component Σ′p of Σp must satisfy

• Σ′p is two-sided and has areag(Σ
′
p) ≤ Cp

1
3

and, by a counting argument, there will exist at least one component Σ′p of Σp

such that

• genus(Σ′p) ≥ C−1 ind(Σ′p) ≥ C−1p
2
3 .

See Corollary 6.4.

It is not clear that the component Σ′p will have unbounded area. In a

follow up paper [CM19] we prove the following dichotomy: Either

(1) (M, g) contains a sequence of connected closed embedded stable minimal

surfaces with unbounded area, or
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(2) some connected component Σ′′p of the surfaces Σp obtained in Corollary 1.10

has areag(Σ
′′
p) ≥ Cp

1
3 .

We note that by [CKM17], [Car17], when (M3, g) is a bumpy metric with

positive scalar curvature the prior condition cannot hold, so the latter alterna-

tive holds and, moreover, ind(Σ′′p)→∞. It would be interesting to determine

if one can find a connected component Σ′′p with arbitrarily large area and

ind(Σ′′p) ≥ cp for some c ∈ (0, 1).

1.3. One-dimensional heteroclinic solution, H. Recall that the one-dimen-

sional Allen–Cahn equation with ε = 1 is u′′ = W ′(u) for a function u = u(t)

of one variable. It is not hard to see that this ODE admits a unique bounded

solution with the properties

u(0) = 0, lim
t→−∞

u(t) = −1, lim
t→∞

u(t) = 1.

We call this the one-dimensional heteroclinic solution and denote it as H : R→
(−1, 1). It is also standard to see that the heteroclinic solution satisfies

H(±t) = ±1∓A0 exp(−
√

2t) +O(exp(−2
√

2t)),(1.5)

H′(±t) =
√

2A0 exp(−
√

2t) +O(exp(−2
√

2t)),(1.6)

H′′(±t) = −2A0 exp(−
√

2t) +O(exp(−2
√

2t))(1.7)

as t→∞, for some fixed A0 > 0 that depends on W . Moreover,∫ ∞
−∞

(H′(t))2 dt = h0,

where h0 > 0 also depends on W ; it is explicitly given by

h0 =

∫ 1

−1

»
2W (t) dt.

Finally, we also define

(1.8) Hε(t) , H(ε−1t), t ∈ R,

which is clearly a solution of ε2H′′ε = W ′(Hε).

1.4. Organization of the paper. In Section 2 we make precise the depen-

dence of the regularity of the nodal set {u = 0} of bounded energy and bounded

curvature solutions of (1.1) on the distance between its different sheets. The

dependence is essentially modeled by a Toda system; see, e.g., (2.18) and Re-

mark 2.6. Restricting to n = 3-dimensions, in Section 3 we use the stability of

Allen–Cahn solutions to bootstrap the distance estimates from Section 2 until

they become sharp. In Section 4 we study solutions of (1.1) with bounded en-

ergy and Morse index in n = 3-dimensions. We use our strong sheet separation

estimates from Section 3 to construct, in the presence of multiplicity, positive
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Jacobi fields on the limiting minimal surface away from finitely many points.

Then, a “sliding plane” argument (modulo a barrier construction deferred to

Section 7) allows us to extend the Jacobi field to the entire limiting surface.

In Section 5 we return to the arbitrary dimensional setting and prove

the Morse index is lower semicontinuous for smooth multiplicity-one limits.

In Section 6 we apply all our tools to prove a strong form of Marques’ and

Neves’ multiplicity-one conjecture, and Yau’s conjecture for generic metrics.

In Section 7 we construct curved sliding plane barriers for (1.1) that resemble

multiplicity-one heteroclinic solutions with prescribed Dirichlet data centered

on non-degenerate minimal submanifolds-with-boundary Σn−1⊂(Mn, g), n≥3.

In Appendix A, we recall several expressions related to the mean curva-

ture and second fundamental form of graphical hypersurfaces in a Riemannian

manifold. In Appendix B we recall several auxiliary results from [WW19a].

In Appendix C, we prove Lemma 2.8 relating regularity of the “centering”

functions h` to that of the function φ with improved error estimates. In Ap-

pendix D, we derive the Toda-system stability inequality with improved error

estimates (3.2). In Appendix E we recall an interpolation inequality for Hölder

norms.
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2. From phase transitions to Jacobi-Toda systems

2.1. Approximation by superimposed heteroclinics. In this section we follow

Wang-Wei’s [WW19a] investigation of local properties of solutions to the Allen–

Cahn equation,
ε2∆gu = W ′(u),

whose nodal set {u = 0} can be (locally) decomposed as a union of graphs

over a fixed hypersurface (to be denoted Σ), whose height functions (to be

denoted f1, . . . , fQ) are bounded in C2 and small in C1. The ultimate goal
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is to deduce, in a quantitative sense, that the height functions approximately

satisfy a Jacobi-Toda system.

The reason we rework the setup is twofold:

(1) First, most of the analysis in [WW19a] was performed in Rn, while here

we include the details necessary to handle the Riemannian setting (cf.

[WW19a, §16]).

(2) Secondly (and more fundamentally), we combine the argument from

[WW19a] with a further bootstrap argument based on improved error es-

timates. This allows us to prove much sharper separation estimates than

were obtained in [WW19a]. Indeed, we will show that the behavior of the

transition layers is dominated by mean curvature, rather than interaction

between the layers. This will be crucial for our subsequent applications in

Section 4.

Let us set things up. Suppose that Dn−1 is an (n − 1)-dimensional disk,

over which we take a topological cylinder Ω , D × [−1, 1], whose coordinates

we label X = (y, z) ∈ D× [−1, 1]. Consider a smooth metric g on Ω, which we

assume to be in Fermi coordinate form with respect to Σ; in (y, z) coordinates,

g = gz + dz2.

For convenience, we denote Σ , D × {0} ⊂ Ω. Let us require that

(2.1)

3∑
`=0

|∇`Σ IIΣ | ≤ η.

We additionally assume that Σ is covered by C4-coordinate charts so that the

induced metric on Σ, g0 is C3-close to the Euclidean metric in the charts, i.e.,

(2.2)

3∑
`=0

|∂(`)
y ((g0)ij − δij)| ≤ η.

We make no assumptions on the mean curvature of Σ beyond what follows

automatically from (2.1). Notice that, as a consequence of (2.1)–(2.2), Fermi

coordinates with respect to Σ are a C4 diffeomorphism.

In all that follows, for y0 ∈ Σ \ ∂Σ and 0 < r < distg0(y0, ∂Σ), we denote

Bn−1
r (y0) , {y ∈ Σ : distg0(y, y0) < r},

where distg0 is the intrinsic distance on Σ. We assume, without loss of gener-

ality, that Σ = B
n−1
2 (0).

Remark 2.1. We have chosen to work at the original scale, rather than

rescaling by ε as in [WW19a]. This does not affect our subsequent analysis,

but certain expressions will change by appropriate multiples of ε.
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Let u : Ω→ (−1, 1) be a critical point of Eε Ω, with

ε ≤ ε0,(2.3)

(Eε Ω)[ui] ≤ E0,(2.4)

ε|∇u| ≥ c−1
0 > 0 on Ω ∩ {|u| ≤ 1− β},(2.5)

|A| ≤ c0 on Ω ∩ {|u| ≤ 1− β}.(2.6)

By (2.5), (2.6), and elliptic regularity, we automatically also get

ε|∇A|+ ε2|∇2A| ≤ c0 on Ω ∩ {|u| ≤ 1− β}(2.7)

for a possibly larger c0 > 0; see [WW19a, Lemma 8.1]. With regard to the

nodal set of u, we require

{u = 0} ∩ Ω =

Q⋃
`=1

Γ`,(2.8)

where Γ` = graphΣ f` denote normal graphs over Σ ordered so that f1 < f2 <

· · · < fQ, and the graphing functions f` : Σ→ R are assumed to satisfy

|f`|+ |∇Σf`| ≤ η,(2.9)

and (this alternatively follows automatically from (2.1) and (2.6))

|∇2
Σf`| ≤ c0.(2.10)

Finally, after possibly sending z 7→ −z, we can assume that for z ≈ −1,

u(y, z) ≈ −1. The constants that appear above are to be considered indepen-

dent of ε ≤ ε0 and fixed so that

(2.11) c0 � 1, 0 < ε0, β, η � 1, Q ∈ {1, 2, . . .}.

For ` ∈ {1, . . . , Q}, y0 ∈ Σ, r > 0, denote

(1) Π : Ω→ Σ to be the closest point projection onto Σ with respect to g;

(2) Cr(y0) , {X ∈ Ω : Π(X) ∈ Bn−1
r (y0)};

(3) Γ`(r) , Γ` ∩ Cr(0);

(4) ZΓ` : Γ`(3/2)× [−1, 1]→ Ω to be the normal exponential map with respect

to Γ`;

(5) Π` : Ω→ Γ` to be the closest point projection onto Γ` with respect to g;

(6) d` : Ω→ R to be the signed distance from Γ` (with respect to g), which is

positive above it and negative below it;

(7) D` , min{|d`−1|, |d`+1|}.
Let us agree once and for all regarding Sections 2–3 that each Γ` is endowed

with the same coordinates (y1, . . . , yn−1) as Σ via the diffeomorphism Π|Γ` :

Γ`
≈−→ Σ.
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Set Ω′ , Bn−1
1 (0)× [−2η, 2η] ⊂ Ω. Consider arbitrary C2 functions

h` : Γ` ∩ C1(0)→ (−η
2 ,

η
2 ), ` ∈ {1, . . . , Q}.

Let h = (h1, . . . , hn). From h, we construct an approximate critical point U(h)

of Eε Ω′,

(2.12) U [h] ,
(−1)Q+1 − 1

2
+

Q∑
`=1

Hε,`.

Here, each Hε,` is given by

(2.13) ((ZΓ`)
∗Hε,`)(y, z) , H3| log ε|((−1)`−1ε−1(z − h`(y))

)
⇐⇒ Hε,` = H3| log ε|

((−1)`−1ε−1(d` − h` ◦Π`)),

with HΛ : R→ [−1, 1] (here, Λ = 3| log ε|) being

(2.14) HΛ(t) , χ(Λ−1t)H(t)± (1− χ(Λ−1t))

(± depending on t > 0 or t < 0). Here, χ(t) = 1 for t ∈ (−1, 1) and

sptχ ⊂ (−2, 2) is a fixed cutoff function. These functions, H3| log ε|, are trun-

cations of H that coincide with it on (−3| log ε|, 3| log ε|), with ±1 outside

(−6| log ε|, 6| log ε|), and such that

(2.15) |(H3| log ε|)′′ −W ′(H3| log ε|)|C2(R) = O(ε3).

See [WW19a, §9.1] for more details.

Remark 2.2. The components of h represent the vertical offset of the het-

eroclinic solutions we are superimposing relative to the nodal set of u.

One can show (see [WW19a, §9.1]) that there exists h such that for every

` ∈ {1, . . . , Q}, y ∈ Γ`, we have the orthogonality relation

(2.16)

∫ η

−η
((ZΓ`)

∗(u− U [h]))(y, z)∂z((ZΓ`)
∗Hε,`)(y, z) dz = 0.

Moreover (see [WW19a, Rem. 9.2]),

3∑
j=0

εj−1‖∇jh‖C0(Bn−1
1 (0)) = o(1) as ε→ 0.

It will prove useful to introduce the notation

(2.17) φ , u− U [h],

seeing as to how we can conveniently bound h in terms of φ, as Lemma 2.3

below shows.
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Lemma 2.3 ([WW19a, Lemma 9.6]). For ` ∈ {1, . . . , Q}, y ∈ Γ`(
9
10),

ε−1|h`(y)| ≤ c
Ä
|φ|Γ`(y)|+ exp(−

√
2ε−1D`(y))

ä
,

|∇Γ`h`(y)| ≤ c
(
ε|∇Γ`(φ|Γ`)(y)|+ o(1) exp(−

√
2ε−1D`(y))

)
,

ε|∇2
Γ`
h`(y)| ≤ c

(
ε2|∇2

Γ`
(φ|Γ`)(y)|

+ ε2|∇Γ`(φ|Γ`)(y)|2 + o(1) exp(−
√

2ε−1D`(y))
)
,

ε1+θ[∇2
Γ`
h`]θ ≤ c′

(
ε2+θ[∇2

Γ`
(φ|Γ`)]θ + ε2+θ‖∇Γ`(φ|Γ`)‖C0 [∇Γ`(φ|Γ`)]θ

+ ‖ exp(−
√

2ε−1D`)‖C0

)
,

where c = c(n, c0, E0, η, β), c′ = c′(n, c0, E0, η, β, θ), and o(1) is taken as ε→ 0

with the remaining parameters held fixed. In the last inequality, the Hölder

seminorms and the Ck norms are taken over all y′ ∈ Γ` ∩ Cε(Π(y)).

Wang–Wei deduce (see [WW19a, (10.2)]) the following Jacobi-Toda-like

system: for y ∈ Γ`(
9
10),

ε(∆Γ`h`(y)−HΓ`(y))

=
4(A0)2

h0

Ä
exp(−

√
2ε−1|d`−1(y)|)− exp(−

√
2ε−1|d`+1(y)|)

ä
+O

(
ε−1|h`(y)|+ε−1‖(h`−1 ◦Π`−1 ◦ ZΓ`)(y, ·)‖C0 +ε

1
3

)
exp(−

√
2ε−1|d`−1(y)|)

+O
(
ε−1|h`(y)|+ε−1‖(h`+1 ◦Π`+1 ◦ ZΓ`)(y, ·)‖C0 +ε

1
3

)
exp(−

√
2ε−1|d`+1(y)|)

+O(exp(−(3
2

√
2)ε−1|d`−1(y)|))+O(exp(−(3

2

√
2)ε−1|d`+1(y)|))

+O(exp(−
√

2ε−1|d`−2(y)|))+O(exp(−
√

2ε−1|d`+2(y)|))

+
∑
m 6=`

ε−1|dm(y)| exp(−
√

2ε−1|dm(y)|)
[
ε‖∆Γmhm −HΓm‖C0 +‖∇Γmhm‖2C0

]
+ sup
|t|<6ε| log ε|

[
ε4|(∇2

Γ`,t
(φ|Γ`,t))(ZΓ`(y, t))|

2

+ε2|(∇Γ`,t(φ|Γ`,t))(ZΓ`(y, t))|
2 + |φ(ZΓ`(y, t))|

2
]

+O(ε2).

(2.18)

The C0 norms appearing in the second and third term of the right-hand side

are taken over |t| < 6ε| log ε|, and the C0 norms appearing in the third term

from the end are taken over Γm ∩ Cε4/3(Π(y)).

Remark 2.4. Γ`,t denote t-level sets in Fermi coordinates (y, t) relative

to Γ`, i.e., Γ`,t = {d` = t}.
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Remark 2.5. Notice the sign difference in the mean curvature terms be-

tween (2.18) and [WW19a, (10.2)]. For us, the mean curvature is the divergence

of the upper pointing unit normal. For instance, the ambient Laplace-Beltrami

operator expands as

∆g = ∆Γ`,z + ∂2
z +HΓ`,z∂z.

For this reason, all instances of the mean curvature in this work must have the

opposite sign relative to [WW19a].

It will also be convenient to introduce the notation

(2.19) A`(r) , sup
{

exp(−
√

2ε−1D`(y)) : y ∈ Γ`(r)
}
.

We record [WW19a, (12.4)], which will help estimate terms involving h, φ, and

the mean curvature,

(2.20)

‖φ‖
C2,θ
ε (M`(r))

+ ε‖∆Γ`h` −HΓ`‖C0,θ
ε (Γ`(r))

≤ c′ε2 + c′
Q∑

m=1

Am(r +Kε| log ε|),

where we are using the weighted Hölder space notation from (7.1) (see Sec-

tion 7), and

M`(r) , {X ∈ Cr(0) : |d`(X)| < 1,−d`−1(X) < d`(X) < −d`+1(X)}.

Likewise, we record [WW19a, (13.6)]:

ε‖((ZΓ`)∗∂yi)φ‖C1,θ
ε (M`(r))

≤ c′ε2 + c′
Q∑

m=1

Am(r + 2Kε| log ε|)1+κ

+ c′εκ
Q∑

m=1

Am(r + 2Kε| log ε|),

(2.21)

with κ > 0.

The expressions above, (2.20)–(2.21), are true for all ` ∈ {1, . . . , Q}, r ≤
8/10, θ ∈ (0, 1), ε ≤ ε′, where c′, ε′, K, κ, depend on n, c0, E0, η, β, θ.

Remark 2.6. In the remainder of Sections 2–3, we will be actively in-

terested in estimating the vertical distances D` from below. This is because

Lemma 2.3, (2.19), (2.20), and interior Schauder estimates together imply that,

with r, θ as above,

(2.22) min
`∈{1,...,Q}

inf
Γ`(r)

D` ≥ 1+θ
2

√
2ε| log ε| =⇒ Γ`(r

′) is uniformly C2,θ

for all ` ∈ {1, . . . , Q}, r′ ≤ σr, σ ∈ (0, 1), ε ≤ ε′ = ε′(n, c0, E0, η, β, θ, σ).
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2.2. Bootstrapping regularity via sheet distance lower bounds. We recall

the following lemma from [WW19a]. (See [Man17, App. C] for necessary mod-

ifications for the Riemannian setting.)

Lemma 2.7 ([WW19a, §14]). If ` ∈ {1, . . . , Q}, y ∈ Γ`(
8.5
10 ), and ε ≤ ε1,

then

D`(y) ≥ 1
2

√
2ε| log ε| − c1ε,

where ε1 = ε1(n, c0, E0, η, β), c1 = c1(n, c0, E0, η, β).

As a corollary of Lemma 2.7, we can bootstrap the proof of Lemma 2.3

and obtain the following improved estimates:

Lemma 2.8. For ` ∈ {1, . . . , Q}, y ∈ Γ`(
8
10),

ε−1|h`(y)| ≤ c
Ä
|φ|Γ`(y)|+ exp(−

√
2ε−1D`(y))

ä
,

|∇Γ`h`(y)| ≤ c
Ä
ε|∇Γ`(φ|Γ`)(y)|+ εκ exp(−

√
2ε−1D`(y))

ä
,

ε|∇2
Γ`
h`(y)| ≤ c

(
ε2|∇2

Γ`
(φ|Γ`)(y)|

+ ε2|∇Γ`(φ|Γ`)(y)|2 + εκ exp(−
√

2ε−1D`(y))
)
,

ε1+θ[∇2
Γ`
h`]θ ≤ c′

(
ε2+θ[∇2

Γ`
(φ|Γ`)]θ

+ ε2+θ‖∇Γ`(φ|Γ`)‖[∇Γ`(φ|Γ`)]θ + εκ
′‖ exp(−

√
2ε−1D`)‖C0

)
,

where c = c(n, c0, E0, η, β), c′ = c′(n, c0, E0, η, β, θ), κ = κ(n, c0, E0, η, β),

κ′ = κ′(n, c0, E0, η, β, θ). The norms and seminorms in the last inequality are

taken over all y′ ∈ Γ` with Π(y′) ∈ Bn−1
ε (Π(y)).

Proof. See Appendix C. �

We now indicate how the enhanced second fundamental form tensor is

affected by these estimates.

Fix ` ∈ {1, . . . , Q}. We see from (2.21) that

(2.23) ε‖∇φ−〈∇φ,∇d`〉∇d`‖C0(M`(r)) ≤ c
′ε2 + c′

Q∑
m=1

Am(r+ 2Kε| log ε|)1+κ

for some κ = κ(n, c0, E0, η, β) > 0. Likewise, from (2.12), (2.13), Lemmas 2.7–

2.8, and (2.21),

(2.24)

ε‖∇U [h]− 〈∇U [h],∇d`〉∇d`‖C0(M`(r)) ≤ c
′ε2 + c′

Q∑
m=1

Am(r + 2Kε| log ε|)1+κ.
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Combining (2.17), (2.23), and (2.24), we get

(2.25) ε‖∇u−〈∇u,∇d`〉∇d`‖C0(M`(r)) ≤ c
′ε2 +c′

Q∑
m=1

Am(r+2Kε| log ε|)1+κ.

Combining (2.5) and (2.25), we get

(2.26)

‖ν − (−1)`−1∇d`‖C0(M`(r)∩{|u|≤1−β}) ≤ c′ε2 + c′
Q∑

m=1

Am(r + 2Kε| log ε|)1+κ,

where ν = |∇u|−1∇u denotes the normal to the level set of u through each

point. (The level set is smooth on {|u| ≤ 1− β} in view of (2.5).)

For the remainder of this section, we choose to work in Fermi coordinates

(y, t) relative to Γ`; note that t = d`. It is not hard to see that the only non-

trivial Christoffel symbols in this coordinate system are Γtij , Γijt, Γitj , and Γkij .

Set

(2.27) Γ̂`(r) , sup
M`(r)∩{|u|≤1−β}

|Γtij |+ |Γijt|+ |Γitj |+ |Γkij |.

By arguing as above, and relying on (2.21), we find that

ε2‖∇2u−∇2u(∂t, ∂t) dt
2‖C0(M`(r)∩{|u|≤1−β})

≤ ε2
n−1∑
i=1

‖∇(((ZΓ`)∗∂yi)u)‖C0(M`(r)∩{|u|≤1−β})

+ ε2Γ̂`(r)‖∇u‖C0(M`(r)∩{|u|≤1−β})

≤ c′ε2 + c′
Q∑

m=1

Am(r + 2Kε| log ε|)1+κ + c′εΓ̂`(r).

(2.28)

Using (2.26) (note that ∂t = ∇d`),

ε2‖∇2u(∂t, ∂t) dt⊗ (dt− 〈dt, ν〉ν[)‖C0(M`(r)∩{|u|≤1−β})

≤ c′‖ν − ∂t‖C0(M`(r)∩{|u|≤1−β}) ≤ c′ε2 + c′
Q∑

m=1

Am(r + 2Kε| log ε|)1+κ,

(2.29)

where ν[ denotes ν’s dual 1-form. Finally, (2.5), (2.28), and (2.29) give

(2.30)

‖A‖C0(M`(r)∩{|u|≤1−β}) ≤ c′ε+ c′ε−1
Q∑

m=1

Am(r + 2Kε| log ε|)1+κ + c′Γ̂`(r).
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Now, we turn to estimating HΓ` . From Lemma 2.8 and (2.21) we have, for

y ∈ Γ`(
8
10),

ε|∆Γ`h`(y)|

≤ ε2|∇2
Γ`

(φ|Γ`)(y)|+ εκ exp(−
√

2ε−1D`(y))

≤ c′ε2 + c′εκ
Q∑

m=1

Am(|y|+ 2Kε| log ε|) + c′
Q∑

m=1

Am(|y|+ 2Kε| log ε|)1+κ.

(2.31)

We are going to estimate the terms in (2.18) from above by a function of

ε and the quantities in (2.19). Fix ` ∈ {1, . . . , Q}, y ∈ Γ`(
7
10).

From Lemmas 2.7 and 2.8 and (2.20), we have

(ε−1|h`|+ ε−1|h`−1 ◦Π`−1 ◦ ZΓ` |+ ε
1
3 ) exp(−

√
2ε−1|d`−1(y)|)

+ (ε−1|h`|+ ε−1|h`+1 ◦Π`+1 ◦ ZΓ` |+ ε
1
3 ) exp(−

√
2ε−1|d`+1(y)|)

+ exp(−(3
2

√
2)ε−1|d`−1(y)|) + exp(−(3

2

√
2)ε−1|d`+1(y)|)

+ exp(−
√

2ε−1|d`−2(y)|)) + exp(−
√

2ε−1|d`+2(y)|)

≤ c′ε2 + c′εκ
Q∑

m=1

Am(|y|+Kε| log ε|) + c′
Q∑

m=1

Am(|y|+Kε| log ε|)1+κ.

(2.32)

By Lemma 2.3, (2.20), and (2.21), every m 6= ` satisfies

ε−1|dm(y)| exp(−
√

2ε−1|dm(y)|)
[
ε‖∆Γmhm −HΓm‖C0 + ‖∇Γmhm‖2C0

]
≤ c′Am(|y|+ 2Kε| log ε|)1−ρ

∑
m′ 6=m

Am(|y|+ 2Kε| log ε|)

+ c′ε2Am(|y|+ 2Kε| log ε|)1−ρ

(2.33)

for small ρ > 0, ε ≤ ε′. The C0 norms are taken over Γm ∩ Cε4/3(Π(y)). By

Lemma 2.7 and (2.20),

sup
|t|<6ε| log ε|

[
ε4|(∇2

Γm,t(φ|Γm,t))(ZΓm(y, t))|2

+ ε2|(∇Γm,t(φ|Γ`,t)(ZΓm(y, z))|2 + |φ(ZΓm(y, z))|2
]

≤ c′ε2 + c′
Q∑

m′=1

Am′(|y|+Kε| log ε|)2.

(2.34)
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Combined, (2.18) and (2.31)–(2.34) give

(2.35)

− εHΓ`(y) =
4(A0)2

h0

(
exp(−

√
2ε−1|d`−1(y)|)− exp(−

√
2ε−1|d`+1(y)|)

)
+R`

for all y ∈ Γ`(
7
10), where

|R`(y)| ≤ c′ε2 + c′εκ
Q∑

m=1

Am(|y|+ 2Kε| log ε|)

+ c′
Q∑

m=1

Am(|y|+ 2Kε| log ε|)1+κ.

(2.36)

Lemma 2.9. Let f : Bn−1
1 (0) → R be as in (2.9)–(2.10). If G[f ] is the

normal graph of f over Γ`, i.e., G[f ] = {ZΓ`(y, f(y)) : y ∈ Bn−1
1 (0)}, then

HG[f ] −HΓ` = −(L+ | IIΓ` |
2 + Ricg(νΓ` , νΓ`)|Γ`)f +Q(f),

where L is the linear uniformly elliptic operator

(2.37) Lϕ = LΓ`,G[f ]ϕ , a(y)−1 divΓ`

(
a(y)〈(ZΓ`)∗νΓ` , νG[f ]〉∇G[f ]ϕ

)
,

with

(2.38) a(y) = aΓ`,G[f ](y) ,
√
gΓ`√
gf(y)

.

Here (ZΓ`)∗νΓ` , νG[f ] are upward pointing unit normal in Fermi coordinates

and the upward pointing unit normal to G[f ], both evaluated at ZΓ`(y, f(y)).

Note that the elliptic symbol coefficients are uniformly bounded away from 0

and ∞ depending on (2.9). The (non-linear) error term Q(f) satisfies

|Q(f)| ≤ c′(|f |2 + |∇Γ`f |
2).

Proof. This is a restatement of Lemma A.1 from Appendix A. �

Notice that, by (2.9)–(2.10), Γ`+1 can be viewed as a normal graph of

some function f`,`+1 over Γ` that satisfies the conditions of Lemma 2.9. Let

y′ , ZΓ`(y, f`,`+1(y)) ∈ Γ`+1.



238 OTIS CHODOSH and CHRISTOS MANTOULIDIS

Applying (2.35) to y at Γ` and to y′ at Γ`+1, subtracting, and invoking

Lemma 2.9, we see that

ε(L+ | IIΓ` |
2 + Ricg(ν, ν)|Γ` +Q)f`,`+1(y)

= ε(HΓ`(y)−HΓ`+1
(y′))

=
4(A0)2

h0

(
exp(−

√
2ε−1f`,`+1(y))− exp(−

√
2ε−1|d`+2(y′)|)

− exp(−
√

2ε−1|d`−1(y)|) + exp(−
√

2ε−1|d`+1(y)|)
)

−R`(y) +R`+1(y′).

(2.39)

Here, L is the second order linear operator defined in (2.37), which depends

on Γ`, Γ`+1. Note that (see Lemma B.1):

(2.40)

exp(−
√

2ε−1|d`+1(y)|) = exp(−
√

2ε−1f`,`+1(y)) +O(ε
1
3 ) exp(−

√
2ε−1D`(y)).

Absorbing the last term above into R` in view of (2.36), we conclude that

ε(L+ | IIΓ` |
2 + Ricg(ν, ν)|Γ` +Q)f`,`+1(y)

=
4(A0)2

h0

(
2 exp(−

√
2ε−1f`,`+1(y))− exp(−

√
2ε−1|d`+2(y′)|)

− exp(−
√

2ε−1|d`−1(y)|)
)

−R`(y) +R`+1(y′).

(2.41)

Finally, dropping the negative terms gives

ε(L+ | IIΓ` |
2 + Ricg(ν, ν)|Γ` +Q)f`,`+1(y)

≤ 8(A0)2

h0
exp(−

√
2ε−1f`,`+1(y)) + c′|R`(y)|+ |R`+1(y′)|;

(2.42)

the error terms R`, R`+1 are still as in (2.36).

3. Stable phase transitions (n = 3)

In this section, we use the Allen–Cahn stability inequality and bootstrap

the distance estimates from the previous section until they become sufficiently

sharp. Specifically, we combine three things: (i) an L2 estimate on the height

function of {u = 0} (following an observation of Wang–Wei [WW19a, (19.7)]),

(ii) a subtle application of Moser’s Harnack inequality, and (iii) the non-

existence of non-trivial entire stable critical points of the Toda system on R2;

cf. the stable Bernstein problem for minimal surfaces in R3.
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3.1. Strong sheet distance lower bounds. We continue to adopt the con-

ventions and notation laid out in Section 2. In particular, we emphasize that

we continue to assume (2.1)–(2.6) as well as assuming that u is a stable critical

point of Eε Ω (cf. Definition 1.2).

In [WW19a, (19.7)], Wang–Wei derive the following stability inequality

(in a slightly different setting) from the usual Allen–Cahn stability inequality:∫
Γ`(7/10)

ζ2
[

exp(−
√

2ε−1|d`−1|) + exp(−
√

2ε−1|d`+1|)
]

≤ c′
∫

Γ`(7/10)
ε2|∇Γ`ζ|

2 + c′ε1+κ

∫
Γ`(7/10)

ζ2
(3.1)

for all ` ∈ {1, . . . , Q}, ζ ∈ C∞c (Γ`(
7
10)), ε ≤ ε′, where ε′, c′, κ depend on c0, E0,

η, β. In fact, by a careful inspection of Wang–Wei’s derivation of (3.1) from

[WW19a, §19], we see that the following stronger inequality is true here:∫
Γ`(7/10)

ζ2
[

exp(−
√

2ε−1|d`−1|) + exp(−
√

2ε−1|d`+1|)
]

≤ c′
∫

Γ`(7/10)
ε2|∇Γ`ζ|

2 + |Eζ |
∫

Γ`(7/10)
ζ2,

(3.2)

with

|Eζ | ≤ c′ε2

+c′
Q∑

m=1

sup
¶

exp(−
√

2(1 + κ)ε−1Dm(y′)) : y′ ∈ Γm ∩Π−1
` (B2

2Kε| log ε|(spth))
©

;

(3.3)

here, c′, κ are independent of ζ. We prove (3.2) in Appendix D in a general

n-dimensional setting, n ≥ 3. (Below, we use it for n = 3.) Note that, by

Lemma 2.7, this recovers (3.1).

Our first main result is the following sheet-distance estimate. (cf. Re-

mark 2.6.)

Proposition 3.1 (Stable sheet distances, I). If u is a stable critical point

of Eε Ω, ε ≤ ε3, and ν ∈ (0, 1
2), then

D` ≥ (1− ν)
√

2ε| log ε| on Γ`(
1
3)

for all ` ∈ {1, . . . , Q}, where ε3 = ε3(c0, E0, η, β, ν).

Proof. Take ν ∈ (0, 1
2) and assume, for contradiction, that

(3.4) A`0(r) ≥ A`0(1
3) > ε2(1−ν) for all r ∈ [1

3 ,
1
2 ] and some `0 ∈ {1, . . . , Q}.

We will aim to prove

(3.5) max
`∈{1,...,Q}

A`(r −Kνε
ν) < 1

2 max
`∈{1,...,Q}

A`(r) for all r ∈ [1
3 ,

1
2 ],
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where Kν = Kν(c0, E0, η, β, ν) > 0; this will in turn prove our claim by a simple

iteration. (We denote the dependence of Kν on ν explicitly to disambiguate

with the previous constant K. Let us assume Kν > 2K.)

Let r ∈ [1
3 ,

1
2 ], α , max{A`(r) : ` ∈ {1, . . . , Q}}. Since

(3.6) α > ε2(1−ν)

by (3.4), it follows that to prove (3.5) it will suffice to prove

(3.7) A`(r − εKνα
−1

2 ) < 1
2α for all ` ∈ {1, . . . , Q}.

Suppose, by way of contradiction, that (3.7) is violated at some `0 ∈ {1, . . . , Q}
and y ∈ Γ`0(r − εKνα

−1
2 ). From now on let us work in the coordinate chart

induced on Γ`0 by Π|Γ`0 ≈ Σ. For ỹ ∈ B2
Kν/2

(0), define

(3.8) f̃(ỹ) , ε−1f`0,`0+1(y + εα−
1
2 ỹ)− 1√

2
| logα|.

If L̃ denotes the translation and rescaling of L that respects the stretched

coordinate, ỹ, then from (2.42) we find

L̃f̃(ỹ) = εα−1Lf`0,`0+1(y + εα−
1
2 ỹ)

≤ 8(A0)2α−1

h0
exp(−

√
2ε−1f`0,`0+1(y + εα−

1
2 ỹ))

+ α−1c′|R`0(y + εα−
1
2 ỹ)|+ α−1|R`0+1((y + εα−

1
2 ỹ)′)|

− εα−1(| IIΓ`0
|2 + Ricg(ν, ν)|Γ`0 +Q)f`0,`0+1(y + εα−

1
2 ỹ).

Recalling (3.8), the computation above readily implies that

L̃f̃(ỹ) ≤ 8(A0)2

h0
exp(−

√
2f̃(ỹ))(3.9)

+ α−1c′|R`0(y + εα−
1
2 ỹ)|+ α−1|R`0+1((y + εα−

1
2 ỹ)′)|

− εα−1(| IIΓ`0
|2 + Ricg(ν, ν)|Γ`0 +Q)f`0,`0+1(y + εα−

1
2 ỹ).

From (2.36) and (3.6) we have

(3.10)

α−1c′|R`0 |+ α−1|R`0+1| ≤ c′(ε2α−1 + εκ + ακ) ≤ c′(α
ν

1−ν + α
κ

2(1−ν) ) ≤ c′.



ALLEN–CAHN ON 3-MANIFOLDS 241

Now define the auxiliary function ψ , exp(−
√

2f̃) > 0. From the chain rule,

(3.9), and (3.10), we have

L̃ψ = −
√

2(L̃f̃)ψ + 2|‹∇f̃ |2ψ
≥ −8

√
2(A0)2

h0
ψ2 − c′ψ +

√
2εα−1(| IIΓ`0

|2 + Ricg(ν, ν)|Γ`0 )f`0,`0+1ψ

+ α−1(
√

2εQ(f`0,`0+1) + |∇Γ`0
f`0,`0+1|2)ψ

≥ −8
√

2(A0)2

h0
ψ2 − c′ψ +

√
2εα−1(| IIΓ`0

|2 + Ricg(ν, ν)|Γ`0 )f`0,`0+1ψ

− α−1
î√

2εQ(f`0,`0+1) + |∇Γ`0
f`0,`0+1|2

ó
−
ψ

(3.11)

on B2
Kν

(0). Here, [·]− denotes the negative part of a real number (and is a

non-negative quantity). Using a logarithmic cutoff function in (3.1), which is

1 on B2
εα−1/2

√
Kν

(0) and 0 outside B2
εα−1/2Kν/2

(0), we get

(3.12)

∫
B2√

Kν
(0)
ψ ≤ c′(logKν)−1 + c′α

κ+2ν−1
2(1−ν) K2

ν

in the scale of ψ. By Moser’s weak maximum principle on B1 for (3.11) (see,

e.g., [HL97, Th. 4.1]), the L1 bound in (3.12) implies the L∞ bound

(3.13) ψ(0) ≤ C?
∫
B2

1(0)
ψ ≤ C?

Å
(logKν)−1 + α

κ+2ν−1
2(1−ν) K2

ν

ã
for a constant C? that depends on the constants in (2.11) and the L∞ norm of

the coefficients in the differential inequality (3.11) on B2
1(0). We are assuming

that (3.7) fails at y, so together with (2.1), (2.9), (2.10), and Lemma 2.9, we

have

sup
ỹ∈B2

1(0)

|εα−1(| IIΓ`0
|2 + Ricg(ν, ν)|Γ`0 )f`0,`0+1(y + εα−

1
2 ỹ)|

≤ c′εα−1(|f`0,`0+1(y)|+ osc{f`0,`0+1 : Γ`0 ∩ Cεα−1/2(Π(y))}) ≤ c′ε2α−
3
2

≤ c′α
3ν−1

2(1−ν) .

(3.14)

Likewise, using Lemma 2.9, we can estimate

√
2ε|Q(f`0,`0+1)| ≤ c′ε(|f`0,`0+1|2 + |∇Γ`0

f`0,`0+1|2).
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By absorbing the gradient term and estimating f`0,`0+1 with the same argument

as in (3.14), we also estimate

α−1

ï
2|∇Γ`0

f`0,`0+1|2 +
√

2εQf`0,`0+1(y + εα−
1
2 ỹ)

ò
−

≤ c′εα−1f2
`0,`0+1 ≤ c′ε3α−2 ≤ c′α

4ν−1
2(1−ν) .

(3.15)

Thus, ignoring the unimportant dependencies on (2.11), we have

(3.16) C? = C?(1 + α
κ+2ν−1
2(1−ν) + α

3ν−1
2(1−ν) + α

4ν−1
2(1−ν) ),

which, as long as ν > max{1
3 ,

1−κ
2 }, can be taken to be uniformly bounded

independently of α—though certainly depending on the constants in (2.11)—

since α ≤ 1 by definition.

Since C? is uniformly bounded per (3.16), it follows from (3.13) that by

choosing suitably large Kν = Kν(c0, E0, η, β, ν) > 0, ψ(0) will become less than
1
2 for small α, contradicting our assumption that (3.7) is violated. Specifically,

recalling (3.13), we may simply pick Kν large enough that C?(logKν)−1 < 1
4 ,

in which case ψ(0) < 1
2 as long as α is small enough that C?α

κ+2ν−1
2(1−ν) K2

ν <
1
4 .

This concludes the proof of Proposition 3.1 for

ν ∈ (ν0,
1
2), where ν0 = min{1

3 ,
1−κ

2 }.

The next step is to show that ν0 can be taken to be arbitrarily small, at the

expense of possibly having to rescale our domain a finite number of times.

Retracing the proof above, it is not hard to see that what one needs to

improve are

(1) the exponent of α in (3.12) and (3.13), and

(2) the oscillation bounds in (3.14) and (3.15).

For the prior, we may use (3.2) and (3.3) instead of (3.1); we get

ψ(0) ≤ C?
(

(logKν)−1 + (α
ν

1−ν + ακ)K2
ν

)
,

a sufficient bound.

For the latter, we need to use a Harnack-type inequality on the elliptic

equation satisfied by f`0,`0+1, (2.41). Recalling (2.36), and using the fact that

we now know Proposition 3.1 to hold for ν ′ ∈ (ν0,
1
2), we see that the right-hand

side of (2.41) can be bounded in L∞ by

c′ε2 + c′
Q∑

m=1

Am(|y|+ 2Kε| log ε|) ≤ c′ε2(1−ν′)
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for some ν ′ ∈ (ν0,
1
2). Diving (2.41) through by ε, we thus get a uniformly

elliptic equation

(3.17) (L+ | IIΓ` |
2 + Ricg(ν, ν)|Γ` +Q)f`,`+1(y) = O(ε1−2ν′).

Now we apply the inhomogeneous Harnack-type inequality found in [GT01,

Ths. 8.17, 8.18] to (2.41), multiplied through by the a(y) in (2.38), with some

q > 2, R = εα−
1
2 , and g = O(ε1−2ν′) (in the L∞ sense). We get

sup {f`0,`0+1 : Γ`0 ∩ Cεα−1/2(Π(y))}

≤ c′
(
f`0,`0+1(y) + ε2α−1 · ε1−2ν′

)
= c′

(
f`0,`0+1(y) + ε3−2ν′α−1

)
.

Recall that we are assuming, by contradiction, that (3.7) is violated at our y,

implying that f`0,`0+1(y) is an error term relative to the last term of the right-

hand side. Together with (3.6), this gives

sup
{
εα−1f`0,`0+1 : Γ`0 ∩ Cεα−1/2(Π(y))

}
≤ c′ε4−2ν′α−2 ≤ c′α

2−ν′
1−ν −2

= c′α
2ν−ν′
1−ν .

(3.18)

This is ≤ c′αδ for some δ > 0 as long as ν > ν ′0 ,
1
2ν
′. This gives the improved

oscillation bound that we sought in place of (3.14), and Proposition 3.1 follows

in full by iteratively pushing ν, ν ′0 down to zero. �

Proposition 3.2 (Stable sheet distances, II). If u is as in Proposition 3.1,

then

lim
ε→0

exp(−
√

2ε−1D`)

ε2| log ε|
= 0 on Γ`(

1
6)

for all ` ∈ {1, . . . , Q}, uniformly in terms of c0, E0, η, β.

Proof. The proof follows along the same lines as the bootstrap portion of

the proof of Proposition 3.1. However, the modifications are somewhat delicate

so we give the argument here.

We first prove a weaker bound. We argue by contradiction, assuming that

there exists ` ∈ {1, . . . , Q} such that

(3.19) A`(r) ≥ A`(1/5) > ε2| log ε|2 for all r ∈ [1
5 ,

1
4 ].

Let r ∈ [1
5 ,

1
4 ], and then let α , max{A`(r) : ` ∈ {1, . . . , Q}}. Then

(3.20) α > ε2| log ε|2.

We claim that

(3.21) max
`∈{1,...,Q}

A`(r − εK0α
−1

2 ) < 1
2α

for a constant K0 = K0(c0, E0, η, β) > 0.
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Suppose that (3.21) fails for `0 ∈ {1, . . . , Q} and y ∈ Γ`0(εK0α
−1

2 ). Define

(3.22) f̃(ỹ) , ε−1f`0,`0+1(y + εα−
1
2 ỹ)− 1√

2
| logα|

for ỹ ∈ B2
K0/2

(0). Proceeding as in (3.9), we find that

L̃f̃(ỹ) ≤ 8A0

h0
exp(−

√
2f̃(ỹ))

+ α−1c′|R`0(y + εα−
1
2 ỹ)|+ α−1|R`0+1((y + εα−

1
2 ỹ)′)|

− εα−1(| IIΓ`0
|2 + Ricg(ν, ν)|Γ`0 +Q)f`0,`0+1(y + εα−

1
2 ỹ).

(3.23)

We also still have an estimate of the form

(3.24) α−1c′|R`0 |+ α−1|R`0+1| ≤ c′,

and the function ψ , exp(−
√

2f̃) still satisfies a differential inequality of the

form

L̃ψ ≥ −8
√

2(A0)2

h0
ψ2 − c′ψ

+
√

2εα−1(| IIΓ`0
|2 + Ricg(ν, ν)|Γ`0 +Q)f`0,`0+1(y + εα−

1
2 ỹ)ψ.

(3.25)

Applying the same inhomogeneous Harnack-type inequality that led to (3.18)

before, we obtain

sup {f`0,`0+1 : Γ`0 ∩ Cεα−1/2(Π(y))} ≤ c′
(
f`0,`0+1(y) + ε2α−1 · ε−1(ε2 + α)

)
≤ c′

(
ε| logα|+ ε3α−1 + ε

)
.

Thus, we have the following L∞ estimate on the coefficient in front of ψ in the

last term of (3.25) on the domain B2
εα−1/2(y):

sup
{
εα−1f`0,`0+1 : Γ`0 ∩ Cεα−1/2(Π(y))

}
≤ c′

(
ε2α−1| logα|+ ε4α−2 + ε2α−1

)
≤ c′,

(3.26)

where we have used the simple fact that

(3.27) (3.20) ⇐⇒ α > ε2| log ε|2 =⇒ ε2α−1| logα| = o(1).

Thus, (3.25) implies the uniformly elliptic partial differential inequality

(3.28) L̃ψ ≥ −8
√

2(A0)2

h0
ψ2 − c′ψ.
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From Moser’s weak maximum principle (see, e.g., [HL97, Th. 4.1]) applied to

(3.28) on B2
1(0), combined with (3.3), we get the L∞ bound

ψ(0) ≤ c′
∫
B2

1(0)
ψ ≤ c′

(
(logK0)−1 + (ε2α−1 + ακ)K2

0

)
≤ c′

(
(logK0)−1 + (o(| logα|−1) + ακ)K2

0

)
,

violating the assumption that (3.21) fails, provided we take K0 large and α

small.

Thus, (3.21) holds true with a fixed K0. Then notice that

εK0α
−1

2 ≤ K0| log ε|−1.

A backward iteration of (3.21) from r = 1
4 to r = 1

5 , followed by an application

of Proposition 3.1 at radius r = 1/4 with ν < log 2
20K0

, yields

logA`0(1
5) ≤ logA`0(1

4)− log 2
20K0
| log ε|

≤ 2(ν − 1)| log ε| − log 2
20K0
| log ε| < −2| log ε| = log ε2,

violating (3.19).

We now prove the main claim. We argue by contradiction again assuming

that there exists ` ∈ {1, . . . , Q} such that

(3.29) A`(r) ≥ A`(1
5) > µε2| log ε| for all r ∈ [1

6 ,
1
5 ]

for some µ > 0. Let r ∈ [1
6 ,

1
5 ], α , max{A`(r) : ` ∈ {1, . . . , Q}}. Then

(3.30) α > µε2| log ε|.

We claim that

(3.31) A`(r − εK ′0α
−1

2 ) < 1
2α for every ` ∈ {1, . . . , Q}

for a constant K ′0 = K ′0(c0, E0, η, β) > 0. This indeed follows from the same

argument as above, modulo the fact that one needs to replace (3.27) with

(3.30) ⇐⇒ α > µε2| log ε| =⇒ ε2α−1| logα| ≤ µ−1(2 + o(1)).

Notice, now, that

εK ′0α
−1

2 ≤ µ−
1
2K ′0| log ε|−

1
2 ,

so that a backward iteration of (3.31) from r = 1/5 to r = 1/6, together with

the weaker assertion verified above, yields

logA`0(1
6) ≤ logA`0(1

5)− µ
1
2 log 2

20K′0
| log ε|

1
2

≤ −2| log ε|+ 2 log | log ε| − µ
1
2 log 2

20K′0
| log ε|

1
2 .
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However,

lim
ε→0

Å
log | log ε| − µ

1
2 log 2

20K′0
| log ε|

1
2

ã
= −∞

so, for sufficiently small ε (depending on K0, µ), this quantity is < logµ. Thus,

for small ε,

logA`0(1
6) ≤ logµ− 2| log ε|+ log | log ε| = log(µε2| log ε|),

which violates (3.29). The result follows. �

In fact, Proposition 3.2 and (2.35)–(2.36) establish the following:

Corollary 3.3. If u is as in Proposition 3.2, then for all ` ∈ {1, . . . , Q},

HΓ`

ε| log ε|
→ 0 uniformly on Γ`(

1
6)

as ε→ 0.

This estimate is key for our geometric applications, since it says that the

mean curvature of the zero sets u dominates the effect of interactions between

the sheets. This will allow us to treat the sheets (essentially) like disjoint

minimal surfaces.

3.2. Curvature estimates. In what follows, we let Bn
r (0) be a smooth n-ball

equipped with a Riemannian metric g so thatBn
r (0) is a geodesic r-ball centered

at 0 (with respect to g).

Theorem 3.4. Suppose injg ≥ 3 and |Rmg | + |∇g Rmg | ≤ 1 on B3
1(0).

If ε ≤ ε1, u ∈ C∞(B3
1(0); (−1, 1)) is a stable critical point of Eε B3

1(0), and

(Eε B3
1(0))[u] ≤ E0, then

|A(x)| ≤ c1 for all x ∈ B3
1/2(0) ∩ {|u| ≤ 1− β},

where ε1 = ε1(n,E0, β,W ), c1 = c1(n,E0, β,W ).

Remark 3.5. We emphasize that, in one dimension lower, Wang–Wei have

proven [WW19a] that stable critical points of Eε satisfy curvature bounds even

without the assumption of uniformly bounded energy.

Remark 3.6. It is not immediately obvious that the enhanced second fun-

damental form A is well defined on B3
3/4(0)∩{|u| ≤ 1−β}. This can be seen, for

instance, by applying the following proposition with n = 3. Its “non-existence”

condition, when n = 3, is guaranteed in view of the work of Ambrosio–Cabré

[AC00]. (See also the work of Farina–Mari–Valdinoci [FMV13].)

Proposition 3.7. Let u : Bn
1 (0) → (−1, 1) be a stable critical point of

Eε Bn
1 (0) with (Eε Bn

1 (0))[u] ≤ E0. If ε ≤ ε0 and Rn with the standard
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metric does not carry any non-trivial (i.e., heteroclinic or ±1) entire stable

solutions with Euclidean energy growth, then

ε|∇ui| ≥ c−1
0 > 0 for all x ∈ Bn

3/4(0) ∩ {|u| ≤ 1− β},

where ε0, c0 depend on E0, β, W .

Proof. We argue by contradiction. If the assertion were false, there would

exist a sequence

{(ui, εi)}i=1,2,... ⊂ C∞(Bn
1 (0); (−1, 1))× (0,∞), lim

i
εi = 0,

where each ui : Bn
1 (0)→ [−1, 1] is a stable critical point for Eεi Bn

1 (0), with

(Eεi Bn
1 (0))[ui] ≤ E0, and so that limi εi∇ui(qi) = 0 along some {qi}i=1,2,... ⊂

Bn
3/4(0). The rescaled functions

vi(x) , ui(εi(x− qi))

are all stable critical points of E1 Bn
(1−|qi|)/εi(0) with Euclidean energy growth.

Since the ellipticity constants are uniform at this scale, we may pass to a

subsequence with limi vi = v∞ in C∞loc(R
n), where v∞ is a stable critical point

of E1 Rn with Euclidean area growth, |v∞(0)| ≤ 1− β, and ∇v∞(0) = 0. No

such v∞ exists; the only entire stable solutions on Rn with Euclidean energy

growth are the constants ±1 and the one-dimensional heteroclinic solution. �

We are now in a position to prove Theorem 3.4.

Proof of Theorem 3.4. If the assertion were false, there would exist a se-

quence

{(ui, εi)}i=1,2,... ⊂ C∞(B3
1(0); (−1, 1))× (0,∞), lim

i
εi = 0,

where each ui : B3
1(0)→ (−1, 1) is a stable critical point for Eεi B3

1(0), with

(Eεi B3
1(0))[ui] ≤ E0, and so that the maximum value

max
¶

dist(x,R3 \B3
3/4(0))|A(x)| : x ∈ B3

1(0) ∩ {|u| ≤ 1− β}
©

is attained at some qi ∈ B3
3/4(0) with

lim
i

dist(qi, ∂B
3
3/4(0))|Ai(qi)| =∞.

Next, let λi , |Ai(qi)|, which we note also satisfies limi λi =∞.

Claim. lim infi εiλi = 0.

Proof of claim. Rescale to vi(x) , ui(εi(x− qi)), a stable critical point of

E1 B3
(1−|qi|)/εi(0) with quadratic energy growth and |vi| ≤ 1 − β. Since our

ellipticity constants are uniform at this scale, we can pass to a subsequence such

that limi vi = v∞ in C∞loc(R
3), where v∞ is a stable critical point of E1 R3

with |v∞(0)| ≤ 1 − β. The only such v∞ is the one-dimensional heteroclinic
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solution, for which A∞ ≡ 0, and therefore lim infi εiλi = |A∞(0)| = 0. This

completes the proof of the claim. �

Pass to a subsequence for which lim infi εiλi = 0 is attained, and rescale

to ũi(x) , ui(λ
−1
i (x − qi)). This is a critical point of Eεiλi B3

(3/4−|qi|)λi(0).

We note that

(3.32) lim
i
εiλi = 0, lim

i
(3/4− |qi|)λi =∞.

Moreover, for every R ≥ 1,

(3.33) (Eεiλi B3
(3/4−|qi|)λi(0))(B3

R(0)) ≤ cR2

for all sufficiently large i. Here, c > 0 is fixed. Combining (3.32), (3.33), to-

gether with the works of [HT00, Th. 1] and [Gua18, App. B] for the Riemannian

modifications, the 2-varifolds

Vεiλi [ũi](ϕ) ,
∫
ϕ(x, Tx{ũi = ũi(x)}) εiλi|∇ũi(x)|2,

for ϕ ∈ C0
c (Gr2(B3

(3/4−|qi|)λi(0))), converge weakly to a stationary integral var-

ifold V∞ ∈ I2(R3). The enhanced second fundamental form estimates, more-

over, imply that spt ‖V∞‖ is C1,1 and, therefore, a smooth minimal surface.

Remark 3.8. We note that the most technical elements of [HT00], such

as proving that the limit varifold is integral, can be proven (in the setting at

hand) in a much more direct manner given the curvature estimates we now

know to be true.

The stability of ũi is also known to imply stability of spt ‖V∞‖. Indeed,

one may plug ζ = ψ|∇ũi|, ψ ∈ C∞c (R3), into the second variation opera-

tor δ2Eεiλi |ũi and let i → ∞, and recover the second variation operator for

spt ‖V∞‖ with ψ|spt ‖V∞‖ being the test function. See also [Ton05].

Summarizing, spt ‖V∞‖ is a smooth, stable, embedded minimal surface

in R3 (in fact, with quadratic area growth). Therefore, the limit is a a dis-

joint union of planes P1, . . . , Pk ⊂ R3 with integer multiplicities m1, . . . ,mk ∈
{1, 2, . . .}. Without loss of generality, Pj = R2 × {zj}, with 0 = z1 < z2 <

· · · < zk.

We will only need to focus on one of these planes, e.g., P1. Writing

{ũi = 0} ∩ (B2
1(0)× [−z2/2, z2/2]) =

m1⋃
`=1

graph fi,`,

it follows from our rescaling that fi,` : B2
1(0) → R all converge, in the C1,α

sense on B2
1/2(0), to the zero function as i→∞. In fact, by dilating as needed,

we find ourselves in the setup of Sections 2.1–3.1.
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Therefore, by employing Proposition 3.2 (in fact, Proposition 3.1 suffices),

it follows from (2.30) that

(3.34) lim sup
i→∞

‖‹Ai‖C0(M`(1/6)∩{|ũi|≤1−β}) ≤ c′ lim sup
i→∞

Γ̂`(1/6),

for all ` ∈ {1, . . . , Q}, where Γ̂` is as in (2.27).

Claim. The right-hand side of (3.34) is zero.

Notice that this claim violates the fact that our dilations were such that

|‹Ai(0)| = 1 for all i = 1, 2, . . ., and Theorem 3.4 follows.

Proof of claim. From the Riccati equation, (A.2), it suffices to check that

the second fundamental form of {|ũi| = 0} converges to zero. This follows from

our Hölder estimate on the mean curvatures from (2.21), Lemma 2.8, and the

fact that our graphing functions converge to zero in C1. �

This concludes the proof of the curvature estimates. �

Corollary 3.9. Let (M, g), u, ε, ε1 be as in Theorem 3.4, and let θ ∈
(0, 1). Then,

[II{u=t}]θ,{u=t}∩B3
1/3

(0) ≤ c′1 for all |t| ≤ 1− β,

where c′1 = c′1(n,E0, β, θ,W ).

Proof. Formulas (2.33) and (2.34), Lemma 2.8, and Proposition 3.2 to-

gether give Cθ bounds on the mean curvatures of {u = 0}. The improvement

to C2,θ bounds on the level sets comes from (quasilinear) Schauder theory and

Theorem 3.4. �

4. Phase transitions with bounded Morse index (n = 3)

4.1. Multiplicity and Jacobi fields. In this section we prove that uniform

bounds on the Morse index generically prevent multiplicity from occurring in

the Allen–Cahn setting. Specifically,

Theorem 4.1. Suppose (M3, g) is a compact Riemannian 3-manifold pos-

sibly with ∂M 6= ∅, and suppose that ui ∈ C∞(M ; [−1, 1]), εi > 0, where each

ui is a critical point of Eεi , and

(4.1) Eεi [ui] ≤ E0, ind(ui) ≤ I0 for all i = 1, 2, . . . .

Suppose limi εi = 0. Passing to a subsequence, write V , limi h
−1
0 Vεi [ui] for

the limit 2-varifold. Then V is a stationary integral varifold, spt ‖V ‖ is smooth

in the interior of M , and if Σ denotes a connected component of spt ‖V ‖ that

is a compact submanifold without boundary, then one of the following is true:

(1) Σ is two-sided and Θ2(V, ·) = 1 on Σ (i.e., Σ has multiplicity 1);
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(2) Σ is two-sided, Θ2(V, ·) ≥ 2 on Σ (i.e., multiple interfaces have converged),

it is stable (see (1.3)), and it carries a smooth positive Jacobi field ; or

(3) Σ is one-sided, and the two-sided double cover of Σ is stable and carries a

smooth positive Jacobi field.

Proof. For p ∈M , i = 1, 2, . . ., define the index concentration scale by

(4.2) R(p, i) , inf{r > 0 : ind(ui;Br(p)) ≥ 1},

and then further let

Σ̊ , {p ∈M : lim inf
i→∞

R(p, i) > 0}.

By passing to an appropriate subsequence at the beginning of the proof, an

elementary covering argument allows us to assume that H0(Σ \ Σ̊) ≤ I0.

The curvature estimates from Theorem 3.4 combined with the varifold

convergence of Vεi [ui] (from7 [HT00, Th. 1], and [Gua18, App. B]) show that

along Σ̊, the limit varifold is supported with integer multiplicity (possibly

greater than one) on a C1,1 (and thus smooth) minimal surface. At this point,

we may argue that Σ extends smoothly across the index concentration set

Σ \ Σ̊ exactly as in [Gua18, Prop. 3.10]. We emphasize here that by using our

curvature estimates, we give a proof of the regularity of Σ that does not rely

on the deep works of Wickramasekera [Wic14] and Tonegawa–Wickramasekera

[TW12] (cf. [Gua18], [Hie18]).

We now assume that Σ is connected (in general, one can apply the follow-

ing argument to each component of the support of the limit varifold V ).

First, suppose Σ is two-sided and denote

U , tubular neighborhood of Σ such that (Σ ∪ ∂M) ∩ U = ∅.

We may suppose that U = ZΣ(Σ× (−1, 1)).

By the Constancy Theorem [Sim83, Th. 41.1], Θ2(V, ·) is constant on Σ.

If Θ2(V, ·) = 1 somewhere on Σ, then Σ occurs entirely with multiplicity one

as claimed.

In what follows we may assume, then, that Θ2(V, ·) ≡ m ∈ {2, 3, . . .} on Σ.

Let us assume, for the time being, that I0 = 0, i.e., that the critical points

ui are all stable. The general case will be dealt with later.

It follows from (4.1), Corollary 3.9, and the two-sidedness of Σ, that the

level sets {ui = 0} ∩ U converge graphically in C2,θ to Σ. In the case that

{ui = 0}∩U were minimal surfaces, it is standard to produce a positive Jacobi

field on Σ out of this setup. We recall the argument here, with the necessary

modifications for our lower regularity situation.

7See Remark 3.8.
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Since Σ is two-sided, the level sets {ui = 0} ∩ U (which are smoothly

embedded) can be ordered by their signed distance to Σ in a fashion that is

consistent across Σ. Without loss of generality, we may assume that there are

Q = 2 level sets.8 To stay consistent with Section 2, let us label the level sets

Γi,1,Γi,2 ⊂ {ui = 0} ∩ U.

Denote their corresponding height functions (over Σ) as fi,1, fi,2 : Σ → R,

` ∈ {1, 2}, so that fi,1 < fi,2 on Σ. We recall (A.13) from Appendix A, which

tells us that

HΓi,` = −divgfi,`

(
∇gfi,`fi,`

(1 + gpqfi,`(fi,`)p(fi,`)q)
1/2

)

−
IIpqfi,`(fi,`)p(fi,`)q

(1 + gpqfi,`(fi,`)p(fi,`)q)
1/2

+ (1 + gpqfi,`(fi,`)p(fi,`)q)
1/2Hfi,`

(4.3)

for ` = 1, 2. Here we are using notation from the appendix, where, e.g.,

g = gz + dz2 on U .

We now claim that HΓi,2 −HΓi,1 satisfies a linear uniformly elliptic equa-

tion in fi,2 − fi,1, whose parameters (obviously) depend on fi,1, fi,2. Indeed,

(4.3) tells us that

(4.4) HΓi,` = −A(fi,`) divΣ (B(fi,`,∇Σfi,`)∇Σfi,`) + C(fi,`,∇Σfi,`)

for smooth functions (for each p ∈ Σ)

A = Ap : R→ R,

B = Bp : R× TpΣ→ End(TpΣ),

C = Cp : R× TpΣ→ R,

which, additionally, satisfy that A > 0, B is positive definite. More specifically,

at each point p ∈ Σ,

A(z) ,
√
g0√
gz
, z ∈ R,

B(z,v)w ,
√
gz√
g0

gijz g0
jkw

j∂yk

(1 + gpqz g0
pkg

0
q`v

kv`)1/2
, z ∈ R, v,w ∈ TpΣ,

C(z,v) , −
IIpqz g0

ipg
0
jqv

ivj

(1 + gpqz g0
pkg

0
q`v

kv`)1/2

+ (1 + gpqz g
0
pkg

0
q`v

kv`)1/2Hz, z ∈ R, v ∈ TpΣ.

8Otherwise, we apply the same argument verbatim to the top and bottom level sets,

ignoring all intermediate ones.
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From the fundamental theorem of calculus, as well as the fact that the

two divergences (for the two cases ` = 1, 2) are pointwise bounded (because

the two mean curvatures are bounded), it follows that

(4.5) HΓi,2 −HΓi,1 = −AdivΣ( “B∇Σfi + fi“C) + 〈bD,∇Σfi〉Σ + “Efi on Σ,

where fi , fi,2 − fi,1 > 0 on Σ, with coefficients“B = “Bp : R2 × (TpΣ)2 → End(TpΣ),“C = “Cp,“D = “Dp : R2 × (TpΣ)2 → TpΣ,“E = “Ep : R2 × (TpΣ)2 → R,

whose arguments are (fi,1, fi,2,∇Σfi,1,∇Σfi,2) ∈ R2 × (TpΣ)2. These coeffi-

cients are uniformly bounded and satisfy

A ≥ µ, 〈Bv,v〉Σ ≥ µ‖v‖2Σ, v ∈ TpΣ,

for a fixed µ > 0, provided

lim sup
i→∞

‖fi,1‖C1(Σ) + ‖fi,2‖C1(Σ) <∞.

It will be convenient to carry out the exact computation, as that will allow

us to study a particular rescaled limit as i→∞. It will also be convenient to

denote

ζ
(t)
i , fi,1 + t(fi,2 − fi,1) ≡ fi,2 + tfi, t ∈ [0, 1].

Note that

ζ
(0)
i ≡ fi,1, ζ(1)

i ≡ fi,2, and ∂
∂tζ

(t)
i ≡ fi on Σ.

Let us define “B, “C, “D, “E. The easiest term to deal with in (4.4) is the

low order term, C. Indeed

C(fi,2,∇Σfi,2)− C(fi,1,∇Σfi,1) =

ñ∫ 1

0
DzC(ζ

(t)
i ,∇Σζ

(t)
i ) dt

ô
︸ ︷︷ ︸“E, term 1 out of 2

fi

+

≥∫ 1

0
DvC(ζ

(t)
i ,∇Σζ

(t)
i ) dt︸ ︷︷ ︸“D ,∇Σfi

Ω
.
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We study the higher order term in two steps. First,

B(fi,2,∇Σfi,2)∇Σfi,2 −B(fi,1,∇Σfi,1)∇Σfi,1

=

Çñ∫ 1

0
DzB(ζ

(t)
i ,∇Σζ

(t)
i )∇Σζ

(t)
i dt

ôå
︸ ︷︷ ︸“C fi

+

¥ñ∫ 1

0
DvB(ζ

(t)
i ,∇Σζ

(t)
i )∇Σζ

(t)
i dt

ô
︸ ︷︷ ︸“B, term 1 out of 2

,∇Σfi

æ
+

ñ∫ 1

0
B(ζ

(t)
i ,∇Σζ

(t)
i ) dt

ô
︸ ︷︷ ︸“B, term 2 out of 2

∇Σfi.

Second,

(A(fi,2)−A(fi,1)) divΣ(B(fi,2,∇Σfi,2)∇Σfi,2)

=

Çñ∫ 1

0
DzA(ζ

(t)
i ) dt

ô
divΣ(B(fi,1,∇Σfi,1)∇Σfi,1)

å
︸ ︷︷ ︸“E, term 2 out of 2

fi.

We now return to the qualitative study of fi. Applying the Harnack

inequality in divergence form to (4.5) (after multiplying through by A−1), we

get

(4.6) sup
Σ
fi ≤ c inf

Σ
fi for i = 1, 2, . . .

with a constant c > 0 that does not depend on i. From Proposition 3.2 and

Corollary 3.3, we know that

lim
i→∞

‖HΓi,`‖C0(Γi,`)

εi| log εi|
= 0 for ` = 1, 2,(4.7)

lim inf
i→∞

infΣ fi
εi| log εi|

> 0.(4.8)

Define the normalizations

(4.9) f̂i , (sup
Σ
fi)
−1fi : Σ→ [1

c , 1],

where c is as in (4.6). In view of (4.5), f̂i satisfies the linear, uniformly elliptic

equation (note that we have multiplied through by A−1, which is uniformly
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bounded):

(4.10)
HΓi,2 −HΓi,1

A · supΣ fi
= −divΣ( “B∇Σf̂i + f̂i“C) + 〈A−1bD,∇Σf̂i〉Σ +A−1“Ef̂i on Σ.

We will test this PDE by multiplying through by some ζ ∈ C∞(Σ) and inte-

grating by parts. By testing, first with ζ = f̂i, we get uniform energy estimates

lim sup
i→∞

∫
Σ
|∇Σf̂i|2 <∞.

Moreover, since f̂i is (trivially) bounded, it follows from Rellich’s theorem that

there exist f̂ ∈W 1,2(Σ) and a subsequence such that

f̂i ⇀ f̂ in W 1,2(Σ), f̂i → f̂ in L2(Σ).

Therefore, since the coefficients in (4.10) are all uniformly bounded as i→∞,

it follows that we can test (4.10) with arbitrary ζ ∈ C∞(Σ) and pass to a

subsequential limit i→∞.

The left-hand side of (4.10) converges to zero uniformly as i→∞ because

of (4.7)–(4.8) above. Thus, f̂ is a W 1,2-weak solution of

(4.11) − divΣ( “B∞∇Σf̂ + f̂“C∞) + 〈A−1
∞
“D∞,∇Σf̂〉+A−1

∞
“E∞f̂ = 0 on Σ,

where A∞, “B∞, “C∞, “D∞, “E∞ are just the same coefficients, except now they

are evaluated at the limiting configuration of (0, 0,0,0). It is not hard to see,

using the evolutions in Appendix A, that

A∞ ≡ 1, “B∞ ≡ Id, “C∞ ≡ “D∞ ≡ 0, and “E∞ ≡ −(| IIΣ |2 + Ricg(νΣ, νΣ)).

Thus, f̂ is W 1,2-weak solution of the Jacobi equation

(4.12) (∆Σ + | IIΣ |2 + Ricg(νΣ, νΣ)|Σ)h = 0 on Σ.

It must be smooth—and thus classically a solution—by elliptic regularity.

Moreover,
1
c ≤ f̂i ≤ 1 for all i = 1, 2, . . . =⇒ 1

c ≤ f̂ ≤ 1.

In particular, the function is positive. It follows that the principal eigenvalue

of the Jacobi operator is zero, so Σ is stable.9 The result follows.

We now drop the stability assumption and proceed to the general case of

I0 ∈ {0, 1, 2, . . .}. We continue to assume that Σ is two-sided. Without loss

of generality, we will assume I0 = 1 from this point on. The general case is

similar.

9The fact that ind(ui) = 0 for all i = 1, 2, . . . implies the stability of Σ is not new; see

[Ton05], [TW12], [Hie18], [Gas17]. Nonetheless, by appropriately generalizing the argument

given here, we are going to be able to extend the conclusion that Σ is stable in the case where

ind(ui) ≤ I0 for i = 1, 2, . . ., I0 ∈ {0, 1, . . .} and convergence occurs with multiplicity ≥ 2.
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The index concentration set is either empty (in which case, we can argue

as in the previous case) or satisfies Σ̊ = Σ \ {P?} for some P? ∈ Σ, and the

convergence of {ui = 0} ∩ U to Σ̊ is graphical C2,θ
loc on Σ \ {P?}. Notice that

by definition, for every r > 0, there exists a subsequence along which

(4.13) ind(ui;M \Br/2(P?)) = 0.

Our previous discussion regarding the stable case applies verbatim to M \
Cr(P?) where, in exponential normal coordinates,

Cρ(P?) , B
2
ρ(P?)× (−1, 1),

and yields functions fi,1, fi,2 : Σ \ B2
r (P?) → R representing the incomplete

properly embedded surfaces-with-boundary

(4.14) Γi,1,Γi,2 ⊂ {ui = 0} ∩ U \ Cr(P?).

Remark 4.2. Recall that we assumed U is the image of the normal expo-

nential map of Σ restricted to Σ × (−1, 1). Then, ∂Cρ(P?) ∩ U = ∂B2
ρ(P?) ×

(−1, 1) for every sufficiently small ρ > 0.

All of (4.3)–(4.8) continue to hold over Σ \ B2
r (P?) instead of Σ. All

the constants inevitably depend on our choice of r > 0, which is yet to be

determined. We note that, trivially, the energy estimate

lim sup
i→∞

∫
Σ\B2

2r(P?)
|∇Σf̂i|2 <∞

holds true for any fixed r > 0 by our previous discussion. In fact, because

Γi,1 \ Cr(P?), Γi,2 \ Cr(P?) converge in C2,θ to Σ \B2
r (P?) as i→∞, a subset

of the fixed surface Σ, the coefficients of (4.5) will satisfy

lim sup
r→0

[
lim sup
i→∞

‖A‖C0(Σ\B2
3r/2

(P?)) + ‖ “B‖C0(Σ\B2
3r/2

(P?))

+ ‖“C‖C0(Σ\B2
3r/2

(P?)) + ‖“D‖C0(Σ\B2
3r/2

(P?)) + ‖“E‖C0(Σ\B2
3r/2

(P?))

]
<∞,

and therefore, we will have the uniform energy estimate

lim sup
r→0

ñ
lim sup
i→∞

∫
Σ\B2

2r(P?)
|f̂i|2
ô
<∞.

This means we can pass to a limiting f̂ in the following sense:

(4.15) f̂i ⇀ f̂ in W 1,2
loc (Σ̊), f̂i → f̂ in L2

loc(Σ̊).

Now, (4.6)–(4.8) also hold for each fixed r > 0, with the sup and inf taken

over Σ\B2
r (P?) and the C0 norm of HΓi,` taken over Γi,` \Cr(P?); the constant

c and rates of convergence of the limits, a priori, depend on r. Nonetheless,

f̂ ∈ W 1,2
loc (Σ̊) is a weak solution of (4.12) on Σ̊. By elliptic regularity, f̂ is

smooth and solves (4.12) classically on Σ̊.
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Proposition 4.3. f̂ ∈ L∞(Σ̊), f̂ 6≡ 0 almost everywhere on Σ̊.

We defer the proof of Proposition 4.3 to the next section, since the argu-

ment is of independent interest.

This proposition, once verified, completes the proof of Theorem 4.1: By

standard removable singularity results for elliptic PDE, f̂ must extend to a

smooth non-negative solution of (4.12) on Σ, which is not identically zero, and

the result follows as it did in the stable setting.

Finally, we explain the necessary modifications when Σ is one-sided. As-

sume, as above, that I0 = 1. (The general case is similar.) As before, we can

define Σ̊ to be the complement of the index concentration set. Considering a

tubular neighborhood U of Σ, we can use the normal exponential map to lift

Σ and u : U → R to Σ̌ ⊂ Ǔ , where Σ̌ is the orientable double cover of Σ and

Ǔ is the associated lift of U . We can assume that Ǔ is diffeomorphic (via the

normal exponential map) to Σ̌× (−1, 1). Let
ˇ̊
Σ be the lift of Σ̊. Observe that

Σ̌ \ ˇ̊
Σ contains at most two points (more generally 2I0 points).

Note that the covering map π : Ǔ → U admits an deck transformation

τ : Ǔ → Ǔ with τ2 equal to the identity. Define ǔ , u ◦ π, which is still a

critical point of Eεi . Clearly ǔ ◦ τ = ǔ.

We claim that the convergence of ǔ to Σ̌ occurs with even multiplicity.

If not, (up to switching the normal vector) we can assume that ǔ → −1 on

Σ̌×(−1, 0) and ǔ→ 1 on Σ̌×(0, 1). (This is clear on
ˇ̊
Σ, which then implies that

it holds for all p ∈ Σ̌.) Note, however, that τ({p} × (0, 1)) = {τ(p)} × (−1, 0);

otherwise, we would find that Σ was two-sided. This contradicts the fact that

ǔ is invariant under τ .

Thus, the convergence of ǔ occurs with even multiplicity (and thus mul-

tiplicity at least two). Now, the argument above can be applied verbatim to

Σ̌ and ǔ to produce a smooth positive Jacobi field on Σ̌. (We emphasize that

it is not clear what the index of ǔ is; here, we rely on the index bounds of u

to bound the cardinality of Σ̌ \ ˇ̊
Σ; after this step, the definition of

ˇ̊
Σ, rather

than the index bounds is all that is used.) As above, this implies that Σ̌ is

stable. �

4.2. Sliding heteroclinic barriers. For the reader’s convenience we start by

recalling the following important result of White on local foliations by minimal

surfaces.

Proposition 4.4 ([Whi87, Appendix]). Let Φ be an even elliptic in-

tegrand, where Φ and D2Φ are C2,θ. Let Φr be the integrand defined by

Φr(x, v) = Φ(rx, v). There is an η > 0 such that if r < η and if

w : B1 ⊂ R2 → R, ‖w‖C2,θ < η,
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then for each t ∈ [−1, 1], there is a C2,θ function vt : B1 → R whose graph is

Φr-stationary and such that

vt(x) = w(x) + t if x ∈ ∂B1.

Furthermore, vt depends in a C1 way on t so that the graphs of the vt foliate a

region of R3. If M is a C1 properly immersed Φr-stationary surface in B1/2(0)

with ∂M ⊂ graph vt, then M ⊂ graph vt.

We will use the minimal disks constructed by this proposition to construct

barriers (using Theorem 7.4) that will allow us to control the height of the top

and bottom {ui = 0} sheets near P?. This can be thought of as a variant of

the moving planes method adapted to the Riemannian Allen–Cahn setting.

Proof of Proposition 4.3. We continue with the same notation as in the

previous section. Let ρ > 2r be sufficiently small so that (4.13)–(4.14) still

apply.

Let wi : B2
2ρ(P?) → R be a harmonic function (defined on B2

2ρ(P?) ⊂ Σ)

with boundary data

wi = fi,2 on ∂B2
ρ(P?).

Recalling, from Corollary 3.9, that fi,2 → 0 in C2,θ(B2
2ρ(P?) \ B2

ρ/2(P?)), it

follows that (by potentially going farther down the sequence of i = 1, 2, . . .)

‖wi‖C2,θ — suitably scaled — is small enough for Proposition 4.4 to apply.

Once we are in that regime, Proposition 4.4 guarantees a foliation

t 7→ Di,ρ(t), t ∈ [−δ, δ],

consisting of minimal disks that all project to B2
ρ(P?) ⊂ Σ. Without loss of

generality, we may suppose that the foliated region ∪|t|<δDi,ρ(t) lies entirely

within U . Note that

(1) the curves t 7→ ∂Di,ρ(t) move at unit vertical speed in ∂Cρ(P?);

(2) the second fundamental form of the disks Di,ρ(t) is bounded in C0,θ uni-

formly over i = 1, 2, . . ., t ∈ [−δ, δ],

(4.16) | IIDi,ρ(t) |+ [IIDi,ρ(t)]θ ≤ η,

and η > 0 can be made arbitrarily small.

As a consequence of (4.16), (2.7), and minimal surface curvature esti-

mates, the disks also satisfy the following weaker C3,θ bound uniformly over

i = 1, 2, . . ., t ∈ [−δ, δ],

(4.17) ε|∇Di,ρ(t) IIDi,ρ(t) |+ ε1+θ[∇Di,ρ(t) IIDi,ρ(t)]θ ≤ η,

after possibly relaxing η > 0, which can still nevertheless be made arbitrarily

small.
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We will now use a sliding/moving planes argument that relies on the

barrier construction in Section 7, adopting relevant notation from therein. We

assume, without loss of generality, that

(4.18) u > 0 above Γi,2 in U \ Cρ/2(P?).

Our constructions below will take place for ε = εi, i = 1, 2, . . ., but we

suppress the dependence on i for the sake of notational brevity.

Define χ̂ : R→ [0, 1] to be a cutoff function such that

(4.19) χ̂(s) =

{
1 |s| ≤ Bε| log ε|,
0 |s| ≥ 2Bε| log ε|,

where B � 1 is to be chosen later. This can be constructed so that

|χ̂(k)| = O((ε| log ε|)−k) for k ≥ 1, ε→ 0.

Let us very briefly run through some notation which is introduced later, in

Section 7; we will need to use some of it here in invoking that section’s main

theorem. In Section 7 we consider δ∗ ∈ (0, 1) fixed and a Hölder exponent

α ∈ (0, 1), α ≤ θ, where θ is as in (4.16), (4.17). (We will eventually choose

α near 0 and θ near 1.) In (7.11), cutoff functions χj are introduced that are

supported on strips of width O(εδ∗) (while χ̂ is supported on a thinner strip of

size O(ε| log ε|)). Finally, in (7.12), χ1 is used to define a suitably truncated

approximate heteroclinic solution ‹Hε that is constant outside a strip of size

O(εδ∗); see Remark 7.2.

Given this notation, let us set

v̂](s) , γχ̂(s)H′(ε−1s) + (1− χ̂(s))

{
1− ε3 −‹Hε(s) s > 0,

−1−‹Hε(s) s < 0,

where γ ∈ R is chosen so that the orthogonality constraint

(4.20)

∫ ∞
−∞

v̂](s)H′(ε−1s) ds = 0

holds. Recalling (1.5) and (1.6), and that δ∗ ∈ (0, 1), (4.20) is equivalent to

γ(h0 − o(1)) = O(ε−1)

∫ ∞
Bε| log ε|

(1−H(ε−1s))H′(ε−1s) ds

+O(ε2)

∫ 47
50 ε

δ∗

2Bε| log ε|
|H′(ε−1s)| ds

= O(1)

∫ ∞
B| log ε|

(1−H(s))H′(s) ds+O(ε3)

∫ 47
50 ε

δ∗−1

2B| log ε|
|H′(s)| ds

= O(1) exp(−2
√

2B| log ε|)

+O(ε3) exp(−2
√

2B| log ε|) = O(ε2
√

2B).

(4.21)
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Also,

(4.22) ‖χ̂(s)H′(ε−1s)‖
C2,α
ε (R)

= O(1) as ε→ 0.

Taking B sufficiently large, (4.21) and (4.22) together imply

(4.23) ‖v̂](s)‖
C2,α
ε (R)

= O(ε3).

Next, for (y, s) ∈ ∂(B2
ρ(P?)× [−1

2 ,
1
2 ]), define

v̂[(y, s) , (1− χ4(s))

{
1− ε3 −‹Hε(s) s > 0,

−1−‹Hε(s) s < 0.

Recall that χ4 is defined in (7.11). It is easy to see that ‖v̂[‖
C2,α
ε

= O(ε3). In

fact, χ5v̂
[ = 0, so

(4.24) ‖v̂[‖‹C2,α
ε

= O(ε3)

as well. (See (7.16) for the definition of ‹C2,α
ε .)

We emphasize that everything from (4.19) to (4.24) above is agnostic

of our particular solutions with bounded Morse index. They will serve as

prescribed boundary data for solutions of the Allen–Cahn equation on the

fixed product manifold B2
ρ × [−1

2 ,
1
2 ], albeit with varying interior metric that

will depend on g, i = 1, 2, . . ., ρ, and t ∈ [−δ, δ]. Indeed, we let

(4.25) gi,ρ(t) , pullback metric from ZDi,ρ(t)(Di,ρ(t)× [−1
2 ,

1
2 ]) ⊂ U

to B2
ρ × [−1

2 ,
1
2 ] under Fermi coordinates (y, s) with respect to Di,ρ(t).

We may apply Theorem 7.4 with v̂], v̂[ as above, ζ̂ ≡ 0, and with the

Hölder exponents α near 0 and θ near 1 per the theorem, to Ω , B2
ρ × [−1

2 ,
1
2 ]

and the non-constant Riemannian metric gi,ρ(t). Note that the conditions of

the theorem are met trivially for ζ̂ and are also met for v̂], v̂[ by (4.23)–(4.24).

The theorem yields bi,ρ,t : Ω→ R such that

(4.26) ε2
i∆gi,ρ(t)bi,ρ,t = W ′(bi,ρ,t)

and, for all (y, s) ∈ ∂Ω,

(4.27) bi,ρ,t(y, s) = ‹Hε(s) + χ4(s)v̂](s) + v̂[(y, s).

We constructed v̂], v̂[ specifically so that

(4.28) bi,ρ,t(y, s) =

{
1− ε3

i (y, s) ∈ ∂Ω, s ≥ 2Bεi| log εi|,
−1 (y, s) ∈ ∂Ω, s ≤ −2Bεi| log εi|.

Claim. For every β > 0, εi ≤ 1, we have

(4.29) |bi,ρ,t(y, s)| ≤ 1− β =⇒ |s| ≤ c′εi,

where c′ = c′(W,β, η, c0) > 0.
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Proof of Claim. This is a straightforward consequence of the ansatz bi,ρ,t=

(‹Hε + χ4v
] + v[) ◦ Dζ , ‖v]‖C0 , ‖v[‖C0 = o(1), ‖ζ‖ = O(ε2−2α

i ), and (1.5), at

least provided we take α small enough. �

Claim. For sufficiently large i,

(4.30) bi,ρ,δ < (ZDi,ρ(δ))
∗ui on Ω.

Recall that δ > 0 represents the “top” of the foliation Di,ρ(δ).

Proof of Claim. Let us agree, for the remainder of the proof of this claim,

to write ui instead of (ZDi,ρ(δ))
∗ui. We seek to show that G , {x ∈ Ω :

bi,ρ,δ(x) < ui(x)} coincides with Ω. (Recall that we are assuming (4.18).)

Fix β ∈ (0, 1) so that W ′′ ≥ 2κ2 > 0 on [−1,−1 + β] ∪ [1− β, 1] for some

κ > 0. From (4.29), {|bi,ρ,δ| ≤ 1−β} is contained in an O(εi)-neighborhood of

Di,ρ(δ). From [HT00, Th. 1], {|ui| ≤ 1− β} converges, in the Hausdorff sense,

to Σ. In particular, for sufficiently large i,

(Ω ∩ {|ui| ≤ 1− β}) ∪ {|bi,ρ,δ| ≤ 1− β} ⊂ G.

Note that

ε2
i∆g(1−ui) = −W ′(ui) = W ′(1)−W ′(ui)

1−ui (1−ui) ≥ 2κ2(1−ui) on {ui > 1−β},

ε2
i∆g(1+ui) = W ′(ui) = W ′(ui)−W ′(−1)

ui−(−1) (1+ui) ≥ 2κ2(1+ui) on {ui < −1+β},

so by an application of the barrier principle together with the saddle property

of W at zero (see [KLP12, Lemma 4.1]), we get

(4.31) |u2
i − 1| = O

(
exp(−κε−1

i distg(·, {ui = 0}))
)
.

Combined with (4.28), this shows ∂Ω ⊂ G for sufficiently large i. Thus,

(4.32) Ω \ G ⊂ Ω \ (∂Ω ∪ {|ui| ≤ 1− β} ∪ {|bi,ρ,δ| ≤ 1− β}).

Subtracting from (4.26) the PDE satisfied by ui, we see that

ε2
i∆g(bi,ρ,τ − ui) = c(x)(bi,ρ,τ − ui)

for c(x) , (W ′(bi,ρ,t(x)) −W ′(ui(x)))/(bi,ρ,τ (x) − ui(x)). This is negative on

Ω \ G by (4.32), and this violates the maximum principle unless G = Ω. The

claim follows. �

Next, since

(1) bi,ρ,t and (ZDi,ρ(t))
∗ui both vary continuously in t ∈ [−δ, δ] by Theorem 7.4,

(2) (4.30) holds true, and

(3) bi,ρ,−δ 6≤ (ZDi,ρ(−δ))
∗ui,
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there will exist exactly one τi ∈ (−δ, δ), and at least one Q?i ∈ Ω, such that

(4.33)

bi,ρ,t<(ZDi,ρ(t))
∗ui on Ω for all t∈(τi, δ], and bi,ρ,τi(Q

?
i )=[(ZDi,ρ(τi))

∗u](Q?i ).

Our goal is to estimate τi. Abusing notation again, we will write ui instead

of (ZDi,ρ(τi))
∗ui, and g instead of gi,ρ(τi). Thus,

(4.34) ui − bi,ρ,τi ≥ 0 on Ω, (ui − bi,ρ,τi)(Q
?
i ) = 0.

Subtracting (4.26) from the PDE satisfied by u, we see that

ε2
i∆g(ui − bi,ρ,τi) = c(x)(ui − bi,ρ,τi)

for c(x) , (W ′(ui(x))−W ′(bi,ρ,τi(x)))/(ui(x)−bi,ρ,τi(x)). Then the maximum

principle tells us that

(1) either Q?i ∈ ∂Ω, or

(2) ui ≡ bi,ρ,τi on Ω.

We only consider the first case here, since the second reduces to it by replacing

Q?i with another point on ∂Ω. Note that (4.33), the fact that bi,ρ,0|∂Di,ρ(0) ≡ 0,

and the uniqueness of τi give a lower bound on τi:

(4.35) τi ≥ 0.

The upper bound is more subtle. We claim that

(4.36) τi < 7Bεi| log εi|,

provided B is chosen (independently of i) such that

(4.37) distg(x, {ui = 0}) > 3Bεi| log εi| =⇒ |ui(x)| > 1− ε3
i .

The existence of a B that satisfies (4.37) is guaranteed by (4.31).

It will be convenient to introduce the following notation (here, λ ≥ 0 is

some parameter):

∂Ω[λ] , {(y, s) ∈ ∂Ω : s ∈ [λ, 1
2 ]},

∂Ω[λ] , {(y, s) ∈ ∂Ω : s ∈ [−1
2 ,−λ]}.

To start, let us estimate the height of Q?i from below. We have

ui > −1 on (Mn, g) =⇒ bi,ρ,τi(Q
?
i ) = ui(Q

?
i ) > −1

so, from (4.28),

Q?i ∈ ∂Ω \ ∂Ω[2Bεi| log εi|].

Equivalently, the image ‹Q?i of Q?i to (Mn, g) under ZDi,ρ(τi) satisfies‹Q?i ∈ ZDi,ρ(τi)(∂Ω \ ∂Ω[2Bεi| log ε|]).
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In particular, ‹Q?i belongs to the open tubular neighborhood of the image

ZDi,ρ(τi)(∂Ω[0]) ⊂ (Mn, g) with radius 3Bεi| log εi|:

(4.38) ‹Q?i ∈ B3Bεi| log εi|
(
ZDi,ρ(τi)(∂Ω[0])

)
.

We now prove (4.36) by contradiction. We will show that

(4.39) distg(ZDi,ρ(τi)(∂Ω[0]), {ui = 0}) > 6Bεi| log εi|

when (4.36) fails, i.e., when τi ≥ 7Bεi| log εi|.
Since Di,ρ(τi) is an o(1)-Lipschitz graph over Σ (note that the argument

used to prove (4.30) shows that τi → 0) and ZDi,ρ(τi)(∂Ω) ⊥ Di,ρ(τi), there will

exist η > 0 (independent of i) such that and

ZDi,ρ(τi)(∂Ω[0] \ ∂Ω[η]) ⊂ C3ρ/2(P?) \ Cρ/2(P?)

for sufficiently large i. Moreover, limi→∞{ui = 0} = Σ in the Hausdorff

topology ([HT00, Th. 1], [Gua18, App. B]), so

lim inf
i→∞

distg(ZDi,ρ(τi)(∂Ω[η]), {ui = 0}) > 0

because τi ≥ 0 by (4.35). Thus, (4.39) will follow from

distg(ZDi,ρ(τi)(∂Ω[0] \ ∂Ω[η]), {ui = 0} ∩ C2ρ(P?) \ Cρ/2(P?)) > 6Bεi| log εi|

when τi ≥ 7Bεi| log εi|. Since the components of {ui = 0}∩C2ρ(P?) \Cρ/2(P?)

are well-ordered o(1)-Lipschitz graphs over Σ, with Γi,2 being the topmost, we

may equivalently show

distg(ZDi,ρ(τi)(∂Ω[0] \ ∂Ω[η]),Γi,2) > 6Bεi| log εi|.

Because Di,ρ(t), t ∈ [0, τi], are all o(1)-Lipschitz graphs over Σ as well, we have

∇g(dist±g (·; Γi,2)),∇g(dist±g (·;Di,ρ(t))〉 ≥ 1− o(1), t ∈ [0, τi]

in a small (but definite) neighborhood of Σ in C2ρ(P?) \ Cρ/2(P?). Here dist±g
denotes the signed distance. From it follows that for every P ∈ ZDi,ρ(τi)(∂Ω[0]\
∂Ω[η]),

dist±g (P ; Γi,2) ≥ (1− o(1)) dist±g (P ;Di,ρ(0))

≥ (1− o(1))(τi + dist±g (P ;Di,ρ(τi)))

≥ (1− o(1))τi > (1− o(1))7Bεi| log εi| > 6Bεi| log εi|,

as claimed, and (4.39) follows. It is now an automatic consequence of (4.38)–

(4.39) that

distg(‹Q?i , {ui = 0}) > 3Bεi| log εi|.
Recalling (4.37), we find that |ui(Q?i )| > 1−ε3

i . Combined with dist±g (‹Q?i ; Γi,2)

> 6Bεi| log εi| > 0, which guarantees that ui(Q
?
i ) > 0, we conclude that

ui(Q
?
i ) > 1− ε3

i . This contradicts (4.28). Thus, (4.36) is true.
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Summarizing (4.35) and (4.36), we have 0 ≤ τi < 7Bεi| log εi|. Combined

with the defining property (4.34) of τi, we get the following height estimate

over Σ:

fi,2 ≤ hDi,ρ(τi) ≤ hDi,ρ(7Bεi| log εi|) on Σ ∩B2
2ρ(P?) \B2

r (P?),

where

(1) fi,2 : Σ \ B2
r (P?) → R is the height of Γi,2 over Σ, with r ∈ (0, ρ/2) as in

(4.13) and (4.14), and

(2) hDi,ρ(t) denotes the height of the minimal disk Di,ρ(t) over Σ.

The same sliding argument, carried out below the bottom-most sheet Γi,1
of {ui = 0}, similarly gives

fi,1 ≥ hD
′
i,ρ(−7Bεi| log εi|) on Σ ∩B2

2ρ(P?) \B2
r (P?).

Notice that we are denoting the disks by D′i,ρ(−7Bεi| log εi|), since they come

from a different foliation, namely, the one generated by applying Proposi-

tion 4.4 to wi = fi,1. Therefore, by the regularity of the foliation guaranteed

by Proposition 4.4, we have

fi = fi,2 − fi,1 ≤ hDi,ρ(7Bεi| log εi|) − hD
′
i,ρ(−7Bεi| log εi|)

≤ c
Ä
7Bεi| log εi|+ hDi,ρ(0) − hD

′
i,ρ(0)
ä

≤ c′
Å
εi| log εi|+ max

B2(ρ)(P?)
(hDi,ρ − hD

′
i,ρ)

ã
≤ c′
Ç
εi| log εi|+ max

∂B2
ρ(P?)

(fi,2 − fi,1)

å
on Σ∩B2

2ρ(P?) \B2
r (P?). The last inequality follows from the maximum prin-

ciple. We emphasize that c′ is independent of i and r.

The proof of Proposition 4.3 is essentially done. Indeed, fix 0 < r < ρ/2.

By what we have shown so far, we have

sup
Σ\B2

r (P?)

fi ≤ c′
(
εi| log εi|+ sup

Σ\B2
ρ(P?)

fi

)
.

By the Harnack inequality (4.6) and sheet separation lower bound (4.8) on

Σ \B2
2ρ(P?),

sup
Σ\B2

r (P?)

fi ≤ c′′ inf
Σ\B2

ρ(P?)
fi.

This holds independently of i, r, so the renormalized limit f̂ taken in (4.15)

(first with i→∞ and then with r → 0) is nontrivial. This completes the proof

of Proposition 4.3. �
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5. Phase transitions with multiplicity one

In this section we return to working in arbitrary dimension n ≥ 3, and

we consider a compact Riemannian manifold (Mn, g) and a sequence ui ∈
C∞(M ; (−1, 1)) of critical points of Eεi , εi > 0, Eεi [ui] ≤ E0, for all i =

1, 2, . . . , with limi εi = 0. Let V , limi h
−1
0 Vεi [ui] denote the limit station-

ary integral varifold, which exists by [HT00, Th. 1]; see [Gua18, App. B] for

Riemannian modifications. In this section we will assume that

Θn−1(V, ·) = 1 on Σ , spt ‖V ‖,
which is a smooth minimal surface ⊂M \ ∂M.

(5.1)

In other words, we assume that the limit V is smooth and that it occurs with

multiplicity one. (We are not assuming any bounds on the Morse index.)

Remark 5.1. We recall that this is automatically the case when

(i) 3 ≤ n ≤ 7 and each ui minimizes Eεi among compact perturbations in

M (by [HT00, Th. 2]); or

(ii) n = 3, lim supi ind(ui) <∞, and Σ carries no positive Jacobi fields (this

follows from Theorem 4.1).

We emphasize that this section requires only the multiplicity one assumption

(5.1), not (i) or (ii).

The main goal of this section is to prove Theorem 5.11. Roughly, it says

that the Morse index is upper semicontinuous. Note that, in general, one

only expects the index to be lower semicontinuous. This has been recently

confirmed in the work of Hiesmayr [Hie18]; see also Gaspar’s generalization to

one-sided limit surfaces [Gas17]. Upper semicontinuity hinges strongly on the

multiplicity one assumption, as the following example suggests:

Example 5.2. Let (ui, εi), i = 1, 2, . . . , limi εi = 0, be a sequence con-

structed by [dPKWY10] to converge, with multiplicity ≥ 2, to a two-sided

minimal surface Σ in a closed Riemannian 3-manifold (M3, g) with positive

Ricci curvature. Then, by Theorem 4.1, lim infi ind(ui) = ∞, because Σ can-

not be stable and there there are no stable two-sided minimal surfaces in the

presence of positive Ricci curvature.

In order to study the semicontinuity of the Morse index, we need to obtain

a detailed understanding of the convergence of the ui and their level sets to Σ.

Somewhat surprisingly, the regularity estimates in Section 2 (or [WW19a, §15])

do not seem to suffice for our purposes. Instead, we must upgrade the estimates

so that we have an explicit understanding of the O(ε2) term in (2.18). We

use an ansatz inspired by the work of del Pino–Kowalczyk–Wei [dPKW13],

although our setting is different: rather than having constructed u, we are
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given an arbitrary solution u converging with multiplicity one. This technique

does not seem to have been previously considered in the context of regularity

in Allen–Cahn.

5.1. Improved convergence. Note that by scaling M , we can arrange that

(2.1)–(2.2) hold; we will do so without further remark in the sequel. Note that

then, due Lemma 5.3 below, (2.3)–(2.7) hold as well. Thus, Section 2 applies

(as does [WW19a, §15] in the flat setting).

Lemma 5.3. Let U ⊂⊂M \∂M be a neighborhood of Σ, and let β ∈ (0, 1).

Then, for sufficiently large i, εi|∇ui| ≥ c > 0 on U ∩ {|ui| ≤ 1− β}.

Proof. We argue by contradiction. If the result were false, we would be

able to pick a subsequence (labeled the same) along which there would exist

xi ∈ U ∩ {|ui| ≤ 1 − β} with εi|∇ui(xi)| → 0. After rescaling by ε−1
i around

xi, the rescaled critical points ũi converge to a non-trivial critical point of

E1 on Rn with |ũ(0)| ≤ 1 − β, ∇ũ(0) = 0. By the monotonicity formula

(see [HT00, §3] and [Gua18, App. B]) and multiplicity-one convergence at the

original scale, we see that the tangent cone at infinity of ũ is a multiplicity-one

plane. Hence, by [Wan17, Th. 11.1] (cf. [Man17, Th. 3.6]), ũ has flat level sets.

This contradicts |ũ(0)| ≤ 1− β, ∇ũ(0) = 0. �

Combined with the multiplicity-one analysis in [WW19a, §15] (cf. Sec-

tion 2 and Remark 2.6 above), we may argue as in the proof of Theorem 4.1 to

conclude that Σ = sptV is a smooth two-sided embedded minimal hypersur-

face and the convergence of the level sets of ui to Σ occurs in C2,θ. (Of course,

convergence in the Hausdorff sense follows immediately from [HT00, Th. 1].)

Lemma 5.4. If U ⊂⊂ M \ ∂M is a neighborhood of Σ, and θ, β ∈ (0, 1),

then U∩{ui = t} converges uniformly in C2,θ to Σ for every t ∈ (−1+β, 1−β).

Proof. By Section 2, it suffices to check that the level sets are bounded

in C2. One uses a blow-up argument again, as in the proof of Theorem 3.4.

Suppose that the enhanced second fundamental form were not bounded. Pick

xi ∈ U ∩ {|ui| ≤ 1 − β} such that λi , |Ai(xi)| are within a factor of 1
2

from supU∩{|ui|≤1−β} |Ai|; thus, λi → ∞. Note that lim supi λiεi < ∞ by

elliptic regularity. Moreover, we in fact have that lim supi λiεi = 0 because (by

[Wan17, Th. 11.1] and monotonicity) there are no non-trivial (i.e., non-constant

and non-heteroclinic) entire critical points of E1 in Rn with a planar tangent

cone at infinity. In particular, rescaling by λ−1
i around xi, we get a sequence

(ũi, ε̃i) with ε̃i → 0 and uniformly bounded enhanced second fundamental form,

|‹Ai(0)| = 1, and which therefore converges to a C1,1 minimal surface in Rn.

However, by monotonicity, this minimal surface is a plane; this contradicts

|‹Ai(0)| = 1 by Remark 2.6. �
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Let us return to the notation and conventions used in Section 2. Also, we

drop the subscript i.

Because of the multiplicity one assumption, we have reasonably strong

estimates on φ, h, and HΓ; see (2.17). We will write h for h, U for U [h], Γ

for Γ1, and d for d1, since Q = 1. We record the specialization of (2.20) and

Lemma 2.3 here (cf. [WW19a, §15], and [Man17, Th. 3.6]):

(5.2) ‖φ‖
C2,θ
ε (M)

+ ε‖∆Γh−HΓ‖C0,θ
ε (Γ)

+ ε−1‖h‖
C2,θ
ε (Γ)

≤ c′ε2,

where M , {X ∈ M : |d(X)| < 1}. As we have already indicated, we must

upgrade our estimates for ∆Γh − HΓ in (5.2) as well as determine the O(ε2)

behavior of φ.

Let us work in Fermi coordinates around Γ so as not to write the diffeo-

morphism ZΓ explicitly below. We will also denote Γz , {X ∈M : d(X) = z}
and will write H for H3| log ε|.

We can compute the equation for φ as follows. Using (A.2), (A.3), (A.7),

as well as (2.3)–(2.7), (2.15), and (5.2), one computes the following in M (see

[WW19a, (9.4)]):

ε2∆gφ = ε2∆Γzφ+ ε2HΓz∂zφ+ ε2∂2
zφ

= W ′(u)− ε2∆ΓzU − ε2HΓz∂zU − ε2∂2
zU

= W ′(U + φ)− (W ′(U) +O(ε3))

+ ε(∆Γzh−HΓz) ·H
′
(ε−1(z − h(y)))− |∇Γzh|2 ·H

′′
(ε−1(z − h(y)))

= W ′′(U)φ+ ε((∆Γh−HΓ) ◦ΠΓ) ·H′(ε−1(z − h(y)))

+ ε((| IIΓ |2 + Ricg(∂z, ∂z)) ◦ΠΓ) · z ·H′(ε−1(z − h(y)))

+ ε2O(|z|) ·H′(ε−1(z − h(y))) +O(ε3).

(5.3)

By using (5.2), (5.3), and the multiplicity one assumption, one may revisit

[WW19a, App. B] and establish the following bounds:

Lemma 5.5. We can improve the estimate in (5.2) to

ε‖∆Γh−HΓ‖C0(Γ) ≤ c′ε3.

Proof. Multiply (5.3) by H′(ε−1(z− h(y))) and integrate over z ∈ [−η, η].

We find (at y ∈ Σ fixed)∫ η

−η
(ε2(∆Γzφ+HΓz∂zφ+ ∂2

zφ)−W ′′(U)φ) ·H′(ε−1(z − h(y)))) dz

= ε2(h0 − o(1))(∆Γh−HΓ)

+ ε(| IIΓ |2 + Ricg(∂z, ∂z))

∫ η

−η
zH′(ε−1(z − h(y)))2 dz
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+

∫ η

−η
ε2O(|z|) ·H′(ε−1(z − h(y)))2 dz +O(ε4)

= ε2(h0 − o(1))(∆Γh−HΓ) +O(ε4).

We have used (1.6) together with
∫∞
−∞ tH

′(t)2dt = 0 (which holds by parity).

Twice differentiating the orthogonality relation (2.16) used to define h (see

Section 2.1 and [WW19a, App. B]) and using (5.2), we have∫ η

−η
ε2(∆Γzφ) ·H′(ε−1(z − h(y))) dz = O(ε4).

From (5.2), we have∫ η

−η
ε2HΓz∂zφ ·H

′
(ε−1(z − h(y))) dz = O(ε5).

Finally, an integration by parts shows that∫ η

−η

Ä
ε2∂2

zφ ·H
′
(ε−1(z − h(y)))−W ′′(u)φH′(ε−1(z − h(y)))

ä
dz

=

∫ η

−η

Ä
H′′′(ε−1(z − h(y)))−W ′′(u)H′(ε−1(z − h(y)))

ä
φdz.

Using (2.15) here, combined with the previous expressions, we conclude the

proof. �

Thus, returning to (5.3) we find that in M, we have

(5.4)

ε2∆gφ−W ′′(U)φ = ε((| IIΓ |2 +Ricg(∂z, ∂z))◦ΠΓ) ·z ·H′(ε−1(z−h(y)))+O(ε3).

We have used the fact that zH′(ε−1(z − h(y))) = O(ε).

Observe that the right-hand side of (5.4) is only bounded in O(ε2). Thus,

we expect this to represent the leading term of φ, after inverting ε2∆g−W ′′(U).

To make this precise, we first define (cf. [dPKW13, §3.2]) a function J(t) to be

the unique bounded solution of the ODE

(5.5) J′′(t) = W ′′(H(t))J(t) + tH′(t), with J(0) = 0.

Indeed, we even have the explicit expression (cf. [dPKW13, p. 82])

J(t) = H′(t)
∫ t

0

∫ s

−∞
τH′(s)−2 H′(τ)2dτds,

which shows that J is well defined and decays exponentially as t → ±∞. It

will be important in the sequel to observe that J(−t) = −J(t), which follows

from the parity of H(t) and either the uniqueness of solutions to the ODE, or

the explicit integral expression.

Observe that | IIΓ |2 + Ricg(∂z, ∂z) converges to | IIΣ |2 + Ricg(ν, ν) in C0,θ

because Γ converges to Σ in C2,θ by Lemma 5.4. We fix functions V : Γ→ R
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with the property that V still converges to | IIΣ |2 + Ricg(ν, ν) in C0 and

‖V ‖C2(Γ) ≤ C. For definiteness, we choose V (y) = (| IIΣ |2 +Ricg(ν, ν))◦ΠΣ(y),

where ΠΣ is the nearest point projection to Σ.

We claim that ε2V (y)J(ε−1(z − h(y))) represents the leading order term

in φ. To this end, in M, we define a refined discrepancy function

φ̃(y, z) , φ(y, z)− ε2(V ◦ΠΓ)(y, z) · J(ε−1(z − h(y))).

We compute (using the C2 bounds for V , as well as (5.2) and Lemma 5.5) that

on M, we have

ε2∆gφ̃−W ′′(U)φ̃

= ε((| IIΓ |2 + Ricg(∂z, ∂z)) ◦ΠΓ) · z ·H′(ε−1(z − h(y)))

− ε2(V ◦ΠΓ)
[
J′′(ε−1(z − h(y)))−W ′′(U) · J(ε−1(z − h(y)))

]
+O(ε3)

= ε
[
(| IIΓ |2 + Ricg(∂z, ∂z)) ◦ΠΓ − V ◦ΠΓ

]
· z ·H′(ε−1(z − h(y)))

− ε2
[
W ′′(H(ε−1(z − h(y))))−W ′′(U)

]
(V ◦ΠΓ)

· J(ε−1(z − h(y))) +O(ε3)

= o(ε2).

We again used that zH′(ε−1(z − h(y))) = O(ε) as well as the definition of V .

We now use the defining property of h to invert ε2∆g −W ′′(U).

Proposition 5.6. We have that φ̃ = o(ε2) on M.

Proof. For contradiction, suppose that λ, supM |φ̃|≥γε2 for some γ > 0.

Note that φ̃ is exponentially small at points that are uniformly bounded away

from Γ, so it is clear that this supremum is achieved at some X∗ ∈ M with

d(X∗)→ 0. We can assume that φ̃(X∗) = λ. Write X∗ = (y∗, z∗) in Fermi co-

ordinates over Γ. We split the argument into two cases: (i) ε−1|z∗| is uniformly

bounded, or (ii) ε−1|z∗| → ∞.

First we consider case (i). We can assume that ε−1z∗ → z∞. Define

φ̂(“X) = λ−1φ̃(X∗ + ε“X) which, in blown up Fermi coordinates “X = (ŷ, ẑ),

satisfies

∆ĝφ̂(ŷ, ẑ)−W ′′(H(ε−1z∗ + ẑ − ε−1h(y∗ + εŷ)))φ̂(ŷ, ẑ) = o(1)

for ẑ ∈ (−ε−1η, ε−1η) and ŷ ∈ Σ, and where ĝ is converging smoothly to

the Euclidean metric. Moreover, φ̂(0) = 1 and |φ̂| is uniformly bounded on

compact sets. Interior Schauder estimates yield uniform bounds for φ̂ in C1,θ
loc .

Thus, φ̂ converges in C1 to a weak (and thus strong, by elliptic regularity)

solution of

∆φ̂(ŷ, ẑ)−W ′′(H(z∞ + ẑ))φ̂(ŷ, ẑ) = 0
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on Rn−1 ×R. By [Pac12, Lemma 3.7] (see also [PR03]), we have that

φ̂(ŷ, ẑ) = ρH′(z∞ + ẑ) for some ρ ∈ R,

because φ̂ ∈ L∞(Rn−1 ×R). In fact, φ̂(0) = 1 implies that ρ = H′(z∞)−1. At

the original scale, write X = (y, z) in Fermi coordinates over Γ. Then, for K

fixed sufficiently large, if |z| ≤ Kε, we have

φ̃(y, z) = λ
[
H′(z∞)−1H′(z∞ + ε−1(z − z∗)) + o(1)

]
.

Therefore,

(5.6)

φ(y, z) = λ
[
H′(z∞)−1H′(z∞ + ε−1(z − z∗)) + o(1)

]
+ ε2V (y)J(ε−1(z − h(y))).

By estimating the exponential tail using (1.6), and then using the definition of

φ and h, and also (5.2), we have

(5.7)

∫ Kε

−Kε
φ(y, z) ·H′(ε−1(z − h(y))) dz = O(ε3e−

√
2K).

By parity (H′ is even, J is odd) and similarly estimating an exponential tail,

we also have

(5.8)

∫ Kε

−Kε
J(ε−1(z − h(y))) ·H′(ε−1(z − h(y))) dz = O(εe−

√
2K).

Finally,

(5.9)

∫ Kε

−Kε
H′(z∞ + ε−1(z − z∗)) ·H′(ε−1(z − h(y))) dz ≥ (h0 −O(e−

√
2K))ε.

Altogether, (5.6)–(5.9) imply λ = h−1
0 O(ε2e−

√
2K), which (for large K) contra-

dicts our assumption that λ ≥ γε2 for a fixed γ > 0. This is a contradiction,

completing the proof of case (i).

We now turn to case (ii). The proof here is analogous (and simpler). By

rescaling as above, we find a non-zero smooth function φ̂ ∈ L∞(Rn−1 × R)

solving ∆φ̂−W ′′(±1)φ̂ = 0. An integration by parts, using W ′′(±1) > 0, shows

that φ̂ = 0. This is a contradiction, completing the proof of case (ii). �

5.2. Relating the second variations and index upper semicontinuity. We

now can give the fundamental computation linking the index of u as a critical

point of Eε with the index of Σ as a critical point of area. Our argument is

closely related to the proof of [dPKW13, Lemma 9.2]. Recall from (1.2) that

the second variation of Eε is given by

Qu(ζ, ψ) , δ2Eε[u]{ζ, ξ} =

∫
M

Å
ε〈∇ζ,∇ξ〉+

W ′′(u)

ε
ζξ

ã
dµg.
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Similarly, we recall that the second variation of area at Σ is given by

QΣ(ζ, ξ) , δ2 Area[Σ]{ζ, ξ} =

∫
Σ

(
〈∇ζ,∇ξ〉 − (| IIΣ |2 + Ricg(ν, ν))ζξ

)
dµΣ.

Lemma 5.7. For f ∈ C2(Σ), setting

ψ(y, z) = f(y) ·H′(ε−1(z − h(y)))

for (y, z) Fermi coordinates with respect to Γ (the nodal set of u), and ψ = 0

far from Γ, we have that

Qu(ψ,ψ) = ε2(h0 − o(1))

∫
Γ

(
|∇Γf |2 −

(
(| IIΓ |2 + Ricg(∂z, ∂z)) ◦ΠΓ

)
f2
)
dµΓ

+ o(ε2)

∫
Γ

(
|∇Γf |2 + f2

)
dµΓ.

Here, ΠΓ denotes the nearest point projection onto Γ.

Proof. Using (2.15), we compute

Qu(ψ,ψ) =

∫
M

(
−εψ∆gψ + ε−1W ′′(u)ψ2

)
dµg

=

∫ η

−η

∫
Γ

(
−εψ∆Γzψ − εHΓzψ∂zψ − εψ∂2

zψ + ε−1W ′′(u)ψ2
)
dµgzdz

=

∫ η

−η

∫
Γ

(
ε|∇Γzψ|2 − εHΓzψ∂zψ − εψ∂2

zψ + ε−1W ′′(u)ψ2
)
dµgzdz

=

∫ η

−η

∫
Γ

(
ε|(∇Γzf) ·H′(ε−1(z − h(y)))

− ε−1f(y)(∇Γzh) ·H′′(ε−1(z − h(y)))|2

−HΓzf(y)2 ·H′(ε−1(z − h(y)))H′′(ε−1(z − h(y)))

− ε−1f(y)2 ·H′(ε−1(z − h(y)))H′′′(ε−1(z − h(y)))

+ ε−1W ′′(u)f(y)2 ·H′(ε−1(z − h(y)))2
)
dµgzdz.

Additionally, using (5.2), our C2 bounds on Γ, (A.1), (A.2), and (A.3),

Qu(ψ,ψ)

=

∫ η

−η

∫
Γ

(
ε|(∇Γzf) ·H′(ε−1(z − h(y)))− ε−1f(y)(∇Γzh) ·H′′(ε−1(z − h(y)))|2

−HΓf(y)2 ·H′(ε−1(z − h(y)))H′′(ε−1(z − h(y)))

+
(
(| IIΓ |2 + Ricg(∂z, ∂z)) ◦ΠΓ

)
f(y)2

· z ·H′(ε−1(z − h(y)))H′′(ε−1(z − h(y)))

+ ε−1(W ′′(U + φ)−W ′′(U))f(y)2 ·H′(ε−1(z − h(y)))2
)
dµgzdz
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+O(ε3)

∫
Γ
f(y)2dµΓ

=

∫ η

−η

∫
Γ

(
ε|∇Γzf |2 ·H

′
(ε−1(z − h(y)))2

+
(
(| IIΓ |2 + Ricg(∂z, ∂z)) ◦ΠΓ

)
f(y)2

· z ·H′(ε−1(z − h(y)))H′′(ε−1(z − h(y)))

+ ε−1W ′′′(U)φf(y)2 ·H′(ε−1(z − h(y)))2
)
dµgzdz

+O(ε3)

∫
Γ
(|∇Γf |2 + f2) dµΓ

= ε2(h0 − o(1))

∫
Γ

(
|∇Γf |2 −

(
(| IIΓ |2 + Ricg(∂z, ∂z)) ◦ΠΓ

)
f(y)2

)
dµΓ

+ o(ε2)

∫
Γ

(
|∇Γf |2 + f2

)
dµΓ.

In the final equality, we have used∫ ∞
−∞

tH′(t)H′′(t)dt = 1
2

∫ ∞
−∞

t ddtH
′(t)2dt = −1

2h0

on the second term. We have also used φ = ε2V (y)J(ε−1(z − h(y))) + o(ε2),

V (y) = (| IIΓ |2 + Ricg(∂z, ∂z)) ◦ ΠΓ + o(1), and the following identity, which

follows by differentiating (5.5) once and integrating by parts:∫ ∞
−∞

W ′′′(H(t))J(t)H′(t)2dt

=

∫ ∞
−∞

(
J′′′(t)H′(t)−W ′′(H(t))J′(t)H′(t)−H′(t)2 − tH′(t)H′′(t)

)
dt

=

∫ ∞
−∞

(
J′(t)H′′′(t)−W ′′(H(t))J′(t)H′(t)−H′(t)2 − tH′(t)H′′(t)

)
dt

=

∫ ∞
−∞

(
−H′(t)2 − tH′(t)H′′(t)

)
dt = −1

2h0.

This completes the proof. �

Let Ω denote the η-tubular neighborhood of Γ, and consider the restriction

QΩ
u of Qu to Ω:

QΩ
u (ζ, ξ) , δ2(Eε Ω)[u]{ζ, ξ}

=

∫
Ω

Å
ε〈∇ζ,∇ξ〉+

W ′′(u)

ε
ζξ

ã
dµg, ζ, ξ ∈ C∞(Ω).

Consider w ∈ C∞(Ω). We decompose w as

(5.10) w(y, z) = f(y) ·H′(ε−1(z − h(y))) + w⊥(y, z),
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where

(5.11)

∫ η

−η
w⊥(y, z)H′(ε−1(z − h(y))) dz = 0.

It is useful to write

(5.12) ψ(y, z) = f(y) ·H′(ε−1(z − h(y))).

Note that∫
Ω
w2dµg =

∫ η

−η

∫
Γ
f2 ·H′(ε−1(z − h(y)))2 dµgz dz +

∫
Ω

(w⊥)2 dµg

+ 2

∫ η

−η

∫
Γ
fw⊥ ·H′(ε−1(z − h(y))) dµgz dz

= (1 + o(1))

∫ η

−η

∫
Γ
f2 ·H′(ε−1(z − h(y)))2 dµΓ dz

+ (1 + o(1))

∫
Ω

(w⊥)2 dµg

= ε(h0 − o(1))

∫
Γ
f2 dµΓ + (1 + o(1))

∫
Ω

(w⊥)2 dµg.

(5.13)

We now use this decomposition to estimate QΩ
u (w,w).

Lemma 5.8. For w⊥ as in (5.11), there is γ > 0 so that for ε > 0

sufficiently small,

QΩ
u (w⊥, w⊥) ≥ γ

∫
Ω
ε|∇w⊥|2 + ε−1(w⊥)2 dµg.

Proof. Recall that there is some γ = γ(W ) > 0 so that if f(t) satisfies∫∞
−∞ f(t)H′(t)dt = 0, then∫ ∞

−∞
f ′(t)2 +W ′′(H(t))f(t)2 dt ≥ 4γ

∫ ∞
−∞

f ′(t)2 + f(t)2 dt.

(See, e.g., [dPKW13, (9.28)].) A change of variables and a compactness argu-

ment imply that∫ η

−η
ε(∂zw

⊥(y, z))2 + ε−1W ′′(U)(w⊥(y, z))2 dz

≥ 3γ

∫ η

−η
ε(∂zw

⊥(y, z))2 + ε−1(w⊥(y, z))2 dz

as long as ε > 0 is sufficiently small. From this, and (5.2), we find

QΩ
u (w⊥, w⊥) =

∫ η

−η

∫
Γ

Ä
ε|∇Γzw

⊥|2 + ε(∂zw
⊥)2 + ε−1W ′′(u)(w⊥)2

ä
dµgzdz

=

∫ η

−η

∫
Γ

Ä
ε|∇Γzw

⊥|2 + ε(∂zw
⊥)2 + ε−1W ′′(U)(w⊥)2

ä
dµgzdz
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+O(ε)

∫
Ω

(w⊥)2dµg

≥ 2γ

∫ η

−η

∫
Γ

Ä
ε(∂zw

⊥)2 + ε−1(w⊥)2
ä
dµΓdz

+

∫ η

−η

∫
Γ
ε|∇Γzw

⊥|2dµgzdz +O(ε)

∫
Ω

(w⊥)2dµg

≥ γ
∫

Ω
ε|∇w⊥|2 + ε−1(w⊥)2 dµg.

This completes the proof. �

Lemma 5.9. For ψ, f , w⊥ as in (5.10)–(5.12), we have

QΩ
u (ψ,w⊥) ≥ −o(ε2)

∫
Γ
|∇Γf |2 + f2 dµΓ − o(1)

∫
Ω
ε|∇w⊥|2 + ε−1(w⊥)2 dµg.

Proof. Repeatedly using (1.6), (1.7), (5.2), Lemma 5.5, (A.3), and (A.4),

QΩ
u (ψ,w⊥) =

∫
Ω

Ä
−ε(∆gψ)w⊥ + ε−1W ′′(u)ψw⊥

ä
dµg

=

∫ η

−η

∫
Γ

(
− ε(∆Γzψ)w⊥ −HΓzfw

⊥ ·H′′(ε−1(z − h(y)))

− ε−1fw⊥ ·H′′′(ε−1(z − h(y))) + ε−1W ′′(u)ψw⊥
)
dµgzdz

=

∫ η

−η

∫
Γ

(
− ε(∆Γzf)w⊥ ·H′(ε−1(z − h(y)))

+ 2〈∇Γzf,∇Γzh〉w⊥ ·H
′′
(ε−1(z − h(y)))

+ (∆Γzh−HΓz)fw
⊥ ·H′′(ε−1(z − h(y)))

− ε−1fw⊥|∇Γzh|2 ·H
′′′

(ε−1(z − h(y)))

− ε−1fw⊥ ·H′′′(ε−1(z − h(y))) + ε−1W ′′(u)ψw⊥
)
dµgzdz

=

∫ η

−η

∫
Γ

(
− ε(∆Γzf)w⊥ ·H′(ε−1(z − h(y)))

+ 2〈∇Γzf,∇Γzh〉w⊥ ·H
′′
(ε−1(z − h(y)))

+ (∆Γzh−HΓz)fw
⊥ ·H′′(ε−1(z − h(y)))

+ ε−1(W ′′(U + φ)−W ′′(U) +O(ε3))ψw⊥
)
dµgzdz

=

∫ η

−η

∫
Γ

(
− ε(∆Γzf)w⊥ ·H′(ε−1(z − h(y)))
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+ 2〈∇Γzf,∇Γzh〉w⊥ ·H
′′
(ε−1(z − h(y)))

+ (∆Γzh−HΓz)fw
⊥ ·H′′(ε−1(z − h(y))))dµgzdz −O(ε)

∫
Ω
|fw⊥| dµg

=

∫ η

−η

∫
Γ

(
ε〈∇Γzf,∇Γzw

⊥〉 ·H′(ε−1(z − h(y)))

+ 〈∇Γzf,∇Γzh〉w⊥ ·H
′′
(ε−1(z − h(y)))

+ (∆Γzh−HΓz)fw
⊥ ·H′′(ε−1(z − h(y)))

)
dµgzdz −O(ε)

∫
Ω
|fw⊥| dµg

=

∫ η

−η

∫
Γ

(
ε〈∇Γzf,∇Γzw

⊥〉 ·H′(ε−1(z − h(y)))

+ (∆Γzh−HΓz)fw
⊥ ·H′′(ε−1(z − h(y)))

)
dµgzdz

−O(ε)

∫
Ω
|fw⊥| dµg −O(ε2)

∫
Ω
|∇Γzf ||w⊥| dµg

=

∫ η

−η

∫
Γ

(
ε〈∇Γzf,∇Γzw

⊥〉 ·H′(ε−1(z − h(y)))

+ (∆Γzh−HΓz)fw
⊥ ·H′′(ε−1(z − h(y)))

)
dµgzdz

− o(ε3)

∫
Γ
|∇Γf |2 + f2 dµΓ − o(1)

∫
Ω
ε−1(w⊥)2 dµg.

In the last inequality, we estimated, using Cauchy–Schwarz, 2ab ≤ ε1−σa2 +

ε−1+σb2 for σ ∈ (0, 1), (a, b) = (|f |, |w⊥|), (|∇Γzf |, |w⊥|). Using (5.2), (A.3),

(A.4), and (A.7), we can further estimate

∆Γzh−HΓz = ∆Γh−HΓ +O(|z|) = O(ε+ |z|)

and

〈∇Γzf,∇Γzw
⊥〉 = 〈∇Γf,∇Γw

⊥〉+O(ε+ |z|)|∇Γf ||∇Γw
⊥|.

By the same Cauchy–Schwarz estimate applied to

(a, b) = (|f |, |w⊥|), (|∇Γf |, |∇Γw
⊥|),

we get

QΩ
u (ψ,w⊥) =

∫ η

−η

∫
Γ
ε〈∇Γf,∇Γw

⊥〉 ·H′(ε−1(z − h(y))) dµgzdz

− o(ε2)

∫
Γ
|∇Γf |2 + f2 dµΓ − o(1)

∫
Ω
ε|∇w⊥|2 + ε−1(w⊥)2 dµg.

Estimating |dµgz − dµΓ| = O(|z|)dµΓ and using the same Cauchy–Schwarz

inequality, we deduce that

QΩ
u (ψ,w⊥) =

∫ η

−η

∫
Γ
ε〈∇Γf,∇Γw

⊥〉 ·H′(ε−1(z − h(y))) dµΓdz
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− o(ε2)

∫
Γ
|∇Γf |2 + f2 dµΓ − o(1)

∫
Ω
ε|∇w⊥|2 + ε−1(w⊥)2 dµg

=

∫
Γ

∫ η

−η
ε〈∇Γf,∇Γw

⊥〉 ·H′(ε−1(z − h(y))) dz dµΓ

− o(ε2)

∫
Γ
|∇Γf |2 + f2 dµΓ − o(1)

∫
Ω
ε|∇w⊥|2 + ε−1(w⊥)2 dµg.

Since 〈∇Γf,∇Γw
⊥〉 = gijΓ ∂yif∂yjw

⊥, whose first two factors are independent

of z, we can use∫ η

−η
∂yjw

⊥H′(ε−1(z − h(y))) dz = ε−1

∫ η

−η
(∂yjh)w⊥H′′(ε−1(z − h(y))) dz,

which follows from differentiating (5.11) once horizontally. We thus have

QΩ
u (ψ,w⊥) =

∫
−Γ

∫ η

−η
〈∇Γf,∇Γh〉w⊥ ·H

′′
(ε−1(z − h(y))) dz dµΓ

− o(ε2)

∫
Γ
|∇Γf |2 + f2 dµΓ − o(1)

∫
Ω
ε|∇w⊥|2 + ε−1(w⊥)2 dµg.

This completes the proof, since we have already estimated terms of this form

with the correct error term. �

Lemma 5.10. There is σ = σ(M, g,W,Σ) > 0 so that for ε > 0 sufficiently

small and any w ∈ C∞(Ω), we have

QΩ
u (w,w) ≥ −εσ

∫
Ω
w2dµg.

Proof. Because Γ converges to Σ in C2,θ, we find that for δ = δ(M, g,Σ) ∈
(0, 1) and ε > 0 sufficiently small, we have∫

Γ
|∇Γf |2 −

(
(| IIΓ |2 + Ricg(∂z, ∂z)) ◦ΠΓ

)
f2dµΓ ≥

∫
Γ
δ|∇Γf |2 − δ−1f2 dµΓ.

Thus, using (5.10)–(5.12), Lemmas 5.7, 5.8, and 5.9, we find that

QΩ
u (w,w) = QΩ

u (ψ,ψ) +QΩ
u (w⊥, w⊥) + 2QΩ

u (ψ,w⊥)

≥ ε2(h0 − o(1))

∫
Γ
δ|∇Γf |2 − δ−1f2 dµΓ

+ γ

∫
Ω
ε|∇w⊥|2 + ε−1(w⊥)2 dµg

− o(ε2)

∫
Γ
|∇f |2 + f2 dµΓ − o(1)

∫
Ω
ε|∇w⊥|2 + ε−1(w⊥)2 dµg

≥ −ε2δ−1(h0 − o(1))

∫
Γ
f2dµΓ ≥ −εδ−1(1 + o(1))

∫
Ω
w2dµg.

In the last inequality we used (5.13). This completes the proof. �
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We are now able to prove the main theorem. In what follows,

• ind(u), nul(u) denote the index and nullity of the second variation of Allen–

Cahn energy functional (see (1.2)); and

• ind(Σ), nul(Σ) denote the index and nullity of the second variation of the

area functional for the limiting multiplicity-one smooth minimal surface

(recall (5.1)).

For simplicity, we will assume that ∂M = ∅, although we expect that the

general strategy used here should extend to Dirichlet or Neumann boundary

conditions with appropriate modifications.

Theorem 5.11. If (Mn, g), u, and Σ are as above, and if ∂M = ∅, then

for sufficiently small ε > 0,

ind(Σ) + nul(Σ) ≥ ind(u) + nul(u).

Proof. For brevity, let us set IΣ , ind(Σ) + nul(Σ), I0 , ind(u) + nul(u).

First, we show

Claim. There are smooth functions f1, . . . , fIΣ : Γ → R and a constant

δ > 0 so that if f ∈ C1(Γ) satisfies 〈f, fi〉L2(Γ) = 0 for all i = 1, . . . , IΣ, then

(5.14) QΓ(f, f) ≥ δ
∫

Γ
|∇Γf |2 + f2 dµΓ.

Proof of claim. As the nodal set Γ converges to Σ in C2,θ (by Lemma 5.4),

it is not hard to see that there is a lower bound ν > 0 for the first positive

eigenvalue of the second variation of area of Γ. Take f1, . . . , fIΣ to be the first

IΣ eigenfunctions of QΓ. Then,

QΓ(f, f) =

∫
Γ
|∇Γf |2 − (| IIΓ |2 + Ricg(∂z, ∂z))f

2 dµΓ

≥ ν
∫

Γ
f2 dµΓ

for f ∈ C1(Γ), 〈f, f1〉L2(Γ) = · · · = 〈f, fIΣ〉L2(Γ) = 0. If | IIΓ |2 + Ricg(∂z, ∂z)

≤ C, then

ν
2CQΓ(f, f) = ν

2C

∫
Γ
|∇Γf |2 − (| IIΓ |2 + Ricg(∂z, ∂z))f

2 dµΓ

≥
∫

Γ

ν
2C |∇Γf |2 − ν

2f
2 dµΓ.

The claim follows by adding these two inequalities. �

We define the linear functional Πε : L2(M)→ L2(Γ),

Πε(w)(y) , ε−1

∫ η

−η
w(y, z) ·H′(ε−1(z − h(y))) dz,
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and another linear functional IΓ : C1(Γ)→ RIΣ ,

IΓ(f) ,
(
〈f, f1〉L2(Γ), . . . , 〈f, fIΣ〉L2(Γ)

)
,

so that f ∈ ker IΓ precisely implies (5.14). We note one more property of

elements of ker IΓ:

Claim. Let w ∈ C∞(Ω) be such that Πε(w) ∈ ker IΓ. Then,

(5.15) QΩ
u (w,w) ≥ εσ′

∫
Ω
w2 dµg

for σ′ = σ′(M, g,W,Σ) > 0 and ε > 0 sufficiently small.

Proof of claim. We proceed as in Lemma 5.10 but we use the improved

lower bound for QΓ(f, f), (5.14) for f = Πε(w). Write

ψ(y, z) = Πε(w)H′(ε−1(z − h(y))).

Then, using Lemmas 5.7, 5.8, and 5.9,

QΩ
u (w,w) = QΩ

u (ψ,ψ) +QΩ(w⊥, w⊥) + 2QΩ
u (ψ,w⊥)

≥ ε2δ(h0 − o(1))

∫
Γ
|∇Γf |2 + f2 dµΓ + γ

∫
Ω
ε|∇w⊥|2 + ε−1(w⊥)2 dµg

− o(ε2)

∫
Γ
|∇f |2 + f2 dµΓ − o(1)

∫
Ω
ε|∇w⊥|2 + ε−1(w⊥)2 dµg

≥ εσ′
∫

Ω
w2 dµg.

The claim follows. �

Claim. If w ∈ C∞(M) satisfies Qu(w,w) ≤ 0, then

(5.16)

∫
M\Ω

w2 dµg ≤ Cε2

∫
Ω
w2 dµg

for C = C(M, g,W,Σ, η) > 0 and ε > 0 sufficiently small.

Proof of claim. Using Lemma 5.10 and that W ′′(u) ≥ κ > 0 on M \Ω for

ε > 0 small, we compute

0 ≥ Qu(w,w) ≥ QΩ
u (w,w) + ε−1κ

∫
M\Ω

w2dµg

≥ −εσ
∫

Ω
w2dµg + ε−1κ

∫
M\Ω

w2dµg.

Rearranging this completes the proof. �
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Now, let w1, . . . , wI0 ∈ C∞(M) denote an L2(M)-orthonormal set of eigen-

functions for Qu with non-positive eigenvalue, and let

WΩ , span{w1|Ω, . . . , wI0 |Ω} ⊂ C∞(Ω),

WΓ , {Πε(w) : w ∈ span{w1, . . . , wI0}} .

We emphasize that

(5.17) Qu(w,w) ≤ 0 for all w ∈ span{w1, . . . , wI0} ⊂ C∞(M).

Claim. dimWΩ = dimWΓ = I0 for ε > 0 sufficiently small.

Proof of claim. To see dimWΩ = I0, it suffices to note that no non-

trivial linear combination w of w1, . . . , wI0 can vanish on Ω because of (5.16)

and (5.17).

Likewise, to see dimWΓ = I0, it suffices to note that no non-trivial lin-

ear combination w of w1, . . . , wI0 has Πε(w) = 0 because of (5.15), (5.16),

and (5.17). �

Finally, suppose, for the sake of contradiction, that IΣ < I0. Because

dimWΓ = I0 > IΣ, it must hold that there exists w ∈ span{w1, . . . , wI0} \ {0}
such that IΓ(Πε(w)) = 0. For ε > 0 sufficiently small so that W ′′(u) ≥ 0 on

M \ Ω,

0 ≥ Qu(w,w) = QΩ
u (w,w) +

∫
M\Ω

ε|∇w|2 + ε−1W ′′(u)w2 dµg

≥ QΩ
u (w,w) ≥ εσ′

∫
Ω
w2dµg.

We used (5.15) in the last step. Thus, w ≡ 0 on Ω, so w ≡ 0 on M by (5.16)

and (5.17), a contradiction. �

6. Geometric applications

Corollary 6.1 (Multiplicity one, two-sidedness, and index of Allen–

Cahn limits for bumpy or positive Ricci curvature metrics). Let (M3, g) denote

a closed 3-manifold with a bumpy metric (see Definition 1.6) or with positive

Ricci curvature. Suppose that ui ∈ C∞(M ; [−1, 1]), εi > 0, ui is a critical point

of Eεi , Eεi [ui] ≤ E0, ind(ui) ≤ I0 for all i = 1, 2, . . . and limi εi = 0. Passing

to a subsequence, denote by V , limi h
−1
0 Vεi [ui] the limit varifold. Then,

• the support Σ of V is a smooth, embedded, two-sided, closed minimal surface

with ind(Σ) ≤ I0;

• the limiting varifold V is equal to the varifold associated to Σ with multi-

plicity one;

• for β ∈ (0, 1) fixed, the level sets u−1
i (t), |t| < 1− β, converge in C2,θ with

multiplicity one to Σ;
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• for i sufficiently large, nul(Σ) + ind(Σ) ≥ nul(ui) + ind(ui).

Proof. By Theorem 4.1, any component of Σ that does not satisfy the

conclusion at hand must admit a two-sided double cover with a positive Jacobi

field. This cannot happen if g is bumpy (irrespective of the sign of the Jacobi

field). Similarly, because a positive Jacobi field implies that the two-sided

double cover is stable, this cannot occur for positive Ricci curvature. The C2,θ

convergence follows from Lemma 5.4. The index upper bounds for Σ follow

from [Hie18] (also from [Gas17]). Finally, the index lower bounds follow from

Theorem 5.11. �

Finally, we note that Corollary 6.1 proves Yau’s conjecture for bumpy

metrics (or those with positive Ricci curvature) on a 3-manifold. In fact, we

establish the following strengthened version of Yau’s conjecture, which de-

scribes certain geometric properties of the minimal surfaces. That a generic

Riemannian manifold contains an embedded two-sided minimal surface of each

positive Morse index was conjectured by Marques and Neves (cf. [Nev14, p. 17],

[MN16b, Conj. 6.2]).

Corollary 6.2 (Yau’s conjecture for bumpy metrics and geometric prop-

erties of the minimal surfaces). Let (M3, g) be a closed 3-manifold with a bumpy

metric. There is C = C(M, g,W ) > 0 and a smooth embedded closed minimal

surface Σp for each positive integer p so that

• each component of Σp is two-sided ;

• the area of Σp satisfies C−1p
1
3 ≤ areag(Σp) ≤ Cp

1
3 ;

• the index of Σp is satisfies ind(Σp) = p; and

• the genus of Σp satisfies genus(Σp) ≥ p
6 − Cp

1
3 .

In particular, thanks to the index estimate, all of the Σp are geometrically

distinct.

Proof. Gaspar–Guaraco set up a min-max procedure for the Allen–Cahn

energy functional and showed [GG18, Ths. 3, 4] that there is C = C(M, g,W )

> 1 so that for each integer p > 0, there exists ε0(p) > 0 so that for ε ∈ (0, ε0),

there exists up,ε, a critical point of Eε with

C−1p
1
3 ≤ Eε[up,ε] ≤ Cp

1
3 , ind(up,ε) ≤ p, nul(up,ε) + ind(up,ε) ≥ p;

see [GG18, Th. 3.3(2)]. Now, the first three bullet points follow from Corol-

lary 6.1 applied to an arbitrary sequence (up,εi , εi) with εi → 0.

The genus bounds follow from an estimate of Ejiri–Micallef [EM08, Th. 4.3]

who prove that there is a constant C =C(M, g) so that writing Σp =∪Nm=1Σ
(m)
p ,
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where Σ
(m)
p are connected and N = |π0(Σp)| is the number of connected com-

ponents of Σp, we have

ind(Σ(m)
p ) ≤ C area(Σ(m)

p ) + r(genus(Σ(m)
p )), m = 1, . . . , N,

where r(g) is the dimension of the space of conformal structures on a genus g

surface, i.e.,

r(g) =


0 g = 0,

2 g = 1,

6(g − 1) g > 1.

Thus, we find that

p =
N∑
m=1

ind(Σ(m)
p ) ≤ C areag(Σp) +

N∑
m=1

r(genus(Σ(m)
p )).

Using r(g) ≤ 6g and area(Σp) ≤ Cp
1
3 (for some C = C(M, g) as explained

above), we find that,

p

6
− Cp

1
3 ≤

M∑
m=1

genus(Σ(m)
p ) = genus(Σp)

for C = C(M, g). This proves the fourth bullet point, completing the proof. �

Remark 6.3. We note that for (M3, g) with positive Ricci curvature, the

same conclusion as in Corollary 6.2 holds, except the third bullet point is

replaced by ind(Σp) + nul(Σp) = p. The genus bound still holds by the same

result of Ejiri–Micallef [EM08, Th. 4.3].

When (M3, g) does not have positive Ricci, Σp might have several com-

ponents. We can use the discrepancy between the linear index growth and

sublinear area growth to prove that at least one of the components has large

index and genus. (Note that this discrepancy has been leveraged in a rather

different manner by Marques–Neves [MN17] in their proof of Yau’s conjecture

in positive Ricci curvature.)

Corollary 6.4 (Connected components of the p-width having large in-

dex and genus). Let (M3, g) denote a closed 3-manifold with a bumpy metric.

There is C = C(M, g,W ) > 0 so that some connected component Σ′p of the

minimal surface Σp discussed in Corollary 6.2 has genus(Σ′p) ≥ C−1 ind(Σ′p) ≥
C−1p

2
3 .

Proof. Write the surfaces Σp obtained in Corollary 6.2 above as a union

of their connected components, i.e., Σp = ∪Nm=1Σ
(m)
p . By the monotonicity



ALLEN–CAHN ON 3-MANIFOLDS 281

formula, there is c = c(M, g) > 0 so that any closed minimal surface Σ′ in M

has areag(Σ
′) ≥ c. Thus,

(6.1) Nc ≤
N∑
m=1

areag(Σ
(m)
p ) = areag(Σp) ≤ Cp

1
3 .

Because p =
∑N

m=1 ind(Σ
(m)
p ), (6.1) implies that ind(Σm

p ) ≥ Cp
2
3 for some

m ∈ {1, . . . , N}. For this particular m, areag(Σ
(m)
p ) ≤ Cp

1
3 and the estimate

of Ejiri–Micallef [EM08] used above implies that

genus(Σ(m)
p ) ≥ C−1 ind(Σ(m)

p ) ≥ C−1p
2
3 .

This completes the proof. �

7. Barriers with Dirichlet data

7.1. Setup. The heteroclinic solution from Section 1.3 lifts trivially to a

solution of the Allen–Cahn PDE, (1.1), on Rn, for any n ≥ 1; indeed, one may

just take u(x1, . . . , xn) , Hε(x
n). Notice that this solution is “centered” on

the {xn = 0} hyperplane. One may just as easily center it on any hyperplane

in Rn by a suitable translation and rotation.

The question of centering approximate heteroclinic solutions on arbitrary

minimal Σn−1 ⊂ (Mn, g) has been well-studied in the compact setting; see,

e.g., [PR03] for the boundary-less case and the geometrically natural case of

Neumann conditions at the boundary when ∂M , ∂Σ 6= ∅, or see [Pac12] for

a more general survey with a faster construction than [PR03], albeit only

presented in the boundary-less case.

In this section we establish a corresponding existence theorem similar in

spirit to those in [PR03], [Pac12], except we prescribe Dirichlet data. This the-

orem provides the barriers that were a crucial ingredient in the final “sliding”

argument of Section 4.

The setup is as follows. Define Ck,αε , α ∈ (0, 1), ε > 0, to be the standard

Hölder space after rescaling by ε, i.e., whose Banach norm is

(7.1) ‖v‖
Ck,αε
,

k∑
j=0

εj‖∇jv‖L∞ + εk+α[∇kv]α.

Various choices of domain and metric will be specified below. See Remarks 7.1

and 7.12.

Next, suppose that Dn−1 is an (n − 1)-dimensional manifold with non-

empty boundary, over which we take a topological cylinder Ω , D × [−1, 1],

whose coordinates we label X = (y, z) ∈ D× [−1, 1]. Let g be a smooth metric

on Ω, given in (y, z) coordinates (Fermi coordinates) by

g = gz + dz2.
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We require that

(7.2) Σ , D × {0} ⊂ (Ω, g) is a minimal surface

whose second fundamental form is uniformly bounded in C0,θ for some θ ∈
(0, 1) that will be eventually chosen to be near 1 (see Theorem 7.4):

(7.3) | IIΣ |+ [IIΣ]θ ≤ η,

and also10 in C1,θ
ε :

(7.4) ε|∇Σ IIΣ |+ ε1+θ[∇Σ IIΣ]θ ≤ η,

with η > 0 small. We furthermore assume that there are C2,θ-coordinate charts

on Σ so that the induced metric g0 is C0,θ and C1,θ
ε -close to the Euclidean

metric in the sense that

|(g0)ij − δij |+ [(g0)ij ]θ ≤ η,(7.5)

ε|∂k(g0)ij |+ ε1+θ[∂k(g0)ij ]θ ≤ η,(7.6)

where i, j, k run through the coordinates (y1, . . . , yn−1) on Σ in the given

coordinate chart.

Note that (7.3) implies that Fermi coordinates (y, z) with respect to Σ are

a diffeomorphism which is C1,θ-close to the identity so, in particular, together

with (7.5), it follows that the metric g is C0,θ-close to being Euclidean in Fermi

coordinates

(7.7) |gκλ − δκλ|+ [gκλ]θ ≤ η′

for small η′ = η′(η, n) > 0. Here, κ, λ run through all n Fermi coordinates

(y1, . . . , yn−1, z).

Likewise, (7.4) and (7.6) imply that Fermi coordinates are C2,θ
ε -close to

the identity and

(7.8) ε|∂µgκλ|+ ε1+θ[∂µgκλ]θ ≤ η′.

Here, κ, λ, µ run through all n Fermi coordinates.

We also require that Σ carries no non-trivial Jacobi fields with Dirichlet

boundary conditions in the following quantitative sense:

(7.9)

∫
Σ

(JΣf)2 dµg0 ≥ η
∫

Σ
f2 dµg0 for every f ∈ C∞c (Σ \ ∂Σ),

where

(7.10) JΣf , −∆g0f − (| IIΣ |2 + Ricg(∂z, ∂z)|Σ)f

10It is crucial for Section 4 that we only work with the weaker bounds on derivatives of II

given in (7.3) and (7.4), which are precisely the types of estimates we derived in Section 3.
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denotes the Jacobi operator on Σ. (Note that our sign convention for the

Jacobi operator differs from the one in [Pac12].)

Let us also fix δ∗ ∈ (0, 1) and define cutoff functions χj : R→ [0, 1], with

χ′j ≥ 0 on [0,∞), so that

(7.11) χj(t) =

1 |t| ≤ εδ∗
(

1− 2j−1
100

)
,

0 |t| ≥ εδ∗
(

1− 2j−2
100

)
,

as well as ‖χj‖C3
εδ∗

(R) ≤ 200. We further require that the χj be even functions.

For ε > 0, set

(7.12) ‹Hε(t) , χ1(t)Hε(t)± (1− χ1(t)),

where the ± corresponds to t > 0, t < 0, respectively, and Hε is as in (1.8).

This is a truncation of the one-dimensional solution, Hε, which coincides with

Hε near Σ and with ±1 away from Σ.

The functions χj , Hε, ‹Hε lift trivially to Σ×R. We also set

Ωj , {(y, z) ∈ Σ×R : z ∈ sptχj}.

Using the Fermi coordinates (y, z), χj , Hε, ‹Hε also give functions on Ω that

depend only on z. By (7.6) and (7.11), these functions are uniformly C2,θ
ε in

Σ×R with respect to the product metric g0 + dz2 and also in Ω with respect

to the metric g. Likewise, by (7.3) and (7.4), the slab Ωj can also be viewed

as a subset of (Ω, g) whose boundary is C1,θ and C2,θ
ε -close to being totally

geodesic.

Remark 7.1. By (7.6) and (7.8), there exists a constant C = C(η) such

that

C−1‖f‖
Ck,αε (Ω)

≤ ‖f‖
Ck,αε (Σ×R)

≤ C‖f‖
Ck,αε (Ω)

, k = 0, 1, 2, α ∈ (0, θ]

for any function f : Ω → R with support in the interior of Ω. The norms

above are taken with respect to the product metric g0 + dz2 on Σ×R and the

metric g on Ω.

Remark 7.2. We cannot reuse the truncation from Section 2, because we

now need a truncation that trivializes outside a polynomial window instead of

a logarithmic window.

For subsets S ⊂ Σ, let us define

Πε : L2(S ×R)→ L2(S), Π⊥ε : L2(S ×R)→ L2(S ×R)
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to be given by

Πε(f)(y) , ε−1h−1
0

∫ ∞
−∞

f(y, z) ·H′(ε−1z) dz,(7.13)

Π⊥ε (f)(y, z) , f(y, z)−Πε(f)(y)H′(ε−1z).(7.14)

We note two things:

(1) S does not appear in the projection notation, but it will clear from the

context when it is relevant.

(2) Our normalization is such that Πε({z 7→ H′(ε−1z)}) = εΠε(H′ε) = 1.

From this point forward we also consider another Hölder exponent, α ∈
(0, 1), which is such that

α ≤ θ
(with θ as in (7.3)–(7.6)). The exponent α will be eventually taken to be near

0 (see Theorem 7.4).

We point out the following trivial lemma:

Lemma 7.3. Both Πε and Π⊥ε lift to linear maps

Πε : C0,α
ε (S ×R)→ C0,α

ε (S), Π⊥ε : C0,α
ε (S ×R)→ C0,α

ε (S ×R).

The C0,α
ε (S × R) norm is taken with respect to the product metric g0 + dz2.

Viewed as linear maps over these Hölder spaces, we have supε>0

(
‖Πε‖ +

‖Π⊥ε ‖
)
<∞.

For ζ ∈ C2,α(Σ), we define Dζ to be the map

(7.15) Dζ(y, t) , (y, t− χ2(t)ζ(y)).

Finally, we introduce the modified Hölder norm:

(7.16) ‖v‖‹Ck,αε (Ω)
, ε−2‖χ5v‖Ck,αε (Ω)

+ ‖v‖
Ck,αε (Ω)

.

Recall that ‖ · ‖
Ck,αε

is as in (7.1). As with Remark 7.1, the Ck,αε (Ω) norm is

taken with respect to g.

The main result of this section is

Theorem 7.4. If α ≤ α0, ε ≤ ε0 and we are given boundary data

(1) v̂[ ∈ ‹C2,α
ε (∂Ω), ‖v̂[‖‹C2,α

ε (∂Ω)
≤ µε2, v̂[ = 0 on {χ4 = 1} ∩ ∂Ω,

(2) v̂] ∈ C2,α
ε (∂Σ×R), ‖v̂]‖

C2,α
ε (∂Σ×R)

≤ µε2, Πε(v̂
]) ≡ 0 on ∂Σ,

(3) ζ̂ ∈ C2,α(∂Σ), ε2α‖ζ̂‖C2,α(∂Σ) ≤ µε2,

and a metric g for which (7.2)–(7.6) hold with θ ≥ θ0 ≥ α0, then there exist

(1) v[ ∈ ‹C2,α(Ω), v[|∂Ω = v̂[, ‖v[‖‹C2,α
ε (Ω)

≤ Cε2,

(2) v] ∈ C2,α(Σ×R), v]|∂Σ×R = v̂], Πεv
] ≡ 0, ‖v]‖

C2,α
ε (Σ×R)

≤ Cε2,

(3) ζ ∈ C2,α(Σ), ζ|∂Γ = ζ̂ , ε2α‖ζ‖C2,α(Σ) ≤ Cε2,
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so that u = (‹Hε + χ4v
] + v[) ◦Dζ satisfies

(7.17) ε2∆gu = W ′(u) on Ω.

The solution map (v̂[, v̂], ζ̂, g) 7→ (v[, v], ζ) is Lipschitz continuous, with Lips-

chitz constant L, as a map‹C2,α
ε (∂Ω)× C2,α

ε (∂Σ×R)× C2,α(∂Σ)

×Metε,η(Ω)→ ‹C2,α
ε (Ω)× C2,α

ε (Σ×R)× C2,α(Σ),

where Metε,η(Ω) denotes the set of metrics satisfying (7.7)–(7.8) with the ob-

vious topology. The spaces ‹C2,α
ε (Ω) × C2,α

ε (Σ × R) × C2,α(Σ), ‹C2,α(∂Ω) ×
C2,α
ε (∂Σ×R)×C2,α(∂Σ) are topologized using the norms in (7.86) and (7.87),

respectively. Here, ε0 = ε0(n, η,W, δ∗, µ, α), α0 = α0(n, η,W, δ∗, µ), θ0 =

θ0(δ∗), C = C(n, η,W, δ∗, µ, α), L = L(n, η,W, δ∗, µ, α, θ).

This follows along the lines of [Pac12, §3], provided one makes the nec-

essary modifications to account for (possibly non-zero, but small) Dirichlet

data as well as the important fact that our Fermi coordinate regularity is

constrained by the weaker assumptions (7.3) and (7.4). This lower regularity

situation makes certain aspects of Theorem 7.4 delicate, so we describe the

proof in detail below.

7.2. Linear scheme. In this section we generalize linear estimates found

in [Pac12, §3] to allow Dirichlet boundary conditions, possibly with non-zero

data. The operators we will study are

L∗ , ∆Rn + ∂2
z −W ′′(H) on Rn

+ ×R,(7.18)

Lε , ε
2(∆g0 + ∂2

z )−W ′′(Hε) on Σ×R,(7.19)

Lε , ε2∆g −W ′′(±1) on Ω.(7.20)

Lemma 7.5 (cf. [Pac12, Lemma 3.7]). Assume that w ∈ L∞(Rn
+ × R)

satisfies L∗w = 0 and w ≡ 0 on ∂Rn
+ ×R. Then w ≡ 0.

Proof. The result follows from [Pac12, Lemma 3.7] after an odd reflection

of w across ∂Rn
+. �

The next results that need to be adapted pertain to Lε and functions

ϕ ∈ L∞(Σ×R) satisfying Πε(ϕ) ≡ 0 on Σ, where Πε is as in (7.13).

Lemma 7.6 (cf. [Pac12, Prop. 3.1]). If ε ≤ ε0, w ∈ C2,α
ε (Σ × R), and

Πε(w) ≡ 0 on Σ, then

‖w‖
C2,α
ε (Σ×R)

≤ C(‖Lεw‖C0,α
ε (Σ×R)

+ ‖w|∂Σ×R‖C2,α
ε (∂Σ×R)

).

Here, ε0 = ε0(n, η,W ), C = C(n, η,W, α).
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Proof. This follows from the C1,α
ε control of g0 by way of (7.6), [Pac12,

Prop. 3.1], Lemma 7.5, and boundary Schauder estimates (e.g., [Sim97, Th. 5]).

�

Lemma 7.7 (cf. [Pac12, Prop. 3.2]). There exists ε0 > 0 depending on n,

η > 0, W , such that for all ε ∈ (0, ε0), all f ∈ C0,α
ε (Σ ×R) with Πε(f) ≡ 0

on Σ, and all f̂ ∈ C2,α
ε (∂Σ×R) with Πε(f̂) ≡ 0 on ∂Σ, there exists a unique

function w ∈ C2,α
ε (Σ×R), also with Πε(w) ≡ 0 on Σ, such that

Lεw = f in Σ×R, w = f̂ on ∂Σ×R.

Proof. When f̂ ≡ 0 this follows from the functional analytic argument

already found in [Pac12, Prop. 3.2] applied, instead, to W 1,2
0 (Σ×R).

When f̂ 6≡ 0, this follows by extending f̂ to C2,α(Σ × R), Πε(f̂) ≡ 0,

and applying the previous existence result with zero boundary data to solve

Lεw = f − Lεf̂ . �

Finally, [Pac12] deals with Lε.

Lemma 7.8 (cf. [Pac12, Prop. 3.3]). If ε ∈ (0, 1), then

‖w‖
C2,α
ε (Ω)

≤ C(‖Lεw‖C0,α
ε (Ω)

+ ‖w|∂Ω‖C2,α
ε (∂Ω)

).

Here, C = C(n, η,W, α).

Proof. The interior estimate follows from interior Schauder theory, since

g is C1,α
ε by (7.8). The boundary estimate on the regular portion of ∂Ω follows

from boundary Schauder theory, because ∂Ω is C2,α
ε at those points by (7.4).

Finally, the estimate at the corners of ∂Ω follows from the boundary theory as

well. This is because we can carry out odd reflections across D × {±1} since

the angles at the corners are all π/2. �

We also derive an improved estimate for functions satisfying Lεw = 0 on a

strip of height O(εδ∗), and w = 0 on its lateral boundary. Recall the definition

of the norm ‹C2,α
ε in (7.16).

Lemma 7.9 (cf. [Pac12, (3.26)]). If ε ≤ ε0, w ∈ C2,α
ε (Ω), and

Lεw = 0 on Ω4 and w = 0 on ∂Ω4 ∩ ∂Ω,

then

‖w‖‹C2,α
ε (Ω)

≤ C(‖Lεw‖C0,α
ε (Ω)

+ ‖w|∂Ω‖C2,α
ε (∂Ω)

).

Here, ε0 = ε0(n, η,W, δ∗), C = C(n, η,W, δ∗, α).

Proof. Considering Lemma 7.8, it suffices to check that

(7.21) ‖χ5w‖C2,α
ε (Ω)

≤ Cε2(‖Lεw‖C0,α
ε (Ω)

+ ‖w|∂Ω‖C2,α
ε (∂Ω)

).
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Since Lε = 0 on Ω4, w = 0 on ∂Ω4 ∩ ∂Ω, and δ∗ ∈ (0, 1), Schauder’s

interior estimates estimates on ∂Ω5 \ ∂Ω, Schauder’s boundary estimates near

∂Ω5 ∩ ∂Ω, (7.4), and (7.8), imply that

‖w‖
C2,α
ε (Ω5)

≤ C‖w‖L∞({χ4=1}).

In particular, given the decay of the first and second derivatives of χj from

(7.11) and δ∗ ∈ (0, 1), (7.21) will follow as long as

(7.22) ‖w‖L∞({χ4=1}) ≤ Cε2‖w‖L∞(Ω).

We use the same barrier argument as in [Pac12, Rem. 3.2], paying closer

attention to the boundary and to the regularity. Define

ϕz0(z) , cosh(γε−1(z − z0))

with |z0| ≤ εδ∗ and γ ∈ (0, (W ′′(±1))
1
2 ). If Hz denotes the mean curvature of

of a z-level set in Fermi coordinates, then

ε2∆gϕz0(z) = γ2ϕz0(z) +Hzγε sinh(γε−1(z − z0)) ≤ (γ2 + γε|Hz|)ϕz0(z).

It follows from (7.3) as well as (A.2) and (A.3) that |Hz| is uniformly bounded.

In particular, for sufficiently small ε, depending on γ, η, n, we have

ε2∆gϕz0(z) ≤W ′′(±1)ϕz0(z),

so ϕz0 is a barrier, as it was in [Pac12]. It therefore follows from the maximum

principle applied to w − tϕz0 that, for (y, z0) ∈ Ω4,

|w(y, z0)| ≤
Å

inf
Ω\Ω4

ϕz0

ã−1

max
∂Ω4

|w|,

which is trivially bounded by cε2‖w‖L∞(Ω) whenever (y, z0) ∈ {χ4 = 1}, and

ε > 0 is small. This implies (7.22) and, in turn, (7.21). �

7.3. Nonlinear scheme. We consider the following non-linear functionals,

originally defined in [Pac12, §3]:

Eε(ζ) , ε2∆g(‹Hε ◦Dζ) ◦D−1
ζ −W

′(‹Hε),(7.23)

Qε(v) ,W ′(‹Hε + v)−W ′(‹Hε)−W ′′(‹Hε)v,(7.24)

Mε(v
[, v], ζ) , χ3

[
Lεv

] − ε2∆g(v
] ◦Dζ) ◦D−1

ζ +W ′′(Hε)v
]

(7.25)

− ε2(∆g(v
[ ◦Dζ) ◦D−1

ζ −∆gv
[)− Eε(ζ) + ε2(JΣζ)∂zHε

−Qε(χ4v
] + v[) + (W ′′(Hε)−W ′′(±1))v[

]
,
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Nε(v
[, v], ζ) , (χ4 − 1)

[
ε2(∆g(v

[ ◦Dζ) ◦D−1
ζ −∆gv

[)

(7.26)

+ (W ′′(‹Hε)−W ′′(±1))v[ − Eε(ζ)−Qε(χ4v
] + v[)

]
− ε2(∆g((χ4v

]) ◦Dζ)− χ4∆g(v
] ◦Dζ)) ◦D−1

ζ .

These functionals allow us to pose (7.17) as a fixed point problem:

Lεv[ = Nε(v
[, v], ζ),(7.27)

Lεv
] = Π⊥ε Mε(v

[, v], ζ),(7.28)

JΣζ = ε−1ΠεMε(v
[, v], ζ);(7.29)

cf. [Pac12, (3.31), (3.32), (3.33)]. We impose, as does [Pac12, §3], the additional

constraint

Πεv
] ≡ 0 on Σ.

Lemma 7.10 (cf. [Pac12, Lemma 3.8]). The following estimate holds :

‖Nε(0, 0, 0)‖
C0,α
ε (Ω)

+ ‖Π⊥ε Mε(0, 0, 0)‖
C0,α
ε (Σ×R)

+ ε−1‖ΠεMε(0, 0, 0)‖C0,α(Σ) ≤ c0ε
2.

Here, ε ∈ (0, 1
2), c0 = c0(n, η,W, δ∗, α).

Proof. Note that

Mε(0, 0, 0) = −χ3Eε(0), Nε(0, 0, 0) = (1− χ4)Eε(0).

Straightforward computation shows Eε(0) = ε2∆g
‹Hε −W ′(‹Hε). From (7.12),

(7.30) ‹Hε −Hε = (1− χ1)(±1−Hε),

(± depends on z > 0 or z < 0), a quantity that decays exponentially to all

orders with ε→ 0. Since Hε does too on spt(1− χ4), we in fact get

‖Nε(0, 0, 0)‖
C0,α
ε (Ω)

≤ Cmεm

for all m ∈ N. (Taking m = 2 will suffice.)

To estimate Mε(0, 0, 0), we proceed to further rewrite

Eε(0) = ε2∆g
‹Hε −W ′(‹Hε)

= ε2∆gHε −W ′(Hε) + ε2∆g(‹Hε −Hε)− (W ′(‹Hε)−W ′(Hε))

= ε2Hz∂zHε − (ε2∆g −W ′′(‹Hε)−Qε)(Hε −‹Hε).

Note that ‹Hε ≡ 1 on Ω \ Ω1 =⇒ Eε(0) ≡ 0 on Ω \ Ω1.
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If χ : Ω→ [0, 1] is the cutoff function χ(z) = χ1(z/2), then note that χ ≡ 1 on

spt Eε(0) so that

Eε(0) = χ · ε2Hz∂zHε − χ · (ε2∆g −W ′′(‹Hε)−Qε)(Hε −‹Hε).

It follows from (7.8), (7.11), and (7.30) that

(7.31) ‖χ · (ε2∆g −W ′′(‹Hε)−Qε)(Hε −‹Hε)‖C0,α
ε (Σ×R)

≤ Cmεm

for m ∈ N. (Taking m = 4 will suffice.)

Recalling (A.3),

(7.32) ∂zHz = −| IIz |2 + Ricg(∂z, ∂z)|D×{z}, z ∈ [−1, 1].

Certainly, since α ≤ θ, this already implies

sup
|z|≤1
‖y 7→ ∂zHz‖C0,α(Σ) ≤ C.

Combining (7.32) with (7.3), α ≤ θ, (A.1), and (A.2), we even find that

(7.33) sup
|z|≤1
‖y 7→ ∂2

zHz(y, z)‖C0,α(Σ) ≤ C.

In particular, (7.2), (7.33) and Taylor’s theorem imply

(7.34) Hz = −(| II0 |2 + Ricg(∂z, ∂z)|Σ)z +R(y, z)z2,

where

(7.35) sup
|z|≤1
‖y 7→ R(y, z)‖C0,α(Σ) ≤ C.

From the trivial estimate |z|∂zHε ≤ C, (7.11), and (7.34), we find that

(7.36) ‖χ · ε2Hz∂zHε‖C0,α
ε (Σ×R)

≤ Cε2.

Put together, (7.31), (7.36), and Lemma 7.3 imply

‖Π⊥ε Mε(0, 0, 0)‖
C0,α
ε (Σ×R)

≤ Cε2.

Finally, by (7.34),

Πε(χ · ε2Hz∂zHε) = h−1
0

∫ ∞
−∞

χ(z)(∂zHz(y, 0) · z +R(y, z)z2)(H′(ε−1z))2 dz.

Recalling that from parity (since χ(z) is even)∫ ∞
−∞

χ(z)z(H′(ε−1z))2 dz = 0,

it follows that

Πε(χ · ε2Hz∂zHε) = h−1
0

∫ ∞
−∞

χ(z)R(y, z)z2(H′(ε−1z))2 dz,

at which point we can directly estimate using (1.6), (1.8), and (7.35) and get

‖Πε(χ · ε2Hz∂zHε)‖C0,α(Σ) ≤ Cε3.
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Together with (7.31) (with m = 4), this implies

‖ΠεMε(0, 0, 0)‖C0,α(Σ) ≤ Cε3.

This completes the proof. �

Lemma 7.11 (cf. [Pac12, Lemma 3.9]). For α ≤ α0, ε ≤ ε0,

‖Nε(v
[
2, v

]
2, ζ2)−Nε(v

[
1, v

]
1, ζ1)‖

C0,α
ε (Ω)

(7.37)

≤ c1ε
δ
(
‖v[2 − v[1‖C2,α

ε (Ω)
+ ‖v]2 − v

]
1‖C2,α

ε (Σ×R)
+ ‖ζ2 − ζ1‖C2,α(Σ)

)
,

‖Π⊥ε (Mε(v
[
2, v

]
2, ζ2)−Mε(v

[
1, v

]
1, ζ1))‖

C0,α
ε (Σ×R)

(7.38)

≤ c1ε
δ
(
‖v[2 − v[1‖‹C2,α

ε (Ω)
+ ‖v]2 − v

]
1‖C2,α

ε (Σ×R)
+ ‖ζ2 − ζ1‖C2,α(Σ)

)
,

‖Πε(Mε(v
[
2, v

]
2, ζ2)−Mε(v

[
1, v

]
1, ζ1))‖C0,α(Σ)(7.39)

≤ c1ε
1+δ‖v[2 − v[1‖‹C2,α

ε (Ω)

+ c1ε
1−α‖v]2 − v

]
1‖C2,α

ε (Σ×R)
+ c1ε

1+δ‖ζ2 − ζ1‖C2,α(Σ),

provided (7.3)–(7.6) hold with θ ≥ θ0 ≥ α0, and∑
j=1,2

‖v[j‖‹C2,α
ε (Ω)

+ ‖v]j‖C2,α
ε (Σ×R)

+ ε2α‖ζj‖C2,α(Σ) ≤ C ′ε2.

Here, ε0 = ε0(n, η,W, δ∗), δ = δ(δ∗), θ0 = θ0(δ∗), α0 = α0(δ∗), and c1 =

c1(n, η,W, δ∗, C
′, α).

Remark 7.12. We emphasize that three different norms are used:

(1) On v[, we use the modified weighted Hölder norm

‖w‖‹C2,α
ε (Ω)

= ‖w‖
C2,α
ε (Ω)

+ ε−2‖χ5w‖C2,α
ε (Ω)

.

Here, the Hölder norms are measured with respect to the metric g.

(2) On v], we use the standard weighted Hölder norm C2,α
ε (Σ×R). Here, the

Hölder norms are measured with respect to the product metric g0 + dz2.

(3) On ζ, we use the unweighted Hölder norm C2,α(Σ), which strictly domi-

nates C2,α
ε (Σ):

‖ζ‖
C2,α
ε (Σ)

≤ ‖ζ‖C2,α(Σ).

Here, the Hölder norms are measured with respect to the metric g0 induced

on Σ.

Proof of Lemma 7.11. In what follows we may assume that α0 ≤ 1
4 . Note,

from (7.11) and (7.26), that

Nε(v
[
1, v

]
1, ζ1) ≡ Nε(v

[
2, v

]
2, ζ2) ≡ 0 on {χ4 = 1}.
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Therefore, since δ∗ ∈ (0, 1),

‖Nε(v
[
2, v

]
2, ζ2)−Nε(v

[
1, v

]
1, ζ1)‖

C0,α
ε (Ω)

= ‖Nε(v
[
2, v

]
2, ζ2)−Nε(v

[
1, v

]
1, ζ1)‖

C0,α
ε ({χ4 6=1})

≤ ‖Nε(v
[
2, v

]
2, ζ2)−Nε(v

[
1, v

]
1, ζ1)‖

C0,α
ε (Ω\Ω5)

.

We will estimate this by pairing up the terms, making sure to use use the fact

that our Hölder norm is taken over Ω \ Ω5 instead of over Ω, in order to gain

a factor of εδ for some δ > 0 that depends on δ∗.

In all that follows, we will repeatedly (and implicitly) use that our Fermi

coordinates (and thus also Dζ , D
−1
ζ ) are C2,α

ε close to the identity, and that

our metric g in Fermi coordinates is C1,α
ε close to Euclidean.

We start by estimating

‖ε2(∆g(v
[
2 ◦Dζ2) ◦D−1

ζ2
−∆gv

[
2)− ε2(∆g(v

[
1 ◦Dζ1) ◦D−1

ζ1
−∆gv

[
1)‖

C0,α
ε (Ω)

.

(We can deduce a good estimate on all of Ω, not just on Ω \ Ω5.) By working

in Fermi coordinates in scale O(ε), we see that

(7.40) F1(v, ζ) , ε2∆g(v ◦Dζ) ◦D−1
ζ

is a smooth non-linear Banach space functional F1 : C2,α
ε (Ω) × C2,α

ε (Σ) →
C0,α
ε (Ω) and is linear in v. In particular,

ε2
[
(∆g(v

[
2 ◦Dζ2) ◦D−1

ζ2
−∆gv

[
2)− (∆g(v

[
1 ◦Dζ1) ◦Dζ1 −∆gv

[
1)
]

= (F1(v[2, ζ2)−F1(v[1, ζ1))− (F1(v[2, 0)−F1(v[1, 0))

=

∫ 1

0
〈DvF1(v[1 + t(v[2 − v[1), ζ1 + t(ζ2 − ζ1)), v[2 − v[1〉

+ 〈DζF1(v[1 + t(v[2 − v[1), ζ1 + t(ζ2 − ζ1)), ζ2 − ζ1〉 dt

−
∫ 1

0
〈DvF1(v[1 + t(v[2 − v[1), 0), v[2 − v[1〉dt

=

∫ 1

0

∫ 1

0
〈DζDvF1(v[1 + t(v[2 − v[1), sζ1 + st(ζ2 − ζ1)),

(ζ1 + t(ζ2 − ζ1))⊗ (v[2 − v[1)〉 ds dt

+

∫ 1

0
〈DζF1(v[1 + t(v[2 − v[1), ζ1 + t(ζ2 − ζ1)), ζ2 − ζ1〉 dt.
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Seeing as to how ‖v[j‖C2,α
ε (Ω)

≤ C ′ε2, ‖ζj‖C2,α(Σ) ≤ C ′ε2−2α, and using the

linearity in v of F1 (and thus of DζF1), we can directly estimate the following:

‖ε2((∆g(v
[
2 ◦Dζ2) ◦D−1

ζ2
−∆gv

[
2)− (∆g(v

[
1 ◦Dζ1) ◦Dζ1 −∆gv

[
1))‖

C0,α
ε (Ω)

≤ C(‖ζ1‖C2,α
ε (Σ)

+ ‖ζ2‖C2,α
ε (Σ)

)‖v[2 − v[1‖C2,α
ε (Ω)

+ C(‖v[1‖C2,α
ε (Ω)

+ ‖v[2‖C2,α
ε (Ω)

)‖ζ2 − ζ1‖C2,α
ε (Σ)

≤ C(‖ζ1‖C2,α(Σ) + ‖ζ2‖C2,α(Σ))‖v[2 − v[1‖C2,α
ε (Ω)

+ C(‖v[1‖C2,α
ε (Ω)

+ ‖v[2‖C2,α
ε (Ω)

)‖ζ2 − ζ1‖C2,α(Σ)

≤ Cε2−2α‖v[2 − v[1‖C2,α
ε (Ω)

+ Cε2‖ζ2 − ζ1‖C2,α(Σ).

(7.41)

This estimate is of the desired form.

Next, we estimate

‖(W ′′(‹Hε)−W ′′(±1))(v[2 − v[1)‖
C0,α
ε (Ω\Ω5)

.

The desired estimate is a simple consequence of Remark 7.1 and how, on Ω\Ω5,

we have

(7.42) ‖W ′′(‹Hε)−W ′′(±1)‖
C0,α
ε (Ω\Ω5)

≤ Cmεm

for all m ∈ N; thus, any δ > 0 will do.

Next, we estimate

‖Eε(ζ2)− Eε(ζ1)‖
C0,α
ε (Ω\Ω5)

.

We have

Eε(ζ2)− Eε(ζ1) = ε2(∆g(‹Hε ◦Dζ2) ◦D−1
ζ2
−∆g(‹Hε ◦Dζ1) ◦D−1

ζ1
)

= F ′1(‹Hε, ζ2)−F ′1(‹Hε, ζ1),

where F ′1 : C2,α
ε (Ω\Ω5)×C2,α

ε (Σ)→ C0,α
ε (Ω\Ω5) is the restriction of F1 from

(7.40). Arguing as before, we get

‖Eε(ζ2)− Eε(ζ1)‖
C0,α
ε (Ω\Ω5)

≤ C‖‹Hε‖C2,α
ε (Ω\Ω5)

‖ζ2 − ζ1‖C2,α
ε (Σ)

≤ Cmεm‖ζ2 − ζ1‖C2,α(Σ)

(7.43)

for all m ∈ N, which implies what we want for any δ > 0.

Next, we estimate

‖Qε(χ4v
]
2 + v[2)−Qε(χ4v

]
1 + v[1)‖

C0,α
ε (Ω)

.
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Note that

Qε(χ4v
]
2 + v[2)−Qε(χ4v

]
1 + v[1) = W ′(‹Hε + χ4v

]
2 + v[2)

−W ′(‹Hε + χ4v
]
1 + v[1)−W ′′(‹Hε)(χ4(v]2 − v

]
1) + (v[2 − v[1)).

Define

(7.44) F2(v) ,W ′(‹Hε + v),

viewed as a smooth non-linear Banach space functional F2 :C0,α
ε (Ω)→ C0,α

ε (Ω).

Note that

〈DvF2(v), w〉 = W ′′(‹Hε + v)w, 〈DvDvF2(v), w ⊗ w′〉 = W ′′(‹Hε + v)ww′

for w, w′ ∈ C0,α
ε (Ω). In particular, the expression we are trying to bound

equals

F2(χ4v
]
2 + v[2)−F2(χ4v

]
1 + v[1)− 〈DvF2(0), χ4(v]2 − v

]
1) + v[2 − v[1〉

=

∫ 1

0
〈DvF2(χ4v

]
1 + v[1 + t(χ4(v]2 − v

]
1) + v[2 − v[1)), χ4(v]2 − v

]
1) + v[2 − v[1〉 dt

− 〈DvF2(0), χ4(v]2 − v
]
1) + v[2 − v[1〉

=

∫ 1

0

∫ 1

0
〈DvDvF2(s(χ4v

]
1 + v[1 + t(χ4(v]2 − v

]
1) + v[2 − v[1)),

(χ4v
]
1 + v[1 + t(χ4(v]2 − v

]
1) + v[2 − v[1))⊗ (χ4(v]2 − v

]
1) + v[2 − v[1))〉 ds dt.

Recalling Remark 7.1, (7.11), and δ∗ ∈ (0, 1), we can estimate

‖Qε(χ4v
]
2 + v[2)−Qε(χ4v

]
1 + v[1)‖

C0,α
ε (Ω)

≤ C(‖v]1‖C0,α
ε (Σ×R)

+ ‖v[1‖C0,α
ε (Ω)

+ ‖v]2‖C0,α
ε (Σ×R)

+ ‖v[2‖C0,α
ε (Ω)

)

· (‖v]2 − v
]
1‖C0,α

ε (Σ×R)
+ ‖v[2 − v[1‖C0,α

ε (Ω)
).

This gives

‖Qε(χ4v
]
2 + v[2)−Qε(χ4v

]
1 + v[1)‖

C0,α
ε (Ω)

≤ Cε2(‖v]2 − v
]
1‖C0,α

ε (Σ×R)
+ ‖v[2 − v[1‖C0,α

ε (Ω)
),

(7.45)

using ‖v]j‖C0,α
ε (Σ×R)

, ‖v[j‖C0,α
ε (Ω)

≤ C ′ε2.

Next, we consider

‖ε2((∆g((χ4v
]
2) ◦Dζ2)− χ4∆g(v

]
2 ◦Dζ2)) ◦D−1

ζ2
)

−(∆g((χ4v
]
1) ◦Dζ1)− χ4∆g(v

]
1 ◦Dζ1)) ◦D−1

ζ1
)‖
C0,α
ε (Ω)

.

Define

F3(v, ζ) , ε2(∆g((χ4v) ◦Dζ)− χ4∆g(v ◦Dζ)) ◦D−1
ζ ,
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which once again is viewed as a map F3 : C2,α
ε (Ω) × C2,α

ε (Σ) → C0,α
ε (Ω), is a

smooth non-linear Banach space functional. We can then write

ε2((∆g((χ4v
]
2) ◦Dζ2)− χ4∆g(v

]
2 ◦Dζ2)) ◦D−1

ζ2
)

− (∆g((χ4v
]
1) ◦Dζ1)− χ4∆g(v

]
1 ◦Dζ1)) ◦D−1

ζ1
)

= F3(v]2, ζ2)−F3(v]1, ζ1)

=

∫ 1

0
〈DvF3(v]1 + t(v]2 − v

]
1), ζ1 + t(ζ2 − ζ1)), v]2 − v

]
1〉

+ 〈DζF3(v]1 + t(v]2 − v
]
1), ζ1 + t(ζ2 − ζ1)), ζ2 − ζ1〉 dt.

The second term can be estimated by using the linearity in v of F3 (and thus

of DζF3) and Remark 7.1 to give

‖〈DζF3(v]1 + t(v]2 − v
]
1), ζ1 + t(ζ2 − ζ1)), ζ2 − ζ1〉‖C0,α

ε (Ω)

≤ C(‖v]1‖C2,α
ε (Σ×R)

+ ‖v]2‖C2,α
ε (Σ×R)

)‖ζ2 − ζ1‖C2,α
ε (Σ)

≤ Cε2‖ζ2 − ζ1‖C2,α(Σ),

which is of the desired form with δ = 2.

The first term instead requires that we use the product rule on F3 to

recast it as

F3(v, ζ) = ε2(2〈∇g(χ4 ◦Dζ),∇g(v ◦Dζ)〉+ (∆g(χ4 ◦Dζ))(v ◦Dζ)) ◦D−1
ζ ,

which can, in turn, be differentiated in v to give

〈DvF3(v, ζ), w〉 = ε2(2〈∇g(χ4◦Dζ),∇g(w◦Dζ)〉+(∆g(χ4◦Dζ))(w◦Dζ))◦D−1
ζ .

At this point, we note that there are no zero-order χ4’s remaining, so we use

Remark 7.1, (7.11), and δ∗ ∈ (0, 1) to get

‖〈DvF3(v]1 + t(v]2 − v
]
1), ζ1 + t(ζ2 − ζ1)), v]2 − v

]
1〉‖C0,α

ε (Ω)

≤ Cε1−δ∗‖v]2 − v
]
1‖C1,α

ε (Σ×R)
≤ Cε1−δ∗‖v]2 − v

]
1‖C2,α

ε (Σ×R)
.

Summarizing, we have shown that

‖ε2((∆g((χ4v
]
2) ◦Dζ2)− χ4∆g(v

]
2 ◦Dζ2)) ◦D−1

ζ2
)

− (∆g((χ4v
]
1) ◦Dζ1)− χ4∆g(v

]
1 ◦Dζ1)) ◦D−1

ζ1
)‖
C0,α
ε (Ω)

≤ Cε1−δ∗(‖v]2 − v
]
1‖C2,α

ε (Σ×R)
+ ‖ζ2 − ζ1‖C2,α(Σ)).

(7.46)

The contraction estimate on Nε, (7.37), now follows from (7.41), (7.42),

(7.43), (7.45), and (7.46).

We move on to the contraction estimates on Mε, (7.38) and (7.39). Before

we derive those two precise estimates, we investigate several of the easier terms

in Mε(v
[
2, v

]
2, ζ2)−Mε(v

[
1, v

]
1, ζ1).
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We note, right away, that we have already shown in (7.41) that

‖ε2(∆g(v
[
2 ◦Dζ2) ◦D−1

ζ2
−∆gv

[
2)− (∆g(v

[
1 ◦Dζ1) ◦D−1

ζ1
−∆gv

[
1)‖

C0,α
ε (Ω3)

≤ Cε2−2α‖v[2 − v[1‖C2,α
ε (Ω)

+ Cε2‖ζ2 − ζ1‖C2,α(Σ).

In particular, Remark 7.1, Lemma 7.3, and ‖ · ‖C0,α(Σ) ≤ ε−α‖ · ‖C0,α
ε (Σ)

imply

εα
∥∥∥Πε

[
ε2(∆g(v

[
2 ◦Dζ2) ◦D−1

ζ2
−∆gv

[
2)−(∆g(v

[
1 ◦Dζ1) ◦D−1

ζ1
−∆gv

[
1)
]∥∥∥

C0,α(Σ)

+
∥∥∥Π⊥ε

[
ε2(∆g(v

[
2 ◦Dζ2) ◦D−1

ζ2
−∆gv

[
2)

− (∆g(v
[
1 ◦Dζ1) ◦D−1

ζ1
−∆gv

[
1)
]∥∥∥

C0,α
ε (Σ×R)

≤ Cε2−2α‖v[2 − v[1‖C2,α
ε (Ω)

+ Cε2‖ζ2 − ζ1‖C2,α(Σ).

(7.47)

Next, from Remark 7.1, (7.45), we conclude

εα
∥∥∥Πε

[
Qε(χ4v

]
2 + v[2)−Qε(χ4v

]
1 + v[1)

]∥∥∥
C0,α(Σ)

+
∥∥∥Π⊥ε

[
Qε(χ4v

]
2 + v[2)−Qε(χ4v

]
1 + v[1)

]∥∥∥
C0,α
ε (Σ×R)

≤ Cε2(‖v]2 − v
]
1‖C0,α

ε (Σ×R)
+ ‖v[2 − v[1‖C0,α

ε (Ω)
).

(7.48)

Next, we estimate

‖(W ′′(Hε)−W ′′(±1))(v[2 − v[1)‖
C0,α
ε (Ω3)

.

This is the only time we will use ‖ · ‖‹C2,α
ε (Ω)

for the purposes of (7.38). We

have

‖(W ′′(Hε)−W ′′(±1))(v[2 − v[1)‖
C0,α
ε (Ω3)

≤ ‖(W ′′(Hε)−W ′′(±1))χ5(v[2 − v[1)‖
C0,α
ε (Ω)

+ ‖(W ′′(Hε)−W ′′(±1))(1− χ5)(v[2 − v[1)‖
C0,α
ε (Ω)

≤ ε2‖v[2 − v[1‖‹C2,α
ε (Ω)

+ ‖(W ′′(Hε)−W ′′(±1))(1− χ5)(v[2 − v[1)‖
C0,α
ε (Ω\Ω5)

.

Recalling ‖W ′′(Hε) −W ′′(±1)‖
C0,α
ε (Ω\Ω5)

≤ Cmε
m for all m ∈ N, e.g., as in

(7.42), we deduce

‖(W ′′(Hε)−W ′′(±1))(v[2 − v[1)‖
C0,α
ε (Ω3)

≤ Cε2‖v[2 − v[1‖‹C2,α
ε (Ω)

,

so, combined with Remark 7.1, Lemma 7.3, (7.11), and δ∗ ∈ (0, 1), this gives

εα‖Πε

[
χ3(W ′′(Hε)−W ′′(±1))(v[2 − v[1)

]
‖C0,α(Σ)

+ ‖Π⊥ε
[
χ3(W ′′(Hε)−W ′′(±1))(v[2 − v[1)

]
‖
C0,α
ε (Σ×R)

≤ Cε2‖v[2 − v[1‖‹C2,α
ε (Ω)

.

(7.49)
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We now proceed to the more involved contraction estimates pertaining

to Mε. We will estimate

‖(Lεv]2 − ε
2∆g(v

]
2 ◦Dζ2) ◦D−1

ζ2
+W ′′(Hε)v

]
2)

− (Lεv
]
1 − ε

2∆g(v
]
1 ◦Dζ1) ◦D−1

ζ1
+W ′′(Hε)v

]
1)‖

C0,α
ε (Ω3)

.
(7.50)

Note that, by repeating the argument carried out to obtain (7.41), except with

v]j in place of v[j , and also using Remark 7.1, we get

‖ε2((∆g(v
]
2 ◦Dζ2) ◦D−1

ζ2
−∆gv

]
2)− (∆g(v

]
1 ◦Dζ1) ◦D−1

ζ1
−∆gv

]
1))‖

C0,α
ε (Ω3)

≤ Cε2−2α‖v]2 − v
]
1‖C2,α

ε (Σ×R)
+ Cε2‖ζ2 − ζ1‖C2,α(Σ).

(7.51)

In view of Remark 7.1 and Lemma 7.3, this allows us to estimate

(Lεv
]
2 − ε

2∆gv
]
2 +W ′′(Hε)v

]
2)− (Lεv

]
1 − ε

2∆gv
]
1 +W ′′(Hε)v

]
1)

= Lε(v
]
2 − v

]
1)− ε2∆g(v

]
2 − v

]
1) +W ′′(Hε)(v

]
2 − v

]
1)

= ε2(∆g0 + ∂2
z −∆g)(v

]
2 − v

]
1)

instead of (7.50) in both (7.38) and (7.39). Let us denote

F4(v) , ε2(∆g −∆g0 − ∂2
z )v,

which is evidently a linear functional F4 : C2,α
ε (Ω3) → C0,α

ε (Ω3). Because

∆g = ∆gz + ∂2
z +Hz∂z in Fermi coordinates, we can rewrite

F4(v) = ε2(∆gz −∆g0)v + ε2Hz∂zv.

We now make use of (A.7) to write

F4(v) =
[
− ε2

∫ z

0
(2〈IIt,∇2

gtv〉gt + 〈∇gtHt,∇gtv〉gt) dt
]

+ ε2Hz∂zv.

First, let us derive C0 bounds. Let (y, z) ∈ Ω3. It follows from (7.3), (A.1),

(A.2), and (A.6) that

(7.52)

∣∣∣∣2ε2

∫ z

0
〈IIt,∇2

gtv〉gt dt
∣∣∣∣ ≤ C|z|‖v‖C2

ε (Ω3).

It follows from (7.4), (A.1), (A.2), (A.4), and (A.11) that

(7.53)

∣∣∣∣ε2

∫ z

0
〈∇gtHt,∇gtv〉gt dt

∣∣∣∣ ≤ C|z|‖v‖C1
ε (Ω3).

It follows from (7.2), (7.3), and (A.2) that

(7.54) |ε2Hz∂zv| ≤ Cε|z|‖v‖C1
ε (Ω3).

Altogether, (7.52)–(7.54), show

(7.55) |F4(v)| ≤ C|z|‖v‖
C2,α
ε (Ω3)

on Ω3.
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Next, let us derive Hölder bounds. For fixed z ∈ Ω3, an analogous argu-

ment gives

(7.56) εα[y 7→ F4(v)(y, z)]α ≤ C|z|‖v‖C2,α
ε (Ω3)

.

Now fix y. By (7.3), (A.1), (A.2), and (A.6), we have the Lipschitz bound∣∣∣∣ ∂∂z
Å

2ε2

∫ z

0
〈IIt,∇2

gtv〉gt dt
ã∣∣∣∣ ≤ C‖v‖C2

ε (Ω3).

In view of the a priori height bound |z| ≤ εδ∗ , this trivially implies the Hölder

bound

(7.57) εα
ï
z 7→ ε2

∫ z

0
〈IIt,∇2

gtv〉gt dt
ò
α

≤ Cεαεδ∗(1−α)‖v‖C2
ε (Ω3).

By (7.4), (A.1), (A.2), (A.4), and (A.11), we have another Lipschitz bound,

(7.58)

∣∣∣∣ ∂∂z
Å
ε2

∫ z

0
〈∇gtHt,∇gtv〉gt dt

ã∣∣∣∣ ≤ C‖v‖C1
ε (Ω3),

which, again by |z| ≤ εδ∗ , implies

(7.59) εα
ï
z 7→ ε2

∫ z

0
〈∇gtHt,∇gtv〉gt dt

ò
α

≤ Cεαεδ∗(1−α)‖v‖C1
ε (Ω3).

Finally, from (A.3) we have the Lipschitz bound∣∣∣∣ ∂∂z (ε2Hz∂zv)

∣∣∣∣ ≤ C‖v‖C2
ε (Ω3),

which, again by |z| ≤ εδ∗ , improves to

(7.60) εα[z 7→ ε2Hz∂zv]α ≤ Cεαεδ∗(1−α)‖v‖C2
ε (Ω3).

Altogether, (7.57)–(7.60) imply

(7.61) εα[z 7→ F4(v)(y, z)]α ≤ Cεδ∗+α(1−δ∗)‖v‖C2
ε (Ω3).

Together, (7.55), (7.56), and (7.61) imply

(7.62) ‖F4(v)‖
C0,α
ε (Ω3)

≤ Cεδ∗‖v‖
C2,α
ε (Ω3)

.

Together with Remark 7.1 and Lemma 7.3, this gives

(7.63) ‖Π⊥ε F4(v)‖
C0,α
ε (Ω3)

≤ Cεδ∗‖v‖
C2,α
ε (Ω3)

.

It remains to estimate ΠεF4(v). Note that the obvious inequality (which fol-

lows from (1.6) and (1.8))∫ ∞
−∞
|z|∂zHε(z) dz = ε

∫ ∞
−∞
|t|H′(t) dt ≤ Cε

combined with (7.55) and (7.56) readily implies

(7.64)

‖ΠεF4(v)‖
C0,α
ε (Σ)

≤Cε‖v‖
C2,α
ε (Ω3)

=⇒ ‖ΠεF4(v)‖C0,α(Σ)≤Cε1−α‖v‖
C2,α
ε (Ω3)

.
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This completes our study of F4, as we have the desired estimates in view of

Remark 7.1.

We proceed to the final contraction estimate pertaining to Mε, which

involves Πε, Π⊥ε of

χ3(Eε(ζ2)− Eε(ζ1)− ε2JΣ(ζ2 − ζ2)∂zHε).

By (7.11), δ∗ ∈ (0, 1), and Lemma 7.3, we may just estimate Eε(ζ2)− Eε(ζ1)−
ε2JΣ(ζ2 − ζ2)∂zHε on Ω3.

Fix (y, z) ∈ Ω3. Recall the definition of Dζ in (7.15) and the estimate

(7.65) distg(Ω3, {χ2 6= 1}) = O(εδ∗)� ‖ζ2‖C0(Σ) + ‖ζ1‖C0(Σ)

that follows from the a priori bound on ζ1, ζ2. Also recall that Hε ≡ ‹Hε on Ω3.

Then, in Fermi coordinates (y, z), we have

Eε(ζ2)(y, z)− Eε(ζ1)(y, z)− ε2JΣ(ζ2 − ζ1)(y) · ∂zHε(z)

= ε2∆g(Hε ◦Dζ2) ◦D−1
ζ2

(y, z)− ε2∆g(Hε ◦Dζ1) ◦D−1
ζ1

(y, z)

− ε2JΣ(ζ2 − ζ1)(y) · ∂zHε(z)

= ε2
[
∂2
zHε(z)

(
|∇gz+ζ2(y)

ζ2(y)|2 − |∇gz+ζ1(y)
ζ1(y)|2

)
− ∂zHε(z)

(
(∆gz+ζ2(y)

ζ2(y)−Hz+ζ2(y)(y))− (∆gz+ζ1(y)
ζ1(y)

−Hz+ζ1(y)(y)) + JΣ(ζ2 − ζ1)(y)
)]
.

(7.66)

For ζ ∈ C1,α(Σ), denote

F5(ζ)(y, z) , |∇gz+ζ(y)
ζ(y)|2 = gijz+ζ(y)ζi(y)ζj(y)

to be the smooth non-linear functional F5 : C1,α(Σ)→ C0,α(Ω3). By virtue of

(A.1), we know that

(7.67) 〈DζF5(ζ), w〉(y, z) = −2 IIijz+ζ(y) ζi(y)ζj(y)w(y) + 2gijz+ζ(y)wi(y)ζj(y).

By the fundamental theorem of calculus,

F5(ζ2)−F5(ζ1) =

∫ 1

0
〈DζF5(ζ1 + t(ζ2 − ζ1)), ζ2 − ζ1〉 dt,

so together with (7.3), the a priori estimates on ζ1, ζ2, (7.67), (A.1), and (A.2),

‖F5(ζ2)−F5(ζ1)‖C0,α(Ω3) ≤ Cε2−2α‖ζ2 − ζ1‖C1,α(Σ).

Alongside (1.7), Remark 7.1, Lemma 7.3, (7.11), and δ∗ ∈ (0, 1), this implies

εα
∥∥Πε

(
χ3ε

2(∂2
zHε)(F5(ζ2)−F5(ζ1))

)∥∥
C0,α(Σ)

+
∥∥∥Π⊥ε

(
χ3ε

2(∂2
zHε)(F5(ζ2)−F5(ζ1))

)∥∥∥
C0,α
ε (Σ×R)

≤ Cε2−2α‖ζ2 − ζ1‖C1,α(Σ).

(7.68)
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Finally, let us denote

F6(ζ)(y, z) , ε
(

∆z+ζ(y)ζ(y)−Hz+ζ(y)(y) + JΣζ(y)
)

to be the smooth non-linear Banach space functional F6 : C2,α(Σ)→ C0,α
ε (Ω3).

By (A.3) and (A.7),

〈DζF6(ζ), w〉

= ε
(

∆z+ζw +
(
− 2〈IIz+ζ ,∇2

gz+ζ
ζ〉gz+ζ − 〈∇gz+ζHz+ζ ,∇gz+ζζ〉gz+ζ

)
w

+ (| IIz+ζ |2 + Ricg(∂z, ∂z)|D×{z+ζ})w + JΣw
)

= ε
((
− 2〈IIz+ζ ,∇2

gz+ζ
ζ〉gz+ζ − 〈∇gz+ζHz+ζ ,∇gz+ζζ〉gz+ζ

)
w

−
∫ z+ζ

0
(2〈IIt,∇2

gtw〉gt + 〈∇gtHt,∇gtw〉gt) dt

+
(∫ z+ζ

0

∂
∂t(| IIt |

2 + Ricg(∂z, ∂z)|D×{t}) dt
)
w
)
.

By the fundamental theorem of calculus,

F6(ζ2)−F6(ζ1) =

∫ 1

0
〈DζF6(ζ1 + t(ζ2 − ζ1)), ζ2 − ζ1〉 dt.

We now estimate 〈DζF6(ζ), w〉 for ζ = ζ1 + t(ζ2− ζ1) and w = ζ2− ζ1. We will

make repeated use of (7.3), (7.4), (A.1), (A.2), (A.4), (A.5), (A.6), ‖ζ‖C2,α(Σ) ≤
C ′ε2−2α, and ‖ · ‖

C0,α
ε (Σ)

≤ ‖ · ‖C2,α(Σ). First,∥∥∥ε(2〈IIz+ζ ,∇2
gz+ζ

ζ〉gz+ζ + 〈∇gz+ζHz+ζ ,∇gz+ζζ〉gz+ζ
)
w
∥∥∥
C0,α
ε (Ω3)

≤ Cε2−2α‖ζ2 − ζ1‖C2,α(Σ).
(7.69)

Additionally using the O(εδ∗) height bound on Ω3, we also have

(7.70)

∥∥∥∥∥ε
∫ z+ζ

0
〈IIz+ζ ,∇2

gz+ζ
w〉gz+ζ

∥∥∥∥∥
C0,α
ε (Ω3)

≤ Cε1+δ∗‖ζ2 − ζ1‖C2,α(Σ).

Likewise, ∥∥∥∥∥ε(
∫ z+ζ

0

∂
∂t(| IIt |

2 + Ricg(∂z, ∂z)|D×{t}) dt
)
w

∥∥∥∥∥
C0,α
ε (Ω3)

≤ Cε1+δ∗‖ζ2 − ζ1‖C0,α(Σ).

(7.71)

It remains to estimate∥∥∥∥∥ε
∫ z+ζ

0
〈∇gtHt,∇gtw〉gt dt

∥∥∥∥∥
C0,α
ε (Ω3)

.
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Now is the only place in the proof where we need to distinguish the Hölder

exponents α ≤ θ, taking the prior to be small and the latter to be large. From

(7.3), (7.4), (A.1), (A.2), (A.4) and the interpolation of (unweighted) Hölder

spaces C1,θ ↪→ C1,α ↪→ C0,θ (Lemma E.1), we have

‖∇gzHz‖C0,α(Ω3) ≤ C‖Hz‖θ−αC0,θ(Ω)
‖Hz‖1+α−θ

C1,θ(Ω)
≤ Cε−2(1+α−θ) ≤ Cε−

1
2
δ∗ ,

as long as α0, θ0 are chosen sufficiently close to 0 and to 1, respectively, de-

pending on δ∗. It is now easy to see, as before, that

(7.72)

∥∥∥∥∥ε
∫ z+ζ

0
〈∇gtHt,∇gtw〉gt dt

∥∥∥∥∥
C0,α
ε (Ω3)

≤ Cε1+ 1
2
δ∗‖ζ2 − ζ1‖C1,α(Σ).

Altogether, (7.69), (7.70), (7.71), and (7.72) imply

‖F6(ζ2)−F6(ζ1)‖
C0,α
ε (Ω3)

≤ Cε1+ 1
2
δ∗‖ζ2 − ζ1‖C2,α(Σ).

Alongside (1.6), Remark 7.1, Lemma 7.3, (7.11), and δ∗ ∈ (0, 1), this implies

εα
∥∥Πε

(
χ3ε(∂zHε)(F6(ζ2)−F6(ζ1))

)∥∥
C0,α(Σ)

+
∥∥∥Π⊥ε

(
χ3(ε∂zHε)(F6(ζ2)−F6(ζ1))

)∥∥∥
C0,α
ε (Σ×R)

≤ C(ε2−2α + ε1+ 1
2
δ∗)‖ζ2 − ζ1‖C2,α(Σ).

(7.73)

Together, (7.47), (7.48), (7.49), (7.51), (7.63), (7.66), (7.68), and (7.73)

imply (7.38) for α0, θ0 depending on δ∗.

Likewise, (7.47), (7.48), (7.49), (7.51), (7.64), (7.66), (7.68), (7.73) imply

(7.39) for α0, θ0 depending on δ∗. �

Proof of Theorem 7.4. As was already pointed out, we can rewrite (7.17)

as the non-linear fixed point problem (7.27)–(7.29). We will take α, θ, δ as in

Lemma 7.11, and M ≥ 1.

Consider g as in Section 7, and also define

U(ε;M) ,
{

(v[, v], ζ) ∈ ‹C2,α
ε (Ω)× C2,α

ε (Σ×R)× C2,α(Σ) :

‖v[‖‹C2,α
ε (Ω)

+ ‖v]‖
C2,α
ε (Σ×R)

+ ε2α‖ζ‖C2,α(Σ) ≤Mε2
}(7.74)

and

B(ε;µ) ,
{

(v̂[, v̂], ζ̂) ∈ C2,α
ε (∂Ω)× C2,α

ε (∂Σ×R)× C2,α(∂Σ) :

v̂[ ≡ 0 on {χ4 = 1}, Πε(v̂
]) ≡ 0 on ∂Σ,

‖v̂[‖
C2,α
ε (∂Ω)

+ ‖v̂]‖
C2,α
ε (∂Σ×R)

+ ‖ζ̂‖C2,α(∂Σ) ≤ µε2
}
.

(7.75)
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Lemmas 7.10 and 7.11 guarantee that for every (v[, v], ζ) ∈ U(ε;M),

‖Nε(v
[, v], ζ)‖

C0,α
ε (Ω)

≤ c′1ε2+δ−2α + c0ε
2,(7.76)

‖Π⊥ε Mε(v
[, v], ζ)‖

C0,α
ε (Σ×R)

≤ c′1ε2+δ−2α + c0ε
2,(7.77)

‖ε−1ΠεMε(v
[, v], ζ)‖C0,α(Σ) ≤ c′1ε2+δ−2α + c′1ε

2−α + c0ε
2,(7.78)

with c0 as in Lemma 7.10, and with c′1 = M · c1, ε ≤ ε0 as in Lemma 7.11.

Let

Φ : U(ε;M)× B(ε;µ)×Metε,η(Ω)→ ‹C2,α
ε (Ω)× C2,α

ε (Σ×R)× C2,α(Σ)

be the solution map Φ : (v[, v], ζ, v̂[, v̂], ζ̂, g) 7→ (V [, V ], Z) for the linear system

(7.79) LεV [ = Nε(v
[, v], ζ) on Ω, V [|∂Ω = v̂[,

(7.80) LεV
] = Π⊥ε Mε(v

[, v], ζ) on Σ×R, V ]|∂Σ×R = v̂],

(7.81) JΣZ = ε−1ΠεMε(v
[, v], ζ) on Σ, Z|∂Σ = ζ̂.

The existence of V [ follows from Fredholm theory. In fact, together with

Lemma 7.9 and (7.76), we have

‖V [‖‹C2,α
ε (Ω)

≤ C(‖Nε(v
[, v], ζ)‖

C0,α
ε (Ω)

+ ‖v̂[‖
C2,α
ε (Ω)

)

≤ Cc′1ε2+δ−2α + C(c0 + µ)ε2.
(7.82)

The existence of V ] follows from Lemma 7.6. In fact, together with

Lemma 7.7 and (7.77), we have

‖V ]‖
C2,α
ε (Σ×R)

≤ C(‖Π⊥ε Mε(v
[, v], ζ)‖

C0,α
ε (Σ×R)

+ ‖v̂]‖
C2,α
ε (∂Σ×R)

≤ Cc′1ε2+δ−2α + C(c0 + µ)ε2.
(7.83)

Finally, the existence of Z follows from Fredholm theory and (7.9). In

fact, by Schauder theory on the elliptic operator JΣ on Σ, and (7.78), we find

that

‖Z‖C2,α(Σ) ≤ C(‖ε−1ΠεMε(v
[, v], ζ)‖C0,α(Σ) + ‖ζ̂‖C2,α(∂Σ))

≤ Cc′1ε2+δ−2α + Cc′1ε
2−α + Cc0ε

2 + Cµε2−2α,

=⇒ ε2α‖Z‖C2,α(Σ) ≤ Cc′1ε2+δ + Cc′1ε
2+α + Cc0ε

2+2α + Cµε2.

(7.84)

We emphasize that the constant C in (7.82), (7.83), and (7.84) depends

only on n, η > 0, and W .

The expressions in (7.82), (7.83), and (7.84) can all be made to be ≤ 1
3Mε2

as follows:

(1) Choose M large, depending on c0, C, µ, so that C(c0 + µ) ≤ 1
6M .
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(2) Then, choose ε ≤ ε0 small depending on C, c′1, M , so that

(7.85) Cc′1ε
α � 1;

note that, since M ≥ 1, the left-hand side is also ≤ 1
12M .

(3) Using α ∈ (0, δ3) we find that εδ−2α ≤ εα, so Cc′1ε
δ ≤ Cc′1εδ−2α ≤ 1

12M .

Thus, for such a choice of M = M(n, η,W, δ∗, µ), ε ≤ ε′0 = ε′0(n, η,W, δ∗, µ, α),

we have

Φ
(
U(ε;M)× B(ε;µ)×Metε,η(Ω)

)
⊂ U(ε;M).

We show that Φ(·, ·, ·, v̂[, v̂], ζ̂, g) is a contraction with respect to the norm

(7.86) ‖(v[, v], ζ)‖U , ‖v[‖‹C2,α
ε (Ω)

+ ‖v]‖
C2,α
ε (Σ×R)

+ ε2α‖ζ‖C2,α(Σ),

uniformly with respect to v̂[, v̂], ζ̂, g. Let us also define

(7.87) ‖(v̂[, v̂], ζ̂)‖B , ‖v̂[‖‹C2,α
ε (∂Ω)

+ ‖v̂]‖
C2,α
ε (∂Σ×R)

+ ‖ζ̂‖C2,α(∂Σ).

Let us set

(V [
1 , V

]
1 , Z1) , Φ(v[1, v

]
1, ζ1, v̂

[, v̂], ζ̂, g),

(V [
2 , V

]
2 , Z2) , Φ(v[2, v

]
2, ζ2, v̂

[, v̂], ζ̂, g).

By Lemmas 7.9 and 7.11,

‖V [
2 − V [

1 ‖‹C2,α
ε (Ω)

≤ C‖LεV [
2 − LεV [

1 ‖C0,α
ε (Ω)

= C‖Nε(v
[
2, v

]
2, ζ2)−Nε(v

[
1, v

]
1, ζ1)‖

C0,α
ε (Ω)

≤ Cc′1εδ
(
‖v[2 − v[1‖‹C2,α(Ω)

+ ‖v]2 − v
]
1‖C2,α

ε (Σ×R)
+ ‖ζ2 − ζ1‖C2,α(Σ)

)
.

(7.88)

By Lemmas 7.7 and 7.11,

‖V ]
2 − V

]
1 ‖C2,α

ε (Σ×R)

≤ C‖LεV ]
2 − LεV

]
1 ‖C0,α

ε (Σ×R)

= C‖Π⊥ε Mε(v
[
2, v

]
2, ζ2)−Π⊥ε Mε(v

[
1, v

]
1, ζ1)‖

C0,α
ε (Σ×R)

≤ Cc′1εδ
(
‖v[2 − v[1‖‹C2,α

ε (Ω)
+ ‖v]2 − v

]
1‖C2,α

ε (Σ×R)
+ ‖ζ2 − ζ1‖C2,α(Σ)

)
.

(7.89)

Finally, by Lemma 7.11, (7.9), and Schauder theory,

‖Z2 − Z1‖C2,α(Σ)

≤ C‖JΣZ2 − JΣZ1‖C0,α(Σ)

= C‖ε−1ΠεMε(v
[
2, v

]
2, ζ2)− ε−1ΠεMε(v

[
1, v

]
1, ζ1)‖C0,α(Σ)

≤ Cc′1
[
εδ
(
‖v[2 − v[1‖‹C2,α

ε (Ω)
+ ‖ζ2 − ζ1‖C2,α(Σ)

)
+ ε−α‖v]2 − v

]
1‖C2,α

ε (Σ×R)

]
.

(7.90)
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Adding (7.88), (7.89), and ε2α times (7.90), using α < 1
3δ and the ‖ · ‖U norm

on U(ε;M),

(7.91) ‖(V [
2 , V

]
2 , Z2)− (V [

1 , V
]

1 , Z1)‖U ≤ Cc′1εα‖(v[2, v
]
2, ζ2)− (v[1, v

]
1, ζ1)‖U .

This implies that Φ(·, ·, ·, v̂[, v̂], ζ̂, g) is uniformly Lipschitz, with Lipschitz con-

stant ≤ Cc′1ε
α, and by (7.85) we conclude that it is , in fact, a contraction

mapping. This readily implies the existence of a fixed point (v[, v], ζ), which

therefore satisfies (7.17).

We finally move to prove the continuity of the solution map

S : B(ε;µ)×Metε,η(Ω)→ U(ε;M).

For (v̂[1, v̂
]
1, ζ̂1, g1), (v̂[2, v̂

]
2, ζ̂2, g2) ∈ B(ε;µ) ×Metε,η(Ω), we have, by the fixed

point property,

S(v̂[2, v̂
]
2, ζ̂2, g2)− S(v̂[1, v̂

]
1, ζ̂1, g1)

=
(

Φ(S(v̂[2, v̂
]
2, ζ̂2, g2), v̂[2, v̂

]
2, ζ̂2, g2)− Φ(S(v̂[2, v̂

]
2, ζ̂2, g2), v̂[1, v̂

]
1, ζ̂1, g1)

)
−
(

Φ(S(v̂[1, v̂
]
1, ζ̂1, g1), v̂[1, v̂

]
1, ζ̂1, g1)− Φ(S(v̂[2, v̂

]
2, ζ̂2, g2), v̂[1, v̂

]
1, ζ̂1, g1)

)
.

The last parenthesis will be bounded using the contraction mapping prop-

erty (7.91) on (v̂[1, v̂
]
1, ζ̂1, g1). The second-to-last parenthesis will be bounded by

varying the four slots of Φ(S(v̂[2, v̂
]
2, ζ̂2, g2), ·, ·, ·, ·) using the fundamental the-

orem of calculus. The v̂[, v̂], ζ̂ derivatives of Φ(S(v̂[2, v̂
]
2, ζ̂2, g2), ·, ·, ·, ·) can be

controlled using Lemmas 7.9 and 7.6, and Schauder theory on JΣ, respectively.

Likewise, it is not hard to see that for g ∈ Metε,η(Ω), the map

g 7→ Φ(v[, v], ζ, v̂[, v̂], ζ̂, g)

is uniformly Lipschitz with respect to (v[, v], ζ, v̂[, v̂], ζ̂) ∈ U(ε;M) × B(ε;µ).

Altogether, we have

‖S(v̂[2, v̂
]
2, ζ̂2, g2)− S(v̂[1, v̂

]
1, ζ̂1, g1))‖U

≤ c
(
‖(v̂[2, v̂

]
2, ζ̂2)− (v̂[1, v̂

]
1, ζ̂1)‖B + d(g2, g1)

)
+ Cc′1ε

α‖S(v̂[2, v̂
]
2, ζ̂2, g2)− S(v̂[1, v̂

]
1, ζ̂1, g1))‖U ,

and the result follows by rearranging. �

Appendix A. Mean curvature of normal graphs

The purpose of this appendix is to record a form of the second variation

of mean curvature that is convenient for our paper, since this computation is

not easily found in the literature.

We consider Fermi coordinates (y, z) near a hypersurface Σ ⊂M satisfying

the conditions of Section 2.1, where the normal graph of a function f : Σ→ R
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will eventually look like

G[f ] , {(y, f(y)) : y ∈ Σ}.

Before discussing the geometry of the graph over Σ, let us first discuss the

geometry of the distance level sets {z = const} relative to Σ.

We will denote the restriction of the metric to the parallel hypersurface

{(y, z) : y ∈ Σ} by gz, i.e., gz = ZΣ(·, z)∗g, and the corresponding upward

pointing unit normal, area form, second fundamental form, mean curvature,

divergence, gradient, Hessian, and Laplacian by ∂z, dµgz , IIz, Hz, divgz , ∇gz ,
∇2
gz , ∆gz . We recall that the ∂z (Lie) derivative of gz is known to be

(A.1) L∂zgz = 2 IIz,

and also the corresponding derivative of the second fundamental form IIz is

(A.2) L∂z IIz = II2
z −Rmg(·, ∂z, ∂z, ·),

where II2
z denotes a single trace of IIz ⊗ IIz, and our Riemann curvature conven-

tion is such that (Rmg)ijji (suitably normalized) denotes a sectional curvature.

From (A.2) we recover the well-known Jacobi equation

(A.3)

∂zHz = ∂z(g
ij
z IIzij) = −gikz gj`z (L∂zgz)k` IIzij +gijz L∂z IIzij = −| IIz |2−Ricg(∂z, ∂z).

From (A.1) we also find the evolution of the gradient operator:

(A.4) L∂z∇gzf = −2 IIz(∇gzf, ·), f ∈ C∞(Σ).

Next, we seek the evolution of the divergence operator on 1-forms. To find

it, we first need to find the evolution of the Christoffel symbols. Recall that

the Christoffel symbols do not transform like tensors but that their difference

does. In particular, ∂zΓ is a vector-valued 2-tensor given by (using the Codazzi

equation to get the second form)

(A.5) (∂zΓ)(X,Y) = [∇gzX II(·,Y) +∇gzY II(X, ·)−∇gz· II(X,Y)]]

= [∇gz· II(X,Y) + Rmg(∂z,X,Y, ·) + Rmg(∂z,Y,X, ·)]],

where the indices are raised with the ] operator using gz. From this we find

the evolution of the Hessians of scalar fields,

(A.6) L∂z∇2
gzf = −∇gz∇gz f IIz,

and their Laplacians

(A.7) Lz∆gzf = −2〈IIz,∇2
gzf〉gz − 〈∇gzHz,∇gzf〉gz .

Likewise, the evolution of the divergence of 1-forms is

(A.8)

Lz divgz ω = −2〈IIz,∇gzω〉gz − 〈∇gzH + Ricg(∂z, ·), ω〉gz , ω ∈ Ω1(Σ).
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Next, we seek to calculate the evolution of∇gz IIz. To do so, we pick coordinates

so that the vectors ∂yi are parallel (with respect to∇gz) at the base point where

we are computing the derivative. Then

∂z(∂yi IIzjk) = ∂yi(∂z IIzjk)

= ∂yi(L∂z IIzjk)

= ∂yi((II
2
z)jk − Rmg(∂yj , νz, νz, ∂yk))

= ∂yi(g
`m
z IIzj` IIzkm−Rmg(∂yj , ∂z, ∂z, ∂yk))

= −g`mz ∂yi IIzj` IIzkm−g`mz IIzj` ∂yi IIzkm−∂yi(Rmg(∂yj , ∂z, ∂z, ∂yk))

= −g`mz (∇gzi IIzj`) IIzkm−g`mz (∇gzi IIzkm) IIzj`−∇
g
∂yi

Rmg(∂yj , ∂z, ∂z, ∂yk)

+ 2 Rmg(∂yj , g
`m
z IIzi` ∂ym , ∂z, ∂yk);

i.e.,

∂z(∂yi IIzjk) = −g`mz (∇gzi IIzj`) IIzkm−g`mz (∇gzi IIzkm) IIzj`

−∇g∂yi Rmg(∂yj , ∂z, ∂z, ∂yk) + 2g`mz IIzi` Rmg(∂yj , ∂ym , ∂z, ∂yk).

(A.9)

Moreover,

L∂z(∇
gz
∂yi
∂yj ) = L∂z(∇

g
∂yi
∂yj + IIzij ∂z)

= L∂z∇
g
∂yi
∂yj + (L∂z IIz)ij∂z

= ∇g∂z∇
g
∂yi
∂yj + (II2

z)ij∂z − Rmg(∂yi , ∂z, ∂z, ∂yj )∂z

= ∇g∂z∇
g
∂yi
∂yj + (II2

z)ij∂z − Rmg(∂z, ∂yi , ∂yj , ∂z)∂z

= ∇g∂z∇
g
∂yi
∂yj + (II2

z)ij∂z − (∇g∂z∇
g
∂yi
∂yj −∇

g
∂yi
∇g∂z∂yj )

= ∇g∂yi∇
g
∂z
∂yj + (II2

z)ij∂z = ∇g∂yi∇
g
∂yj
∂z + (II2

z)ij∂z.

Recall that L∂z(∇
gz
∂yi
∂yj ) is tangential to {z = const}, and so is ∇g∂yj ∂z =

gk`z IIzjk ∂y` . By projecting onto {z = const}, the expression above reduces to

(A.10) L∂z(∇
gz
∂yi
∂yj ) = ∇gz∂yi (g

k`
z IIzjk ∂y`) = gk`z (∇gzi IIzjk)∂y` .
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Combining with (A.9), we deduce that

∂z(∇gzi IIzjk) = ∂z(∂yi IIzjk)− IIz(∇gz∂yi∂yj , ∂yk)− IIz(∂yj ,∇
gz
∂yi
∂yk))

= ∂z(∂yi IIzjk)− IIz(L∂z(∇
gz
∂yi
∂yj ), ∂yk)− IIz(∂yj ,L∂z(∇

gz
∂yi
∂yk))

= −g`mz (∇gzi IIzj`) IIzkm−g`mz (∇gzi IIzkm) IIzj`

−∇g∂yi Rmg(∂yj , ∂z, ∂z, ∂yk)

+ 2g`mz IIzi` Rmg(∂yj , ∂ym , ∂z, ∂yk)− IIz(g
m`
z (∇gzi IIzjm)∂y` , ∂yk)

− IIz(∂yj , g
m`
z (∇gzi IIzkm)∂y`)

= −g`mz (∇gzi IIzj`) IIzkm−g`mz (∇gzi IIzkm) IIzj`

−∇g∂yi Rmg(∂yj , ∂z, ∂z, ∂yk)

+ 2g`mz IIzi` Rmg(∂yj , ∂ym , ∂z, ∂yk)

− gm`z IIz`k∇
gz
i IIzjm−gm`z IIzj`∇

gz
i IIzkm

= −2g`mz (∇gzi IIzj`) IIzkm−2g`mz (∇gzi IIzkm) IIzj`

−∇g∂yi Rmg(∂yj , ∂z, ∂z, ∂yk) + 2g`mz IIzi` Rmg(∂yj , ∂ym , ∂z, ∂yk).

In particular,

(A.11) L∂z∇gz IIz = ∇gz IIz ∗ IIz +∇g Rmg + IIz ∗Rmg

as a symmetric 2-tensor on the {z = const} level sets.

We now proceed to use these evolution equations to understand the sec-

ond variation of the mean curvature of a graph in Fermi coordinates. These

computations are motivated by the ones in [PS].

Continuing to work in Fermi coordinates (y, z) relative to Σ, we write

G[f ] , {(y, f(y)) : y ∈ Σ}.

Note that the induced metric on G[f ] is

g|G[f ] = gf(y) + df(y)2, y ∈ Σ.

The induced area form on G[f ] is therefore

dµG[f ](y) = (1 + gijf(y)fi(y)fj(y))1/2 dµgf(y)
(y), y ∈ Σ.

Thus,

(A.12) area(G[f ]) =

∫
Σ

(1 + gijf fifj)
1/2 dµgf(·) .
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We now consider the variation f + tϕ, ϕ ∈ C2
c (Σ \ ∂Σ). We have (we are using

integration by parts in the second step)ï
d

dt
area(G[f + tϕ])

ò
t=0

=

∫
Σ

gijf fiϕj

(1 + gijf fifj)
1/2

dµgf −
∫

Σ

IIijf fifjϕ

(1 + gijf fjfj)
1/2

dµgf

+

∫
Σ

(1 + gijf fifj)
1/2Hfϕdµgf

= −
∫

Σ
divgf

(
∇gf f

(1 + gijf fifj)
1/2

)
ϕdµgf −

∫
Σ

IIijf fifjϕ

(1 + gijf fjfj)
1/2

dµgf

+

∫
Σ

(1 + gijf fifj)
1/2Hfϕdµgf .

Note that, if ν denotes the normal to G[f ], then

g(ν, ∂z) = (1 + gijf fifj)
−1/2 =⇒ dµgf = g(ν, ∂z)dµG[f ],

and, therefore,ï
d

dt
area(G[f + tϕ])

ò
t=0

=

∫
Σ

[
− divgf

(
∇gf f

(1 + gijf fifj)
1/2

)
−

IIijf fifj

(1 + gijf fifj)
1/2

+ (1 + gijf fifj)
1/2Hf

]
g(ν, ∂z)ϕdµG[f ].

On the other hand, by definition,ï
d

dt
area(G[f + tϕ])

ò
t=0

=

∫
Σ
HG[f ]g(ν, ∂z)ϕdµG[f ],

so we conclude

(A.13)

H[f ] = −divgf

(
∇gf f

(1 + gijf fifj)
1/2

)
−

IIijf fifj

(1 + gijf fifi)
1/2

+ (1 + gijf fifj)
1/2Hf .

We now claim that the quantity

(A.14)‹Qf , H[f ]−H0+
√
g0√
gf

divg0(
√
gf√
g0

(1+gijf fifj)
−1/2∇gf f)+(| II0 |2+Ricg(∂z, ∂z))f

is a quadratic error term in the Taylor expansion of H[f ] with respect to

{z = 0}:

Lemma A.1. We have the pointwise estimate

|‹Qf | ≤ c(|f |2 + |∂f |2),
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where c = c(n,Λ) > 0 and Λ = Λ(f, y) > 0 is such that

sup
|z|≤|f(y)|

| IIz(y)| ≤ Λ.

Proof. First, note that

divgf

(
∇gf f

(1 + gijf fifj)
1/2

)
=

√
g0
√
gf

divg0

(√
gf√
g0

∇gf f
(1 + gijf fifj)

1/2

)
,

which means that‹Qf = −
IIijf fifj

(1 + gijf fifj)
1/2

+ (1 + gijf fifj)
1/2Hf −H0 + (| II0 |2 + Ricg(∂z, ∂z))f.

The result follows by adding and subtracting Hf ,

| IIijf fifj |

(1 + gijf fifj)
1/2

+ |(1 + gijf fifj)
1/2Hf −Hf | ≤ c|∂f |2,

and

|Hf −H0 + (| II0 |2 + Ricg(∂z, ∂z))f | ≤ c|f |2.

We have used (A.3) in the last estimate. �

Appendix B. Some results of Wang–Wei

For completeness, we recall several results proven in [WW19a] by Wang–

Wei. We will assume (2.3)–(2.11) and will use the notation H , H3| log ε|

and Hε,` from Section 2.1 throughout this appendix. We emphasize (see Re-

mark 2.1) that we are working at the original scale, rather than the ε-scale

as in [WW19a], so these expressions have changed relative to [WW19a] by

appropriate factors of ε.

Lemma B.1 ([WW19a, Lemma 8.3]). For m 6= ` ∈ {1, . . . , Q}, consider

X ∈ Z`(Γ`(3
2)× [−1, 1]) with |dm(X)|, |d`(X)| ≤ Kε| log ε|. Then,

dΓm(Πm ◦Π`(X),Πm(X)) ≤ C(K)ε
3
2 | log ε|

3
2 ,

|dm(Π`(X)) + d`(Πm(X))| ≤ C(K)ε
3
2 | log ε|

3
2 ,

|dm(X)− d`(X) + dm(Π`(X))| ≤ C(K)ε
3
2 | log ε|

3
2 ,

|d`(X)− dm(X)− d`(Πm(X))| ≤ C(K)ε
3
2 | log ε|

3
2 ,

1−∇d`(X) · ∇dm(X) ≤ C(K)ε
1
2 | log ε|

3
2 .
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Recall the definition of φ in (2.17). Wang–Wei compute [WW19a, (9.4)]

in Fermi coordinates with respect to Γ` that

ε2(∆Γ`,zφ+HΓ`,z∂zφ+ ∂2
zφ)

= W ′′(U [h])φ+R(φ) +

(
W ′(U [h])−

Q∑
m=1

W ′(Hε,m)

)
+ ε2(∆Γ`,zh` −HΓ`,z)∂zHε,` − ε2|∇Γ`,zh`|

2∂2
zHε,`

+
∑
m6=`

(
εRm,1((ZΓm)∗∂z)Hε,m − ε2Rm,2((ZΓm)∗∂z)

2Hε,m

)
−

Q∑
m=1

ξ((−1)m−1ε−1(dm − hm ◦Πm)).

(B.1)

Note the slight differences in signs relative to [WW19a, (9.4)], which arise

from our different sign convention on the mean curvature and our choice to

avoid introducing extraneous notation for (ZΓm)∗∂z derivatives of Hε,m that

introduce factors of (−1)m for m = ` or m 6= ` (cf. g′α, g′′α in [WW19a, §9]).

Above, we have written

R(φ) ,W ′(U [h] + φ)−W ′(U [h])−W ′′(U [h])φ = O(φ2),

((ZΓm)∗Rm,1)(y′, z′) , ε(∆Γm,z′hm(y′)−HΓm,z′ (y
′)),

((ZΓm)∗Rm,2)(y′, z′) , |∇Γm,z′hm(y′)|2

as well as (cf. (2.15))

(B.2) ξ(t) , H′′(t)−W ′(H(t)).

It is useful to remember that the terms involving Rm,1, Rm,2 in (B.1)

vanish when dm > 6ε| log ε|.

Lemma B.2 (cf. [WW19a, Lemma A.1]). For κ > 0, we have

∫ ∞
−∞

(W ′′(H(t))− 2)H′(t− T )H′(t) dt = −4
√

2(A0)2e−
√

2T +O(e−2(1−κ)
√

2T )

as T →∞.
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Proof. Let us denote the left-hand side as I(T ). Recall that W (±1) = 2.

We can rewrite

I(T ) =
√

2A0e
−
√

2T

∫ ∞
−∞

(W ′′(H(t))− 2)e
√

2tH′(t) dt

+

∫ ∞
−∞

(W ′′(H(t))− 2)(H′(t− T )−
√

2A0e
√

2(t−T ))H′(t) dt

=
√

2A0e
−
√

2T

∫ ∞
−∞

(W ′′(H(t))− 2)e
√

2tH′(t) dt

+O(1)

∫ ∞
−∞

∣∣∣H′(t− T )−
√

2A0e
√

2(t−T )
∣∣∣H′(t)2 dt,

where we have used (1.5) and (1.6) in the last step.

We can directly evaluate the first integral by writing W ′′(H(t))H′(t) =

H′′′(t) and integrating by parts:∫ L

−L
W ′′(H(t))e

√
2tH′(t)dt =

∫ L

−L
H′′′(t)e

√
2tdt

= H′′(L)e
√

2L −H′′(−L)e−
√

2L −
√

2

∫ L

−L
H′′(t)e

√
2tdt

= H′′(L)e
√

2L −H′′(−L)e−
√

2L −
√

2H′(L)e
√

2L

+
√

2H′(−L)e−
√

2L + 2

∫ L

−L
H′(t)e

√
2tdt.

Recalling (1.6) and (1.7), sending L→∞ gives∫ ∞
−∞

(
W ′′(H(t))− 2

)
e
√

2tH′(t) dt = −4A0.

Plugging this into the expression for I(T ), we have

(B.3)

I(T ) = −4
√

2(A0)2e−
√

2T +O(1)

∫ ∞
−∞

(H′(t− T )−
√

2A0e
√

2(t−T ))H′(t)2 dt.

It remains to show that the last integral is O(e−2(1−κ)
√

2T ). Let α ∈ (0, 1) be

fixed. When t ∈ (−∞, αT ),

H′(t− T )−
√

2A0e
√

2(t−T ) = O(e2
√

2(t−T )),

by (1.6), so

(B.4)

∫ αT

−∞
(H′(t− T )−

√
2A0e

√
2(t−T ))H′(t)2 dt = O(Te−2

√
2T ).
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To bound the integral over [αT,∞), it suffices to observe the following bound

on its dominant term:

(B.5)

∫ ∞
αT

e
√

2(t−T )H′(t)2 dt = O(1)

∫ ∞
αT

e−
√

2(t+T ) dt = O(e−
√

2(1+α)T )

=⇒
∫ ∞
αT

(H′(t− T )−
√

2A0e
√

2(t−T ))H′(t)2 dt = O(e−
√

2(1+α)T ).

The result follows by plugging (B.4) and (B.5) into (B.3). �

Appendix C. Proof of Lemma 2.8

We follow the proof of [WW19a, Lemma 9.6], using Lemma 2.7 to gain

improved estimates on the error terms. We continue to use the notation of

Appendix B.

Fix ` ∈ {1, . . . , Q}, y ∈ Γ`(
8
10). In what follows we work in Fermi coordi-

nates with respect to Γ`. Because u(y) = 0, we have

(C.1) φ(y, 0) = −H((−1)`−1ε−1h`(y))−
∑
m 6=`

(
Hε,m(y, 0)± (−1)m−1

)
,

where the “±” is a “−” for m < ` and “+” for m > `. This implies the first

inequality immediately, using the fact that |H(ε−1h`(y))| ' ε−1|h`(y)| by a

Taylor expansion.

Differentiating (C.1) once with respect to y, we find that (recalling (2.13))

ε∇Γ`(φ|Γ`)(y, 0) = −(−1)`−1H′((−1)`−1ε−1h`(y))∇Γ`h`(y)

− ε
∑
m 6=`

∂z((ZΓm)∗Hε,m)(y, 0)(∇Γ`dm(y, 0)

−∇Γ`(hm ◦Πm)(y, 0)).

Define

I` , {m ∈ {1, . . . , Q} : m 6= `, dm(y, 0) ≤ Kε| log ε|}
for K > 6 fixed. Then, the exponential decay of H′ (and definition of H) gives

|∇Γ`h`(y)|

≤ c

(
ε|∇Γ`(φ|Γ`)(y)|

+ sup
m∈I`(y)

(|∇Γ`dm(y, 0)|+ |∇Γ`(hm ◦Πm)(y, 0)|) exp(−
√

2ε−1D`(y))

)
≤ c
Ä
ε|∇Γ`(φ|Γ`)(y)|+ εκ exp(−

√
2ε−1D`(y))

ä
.

We have used Lemma B.1 to bound the first term in the supremum and the

bounds from Lemmas 2.3 and 2.7 to bound the second term. (Note that in
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the proof of Lemma 2.3, the second term was simply bounded by o(1) since at

that point Lemma 2.7 was not available.)

Differentiating (C.1) again, we find

ε2∇2
Γ`

(φ|Γ`)(y, 0)

= − ε(−1)`−1H′((−1)`−1ε−1h`(y))∇2
Γ`
h`(y)

−H′′((−1)`−1ε−1h`(y))∇Γ`h`(y)⊗∇Γ`h`(y)

− ε2
∑
m6=`

∂2
z

(
(ZΓm)∗Hε,m

)
(y, 0)(∇Γ`dm(y, 0)−∇Γ`(hm ◦Πm)(y, 0))

⊗ (∇Γ`dm(y, 0)−∇Γ`(hm ◦Πm)(y, 0))

− ε2
∑
m 6=`

∂z((ZΓm)∗Hε,m)(y, 0)(∇2
Γ`
dm(y, 0)−∇2

Γ`
(hm ◦Πm)(y, 0)).

Because Γ`, Γm have bounded second fundamental form by (2.6), (A.2) shows

that

|∇2
Γ`
dm(y, 0)| ≤ c, m ∈ I`.

Thus, we find that, as claimed,

ε|∇2
Γ`
h(y)| ≤ c

Ä
ε2|∇2

Γ`
(φ|Γ`)(y)|+ ε2|∇Γ`(φ|Γ`)(y)|2 + εκ exp(−

√
2ε−1D`(y))

ä
.

The Hölder estimate follows similarly, with one important change: we

do not know (at this point) that [IIΓ` ]θ is uniformly bounded, and thus cannot

conclude that [∇2
Γ`
dm(y, 0)]θ ≤ c. Instead we use (2.6) and (2.7) in conjunction

with (A.2) and (A.11) to conclude that

εθ[∇2dm(y, 0)]θ ≤ c, m ∈ I`.

This, combined with the factor of ε in front of the last line suffices to complete

the Hölder estimate.

Appendix D. Proof of (3.2)

We follow [WW19a, §19], except we keep track of how the error terms

improve upon strengthened sheet separation estimates, as well as keeping track

of the constant in front of the main term on the right-hand side of the stability

inequality. We assume that ` ∈ {2, . . . , Q − 1}; i.e., there are sheets above

and below Γ`. (When ` = 1 or Q, the argument is similar.) Similarly, we can

assume that

(D.1) (−1)`−1 = 1.

Here, and throughout this appendix, we will write Eζ for any term which

is bounded as follows:
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|Eζ | ≤ c′ε2 + c′
Q∑

m=1

sup
{

exp(−
√

2(1 + κ)ε−1Dm(y′)) :

y′ ∈ Γm ∩Π−1
` (Bn−1

2Kε| log ε|(spt ζ))
}(D.2)

for some κ > 0 fixed throughout sufficiently small. We emphasize that the

constant c′ is uniform in ε sufficiently small. Here, ζ is just the test function

from the statement of (3.2).

We emphasize that Lemma 2.7 holds, so by (2.20) and Lemma 2.3,
Q∑

m=1

‖φ‖
C2,θ
ε (Mm(r))

+ ε‖∆Γmhm −HΓm‖C0,θ
ε (Γm(r))

+ ε−1‖hm‖C2,θ
ε (Γm(r))

≤ c′ε2 + c′
Q∑

m=1

Am(r +Kε| log ε|) ≤ c′ε,

(D.3)

and the improved estimate on the tangential derivatives of φ from (2.21), which

we will write as

ε‖(ZΓ`)∗∂yiφ‖C1,θ
ε (M`(r))

≤ c′ε2 + c′
Q∑

m=1

Am(r + 2Kε| log ε|)1+κ

+ c′εκ
Q∑

m=1

Am(r + 2Kε| log ε|) ≤ c′ε1+κ.

(D.4)

In fact, we will often use the localized version of (D.3) and (D.4) on M`(1) ∩
Π−1
` (spt ζ):

‖φ‖
C2,θ
ε

+ ε‖∆Γ`h` −HΓ`‖C0,θ
ε

+ ε−1‖h`‖C2,θ
ε

≤ c′ε2 + c′
Q∑

m=1

sup
¶

exp(−
√

2ε−1Dm(·))
©(D.5)

and

(D.6) ε‖(ZΓ`)∗∂yiφ‖C1,θ
ε
≤ O(|Eζ |);

the Hölder norms are taken overM`(1)∩Π−1
` (spt ζ), Γ`(1)∩Π−1

` (spt ζ), Γ`(1)∩
Π−1
` (spt ζ) for (D.5) and overM`(1)∩Π−1

` (spt ζ) for (D.6), and the sup is over

Mm(1) ∩ Π−1
` (Bn−1

2Kε| log ε|(spt ζ)). Note how (D.5) and (D.6) imply (D.3) and

(D.4) by Lemma 2.7.

We will write H for H3| log ε|
throughout this appendix, where H3| log ε|

is as

in (2.14) with Λ = 3| log ε|. We also recall the definition of ξ from (B.2). We

then define the following functions by their expression in Γm Fermi coordinates:

((ZΓm)∗Hε,m)(y, z) , H((−1)m−1ε−1(z − hm(y))),

((ZΓm)∗ξε,m)(y, z) , ξ((−1)m−1ε−1(z − hm(y))).
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Recall that ZΓm(y, z) is the point (y, z) in Fermi coordinates over Γm (see the

definition after (2.11)), and that g = dz2 +gz in Fermi coordinates. Recall also

(B.2) and (2.15).

Choose functions ρ±` (y) = 1
2f`,`±1(y), where we recall Γ`±1 is the normal

graph of f`,`±1 over Γ`. Note that ρ±` is thus uniformly bounded in C1(Γ`(
8
10))

by (2.6)–(2.7). We consider a vertical cutoff function χ(y, z) defined by

χ(y, z) , χ̃
(
ε−1L−1(z − ρ+

` (y))
)
χ̃
(
ε−1L−1(ρ−` (y)− z)

)
,

where χ̃ is a smooth function with χ̃(t) = 1 for t ∈ (−∞,−1) and spt χ̃ ⊂
(−∞, 0). We will fix L > 0 sufficiently large (independent of ε > 0 small)

below. Note that

(D.7) εL|∇χ| ≤ c

and for fixed y,

(D.8) spt |∂zχ(y, ·)| ⊂ [ρ−` (y), ρ−` (y) + εL] ∪ [ρ+
` (y)− εL, ρ+

` (y)].

We will frequently use the observation that on spt |∇χ| ∩ {±z > 0},

εk|∂kzHε,`(y, z)| ≤ c′ exp(−
√

2ε−1ρ±` (y))

≤ c′ε2 + c′ sup
¶

exp(−1
2

√
2ε−1D`(y

′)) : y′ ∈ Bn−1
ε| log ε|(y)

©(D.9)

for integers k ≥ 1 (we used Lemma B.1 in the last step), as well as the fact

that on sptχ, we have

(D.10) |∂zdµgz |+ |∂2
zdµgz | = O(1)dµgz ,

which follows from (2.6), (A.1), (A.2), and (A.3). Moreover, we note for future

reference that the following expression holds on sptχ,

u = Hε,` + φ+
∑
m<`

(
Hε,m − (−1)m−1

)
+
∑
m>`

(
Hε,m + (−1)m−1

)
= Hε,` + φ+

∑
m6=`

O(ε(∂zHε,m)),

so

(D.11) W ′′(u) = W ′′(Hε,`) +O(φ) +
∑
m 6=`

O(ε(∂zHε,m)).

Let us set ϕ(y, z) , ζ(y)χ(y, z)(∂zHε,`(y, z)). Because u is stable,∫
C8/10(0)

(ε|∇ϕ|2 + ε−1W ′′(u)ϕ2) dµg ≥ 0.

We will write this integral in Fermi coordinates over Γ` and expand using the

choice of ϕ. Note that

|∇ϕ|2 = (∂zϕ)2 + |∇Γ`,zϕ|
2.
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We begin with the contribution of the vertical derivative, ∂zϕ = ζ(∂zχ)(∂zHε,`)

+ ζχ(∂2
zHε,`), to stability:∫ η

−η

∫
Γ`,z

ε(∂zϕ)2 dµgz dz = ε

∫ η

−η

∫
Γ`,z

ζ2χ2(∂2
zHε,`)

2 dµgz dz

+ ε

∫ η

−η

∫
Γ`,z

ζ2(∂zχ)2(∂zHε,`)
2 dµgz dz

+ 2ε

∫ η

−η

∫
Γ`,z

ζ2(∂zχ)χ(∂zHε,`)(∂
2
zHε,`) dµgz dz

= −ε−1

∫ η

−η

∫
Γ`,z

ζ2χ2W ′′(Hε,`)(∂zHε,`)
2 dµgz dz

+ ε

∫ η

−η

∫
Γ`,z

ζ2(∂zχ)2(∂zHε,`)
2 dµgz dz

− ε−1

∫ η

−η

∫
Γ`,z

ζ2χ2(∂zξε,`)(∂zHε,`) dµgz dz

− ε
∫ η

−η

∫
Γ`,z

ζ2χ2(∂zHε,`)(∂
2
zHε,`) (∂zdµgz) dz

= −ε−1

∫ η

−η

∫
Γ`,z

ζ2χ2W ′′(Hε,`)(∂zHε,`)
2 dµgz dz

+ ε

∫ η

−η

∫
Γ`,z

ζ2(∂zχ)2(∂zHε,`)
2 dµgz dz

− ε−1

∫ η

−η

∫
Γ`,z

ζ2χ2(∂zξε,`)(∂zHε,`) dµgz dz

+ ε

∫ η

−η

∫
Γ`,z

ζ2χ(∂zχ)(∂zHε,`)
2 (∂zdµgz) dz

+ 1
2ε

∫ η

−η

∫
Γ`,z

ζ2χ2(∂zHε,`)
2 (∂2

zdµgz) dz,

where we integrated by parts on the final term after the first equality and the

second equality. Using (2.15), (D.7), (D.8), (D.9), and (D.10), we find that∫ η

−η

∫
Γ`,z

ε(∂zϕ)2 dµgz dz

= −ε−1

∫ η

−η

∫
Γ`,z

ζ2χ2W ′′(Hε,`)(∂zHε,`)
2 dµgz dz

+O(ε−2L−1 + ε−1)

∫
Γ`

ζ2
Ä
exp(−2

√
2ε−1ρ+

` ) + exp(−2
√

2ε−1ρ−` )
ä
dµΓ`

+O(1)

∫
Γ`

ζ2 dµΓ` .



316 OTIS CHODOSH and CHRISTOS MANTOULIDIS

We now turn to the second term. We use Cauchy–Schwartz to estimate the

mixed terms with a factor of L−1/2 and L1/2 respectively, in the first inequality

below:

∫ η

−η

∫
Γ`,z

ε|∇Γ`,zϕ|
2 dµgz dz

≤ (1 +O(L−
1
2 )) · ε

∫ η

−η

∫
Γ`,z

(
|∇Γ`,zζ|

2χ2(∂zHε,`)
2
)
dµgz dz

+O(L
1
2 ) · ε

∫ η

−η

∫
Γ`,z

(
ζ2|∇χ|2(∂zHε,`)

2 + ζ2χ2(∂2
zHε,`)

2|∇Γ`,zh`|
2
)
dµgz dz

= (1 +O(L−
1
2 )) · h0

∫
Γ`

|∇Γ`ζ|
2 dµΓ`

+O(ε−2L−
1
2 )

∫
Γ`

ζ2
Ä
exp(−2

√
2ε−1ρ+

` ) + exp(−2
√

2ε−1ρ−` )
ä
dµΓ`

+O(L
1
2 )

∫
Γ`

ζ2 dµΓ` .

We have used (A.1), (A.2), (A.3), (D.7), (D.8), (D.9), and (D.10).

Putting these two computations together and multiplying by ε2, the sta-

bility condition becomes

(1 +O(L−
1
2 )) · ε2h0

∫
Γ`

|∇Γ`ζ|
2 dµΓ

≥ ε ·
∫ η

−η

∫
Γ`,z

ζ2χ2(W ′′(Hε,`)−W ′′(u))(∂zHε,`)
2 dµgz dz

+O(L−
1
2 + ε)

∫
Γ`

ζ2
Ä
exp(−2

√
2ε−1ρ+

` ) + exp(−2
√

2ε−1ρ−` )
ä
dµΓ`

+O(L
1
2 ε2)

∫
Γ`

ζ2 dµΓ` .

(D.12)

The first term of the right-hand side represents the interaction between the

sheets and requires further consideration. To this end, we rewrite (B.1) slightly,
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using the definition of R(φ):

ε2(∆Γ`,zφ+HΓ`,z∂zφ+ ∂2
zφ)

= W ′(u)−
Q∑

m=1

W ′(Hε,m)

+ ε2(∆Γ`,zh` −HΓ`,z)(∂zHε,`)− ε2|∇Γ`,zh`|
2(∂2

zHε,`)

+
∑
m 6=`

(
εRm,1((ZΓm)∗∂z)Hε,m)− ε2Rm,2((ZΓm)∗∂z)

2Hε,m)
)
−

Q∑
m=1

ξε,m.

We then differentiate this with respect to z to obtain

ε2(∂z∆Γ`,zφ+ ∂z(HΓ`,z∂zφ) + ∂3
zφ)

= W ′′(u)(∂zφ) +
(
W ′′(u)−W ′′(Hε,`)

)
(∂zHε,`)

+
∑
m6=`

(
W ′′(u)−W ′′(Hε,m)

)
∂zHε,m

+ ε2∂z
(
(∆Γ`,zh` −HΓ`,z)(∂zHε,`)

)
− ε2∂z

(
|∇Γ`,zh`|

2(∂2
zHε,`)

)
+
∑
m6=`

(
ε∂z
(
Rm,1((ZΓm)∗∂z)Hε,m

)
− ε2∂z

(
Rm,2((ZΓm)∗∂z)

2Hε,m

))
−

Q∑
m=1

∂zξε,m.

(D.13)

We multiply this by ζ(y)2χ(y, z)2(∂zHε,`(y, z)), integrate in (y, z), and estimate

each term. The first term on the left-hand side of (D.13) yields∫ η

−η

∫
Γ`,z

ε2(∂z∆Γ`,zφ)ζ2χ2(∂zHε,`) dµgz dz

= −
∫ η

−η

∫
Γ`,z

ε2(∆Γ`,zφ)∂z(ζ
2χ2(∂zHε,`) dµgz) dz

= O(ε−1|Eζ |)
∫

Γ`

ζ2 dµΓ` .

(D.14)

Here, we have bounded ε2∆Γ`,zφ by (D.6) and the remaining terms using (2.6),

(A.1), (A.3), (D.7), (D.8), (D.9), and (D.10). Continuing on, the second term

on the left-hand side of (D.13) can be estimated similarly as∫ η

−η

∫
Γ`,z

ε2∂z(HΓ`,z∂zφ)ζ2χ2∂zHε,` dµgz dz

= −
∫ η

−η

∫
Γ`,z

ε2HΓ`,z∂zφ∂z(ζ
2χ2∂zHε,` dµgz) dz

= O(ε−1|Eζ |)
∫

Γ`

ζ2dµΓ` .
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We now consider the third term on the left-hand side of (D.13). It is not an

error term, but instead will cancel (up to error terms) with the first term on

the right-hand side:∫ η

−η

∫
Γ`,z

ε2(∂3
zφ)ζ2χ2(∂zHε,`) dµgz dz

= −
∫ η

−η

∫
Γ`,z

ε2(∂2
zφ)ζ2χ2(∂2

zHε,`) dµgz dz

−
∫ η

−η

∫
Γ`,z

ε2(∂2
zφ)ζ2(∂zHε,`)∂z(χ

2 dµgz) dz

=

∫ η

−η

∫
Γ`,z

ε2(∂zφ)ζ2χ2(∂3
zHε,`) dµgz dz

+

∫ η

−η

∫
Γ`,z

ε2(∂zφ)ζ2(∂2
zHε,`)∂z(χ

2 dµgz) dz

−
∫ η

−η

∫
Γ`,z

ε2(∂2
zφ)ζ2(∂zHε,`)∂z(χ

2 dµgz) dz

=

∫ η

−η

∫
Γ`,z

(∂zφ)ζ2χ2W ′′(Hε,`)(∂zHε,`) dµgz dz +O(ε−1|Eζ |)
∫

Γ`

ζ2 dµΓ`

=

∫ η

−η

∫
Γ`,z

(∂zφ)ζ2χ2W ′′(u)(∂zHε,`) dµgz dz

+

∫ η

−η

∫
Γ`

(∂zφ)ζ2χ2(W ′′(Hε,`)−W ′′(u))(∂zHε,`) dµgz dz

+O(ε−1|Eζ |)
∫

Γ`

ζ2 dµΓ` .

(D.15)

We have used (D.5), (D.7), (D.8), (D.9), (D.10), (A.1), and (A.3). The first

term of the final expression above cancels with the first term on the right-hand

side of (D.13). We now study the second term of (D.15). Using (D.11), the

second term of the right-hand side of (D.15) can be rewritten as

∫ η

−η

∫
Γ`z

(∂zφ)ζ2χ2(W ′′(Hε,`)−W ′′(u))(∂zHε,`) dµgz dz

= O(ε)

∫
Γ`

ζ2 dµΓ` +O(1)
∑
m 6=`

∫ η

−η

∫
Γ`,z

χ2ζ2 · ε|∂zHε,m|(∂zHε,`) dµgz dz

= O(ε)

∫
Γ`

ζ2 dµΓ` +O
Ä
ε−1 exp(−

√
2ε−1D`(·)

ä∑
m6=`

∫ η

−η

∫
Γ`,z

χ2ζ2 dµgz dz

= O

Ç
ε+ sup

spt ζ

[
ε−1D`(·) exp(−

√
2ε−1D`(·))

]å∫
Γ`

ζ2dµΓ`

= O(ε−1|Eζ |)
∫

Γ`

ζ2dµΓ` .

(D.16)
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Note that we estimated |(∂zHε,m)(∂zHε,`)| using (1.6) and Lemma B.1:

(D.17) ε2|(∂zHε,m)(∂zHε,`)|(y, z) ≤ c′ε2 + c′ exp
Ä
−
√

2ε−1D`(y)
ä
, m 6= `.

We continue estimating terms on the right-hand side in (D.13).

We have just seen that the first term on the right-hand side will cancel

with a term of (D.15). The second term of (D.13) is the term we are interested

in estimating. We now consider the third term of (D.13). For m 6= `, we note

that on sptχ,

W ′′(Hε,m) = W ′′(±1) +O(ε(∂zHε,m)).

Thus, combined with (D.11), we find that on sptχ,

W ′′(u)−W ′′(Hε,m) = W ′′(Hε,`)−W ′′(±1) +O(ε) +
∑
m′ 6=`

O(ε(∂zHε,m′)).

Hence, using Lemma B.1, (D.3), and bounding |(∂zHε,`)(∂zHε,m)(∂zHε,m′)| as

in (D.17),∫ η

−η

∫
Γ`,z

(
W ′′(u)−W ′′(Hε,m)

)
× (∂zHε,m)(∂zdm +O(|∇Γmhm|))ζ2χ2(∂zHε,`) dµgz dz

=

∫ η

−η

∫
Γ`,z

ζ2χ2
(
W ′′(Hε,`)−W ′′(±1)

)
(∂zHε,m)(∂zHε,`) dµgz dz

+O

(
sup
spt ζ

[
ε−1D`(·) exp(−

√
2ε−1D`(·))

+ ε−2D`(·) exp(−3
2

√
2ε−1D`(·))

])∫
Γ`

ζ2 dµΓ`

=

∫ η

−η

∫
Γ`,z

ζ2χ2
(
W ′′(Hε,`)−W ′′(±1))

)
(∂zHε,m)(∂zHε,`) dµgz dz

+O(ε−1|Eζ |)
∫

Γ`

ζ2 dµΓ` .

(D.18)

We now turn to the next term of (D.13). Note that on sptχ,

|∆Γ`,zh`|+ |∂z∆Γ`,zh`|+ |HΓ`,z |+ |∂zHΓ`,z | ≤ c
′

by (D.3), (2.6), (A.3), (A.4), and (A.7). Thus,∫ η

−η

∫
Γ`,z

ε2∂z
(
(∆Γ`,zh` −HΓ`,z)(∂zHε,`)

)
ζ2χ2(∂zHε,`) dµgz dz

= O(ε)

∫
Γ`

ζ(y)2dµΓ.

(D.19)

The next term of (D.13) is estimated similarly.
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The term of (D.13) involving Rm,1 is estimated by an integration by parts

as follows. First, recall the definition of Rm,1 from Appendix B and note that

(D.5) implies that

|Rm,1| ≤ c′ε2 + c′
Q∑

m=1

sup
¶

exp(−
√

2ε−1Dm(·))
©
,

with the sup taken as in (D.5). This bound thus implies∫ η

−η

∫
Γ`,z

ε∂z
(
Rm,1((ZΓm)∗∂z)Hε,m

)
ζ2χ2(∂zHε,`) dµgz dz

= −
∫ η

−η

∫
Γ`,z

εRm,1
(
((ZΓm)∗∂z)Hε,m

)
ζ2∂z

(
χ2(∂zHε,`) dµgz

)
dz

= O(ε−1|Eζ |)
∫

Γ`

ζ2 dµΓ,

(D.20)

where we additionally used Lemma B.1, (D.7), (D.8), (D.10), and (D.17). The

terms in (D.13) involving Rm,2, ξε,m, are estimated similarly.

Plugging (D.14), (D.15), (D.15), (D.18), (D.19), and (D.20) into (D.13),

we find that∫ η

−η

∫
Γ`,z

ζ2χ2(W ′′(u)−W ′′(Hε,`)))(∂zHε,`)
2 dµgz dz

=
∑
m 6=`

∫ η

−η

∫
Γ`,z

ζ2χ2
(
W ′′(±1)−W ′′(Hε,`)

)
(∂zHε,m)(∂zHε,`) dµgz dz

+O(ε−1|Eζ |)
∫

Γ`

ζ2 dµΓ` .

Observe that for m 6∈ {`− 1, `+ 1},

ε2|(∂zHε,m)(∂zHε,`)|(y, z) = O(|Eζ |
2

1+κ )

on sptχ. Thus, we can write (because (−1)`±1 = −1 by (D.1))∫ η

−η

∫
Γ`,z

ζ2χ2(W ′′(u)−W ′′(Hε,`)))(∂zHε,`)2 dµgz dz

=
∑

m∈{`±1}

∫ η

−η

∫
Γ`,z

ζ2χ2
(
W ′′(Hε,`)−W ′′(±1))

)
(∂zHε,m)(∂zHε,`) dµgz dz

+O(ε−1|Eζ |)
∫

Γ`

ζ2 dµΓ`

= ε−2

∫
Γ`

ζ2

Ç∫ η

−η

(
W ′′(H(ε−1t))−W ′′(±1)

)
H′(−ε−1(d`+1(y)− t))H′(ε−1t) dt

å
dµΓ`

+ ε−2

∫
Γ`

ζ2

Ç∫ η

−η

(
W ′′(H(ε−1t))−W ′′(±1)

)
H′(ε−1(t+d`−1(y)))H′(ε−1t) dt

å
dµΓ`
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+O(ε−1|Eζ |)
∫

Γ`

ζ2 dµΓ`

= ε−1

∫
Γ`

ζ2

Å∫ ∞
−∞

(W ′′(H(t))− 2)H′(t− ε−1|d`+1(y)|)H′(t)dt
ã
dµΓ`

+ ε−1

∫
Γ`

ζ2

Å∫ ∞
−∞

(W ′′(H(t))− 2)H′(t− ε−1|d`−1(y))|)H′(t)dt
ã
dµΓ`

+O(ε−1|Eζ |)
∫

Γ`

ζ2 dµΓ`

= −4
√

2(A0)2 · ε−1

∫
Γ`

ζ2
Ä
exp(−

√
2ε−1|d`+1|) + exp(−

√
2ε−1|d`−1|)

ä
dµΓ`

+O(ε−1)

∫
Γ`

ζ2
Ä
exp(−2(1− κ)

√
2ε−1|d`+1|) + exp(−2(1− κ)

√
2ε−1|d`−1|)

ä
dµΓ`

+O(ε−1|Eζ |)
∫

Γ`

ζ2 dµΓ`

= −(4
√

2(A0)2 + o(1)) · ε−1

∫
Γ`

Ä
exp(−

√
2ε−1|d`+1|) + exp(−

√
2ε−1|d`−1|)

ä
ζ2 dµΓ`

+O(ε−1|Eζ |)
∫

Γ`

ζ2 dµΓ`
.

In the last two equalities we used Lemma B.2. Together with (D.12) and

Lemma B.1, we get (3.2).

Appendix E. An interpolation lemma

We record a proof of the following interpolation inequality:

Lemma E.1. For 0 < α < θ < 1 and f : Rn → R, we have

‖∇f‖C0,α(Rn) ≤ C‖f‖θ−αC0,θ(Rn)
‖∇f‖1+α−θ

C0,θ(Rn)
,

with C = C(n).

Proof. We assume ∇f 6≡ 0. Fix x ∈ Rn with ∇f(x) 6= 0, and set e :=

∇f(x)/|∇f(x)|. For t > 0:

f(x + te)− f(x) =

∫ 1

0
∇f(x + ste) · te ds

=

∫ 1

0
(∇f(x + ste)−∇f(x)) · te ds+∇f(x) · te

=

∫ 1

0
(∇f(x + ste)−∇f(x)) · te ds+ t|∇f(x)|.

Rearranging, and using the Hölder estimate on f(x+te)−f(x) and∇f(x+ste)

−∇f(x) we deduce

t|∇f(x)| ≤ [f ]θt
θ + [∇f ]θt

1+θ.
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Dividing through by t and optimizing in t (using calculus) and using the fact

that x was arbitrary,

(E.1) ‖∇f‖C0(Rn) ≤ 2[f ]θθ[∇f ]1−θθ .

By the trivial C0,θ ↪→ C0,α ↪→ C0 interpolation on ∇f and the previous esti-

mate we conclude that

[∇f ]α ≤ C‖∇f‖
θ−α
θ

C0(Rn)
[∇f ]

α
θ
θ

≤ 2C[f ]θ−αθ [∇f ]
(1−θ)(θ−α)

θ
+α
θ

θ = 2C[f ]θ−αθ [∇f ]1+α−θ
θ .

(E.2)

Together, (E.1) and (E.2) give the required estimate when we replace the

seminorms by norms. �
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