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Integrability of Liouville theory:
proof of the DOZZ formula

By Antti Kupiainen, Rémi Rhodes, and Vincent Vargas

Abstract

Dorn and Otto (1994) and independently Zamolodchikov and Zamolod-

chikov (1996) proposed a remarkable explicit expression, the so-called

DOZZ formula, for the three point structure constants of Liouville Con-

formal Field Theory (LCFT), which is expected to describe the scaling

limit of large planar maps properly embedded into the Riemann sphere. In

this paper we give a proof of the DOZZ formula based on a rigorous prob-

abilistic construction of LCFT in terms of Gaussian Multiplicative Chaos

given earlier by F. David and the authors. This result is a fundamental

step in the path to prove integrability of LCFT, i.e., to mathematically

justify the methods of Conformal Bootstrap used by physicists. From the

purely probabilistic point of view, our proof constitutes the first nontrivial

rigorous integrability result on Gaussian Multiplicative Chaos measures.
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1. Introduction

A. Polyakov introduced Liouville Conformal Field theory (LCFT here-

after) in his 1981 seminal paper [41], where he proposed a (nonrigorous) way

to put a measure on the set of Riemannian metrics over a fixed two-dimensional

manifold; in this context, an integral with respect to the measure is called a

functional integral. Ever since, the work of Polyakov has echoed in various

branches of physics and mathematics, ranging from string theory to proba-

bility theory through geometry. In the context of two-dimensional quantum

gravity models, Polyakov’s approach is conjecturally equivalent to the scaling

limit of Random Planar Maps (RPM for short), which are natural probability

measures over finite size triangulations of a fixed Riemann surface. (See [30]

for an introduction and further references.) In the case of uniform RPM, the

proof of this equivalence has culminated in the series of works [34], [32], [33]

by Miller and Sheffield. (One may also consult [12, App. 5.3] for a statement

of the general conjecture.)

Motivated by an attempt to “solve” LCFT, Belavin, Polyakov and Zamol-

odchikov (BPZ hereafter) formulated in their 1984 paper [6] the general struc-

ture of Conformal Field Theory (CFT hereafter). In the BPZ approach the

basic objects of CFT are correlation functions of random fields and solving

CFT consists in deriving explicit expressions for them. BPZ proposed to con-

struct the correlation functions of a CFT recursively from two inputs: the

spectrum and the three point structure constants. Although we will not de-

fine the spectrum in this paper, let us just note that the spectrum encodes

the algebraic structure of the CFT that allows one to determine higher order

correlation functions knowing the three point correlation functions (see Sec-

tion 2.5). This recursive procedure to find higher point correlation functions is

called Conformal Bootstrap. Though BPZ were able to find the spectrum and

structure constants for a large class of CFT’s (e.g., the Ising model), LCFT

was not one of them.1 The spectrum of LCFT was soon conjectured in [11],

[8], [21] but the structure constants remained a puzzle.

A decade later, Dorn and Otto [14] and independently Zamolodchikov and

Zamolodchikov [59], [58] (DOZZ hereafter) proposed a remarkable formula for

the structure constants of LCFT, the so-called DOZZ formula. Even by the

physicists’ standards the derivation was lacking rigor. To quote Zamolod-

chikov and Zamolodchikov [59], “It should be stressed that the arguments of

this section have nothing to do with a derivation. These are rather some mo-

tivations and we consider the expression proposed as a guess which we try to

1Following their work [6], Polyakov qualified CFT as an “unsuccessful attempt to solve

the Liouville model” and did not at first want to publish his work; see [42].
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support in the subsequent sections.” Ever since these papers the derivation of

the DOZZ formula from the original (heuristic) functional integral definition of

LCFT given by Polyakov has remained a controversial open problem, even on

the physical level of rigor. Later there were several (nonrigorous) approaches

to the DOZZ formula in the physics literature. The first one by Teschner

was based on general assumptions of CFT combined with assumptions on the

spectrum of LCFT [52]; see also [48]. The second one also by Teschner [53],

[54] was based on an explicit free field representation for the vertex operators.

Finally the third one [9] was based on integrability and led to a derivation of

the formula (1.15) for the reflection coefficient. The approach [52] in fact plays

an important role in our proof.

Recently the present authors together with F. David gave a rigorous prob-

abilistic construction of Polyakov’s LCFT functional integral [12] and the corre-

lation functions that are the basic objects in the BPZ approach. Subsequently

in [28] we proved identities for the correlation functions postulated in the work

of BPZ (conformal Ward identities and BPZ equations).

The approach in [12] is based on the probabilistic theory of Gaussian

Multiplicative Chaos (GMC) that enables one to define random measures by

exponentiating the two-dimensional Gaussian Free Field (GFF). The terminol-

ogy of Gaussian Multiplicative Chaos goes back to Kahane in the eighties [24]

and is concerned with measures constructed by exponentiating log-correlated

fields. This theory is neither restricted to the framework of conformal invari-

ance nor to dimension 2. It enables one to define (random) measures formally

given by eγX(x)σ(dx), where γ is a parameter, X a log-correlated field and σ

a Radon measure on some subset of Rd with d > 1. Therefore it generalizes

previous works by Albeverio, Gallavotti and Hoegh-Krohn [2], [1] who initi-

ated the study of two-dimensional exponential interactions in the context of

Constructive Field Theory and works on multiplicative cascades in the realm

of fully developed turbulence; see [46] for references.

The works [12] and [28] provide a probabilistic setup to address the issues

of conformal bootstrap and, in particular, the DOZZ formula. In this paper we

address the second problem: we prove that the probabilistic expression given

in [12] for the structure constants is indeed given by the DOZZ formula. Our

result should be considered as an integrability result for LCFT and, in particu-

lar, for the specific GMC measure defined in two dimensions by exponentiating

the GFF on the Riemann sphere. As such it constitutes the first nontrivial

rigorous integrability result in GMC theory. Let us mention as supplementary

materials the manuscripts [29], [55], which summarize the content of this paper.

Many integrability formulas for GMC theory (in the one-dimensional con-

text) have been conjectured in statistical physics in the study of disordered

systems. In particular, an explicit formula for the moments of the total mass
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of the GMC measure on the circle (based on exponentiating the free boundary

GFF) was proposed by Fyodorov-Bouchaud [19]. (For generalizations to other

1d geometries like the segment, see the work by Fyodorov-Le Doussal-Rosso

[20] and Ostrovsky [39], [40].) It turns out that their formula is a particular

case of the conjectured one point bulk structure constant for LCFT on the

unit disk with boundary. (These formulas can be found in Nakayama’s review

[35].) The recent work of Remy [43] demonstrates that the approach in this

paper can be adapted to the case of the disk to give a proof of the Fyodorov-

Bouchaud formula. These methods were further extended by Remy-Zhu to the

case of an interval in [44]. More generally, we believe the methods developed in

this paper and the previous companion paper [28] will lead to numerous new

integrability results in the field of GMC.

It should be noted that the LCFT structure constants and the DOZZ for-

mula have a wide range of applications in CFT. Indeed, it has been argued [48]

that LCFT seems to be a universal CFT; e.g., the minimal model structure

constants (e.g., the Ising model, tri-critical Ising model and the 3 states Potts

model) originally found by BPZ may be recovered from the DOZZ formula

by analytic continuation. Furthermore, there is strong numerical evidence [10]

that LCFT is essentially the unique CFT for central charge c > 1: the confor-

mal bootstrap equations seem to have the DOZZ structure constants as their

only solution. In another spectacular development, the LCFT structure con-

stants show up in a seemingly completely different setup of four-dimensional

gauge theories via the so-called AGT correspondence [3]. (See the work by

Maulik-Okounkov [31] and Schiffmann-Vasserot [49] for the mathematical im-

plications in quantum cohomology of these ideas.)

In the remaining part of this introduction, we briefly review the functional

integral approach to LCFT and state the DOZZ formula.

1.1. LCFT correlation functions. A rigorous formulation of LCFT will be

given later (see Section 2.1). Heuristically Polyakov’s formulation of LCFT

on the Riemann sphere Ĉ is the study of conformal metrics on Ĉ of the form

eγφ(z)|dz|2, where z is the standard complex coordinate; in this context, let d2z

denote the Lebesgue measure. Here φ(z) is a random function (in fact, φ(z)

turns out to be a random distribution in the sense of Schwartz once properly

defined mathematically). Expectations of suitable functions of φ are given by

the formal integral

(1.1) 〈F 〉 :=

∫
F (φ)e−SL(φ)Dφ,

where SL is the Liouville Action functional

(1.2) SL(φ) =
1

π

∫
C

(|∂zφ(z)|2 + πµeγφ(z))d2z.
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(Note: Restricting F to indicator functions indeed gives rise to a measure on

some appropriate functional space. We use brackets and not E for the positive

linear functional (1.1) since it turns out that the measure e−SL(φ)Dφ once

rigorously defined is not normalizable into a probability measure.) The formal

“functional integral” (1.1), once rigorously defined, gives rise to a Conformal

Field Theory, the LCFT, which is the topic of this paper.

LCFT has two parameters, γ ∈ (0, 2) and µ > 0. The parameter µ is

called the cosmological constant and for LCFT, µ has to be strictly positive.

The case µ = 0 corresponds to the Free Field theory, which is a different

Conformal Field Theory with different structure constants. The precise value

of µ in LCFT plays no specific role since the dependence on µ is governed by

a scaling relation; see [12]. On the other hand, the parameter γ encodes the

conformal structure of the theory; more specifically, one can show that the

central charge2 of the theory is cL = 1 + 6Q2 with

(1.3) Q =
2

γ
+
γ

2
.

The basic objects of interest in LCFT are in physics terminology vertex

operators

(1.4) Vα(z) = eαφ(z),

where α is a complex number, and their correlation functions 〈
∏N
k=1 Vαk(zk)〉.

Their definition involves a regularization and renormalization procedure. They

were constructed rigorously in [12] for N > 3 and for real αi satisfying certain

conditions. The construction of the correlations in [12] is probabilistic and

based on interpreting e−
1
π

∫
C |∂zφ(z)|2d2zDφ in terms of a suitable Gaussian Free

Field (GFF) probability measure; see Section 2.1 below for precise definitions

and an explicit formula for the correlations in terms of the GMC associated to

the GFF.

In particular, it was proved in [12] that these correlation functions are

conformal tensors. More precisely, if z1, . . . , zN are N distinct points in C,

then for a Möbius map ψ(z) = az+b
cz+d (with a, b, c, d ∈ C and ad− bc = 1),

(1.5)
〈 N∏
k=1

Vαk(ψ(zk))
〉

=

N∏
k=1

|ψ′(zk)|−2∆αk

〈 N∏
k=1

Vαk(zk)
〉
,

2In this article this concept will not appear, and hence we refer to the works [12], [28] for

an account on the central charge.
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where ∆α = α
2 (Q − α

2 ) is called the conformal weight. This global conformal

symmetry fixes the three point correlation functions up to a constant:

(1.6)
〈 3∏
k=1

Vαk(zk)
〉

= |z1 − z2|2∆12 |z2 − z3|2∆23 |z1 − z3|2∆13Cγ(α1, α2, α3)

with ∆12 = ∆α3 − ∆α1 − ∆α2 , etc. The constants Cγ(α1, α2, α3) are called

the three point structure constants, and they have an explicit expression in

terms of the GMC associated to the GFF; see Section 4.1. They are also

the building blocks of LCFT in the conformal bootstrap approach; see Sec-

tion 2.5. We should also note that the law of the area measure eγφ(z)d2z

normalized to unit total area when φ is sampled from the normalized mea-

sure
∏3
k=1 Vγ(zk)e

−SL(φ)Dφ coincides with the law of the (unit area) three

point quantum sphere as defined by Duplantier, Miller and Sheffield [16]. (Re-

call that quantum spheres are equivalence classes of random measures on the

sphere with two marked points 0 and∞; one can construct a three point quan-

tum sphere by sampling a point z according to the quantum sphere and taking

the image of the quantum sphere by the unique Möbius maps that sends the

points 0, z,∞ to the fixed points z1, z2, z3. See [4] for the equivalence.

1.2. The DOZZ formula. As mentioned above, an explicit expression for

the LCFT structure constants was proposed in [14], [58]. Subsequently it

was observed by Teschner [52] that this formula may be derived by applying

the bootstrap framework to special four point functions; see Section 9. He

argued that this leads to the following remarkable periodicity relations for the

structure constants:

Cγ(α1 +
γ

2
, α2, α3) = − 1

πµ
Aγ(

γ

2
, α1, α2, α3)Cγ(α1 − γ

2
, α2, α3),(1.7)

Cγ(α1 +
2

γ
, α2, α3) = − 1

πµ̃
Aγ(

2

γ
, α1, α2, α3)Cγ(α1 − 2

γ
, α2, α3)(1.8)

with µ̃ =
(µπl( γ

2

4
))

4
γ2

πl( 4
γ2 )

and

Aγ(χ, α1, α2, α3) =
l(−χ2)l(χα1)l(χα1 − χ2)l(χ2 (ᾱ− 2α1 − χ))

l(χ2 (ᾱ− χ− 2Q))l(χ2 (ᾱ− 2α3 − χ))l(χ2 (ᾱ− 2α2 − χ))
,

(1.9)

where ᾱ = α1 + α2 + α3 and

(1.10) l(x) = Γ(x)/Γ(1− x).

Equations (1.7) and (1.8) have a meromorphic solution, which is the DOZZ

formula. It is expressed in terms of a special function Υ γ
2
(z) defined for 0 <
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<(z) < Q by the formula3

(1.11) ln Υ γ
2
(z) =

∫ ∞
0

(
(Q2 − z)

2e−t −
(sinh((Q2 − z)

t
2))2

sinh( tγ4 ) sinh( tγ )

)
dt

t
.

The function Υ γ
2

can be analytically continued to C because it satisfies re-

markable functional relations; see formula (12.7). It has no poles in C, and

the zeros of Υ γ
2

are simple (if γ2 6∈ Q) and given by the discrete set (−γ
2N −

2
γN) ∪ (Q + γ

2N + 2
γN). With this notation, the DOZZ formula (or proposal)

CDOZZ
γ (α1, α2, α3) is the following expression:

CDOZZ
γ (α1, α2, α3)

= (π µ l(γ
2

4 ) (γ2 )2−γ2/2)
2Q−ᾱ
γ

Υ′γ
2
(0)Υ γ

2
(α1)Υ γ

2
(α2)Υ γ

2
(α3)

Υ γ
2
( ᾱ−2Q

2 )Υ γ
2
( ᾱ2 − α1)Υ γ

2
( ᾱ2 − α2)Υ γ

2
( ᾱ2 − α3)

.

(1.12)

The main result of the present paper is to show the first important equality

between LCFT in the functional integral formulation (rigorously defined in

[12] via probability theory) and the conformal bootstrap approach, namely, to

prove that for γ ∈ (0, 2) and appropriate α1, α2, α3, the structure constants

Cγ(α1, α2, α3) in (1.6) are equal to CDOZZ
γ (α1, α2, α3) defined by (1.12).

Our proof is based on deriving equations (1.7) and (1.8) for the proba-

bilistically defined Cγ . An essential role in this derivation is an identification

in probabilistic terms of the reflection coefficient of LCFT. It has been known

for a long time [58], [52] that in LCFT the following reflection relation should

hold in some sense:

(1.13) Vα = R(α)V2Q−α.

Indeed the DOZZ formula is compatible with the following form of (1.13) [58]:

(1.14) CDOZZ
γ (α1, α2, α3) = RDOZZ(α1)CDOZZ

γ (2Q− α1, α2, α3)

with

(1.15) RDOZZ(α) = −(π µ l(γ
2

4 ))
2(Q−α)

γ
Γ(−γ(Q−α)

2 )

Γ(γ(Q−α)
2 )

Γ(−2(Q−α)
γ )

Γ(2(Q−α)
γ )

.

The mystery relation (1.13) lies in the fact that the probabilistically defined

Cγ(α1, α2, α3) vanish if any of the αi > Q whereas they are nonzero for αi < Q;

see Section 2.2.

3The function has a simple construction in terms of standard double gamma functions;

see the reviews [35], [48], [53] for instance.
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In our proof, R(α) emerges from the analysis of the tail behavior of a GMC

observable. We prove that it is also given by the following limit:

(1.16) 4R(α) = lim
ε→0

ε Cγ(ε, α, α);

i.e., R(α) has an interpretation in terms of a renormalized two-point function.

We will show that for those values of α such that R(α) makes sense, from the

functional integral perspective, i.e., α ∈ (γ2 , Q),

R(α) = RDOZZ(α).

It turns out that some material related to the coefficient R(α) already ap-

pears in the beautiful work by Duplantier-Miller-Sheffield [16]: Within this

framework, the reflection coefficient R(α) can naturally be interpreted as the

partition function of the theory underlying the quantum sphere. We will not

elaborate more on this point as no prior knowledge of the work by Duplantier-

Miller-Sheffield is required to understand the sequel. (See [4], [47] for an ac-

count of the relation between [12] and [16].) More precisely, the required

background to understand R(α) will be introduced in Section 3 below.

Finally, let us stress that the DOZZ formula (1.12) is invariant under the

substitution of parameters

γ

2
↔ 2

γ
, µ↔ µ̃ =

(µπ`(γ
2

4 ))
4
γ2

π`( 4
γ2 )

.

This duality symmetry is at the core of the DOZZ controversy. Indeed this

symmetry is not manifest in the Liouville action functional (1.2) though duality

was axiomatically assumed by Teschner [53] in his argument, especially to

get (1.8). It was subsequently argued that this duality could come from the

presence in the action (1.2) of an additional “dual” potential of the form e
2
γ φ

with cosmological constant µ̃ in front of it. As observed by Teschner [53],

this dual cosmological constant may take negative (even infinite) values, which

clearly makes no sense from the functional integral perspective. That is why

the derivation of the DOZZ formula from the LCFT functional integral (1.1)

has remained shrouded in mystery for so long.4

1.3. Organization of the paper. In the next section, we introduce the prob-

abilistic expressions of the LCFT correlation functions and structure constants

and state the main result of the paper: Theorem 2.4. We also discuss briefly

the conformal bootstrap conjecture and prospects for a probabilistic approach

4Indeed, there are numerous reviews and papers within the physics literature on the

functional integral approach of LCFT and its relation with the bootstrap approach, but they

offer different perspectives and conclusions; for instance, see [23], [36], [50].
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to proving it. In Section 3 we introduce the probabilistic definition of the

reflection coefficient, which is the central concept in our proof, and we state

the main Theorem 3.5 on it. Section 4 gathers some further results from [28]

on differential equations (the BPZ equations) satisfied by certain four point

functions and their consequences. Since the proof of our main result is a com-

bination of several sub-results with interdependencies, we present in Section 5

the outline of the argument together with a chart of the logical structure. The

rest of the paper is devoted to the proof of the main results, Theorems 2.4

and 3.5. In Section 6, we show that the correlation functions of vertex op-

erators are analytic functions of their arguments αk. Section 7 is devoted to

the study of tail estimates of GMC and their connection with the reflection

coefficient. In Section 8 we prove a lemma relating the reflection coefficient to

the structure constants. In Section 9 we study the asymptotics of four point

functions when two of their arguments approach each other (“fusion” rules in

the physics jargon). This section is the technical core of the paper and the key

input in the probabilistic identification of the reflection coefficient. Finally, in

Sections 10 and 11, Theorems 3.5 and 2.4 are proved.

Acknowledgements. The authors wish to thank François David, Sylvain

Ribault and Raoul Santachiara for fruitful discussions on Liouville field theory

and the conformal bootstrap approach. The authors would also like to thank

the anonymous referees for their careful reading of a prior version of this paper;

their numerous comments have certainly improved the paper’s readability.

2. Probabilistic formulation of LCFT and the main result

In this section, we recall the precise definition of the Liouville correlation

functions as given in [12] and state the main result on the DOZZ formula.

2.0.1. Conventions and notation. In what follows, z, x, y and z1, . . . , zN
all denote complex variables. We use the standard notation for complex deriva-

tives ∂x = 1
2(∂x1− i∂x2) and ∂x̄ = 1

2(∂x1 + i∂x2) for x = x1 + ix2. The Lebesgue

measure on C (seen as R2) is denoted by d2x. We will also denote | · | the norm

in C of the standard Euclidean (flat) metric, and for all r > 0, we will denote

by B(x, r) the Euclidean ball of center x and radius r.

2.1. Gaussian Free Field and Gaussian multiplicative chaos. The proba-

bilistic definition of the integral (1.1) goes by expressing it in terms of the

Gaussian Free Field (GFF). The setup is the Riemann Sphere Ĉ = C ∪ {∞}
equipped with a conformal metric g(z)|dz|2. The correlation functions of LCFT

will then depend on the metric, but they have simple transformation proper-

ties under the change of g, the so-called Weyl anomaly formula. We refer the

reader to [12] for this point and proceed here by just stating a formulation that

will be useful for the purposes of this paper.
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We define the GFF X(z) as the centered Gaussian random field with

covariance (see [15], [51] for background on the GFF)

(2.1) E[X(x)X(y)] = ln
1

|x− y|
+ ln |x|+ + ln |y|+ := G(x, y),

where we use the notation |z|+ = |z| if |z| > 1 and |z|+ = 1 if |z| 6 1.

Remark 2.1. In the terminology of [12], consider the metric g(z) = |z|−4
+

with scalar curvature Rg(z) := −4g−1∂z∂z̄ ln g(z) = 8πν, with ν the uniform

probability measure on the equator |z| = 1. Then X is the GFF with zero

average on the equator:
∫
Xdν = 0.

For LCFT, we need to consider the exponential of X. Since X is distribu-

tion valued, a renormalization procedure is needed. Define the circle average

of X by

(2.2) Xr(z) :=
1

2πi

∮
|w|=e−r

X(z + w)
dw

w
,

and consider the measure

(2.3) Mγ,r(d
2x) := eγXr(x)− γ

2

2
E[Xr(x)2]|x|−4

+ d2x.

Then, for γ ∈ [0, 2), we have the convergence in probability

(2.4) Mγ = lim
r→∞

Mγ,r,

and convergence is in the sense of weak convergence of measures. This limiting

measure is nontrivial and is GMC associated to the field X with respect to the

measure |x|−4
+ d2x. (See Berestycki’s work [7] for an elegant and elementary

approach to GMC and references.)

Remark 2.2. For later purposes, we state a useful property of the circle

averages. First, X0(0) = 0, the processes r ∈ R+ → Xr(0) and r ∈ R+ →
X−r(0) are two independent Brownian motions starting from 0. For z center

of a unit ball contained in B(0, 1)c, the process r ∈ R+ → Xr(z)−X0(z) is also

a Brownian motion starting at 0. For distinct points (zk)1 6 k 6 N such that

the balls B(zk, 1) ⊂ B(0, 1)c are disjoint, the processes r 7→ Xr(zi) − X0(zi)

are mutually independent and independent of the sigma algebra σ{X(z); z ∈
[∪Nk=1B(zk, 1)]c}. This results from a simple check of covariances.
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2.2. Liouville correlation functions. We may now give the probabilistic

definition of the integral (1.1)5:

(2.5) 〈F 〉 := 2

∫
R
e−2QcE

[
F (X − 2Q ln |z|+ + c)e−µe

γcMγ(C)
]
dc,

where E is expectation over the GFF. We refer the reader to [12] (or to [28]

for a brief summary) for the explanation of the connection between (1.1) and

(2.5). Briefly, the variable c is essential and stems from the fact that in (1.1) we

need to integrate over all φ and not only the GFF X that is constrained by the

relation X0(0) = 0. The origin of the factor e−2Qc is topological and depends

on the fact that we work on the sphere Ĉ. The random variable Mγ(C) is

almost surely finite because EMγ(C) =
∫
C |z|

−4
+ d2z <∞. This implies that 〈·〉

is not normalizable: 〈1〉 =∞.

The class of F for which (2.5) is defined includes suitable vertex operator

correlation functions once these are properly renormalized. For α ∈ R and

z ∈ C, we set

(2.6) Vα,ε(z) = eαceαXε(z)−
α2

2
E[Xε(z)2]|z|−4∆α

+ ,

where we recall ∆α = α
2 (Q − α

2 ). The point z will often be referred to as

insertion point (or just insertion) and α as insertion weight (or just weight).

Let zi ∈ C, i = 1, . . . , N with zi 6= zj for all i 6= j. It was shown in [12] that

the limit

(2.7)
〈 N∏
k=1

Vαk(zk)
〉

:= lim
ε→0

〈 N∏
k=1

Vαk,ε(zk)
〉

exists, is finite and nonzero if and only if the following Seiberg bounds originally

introduced in [50] hold:

(2.8)

N∑
k=1

αk > 2Q, αk < Q ∀k.

The first condition guarantees that the limit is finite and the second that it

is nonvanishing. Indeed, if there exists k such that αk > Q, then the limit is

zero. Note that these bounds imply that for a nontrivial correlation, we need

at least three vertex operators; therefore, we have N > 3 in the sequel. The

correlation function (2.7) satisfies the conformal invariance property (1.5).

5The global constant 2 is included to match with the physics literature normalization that

is based on the DOZZ formula (1.12).
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The correlation function can be further simplified by performing the change

of variables y = µeγcMγ(C) in the c-integral (see [12, §3]):〈 N∏
k=1

Vαk(zk)
〉

= 2µ−sγ−1Γ(s) lim
ε→0

E

[
N∏
k=1

eαkXε(zk)−α
2
k
2
EXε(zk)2 |zk|

−4∆αk
+ Mγ(C)−s

]
,

(2.9)

where

(2.10) s =

∑N
k=1 αk − 2Q

γ
.6

Using the Cameron-Martin theorem7 (we apply Theorem 12.1 of the appendix

with the Gaussian variable X =
∑N

k=1 αkXε(zk) (see also [12, Th 3.4 and 3.5])

we may trade the vertex operators to a shift of X to obtain an expression in

terms of the multiplicative chaos:

(2.11)〈 N∏
k=1

Vαk(zk)
〉

= 2µ−sγ−1Γ(s)
∏
i<j

1

|zi − zj |αiαj
E

ñÅ∫
C
F (x, z)Mγ(d2x)

ã−sô
,

where

(2.12) F (x, z) =
N∏
k=1

Å |x|+
|x− zk|

ãγαk
.

Thus, up to explicit factors the Liouville correlations are reduced to the study

of the random variable
∫
C F (x, z)Mγ(d2x). In particular, the Seiberg bounds

αk < Q for all k are the condition of integrability of F against the chaos

measure Mγ (see [12]). Furthermore, the expression (2.11) allows us to extend

the definition of the correlation functions to those values of s 6 0 such that

the expectation in (2.11) makes sense; it was shown in [12, Lemma 3.10] that

(2.13) 0 < E

ñÅ∫
C
F (x, z)Mγ(d2x)

ã−sô
<∞

provided the following extended Seiberg ’s bounds are satisfied:

(2.14) − s < 4

γ2 ∧ min
1 6 k 6 N

2

γ
(Q− αk), αk < Q ∀k

6One should notice that s depends on N and α1, · · · , αN (and also γ). However, in what

follows, we will use the generic notation s in the definition of the correlation functions because

the value of s that we are considering should be clear from the context.
7In the sequel, the Cameron-Martin theorem will refer to Theorem 12.1 or Corollary 12.2.
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with s given by (2.10). The standard Γ function has poles on the nonpositive

integers. Hence for s = −n with n integer and satisfying (2.14), we simply set

the correlations to be equal to infinity.

Under condition (2.14), it is also natural to define the so-called unit volume

correlations by

(2.15)
〈 N∏
k=1

Vαk(zk)
〉

uv
= µs

〈
∏N
k=1 Vαk(zk)〉

Γ(s)
;

i.e., we divide by the Γ function to remove the mentioned poles; therefore

〈
∏N
k=1 Vαk(zk)〉uv is well defined under condition (2.14). An important ingre-

dient in our proof of the DOZZ formula is Theorem 6.1, which says that these

correlation functions have an analytic continuation in the αi’s to a complex

neighborhood of the region allowed by the bounds (2.14).

Remark 2.3. The DOZZ formula for the structure constants is analytic

not only in αi but also in γ. A direct proof of analyticity of the probabilistic

correlation functions in γ seems difficult. However, it is an easy exercise in

Multiplicative Chaos theory to prove their continuity in γ, a fact we will need

in our argument. Actually, it is not hard to prove that they are C∞ in γ, but

we will omit this as it is not needed in our argument.

2.3. Structure constants. The structure constants Cγ in (1.6) can be re-

covered as the following limit:

(2.16) Cγ(α1, α2, α3) = lim
z3→∞

|z3|4∆3〈Vα1(0)Vα2(1)Vα3(z3)〉,

where here and thereafter we use the shortcut notation ∆j := ∆αj . Combining

(2.11) with (2.16) we get

(2.17) Cγ(α1, α2, α3) = 2µ−sγ−1Γ(s)E(ρ(α1, α2, α3)−s),

where s = (
∑3

i=1 αi − 2Q)/γ and

ρ(α1, α2, α3) =

∫
C

|x|γ(α1+α2+α3)
+

|x|γα1 |x− 1|γα2
Mγ(d2x).

Furthermore, using (1.5) and (1.6) we see that Cγ is a symmetric function of

the variables α1, α2, α3.

2.4. Statement of the main result. The main result of this paper is the

following identity:

Theorem 2.4. Let α1, α2, α3 satisfy the bounds (2.14) with N = 3. The

following equality holds :

Cγ(α1, α2, α3) = CDOZZ
γ (α1, α2, α3).
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From the purely probabilistic point of view, Theorem 2.4 can be inter-

preted as a far reaching integrability result on GMC on the Riemann sphere;

indeed, recall that Cγ(α1, α2, α3) has an expression in terms of a fractional

moment of some form of GMC (see formula (2.17)). There are numerous inte-

grability results on GMC in the physics literature (see the introduction). To

the best of our knowledge, Theorem 2.4 is the first rigorous nontrivial integra-

bility result on GMC; as argued in the introduction, we believe the techniques

of this paper and the companion paper [28] will enable one to prove many

other integrability results for GMC.

2.5. Further work : conformal bootstrap. Theorem 2.4 is also an integra-

bility result on LCFT. Based on general principles of conformal field theories

as spelled out by Belavin, Polyakov and Zamolodchikov one expects that the

correlation function (2.11) also has a (semi) explicit expression in terms of the

structure constants. The recursive procedure to obtain this expression is called

conformal bootstrap. It postulates a recursion relating an N -point correlation

function to N − 1-point correlation functions with coefficients involving the

structure constants. Applying bootstrap to the LCFT four point function one

obtains the following conjecture [58]:

〈Vα1(0)Vα2(z)Vα3(1)Vα4(∞)〉 =

∫
R
|z|2(4Q+iP−4α1−4α2 )

× Cγ(α1, α2, Q− iP )Cγ(Q+ iP, α3, α4)|FP,{αi}(z)|
2 dP

8π
,

(2.18)

where FP,{αi}(z) are meromorphic functions (the so-called universal conformal

blocks) that depend only on the parameters αi, P and γ through the central

charge of LCFT cL = 1 + 6Q2. The integral over P is here the standard

Lebesgue integral over R. Note that the structure constants in this expression

are evaluated at complex weights Q± iP and have to be interpreted in terms

of analytic continuation from the the real weights. Indeed, our proof con-

structs this continuation and shows it is given by the DOZZ formula. In the

physics terminology these complex weights determine the spectrum of LCFT.

This means, in particular, that one expects that to LCFT there corresponds a

canonical Hilbert space H and a unitary representation of the Virasoro algebra

with central charge cL = 1 + 6Q2 on H. This representation is expected to

reduce to a direct integral of highest weight representations indexed by P . The

bootstrap conjecture then formally follows from representation theory.

On the mathematical level (2.18) remains a conjecture. However Baverez

and Wong [5] were able to prove that it holds at the level of leading asymptotics

when z → 0. (See also the discussion in [5] on the relevance of this asymptotic

in the context of the scaling limit of large random planar maps.) The canon-

ical Hilbert space H can also be constructed using the Osterwalder-Schrader
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reconstruction theorem [37], [38]; see [27] for lecture notes on this. The rep-

resentation of the Virasoro algebra on H should then follow using the results

of [28]. However, a probabilistic understanding of the highest weight vectors is

a challenge as they seem to involve vertex operators with complex weights α

whereas the probabilistic approach naturally deals with real α. Also, the main

application of LCFT to Liouville Quantum Gravity involves real values for α.

In the theory of Liouville Quantum Gravity, the scaling limits of, e.g., Ising

correlations on a random planar map, are given in terms of Liouville correla-

tions with real α’s and regular planar Ising CFT correlations via the celebrated

KPZ relation [26]; for an explicit mathematical conjecture, see [13], [27]. Thus

the probabilistic and bootstrap approaches are in an interesting way comple-

mentary. The bootstrap idea has been extremely successful since the work by

BPZ in [6] and has led to spectacular progress even in three dimensions, e.g., in

case of the three-dimensional Ising model [17], [18]. A proof of (2.18) would be

the first mathematical justification of this idea in a nontrivial and interesting

CFT, and we consider it to be a major challenge to probabilists.

3. Theorem on the reflection coefficient

A key ingredient in our derivation of the DOZZ formula is the reflection

coefficient. We will see later that it plays a prominent role in the analyticity

properties of correlation functions. Briefly, the reason is that expectations of

the type (2.13) are analytic in s over a region determined by the tail asymp-

totics of the random variable
∫
C F (x, z)Mγ(d2x), which is in turn completely

determined by the behavior of this integral close to the “worst” singularity

of F . The reflection coefficient enters in the description of the tail of such

random variables.

3.1. Tail behavior of chaos integrals. To motivate the definitions let us

consider the random variable

(3.1) I(α) :=

∫
B(0,1)

|x|−γαMγ(d2x).

In the case α ∈ (γ2 , Q), the reflection coefficient enters in the tail behavior

of I(α) whose mass is concentrated around 08 and that is a power law as we

now explain. To study this we recall basic material introduced in [16] and,

in particular, we consider the polar decomposition of the chaos measure. Let

Xs := Xs(0) be the circle average (2.2). We have

X(e−seiθ) = Xs + Y (s, θ),

8When studying the tail behavior for α < γ
2

, the mass of I(α) is distributed on B(0, 1)

and not concentrated around a point.
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where Xs is a standard Brownian Motion starting from the origin at s = 0 and

Y is an independent field with covariance

(3.2) E[Y (s, θ)Y (t, θ′)] = ln
e−s ∨ e−t

|e−seiθ − e−teiθ′ |
.

Following [16], we call the field Y the lateral noise. We also introduce the

chaos measure with respect to Y

(3.3) Nγ(dsdθ) = eγY (s,θ)− γ
2E[Y (s,θ)2]

2 dsdθ.

Then we get

(3.4) I(α)
law
=

∫ ∞
0

eγ(Bs−(Q−α)s)Zsds

with

(3.5) Zs =

∫ 2π

0
eγY (s,θ)− γ

2E[Y (s,θ)2]
2 dθ.

This is a slight abuse of notation since the process Zs is not a function (for

γ >
√

2) but rather a generalized function. With this convention, notice that

Zsds is stationary; i.e., for all t, the equality Zt+s = Zs holds in distribution.

For all bounded intervals I (see [46]), this satisfies

(3.6) E

ïÅ∫
I
Zsds

ãpò
<∞, −∞ < p <

4

γ2
.

The following decomposition lemma due to Williams (see [56]) will be

useful in the study of I(α):

Lemma 3.1. Let (Bs− νs)s > 0 be a Brownian motion with negative drift,

i.e., ν > 0, and let M = sups > 0(Bs − νs). Then conditionally on M the law

of the path (Bs − νs)s > 0 is given by the joining of two independent paths :

• a Brownian motion ((B1
s + νs))s 6 τM with positive drift ν > 0 run until its

hitting time τM of M ;

• (M +B2
t − νt)t > 0 where B2

t − νt is a Brownian motion with negative drift

conditioned to stay negative.

Moreover, one has the following time reversal property for all C > 0 (where

τC denotes the hitting time of C):

(B1
τC−s + ν(τC − s)− C)s 6 τC

law
= (‹Bs − νs)s 6 L−C ,

where (‹Bs − νs)s > 0 is a Brownian motion with drift −ν conditioned to stay

negative and L−C is the last time (‹Bs − νs) hits −C .

Remark 3.2. As a consequence of the above lemma, one can also deduce

that the process (‹BL−C+s − ν(L−C + s) + C)s > 0 is equal in distribution to

(‹Bs − νs)s > 0.
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This lemma motivates defining the process Bαs ,

Bαs =

®
Bα
−s if s < 0,

B̄α
s if s > 0,

where Bα
s , B̄

α
s are two independent Brownian motions with negative drift α−Q

and conditioned to stay negative. We may apply Lemma 3.1 to (3.4). Let

M = sups > 0(Bs − (Q − α)s) and L−M be the last time (Bα
s )s > 0 hits −M .

Then ∫ ∞
0

eγ(Bs−(Q−α)s)Zsds
law
= eγM

∫ ∞
−L−M

eγB
α
s Zs+L−Mds

law
= eγM

∫ ∞
−L−M

eγB
α
s Zsds,

(3.7)

where we used stationarity of the process Zs (and independence of Zs and Bs).

We will prove in Section 7 that the tail behavior of I(α) coincides with

that of

J(α) = eγM
∫ ∞
−∞

eγB
α
s Zsds.

The distribution of M is well known (see Section 3.5.C in the textbook [25] for

instance):

(3.8) P(eγM > x) =
1

x
2(Q−α)

γ

, x > 1,

which implies

(3.9) P(J(α) > x) ∼
x→∞

E

[Å∫ ∞
−∞

eγB
α
s Zsds

ã 2(Q−α)
γ

]
x
− 2(Q−α)

γ .

This is the tail behavior that we prove for I(α) and its generalizations in

Section 7. Define the unit volume reflection coefficient R̄(α) for α ∈ (γ2 , Q) by

the following formula:

(3.10) R̄(α) = E

[Å∫ ∞
−∞

eγB
α
s Zsds

ã 2
γ

(Q−α)
]
.

Indeed, R̄(α) is well defined as can be seen from the following lemma, the proof

of which is postponed to Appendix 12.3. (See also Section 4 in [16] for the case

α = γ.)

Lemma 3.3. Let α ∈ (γ2 , Q). Then

(3.11) E

ïÅ∫ ∞
−∞

eγB
α
s Zsds

ãpò
<∞

for all −∞ < p < 4
γ2 .
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The full reflection coefficient is now defined for all

α ∈ (γ2 , Q) \ ∪n > 0{ 2
γ −

n
2γ}

by

(3.12) R(α) = µ
2(Q−α)

γ Γ(−2(Q−α)
γ )2(Q−α)

γ R̄(α).

The function R(α) has a divergence at the points 2
γ −

n
2γ with n > 0 because of

the Γ function entering the definition. Its connection to the structure constants

is the following (see the proof in Section 8):

Lemma 3.4. For all α ∈ (γ2 , Q)\∪n > 0{ 2
γ−

n
2γ}, the following limit holds :

lim
ε→0

ε Cγ(ε, α, α) = 4R(α).

Hence the reflection coefficient should be seen as a two point correlation

function. Let us mention that the fact that some form of two point correlation

function should exist in LCFT goes back to Seiberg [50].

3.2. Main result on the reflection coefficient. The second main result of

this paper is the following exact formula for the reflection coefficient (recall

(1.15)):

Theorem 3.5. For all α ∈ (γ2 , Q), one has

(3.13) R(α) = RDOZZ(α).

4. BPZ equations and their consequences

In this section we collect some previous results from the companion paper

[28] that will be used in the proof of Theorems 2.4 and 3.5.

4.1. Structure constants and four point functions. We complete the de-

scription of the three point structure constants (2.17) by introducing the unit

volume three point structure constants defined by the formula

(4.1) C̄γ(α1, α2, α3) = µs
Cγ(α1, α2, α3)

Γ(s)
,

where s = (
∑3

i=1 αi − 2Q)/γ. The four point function (equation (2.11) with

N = 4) is fixed by the Möbius invariance (1.5) up to a single function depending

on the cross ratio of the points. For later purpose we label the insertion points
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from 0 to 3 and consider the weights α1, α2, α3 fixed:

〈 3∏
k=0

Vαk(zk)
〉

= |z3 − z0|−4∆0 |z2 − z1|2(∆3−∆2−∆1−∆0)|z3 − z1|2(∆2+∆0−∆3−∆1)

× |z3 − z2|2(∆1+∆0−∆3−∆2)Gα0

Å
(z0 − z1)(z2 − z3)

(z0 − z3)(z2 − z1)

ã
,

(4.2)

where here again we use the shortcut notation ∆j := ∆αj . We can recover Gα0

as the following limit:

(4.3) Gα0(z) = lim
z3→∞

|z3|4∆3〈Vα0(z)Vα1(0)Vα2(1)Vα3(z3)〉.

Combining with (2.11) we get

(4.4) Gα0(z) = |z|−α0α1 |z − 1|−α0α2Tα0(z)

where, setting s = α0+α1+α2+α3−2Q
γ , Tα0(z) is given by

Tα0(z) = 2µ−sγ−1Γ(s)E[Sα0(z)−s](4.5)

and

(4.6) Sα0(z) =

∫
C

|x|γ
∑3
k=0 αk

+

|x− z|γα0 |x|γα1 |x− 1|γα2
Mγ(d2x).

In this paper we will study the structure constants (2.17) by means of four

point functions (4.2) with special values of α0.

4.2. BPZ equations. There are two special values of α0 for which the re-

duced four point function Tα0(z) satisfies a second order differential equation.

That such equations are expected in Conformal Field Theory goes back to

BPZ [6]. In the case of LCFT it was proved in [28] that, under suitable as-

sumptions on α1, α2, α3, if α0 ∈ {−γ
2 ,−

2
γ }, then Tα0 is a solution of a PDE

version of the Gauss hypergeometric equation

(4.7) ∂2
zTα0(z) +

(c− z(a+ b+ 1))

z(1− z)
∂zTα0(z)− ab

z(1− z)
Tα0(z) = 0,

where a, b, c are given by

a =
α0

2
(Q− 2α0 − α1 − α2 − α3)− 1

2
,

b =
α0

2
(Q− α1 − α2 + α3) +

1

2
,

c = 1 + α0(Q− α1).

(4.8)

This equation has two holomorphic solutions defined on C\{(−∞, 0)∪(1,∞)}:

(4.9) F−(z) = 2F1(a, b, c, z), F+(z) = z1−c
2F1(1 + a− c, 1 + b− c, 2− c, z),
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where 2F1(a, b, c, z) is given by the standard hypergeometric series (which can

be extended holomorphically on C\(1,∞)). Using the facts that Tα0(z) is real,

single valued and C2 in C \ {0, 1}, we proved in [28] (Lemma 4.4) that it is

determined up to a multiplicative constant λ ∈ R as

(4.10) Tα0(z) = λ(|F−(z)|2 +Aγ(α0, α1, α2, α3)|F+(z)|2),

where the coefficient Aγ(α0, α1, α2, α3) is given by

(4.11) Aγ(α0, α1, α2, α3) = −Γ(c)2Γ(1− a)Γ(1− b)Γ(a− c+ 1)Γ(b− c+ 1)

Γ(2− c)2Γ(c− a)Γ(c− b)Γ(a)Γ(b)
,

where we recall that a, b, c are defined in terms of α0, α1, α2, α3 by (4.8) and

provided c ∈ R \Z and c− a− b ∈ R \Z. Furthermore, the constant λ is found

by using the expressions (2.17) and (4.5) (note that s has a different meaning

in these two expressions):

(4.12) λ = Tα0(0) = Cγ(α1 + α0, α2, α3).

Hence for α0 ∈ {−γ
2 ,−

2
γ }, Tα0 is completely determined in terms of Cγ(α1 +

α0, α2, α3).

In the case α0 = −γ
2 we were able to determine in [28, Lemma 4.5] the

leading asymptotics of the expression (4.5) as z→ 0 provided 1
γ+γ <α1+

γ
2 <Q:

T− γ
2
(z) = Cγ

(
α1 −

γ

2
, α2, α3

)
+B(α1)Cγ

(
α1 +

γ

2
, α2, α3

)
|z|2(1−c) + o(|z|2(1−c)),

(4.13)

where

(4.14) B(α) = −µ π

l(−γ2

4 )l(γα2 )l(2 + γ2

4 −
γα
2 )
.

In view of (4.10) and the fact that 2(1 − c) < 1 (since 2(1 − c) = γ(Q − α1)

and 1
γ + γ

2 < α1), we also have the following expansion around z = 0:

T− γ
2
(z) = Cγ

(
α1 −

γ

2
, α2, α3

)
+Aγ

(
−γ

2
, α1, α2, α3

)
Cγ

(
α1 −

γ

2
, α2, α3

)
|z|2(1−c) + o(|z|2(1−c)).

By unicity of the Taylor expansion around z = 0 we get

(4.15)

B(α1)Cγ

(
α1 +

γ

2
, α2, α3

)
= Aγ

(
−γ

2
, α1, α2, α3

)
Cγ

(
α1 −

γ

2
, α2, α3

)
.

Let us now register the following relation between Aγ and Aγ that stems from

straightforward (but lengthy!) algebra:

(4.16)
Aγ(−γ

2 , α1, α2, α3)

B(α1)
= − 1

πµ
Aγ
(γ

2
, α1, α2, α3

)
.
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Let us also register here (by anticipation of the case α0 = − 2
γ ) the following

analogue dual relation:

(4.17)
Aγ(− 2

γ , α1, α2, α3)‹B(α1)
= − 1

πµ̃
Aγ
Å

2

γ
, α1, α2, α3

ã
,

where µ̃ =
(µπl( γ

2

4
))

4
γ2

πl( 4
γ2 )

and

(4.18) ‹B(α) = −µ̃ π

l(− 4
γ2 )l(2α

γ )l(2 + 4
γ2 − 2α

γ )
.

Therefore, thanks to (4.15) and (4.16) we get relation (1.7) in the case 1
γ +γ <

α1 + γ
2 < Q and also

(4.19)

T− γ
2
(z) = Cγ

(
α1 −

γ

2
, α2, α3

)
|F−(z)|2 +B(α1)Cγ

(
α1 +

γ

2
, α2, α3

)
|F+(z)|2.

The restriction 1
γ + γ < α1 + γ

2 for α1 was technical in [28] and will be re-

moved in Section 9. The restriction α1 + γ
2 < Q seems necessary due to the

Seiberg bounds as the probabilistic Cγ(α1 + γ
2 , α2, α3) vanishes otherwise. Un-

derstanding what happens when α1 + γ
2 > Q is the key to our proof of the

DOZZ formula. Before turning to this we draw a useful corollary from the

results of this section.

4.3. Crossing relation. Let us assume the validity of the Seiberg bounds

for the four point correlation function with weights (−γ
2 , α1, α2, α3), that is,∑3

k=1 αk>2Q+ γ
2 and αk<Q for all k. From the previous subsection, we have

(4.20)

T− γ
2
(z)=Cγ

(
α1 −

γ

2
, α2, α3

)(
|F−(z)|2 +Aγ

(
−γ

2
, α1, α2, α3

)
|F+(z)|2

)
.

The hypergeometric equation (4.7) has another basis of holomorphic solutions

defined on C \ {(−∞, 0) ∪ (1,∞)}:

G−(z) = 2F1(a, b, c′, 1− z),

G+(z) = (1− z)1−c′
2F1(1 + a− c′, 1 + b− c′, 2− c′, 1− z),

(4.21)

where c′ = 1+a+b−c = 1− γ
2 (Q−α2); i.e., these are obtained by interchanging

α1 and α2 and replacing z by 1− z. The two basis are linearly related,

F−(z) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

G−(z)

+
Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
(1− z)c−a−bG+(z),

(4.22)
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F+(z) =
Γ(2− c)Γ(c− a− b)

Γ(1− a)Γ(1− b)
G−(z)

+
Γ(2− c)Γ(a+ b− c)

Γ(a− c+ 1)Γ(b− c+ 1)
(1− z)c−a−bG+(z),

(4.23)

and we get

(4.24) T− γ
2
(z) = Cγ(α1 −

γ

2
, α2, α3)(D|G−(z)|2 + E|G+(z)|2)

with explicit coefficients D,E (see [28, Appendix]). On the other hand, by

studying the asymptotics as z → 1 we get

T− γ
2
(z) = Cγ

(
α1, α2 −

γ

2
, α3

)
+B(α2)Cγ

(
α1, α2 +

γ

2
, α3

)
|1− z|2(1−c′) + o(|1− z|2(1−c′)).

(4.25)

More precisely, this asymptotic has been established in [28] under the restric-

tion 1
γ + γ < α2 + γ

2 < Q, which is empty for γ2 > 2! Here we anticipate

Section 9 and Theorem 9.1, where the validity of (4.25) (or a version of (4.25)

with extra 1 − z and 1 − z̄ terms in the expansion when 2(1 − c′) > 1) will

be relaxed to the range of parameters γ < α2 + γ
2 < Q, which is nonempty

whatever the value of γ < 2.

Comparing the z → 1 expansion of (4.24) with (4.25) leads to the following

crossing symmetry relation:

Proposition 4.1. Let α2 + γ
2 < Q and α1 + α2 + α3 − γ

2 > 2Q. Then

(4.26) Cγ

(
α1 −

γ

2
, α2, α3

)
= T (α1, α2, α3)Cγ

(
α1, α2 +

γ

2
, α3

)
,

where T is given by the following formula :

(4.27) T (α1, α2, α3) = −µπ l(a)l(b)

l(c)l(a+ b− c)
1

l(−γ2

4 )l(γα2

2 )l(2 + γ2

4 −
γα2

2 )
,

with a, b, c given by (4.8) for α0 = −γ
2 .

The statement in the proposition above should be further restricted to

γ < α2 + γ
2 < Q according to the previous discussion. However, here we

anticipate Theorem 6.1 in Section 6 to extend by analyticity our statement to

the range of parameters as formulated above.

Remark 4.2. The relations (1.7) and (4.26) were derived in the physics

literature [52] by assuming

(i) validity of BPZ equations for degenerate field insertions,

(ii) that these fields are given by the vertex operators with weights −γ
2 ,−

2
γ

and that they satisfy an appropriate operator product expansion,

(iii) the diagonal form of the solution (4.10), and

(iv) crossing symmetry (an essential input in the bootstrap approach).
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We want to stress that our proof makes no such assumptions; in fact,

(i)–(iv) are theorems: (i) follows from integration by parts in the Gaussian

measure [28], (ii) follows from an asymptotic analysis of the probabilistically

defined four point functions as points are “fused” together in Section 9, and (iii)

and (iv) follow from an analysis of the BPZ equations and proof of regularity

of solutions [28].

5. Strategy and plan of proof

In this section, we outline our strategy for the proof while giving pointers

to the remaining parts of the paper so that the reader can have a better view

of the whole structure. We will first explain the proof of Theorem 3.5, which

gives an explicit expression for the reflection coefficient. This exact expression

for R is then used (in an essential way) to derive Theorem 2.4 on the DOZZ

formula.

5.1. Proof of Theorem 3.5: analysis of the reflection coefficient. The proof

of Theorem 3.5 is gathered in Section 10. Recall that the reflection coefficient

R(α) is defined by (3.12). The proof is based on establishing the following

properties:

(ARC1) The unit volume reflection coefficient R̄(α) (see (3.10) for the defini-

tion) defines an analytic function of α over a complex neighborhood of

the interval (γ2 , Q).

(ARC2) R(α) satisfies the following γ
2 -shift equation for α close to but smaller

than Q:

(5.1) R
(
α− γ

2

)
= −µπ R(α)

l(−γ2

4 )l(γα2 −
γ2

4 )l(2 + γ2

4 −
γα
2 )
.

This relation allows us to extend analytically R(α) to a meromorphic

function, still denoted by R, over a complex neighborhood of the real

line; this complex neighborhood contains R× (−η, η) for some η > 0.

(ARC3) R(α) satisfies the inversion relation

(5.2) R(α)R(2Q− α) = 1.

(ARC4) R(α) satisfies the 2
γ -shift equation

(5.3) R(α) = −cγ
R(α+ 2

γ )

l(− 4
γ2 )l(2α

γ )l(2 + 4
γ2 − 2α

γ )
,

where cγ = γ2

4 µπR(γ) 6= 0.

According to Liouville’s theorem, if a continuous function f has two periods

T1 and T2 such that T2
T1
6∈ Q, then f is a constant function. Therefore, provided

γ2 6∈ Q, the two equations (5.1) and (5.3) fully determineR up to a γ-depending
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constant (the inversion relation (5.2) is used in the proof of (ARC4)), which we

determine easily by computing R(Q) = −1 via the probabilistic representation

(3.10) and (3.12). In particular, it determines the value of cγ

(5.4) cγ = (µπl(γ
2

4 ))
4
γ2 l( 4

γ2 )
−1
.

On the other hand, in the appendix (see relations (12.8) and (12.9)) we check

that RDOZZ satisfies (5.1) and (5.3) with cγ given by (10.4). Therefore we

conclude R is equal to RDOZZ for γ2 6∈ Q; the general case can be deduced by

continuity in γ of R and RDOZZ. In what follows, we now give an idea of how

we prove (ARC1)–(ARC4).

5.1.1. Analyticity of correlation functions and the reflection coefficient.

As most of our arguments are based on analyticity properties, we first need to

show that the probabilistically defined correlation functions (2.15) are analytic

in a complex neighborhood of the real valued parameters (αk)k delimited by

the extended Seiberg bounds (2.14). This is done in Section 6 but is restricted

to N -point correlation functions with N > 3. The argument is based on the

fact that regularized correlation functions are analytic in the parameters (αk)k
and converge locally uniformly over a complex neighborhood of the extended

Seiberg bounds.

The case of the reflection coefficient (or two point correlation function)

requires more insight as it is not clear how to choose a regularized version that

is analytic in the parameter α and converges nicely towards R. The main idea

is to interpret the reflection coefficient as the leading order coefficient in the

tail expansion of the random variable

ρ(α1, α2, α3) =

∫
C

|x|γ(α1+α2+α3)
+

|x|γα1 |x− 1|γα2
Mγ(d2x)(5.5)

involved in the probabilistic representation (2.17) of the three point structure

constant. The reason for that relies on a general simple argument: Assume we

are given a positive random variable X with tail asymptotics given by

P(X > t) =
c?
tβ

+ o(t−β−δ)

for some β, δ > 0. Then the function s 7→ E[Xs] is analytic over a complex

neighborhood of (0, β). Furthermore, it extends to a meromorphic function

over a complex neighborhood of (0, β + δ) with a pole at s = β, given by c?s
β−s .

One can then recover the value of c? by taking the limit

lim
s→β

(β − s)E[Xs] = βc?.

This type of argument will be repeatedly used in the paper (and, in fact, even

pushed further to the next pole of E[Xs] beyond s = β).
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As the integral in (5.5) can be decomposed as a sum of singular GMC

integrals of the type (3.1) (around 0,1 and ∞), a detailed study of the tail of

such singular GMC integrals needs first to be carried out. This is the content

of Section 7 where R emerges in the tail expansion of integrals of the type

(3.1). The first outcome of this study is the proof of Lemma 3.4 in Section 8.

Actually we even prove a stronger result (Proposition 8.1) that the reflection

coefficient can be recovered from the structure constant as the following limit

for γ
2 < α2 6 α3 < Q:

(5.6) lim
α1↘α3−α2

(α1 − α3 + α2)Cγ(α1, α2, α3) = aR(α3),

where a = 2 if α2 < α3 and a = 4 if α2 = α3. Recalling the interpretation by

Seiberg [50] of the reflection coefficient as a two point structure constant, let

us call (5.6) the “3→ 2”-bridge.

The second step is then to use the “3 → 2”-bridge in relations involving

three point structure constants in order to produce relations on the reflec-

tion coefficient R(α). The type of relations we have in mind are the crossing

symmetries of the type exposed in Proposition 4.1. As a first example, Sec-

tion 10.1 explains how we use this bridge in the crossing symmetry relation of

Proposition 4.1 in order to express R̄(α) as a function of three point structure

constants for α ∈ (γ2 , Q):

(5.7) R̄(α) = −π

γ

l(γ2α−
γ2

4 − 1)

l(1 + γ
2 (α−Q))l(−γ2

4 )l(γ
2

4 )
C̄γ(α, γ, α).

From relation (5.7), which is new even with respect to the physics literature (to

the best of our knowledge), we can deduce analyticity of R̄(α) in α ∈ (γ2 , Q)

as stated in item (ARC1) above because now we know from Section 6 that

C̄γ(α, γ, α) is analytic in α. In conclusion, analyticity of R̄(α) seems very

difficult to prove directly so we rely on relation (5.7) and analyticity of the

three point structure constants to prove it.

5.1.2. Exploiting the BPZ equations. As explained above, the “3 → 2”-

bridge reduces (ARC2)–(ARC4) to deriving relations involving the three point

structures constants. The flavor of the derivation of these relations has already

been explained in Sections 4.2 and 4.3. But establishing Theorem 3.5 involves

generalizing the relations explained in Section 4.2 that were proved in the

companion paper [28]: this is the content of Section 9.

The first task is to extend the range of parameters for which the rela-

tion (4.19) was established in [28, Th. 2.3]. The reason for the restriction to the

range of parameters 1
γ+γ < α1+ γ

2 < Q (or equivalently 1
γ+ γ

2 < α1 <
2
γ ) in [28,

Th. 2.3] was technical: it relies on the asymptotic expansion (4.13) of T− γ
2
(z)

as z → 0 in order to identify the constants in front of the hypergeometric

functions |F+|2 and |F−|2 in the general form (4.10) of solutions to the γ
2 -BPZ
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equation. This leads to (4.19). Within this range of values of the parameter

α1, computing the first two leading terms of the expansion were enough since

2(1− c) = γ(Q−α1) < 1. (Recall that c = 1− γ
2 (Q−α1) in this context.) No-

tice that the admissible set of values α1 satisfying the relation 1
γ + γ

2 < α1 <
2
γ

is empty for γ2 > 2! This is clearly not enough.

So, in Theorem 9.1, we establish (4.19) for the extended range of param-

eters γ < α1 + γ
2 < Q (or equivalently γ

2 < α1 < 2
γ ), which is nonempty

whatever the value of γ < 2. In the situation γ
2 < α1 < 1

γ + γ
2 , we have

2(1 − c) = γ(Q − α1) > 1 and therefore the expansion around z = 0 that is

required to prove (4.19) involves extra terms of the form z and z̄ (which corre-

spond to the expansion of |F−|2 around z = 0). Then analyticity of correlation

functions entails the validity of (4.19) for whatever value of α1 such that the

correlation functions involved in (4.19) satisfy the Seiberg bounds. As a conse-

quence we obtain the crossing symmetry relation as stated in Proposition 4.1.

The proof of Theorem 9.1 requires a refined version of fusion estimates com-

pared to those proved in [28, §5]: this is the content of Lemma 12.3. Equating

residues on both sides of the relation (4.26) with the help of the “3 → 2”-

bridge produces the γ
2 -shift equation as claimed in item (ARC2); this is proved

in Section 10.2.

Another important task is to understand the analog of (4.19) when vi-

olating the Seiberg bounds, in particular, when α1 < Q but α1 + γ
2 > Q.

Mass concentration effects, like those involved in computing the tail of singu-

lar GMC integrals, will make the reflection coefficient play a prominent role in

this context. In Theorem 9.4, we will show that for α1 close to Q (but smaller

than Q)

(5.8)

T− γ
2
(z) = Cγ(α1 − γ

2 , α2, α3)|F−(z)|2 +R(α1)Cγ(2Q− α1 − γ
2 , α2, α3)|F+(z)|2.

As an output we prove the gluing Lemma 10.5, which roughly states that the

mapping

(5.9) S(α) :=

{
Cγ(α, α2, α3) if α < Q,

R(α)Cγ(2Q− α, α2, α3) if α > Q

is holomorphic in a neighborhood of Q. Using the “3→ 2”-bridge, this lemma

will be instrumental in proving the inversion relation (ARC3) and the 2
γ -shift

equation (ARC4).

Finally our final task is to investigate the consequences of the 2
γ -BPZ equa-

tion (4.7). By studying asymptotics as z → 0 in (4.5), we show in Theorem 9.7

that for α1 close to Q (but smaller than Q),

(5.10)

T− 2
γ
(z) = Cγ(α1 − 2

γ
, α2, α3)|F−(z)|2 +R(α1)Cγ(2Q−α1 − 2

γ
, α2, α3)|F+(z)|2.
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This produces new crossing relations as stated in Proposition 9.9. In Sec-

tion 10.4, we prove the inversion relation stated in item (ARC3) by combining

the crossing relation in Proposition 9.9 with the gluing lemma.

Theorem 9.1 or [28, Th. 2.3]

depending on γ2 > 2 or γ2 < 2

Theorem 9.4

under the global Seiberg constraint α1 + α2 + α3 > 2Q+ γ
2

•
Q

•
Q− η

•Q

•
2
γ

•
γ
2

α1

α2, α3

(a) Domain of validity of the γ
2

-shift equation

Theorem 9.7

under the global Seiberg constraint α1 + α2 + α3 > 2Q+ 2
γ

•
Q

•
Q− η

•Q

•
2
γ

•
1
γ + γ

2

•
γ
2

α1

α2, α3

(b) Domain of validity of the 2
γ

-shift equation

•
Q+ η
•
Q

•
2
γ

•
2
γ − η

•
γ
2

•
γ
2 − η

•

•
2
γ

•
2
γ − η

•Q

•
2
γ −

γ
2

•
γ

•
0

α1

α2, α3

(c) How the shift equations connect different ranges of parameters (global Seiberg

constraint is assumed though not indicated)

Figure 1. Domain of validity of the shift equations
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Figure 2. Diagram of the proof of Theorem 3.5

The 2
γ -shift equation stated in item (ARC4) is established in Section 10.5,

first by continuing analytically the crossing relation (10.27) to some larger set

of values with the help of the gluing lemma, and then by equating residues in

both sides of the resulting relation with the help of the inversion relation.

5.2. Proof of Theorem 2.4: the DOZZ formula. In order to prove the

DOZZ formula, we first want to prove the shift equations (1.7) and (1.8). As

explained in Section 4.2, the shift relation (1.7) is a consequence of the identity

(5.11)

T− γ
2
(z) = Cγ

(
α1 −

γ

2
, α2, α3

)
|F−(z)|2 +B(α1)Cγ

(
α1 +

γ

2
, α2, α3

)
|F+(z)|2.

In order to derive the other shift equation (1.8), we need to exploit the 2
γ -BPZ

equation (4.7). We show in Theorem 9.7 that for α1 close to Q (but smaller

than Q)

T− 2
γ
(z) = Cγ

(
α1 − 2

γ
, α2, α3

)
|F−(z)|2

+R(α1)Cγ

(
2Q− α1 − 2

γ
, α2, α3

)
|F+(z)|2.

(5.12)
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In order to exploit (5.12), we need to use, in a crucial way, analyticity of

S defined by (5.9) (gluing lemma) along with item (ARC4) on the reflection

coefficient. Indeed, thanks to item (ARC4), we have

R(α1)Cγ

(
2Q− α1 − 2

γ
, α2, α3

)
= ‹B(α1)R

Å
α1 +

2

γ

ã
Cγ

(
2Q− α1 − 2

γ
, α2, α3

)
,

where ‹B was defined by (4.18). Thanks to the gluing lemma, we have

R

Å
α1 +

2

γ

ã
Cγ

(
2Q− α1 − 2

γ
, α2, α3

)
= Cγ

(
α1 +

2

γ
, α2, α3

)
.

Therefore, we can rewrite (5.12) equivalently as

(5.13)

T− 2
γ
(z) = Cγ

(
α1 − 2

γ
, α2, α3

)
|F−(z)|2 + ‹B(α1)Cγ

(
α1 +

2

γ
, α2, α3

)
|F+(z)|2.

From (5.13), we can derive the shift equation (1.8) along the same lines as we

derived the shift equation (1.7) from (5.11).

Once the shift equations (1.7) and (1.8) are proved, the proof of Theo-

rem 2.4 is again a consequence of Liouville’s theorem on periodic functions. In

order to prove Theorem 2.4, we suppose that γ2 6∈ Q, the other case result-

ing from a continuity argument in γ. For γ2 6∈ Q, because CDOZZ
γ (α1, α2, α3)

satisfies the same shift equations (1.7) and (1.8), this implies by application

of Liouville ’s theorem in the variable α1 that the ratio
Cγ(α1,α2,α3)

CDOZZ
γ (α1,α2,α3)

is in-

dependent of α1. By symmetry of the α1, α2, α3 variables and recursive use of

Liouville’s theorem (in the variable α2 and then the variable α3), we deduce

that the quotient
Cγ(α1,α2,α3)

CDOZZ
γ (α1,α2,α3)

only depends on γ. We identify this constant

by using the “3→ 2”-bridge and the knowledge of R. This argument is detailed

in Section 11.

6. Analytic continuation of Liouville correlation functions

In this section we study the analytic continuation of the unit volume cor-

relations (2.15). These are defined for real weights α = (α1, . . . , αN ) satisfying

the extended Seiberg bounds

(6.1)

UN :=

{
α ∈ RN :

1

γ

(
2Q−

N∑
k=1

αk

)
<

4

γ2 ∧ min
1 6 k 6 N

2

γ
(Q− αk) ∀k : αk < Q

}
.

We will prove

Theorem 6.1. Fix N > 3 and distinct points z1, . . . , zN ∈ CN . The unit

volume correlation function (2.15) extends to an analytic function of α defined

in a complex neighborhood of UN in CN .
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Proof. By Möbius invariance we may assume |zi| > 2 and |zi − zj | > 2.

We use (2.9) to write the unit volume correlation functions as the limit

〈 N∏
k=1

Vαk(zk)
〉

uv
= 2γ−1

N∏
k=1

|zk|
−4∆αk
+ lim

r→∞
Fr(α),(6.2)

where

Fr(α) = E

[
N∏
k=1

eαkXr(zk)−α
2
k
2
EXr(zk)2

Mγ(Cr)−s
]

(6.3)

and Cr := C \ ∪Nk=1B(zk, e
−r). For all α ∈ CN , Fr is defined and is complex

differentiable in αi, and hence defines an entire function in the αi. We show

that there is an open V ⊂ CN containing UN such that Fr converges uniformly

on compacts of V . Note that this is nontrivial since for αk = ak + ibk, we have

|eαkXr(zk)−α
2
k
2
E[Xr(zk)2]| = eakXr(zk)−a

2
k
2
E[Xr(zk)2]e

b2k
2
EXr(zk)2

,

and e
b2k
2
EXr(zk)2 ∝ e

b2k
2
r blows up as r →∞.

By Remark 2.2, we know that t ∈ R+ → Bk
r+t := Xr+t(zk) − Xr(zk)

are mutually independent Brownian motions and they are independent of

σ{X(x);x ∈ Cr}. Hence,

Fr+1(α)− Fr(α)

= E

[
N∏
k=1

eαkXr+1(zk)−α
2
k
2
E[Xr+1(zk)2](Mγ(Cr+1)−s −Mγ(Cr)−s)

]
.

Now we apply the Cameron-Martin theorem as in (2.11) to the real parts

of the vertex insertions to get

|Fr+1(α)− Fr(α)|

6 Ce(r+1)
∑N
k=1

b2k
2

∣∣∣∣∣E
Ç∫

Cr+1

fr(x)Mγ(d2x)

å−s
− E
Å∫

Cr
fr(x)Mγ(d2x)−s

ã∣∣∣∣∣ ,
(6.4)

where fr(x) = e
∑N
k=1 γakGr+1(x,zk), and we have defined

Gr+1(z, z′) := E[X(z)Xr+1(z′)].

From (2.1), we get

f(x) := sup
r
fr(x) 6 C

∏
k

Å |x|+|zk|+
|x− zk|

ãγαk
.
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We need to estimate the difference of expectations in (6.4). Let

Yr :=

∫
Cr+1\Cr

fr(x)Mγ(d2x).

Also, set Zr :=
∫
Cr fr(x)Mγ(d2x). Then∣∣∣∣∣E

Ç∫
Cr+1

fr(x)Mγ(d2x)

å−s
− E
Å∫

Cr
fr(x)Mγ(d2x))−s

ã∣∣∣∣∣
= |E((Zr + Yr)

−s − Z−sr )| 6 E[1Yr<ε|(Zr + Yr)
−s − Z−sr |]

+ E[1Yr > ε|(Zr + Yr)
−s − Z−sr |],

where ε > 0 will be fixed later. The first expectation on the right-hand side is

bounded by

E1Yr<ε|(Zr + Yr)
−s − Z−sr | 6 Cε sup

t∈[0,1]
E(Zr + tYr)

−<s−1 6 Cε

uniformly in r. The last bound follows by noting that for −<s − 1 > 0, the

expectation is bounded uniformly in r by CE(
∫
f(x)Mγ(d2x))−<s−1, which is

finite due to (2.14) whereas for −<s− 1 < 0, we may bound it for example by

CE(
∫
C1\C2

Mγ(d2x))−<s−1, which is finite as well.

For the second expectation, we use the Hölder inequality

E1Yr > ε|Z−sr+1 − Z
−s
r | 6 CP(Yr > ε)

1/p((EZ−q<sr+1 )1/q + (EZ−q<sr )1/q).

Taking q > 1 such that −q<(s) < minj
2
γ (Q − αj) ∧ 4

γ2 , we may bound the

two expectations uniformly in r as in the previous paragraph. Then using the

Markov inequality, we get

E1Yr > ε|Z−sr+1 − Z
−s
r | 6 Cε−m/p(EY m

r )1/p.

It remains to bound EY m
r for suitable m > 0. We note that Cr+1 \Cr = ∪iAir,

where Air is the annulus centred at zi with radii e−r−1, e−r. Then for m < 4
γ2 ,

we obtain

EY m
r 6 CE

(∑
k

∫
Akr

f(x)Mγ(d2x)
)m
6C max

k
e−r(γ(Q−ak)m− γ

2m2

2
) := Ce−rθ,

(6.5)

where in the second step we used the estimate (12.4). Now, let us fix a0 ∈
UN . Then we can find m > 0 and δ > 0 such that θ > 0 for all a with

mink |ak − a0
k| 6 δ. Hence, for α ∈ CM with αk = ak + ibk and ε > 0,

|Fr+1(α)− Fr(α)| 6 Ce(r+1)
∑N
k=1

b2k
2 (ε+ ε−m/pe

− r
p
θ
).

Taking ε = e−ηr with η = θ
p+m , we then have

|Fr+1(α)− Fr(α)| 6 Ce−(η−
∑N
k=1

b2k
2 )r.

Hence, Fr(α) converges uniformly in a ball around a0 in CN . �
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7. Tail estimates for multiplicative chaos

In this section, we prove the tail estimates needed in this paper and that

involve the unit volume reflection coefficient defined in (3.10).

7.1. Tail estimate around one insertion. Let |z| > 2, and consider the

random variable

W :=

∫
B(z,1)

F (x′)

|x′ − z|γα
Mγ(d2x′)

for F bounded and C1 in a neighborhood of z. We assume γ
2 < α < Q and

define auxiliary quantities β = ( 2
γ (Q − α) + 2

γ2 ) ∧ 4
γ2 and η̄ by (1 − η̄)β =

2
γ (Q− α) + η̄. Hence η̄ is strictly positive. With these definitions we have

Lemma 7.1. For all η < η̄ and for some constant C(z), we have

|P(W > x)− |z|4α(α−Q)F (z)
2
γ

(Q−α) R̄(α)

x
2
γ

(Q−α)
| 6 C(z)

x
2
γ

(Q−α)+η
.

Proof. We will write the integral in polar coordinates of B(z, 1). Define

N =
1

2π

∫ 2π

0
X(z + eiθ)dθ.

Then

Bs :=
1

2π

∫ 2π

0
(X(z + e−seiθ)−X(z + eiθ))dθ

is a Brownian motion with B(0) = 0 and we may decompose the field X as

X(z + x′) = N +B− ln |x| + Yz(x
′),

where Yz is a lateral noise centered around z given by

Yz(x
′) = X(z + x′)− 1

2π

∫ 2π

0
X(z + |x′|eiθ)dθ.

Notice that Yz has the same distribution as the lateral noise Y (centered

around 0), that Yz and B are independent, and N is independent of B. We

have

(7.1) |E[Yz(x
′)N ]| = | ln |z + x′| − ln |z|| 6 C|x′|.

(Since Yz lives in the space of distributions, E[Yz(x
′)N ] is defined for all smooth

function f by the relation E[(
∫
C f(x′)Yz(x

′) d2x′)N ]=
∫
C f(x′)E[Yz(x

′)N ] d2x′.)

The variance of N is

E[N2] = 2 ln |z|.
Hence, we get the following decomposition into independent components:

(7.2) X(z+x′) =

Å
1 +

E[Yz(x
′)N ]

E[N2]

ã
N+B− ln |x′|+

Å
Yz(x

′)− E[Yz(x
′)N ]

E[N2]
N

ã
.
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We introduce a variable N̄ distributed as N but independent of N,B, Yz. We

can rewrite (7.2) as the following equality in distribution:

(7.3) X(z+x′) =

Å
1 +

E[Yz(x
′)N ]

E[N2]

ã
N̄+B− ln |x′|+

Å
Yz(x

′)− E[Yz(x
′)N ]

E[N2]
N

ã
.

Plugging this relation into the expression of W , we get

W
law
= eγN̄−

γ2

2
E[N̄2]

∫
B(0,1)

uz(x
′)eγB− ln |x′|+( γ

2

2
−γα) ln |x′|eγYz(x′)− γ

2

2
E[Yz(x′)2] d2x′

for some (random) function uz such that (using (7.1) and C1-regularity of F

around z)

|uz(x′)−
F (z)

|z|4
| 6 C(1 + eC|N |+C|N̄ |)|x′|.

We may thus write W = W1 +W2 in distribution with

W1 = eγN̄−
γ2

2
E[N̄2]F (z)

|z|4

∫ ∞
0

eγ(Bs−(Q−α)s)Zsds,(7.4)

|W2| 6 C(1 + eC(N̄+N))

∫ ∞
0

e
γ(Bs−(Q−α+ 1

γ
)s)
Zsds,(7.5)

and Z, B and N̄ independent.

Now recall the Williams decomposition Lemma 3.1. Let m = sups > 0(Bs−
(Q− α+ 1

γ )s), and let L−m be the largest s such that Bα−s = −m. Then∫ ∞
0

e
γ(Bs−(Q−α+ 1

γ
)s)
Zsds

law
= eγm

∫ ∞
−L−m

eγB
α− 1

γ
s Zs+L−mds

law
= eγm

∫ ∞
−L−m

eγB
α− 1

γ
s Zsds 6 e

γm

∫ ∞
−∞

eγB
α− 1

γ
s Zsds,

(7.6)

where we used stationarity of the process Zs.

For all 0 < p < ( 2
γ (Q− α) + 2

γ2 ) ∧ 4
γ2 = β, we have

(7.7) P(|W2| > x) 6 Cx−p.

Indeed, for all p1, q1 > 1 with 1
p1

+ 1
q1

= 1, by using Hölder and (7.6) we

have that

P(|W2| > x) 6
1

xp
E[|W2|p]

6
C

xp
E[eC(N̄+N)pp1 ]1/p1E

[Ç
eγm

∫ ∞
−∞

eγB
α− 1

γ
s Zsds

åpq1 ]1/q1

6
C

xp
,

(7.8)
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provided q1 is sufficiently close to 1 and where we used Lemma 3.3, which

requires p < 4
γ2 .

We first prove an upper bound for P(W > x):

P(W > x) = P(W1 +W2 > x) 6 P(W1 > x− x1−η) + Cx−p(1−η).

Proceeding as in (7.6), we get

P(W1 > x− x1−η) 6 P
Å
eγN̄−

γ2

2
E[N̄2]F (z)

|z|4
eγM

∫ ∞
−∞

eγB
α
s Zsds > x− x1−η

ã
,

where M = sups > 0(Bs − (Q − α)s). In view of Lemma 3.3, we have for all

ε > 0 that

P

Å
eγN̄−

γ2

2
E[N̄2]F (z)

|z|4

∫ ∞
−∞

eγB
α
s Zsds > x− x1−η

ã
6

C

x
4
γ2−ε

,

and hence (3.8) implies for all ε > 0 that

P(W > x) 6 e(2(Q−α)2−γ(Q−α))E[N̄2]

×
Å
F (z)

|z|4

ã 2
γ

(Q−α) R̄(α)

(x− x1−η)
2
γ

(Q−α)
+ Cx−p(1−η)

6 |z|−4α(Q−α)F (z)
2
γ

(Q−α) R̄(α)

x
2
γ

(Q−α)
+ Cx

− 2
γ

(Q−α)−η

+ Cx−p(1−η) + Cx
− 4
γ2 +ε

for 0 < p < β, for some constant C that may depend on η and ε. Recall that

we defined η̄ > 0 by (1− η̄)β = 2
γ (Q− α) + η̄. We conclude that

P(W > x) 6 |z|−4α(Q−α)F (z)
2
γ

(Q−α) R̄(α)

x
2
γ

(Q−α)
+ Cx

− 2
γ

(Q−α)−η
(7.9)

for all η < η̄.

Now, we consider the lower bound. We have

P(W > x) > P(W1 > x+ x1−η̄)− P(W2 < −x1−η̄)

> P(W1 > x+ x1−η̄)− Cx−
2
γ

(Q−α)−η(7.10)

for all η < η̄. We define for all C > 0 the random variable

W (L−C) = eγN̄−
γ2

2
E[N̄2]F (z)

|z|4
eγC

∫ ∞
−L−C

eγB
α
s Zsds,

and by the Williams decomposition we get, as in (7.6),

W1
law
= eγN̄−

γ2

2
E[N̄2]F (z)

|z|4
eγM

∫ ∞
−L−M

eγB
α
s Zsds = W (L−M ),

where M = sups > 0(Bs − (Q− α)s) and M , Bα and Zs are independent.
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Let η′ be such that (1− η′) 4
γ2 = 2

γ (Q−α) + η′. One has η′ > η̄. Consider

the event E defined by

eγN̄−
γ2

2
E[N̄2]F (z)

|z|4

∫ ∞
−L−M

eγB
α
s Zsds < x1−η′ .

Trivially, we have

P(W1 > x+ x1−η̄) > P({W1 > x+ x1−η̄} ∩ E).

Under {W1 > x+x1−η̄} ∩ E , we have eγM > |x|η′ . Indeed, if eγM < |x|η′ , then

under E we get W1 < x, which is impossible. Thus M > − η′

γ ln |x|, whereby

L−M > L− η′
γ

ln |x| and hence W (L− η′
γ

ln |x|) 6W (L−M ). We conclude that

P(W1 > x+ x1−η̄)

> P({W (L− η′
γ

ln |x|) > x+ x1−η̄} ∩ E)

> P(W (L− η′
γ

ln |x|) > x+ x1−η̄)− Cx−(1−η′) 4
γ2 +ε

> |z|−4α(Q−α)F (z)
2
γ

(Q−α)

× E
[Ñ∫ ∞

−L
− η
′
γ ln x

eγB
α
s Zsds

é 2
γ

(Q−α) ]
(x+ x1−η̄)

− 2
γ

(Q−α) − C

x
2
γ

(Q−α)+η′−ε

(7.11)

for all ε > 0, where in the second step we used Lemma 3.3.

We claim now that

(7.12)

E[(

∫ ∞
−∞

eγB
α
s Zsds)

2
γ

(Q−α)
]− E

[Ñ∫ ∞
−L
− η
′
γ ln x

eγB
α
s Zsds

é 2
γ

(Q−α) ]
6 Cx−η

′
.

Combined with (7.11) and (7.10) this yields

P(W > x) > |z|−4α(Q−α)F (z)
2
γ

(Q−α) R̄(α)

(x− x1−η)
2
γ

(Q−α)
− Cx−

2
γ

(Q−α)−η

> |z|−4α(Q−α)F (z)
2
γ

(Q−α) R̄(α)

x
2
γ

(Q−α)
− Cx−

2
γ

(Q−α)−η
(7.13)

for all η < η̄. Then (7.13) and (7.9) finish the proof.

It remains to prove (7.12). By Remark 3.2, the process B̂α
s defined for

s 6 0 by the relation B̂α
s = Bαs−L

− η
′
γ ln x

+ η′

γ lnx is independent from everything
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and distributed like (Bαs )s 6 0. We can then write∫ ∞
−∞

eγB
α
s Zsds = A+ x−η

′
B,

where

A =

∫ ∞
−L
− η
′
γ ln x

eγB
α
s Zsds and B =

∫ 0

−∞
eγB̂

α
s Zs−L

− η
′
γ ln x

ds.

We now distinguish two cases: 2
γ (Q− α) 6 1 and 2

γ (Q− α) > 1.

First case: 2
γ (Q − α) 6 1. We use (1 + u)

2
γ

(Q−α) − 1 6 2
γ (Q − α)u for

u > 0 to bound

E[(A+ x−η
′
B)

2
γ

(Q−α) −A
2
γ

(Q−α)
] 6 2

γ
(Q− α)x−η

′
E[BA

2
γ

(Q−α)−1
].

By Hölder’s inequality with p ∈ (1, 4
γ2 ), we get

E[BA
2
γ

(Q−α)−1
] 6 E[Bp]1/pE[A

q( 2
γ

(Q−α)−1)
]

1
q <∞

since B is equal in distribution to
∫ 0
−∞ e

γB̂αs Zsds and A >
∫∞

0 eγB
α
s Zsds, which

has negative moments of all order by Lemma 3.3.

Second case: 2
γ (Q − α2) > 1. Let p := 2

γ (Q − α). By triangle inequality

we have

E[(A+ x−η
′
B)p −Ap] 6

Ä
(E[Ap])1/p + x−η

′
(E[Bp])1/p

äp
− E[Ap]

6
Ä
(E[Ap])1/p + Cx−η

′äp − E[Ap] 6 Cx−η
′
E[Ap]1−1/p 6 Cx−η

′
,

where again we used that A and B have moments of order p. �

Remark 7.2. A simple variation of the proof yields the result (3.9).

7.2. Tail estimate around two insertions. For i = 2, 3,9 let

Wi :=

∫
B(zi,1)

Fi(x
′)

|x′ − zi|γαi
Mγ(d2x′).

We will suppose that |z2| > 2, |z3| > 2 and |z2 − z3| > 3 so that the balls

Bi = B(zi, 1) are well separated. We denote by η̄2 and η̄3 the exponents

occurring in the tail estimates of Lemma 7.1 applied to W2 and W3. Set

η̃2 = η̄2 ∧ 1

γ
(Q− α3) ∧ 1

2
, η̃3 = η̄3 ∧ 1

γ
(Q− α2) ∧ 1

2
.

Then we have

9The indices 2, 3 occur in the applications of this estimate in the main text.
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Lemma 7.3. For all β < β̄ := ( 2
γ (Q− α2) + η̃2) ∧ ( 2

γ (Q− α3) + η̃3),

∣∣∣∣∣P(W2 +W3 > x)−
3∑
i=2

|zi|4αi(αi−Q)Fi(zi)
2
γ

(Q−αi) R̄(αi)

x
2
γ

(Q−αi)

∣∣∣∣∣ 6 Cx−β.
Remark 7.4. The above theorem is useful when β̄ > 2

γ (Q−α2)∨ 2
γ (Q−α3).

This is the case when α2 and α3 are sufficiently close to each other.

Remark 7.5. The proof of Theorem 7.3 is based on the fact that the two

variables W2 and W3 are “nearly” independent. Along the same lines as the

proof of Lemma 7.3, one can in fact show that for all p2, p3 > 0 there exists

some constant C > 0 such that

E[W p2
2 W p3

3 ] 6 CE[W p2
2 ]E[W p3

3 ].

Proof. The strategy here is to apply the previous lemma with one inser-

tion. We start with the upper bound. We have

P(W2 +W3 > x) 6 P(W2 +W3 > x,W2 >
x

2
) + P(W2 +W3 > x,W3 >

x

2
).

(7.14)

The variables W2 and W3 are nearly independent, as we now argue. We

consider the circle of radius 3
2 centered at z2. By the Markov property of the

GFF, we have the following decomposition inside B(z2,
3
2):

X(x′) = ‹X(x′) + P(X)(x′),

where P(X)(x′) is the Poisson kernel of the ball B(z2,
3
2) applied to X and ‹X

is a GFF with Dirichlet boundary conditions on B(z2,
3
2) independent of X on

the outside of B(z2,
3
2). On the smaller ball B(z2, 1), the process P(X)(x′) is

a smooth Gaussian process; hence for all p > 0,

E[ep sup|x′−z2| 6 1 P(X)(x′)] <∞.

We set H = sup|x′−z2| 6 1 P(X)(x′). Of course, we have

W2 6 e
γHW̃2,

where W̃2 is computed with the chaos measure of ‹X. Here W̃2,W3 have mo-

ments less than orders 2
γ (Q− αi) respectively [12, Lemma A.1] so that for all
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u, v > 0 and all ε′ > 0,

P(W2 > u,W3 > v) 6 P(eγHW̃2 > u,W3 > v)

6
1

u
2
γ

(Q−α2)−ε′
E[W̃

2
γ

(Q−α2)−ε′

2 ]E[e(2(Q−α2)−γε′)H1W3>v]

6
1

u
2
γ

(Q−α2)−ε′
E[W̃

2
γ

(Q−α2)−ε′

2 ]E[ep(2(Q−α2)−γε′)H ]1/pP(W3 > v)1/q

6
C

u
2
γ

(Q−α2)−ε′
v

1
q ( 2
γ (Q−α3)−ε′)

for all p, q > 1 such that 1
p + 1

q = 1. By taking q close to 1, we conclude

(7.15) P(W2 > u,W3 > v) 6
C

u
2
γ

(Q−α2)−ε
v

2
γ

(Q−α3)−ε

for all ε > 0. Therefore, exploiting (7.15), for all ε > 0 we have

P
(
W2 +W3 > x,W2 >

x

2

)
6 P(W2 +W3 > x,W2 >

x

2
,W3 6

√
x) + P(W2 >

x

2
,W3 >

√
x)

6 P(W2 > x−
√
x) +

C

x
2
γ

(Q−α2)
x

1
γ

(Q−α3)−ε
.

We get a similar bound by interchanging 2 and 3. Inserting to (7.14) we obtain

P(W2 +W3 > x) 6 P(W2 > x−
√
x) + P(W3 > x−

√
x)

+
C

x
2
γ

(Q−α2)
x

1
γ

(Q−α3)−ε
+

C

x
2
γ

(Q−α3)
x

1
γ

(Q−α2)−ε
,

and then we use Lemma 7.1 on one insertion.

Now, we proceed with the lower bound. We have, exploiting (7.15), that

for all ε > 0,

P(W2 +W3 > x) > P({W2 > x} ∪ {W3 > x})
> P(W2 > x) + P(W3 > x)− P(W2 > x,W3 > x)

> P(W2 > x) + P(W3 > x)− C

x
2
γ

(Q−α2)+ 2
γ

(Q−α3)−ε
,

and then we use again Lemma 7.1. �

8. Proof of Lemma 3.4 on the reflection coefficient

Recall the definitions of the reflection coefficients R̄ and R in (3.12) and

(3.10). For later purposes, we prove a more general result than Lemma 3.4,

which we state now.
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Proposition 8.1. Let γ
2 < α2 6 α3 < Q. Then

lim
α1↘α3−α2

(α1 − α3 + α2)Cγ(α1, α2, α3) = aR(α3),

where a = 2 if α2 < α3 and a = 4 if α2 = α3.

Proof. We use the formulas (1.6) and (2.11) to write

Cγ(α1, α2, α3) = 2µ−sγ−1Γ(s)
∏
i<j

|zi − zj |−2∆ij−αiαjE

Å∫
C
F (x, z)Mγ(d2x)

ã−s
,

where

(8.1) F (x, z) =

3∏
k=1

Å |x|+
|x− zk|

ãγαk
.

We take z1 = 0 and |z2|, |z3| > 2 with |z2 − z3| > 2. Let α1 = α3 − α2 + ε

(with ε > 0) so that −s = 2
γ (Q− α3)− ε

γ . Write F as Fε to denote its explicit

dependence on ε. We need to study the limit

lim
ε↓0
E

Å∫
C
Fε(x, z)Mγ(d2x)

ã 2
γ (Q−α3)− εγ

.

Consider first the case α2 = α3 = α. Set Ai = B(zi, 1) for i = 2, 3 and the

complement Ac = (A2 ∪ A3)c. Let Wi,ε =
∫
Ai
Fε(x, z)Mγ(d2x) for i = 2, 3 and

Wc,ε =
∫
Ac
Fε(x, z)Mγ(d2x) so that∫

C
Fε(x, z)Mγ(d2x) = Wc,ε +W2,ε +W3,ε.

Assume first 2
γ (Q− α) 6 1. Then

E[(W2,ε +W3,ε)
2
γ

(Q−α)− ε
γ ] 6 E[(Wc,ε +W2,ε +W3,ε)

2
γ

(Q−α)− ε
γ ]

6 E[W
2
γ

(Q−α)− ε
γ

c,ε ] + E[(W2,ε +W3,ε)
2
γ

(Q−α)− ε
γ ].

In order to treat the second expectation above, we apply the double tail esti-

mate Lemma 7.3 (with F2(x) = |x|γ(α2+α3)

|x−z3|γα3
and F3(x) = |x|γ(α2+α3)

|x−z2|γα2
) to get

P(W2,ε +W3,ε > x)

=
(
|z2|4α2(α2−Q)F2(z2)

2
γ

(Q−α2)
R̄(α2)x

− 2
γ

(Q−α2)

+ |z3|4α3(α3−Q)F3(z3)
2
γ

(Q−α3)
R̄(α3)x

− 2
γ

(Q−α3)
)

(1 +O(x−η))

= 2|z2 − z3|−2α(Q−α)R̄(α)x
− 2
γ

(Q−α)
(1 +O(x−η))

for η > 0, uniformly in ε.
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Since Fε(x, z) 6 C(1 + |x|−γε1{|x| 6 1}) on Ac, we deduce that as ε → 0,

εE[W
2
γ

(Q−α)− ε
γ

c,ε ] converges to 0. Indeed, by Jensen,

E[W
2
γ

(Q−α)− ε
γ

c,ε ] 6 E[Wc,ε]
2
γ

(Q−α)− ε
γ =

(∫
Ac

Fε(x, z)|x|−4
+ d2x

) 2
γ

(Q−α)− ε
γ

6 C
(∫

Ac

(1 + |x|−γε1{|x| 6 1})|x|−4
+ d2x

) 2
γ

(Q−α)− ε
γ

and this quantity is obviously bounded in ε. We deduce that

lim
ε→0

εE[(

∫
C
Fε(x, z)Mγ(d2x))

2
γ

(Q−α)− ε
γ ] = 4(Q− α)|z2 − z3|−2α(Q−α)R̄(α)

and then (note: we know that the zi-dependence has to drop out!)

lim
ε→0

εCγ(ε, α, α) = µ
2
γ

(Q−α) 8(Q−α)

γ
Γ(−2(Q−α)

γ
)R̄(α) = 4R(α).

If 2
γ (Q − α) > 1, we have by triangle inequality and ε small enough so that

p = 2
γ (Q− α)− ε

γ > 1,

[E(W2,ε +W3,ε)
p]1/p 6 [E(Wc,ε +W2,ε +W3,ε)

p]1/p

6 [E(Wc,ε)
p]1/p + [E(W2,ε +W3,ε)

p]1/p,

and we can conclude similarly as the previous case.

The case α2 < α3 is similar: we use the tail estimate Lemma 7.1 around

the α3 insertion. The difference of a factor of two results from the sum over

two insertions in the double tail estimate. �

Remark 8.2. For the unit volume quantities defined in (4.1) and (3.10),

we get

lim
α1↓α3−α2

(α1 − α3 + α2)C̄γ(α1, α2, α3) = a2(Q−α3)
γ R̄(α3).

9. The BPZ equations and algebraic relations

This section is devoted to the study of the small z asymptotics of the four

point functions T− γ
2

and T− 2
γ

leading to the proof of (4.19) and (5.8). The

proof of the latter is the technical core of the paper and the key input in the

probabilistic identification of the reflection coefficient.

9.1. Fusion without reflection. As mentioned in Section 4.2, relation (4.19)

was proven in [28, Th. 2.3] with the assumption 1
γ +γ < α1 + γ

2 < Q or in other

words, γ2 + 1
γ < α1 <

2
γ . This interval is nonempty if and only if γ2 < 2. In this

section we will remove this constraint. The reason for the restriction γ
2 + 1

γ < α1

was the following. In order to prove (4.19), one must perform the asymptotic

expansion of T− γ
2
(z) around z → 0 (4.13) as explained in Section 4.2. In the

case 1
γ + γ

2 < α1, the exponent 2(1−c) that is equal to γ(Q−α1) is strictly less
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than 1. Hence there are no polynomial terms in z and z̄ in the expansion (4.13)

to that order. (Such terms are present in the small z expansion of |F−(z)|2.)

In the case α1 <
1
γ + γ

2 , the asymptotic expansion of T− γ
2
(z) around 0 is more

involved. Nonetheless, we prove here that

Theorem 9.1. We assume the Seiberg bounds for (−γ
2 , α1, α2, α3), i.e.,∑3

k=1 αk > 2Q+ γ
2 and αk < Q for all k. If γ

2 < α1 <
2
γ , then

T− γ
2
(z) = Cγ(α1 − γ

2 , α2, α3)|F−(z)|2

− µ π

l(−γ2

4 )l(γα1

2 )l(2 + γ2

4 −
γα1

2 )
Cγ(α1 + γ

2 , α2, α3)|F+(z)|2(9.1)

and the relation (1.7) holds.

Proof. First let γ2 < 2. Equation (9.1) was proven in [28, Th. 2.3] in

the case γ
2 + 1

γ < α1 <
2
γ . This result extends to the interval γ

2 < α1 <
2
γ

by analyticity. Indeed, for fixed γ ∈ (0,
√

2), the interval γ
2 + 1

γ < α1 < 2
γ

is nonempty. Furthermore, by Theorem 6.1 both sides of equation (9.1) are

analytic in α1 (with other parameters fixed) in a neighborhood of the interval
γ
2 < α1 <

2
γ seen as a subset of C. Uniqueness of analytic continuation thus

establishes (9.1) for γ2 < 2. γ2 = 2 is obtained by continuity in γ. (See

Remark 2.3 on this.)

Now let γ2 > 2 and γ
2 < α1 <

2
γ . The proof of (9.1) follows from the study

of the function T− γ
2
(z) as z tends to 0. More precisely, by the discussion in

Section 4.2, it suffices to show that one has the following expansion as z goes

to 0:

T− γ
2
(z) = Cγ(α1 − γ

2 , α2, α3) + Cz + C̄z̄

−
µπCγ(α1 + γ

2 , α2, α3)

l(−γ2

4 )l(γα1

2 )l(2 + γ2

4 −
γα1

2 )
|z|γ(Q−α1) + o(|z|γ(Q−α1)),

(9.2)

where C is some constant. Thus by (4.5) we need to study the function (4.6)

with α0 = −γ
2 . To streamline notation let us set

(9.3) K(z, x) =
|x− z|

γ2

2 |x|γ(
∑3
k=1 αk−

γ
2

)
+

|x|γα1 |x− 1|γα2

and for any Borel set B ⊂ C,

(9.4) KB(z) :=

∫
B
K(z, x)Mγ(d2x).

Then S− γ
2
(z) = KC(z), where S− γ

2
was defined in (4.6). We will also write

K(z) for KC(z). We set p := 1
γ (
∑3

k=1 αk −
γ
2 − 2Q). Then

T− γ
2
(z) = 2µ−pγ−1Γ(p)E[K(z)−p].(9.5)
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A Taylor expansion yields the relation

(9.6) E[K(z)−p] = E[K(0)−p] + z∂zE[K(z)−p]|z=0 + z̄∂z̄E[K(z)−p]|z̄=0 +R(z),

where R(z) is a remainder term whose expression appears below (9.8) (not

to be confused with the reflection coefficient!). First, notice that the term

∂zE[K(z)−p]|z=0 is well defined. Indeed, we have

∂zE[K(z)−p]|z=0 = −pγ
2

4
E
[ ∫

C

1

x
K(0, x)Mγ(d2x)K(0)−p−1

]
.

Split the x-integral over C in two parts, over B1/2 and over Bc
1/2, where in this

section we use the notation Br = B(0, r). Then

E
[ ∫

Bc
1/2

1

|x|
K(0, x)Mγ(d2x)K(0)−p−1

]
6 2EK(0)−p <∞

as GMC measures possess negative moments of all orders (see Section 12.2).

For the integral over B 1
2
, we use the Cameron-Martin theorem (Corollary 12.2)

to get

E
[ ∫

B1/2

1

|x|
K(0, x)Mγ(d2x)K(0)−p−1

]
6 CE

[ ∫
B1/2

|x|−1−γα1+
γ2

2 Mγ(d2x)K(0)−p−1
]

= C

∫
B1/2

|x|−1−γα1+
γ2

2 E
[( ∫

C
K(0, u)eγ

2G(x,u)Mγ(d2u)
)−p−1

]
d2x.

(9.7)

To bound the last expectation we note that the integrand in the u-integral is

bounded away from 0 for x ∈ B 1
2

and u ∈ B(3, 1). This ball is far away from

the singularities, hence on u ∈ B(3, 1) the kernel K(0, u)eγ
2G(x,u) is bounded

from below away from 0 . Thus

E
[( ∫

C
K(0, u)eγ

2G(x,u)Mγ(d2u)
)−p−1

]
6 CE[Mγ(B(3, 1))−p−1] <∞

as the measure Mγ possesses moments of negative order (see Section 12.2).

The final integral in (9.7) converges as the constraint α1 <
2
γ guarantees that

1 + γα1 − γ2

2 < 3 − γ2

2 < 2 since γ2 > 2. The same argument shows that

z̄∂z̄E[(K0(z))−p]|z̄=0 is well defined.

It remains to investigate the remainder R(z), which by the Taylor integral

formula is given by

R(z) =

∫ 1

0
(1− t)

(
z2∂2

zE[K(tz)−p]+2zz̄∂z∂z̄E[K(tz)−p]+ z̄2∂2
z̄E[K(tz)−p]

)
dt

≡ R1(z) +R2(z) +R3(z).

(9.8)
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Expression (9.8) consists of the three terms Ri(z), i = 1, 2, 3. The first

term in (9.8) is given by

R1(z) =

∫ 1

0
(1− t)z2∂2

zE[K(tz)−p]dt = r1(z) + p1(z),

with

r1(z) := −pγ
2

4
(
γ2

4
− 1)z2

×
∫ 1

0
(1− t)E

[ ∫
C

1

(x− tz)2
K(tz, x)Mγ(d2x)(K(tz))−p−1

]
dt

p1(z) := p(p+ 1)
γ4

16
z2,

×
∫ 1

0
(1− t)E

ñÅ∫
C

1

(x− tz)
K(tz, x)Mγ(d2x)

ã2

(K(tz))−p−2

ô
dt.

The terms p2, r2, p3, r3 are defined similarly with respect to Ri(z), i = 2, 3. We

get the expansion of R(z) around z = 0 thanks to the following two lemmas

(whose proof is postponed right after):

Lemma 9.2. The following holds :

r1(z) + r2(z) + r3(z) = −pA|z|γ(Q−α1) + o(|z|γ(Q−α1)),

where

A =
π

l(−γ2

4 )l(γα1

2 )l(2 + γ2

4 −
γα1

2 )
E
[( ∫

C
K(0, u)eγ

2G(0,u)Mγ(d2u)
)−p−1]

.

Lemma 9.3. The following holds :

p1(z) + p2(z) + p3(z) = o(|z|γ(Q−α1)).

From these two lemmas, one can deduce (9.2). Indeed, since

2µ−pγ−1pΓ(p)A =
πµCγ(α1 + γ

2 , α2, α3)

l(−γ2

4 )l(γα1

2 )l(2 + γ2

4 −
γα1

2 )
,

the above two lemmas imply that

2µ−pγ−1Γ(p)R(z) = −
πµCγ(α1 + γ

2 , α2, α3)

l(−γ2

4 )l(γα1

2 )l(2 + γ2

4 −
γα1

2 )
|z|γ(Q−α1) + o(|z|γ(Q−α1)),

which yields (9.2) thanks to the fact that T− γ
2
(0) = Cγ(α1 − γ

2 , α2, α3) and

using (9.5) and (9.6). �

Proof of Lemma 9.2. We first study the r1 term. The term r1 is analyzed

in the same way as a similar term in the proof of [28, Lemma 4.5], so we will be

brief. First, as above, we want to restrict the x-integral to the ball B1/2. The
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integral over Bc
1/2 produces an O(z2) contribution: indeed for z small enough

(say |z| 6 1/4),

E
[ ∫

Bc
1/2

1

|x− tz|2
K(tz, x)Mγ(d2x)K(tz)−p−1

]
6 16EK(tz)−p <∞

uniformly in |z| 6 1/4 and t ∈ [0, 1]. This can be seen by restricting the

integral in K(tz) to a fixed ball away from singularities and then using the fact

that GMC measures possess negative moments of all orders (see Section 12.2).

Now we can focus on the x-integral over the ball B1/2. By the Cameron-

Martin theorem and the change of variables x→ ytz, we get

r1(z) = −pγ
2

4
(
γ2

4
− 1)|z|2+ γ2

2
−γα1

∫ 1

0
(1− t)t

γ2

2
−γα1

×
∫
B 1

2t|z|

|y − 1|
γ2

2

(y − 1)2|y|γα1 |yzt− 1|γα2

× E
[( ∫

C
K(tz, u)eγ

2G(tyz,u))Mγ(d2u)
)−p−1]

dtd2y +O(z2).

The dominated convergence theorem then implies

r1(z) = −pγ
2

4
(
γ2

4
− 1)|z|γ(Q−α1)

×
∫ 1

0
(1− t)t

γ2

2
−γα1dt

∫
C

|y − 1|
γ2

2

(y − 1)2|y|γα1
d2y

× E
[( ∫

C
K(0, u)eγ

2G(0,u)Mγ(d2u)
)−p−1]

+ o(|z|γ(Q−α1)).

Applying equation (12.10) to the y integral finally yields

r1(z) = −p
4

γ2

2 − γα1

γ2

2 − γα1 + 1
A|z|γ(Q−α1) + o(|z|γ(Q−α1))(9.9)

with

A =
π

l(−γ2

4 )l(γα1

2 )l(2 + γ2

4 −
γα1

2 )
E
[( ∫

C
K(0, u)eγ

2G(0,u)Mγ(d2u)
)−p−1]

.

Since r3 in (9.8) equals r̄1, it is also given by (9.9). Finally, r2 yields

r2(z) = −p
2

γ2

2 − γα1 + 2
γ2

2 − γα1 + 1
A|z|γ(Q−α1) + o(|z|γ(Q−α1)).

Altogether we then get

r1(z) + r2(z) + r3(z) = −pA|z|γ(Q−α1) + o(|z|γ(Q−α1)). �
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Proof of Lemma 9.3. We will prove that p1(z) is a o(|z|γ(Q−α1)); the ar-

gument for p2, p3 is similar. We will bound the expectation occurring in p1(z).

Let us denote

I(B, tz) := E
[Å∫

B

1

|x− tz|
K(tz, x)Mγ(d2x)

ã2 Å∫
C
K(tz, u)Mγ(d2u)

ã−p−2 ]
.

(9.10)

We shall prove

I(C, tz) 6 C|tz|γ(Q−α1)−2+η(9.11)

with η > 0, which proves our claim since (9.11) implies

|p1(z)| 6 p(p+ 1)
γ4

16
|z|2

∫ 1

0
(1− t)I(C, tz) dt

6 C|z|γ(Q−α1)+η

∫ 1

0
(1− t)tγ(Q−α1)−2+η dt 6 C|z|γ(Q−α1)+η,

where we used the fact that the t integral converges at 0 as γ(Q − α1) − 2 =
γ2

2 − 2 > −1.

We can now put t = 1. We will bound I(C, z) for z small. For z small

enough, 1
|x−z| is bounded in Bc

1
2

and we have I(Bc
1
2
, z) 6 CE[K(z)−p] 6 C.

Since I(C, z) 6 2(I(B 1
2
, z) + I(Bc

1
2
, z)), it suffices to bound I(B 1

2
, z).

Next we bound I(A, z), where A is the annulus centered at origin with radii

L|z| and 1
2 and L > 1 will be chosen later. First, we use Jensen’s inequality in

the normalized measure 1A(x)K(z, x)Mγ(d2x) to get

I(A, z) 6 E
[ ∫

A

1

|x− z|2
K(z, x)Mγ(d2x)KA(z)−p−1

]
.

Up to an additive independent Gaussian random variable, the restriction of X

to B 1
2

satisfies a continuum version of the FKG inequality (see Section 12.2),

and therefore

E
[ ∫

A

1

|x− z|2
K(z, x)Mγ(d2x)KA(z)−p−1

]
6 CE

[ ∫
A

1

|x− z|2
K(z, x)Mγ(d2x)

]
E[KA(z)−p−1]

6 C
∫
A

|x− z|
γ2

2
−2

|x|γα1
d2x

6 C|z|
γ2

2
−γα1

∫
|y|>L

|y − 1|
γ2

2
−2

|y|γα1
d2y 6 C|z|−2|z|γ(Q−α1)L−γ(α1− γ2 ),

where the last integral was convergent due to α1 > γ
2 . This fits to (9.11)

provided we take L = |z|−δ with δ > 0.
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We are left with estimating I(BL|z|, z). Let us first consider the part not

too close to the singularity at z. Set S := BL|z| \ B(z, |z|1+ε) for some ε > 0,

to be fixed later. We have

E

ñÅ∫
S

1

|x− z|
K(z, x)Mγ(d2x)

ã2

K(z)−p−2

ô
6 |z|−2−2εE[KS(z)2K(z)−p−2].

Then for r ∈ (0, 2), using the fact that KS(z) 6 K(z), we get

E[KS(z)2K(z)−p−2] 6 E[KS(z)r(K(z))−p−r] 6 C(EKS(z)qr)1/q,

where in the second step we used Hölder inequality and bounded the negative

GMC moment again by a constant. Finally, since |x− z| 6 2|Lz| on S, we get

[E(KS(z)qr)]1/q 6 C|Lz|
γ2

2
r

ñ
E

ñÇ∫
BL|z|

|x|−γα1Mγ(d2x)

åqrôô1/q

6 C|Lz|γ(Q−α1+ γ
2

)r− 1
2 γ

2qr2

,

where the last estimate comes from the estimates of Section 12.2. Here we

need to assume that rq < 4
γ2 ∧ 2

γ (Q−α1). Notice that since we assume γ
2 < α1,

then 4
γ2 >

2
γ (Q−α1) so that given q we need to have 0 < r < 2

γq (Q−α1). The

optimal choice for r is r? =
γ
2

+Q−α1

γq (this is less than 2
γq (Q− α1) for α1 <

2
γ ),

in which case

E[KS(z)rq]1/q 6 C|Lz|
1
2q

( γ
2

+Q−α1)2

.

Gathering everything we conclude

E

ñÅ∫
S

1

|x− z|
K(z, x)Mγ(d2x)

ã2

K(z)−p−2

ô
6 CL

1
2q

( γ
2

+Q−α1)2

|z|−2−2ε+ 1
2q

( γ
2

+Q−α1)2

.

We can now fix δ, q, ε. First notice that

1

2

(γ
2

+Q− α1

)2
− γ(Q− α1) =

1

2

(
Q− α1 −

γ

2

)2
> 0.

Hence choosing q sufficiently close to 1 and then ε < ε(q) and finally δ < δ(ε),

I(S, z) can be bounded by (9.11).

We are thus left with proving I(B, z) 6 C|z|γ(Q−α1)−2+η, where B :=

B(z, |z|1+ε). An application of the Cameron-Martin theorem (in fact, we use
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Corollary 12.2 recursively) gives

I(B, z) =

∫
B2

K(z, x)K(z, x′)eγ
2G(x,x′)

(x− z)(x′ − z)

× E
ñÅ∫

C
K(z, u)eγ

2G(x,u)+γ2G(x′,u)Mγ(d2u)

ã−p−2
ô
d2xd2x′

6 C
∫
B2

|x− z|
γ2

2
−1|x′ − z|

γ2

2
−1

|x|γα1 |x′|γα1 |x− x′|γ2

× E

Ñ∫
B 1

2

|u− z|
γ2

2

|u|γα1 |u− x|γ2 |u− x′|γ2Mγ(d2u)

é−p−2 d2xd2x′,

(9.12)

where in the upper bound we restricted the u integral to B 1
2
. By a change of

variables x = zy, x′ = zy′ this becomes

(9.13)

I(B, z) 6 C|z|2−2γα1

∫
B(1,|z|ε)2

|y − 1|
γ2

2
−1|y′ − 1|

γ2

2
−1

|y − y′|γ2 A(y, y′, z) d2yd2y′

with

A(y, y′, z) = E

Ñ∫
B 1

2

|u− z|
γ2

2

|u|γα1 |u− yz|γ2 |u− y′z|γ2Mγ(d2u)

é−p−2 .
Note that the only potential divergence in the y, y′ integral is at y = y′ since

γ2 > 2. Hence we need to study how A(y, y′, z) vanishes on the diagonal. The

behavior of A(y, y′, z) as y → y′ is controlled by the fusion rules (see [28]). In

the case at hand we have four insertions, located at 0, zy, zy′, z, that are all

close to each other as z → 0. Fusion estimates have been proven in [28] in the

case of three insertions. A simple adaptation of that proof to the case of four

insertions is stated in Lemma 12.3 of the appendix. The estimate for A(y, y′, z)

depends on the relative positions of the four insertions. In our case we have

|zy−z|∨ |zy′−z|∨ |zy−zy′| � |z|∧ |zy|∧ |zy′|. This means that the insertions

zy, zy′, z will merge together way before merging with 0. We will partition the

integration region in (9.13) according to the relative positions of these three

points or equivalently the relative positions of y, y′, 1. By symmetry in y, y′ we

then have three integration regions in (9.13) to consider:

• Let A1 := {|y − 1| 6 |y′ − 1| 6 |y − y′|}. Then on B(1, |z|ε)2 ∩ A1, by

Lemma 12.3 (applied with y1 = z, y2 = zy′, y3 = zy, y4 = 0) we have

A(y, y′, z) 6 C|1− y′|
1
2

( 3γ
2
−Q)2 |z|

1
2

( 3γ
2

+α1−Q)2
.
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Since 2− 2γα1 + 1
2(3γ

2 + α1 −Q)2 = −2 + γ(Q− α1) + 1
2(α1 − 2

γ )2, we get

I(B(1, |z|ε) ∩A1, z) 6 C|z|−2+γ(Q−α1)+ 1
2

(α1− 2
γ

)2

×
∫
B(1,|z|ε)2

1

|y − y′|2−
1
2

( 3γ
2
−Q)2

d2yd2y′.
(9.14)

The integral is convergent if (3γ
2 −Q)2 > 0, which is the case if γ2 6= 2.

• Let A2 := {|y − 1| 6 |y − y′| 6 |y′ − 1|}. Then on B(1, |z|ε)2 ∩ A2, by

Lemma 12.3 we have

A(y, y′, z) 6 C|y − y′|
1
2

( 3γ
2
−Q)2 |z|

1
2

( 3γ
2

+α1−Q)2
.

Hence we also end up with the bound (9.14) with A1 replaced by A2 (since
γ2

2 − 1 > 0).

• Let A3 := {|y − y′| 6 |y − 1| 6 |y′ − 1|}. Then on B(1, |z|ε)2 ∩ A3, by

Lemma 12.3 (applied with y1 = zy, y2 = z, y3 = zy′, y4 = 0) we have

A(y, y′, z) 6 C|y − y′|
1
2

(2γ−Q)2 |y − 1|1−
3γ2

4 |z|
1
2

( 3γ
2

+α1−Q)2

since 1
2(3γ

2 −Q)2 − γ2

8 −
1
2(2γ −Q)2 = 1− 3γ2

4 . Hence

I(B ∩A3) 6 C|z|−2+γ(Q−α1)+ 1
2 (α1− 2

γ
)2
∫
B(1,|z|ε)2

|y − 1|−
γ2

4

|y − y′|γ2− 1
2

(2γ−Q)2
d2yd2y′.

The integral converges since γ2 − 1
2(2γ −Q)2 = 4− 1

2Q
2 < 2. �

9.2. Fusion with reflection. In this section we uncover the probabilistic

origin of the reflection relations (1.13) and (1.14). Notice that the restriction

α1 <
2
γ in Theorem 9.1 comes from the second three point structure constant

Cγ(α1 + γ
2 , α2, α3) in the expression (9.1): this condition is required in order

that the first weight α1 + γ
2 is consistent with condition α1 + γ

2 < Q of the

Seiberg bound (2.8). We prove the following extension of Theorem 9.1 to the

case α1 >
2
γ .

Theorem 9.4. Let
∑3

k=1 αk > 2Q+ γ
2 and αk < Q for all k. There exists

η > 0 such that if Q− α1 < η, then

T− γ
2
(z) = Cγ

(
α1 −

γ

2
, α2, α3

)
|F−(z)|2

+R(α1)Cγ

(
2Q− α1 −

γ

2
, α2, α3

)
|F+(z)|2.

(9.15)
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By the discussion in Section 4.2, it suffices to show that one has the

following expansion as z goes to 0:

T− γ
2
(z) = Cγ

(
α1 −

γ

2
, α2, α3

)
+R(α1)Cγ

(
2Q− α1 −

γ

2
, α2, α3

)
|z|γ(Q−α1) + o(|z|γ(Q−α1)).

(9.16)

Note that since now γ(Q − α1) < 1, we need a Taylor expansion only to 0-th

order. We use the notation introduced in the proof of (9.1). Recall that

K(z, x) =
|x− z|

γ2

2 |x|γ(
∑3
k=1 αk−

γ
2

)
+

|x|γα1 |x− 1|γα2
,

and for any Borel set B ⊂ C,

KB(z) =

∫
B
K(z, x)Mγ(d2x).

Recall also that we write K(z) for KC(z), use the notation Br = B(0, r), and

set p = 1
γ (
∑3

k=1 αk −
γ
2 − 2Q). Since

T− γ
2
(z) = 2µ−pγ−1Γ(p)E[K(z)−p](9.17)

and T− γ
2
(0) = Cγ(α1 − γ

2 , α2, α3), in order to get (9.16), it suffices to prove

that

E
[
K(z)−p

]
− E

[
K(0)−p

]
=

1

2
µpγΓ(p)−1R(α1)Cγ

(
2Q− α1 −

γ

2
, α2, α3

)
|z|γ(Q−α1) + o(|z|γ(Q−α1)).

The leading asymptotics will result from the integral defining K in a small ball

at the origin. Let us denote B := B|z|1−ξ = B(0, |z|1−ξ) with ξ ∈ (0, 1) to be

fixed later. We define

(9.18)

T1 := E
[
KBc(z)−p

]
− E

[
K(0)−p

]
and T2 := E

[
K(z)−p

]
− E

[
KBc(z)−p

]
so that

(9.19) E
[
K(z)−p

]
− E

[
K(0)−p

]
= T1 + T2.

We then get the desired result thanks to the following two lemmas (where

ξ will be fixed in the proof of the two lemmas):

Lemma 9.5. The following holds :

T1 = o(|z|γ(Q−α1)).

Lemma 9.6. The following holds :

T2 =
1

2
µpγΓ(p)−1R(α1)Cγ

(
2Q− α1 −

γ

2
, α2, α3

)
|z|γ(Q−α1) + o(|z|γ(Q−α1)).
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Proof of Lemma 9.5. By interpolation, we get

|T1| 6 p
∫ 1

0
E
î
|KBc(z)−K(0)| (tKBc(z) + (1− t)K(0))−p−1

ó
dt

6 CE
î
|KBc(z)−K(0)| (KBc(0))−p−1

ó
,

(9.20)

where we used KBc(z) > CKBc(0) and K(0) > KBc(0) since |x−z|
γ2

2 > C|x|
γ2

2

on Bc. Since K(0) = KB(0) +KBc(0), we obtain |T1| 6 C(A1 +A2), where

A1 = E[KB(0)KBc(0)−p−1] and A2 = E[|KBc(z)−KBc(0)|KBc(0)−p−1].

Using Cameron-Martin theorem, we get for A1 that

A1 6 C
∫
|x|6 |z|1−ξ

|x|
γ2

2
−γα1E

[Ç∫
|u|>|z|1−ξ

K(0, u)|u− x|−γ2
Mγ(du)

å−p−1
]
d2x.

Since |u− x| 6 2|u| for |u| > |z|1−ξ, we may bound the expectation by

(9.21) E

[Ç∫
|u|>|z|1−ξ

|u|−γα1− γ
2

2 Mγ(d2u)

å−p−1
]
6 C|z|(1−ξ)

(α1+
γ
2−Q)2

2 ,

where we used the GMC estimate (12.5). We conclude that

A1 6 C|z|(1−ξ)
(

(α1+
γ
2−Q)2

2
+γ(Q−α1)

)
.(9.22)

Hence A1 = o(|z|γ(Q−α1)) if, e.g., ξ < 1
2 and η is small enough.

Next we boundA2. LetA be the annulusA := {x ∈ C; |z|1−ξ 6 |x| 6 1/2}.
We can split the numerator in A2 into |KBc

1/2
(z)−KBc

1/2
(0)| and |KA(z)−KA(0)|

by means of the triangular inequality. On Bc
1/2 we can use ||x − z|

γ2

2 −

|x|
γ2

2 | 6 C|x|
γ2

2 |z| to get

E[|KBc
1/2

(z)−KBc
1/2

(0)|KBc(0)−p−1] 6 C|z|E[KBc
1/2

(0)KBc(0)−p−1]

6 C|z|E[KBc(0)−p] 6 C|z|.

Finally, using ||x − z|
γ2

2 − |x|
γ2

2 | 6 C|x|
γ2

2
−1|z| on A and then applying

Cameron-Martin, we get

E[|KA(z)−KA(0)|KBc(0)−p−1]

6 C|z|
∫
A
|x|

γ2

2
−1−γα1E

[Ç∫
|u|>|z|1−ξ

K(0, u)|u− x|−γ2
Mγ(d2u)

å−p−1
]
d2x.

Since |z|1−ξ 6 |x|, we can bound∫
|u|>|z|1−ξ

K(0, u)|u− x|−γ2
Mγ(d2u) > C

∫
|u|>|x|

|u|−γα1− γ
2

2 Mγ(d2u).
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Then the GMC estimate (12.5) gives

E[|KA(z)−KA(0)|KBc(0)−p−1]

6 C|z|
∫
A
|x|

γ2

2
−1−γα1+ 1

2
(α1+ γ

2
−Q)2

d2x

6 C|z|ξ+(1−ξ)
(
γ(Q−α1)+ 1

2
(α1− 2

γ
)2
)

= o(|z|γ(Q−α1))

(9.23)

for ξ < 1
2 and η small enough (since α1− 2

γ >
γ
2 −η). Hence T1 = o(|z|γ(Q−α1)).

�

Proof of Lemma 9.6. First we show that it suffices to restrict K(z) to the

complement of the annulus Ah := {x ∈ C; e−h|z| 6 |x| 6 |z|1−ξ} where

h > 0 is fixed. It will serve as a buffer zone to decorrelate the regions

{x ∈ C; |x| 6 e−h|z|} and {x ∈ C; |x| > |z|1−ξ}. Interpolating as in (9.20)

we deduce

|E[K(z)−p −KAch(z)−p]| 6 E[KAh(z)KBc(0)−p−1].

Using the Cameron-Martin theorem we get

|E[K(z)−p −KAch(z)−p]|

6 C
∫
Ah

|x− z|
γ2

2 |x|−γα1E

ñÅ∫
Bc
K(0, u)|u− x|−γ2

Mγ(du)

ã−p−1
ô
d2x.

(9.24)

The expectation was estimated in (9.21) so that we get

|E[K(z)−p −KAch(z)−p]| 6 C|z|(1−ξ)
(
γ(Q−α1)+ 1

2
(Q−α1− γ2 )2

)
.(9.25)

For ξ < 1
2 and η small, this yields

(9.26) |E[K(z)−p −KAch(z)−p]| = o(|z|γ(Q−α1)).

Therefore, we just need to evaluate the quantity

E[KAch(z)−p]− E[KBc(z)−p],

where we recall the definitions Bc = {|x| > |z|1−ξ} and Ach = Bc ∪ Be−h|z|.
Hence KAch(z) = KBc(z) +KB

e−h|z|
(z). We use the polar decomposition of the

chaos measure introduced in Section 3. Let |z| = e−t. Then

KBc(z) =

∫ 2π

0

∫ (1−ξ)t

−∞
eγ(Bs−(Q−α1)s)

× |e
−s+iθ − z|

γ2

2

|1− e−s+iθ|γα2
(e−s(γ(α1+α2+α3− γ2 ) ∨ 1)Nγ(dsdθ) := K1,

KB
e−h|z|

(z) =

∫ 2π

0

∫ ∞
t+h

eγ(Bs−(Q−α1)s) |e−s+iθ − z|
γ2

2

|1− e−s+iθ|γα2
Nγ(dsdθ) := K2.



THE DOZZ FORMULA 133

The lateral noises Y that enter the definition of Nγ(dsdθ) in K1 and K2 are

weakly correlated. Indeed, from (3.2) we get

(9.27) − e−ξt 6 E[Y (s, θ)Y (s′, θ′)] 6 2e−ξt

for all s < (1− ξ)t, s′ > t+ h and θ, θ′ ∈ [0, 2π]. Then define the process

P (s, θ) := Y (s, θ)1{s<(1−ξ)t} + Y (s, θ)1{s>t+h}.

Let ‹Y be independent of everything with the same law as Y , and define the

process ‹P (s, θ) := Y (s, θ)1{s<(1−ξ)t} + ‹Y (s, θ)1{s>t+h}.

Then we get

(9.28)

E[‹P (s, θ)‹P (s′, θ′)]− e−ξt 6 E[P (s, θ)P (s′, θ′)] 6 E[‹P (s, θ)‹P (s′, θ′)] + 2e−ξt.

Let N be a unit normal variable independent of everything. Then inequal-

ity (9.28) implies that the covariance of P + e−
1
2
ξtN dominates the covariance

of ‹P and the covariance of ‹P+
√

2e−
1
2
ξtN dominates the covariance of P . There-

fore, we get by Kahane’s convexity inequality (see [46, Th. 2.1]) with the convex

function x ∈ R+ 7→ x−p (applied to (P + e−
1
2
ξtN, ‹P ) and (‹P +

√
2e−

1
2
ξtN,P ))

that there exists some C > 0 such that

e−C|z|
ξ
E[(K1 + K̃2)−p] 6 E[(K1 +K2)−p] 6 eC|z|

ξ
E[(K1 + K̃2)−p],(9.29)

where K̃2 is computed with ‹Y instead of Y . Let

β := eγBt+h−γ(Q−α1)(t+h)− γ
2

2
t.(9.30)

Then by the Markov property of Brownian motion,

(9.31) K̃2 = β

∫ 2π

0

∫ ∞
0

eγ(‹Bs−(Q−α1)s)
|e−s−h+iθ − z

|z| |
γ2

2

|1− |z|e−s−h+iθ|γα2

‹Nγ(d(h+t+s), dθ),

where ‹B is a Brownian motion independent of everything and ‹N is the mea-

sure associated to ‹Y . Moreover, by stationarity of ‹Y and its independence of

everything we may replace ‹Nγ(d(h+t+s), dθ) by ‹Nγ(ds, dθ). As a consequence,

(9.32) E[(K1 + βc−K3)−p] 6 E[(K1 + K̃2)−p] 6 E[(K1 + βc+K3)−p],

where

K3 =

∫ ∞
0

eγ(‹Bs−(Q−α1)s)Z̃sds

with Z̃s =
∫ 2π

0 eγ
‹Y (s,θ)− γ

2E[(‹Y (s,θ))2]
2 dθ (recall that this is a slight abuse of nota-

tion as Z̃s is not a function but a distribution) and

(9.33) c± :=
(1∓ e−h)

γ2

2

(1± |z|e−h)γα2
.
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By the Williams path decomposition Lemma 3.1 and (3.7), we deduce

(9.34) K3 law
= eγM

∫ ∞
−L−M

eγB
α1
s Z̃s ds,

where we recall M = sups(‹Bs − (Q− α1)s) and L−M is the last time Bα1
s hits

−M (along the negative axis). Thanks to (9.29) and (9.32), we want to study a

lower bound on E[(K1 +βc−K3)−p] and an upper bound on E[(K1 +βc+K3)−p]

to conclude.

9.2.1. Lower bound on E[(K1 + βc−K3)−p]. Let us use the notation JA =∫∞
−L−A e

γBα1
s Z̃sds and J for J∞. We have

E[(K1 + βc−K3)−p] > E[(K1 + βc−e
γMJ)−p].

Using the fact that M has exponential law with parameter 2(Q − α1) (and

therefore the law of eγM has density 2(Q−α1)
γ v

−1− 2
γ

(Q−α1)
dv on [1,∞)), we get

by first integrating over M that

E[(K1 + βc−K3)−p]− E[(K1)−p]

=
2(Q−α1)

γ
E
[ ∫ ∞

1

(
(K1 + βc−vJ)−p − (K1)−p

)
v
−1− 2

γ
(Q−α1)

dv
]

=
2(Q−α1)

γ
c

2
γ

(Q−α1)

− E
[
(βJ)

2
γ

(Q−α1)
(K1)

−p− 2
γ

(Q−α1)

×
∫ ∞
βc−J
K1

(
(1 + w)−p − 1

)
w
−1− 2

γ
(Q−α1)

dw
]

>
2(Q−α1)

γ
c

2
γ

(Q−α1)

− E
[
(βJ)

2
γ

(Q−α1)
(K1)

−p− 2
γ

(Q−α1)
]

×
∫ ∞

0

(
(1 + w)−p − 1

)
w
−1− 2

γ
(Q−α1)

dw

=
2(Q−α1)

γ
c

2
γ

(Q−α1)

−
Γ(− 2

γ (Q− α1))Γ(p+ 2
γ (Q− α1))

Γ(p)

× E[J
2
γ

(Q−α1)
]E
[
β

2
γ

(Q−α1)
(K1)

−p− 2
γ

(Q−α1)
]
,

where in the second step we made a change of variables w = βc−J
K1 v and for

the lower bound we took the integration over w > 0. In the last step we used

Lemma 12.6 to compute the integral, and we also used the independence of J

from everything. We end up with

(9.35)

E[(K1 + βc−K3)−p]− E[(K1)−p] >Wc
2
γ

(Q−α1)

− E
[
β

2
γ

(Q−α1)
(K1)

−p− 2
γ

(Q−α1)
]
,
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where we have have set

W := µ
− 2
γ

(Q−α1)
R(α1)

Γ(p+ 2
γ (Q− α1))

Γ(p)
,

and R(α1) = µ
2
γ

(Q−α1)
Γ(−2(Q−α1)

γ ) 2(Q−α1)
γ E[J

2
γ

(Q−α1)
] is the reflection coef-

ficient defined in (3.12). We point out that W is negative because of the term

Γ(−2(Q−α1)
γ ) appearing in the expression of the reflection coefficient. The re-

maining expectation can be computed thanks to the Cameron-Martin theorem

applied to the term β
2
γ

(Q−α1)
(defined via (9.30)). More precisely, we have

(using t = ln 1
|z|)

β
2
γ

(Q−α1)
= e2(Q−α1)Bt+h−2(Q−α1)2(t+h)e−γ(Q−α1)t

= |z|γ(Q−α1)e2(Q−α1)Bt+h−2(Q−α1)2(t+h).

Applying the Cameron-Martin theorem to the term e2(Q−α1)Bt+h−2(Q−α1)2(t+h),

we get

(9.36) E
[
β

2
γ

(Q−α1)
(K1)

−p− 2
γ

(Q−α1)
]

= |z|γ(Q−α1)E
[
K̂Bc(z)−p−

2
γ

(Q−α1)]
,

where for D ⊂ C we defined

(9.37) K̂D(z) :=

∫
D

|x− z|
γ2

2

|x|γ(2Q−α1)|x− 1|γα2
|x|γ(2Q−α1− γ2 +α2+α3)

+ Mγ(d2x).

In the case D = C, we will write K̂(z) for K̂C(z). Next, we claim

E
[
K̂Bc(z)−p−

2
γ

(Q−α1)]− E[K̂Bc(0)
−p− 2

γ
(Q−α1)]

= o(|z|γ(Q−α1)).(9.38)

Indeed, the left-hand side is just T1 in (9.18) computed with a larger p and

|x|γα1 replaced by |x|γ(2Q−α1). It is readily checked from (9.22) and (9.23) that

(9.38) holds.

In view of (9.26), (9.29), (9.32), (9.35), (9.36), (9.38), we have shown that

E[K(z)−p]− E[KBc(z)−p]

> e−C|z|
ξ
(
|z|γ(Q−α1)c

2
γ

(Q−α1)

− WE
[
K̂(0)

−p− 2
γ

(Q−α1)]
+ o(|z|γ(Q−α1))

)
− (1− e−C|z|ξ)E[KBc(z)−p].

The second term on the right-hand side is O(|z|ξ) = o(|z|γ(Q−α1)) provided we

take ξ > γ(Q− α1) (this is the condition that fixes ξ) so that recalling (9.33),

we deduce

lim inf
z→0

|z|−γ(Q−α1)
(
E[K(z)−p]−KBc(z)−p]

)
> (1 + e−h)γ(Q−α1)WE

[
K̂(0)

−p− 2
γ

(Q−α1)]
.
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Since h is arbitrary, it can be chosen arbitrarily large so as to get

lim inf
z→0

|z|−γ(Q−α1)
(
E[K(z)−p −KBc(z)−p]

)
>WE

[
K̂(0)

−p− 2
γ

(Q−α1)]
=

1

2
µpγΓ(p)−1R(α1)Cγ(2Q− α1 −

γ

2
, α2, α3),

where we have used the definition (2.17) of the structure constants in the last

equality. This is the desired lower bound.

9.2.2. Upper bound on E[(K1 + βc+K3)−p]. For the upper bound we go

back to the formula (9.34), where we need to face the integration region lower

value L−M . For A > 0 fixed, we consider first the quantity

L(z) := E
[(
K1 + βc+e

γM

∫ ∞
−L−M

eγB
α1
s Z̃sds

)−p
− (K1)−p

)
1{M 6 A}

]
.

We want to show that L(z) = o(|z|γ(Q−α1)). By the inequality |(x+y)−p−x−p|
6 px−p−1y, for x, y > 0, we get

|L(z)| 6 pc+E
[
βeγM

∫ ∞
−L−M

eγB
α1
s Z̃sdsKBc(z)−p−11{M 6 A}

]
6 CeγAE

ï∫
R
eγB

α1
s Z̃sds

ò
E
[
βKBc∩B(0, 12 )(z)

−p−1
]
.

Recall that β satisfies (using t = ln 1
|z|)

β = eγBt+h−γ(Q−α1)(t+h)− γ
2

2
t = e

γ(α1− 2
γ

)h|z|γ(Q−α1)eγBt+h−
γ2

2
(t+h),

and therefore using the Cameron-Martin theorem with eγBt+h−
γ2

2
(t+h), we get

eγAE

ï∫
R
eγB

α1
s Z̃sds

ò
E
[
βKBc∩B(0, 12 )(z)

−p−1
]

= e
γ(α1− 2

γ
)h|z|γ(Q−α1)eγAE

ï∫
R
eγB

α1
s Z̃s ds

ò
× E

(∫
|z|1−ξ 6 |z| 6 1

2

|x|−γα1− γ
2

2 Mγ(d2x)

)−p−1


6 CeγA|z|γ(Q−α1)|z|
1−ξ

2
(Q−α1− γ2 )2

,

where the constant C depends on h and we used the GMC estimate (12.5) and

Lemma 3.3. Hence, for A and h fixed, we have L(z) = o(|z|γ(Q−α1)).

It remains to investigate the quantity

U(z) :=E
[(
K1 + βc+e

γM

∫ ∞
−L−M

eγB
α1
s Z̃s(ds)

)−p
− (K1)−p

)
1{M > A}

]
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6 E
[(
K1 + βc+e

γMJA

)−p
− (K1)−p

)
1{M>A}

]
,

where recall that JA =
∫∞
−L−A e

γBα1
s Z̃sds. Using again the law of M , which

is exponential with parameter 2(Q− α1), and making the change of variables
βc+JA
K1 eγv = y, we get

U(z) 6
2(Q−α1)

γ
E

ï∫ ∞
A

Ä(
K1 + βc+e

γvJA
)−p − (K1)−p

ä
e−2(Q−α1)v dv

ò
=

2(Q−α1)

γ
c

2
γ

(Q−α1)

+ E

[
J

2
γ

(Q−α1)

A β
2
γ

(Q−α1)

×
∫ ∞
eγA

βc+JA
K1

(
(1 + y)−p − 1

)
(K1)

−p− 2
γ

(Q−α1)
y
− 2
γ

(Q−α1)−1
dy

]
.

Now we can use Cameron-Martin as in the case of the lower bound to get that

the above expectation can be rewritten as (recall (9.37))

E

[
J

2
γ

(Q−α1)

A β
2
γ

(Q−α1)

×
∫ ∞
eγA

βc+JA
K1

(
(1 + y)−p − 1

)
(K1)

−p− 2
γ

(Q−α1)
y
− 2
γ

(Q−α1)−1
dy

]

= |z|γ(Q−α1)E

[
J

2
γ

(Q−α1)

A

∫ ∞
eγA

β(|z|e−h)−2γ(Q−α1)c+JA“KBc (z)

×
(

(1 + y)−p − 1
)
K̂Bc(z)−p−

2
γ

(Q−α1)
y
− 2
γ

(Q−α1)−1
dy

]
.

Recalling (9.30), we have

β(|z|e−h)−2γ(Q−α1) = eγBt+h+γ(Q−α1)(t+h)− γ
2

2
t = eγ(Q−α1)heγBt+h+γ(Q−α1− γ2 )t.

Thus β(|z|e−h)−2γ(Q−α1) → 0 almost surely as z → 0 (equivalently t → ∞)

provided α1 + γ
2 > Q, which is the case. Dominated convergence theorem then

ensures that the latter expectation converges to

E[J
2
γ

(Q−α1)

A ]E[K̂Bc(0)
−p− 2

γ
(Q−α1)

]

∫ ∞
0

(
(1 + y)−p − 1

)
y
− 2
γ

(Q−α1)−1
dy

=
Γ(− 2

γ (Q− α1))Γ(p+ 2
γ (Q− α1))

Γ(p)
E[J

2
γ

(Q−α1)

A ]E[K̂Bc(0)
−p− 2

γ
(Q−α1)

],

where we have used Lemma 12.6 to compute the integral in the y variable.

Gathering (9.26), (9.29), (9.32) and the above considerations on the upper

bound of E[(K1 + βc+K3)−p] (and using the fact that ξ > γ(Q− α1)), we get

lim sup
z→0

|z|−γ(Q−α1)
(
E[K(z)−p −KBc(z)−p]

)
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6
2(Q− α1)

γ
c

2
γ

(Q−α1)

+

Γ(− 2
γ (Q− α1))Γ(p+ 2

γ (Q− α1))

Γ(p)
E[J

2
γ

(Q−α1)

A ]

× E[K̂Bc(0)
−p− 2

γ
(Q−α1)

]

=
1

2
(1− e−h)

2
γ

(Q−α1)
µpΓ(p)−1µ

2
γ

(Q−α1)
Γ

Å
−2

γ
(Q− α1)

ã
2(Q− α1)

γ

× E[J
2
γ

(Q−α1)

A ]Cγ

(
2Q− α1 −

γ

2
, α2, α3

)
.

We can then conclude as for the lower bound by letting h,A→∞ since

µ
2
γ

(Q−α1)
Γ(−2

γ
(Q− α1))

2(Q− α1)

γ
E[J

2
γ

(Q−α1)

A ]

goes to R(α1) as A goes to infinity. �

9.3. The 4 point function with − 2
γ insertion. In this section, we prove an

analogue of Theorem 9.4 for the other degenerate insertion with weight − 2
γ :

Theorem 9.7. We assume the Seiberg bounds for (− 2
γ , α1, α2, α3), i.e.,∑3

k=1 αk > 2Q + 2
γ and αk < Q for all k. There exists η > 0 such that if

Q− α1 < η, then

T− 2
γ
(z) = Cγ(α1 − 2

γ
, α2, α3)|F−(z)|2

+R(α1)Cγ(2Q− α1 − 2

γ
, α2, α3)|F+(z)|2.

(9.39)

Proof. The proof follows the proof of Theorem 9.4 almost word by word,

and we keep the same notation with the following obvious modifications. The

function K in (9.40) is replaced by

(9.40) K(z, x) =
|x− z|2|x|

γ(
∑3
k=1 αk−

2
γ

)

+

|x|γα1 |x− 1|γα2
;

i.e., most importantly, the factor |x−z|
γ2

2 is replaced by |x−z|2. Furthermore,

the exponent p is now given by p = (α1 +α2 +α3− 2
γ − 2Q)/γ and is positive.

We will fix η > 0 and ξ ∈ (0, 1) so that the following conditions hold for

all α1 ∈ (Q− η,Q):

4
γ (Q− α1) <(1− ξ)(4− γα1 − 2γη),(9.41)

4
γ (Q− α1) <ξ.(9.42)

Note that for ξ = η = 0, (9.41) holds since 4− γQ = 2− γ2

2 > 0 and therefore

by continuity for small enough η and small enough ξ > 4
γ η, they hold as well.
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As in the proof of Theorem 9.4 we start with the splitting (9.19) to T1

and T2 given by (9.18), and we first show that T1 = o(|z|
4
γ

(Q−α1)
). We obtain

again |T1| 6 C(A1 +A2) with the same definitions for Ai.

The Cameron-Martin bound for A1 becomes

A16C
∫
|x| 6 |z|1−ξ

|x|2−γα1E

[Ç∫
|u|>|z|1−ξ

K(0, u)|u− x|−γ2
Mγ(du)

å−p−1
]
d2x,

and as the expectation is bounded by a constant, we conclude that

(9.43) A1 6 C|z|(1−ξ)(4−γα1) = o(|z|
4
γ

(Q−α1)
)

by (9.41).

Next, for A2, the bound (9.23) is replaced by

E[|KA(z)−KA(0)|KBc(0)−p−1] 6 C|z|
∫
A
|x|1−γα1d2x

6 C|z|1+(1−ξ)(3−γα1) = o(|z|
4
γ

(Q−α1)
)

(9.44)

again by (9.41). Hence T1 = o(|z|
4
γ

(Q−α1)
).

Now we proceed with T2, again with the obvious changes (e.g., γ2

2 in the

definitions for K1,K2 and c± replaced by 2). Hence replacing (9.37) by

K̂D(z) :=

∫
D

|x− z|2

|x|γ(2Q−α1)|x− 1|γα2
|x|

γ(2Q−α1− 2
γ

+α2+α3)

+ Mγ(d2x),

instead of (9.38), we obtain the bound

E
[
K̂Bc(z)−p−

2
γ

(Q−α1)]− E[K̂Bc(0)
−p− 2

γ
(Q−α1)]

= o(|z|
4
γ

(Q−α1)
).(9.45)

Indeed, the left-hand side is T1 computed with a larger p and |x|γα1 replaced

by |x|γ(2Q−α1). Hence from (9.43) and (9.44) we get the bound

E
[
K̂Bc(z)−p−

2
γ

(Q−α1)]− E[K̂Bc(0)
−p− 2

γ
(Q−α1)] 6 C|z|(1−ξ)(4−γ(2Q−α1)).

Since 4− γ(2Q− α1) = 4− γα1 − 2γ(Q− α1) 6 4− γα1 − 2γη, (9.45) holds.

The rest of the arguments for the lower and the upper bounds for T2 follow

then word by word. �

9.4. Crossing relations. Proposition 4.1 now follows from Theorem 9.1 as

explained in Section 4.3. Let us state it in the form we will apply it and also

for the unit volume structure constants:

Proposition 9.8. Let ε ∈ (γ2 ,
2
γ ) and α, α′ < Q such that α+α′+ε− γ

2 >

2Q. Then

(9.46) Cγ(α′ − γ
2 , ε, α) = T (α′, ε, α)Cγ(α′, ε+ γ

2 , α),
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where T is the given by the following formula :

(9.47) T (α′, ε, α) = −µπ l(a)l(b)

l(c)l(a+ b− c)
1

l(−γ2

4 )l(γε2 )l(2 + γ2

4 −
γε
2 )
,

where a, b, c are given by

(9.48) a =
γ

4
(α′+α+ε−Q−γ)− 1

2
, b =

γ

4
(α′−α+ε−Q)+

1

2
, c = 1−γ

2
(Q−α′).

The above relation can be rewritten under the following form for the unit

volume correlations (see (4.1) for the definition):

(9.49) C̄γ(α′ − γ
2 , ε, α) = T̄ (α′, ε, α)C̄γ(α′, ε+ γ

2 , α),

where T̄ is given by

(9.50) T̄ (α′, ε, α) = µ−1
Γ( 1

γ (α+ α′ + ε+ γ
2 − 2Q))

Γ( 1
γ (α+ α′ + ε− γ

2 − 2Q))
T (α′, ε, α).

Along the same lines as Proposition 9.8, by exploiting Theorem 9.7 with

the − 2
γ insertion, one can show the two following crossing symmetry relations:

Proposition 9.9. Let α, ε, α′ < Q with α+ α′ + ε > 2Q+ 2
γ . Then

(9.51) Cγ(α− 2
γ , ε, α

′) = T̃ (α, ε, α′)R(ε)Cγ(α, 2Q− ε− 2
γ , α

′),

where T̃ is given by the following formula

(9.52) T̃ (α, ε, α′) =
l(a)l(b)

l(c)l(a+ b− c)
,

where

(9.53) a = 1
γ (α′+α+ε−Q− 4

γ )− 1

2
, b = 1

γ (α−α′+ε−Q)+
1

2
, c = 1− 2

γ (Q−α).

Proposition 9.10. Let α, ε, α′ < Q with α+ α′ + ε > 2Q+ 2
γ . Then

(9.54) R(ε)Cγ(2Q− ε− 2
γ , α, α

′) = L(ε, α, α′)R(α)Cγ(ε, 2Q− α− 2
γ , α

′)

where L is given by the following formula

(9.55) L(ε, α, α′) =
l(c− 1)l(c− a− b+ 1)

l(c− a)l(c− b)

with

(9.56) a = 1
γ (α′+α+ε−Q− 4

γ )− 1

2
, b = 1

γ (α−α′+ε−Q)+
1

2
, c = 1− 2

γ (Q−ε).
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10. Proof of Theorem 3.5

We will suppose that γ2 6∈ Q. This is no restriction since the general case

can be deduced from this case by continuity in γ (Remark 2.3). The proof of

formula (3.13) for the reflection coefficient is made of several steps as explained

in Section 5:

Section 10.1: We prove that R̄ is analytic in a complex neighborhood of

the interval (γ2 , Q). The key to this is the crossing relation (9.49) that allows

to express R̄(α) in terms of Cγ(α, γ, α) (equation (10.6)).

Section 10.2: We prove first that R satisfies the following shift equation

for α close to Q:

(10.1) R
(
α− γ

2

)
= −µπ R(α)

l(−γ2

4 )l(γα2 −
γ2

4 )l(2 + γ2

4 −
γα
2 )
.

The starting point is again the crossing relation (9.49). Using the tail estimate

Lemma 7.3 we show that the right-hand side of (9.49) has two simple poles

in ε and (10.1) follows by equating residues of both sides of (9.49). Next,

by analyticity the relation (10.1) extends to a neighborhood of α ∈ (γ,Q).

Analyticity of R̄ on (γ2 , Q) then implies we can use (10.1) to extend R to a

neighborhood of R. The extension that we also denote by R is meromorphic

with simple poles on the real line located at { 2
γ −

γ
2N} ∪ {

γ
2 −

2
γN}.

Section 10.3: We prove the so-called gluing lemma, Lemma 10.5, that uses

R to extend the three point structure constant to a holomorphic function in

a neighborhood of Q. The basic input in the proof is the shift relation (1.7)

proven in Theorem 9.1 and Corollary 10.2, based on Theorem 9.4.

Section 10.4: We prove that R satisfies the following inversion relation:

(10.2) R(α)R(2Q− α) = 1.

The proof is based on combining the crossing relation Proposition 9.9 with the

gluing lemma.

Section 10.5: We prove that R (as a meromorphic function in a neigh-

borhood of R) satisfies the following shift equation:

(10.3) R(α) = −cγ
R(α+ 2

γ )

l(− 4
γ2 )l(2α

γ )l(2 + 4
γ2 − 2α

γ )
,

where cγ = γ2

4 µπR(γ) 6= 0. Recall that from the DOZZ solution we expect

that

(10.4) cγ = (µπl(γ
2

4 ))
4
γ2 l( 4

γ2 )
−1
.
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Section 10.6: Since RDOZZ satisfies (10.1) and (10.3) with (10.4), we prove

R = RDOZZ by application of Liouville’s theorem.

10.1. Proof of analyticity of R̄ in the interval (γ2 , Q). The crossing rela-

tion (9.49) gives for α = α′,

(10.5) C̄γ(α− γ
2 , ε, α) = T̄ (α, ε, α)C̄γ(α, ε+ γ

2 , α),

which holds for α < Q and ε ∈ (γ2 ,
2
γ ) with ε + γ

2 < 2α. From Remark 8.2 we

deduce for α ∈ (γ2 , Q) that

lim
ε↓ γ

2

(ε− γ

2
)C̄γ(α− γ

2 , ε, α) = 4(Q−α)
γ R̄(α).

By Theorem 6.1, for ε > γ
2 , C̄γ(α − γ

2 , ε, α) is analytic in α ∈ (γ2 , Q) and

C̄γ(α, ε + γ
2 , α) is analytic in α ∈ (γ4 + ε

2 , Q). Hence the relation (10.5) holds

for ε ∈ (γ2 ,
2
γ ) and α ∈ (γ4 + ε

2 , Q). Using (9.47) and (9.50), a bit of calculation

gives

lim
ε↓ γ

2

(ε− γ

2
)T̄ (α, ε, α) = −π 4(Q−α)

γ2

l(γ2α−
γ2

4 − 1)

l(1 + γ
2 (α−Q))l(−γ2

4 )l(γ
2

4 )
.

We conclude that for all α ∈ (γ2 , Q),

(10.6) R̄(α) = −π

γ

l(γ2α−
γ2

4 − 1)

l(1 + γ
2 (α−Q))l(−γ2

4 )l(γ
2

4 )
C̄γ(α, γ, α),

which proves our claim since C̄γ(α, γ, α) is analytic in α ∈ (γ2 , Q).

10.2. Proof of the γ
2 shift equation (10.1). We start again with the crossing

relation (9.49)

(10.7) C̄γ(α′ − γ
2 , ε, α) = T̄ (α′, ε, α)C̄γ(α′, ε+ γ

2 , α),

which holds for ε ∈ (γ2 ,
2
γ ) and α+ α′ + ε− γ

2 > 2Q with α, α′ < Q.

By Theorem 6.1, both sides of (10.7) are restrictions of holomorphic func-

tions over an open neighborhood of the intersection of the extended Seiberg

bounds (2.14) valid for each structure constant involved in each side of (10.7),

which thus remains valid on this set. It is rather tedious to write this set

explicitly, but one can check that it contains the set of values

(10.8) α′ = Q− η, α = 2
γ + η, ε ∈

Å
2η,

2

γ

ã
for any η ∈ (0, γ4 ).

Let us consider both sides of (10.7) as a function of ε. From Remark 8.2

we obtain

lim
ε↓2η

(ε− 2η)C̄γ(α′ − γ
2 , ε, α) = 4(Q−α)

γ R̄(α).
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This indicates that ε 7→ C̄γ(α′ − γ
2 , ε, α) has a pole at ε = 2η. The extended

Seiberg bounds indicates that the next pole below ε = 2η is located either at

ε = −2η or ε = γ − 4
γ . We reinforce the restriction on η to be

(10.9) 0 < η < ( 2
γ −

γ
2 ) ∧ γ

4 ∧
1

2γ

in order to make sure that the next pole is at ε = −2η. (The condition η < 1
2γ is

just technical and makes sure the interval (2η, 1
γ ) is nonempty in the argument

just below.) Indeed we prove

Proposition 10.1. Let α, α′ be given by (10.8). Then for η > 0 small

enough, the function

f(ε) := C̄γ(α′ − γ
2 , ε, α)−

4
γ (Q− α)R̄(α)

ε− 2η
−

4
γ (Q− α′ + γ

2 )R̄(α′ − γ
2 )

ε+ 2η

extends to an analytic function in a complex neighborhood of ε ∈ (−2η − δ, 1
γ )

for some δ > 0.

We postpone the proof of Proposition 10.1 to the end of this subsection.

By (10.7), for ε ∈ (2η, 1
γ ) we have f(ε) = g(ε), where

g(ε) := T̄ (α′, ε, α)C̄γ(α′, ε+ γ
2 , α)−

4
γ (Q− α)R̄(α)

ε− 2η
−

4
γ (Q− α′ + γ

2 )R̄(α′ − γ
2 )

ε+ 2η
.

Therefore by analytic continuation of f obtained above, g is analytic in ε on

(−2η − δ, 1
γ ). By Remark 8.2,

lim
ε↓−2η

(ε+ 2η)C̄γ(α′, ε+ γ
2 , α) = 4(Q−α′)

γ R̄(α′),

where we used α′ > α. Hence, from limε↓−2η(ε+ 2η)g(ε) = 0 we deduce

(Q− α′)T̄ (α′,−2η, α)R̄(α′) = (Q− α′ + γ
2 )R̄(α′ − γ

2 ).

This is the reflection relation for unit volume reflection coefficient. Using (9.50)

and (3.12) a calculation gives then

(10.10) R(α′ − γ
2 ) = T (α′,−2η, α)R(α′).

Inserting ε = −2η = α′−α− γ
2 into (9.48), we first get that b = γε

2 so that

l(b) = l(γε2 ) and a+b−c = 1−(2+ γ2

4 −
γε
2 ) so that l(a+b−c)l(2+ γ2

4 −
γε
2 ) = 1.

Therefore (9.47) becomes

T (α′,−2η, α) = −µπ l(a)

l(c)l(−γ2

4 )
= −µπ

l(γα
′

2 −
γ2

2 − 1)

l(1 + γ
2 (α′ −Q))l(−γ2

4 )
.

Using l(x)−1 = l(1−x), (10.10) is the desired shift relation (10.1) (with α′ = α).

We have proven (10.1) for α close to Q, but since by Section 10.1 R̄

is analytic on (γ2 , Q), the relation (10.1) extends to α ∈ (γ,Q). Then we
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can use (10.1) to extend R to a meromorphic function in a neighbourhood

of R, which we also denote by R. Since RDOZZ also satisfies (10.1) and 0 <
R(α)

RDOZZ(α)
<∞ for α ∈ (γ2 , Q), we conclude that R and RDOZZ have their poles

and zeros located at the same places. For instance, the poles of R are located

at { 2
γ −

γ
2N} ∪ {

γ
2 −

2
γN}.

A useful consequence of this analytic continuation of R is the following:

Corollary 10.2. Let
∑3

k=1 αk −
γ
2 > 2Q and αk < Q for all k. There

exists η > 0 such that if Q− α1 < η, then the shift equation (1.7) holds in the

form

R(α1 + γ
2 )Cγ(2Q− α1 − γ

2 , α2, α3) = − 1

πµ
A(γ2 , α1, α2, α3)Cγ(α1 − γ

2 , α2, α3).

Proof. From Theorem 9.4, we get

(10.11)

T− γ
2
(z) = Cγ(α1 − γ

2 , α2, α3)|F−(z)|2 +R(α1)Cγ(2Q− α1 − γ
2 , α2, α3)|F+(z)|2.

Thanks to (10.1) applied to α = α1 + γ
2 , we get that

(10.12) R(α1) = −µπ
R(α1 + γ

2 )

l(−γ2

4 )l(γα1

2 )l(2− γα1

2 )
.

Plugging (10.12) into (10.11), the result then follows from (4.10) and (4.11)

applied to α0 = −γ
2 , α1, α2, α3 and a lengthy calculation. �

Proof of Proposition 10.1. Fix points z2, z3 ∈ C such that |z2| > 2, |z3| > 2

and |z2 − z3| > 3. From (2.17) and (4.1), we have

C̄γ(α′ − γ
2 , ε, α) = G(ε) EZC(ε)

1− ε
γ ,

where

(10.13) G(ε) = 2γ−1
∏
i<j

1

|zi − zj |αiαj+2∆ij

with z1 = 0, (α1, α2, α3) = (ε, α, α′ − γ
2 ) = (ε, 2

γ + η, 2
γ − η) and for A ⊂ C,

(10.14) ZA(ε) :=

∫
A

|x|γ(ε+α2+α3)
+

|x|γε|x− z2|γα2 |x− z3|γα3
Mγ(d2x).

Next define

F (ε) := E
(
ZC(ε)

1− ε
γ − (ZB1(z2)(ε) + ZB1(z3)(ε))

1− ε
γ
)
.

The fact that F is well defined is a consequence of the proof of Lemma 10.3

below. Note that ZB1(z2)(ε) and ZB1(z3)(ε) do not depend on ε since for x ∈
B1(z2) or x ∈ B1(z3), we have |x|+ = |x|. Hence we denote them by ZB1(z2)

and ZB1(z3). We start with
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Lemma 10.3. For some δ > 0, F (ε) is analytic in a complex neighborhood

of the interval (−2η − δ, 1
γ ).

Proof. Let us fix δ > 0 such that

(10.15) 2η + δ < 4
γ − γ and 4η + δ < γ,

which is possible because of (10.9). As in the proof of Theorem 6.1 we construct

F as the uniform limit as t → ∞ of analytic functions Ft in a neighborhood

of (−2η − δ, 1
γ ). Let us denote Ct = {z : |z| > e−t} and define (recall that Br

stands for the ball Br(0) and Xt for the circle average (2.2) with r = e−t)

Ft(ε) = E

ï
eεXt(0)− tε

2

2

Ä
ZCt(0)

1− ε
γ − (ZB1(z2) + ZB1(z3))

1− ε
γ

äò
.

Let us first show that for each t, ε 7→ Ft(ε) is an analytic function of ε

in an open neighborhood of (−2η − δ, 1
γ ). Let R1 := ZB1(z2) + ZB1(z3) and

R2 := ZCt(0) − R1. By (2.13) and (2.14), R1 admits moments of order q for

q < 2
γ (Q − η − 2

γ ) and R2 has moments of order q for q < 4
γ2 . By taking the

derivative of s 7→ (sR2 +R1)
1− ε

γ , we get

(10.16)

E[eεXt(0)
(
(R2 +R1)

1− ε
γ −R

1− ε
γ

1

)
] =

Å
1− ε

γ

ã∫ 1

0
E[eεXt(0)R2(sR2 +R1)

− ε
γ ] ds.

Let ε = ε1 + iε2, and suppose first that ε1 > 0. Since E|epεXt(0)| < ∞ for all

p < ∞ and since chaos has negative moments, then using Hölder’s inequality

we can bound the integrand by CE[Rq2]
1
q for any q > 1.

If ε1 < 0, we bound

|E[R2(sR2 +R1)
− ε
γ ]| 6 C(E[R

1− ε1
γ

2 ] + E[R2R
− ε1
γ

1 ]).

This is finite provided 1− ε1
γ < 4

γ2 and − ε1
γ < 2

γ (Q−η− 2
γ ) = 1− 2η

γ (by a slight

variant of Remark 7.5). These conditions hold due to (10.15). Using similar

bounds, one can show that the derivative (with respect to ε) of the right-hand

side of (10.16) exists, and Ft is thus seen to be complex differentiable in ε.

Next we show that the family Ft is Cauchy in the topology of uniform

convergence over compact subsets of a neighborhood of the interval (−2η−δ, 1
γ ).

For this we will bound Ft+1 − Ft. First observe that because ZB1(z2)(ε) and

ZB1(z3)(ε) are independent of Xt(0) (see Remark 2.2), these terms cancel out

in Ft+1 − Ft. Furthermore, Girsanov theorem gives

EeεXt(0)− tε
2

2 ZCt(0)
1− ε

γ = Eeiε2Xt(0)+
tε22
2 ZCt(ε1)

1− ε
γ .

Hence, as in the proof of Theorem 6.1, we get

|Ft+1 − Ft| 6 e
(t+1)ε22

2 E|ZCt+1(ε1)
1− ε

γ − ZCt(ε1)
1− ε

γ |.
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From now on, since ε1 is fixed, we suppress it in the notation and denote

ZCt(ε1) by Zt. We proceed as in the proof of Theorem 6.1. Let Yt := Zt+1−Zt.
We fix θ > 0 and write

E|Z
1− ε

γ

t+1 − Z
1− ε

γ

t | 6 E1Yt 6 e−θt |Z
1− ε

γ

t+1 − Z
1− ε

γ

t |+ E1Yt > e−θt |Z
1− ε

γ

t+1 − Z
1− ε

γ

t |.

Interpolating, the first term is bounded by

E1Yt<e−θt |(Zt + Yt)
1− ε

γ − Z
1− ε

γ

t | 6 Ce−θt sup
s∈[0,1]

E(Zt + sYt)
− ε1
γ

6 Ce−θtE(ZC(ε1)
− ε1
γ ).

The last expectation is finite since − ε1
γ < 2

γ (Q − η − 2
γ ) = 1 − 2η

γ holds by

(10.15).

For the second term we use in turn Hölder’s inequality, with p, q > 1 such

that 1
p + 1

q = 1, and the mean value theorem to get

E1Yt > e−θt |Z
1− ε

γ

t+1 − Z
1− ε

γ

t | 6 [P
(
Yt > e

−θt)]1/p[E|Z1− ε
γ

t+1 − Z
1− ε

γ

t |q]
1
q

6 [P
(
Yt > e

−θt)]1/p sup
s∈[0,1]

[EY q
t (Zt + sYt)

−q ε1
γ ]

1
q .

By the Markov inequality, the definition Yt = ZCt+1\Ct and the chaos moment

estimate (12.4), we get

P
(
Yt > e

−θt)]1/p 6 e− θmp t
E[Y m

t ]1/p 6 e
1
p

(γ(Q−ε1−θ)m−
m2γ2

2 )

so that we end up with the bound

(10.17) |Ft+1 − Ft| 6 Ce
tε22
2 (e−θt + Ct(q)e

1
p

(γ(Q−ε1−θ)m−
m2γ2

2 )
),

where we defined

(10.18) Ct(q) = sup
s∈[0,1]

[EY q
t (Zt + sYt)

−q ε1
γ ]

1
q .

Now we have to optimize with respect to the free parameters p, q, θ,m.

We first fix q (hence p) to make (10.18) finite. First let ε1 > 0. By existence

of negative moments of chaos, for all r > q, we get

Ct(q) 6 C(r)[EY r
t ]

1
r .

Hence by the chaos moment estimate (12.4), we get suptCt(q) < ∞ if q <
2
γ (Q− ε1) ∧ 4

γ2 = 4
γ2 .

If ε1 < 0, we bound Yt 6 ZB1(ε1) and Zt+1 6 ZB1(ε1) + ZBc1(ε1) to get

Ct(q) 6 [EY q
t Z
−q ε1

γ

t+1 ]
1
q 6 C[EZB1(ε1)

q(1− ε1
γ

)
+ EZB1(ε1)qZBc1(ε1)

−q ε1
γ ]

1
q .
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The first expectation is finite if q
(
1 + 2η+δ

γ

)
< 4

γ2 , and by Remark 7.5 the

second one is finite if q 2η+δ
γ < 2

γ (Q− η − 2
γ ) = 1− 2η

γ . Due to (10.15) we can

find q > 1 such that this condition holds and hence suptCt(q) <∞.

Next, we choose θ > 0 such that Q− 2
γ − θ > 0 and then m ∈ (0, 1) small

enough such that

κ := p−1(γ(Q− 2

γ
− θ)m− γ2

2 m
2) > 0.

As we have ε1 <
2
γ , from (10.17) we get

(10.19) |Ft+1 − Ft| 6 Ce
tε22
2 (e−θt + e−κt).

Hence the sequence Ft converges uniformly in compacts of a neighborhood

of (−2η − δ, 1
γ ). Finally observe that F (ε) = limt→∞ Ft(ε) for ε ∈ R with

ε ∈ (2η,Q). �

Next we note the following simple lemma on analytic continuation of mo-

ments of random variables:

Lemma 10.4. Let Y > 0 be a random variable with a tail estimate

(10.20) |P(Y > t)− c1t
−β1 − c2t

−β2 | 6 c3t
−β3

for some constants c1, c2, c3 > 0 and 0 < β1 < β2 < β3. Then s ∈ C 7→ EY s

extends to a meromorphic function in the strip 0 < <s < β3 given by

E[Y s] =
c1s

β1 − s
+

c2s

β2 − s
+ r(s),

where r is holomorphic in 0 < <s < β3.

Proof. Since

E[Y s] = s

∫ ∞
0
P(Y > t)ts−1 dt

and P(Y > t) 6 Ct−β1 , the mapping s ∈ C 7→ E[Y s] is holomorphic on the set

{s ∈ C; 0 < <(s) < β1}. Writing

E[Y s] = s

∫ ∞
0

(
P(Y > t)− (c1t

−β1 + c2t
−β2)1{t > 1}

)
ts−1 dt− sc1

s− β1
− sc2

s− β2
,

the claim follows as the first term on the right-hand side is holomorphic on the

set {s ∈ C; 0 < <(s) < β3} due to the assumption (10.20). �

We apply this lemma to the study of the random variable Y = ZB1(z2) +

ZB1(z3). We use the tail estimate Lemma 7.3 for η small enough so that α2, α3

are both sufficiently close to each other; recall Remark (7.4). We have β1 =

1− 2η
γ , β2 = 1 + 2η

γ , and some calculation gives

c1 = |z2|−4ηQ|z2−z3|−2(1+Qη+η2)R̄(α2), c2 = |z3|4ηQ|z2−z3|−2(1−Qη+η2)R̄(α3).
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Then Lemma 10.4 gives

(10.21) E(ZB1(z2) + ZB1(z3))
1− ε

γ =
(γ − ε)c1

ε− 2η
+

(γ − ε)c2

ε+ 2η
+ r(ε),

where r is analytic in a complex neighborhood of (−2η − δ, 1
γ ). Since G(ε) in

(10.13) is analytic in this region too we conclude by combining Lemma 10.3

and (10.21) that

C̄γ(α′ − γ
2 , ε, α) =

a1

ε− 2η
+

a2

2η + ε
+ f(ε)

with a1 = G(2η)(γ − ε)c1 = 2
γ (γ − 2η)R̄(α2) = 4

γ (Q− α2)R̄(α2) (note that the

z2, z3 dependence has to cancel!) and a2 = G(−2η)(γ−ε)c2 = 4
γ (Q−α3)R̄(α3).

Here f is analytic in a complex neighborhood of (−2η − δ, 1
γ ). This completes

the proof of Proposition 10.1. �

10.3. The gluing lemma. We introduce the following condition:

(10.22) Q+ γ − α2 − α3 <
4

γ
∧ γ ∧ min

2 6 i 6 3
2(Q− αi), α2, α3 < Q.

Lemma 10.5. Suppose that α2, α3 satisfy condition (10.22). Then the

function

S(α) :=

{
Cγ(α, α2, α3) if α < Q,

R(α)Cγ(2Q− α, α2, α3) if α > Q

is the restriction on the real line of a holomorphic function S̄ defined in a

neighborhood of Q and given by

(10.23) S̄(α) = − 1

πµ
A(γ2 , α−

γ
2 , α2, α3)Cγ(α− γ, α2, α3),

where the function A is defined in (1.9).

Proof. Let us first check that S̄ is analytic in a neighborhood of Q. By

(10.22) we can find ε > 0 such that for all α ∈ [Q− ε,Q+ ε],

(10.24) 2Q+ γ − α− α2 − α3 <
4

γ
∧ γ ∧ min

2 6 i 6 3
2(Q− αi).

By Theorem 6.1, α→ Cγ(α− γ, α2, α3) is analytic in the region

(10.25) 2Q+ γ − α− α2 − α3 <
4

γ
∧ 2(Q+ γ − α) ∧ min

2 6 i 6 3
2(Q− αi),

which holds by (10.24) if ε < γ
2 .

First let α ∈ (Q− ε,Q). By Theorem 9.1 the shift relation (1.7) holds in

the form (take α1 + γ
2 = α)

(10.26) Cγ(α, α̃2, α̃3) = − 1

πµ
A(γ2 , α−

γ
2 , α̃2, α̃3)Cγ(α− γ, α̃2, α̃3)
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provided 2Q+ γ − α− α̃2 − α̃3 < 0 and γ < α < Q. Thus, for ε small enough,

(10.26) holds for α̃2, α̃3 ∈ (Q−ε,Q) and both sides are analytic in α̃2, α̃3 there.

As we saw already, the right-hand side can be analytically continued to the

values (α̃2, α̃3) = (α2, α3). By Theorem 6.1, the left-hand side is analytic in

α̃2, α̃3 in a neighbourhood of 2Q−α−α̃2−α̃3 < 0. The point (α̃2, α̃3) = (α2, α3)

belongs to this region.

Now let us turn to α ∈ (Q,Q + ε). By Corollary 10.2 there exists η > 0

such that

R(α)Cγ(2Q− α, α̃2, α̃3) = − 1

πµ
A(γ2 , α−

γ
2 , α̃2, α̃3)Cγ(α− γ, α̃2, α̃3)

provided 2Q + γ − α − α̃2 − α̃3 < 0 and Q + γ
2 − α < η. We saw above that

the right-hand side extends to α ∈ (Q,Q + ε) and (α̃2, α̃3) = (α2, α3). By

Theorem 6.1 the left-hand side extends to α ∈ (Q,Q+ ε) and α− α̃2− α̃3 < 0.

The point (α̃2, α̃3) = (α2, α3) belongs to this region. �

10.4. Proof of the inversion relation (10.2). The strategy is to combine

the crossing relation Proposition 9.9,

(10.27) Cγ(α− 2
γ , ε, α

′) = T̃ (α, ε, α′)R(ε)Cγ(α, 2Q− ε− 2
γ , α

′),

with the gluing Lemma 10.5 to obtain

(10.28) Cγ(α− 2
γ , ε, α

′) = T̃ (α, ε, α′)R(ε)R(α)Cγ(2Q− α, 2Q− ε− 2
γ , α

′)

and then to take the limit ε→ 2Q−α and choose α′ appropriately. To carry out

this idea we need to check carefully the analyticity domains. Let us consider

the following values for α, α′, ε:

(10.29) α = Q− η, ε = Q− η′, α′ = 2
γ ,

where we will take |η| and η′ > 0 small in what follows. Formula (10.27) was

proven in Proposition 9.9 for α, ε and α′ close but strictly less than Q with

α + α′ + ε > 2Q + 2
γ . We use Theorem 6.1 to extend the unit volume three

point structure constant C̄γ(α− 2
γ , ε, α

′) to the values (10.29). The conditions

in (6.1) become η + η′ < 4
γ ∧ ( 4

γ + 2η) ∧ 2η′ ∧ γ, and this gives η + η′ < 2η′

as we are taking |η|, η′ small. Then C̄γ(α − 2
γ , ε, α

′) extends to the region

η′ − 2
γ < η < η′. Note that η′ − 2

γ < 0.

Similarly, the condition for the function C̄γ(α, 2Q − ε − 2
γ , α

′) becomes

η−η′ < 4
γ ∧(2η)∧2( 2

γ −η
′)∧γ with η > 0. Since |η|, η′ are small, this condition

holds for η < η′. In conclusion, both unit volume structure constants extend

to the region 0 < η < η′ < γ
2 . The structure constants Cγ also extend to this

region since the s-parameters in (4.1) are −η−η
′

γ and η′−η
γ respectively and they

do not take values in Z− ∪ {0}. Hence (10.27) holds in the common domain

0 < η < η′ < γ
2 .
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Next, we apply the gluing Lemma 10.5 to the function Cγ(α, 2Q−ε− 2
γ , α

′)

to extend it to the region α > Q; i.e., η < 0. The condition (10.22) becomes

γ − η′ < γ ∧ 2( 2
γ − η′). This holds if η′ < 4

γ − γ. We conclude that the

relation (10.28) holds for the values (10.29) with 0 < −η < η′ if η′ is small

enough.

Now, we consider the limit of (10.28) as ε ↑ 2Q− α; i.e., η′ ↓ −η. We get

lim
ε↑2Q−α

(2Q− α− ε)Cγ(α− 2
γ , ε,

2
γ ) = −2,

lim
ε↑2Q−α

(2Q− α− ε)Cγ(2Q− α, 2Q− ε− 2
γ ,

2
γ ) = 2.

Indeed, the two limits above correspond to insertions such that s goes to 0

in expression (2.17) and can therefore be deduced from the following general

fact for the unit volume structure constant defined in (4.1) and for α1, α2, α3

satisfying the extended Seiberg bounds (2.14):

(10.30) C̄γ(α1, α2, α3) = 2γ−1 if

3∑
i=1

αi = 2Q.

Also we get

lim
ε↑2Q−α

(2Q− α− ε)l(a) = −γ, lim
ε↑2Q−α

(2Q− α− ε)−1l(b) = 1
γ

and

lim
ε↑2Q−α

(2Q− α− ε)l(c)l(a+ b− c) = l(1 + 2η
γ )l(−2η

γ ) = 1.

We conclude that R(2Q−α)R(α) = 1 for α close to Q hence by analyticity in

a neighbourhood of R. �

10.5. Proof of the 2
γ shift equation. We start from the following identity,

obtained in Proposition 9.10, for ε, α, α′ close to but strictly less than Q:

(10.31) R(ε)Cγ(2Q− ε− 2
γ , α, α

′) = L(ε, α, α′)R(α)Cγ(ε, 2Q− α− 2
γ , α

′),

where

(10.32) L(ε, α, α′) =
l(c− 1)l(c− a− b+ 1)

l(c− a)l(c− b)
with

a = 1
γ (α′ + α+ ε−Q− 4

γ )− 1

2
,

b = 1
γ (α− α′ + ε−Q) +

1

2

c = 1− 2
γ (Q− ε).

(10.33)

We will study (10.31) for

(10.34) ε = γ
2 + η′, α = γ

2 + η′′, α′ = 2
γ + η,
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where |η′|, η, η′′ will be taken small enough in what follows. We will use The-

orem 6.1 to extend equation (10.31) to these values. First we have

(10.35)

L(ε, α, α′) =
l(2η′

γ −
4
γ2 )l(1 + 4

γ2 − 2η′′

γ )

l(1 + 1
γ (η′ − η′′ − η)l( 1

γ (η − η′′ + η′)
=
η + η′ − η′′

η + η′′ − η′
L1(ε, α, α′),

where L1 is analytic around the point γ
2 ,

γ
2 ,

2
γ . Recalling (4.1) we can then

write

(10.36) R(ε)C̄γ(2Q− ε− 2
γ , α, α

′) = L2(ε, α, α′)R(α)C̄γ(ε, 2Q− α− 2
γ , α

′),

where L2 is analytic around the point (γ2 ,
γ
2 ,

2
γ ). By (6.1), C̄γ(2Q− ε− 2

γ , α, α
′)

extends to the region η′−η−η′′ < 2η′, η′ > 0; i.e., it is analytic for η′, η, η′′ > 0.

For C̄γ(ε, 2Q−α− 2
γ , α

′), the condition in (6.1) becomes η′′−η′−η < 2η′′

so that it extends to the region

(10.37) η + η′′ > −η′.

In particular, equation 10.31 holds in the region η′, η, η′′ > 0.

Next, we want to extend Cγ(2Q−ε− 2
γ , α, α

′) = Cγ(Q−η′, α, α′) to η′ < 0

using the gluing lemma. Condition (10.22) becomes γ−η−η′′ < γ−2η, which

requires η < η′′. Therefore we get

(10.38) R(ε)R(2Q−ε− 2
γ )Cγ(ε+ 2

γ , α, α
′) = L(ε, α, α′)R(α)Cγ(ε, 2Q−α− 2

γ , α
′)

for η′ < 0 sufficiently close to 0. By condition (6.1), Cγ(ε+ 2
γ , α, α

′) is analytic

in 0 6= η′+η+η′′ < −2η′. Combining this with (10.37) and (10.32), we conclude

(10.38) holds in the region −η′ < η + η′′ < −3η′. Therefore we may take the

limit η → −η′. Also using the inversion relation R(2Q− ε− 2
γ ) = R(ε+ 2

γ )−1,

we end up with

(10.39)
R(ε)

R(ε+ 2
γ )
Cγ(ε+ 2

γ ,
γ
2 +η′′, Q−ε) = L(ε, γ2 +η′′, Q−ε)R(γ2 +η′′)Cγ(ε,Q−η′′, Q−ε),

where we used α′ = 2
γ+η′ = Q−ε. This identity holds in the region 0<η′′<2η′.

We will now take the limit of (10.39) as η′′ → 0. From equation (10.35)

we have

L(ε, γ2 + η′′, Q− ε) =
l( 2
γ (ε−Q))l(1 + 4

γ2 − 2η′′

γ )

l(2ε
γ −

η′′

γ ))l(−η′′

γ )

= −η
′′

γ

l( 2
γ (ε−Q))l(1 + 4

γ2 )

l(2ε
γ )

+O(η′′
2
),

(10.40)
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and by the first shift equation (10.1),

R
(γ

2
+ η′′

)
= −µπ R(γ + η′′)

l(−γ2

4 )l(γ
2

4 + γη′′

2 )l(2− γη′′

2 )
=

2µπ

γη′′
( R(γ)

l(−γ2

4 )l(γ
2

4 )
+O(η′′)

)
.

Hence

L(ε, γ2 + η′′, Q− ε)R(γ2 + η′′) =
µπγ2

8l(2ε
γ )
R(γ)l( 2

γ (ε−Q))l(1 + 4
γ2 ) +O(η′′),

where we used l(x)l(−x) = −x−2.

It remains to study the structure constants in (10.39) as η′′ → 0 using

(2.17). We have

lim
η′′→0

η′′Cγ(ε+ 2
γ ,

γ
2 + η′′, Q− ε) = 2

since in (10.39), s = η′′

γ . The second structure constant is dealt with by

Lemma 10.6. limη′′→0 η
′′Cγ(ε,Q− η′′, Q− ε) = −4.

Hence we conclude

(10.41)
R(ε)

R(ε+ 2
γ )

= − µπγ
2

4l(2ε
γ )
R(γ)l( 2

γ (ε−Q))l(1 + 4
γ2 ) = − cγ

l(2ε
γ )l(− 4

γ2 )l(2 + 4
γ2 − 2ε

γ )

with cγ = γ2

4 µπR(γ). This is the desired shift equation.

Proof of Lemma 10.6. Using (2.17) with (α1, α2, α3) = (Q− η′′, Q− ε, ε),
we have

Cγ(ε,Q− η′′, Q− ε) = 2
γµ

η′′
γ Γ(−η′′

γ )E

Å∫
f(x)Mγ(d2x)

ã η′′
γ

,

where

f(x) =
|x|γ(α1+α2+α3)

+

|x|γα1 |x− 1|γα2
.

Let A :=
∫

1|x|< 1
2
f(x)Mγ(d2x) and B :=

∫
1|x| > 1

2
f(x)Mγ(d2x). By sub-

additivity,

EA
η′′
γ 6

Å∫
f(x)Mγ(d2x)

ã η′′
γ

6 EA
η′′
γ + EB

η′′
γ .

Now EBp < ∞ for some p > 0 independent of η′′. Thus limη′′→0EB
η′′
γ = 1

and then

lim
η′′→0

η′′Cγ(ε+ 2
γ ,

γ
2 + η′′, Q− ε) = 2 lim

η′′→0
EA

η′′
γ .
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Obviously,

lim
η′′→0

EA
η′′
γ = lim

η′′→0
E

Ç∫
|x| 6 1

|x|−γ(Q−η′′)Mγ(dx)

å η′′
γ

since only the neighborhood of 0 contributes in the limit η′′ → 0. From (3.7)

we get

r(η′′) :=

∫
|x| 6 1

|x|−γ(Q−η′′)Mγ(dx)
law
= eγMη′′

∫ ∞
−L−Mη′′

eγB
Q−η′′
s Zsds,

where Mη′′ is the supremum of Brownian motion with drift −η′′. Then we may

bound

E

Ç
eγMη′′

∫ 1

0
eγB

Q−η′′
s Zsds

åη′′
γ

6Er(η′′)
η′′
γ 6 E

Å
eγMη′′

∫ ∞
−∞

eγB
Q−η′′
s Zsds

ãη′′
γ

.

Let Iη′′ :=
∫∞
−∞ e

γBQ−η
′′

s Zsds. Then by Hölder,

E(eγMη′′ Iη′′)
η′′
γ 6 (E(epη

′′Mη′′ )
1
p (E(Iη′′)

qη′′
γ )

1
q .

Take 1/q =
√
η′′. Then lim supη′′→0(E(Iη′′)

qη′′
γ )

1
q = 1. Recalling P(Mη′′ > v)

= e−2η′′v, since p = 1+O(
√
η′′), we then get that lim supη′′→0(Eepη

′′Mη′′ )
1
p = 2.

Hence

lim sup
η′′→0

E r(η′′)
η′′
γ 6 2.

For the lower bound, we set Jη′′ :=
∫ 1

0 e
γBQ−η

′′
s Zsds and use Hölder again:

lim inf
η′′→0

E(eγMη′′Jη′′)
η′′
γ > lim inf

η′′→0
(Ee

η′′
p
Mη′′ )p(E(Jη′′)

− η′′
pqγ )

− 1
q = 2.

This finishes the proof. �

Remark 10.7. A straightforward computation yields that

γ2

4 µπR
DOZZ(γ) = (πµl(γ

2

4 ))
4
γ2 l( 4

γ2 )
−1
.

Therefore we expect that cγ is given by (10.4). However, at this stage of the

proof, we can not yet conclude this. In Section 10.6, cγ will be determined

indirectly.

10.6. Proof that R = RDOZZ. Let ψ(α) = R(α)
RDOZZ(α)

, where ψ is mero-

morphic in a neighborhood of R. Since R and RDOZZ obey the same γ
2 shift

equation, the function ψ is γ
2 periodic. Here ψ is strictly positive in (γ2 , Q),

so by periodicity ψ is strictly positive on R. By the 2
γ shift equation, for all

α ∈ R one has

ψ(α) = Cγψ(α+
2

γ
)
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for some constant Cγ . According to Liouville’s theorem, if a continuous func-

tion f , say, has two periods T1 and T2 such that T2
T1
6∈ Q, then f is a constant

function. Therefore, if γ
2 and 2

γ are independent over the rationals (i.e., if

γ2 /∈ Q), then we conclude that Cγ = 1 and ψ(α) = ψ is constant in α. From

(3.10) we see that R̄(Q) = 1 and from (3.12), since Γ(−x)x → −1 as x → 0,

we get R(Q) = −1. On the other hand, from (1.15), it follows that we have

RDOZZ(Q) = −1 and hence the constant ψ = 1. Thus R(α) = RDOZZ(α) for

all α. The case γ2 ∈ Q follows by continuity. This concludes the proof. �

11. Proof of the DOZZ formula

We suppose that γ2 /∈ Q; the general case follows by continuity. Let

us fix α2, α3 in (Q − η,Q) for η sufficiently small and consider the function

F : α1 7→ Cγ(α1, α2, α3). Let us collect what we have proven about F . By

Theorem 6.1, F is analytic on (2η,Q) and by Theorem 9.1, it satisfies the γ
2

shift equation (1.7) for γ
2 +2η < α1 <

2
γ . Therefore F extends to a meromorphic

function on a strip of the form R × (−β, β) with β > 0 satisfying (1.7). We

call this extension F too.

Now, using the exact expression for R (or relation (10.3) with cγ =

µπl(γ
2

4 ))
4
γ2 l( 4

γ2 )−1), Theorem 9.7 can be written as

T− 2
γ
(z) = Cγ

Å
α1 −

2

γ
, α2, α3

ã
|F−(z)|2 −

(µπl(γ
2

4 ))
4
γ2

l( 4
γ2 )

×
R(α1 + 2

γ )

l(− 4
γ2 )l(2α1

γ )l(2 + 4
γ2 − 2α1

γ )
Cγ

Å
2Q− α1 −

2

γ
, α2, α3

ã
|F+(z)|2.

By the gluing lemma, the extension F is given in a neighborhood of α = Q by

F (α) = R(α)F (2Q − α). Hence, one can infer from the above expression the

shift equation (1.8) for α1 ∈ R× (−β, β) (the same argument as the one used

to derive (1.7)). Hence F satisfies both (1.7) and (1.8).

Now, we consider the function ψα2,α3 : α1 7→ Cγ(α1,α2,α3)
CDOZZ
γ (α1,α2,α3)

in the strip

R× (−β, β). This function is holomorphic since Cγ and CDOZZ
γ are meromor-

phic with the same simple poles and zeros (which can be read off the γ
2 shift

equation (1.7)). Furthermore, ψα2,α3 is γ and 4
γ periodic since Cγ and CDOZZ

γ

both satisfy (1.7) and (1.8). According to Liouville’s theorem, if a continuous

function f , say, has two periods T1 and T2 such that T2
T1
6∈ Q, then f is a

constant function. Therefore, using Liouville’s theorem, ψα2,α3(α1) = cα2,α3

for some constant cα2,α3 depending on α2, α3.

Since Cγ and CDOZZ
γ are symmetric in their arguments, we obtain ψα2,α3(α1)

= ψα1,α3(α2) = ψα1,α2(α3) for α1, α2, α3 ∈ (Q−η,Q). Hence cα2,α3 is constant
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in α2, α3. Therefore Cγ(α1, α2, α3) = aγC
DOZZ
γ (α1, α2, α3) for α1, α2, α3 satis-

fying (2.14) with N = 3 for some constant aγ (by analyticity). Finally, aγ = 1

since both Cγ and CDOZZ
γ satisfy Lemma 3.4. �

12. Appendix

12.1. The Cameron-Martin theorem. We state here the classical Cameron-

Martin theorem for the GFF X. Let S ′(C) be the space of tempered distribu-

tions. It is well known that X lives in S ′(C).

Theorem 12.1 (The Cameron-Martin theorem). Let X be some some

Gaussian variable that is measurable with respect to the GFF X . Let F be some

bounded continuous function on S ′(C). Then we have the following identity :

E[eX−
E[X2]

2 F ((X(x))x∈C)] = E[F ((X(x) + E[X(x)X ])x∈C)].

In particular, we get the following corollary:

Corollary 12.2. Let F be some bounded continuous function on S ′(C)

and f some bounded continuous function on C. Then we have the following

identity :

E

ïÅ∫
C
f(u)Mγ(d2u)

ã
F ((X(x))x∈C)

ò
=

∫
C
f(u)E[F ((X(x) + E[X(x)X(u)])x∈C)]

d2u

|u|4+
.

(12.1)

Proof. For ε > 0, if Xε denotes the circle average of X, then by Fubini

(interchanging E[.] and
∫
C),

E

ñÇ∫
C
f(u)eγXε(u)− γ

2

2
E[Xε(u)2] d

2u

|u|4+

å
F ((X(x))x∈C)

ô
=

∫
C
f(u)E[eγXε(u)− γ

2

2
E[Xε(u)2]F ((X(x))x∈C)]

d2u

|u|4+

=

∫
C
f(u)E[F ((X(x) + E[X(x)Xε(u)])x∈C)]

d2u

|u|4+
,

where in the last line we have used the Girsanov Theorem 12.1. In conclusion,

we have

E

ñÇ∫
C
f(u)eγXε(u)− γ

2

2
E[Xε(u)2] d

2u

|u|4+

å
F ((X(x))x∈C)

ô
=

∫
C
f(u)E[F ((X(x) + E[X(x)Xε(u)])x∈C)]

d2u

|u|4+
.

We conclude by letting ε go to 0. �
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12.2. Chaos estimates. We list here estimates for chaos integrals that are

used frequently in the paper. Some estimates are standard in the literature on

GMC and other estimates were recently proved in [28, §6].

12.2.1. Standard moment estimates. We start by reviewing the standard

estimates, and for these estimates we refer to the review [46]. For any open

and bounded subset O, the following condition holds on moments (see [46]):

(12.2) E[Mγ(O)p] <∞ ⇐⇒ p ∈
Å
−∞, 4

γ2

ã
.

Moreover, if p ∈ (−∞, 4
γ2 ) and z ∈ C, then there exists a constant C > 0

(depending on z and p) such that for all ε 6 1 (see [46]),

(12.3) E(Mγ(B(z, ε))p) 6 CεγQp−
γ2p2

2 .

Let A(z, ε) be the annulus with radii ε, 2ε and center z. As corollary of

(12.3) we get that for p ∈ [0, 4
γ2 ),

(12.4) E

Ç∫
A(z,ε)

|x− z|−γαMγ(d2x)

åp
6 Cεγ(Q−α)p− γ

2p2

2 .

For negative moments, for α > Q and p > 0 such that α − Q < γp (see the

methods of [28, §6]), we have

E

[Ç∫
|x−z|>ε

|x− z|−γαMγ(d2x)

å−p]
6 Cε

1
2 (α−Q)2

.(12.5)

12.2.2. Fusion estimate. The following result follows from the methods of

[28, §6]:

Lemma 12.3. Assume (αi)i=1,...,4 are real numbers satisfying αi < Q and

p := γ−1(
∑4

i=1 αi − 2Q) > 0. Consider y1, y2, y3, y4 ∈ C such that |y1 − y2|
6 |y1 − y3| 6 |y2 − y3| 6 mini∈{1,2,3} |y4 − yi|.

(1) If α1 + α2 < Q, α1 + α2 + α3 > Q and α4 > 0, then

E
[( ∫

B(y1,10)

4∏
i=1

|u− yi|−γαiMγ(d2u)
)−p−2

]

6 C
( |y1 − y3|
|y1 − y4|

) 1
2

(α1+α2+α3−Q)2

|y1 − y4|
1
2

(α1+α2+α3+α4−Q)2
.
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(2) If α1 + α2 > Q, α3 6 0 and α3 + α4 > 0, then

E
[(∫

B(y1,10)

4∏
i=1

|u− yi|−γαiMγ(d2u)

)−p−2 ]
6 C

Å |y1 − y2|
|y1 − y3|

ã 1
2

(α1+α2−Q)2

×
Å |y1 − y3|
|y1 − y4|

ã 1
2

(α1+α2+α3−Q)2−α
2
3

2

|y1 − y4|
1
2

(α1+α2+α3+α4−Q)2
.

12.2.3. FKG inequality. Finally, we recall a result on log-correlated fields

in dimension 2 that comes out of a construction in [45]. Recall that from

[45], there exists a Gaussian white noise µ on some measure space (S, ν) (ν is

a Radon measure) and deterministic subsets (C(x))|x| 6 1
2

of S such that the

field (‹X(x))|x| 6 1
2

defined by

(12.6) ‹X(x) = µ(C(x))

is a Gaussian field with covariance given by

E[‹X(x)‹X(y)] = ln
1

|x− y|
+ c,

where c is some positive constant. In particular, the construction (12.6) implies

that ‹X satisfies the FKG inequality; more precisely, if F,G are two increasing

functions in each coordinate ‹X(x), then

E[F ((‹X(x))|x| 6 1
2
)G((‹X(x))|x| 6 1

2
)] > E[F ((‹X(x))|x| 6 1

2
)]E[G((‹X(x))|x| 6 1

2
)].

The above continuum version of the FKG inequality can be deduced from the

standard one (see [22, §2.2] for the case of countable product) by discretization

and taking the limit as the mesh of discretization goes to 0. Since (‹X(x))|x| 6 1
2

has same distribution as (X(x)+
√
cY )|x| 6 1

2
where Y is a fixed standard Gauss-

ian independent from X, this implies that (X(x) +
√
cY )|x| 6 1

2
also satisfies

the FKG inequality.

12.3. Proof of Lemma 3.3. By symmetry, it is enough to show that

E

ïÅ∫ ∞
0

eγB
α
s Zsds

ãpò
<∞.

First let p > 0. If 0 < p 6 1, then by subadditivity we have

E

ïÅ∫ ∞
0

eγB
α
s Zsds

ãpò
6

∞∑
n=1

E

ñÇ∫ n+1

n
eγB

α
s Zsds

åpô
,

and for 1 < p < 4
γ2 , by convexity we have
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E

Å∫ ∞
0

eγB
α
s Zsds

ãpò1/p
6

∞∑
n=1

ñ
E

Ç∫ n+1

n
eγB

α
s Zsds

åpô1/p

.

We set ν = Q − α. The process Bαs is stochastically dominated by a

Brownian motion with drift −ν starting from origin and conditioned to stay

below 1 (see Section 12.4); hence we have that if Bs is a standard Brownian

motion starting from 0, then

E

ñÇ∫ n+1

n
eγB

α
s Zsds

åpô
6 CE

ñÇ
1Bn−νn 6 1

∫ n+1

n
eγ(Bs−νs)Zsds

åpô
6 CE

ñÇ∫ n+1

n
Zsds

åpô
E
î
eγp sups∈[n,n+1](Bs−Bn)]E[1Bn−νn 6 1e

γp(Bn−νn)
ó

6 CE[1Bn−νn 6 1e
γp(Bn−νn)] = Cn−

1
2

∫ 1

−∞
eγpye−

(y+νn)2

2n dy,

where we used (3.6). Separately considering y < −νn
2 and y ∈ [−νn

2 , 1], the

last integral is seen to be exponentially small in n and the claim follows.

Now let p = −q < 0. Set τ−1 = inf{s > 0, Bαs = −1}. The process

Bαs+τ−1
+1 is a Brownian motion with drift −ν starting from 0 and conditioned

to stay below 1. Therefore, we have that if Bs is a standard Brownian motion

starting from 0 and β := sups > 0(Bs − νs), then

E

ñÅ∫ ∞
0

eγB
α
s Zsds

ã−qô
6 E

[Ç∫ τ−1+1

τ−1

eγB
α
s Zsds

å−q]
= CE

[
1β 6 1

Ç∫ 1

0
eγ(Bs−νs)Zsds

å−q]
since Zs is stationary and Bαs is independent from Z. Finally, we conclude by

E

[
1β 6 1

Ç∫ 1

0
eγ(Bs−νs)Zsds

å−q]
6 E[1β 6 1e

−q infs∈[0,1](Bs−νs)]E

Ç∫ 1

0
Zsds

å−q
<∞,

where (3.6) was used. �

12.4. A reminder on diffusions. A drifted Brownian motion (Bt + µt)

with µ > 0 is a diffusion with generator Gµ = 1
2
d2

dx2 + µ d
dx . When seen until

hitting b > 0, the dual process Yb of Bt + µt is a diffusion with generator
1
2
d2

dx2 −µ coth(µ(b−x)) d
dx . Therefore, b−Yb has generator 1

2
d2

dx2 +µ coth(µx) d
dx

that is the generator of (Bt + µt) conditioned to be positive. We denote this

process by Bµt . We also denote by B0
t the standard three-dimensional Bessel

process that corresponds to the case µ = 0.
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We have the following comparison principle:

Lemma 12.4. There exists a probability space such that for 0 6 µ < µ′,

we have almost surely for all t: Bµt 6 B
µ′

t .

Proof. For all x > 0, we consider the drift ϕx(µ) = µ coth(µx) as a a

function of µ ∈ [0,∞). A straightforward computation yields

ϕ′x(µ) =
e4µx − 4µxe2µx − 1

(e2µx − 1)2
.

Therefore, ϕ′x(µ) > 0 since eu − ue
u
2 − 1 > 0 for all u > 0. �

We will need another comparison principle. Let Bµ,A
t be the drifted Brow-

nian motion (Bt + µt) starting from 0 and conditioned to be above −A with

A > 0.

Lemma 12.5. Let µ > 0. There exists a probability space such that for

A > 0, we have Bµt > B
µ,A
t almost surely for all t.

Proof. This can also be read off the drift. Indeed, for µ, x fixed, we con-

sider ψµ,x(A) = µ coth(µ(x+A)). We have

∀x > −A, ψ′µ,x(A) = µ2(1− coth(µ(x+A))2) 6 0. �

12.5. Functional relations on Υ γ
2

and RDOZZ. The function Υ γ
2

defined

by (1.11) can be analytically continued to C, and it satisfies the following

remarkable functional relations for z ∈ C:

Υ γ
2

(
z +

γ

2

)
=

Γ(γ2z)

Γ(1− γ
2z)

(γ
2

)1−γz
Υ γ

2
(z),

Υ γ
2

Å
z +

2

γ

ã
=

Γ( 2
γ z)

Γ(1− 2
γ z)

(γ
2

) 4
γ
z−1

Υ γ
2
(z).

(12.7)

The function Υ γ
2

has no poles in C, and the zeros of Υ γ
2

are simple (if γ2 6∈ Q)

and given by the discrete set (−γ
2N−

2
γN) ∪ (Q+ γ

2N + 2
γN). For more on the

function Υ γ
2

and its properties, see the reviews [35], [48], [53] for instance.

With definition (1.15) and a little algebra, one can show that RDOZZ(α)

satisfies the following shift equation for all α ∈ C,

(12.8) RDOZZ
(
α− γ

2

)
= −µπ RDOZZ(α)

l(−γ2

4 )l(γα2 −
γ2

4 )l(2 + γ2

2 −
γα
2 )
,

as well as the dual shift equation for all α ∈ C,

(12.9) RDOZZ(α) = −
(µπl(γ

2

4 ))
4
γ2

l( 4
γ2 )

RDOZZ(α+ 2
γ )

l(− 4
γ2 )l(2α

γ )l(2 + 4
γ2 − 2α

γ )
.
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12.6. Derivation of RDOZZ from CDOZZ
γ . Recall that the function Υ γ

2
sat-

isfies the shift equations (12.7). According to the DOZZ formula (1.12), since

Υ γ
2
(0) = 0, for α > γ

2 and using the above relations, we get

εC(α, ε, α)

∼
ε→0

4

Å
π µ l

Å
γ2

4

ã(γ
2

)2−γ2/2
ã 2(Q−α)

γ ε2Υ′γ
2
(0)2Υ γ

2
(α)2

ε2Υ′γ
2
(0)2Υ γ

2
(α−Q)Υ γ

2
(α)

= 4

Å
π µ l

Å
γ2

4

ã(γ
2

)2−γ2/2
ã 2(Q−α)

γ Υ γ
2
(α)

Υ γ
2
(α−Q)

= 4

Å
π µ l

Å
γ2

4

ã(γ
2

)2−γ2/2
ã 2(Q−α)

γ

×
Γ(

γ(α−Q+ 2
γ

)

2 )

Γ(1−
γ(α−Q+ 2

γ
)

2 )

(γ
2

)1−γ(α−Q+ 2
γ

) Γ(2(α−Q)
γ )

Γ(1− 2(α−Q)
γ )

(γ
2

) 4
γ

(α−Q)−1

= 4

Å
2

γ

ã−2 Å
π µ l

Å
γ2

4

ãã 2(Q−α)
γ Γ(1− γ(Q−α)

2 )

Γ(γ(Q−α)
2 )

Γ(−2(Q−α)
γ )

Γ(1 + 2(Q−α)
γ )

= −4

Å
π µ l

Å
γ2

4

ãã 2(Q−α)
γ Γ(−γ(Q−α)

2 )

Γ(γ(Q−α)
2 )

Γ(−2(Q−α)
γ )

Γ(2(Q−α)
γ )

= 4RDOZZ(α).

12.7. An integral formula. We have

Lemma 12.6. For all p > 0 and a ∈ (1, 2), the following identity holds :∫ ∞
0

Å
1

(1 + v)p
− 1

ã
1

va
dv =

Γ(−a+ 1)Γ(p+ a− 1)

Γ(p)
.

Proof. We set ā = −a+ 1 and b̄ = p+ a− 1. We have∫ 1

0

Å
1

(1 + v)p
− 1

ã
1

va
dv −

∫ ∞
1

1

va
dv

= − 1

a− 1

∑
k > 1

(−1)k
(p)k(−a+ 1)k
k!(−a+ 2)k

− 1

a− 1

= − 1

a− 1

∑
k > 0

(−1)k
(p)k(−a+ 1)k
k!(−a+ 2)k

=
1

ā
2F1(ā, ā+ b̄, ā+ 1, z = −1).
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Next, we have∫ ∞
1

1

(1 + v)p
1

va
dv =

∫ 1

0

1

(1 + v)p
vp+a−2dv

=
1

p+ a− 1

∑
k > 0

(−1)k
(p)k(p+ a− 1)k

k!(p+ a)k

=
1

b̄
2F1(b̄, ā+ b̄, b̄+ 1, z = −1).

Finally, we use the following formula (see [57]):

b̄ 2F1(ā, ā+ b̄, ā+ 1, z = −1) + ā 2F1(b̄, ā+ b̄, b̄+ 1, z = −1) =
Γ(ā+ 1)Γ(b̄+ 1)

Γ(ā+ b̄)
.

This yields the desired relation since Γ(z + 1) = zΓ(z). �

12.8. Some identities. We have the following identity for all z:∫
C

|u− z|
γ2

2 − |u|
γ2

2 − γ2

4 |u|
γ2

2 ( zu + z̄
ū)

|u|γα1
d2u

= |z|γ(Q−α1) π

l(γα1

2 )l(−γ2

4 )l(2− γα1

2 + γ2

4 )
.

Applying ∂2
z to this we get

γ2

4

Å
γ2

4
− 1

ã∫
C

|u− z|
γ2

2

(z − u)2|u|γα1
d2u

=
γ(Q− α1)

2

Å
γ(Q− α1)

2
− 1

ã |z|γ(Q−α1)

z2

π

l(γα1

2 )l(−γ2

4 )l(2− γα1

2 + γ2

4 )
.

Hence for z = 1, this yields

γ2

4

Å
γ2

4
− 1

ã∫
C

|u− 1|
γ2

2

(1− u)2|u|γα1
d2u

=

Å
γ2

4
+ 1− γα1

2

ãÅ
γ2

4
− γα1

2

ã
π

l(γα1

2 )l(−γ2

4 )l(2− γα1

2 + γ2

4 )
.

(12.10)

Finally, by taking the ∂zz̄ derivative, we getÅ
γ2

4

ã2 ∫
C

|u− 1|
γ2

2

|1− u|2|u|γα1
d2u

=

Å
γ2

4
+ 1− γα1

2

ã2
π

l(γα1

2 )l(−γ2

4 )l(2− γα1

2 + γ2

4 )
.

(12.11)
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Aix Marseille Université, CNRS, Centrale Marseille,

13453 Marseille, France

E-mail : remi.rhodes@univ-amu.fr

ENS Ulm, DMA, 45 rue d’Ulm, 75005 Paris, France

E-mail : Vincent.Vargas@ens.fr

http://www.ams.org/mathscinet-getitem?mr=1668682
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0946.81070
mailto:antti.kupiainen@helsinki.fi
mailto:remi.rhodes@univ-amu.fr
mailto:Vincent.Vargas@ens.fr

	1. Introduction
	1.1. LCFT correlation functions 
	1.2. The DOZZ formula
	1.3. Organization of the paper

	2. Probabilistic formulation of LCFT and the main result
	2.1. Gaussian Free Field and Gaussian multiplicative chaos
	2.2. Liouville correlation functions
	2.3. Structure constants
	2.4. Statement of the main result
	2.5. Further work: conformal bootstrap

	3. Theorem on the reflection coefficient
	3.1. Tail behavior of chaos integrals
	3.2. Main result on the reflection coefficient

	4. BPZ equations and their consequences
	4.1. Structure constants and four point functions
	4.2. BPZ equations
	4.3. Crossing relation

	5. Strategy and plan of proof
	5.1. Proof of [Rtheor]Theorem 3.5: analysis of the reflection coefficient
	5.2. Proof of Theorem 2.4: the DOZZ formula

	6. Analytic continuation of Liouville correlation functions
	7. Tail estimates for multiplicative chaos
	7.1. Tail estimate around one insertion
	7.2. Tail estimate around two insertions

	8. Proof of Lemma 3.4 on the reflection coefficient
	9. The BPZ equations and algebraic relations
	9.1. Fusion without reflection
	9.2. Fusion with reflection
	9.3. The 4 point function with -2 insertion
	9.4. Crossing relations

	10. Proof of Theorem 3.5
	10.1. Proof of analyticity of  in the interval (2,Q)
	10.2. Proof of the 2 [shift1]shift equation (10.1)
	10.3. The gluing lemma
	10.4. Proof of the inversion [inversion]relation (10.2)
	10.5.  Proof of the 2 shift equation
	10.6. Proof that R=RDOZZ 

	11. Proof of the DOZZ formula 
	12. Appendix
	12.1. The Cameron-Martin theorem
	12.2. Chaos estimates
	12.3. Proof of [defmomR]Lemma 3.3
	12.4. A reminder on diffusions
	12.5. Functional relations on 2 and RDOZZ
	12.6. Derivation of RDOZZ from CDOZZ
	12.7. An integral formula
	12.8. Some identities

	References

