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Minimal surfaces and the Allen—Cahn
equation on 3-manifolds: index,
multiplicity, and curvature estimates

By OTis CHODOSH and CHRISTOS MANTOULIDIS

Abstract

The Allen—Cahn equation is a semilinear PDE which is deeply linked
to the theory of minimal hypersurfaces via a singular limit. We prove
curvature estimates and strong sheet separation estimates for stable solu-
tions (building on recent work of Wang—Wei) of the Allen-Cahn equation
on a 3-manifold. Using these, we are able to show that for generic met-
rics on a 3-manifold, minimal surfaces arising from Allen—Cahn solutions
with bounded energy and bounded Morse index are two-sided and occur
with multiplicity one and the expected Morse index. This confirms, in
the Allen—Cahn setting, a strong form of the multiplicity one-conjecture
and the index lower bound conjecture of Marques—Neves in 3-dimensions
regarding min-max constructions of minimal surfaces.

Allen—Cahn min-max constructions were recently carried out by Guaraco
and Gaspar—Guaraco. Our resolution of the multiplicity-one and the index
lower bound conjectures shows that these constructions can be applied to
give a new proof of Yau’s conjecture on infinitely many minimal surfaces in
a 3-manifold with a generic metric (recently proven by Irie-Marques—Neves)
with new geometric conclusions. Namely, we prove that a 3-manifold with
a generic metric contains, for every p = 1,2,3,..., a two-sided embedded
minimal surface with Morse index p and area ~ p%7 as conjectured by
Marques—Neves.
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1. Introduction

Minimal surfaces—critical points of the area functional with respect to
local deformations—are fundamental objects in Riemannian geometry due to
their intrinsic interest and richness, as well as deep and surprising applica-
tions to the study of other geometric problems. Because many manifolds do
not contain any area-minimizing hypersurfaces, one is quickly led to the study
of surfaces that are only critical points of the area functional. Such surfaces
are naturally constructed by min-max (i.e., mountain-pass) type methods. To
this end, Almgren and Pitts [Pit81] have developed a far-reaching theory of
existence and regularity (cf. [SS81]) of min-max (unstable) minimal hypersur-
faces. In particular, their work implies that any closed Riemannian manifold
(M™, g) contains at least one minimal hypersurface X"~ 1. (In sufficiently high
dimensions, > may have a thin singular set.) This result motivates a well-
known question of Yau: “do all 3-manifolds contain infinitely many immersed
minimal surfaces?” [Yau82].

Recently, there have been several amazing applications of Almgren—Pitts
theory to geometric problems, including the proof of the Willmore conjecture
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by Marques—Neves [MN14] and the resolution of Yau’s conjecture for generic
metrics in dimensions 3 through 7 by Irie-Marques—Neves [IMN18]. In spite of
this, certain basic questions concerning the Almgren—Pitts construction remain
unresolved, including whether or not the limiting minimal surfaces can arise
with multiplicity (for a generic metric) as well as whether or not one-sided
minimal surfaces can arise as limits of an “oriented” min-max sequence (see,
however, [KMN16], [MN16a]).!

Guaraco [Gual8] has proposed an alternative to Almgren—Pitts theory,
later extended by Gaspar—Guaraco [GG18], which is based on study of a semi-
linear PDE known as the Allen—Cahn equation

(1.1) e2Agu = W' (u)

and its singular limit as € N\, 0. There is a well-known expectation that,
in € N\, 0 limit, solutions to (1.1) produce minimal surfaces whose regularity
reflects the solutions’ variational properties. In particular,

(1) It is known that the Allen-Cahn functional I'-converges to the perimeter
functional [Mod87], [Ste88], so minimizing solutions to (1.1) converge as
¢ ¢ 0 to minimizing hypersurfaces (and are thus regular away from a
codimension 7 singular set).

(2) Under weaker assumptions on the sequence of solutions, one obtains dif-
ferent results. In general, solutions to (1.1) on a Riemannian manifold
(M™, g) have a naturally associated (n — 1)-varifold obtained by “smearing
out” their level sets of u, weighted by the gradient,

V[ul(p) £ hg' /80(90, Tof{u = u(@)}) €| Vu(@)” dug (), ¢ € CJ(Grp-1(M)).

Here, hg > 0 is a constant that is canonically associated with W (see Sec-
tion 1.3). A deep result of Hutchinson-Tonegawa [HT00, Th. 1] ensures
that V' limits to a varifold with almost every integer density as € \, 0.
If, in addition, one assumes that the solutions are stable, Tonegawa—
Wickramasekera [TW12] have shown that the limiting varifold is stable
and satisfies the conditions of Wickramasekera’s deep regularity theory
[Wicl4]; thus the limiting varifold is a smooth stable minimal hypersur-
face (outside of a codimension 7 singular set). In two dimensions, this was
shown by Tonegawa [Ton05].

1Added in proof: There has been dramatic progress in Almgren-Pitts theory since we
first posted this article. In particular, we note that A. Song [Sonl8] has proved the full
Yau conjecture in dimensions 3 through 7, and X. Zhou [Zho19] proved the multiplicity-one
conjecture in the Almgren—Pitts setting, also in dimensions 3 through 7.
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Guaraco’s approach has certain advantages when compared with Almgren—
Pitts theory:

(1) A key difficulty in the work of Almgren—Pitts is a lack of a Palais—Smale
condition, which is usually fundamental in mountain pass constructions.
On the other hand, the Allen—Cahn equation does satisfy the usual Palais—
Smale condition for each ¢ > 0 (see [Gual8, Prop. 4.4]), so this aspect of
the theory is much simpler.

We note, however, that the bulk of the regularity theory in Guaraco’s
work is applied after taking the limit € N\, 0 and thus relies on the deep
works of Wickaramsekera [Wic14| and Tonegawa—Wickramasekera [TW12].
This places a more serious burden on regularity theory than Almgren—Pitts.

(2) In Almgren—Pitts theory, there is no “canonical” approximation of the
limiting min-max surface by nearby elements of a sweepout. On the other
hand, Allen—Cahn provides a canonical approximation built out of the
function u (which satisfies a PDE). It is thus natural to suspect that this
might be useful when studying the geometric properties of the limiting
surface.

For example, Hiesmayr [Hiel8] and Gaspar [Gasl7] have shown that
index upper bounds for Allen—Cahn solutions directly pass to the limiting
surface. (We note that the Almgren-Pitts version of this result has been
proven by Marques—Neves [MN16a]). Moreover, the second-named author
has recently shown [Manl7] that one-parameter Allen-Cahn min-max on
a surface produces a smooth immersed curve with at most one point of
self-intersection; in general, Almgren—Pitts on a surface will only produce
a geodesic net (cf. [Aiel9]).

Our main contributions in this work are as follows:

(1) We show (see Theorem 1.3 below) that the individual level sets of stable
solutions to the Allen—Cahn equation on a 3-manifold with energy bounds
satisfy a priori curvature estimates (similar to stable minimal surfaces).
Using this, we can avoid the regularity theory of Wickramasekera and
Tonegawa—Wickramasekera entirely, making the whole theory considerably
more self-contained.

(2) More fundamentally, our curvature estimates (and strong sheet separa-
tion estimates, which we will discuss below) allow us to study geometric
properties of the limiting minimal surface using the “canonical” PDE ap-
proximations that exist prior to taking the € N\ 0 limit. In particular, we
will prove the multiplicity-one conjecture of Marques—Neves [MN16a] in
the Allen-Cahn setting (see Theorem 1.7 below) for min-max sequences
on 3-manifolds. In fact, we prove a strengthened version of the conjecture
by ruling out (generically) stable components and one-sided surfaces.
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As an application of our multiplicity-one results we are able to give a
new proof of Yau’s conjecture on infinitely many minimal surfaces in a 3-
manifold, when the metric is bumpy (see Corollary 1.10 below). This has been
recently proven using Almgren-Pitts theory? by Irie-Marques—Neves [IMN18]
for a slightly different class of metrics; their proof works in (M",g) for 3 <
n < 7 and proves, in addition, that the minimal surfaces are dense. Our proof
establishes several new geometric properties of the surfaces; in particular, we
show that they are two-sided and that their area and Morse index behave as
one would expect, based on the theory of p-widths [Gro03], [Gut09], [MN17],
[GG18].

We wish to emphasize two things:

(1) Our results work at the level of sequences of critical points of the Allen—
Cahn energy functional with uniform energy and Morse index bounds. At
no point do we use any min-max characterization of the limiting surface;
min-max is merely used as a tool to construct non-trivial sequences of
critical points with energy and index bounds.

(2) Our results highlight the philosophy that the solutions to Allen—Cahn pro-
vide a “canonical” approximation of the min-max surfaces.

1.1. Notation. In all that follows, (M™,g) is a smooth Riemannian man-
ifold.

Definition 1.1. A function W € C*°(R) is a double-well potential if

(1) W is non-negative and vanishes precisely at £1;
(2) W satisfies W/(0) = 0, tW'(t) < 0 for |t| € (0,1), and W"(0) # 0;
(3) W(&1) = 2
(4) W(t) = W(=1).
The standard double-well potential is W (t) = 1(1 — %)%, in which case
(1.1) becomes e?Agju = u? — u.
The Allen-Cahn equation, (1.1), is the Euler-Lagrange equation for the

£l = [ (Svup+ ) a,

Depending on what we wish to emphasize, we will go back and forth between

energy functional

saying that a function u is a solution of (1.1) on M (or in a domain U C M)
or a critical point of E. (resp. of E.LU). The second variation of E. is easily

*We note that after the first version of this work was posted, Gaspar-Guaraco [GG19]
gave a new proof of Yau’s conjecture for generic metrics (in the spirit of Irie-Marques—Neves
[IMN18]) by proving a Weyl law for their Allen—Cahn p-widths.
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computed (for ¢, € C°(M)) to be
W”(U)

a2 erlce)= [ (eeve+ 7w duy,
We are thus led to the notion of stability and Morse index (with respect to

Dirichlet eigenvalues).

Definition 1.2. For (M™,g) a complete Riemannian manifold and U C
M\OM open, we say that a critical point of E.L U is stable on U if 82 E.[u]{¢, (}
> 0 for all ¢ € C°(U). More generally, we say u has Morse index k, denoted
ind(u) = k, if

max{dim V : 6?E.[u]{¢,(} < 0 for all ¢ € V' \ {0}} = &,

where the maximum is taken over all subspaces V' C C°(U). Sometimes we
will write ind(u; U) =k to emphasize the underlying set. Note that ind(u; U)=0
if and only if u is stable on U.

When u is a solution of (1.1) and Vu(z) # 0, we will write

(1) v(z) = |§Z£3| for the unit normal of the level set of u through z;
(2) I(z) for the second fundamental form of the level set of u through x;

(3) A(z) for the “Allen—Cahn” or “enhanced” second fundamental form of the

level set
V2u — Vu(-,v) @ 1 ( < Vu ) )
A= Vi =V 7|Vu| (x)]).

One may check that
[A(@)]* = | L(2)]* + [V log [Vu(@)|]%,

where V1 represents the gradient in the directions orthogonal to Vu; in other
words, |A| strictly dominates the second fundamental form of the level sets.

Finally, we will often use Fermi coordinates centered on a hypersurface.
To avoid confusion about which hypersurface the coordinates are associated
to, we will define a function

Zs(y. z) £ expy(zvn(y)), y € B, z € R,

where vy, will denote a distinguished normal vector to ¥. In this paper, vy is
generally taken to be the upward pointing unit normal. Note that the pullback
of the metric g along Zx has the form g, + dz?, which is the setting that most
of our analysis will take place below.

1.2. Main results.
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1.2.1. Curvature estimates for stable solutions of (1.1) on 3-manifolds.
We start this section by discussing the concept of stability applied to minimal
surfaces, since that guides some aspects of our work in the Allen—Cahn setting.

We recall that a two-sided minimal surface ¥? C (M3, g) with normal
vector v is said to be stable if it satisfies

(1.3) [ V€ = (TP Ricy (2))¢%) ity = 0

for ¢ € C°(X). Here, we briefly recall the well-known curvature estimates of
Schoen [Sch83] for stable minimal surfaces. If 2 C (M3,g) is a complete,
two-sided stable minimal surface, then the second fundamental form of 3, Iy,
satisfies

(1.4) | I, |(2)d(z,95) < C = C(M, g).

Observe that (1.4) readily implies a stable Bernstein theorem: “a complete two-
sided stable minimal surfaces ¥ in R? without boundary must be a flat plane.”
On the other hand, the stable Bernstein theorem (proven in [FCS80], [dCP79],
[Pog81]) implies (1.4) by a well-known blow-up argument: if (1.4) failed for a
sequence of stable minimal surfaces ¥;, then by choosing a point of (nearly)
maximal curvature and rescaling appropriately (cf. [Whil6]), we can produce
Sj a sequence of minimal surfaces in manifolds (M j3, gj) that are converging on
compact sets to R? with the flat metric, and so that dg, (0,0%;) — oo, | Iy, |
uniformly bounded on compact sets, and |IIy; [(0) = 1. The second fundamen-
tal form bounds yield local C? bounds for the surfaces >, which may then be
upgraded to C* bounds for all k. Thus, passing to a subsequence, the surfaces
¥; converge smoothly to a complete stable minimal surface ¥, without bound-
ary in R3. Because the convergence occurs in C?, we see that |Iy_ |(0) = 1,
SO0 Y 1s non-flat. This contradicts the stable Bernstein theorem.

As such, before discussing curvature estimates for stable solution to Allen—
Cahn, we must discuss the stable Bernstein theorem for complete solutions
on R3. In general, it is not known if there are stable solutions to Allen—Cahn
Au = W'(u) on R? with non-flat level sets. However, under the additional
assumption of quadratic energy growth, i.e.,

(F1 L Bg(0))[u] < AR?,

it follows from the work of Ambrosio—Cabre [ACO00] (see also [FMV13]) that u
has flat level sets. We note that the corresponding stable Bernstein theorem
on R? is known to hold without any energy growth assumption; see the works
of Ghoussoub-Gui [GG98] and Ambrosio-Cabre [ACO00].

As such, one may expect that the blow-up argument described above
may be used to prove curvature estimates. However, there is a fundamental
difficulty present in the Allen-Cahn setting: if u; are stable solutions of (1.1)
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on (M3, g) whose curvature (we will make this precise below) is diverging,
then rescaling by a factor A; — co in a blow-up argument changes ¢; to A\;e;. If
Aig; converges to a non-zero constant, then standard elliptic regularity implies
the rescaled functions limit smoothly to an entire stable solution of Allen—
Cahn on R?. The smooth convergence guarantees that this solution will have
non-flat level sets. If the original functions u; has uniformly bounded energy,
we can show that the limit has quadratic area growth, which contradicts the
aforementioned Bernstein theorem. However, if \;e; still converges to zero, we
must argue differently. In this case, we have a sequence of solutions to Allen—
Cahn whose level sets are uniformly bounded in a C?-sense. This can be used
to show that the level sets converge to a plane (possibly with multiplicity) in
the C1%sense. If the level sets behaved precisely like minimal surfaces, we
could upgrade this C1“-convergence using elliptic regularity, to conclude that
the limit was not flat. However, in this situation, the level sets themselves do
not satisfy a good PDE, so this becomes a significant obstacle.

Recently, a fundamental step in understanding this issue has been under-
taken by Wang—Wei [WW19a]. They have developed a technique for gaining
geometric control of solutions to Allen—Cahn whose level sets are converging
with Lipschitz bounds. Using this (and the 2-dimensional stable Bernstein the-
orem) they have proven curvature estimates for individual level sets of stable
solutions on two-dimensional surfaces. Moreover, they have shown that if one
cannot upgrade C? bounds to C>® convergence, then by appropriately rescal-
ing the height functions of the nodal sets, one obtains a non-trivial solution to
the a system of PDE’s known as the Toda system (see [WW19a, Rem. 14.1]).
Finally, their proof of curvature estimates in 2-dimensions points to the crucial
observation that it is necessary to use stability to upgrade the regularity of the
convergence of the level sets.

This brings us to our first main result here, which is an extension of the
Wang—Wei curvature estimates to 3-dimensions. Our 3-dimensional curvature
estimates can be roughly stated as follows (see Theorem 3.4 for a slightly more
refined statement and the proof):

THEOREM 1.3. For a complete Riemannian metric on B(0) C R? and a
stable solution u to (1.1) with E.(u) < Ey, the enhanced second fundamental
form of u satisfies

sup |Al(z) < C = C(g, Eo, W, B)
B1(0)N{|ul<1-5}
as long as € > 0 is sufficiently small.

We emphasize that Wang—Wei’s 2-dimensional estimates [WW19a, Th. 3.7]
do not require the energy bound. (See also [Man17, Th. 4.13] for the Riemann-
ian modifications of this result.) Note that we cannot expect to prove estimates
with a constant that tends to 0 as € N\, 0 (which was the case in [WW19a])
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since—unlike geodesics—minimal surfaces do not necessarily have vanishing
second fundamental form.

We note that due to our curvature estimates, it is not hard to see that
stable (and more generally, uniformly bounded index) solutions to the Allen—
Cahn equation (with uniformly bounded energy) in a 3-manifold limit to a
C1@ surface that has vanishing (weak) mean curvature. Standard arguments
thus show that the surface is smooth. Thus, our estimates show that it is
possible to completely avoid the regularity results of Wickramasekera and
Wickramasekera—Tonegawa [Wicl4], [TW12] in the setting of Allen—Cahn min-
max on a 3-manifold (cf. [Gualg]).

Remark 1.4. We briefly remark on the possibility of extending curvature
estimates to higher dimensions:

(1) For n > 8, curvature estimates fail for stable (and even minimizing) solu-
tions to the Allen—Cahn equation; see [PW13], [LWW17].

(2) For 4 <n <7, the Allen-Cahn stable Bernstein result is not known (even
with an energy growth condition).

Even if the stable Bernstein theorem were to be established in dimensions
4 < n < 7, we note that our proof currently uses the dimension restriction
n = 3 in one other place: we use a logarithmic cutoff function in the proof of
our sheet separation estimates (Propositions 3.1 and 3.2).3

On the other hand, we remark that the curvature estimate for minimiz-
ing solutions can be proven using the “multiplicity-one” nature of minimizers
[HT00, Th. 2|, together with [WW19a, §15] (or Remark 2.6).

We note that the case of complete minimizers is closely related to the
well known “De Giorgi conjecture.” See [GG98], [ACO00], [Sav09], [{PKW11],
[Wanl7].

1.2.2. Strong sheet separation estimates for stable solutions. A key ingre-
dient in the proof of our curvature estimates is showing that distinct sheets
of the nodal set of a stable solution to the Allen—-Cahn equation remain suffi-
ciently far apart. This aspect was already present in the work of Wang—Wei.
For our applications to the case of uniformly bounded Morse index (and thus
min-max theory), we must go beyond the sheet separation estimates proven in
[WW19a]. We prove in Proposition 3.2 that distinct sheets of nodal sets of a
stable solution to the Allen—Cahn equation must be separated by a sufficiently
large distance so that the location of the nodal sets becomes “mean curvature
dominated.”

3Added in proof: Wang—Wei have recently found [WW19b] the appropriate higher dimen-
sional replacement for the log-cutoff argument used here. We note that the stable Bernstein
problem for Allen—Cahn remains open in dimensions 4 < n < 7.
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In particular, as a consequence of these estimates, we show in Theorem 4.1
that if a sequence of stable solutions to the Allen—Cahn equation converge
with multiplicity to a closed two-sided minimal surface Y, then there is a
positive Jacobi field along ¥ (which implies that ¥ is stable). It is interesting
to compare this to the examples constructed by del Pino—Kowalczyk—Wei—Yang
of minimal surfaces in 3-manifolds with positive Ricci curvature that are the
limit with multiplicity of solutions to the Allen-Cahn equation [dPKWY10].
Note that such a minimal surface cannot admit a positive Jacobi field, so
the point here is that the Allen—Cahn solutions are not stable. (In fact, our
Theorem 4.1 implies that they have diverging Morse index.) Note that the
separation D between the sheets of the examples constructed in [dPKWY10]
satisfy, as € \, 0,
D ~ V2¢|loge| — L&tlog |log ¢

NG )

while we prove in Proposition 3.2 that stability implies that the separation
satisfies

1
D — <\/§5] loge| — —2slog | 10g5|> — —00.

NG

We emphasize that the improved separation estimates here are not contained
in the work of Wang—Wei [WW19a] and are fundamental for the subsequent
applications of our results.

1.2.3. The multiplicity one-conjecture for limits of the Allen—Cahn equa-
tion in 3-manifolds. In their recent work [MN16a], Marques—Neves make the
following conjecture:

CONJECTURE 1.5 (Multiplicity one conjecture). For generic metrics on
(M™,g), 3 <n <7, two-sided unstable components of closed minimal hyper-
surfaces obtained by min-max methods must have multiplicity one.

In [MN16a], Marques—Neves confirm this in the case of a one parameter
Almgren—Pitts sweepout. The one parameter case had been previously con-
sidered for metrics of positive Ricci curvature by Marques—Neves [MN12] and
subsequently by Zhou [Zhol5]. See also [Gual8, Cor. E] and [GG18, Th. 1]
for results comparing the Allen—Cahn setting to the Almgren—Pitts setting
which establish multiplicity one for hypersurfaces obtained by a one parameter
Allen—Cahn min-max method in certain settings. We also note that Ketover—
Liokumovich—Song [KLS19] have proven multiplicity (and index) estimates for
one parameter families in the Simon—Smith [Smi82] variant of Almgren—Pitts
in 3-manifolds.*

We recall the following standard definition:

4Added in proof: As noted before, the full multiplicity-one conjecture for Almgren-Pitts
(in dimensions 3 through 7) has now been proven by X. Zhou [Zho19].
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Definition 1.6. We say that a metric ¢ on a Riemannian manifold M™
is bumpy if there is no immersed closed minimal hypersurface ¥"~! with a
non-trivial Jacobi field.

By work of White [Whi91], [Whil7], bumpy metrics are generic in the
sense of Baire category. Here, “generic” will always mean in the Baire category
sense.

We are able to prove a strong version of the multiplicity-one conjecture
(when n = 3) for minimal surfaces obtained by Allen-Cahn min-max methods
with an arbitrary number of parameters. Such a method was set up by Gaspar—
Guaraco [GG18].

Indeed, we prove that for any metric g on a closed 3-manifold, the unsta-
ble components of such a surface are multiplicity one. Moreover, for a generic
metric, we show that each component of the surface occurs with multiplic-
ity one (not just the unstable components). Finally, we are able to show for
generic metrics on a 3-mainifold, the minimal surfaces constructed by Allen—
Cahn min-max methods are two-sided. For a one-parameter Almgren—Pitts
sweepout in an n-manifold 3 < n < 7 with positive Ricci curvature, this was
proven by Ketover—-Marques—Neves [KMN16]. More precisely, our main results
here are as follows. (See Theorem 4.1 and Corollary 6.1 for the full statements.)

THEOREM 1.7 (Multiplicity and two-sidedness of minimal surfaces con-
structed via Allen—-Cahn min-max). Let 2 C (M3, g) denote a smooth embed-
ded minimal surface constructed as the £ \, 0 limit of solutions to the Allen—
Cahn equation on a 3-manifold with uniformly bounded index and energy. If ¥
occurs with multiplicity or is one-sided, then it carries a positive Jacobi field
(on its two-sided double cover, in the second case).

Note that positive Jacobi fields do not occur when g is bumpy or when g
has positive Ricci curvature. Thus, in either of these cases, each component of
Y is two-sided and occurs with multiplicity one.

Remark 1.8. We re-emphasize that our theorem applies generally to se-
quences of Allen-Cahn solutions with uniformly bounded energy and Morse
index. Thus, unlike the proofs in the Almgren—Pitts setting, we do not need to
make use of any min-max characterization of the limiting surface to rule out
multiplicity.

Our proof here is modeled on the study of bounded index minimal hy-
persurfaces in a Riemannian manifold. Indeed, Sharp has shown that minimal
hypersurfaces in (M™,g) for 3 < n < 7 with uniformly bounded area and
index are smoothly compact away from finitely many points where the index
can concentrate [Shal7|. (See also White’s proof [Whi87] of the Choi-Schoen
compactness theorem [CS85].) A crucial point there is to prove that higher
multiplicity of the limiting surface produces a positive Jacobi field (even across
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the points of index concentration (where the convergence of the hypersurfaces
need not occur smoothly). This can be handled via an elegant argument of
White, based on the construction of a local foliation by minimal surfaces to
use as a barrier for the limiting surfaces (cf. [Whil§)).

In the minimal surface setting, the existence of the foliation is a simple
consequence of the implicit function theorem. However, in the Allen—Cahn
setting, the singular limit € \, 0 limit complicates this argument. Instead,
we construct barriers by a more involved fixed point method in Theorem 7.4.
Once that theorem is proven, we show how the barriers can be used to bound
the Jacobi fields along the points of index concentration in the process of the
proof of Theorem 4.1 by carrying out a new sliding plane type argument for
the Allen—Cahn equation on Riemannian manifolds. Our proof of Theorem 7.4
is modeled on the work of Pacard [Pacl2] (with appropriate extension to the
case of Dirichlet boundary conditions), but there is a significant technical ob-
struction here: we do not know that the level sets of the solution Allen—Cahn
converge smoothly, but only in C%®. To apply the fixed point argument, we
need some control on higher derivatives. By an observation of Wang—Wei
[WW19a, Lemma 8.1], we control one higher derivative of the level sets, but
only by a constant that is O(e~!) (see (7.4)). This complicates the proof of
Theorem 7.4.

1.2.4. Index lower bounds. Lower semicontinuity of the Morse index along
the singular limit £ N\, 0 of a sequence of solutions to the Allen—Cahn equation
is proven by Hiesmayr [Hiel8] (for two-sided surfaces) and Gaspar [Gasl7]
without assuming two-sidedness (see also [Lell]). On the other hand, upper
semicontinuity of the index does not hold in general (cf. Example 5.2). Here,
we establish upper semicontinuity of the index, in all dimensions, under the
a priori assumption that the limiting surface is multiplicity one.’ In particular,
we prove (see Theorem 5.11 for the full statement)

THEOREM 1.9 (Upper semicontinuity of the index in the multiplicity one
case). Suppose that a smooth embedded minimal hypersurface X"t C (M™, g)
is the multiplicity-one limit as € \, 0 of a sequence of solutions u to the Allen—
Cahn equation. Then for € > 0 sufficiently small,

nul(¥) + ind(X) > nul(u) + ind(u).

To prove this upper semicontinuity, we need to delve deeper into the
equation that controls the level sets of u and obtain a more accurate approxi-
mation. What was done for Theorem 1.3—while well suited to understanding
the phenomenon of multiplicity—does not suffice for Theorem 1.9.

SWe note that Marques—Neves had previously announced the analogous index uppper-
semicontinuity result for multiplicity-one Almgren—Pitts limits and that their proof [MN18§]
appeared shortly after the first version of this paper.
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1.2.5. Applications related to Yau’s conjecture on infinitely many minimal
surfaces. A well-known conjecture of Yau posits that any closed 3-manifold ad-
mits infinitely many immersed minimal surfaces [Yau82]. By considering the
p-widths introduced by Gromov [Gro03] (see also [Gut09]), Marques—Neves
proved [MN17] that a closed Riemannian manifold (M™,g) (for 3 < n < 7)
with positive Ricci curvature admits infinitely many minimal surfaces. More-
over, by an ingenious application of the Weyl law for the p-widths proven by
Liokumovich-Marques—Neves [LMN18], Irie-Marques—Neves [IMN18] (see also
the recent work of Gaspar—Guaraco [GG19] that appeared after the first ver-
sion of this paper was posted) have recently shown that the set of metrics on a
closed Riemannian manifold (M",g) (with 3 < n < 7) with the property that
the set of minimal surfaces is dense in the manifold is generic; see also [MNS19].

We note that the arguments in each of [MN17], [IMN18], [GG19] to prove
the existence of infinitely many minimal surfaces are mecessarily indirect, as
they do not rule out the p-widths being achieved with higher multiplicity.
Having overcome this obstacle, we may give a “direct” proof (for n = 3) of
Yau’s conjecture for bumpy metrics® with some new geometric conclusions; see
Corollaries 6.1 and 6.2 for proofs.

COROLLARY 1.10 (Yau’s conjecture for bumpy metrics and geometric
properties of the minimal surfaces). Let (M3, g) denote a closed 3-manifold
with a bumpy metric. Then, there are C = C(M,g, W) > 0 and a smooth
embedded minimal surfaces ¥, for each positive integer p > 0 so that

e cach component of ¥, is two-sided,
the area of ¥, satisfies C‘lp% < areay(X,) < Cp%,

[ ]
e the index of ¥, is satisfies ind(3,) = p, and
o the genus of ¥, satisfies genus(X,) > & — C’p%.

In particular, thanks to the index estimate, all of the X, are geometrically
distinct.

We emphasize that each of the bullet points in the preceding corollary
do not follow from the work of Irie-Marques—Neves [IMN18]. Some of these
properties were conjectured by Marques and Neves in [Marl4, p. 24], [Nevl4,
p. 17] and [MN16b, Conj. 6.2]. In particular, they conjectured that a generic
Riemannian manifold contains an embedded two-sided minimal surface of each
positive Morse index.

Remark 1.11 (Yau’s conjecture for 3-manifolds with positive Ricci cur-
vature). We note that because the multiplicity-one property also holds even

5We note that [IMN18] and [GG19] prove Yau’s conjecture for a different (also generic)
set of metrics.
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for non-bumpy metrics of positive Ricci curvature, we may also give a “di-
rect” proof of Yau’s conjecture for a 3-manifold with positive Ricci curvature.
(This was proven by Marques—Neves [MN17] in dimensions 3 < n < 7 using
Almgren—Pitts theory.) We obtain, exactly as in Corollary 6.2, the new conclu-
sions that the surfaces 3, are two-sided, have area(3,) ~ p%, ind(¥,) < p and
nul(¥,) + ind(X,) > p. 1 Moreover, approximating the metric by a sequence
of bumpy metrics and passing to the limit (the limit occurs smoothly and with
multiplicity one due to the positivity of the Ricci curvature; cf. [Shal7]), we
find that there is a sequence X, (we do not know if this is the same sequence
as Yp) with these properties and additionally satisfies the genus bound (note
that ¥, is connected by Frankel’s theorem) for possibly a larger constant C

/ p 1
genus(X,) > 6 Cps.

It is interesting to observe that when (M3, g) is the round 3-sphere, combining
our bound ind(X,) < p with work of Savo [Sav10] implies that

genus(X;,) < 2p — 8

as long as p is sufficiently large to guarantee that genus(;,) > 1. Similar
conclusions can be derived in certain other 3-manifolds embedded in Euclidean
spaces by [ACS18].

There has been significant activity concerning the index of the minimal
surfaces constructed in [MN17], but before the present work, all that was
known was that for a bumpy metric of positive Ricci curvature, there are closed
embedded minimal surfaces of arbitrarily large Morse index [LZ16], [CKM17],
[Carl7], albeit without information on their area.

Remark 1.12 (Connected components in Corollary 1.10). Unless (M, g)
has the Frankel property (e.g., when it has positive Ricci curvature), the min-
imal surfaces X, obtained in Corollary 1.10 may be disconnected. In this case,
every connected component E; of ¥, must satisfy

. . 1
e Y is two-sided and has areay(X},) < Cp3

and, by a counting argument, there will exist at least one component Z]’D of ¥,
such that

e genus(¥)) > C~tind(X)) > C1p5.

See Corollary 6.4.
It is not clear that the component E;, will have unbounded area. In a

wN

follow up paper [CM19] we prove the following dichotomy: Either

(1) (M,g) contains a sequence of connected closed embedded stable minimal
surfaces with unbounded area, or
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(2) some connected component ¥ of the surfaces ¥, obtained in Corollary 1.10
has areay(¥;) > Cp3.

We note that by [CKM17], [Carl7], when (M3,g) is a bumpy metric with

positive scalar curvature the prior condition cannot hold, so the latter alterna-

tive holds and, moreover, ind(ZfD’) — 0o. It would be interesting to determine

if one can find a connected component ZZ with arbitrarily large area and
ind(%;) > ¢p for some c € (0,1).

1.3. One-dimensional heteroclinic solution, H. Recall that the one-dimen-
sional Allen—Cahn equation with e = 1 is v’ = W/(u) for a function u = u(¢)
of one variable. It is not hard to see that this ODE admits a unique bounded
solution with the properties

u(0) =0, lim wu(t)=-1, lim u(t) = 1.
t——o00

t—o00

We call this the one-dimensional heteroclinic solution and denote it as H: R —
(—1,1). It is also standard to see that the heteroclinic solution satisfies

(1.5) H(+t) = +1 F Agexp(—Vv/2t) + O(exp(—2v/2t)),
(1.6) H' (+t) = V/2Ag exp(—V2t) + O(exp(—2v/2t)),
(1.7) H” (1) = —2Ag exp(—V2t) + O(exp(—2v/2t))

as t — oo, for some fixed Ag > 0 that depends on W. Moreover,
/ (H'(t))? dt = ho,

where hg > 0 also depends on W it is explicitly given by

ho = /_ 11 V2w (¢) dt.

Finally, we also define
(1.8) H.(t) £ H(s"'t), t € R,
which is clearly a solution of e?H” = W’(H.).

1.4. Organization of the paper. In Section 2 we make precise the depen-
dence of the regularity of the nodal set {u = 0} of bounded energy and bounded
curvature solutions of (1.1) on the distance between its different sheets. The
dependence is essentially modeled by a Toda system; see, e.g., (2.18) and Re-
mark 2.6. Restricting to n = 3-dimensions, in Section 3 we use the stability of
Allen—Cahn solutions to bootstrap the distance estimates from Section 2 until
they become sharp. In Section 4 we study solutions of (1.1) with bounded en-
ergy and Morse index in n = 3-dimensions. We use our strong sheet separation
estimates from Section 3 to construct, in the presence of multiplicity, positive
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Jacobi fields on the limiting minimal surface away from finitely many points.
Then, a “sliding plane” argument (modulo a barrier construction deferred to
Section 7) allows us to extend the Jacobi field to the entire limiting surface.

In Section 5 we return to the arbitrary dimensional setting and prove
the Morse index is lower semicontinuous for smooth multiplicity-one limits.
In Section 6 we apply all our tools to prove a strong form of Marques’ and
Neves’ multiplicity-one conjecture, and Yau’s conjecture for generic metrics.
In Section 7 we construct curved sliding plane barriers for (1.1) that resemble
multiplicity-one heteroclinic solutions with prescribed Dirichlet data centered
on non-degenerate minimal submanifolds-with-boundary "' c (M™, g), n>3.

In Appendix A, we recall several expressions related to the mean curva-
ture and second fundamental form of graphical hypersurfaces in a Riemannian
manifold. In Appendix B we recall several auxiliary results from [WW19a].
In Appendix C, we prove Lemma 2.8 relating regularity of the “centering”
functions hy to that of the function ¢ with improved error estimates. In Ap-
pendix D, we derive the Toda-system stability inequality with improved error
estimates (3.2). In Appendix E we recall an interpolation inequality for Holder
norms.

1.5. Acknowledgments. O.C. was supported in part by the Oswald Veblen
fund and NSF Grants no. 1638352 and 1811059. He would like to thank Simon
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Mathematics and Physics (ESI) during the “Advances in General Relativity
Workshop” during the summer of 2017, which they would like to acknowledge
for its support. Finally, the authors would like to thank the referee for their
careful reading of the manuscript and many helpful suggestions.

2. From phase transitions to Jacobi-Toda systems

2.1. Approximation by superimposed heteroclinics. In this section we follow
Wang-Wei’s [WW19a] investigation of local properties of solutions to the Allen—
Cahn equation,

2 A u = W'(u),
whose nodal set {u = 0} can be (locally) decomposed as a union of graphs
over a fixed hypersurface (to be denoted ), whose height functions (to be
denoted fi,..., fg) are bounded in C? and small in C'. The ultimate goal
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is to deduce, in a quantitative sense, that the height functions approximately

satisfy a Jacobi-Toda system.

The reason we rework the setup is twofold:

(1) First, most of the analysis in [WW19a]| was performed in R", while here
we include the details necessary to handle the Riemannian setting (cf.
[WW19a, §16]).

(2) Secondly (and more fundamentally), we combine the argument from
[WW19a] with a further bootstrap argument based on improved error es-
timates. This allows us to prove much sharper separation estimates than
were obtained in [WW19a|. Indeed, we will show that the behavior of the
transition layers is dominated by mean curvature, rather than interaction
between the layers. This will be crucial for our subsequent applications in
Section 4.

Let us set things up. Suppose that D"~! is an (n — 1)-dimensional disk,
over which we take a topological cylinder Q 2 D x [—1, 1], whose coordinates
we label X = (y,z) € D x [—1,1]. Consider a smooth metric g on 2, which we
assume to be in Fermi coordinate form with respect to ¥; in (y, z) coordinates,

g:gz—i—dz2.

For convenience, we denote ¥ = D x {0} C Q. Let us require that

3
(2.1) S IVe | <.
(=0

We additionally assume that ¥ is covered by C*-coordinate charts so that the
induced metric on 3, gy is C3-close to the Euclidean metric in the charts, i.e.,

3
(2.2) > 1089 ((g0)ij — 6i5) < .
=0

We make no assumptions on the mean curvature of ¥ beyond what follows
automatically from (2.1). Notice that, as a consequence of (2.1)—(2.2), Fermi
coordinates with respect to ¥ are a C* diffeomorphism.

In all that follows, for yo € ¥\ 0¥ and 0 < r < distg, (yo, 0%X), we denote

Bl Hyo) & {y € ¥ : distg, (v, y0) <1},

where distg, is the intrinsic distance on X. We assume, without loss of gener-
ality, that & = B5  (0).

Remark 2.1. We have chosen to work at the original scale, rather than
rescaling by ¢ as in [WW19a]. This does not affect our subsequent analysis,
but certain expressions will change by appropriate multiples of €.
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Let u: Q — (—1,1) be a critical point of E. L Q, with

(2.3) e < e€o,

(2.4) (EE L Q) [’U,Z] < EQ,

(2.5) e|Vul > gt > 00n QN {jul <1- 8},
(2.6) Al < copon QN {|lul <1- 75}

By (2.5), (2.6), and elliptic regularity, we automatically also get
(2.7) e|lVA| + % V2A| < cpon QN {|ul <1 -6}

for a possibly larger ¢y > 0; see [WW19a, Lemma 8.1]. With regard to the
nodal set of u, we require

Q
(2.8) {fu=0}na=Jry,
/=1

where I'y = graphy, f; denote normal graphs over 3 ordered so that f; < fa <
.-+ < fg, and the graphing functions f, : ¥ — R are assumed to satisfy

(2.9) |fel + Vs fel <,

and (this alternatively follows automatically from (2.1) and (2.6))

(2.10) V3l < co.

Finally, after possibly sending z — —z, we can assume that for z ~ —1,
u(y, z) &~ —1. The constants that appear above are to be considered indepen-
dent of ¢ < ¢gp and fixed so that

(2.11) co>1,0<e0,p,n<l, Qe{l,2. .}

For ¢ € {1,...,Q}, yo € ¥, r > 0, denote

(1) II: © — X to be the closest point projection onto ¥ with respect to g;

(2) Cr(yo) 2 {X € Q:II(X) € B (yo) }5

(3) Fg(T') £ I'yn CT(O);

(4) Zr, :T4(3/2) x[—1,1] — Q to be the normal exponential map with respect
to I'y;

(5) Iy : © — I'y to be the closest point projection onto I'y with respect to g;

(6) d¢: © — R to be the signed distance from I'y (with respect to g), which is
positive above it and negative below it;

(7) D¢ = min{|de—1|, |des1]}-

Let us agree once and for all regarding Sections 2—-3 that each I'y is endowed

with the same coordinates (y',...,y" 1)

r, s

as ¥ via the diffeomorphism II|r, :



ALLEN-CAHN ON 3-MANIFOLDS 231

Set Q' £ BP1(0) x [~2n,2n] C Q. Consider arbitrary C? functions
he:TyN 01(0) — (—g, g), le {1, ... ,Q}

Let h = (hq,...,hy). From h, we construct an approximate critical point U (h)
of E.L ¢,
Q
N (_1)Q+1 -1 .
(2.12) Ulh] & ————+ ;H&g.

Here, each ﬁ&g is given by

(2.13)  ((Zr,) He)(y, 2) £ B (1) Te ™ (2 — hu(y)))

= W, =% (1) e (dy — by o I1)),
with H* : R — [~1,1] (here, A = 3|loge|) being
(2.14) H (1) £ x(A ) () £ (1 - x(A™'1)

(£ depending on t > 0 or ¢t < 0). Here, x(t) = 1 for t € (—1,1) and
spt x C (—2,2) is a fixed cutoff function. These functions, 3l g2l are trun-
cations of H that coincide with it on (—3|loge[,3|loge|), with 41 outside
(—6|logel, 6]logel), and such that

(215) 81y — W (95 oy = O(EY.
See [WW19a, §9.1] for more details.

Remark 2.2. The components of h represent the vertical offset of the het-
eroclinic solutions we are superimposing relative to the nodal set of u.

One can show (see [WW19a, §9.1]) that there exists h such that for every
te{l,...,Q}, y € T'y, we have the orthogonality relation

U _
(2.16) / ((Zr,)"(u = Uh]))(y, 2)0:((Zr,) " He ¢) (y, 2) dz = 0.
-
Moreover (see [WW19a, Rem. 9.2]),
3 . .
Zsﬂ—1||wh||co(BH0)) =o(1) as € — 0.
=0

It will prove useful to introduce the notation
(2.17) ¢ = u— U],

seeing as to how we can conveniently bound h in terms of ¢, as Lemma 2.3
below shows.
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LEMMA 2.3 ((WW19a, Lemma 9.6]). For £ € {1,...,Q}, y € Ty(35),
e he(y)l < e (1o, (9)] + exp(—v2e ™' Dy(y))) ,
Ve he)] < e(e1Vr, (6lr,) )] + o(1) exp(—v2e 1 D(y)) ),
eIV, hu(w)] < e(*9E, (@lr,) W)
+2|Vr, (6l ) W) + o(1) exp(~v2e ! Dy(y)) )
0192,y < ¢ (2H1V3, (8lr)lo + =29, (8lr)lloo [V, (61, o
+ lexp(—v2= D)oo )

where ¢ = ¢(n, co, Eg,n, B), ¢ = (n,co, Eo, 1, 3,0), and o(1) is taken as e — 0
with the remaining parameters held fixed. In the last inequality, the Hélder
seminorms and the C* norms are taken over all y' € T'y N C-(TI(y)).

Wang—Wei deduce (see [WW19a, (10.2)]) the following Jacobi-Toda-like
system: for y € Ty(55),

(2.18)
e(Ar,he(y) — Hr,(y))
_ 4(}?00) (exp(—=V2e ™ de1(y)]) — exp(—v2e ™ den (v)]))

1
+O(= )]+ (e 0 Ty 0 Ze, ), o +23 )exp(—v2= dpr (v)

+0

/N 7/ N

ey + e hess o s 0 Ze,) (3o +3 Jexp(—vae | desa (y)])
+O0(exp(—(3V2)eds1 (1)) + Olexp(—(3vD)e |dus (1))
+0(exp(—V2=" |de-2(y)])) +Oexp(— V2 dusa(y)])

37 & ()] exp(—VE=" () [E|Ar, o — Hi, oo+ [V, P[]
m#£L

+ sup (TR, (6l0,)) (Ze, (v 1)
[t|<6e|loge|

—

+&2|(Vr, ,(lr, ) (Zr, (y, 1) P +16(Zr, (y,t))lﬂ +0(e7).

The C° norms appearing in the second and third term of the right-hand side
are taken over [t| < 6¢|loge|, and the C° norms appearing in the third term
from the end are taken over I'y, N ClLays(I1(y)).

Remark 2.4. Ty denote t-level sets in Fermi coordinates (y,t) relative
to 'y, ie., I'yy = {dy = t}.
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Remark 2.5. Notice the sign difference in the mean curvature terms be-
tween (2.18) and [WW19a, (10.2)]. For us, the mean curvature is the divergence
of the upper pointing unit normal. For instance, the ambient Laplace-Beltrami
operator expands as

Ag=Ar, +092+ Hyp, 0.

For this reason, all instances of the mean curvature in this work must have the
opposite sign relative to [WW19a].

It will also be convenient to introduce the notation
(2.19) Ag(r) £ sup { exp(—\@e_ng(y)) jy € I‘g(r)}.

We record [WW19a, (12.4)], which will help estimate terms involving h, ¢, and
the mean curvature,

(2.20)

Q
H¢”C}"(Mdr)) +¢||Ar, by — Hp[||cg,9(rz(r)) <de?+ ¢ Z Ap(r + Kellogel),

m=1

where we are using the weighted Holder space notation from (7.1) (see Sec-
tion 7), and

My(r) £{X € Cr(0) : |de(X)| < 1, —dp—1(X) < de(X) < —dps1(X)}.

Likewise, we record [WW19a, (13.6)]:

Q
el Zr )0y ) Bll o pp, gy < €%+ ¢ Y Am(r + 2Ke|loge]) "
(2.21) Qm:1
+ ce” Z Ap(r + 2Ke|logel),
m=1
with & > 0.

The expressions above, (2.20)—(2.21), are true for all £ € {1,...,Q}, r <
8/10, 6 € (0,1), e <&, where ¢, €/, K, k, depend on n, ¢y, Fo, n, 3, 6.

Remark 2.6. In the remainder of Sections 2-3, we will be actively in-
terested in estimating the vertical distances D, from below. This is because
Lemma 2.3, (2.19), (2.20), and interior Schauder estimates together imply that,
with r, 8 as above,

(2.22) ee{r{linQ} Fir%f) D, > 12ﬁ\/§5| loge| = T'y(+') is uniformly C*?
ER) e\r

forall £ € {1,...,Q}, 7" <or,c€(0,1),e <& =¢(n,co, Eo, 7, 3,0,0).
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2.2. Bootstrapping reqularity via sheet distance lower bounds. We recall
the following lemma from [WW19al. (See [Manl7, App. C] for necessary mod-
ifications for the Riemannian setting.)

LEMMA 2.7 ((WW19a, §14]). If £ € {1,...,Q}, y € T¢(32), and e < &1,
then

Dy(y) > %\/55] loge| — i€,
where €1 = 61(”7607E037775)7 C1 = Cl(?’L,CO,EO,T],B).

As a corollary of Lemma 2.7, we can bootstrap the proof of Lemma 2.3
and obtain the following improved estimates:

LEMMA 2.8. For{ € {1,...,Q}, y € Ty(3%),

= Hhew)l < ¢ (18I, ()] + exp(—V2e "' Da(y))
Ve, he(y)] < e (Ve (6lr,) ()] + " exp(—v2e Dy (y)))
eIV, ()] < eV, (@lr,) W)
+ 2|90, (8lr,) ()2 + €% exp(—V2="" Daly)),
VR o < ¢ (2HIVE, (61, e

+ 209, (9l [V, (Bl o + € [l exp(—v2e ™ Dy)llen )

where c = c(n, o, E07 n, 6)7 Cl = C,(’I’l, Co, E07 n, 55 0)7 K = KJ(”? €0, EU: n, ﬁ)u
k' = K'(n,co, Eo,n,3,0). The norms and seminorms in the last inequality are
taken over all y' € Ty with TI(y') € B2 (I1(y)).

Proof. See Appendix C. O

We now indicate how the enhanced second fundamental form tensor is
affected by these estimates.
Fix £ € {1,...,Q}. We see from (2.21) that

Q
(2.23) €|V~ (Vo, Vo) Viellco () < €2+ D Am(r+2Ke|loge|)' "
m=1
for some k = k(n, co, Eg,n,8) > 0. Likewise, from (2.12), (2.13), Lemmas 2.7
2.8, and (2.21),
(2.24)

Q
e||[VU[h] — (VU[h], Vdg>Vdg”Co(Me(T)) <de? 4+ Z A (r+ 2Ke| log5])1+”.

m=1
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Combining (2.17), (2.23), and (2.24), we get

Q
(2.25) || Vu—(Vu, Vd)) Vgl comy ) < e+ Y Am(r+2Ke|loge|) 7.

m=1

Combining (2.5) and (2.25), we get

(2.26)
Q
lv = (=1 Vil com, (mnfru<i—sy < €2+ ¢ Y Am(r + 2Ke|loge[)' 7,
m=1
where v = |Vu|~'Vu denotes the normal to the level set of u through each

point. (The level set is smooth on {|u| <1 — 8} in view of (2.5).)

For the remainder of this section, we choose to work in Fermi coordinates
(y,t) relative to I'y; note that ¢ = dy. It is not hard to see that the only non-
trivial Christoffel symbols in this coordinate system are Fﬁj, I‘;t, Fij, and Ffj
Set

(2.27) Ly(r) = sup U551+ TGl + T + T -
M (r)n{lu|<1-5}

By arguing as above, and relying on (2.21), we find that

||V u — V2u(8y, 0y) dt*(| o (p, () flul<1—5})
n—1
<& IVI((Zr,)«0y,)0) [l oy (rnflul<1-8})

(2.28) -l

+ &2 ()| Vull oo iy (rynfful<1-51)
Q
<det 4 Z A (r 4+ 2Ke|loge|) '™ + deTy(r).

m=1

Using (2.26) (note that 9; = Vdy),

(2.29)
e2||V2u(0y, 0r) dt @ (dt — (dt, 1)) |0ty () jul<1—6))
Q
< C/HI/ — 8t|]CO(MZ(r)m{‘u|§1_5}) < 6/62 + C/ Z Am(T + 2K€| IOgEDlJrR,
m=1

where v” denotes v’s dual 1-form. Finally, (2.5), (2.28), and (2.29) give
(2.30)
Q ~
Al o My (mnflu<1-8}) < de+ et Z A (r+2Ke|log 5])“”’i + Ty(r).

m=1
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Now, we turn to estimating Hr,. From Lemma 2.8 and (2.21) we have, for
Yy e ]-_‘Z(l%)a
(2.31)

el Ar he(y)|

< &%|VE,(dlr,) ()| + e exp(—v2e ' Dy(y))

Q Q
< de?  de” Z A (ly| + 2Ke|loge|) + ¢ Z A (ly| + 2Ke|loge|) ™.

m=1 m=1

We are going to estimate the terms in (2.18) from above by a function of
e and the quantities in (2.19). Fix £ € {1,...,Q}, y € Ty(75).
From Lemmas 2.7 and 2.8 and (2.20), we have

(2.32)
(e hel + & Hho—y 0 Tlgy 0 Zp,| + 6%) exp(—v2e ™ |dg—1(y)])
T (7 hel 4+ & hes 0 ey © Zp, | +23) exp(—v2eder1 (9)])
T exp(—(3vD)eder (9)]) + exp(— (2V2)e dess (1))
T exp(—v2dia(y)]) + exp(— V3= dgsa(y)])

Q Q
< de?  de” Z Am(ly| + Ke|loge|) + ¢ Z Am(Jy| + Ke|loge|)' .
m=1 m=1

By Lemma 2.3, (2.20), and (2.21), every m # { satisfies
(2.33)
e dm(y)] exp(—v2e ™ dm(y)]) [Sllﬁrmhm — Hr,llco + Ve, im0

< d Am(lyl + 2Ke|loge|)' ™" > Am(ly| + 2Kz|loge|)
m/#m

+ 2 A (Jy| + 2Ke|loge|) ="

for small p > 0, ¢ < &’. The C° norms are taken over I';, N Class(II(y)). By
Lemma 2.7 and (2.20),

sup (VR (Bl ) (Zr,. (0.1
[t|<6e|loge|

(230 + (Tt (011, ) (Zr (3, 2) P + 1021, (3, 2]

Q
<4 d 37 Aw(lyl + Kelloge|)?.

m/=1
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Combined, (2.18) and (2.31)-(2.34) give
(2.35)

et ) = 200

ho

(exp(=v2e dia)]) — exp(—V2e desa () + Re

for all y € Fg(llo), where

Q
Re(y)| < e + e Z An(Jy| + 2Ke|logel)

m=1

(2.36) 0

+ > Amllyl + 2Ke|loge|)' 7.

m=1

LEMMA 2.9. Let f: B1(0) — R be as in (2.9)-(2.10). If G[f] is the
normal graph of f over Ty, i.e., G[f] = {Zr,(y, f(y)) : y € B}1(0)}, then
HG[f] — Hr, = —(L+ |]IFz |2 + Ricg(VFwVFe”Fé)f + Q(f),

where L is the linear uniformly elliptic operator

(2.37) Lo = Ly, cre £ aly) ™ dive, (a(y)((Zr,)«vr,, vern) Ve e) »

with
VIr,
(2.38) a(y) = ar, ¢ (y) = :
0,Gf] T )

Here (Zr,)«vr,, vgiy) are upward pointing unit normal in Fermi coordinates
and the upward pointing unit normal to G|[f], both evaluated at Zr,(y, f(y)).
Note that the elliptic symbol coefficients are uniformly bounded away from 0
and oo depending on (2.9). The (non-linear) error term Q(f) satisfies

QNI < U1+ IV, /).
Proof. This is a restatement of Lemma A.1 from Appendix A. O

Notice that, by (2.9)—(2.10), I'yy; can be viewed as a normal graph of
some function fy 41 over I'y that satisfies the conditions of Lemma 2.9. Let

Y = Zr,(y, fors1(y)) € Tosa.
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Applying (2.35) to y at I'y and to y' at T'y41, subtracting, and invoking
Lemma 2.9, we see that

e(L + | Tr, |? + Ricy (v, v)|r, + Q) feer1(y)
= g(HF[ (y) - HF@+1 (yl))

2
= 20 xp V2 e () ~ (VB a8

ho
— exp(— V2 |de1(3)]) + exp(—V2e ldea (9)]))
— Re(y) + Resa ()

(2.39)

Here, L is the second order linear operator defined in (2.37), which depends
on I'y, T'p41. Note that (see Lemma B.1):
(2.40)

exp(—V2e U dps1 (1)) = exp(—v2e froi1()) + O(e3) exp(—v2e 1 Di(y)).
Absorbing the last term above into Ry in view of (2.36), we conclude that
e(L+|Ir, |* + Ricy (v, v)[r, + Q) fe,e1(y)
_ A (5 eep(- B fra (9) — expl— v dsal)])

(2.41) ho
— exp(—V2= " dea ()
— Re(y) + Res1(y)-

Finally, dropping the negative terms gives

E(ﬁ + | I[Fl ‘2 + Ricg(y> V)|Fe + Q)fﬁ,€+1(y>
(2.42) _ 8(4p)°
= T

exp(—v2e ™ froi1(y) + ¢ IRe) | + Resa ()]s

the error terms Ry, Ryy1 are still as in (2.36).

3. Stable phase transitions (n = 3)

In this section, we use the Allen—Cahn stability inequality and bootstrap
the distance estimates from the previous section until they become sufficiently
sharp. Specifically, we combine three things: (i) an L? estimate on the height
function of {u = 0} (following an observation of Wang-Wei [WW19a, (19.7)]),
(ii) a subtle application of Moser’s Harnack inequality, and (iii) the non-
existence of non-trivial entire stable critical points of the Toda system on R?;
cf. the stable Bernstein problem for minimal surfaces in R3.
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3.1. Strong sheet distance lower bounds. We continue to adopt the con-
ventions and notation laid out in Section 2. In particular, we emphasize that
we continue to assume (2.1)—(2.6) as well as assuming that u is a stable critical
point of E.LQ (cf. Definition 1.2).

In [WW19a, (19.7)], Wang—Wei derive the following stability inequality
(in a slightly different setting) from the usual Allen—Cahn stability inequality:

[ fexp(=vadial + exp(-VE= )|
Iy (7/10)

< c’/ e2|Vr,¢* + 0'51“‘/ ¢2
Ty(7/10) T4(7/10)

forall e {1,...,Q},Ce€ Cgo(Fg(llo)), e <&, where ¢, ¢, k depend on ¢y, Ey,
n, B. In fact, by a careful inspection of Wang—Wei’s derivation of (3.1) from
[WW19a, §19], we see that the following stronger inequality is true here:

[ [expl=vEedial + exp(~vE< disal
T'4(7/10)

(3.1)

(3.2)

< c'/ eV, ¢ + |&]| ¢
I'¢(7/10) T'¢(7/10)

with
(3.3)
&l < e

Q
+Cl Z Sup {exp(_ﬁ(l + H)E_le(y/)) : y/ € Fm m HE_I(B%KE‘ logg|(spt h))} ?
m=1

here, ¢, k are independent of (. We prove (3.2) in Appendix D in a general
n-dimensional setting, n > 3. (Below, we use it for n = 3.) Note that, by
Lemma 2.7, this recovers (3.1).

Our first main result is the following sheet-distance estimate. (cf. Re-
mark 2.6.)

PROPOSITION 3.1 (Stable sheet distances, I). If u is a stable critical point
of E-LQ, e <e3, and v € (0, %), then

Dy > (1 —v)V2e|loge| on Ty(3)
forall 0 € {1,...,Q}, where e3 = e3(co, Eo,n, 5,v).
Proof. Take v € (0, %) and assume, for contradiction, that
(3.4) Ag(r) > Ag(3) > 207 for all r € 3, 3] and some £y € {1,...,Q}.
We will aim to prove

v 1 1
(3.5) Zegl}gz@} Ag(r — Kye¥) < 586?117;.13’(@ Ay(r) for all r € [§, 3],
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where K,, = K, (co, Eo,n, 3,v) > 0; this will in turn prove our claim by a simple
iteration. (We denote the dependence of K, on v explicitly to disambiguate
with the previous constant K. Let us assume K, > 2K.)

Let r € [3,3], a 2 max{Ay(r) : £ € {1,...,Q}}. Since
(3.6) a > 217

by (3.4), it follows that to prove (3.5) it will suffice to prove

1
(3.7) Ae(r —eKya™2) < %a forall £ € {1,...,Q}.

Suppose, by way of contradiction, that (3.7) is violated at some ¢y € {1,...,Q}
1
and y € 'y (r — eKya™ 2). From now on let us work in the coordinate chart

induced on I'y, by Hlp, ~ X. For y € B%(V/Q(O), define

1
V2

- 1
(3.8) F@) 2 e fupuor1(y +ea”2y) — —=|loga.

If £ denotes the translation and rescaling of £ that respects the stretched
coordinate, y, then from (2.42) we find

LF(@) = c0™ L frytos1 (4 + 0™ 7)
< 8(1%}3(?0(—1 exp(—V2e ™ frg0041(y + 504—%?7))
a7 Rey(y + 0~ 29)| + 0" Regia (y + ca” 25))]
—ca V(| Ty, ? + Ricy(v, 1)1y, + Q) faotor1(y +£0~2).
Recalling (3.8), the computation above readily implies that

8(Ap)?
ho

(3.9) Lf@) < exp(—V2/ (7))
+ a7 Ry (y + Ea_%@| +a Ry 41((y + 504—%37)/)’

1
- 50‘_1(| ]IFZO |2 + Ricg(ya V)|Feo + Q)f£0,€0+1(y =+ 50‘_237)'

From (2.36) and (3.6) we have
(3.10)

K
a Ry + @ Rega| < (2t + e+ a") < d(aTv +a20-1)) < (.
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Now define the auxiliary function 1 £ exp(—\/i)?) > 0. From the chain rule,
(3.9), and (3.10), we have

(3.11)
L = 2L + 2|V F*

8v/2(Ap)? _ ,
> SVEEL 2 g4 VB (T, P+ Ricy (10l Va6
+ a1 (V2eQ(fugto11) + IVry, fro 04110

8v/2(4p)? - :
> SR 2 gy VB (M, P Ricy ()l Va1

—a! [\/ﬁffg(ffo,fo-i-l) +[Vr, ffO’EOHH Y

on B%(V (0). Here, [-]— denotes the negative part of a real number (and is a
non-negative quantity). Using a logarithmic cutoff function in (3.1), which is

1 on B?a_l/Q\/K—V(O) and 0 outside B520F1/2Kl,/2(0)’ we get
k+2v—1
(3.12) / Y < d(logK,) ™'+ da20-v) K2
32

vz ©)

in the scale of ¥. By Moser’s weak maximum principle on Bj for (3.11) (see,
e.g., [HL97, Th. 4.1]), the L' bound in (3.12) implies the L bound

K+2r—1
(3.13) $(0) < C4 < C, <(log K,) ' 4 20-v) Kg)
B (0)

for a constant C, that depends on the constants in (2.11) and the L*° norm of
the coefficients in the differential inequality (3.11) on B?(0). We are assuming
that (3.7) fails at y, so together with (2.1), (2.9), (2.10), and Lemma 2.9, we
have

(3.14)

1
sup [ea™(|TIr, [ + Ricy(v, )1y, ) fro.0o11(y + ca”27)]
yeB}(0)
3
< Clgail(’ffo,foJrl(y” + Osc{ffo,foJrl 1Ty N Csa—1/2 (H(y))}) < de*a2
3v—1
< da2(-v)

Likewise, using Lemma 2.9, we can estimate

\/i&‘Q(fg07eo+1)’ < C,‘g(‘f@o,foJrl‘Q + ‘VFeoffofoJrl’z)-
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By absorbing the gradient term and estimating fy, ¢,+1 with the same argument
as in (3.14), we also estimate

-1 2 -1
@ 2‘VFe0 f£0750+1| + \@Efoo,fo+l(y +ea”2y)

(3.15) o -

< c’ea‘lfi’ﬁoﬂ <d3a? <201,
Thus, ignoring the unimportant dependencies on (2.11), we have

k+2v—1 3v—1 v—1
(3.16) C* — C*(l 1+ o 2(1—v) + a2(1—1/) + 042(1_”) )’

which, as long as v > max{%, I_T“}, can be taken to be uniformly bounded
independently of a—though certainly depending on the constants in (2.11)—
since a < 1 by definition.

Since C, is uniformly bounded per (3.16), it follows from (3.13) that by
choosing suitably large K, = K, (co, Eo,n, 8,v) > 0, 1(0) will become less than
% for small a, contradicting our assumption that (3.7) is violated. Specifically,

recalling (3.13), we may simply pick K, large enough that C,(log K,)~! < %,
K+2v—1
1

in which case 9(0) < 3 as long as « is small enough that Cra 20-¥) K2 < 1.

This concludes the proof of Proposition 3.1 for

1—k

v € (v, %), where vy = min{%, 3

The next step is to show that 1y can be taken to be arbitrarily small, at the
expense of possibly having to rescale our domain a finite number of times.

Retracing the proof above, it is not hard to see that what one needs to
improve are

(1) the exponent of v in (3.12) and (3.13), and
(2) the oscillation bounds in (3.14) and (3.15).

For the prior, we may use (3.2) and (3.3) instead of (3.1); we get
$(0) < Cu ((log ) ™! + (T + a")K2) ,

a sufficient bound.

For the latter, we need to use a Harnack-type inequality on the elliptic
equation satisfied by fy, ¢,+1, (2.41). Recalling (2.36), and using the fact that
we now know Proposition 3.1 to hold for v/ € (v, 3), we see that the right-hand
side of (2.41) can be bounded in L*™ by

Q
de? + ¢ Z Am(y| + 2Ke|logel]) < /e20-)

m=1
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for some ' € (v, %) Diving (2.41) through by e, we thus get a uniformly
elliptic equation

(3.17) (£ + [ Tp, [* + Ricg (v, v)|r, + Q) fres1(y) = O ™).

Now we apply the inhomogeneous Harnack-type inequality found in [GTO1,
Ths. 8.17, 8.18] to (2.41), multiplied through by the a(y) in (2.38), with some

1 /
q>2, R=ca 2,and g = O(e}=?") (in the L*° sense). We get
sup { feo,00+1 1 Teg N Cep-172((y)) }
< (i) + 20 -) & us(s) + 7).

Recall that we are assuming, by contradiction, that (3.7) is violated at our y,
implying that fr, ¢,+1(y) is an error term relative to the last term of the right-
hand side. Together with (3.6), this gives

sup {aoz_lfeo,eoﬂ 1L N Cy—1/2((y ))}

(3.18) 2—
=

<de a2 < da

!

v = da 1-v .

This is < ¢'a? for some § > 0 as long as v > v, = %1/. This gives the improved
oscillation bound that we sought in place of (3.14), and Proposition 3.1 follows
in full by iteratively pushing v, v/} down to zero. U

PROPOSITION 3.2 (Stable sheet distances, II). Ifw is as in Proposition 3.1,
then
exp(—v2e71Dy)
lim
e—0 e2|log |
forall ¢ € {1,...,Q}, uniformly in terms of co, Eo, 1, 5.

=0 on F@(%)

Proof. The proof follows along the same lines as the bootstrap portion of
the proof of Proposition 3.1. However, the modifications are somewhat delicate
so we give the argument here.

We first prove a weaker bound. We argue by contradiction, assuming that
there exists ¢ € {1,...,Q} such that

(3.19) Ay(r) > Ay(1/5) > e*|loge|? for all r € [£, 1]
Let r € [£, 1], and then let v £ max{A,(r): ¢ € {1,...,Q}}. Then
(3.20) a > e*|logel?.

We claim that

1
3.21 Ap(r —eKopa™ 2) <
o1 el M ko™

for a constant Ky = Ky(cg, Fo,n,8) >0

1
50(
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1
Suppose that (3.21) fails for {p € {1,...,Q} and y € I'y, (¢ Ko™ 2). Define

1
(322) f@) £ 5_1f€0,50+1(y + 504—237) - %’ IOgOé‘

for y € B%(O/Q(O). Proceeding as in (3.9), we find that

EF@) < 8,;“ exp(—v2 (@)

1 _ _1
(3.23) +a Ry (y +ea27)| + o HRypp1 (v + o 29))]

1
- 50‘_1(‘ HFeo ’2 + Ricg(l/’ V)’Feo + Q)fﬁoyfoJrl (y +ea”2y).
We also still have an estimate of the form
(3.24) oz_lc'|7€g0| + oz_l\Rg0+1\ </d,

and the function ¢ £ exp(—\/ﬁf) still satisfies a differential inequality of the
form

P 8v/2(Ap)?
Epz -B2ME 0oy
(3.25) ho
-1 2 . —
+V2ea” (| Ir,, [* + Ricy (v, v)|ry, + Q) fro o1y + 20 27)0.
Applying the same inhomogeneous Harnack-type inequality that led to (3.18)
before, we obtain

Sup Ut ys1 £ Tty 01 Coora ()} < ¢ (Frpiy i (9) + 201 -2 + )
</ <5] logal + &%t + 8).

Thus, we have the following L° estimate on the coefficient in front of ) in the
last term of (3.25) on the domain Bza—lﬂ (y):

sup {ga71f£07€0+1 1T N Co1y2 (H(y))}

(3.26)
</ (6204_1\ logal +e*a™ + 520¢_1) </d,

where we have used the simple fact that

2

(3.27) (3.20) <= a > &?|loge> = %a'|logal = o(1).

Thus, (3.25) implies the uniformly elliptic partial differential inequality

(3.28) Ly > —8\/5}5;40)21/12 — .
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From Moser’s weak maximum principle (see, e.g., [HL97, Th. 4.1]) applied to
(3.28) on B#(0), combined with (3.3), we get the L> bound

P(0) < /32(0) P < c’((log Ko) ™' + (52a_1 + a“)Kg)

violating the assumption that
small.
Thus, (3.21) holds true with a fixed Ky. Then notice that

c’( (log Ko) ' + (o(|log oY) + a )KO)
(3

.21) fails, provided we take Ky large and «

1
eKoa ™2 < Ko|loge| ™.

followed by an application
ields

A backward iteration of (3.21) from r = X tor =

of Proposition 3.1 at radius r = 1/4 with v < 218%:( Y

1
57
2

log Ag, (%) < log Agy (%) — 5252 |loge|

<2(v—1)|loge| — ngii\logd < —2|loge| = loge?,

violating (3.19).
We now prove the main claim. We argue by contradiction again assuming
that there exists £ € {1,...,Q} such that

(3.29) Ag(r) > Ag(3) > pe®|loge| for all r € [}, 3]

for some p > 0. Let r € [3, 1], @ £ max{A4,(r): £ € {1,...,Q}}. Then
(3.30) a > pe?|logel.

We claim that

(3.31) Ap(r — EK(I)Q_%) < fafor every L € {1,...,Q}

for a constant K, = K{(co, Eo,n, ) > 0. This indeed follows from the same
argument as above, modulo the fact that one needs to replace (3.27) with

2a”MHlogal < p (24 o(1)).

(3.30) <= a > pe?|loge| = ¢
Notice, now, that
1 1 1
eKpa 2 < p 2 Kg|loge| ™2,
so that a backward iteration of (3.31) from r = 1/5 to r = 1/6, together with
the weaker assertion verified above, yields

1
1 =
log Ago(%) < log Ago(%) p2 28%2, |log |2

1
< —2|loge| + 2log |loge| — 218%{2,|10g5]§.
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However,

1 1
. 5 log?2 5
— 2 2| = —
gln% <log |loge| — u 20K7 |log e| ) 00

so, for sufficiently small ¢ (depending on Ky, p), this quantity is < log . Thus,
for small ¢,

log A, (§) < log pu — 2|log e| + log | log e| = log(pe?|log ),
which violates (3.29). The result follows. O
In fact, Proposition 3.2 and (2.35)—(2.36) establish the following:

COROLLARY 3.3. Ifu is as in Proposition 3.2, then for all € € {1,...,Q},

Hr,
el loge|

— 0 uniformly on T¢(})

as € — 0.

This estimate is key for our geometric applications, since it says that the
mean curvature of the zero sets u dominates the effect of interactions between
the sheets. This will allow us to treat the sheets (essentially) like disjoint
minimal surfaces.

3.2. Curvature estimates. In what follows, we let B*(0) be a smooth n-ball
equipped with a Riemannian metric g so that B}'(0) is a geodesic r-ball centered
at 0 (with respect to g).

THEOREM 3.4. Suppose inj, > 3 and [Rmg | + [VyRm, | < 1 on B3(0).

If e < &1, u € C®(B3(0);(—1,1)) is a stable critical point of E.L B3(0), and
(B-L B3$(0))[u] < Ey, then

|A(z)| < 1 forall x € Bf/Q(O) N{jul <1-p8},
where g1 = El(naEOaﬂa W)? 1= Cl(na E(]’ﬁv W)

Remark 3.5. We emphasize that, in one dimension lower, Wang—Wei have
proven [WW19a] that stable critical points of E. satisfy curvature bounds even
without the assumption of uniformly bounded energy.

Remark 3.6. It is not immediately obvious that the enhanced second fun-
damental form A is well defined on B§/4(O)ﬁ{|u] < 1—p}. This can be seen, for
instance, by applying the following proposition with n = 3. Its “non-existence”
condition, when n = 3, is guaranteed in view of the work of Ambrosio—Cabré
[ACO00]. (See also the work of Farina-Mari-Valdinoci [FMV13].)

PROPOSITION 3.7. Let u : B}'(0) — (—1,1) be a stable critical point of
E.L B}(0) with (E. L B7(0))[u] < Ey. If e < g9 and R™ with the standard
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metric does not carry any non-trivial (i.e., heteroclinic or £1) entire stable
solutions with Euclidean energy growth, then

e|Vui| > cgt >0 for all v € B3, (0) N {ul <1 -3},
where g, cg depend on Ey, B, W.

Proof. We argue by contradiction. If the assertion were false, there would
exist a sequence

{(wi i) iz, € CF(B1(0);:(=1,1)) x (0, 00), lime; = 0,

where each w; : BY"(0) — [—1, 1] is a stable critical point for E., L B}'(0), with
(E;,LB7(0))[u;] < Ep, and so that lim; £;Vu;(¢;) = 0 along some {g; }i=12... C

By, 4(0). The rescaled functions

vi(z) = uilei(r — ¢))
are all stable critical points of F LB&‘M%’D J24(0) with Euclidean energy growth.
Since the ellipticity constants are uniform at this scale, we may pass to a
subsequence with lim; v; = v in Cﬁ(R”), where vy, is a stable critical point
of E1 L R" with Euclidean area growth, |v.(0)| < 1— 3, and Vv, (0) = 0. No
such v exists; the only entire stable solutions on R™ with Euclidean energy

growth are the constants +1 and the one-dimensional heteroclinic solution. [
We are now in a position to prove Theorem 3.4.

Proof of Theorem 3.4. If the assertion were false, there would exist a se-
quence

{(ui,ei)biz12,.. C COO(B%(O); (—1,1)) x (0,00), lilmai =0,
where each u; : B3(0) — (—1,1) is a stable critical point for E., L B$(0), with
(E., L B{(0))[u;] < Ep, and so that the maximum value
max {dis.t(:L',R3 \ B§/4(O))\A(ac)\ cx e BO)N{|ul <1 - ﬂ}}

is attained at some ¢; € B§/4(O) with
lim dist(g;, dB3,(0))|Ai(gi)| = oo.

Next, let A\; = |.A4;(¢;)], which we note also satisfies lim; \; = oc.

Claim. liminf; e;\; = 0.

Proof of claim. Rescale to v;(x) = u;(;(x — ¢;)), a stable critical point of
Eq I_B:éi'qiD/Ei(O) with quadratic energy growth and |v;| < 1 — 3. Since our
ellipticity constants are uniform at this scale, we can pass to a subsequence such
that lim; v; = v In C'I%OC(R:;), where v is a stable critical point of E; L R3
with [v(0)] < 1 — 8. The only such vy is the one-dimensional heteroclinic
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solution, for which A, = 0, and therefore liminf; ;\; = |Ax(0)| = 0. This
completes the proof of the claim. ([l

Pass to a subsequence for which liminf; g;\; = 0 is attained, and rescale
to w;(z) = u;(\;'(z — ¢)). This is a critical point of E.,), LB?3/4—|qi|)>\i(0)'
We note that

(3.32) lim 51')\1' = 0, 1im(3/4 — ]qz]))\z = Q.
Moreover, for every R > 1,
(3.33) (Beoni L Blsja_ i (0)(BR(0) < cR?

for all sufficiently large i. Here, ¢ > 0 is fixed. Combining (3.32), (3.33), to-
gether with the works of [HT00, Th. 1] and [Gual8, App. B] for the Riemannian
modifications, the 2-varifolds

Voo [ () 2 / (o, To T = (2)}) e Vi ()2,

for ¢ € C'E(Grg(B?3 4= A (0))), converge weakly to a stationary integral var-
ifold Voo € Io(R3). The enhanced second fundamental form estimates, more-
over, imply that spt ||Vao|| is 1! and, therefore, a smooth minimal surface.

Remark 3.8. We note that the most technical elements of [HT00], such
as proving that the limit varifold is integral, can be proven (in the setting at
hand) in a much more direct manner given the curvature estimates we now
know to be true.

The stability of w; is also known to imply stability of spt ||Vs||. Indeed,
one may plug ¢ = |V, ¥ € C®(R?), into the second variation opera-
tor 52E€i A la;, and let i — oo, and recover the second variation operator for
spt || Voo || with )]sy v Deing the test function. See also [Ton05].

Summarizing, spt ||Vl is a smooth, stable, embedded minimal surface
in R? (in fact, with quadratic area growth). Therefore, the limit is a a dis-
joint union of planes Pi, ..., P, C R3 with integer multiplicities m1,...,my €
{1,2,...}. Without loss of generality, P; = R? x {z;}, with 0 = 21 < 25 <
e < 2.

We will only need to focus on one of these planes, e.g., P;. Writing

{ti; = 0} N (B}(0) x [—22/2, 22/2]) = | graph fis,
=1

it follows from our rescaling that f;, : B7(0) — R all converge, in the C1@
sense on B% /2(0), to the zero function as i — oo. In fact, by dilating as needed,
we find ourselves in the setup of Sections 2.1-3.1.
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Therefore, by employing Proposition 3.2 (in fact, Proposition 3.1 suffices),
it follows from (2.30) that

(3.34) lim sup [|Ai | o, (160171 <1-5y) < ¢ limsupTe(1/6),
71— 00 1—00

for all £ € {1,...,Q}, where Iy is as in (2.27).
Claim. The right-hand side of (3.34) is zero.

N Notice that this claim violates the fact that our dilations were such that
|A4;(0)] =1 for alli=1,2,..., and Theorem 3.4 follows.

Proof of claim. From the Riccati equation, (A.2), it suffices to check that
the second fundamental form of {|u;| = 0} converges to zero. This follows from
our Holder estimate on the mean curvatures from (2.21), Lemma 2.8, and the
fact that our graphing functions converge to zero in C'. O

This concludes the proof of the curvature estimates. ([l

COROLLARY 3.9. Let (M,g), u, €, €1 be as in Theorem 3.4, and let 0 €
(0,1). Then,

[H{u:t}]e,{u:t}mB§/3(o) <cj fordlt| <15,
where ¢ = ¢y (n, Ey, 8,0, W).

Proof. Formulas (2.33) and (2.34), Lemma 2.8, and Proposition 3.2 to-
gether give C? bounds on the mean curvatures of {u = 0}. The improvement
to C*? bounds on the level sets comes from (quasilinear) Schauder theory and
Theorem 3.4. ([

4. Phase transitions with bounded Morse index (n = 3)

4.1. Multiplicity and Jacobi fields. In this section we prove that uniform
bounds on the Morse index generically prevent multiplicity from occurring in
the Allen—Cahn setting. Specifically,

THEOREM 4.1. Suppose (M3, g) is a compact Riemannian 3-manifold pos-
sibly with OM # 0, and suppose that u; € C°(M;[—1,1]), ; > 0, where each
u; 15 a critical point of E;, and

(4.1) E.[u;] < Ey, ind(u;) < Ip for alli=1,2,....

Suppose lim; e; = 0. Passing to a subsequence, write V 2 lim; halVgi [u;] for
the limit 2-varifold. Then'V is a stationary integral varifold, spt ||V|| is smooth
in the interior of M, and if ¥ denotes a connected component of spt ||V || that
s a compact submanifold without boundary, then one of the following is true:

(1) ¥ is two-sided and ©%(V,-) =1 on ¥ (i.e., ¥ has multiplicity 1);
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(2) B is two-sided, ©*(V,-) > 2 on ¥ (i.e., multiple interfaces have converged),
it is stable (see (1.3)), and it carries a smooth positive Jacobi field; or

(3) X is one-sided, and the two-sided double cover of ¥ is stable and carries a
smooth positive Jacobi field.

Proof. For pe M, i=1,2,..., define the index concentration scale by
(4.2) R(p,i) £ inf{r > 0: ind(u; B,(p)) > 1},
and then further let
X2 {pe M :liminf R(p,i) > 0}.
i—00

By passing to an appropriate subsequence at the beginning of the proof, an
clementary covering argument allows us to assume that H0(2\ 2) < Io.

The curvature estimates from Theorem 3.4 combined with the varifold
convergence of Vz,[u;] (from” [HT00, Th. 1], and [Gual8, App. B]) show that
along Xo], the limit varifold is supported with integer multiplicity (possibly
greater than one) on a C'! (and thus smooth) minimal surface. At this point,
we may argue that ¥ extends smoothly across the index concentration set
>\ ¥ exactly as in [Gual8, Prop. 3.10]. We emphasize here that by using our
curvature estimates, we give a proof of the regularity of ¥ that does not rely
on the deep works of Wickramasekera [Wicl4] and Tonegawa—Wickramasekera
[TW12] (cf. [Gual8], [Hiel8]).

We now assume that ¥ is connected (in general, one can apply the follow-
ing argument to each component of the support of the limit varifold V).

First, suppose X is two-sided and denote

U £ tubular neighborhood of ¥ such that (X UOM)NU = 0.

We may suppose that U = Z5 (X x (=1, 1)).

By the Constancy Theorem [Sim83, Th. 41.1], ©2(V,-) is constant on X.
If ©%(V,-) = 1 somewhere on X, then ¥ occurs entirely with multiplicity one
as claimed.

In what follows we may assume, then, that ©2(V,-) =m € {2,3,...} on X.

Let us assume, for the time being, that Iy = 0, i.e., that the critical points
u; are all stable. The general case will be dealt with later.

It follows from (4.1), Corollary 3.9, and the two-sidedness of ¥, that the
level sets {u; = 0} N U converge graphically in C?? to . In the case that
{u; = 0} NU were minimal surfaces, it is standard to produce a positive Jacobi
field on ¥ out of this setup. We recall the argument here, with the necessary
modifications for our lower regularity situation.

"See Remark 3.8.
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Since ¥ is two-sided, the level sets {u; = 0} N U (which are smoothly
embedded) can be ordered by their signed distance to 3 in a fashion that is
consistent across Y. Without loss of generality, we may assume that there are
Q = 2 level sets.® To stay consistent with Section 2, let us label the level sets

Fi,la 1—‘74'72 C {ul = 0} NnU.

Denote their corresponding height functions (over X) as f;1, fi2 : ¥ — R,
¢ € {1,2}, so that f;1 < fi2 on ¥. We recall (A.13) from Appendix A, which
tells us that

. ; Vg, it
., = —d1v
Tie 9fie ( —|—gf Z(fZ ) (fi,f)q)l/Q

I, (fio)p(fik)q
- Q +gy, (fie)p(fin)g)'/?

for £ = 1, 2. Here we are using notation from the appendix, where, e.g.,
g=g,+dz>onU.

We now claim that Hr,, — Hr, , satisfies a linear uniformly elliptic equa~
tion in fj2 — fi1, whose parameters (obviously) depend on f; 1, fi2. Indeed,
(4.3) tells us that

(4.4) Hr,, = —A(fi0) divs (B(fie, Vs lie) Vs fie) + C(fie, Vs fie)
for smooth functions (for each p € X)
A=A, R—R,
B =B, : R xT,% - End(T,%),
C=C,:RxT,X >R,

(4.3)

+ 1+ 9?:17,3(fi,l)p(fz‘,f)q)l/QHfi,z

which, additionally, satisfy that A > 0, % is positive definite. More specifically,
at each point p € X,

13

A(z) £ \/gio, z€R,
gz
\/u‘E g?g?kwjayk
\/QT) (1 4 ggqggkgo Vkve)l/gv
e gl,pgqu iyd
(1+gpq 0 go vhvl)1/2
+(1+g7 90 WOV, 2 € R, v € T,Y.

[I>

B(z, V)W zeR, v,weT,X,

IID

C(z,v)

8Otherwise, we apply the same argument verbatim to the top and bottom level sets,
ignoring all intermediate ones.
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From the fundamental theorem of calculus, as well as the fact that the
two divergences (for the two cases ¢ = 1, 2) are pointwise bounded (because
the two mean curvatures are bounded), it follows that

(4‘5) HFi,2 - HFi,l = _AdiVE(@VEfi + fza) + <b7 vEfi>Z + E\fz on X,

where f; £ fio — fi1 > 0 on 3, with coefficients

B =B, R x (T,%)% - End(T,%),
C=C,,D=D,:R>x (%)’ > T,%,
E=E,:R*>x (T,%)® - R,

whose arguments are (f;1, fi2, Vs fi1, Vsfi2) € R? x (I,X)%. These coeffi-
cients are uniformly bounded and satisfy

A>p, (Bv,v)s > p|v|3, v € T,
for a fixed p > 0, provided

limsup || fi1llcr(z) + [ fizllor ) < oo

1— 00

It will be convenient to carry out the exact computation, as that will allow
us to study a particular rescaled limit as ¢ — oco. It will also be convenient to
denote

Ci(t) £ fir+t(fio— fin) = fia +tfi, t €[0,1].
Note that
(V=i ¢V = fiao and 2 = fion %
Let us define @, 6, ﬁ, E. The easiest term to deal with in (4.4) is the

low order term, C'. Indeed

1
C(fi2,Vsfi2) —C(fi1,Vsfii) = [/0 DzC(CZ-(t),VEQ(t)) dt] fi

E\, term 1 out of 2

1
+ / DO, Ve dt, Vs,
0

D
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We study the higher order term in two steps. First,

B(fi2,Vsfi2)Vsfio— B(fi1, Vafi1l)Vsfia
1
= ([ / D2, Vv dtD fi
0

C

1
+ [ / Dy B¢, Vv dt} Vs fi
0

g

3?, term 1 out of 2

1
+ [ / B, Vi) dt} Vs fi.
0

ﬁz term 2 out of 2

Second,

(A(fi2) — A(fin)) dive(#B(fi2, Vs fi2)Vsfi2)

1
= ([/0 DZA(Ci(t)) dt] diVZ(«%’(fi,l,szi,l)vzfi,1)> fi-

E‘, term 2 out of 2

We now return to the qualitative study of f;. Applying the Harnack
inequality in divergence form to (4.5) (after multiplying through by A=1), we
get

(4.6) sup f; < cirzlf fifori=1,2,...
)

with a constant ¢ > 0 that does not depend on i. From Proposition 3.2 and
Corollary 3.3, we know that

[ Hr; ,llcor, )

(4.7) lim =0forf{=1,2,
iwoo  gi] loge;]
e f
(4.8) liminf 2SS
1—+00 e@-]log€¢|
Define the normalizations
(4.9) fi & (S;P )72 = R,

where ¢ is as in (4.6). In view of (4.5), fi satisfies the linear, uniformly elliptic
equation (note that we have multiplied through by A~!, which is uniformly
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bounded):
(4.10)

HFi,Z - HFi,l
A -supy f;
We will test this PDE by multiplying through by some ¢ € C*°(X) and inte-
grating by parts. By testing, first with ( = f;, we get uniform energy estimates
limsup/ Vs fil? < co.
b

1—00

= — dng(@Vgﬁ + ﬁ/C\) + (A_ID, V2ﬁ>2 + A_IE\E on .

Moreover, since fz is (trivially) bounded, it follows from Rellich’s theorem that
there exist f € W12(2) and a subsequence such that

fi = Fin WYA(R), fi — f in LA(D).
Therefore, since the coefficients in (4.10) are all uniformly bounded as i — oo,
it follows that we can test (4.10) with arbitrary ¢ € C*°(X) and pass to a
subsequential limit ¢ — oo.

The left-hand side of (4.10) converges to zero uniformly as i — co because
of (4.7)—(4.8) above. Thus, f is a W!2-weak solution of

(411)  —divs(ZoVsf + fCoo) + (A Duo, Vs /) + AL Ef=0o0n S

where Ay, @oo, 600, ﬁoo, ]/E’\Oo are just the same coefficients, except now they
are evaluated at the limiting configuration of (0,0, 0,0). It is not hard to see,
using the evolutions in Appendix A, that

A =1, :@?OO =1d, 600 = ﬁoo =0, and E. = —(| Iy, |2 + Ricy (v, vy)).
Thus, f is WW2-weak solution of the Jacobi equation
(412) (AE+ |H2’2+RiC9(VZ,I/2)‘Z)h:O on X.

It must be smooth—and thus classically a solution—by elliptic regularity.
Moreover,
l<fi<iforalli=1,2,... = l<f<1.

In particular, the function is positive. It follows that the principal eigenvalue
of the Jacobi operator is zero, so ¥ is stable.” The result follows.

We now drop the stability assumption and proceed to the general case of
Iy € {0,1,2,...}. We continue to assume that ¥ is two-sided. Without loss
of generality, we will assume Iy = 1 from this point on. The general case is
similar.

9The fact that ind(u;) = 0 for all i = 1,2,... implies the stability of ¥ is not new; see
[Ton05], [TW12], [Hiel8], [Gas17]. Nonetheless, by appropriately generalizing the argument
given here, we are going to be able to extend the conclusion that ¥ is stable in the case where
ind(u;) < Ip fori=1,2,..., Iy € {0,1,...} and convergence occurs with multiplicity > 2.
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The index concentration set is either empty (in which case, we can argue
as in the previous case) or satisfies ¥ = X\ {P,} for some P, € ¥, and the
convergence of {u; = 0} N U to ¥ is graphical C’IQO’CH on ¥\ {P.}. Notice that
by definition, for every r > 0, there exists a subsequence along which

(4.13) ind(us; M\ B,j5(P.)) = 0.

Our previous discussion regarding the stable case applies verbatim to M \
Cy(P,) where, in exponential normal coordinates,

CP(P*) = B;%(P*) X (_171)3

and yields functions fi1, fi2 : ¥\ B2(P,) — R representing the incomplete
properly embedded surfaces-with-boundary

(4.14) F@l, F@Q C {’U,Z = 0} NnU \ CT(P*).

Remark 4.2. Recall that we assumed U is the image of the normal expo-
nential map of ¥ restricted to 3 x (—1,1). Then, 0C,(P,) NU = 8B§(P*) X
(—=1,1) for every sufficiently small p > 0.

All of (4.3)—(4.8) continue to hold over ¥ \ B2(P,) instead of . All
the constants inevitably depend on our choice of r > 0, which is yet to be
determined. We note that, trivially, the energy estimate

limsup/ Vs fi]? < oo

i—oo  JY\BZ (P,)

holds true for any fixed » > 0 by our previous discussion. In fact, because
L1\ Cr(Py), T'i2 \ Cr(Py) converge in % to 2 \ B2(P,) as i — 00, a subset
of the fixed surface ¥, the coefficients of (4.5) will satisfy

lllfjélp thUPHAHCO(z\B L a(P) )+ 1B o (S\BZ, ,,(P.))

+ICllcomaz . (py + IDllcom 52 p*»+HEHCO<E\B§N2<P*>>] <%0

3/2 3/2

and therefore, we will have the uniform energy estimate

lim sup |lim sup / |fil?
r—=0 i—oo JE\B2 (P:)
This means we can pass to a limiting ]? in the following sense:

(4.15) fi—= Fin W), fi = fin L2.(2).

loc
Now, (4.6)—(4.8) also hold for each fixed r > 0, with the sup and inf taken
over £\ B2(P,) and the C° norm of Hr, , taken over I'; \ C;(Py); the constant
c and rates of convergence of the limits, a pr10r1 depend on 7. Nonetheless
fe VVl %($) is a weak solution of (4.12) on Y. By elliptic regularity, fis
smooth and solves (4.12) classically on 3.
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PROPOSITION 4.3. f € L®(X), f # 0 almost everywhere on .

We defer the proof of Proposition 4.3 to the next section, since the argu-
ment is of independent interest.

This proposition, once verified, completes the proof of Theorem 4.1: By
standard removable singularity results for elliptic PDE, ]? must extend to a
smooth non-negative solution of (4.12) on ¥, which is not identically zero, and
the result follows as it did in the stable setting.

Finally, we explain the necessary modifications when ¥ is one-sided. As-
sume, as above, that Iy = 1. (The general case is similar.) As before, we can
define 3 to be the complement of the index concentration set. Considering a
tubular neighborhood U of ¥, we can use the normal exponential map to lift
Yand u: U — R to ¥ C U, where ¥ is the orientable double cover of ¥ and
U is the associated lift of U. We can assume that U is diffeomorphic (via the

normal exponential map) to ¥ x (—1,1). Let 3! be the Lift of 32. Observe that

>\ Y contains at most two points (more generally 2] points).

Note that the covering map 7 : U — U admits an deck transformation
7 : U — U with 72 equal to the identity. Define @ £ u o 7, which is still a
critical point of E,,. Clearly @to 7 = 1.

We claim that the convergence of @ to ¥ occurs with even multiplicity.
If not, (up to switching the normal vector) we can assume that &« — —1 on
3% (—1,0) and & — 1 on X (0,1). (This is clear on ¥, which then implies that
it holds for all p € ¥.) Note, however, that 7({p} x (0,1)) = {r(p)} x (—1,0);
otherwise, we would find that 3 was two-sided. This contradicts the fact that
% is invariant under 7.

Thus, the convergence of % occurs with even multiplicity (and thus mul-
tiplicity at least two). Now, the argument above can be applied verbatim to
> and @ to produce a smooth positive Jacobi field on 3. (We emphasize that
it is not clear what the index of % is; here, we rely on the index bounds of u
to bound the cardinality of ¥\ E after this step, the definition of E rather
than the index bounds is all that is used.) As above, this implies that X is
stable. O

4.2. Sliding heteroclinic barriers. For the reader’s convenience we start by
recalling the following important result of White on local foliations by minimal
surfaces.

PRrOPOSITION 4.4 ([Whi87, Appendix]|). Let ® be an even elliptic in-
tegrand, where ® and Do® are C*Y. Let ®, be the integrand defined by
O, (x,v) = ®(rx,v). There is an n > 0 such that if r < n and if

w:B; CR? = R, ||w||g2e <,
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then for each t € [—1,1], there is a C*? function v : By — R whose graph is
®,.-stationary and such that

v(x) =w(z)+t if v € 0B.

Furthermore, v; depends in a C* way on t so that the graphs of the v; foliate a
region of R3. If M is a C' properly immersed ®,.-stationary surface in B1/2(0)
with OM C graph v, then M C graphv,.

We will use the minimal disks constructed by this proposition to construct
barriers (using Theorem 7.4) that will allow us to control the height of the top
and bottom {u; = 0} sheets near P,. This can be thought of as a variant of
the moving planes method adapted to the Riemannian Allen—Cahn setting.

Proof of Proposition 4.3. We continue with the same notation as in the
previous section. Let p > 2r be sufficiently small so that (4.13)-(4.14) still
apply.

Let wj : ng(P*) — R be a harmonic function (defined on B%p(P*) cy)
with boundary data

Ww; = fi72 on 8B§(P*)
Recalling, from Corollary 3.9, that f;2 — 0 in 02,9(322/](13*) \ Bg/2(P*)), it
follows that (by potentially going farther down the sequence of i = 1,2,...)

|wil|c2.6 — suitably scaled — is small enough for Proposition 4.4 to apply.
Once we are in that regime, Proposition 4.4 guarantees a foliation

ts Dy (1), t € [5,0],

consisting of minimal disks that all project to Bﬁ(P*) C X. Without loss of
generality, we may suppose that the foliated region Uy, 5D; ,(t) lies entirely
within U. Note that

(1) the curves t — 9D; ,(t) move at unit vertical speed in 0C,(P;);
(2) the second fundamental form of the disks D; ,(t) is bounded in C%Y uni-
formly over i = 1,2,...,t € [-0,0],

(4.16) | Ip, 0| + Mo, ,)le < m,

and 7 > 0 can be made arbitrarily small.

As a consequence of (4.16), (2.7), and minimal surface curvature esti-
mates, the disks also satisfy the following weaker C3? bound uniformly over
i=1,2,...,t€[-407],

(4.17) eIV, I, |+ Vo, 0 I, ,mle < .

after possibly relaxing 1 > 0, which can still nevertheless be made arbitrarily
small.
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We will now use a sliding/moving planes argument that relies on the
barrier construction in Section 7, adopting relevant notation from therein. We
assume, without loss of generality, that

(4.18) u >0 above I'; 5 in U\ C,5(Fy).

Our constructions below will take place for ¢ = ¢;, ¢ = 1,2,..., but we
suppress the dependence on i for the sake of notational brevity.
Define x : R — [0,1] to be a cutoff function such that

. 1 |s| < Bellogel,
X(s) =
0 |s| > 2Be|loge|,
where B > 1 is to be chosen later. This can be constructed so that
X" = O((e]loge|)F) for k> 1, e — 0.

Let us very briefly run through some notation which is introduced later, in

(4.19)

Section 7; we will need to use some of it here in invoking that section’s main
theorem. In Section 7 we consider 0, € (0,1) fixed and a Hélder exponent
a € (0,1), a < 0, where 6 is as in (4.16), (4.17). (We will eventually choose
a near 0 and ¢ near 1.) In (7.11), cutoff functions x; are introduced that are
supported on strips of width O(e%) (while ¥ is supported on a thinner strip of
size O(e|logel)). Finally, in (7.12), x1 is used to define a suitably truncated
approximate heteroclinic solution ﬁs that is constant outside a strip of size
O(e%); see Remark 7.2.

Given this notation, let us set
1-e3—H (s) s>0
~f A A~ 1/ —1 ~ £ ’
v*(s) = s)H' (e™"s) + (1 — x(s ~
(s) = yX(s)H (67 "s) + (1 — X( )){_1_HE(S) s <0,
where v € R is chosen so that the orthogonality constraint
oo
(4.20) / o*(s)H' (e7ts) ds = 0
—0o0

holds. Recalling (1.5) and (1.6), and that d, € (0,1), (4.20) is equivalent to
(4.21)

v(ho —o(1)) = O(e™) / (1 —H(e 1 s))H (e s) ds

Belloge|
47 s,
9y [50° 1r—1
+0(e )/ |H (¢~ "s)| ds
2Be|loge|
[e'e} %85*’1
—o() [ (B ds+0E) [7 () ds
Bl loge| 2B|loge|

= O(1) exp(—2V2B|log ¢|)
+ O(3) exp(—2v2B|loge|) = 0(52‘53).
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Also,

(4.22) ||)2(3)H'(5_1s)||052,a(R) =0(1) ase — 0.
Taking B sufficiently large, (4.21) and (4.22) together imply
(4.23) H@ﬁ(S)HCgA(R) =0(e”).

Next, for (y,s) € d(B3(Py) x [—3.3]), define

b L (1 —vauls 1= ~He(s) 5>0
0 (y,s) = (1 — xa( )){_1—ﬁ€(s) s < 0.

Recall that x4 is defined in (7.11). It is easy to see that Hﬁbch,a = 0(e?). In
fact, X5f1b =0, so

(4.24) 19| g2.0 = O(?)

as well. (See (7.16) for the definition of 5820‘)

We emphasize that everything from (4.19) to (4.24) above is agnostic
of our particular solutions with bounded Morse index. They will serve as
prescribed boundary data for solutions of the Allen—-Cahn equation on the

11

fixed product manifold Bf, X [—=3, 3], albeit with varying interior metric that

will depend on g, i = 1,2,..., p, and t € [—0,0]. Indeed, we let
(4.25) gi,(t) £ pullback metric from Zp, ,t)(Dip(t) X [—3.3)cU
to Bg x [—1, 1] under Fermi coordinates (y, s) with respect to D; ,(t).

We may apply Theorem 7.4 with %, ¢” as above, é = 0, and with the
Hélder exponents a near 0 and € near 1 per the theorem, to = Bz X [—%, %]
and the non-constant Riemannian metric g; ,(t). Note that the conditions of
the theorem are met trivially for ¢ and are also met for of, ©° by (4.23)(4.24).

The theorem yields b; ,; : €2 — R such that

(4.26) E?Agi,p(t) bi,p,t = W/(bi,p,t)
and, for all (y,s) € 99,
(4.27) bipt(y, 8) = H(s) + xa(8)0%(5) + 0 (y, 9).

b

We constructed of, ©” specifically so that

1—¢e2 (y,s) €09, s> 2Be;|loge;l,
(@2) b= €O o= Ballose
-1 (y,s) € 09, s < —2B¢;|loge;]|.
Claim. For every 8 >0, ¢; < 1, we have
(4.29) i pt(y,8)]| <1—pB = |s] < e,

where ¢ = (W, 3,n,¢p) > 0.
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Proof of Claim. This is a straightforward consequence of the ansatz b; , ; =
(He + xav* + %) 0 D¢, [[v¥co, [[0”[lco = o(1), ]l = O(¢f~**), and (1.5), at

7
least provided we take a small enough. O

Claim. For sufficiently large 1,
(4.30) bi,p,é < (ZDi’p((;))*ui on ).
Recall that 6 > 0 represents the “top” of the foliation D; ,(6).

Proof of Claim. Let us agree, for the remainder of the proof of this claim,
to write u; instead of (Zp, ,(5))"ui- We seek to show that G £ {xecQ:
b;p5(x) < ui(xr)} coincides with 2. (Recall that we are assuming (4.18).)

Fix 8 € (0,1) so that W” > 2k? > 0 on [-1,—1 + B]U[1 — B,1] for some
x> 0. From (4.29), {|b; 55| <1— B} is contained in an O(e;)-neighborhood of
D; ,(6). From [HT00, Th. 1], {|u;] <1 — S} converges, in the Hausdorff sense,
to . In particular, for sufficiently large i,

Q@N{luwil <1-8HU{[bi,psl <1-B}CG.
Note that

E2A (1 —u) = —W () = YOWI) (9 ) > 2462(1— wy) on {u; > 1— B},

1—u,

A (1+ui) = W (u;) = WD (14 0) > 262 (14w;) on {u; < —1+},

so by an application of the barrier principle together with the saddle property
of W at zero (see [KLP12, Lemma 4.1]), we get

(4.31) luf — 1| = O(exp(—re; " disty(-, {u; = 0}))).

Combined with (4.28), this shows 9Q C G for sufficiently large i. Thus,

(4.32) QNG CQ\ (U {|us] <1—=BYU{|b; 5] <1—5}).

Subtracting from (4.26) the PDE satisfied by u;, we see that
522A9(bi7p77' = u;) = () (bi,p,r — ui)

for c(x) £ (W' (b, p1(2)) — W (ui(z)))/(6ip.r(x) — ui(z)). This is negative on
2\ G by (4.32), and this violates the maximum principle unless G = Q. The
claim follows. O

Next, since

(1) biprand (Zp, (1)) u; both vary continuously in ¢ € [—4, 6] by Theorem 7.4,
(2) (4.30) holds true, and
(3) bi,p,fzs ﬁ (ZDi,p(f(s))*ui?
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there will exist exactly one 7; € (=0, ), and at least one QF € €, such that
(4.33)
bi,p,t < (ZDLp(t))*ui on ) for all t€ (Ti7 5]7 and bi,p,n (Q:) = [(ZDZ,P(TZ))*U](Q:)

Our goal is to estimate 7;. Abusing notation again, we will write u; instead
of (Zp, ,(r;)) i, and g instead of g; ,(7;). Thus,

(4.34) ui—bipr >00nQ, (u; —b;,,)(QF) =0.
Subtracting (4.26) from the PDE satisfied by u, we see that
E?Ag(ul - binD?Ti) = C('IE) (UZ - bivpv’r’i)

for c(z) £ (W'(ui(x)) = W' (i pr; (7)) /(ui(x) — by, (z)). Then the maximum
principle tells us that

(1) either QF € 092, or
(2) u; = b5, on

We only consider the first case here, since the second reduces to it by replacing
@7 with another point on 9. Note that (4.33), the fact that b; ,0lap, ) =0,
and the uniqueness of 7; give a lower bound on 7;:

(4.35) 7 > 0.
The upper bound is more subtle. We claim that
(4.36) T; < TBe;|loge],
provided B is chosen (independently of 7) such that
(4.37) disty(z, {u; = 0}) > 3Be;|loge;| = |ui(x)] > 1 — 5.

The existence of a B that satisfies (4.37) is guaranteed by (4.31).
It will be convenient to introduce the following notation (here, A > 0 is
some parameter):

N = {(y,5) € 92 s € [\, 5]},
D0 2 {(y.) €00t s € [—4, -]},
To start, let us estimate the height of Q7 from below. We have
u; > —1lon (M",g) = b, (QF) =u(Q;) > —1

so, from (4.28),
Qr € 00\ 992[2B¢;|log&|].

Equivalently, the image Cj’; of Q7 to (M",g) under Zp, () satisfies

Qr e Zp; ,(r) (0 \ 09Q[2Be;|log £[]).
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In particular, a* belongs to the open tubular neighborhood of the image
Z ZP(TZ)(ﬁQ[ 1) C (M™,g) with radius 3Beg;|loge;|:

(4.38) al* € B3B€i|10g€z'| (ZDi,p(Ti)(m[O]))'
We now prove (4.36) by contradiction. We will show that
(4.39) distg(ZDiyp(Ti)((")iQ[O]), {u; = 0}) > 6B¢;|log e

when (4.36) fails, i.e., when 7; > 7Bg;| loge;|.

Since D; ,(7;) is an o(1)-Lipschitz graph over ¥ (note that the argument
used to prove (4.30) shows that 7; — 0) and Zp, (-,)(99) L D; p(7;), there will
exist 7 > 0 (independent of ¢) such that and

Zp, () (OQ[0] \ 0Qn]) C Cyp2(P) \ Cppa(Ps)

for sufficiently large i. Moreover, lim; ,oo{u; = 0} = ¥ in the Hausdorff
topology ([HT00, Th. 1], [Gual8, App. B]), so

lim inf dist (ZD@p(Ti)(@iQ[n]), {u; =0}) >0

i—00

because 7; > 0 by (4.35). Thus, (4.39) will follow from
disty(Zp, (=) (0Q[0] \ 9Qn]), {u; = 0} N Cop(Ps) \ Cpya(Py)) > 6Be;|log ;|

when 7; > 7Bg;|loge;|. Since the components of {u; = 0} N Cay(Ps) \ C,/2(Px)
are well-ordered o(1)-Lipschitz graphs over X, with I'; o being the topmost, we
may equivalently show

disty(Zp, (=) (09Q[0]\ 992[n]), T;2) > 6Be;|loge;l.
Because D; ,(t), t € [0, 7], are all o(1)-Lipschitz graphs over X as well, we have
Vy(dist (5 Ty 2)), Vg (disty (1 Ds o(t))) > 1= o(1), t € [0, 7]

in a small (but definite) neighborhood of ¥ in Ca,(Px) \ Cp/o(Ps). Here dist;t
denotes the signed distance. From it follows that for every P € Zp, () (0Q[0]\

Q[n]),
disty (PsTi2) > (1~ o(1)) disty (P Di(0))
>(1—o(1)(m+ dlSti(P D; p(Tz>))
> (1 —o(1))7 > (1 —0o(1))7Be;|log ;| > 6B¢;|log e,
)

as claimed, and (4.39) follows. It is now an automatic consequence of (4.38)—
(4.39) that

dist (@f, {u; = 0}) > 3Beg;| log&]|.
Recalling (4.37), we find that |u;(QF)| > 1 —¢&?. Combined with d1sti( iTi2)

> 6B¢;|loge;| > 0, which guarantees that w;(Q) > 0, we conclude that
u;(QF) > 1 — &3. This contradicts (4.28). Thus, (4.36) is true.
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Summarizing (4.35) and (4.36), we have 0 < 7; < 7B¢;|loge;|. Combined
with the defining property (4.34) of 7, we get the following height estimate
over X

fip < BPorlm) < pPie(TBelloss) on 320 BS (P,) \ B2(P),

where

(1) fi2 : X\ B2(P.) — R is the height of T'; 2 over 3, with r € (0, p/2) as in
(4.13) and (4.14), and
(2) hPir® denotes the height of the minimal disk D; ,(t) over .

The same sliding argument, carried out below the bottom-most sheet I'; 1
of {u; = 0}, similarly gives

fin > hPuCTBElsSD oy 30 B2 (P,)\ B2(P,).

Notice that we are denoting the disks by D; ,(—7B¢;|loge;|), since they come
from a different foliation, namely, the one generated by applying Proposi-
tion 4.4 to w; = f; 1. Therefore, by the regularity of the foliation guaranteed
by Proposition 4.4, we have

. ) . I (_7Be. .
fi _ fi,Q . fi,l < thyp(7Baz|log51|) . th,p( 7Be;|loge;|)

<c (7B€Z~| log ;| + hPie0) — hDQ,p(0)>

<d <€z‘ loge;| + max (hPivr — hDi»ﬂ)>
B2(p)(Px)

<c (Ez’ log e;| + agéﬁ(%*)(fzg fz,l))
on XN B%p(P*) \ B%(P,). The last inequality follows from the maximum prin-
ciple. We emphasize that ¢’ is independent of 7 and r.
The proof of Proposition 4.3 is essentially done. Indeed, fix 0 < r < p/2.
By what we have shown so far, we have

sup fi < <51|10g€z’ + sup fi) .

S\BZ(Px) E\BZ(Px)

By the Harnack inequality (4.6) and sheet separation lower bound (4.8) on
S\ B3, (P),

sup fi <’ inf
Y\B2(Py) E\B3(Py)

This holds independently of 7, r, so the renormalized limit ftaken in (4.15)
(first with ¢ — oo and then with » — 0) is nontrivial. This completes the proof
of Proposition 4.3. O
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5. Phase transitions with multiplicity one

In this section we return to working in arbitrary dimension n > 3, and
we consider a compact Riemannian manifold (M",g) and a sequence u; €
C*(M;(—1,1)) of critical points of E.., ¢; > 0, E. [u;] < Ep, for all i =
1,2,..., with limje; = 0. Let V £ lim; halVEi [u;] denote the limit station-
ary integral varifold, which exists by [HT00, Th. 1]; see [Gual8, App. B] for
Riemannian modifications. In this section we will assume that

©" H(V,)=1on X £spt|V],

5.1
(5:1) which is a smooth minimal surface C M \ OM.

In other words, we assume that the limit V' is smooth and that it occurs with
multiplicity one. (We are not assuming any bounds on the Morse index.)

Remark 5.1. We recall that this is automatically the case when

(i) 3 < n < 7 and each w; minimizes F., among compact perturbations in
M (by [HTO00, Th. 2]); or

(ii) n = 3, limsup, ind(u;) < oo, and ¥ carries no positive Jacobi fields (this
follows from Theorem 4.1).

We emphasize that this section requires only the multiplicity one assumption
(5.1), not (i) or (ii).

The main goal of this section is to prove Theorem 5.11. Roughly, it says
that the Morse index is upper semicontinuous. Note that, in general, one
only expects the index to be lower semicontinuous. This has been recently
confirmed in the work of Hiesmayr [Hiel8]; see also Gaspar’s generalization to
one-sided limit surfaces [Gas17]. Upper semicontinuity hinges strongly on the
multiplicity one assumption, as the following example suggests:

Ezample 5.2. Let (u;,€;), i = 1,2,..., lim;e; = 0, be a sequence con-
structed by [dPKWY10] to converge, with multiplicity > 2, to a two-sided
minimal surface ¥ in a closed Riemannian 3-manifold (M3, g) with positive
Ricci curvature. Then, by Theorem 4.1, lim inf; ind(u;) = oo, because ¥ can-
not be stable and there there are no stable two-sided minimal surfaces in the
presence of positive Ricci curvature.

In order to study the semicontinuity of the Morse index, we need to obtain
a detailed understanding of the convergence of the u; and their level sets to 3.
Somewhat surprisingly, the regularity estimates in Section 2 (or [WW19a, §15])
do not seem to suffice for our purposes. Instead, we must upgrade the estimates
so that we have an explicit understanding of the O(g?) term in (2.18). We
use an ansatz inspired by the work of del Pino-Kowalczyk—Wei [dPKW13],
although our setting is different: rather than having constructed u, we are



ALLEN-CAHN ON 3-MANIFOLDS 265

given an arbitrary solution u converging with multiplicity one. This technique

does not seem to have been previously considered in the context of regularity
in Allen—Cahn.

5.1. Improved convergence. Note that by scaling M, we can arrange that
(2.1)—(2.2) hold; we will do so without further remark in the sequel. Note that
then, due Lemma 5.3 below, (2.3)—(2.7) hold as well. Thus, Section 2 applies
(as does [WW19a, §15] in the flat setting).

LEMMA 5.3. Let U CC M\OM be a neighborhood of £, and let 5 € (0,1).
Then, for sufficiently large i, €;|Vu;| > ¢ >0 on U N {Ju;| <1—5}.

Proof. We argue by contradiction. If the result were false, we would be
able to pick a subsequence (labeled the same) along which there would exist
z; € UN{|ui| <1— B} with &;|Vu;(z;)] — 0. After rescaling by ¢; ! around
x;, the rescaled critical points u; converge to a non-trivial critical point of
E; on R™ with |u(0)] < 1 — 3, Vu(0) = 0. By the monotonicity formula
(see [HT00, §3] and [Gual8, App. B]) and multiplicity-one convergence at the
original scale, we see that the tangent cone at infinity of u is a multiplicity-one
plane. Hence, by [Wanl7, Th. 11.1] (cf. [Manl7, Th. 3.6]), u has flat level sets.
This contradicts |u(0)] < 1— 3, Vu(0) = 0. O

Combined with the multiplicity-one analysis in [WW19a, §15] (cf. Sec-
tion 2 and Remark 2.6 above), we may argue as in the proof of Theorem 4.1 to
conclude that ¥ = sptV is a smooth two-sided embedded minimal hypersur-
face and the convergence of the level sets of u; to ¥ occurs in C2¢. (Of course,
convergence in the Hausdorff sense follows immediately from [HT00, Th. 1].)

LEMMA 5.4. IfU CC M\ OM 1is a neighborhood of 3, and 0,5 € (0,1),
then UN{u; = t} converges uniformly in C*% to & for everyt € (—1+3,1—p).

Proof. By Section 2, it suffices to check that the level sets are bounded
in C2. One uses a blow-up argument again, as in the proof of Theorem 3.4.
Suppose that the enhanced second fundamental form were not bounded. Pick
z; € UnN {|Ju;] < 1— B} such that \; = |A;(z;)| are within a factor of 1
from supyngjy,j<1-gy il thus, A; — oo. Note that limsup; Aie; < oo by
elliptic regularity. Moreover, we in fact have that lim sup; \;e; = 0 because (by
[Wan17, Th. 11.1] and monotonicity) there are no non-trivial (i.e., non-constant
and non-heteroclinic) entire critical points of Fy in R™ with a planar tangent
cone at infinity. In particular, rescaling by )\i_l around z;, we get a sequence
(u;, €;) with & — 0 and uniformly bounded enhanced second fundamental form,
|4;(0)| = 1, and which therefore converges to a C'! minimal surface in R™.
However, by monotonicity, this minimal surface is a plane; this contradicts
|A;(0)| = 1 by Remark 2.6. O
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Let us return to the notation and conventions used in Section 2. Also, we
drop the subscript .

Because of the multiplicity one assumption, we have reasonably strong
estimates on ¢, h, and Hr; see (2.17). We will write h for h, U for Ufh], I’
for I'1, and d for dj, since @ = 1. We record the specialization of (2.20) and
Lemma 2.3 here (cf. [WW19a, §15], and [Manl17, Th. 3.6]):

(62 18lczo + el Arh = Hrllggo )+ [kl o, < e,

where M £ {X € M : |d(X)| < 1}. As we have already indicated, we must
upgrade our estimates for Aph — Hrp in (5.2) as well as determine the O(e?)
behavior of ¢.

Let us work in Fermi coordinates around I' so as not to write the diffeo-
morphism Zp explicitly below. We will also denote I', = {X € M : d(X) = 2}
and will write H for H?3/esel,

We can compute the equation for ¢ as follows. Using (A.2), (A.3), (A.7),
as well as (2.3)—(2.7), (2.15), and (5.2), one computes the following in M (see
[WW19a, (9.4)]):

(5.3)
e?Ayp = ?Ar, ¢ + e*Hr,0,¢ + 2026
= W'(u) — e2Ar, U — e?Hr,0.U — 20°U
=W/ (U +¢) — (W'(U) + O(e*))
+e(Ap.h— Hr.) - H (7' (z = h(y)) — [Vr.h[? - H'
= W"(U)¢ + e((Arh — Hy) o IIp) - H'(71(z — h(y)))
+e((|Ip [ + Ricy (D, 8.)) o Ip) - z - H (e (2 — h(y)))
+&%0(|2]) - H (71 (2 — h(y))) + O(®).

By using (5.2), (5.3), and the multiplicity one assumption, one may revisit
[WW19a, App. B] and establish the following bounds:

(e (= = h(y))

LEMMA 5.5. We can improve the estimate in (5.2) to
€||Aph — HFHCO(F) § 6/83.

Proof. Multiply (5.3) by ﬁ/(s_l(z — h(y))) and integrate over z € [—n,n].
We find (at y € ¥ fixed)

/n (*(Ar.¢ + Hr, 0.6 + 82¢) — W'(U)¢) - H (e (= — h(y)))) d=
-n
= 62(h0 - O(l))(Aph — Hp)

+ (| Ty |? + Ricy (-, 2)) / D (e (2 - b)) da

-
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n o, _,
+ / e“0(]z|) - H
-
= e%(hg — o(1))(Arh — Hp) + O(eh).
We have used (1.6) together with [*°_¢H'(t)%dt = 0 (which holds by parity).

Twice differentiating the orthogonality relation (2.16) used to define h (see
Section 2.1 and [WW19a, App. B]) and using (5.2), we have

/ " 2(Arg) H (e (2 - h(y)) dz = O(Y).

-n

(7 (= = h(y)))* dz + O(c*)

From (5.2), we have

/77 £ Hr, 0.0 - H (e (z = h(y))) dz = O(").

-1
Finally, an integration by parts shows that

/_n (2026 T (=" (= — h(y))) — W (w)¢H (7' (2 — h(y)))) dz

= /77 (H" (e (2 = h(y))) = W"(w)H (e (2 — h(y)))) ¢ d=.

-n
Using (2.15) here, combined with the previous expressions, we conclude the
proof. O

Thus, returning to (5.3) we find that in M, we have
(5.4)
2Dy~ W"(U)p = e((| I |+ Ricy (92, 02)) o TIr) - 2-H (7! (2 — h(y))) + O(?).

We have used the fact that zﬁ/(s_l(z — h(y))) = O(e).

Observe that the right-hand side of (5.4) is only bounded in O(£?). Thus,
we expect this to represent the leading term of ¢, after inverting szAg -W"(U).
To make this precise, we first define (cf. [{PKW13, §3.2]) a function J(¢) to be
the unique bounded solution of the ODE

(5.5) J'(t) = W (H(¢))J(¢) + tH'(t), with J(0) = 0.
Indeed, we even have the explicit expression (cf. [{PKW13, p. 82])

J(t) = ]I-]I’(t)/o /S TH' (s) "2 H'(7)%drds,

which shows that J is well defined and decays exponentially as ¢ — +oo. It
will be important in the sequel to observe that J(—t) = —J(¢), which follows
from the parity of H(¢) and either the uniqueness of solutions to the ODE, or
the explicit integral expression.

Observe that |Ir |2 + Ricy(9s, 0,) converges to | Iy |? + Ric, (v, v) in C%?
because I' converges to ¥ in C?? by Lemma 5.4. We fix functions V : ' = R
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with the property that V still converges to |Iyx |*> + Ricg(rv,v) in C° and
IV]lc2ry < C. For definiteness, we choose V (y) = (| I |2+ Ricy (v, v)) oIls(y),
where Ily, is the nearest point projection to X.

We claim that €2V (y)J(~!(z — h(y))) represents the leading order term
in ¢. To this end, in M, we define a refined discrepancy function

By, z) 2 ¢y, z) — (Vo Ip)(y, 2) - J(e (2 — h(y))).

We compute (using the C? bounds for V, as well as (5.2) and Lemma 5.5) that
on M, we have

52Ag<g— VV”(U)&5
= &((|Ip | + Ricy(8,,8,)) o Ip) - z - H (e~ (2 — h(y)))
—e2(Vollp)[J"(e™ (2 = h(y))) = W'(U) - J(e™ (= = h(y)))] + O(e?)
= e[(| I [> + Ricy (8, 8.)) o Ip — V o Ilp] - z- H (71 (2 — h(y)))
— e [W"(H(e ' (2 — h(y)))) = W' (U)](V o TIr)
Iz = h(y) + O(e?)

= o(e?).

We again used that zH (71(z — h(y))) = O() as well as the definition of V.
We now use the defining property of h to invert e2A, — W”(U).

PROPOSITION 5.6. We have that ¢ = o(2) on M.

Proof. For contradiction, suppose that A £ sup M \(Z\ > ~e? for some 7 > 0.
Note that 5 is exponentially small at points that are uniformly bounded away
from I', so it is clear that this supremum is achieved at some X* € M with
d(X*) = 0. We can assume that ¢(X*) = X. Write X* = (y*, z*) in Fermi co-
ordinates over I'. We split the argument into two cases: (i) e71|z*| is uniformly
bounded, or (ii) e~ !|z*| — oo.

First we consider case (i). We can assume that e 'z* — z,. Define
H(X) = AL$(X* + X) which, in blown up Fermi coordinates X = (7,2),
satisfies

Ag(,2) = W'(H(e 2" + 2 — e h(y" +£7)))e(H, 2) = o(1)

for 2 € (—e71n,e7!

n) and ¥ € X, and where g is converging smoothly to
the Euclidean metric. Moreover, &5(0) =1 and ]q?\ is uniformly bounded on
compact sets. Interior Schauder estimates yield uniform bounds for &5 in C’llo’f.
Thus, gg converges in C! to a weak (and thus strong, by elliptic regularity)

solution of

~

AG(,2) — W' (H(z00 + 2))5(5,2) = 0
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on R"! x R. By [Pacl2, Lemma 3.7] (see also [PR03]), we have that
0, %) = pH (200 + 2) for some p € R,

because ¢ € L*®(R" ! x R). In fact, qub(O) = 1 implies that p = H'(25,) 7. At
the original scale, write X = (y, z) in Fermi coordinates over I". Then, for K
fixed sufficiently large, if |z| < Ke, we have

g(y, z) = )\[H’(zoo)le’(zoo + 871(2: —-2") + 0(1)].
Therefore,
(5.6)
¢(y,2) = A[H (200) ' H (200 + &7 (2 = 2%)) + 0(1)] + 2V (y)I(e ™" (2 — h(y))).

By estimating the exponential tail using (1.6), and then using the definition of
¢ and h, and also (5.2), we have

Ke
(5.7) o(y,2) - H (e7'(z = h(y))) dz = O(e™K).
—Ke
By parity (H' is even, J is odd) and similarly estimating an exponential tail,
we also have

Ke _,
65 [ 3 b)) E e - b)) de = Ofee V)
Finally,
Ke
(5.9) P H/(zoo +€_1(Z _ z*)) 'E/(g_l(z _ h(y))) dz > (ho . O(e_\/iK))E.

Altogether, (5.6)—(5.9) imply A = halO(eze_ﬁK), which (for large K') contra-
dicts our assumption that A > ~e? for a fixed v > 0. This is a contradiction,
completing the proof of case (i).

We now turn to case (ii). The proof here is analogous (and simpler). By
rescaling as above, we find a non-zero smooth function $ € L*(R" ! xR)
solving Ad— W”(:I:l)qg = 0. An integration by parts, using W”(+1) > 0, shows
that $ = 0. This is a contradiction, completing the proof of case (ii). O

5.2. Relating the second variations and index upper semicontinuity. We
now can give the fundamental computation linking the index of u as a critical
point of E. with the index of ¥ as a critical point of area. Our argument is
closely related to the proof of [{IPKW13, Lemma 9.2]. Recall from (1.2) that
the second variation of E. is given by

W”(u)
3

Q¢ 2 L&) = [ (296,98 + *ce) du
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Similarly, we recall that the second variation of area at ¥ is given by
0s(C.€) £ % ArealHC. €} = [ ((VC.VE) = (1T P+ Ricy (1 ))C€) dns.

LEMMA 5.7. For f € C*(X), setting
Wy, 2) = f(y) - H (72 — h(y)))

for (y, z) Fermi coordinates with respect to T' (the nodal set of u), and p =0
far from I', we have that

Qu(v. ) = e*(ho — 0(1))/F (IVef? = (| Ir [* + Ricy(8:, 0)) o Ir) f2) dur

+ole?) [(VesP+ ) dur.
r
Here, IIr denotes the nearest point projection onto I'.

Proof. Using (2.15), we compute
Qu(¥, ) = /M (—ev Ay + e "W (u)y?) dpug
= / T; /F (—eAr.v — eHr 8.1 — e + e "W (w)yp?) dpg. dz
= /_ :77 /F (e|Vr.9|? — eHr 040 — epd2 + e W (w)y?) dpg.dz

:/_:/F(g|(vpzf)-H’(e‘l(z—h(y»)

— e () (Vrh) - H (71 (2 = h(y))?

— Hr f(y)* - H (e} (z — h(y))H (e (2 — h(y)))

—e M f(y)? H (57 (2 — h(y))H (

e W () fly)?  H (27 2 = h())?) dptg.dz.
1

Additionally, using (5.2), our C? bounds on I, (A.1), (A.2), and (A.3),

Qu(v, )
/ / (Ve f) - H (e (z — h(y) — e f(y)(Vr.h) - H (7 (z — h(y)))[?

==

— Hpf(y)® - H (e (z = h(y))H (7} (z = h(y)))
((| ]IF |2 + Rlcg(am az)) © HF) f(y)2

2 H (= (2 = h)E (7 (2 hly))
+ e WU + ) = W) F()* B (67 (2 = h(y)))?) dpg.dz
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+0(€3)/f(y)2dur

/ [ (EAVr s B e = )

+ ((|Tp * + Ricg(0s, 9:)) o TIr) f(y)?
Lz H (7 (2 = h(y))H (67 (2 - hly)))
+e W) () (67 (2 = hiy)))?) dug.d
+0) [[(VesP + £ dur
= <o~ o(1) [ (Ve P = (1T P+ Ricy (01, 0.)) o 1) £(5)?) dur

+0(e®) [ (1VesP + 1) dor.

In the final equality, we have used
o 00
[ momrwa=y [~ gwera= i
oo o

on the second term. We have also used ¢ = €2V (y)J(e (2 — h(y))) + o(£?),
V(y) = (|Ir > + Ricg(9;,0,)) o IIr + o(1), and the following identity, which
follows by differentiating (5.5) once and integrating by parts:

/- W () TR (1)t

(" () — W(H@E)I () () — H'(t)* — tH'(¢)H" () dt

—00

_ / B (£) — W (HI(1))T (4)H (£) — ' (£)? — £ () (1)) dt

( —H'(t)* — tH'(t)H" (t)) dt = —1h.

—0o0

This completes the proof. O

Let 2 denote the n-tubular neighborhood of I', and consider the restriction
Q% of Q, to Q:

Q0 (¢,€) £ (B L Q)ul{(, ¢}
= [ (stveve) + ) dny, .6 e ¥(@)
@) &
Consider w € C*°(£2). We decompose w as
(5.10) w(y,2) = f(y) - H (e (z = h(y))) + wh(y, 2),
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where

(5.11) /77 wh(y, 2)H (7' (2 — h(y))) dz = 0.
-n

It is useful to write

(5.12) Y(y,2) = fly) - H (7 (z = h(y))).

Note that
[ wdu, = [ [ £ B e ) dg. s+ [ (@)
w2 [ [t - ) du, d
-n
(5.13) o) [ [ £ EE - b)) durd:
-n

(1 o(v) [ (@) duy
= clho = o(1) [ Fdur-+ 1+ o(1) [ (0 duy

We now use this decomposition to estimate QS}(w,w).

LEMMA 5.8. For wt as in (5.11), there is v > 0 so that for ¢ > 0
sufficiently small,

0wt wt) 2y [ Vw7 P dy
Proof. Recall that there is some v = (W) > 0 so that if f(¢) satisfies
[ F(e)H/ (t)dt = 0, then
| rerewraseraz e [ e se?a

(See, e.g., [APKW13, (9.28)].) A change of variables and a compactness argu-
ment imply that

[ et 2 + W) 0t 0. 2))
-n

> 3y / L (0t (g, 2))? + e w(y, )P de
-n

as long as € > 0 is sufficiently small. From this, and (5.2), we find

n
QS wt, wt) = / / (E|szwl|2 + e(Qwt)? + Ele”(u)(wl)Q) dpg. dz
—nJT

n
_ / / (eIVr w2 + (@0 )? + e W (U) (wh)?) diag,d2
—nJT
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+0(@) [ (whdy

U
227/ /(5(8zwL)2+5_1(wL)2) durdz
—nJT
U
4 [0 [ eVeawt P dz+ O [ (g
—nJI Q

> fy/ e| Vw2 + e (wh)? dpy.
Q

This completes the proof. O
LEMMA 5.9. For v, f, wh as in (5.10)~(5.12), we have

Q0 (¢, wh) > —ofc / Vo2 + 72 dr — of1) / eIV 2 + e (wh)? dpy.
Q

Proof. Repeatedly using (1.6), (1.7), (5.2), Lemma 5.5, (A.3), and (A.4),

0 wt) = [ (~e(dgut + = W ) duy
- / n / —e(Ar )t — Hr fu' - H'(e7 (2 - h(y)))

==/

— e Ut (= = () + e W )t ) dpg, d

// — (A, fyut - H (=7 (z - h(y)))

+ 2V, f, V. h)wt ”(6 Yz — h(y)))
+(Ar,h — Hy,) fut - H' (671 (z = h(y)))
e fwt|Vr a2 H ”< 1z~ h(y)))

— et (= (= = () + e W () ) dpg, d

// — c(Ar. fjut - H (= (2 - h(y)))

=/

+2(Vr, f, Ve hyw - H (671 (z — h(y)))
+ (Ar,h — Hr,) fwb - H (7' (z — h(y)))
+ e (WU + ¢) = W(U) + Oy ) dpsg,d2

_ / / (—e@r.pw - H (= h(y)))
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+2(Vr, f, Ve hyw' - H' (7' (2 - h(y)))

T+ (Apoh — Hr) fut Tz — h()))dpg.dz — O() /Q [t dpg

// e(Vr. f, Vr,wh) - H (e (2 — h(y)))

+ (V. f, Ve hyw H' (67} (2 = h(y)))

/!

+(Anh = Hr) fut B = ) digedz = OG) [ [ftdig

N /_:/r <6<Vrzf, Vr.w') - H (e (= = h(y)))

/!

+ (Arh— Hp) fwt (67 (2 = hy))) ) dpg. d
~0@) [ 1wty = O [ V. fllw* g
/ JRCIA ISR (IO

+ (Arh - Hr) fut B (57 (2 = h(y))) ) dpg.d>

&%) /F Ve + 72 dur — of1) / e (wh)? duy.

Q

In the last inequality, we estimated, using Cauchy-Schwarz, 2ab < '~%a? +
o2 for o € (0,1), (a,6) = (f], [w), ([Vr. fI,[wt]). Using (5.2), (A.3),
(A.4), and (A.7), we can further estimate

Ar_h — Hr, = Arh — Hr + O(|z]) = O(e + |2|)

and
(Vr.f, Vrow') = (Ve f, Vrw') + O(e + [2) | Ve fI[Vrw'].
By the same Cauchy—Schwarz estimate applied to

(a,b) = (If], lw™)),  (IVefl,[Vrw?),

we get

Q0 (4, w / / (Vrf, Vewb) T (e (z = h(y)) dpg, d2

~ofe )/F|vrfy2+f2dup—0(1)/95|le|2+51(w¢)2dug.

Estimating |dug, — dur| = O(|z|)dpr and using the same Cauchy-Schwarz
inequality, we deduce that

0% (1, w / [ £AVes, Vet ) B - ) durd:
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—o(e?) / Ve 4 £ dur — o1) /Q eVt 4 e (wh)? dy,
/ / (Ve S, Vrwt) H (e (= - h(y))) d= dur

~ofe )/F|vpfy2+f2dw—0(1)/Qs|wi|2+e—1(wi)2dﬂg.

Since (Vrf, Vrwt) = g%j Oy, f(?ijL, whose first two factors are independent
of z, we can use

/77 8ijj‘ﬁl(€*1(z —h(y)))dz = g1 /n (ayjh)wlﬁ”(sfl(z — h(y)))dz,
-1

-
which follows from differentiating (5.11) once horizontally. We thus have

QL (¢, w / / (Vrf, Vehywt - H' (e (2 — h(y))) dz dur

~ofe )/Fyvpfyuf?dur—0(1)/Qs|wﬂ2+g—1(w¢)2dug.

This completes the proof, since we have already estimated terms of this form
with the correct error term. O

LEMMA 5.10. Thereiso = o(M, g, W, %) > 0 so that fore > 0 sufficiently
small and any w € C* (), we have

Qg(w,w) > —60‘/9102dug.

Proof. Because I' converges to ¥ in C%>?, we find that for § = §(M, g,%) €
(0,1) and € > 0 sufficiently small, we have

/\vpﬂ? ((|Ir |* + Ricy(9s, 0)) o Ir) fdur 2/5|vpf|2 — o Y2 dur.
I

Thus, using (5.10)—(5.12), Lemmas 5.7, 5.8, and 5.9, we find that
Qu (w,w) = Q/(,¥) + Q/(w, w™) + 20 (¢, w™)

> e%(ho — o(1)) / SIVrf> =6 2 dur
T
+ ’y/ |Vt 2 4+ e Hwh)? dy,
Q
—ole?) [ IVIP+ £ dr = o)) [ el TwtP o+ )R g
r Q

> 251 (hy — 0(1))/Ff2dpp > _e5~1(1 4 (1) /Qde#g.

In the last inequality we used (5.13). This completes the proof. (]
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We are now able to prove the main theorem. In what follows,

e ind(u), nul(u) denote the index and nullity of the second variation of Allen—
Cahn energy functional (see (1.2)); and

e ind(X), nul(X) denote the index and nullity of the second variation of the
area functional for the limiting multiplicity-one smooth minimal surface
(recall (5.1)).

For simplicity, we will assume that OM = (), although we expect that the
general strategy used here should extend to Dirichlet or Neumann boundary
conditions with appropriate modifications.

THEOREM 5.11. If (M", g), u, and ¥ are as above, and if OIM = (), then
for sufficiently small € > 0,

ind(¥) 4+ nul(2) > ind(u) + nul(u).

Proof. For brevity, let us set I = ind(X) + nul(%), Iy £ ind(u) + nul(u).
First, we show

Claim. There are smooth functions fi,..., fr, : I' = R and a constant
§ > 0 so that if f € C1(I) satisfies (f, fi)rpry =0foralli =1,..., Iy, then

(5.14) Or(f, f) > 6 /F Ve fP + £ dpr

Proof of claim. As the nodal set I converges to 3 in C*? (by Lemma 5.4),
it is not hard to see that there is a lower bound v > 0 for the first positive
eigenvalue of the second variation of area of I'. Take fi,..., fr, to be the first
I, eigenfunctions of Qr. Then,

or(f. f) = /F Ve — (| Tr [ + Ricy(0:,0.)) £ dur

ZV/f2dur
T

for f € CYT), (f, fi)re@y = -+ = (s f1o) 2y = 0. If [Ty [* 4 Ricy 9z, 92)
< C, then

L Or(f f) = & /F Ve A2 = ([Tr P + Ricy (02, 82)) £ dur
Z/FQVCIVrfIQ—Zdeur-

The claim follows by adding these two inequalities. ([
We define the linear functional II. : L?(M) — L*(T),

. (w)(y) £ ! / w(y, 2) - F (e ( - h(y)) d,

-n
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and another linear functional Zr : C1(T") — R'®,

Ir(f) & (s S 2y - (s fre) i2())

so that f € kerZp precisely implies (5.14). We note one more property of
elements of ker Zr:

Claim. Let w € C*°() be such that II.(w) € ker Zp. Then,
(5.15) QS (w, w) > 50’/ w? dpg
Q

for o/ = o'(M, g, W, %) > 0 and & > 0 sufficiently small.

Proof of claim. We proceed as in Lemma 5.10 but we use the improved
lower bound for Qr(f, f), (5.14) for f = I (w). Write

U(y, 2) = Mo (w)H (7 (2 = h(y))).

Then, using Lemmas 5.7, 5.8, and 5.9,
QP (w,w) = QL () + Q% (w, wb) + 202 (b, w)

> <25k — o(1)) [ [VeSP+ Par+7 [ Vw4 7wt duy

N Q
= o(e®) [ VIR + 12 dur o) [ Va7 w g
> 80// w? dpig.
Q

The claim follows. O
Claim. If w € C*°(M) satisfies Q,(w,w) < 0, then

(5.16) / w? dpy < 082/ w? dpg
M\Q Q

for C' = C(M,g,W,%,n) > 0 and € > 0 sufficiently small.

Proof of claim. Using Lemma 5.10 and that W (u) > k> 0 on M \  for
€ > 0 small, we compute

0> Qu(w, w) > QX(w, w) +6_1/€/ wPdp,
M\Q

> —50/ w?dpg +€_1/<c/ wid,.
Q M\Q

Rearranging this completes the proof. U
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Now, let wy, ..., wy, € C°°(M) denote an L?(M)-orthonormal set of eigen-
functions for @, with non-positive eigenvalue, and let
Wa £ span{wi|q, ..., wrla} C C®(Q),
Wr £ {I.(w) : w € span{wy, ..., w,}}.
We emphasize that
(5.17) Qu(w,w) <0 for all w € span{wy,...,wr} C C°(M).

Claim. dim Wq = dim W = I for € > 0 sufficiently small.

Proof of claim. To see dim Wq = Iy, it suffices to note that no non-
trivial linear combination w of wy,...,wy, can vanish on © because of (5.16)
and (5.17).

Likewise, to see dim Wt = I, it suffices to note that no non-trivial lin-
ear combination w of wi,...,wy, has II.(w) = 0 because of (5.15), (5.16),
and (5.17). O

Finally, suppose, for the sake of contradiction, that Iy < Iy. Because
dim Wr = Iy > Iy, it must hold that there exists w € span{wy,...,wr,} \ {0}
such that Zp(Il.(w)) = 0. For € > 0 sufficiently small so that W”(u) > 0 on
M\ Q,

0> Qu(w, w) = Q(w,w) —|—/ e|Vw|? + e "W (u)w? du,
M\Q

> Q% (w, w) > 60’/ w?du.
Q

We used (5.15) in the last step. Thus, w =0 on €, so w =0 on M by (5.16)
and (5.17), a contradiction. O

6. Geometric applications

COROLLARY 6.1 (Multiplicity one, two-sidedness, and index of Allen—
Cahn limits for bumpy or positive Ricci curvature metrics). Let (M3, g) denote
a closed 3-manifold with a bumpy metric (see Definition 1.6) or with positive
Ricci curvature. Suppose that u; € C*°(M;[—1,1]), &; > 0, u; is a critical point
of E.,, E., [ui] < Ep, ind(u;) < Iy for alli=1,2,... and lim;e; = 0. Passing
to a subsequence, denote by V = lim; hglv&. [w;] the limit varifold. Then,

e the support X of V is a smooth, embedded, two-sided, closed minimal surface
with ind(X) < Io;

o the limiting varifold V' is equal to the varifold associated to % with multi-
plicity one;

o for 3 € (0,1) fived, the level sets u; '(t), |t| < 1 — B, converge in C*% with
multiplicity one to X;
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e for i sufficiently large, nul(X) + ind(X) > nul(u;) + ind(w;).

Proof. By Theorem 4.1, any component of ¥ that does not satisfy the
conclusion at hand must admit a two-sided double cover with a positive Jacobi
field. This cannot happen if g is bumpy (irrespective of the sign of the Jacobi
field). Similarly, because a positive Jacobi field implies that the two-sided
double cover is stable, this cannot occur for positive Ricci curvature. The C2?
convergence follows from Lemma 5.4. The index upper bounds for ¥ follow
from [Hiel8] (also from [Gasl7]). Finally, the index lower bounds follow from
Theorem 5.11. (]

Finally, we note that Corollary 6.1 proves Yau’s conjecture for bumpy
metrics (or those with positive Ricci curvature) on a 3-manifold. In fact, we
establish the following strengthened version of Yau’s conjecture, which de-
scribes certain geometric properties of the minimal surfaces. That a generic
Riemannian manifold contains an embedded two-sided minimal surface of each
positive Morse index was conjectured by Marques and Neves (cf. [Nev14, p. 17],
[MN16b, Conj. 6.2]).

COROLLARY 6.2 (Yau’s conjecture for bumpy metrics and geometric prop-
erties of the minimal surfaces). Let (M3, g) be a closed 3-manifold with a bumpy
metric. There is C' = C(M,g, W) > 0 and a smooth embedded closed minimal
surface ¥, for each positive integer p so that

e cach component of X, is two-sided;

o the area of ¥, satisfies Cilp% < areagy(¥,) < Cp%;
e the index of ¥, is satisfies ind(X,) = p; and

o the genus of ¥, satisfies genus(X,) > § — C’p%.

In particular, thanks to the index estimate, all of the X, are geometrically
distinct.

Proof. Gaspar—Guaraco set up a min-max procedure for the Allen—Cahn
energy functional and showed [GG18, Ths. 3, 4] that there is C = C(M, g, W)
> 1 so that for each integer p > 0, there exists eq(p) > 0 so that for ¢ € (0, ),
there exists u, ., a critical point of E. with

C_lp% < Ecfupe] < Cp%, ind(upe) < p, nul(upc) + ind(uy ) > p;

see [GG18, Th. 3.3(2)]. Now, the first three bullet points follow from Corol-
lary 6.1 applied to an arbitrary sequence (uy,, ;) with ; — 0.
The genus bounds follow from an estimate of Ejiri-Micallef [EMO0S8, Th. 4.3]

who prove that there is a constant C' = C'(M, g) so that writing ¥, = U%ZI Zg,m),
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(m)

where ¥, are connected and N = |mp(X,)| is the number of connected com-

ponents of X, we have

ind(X (m)) < Carea(Ez(,m)) + r(genus(Ez()m))), m=1,...,N,

where 7(g) is the dimension of the space of conformal structures on a genus g

surface, i.e.,

0 g =0,
r(g) =42 g=1,
6(g—1) g>1

Thus, we find that

N
p= Z ind(3)™) < Careay(3,) + Z r(genus(X ))

m=1

Using r(g) < 6g and area(¥,) < Cp 5 (for some C' = C(M,g) as explained
above), we find that,

w\»—‘

c:\“s

M
Z genus(X = genus(X,)

for C = C(M, g). This proves the fourth bullet point, completing the proof. [

Remark 6.3. We note that for (M3, g) with positive Ricci curvature, the
same conclusion as in Corollary 6.2 holds, except the third bullet point is
replaced by ind(X,) + nul(¥,) = p. The genus bound still holds by the same
result of Ejiri-Micallef [EMO08, Th. 4.3].

When (M3, g) does not have positive Ricci, >, might have several com-
ponents. We can use the discrepancy between the linear index growth and
sublinear area growth to prove that at least one of the components has large
index and genus. (Note that this discrepancy has been leveraged in a rather
different manner by Marques—Neves [MN17] in their proof of Yau’s conjecture
in positive Ricci curvature.)

COROLLARY 6.4 (Connected components of the p-width having large in-
dex and genus). Let (M3, g) denote a closed 3-manifold with a bumpy metric.
There is C = C(M,g,W) > 0 so that some connected component E; of the
minimal surface ¥, discussed in Corollary 6.2 has genus(X,) > c! ind(%;,) >
C’_lp%.

Proof. Write the surfaces X, obtained in Corollary 6.2 above as a union

of their connected components, i.e., ¥, = nglEl(,m). By the monotonicity
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formula, there is ¢ = ¢(M, g) > 0 so that any closed minimal surface ¥’ in M
has areagy(X') > ¢. Thus,

N
(6.1) Nc < Z areag(Eg,m)) = area,y(¥,) < Cp3.
m=1
Because p = Z%Zl ind(Z;S,m)), (6.1) implies that ind(%}") > C’p% for some

m € {1,...,N}. For this particular m, areag(El(?m)) < C’p% and the estimate
of Ejiri-Micallef [EMO08] used above implies that

genus(5(™) > €~ ind(2{") > C~'ps.
This completes the proof. -

7. Barriers with Dirichlet data

7.1. Setup. The heteroclinic solution from Section 1.3 lifts trivially to a
solution of the Allen-Cahn PDE, (1.1), on R", for any n > 1; indeed, one may
just take u(x!,...,2") £ H.(z"). Notice that this solution is “centered” on
the {z™ = 0} hyperplane. One may just as easily center it on any hyperplane
in R™ by a suitable translation and rotation.

The question of centering approximate heteroclinic solutions on arbitrary
minimal ¥"~! C (M™,g) has been well-studied in the compact setting; see,
e.g., [PRO3] for the boundary-less case and the geometrically natural case of
Neumann conditions at the boundary when M, 9% # (), or see [Pacl2| for
a more general survey with a faster construction than [PRO03], albeit only
presented in the boundary-less case.

In this section we establish a corresponding existence theorem similar in
spirit to those in [PR03], [Pac12], except we prescribe Dirichlet data. This the-
orem provides the barriers that were a crucial ingredient in the final “sliding”
argument of Section 4.

The setup is as follows. Define C'Ek’a, a € (0,1), e > 0, to be the standard
Hoélder space after rescaling by ¢, i.e., whose Banach norm is

k
(7.1) [ollgro £ Y & V70] oo + 4 [VEL,.
§=0
Various choices of domain and metric will be specified below. See Remarks 7.1
and 7.12.

Next, suppose that D"~ ! is an (n — 1)-dimensional manifold with non-
empty boundary, over which we take a topological cylinder Q £ D x [~1,1],
whose coordinates we label X = (y, z) € D x[—1,1]. Let g be a smooth metric
on , given in (y, z) coordinates (Fermi coordinates) by

9= g:+d2.
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We require that
(7.2) ¥ £ D x {0} C (2, 9) is a minimal surface

whose second fundamental form is uniformly bounded in C%? for some 6 €
(0,1) that will be eventually chosen to be near 1 (see Theorem 7.4):

(7.3) | Is | 4 [Is]o <,
and also!? in C’gl’e:
(7.4) elVs Iy |+ Vs sl <n,

with n > 0 small. We furthermore assume that there are C%Y-coordinate charts
on ¥ so that the induced metric gy is C%Y and ok ¥_close to the Euclidean
metric in the sense that

(7.5) (90)ij — di5] + [(g90)ijle < n,
(7.6) el0k(90)i5] + &[0k (g0)isl0 < m,
where i, j, k run through the coordinates (y!,...,3"!) on ¥ in the given

coordinate chart.

Note that (7.3) implies that Fermi coordinates (y, z) with respect to 3 are
a diffeomorphism which is C'?-close to the identity so, in particular, together
with (7.5), it follows that the metric g is C%?-close to being Euclidean in Fermi
coordinates

(7.7) |grx — Gl + [gralo <0

for small ' =
(W ...,y 2

Likewise, (7.4) and (7.6) imply that Fermi coordinates are C2-close to
the identity and

(78) €|a/lgl-€)\‘ + 51+6[8ugn)\]0 < 77/.

n'(n,n) > 0. Here, k, A run through all n Fermi coordinates
).

Here, x, A, i run through all n Fermi coordinates.
We also require that ¥ carries no non-trivial Jacobi fields with Dirichlet
boundary conditions in the following quantitative sense:

(19) [P dugy =0 [ g for every f € C2(2\ 0D,
> >
where

(7.10) Jnf 2 —Ayf— (|Ts 2+ Ricy(0,,0)|s) f

107t is crucial for Section 4 that we only work with the weaker bounds on derivatives of I
given in (7.3) and (7.4), which are precisely the types of estimates we derived in Section 3.
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denotes the Jacobi operator on ¥. (Note that our sign convention for the
Jacobi operator differs from the one in [Pac12].)

Let us also fix 6, € (0, 1) and define cutoff functions x; : R — [0, 1], with
X; > 0 on [0,00), so that

o< (1- 45,
0 [t 255*< -~ {0—0>
as well as || x| o3 (r) < 200. We further require that the x; be even functions.
For ¢ > 0, set

(7.12) He () = xa(OHe(1) + (1 — xa (1)),

where the £ corresponds to ¢ > 0, ¢t < 0, respectively, and H, is as in (1.8).
This is a truncation of the one-dimensional solution, H, which coincides with
H. near ¥ and with £1 away from 3.

The functions x;, He, ﬁg lift trivially to ¥ x R. We also set

Q; 2 {(y,2) eExR:z€spty,}.

Using the Fermi coordinates (y, z), x;, He, ﬁs also give functions on 2 that
depend only on z. By (7.6) and (7.11), these functions are uniformly C? ¥ in
¥ x R with respect to the product metric gy + dz? and also in Q with respect
to the metric g. Likewise, by (7.3) and (7.4), the slab §2; can also be viewed
as a subset of (€2, g) whose boundary is C™¢ and C2%_close to being totally
geodesic.

Remark 7.1. By (7.6) and (7.8), there exists a constant C' = C(n) such
that

C_IHfHCg’a(Q) < Hf”c?a(ng) < CHf||C§!"‘(Q)’ k=0,1,2, a € (079]

for any function f : £ — R with support in the interior of 2. The norms
above are taken with respect to the product metric gy + dz? on ¥ x R and the
metric g on ).

Remark 7.2. We cannot reuse the truncation from Section 2, because we
now need a truncation that trivializes outside a polynomial window instead of
a logarithmic window.

For subsets S C X, let us define

IL : L?(S x R) — L*(9), ITX : L?(S x R) — L*(S x R)
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to be given by
(7.13) H(f)(y) 2 'hg" [ fly,2) H(e'2) dz,

(7.14) = (£)(y:2) £ f(y,2) = (/) (y)H (e 2).
We note two things:

(1) S does not appear in the projection notation, but it will clear from the
context when it is relevant.
(2) Our normalization is such that IT.({z — H'(¢712)}) = ell.(H.) =

From this point forward we also consider another Holder exponent, o €
(0,1), which is such that
a<f

(with 6 as in (7.3)—(7.6)). The exponent « will be eventually taken to be near
0 (see Theorem 7.4).
We point out the following trivial lemma:

LEMMA 7.3. Both Il and 11> lift to linear maps
Il : C%2(S x R) — C%%(9), I : C2%(S x R) — C%*(S x R).

The Cg’o‘(S x R) norm is taken with respect to the product metric go + dz*.
Viewed as linear maps over these Holder spaces, we have sup.q ([|TIe|| +
T []) < oo

For ¢ € C%%(X), we define D, to be the map
(7.15) De(y,t) = (y,t — x2(t)C(y)).

Finally, we introduce the modified Holder norm:
(7.16) ||UH5k Q) = 5_2”)(5””057&(9) + ||UHC§*O‘(Q)‘

Recall that || - HCM is as in (7.1). As with Remark 7.1, the C&*(Q) norm is
taken with respect to g.
The main result of this section is

THEOREM 7.4. If a < ayp, € < g and we are given boundary data
(1) ?° € C2(09), 10l g.o oy < HE® @ =0 on {xa =1} N0,
(2) o € C2*(0% x R), HvﬂHCza(asz) < pe?, T (3%) = 0 on 0%,
(3) ¢ € C**(9%), 52&“4“0?@ (ox) < pe?,
and a metric g for which (7.2)—(7.6) hold with 6 > 6y > «q, then there exist
(1) v’ € 027Q(Q)a Ub|8Q = 6477 ||Ub||53’a(g) < nga
(2) vf € C2%(Z x R), v!|snxr = 0%, I.0f =0, HvﬁHCg,a
(3) ¢ € C**(%), ¢lor = ¢, €**([¢llcza(m) < Ce?,

(xm) < O
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so that u = (ﬁg + xav* +v°) 0 D¢ satisfies
(7.17) e2Agu=W'(u) on Q.

The solution map (0", 0%, Z,g) — (v°, 0%, ¢) is Lipschitz continuous, with Lips-
chitz constant L, as a map

C2(90) x C22(9% x R) x C>*(9%)
X Mete,(Q2) = C2*(9) x C>*(L x R) x C>%(%),

where Met, ,(Q2) denotes the set of metrics satisfying (7.7)—(7.8) with the ob-
vious topology. The spaces CZ(Q) x C2*(X x R) x C>%(X), C2(dQ) x
C2*(0L x R) x C2%(9%) are topologized using the norms in (7.86) and (7.87),
respectively. Here, e = eo(n,n, W, ds, p, ), ag = ag(n,n, W, 0., n), 6y =
00(04), C = C(n,n, W, s, i, ), L = L(n,n, W, 0, i, v, 0).

This follows along the lines of [Pac12, §3], provided one makes the nec-
essary modifications to account for (possibly non-zero, but small) Dirichlet
data as well as the important fact that our Fermi coordinate regularity is
constrained by the weaker assumptions (7.3) and (7.4). This lower regularity
situation makes certain aspects of Theorem 7.4 delicate, so we describe the
proof in detail below.

7.2. Linear scheme. In this section we generalize linear estimates found
in [Pac12, §3] to allow Dirichlet boundary conditions, possibly with non-zero
data. The operators we will study are

(7.18) L. 2 Apn + 02 — W”(H) on R’} xR,
(7.19) L. 2 %(Agy +02) —W/(H:) on ¥ x R,
(7.20) L& e*A,— W (£1) on Q.

LEMMA 7.5 (cf. [Pacl2, Lemma 3.7]). Assume that w € L>*(R} x R)
satisfies Lyw =0 and w =0 on OR} x R. Then w = 0.

Proof. The result follows from [Pacl12, Lemma 3.7] after an odd reflection
of w across OR'}. O

The next results that need to be adapted pertain to L. and functions
v € L>®(X x R) satisfying II.(¢) = 0 on ¥, where II; is as in (7.13).

LEMMA 7.6 (cf. [Pacl2, Prop. 3.1]). If e < o, w € C2*(Z x R), and
II.(w) =0 on X, then

HwHCE?va(EXR) < C(HstHcg’a(ng) + ||w|82xR||C€2’a(az><R))'

Here, €0 = 50(”7 m, W)’ C= C(nvna VV,OZ)
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Proof. This follows from the CH* control of go by way of (7.6), [Pacl2,
Prop. 3.1], Lemma 7.5, and boundary Schauder estimates (e.g., [Sim97, Th. 5]).
U

LEMMA 7.7 (cf. [Pacl2, Prop. 3.2]). There exists g > 0 depending on n,
n >0, W, such that for all e € (0,e0), all f € C2*(L x R) with II.(f) = 0
onY, and all f € 052’0‘(82 x R) with TI.(f) = 0 on 0%, there exists a unique
function w € C2*(X x R), also with TI.(w) =0 on ¥, such that
Low=fin X xR, wzfon@ExR.

Proof. When f = 0 this follows from the functional analytic argument
already found in [Pac12, Prop. 3.2] applied, instead, to I/VO1 ’2(2 x R).

When f # 0, this follows by extending f to C?>*(¥ x R), He(f) =0,
and applying the previous existence result with zero boundary data to solve
Lew=f—L.f. O

Finally, [Pac12] deals with L..
LEMMA 7.8 (cf. [Pacl2, Prop. 3.3]). Ife € (0,1), then
Hchgva(Q) < C(Hﬁachgvﬂ(Q) + ||w|8QHC§*°‘(8Q))'
Here, C = C(n,n, W, «).

Proof. The interior estimate follows from interior Schauder theory, since
g is ol by (7.8). The boundary estimate on the regular portion of 92 follows
from boundary Schauder theory, because 9 is C2* at those points by (7.4).
Finally, the estimate at the corners of 9 follows from the boundary theory as
well. This is because we can carry out odd reflections across D x {£1} since
the angles at the corners are all 7/2. O

We also derive an improved estimate for functions satisfying L.w = 0 on a
strip of height O(¢%), and w = 0 on its lateral boundary. Recall the definition
of the norm C2* in (7.16).

LEMMA 7.9 (cf. [Pacl2, (3.26)]). Ife < g9, w € CZ*(Q), and
Lew =0 on Q4 and w =0 on 0024 N OLY,
then
HwHag,a(Q) < C(Hﬁechgva(Q) + Hw|8QHC§va(ag))-
Here, g = eo(n,n, W, d,), C = C(n,n, W, d,, ).

Proof. Considering Lemma 7.8, it suffices to check that

(7.21) ||X5w||cgva(g) < 082(||£5w||cg,a(g) + Hw’69||cgva(ag))-
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Since L. = 0 on 4, w = 0 on 9y N 0N, and 4, € (0,1), Schauder’s
interior estimates estimates on €5 \ 02, Schauder’s boundary estimates near
005 N O, (7.4), and (7.8), imply that

[wll 2oy < Cllwllzoe (fys=1)-

In particular, given the decay of the first and second derivatives of x; from
(7.11) and 6, € (0,1), (7.21) will follow as long as

(7.22) [wll L (fxa=1y) < CE2 ]| oo (-

We use the same barrier argument as in [Pac12, Rem. 3.2], paying closer
attention to the boundary and to the regularity. Define

Pz (2) £ cosh(ye™ (2 — 20))

1
with |29| < €% and v € (0, (W”(£1))2). If H, denotes the mean curvature of
of a z-level set in Fermi coordinates, then

EQAQ‘PZO (2) = 728020 (2) + H.ve Sinh(’YEil(Z — 20)) < (72 +yelH.|)pz (2)-

It follows from (7.3) as well as (A.2) and (A.3) that |H,| is uniformly bounded.
In particular, for sufficiently small ¢, depending on v, 1, n, we have

52Ag¢20 (2) S W (EL) s (2),
SO 4, is a barrier, as it was in [Pac12]. It therefore follows from the maximum

principle applied to w — ty,, that, for (y, zp) € Q4,

~1
)l < (nf g,) ,
[w(y, 20)| < <Ql{194 ¥z ) max |uw]
which is trivially bounded by ce?||wl|| Leo() Whenever (y,20) € {x4 = 1}, and
e > 0 is small. This implies (7.22) and, in turn, (7.21). O

7.3. Nonlinear scheme. We consider the following non-linear functionals,
originally defined in [Pacl12, §3]:

(7.23)  £(C) £ e2Ag(H: 0 D) o D7t — W'(H.),
(7.24)  Qc(v) 2 W'(H: +v) — W/(H.) — W"(H)v,
(7.25)
M(v",0%,¢) £ xs|Lev? — €2 Ag(v* 0 D¢) o D' + W (H )v*
— &2 (Ag(v" 0 D¢) o D7t = Age’) — &(¢) + £°(J5¢)0-HL
— Q:(xavf + ') + (W/(Ho) - W' (2 1)),
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(7.26)
No(v?,0%,C) 2 (xa = 1) [(8(0” 0 D) 0 D' = Age)

+ (W(HL) = W (1)’ = £(0) = Q=lxavf +1)
— 2(Ag((xav") 0 D¢) — xalg(vF 0 D¢)) o D"

These functionals allow us to pose (7.17) as a fixed point problem:

(727) ﬁsvb = Ns(vba Uﬁ: C)a
(7.28) Levt = TIF M. (v, 0, Q),
(7.29) Js¢ = e MM (v, v, Q);

cf. [Pacl2, (3.31), (3.32), (3.33)]. We impose, as does [Pac12, §3], the additional
constraint

Hsvti =0on X.
LEMMA 7.10 (cf. [Pacl2, Lemma 3.8]). The following estimate holds:
IN=(0, 0, 0) | 0.0 (g + Iz Me(0, 0, 0) | 0.0 5y
+ & MM (0,0,0) | co.a sy < cos™.
Here, € € (0,3), co = co(n,n, W, 6, ).
Proof. Note that
M:(0,0,0) = —x362(0), Ne(0,0,0) = (1 — x4)é2(0).
Straightforward computation shows &.(0) = E2Agﬁ5 -w (ﬁa) From (7.12),
(7.30) H. — H. = (1 — y1)(£1 — H.),

(& depends on z > 0 or z < 0), a quantity that decays exponentially to all
orders with e — 0. Since H does too on spt(1 — x4), we in fact get

IN(0,0,0)[| o0 gy < Cme™

)

for all m € N. (Taking m = 2 will suffice.)
To estimate M. (0,0,0), we proceed to further rewrite

&:(0) = EQAgﬁe - W/(ﬁa)
= e2AGH, — W'(H.) + e A, (H. — He) — (W' (H.) — W' (H.))
= &?H,0.H. — (2A, — W/ (H.) — Q.)(H. — HL.).

Note that
H.=1on 2\ = &:(0)=0o0n N\ Q.
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If x : © — [0,1] is the cutoff function x(z) = x1(z/2), then note that x =1 on
spt &2(0) so that
&(0) = x - 2H,0.H, — x - (20, — W"(H.) — Q.)(H. — H.).
It follows from (7.8), (7.11), and (7.30) that

(7.31) [Ix - (52Ag — W' (H:) — Qc)(H. — Ha)Hcgva(sz) < Cpe™
for m € N. (Taking m = 4 will suffice.)

Recalling (A.3),
(7.32) 9.H. = —| I |* + Ricy(9:,0:) | px (2}, 2 € [-1,1].

Certainly, since o < 6, this already implies

sup ||y — 8ZHZHCO,Q(E) <C.
|z|<1

Combining (7.32) with (7.3), a <6, (A.1), and (A.2), we even find that

(7.33) ﬂipl ly = 02H.(y, 2)||co(sy < C.

In particular, (7.2), (7.33) and Taylor’s theorem imply

(7.34) H, = —(|Tg|? + Ricy(0s,0:)|x)z + R(y, 2)22,
where
(7.35) s ly = Ry, 2)lcoes) < C.

From the trivial estimate |z|0,H. < C, (7.11), and (7.34), we find that
(7.36) Ilx - 82HZ8ZHEHCS,Q(ExR) < Ce2
Put together, (7.31), (7.36), and Lemma 7.3 imply

T2 M= (0,0,0)[| 0 (53, m) < C™

Finally, by (7.34),

IL(c HAH) =y [ XOH.(0.0) 2 + Riy,2)2) 0 (e2) d

Recalling that from parity (since x(z) is even)

/OO x(2)z(H (e712))? dz = 0,

—0o0

it follows that

o0

I (x - 52H282H5) = hal / x(2)R(y, ,2)272(]}}1'(5_12))2 dz,

—00

at which point we can directly estimate using (1.6), (1.8), and (7.35) and get
||HE<X : €2H282H5)||00,a(2) S CE?’_



290 OTIS CHODOSH and CHRISTOS MANTOULIDIS

Together with (7.31) (with m = 4), this implies
T2 M (0,0,0) | co.as) < Ce™.
This completes the proof. O

LEMMA 7.11 (cf. [Pacl2, Lemma 3.9]). For a < ag, € < €y,
(7.37) | Ne(vh, 08, G2) = Ne(0], v, Q1) oo

é b b
<ce <||v2 - Ul”cg’a(g) + va - U?HC?*O‘(ZXR) +[/¢2 — CIHC?’Q(Z)),

(738) ||H5L(M€(Ug7vg7<2) - ME(U?avgagl))Hcga(sz)

< 12 (10 = vhligzeqqy + 10 = ol 2o mumy + 1162 = Gilloacs)),
(7.39) | Te(Mc(vh, 05, G2) — Me(v}, 05, C))llcoa(sy
< a0y — ol g g
+ 16! oh = vill 2o (gmy + 18 NG — Gillezacs),

provided (7.3)—(7.6) hold with 6 > 6y > «y, and
Y Iz + Wil cza sy + €2 G lozas) < C'™.
j=1,2
Here, co = co(n,n, W,8,), & = 8(3.), 0o = 0o(6.), a0 = ao(d.), and ¢ =
c1(n,n, W, 6., C", ).
Remark 7.12. We emphasize that three different norms are used:

(1) On v”, we use the modified weighted Holder norm

—2
lwllgzeq) = lIwllgzeg) + e xswllgzeq)-

Here, the Holder norms are measured with respect to the metric g.
(2) On v*, we use the standard weighted Holder norm C2*(3 x R). Here, the
Holder norms are measured with respect to the product metric go + dz2.
(3) On ¢, we use the unweighted Holder norm C*%(X), which strictly domi-
nates C2*(2):

1€l gy < lIKllozn(s)-

Here, the Hélder norms are measured with respect to the metric gg induced
on X.

Proof of Lemma 7.11. In what follows we may assume that oy < %. Note,
from (7.11) and (7.26), that

N.(v},0%,¢1) = Ne(vh,v4,¢a) =0 on {xs = 1}.
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Therefore, since d, € (0,1),

b b
1N (03, 05, Go) = Ne(v}, 08, C1) | oo
b b
= ||N€(UvigaC2) - Ne(”h”?7@)”0507‘1({)(4#1})
b b
< HNé‘(U27 Uga CQ) - NE(vla 'U§7 Cl) ”CS’Q(Q\Q5)'
We will estimate this by pairing up the terms, making sure to use use the fact
that our Holder norm is taken over €2\ Q5 instead of over (2, in order to gain
a factor of £ for some § > 0 that depends on J,.

In all that follows, we will repeatedly (and implicitly) use that our Fermi
coordinates (and thus also D¢, Dgl) are C2 close to the identity, and that

our metric g in Fermi coordinates is CH* close to Euclidean.
We start by estimating

"52(Ag(vg © Dg,) o DC_QI - Agvg) - 52(A9(U? o D¢ ) o Dgt - Ag”?)

G ”02’“(9)'

(We can deduce a good estimate on all of £, not just on 2\ 25.) By working
in Fermi coordinates in scale O(e), we see that

(7.40) Fi(v,¢) £ e*Ag(vo D)o D!

is a smooth non-linear Banach space functional Fi : CE’Q(Q) X 05270‘(2) —
0,c . . . .
C:%(2) and is linear in v. In particular,

2[(Ag(vh 0 De,) 0 DIt — Agvy) — (Ag(v] 0 D¢y) 0 Dey — Agoy)]
= (F1(vh, &2) — Fi(v,G1)) = (Fi(v3,0) = Fi(1,0))
= [(DuF k105 G 66— )k - )
+ (DeFr (0] + (05— v]), G+ (G — G1)), G — G) dt
- /01<va1(05 Tt — 02),0), 0 — o)t
= /01 /01<D<va1(v? Ft(vh — 8), sC1 + st(Ca — (1)),
(G + 1t —G) @ (v) — ) ds dt

1
+/0 <DC]:1(U§ + (v — ), G+ G — 1)), G — ) dt.
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Seeing as to how Hv?”cz,a(m < C'e?, |¢illozas) < C'e®72%, and using the
linearity in v of F; (and thus of D¢F7), we can directly estimate the following:

(7.41)
[2((Ag(6} 0 Dey) 0 D — Agth) — (Ay(eh 0 Dg,) o Dy — Agth)| e g
< Otz + Gl ) 105 = 8l g
O3l 2y + 193l 2n ) lIG2 = Gill iy
< C(lGallezas) + IGallczags) v} — 8]l cze g
O3l 2 gy + 13l 2en 12 — Gill ey

< Ce?72%|0} — v}]| 2
+CE%|¢2 = Gillezagy)

This estimate is of the desired form.

()

Next, we estimate

(W7 (H) = W (1)) (0} — 0] o 20

The desired estimate is a simple consequence of Remark 7.1 and how, on Q\ s,
we have

(7.42) W (H.) — W"(£1) < Cppe™

looe@as) <

for all m € N; thus, any é > 0 will do.
Next, we estimate

[62(C2) — gE(Cl)HCg’C“(Q\Qs)'
We have
£:(Ge) = 6.(G1) = 2(Ag(H 0 Dgy) 0 D! = Ay(Hz 0 D) 0 D)
- fl(Hé"CQ) - ‘Fl(HE7C1)7

where F| : C2Y(Q\ Q5) x C2%(2) — CP(Q\ Q) is the restriction of F; from
(7.40). Arguing as before, we get
HéaE(@) - fo‘i(Cl)H@m (\Qs) = CHH ”02 “(OQ\Qs) ||<2 Cl”o}a(g)

< Cre™||G2 = Gllezes

for all m € N, which implies what we want for any ¢ > 0.

(7.43)

Next, we estimate

1Q= (xavh + v8) — Qe(xavf + v} oo o
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Note that
Q= (xavh +v3) — Qe (xavf + v}) = W(HL + xav§ + v3)
—W/(He + xav} +v}) — W (HL) (xa(vh — o) + (v) — v})).
Define
(7.44) Fo(v) 2 W (H, +v),

viewed as a smooth non-linear Banach space functional Fy : C2**(Q) — C2(0).
Note that

(DyFa(v), w) = W (H: + v)w, (DyDyFa(v),w®w') = W’ (H. + v)ww'

for w, w' € C2 “(Q2). In particular, the expression we are trying to bound
equals

Falxavh + 03) = Falxavi + 1) — (DuF2(0), xa(vh — v) + 0} — vf)
= [ DuRateant 0k ta(eh = o) 0 = ) = o) 40— o)

— (DuF2(0), xa(vh — v]) + v} — )
= /01 /01<DUDU}"2(8(X41)§ + 0 + t(X4(vg — v%) + 05 — ),

(xavf + 0} + txa(v] — v]) + v5 — 1)) ® (xa(v] — o) + v — o)) ds .
Recalling Remark 7.1, (7.11), and d. € (0,1), we can estimate
HQa(xwa +vh) — Qa(sz? + v?)HCg,a(Q)
< C(vacgva(zXR) + HU?Hcgva(Q) + HUchgvame) + HUchgva(Q))
) (va - U?HCgva(zXR) + va - U?Hc?»a(g))-
This gives
1Q=(xavs + v3) — Qe (xavf + )l o g

(7.45) 204 f b b
< CE(||vh — v}l oo sy + 105 = ¥l o)

using [[v5]| co. gy [Vl g < €',
Next, we consider

12((Ag((xav}) © D¢,) — xalg(vh 0 D,)) D))
_(Ag((szg) o Dgl) - X4Ag(1’§ o DCl)) o DEII)HCQ’Q(Q)-

Define
Fs(v,€) 2 €2(Ag((xav) 0 D¢) — xalg(vo D¢)) o DY,
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which once again is viewed as a map Fs : C2*(Q) x C2%(X) = C2*(Q), is a
smooth non-linear Banach space functional. We can then write

2((Ag((xavh) 0 Dg,) — xalg(vh 0 Dg,)) 0 DY)
— (Ag((xav}) 0 D¢,) — xalg(vf 0 D¢,)) 0 DY)
= Fa(vh, o) — Fa(vh, 1)

1
= / (D Fs(0h 4 t(vh — vh), 1+ (G — C1)), vh — o)
0

+ <DC]:3(U§ Ft(wh —oh), G+ G — G), G — G dt.

The second term can be estimated by using the linearity in v of F3 (and thus
of D¢F3) and Remark 7.1 to give

{DeFa(vf +(vh — v), G + G — (1), & — Gl o
< Okl 2o mxmy + 198l c2o )12 = Cill g2 s

< C%|¢a = Gillcza(s),

which is of the desired form with § = 2.
The first term instead requires that we use the product rule on F3 to
recast it as

F3(v,0) = €*(2(Vy(xa 0 D¢), Vg(v o D)) + (Ag(xa © D¢))(v o D)) o D¢
which can, in turn, be differentiated in v to give
(DuF3(v,¢),w) = €2(2{Vy(x40D¢), Vg(wo D)) +(Ag (x40 D)) (wo Dg))o D

At this point, we note that there are no zero-order y4’s remaining, so we use
Remark 7.1, (7.11), and 4, € (0,1) to get

(Do Fa(0f +(vh = v), & + (G — 1), v — o)l o g

< O [|of — of | ro gy < CE T [l0h — vl [ o

YxR) YxR)"
Summarizing, we have shown that
€*((Ag((xavh) © Dey) = xaldg(vh 0 D)) 0 DY)
(7.46) — (Dg((xav) © D¢,) = xaldg (v 0 D)) © Dl ooy

é 051—5* (

|Ug — U§|‘Cg,a(EXR) + ||C2 - ClHCQ’O‘(E))‘

The contraction estimate on N, (7.37), now follows from (7.41), (7.42),
(7.43), (7.45), and (7.46).

We move on to the contraction estimates on M., (7.38) and (7.39). Before
we derive those two precise estimates, we investigate several of the easier terms

in ME(Ugvvgv C2) - ME(’Ugv,Uga Cl)
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We note, right away, that we have already shown in (7.41) that
HEZ(AQ(UZ ° Dg,) o DZ; - Agvg) - (Ag(vﬁ °Dg,)o Dgf - Ag”?)”gﬁva(gs)
- b b
< 0?7 vg — lecg,a(Q) +Ce?(|¢o — Gllezas)-
In particular, Remark 7.1, Lemma 7.3, and | - [[co.a(zy <79 - ||CO,a(Z) imply

(7.47)
EQHHE [EZ(Ag(vg © D¢,) o Dg_zl _Agvg) - (Ag(vki © Dg,) o Dg_ll - Agvg)] )

Coa ()

+ Hﬂj [52(Ag(vb2 °Dg,) o DE; - Agvg)

- (Ag(v? o Dg,)o Dg_ll - Ag“?)} ’

Co ¥ (LxR)
< O o}~ gz gy + O — illoaee)
Next, from Remark 7.1, (7.45), we conclude

[T [@e (xah + 03) = Q= anf + )]

Coe(S)

(7.48) [ Q- (v + ) — Qeland + 03]

CoY(LxR)
b b
< C(I[of = villcoa(smy + 105 = vl oo g))-
Next, we estimate
b b
[(W"(He) — W"(£1))(v3 = v1)ll o gy)-

This is the only time we will use || - Haz,a(m for the purposes of (7.38). We
have

I(W" () = W”(£1)) (05 = o)l co
< (W (H.) = W (£1))x5(05 — 07| o g
+ (W (He) = W (£1)(1 = x5) (0 — o) oo e
< €%[|vy = 0}l gz gy + (W (He) = W(E1))(1 = x5) (v = 0]) | o)

Recalling |[W"(H,) — W”(jzl)HCg,a(Q\Qs) < Cpe™ for all m € N, e.g., as in
(7.42), we deduce

I (BLe) = WD) (0 = ) oy < C=leh = oy
so, combined with Remark 7.1, Lemma 7.3, (7.11), and 4, € (0,1), this gives
e | T [xs (W (He) = W (1)) (v3 — 07)] [l co.o sy
(7.49) + | [xs (W (H.) — W (£1)) (v] — v])] oo xRy

b b
< Ce?||vy — Ul”ﬁgva(g)'
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We now proceed to the more involved contraction estimates pertaining
to M.. We will estimate

I(Lev — e2Ag(v§ 0 De,) 0 D!+ W (H:)vh)

(7.50)
- (Lavﬁ - 52A9(”§ °D¢)o Dg_ll + W”(Ha)vg)

”Cg’a(Qa)‘

Note that, by repeating the argument carried out to obtain (7.41), except with

vg- in place of U;, and also using Remark 7.1, we get

(7.51)
[e2((Ag (v} 0 Dey) 0 D' = Aguh) = (Ag v 0 Dey) 0 D' = Aged)) o
< C22uh — el oy + C2Ga = Cillomecsy
In view of Remark 7.1 and Lemma 7.3, this allows us to estimate
(Levh — e2Agv§ + W (H.)vh) — (Levf — e2Ag0f + W (HL)0})

= Le(vf — v}) — 280 (0] — v}) + W (HL) (0] — of)

=2 (Agy + 02 — Ag) (v — )
instead of (7.50) in both (7.38) and (7.39). Let us denote

Fi(v) 2 (A — Ayy — P,

which is evidently a linear functional F; : C2*(€3) — C2*(Q3). Because
Ay=Ay, + 82 + H,0, in Fermi coordinates, we can rewrite

Fa(v) = e*(Ag, — Agy)v + e*H.0,v.
We now make use of (A.7) to write
Fu(v) = {— 52/ (2(IL, Vgtv>gt + (Vg Hi, Vg,v)g,) dt} + eH.0,v.
0

First, let us derive C° bounds. Let (y,2) € Q3. It follows from (7.3), (A.1),
(A.2), and (A.6) that

252/0v <]It,V§tv>gt dt‘ S C‘Z|HUHC€2(QS)

It follows from (7.4), (A.1), (A.2), (A.4), and (A.11) that

g /0 Z<vgth, Vg 0)g, dt
It follows from (7.2), (7.3), and (A.2) that
(7.54) |e*H.0.v] < Celz|[[v]lcrqy)-
Altogether, (7.52)—(7.54), show

(7.55) Z4(0)] < Clallol gy on 9.

(7.52)

(7.53) < Clzlllvllcz(aq)-
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Next, let us derive Holder bounds. For fixed z € (23, an analogous argu-
ment gives

(7.56) oy > Fa(0) Do < Clellvlgze gy
Now fix y. By (7.3), (A.1), (A.2), and (A.6), we have the Lipschitz bound

o z
% <252/ <Ht7v§tv>gt dt)' < CHUHCEQ(Q;),)
0

In view of the a priori height bound |z| < €%, this trivially implies the Holder
bound

(7.57) e [z s &2 /0 (I, V2,0)g, dt} < Ce®e™ 1 |v]l o2 ()

By (7.4), (A.1), (A.2), (A.4), and (A.11), we have another Lipschitz bound,
8 z
5 <52 /0 (Vg Hy,Vg,0) g, dt)

which, again by |z| < €%, implies

(7.58) < Clvller@s),

(7.59) e {z — g2 /0 Z<vgth, Vg v)g dt| < Ce®e™ 17|l o1 -
Finally, from (A.3) we have the Lipschitz bound

2 (@H.0.0)| < Clollczqa,)
which, again by |z| < €%, improves to
(7.60) ez > e2H.0.v]o < C™1" 0]l c2(qy)-
Altogether, (7.57)—(7.60) imply
(7.61) ez = Fa(v)(y: 2)]a < C* T 0] ca 0.
Together, (7.55), (7.56), and (7.61) imply
(7.62) [F4)ll ey < O [0l -

Together with Remark 7.1 and Lemma 7.3, this gives

(7.63) 10 oy < Co ol gz
It remains to estimate II.F4(v). Note that the obvious inequality (which fol-
lows from (1.6) and (1.8))

/ M@M@Mﬁ%/iMH@ﬁSCa

combined with (7.55) and (7.56) readily implies
(7.64)
I Fo(0)ll ey < Cellvl gy — ITeFa)lcons) < Collgzeoy
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This completes our study of Fy, as we have the desired estimates in view of
Remark 7.1.

We proceed to the final contraction estimate pertaining to M., which
involves TI., T of

X3(62(C2) — E:(G1) — €25 (G — (2) 0. HL).

By (7.11), 6, € (0,1), and Lemma 7.3, we may just estimate &.((2) — &:((1) —
52JE(C2 - CZ)azHa on (3.
Fix (y, z) € Q3. Recall the definition of D¢ in (7.15) and the estimate

(7.65) disty (23, {x2 # 1}) = O(e™) > || Gallcos) + <illoos)

that follows from the a priori bound on (3, (2. Also recall that H, = ﬁs on (3.
Then, in Fermi coordinates (y, z), we have

()Y, 2) — E:(C)(, 2) — €2 I5(C2 — C)(y) - 9:He(2)
= €2A9(HE © DC2) ° Dg;(ya Z) - 52A9(H€ © DCl) 0 Dal(ya Z)

—%Jn(¢ — C)(y) - 0:He(2)
= &2 O2HL(2) (V. 0y 2O = [V ey 0 (9) )
— 0 He(2) (Ag. oy () (W) = Hayeo()(¥) = (Ag. ey C1 ()
— Hepey ) + J5(G — Q)W) |

(7.66)

For ¢ € CH%(%), denote

.7—"5(§)(y,z) £ ’vgz+c(y)C(y)|2 = gz+< C’L( )Cj(y)

to be the smooth non-linear functional F5 : C1%(X) — C%%(Q3). By virtue of
(A.1), we know that

(7.67) (DeF5(C)w)ly,2) = 217, ) GG @wi) + 207, w6 ()
By the fundamental theorem of calculus,
1
Foc2) = F5() = [ (DCF(G 4G = ). Ca— )
so together with (7.3), the a priori estimates on (i, (2, (7.67), (A.1), and (A.2),

1F5(C2) — F5(C1)llco.a () < Ce*2¥(|C2 — Cillgracs).-
Alongside (1.7), Remark 7.1, Lemma 7.3, (7.11), and . € (0, 1), this implies

e || 1: (xae? (97H) (F5(C2) = F5(C))) | cose sy
H (s (O (F(G2) = F5(1)|

< C7 G — Gillcra(s)-

(7.68)

CO ¥ (LxR)
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Finally, let us denote

Fo(O)w:2) 2 e(Daac)¢y) = Hape)®) + I5(1))

to be the smooth non-linear Banach space functional Fg : C*%(X) — coe (Q3).
By (A.3) and (A.7),

= 6<AZ+Cw + ( - 2<]IZ+<’ V3z+< C>gz+§ - <vgz+§ Hz+<’ vgz+CC>gz+C)w
+ (Mg 2 + Ricg (02, 0:)| p fopcy w0 + sz)

= 5(( - 2<]IZ+C’ v§z+< C>9z+< - <vgz+gHZ+C’ ngJr( C>g2+<)w

z+C
- /0 (2<Htv thw>gt + <vgth7 vgtw>9t) dt

z+¢
+ (/0 %Oﬂt‘z+Ric9(aZ>az)ID><{t}) dt>w)'

By the fundamental theorem of calculus,

1
FolGa) — FolG) = /0 (DeFo(C+HCo — C1))s Co — i) .

We now estimate (D¢F6((),w) for ¢ = (1 +t(¢2 —¢1) and w = (2 — (1. We will
make repeated use of (7.3), (7.4), (A.1), (A.2), (A.4), (A.5), (A.6), [[C]lca(xn) <
C'e?72% and || - Hcg,a(z) < |- llc2esy. First,

HE(Q <]IZ+C7 vgz+g €>92+C + <vgz+§ HZ+<’ vgz+C C>92+C)w‘ Cg’a(ﬂg)

< Ce*7|¢ = Gllcra(s)-

Additionally using the O(g%*) height bound on 3, we also have

(7.69)

z+¢
(7.70) 5/ (i, Vi, Wy < Ce |16 — Gl s
0 CEO,a(QS)
Likewise,
z+C¢
([ 0P+ Ricy(02,0.) gy e
(7.71) 0 Ce*(Qs)

< Ce"™ |G — Gl coas)-

It remains to estimate

z+C¢
5/ (vgth’ Vgtw>gt dt
0

2% ()
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Now is the only place in the proof where we need to distinguish the Holder
exponents a < #, taking the prior to be small and the latter to be large. From
(7.3), (7.4), (A.1), (A.2), (A.4) and the interpolation of (unweighted) Holder
spaces C10 — L < 009 (Lemma E.1), we have

IVg. Hellcoaos) < ClH:go% g | H:llgioe < Ce 2070 < Ce2%,

as long as «g, 0y are chosen sufficiently close to 0 and to 1, respectively, de-
pending on d,. It is now easy to see, as before, that

1
(7.72) < 0" 2% G2 = Gilloras).

c2%(Qs)

Altogether, (7.69), (7.70), (7.71), and (7.72) imply

z4+C
8/ <vgth7 vgtw>9t dt
0

1 F6(¢2) = Fo(Cu)ll oo ) < Cel*3% ¢y — Clleze)
Alongside (1.6), Remark 7.1, Lemma 7.3, (7.11), and 4, € (0, 1), this implies
e || (x3e(9:He ) (F6(G2) — F6()) [l o sy
(7.73) [T (s (20:HL) (Fo(G2) = o)
< O(E¥ 2 + 39|16 — Clllgzan)-

Together, (7.47), (7.48), (7.49), (7.51), (7.63), (7.66), (7.68), and (7.73)
imply (7.38) for g, 6y depending on d,.

Likewise, (7.47), (7.48), (7.49), (7.51), (7.64), (7.66), (7.68), (7.73) imply
(7.39) for ay, Oy depending on J,. O

CYY(SxR)

Proof of Theorem 7.4. As was already pointed out, we can rewrite (7.17)
as the non-linear fixed point problem (7.27)-(7.29). We will take «, 6, § as in
Lemma 7.11, and M > 1.

Consider g as in Section 7, and also define

U(e; M) 2 {(vb,vﬁ,g) € C2°(Q) x C29( x R) x C2(X) :

(7.74)
1o gz ) + 1%l 2 ey + €2 M€l 2y < Me2}
and
Ble; ) 2 {(6",6“, 0) € C2%(AQ) x C22(JT x R) x C>*(9%) :
(7.75) 2" =0on {ys =1}, IL(?*) = 0 on 9%,

- N —~
v ”Cgvﬂ(ag) + ||Uﬁ||c§aa(asz) + ||€||02,a(82) < M52}-
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Lemmas 7.10 and 7.11 guarantee that for every (vb,vﬁ, ) eU(e; M),

(7.76) IN=(v", 0%, Ol g < 4™ 72 + coe?,
(7.77) T2 M (0, 0%, Ol o sy < 18072 + coe?,
(7.78) e LMo (v, 0%, Q)| cowa(sy < 4072 4+ he? ™ + coe?,

with ¢g as in Lemma 7.10, and with ¢} = M - ¢1, € < ¢ as in Lemma 7.11.
Let

O : U(e; M) x Ble; 1) x Met,(Q) — C22(Q) x cgva(z x R) x C2%(%)

be the solution map @ : (v, vf, ¢, 7", v E g) — (V°, V¥ Z) for the linear system
(7.79) LV’ = N.(v",v%,¢) on Q, V"!aﬂ =7,

(7.80) L.VE =T M(v", 0%, () on £ x R, VE|psyr =7,

(7.81) JsZ = "MLM.(v",0%,¢) on B, Z|ox = C

The existence of V? follows from Fredholm theory. In fact, together with
Lemma 7.9 and (7.76), we have

V2l g2y < CUN", 0%, Ol o gy + 17l g2 )
< 00/162-5—5—204 +C<CO+M>52

(7.82)

The existence of V¥ follows from Lemma 7.6. In fact, together with
Lemma 7.7 and (7.77), we have

Ve,

b N
gya(sz < C(HHJ_M ("U v“,C)Hcgya(sz) + HvﬁHcgva(asz)

(7.83) o5 o )
< O e®t072* 4 Clep + p)e

Finally, the existence of Z follows from Fredholm theory and (7.9). In
fact, by Schauder theory on the elliptic operator Jy on ¥, and (7.78), we find
that

1Z]lc2a(sy < Cle M MM (0", 0%, O) | oz + 1< 020 (a5))
(7.84) < Ce?t072 1 Ol e? ™ + Cepe? 4 Cue* 22,
= 2| Z||c2a(s) < Che®™ + Ol + Cepe® ™ + Cpe’.

We emphasize that the constant C in (7.82), (7.83), and (7.84) depends
only on n, n > 0, and W.

The expressions in (7.82), (7.83), and (7.84) can all be made to be < Me?
as follows:

: 1
(1) Choose M large, depending on co, C, p, so that C(co + p) < gM.
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(2) Then, choose € < gy small depending on C, ¢}, M, so that
(7.85) Ccle® < 1;
note that, since M > 1, the left-hand side is also < %M .
(3) Using « € (0, ) we find that €072 < e?, so Ccje® < Ocje22 < M.
Thus, for such a choice of M = M (n,n, W, ., u), € < i = ei(n,n, W, dx, p, @),

we have
D (U(e; M) x B(e; i) x Mete () € U(e; M).

We show that &(-, -, -, 7°, 0¥ E g) is a contraction with respect to the norm
b
786) 107 Ol 2 10y + 1l ey + <2 ICcnes).
uniformly with respect to 0°, o C ,g. Let us also define
(7.87) 1@, 3%, O)lls 2 17l 52000 + [Tl 22 a5 xm) T ICllc2e on)-
<%(09) =% ( )
Let us set

)

(V! Vi, 20) £ ®(uf, 0], 1,0, 7, (. g).
(V2bv V2ﬁ7Z2) £ @(U%,Ué,(g,v/\b,ﬁ aC?g)'
By Lemmas 7.9 and 7.11,
||V2b —WH@?@(Q)
< C|LeV3 = LV | o
= C||Ne(v3, 05, G2) = N}, 0, 1)l oo g

b b
< 00/1560‘”2 - UlHaZOt(Q) + HUQ - Uchgv‘l(sz) +1/¢2 — <1HC’2»'1(E))-
By Lemmas 7.7 and 7.11,
1V§ = Vll ez mxr)
< C||LVf — LV

<

)

(7.88)

C2*(TxR)

(7.89)
— O M. (v3, 08, &) — TIEM (45, 0%, ¢1)

HC‘S’O‘(EXR)
< el (||vh — 5|~ + vk — of B
- ! 2 ticze @) U2 leCg’O‘(EXR) + & CIHCZCX(x) .

Finally, by Lemma 7.11, (7.9), and Schauder theory,

(7.90)
1Z2 — Z1llc2.e(x)
< CHJEZQ — JZZIHCOJX(Z)

- C”5_1HEM5(U5, Ug7 CZ) - 8_1H8ME(’U?5 U%u Cl)HCO«D‘

1 b b
scd%m%—M@ﬂ-ﬂm—mma)+ew% ol ez semy |
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Adding (7.88), (7.89), and €2* times (7.90), using a < 34 and the || - [|zy norm
onU(e; M),
(T91)  [[(V3, V5, Za) = (V,VE, Z0)lu < Cehe[[(63, 08, G2) — (o, 0 1) -
This implies that ®(-, -, -, °, 0%, E, g) is uniformly Lipschitz, with Lipschitz con-
stant < C¢cje®, and by (7.85) we conclude that it is , in fact, a contraction
mapping. This readily implies the existence of a fixed point (v°, v, ¢), which
therefore satisfies (7.17).

We finally move to prove the continuity of the solution map

S : B(e; i) x Mete ) (2) — U(e; M).

For (ﬁ{,’ﬁg,&,gl), (ﬁg,ﬁg,&,gg) € B(e;p) x Met, »(£2), we have, by the fixed
point property,

S(ﬁgaﬁgaééng) _8(6?’6§7C17gl)
- <(I’(S(i)\gvﬁgaC2792>7?§77737<2792> - q)<8(@\g7i)\gaC2792)7@\?76§7C1791)>
- (q)(s(i}\?aa%aClugl)7i}\?aa§a<-lagl) - Q(S(ﬁgvﬁgvC2)92)76I176§7C1)gl))'

The last parenthesis will be bounded using the contraction mapping prop-
erty (7.91) on (29, 5%, C1,91). The second-to-last parenthesis will be bounded by

varying the four slots of @(8(@,55, Ez,gg), -y, -, ) using the fundamental the-
orem of calculus. The 7°, 9%, ¢ derivatives of @(S(i)\g,i)\g, (2,92),,",",-) can be

controlled using Lemmas 7.9 and 7.6, and Schauder theory on Jy,, respectively.
Likewise, it is not hard to see that for g € Met, ,,(£2), the map

g '% (I)(vb?vﬁ? C?ij\b,i]\ﬁ7 Z? g)

is uniformly Lipschitz with respect to (v°,vf, ¢, 2%, 9%, Z) € U(e; M) x Ble; ).
Altogether, we have

1S (@5, 0, G2, g2) — S(@, 7%, C1,y 1))l
< (11, 75,&) — (@, Q) s + d(g2.1))
+ Che®||S@h, T8, Coy go) — S(@8,7%, C1u91) s

and the result follows by rearranging. O

Appendix A. Mean curvature of normal graphs

The purpose of this appendix is to record a form of the second variation
of mean curvature that is convenient for our paper, since this computation is
not easily found in the literature.

We consider Fermi coordinates (y, z) near a hypersurface ¥ C M satisfying
the conditions of Section 2.1, where the normal graph of a function f : 3 — R
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will eventually look like

Glf1 £{(y, f()) : y € T}.

Before discussing the geometry of the graph over X, let us first discuss the
geometry of the distance level sets {z = const} relative to X.

We will denote the restriction of the metric to the parallel hypersurface
{(y,2) : y € X} by g, ie., g. = Zx(-,2)*g, and the corresponding upward
pointing unit normal, area form, second fundamental form, mean curvature,
divergence, gradient, Hessian, and Laplacian by 0., du,,, I, H., div,,, V,_,
ng, Ag4.. We recall that the 0, (Lie) derivative of g. is known to be

(A.1) Ls.9. =21,
and also the corresponding derivative of the second fundamental form 1II, is
(A.2) Zp. T, =T2 —Rmy(+,9,, 05, ),

where ]Ig denotes a single trace of I, ® II,, and our Riemann curvature conven-
tion is such that (Rmy);;;; (suitably normalized) denotes a sectional curvature.
From (A.2) we recover the well-known Jacobi equation

(A.3)

0.H, = aZ(gij Hfg) = _gikggé(gazgz)kﬁ Hfj +gij$8z ]Izz] = _| I, |2_Ricg(8za az)

From (A.1) we also find the evolution of the gradient operator:
(A.4) ZLo.Vg.[ = 21(Vy. f,), feC=(X).

Next, we seek the evolution of the divergence operator on 1-forms. To find
it, we first need to find the evolution of the Christoffel symbols. Recall that
the Christoffel symbols do not transform like tensors but that their difference
does. In particular, 9,1 is a vector-valued 2-tensor given by (using the Codazzi
equation to get the second form)

(A5) (8.T)(X,Y) = [VEI(-Y)+VEI(X,) - V" I(X,Y))
= [V I(X,Y) + Rmy(9.,X,Y,-) + Rm, (9., Y, X, )%,

where the indices are raised with the f#f operator using g,. From this we find
the evolution of the Hessians of scalar fields,

2 2
(A.6) L. N, [ = —ngng I,
and their Laplacians
(A-7> ngng = _2<HZ= Vf;zf>gz - <ngHz, vng>gz-
Likewise, the evolution of the divergence of 1-forms is
(A.8)

Z, divg, w = —2(I,, Vg w)y, — (Vg H + Ricyg(0,),w)q., w e QD).
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Next, we seek to calculate the evolution of V_1II,. To do so, we pick coordinates
so that the vectors 0y, are parallel (with respect to V. ) at the base point where
we are computing the derivative. Then

0:(9y, WGy, = 0y, (- jy,)
= 0y,(Ls, Ij),)
= ayi((]lg)‘ _ng(ayjaVZvVZ»ayk))
= ayl(gﬁmﬂ fm — Rmg(9y,,0:,0.,0,,))
emayz 54 Zm gzm ]Ije Oy, Ly, — Oy, (ng(ayj , 0,0z, 0y,))

= (vgz ) km gz (vzgz im) ;E _v(‘g)yi ng(ayj’az?627ayk)
+2ng(ayj,g§m % Oyons 02, 0y, );

(A.9)

8(8211 jk):_gz (vgz ) km gz (vgz i ) j@
%) ng(ay],az,az,ayk)mgfm % Rmg(9y,,0y,,, 0, 0y,).

Moreover,

Z5.(V5, 0y;) = Zo.(V§, 0y, + 155 0:)

= 2.V}, Oy; + (£, I2)i;0-

= V5. V3, 0y, + (I2)30. — Rmg(dy,, 8-, 8-, 8,):

= V5. V9, 0, + I2)ij0: — Rmg(0:,dy,, 0y, 8:)0:

= V5. V3, 0y, + (I2)350: — (V3. V3, 0y, = V§ V5 9y,)
= V3, V5.0y, + (I2);50. = V3§ vgyj 9 + (I12);0:.

Recall that .,%z(vgz ‘0y,) is tangential to {z = const}, and so is ngaz =
[ J
¢ Jzk 0y,. By projecting onto {z = const}, the expression above reduces to

(A.lO) c%z (v(%; ayj) = V(%; (gfg ]Ijk aye) = gz (vgz )aye
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Combining with (A.9), we deduce that
ﬁz(sz j ) - azwyi jk) - Hz<vg;ayj7ayk> - ]Iz(ayj’ Vg;. ayk))
=0, (6311 ch) («Za (ngiayj)7ayk) _]IZ(aijg@z(vg;ayk))
= —g" (V] L) I, — 92" (V1) 15,
- ngi ng(aywaz’ 0z, Oyy.)
+ QQﬁm 7 Rmg(9y;, 0y,,, 0z, 0y, ) — ]IZ(QZM(V?Z I%,,)0y,, Oy,.)
1. <8yj,g?f<vgz ) Ou)

= =gt (V5 I, —gs™ (VI T},) 15,
— vgyi ng(ayj , 0,05, 0y,)
+ 29" 17 ng(ayj,aym,az,ayk)
— g I, VI I, gt I,V
- _9 Em(vgz ) z =2 ém(vgzﬂz ) z
- V5 ng(ayj,az,az,ayk)mgfm % Rmg(9y,,0y,,, 0, 0y, ).

In particular,
(A.11) Ly Vg I, =V, I xI, +V,Rmy + I, * Rmy,

as a symmetric 2-tensor on the {z = const} level sets.

We now proceed to use these evolution equations to understand the sec-
ond variation of the mean curvature of a graph in Fermi coordinates. These
computations are motivated by the ones in [PS].

Continuing to work in Fermi coordinates (y, z) relative to X, we write

Glf1 2{(y. f(y) :y € T}

Note that the induced metric on G[f] is

dlars = 9rw) + A (Y)?, y € 2.

The induced area form on G[f] is therefore

duci(y) = 1+ g3, Fi@) F@) 2 dpg, ) (0), y € 2.

Thus,

(A.12) area(G|[f]) = /E(l‘i‘gjgfifj)lﬂ dhgy .-



ALLEN-CAHN ON 3-MANIFOLDS 307

We now consider the variation f +ty, p € C2(X\ 0%). We have (we are using
integration by parts in the second step)

[imwmu+wﬂto

B / g7 fi; e / 7 fifie "
x (1+ g7 fif)'/? . v (1+ g7 fif)\/? Y

+/Z(1 + 97 fif;)'?Hyp dp,

| Vo, I} fife
- _/ dive, ( 7, 1/2) # dugy _/ fij : 172 s
s (L4497 fif5) s (L+g7 fif3)
+/Z(1+9?fifj)l/2Hfs0dugf-
Note that, if v denotes the normal to G[f], then
9(v,0:) = L+ g7 fif))? = dpg, = g(v,0:)dpcyy,

and, therefore,

& area(GLT + 1))

t=0

:/ |~ div Vorf LW
S TNQ+g BV2) (g fif)

+(1+ g}jfifj)l/QHf}g(v, 9:)p ducp)-
On the other hand, by definition,
d
aea(Gli+ )| = [ Hogg(v 0o dnay,
dt =0 Jx

so we conclude

(A.13)

V. f 17 fif; 5
H[f] = — div £ _ + (1447 f:if)?Hy.
9f ((1+gfjfifj)l/2 (1+gfjfifi)1/2 v f
We now claim that the quantity
(A.14)

Of £ HIf]~Hot+ Y2 divyy(YEZ (1497 fif;) ™2V g, 1)+ (| o [+ Ricy (0, 8.) f

is a quadratic error term in the Taylor expansion of H[f] with respect to
{z=0}:

LEMMA A.1. We have the pointwise estimate

1Qf] < c(|f? + |0 ),
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where ¢ = c(n,A) >0 and A = A(f,y) > 0 is such that

sup |L(y)| < A.
[2I<|f ()l

Proof. First, note that
. ngf \/% . \/@ ngf
divy, ij 12 | divg, ij 12 |’
(1+gffifj) / VIr \/g>0(1+gffifj> /
which means that
O = - (1 g )y — Bk (T 4 Ricy (91,020
(L+ g fif)1V? !
The result follows by adding and subtracting H,
|17 £ ]
(1+g7 fifj)/?

+ (14 g7 fifj) /2 Hy — Hy| < c|0f|?,

and
|Hy — Ho + (| Lo |* + Ricg(9:, 0:)) | < el fI*.
We have used (A.3) in the last estimate. O

Appendix B. Some results of Wang—Wei

For completeness, we recall several results proven in [WW19a] by Wang—

Wei. We will assume (2.3)—(2.11) and will use the notation H = APl oe el
and ﬁ&g from Section 2.1 throughout this appendix. We emphasize (see Re-
mark 2.1) that we are working at the original scale, rather than the e-scale

n [WW19a], so these expressions have changed relative to [WW19a] by
appropriate factors of ¢.

LEMMA B.1 ([WW19a, Lemma 8.3]). For m # ¢ € {1,...,Q}, consider
X € Zy(Ty(3) x [-1,1]) with |dn (X)), |de(X)| < Ke|loge|. Then,

dr, (I, 0 I (X), I (X)) < C(K)e2|logel2,

Ao (T (X)) + de(IL, (X))| < C(K)e2|loge] 2,
| (X) = dg(X) + dyn(T(X))| < C(K)e3|loge] 2,
|de(X) = dm(X) — dy(IT, (X))| < O<K>e%\logs|§
1 — Vdy(X) - Vd(X) < C(K)e2|loge|?.
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Recall the definition of ¢ in (2.17). Wang-Wei compute [WW19a, (9.4)]
in Fermi coordinates with respect to I'y that

e2(Ar,.¢ + Hr, .0.¢ + 82¢)

Q
= W"(U[h])¢ + R(¢) + <W’(U[h]) - W’(He,m)>
m=1

+&*(Ar, he — Hr, )0.H. o — £*|Vr, he[*07H, 4

(B.1)
+ Z (5Rm,1<(ZF7,L)*az)E€,m - 52Rm,2((ZF,,L)*az)2Es,m)
m#£L
Q
— ) (1) e dyy — hup 0 T1y)).
m=1

Note the slight differences in signs relative to [WW19a, (9.4)], which arise
from our different sign convention on the mean curvature and our choice to
avoid introducing extraneous notation for (Zr,,).0, derivatives of ﬁ&m that
introduce factors of (—1)™ for m = £ or m # £ (cf. gl,, gl in [WW19a, §9]).
Above, we have written

R(9) £ W'(U[h] + ¢) - W/(U[]) - W (Uh))é = O(¢?),
((Ze,) R+ 2') 2 e(Ar,, L hly) — Hr, (),
((Ze,) Ru2) (W) 2 |V, b))

as well as (cf. (2.15))
(B.2) E(t) 2 T (1) — W(H().
It is useful to remember that the terms involving R, 1, Rm2 in (B.1)

vanish when d,,, > 6¢|loge|.

LEMMA B.2 (cf. [WW19a, Lemma A.1]). For k > 0, we have
o0
/ (W (H(t)) — 2)H (t — T)H(t) dt = —4v/2(Ag)2e V2T + O(e~2(1-R)V2T)

as T — oo.
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Proof. Let us denote the left-hand side as I(7"). Recall that W (£1) = 2.

We can rewrite

I(T) = V2Age V2T / h (W"(H(t)) — 2)eV2H'(t) dt

—0o0

+ / h (W (H(t)) — 2)(H (¢t — T) — V2AgeV2=D)H' (¢) dt
= V2Ape VT / h (W"(H(t)) — 2)eV2H/(t) dt

—0o0

+O(1)/_OO‘H’(75—) V2A0eV2ET) H ()2 dt,

where we have used (1.5) and (1.6) in the last step.
We can directly evaluate the first integral by writing W (H(t))H'(t) =
H"(t) and integrating by parts:

/L W//(H( ftH/ / H/// ftdt
—L

= H"(L)eV?l —~H"(~L)e V2L — V2 / H (t)eY? dt
= H'(L)e¥? — H'(~L)e™?" — V2H'(L)e"?
+ V2 (—L)e V2 42 / ; H'(t)e V2t dt.
Recalling (1.6) and (1.7), sending L — oo gives
/ - (W"(H(t)) — 2) eV2'H () dt = —4A,.

Plugging this into the expression for I(T"), we have
(B.3)

I(T) = —4v2(Ap)2e V2T + 0(1) / T B (= T) — VBAgeVET))H ()2 dt.

—00

It remains to show that the last integral is O(e=2(=®)V2T) Let o € (0,1) be
fixed. When ¢ € (—o0,aT),

H(t—-T) — V2AgeV2(t-T) — O(eZﬂ(t—T))’

by (1.6), so

(B.4) /ﬂmw—n—VmMﬁWﬂmwfﬁ:oafwﬂy

— 00
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To bound the integral over [T, c0), it suffices to observe the following bound
on its dominant term:

B 5 / \[t T)H/( ) dt = O(l) /OO e*\/i(ﬁi’T) dt = O(ef\@(lJra)T)
aT

= / (H'(t — T) — vV2AgeV2"THH! (£)2 dt = O (e V2(IHNT),
The result follows by plugging (B.4) and (B.5) into (B.3). O

Appendix C. Proof of Lemma 2.8

We follow the proof of [WW19a, Lemma 9.6], using Lemma 2.7 to gain
improved estimates on the error terms. We continue to use the notation of
Appendix B.

Fix e {l,...,Q}, y € Fg(%). In what follows we work in Fermi coordi-
nates with respect to I'y. Because u(y) = 0, we have

(C1) By, 0) = —H((—1) e hu(y)) = Y (Hem(y,0) + (=1)™1),
m#£L

where the “4+” is a “—” for m < £ and “+” for m > ¢. This implies the first
inequality immediately, using the fact that [H(e 'he(y))| ~ e he(y)| by a
Taylor expansion.

Differentiating (C.1) once with respect to y, we find that (recalling (2.13))

eV, () (5, 0) = —(=1) " H (1) e he(y)) Vi, e (y)
—e > 0.((Zr,,) He ) (y,0) (Vr,din (, 0)

m£l
=V, (hy 0 I1n) (y, 0)).
Define
r2{me{l,...,Q} : m#{, dn(y,0) < Ke|logel}
for K > 6 fixed. Then, the exponential decay of g (and definition of H) gives

[V, he(y)

. c(ewre(aﬁm)(y)\

+ sup (IVrgdm(y,O)l+IVrg(hmOHm)(y,O)l)exp(—\@s‘lDz(y))>

meZy(y)
< ¢ (£|Vr,(9lr,) (v)| + e™ exp(—v2e ' Dy(y))) -

We have used Lemma B.1 to bound the first term in the supremum and the
bounds from Lemmas 2.3 and 2.7 to bound the second term. (Note that in
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the proof of Lemma 2.3, the second term was simply bounded by o(1) since at
that point Lemma 2.7 was not available.)
Differentiating (C.1) again, we find

292, (4lr,)(y,0)
= — (-1 TH (1) e he(y)) VE, he(y)
—H' (1) e he()) Vi, he(y) @ Vi, he(y)

—&2> 02 ((Zr,) Hem) (4,0)(Vr,dim(y, 0) = Vi, (hn © Ty) (y, 0))
m#£L
@ (Vr,dm(y,0) = Vr,(hm o I1,)(y,0))

— &’ Z OZ((ZFm)*Es,m)(ya 0)(V12ﬂ£dm(y, 0) — VIQ“[ (hm o ILn)(y,0)).
m#£L

Because I'y, T';, have bounded second fundamental form by (2.6), (A.2) shows
that
\V%edm(y,0)| <ec, mel.

Thus, we find that, as claimed,

elV3, ()| < e (2V3, (Blr,) )] + 21V r,($lr, )W) + =~ exp(—V2Z=""Dy(y)) -

The Holder estimate follows similarly, with one important change: we
do not know (at this point) that [II,]y is uniformly bounded, and thus cannot
conclude that [V%gdm(y, 0)]s < c. Instead we use (2.6) and (2.7) in conjunction
with (A.2) and (A.11) to conclude that

56[V2dm(y,0)]g <e, meT.

This, combined with the factor of € in front of the last line suffices to complete
the Holder estimate.

Appendix D. Proof of (3.2)

We follow [WW19a, §19], except we keep track of how the error terms
improve upon strengthened sheet separation estimates, as well as keeping track
of the constant in front of the main term on the right-hand side of the stability
inequality. We assume that ¢ € {2,...,Q — 1}; i.e., there are sheets above
and below I'y. (When ¢ =1 or @, the argument is similar.) Similarly, we can
assume that

(D.1) (-1t =1.

Here, and throughout this appendix, we will write &£ for any term which
is bounded as follows:
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Q
€l <22+ Y sup { exp(—v2(1+ K)e Dinly))
(D.2) =1
' € Do NI (B g (5PE ) }

for some x > 0 fixed throughout sufficiently small. We emphasize that the
constant ¢’ is uniform in ¢ sufficiently small. Here, ¢ is just the test function
from the statement of (3.2).

We emphasize that Lemma 2.7 holds, so by (2.20) and Lemma 2.3,

Q
D N8lc2o (g, oy + N AT Rm = Hryll oo r, oy,
(D.3) "™

Q
+ 5_1Hhm”02’9(rm(r)) <de?+d Z A (r+ Kelloge|) < e,
m=1
and the improved estimate on the tangential derivatives of ¢ from (2.21), which

we will write as
Q

ell(Zr,) 48y, 0l 10 (agy oy < €5+ ¢ Zl A (r 4 2Ke|loge|) "
m=
Q
+ ce” Z Ap(r +2Ke|loge|) < el ™.
m=1
In fact, we will often use the localized version of (D.3) and (D.4) on M,(1)N
IT, * (spt ¢):

(D.4)

|8l cz0 + el Ar,he — Hr, [l goo + & lhel 20

D.5 Q

(b-5) <de’+ ¢ Z sup {exp(—\/ie_le(-))}
m=1

and

(D.6) ell(Zr,)«0y;bll cro < O(Ec]);

the Holder norms are taken over M, (1)NII; ! (spt ¢), Tp(1) NI, ! (spt ¢), Te(1)N
IT, ! (spt ¢) for (D.5) and over M,(1)NII, * (spt ¢) for (D.6), and the sup is over
M (1) N H[l(BgI;; logs‘(sp‘c ¢)). Note how (D.5) and (D.6) imply (D.3) and
(D.4) by Lemma 2.7.

We will write H for ﬁ:ﬂ log | throughout this appendix, where ﬁ?" loge| is as
in (2.14) with A = 3|loge|. We also recall the definition of £ from (B.2). We

then define the following functions by their expression in I';;, Fermi coordinates:
((Zr,) Hem)(y, 2) £ H(-1)™ e (2 = hin(y))),
((Zr,) E€cm)(y,2) 2 E(-1)" 17z = hin(y)))-
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Recall that Zr,, (y, ) is the point (y, z) in Fermi coordinates over I'y,, (see the
definition after (2.11)), and that g = d2%+ g, in Fermi coordinates. Recall also
(B.2) and (2.15).

Choose functions pzt (y) = %fuil(y), where we recall I'p4; is the normal
graph of fy 11 over I';. Note that pét is thus uniformly bounded in C*(T g(l%))
by (2.6)—(2.7). We consider a vertical cutoff function x(y, z) defined by

Xy 2) 2 X (T LT = —pf () X (€7 L7 (y) — 2))
where x is a smooth function with x(t) = 1 for t € (—oo,—1) and sptx C
(—00,0). We will fix L > 0 sufficiently large (independent of ¢ > 0 small)
below. Note that

(D.7) eL|Vx| <c
and for fixed y,
(D.8) spt [0:x(y, )| C [py (v): oy (y) + L] U [pf (y) — €L, pf (y)]-
We will frequently use the observation that on spt |Vx| N {xz > 0},
(D.9)
eF|OFHL o(y, 2)| < ¢ exp(—V2e " pf (1)
< e+ sup {exp(—3V2e 7 Du(y) 1y € B (0)}

for integers k > 1 (we used Lemma B.1 in the last step), as well as the fact
that on spt x, we have

(Dlo) lazdlugz‘ + ‘8§d/’1/gz‘ = O<1)d/’1/gz7

which follows from (2.6), (A.1), (A.2), and (A.3). Moreover, we note for future
reference that the following expression holds on spt y,

u= ﬁz—:,E + ¢ + Z (Ea,m - (_1)m71)

m</t
3 o+ (D)™ =Hop + 6+ Y O((0:H ),
m>{ m#£L
(D.11) W (u) = W"(Her) + O(6) + Y O((0:H. m)).

m#£L
Let us set o(y, 2) £ ((y)x(y, 2)(9:H. ¢(y, 2)). Because u is stable,

[ el e W) duy >
Cg/10(0)

We will write this integral in Fermi coordinates over I'y and expand using the
choice of ¢. Note that

IVol® = (0:9)* + | Vi, ¢|*.
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We begin with the contribution of the vertical derivative, 8,¢ = ((8,x)(0,H: ¢)
+ (x(0?H. ), to stability:

n n _
[ ] ceriu de=c [* [ @ du d:
-n F[,z -n FZ,Z

n .
e / (0.0, T o) dpsy. d=
- FZ,Z

n _ _
+ 25/ CQ (8zx)x(<9sz,z)(3§Hs,e) dpg, dz
-n Fé,z
n _ _
= ¢! / / <2X2W”(Ha,£)(azH6,€)2 dpg, dz
-n Fl,z

n _
e / C(0,x)2 (9. 1) dpsy, d
-n Fl,z

n _ _
et / (08, )(0-Hy) dpiy, dz
=N FE,z
n o _
e / / (0. 1) (0H..) (D-dsg. ) dz
-n Fl,z
n . _
— _51/ / CZXQW”(HM)(@ZHE,@)Z dpg, dz
-n Fé,z

n _
be / C2(0.x)2(0-H..)? dpsy. d

-1 FZ,Z

/r] . p—
_51/ / C2X2(azé‘€,é)(azH5,[) d:U’gz d
-n Fl,z

n _
e / [ 00T (Dedny) i
-n 0,z

n _
tie [ OVOEL @du) e
-n FZ,Z
where we integrated by parts on the final term after the first equality and the

second equality. Using (2.15), (D.7), (D.8), (D.9), and (D.10), we find that

n
/ / £(0:)? dpg, dz
-n Fé,z

_ —1

n _ _
= ¢ / AW (He )(9:He )* dpg, dz
-n FZ,Z
+O0(E’ L7 + 5—1)/ ¢? (exp(—2v2:7"p) ) + exp(—2v2: 7" p; ) ) dpur,
Ty

+0(1) ¢? dpr, -
Iy
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We now turn to the second term. We use Cauchy—Schwartz to estimate the
mixed terms with a factor of L=1/2 and LY/2 respectively, in the first inequality
below:

n
// eV, .ol duy. dz
-n Fl,z

<(1+ O(L*%)) : g/i/r (|Vr£72C\2X2(8zﬁ575)2) dpg, dz
- L,z
L o(L2) -e/n /F (CI9XPO0He ) + NP (O )%, hal?) dity. d
-n £,z
=+ 0(L72) b [ Ve dur,
¥4
+0(72177) [ ¢ (exp(-2vEe o) + exp(~2VE=1p}) dur,

Iy

+o(L2) [ Zdpur,.
Ty

We have used (A.1), (A.2), (A.3), (D.7), (D.8), (D.9), and (D.10).
Putting these two computations together and multiplying by €2, the sta-
bility condition becomes

1
(1 + O(L_Z)) . €2h()/ |VF5C’2dl~LF
Ty

> / ! / AW (Ho ) — W (w))(0H. )2 dpsy. d
(D.12) —n < Tes
1
+O(L72 + 6)/ ¢? (exp(—2v2e ' pf ) + exp(—2v2e " pp ) ) dpur,
Ty

+O(L2?) / ¢ dur,.
Ty

The first term of the right-hand side represents the interaction between the
sheets and requires further consideration. To this end, we rewrite (B.1) slightly,
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using the definition of R(¢):
e*(Ar, . ¢+ Hr, 0.0 + 929)

Q
=W'(u) = Y W (Hem)
m=1
+e*(Ar, he — Hr, ) (0:Hc ¢) — €°|Vr,  he|*(07HL ¢)

Q
+ Z (ERm,l((ZFm)*az)ﬁa,m) - 52Rm72((ZFm)*8z)2E£,m)) - Z g@m'
m=1

m#L
We then differentiate this with respect to z to obtain

e%(0.Ar, . ¢ + 0.(Hrp, 0.0) + 02¢)
— W (u)(0:9) + (W' (u) — W"(H. ) (9. H. )

+ Z (W”(u) - W//(E&m)) azﬁa,m

m#£L
=+ 528z ((AFe,zhf - HFz,z)(azﬁs,f)) - 528z (|VFz,zh€’2(agﬁ€,€))

+ Z (682 (Rm,l((ZFm)*az)ﬁs,m) - 528z (Rmﬁ((ZFm)*az)QH&m))
m#£L
Q —
- Z azfemm‘
m=1
We multiply this by ¢(v)?x(y, 2)?(0Hz ¢(y, 2)), integrate in (y, z), and estimate
each term. The first term on the left-hand side of (D.13) yields

n _
/ / (9.1, . 0)CN (B 1) dptg. d=
-n Fl,z

n _
. / / (Ary )00 He) dtg. ) dz
- Fi,z

(D.13)

(D.14)

20(6_1|5<|)/ ¢dpr,.
Iy

Here, we have bounded e*Ar, _¢ by (D.6) and the remaining terms using (2.6),
(A.1), (A.3), (D.7), (D.8), (D.9), and (D.10). Continuing on, the second term

on the left-hand side of (D.13) can be estimated similarly as

n _
/ / 20, (Hr, 0:0)Cx*0.He g dpig, dz
-n Ff,z

n __
__ / / e2Hy, 0,60, (C*X20. M. ¢ dysy. ) dz
- Ff,z

=0 &) | Cdpr,.
Iy



318 OTIS CHODOSH and CHRISTOS MANTOULIDIS

We now consider the third term on the left-hand side of (D.13). It is not an
error term, but instead will cancel (up to error terms) with the first term on
the right-hand side:

(D.15)

n _
/ /F (02 6) (0. ) dig, d
/ / 2(020) X2 (02HL, p) dpg, dz
n
n

82 <2 0 Ha 6)8Z(X2 d:ugz) dz

\

-n Ffz

n _
= e%(8:0)¢*X* (02 HL ¢) dpg, dz
-n Fl,z

n ) - )
+/_n /F&Zg (8z¢)C (8ZH€,£)8Z(X dugz)dz
_/n/ e2(02¢)C*(0:He 0) 0 (x* dpg. ) dz

- Ff,z

n
- / (0.0)CXPW! (L ) (8. H. 1) dpsg. d= + O ) / ¢ dpr,

n Flz

/ ! / 0. 8) W (u) (9. ¢) dpsy. d2

Ffz

+/ / (0 0) (W (Hog) — W () (0-HL ) dpy. d=
—nJTy

+0(e &) A ¢*dpr,.
4

We have used (D.5), (D.7), (D.8), (D.9), (D.10), (A.1), and (A.3). The first
term of the final expression above cancels with the first term on the right-hand
side of (D.13). We now study the second term of (D.15). Using (D.11), the
second term of the right-hand side of (D.15) can be rewritten as

D16
/ / 0.8) AW (H.g) — W' (w)) (0. HL ) dpy, dz

— 0 /chumo >y / / VA el 0 (DL 1) dipty, d2
—nJry,

m#£L

—0) | Cdpr, + 0 (7 exp(—v2e' Dy () Z// ¢ dpig, d

Te m#AL

=0 (5 + sup [6_1Dg(-) exp(—\@&t_ng())}) Cdur,

spt ¢ Ty

—Le 2dur, .
(e ‘4’)/Ff ur,
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Note that we estimated |(9,H. ,,)(9.H. ()| using (1.6) and Lemma B.1:
(D7) 2(0He 1) (0, 0)|(y, 2) < de® + exp (—ﬂs_ng(y)) , m# L.

We continue estimating terms on the right-hand side in (D.13).

We have just seen that the first term on the right-hand side will cancel
with a term of (D.15). The second term of (D.13) is the term we are interested
in estimating. We now consider the third term of (D.13). For m # ¢, we note
that on spt x,

W (He ) = W(£1) + O(e(0.He ).
Thus, combined with (D.11), we find that on spt Y,
W (u) = W (Hem) = W (Hep) = W(£1) + O(e) + Y O(e(0:He ).
’;ﬁf

Hence, using Lemma B.1, (D.3), and bounding |(8,H. ¢)(9,He ) (9. Hc /)| as
n (D.17),

/ /F ) = W)

(0=Hem) (0 + O(IVr,, hun )¢ (0:He ) dpg, dz

/ /F 2 (W (H ) — W (1)) (0. He ) (0L 1) sy, d2

n o(Sup D4 exp(—VE= 1Dy ()

(D18) spt ¢

+ e 2Dy(-) exp(—3v2e 7 Dy (- ))D/F ¢dpr,
_ / ! /F X2 (W (Hog) — W(£1))) (0:He 1) (0-H..¢) dptg. d
-n £,z

+0EE) [ ¢ dur,
L

We now turn to the next term of (D.13). Note that on spt x,
|Ar, ful +10:Ar, el + |Hr, | +]0:-Hr, | <
by (D.3), (2.6), (A.3), (A.4), and (A.7). Thus,

n . _
/ €20, ((Ar, he — Hr, )(0-H. ) X2 (0.HL ) dtg. d2
(D.19) * 77T
—0@) | ¢w)dpr.

Iy

The next term of (D.13) is estimated similarly.
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The term of (D.13) involving R, 1 is estimated by an integration by parts

as follows. First, recall the definition of R,, 1 from Appendix B and note that
(D.5) implies that

Q
[Ranal < ¢2*+¢ D7 sup {exp(—v2e ™ D))}
m=1
with the sup taken as in (D.5). This bound thus implies

/ /F 1((Zr,,,)50:)He ) Cx*(0:He ¢) dpsg, d2
(D20 :‘/ /F R ((Z1)20:)He ) 0= (33 (0:He ) sy, ) 2
—nJLly

— 0(c1IE) / ¢ dpr.,
Ty

where we additionally used Lemma B.1, (D.7), (D.8), (D.10), and (D.17). The
terms in (D.13) involving Rom.2, &, are estimated similarly.

Plugging (D.14), (D.15), (D.15), (D.18), (D.19), and (D.20) into (D.13),
we find that

/ [ )~ W B 0B .

-y / CE (W (1) — W (Fo)) (0 e ) (0:Ferp) dpty. d2
m#L Fzz
+O(ed)) [ ¢ dury.
Iy

Observe that for m ¢ {¢ —1,{+ 1},

_ — 2
&2|(0:He,m) (0:He 0)|(y, 2) = O(|&¢| )
on spt . Thus, we can write (because (—1)*! = —1 by (D.1))

/ [, SO @) = W Bl ) 0. . 02

= > / /F Gy (W (Hz o) — W (£1))) (0:He ) (0.He ) dptg, dz

me{lx1}

+0(e71E) g ¢*dpr,
14

s ( [ @ ) W) B e ) - )T dt) dr,
Ty

-7

vt [ e[ @ EE ) W) B ) ) i,

-7
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+O0@E D) | Cdpr,

Ty

e / o ( / " W) ~ 2B (7 () DB (D)) i,

— 00

L / e / " E) — 2 B~ o () DB ()

= —4v/2(4)? 'E_l/r ¢? (exp(—V2e ™ des1]) + exp(—v2e ! |de-1)) dpr,
+ 0(571)/F ¢? (exp(—2(1 = k)v2e ™ |dp11]) + exp(—2(1 — k) V26~ |de1])) dpur,

+0(e7HE) g ¢ dur,
¢

—(4v2(A0)* + (1)) - e /F (exp(—\/iﬁ_1|de+1|) + eXP(—\/iE_wdele) ¢* dpr,

+0(e71E) g ¢dpr, .
i

In the last two equalities we used Lemma B.2. Together with (D.12) and
Lemma B.1, we get (3.2).

Appendix E. An interpolation lemma
We record a proof of the following interpolation inequality:
LEMMA E.1. For0<a<6<1and f:R" — R, we have
195 ooy < CHAIS oy IV FIEE ST
with C = C(n).
Proof. We assume Vf # 0. Fix x € R" with Vf(x) # 0, and set e :=
Vf(x)/|Vf(x)|. Fort>0:

1
f(x+te)—f(x):/0 Vf(x + ste) - teds
1
:/0 (Vf(x+ ste) = Vf(x)) teds+ Vf(x)-te

1
= /0 (Vf(x+ ste) = Vf(x))-teds+t|Vf(x)|

Rearranging, and using the Holder estimate on f(x+te)— f(x) and V f(x+ ste)
— Vf(x) we deduce

tV(x)| < [flot? + [V flot' 0.
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Dividing through by ¢t and optimizing in ¢ (using calculus) and using the fact
that = was arbitrary,

(E.1) IV fllcomny < 20£151V f157°-

By the trivial C%¢ — C%® < €0 interpolation on Vf and the previous esti-
mate we conclude that

[V 5)a < CIVF | g (V115
(E.2) o (1-6)(0-a) o o Ltas
<2C[fly “[Vfly ° ¢ =2C1fly a[vf]9+a .

Together, (E.1) and (E.2) give the required estimate when we replace the
seminorms by norms. O
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