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Integrability of Liouville theory:
proof of the DOZZ formula

By ANTTI KUPIAINEN, REMI RHODES, and VINCENT VARGAS

Abstract

Dorn and Otto (1994) and independently Zamolodchikov and Zamolod-
chikov (1996) proposed a remarkable explicit expression, the so-called
DOZZ formula, for the three point structure constants of Liouville Con-
formal Field Theory (LCFT), which is expected to describe the scaling
limit of large planar maps properly embedded into the Riemann sphere. In
this paper we give a proof of the DOZZ formula based on a rigorous prob-
abilistic construction of LCFT in terms of Gaussian Multiplicative Chaos
given earlier by F. David and the authors. This result is a fundamental
step in the path to prove integrability of LCFT, i.e., to mathematically
justify the methods of Conformal Bootstrap used by physicists. From the
purely probabilistic point of view, our proof constitutes the first nontrivial
rigorous integrability result on Gaussian Multiplicative Chaos measures.
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1. Introduction

A. Polyakov introduced Liouville Conformal Field theory (LCFT here-
after) in his 1981 seminal paper [41], where he proposed a (nonrigorous) way
to put a measure on the set of Riemannian metrics over a fixed two-dimensional
manifold; in this context, an integral with respect to the measure is called a
functional integral. Ever since, the work of Polyakov has echoed in various
branches of physics and mathematics, ranging from string theory to proba-
bility theory through geometry. In the context of two-dimensional quantum
gravity models, Polyakov’s approach is conjecturally equivalent to the scaling
limit of Random Planar Maps (RPM for short), which are natural probability
measures over finite size triangulations of a fixed Riemann surface. (See [30]
for an introduction and further references.) In the case of uniform RPM, the
proof of this equivalence has culminated in the series of works [34], [32], [33]
by Miller and Sheffield. (One may also consult [12, App. 5.3] for a statement
of the general conjecture.)

Motivated by an attempt to “solve” LCFT, Belavin, Polyakov and Zamol-
odchikov (BPZ hereafter) formulated in their 1984 paper [6] the general struc-
ture of Conformal Field Theory (CFT hereafter). In the BPZ approach the
basic objects of CFT are correlation functions of random fields and solving
CF'T consists in deriving explicit expressions for them. BPZ proposed to con-
struct the correlation functions of a CFT recursively from two inputs: the
spectrum and the three point structure constants. Although we will not de-
fine the spectrum in this paper, let us just note that the spectrum encodes
the algebraic structure of the CFT that allows one to determine higher order
correlation functions knowing the three point correlation functions (see Sec-
tion 2.5). This recursive procedure to find higher point correlation functions is
called Conformal Bootstrap. Though BPZ were able to find the spectrum and
structure constants for a large class of CFT’s (e.g., the Ising model), LCFT
! The spectrum of LCFT was soon conjectured in [11],
[8], [21] but the structure constants remained a puzzle.

A decade later, Dorn and Otto [14] and independently Zamolodchikov and
Zamolodchikov [59], [58] (DOZZ hereafter) proposed a remarkable formula for
the structure constants of LCFT, the so-called DOZZ formula. Even by the
physicists’ standards the derivation was lacking rigor. To quote Zamolod-
chikov and Zamolodchikov [59], “It should be stressed that the arguments of
this section have nothing to do with a derivation. These are rather some mo-

was not one of them.

tivations and we consider the expression proposed as a guess which we try to

'Following their work [6], Polyakov qualified CFT as an “unsuccessful attempt to solve
the Liouville model” and did not at first want to publish his work; see [42].
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support in the subsequent sections.” Ever since these papers the derivation of
the DOZZ formula from the original (heuristic) functional integral definition of
LCFT given by Polyakov has remained a controversial open problem, even on
the physical level of rigor. Later there were several (nonrigorous) approaches
to the DOZZ formula in the physics literature. The first one by Teschner
was based on general assumptions of CF'T combined with assumptions on the
spectrum of LCFT [52]; see also [48]. The second one also by Teschner [53],
[54] was based on an explicit free field representation for the vertex operators.
Finally the third one [9] was based on integrability and led to a derivation of
the formula (1.15) for the reflection coefficient. The approach [52] in fact plays
an important role in our proof.

Recently the present authors together with F. David gave a rigorous prob-
abilistic construction of Polyakov’s LCFT functional integral [12] and the corre-
lation functions that are the basic objects in the BPZ approach. Subsequently
in [28] we proved identities for the correlation functions postulated in the work
of BPZ (conformal Ward identities and BPZ equations).

The approach in [12] is based on the probabilistic theory of Gaussian
Multiplicative Chaos (GMC) that enables one to define random measures by
exponentiating the two-dimensional Gaussian Free Field (GFF). The terminol-
ogy of Gaussian Multiplicative Chaos goes back to Kahane in the eighties [24]
and is concerned with measures constructed by exponentiating log-correlated
fields. This theory is neither restricted to the framework of conformal invari-
ance nor to dimension 2. It enables one to define (random) measures formally
given by e?X (m)a(d:v), where « is a parameter, X a log-correlated field and o
a Radon measure on some subset of R? with d > 1. Therefore it generalizes
previous works by Albeverio, Gallavotti and Hoegh-Krohn [2], [1] who initi-
ated the study of two-dimensional exponential interactions in the context of
Constructive Field Theory and works on multiplicative cascades in the realm
of fully developed turbulence; see [46] for references.

The works [12] and [28] provide a probabilistic setup to address the issues
of conformal bootstrap and, in particular, the DOZZ formula. In this paper we
address the second problem: we prove that the probabilistic expression given
in [12] for the structure constants is indeed given by the DOZZ formula. Our
result should be considered as an integrability result for LCFT and, in particu-
lar, for the specific GMC measure defined in two dimensions by exponentiating
the GFF on the Riemann sphere. As such it constitutes the first nontrivial
rigorous integrability result in GMC theory. Let us mention as supplementary
materials the manuscripts [29], [55], which summarize the content of this paper.

Many integrability formulas for GMC theory (in the one-dimensional con-
text) have been conjectured in statistical physics in the study of disordered
systems. In particular, an explicit formula for the moments of the total mass
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of the GMC measure on the circle (based on exponentiating the free boundary
GFF) was proposed by Fyodorov-Bouchaud [19]. (For generalizations to other
1d geometries like the segment, see the work by Fyodorov-Le Doussal-Rosso
[20] and Ostrovsky [39], [40].) It turns out that their formula is a particular
case of the conjectured one point bulk structure constant for LCFT on the
unit disk with boundary. (These formulas can be found in Nakayama’s review
[35].) The recent work of Remy [43] demonstrates that the approach in this
paper can be adapted to the case of the disk to give a proof of the Fyodorov-
Bouchaud formula. These methods were further extended by Remy-Zhu to the
case of an interval in [44]. More generally, we believe the methods developed in
this paper and the previous companion paper [28] will lead to numerous new
integrability results in the field of GMC.

It should be noted that the LCF'T structure constants and the DOZZ for-
mula have a wide range of applications in CFT. Indeed, it has been argued [48]
that LCFT seems to be a universal CFT; e.g., the minimal model structure
constants (e.g., the Ising model, tri-critical Ising model and the 3 states Potts
model) originally found by BPZ may be recovered from the DOZZ formula
by analytic continuation. Furthermore, there is strong numerical evidence [10]
that LCFT is essentially the unique CFT for central charge ¢ > 1: the confor-
mal bootstrap equations seem to have the DOZZ structure constants as their
only solution. In another spectacular development, the LCF'T structure con-
stants show up in a seemingly completely different setup of four-dimensional
gauge theories via the so-called AGT correspondence [3]. (See the work by
Maulik-Okounkov [31] and Schiffmann-Vasserot [49] for the mathematical im-
plications in quantum cohomology of these ideas.)

In the remaining part of this introduction, we briefly review the functional
integral approach to LCFT and state the DOZZ formula.

1.1. LCFT correlation functions. A rigorous formulation of LCFT will be
given later (see Section 2.1). Heuristically Polyakov’s formulation of LCFT
on the Riemann sphere C is the study of conformal metrics on C of the form
e19(2) |dz|?, where z is the standard complex coordinate; in this context, let d?z
denote the Lebesgue measure. Here ¢(z) is a random function (in fact, ¢(2)
turns out to be a random distribution in the sense of Schwartz once properly
defined mathematically). Expectations of suitable functions of ¢ are given by
the formal integral

(L1) (F) = / F(6)e 5@ Dy,

where Sy, is the Liouville Action functional

(1.2) Sp(g) =1L /C (0:6(2) + me?® )2z
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(Note: Restricting F' to indicator functions indeed gives rise to a measure on
some appropriate functional space. We use brackets and not It for the positive
linear functional (1.1) since it turns out that the measure e=52(?) D¢ once
rigorously defined is not normalizable into a probability measure.) The formal
“functional integral” (1.1), once rigorously defined, gives rise to a Conformal
Field Theory, the LCF'T, which is the topic of this paper.

LCFT has two parameters, v € (0,2) and u > 0. The parameter p is
called the cosmological constant and for LCFT, u has to be strictly positive.
The case p = 0 corresponds to the Free Field theory, which is a different
Conformal Field Theory with different structure constants. The precise value
of p in LCFT plays no specific role since the dependence on p is governed by
a scaling relation; see [12]. On the other hand, the parameter v encodes the
conformal structure of the theory; more specifically, one can show that the
central charge? of the theory is ¢;, = 1 + 6Q? with

(1.3) Q="+

20w
o2

The basic objects of interest in LCFT are in physics terminology wertex
operators

(1.4) Va(z) = 29,

where a is a complex number, and their correlation functions ([]r_; Ve, (21))-
Their definition involves a regularization and renormalization procedure. They
were constructed rigorously in [12] for N > 3 and for real «; satisfying certain
conditions. The construction of the correlations in [12] is probabilistic and
based on interpreting R Ol D¢ in terms of a suitable Gaussian Free
Field (GFF) probability measure; see Section 2.1 below for precise definitions
and an explicit formula for the correlations in terms of the GMC associated to
the GFF.

In particular, it was proved in [12] that these correlation functions are

conformal tensors. More precisely, if z1,...,zy are N distinct points in C,
then for a Mobius map 9(z) = ‘C‘jig (with a,b,¢,d € C and ad — bc = 1),

N N N
(1.5) (TT Ve @) ) = TT 1 (i) |72 ( TT Ve (2 ),
k=1 k=1 k=1

2In this article this concept will not appear, and hence we refer to the works [12], [28] for
an account on the central charge.
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where A, = §(Q — §) is called the conformal weight. This global conformal
symmetry fixes the three point correlation functions up to a constant:

3
(T Va(or)) = l1 = 222122 — 25227 21 — 2220 (e, @, )

with A1p = Ay — A, — Ag,, ete. The constants C (o, oo, a3) are called
the three point structure constants, and they have an explicit expression in
terms of the GMC associated to the GFF; see Section 4.1. They are also
the building blocks of LCFT in the conformal bootstrap approach; see Sec-
tion 2.5. We should also note that the law of the area measure e?(?)d2z
normalized to unit total area when ¢ is sampled from the normalized mea-
sure Hi:l V. (2x)e™ 1@ D¢ coincides with the law of the (unit area) three
point quantum sphere as defined by Duplantier, Miller and Sheffield [16]. (Re-
call that quantum spheres are equivalence classes of random measures on the
sphere with two marked points 0 and oco; one can construct a three point quan-
tum sphere by sampling a point z according to the quantum sphere and taking
the image of the quantum sphere by the unique Mobius maps that sends the
points 0, z, 00 to the fixed points 21, 22, z3. See [4] for the equivalence.

1.2. The DOZZ formula. As mentioned above, an explicit expression for
the LCFT structure constants was proposed in [14], [58]. Subsequently it
was observed by Teschner [52] that this formula may be derived by applying
the bootstrap framework to special four point functions; see Section 9. He
argued that this leads to the following remarkable periodicity relations for the
structure constants:

(17) C’Y(al + %70427043) = _L'A (l,Oél,OQ,Oég)Cry(Odl - %70527053)7
(1.8) 07(041 + %,ag,ag) = — ~Ary( al,ag,ag)C (041 — %,042,043)
2
with @ = (Mlgé))w and
T (72)
(1.9)

L=x®)l(xa1)l(xeq — x*)I(5(a — 2a1 — x))
I3 (@ —x—2Q)(5(a — 203 — X)) (3 (@ — 200 — X))

where & = o1 + a9 + a3 and

(1.10) I(z) = T(z)/T(1 — ).

Equations (1.7) and (1.8) have a meromorphic solution, which is the DOZZ

'A’Y(Xv aq, (g, Ckg) =

formula. It is expressed in terms of a special function T 1 (z) defined for 0 <
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R(2) < Q by the formula®

00 sin Q9 _ < 5))?
(1.11) Yy () :/O ((32 —2)%et - (Siniigf) Sinﬁft); ) dt

The function T 1 can be analytically continued to C because it satisfies re-
markable functional relations; see formula (12.7). It has no poles in C, and
the zeros of T 7 are simple (if v* ¢ Q) and given by the discrete set (—3N —
%N) U@+ 3IN+ %N) With this notation, the DOZZ formula (or proposal)

CEOZZ(al, a, a3) is the following expression:

(1.12)
CP% (a1, oz, 3)

20-a T5(0)Ty (1) Ty (a2) Ty (as)
~y — — — — .
Tl(a;2Q)Tg (% — al)T%(% — O[Q)T%(% — ag)

3 X

= (rpl(F) (1))

The main result of the present paper is to show the first important equality
between LCFT in the functional integral formulation (rigorously defined in
[12] via probability theory) and the conformal bootstrap approach, namely, to
prove that for v € (0,2) and appropriate ai,asg, a3, the structure constants
Cy(a1,az,a3) in (1.6) are equal to C’EOZZ(al,ag,ag) defined by (1.12).

Our proof is based on deriving equations (1.7) and (1.8) for the proba-
bilistically defined C,. An essential role in this derivation is an identification
in probabilistic terms of the reflection coefficient of LCFT. It has been known
for a long time [58], [52] that in LCFT the following reflection relation should
hold in some sense:

(1.13) Vo = R()Vag—a-

Indeed the DOZZ formula is compatible with the following form of (1.13) [58]:
(1.14) CPO%%(an, ag,a3) = RPO%(01)CY9"%(2Q — a, a2, 3)

with

2(@-a) (1) _2Q=e)
(115) RDOZZ(Q) _ _(Wﬂl(%)) (@ )F( 5 ) F( 5 )

F(W(Q;Oé) ) I 2(QW—OO )

The mystery relation (1.13) lies in the fact that the probabilistically defined
C, (o, ag, a3) vanish if any of the a; > @ whereas they are nonzero for a; < Q;
see Section 2.2.

3The function has a simple construction in terms of standard double gamma functions;
see the reviews [35], [48], [53] for instance.



THE DOZZ FORMULA 89

In our proof, R(«) emerges from the analysis of the tail behavior of a GMC
observable. We prove that it is also given by the following limit:

(1.16) 4R(«v) = lim € C (€, o, @v));
e—0

i.e.,, R(«) has an interpretation in terms of a renormalized two-point function.
We will show that for those values of « such that R(«) makes sense, from the
functional integral perspective, i.e., a € (3,Q),

R(a) = RPO%Z(q).

It turns out that some material related to the coefficient R(«) already ap-
pears in the beautiful work by Duplantier-Miller-Sheffield [16]: Within this
framework, the reflection coefficient R(«) can naturally be interpreted as the
partition function of the theory underlying the quantum sphere. We will not
elaborate more on this point as no prior knowledge of the work by Duplantier-
Miller-Sheffield is required to understand the sequel. (See [4], [47] for an ac-
count of the relation between [12] and [16].) More precisely, the required
background to understand R(«) will be introduced in Section 3 below.

Finally, let us stress that the DOZZ formula (1.12) is invariant under the
substitution of parameters

2 4
v, 2 ~_ (pmt(p))”
e T S =t
P TS

This duality symmetry is at the core of the DOZZ controversy. Indeed this
symmetry is not manifest in the Liouville action functional (1.2) though duality
was axiomatically assumed by Teschner [53] in his argument, especially to
get (1.8). It was subsequently argued that this duality could come from tgle
presence in the action (1.2) of an additional “dual” potential of the form er?
with cosmological constant g in front of it. As observed by Teschner [53],
this dual cosmological constant may take negative (even infinite) values, which
clearly makes no sense from the functional integral perspective. That is why
the derivation of the DOZZ formula from the LCFT functional integral (1.1)
has remained shrouded in mystery for so long.*

1.3. Organization of the paper. In the next section, we introduce the prob-
abilistic expressions of the LCFT correlation functions and structure constants
and state the main result of the paper: Theorem 2.4. We also discuss briefly
the conformal bootstrap conjecture and prospects for a probabilistic approach

“Indeed, there are numerous reviews and papers within the physics literature on the
functional integral approach of LCFT and its relation with the bootstrap approach, but they
offer different perspectives and conclusions; for instance, see [23], [36], [50].
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to proving it. In Section 3 we introduce the probabilistic definition of the
reflection coefficient, which is the central concept in our proof, and we state
the main Theorem 3.5 on it. Section 4 gathers some further results from [28]
on differential equations (the BPZ equations) satisfied by certain four point
functions and their consequences. Since the proof of our main result is a com-
bination of several sub-results with interdependencies, we present in Section 5
the outline of the argument together with a chart of the logical structure. The
rest of the paper is devoted to the proof of the main results, Theorems 2.4
and 3.5. In Section 6, we show that the correlation functions of vertex op-
erators are analytic functions of their arguments ay. Section 7 is devoted to
the study of tail estimates of GMC and their connection with the reflection
coefficient. In Section 8 we prove a lemma relating the reflection coefficient to
the structure constants. In Section 9 we study the asymptotics of four point
functions when two of their arguments approach each other (“fusion” rules in
the physics jargon). This section is the technical core of the paper and the key
input in the probabilistic identification of the reflection coefficient. Finally, in
Sections 10 and 11, Theorems 3.5 and 2.4 are proved.

Acknowledgements. The authors wish to thank Francgois David, Sylvain
Ribault and Raoul Santachiara for fruitful discussions on Liouville field theory
and the conformal bootstrap approach. The authors would also like to thank
the anonymous referees for their careful reading of a prior version of this paper;
their numerous comments have certainly improved the paper’s readability.

2. Probabilistic formulation of LCFT and the main result

In this section, we recall the precise definition of the Liouville correlation
functions as given in [12] and state the main result on the DOZZ formula.

2.0.1. Conventions and notation. In what follows, z, z,y and z1,..., 2N
all denote complex variables. We use the standard notation for complex deriva-
tives 0y = %(0y, —i0,,) and Oz = $(9y, +10,,) for x = 1 +izs. The Lebesgue
measure on C (seen as R?) is denoted by d?z. We will also denote |- | the norm
in C of the standard Euclidean (flat) metric, and for all » > 0, we will denote

by B(z,r) the Euclidean ball of center x and radius r.

2.1. Gaussian Free Field and Gaussian multiplicative chaos. The proba-
bilistic definition of the integral (1.1) goes by expressing it in terms of the
Gaussian Free Field (GFF). The setup is the Riemann Sphere C = C U {o0}
equipped with a conformal metric g(z)|dz|?. The correlation functions of LCFT
will then depend on the metric, but they have simple transformation proper-
ties under the change of g, the so-called Weyl anomaly formula. We refer the
reader to [12] for this point and proceed here by just stating a formulation that
will be useful for the purposes of this paper.
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We define the GFF X(z) as the centered Gaussian random field with
covariance (see [15], [51] for background on the GFF)

(2.1) E[X(2)X(y)] = In

+1In ‘CL"_;. +1In ‘y’-f— = G(xa y)v

1
[z —y

where we use the notation |z|; = |z| if [z| > 1 and |2z|+ =1 if |z] < 1.

Remark 2.1. In the terminology of [12], consider the metric g(2) = |2|3*
with scalar curvature Ry(z) := —4¢g'0,0;Ing(z) = 8mv, with v the uniform
probability measure on the equator |z| = 1. Then X is the GFF with zero
average on the equator: [ Xdv = 0.

For LCFT, we need to consider the exponential of X. Since X is distribu-
tion valued, a renormalization procedure is needed. Define the circle average
of X by

1 dw
2.2 X, (2) = — X —
(2.2 @=5gf  Xerw
and consider the measure
2
(2.3) M, (d2x) := Xr(@) =T BN @ ) 4 g2

Then, for v € [0,2), we have the convergence in probability

(2.4) M, = lim M,,,

r—00

and convergence is in the sense of weak convergence of measures. This limiting
measure is nontrivial and is GMC associated to the field X with respect to the
measure |:U|14d2:n. (See Berestycki’s work [7] for an elegant and elementary
approach to GMC and references.)

Remark 2.2. For later purposes, we state a useful property of the circle
averages. First, Xo(0) = 0, the processes r € Ry — X, (0) and r € Ry —
X_,(0) are two independent Brownian motions starting from 0. For z center
of a unit ball contained in B(0,1)¢, the process r € Ry — X, (2) — Xo(2) is also
a Brownian motion starting at 0. For distinct points (2x)1 < x < ;¥ such that
the balls B(zx,1) C B(0,1)¢ are disjoint, the processes r — X, (z;) — Xo(z)
are mutually independent and independent of the sigma algebra o{X(z);z €
[UN_ B(zk,1)]¢}. This results from a simple check of covariances.
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2.2. Liouville correlation functions. We may now give the probabilistic
definition of the integral (1.1)°:

(2.5) (F) := 2/ e 2@ [F(X —2Qn|z|4 + c)efue“Mw(C)} de,
R

where [ is expectation over the GFF. We refer the reader to [12] (or to [2§]
for a brief summary) for the explanation of the connection between (1.1) and
(2.5). Briefly, the variable c is essential and stems from the fact that in (1.1) we
need to integrate over all ¢ and not only the GFF X that is constrained by the
relation X(0) = 0. The origin of the factor e2%¢ is topological and depends
on the fact that we work on the sphere C. The random variable M,(C) is
almost surely finite because EM,(C) = [ |2|7%d?2 < co. This implies that (-)
is not normalizable: (1) = co.

The class of F' for which (2.5) is defined includes suitable vertex operator
correlation functions once these are properly renormalized. For o € R and
z € C, we set

o2
(2.:6) Vo) = 20X BN 748,

where we recall A, = §(Q — §). The point z will often be referred to as
insertion point (or just insertion) and « as insertion weight (or just weight).
Let z; € C, i =1,...,N with z; # z; for all i # j. It was shown in [12] that
the limit

N N
(2.7) <kH1v%(zk)> = %<k]'[lvak,€(zk)>

exists, is finite and nonzero if and only if the following Seiberg bounds originally
introduced in [50] hold:

N
(2.8) Y >2Q, ar<Q Vk
k=1

The first condition guarantees that the limit is finite and the second that it
is nonvanishing. Indeed, if there exists k£ such that oy > @, then the limit is
zero. Note that these bounds imply that for a nontrivial correlation, we need
at least three vertex operators; therefore, we have N > 3 in the sequel. The
correlation function (2.7) satisfies the conformal invariance property (1.5).

5The global constant 2 is included to match with the physics literature normalization that
is based on the DOZZ formula (1.12).
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The correlation function can be further simplified by performing the change
of variables y = pe’“M,(C) in the c-integral (see [12, §3]):

N
< H Vak (Zk)>
k=1

(2.9) N ,
=20y 1 (s) }EE(I)E H eakXe(Zk)—TkEXe(Zk)2‘Zk‘:m% M,(C)~*|,
k=1
where
N 2
(2.10) g = M'G

v

Using the Cameron-Martin theorem (we apply Theorem 12.1 of the appendix
with the Gaussian variable X = 70 ax X (2;) (see also [12, Th 3.4 and 3.5])
we may trade the vertex operators to a shift of X to obtain an expression in
terms of the multiplicative chaos:

(2.11)
< ﬂ Vak(zk)> = 2u" 5y T (s) H ]z—i]aW“JE [(/C F(x,z)Mv(d%))_S] ;
k=1 i<j 7t I
where

N Yoy
(2.12) F(z,2)=]] (&) :
k=1

Thus, up to explicit factors the Liouville correlations are reduced to the study
of the random variable [ F(x,z)M,(d*z). In particular, the Seiberg bounds
ar < Q for all k are the condition of integrability of F' against the chaos
measure M, (see [12]). Furthermore, the expression (2.11) allows us to extend
the definition of the correlation functions to those values of s < 0 such that
the expectation in (2.11) makes sense; it was shown in [12, Lemma 3.10] that

</C F(IL‘,Z)M»y(dQZL'))S

provided the following extended Seiberg’s bounds are satisfied:

(2.13) 0<E < 00

4 . 2
2.14 —s< A min =(Q -« o < Q Vk
( ) 72 1<k<N?Y (Q k)a k Q
50ne should notice that s depends on N and a1, - ,ax (and also 7). However, in what

follows, we will use the generic notation s in the definition of the correlation functions because
the value of s that we are considering should be clear from the context.
"In the sequel, the Cameron-Martin theorem will refer to Theorem 12.1 or Corollary 12.2.



94 ANTTI KUPIAINEN, REMI RHODES, and VINCENT VARGAS

with s given by (2.10). The standard I" function has poles on the nonpositive
integers. Hence for s = —n with n integer and satisfying (2.14), we simply set
the correlations to be equal to infinity.

Under condition (2.14), it is also natural to define the so-called unit volume
correlations by

N N
(2.15) < H Vock(zk)> . <Hk=§/§; (Zk)>7
k=1

uv

i.e., we divide by the I' function to remove the mentioned poles; therefore
<HkN:1 Vo, (2k))uv is well defined under condition (2.14). An important ingre-
dient in our proof of the DOZZ formula is Theorem 6.1, which says that these
correlation functions have an analytic continuation in the «;’s to a complex
neighborhood of the region allowed by the bounds (2.14).

Remark 2.3. The DOZZ formula for the structure constants is analytic
not only in «; but also in v. A direct proof of analyticity of the probabilistic
correlation functions in v seems difficult. However, it is an easy exercise in
Multiplicative Chaos theory to prove their continuity in v, a fact we will need
in our argument. Actually, it is not hard to prove that they are C'"*° in ~, but
we will omit this as it is not needed in our argument.

2.3. Structure constants. The structure constants Cy in (1.6) can be re-
covered as the following limit;:

(2'16) C’Y(ab a2, 043) = z;}l—anoo |23|4A3 <Va1 (O)Vaz (I)Vas (23)>7

where here and thereafter we use the shortcut notation A; := A,;. Combining
(2.11) with (2.16) we get

(2.17) Oy (an, a2, a3) = 20~y T () E(p(ar, az, a3) ™),
where s = (32°_, oy — 2Q) /7 and

a1+os+az)

(
x
p(a1,0é2,0é3)—/ 2]

2
¢ Toprnfy — apes ()

Furthermore, using (1.5) and (1.6) we see that C is a symmetric function of
the variables aq, as, as.

2.4. Statement of the main result. The main result of this paper is the
following identity:

THEOREM 2.4. Let oy, an, as satisfy the bounds (2.14) with N = 3. The
following equality holds:

a1, 02, 043)-

C»y(Oél, 2, 043) = C’yDOZZ(
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From the purely probabilistic point of view, Theorem 2.4 can be inter-
preted as a far reaching integrability result on GMC on the Riemann sphere;
indeed, recall that C, (o1, a2, a3) has an expression in terms of a fractional
moment of some form of GMC (see formula (2.17)). There are numerous inte-
grability results on GMC in the physics literature (see the introduction). To
the best of our knowledge, Theorem 2.4 is the first rigorous nontrivial integra-
bility result on GMC; as argued in the introduction, we believe the techniques
of this paper and the companion paper [28] will enable one to prove many
other integrability results for GMC.

2.5. Further work: conformal bootstrap. Theorem 2.4 is also an integra-
bility result on LCF'T. Based on general principles of conformal field theories
as spelled out by Belavin, Polyakov and Zamolodchikov one expects that the
correlation function (2.11) also has a (semi) explicit expression in terms of the
structure constants. The recursive procedure to obtain this expression is called
conformal bootstrap. It postulates a recursion relating an N-point correlation
function to N — 1-point correlation functions with coefficients involving the
structure constants. Applying bootstrap to the LCFT four point function one
obtains the following conjecture [58]:

(Vo 00V (Vi (Vg (0) = [ fBrom =0 =050)
(2.18) R ip
X C’Y(alv a2, Q - lP)C’Y(Q + Z'Pa asg, a4)|fp,{ai}(z)|2 g’
where Fp (4,}(2) are meromorphic functions (the so-called universal conformal
blocks) that depend only on the parameters a;, P and 7 through the central
charge of LCFT ¢, = 1+ 6Q% The integral over P is here the standard
Lebesgue integral over R. Note that the structure constants in this expression
are evaluated at complex weights ) +¢P and have to be interpreted in terms
of analytic continuation from the the real weights. Indeed, our proof con-
structs this continuation and shows it is given by the DOZZ formula. In the
physics terminology these complex weights determine the spectrum of LCFT.
This means, in particular, that one expects that to LCFT there corresponds a
canonical Hilbert space H and a unitary representation of the Virasoro algebra
with central charge c;, = 1 + 6Q% on H. This representation is expected to
reduce to a direct integral of highest weight representations indexed by P. The
bootstrap conjecture then formally follows from representation theory.

On the mathematical level (2.18) remains a conjecture. However Baverez
and Wong [5] were able to prove that it holds at the level of leading asymptotics
when z — 0. (See also the discussion in [5] on the relevance of this asymptotic
in the context of the scaling limit of large random planar maps.) The canon-
ical Hilbert space H can also be constructed using the Osterwalder-Schrader
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reconstruction theorem [37], [38]; see [27] for lecture notes on this. The rep-
resentation of the Virasoro algebra on H should then follow using the results
of [28]. However, a probabilistic understanding of the highest weight vectors is
a challenge as they seem to involve vertex operators with complex weights «
whereas the probabilistic approach naturally deals with real a. Also, the main
application of LCFT to Liouville Quantum Gravity involves real values for «.
In the theory of Liouville Quantum Gravity, the scaling limits of, e.g., Ising
correlations on a random planar map, are given in terms of Liouville correla-
tions with real o’s and regular planar Ising CFT correlations via the celebrated
KPZ relation [26]; for an explicit mathematical conjecture, see [13], [27]. Thus
the probabilistic and bootstrap approaches are in an interesting way comple-
mentary. The bootstrap idea has been extremely successful since the work by
BPZ in [6] and has led to spectacular progress even in three dimensions, e.g., in
case of the three-dimensional Ising model [17], [18]. A proof of (2.18) would be
the first mathematical justification of this idea in a nontrivial and interesting
CFT, and we consider it to be a major challenge to probabilists.

3. Theorem on the reflection coefficient

A key ingredient in our derivation of the DOZZ formula is the reflection
coefficient. We will see later that it plays a prominent role in the analyticity
properties of correlation functions. Briefly, the reason is that expectations of
the type (2.13) are analytic in s over a region determined by the tail asymp-
totics of the random variable [ F'(z,2z)M,(d?z), which is in turn completely
determined by the behavior of this integral close to the “worst” singularity
of F. The reflection coefficient enters in the description of the tail of such
random variables.

3.1. Tail behavior of chaos integrals. To motivate the definitions let us
consider the random variable

(3.1) I(a) = / |0 M, ().

B(0,1)
In the case a € (%,Q), the reflection coefficient enters in the tail behavior
of I(a) whose mass is concentrated around 0% and that is a power law as we
now explain. To study this we recall basic material introduced in [16] and,

in particular, we consider the polar decomposition of the chaos measure. Let
X5 := X5(0) be the circle average (2.2). We have

X(e%e?) = X, +Y(s,0),

8When studying the tail behavior for a < 2, the mass of I(c) is distributed on B(0,1)
and not concentrated around a point.
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where X is a standard Brownian Motion starting from the origin at s = 0 and
Y is an independent field with covariance

e sVet
le—seif — e—tei?|

(3.2) E[Y (s,0)Y (,0')] = In

Following [16], we call the field Y the lateral noise. We also introduce the
chaos measure with respect to Y

(3.3) e )
Then we get
(3.4) I() ' / B @09 7 g
with ’
(35) zo= [ even-ipety,

0

This is a slight abuse of notation since the process Z; is not a function (for
7 > +/2) but rather a generalized function. With this convention, notice that
Zsds is stationary; i.e., for all ¢, the equality Z;+s = Zs holds in distribution.
For all bounded intervals I (see [46]), this satisfies

(3.6) E K/j sts>p} <00, —o0<p< 32

The following decomposition lemma due to Williams (see [56]) will be
useful in the study of I(«a):

LEMMA 3.1. Let (Bs—vs)s >0 be a Brownian motion with negative drift,
i.e., v >0, and let M = sup, - o(Bs — vs). Then conditionally on M the law
of the path (Bs — vs)s > o is given by the joining of two independent paths:
e a Brownian motion ((Bl + vs))s < r,, with positive drift v > 0 run until its
hitting time Tpr of M
o (M + B? —vt); > o where B? — vt is a Brownian motion with negative drift
conditioned to stay negative.
Moreover, one has the following time reversal property for all C > 0 (where
To denotes the hitting time of C):

1 o~
(B'%c—s +v(te —5) = O)s < TC = (Bs —vs)s < L_¢»

where (ES — vS)s >0 18 a Brownian motion with drift —v conditioned to stay
negative and L_c 1is the last time (Bs — vs) hits —C.

Remark 3.2. As a consequence of the above lemma, one can also deduce
that the process (Br_.4+s — V(L_c + s) + C)s >0 is equal in distribution to

(Bs —vS)s > 0-
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This lemma motivates defining the process B¢,

B — B%, its <0,
s BY ifs>0,

where B, B are two independent Brownian motions with negative drift a—Q
and conditioned to stay negative. We may apply Lemma 3.1 to (3.4). Let
M = supg s o(Bs — (Q — «)s) and L_p; be the last time (Bg)s > o hits —M.
Then

[0.9] o

/ 1 (Bs=(Q-a)s) 7 g taw e”M/ VB Zsyp_yds

0 —L_
(3.7) 1 -
& eVM/ e85 Z ds,

—L_y

where we used stationarity of the process Zs (and independence of Zs and By).
We will prove in Section 7 that the tail behavior of I(«) coincides with
that of

J(a) = e'YM/ "B Z,ds.

The distribution of M is well known (see Section 3.5.C in the textbook [25] for
instance):

(3.8) P(eM > ) = 2(;[_&) , x>=1,
x
which implies
o0 sl ISR
(3.9) P(J(a)>z) ~ B (/ eVB?ZSds> T
T—00 o

This is the tail behavior that we prove for I(a) and its generalizations in
Section 7. Define the unit volume reflection coefficient R(c) for a € (%,Q) by

the following formula:
0o 2(Q-a)
(/ VB8 sts) !

Indeed, R(«) is well defined as can be seen from the following lemma, the proof
of which is postponed to Appendix 12.3. (See also Section 4 in [16] for the case

a=r.)
LEMMA 3.3. Let a € (3,Q). Then

[e%¢) p
(3.11) E (/ eVB?sts) } < 00

forall—oo<p<$2.

(3.10) R(a)=F
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The full reflection coefficient is now defined for all

0 € (3.Q)\Unso{2 — 27}

by

(Q—w) _
(3.12) Rla)=p 7 D(—28-2)2Q-0) py),

The function R(«) has a divergence at the points % — 57 with n > 0 because of
the I' function entering the definition. Its connection to the structure constants
is the following (see the proof in Section 8):

LEMMA 3.4. Foralla € (3,Q)\Up > 0{% — 57}, the following limit holds:

lim e Cy (e, a, ) = 4R(a).
e—0

Hence the reflection coefficient should be seen as a two point correlation
function. Let us mention that the fact that some form of two point correlation
function should exist in LCFT goes back to Seiberg [50].

3.2. Main result on the reflection coefficient. The second main result of
this paper is the following exact formula for the reflection coefficient (recall
(1.15)):

THEOREM 3.5. For all a € (3,Q), one has

(3.13) R(a) = RPY%2(q).

4. BPZ equations and their consequences

In this section we collect some previous results from the companion paper
[28] that will be used in the proof of Theorems 2.4 and 3.5.

4.1. Structure constants and four point functions. We complete the de-
scription of the three point structure constants (2.17) by introducing the unit
volume three point structure constants defined by the formula

= SC (061,062,063)
(4.1) Cy(ar, az,03) = p WWa

where s = (25’:1 a; — 2Q)/~. The four point function (equation (2.11) with
N = 4) is fixed by the M&bius invariance (1.5) up to a single function depending
on the cross ratio of the points. For later purpose we label the insertion points
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from 0 to 3 and consider the weights a1, as, ag fixed:
(4.2)

3
< 11 Vak(Zk)> R | e i B .
k=0

. 20 — 21) (22 — 2
X |25 — 2o 2Br+B-20=B) g (( 0— 21)(2 3)>
(20 — 23)(22 — 21)
where here again we use the shortcut notation Aj := A,;. We can recover Gg,
as the following limit:

(13)  Gagle) = T [ (Vg (2)Vir (0)Viy (Ve (2)
Combining with (2.11) we get
(4.4) Gag(2) = [2]70 |2 = 1790 T5 (2)
where, setting s = O‘°+a1+aj+°‘3_2Q, Too (2) is given by
(4.5) Tao(2) = 20757 7T (5) E[Say (2) ]
and
\JT‘ZFZLO o 2
(4.6) o () = /C e e ().

In this paper we will study the structure constants (2.17) by means of four
point functions (4.2) with special values of «y.

4.2. BPZ equations. There are two special values of «q for which the re-
duced four point function 74, (2) satisfies a second order differential equation.
That such equations are expected in Conformal Field Theory goes back to
BPZ [6]. In the case of LCFT it was proved in [28] that, under suitable as-
sumptions on oy, ag, a3, if ap € {—7, —%}, then 7y, is a solution of a PDE
version of the Gauss hypergeometric equation

(c—z(a+b+1)) __ab
z(1-2) 0:Tao (2) z(1-2)

(4'7) 827;0(2) + ,Tao(z) =0,

where a, b, ¢ are given by

a:%‘)(Q—2a0—a1—a2—a3)—%,
(48) b:a?O(Q—al—Oég—i-ag)—l—%,

c=1+a(Q —ay).
This equation has two holomorphic solutions defined on C\ {(—o0,0)U(1, c0)}:
(4.9) F_(2) =9Fi(a,b,c,2), Fi(2)=21"%Fi(l+a—c,14+b—¢2—c¢,2),
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where 92 F1(a,b, ¢, z) is given by the standard hypergeometric series (which can
be extended holomorphically on C\ (1, 00)). Using the facts that 7, (2) is real,
single valued and C? in C \ {0,1}, we proved in [28] (Lemma 4.4) that it is
determined up to a multiplicative constant A € R as

(4.10) Tao(2) = M F-(2)]* + Ay (@0, a1, a2, a3)|Fe () ),

where the coefficient A, (g, a1, a2, 3) is given by

L)’ T(1 —a)T(1=b)T(a—c+ 1T (b—c+1)
['(2—¢)?T(c—a)l(c—b)'(a)L'(b) ’

where we recall that a, b, ¢ are defined in terms of ag, oy, as, ag by (4.8) and

provided ¢ € R\ Z and ¢ —a —b € R\ Z. Furthermore, the constant \ is found

by using the expressions (2.17) and (4.5) (note that s has a different meaning
in these two expressions):

(4.11) Ay (a0, 1,0, 3) = —

(4.12) A= 7;0(0) = 07(041 + ¢, (2, Oég).
Hence for ag € {—13, —%}, Tao is completely determined in terms of C. (o +
g, a2, 3).

In the case ap = —3 we were able to determine in [28, Lemma 4.5] the

leading asymptotics of the expression (4.5) as z — 0 provided %—1—7 <ait3 <Q:

T 3(2) = Cy (041 - %70427043)
(4.13) e
+ B(an)Cy (al + 5»0427043> |Z|2(1_C) + 0(\z|2(1_0)),
where
(4.14) B(a) = —p i T .

(=PI + T =)

In view of (4.10) and the fact that 2(1 —¢) < 1 (since 2(1 — ¢) = Y(Q — 1)
and % + % < a1), we also have the following expansion around z = 0:

T_3(2) = €, (a1 = 2 a2,05)

2
+ A*\/ (—%,O[l,OQ,O[:}) O’y (Oél - %7 2, a3) |Z’2(1_C) + O(|z|2(1_6))‘
By unicity of the Taylor expansion around z = 0 we get
(4.15)
g _ gl v
B(a1)C, (a1 + 502,03 ) = Ay —5) 1, 02,03 C, (a1 — 5 02,03)

Let us now register the following relation between A, and A, that stems from
straightforward (but lengthy!) algebra:

(4.16) Ay (=3, a1, 0, 03)

= —— —, 1,09, .
B(Oél) T Y 9’ 1, k2, &3
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Let us also register here (by anticipation of the case ap = —%) the following
analogue dual relation:

Ay(=2 01, 00,03 1 2
(417) ,Y( ’YN ) = _7~A"/ (,041,042,043> ;
B(Oq) TH
1(22))2
where 1 = % and
T 77)
(4.18) Bla) = —i u
' U=)I(O2+ 5 — 2

Therefore, thanks to (4.15) and (4.16) we get relation (1.7) in the case %—Vy <
a1+ 3 < Q and also
(4.19)

7-_%(2) = C,y (al — %,O{Q,O&E}) ‘F_(Z)|2 + B(al)C’Y (O[l + %,052,053) ‘F'F(Z)‘Q‘

The restriction % +v < a1 + 3 for a; was technical in [28] and will be re-
moved in Section 9. The restriction oy + 4 < @ seems necessary due to the
Seiberg bounds as the probabilistic C, (o + %, a9, 3) vanishes otherwise. Un-
derstanding what happens when oy + 3 > @ is the key to our proof of the
DOZZ formula. Before turning to this we draw a useful corollary from the
results of this section.

4.3. Crossing relation. Let us assume the validity of the Seiberg bounds
for the four point correlation function with weights (—3, a1, a2, av3), that is,
22:1 o >2Q+ 3 and o, <Q for all k. From the previous subsection, we have
(4.20)

7-,%(2):07 (al — %,062,063) (]F_(z)\Q + A, (—%,061,062,0(3) \F+(z)\2) :

The hypergeometric equation (4.7) has another basis of holomorphic solutions
defined on C \ {(—00,0) U (1,00)}:

G_(2) Fi(a,b,c,1— 2),

Z) =2
(4’21) 1-c / / /
Gi(2)=1—-2)"2F(l+a-C,14+b-¢,2-(,1-2),

where ¢ = 1+a+b—c =1-3(Q—az); i.e., these are obtained by interchanging
a1 and a9 and replacing z by 1 — z. The two basis are linearly related,

I'(c)T'(c—a—b)

I'(c—a)l(c—b)

I'(e)l(a+b—c)
['(a)L(b)

F_(z) = G_(2)
(4.22)

(1—2) "G (2),
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'2—col'(c—a-0)

(4.23) = Tra—ara-p <%
| I'2—cl(a+b—c) o
* T(a—c+ 1)T(b—c+ 1)(1_2) "Gy (2),
and we get

2

(424) T 3(2) = Cyfen = 5, a2,03)(DIG- () + E|G1.(2))

with explicit coefficients D, E (see [28, Appendix]). On the other hand, by
studying the asymptotics as z — 1 we get

(2) = €y (a1,00 = J.03)

+ B(Oé2)07 (OKl,O{Q + g7a3> |1 _ Z|2(1—C') + O(|1 _ Z|2(1—c’)).

T

R

(4.25)

More precisely, this asymptotic has been established in [28] under the restric-
tion % + v < az + 3§ < Q, which is empty for % > 2! Here we anticipate
Section 9 and Theorem 9.1, where the validity of (4.25) (or a version of (4.25)
with extra 1 — z and 1 — Z terms in the expansion when 2(1 — ¢) > 1) will
be relaxed to the range of parameters v < g + % < @, which is nonempty
whatever the value of v < 2.

Comparing the z — 1 expansion of (4.24) with (4.25) leads to the following
crossing symmetry relation:

PROPOSITION 4.1. Let ap + 3 < Q and a1 + az + a3 — 3 > 2Q. Then

(4.26) ny (Oél — %, a9, 043> = T(Ozl, a9, 043)ny (041, a9 + %, 063) s
where T is given by the following formula:
l(a)l(b) 1
(4.27)  T(o,az,a3) = —um E— )
Wla+b—c)|(~2)(222) (2 + L — 122)

with a,b, ¢ given by (4.8) for ag = —73.

The statement in the proposition above should be further restricted to
v < a2 + 3 < Q according to the previous discussion. However, here we
anticipate Theorem 6.1 in Section 6 to extend by analyticity our statement to
the range of parameters as formulated above.

Remark 4.2. The relations (1.7) and (4.26) were derived in the physics
literature [52] by assuming

(i) validity of BPZ equations for degenerate field insertions,

(ii) that these fields are given by the vertex operators with weights —3, —%
and that they satisfy an appropriate operator product expansion,

(iii) the diagonal form of the solution (4.10), and

(iv) crossing symmetry (an essential input in the bootstrap approach).
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We want to stress that our proof makes no such assumptions; in fact,
(i)-(iv) are theorems: (i) follows from integration by parts in the Gaussian
measure [28], (ii) follows from an asymptotic analysis of the probabilistically
defined four point functions as points are “fused” together in Section 9, and (iii)
and (iv) follow from an analysis of the BPZ equations and proof of regularity
of solutions [28].

5. Strategy and plan of proof

In this section, we outline our strategy for the proof while giving pointers
to the remaining parts of the paper so that the reader can have a better view
of the whole structure. We will first explain the proof of Theorem 3.5, which
gives an explicit expression for the reflection coefficient. This exact expression
for R is then used (in an essential way) to derive Theorem 2.4 on the DOZZ
formula.

5.1. Proof of Theorem 3.5: analysis of the reflection coefficient. The proof
of Theorem 3.5 is gathered in Section 10. Recall that the reflection coefficient
R(a) is defined by (3.12). The proof is based on establishing the following
properties:

(ARC1) The unit volume reflection coefficient R(c) (see (3.10) for the defini-
tion) defines an analytic function of o over a complex neighborhood of
the interval (3, Q).

(ARC2) R(a) satisfies the following 3-shift equation for o close to but smaller
than Q:

N R(a)
(5.1) R (O‘ 2) s (=N -DIE+% -2

2
This relation allows us to extend analytically R(«) to a meromorphic
function, still denoted by R, over a complex neighborhood of the real
line; this complex neighborhood contains R x (—n,n) for some 1 > 0.

(ARC3) R(«) satisfies the inversion relation
(5.2) R(a)R(2Q —a) = 1.
(ARC4) R(«) satisfies the %—shift equation

o R(a+ %)
(-3 = e & -

where ¢y = %,LMTR(’V) # 0.

According to Liouville’s theorem, if a continuous function f has two periods
T7 and T5 such that % ¢ Q, then f is a constant function. Therefore, provided
72 € Q, the two equations (5.1) and (5.3) fully determine R up to a y-depending
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constant (the inversion relation (5.2) is used in the proof of (ARC4)), which we

determine easily by computing R(Q) = —1 via the probabilistic representation
(3.10) and (3.12). In particular, it determines the value of ¢y

2 A4 -1
(5.4) ey = (prl(p)) 7 1(5)

On the other hand, in the appendix (see relations (12.8) and (12.9)) we check
that RPO?Z satisfies (5.1) and (5.3) with ¢, given by (10.4). Therefore we
conclude R is equal to RP9?%Z for v & Q; the general case can be deduced by

continuity in v of R and RP9%%, In what follows, we now give an idea of how
we prove (ARC1)-(ARC4).

5.1.1. Analyticity of correlation functions and the reflection coefficient.
As most of our arguments are based on analyticity properties, we first need to
show that the probabilistically defined correlation functions (2.15) are analytic
in a complex neighborhood of the real valued parameters (ay); delimited by
the extended Seiberg bounds (2.14). This is done in Section 6 but is restricted
to N-point correlation functions with N > 3. The argument is based on the
fact that regularized correlation functions are analytic in the parameters (ag)g
and converge locally uniformly over a complex neighborhood of the extended
Seiberg bounds.

The case of the reflection coefficient (or two point correlation function)
requires more insight as it is not clear how to choose a regularized version that
is analytic in the parameter o and converges nicely towards R. The main idea
is to interpret the reflection coefficient as the leading order coefficient in the
tail expansion of the random variable

’x|1(a1+a2+a3)

(5.5) plaa, oz, a3) = / M, (d*z)

¢ [z[rerfe —1jes

involved in the probabilistic representation (2.17) of the three point structure
constant. The reason for that relies on a general simple argument: Assume we
are given a positive random variable X with tail asymptotics given by

P(X > ) = :73 +o(t5%)

for some 3,9 > 0. Then the function s — E[X®] is analytic over a complex
neighborhood of (0, ). Furthermore, it extends to a meromorphic function
Cx S

over a complex neighborhood of (0, 5 4 ¢) with a pole at s = 3, given by s
One can then recover the value of ¢, by taking the limit

lim (5 — 5)B[X°] = B

This type of argument will be repeatedly used in the paper (and, in fact, even
pushed further to the next pole of E[X?] beyond s = f3).
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As the integral in (5.5) can be decomposed as a sum of singular GMC
integrals of the type (3.1) (around 0,1 and c0), a detailed study of the tail of
such singular GMC integrals needs first to be carried out. This is the content
of Section 7 where R emerges in the tail expansion of integrals of the type
(3.1). The first outcome of this study is the proof of Lemma 3.4 in Section 8.
Actually we even prove a stronger result (Proposition 8.1) that the reflection
coefficient can be recovered from the structure constant as the following limit
for%<a2§a3<Q:

(5.6) lim (a1 — a3+ a2)Cy (a1, a0, a3) = aR(a3),

al\,ia?)_aQ
where a = 2 if ay < a3 and a = 4 if ag = a3. Recalling the interpretation by
Seiberg [50] of the reflection coefficient as a two point structure constant, let
us call (5.6) the “3 — 2”-bridge.

The second step is then to use the “3 — 2”-bridge in relations involving
three point structure constants in order to produce relations on the reflec-
tion coefficient R(«). The type of relations we have in mind are the crossing
symmetries of the type exposed in Proposition 4.1. As a first example, Sec-
tion 10.1 explains how we use this bridge in the crossing symmetry relation of
Proposition 4.1 in order to express R(«) as a function of three point structure
constants for a € (3,Q):

ol o
62 Re)=-T RO 600
U1+ 3 - QU=
From relation (5.7), which is new even with respect to the physics literature (to
the best of our knowledge), we can deduce analyticity of R(a) in a € (3,Q)
as stated in item (ARCI1) above because now we know from Section 6 that
C,(a,v,a) is analytic in a. In conclusion, analyticity of R(«) seems very

difficult to prove directly so we rely on relation (5.7) and analyticity of the
three point structure constants to prove it.

5.1.2. Ezxploiting the BPZ equations. As explained above, the “3 — 27-
bridge reduces (ARC2)-(ARC4) to deriving relations involving the three point
structures constants. The flavor of the derivation of these relations has already
been explained in Sections 4.2 and 4.3. But establishing Theorem 3.5 involves
generalizing the relations explained in Section 4.2 that were proved in the
companion paper [28]: this is the content of Section 9.

The first task is to extend the range of parameters for which the rela-
tion (4.19) was established in [28, Th. 2.3]. The reason for the restriction to the
range of parameters %—l—’y < a1+3 < Q (or equivalently %4—% <o < %) in [28,
Th. 2.3] was technical: it relies on the asymptotic expansion (4.13) of T_x(z)
as z — 0 in order to identify the constants in front of the hypergeometric
functions |Fy |* and |F_|? in the general form (4.10) of solutions to the 3-BPZ
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equation. This leads to (4.19). Within this range of values of the parameter
a1, computing the first two leading terms of the expansion were enough since
2(1-c¢) =v(Q —a1) < 1. (Recall that ¢ = 1—3(Q — 1) in this context.) No-
tice that the admissible set of values « satisfying the relation % +3<ar < %
is empty for v2 > 2! This is clearly not enough.

So, in Theorem 9.1, we establish (4.19) for the extended range of param-

eters v < a1 + 3 < Q (or equivalently 3 < a; < % ), which is nonempty
vy 1

whatever the value of v < 2. In the situation § < a1 < 5t 7, we have
2(1 —¢) = v(Q —aq) > 1 and therefore the expansion around z = 0 that is
required to prove (4.19) involves extra terms of the form z and z (which corre-
spond to the expansion of |F_|? around z = 0). Then analyticity of correlation
functions entails the validity of (4.19) for whatever value of a; such that the
correlation functions involved in (4.19) satisfy the Seiberg bounds. As a conse-
quence we obtain the crossing symmetry relation as stated in Proposition 4.1.
The proof of Theorem 9.1 requires a refined version of fusion estimates com-
pared to those proved in [28, §5]: this is the content of Lemma 12.3. Equating
residues on both sides of the relation (4.26) with the help of the “3 — 27”-
bridge produces the Z-shift equation as claimed in item (ARC2); this is proved
in Section 10.2.

Another important task is to understand the analog of (4.19) when vi-
olating the Seiberg bounds, in particular, when a; < @ but a; + 3 > Q.
Mass concentration effects, like those involved in computing the tail of singu-
lar GMC integrals, will make the reflection coefficient play a prominent role in
this context. In Theorem 9.4, we will show that for oy close to @ (but smaller
than Q)

(5.8)
T_1(2) = Cy (a1 = §, a2, a3)[F_(2)|* + R(a1)C4(2Q — a1 — §, a2, a3)|[Fi ()%,

As an output we prove the gluing Lemma 10.5, which roughly states that the
mapping

(5.9) S(a) = {C&,(a, ag, ) ifa< @,

R(a)Cy(2Q — o, a0, 03) ifae > Q

is holomorphic in a neighborhood of @). Using the “3 — 2”-bridge, this lemma
will be instrumental in proving the inversion relation (ARC3) and the %—shift
equation (ARCA4).

Finally our final task is to investigate the consequences of the %—BPZ equa-
tion (4.7). By studying asymptotics as z — 0 in (4.5), we show in Theorem 9.7
that for a; close to @ (but smaller than @),
(5.10)
T 2(2) = Cylar — 2, 09,a3)|[ F-(2)]* + R(a1) 05 (2Q — a1 — 2, a2, 03) [ Fy. (),

~
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This produces new crossing relations as stated in Proposition 9.9. In Sec-
tion 10.4, we prove the inversion relation stated in item (ARC3) by combining
the crossing relation in Proposition 9.9 with the gluing lemma.

a2, Q3
A
(O R e S T
1 : Q- Q
(a) Domain of validity of the Z-shift equation
Qg, Qg
A
(O R
1 1.7 2 — 0
2 ~ + 2 P Q n Q
(b) Domain of validity of the %—shift equation
a2, 3
A
Q¢----12nnnsmnnnnsnnn - - - - -

0

2 _ 12 I _p 22 2
72 27 M2 5-—nj3 i QA+
(c) How the shift equations connect different ranges of parameters (global Seiberg
constraint is assumed though not indicated)

Figure 1. Domain of validity of the shift equations

aq

aq

aq
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Analyticity Tail analysis
Section 6 Section T
“#3 — 2"-bridge
Section 8

Z-fusion with
reflection and

,—zr—fusion and
resulting

1-fusion with

resulting resulting

crossing relation

crossing relation crossing relation Tho.7 & Pr 9.9

Th 9.4 & Pr 9.9 Th 9.1 & Pr 9.8

] ™

Analyticity of B Gluing Lemma 1-shift for R
Subsection 10.1 Subsection 10.3 Subsection 10.2

-shift for R
ion 10.5

D

Figure 2. Diagram of the proof of Theorem 3.5

w
gdln

The %—shift equation stated in item (ARC4) is established in Section 10.5,
first by continuing analytically the crossing relation (10.27) to some larger set
of values with the help of the gluing lemma, and then by equating residues in
both sides of the resulting relation with the help of the inversion relation.

5.2. Proof of Theorem 2.4: the DOZZ formula. In order to prove the
DOZZ formula, we first want to prove the shift equations (1.7) and (1.8). As
explained in Section 4.2, the shift relation (1.7) is a consequence of the identity
(5.11)

T 1(2)=C, <a1 - %70@,@3) IF_(2)]? + B(on)C, (al + %,ag,ag) IF.(2)]2.
In order to derive the other shift equation (1.8), we need to exploit the %-BPZ
equation (4.7). We show in Theorem 9.7 that for ay close to @ (but smaller
than Q)

T 2(2) = Cy (01— 2 0,03 |F(2)
(5.12) g

+ R(a1)Cy (2Q —a1 — %,amas) [Fy(2)]%.
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In order to exploit (5.12), we need to use, in a crucial way, analyticity of
S defined by (5.9) (gluing lemma) along with item (ARC4) on the reflection
coefficient. Indeed, thanks to item (ARC4), we have

R(n)Cy (2@ — a1 — 2,00, a5)

2
= B(O[l)R (051 + /y) C'y <2Q — Q] — %70[270[3) ’
where B was defined by (4.18). Thanks to the gluing lemma, we have
2
R (a1 + 7) (O (2Q -1 — %,042,043> = Cy (041 + %,042,Oé3> .

Therefore, we can rewrite (5.12) equivalently as
(5.13)

7'_%(2) =C, (al - %,O&Q,O&g) |F_(2)]* + E(Ozl)C7 <a1 + %,ag,ag) |F(2) %

From (5.13), we can derive the shift equation (1.8) along the same lines as we
derived the shift equation (1.7) from (5.11).

Once the shift equations (1.7) and (1.8) are proved, the proof of Theo-
rem 2.4 is again a consequence of Liouville’s theorem on periodic functions. In
order to prove Theorem 2.4, we suppose that 72 ¢ Q, the other case result-
ing from a continuity argument in v. For 42 ¢ Q, because C,IY)OZZ(OQ, ag,as)
satisfies the same shift equations (1.7) and (1.8), this implies by application

Cy(a1,02,03)
CDOZ%(ay,a0,a3)
dependent of a;. By symmetry of the aq, ag, ag variables and recursive use of

Liouville’s theorem (in the variable ap and then the variable as), we deduce

. Cy(a1,02,03)
that the qUOtlent m

by using the “3 — 2?’—bridge and the knowledge of R. This argument is detailed
in Section 11.

of Liouville ’s theorem in the variable «; that the ratio is in-

only depends on . We identify this constant

6. Analytic continuation of Liouville correlation functions

In this section we study the analytic continuation of the unit volume cor-

relations (2.15). These are defined for real weights a = (a1, ..., ay) satisfying
the extended Seiberg bounds
(6.1)
1 l 4 2
- N .1 _ 4 ; 2 _ .
Uy = {a eR™: S <2Q ;ak> < /\lgnlilrglN'Y(Q ag) Yk ag <Q}.

We will prove

THEOREM 6.1. Fiz N > 3 and distinct points zy,...,zn € CN. The unit
volume correlation function (2.15) extends to an analytic function of a defined
in a complex neighborhood of Uy in CV.
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Proof. By Mobius invariance we may assume |z;| > 2 and |z; — zj| > 2.
We use (2.9) to write the unit volume correlation functions as the limit

N N
— —4Aq; .
(62) (T Veulen)) =207 Tl tim £y ().
k=1 o k=1
where

N o2
(63) [[ e eo-FE0 G ()

and C, := C\ UY_ | B(zg,e™"). For all € CV, F, is defined and is complex
differentiable in «;, and hence defines an entire function in the «;. We show
that there is an open V' C C¥ containing Uy such that F, converges uniformly
on compacts of V. Note that this is nontrivial since for ay = ay, + i, we have
of 2 ap 21 b2 2
|eocer(zk)—7]E[XT(zk) ]| _ eaer(zk)—7]E[Xr(zk) e?EXT(Zk) ’
s
and e2 x e2" blows up as r — oo.
By Remark 2.2, we know that t € Ry — BF, = X,44(2) — X, (2)
are mutually independent Brownian motions and they are independent of
o{X(z);z € C,}. Hence,

Fr—l—l(a) - Fr(a)

N o2 N

[T eov o= F B0t € 0) 7 = My (€))
k=1

IEXT(zk)

Now we apply the Cameron-Martin theorem as in (2.11) to the real parts
of the vertex insertions to get
(6.4)

|F r+1( ) F (

< Celr+D) She1 £

)

( [ ne >) g [ nwnt )

where f,.(x) = eXie varGri1(®:26) - and we have defined

Gri1(z,7) = BIX (2) Xp11(2)].

From (2.1), we get

f(z) —supf,, CH<|x|+|zk|+> k.

. |z — 2|
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We need to estimate the difference of expectations in (6.4). Let

Y, = / fr(z) M, (d%x).
Cr+1\cr
Also, set Z, := ¢ fr(z)M,(d*z). Then

B ( fr(x)Mw(d2$)> B ([ @)
Cr+1 Cr
— [E((Z, + Y2)™* — Z7°) < Blty, < (Zr + V)~ — 77

T T
+ELy, > [(Z +Y2)7° = 2.7,

where € > 0 will be fixed later. The first expectation on the right-hand side is
bounded by
Ely, o|(Z, +Y;) ™ — Z%| < Ce sup E(Z, +tY,) 71 < Ce
t€[0,1]
uniformly in 7. The last bound follows by noting that for —Rs — 1 > 0, the
expectation is bounded uniformly in r by CT( [ f(z) M., (d*z))~ %=1, which is
finite due to (2 14) whereas for —Rs — 1 < 0, we may bound it for example by
CE( [, \Cs M., (d?z))~®s=1 which is finite as well.
For the second expectation, we use the Holder inequality

Ely, > |25 — Z7°| < CP(Y; > ) YP((EZ, 5)V9 4 (BEZ,%)1/9).

Taking ¢ > 1 such that —¢R(s) < min; %(Q —aj) A 7%, we may bound the
two expectations uniformly in 7 as in the previous paragraph. Then using the
Markov inequality, we get

Ely, » (|27, - 27| < Ce™/P(BY,™) 7.
It remains to bound EY,™ for suitable m > 0. We note that C,; \ C, = UZ-Ai7
where A’ is the annulus centred at z; with radii e="~!,e~". Then for m < %,
we obtain

(6.5)
m 2m2
B < (Z M, (d*x )) <Cm§xx e T (@-ar)m—"5=) . =0,

where in the second step we used the estimate (12.4). Now, let us fix a’ €
Un. Then we can find m > 0 and 6 > 0 such that 8 > 0 for all a with
ming |ax — a9| < 6. Hence, for a € CM with aj, = ay, + iby, and € > 0,

b2 .
Fria@) = Fr(@)] < O VRS (g emireTi0)

Taking e = ™" with n = er—m, we then have

b2
|Frir (@) — Fr(a)| < Ce™(1mEim 2,

Hence, F,(a) converges uniformly in a ball around a® in CV. O
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7. Tail estimates for multiplicative chaos

In this section, we prove the tail estimates needed in this paper and that
involve the unit volume reflection coefficient defined in (3.10).

7.1. Tail estimate around one insertion. Let |z| > 2, and consider the
random variable

/
woe [ @)
B(z,1) |z

!/ _ Z|’yo¢

for F bounded and C! in a neighborhood of z. We assume 7 <a<Qand
define auxiliary quantities § = (%(Q —a) + 72—2) A % and 77 by (1 —7)8 =
2

> (Q — a) + 7. Hence 7 is strictly positive. With these definitions we have

LEMMA 7.1. For all n < 1 and for some constant C(z), we have

L da(a—0) 2(9-a) R(c) C(z)
POV > 2) = [R5 < gy

Proof. We will write the integral in polar coordinates of B(z,1). Define

1 2w

N=_— X 9dg.
o7 /. (z+¢€")d

Then
1 27

B, : (X (z+e e — X (z+€7))do

is a Brownian motion with B(0) = 0 and we may decompose the field X as

X(Z—{—IE’) = N+B—ln|$| +}/;($,),

where Y, is a lateral noise centered around z given by

2

1 .
Y, (') = X(z+2') — > X(z +|2'e?)db.
0

Notice that Y, has the same distribution as the lateral noise Y (centered
around 0), that Y, and B are independent, and N is independent of B. We
have

(7.1) |E[Y,(2")N]| = |In|z + 2| —In|2|| < C|2/|.
(Since Y, lives in the space of distributions, E[Y,(2’)N] is defined for all smooth
function f by the relation E[( [ f(2/)Yz(2') d*a")N]= [ f(a")E[Y>(2')N] d?*a’.)
The variance of N is

E[N?] = 21In2|.
Hence, we get the following decomposition into independent components:

/ E[Y. ()N . E[Y.(2))N
(12) X(ea') = (14 PR ) V4B (Yle!) - S ).
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We introduce a variable N distributed as N but independent of N, B,Y,. We

can rewrite (7.2) as the following equality in distribution:

E[Y; («")N]
E[N?]

Plugging this relation into the expression of W, we get

BN )

) N+Bln|z/|+<Yz(3?/) T ENY

(7.3) X(z+2") = (1 +

e ew—fm\‘ﬂ]/ s (2 )P o+ —7@) Inla’| Y (2') - S B[YV2(2')?] g2,
B(0,1)

for some (random) function u, such that (using (7.1) and C'-regularity of F

around z)

F _
Jus (') - !z(!?| < O+ NN .
We may thus write W = W; + Wy in distribution with
(7.4) W, — N2 E[N?] T(yi) /oo V(Bs=(Q-)s) 7 1o
z 0
(7.5) Wal < (1 + SN+ / O B~(@-at)s) 7 g
0

and Z, B and N independent.
Now recall the Williams decomposition Lemma 3.1. Let m = sup, - o(Bs—
(Q—a+ %)s), and let L_,, be the largest s such that 5%, = —m. Then

/ T B (@Qatd)s) 5 g
0

law > lga_%
(7.6) - / & " Zgpds
—L_m

1 o a3 © i

aw

= eym/ e"Bs ' Z.ds < evm/ ¢VBs Zsds,
—L_m

—00

where we used stationarity of the process Z;.
For all 0 < p < (%(Q—a)+7%)/\$2:ﬁ, we have

(7.7) P(|Wa| > z) < Cx™P.

Indeed, for all p1,q; > 1 with pil + qil = 1, by using Hoélder and (7.6) we
have that

1
P([Wa| > z) < —E[[W/’]

xP
0 a—1 paq1
(7.8) < C};E[eC(N"'N)PPl]l/Pl]E[(e"/m/ Bs WZSds) ]1/Q1
v —00
c

P
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provided ¢; is sufficiently close to 1 and where we used Lemma 3.3, which
requires p < %.
We first prove an upper bound for P(W > x):

P(W > ) =P(Wi + Wa >a) <P(W; >a — 2! 77) 4 Cz P07,

Proceeding as in (7.6), we get
N 2 N\ F o (e
P(W, >z —z77) <P (e”’N_EE[NZ}ﬁ;)eWM/ 5 Zyds > x — 331_77> ,
< —0o0

where M = sup, 5 ¢(Bs — (Q — «)s). In view of Lemma 3.3, we have for all
e > 0 that

P (eVN_fEWQ]F(i)/ evB?sts >x — xl_”) < 40 ,
‘Z‘ —00 :1:')/7276
and hence (3.8) implies for all € > 0 that
P(W > z) < e(2(Q—a)*—v(Q—a))E[N?]
2/ _
% (F(Z) ) W(Q a) R(Oé)2 + C:C_p(l_n)
o o o1 T
< |2 H0(@=0) p(r)3 @) _Fla) | o -2@-a)-
5 (@Q=0a)

+ C’x—P(l—ﬁ) + C’x_%"{

for 0 < p < B, for some constant C' that may depend on 7 and €. Recall that
we defined 7 > 0 by (1 —7)8 = %(Q — a) + 7. We conclude that
(7.9) P(W > z) < |Z‘—4a(Q—a)F(2)%(Q—a) f(a) + O3 @Q—a)=n
x;(Q_O‘)
for all n < 7.
Now, we consider the lower bound. We have
P(W >z) > P(W; >z +2'1) —P(Wy < —2'™7)
(7.10)

>PWy>x+a 1) — Cq5 (@)=
for all n < 7. We define for all C' > 0 the random variable

_ 2 _ e}
W(L_¢)= evN”gE[NQ]F('i)ewC/ VB8 7. ds,
|2| —L_¢

and by the Williams decomposition we get, as in (7.6),

2 o0
7% la:W e'YN_WzE[NQ]}r(Z)GWM/ 678? Zsds = W(L*M%
z Ly

where M = sup, > o(Bs — (Q — «)s) and M, B* and Z; are independent.
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Let 1’ be such that (1 — n’)% = %(Q —a)+1'. One has ' > 7. Consider
the event £ defined by

67N—§E[N2]M /Oo B Z.ds < 7

|Z|4 —L_m

Trivially, we have
P(Wy >z +2'7) > P{W1 >z +2' 7} NE).

Under {W; > z+2'"7} N &, we have €™ > |z|7". Indeed, if e?™ < |z|", then
under £ we get W1 < x, which is impossible. Thus M > — % In |x|, whereby

Ly > Lfr’—/ln|x\ and hence W(Lfilnbv\) < W(L_pr). We conclude that
Y Y
(7.11)
IP(W1 >z + (lZlfﬁ)
>PUW(L_y,,,)>o+ 211N E)
Y
1-7 —(1-n') S5 +e
> P(W(L )>x 427" - Cx v

2 In |z|
.

> ’Z’—éla(Q—a)F(z)%(Q—a)

= B 1-7y = 2(Q-a) ¢
XE{ / e"s Zsds ](334-;1: ™5 -
_Lfn—/ Inz T
L
for all € > 0, where in the second step we used Lemma 3.3.
We claim now that
(7.12)
2(Q-a)
o0 ] 20— > o ’
IE[(/ eVBs sts)W(Q a)] - E[ / eV5s Z ds <Czx™ 7.

—-L

—00
7% Ina

Combined with (7.11) and (7.10) this yields

2

P(W > 1) > |o| Q7 F(z) (z — g1—n)3 (@)
rT—x 1)

2 [
|
S
2

(7.13) > o] @) p(p) 3@ K@) 5 -20-a)-
x;(Q*a)
for all n < 7. Then (7.13) and (7.9) finish the proof.
It remains to prove (7.12). By Remark 3.2, the process BY defined for

s < 0 by the relation Bg =By, + 2 ng s independent from everything

/
—%lnz
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and distributed like (BS)s < 0. We can then write

o0 (e} !
/ "B Z.ds = A+ 27" B,
—00
where

oo 0 .
A= B Z.ds and B= Bz ds.

—L / —00 771nz
—Z,YLlnz

We now distinguish two cases: %(Q —a) < 1and %(Q —a)> 1.

; .2 2(Q-a)
First case: ;(Q —a) < 1. We use (1 + u)» -1<
u > 0 to bound

%(Q — a)u for

E[(A + w_n/B)%(Q_Q) — A%(Q_a)] < E(Q _ a)x_”/E[BA%(Q_O‘)_l]'

2

By Hélder’s inequality with p € (1, %)’ we get
E[BAS @)1 < BB rE[A1G @)D} < o

since B is equal in distribution to LOOO VB Z.ds and A > I° e8¢ Z ds, which
has negative moments of all order by Lemma 3.3.

Second case: %(Q —ag) > 1. Let p:= %(Q — «). By triangle inequality

we have
E[(A+ 27" B — A") < ((BlAP)Y? + 277 (B[B?))V/7)" — B[A7]
< ((]E[Ap])l/p + Cw—n’)p — E[AP] < Oz "E[AP]'"VP < O
where again we used that A and B have moments of order p. (I
Remark 7.2. A simple variation of the proof yields the result (3.9).

7.2. Tail estimate around two insertions. For i = 2,37 let

(o
W, = / MMV(de’).
B(zi,1) |27 — 279

We will suppose that |z2| > 2, |z3] > 2 and |z2 — 23] > 3 so that the balls
B; = B(z;,1) are well separated. We denote by 772 and 73 the exponents
occurring in the tail estimates of Lemma 7.1 applied to Wy and W3. Set

~ _ 1 1 ~ _ 1 1
=mA(Q—-a3) g, J3=13A(Q—a2) A3,

Then we have

9The indices 2,3 occur in the applications of this estimate in the main text.
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LEMMA 7.3. Forall B < 8 := (%(Q —ag) +12) A (%(Q —az) +13),

3 —
s 20_a,) R _
PV, + Wy > ) — 3 [ ) @) 0| s
=2 7 '

Remark 7.4. The above theorem is useful when 5 > %(Q—O@)\/%(Q—ag).
This is the case when ao and ag are sufficiently close to each other.

Remark 7.5. The proof of Theorem 7.3 is based on the fact that the two
variables Wy and W3 are “nearly” independent. Along the same lines as the
proof of Lemma 7.3, one can in fact show that for all py,p3 > 0 there exists
some constant C' > 0 such that

(WP W) < CE[WJ[E[WE?)

Proof. The strategy here is to apply the previous lemma with one inser-
tion. We start with the upper bound. We have

(7.14)
IP(W2+W3 >$) SIP(WQ—FWg >x, Wy > g)—i—IP(WQ—i—Wg >x, W3 > %)

The variables W5 and W3 are nearly independent, as we now argue. We

consider the circle of radius % centered at zo. By the Markov property of the

GFF, we have the following decomposition inside B(za, %)

X(2') = X(2') + P(X)(2"),
where P(X)(z’) is the Poisson kernel of the ball B(zs, 3) applied to X and X
is a GFF with Dirichlet boundary conditions on B(z2, %) independent of X on
the outside of B(z2,2). On the smaller ball B(zs,1), the process P(X)(z') is

a smooth Gaussian process; hence for all p > 0,

E[epSUP\x’fm\ <1 P(X)(xl)] < 0.
We set H = sup|,/_,,| <1 P(X)(2"). Of course, we have

Wy < W,

where Wg is computed with the chaos measure of X. Here Wg, W3 have mo-
ments less than orders %(Q — «;) respectively [12, Lemma A.1] so that for all
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u,v > 0 and all € > 0,

P(Wy > u, W3 > v) < P(e" Wy > u, W3 > v)
1 Ng(Q—ag)—e’
<——E[W,
w5 (@-az)—¢ W
1 =2(Q-az)—¢ (2(Q—az)—ye')H11/ 1/
< —5———E[W, JE[e? 2=V H PP (W > )1/
2 (Q—az)—¢

C

Gan—c FG@ a0

L@ 1y )

X
for all p,q > 1 such that % + % = 1. By taking ¢ close to 1, we conclude
C

1 P <
(7 5) (WQ > u, W3 > ’U) Qfaz)fev%(Qfag)fe

2(
u”
for all € > 0. Therefore, exploiting (7.15), for all € > 0 we have

IP(W2+W3 >x, Wy > g)

gIP(W2+W3>x,W2>g,W3 \/E)+IP(W2>§,W3>\/E)

B ASIWN

QIP(W2>$—\/.E)+ 5

We get a similar bound by interchanging 2 and 3. Inserting to (7.14) we obtain

]P(WQ—I-Wg>x)<IP(W2>.T—\/§)+IP(W3>.T—\/§)
C

+ + ,
x%(@*aﬁx%(@*a?)*ﬁ x%(Q*QS)x%(Q*OQ)*G

and then we use Lemma 7.1 on one insertion.
Now, we proceed with the lower bound. We have, exploiting (7.15), that
for all € > 0,

PH{Wy >z} U{W3 > x})
IP(WQ > a:) + IP(Wg > x) — ]P(WQ >x, W3 > l’)
P

C
m%(Q—a2)+%(Q—a3)—€7

IP(W2+W3 > x) >
Z

WV

(W >2)+P(W3 > x) —

and then we use again Lemma 7.1. O

8. Proof of Lemma 3.4 on the reflection coefficient

Recall the definitions of the reflection coefficients R and R in (3.12) and
(3.10). For later purposes, we prove a more general result than Lemma 3.4,
which we state now.
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PROPOSITION 8.1. Let 3 < ap < a3 < Q. Then

lim (o1 —ag + a2)Cy (a1, a0, a3) = aR(as),
al\a3—a2

where a = 2 if as < ag and a =4 if as = ag.

Proof. We use the formulas (1.6) and (2.11) to write

—S

CW(alﬂ a2, a3> = 2M78771F(8) H ‘Zi - Zj|72AijiaiajE (/ F(xv Z)M’Y(de)> ’

i<j c

where

(8.1) F(z,z) = ﬁ (Qﬂ;ﬂ,)vak .

k=1

We take z; = 0 and |z9|,|z3] > 2 with |29 — 23| > 2. Let oy = a3 —ag + €
(with € > 0) so that —s = %(Q —ag) — 5. Write I as Fe to denote its explicit
dependence on €. We need to study the limit

2 €
5(Qes)—5
lim E (/ Fe(l',Z)MW(dQ{IJ)) .
C

el0
Consider first the case ap = a3 = a. Set A; = B(z;,1) for i = 2,3 and the
complement A, = (A U A3)¢. Let W, = fA¢ F.(z,2)M,(d?z) for i = 2,3 and
Wee= fAc Fe(l',Z)M»\/(d2ZE) so that
/ Fﬁ(x’ Z)M'y(d2x) = Wc,e + WQ,e + W3,e~
C

Assume first %(Q —a) < 1. Then

(Q=0)=3] S B[(Wee + W + Wy)7 (@ 77]
(Q—a)

2N

E[(WQ,E + Wg,e)

2 _ € €
< E[W,, 4 E[(Wae + Wye)s @071,

In order to treat the second expectation above, we apply the double tail esti-
B |$|v(a2+a3 . |w‘7(a2+0¢3)

mate Lemma 7.3 (with Fy(z) = " and Fs(z) =

|x—2z3|723

W) to get
P(Wye+ W3 > x)
= (Jzal "2 @ By ()97 R(ag)a (@7
[zl 505" D Ey ()7 97 R(ag)a” 197 ) (L4 027
= 2[zs — 252"V R(a)a @1+ 0@)

for n > 0, uniformly in e.
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Since Fe(w,z) < C(1 + |z|77 143 < 13) on Ae, we deduce that as e — 0,

2(Q-a)-<
E[W. | converges to 0. Indeed, by Jensen,

2(Q-a)- £

A F.(z,z)|z|;* anz)V

BIW ) < B3OS =

Ac
—Y€E _ Z(Qia)i£
< C(/A (1+ |z[™7 1{|x\<1})\x!+4d2x>” .

and this quantity is obviously bounded in e. We deduce that
lim €5 /F 2, 2) M (d22))5 Q=075 = 4(Q — )]0 — 25| 2@ R(a)
and then (note: we know that the z;-dependence has to drop out!)

lir% eCy (e, , ) = ,uv( Q-)8@Q a)I’( Q(Qv_a))}_?(a) =4R(«).
€E—

If %(Q — a) > 1, we have by triangle inequality and e small enough so that

p=2Q-a)-5>1,
[E(Wae + Ws o P]'P < [B(Wee + Wae + Wy )P /P

< [B(We,)?]'P + [B(Wa,e + Wy, )PV?,

and we can conclude similarly as the previous case.

The case a9 < «g is similar: we use the tail estimate Lemma 7.1 around
the a3 insertion. The difference of a factor of two results from the sum over
two insertions in the double tail estimate. O

Remark 8.2. For the unit volume quantities defined in (4.1) and (3.10),
we get

lim (a1 — as + a2)Cy(ar, ag, a3) = aQ(Qfag)R(a;;).
arlag—asz v

9. The BPZ equations and algebraic relations

This section is devoted to the study of the small z asymptotics of the four
point functions 7_y and 7_ 2 leading to the proof of (4.19) and (5.8). The
proof of the latter is the techmcal core of the paper and the key input in the
probabilistic identification of the reflection coefficient.

9.1. Fusion without reflection. As mentioned in Section 4.2, relation (4.19)
was proven in [28, Th. 2.3] with the assumption %%—7 < ai+3 < Q or in other
words, %—F% <oy < % This interval is nonempty if and only if v2 < 2. In this
section we will remove this constraint. The reason for the restriction %—l—% < aq

was the following. In order to prove (4.19), one must perform the asymptotic
expansion of 7_ 3 (z) around z — 0 (4.13) as explained in Section 4.2. In the

case %—i—% < o, the exponent 2(1 —c¢) that is equal to y(Q —aq) is strictly less
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than 1. Hence there are no polynomial terms in z and Z in the expansion (4.13)
to that order. (Such terms are present in the small z expansion of |F_(2)[%.)
In the case a1 < % + 3, the asymptotic expansion of T_% (z) around 0 is more
involved. Nonetheless, we prove here that

THEOREM 9.1. We assume the Seiberg bounds for (=%, a1, az,a3), i.e.,
22:1 ap >2Q+ 3 and ap < Q forall k. If 3 <oy < %, then

T_1(2) = Cylar — 3, a2, 03)[F-(2)[”
(91) ™ v 2
- 3 2 C’W(a1+§,a2,a3)|F+(z)|
DI+ T - )

and the relation (1.7) holds.

Proof. First let 42 < 2. Equation (9.1) was proven in [28, Th. 2.3] in

the case %—F % < a < % This result extends to the interval % < ap < %
by analyticity. Indeed, for fixed v € (0,+/2), the interval 2+ % < a < %

is nonempty. Furthermore, by Theorem 6.1 both sides of equation (9.1) are
analytic in a; (with other parameters fixed) in a neighborhood of the interval
7 <a; < % seen as a subset of C. Uniqueness of analytic continuation thus
establishes (9.1) for 42 < 2. 4% = 2 is obtained by continuity in . (See
Remark 2.3 on this.)

Now let 42 > 2 and 2 <o < % The proof of (9.1) follows from the study
of the function 7_ ! (z) as z tends to 0. More precisely, by the discussion in
Section 4.2, it suffices to show that one has the following expansion as z goes
to O:

T 2(2) = Cy(an — 1, 00,a3) +Cz+Cz
(9'2) - M:CW(Ql + %’ 0422, 043) ’Z‘W(Qfal) + 0(|Z|'y(Qfo¢1))7
N2 + 4~ )

where C'is some constant. Thus by (4.5) we need to study the function (4.6)
with ag = —3. To streamline notation let us set

2 3 _a
_ |z — z\%|x|1(zk:1ak 2)

. K =
(9 3) (27 LL’) ‘$|7a1 |[L‘ _ 1|’ya2

and for any Borel set B C C,
(9.4) K() = / K(z,2) M, (d%%).
B

Then S_%(z) = Kc(z), where S_y was defined in (4.6). We will also write
K(z) for Kc(z). We set p := %(22:1 ap — 3 —2Q). Then

(9.5) T_y(2) = 20~ Py T (p)EIK(2) 7).
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A Taylor expansion yields the relation
(9.6) E[K(2)7"] = E[K(0)77] 4 20:E[K(2) 7] |.=0 + 20:E[K(2) ] jz=0 + R(2),

where R(z) is a remainder term whose expression appears below (9.8) (not
to be confused with the reflection coefficient!). First, notice that the term
0. [K(2)7P]|.—¢ is well defined. Indeed, we have

2
OHEIK(E) Pl = -p B[ [ TKO.2M @207

Cc

1/20 where in this

Split the z-integral over C in two parts, over By /; and over B
section we use the notation B, = B(0,7). Then
1
]E[/ —K(O,x)Mw(dzx)K(O)_p_l} <2EK(0)P < oo
B, ||
as GMC measures possess negative moments of all orders (see Section 12.2).
For the integral over By, we use the Cameron-Martin theorem (Corollary 12.2)
to get
1
E[/ 7K(o,x)M7(d2x)/C(o)*P*1]
By 2

]

2
o1) <CE[[ T p @) ]
1/2

2
=cf o B ( /«: K (0, u)e ¢ (d%)) 7] P
1/2

To bound the last expectation we note that the integrand in the u-integral is
bounded away from 0 for € By and u € B(3,1). This ball is far away from

the singularities, hence on u € B(3,1) the kernel K(0,u)e?*%@% is bounded
from below away from 0 . Thus

E[( [ KO e @) ] < CB (BE.1)) 7 < o

as the measure M, possesses moments of negative order (see Section 12.2).
The final integral in (9.7) converges as the constraint a; < % guarantees that
14 ~vyoq — 7—22 <3 - 7; < 2 since v2 > 2. The same argument shows that
Z0:IE[(KCo(2)) 7P]|5=0 is well defined.

It remains to investigate the remainder R(z), which by the Taylor integral
formula is given by

(9.8)
R(z) = / -y (202BIIC(t2) ¥] + 2220, 0 B[KC(t2) 7] + 22O2E[KC(t2) 7] ) dt
0

= Rl(z) + RQ(Z) + Rg(z)
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Expression (9.8) consists of the three terms R;(z), ¢ = 1,2,3. The first
term in (9.8) is given by

Ri(z) = /01(1 — 1)2202E[K(t2) Pldt = r1(2) + p1(2),

with

1 1 Y
« /0 (1-ne| /(C oK M () (K(12) ! ar
pi(z) == plp+ 1) %522,

« 1B LK (te, 5)M, (%)
0 c (z —tz)

The terms po, 72, p3, r3 are defined similarly with respect to R;(z), i = 2,3. We
get the expansion of R(z) around z = 0 thanks to the following two lemmas
(whose proof is postponed right after):

2

(K(tz))pﬂ dt.

LEMMA 9.2. The following holds:
(=) + ra(2) + 7a(z) = ~pAI@) 4 o[z (@-eD),

where

S ETE T @M)E[(/CK (0,0)e7 O (i) .

LEMMA 9.3. The following holds:

p1(2) + pa(2) + p3(2) = o(|2|1 @),
From these two lemmas, one can deduce (9.2). Indeed, since

muCy (a1 + 3, a2, a3)
2 o 2 « )
(=ICEIE+ % = 35)

20~ Py pl(p)A =

the above two lemmas imply that

muCy (a1 + 3, a2, a3
2 2

(=T + 5 - 25

2
which yields (9.2) thanks to the fact that 7:%(0) = Cy(o1 — 3,02,03) and
using (9.5) and (9.6). O

20 Py 'D(p)R(2) = — |2[1@=01) 4 o(|2[1(@e)y,

Proof of Lemma 9.2. We first study the r1 term. The term r; is analyzed
in the same way as a similar term in the proof of [28, Lemma 4.5], so we will be
brief. First, as above, we want to restrict the z-integral to the ball By /,. The
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integral over BY /2 produces an O(2?) contribution: indeed for z small enough
(say [2] < 1/4),

1
IE[/B%2 mK(tz,x)Mw(de)lC(tz) P 1] <I6EK(t2) P < o0
uniformly in |z] < 1/4 and ¢ € [0,1]. This can be seen by restricting the
integral in IC(tz) to a fixed ball away from singularities and then using the fact
that GMC measures possess negative moments of all orders (see Section 12.2).

Now we can focus on the z-integral over the ball By /5. By the Cameron-

Martin theorem and the change of variables x — ytz, we get

2 2 2+ﬁ77a ! ﬁf’ya
r1(z) = —p (- — D)2 77 ; (1=t

2
/ ly— 17
X
B, (y—1)2yperjyzt — 1]ree

2t[z]

X ]E[( / K(tz, u)esz@yZv“))M,y(d?u))_p_l} dtd%y + O(22).
C

The dominated convergence theorem then implies

2

2
ri(z) = —p2 (4 — 1)|z(@=e1)

2
1 2 y— 1%
x [ (1—t tévaldt/ _y=e e
oo TRV
—p—1
X]E[(/K(O,u)eV2G(O’“)MW(d2u)) " (=@,
C

Applying equation (12.10) to the y integral finally yields

2

r o
(9.9) ri(z) = 79%14,47(@—&1) + of|2["(@0)
4 % —va; +1
with
™ 2 —p—1
A= e T e / K(0,u)e”" ¢ M, (du) .
(=TGR + 5 - 2gY) (L )"

Since r3 in (9.8) equals 771, it is also given by (9.9). Finally, ro yields

ro(z) = — Az @=1) 4 o(| 2@y,

)

72
Py — Y +2
2 & —ar+1
Altogether we then get

PL(2) + a(2) + 7(2) = —pA[=[1O7) 4 of |2 (@), =
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Proof of Lemma 9.3. We will prove that p;(z) is a o(|z|(@=1)); the ar-
gument for py, ps is similar. We will bound the expectation occurring in p(2).
Let us denote

(9.10)

(B, t2) ::E[(/B |l‘_1tZ|K(tz,x)My(d2x)>2(/(CK(tz,u)MW(d%))_p_Q]

We shall prove
(9.11) I(C,tz) < Oltz|/(@—1)=24n

with 7 > 0, which proves our claim since (9.11) implies
1
()] < plp+ DI [ (- 01C )
1
< C‘Z|V(Q—a1)+77/ (1— t)tV(Q—m)—Q-H] dt < C‘Z"y(Q—al)—i-n,
0

where we used the fact that the ¢ integral converges at 0 as v(Q — a1) — 2 =
2> -1

We can now put ¢ = 1. We will bound I(C, z) for z small. For z small
, W is bounded in B% and we have I(B%,z) < CE[K(2)7P] < C.
Since I(C, z) < 2(I(By, 2) + I(B%, z)), it suffices to bound I(By, z).

Next we bound I (A4, z), where A is the annulus centered at origin with radii
L|z| and % and L > 1 will be chosen later. First, we use Jensen’s inequality in
the normalized measure 14(x)K (2, z) M, (d*z) to get

(A 2) < E[/AM_{ZPK(Z,Q;)MM%) Ka(z) 7.

Up to an additive independent Gaussian random variable, the restriction of X
to B1 satisfies a continuum version of the FKG inequality (see Section 12.2),

enough

2
and therefore

. [/A Ix—lzlzK(z’ )M, (@) Ka(2)# 7|
) C]E[/ |55—12|2K(Z’x)M7(d2x)} E[A(z) P}

e |x—z|
aper
1ﬁ—2
<colefrom [ty < Ol (@ p )
ly|>L

|y[re

where the last integral was convergent due to a; > 7. This fits to (9.11)
provided we take L = |z|7% with § > 0.
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We are left with estimating I(By,|, 2). Let us first consider the part not
too close to the singularity at z. Set S := By, \ B(z, |z|'*¢) for some € > 0,
to be fixed later. We have

1 2 2 —p—2 Py —2—2¢ Py 2 Py —p—2
B [( [ g KM @) ) K < B () )

Then for r € (0,2), using the fact that g(z) < K(z), we get
E[Ks(2)*K(2) 7% < E[Ks(2)"(K(2) 77" < C(EKs(2)™)",

where in the second step we used Holder inequality and bounded the negative
GMC moment again by a constant. Finally, since |x — z| < 2|Lz| on S, we get

2 qr11/q
sicsimyin <t [o ([, wrmaecn)|

< C|Le @ ot Dr—dvtar?

Lz

9

where the last estimate comes from the estimates of Section 12.2. Here we
need to assume that rq < ,;% A %(Q —a1). Notice that since we assume 3 < o,
then % > %(Q —aq) so that given ¢ we need to have 0 < r < %(Q —aq). The

ol —
optimal choice for r is r* = Fte-o (this is less than %(Q —aq) for oy < %),

) ) vq
in which case
2

E[KCs(2)™/ < O|Lz|2a GO~

Gathering everything we conclude

- K/s E i z|K(Z’f’3)Mv(d2x)>2 /C(z)—p—ﬂ

< CLaEHQ7o | 2255 Q0"

We can now fix 9, ¢, e. First notice that

1 /v 2 1 v\ 2
}Gro-a)'@-a -} oo -3 >
Hence choosing ¢ sufficiently close to 1 and then € < €(q) and finally § < d(e),
I(S, z) can be bounded by (9.11).

We are thus left with proving I(B,z) < C|z|"@=®1)=2%1 where B :=
B(z,|2|}*€). An application of the Cameron-Martin theorem (in fact, we use
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Corollary 12.2 recursively) gives

(9.12)
K(z,z)K(z, x’)e”QG(x’a’/)

B2 (x—2)(a' —2)

—p—2
x E [(/ K(z,u)eVZG(I’“HVQG(II’“)Mv(dzu)> ] d*xd®’
C
2 2
cof o= 25! — o
S e faperfa’per|r — o/
—p—2

2
Jo
x [E / Ju = 2| M., (d*u) d*zd*x’,
B

, a2 =
2

I(B,z) =

where in the upper bound we restricted the w integral to B 1 By a change of

variables x = zy, 2’ = 2y this becomes
(9.13)

Ay, y, z) d*yd®y

z- 2
HB@<OM2MM/ y—1F Yy —1F
) ~ _
B(1,]z]¢)2 ly — /|
with

—p—2

2
2
o = 212 M'y(d2u)

A,y 2) = E /
B

L ulreru =y lu — yz[r?
2

Note that the only potential divergence in the y,7’ integral is at y = 3 since
72 > 2. Hence we need to study how A(y,y’, z) vanishes on the diagonal. The
behavior of A(y,y’, z) as y — ¢’ is controlled by the fusion rules (see [28]). In
the case at hand we have four insertions, located at 0, zy, 21/, z, that are all
close to each other as z — 0. Fusion estimates have been proven in [28] in the
case of three insertions. A simple adaptation of that proof to the case of four
insertions is stated in Lemma 12.3 of the appendix. The estimate for A(y, v, 2)
depends on the relative positions of the four insertions. In our case we have
lzy—z|V |2y — 2|V |zy — z¢/| < |z| A|zy|A|zy/|. This means that the insertions
2y, 2y, z will merge together way before merging with 0. We will partition the
integration region in (9.13) according to the relative positions of these three
points or equivalently the relative positions of y, 4, 1. By symmetry in y,y’ we
then have three integration regions in (9.13) to consider:

o Let A; := {|ly —1] < |y — 1] < |y —¢'|}. Then on B(1,|2|°)? N Ay, by
Lemma 12.3 (applied with y; = 2,92 = 2¢/,y3 = 2y, y4 = 0) we have

Ay, 2) S OPL—yf |33 @3 (G+a—Q)%,
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i 103y 2 _ 1 2)2
Since 2 — 2y + (5 + a1 — Q) = -2 +v(Q — 1) + 5(a1 — v) , we get

2

I(B(1, |29 N A1, 2) < C’Z|—2+’Y(Q_a1)+%(al_;)2
9.14 )
( ) X/ 5 - d2yd2y’.
B(LJz)2 [y — g/ 272 (5 @)

The integral is convergent if (% Q)% > 0, which is the case if 42 # 2.
o Let Ay :={ly—1] < |ly—¢| < |y —1|}. Then on B(1, ]z|€)2 N As, by
Lemma 12.3 we have

Ay, =) < Cly —yf PG QP[5 s(Frea=02,
Hence we also end up with the bound (9.14) with A; replaced by As (since
1> 0)
5 )

o Let A3 := {|ly —¢/| < ly—1| < |y — 1]}. Then on B(1,|2|°)* N As, by
Lemma 12.3 (applied with y1 = 2y, y2 = 2,y3 = 29/, y4 = 0) we have

2
Aly,y,2) < Cly —y/ |2 |y — 1|17 |25+ Q)

since %(377 -Q)?% - %2 — 327y -Q)P*=1- %. Hence

2
_ o)t h (a2 —1-T
I(BNA3) < Cl7| 2Hr(@-entiln )2/ L 2_|; 24_ 3 d2yd?y’.
B(1,]z]¢)2 ‘y_y/|’Y 2( 7—Q)

The integral converges since 2 — %(27 —Q)?=4- %QQ < 2. O

9.2. Fusion with reflection. In this section we uncover the probabilistic
origin of the reflection relations (1.13) and (1.14). Notice that the restriction
o < % in Theorem 9.1 comes from the second three point structure constant
Cy(o1 + 3,2, 3) in the expression (9.1): this condition is required in order
that the first weight a1 4 3 is consistent with condition a; + 3 < @ of the
Seiberg bound (2.8). We prove the following extension of Theorem 9.1 to the
case ag > %

THEOREM 9.4. Let Zi:l o >2Q+7 and oy, < Q for all k. There exists
n > 0 such that if Q — a1 <mn, then

T 3(2) = Cy (a1 = 3, az09) |F-(2)

+ R(a1)C, (ZQ —op — %7007043) |Fy(2)]%.

[N

(9.15)
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By the discussion in Section 4.2, it suffices to show that one has the
following expansion as z goes to 0:

(9.16)
T 3(2) =G, <a1 - %70427043)
+ R(Oél)cfy (2@ — Q1] — %’ a9, a3> |Z|'7(Q—Oé1) + 0(’Z|’Y(Q—a1))‘

Note that since now (@ — 1) < 1, we need a Taylor expansion only to 0-th
order. We use the notation introduced in the proof of (9.1). Recall that

’f]} _ Z‘g |x’7(zz:1 O‘k*%)
+

oo — 1o

K(z,z) =

9

and for any Borel set B C C,
K(z) = /B K(z,2) M, (d%).
Recall also that we write K(z) for K¢(z), use the notation B, = B(0,r), and
set p = %(22:1 ap — 3 —2Q). Since
(9.17) T_1(2) = 207"y T (p)EK(2) 7]

and T_%(O) = Cy(oq — 3, 2,3), in order to get (9.16), it suffices to prove
that

E[K(2)""] — B[K(0)"7]

1 — —a —o
= SHT () R(an)C, (2001 - %,042,043) |2[1(@7e) 4 o(|5[1(@)),

The leading asymptotics will result from the integral defining X in a small ball
at the origin. Let us denote B := B,1-¢ = B(0, |2|'=¢) with &€ € (0,1) to be
fixed later. We define
(9.18)
Ty :=E[Kp(2) "] —E[L(0)™"] and Tp:=E[K(2)?] —E[Kpe(2)7"]

so that
(9.19) E[K(z)7P] —E[K(0)?] = T1 + Tb.

We then get the desired result thanks to the following two lemmas (where
¢ will be fixed in the proof of the two lemmas):

LEMMA 9.5. The following holds:
Ty = of|z[(@7)),
LEMMA 9.6. The following holds:

1
T, = 5u" D) Rlan)Cy (20 = a1 = Gy an,a) 2197 o Q).
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Proof of Lemma 9.5. By interpolation, we get
1
Tl <p [ B[Ka(2) - KO (#n() + (1~ () 7]
0

< CE [[Cpe(2) = K(0)| (5(0)) 7]

(9.20)

2 2
where we used Kpe(z) = CKpe(0) and K(0) = Kpe(0) since |z —z| = > Clz| =
on B¢ Since K£(0) = Kp(0) + Kp(0), we obtain |17| < C(A; + Az), where

Al = E[ICB(O)ICBC(O)_p_l] and A2 = ]EHICBL(Z) — ’CBC(O)|ICBC(O)_p_1].

Using Cameron-Martin theorem, we get for A; that

—p—1
(/ e K(0,u)|u — a:|72M7(du)) ] d*z.

Since |u — x| < 2|u for |u| > |z|'~¢, we may bound the expectation by

2 —p-1
/ ju] 791~ M, (d?u)
Ju|>|z[1—¢€

where we used the GMC estimate (12.5). We conclude that

2
J-o_
A< c/ 2| F
ol <=

(a1+3-Q)2
2

(921) E < Of2| -0

a Y_0)?
(922) A < C‘Z‘(lfg)(( 1+g Q) +7(Qfa1)).

Hence A; = o(|z["(@=)) if, e.g., £ < % and 7 is small enough.
Next we bound Ay. Let A be the annulus A := {z € C; |z|'~¢ < |z| < 1/2}.
We can split the numerator in Ay into |ICBf/2 (z)—lCBf/2 (0)| and |Ka(2)—K4(0)]

2
by means of the triangular inequality. On BY /o We can use ||z — z\% —
2 2
2|7 | < Cla| T |2 to get
E[|Ks; ,(2) = K, (0)|[Kpe(0) 771 < CJ2|E[K g, (0)Kpe(0) 7]
< O2|E[Kp:(0)7P] < Cz].

2 2 2
Finally, using ||z — 2|= — |2/ 7| < Clz|= 2| on A and then applying
Cameron-Martin, we get

E[[KA(2) = Ka(0)[Kpe(0) 7]

—p—1
(/|>| . K(o,u)yu—x|—72M7(d2u)) ]d%.

Since |z|'~¢ < |z|, we can bound

"/2 1
<Clal [ Jaf¥ 1mE
A

2
/ K(0,u)|u — =™ M,(d*u) > C |u| 7% M (dPu).
ful>[2[1-€

|u|>z|
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Then the GMC estimate (12.5) gives
E[|KA(2) = K(0)|Kpe(0) 7]

2
(9.23) <Ol [ fafFriehoni-ar ey
A
< C'|Z|§+(1_§) (W(Q_al)%(al_%)g) - 0(’Z|7(Q—a1))

for £ < & and n small enough (since o — % > 2 —n). Hence T} = o(|z[1(@=e1)),
(]

Proof of Lemma 9.6. First we show that it suffices to restrict K(z) to the
complement of the annulus Aj, := {x € C;e "|z| < |z| < |2/'¢} where
h > 0 is fixed. It will serve as a buffer zone to decorrelate the regions
{z € C;|z| < e ?|z|} and {z € C;|z| > |2/'7¢}. Interpolating as in (9.20)
we deduce

[BIK ()7 — Kag ()] < B[, (2)K5e(0) 7).
Using the Cameron-Martin theorem we get
(9.24)
[E[(2)7P = Kag (2)7"]

2 —p—1
< 0/ 2 — 2| ¥ |2 M E [(/ K0, u)u— x!‘”gMy(du)> ] iz,
A, Be

The expectation was estimated in (9.21) so that we get

(9.25) IE[K(2) 77 — Kas (2) )] < || 179 ) (@) +2 (@ -3)2)
For ¢ < 4 and n small, this yields
(9.26) [BIK(2) " = Kag (2) 7] = of|2[@0).

Therefore, we just need to evaluate the quantity
E[Ka; (2)7"] = E[Kpe(2) "],
where we recall the definitions B¢ = {|z| > |z|'7¢} and AS = B°U Bony-
Hence Ky4q (2) = Kpe(z) + ]CBefh|z| (z). We use the polar decomposition of the

chaos measure introduced in Section 3. Let |z| = ™. Then

2r (16t
Kpe (> /’/ ~(Q-ans)

’ —s+1i60 Z|

|1 _ efs+i9|'ya2

2
2 —5+1i6
By (@on)s) [T — 2T 2
B (2 / /+h T gy Vo (dsd0) = I

(e-sOlertartas=3) \ 1) N (dsdf) := K,
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The lateral noises Y that enter the definition of N,(dsdf) in K and K? are
weakly correlated. Indeed, from (3.2) we get

(9.27) — e S < E[Y(5,0)Y(s,0)] <2
for all s < (1 —¢&)t,s’ >t+ h and 6,0" € [0,27]. Then define the process
P(Sa 9) = Y(Sa 0)1{s<(lf§)t} + Y(Sa 0)1{s>t+h}'

Let Y be independent of everything with the same law as Y, and define the
process N N
P(Sv 9) = Y(S’ 0)1{s<(1—§)t} + Y(Sv 0)1{s>t+h}-
Then we get
(9.28)

E[P(s,0)P(s,0)] — e & < E[P(s,0)P(s',0)] < E[P(s,0)P(s',0)] + 2.
Let N be a unit normal variable independent of everything. Then inequal-
ity (9 28) implies that the covariance of P+ e ~28 N dominates the covariance
of P and the covariance of P—I—\f 2e 28’]\7 dominates the covariance of P. There-
fore, we get by Kahane’s convexity inequality (see [46, Th. 2.1]) with the convex
function z € Ry — x7P (applied to (P + e 28N, P) and (P + V2e 38N, P))
that there exists some C' > 0 such that
(9.29) e CFER[(K + K277 < B[(K! + £2) 7] < CHER[(K + K£2) 77,

where K2 is computed with Y instead of Y. Let

2

(9.30) B = Bren—(Q-on)(t+h) =5t

Then by the Markov property of Brownian motion,

[N

—s—h+if _ i|% .

. 2m oo ~ ’e >
(931) IC2 = 5/ / ev(Bs_(Q_al)S) |1 _ |Z|€fsfh4|>i|9|’7a2 N’Y(d(h—’_t+8)7 d9)7

where B is a Brownian motion independent of everything and N is the mea-
sure associated to Y. Moreover, by stationarity of ¥ and its independence of
everything we may replace N. (d(h+t+s),df) by N. +(ds,df). As a consequence,
(9:32)  E[(K'+ Be_K*) 7] S E[(K' + K) 7] S E[(K' + Bep k) 7],
where

3 / ¥ B Q-9 7 g
0

]E[(Y(.s 9))
with Z, = 2“ 1Y (5:0)=2 Lo (recall that this is a slight abuse of nota-
tion as Zj is not a function but a distribution) and

2
(Lxe ™™

9.33 = —
(9.33) = L x [le e
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By the Williams path decomposition Lemma 3.1 and (3.7), we deduce

o0 {e3 ~
(9.34) jo3 1A gy M / B 7, ds,
—L_p

where we recall M = sup,(Bs — (Q — a1)s) and L_jy is the last time B hits
—M (along the negative axis). Thanks to (9.29) and (9.32), we want to study a
lower bound on E[(K! 4 Bc_K3)~P] and an upper bound on E[(K!+ B K£3)7P]
to conclude.

9.2.1. Lower bound on E[(K! + Bc_K3)7P]. Let us use the notation J4 =
fi,A e¥Bs' 7 ds and J for J.,. We have

E[(K 4 Be_K3)7P] > E[(K! + Be_e?™.J)7P].

Using the fact that M has exponential law with parameter 2(Q — o) (and

2
therefore the law of e?™ has density Q(QW;(”)U_I_?(Q_C”) dv on [1,00)), we get

by first integrating over M that
E[(KC! + Be_K?)7P] = E[(K") 7]
= 2 (K4 Bevd) P — (K P)o O
1
2(Q—a1) CW(Q*QI)E [(ﬂ])%(Q_Oﬂ)(K:l)_p_%(Q_al)

iy
[ o e

1

> Q(Q;Oél) C%(Q*al)E [(5J)%(Qfa1) (Icl)fpf%(Qfm)}

x/ ((l—i-w)_p—l)w_l_%@_o”)dw
0

2(Q-01) (@) N(—2(Q —a))T(p+ 2(Q — 1))
T L'(p)
« E[J%(Q—al)]E[6%(Q—a1)(Kl)—p—%(Q—al) 7

where in the second step we made a change of variables w = B ,ch‘]v and for
the lower bound we took the integration over w > 0. In the last step we used
Lemma 12.6 to compute the integral, and we also used the independence of J
from everything. We end up with

(9.35)
B! + fe k%))~ BI(C) 7] > e @B 55 @men gety i @],
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where we have have set

W= u_%(Q‘O‘l)R(al)F(p +3(Q—a))

and R(a1) = u%(Qfal)F(—%Q;al)) Q(Q;al)E[J%(Qfal)] is the reflection coef-

ficient defined in (3.12). We point out that W is negative because of the term

F(—M) appearing in the expression of the reflection coefficient. The re-
Bt

maining expectation can be computed thanks to the Cameron-Martin theorem

2
applied to the term B7@7%1) (

(using ¢t = In ﬁ)

defined via (9.30)). More precisely, we have

33(Q=0a1) _ (2(Q-01)Brin—2(Q-0)2(t+h) —1(Q-en)t

= ’z’7(@—041)eQ(Q—al)Bt+h_2(Q_al)2(H_h)'

Applying the Cameron-Martin theorem to the term eZ(Q_O‘l)BHh_Q(Q_O‘l)z(t*h),
we get

(9.36) E[ﬁ%@*al)(/cl)ﬂ’*%@*al) =[5 QB [Kpe () P77 @ )],
where for D C C we defined

2
o~ 2%
|x|’7(2Q—041)‘x — 1|70¢2

—a1—2
[T (@),

(9.37)  Kp(z) = /
D
In the case D = C, we will write K(z) for K¢(z). Next, we claim

(9.38) E[ﬁBc(z)_p_%(Q_al)] — E[EBC(O)—ZJ—%(Q—OH)] _ 0(‘2‘7@_01)).

Indeed, the left-hand side is just 7} in (9.18) computed with a larger p and
|27 replaced by |z|7(2@=1), Tt is readily checked from (9.22) and (9.23) that
(9.38) holds.

In view of (9.26), (9.29), (9.32), (9.35), (9.36), (9.38), we have shown that

E[K(2) "] — E[Kpe(2) "]
> O (@ er O R [R(0) Q)] 1 o(|zp @)
— (1 - e CFOEKp(2)77).

The second term on the right-hand side is O(|z|¢) = o(|z|"( Q=) provided we
take £ > v(Q — aq) (this is the condition that fixes &) so that recalling (9.33),
we deduce

lim inf |2|~7(@=) (E[K(z)*”] - ;ch(z)*p])

> (14 e @R [K(0) 77 (@),
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Since h is arbitrary, it can be chosen arbitrarily large so as to get
lim inf |2 7@~ (]E[IC(z)_p - /ch(z)—P])
Z—>
>WE [E(O)*p*%(Q*al)]

1 _
= SHD(p) R(a1)C, (2Q — a1 — 7, a2, a),
where we have used the definition (2.17) of the structure constants in the last
equality. This is the desired lower bound.

9.2.2. Upper bound on E[(K' + BcyK3)~P]. For the upper bound we go
back to the formula (9.34), where we need to face the integration region lower
value L_jp;. For A > 0 fixed, we consider first the quantity

L(z) := E[(Kl + Bc+e'YM/ 6733125d3> o (ICl)*p) v < A}}.

—L_\

o0

We want to show that L(z) = o(|z|"(@~®)). By the inequality |(z+y) P —z?|
< pr P~ Ly, for z,y > 0, we get

|L(2)| < pc+E[667M/ 6783125d3 ICBc(z)fpfll{MgA}]

—L_y
< CE {/ eVBglzgds} E [B/CchB(O,%)(Z)_p_l} .

R
Recall that ( satisfies (using ¢ = In ﬁ)

Bipn—v(Q—a )(t+h)—ﬁt Y@1=2)h| 1y (Q—a1) 4B —ﬁ(t+h)
B = ettt 1 7t — ¢ 5 |z’7 1) o¥Bitn—" ’

2
and therefore using the Cameron-Martin theorem with eVB“h_WT(H'h), we get
AR {/ eVBSIsts} E [BICBCQB(O’%)(Z)_Z’_I}
R

_ ev(alf%)h’Z‘W(Qfal)e'yAE [/
R

—p—1
2
x E / \x!le*wTMw(d%)
8 <2l < %

< 067A|Z’7(Q—a1)|Z|1%§(Q—a1—%)2,

6733125 ds}

where the constant C' depends on h and we used the GMC estimate (12.5) and
Lemma 3.3. Hence, for A and h fixed, we have L(z) = o(|z[7(@=1).
It remains to investigate the quantity

U(z) !:E[(Kl - 6c+e'YM/ 6733125(618))71) - (’Cl)fp) Liv > A}}

—L_p

[e.o]
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<E [(Kl + ﬂc+e7MJA> e (’Cl)fp) 1{M>A}} ;

where recall that J4 = ff(z_A eWB?IstS. Using again the law of M, which
is exponential with parameter 2(Q — aq), and making the change of variables

’801371]‘467” =y, we get

U(Z) < my;al)E |:/ ((Icl + BCJre"/’UJA)_p o (Kl)—p) e—Q(Q—oq)v dU:|
A

2Q-a1) F(Q—a1)
=T %

x / (L = 1))y 7@y @ dy].

~vABetIa
Fa

E Jj(Q_al)IB%(Q*al)

Now we can use Cameron-Martin as in the case of the lower bound to get that
the above expectation can be rewritten as (recall (9.37))

E Jj(Q_al)B%(Q*m)

X / ((1 + y)fp _ 1) (}Cl)*p*%(Q*al)y*%(Q*Oél)*l dy]

rAaBerTA
Kl

J%(Q_Oél) >
A A Blzle=m) =2 (@), gy

Kpge(z)
X ((1 +y) P — 1)/EBC(Z)*P*%(Q*al)yf%(Qfal)fl dy] .

= [@-)E

Recalling (9.30), we have

B(|zleh)=2(@=a1) — e'YBt+h+’Y(Q*a1)(t+h)*§t — ¥ Q@—)h YBrin+y(Q—an1—3)t.
Thus B(|zle™")=27(@=1) — 0 almost surely as z — 0 (equivalently ¢ — c0)
provided ay +% > (), which is the case. Dominated convergence theorem then

ensures that the latter expectation converges to

Bl B 5 (0) 3@ ) /0 (1) = 1)y @) ay
P(=2(Q-a))l(p+2(Q— 1)) 2Q-a1), . p 2(Q-a)
= N Bl ER s 0) 75,

where we have used Lemma 12.6 to compute the integral in the y variable.
Gathering (9.26), (9.29), (9.32) and the above considerations on the upper
bound of E[(K! + B¢, K3)7P] (and using the fact that £ > v(Q — a1)), we get

lim sup |2| (@) (]E[IC(z)_p - chc<z)—p])

z—0
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2(Q — o) 2@-anT(=2(Q —a))l(p+2(Q — 1)) 2(Q-an)
ST ’ L'(p) : Bl |

x B[ ge(0) 773 (@7)]
_ L mE@-a) —1 2@ (2, 2(Q — )
= SO A @ (“2(g - ay) 2O

X E[JX(Qial)]C'Y <2Q — Q] — %,042,043) .

We can then conclude as for the lower bound by letting h, A — oo since

2(Q — Oq)E 2(Q—an)

ﬁ(Q—“”r(—i(Q ) 3™

goes to R(«y) as A goes to infinity. O

9.3. The 4 point function with —% insertion. In this section, we prove an
analogue of Theorem 9.4 for the other degenerate insertion with weight —%:

THEOREM 9.7. We assume the Seiberg bounds for (—%7a17a2,a3), i.e.,

Zzzl ap > 2Q —i—% and o, < @ for all k. There exists n > 0 such that if
Q — oy <n, then

T 2(2) = Cylar — 2, az,03)[F-(2)|”
(9.39) !

+ R(e1)C4(2Q — ay — %, ag, az)|Fi(2) [,

Proof. The proof follows the proof of Theorem 9.4 almost word by word,
and we keep the same notation with the following obvious modifications. The
function K in (9.40) is replaced by

3 2
|z - A

4 K =
(9 O) (z’ x) |1‘|’YOél ’x _ 1‘7042 ’

i.e., most importantly, the factor |z — z| 5 is replaced by |z — z|?. Furthermore,
the exponent p is now given by p = (a3 + s + ag — % —2@Q) /v and is positive.

We will fix n > 0 and € € (0,1) so that the following conditions hold for
all ; € (Q —n,Q):

(9.41)
(9.42)

(Q — 1) <(1—&)(4 —ya1 —2yn),
(Q —aq) <€

RN IS

Note that for £ =7 =0, (9.41) holds since 4 —yQ = 2 — g > 0 and therefore
by continuity for small enough n and small enough £ > %n, they hold as well.
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As in the proof of Theorem 9.4 we start with the splitting (9.19) to T}

and T, given by (9.18), and we first show that 71 = 0(\z\%(Q7°‘1)). We obtain
again |T7| < C(A; + A2) with the same definitions for A;.
The Cameron-Martin bound for A; becomes

—p—1
</|>| . K(O,u)]u—:r\_”?Mw(du)> ]d%,

and as the expectation is bounded by a constant, we conclude that

A <C |27

|z < [z[*—¢

(9.43) Ay < O|z|(-9E—7a1) - O(,Z‘%(Q—m))
by (9.41).
Next, for Ag, the bound (9.23) is replaced by

BICA=) ~ K007 < €l [ o
(9.44) N
< C‘Z|1+(1—§)(3—'ya1) _ O(|Z|%(Q_al))

: (Q-a1)
again by (9.41). Hence T1 = o(|z|” ).
Now we proceed with T», again with the obvious changes (e.g., g in the
definitions for K1, K? and c4 replaced by 2). Hence replacing (9.37) by

N |z — z|? ¥(2Q-o1—2+as+as)
ICD(Z) T /; ’xh@Q_@l)‘x — 1"7‘12 |.’L"+

instead of (9.38), we obtain the bound

M’Y(d2$)7

(945)  E[Rpe(2) " @] ~ E[Rpe(0) 75 @] = o]2|> @),

Indeed, the left-hand side is T} computed with a larger p and |z|7* replaced
by |z|Y2@=21) Hence from (9.43) and (9.44) we get the bound

B[Kpe(2) P77 (@7] — B[Kpe(0) 775 @ )] < 0] (1-OU—1Q-en)

Since 4 — y(2Q — a1) =4 — yay — 29(Q — 1) < 4 — yag — 2yn, (9.45) holds.
The rest of the arguments for the lower and the upper bounds for T5 follow
then word by word. O

9.4. Crossing relations. Proposition 4.1 now follows from Theorem 9.1 as
explained in Section 4.3. Let us state it in the form we will apply it and also
for the unit volume structure constants:

PROPOSITION 9.8. Lete € (3, %) and o, o/ < Q such that a4o/ +e—3 >
2Q. Then

(9.46) Cyd —%,e,0) =T(d e, a)Cy (o e+ 3, ),
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where T is the given by the following formula:
l(a)l(b) 1

047)  T(ehe0) = —um g =g (=N + 2% - %)

where a, b, c are given by
(9.48) a = %(OJ,—FOH-E—Q—’)/)—%, b= %(O/—a—I—e—Q)—i—%, c= 1—1( —a).

The above relation can be rewritten under the following form for the unit

volume correlations (see (4.1) for the definition):
(9.49) Cy(a/ — J.6a) = T(d e,a)Cy( €+ 2, Q),

where T is given by

F(%(a+a’+6+ 1 -2Q))
1

[(a e,a) =p?
(9.50) Tld'se0) = u T(L(a+a +e-3-2Q)

T(d e a).

Along the same lines as Proposition 9.8, by exploiting Theorem 9.7 with
the —% insertion, one can show the two following crossing symmetry relations:

PROPOSITION 9.9. Let a,e,0’ < Q with a+ o' +¢€ > 2Q + % Then

(9.51) Cyla—2,6,0)) =T(a,€6,a")R(e)Cy(,2Q — e — 2 a)

2
fy?
where T is given by the following formula
= 1(a)l(b)
. 2 T / = — -
(9:52) (@& 0) = Iita+b=0)
where

1 1
(9.53) a = %(a'—ka—ke—@—%)—g, b= %(a—a'—ke—@)—{—g, c= 1—%(@—@).

PROPOSITION 9.10. Let o, €,/ < Q with o+ o/ + € > 2Q + % Then
(9.54)  R(e)C,(2Q — e — %, a,a') = Le,a, ) R(a)Cy(€,2Q — a — 2, )

where L is given by the following formula

lle=1Dl(c—a—b+1)

(9.55) L(Ea «, O/) = Z(C _ a)l(c _ b)

with

(9.56) a = L(a/+ate—Q—-2)—3, b=1L(a—a/+e—Q)+3, c=1-2(Q—e).
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10. Proof of Theorem 3.5

We will suppose that ¥2 ¢ Q. This is no restriction since the general case
can be deduced from this case by continuity in v (Remark 2.3). The proof of
formula (3.13) for the reflection coefficient is made of several steps as explained
in Section 5:

Section 10.1: We prove that R is analytic in a complex neighborhood of
the interval (3, Q). The key to this is the crossing relation (9.49) that allows
to express R(«) in terms of C,(a, 7, @) (equation (10.6)).

Section 10.2: We prove first that R satisfies the following shift equation
for « close to Q:

“) — L
(10.1) R<a 2) p (=) — )2+ 2 — 22y

The starting point is again the crossing relation (9.49). Using the tail estimate
Lemma 7.3 we show that the right-hand side of (9.49) has two simple poles
in € and (10.1) follows by equating residues of both sides of (9.49). Next,
by analyticity the relation (10.1) extends to a neighborhood of o € (v, Q).
Analyticity of R on (3,Q) then implies we can use (10.1) to extend R to a
neighborhood of R. The extension that we also denote by R is meromorphic
with simple poles on the real line located at {% - INJU{3 - %N}

Section 10.3: We prove the so-called gluing lemma, Lemma 10.5, that uses
R to extend the three point structure constant to a holomorphic function in
a neighborhood of (). The basic input in the proof is the shift relation (1.7)
proven in Theorem 9.1 and Corollary 10.2, based on Theorem 9.4.

Section 10.4: We prove that R satisfies the following inversion relation:
(10.2) R(a)R(2Q — a) = 1.

The proof is based on combining the crossing relation Proposition 9.9 with the
gluing lemma.

Section 10.5: We prove that R (as a meromorphic function in a neigh-
borhood of R) satisfies the following shift equation:
2

CRIENE+ & - =)

(10.3) R(a) = —¢y

where ¢, = %,er(v) # 0. Recall that from the DOZZ solution we expect
that

(10.4) ¢y = (uml(3)) 1)
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Section 10.6: Since RPO%Z satisfies (10.1) and (10.3) with (10.4), we prove
R = RPO%Z by application of Liouville’s theorem.

10.1. Proof of analyticity of R in the interval (3,Q). The crossing rela-
tion (9.49) gives for a = o/,

(10.5) Cyla—3,e,a) =T (o, 6,0)Cya,e + 3, 0),

which holds for o < @ and € € (3, %) with € + 3 < 2a. From Remark 8.2 we
deduce for o € (3, Q) that

lelfgl(e —3)C5(a

7 6,a) = 4(QV_O‘) R().

By Theorem 6.1, for € > 1, C(a — %, €, a) is analytic in a € (3,Q) and
Cyla,e+ 3 % @) is analytic in a € (3 + §,Q). Hence the relation (10.5) holds
for e € (3, ) and o € (7 + §,Q). Using (9.47) and (9.50), a bit of calculation

gives

— Ul — 22 — 1
lirgl(e — %)T(a, €, ) = _W4(%;a) (3o — 7 '
e 11+ 3o — QU=22)1(%)

We conclude that for all a € (3,Q),

. I(
R Ty e TE
1

which proves our claim since C (a,7, @) is analytic in a € ( 2,Q).

2

¥ _
a— 1 _

10.2. Proof of the & shift equation (10.1). We start again with the crossing
relation (9.49)

(10.7) Cyld =3, e,0) =T(d,e,0)Cy (e + L, ),

which holds for € € (3, %) and o + o' 4+ € — 3 > 2Q with o, o/ < Q.

By Theorem 6.1, both sides of (10.7) are restrictions of holomorphic func-
tions over an open neighborhood of the intersection of the extended Seiberg
bounds (2.14) valid for each structure constant involved in each side of (10.7),
which thus remains valid on this set. It is rather tedious to write this set
explicitly, but one can check that it contains the set of values

2
(108) 0/:@—77, Oé:%+77, 66(2,’777)

for any 1 € (0, ).
Let us consider both sides of (10.7) as a function of e. From Remark 8.2
we obtain

lim(e — 2n)C-(a/ —
ln (e — 20)C

}6.0) = LU R(a).
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This indicates that € — C(a’ — 3,€,a) has a pole at € = 2. The extended
Seiberg bounds indicates that the next pole below € = 27 is located either at

e=—-2nore=y— %. We reinforce the restriction on 7 to be
2 1
in order to make sure that the next pole is at ¢ = —27. (The condition n < % is

just technical and makes sure the interval (27, %) is nonempty in the argument
just below.) Indeed we prove

PRrOPOSITION 10.1. Let o, &’ be given by (10.8). Then for n > 0 small
enough, the function

L {Q-a)fi) Qo'+ PR -}
f(G) = C’Y(a _%76704)_ . 6—277 -2 6—’_2277 2

extends to an analytic function in a complex neighborhood of € € (—2n — 0, %)
for some 6 > 0.

We postpone the proof of Proposition 10.1 to the end of this subsection.
By (10.7), for € € (2n, %) we have f(€) = g(e), where
2Q-a)R(a) F(Q—o' + IR - 3)
= T(o/, e, 0)C4 (o e+ 3, a) — 2 -2 : =
g(ﬁ) (OZ,G,OC) 7(a76+27a) 6_277 €+277
Therefore by analytic continuation of f obtained above, g is analytic in € on
(—2n -9, %) By Remark 8.2,

. — o 4 Q—Ojl —
Jim (e 2m)C (o, e+ 3,0) = M R(),

where we used o > a. Hence, from lim,|_9, (e + 277)g(e) = 0 we deduce
(Q—a)T(o/, =20, 0)R(e') = (Q — o/ + J)R(a’ — J).

This is the reflection relation for unit volume reflection coefficient. Using (9.50)
and (3.12) a calculation gives then

(10.10) R(¢' —3) =T(a/, —2n, ) R().

Inserting e = —2n = o —a— % into (9.48), we first get that b = %* so that
1(b) = (%) and a+b—c = 1— (242 — %) so that [(a+b—c)l(2+ % — L) = 1.
Therefore (9.47) becomes

l (8 -2 1
ARV RS L 5

2 K 2.
D) U+ He - Q=)
Using I(z)~! = [(1—x), (10.10) is the desired shift relation (10.1) (with o/ = «).

We have proven (10.1) for « close to @, but since by Section 10.1 R
is analytic on (3,Q), the relation (10.1) extends to o € (v,Q). Then we
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can use (10.1) to extend R to a meromorphic function in a neighbourhood
of R, which we also denote by R. Since RP9?% also satisfies (10.1) and 0 <
RD%% < oo for o € (3,Q), we conclude that R and RPOZZ have their poles
and zeros located at the same places. For instance, the poles of R are located

at {2~ N} U {3 - 2N},
A useful consequence of this analytic continuation of R is the following:
COROLLARY 10.2. Let 22:1 ap — 3 > 2Q and ay, < Q for all k. There

exists n > 0 such that if Q — a; <, then the shift equation (1.7) holds in the
form

1
R(Oél + %)CV(QQ — Qa1 — %7a27a3) = _EA(%704170427043)C’7(&1 - %7(127@3)'

Proof. From Theorem 9.4, we get
(10.11)
T 3(2) = Cylan — 3, az, a3)|F-(2)|* + R(a1)C4 (2Q — a1 — 3, a2, a3)[F (2) .
Thanks to (10.1) applied to o = a1 + 3, we get that
R(ay + 3
(10.12) R(on) = —pir—— @1+ 3) .
(=PI = 7594

Plugging (10.12) into (10.11), the result then follows from (4.10) and (4.11)
applied to ag = —3, a1, a2, a3 and a lengthy calculation. O

Proof of Proposition 10.1. Fix points 29, 23 € C such that 22| > 2, |z3| > 2
and |z2 — 23| > 3. From (2.17) and (4.1), we have

Cy(a/ = 3,e,0) = G(e) B Zc(e)' 7,
where

(10.13) Gle)=27"]]

i<j

1
Oéi()éj—‘rQAij

|2i — 2]

with 21 = 0, (a1, 2, 3) = (€,a,0' = 3) = (e, % + 1, % —mn) and for A C C,

’x‘v(e-‘raz—f—as)
+ M., (d*z).

(10.14) Za(e) = /A

Next define

||z — zo[702]x — 2g[703

F(e) = E(Zc(e)' ™ = (Zpy (o) (€) + Zy (25 (€)' 7).

The fact that F' is well defined is a consequence of the proof of Lemma 10.3
below. Note that Zp, (.,)(€) and Zp, (.,)(€) do not depend on e since for = €
Bi(z2) or x € Bi(23), we have |z[; = |z]|. Hence we denote them by Zg, .,)
and Zp, (z;). We start with
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LEMMA 10.3. For some 6 > 0, F(e) is analytic in a complex neighborhood
of the interval (—2n — 4, %)

Proof. Let us fix § > 0 such that
(10.15) 277+<5<%—'y and 4n+6 <7,

which is possible because of (10.9). As in the proof of Theorem 6.1 we construct
F' as the uniform limit as ¢ — oo of analytic functions F; in a neighborhood
of (=29 — ¢, %) Let us denote C; = {z : |z| > e7'} and define (recall that B,
stands for the ball B,.(0) and X; for the circle average (2.2) with r = e™t)

_te? _e _e
Ft(e) =K [€€Xt(0) 2 (Z(Ct<0)1 v (ZB1(22) + ZB1(23))1 7)} .

Let us first show that for each t, € — Fy(¢) is an analytic function of €
in an open neighborhood of (—2n — 4, %) Let Ry := Zp,(z;) T ZB,(z3) and
Ry := Z¢,(0) — Ry. By (2.13) and (2.14), R; admits moments of order ¢ for
q < %(Q —n— %) and R has moments of order ¢ for g < %. By taking the

derivative of s — (sRy + Rl)k%, we get
(10.16)
€ 1—£ 1 €
EleXO(Ry+R)' "7 —R, ") = (1 - 5) / E[eX* O Ry(sRy + Ry) 7] ds.
v/ Jo
Let € = €; + i€y, and suppose first that ¢; > 0. Since E|ePXt(0)| < oo for all
p < oo and since chaos has negative moments, then using Holder’s inequality
1

we can bound the integrand by CE[R]]v for any ¢ > 1.

If 1 < 0, we bound

_e 1-<L -
[E[Ra(sRy + R1) 7]l < C(E[Ry "]+ E[RoR, 7).

This is finite provided 1—< < % and — < %(Q—n— %) = 1—2777 (by a slight
variant of Remark 7.5). These conditions hold due to (10.15). Using similar
bounds, one can show that the derivative (with respect to €) of the right-hand
side of (10.16) exists, and F} is thus seen to be complex differentiable in e.

Next we show that the family F; is Cauchy in the topology of uniform
convergence over compact subsets of a neighborhood of the interval (—2n—d, %)
For this we will bound Fj.1 — F;. First observe that because Z Bl(zz)(e) and
7, (z5)(€) are independent of X;(0) (see Remark 2.2), these terms cancel out
in Fiy1 — F;. Furthermore, Girsanov theorem gives

2 € . 62 €
Be X O 76, (0)' 5 = B O+ F 7, ()75,

Hence, as in the proof of Theorem 6.1, we get

(t41)e2

|Fri1 — Fy| <e 7 E|Zc,,, (1) 7 — Ze,(e1)

'y|'
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From now on, since ¢ is fixed, we suppress it in the notation and denote
Zc,(e1) by Z;. We proceed as in the proof of Theorem 6.1. Let Y; := Z;11 — Z;.
We fix 6 > 0 and write

€

1—€ 1— 1-£ 1-£ 1-= 1
IE’Zt-s-l7 - Zt 7’ < ElYt < e*Gt’Zt—&—l’Y - Zt 7‘ + ElYt > e*et‘Zt-‘,—l’Y - Zt K ‘

€ €

Interpolating, the first term is bounded by

£ 1-£ _ €1
Ely, o-oc|(Zs + Y T — Z, 7| <Ce” sup E(Z; + sY;) vl
s€[0,1]

< Ce"B(Ze(e1)™ 7).

The last expectation is finite since —% < 2(Q—-n-— %) =1- 2777 holds by

¥
(10.15).
For the second term we use in turn Holder’s inequality, with p, ¢ > 1 such
that %D + % = 1, and the mean value theorem to get

1—-< 1-£ 1—€ 1—€ 1
Bly, s -0t Zioy’ — 2, "I < [P(Y; = e ")VP[EZ, 7 — 2, 7|9

€

=

=
=

Ja.

<[P(Y; = e ")YP sup [EY(Z; + sY;)*
s€[0,1]
By the Markov inequality, the definition Y; = Z¢,, ,\c, and the chaos moment
estimate (12.4), we get

m2’y2

IP(Y;f = 679'5)]1/? < ef%ntE[th]l/p < 6%(7(@*61*9)m7 5)

so that we end up with the bound

t€2 mQ,YZ
(10.17) |Fip1 — | < Ce™ (e + Ct(q)eé(W(Q_el_g)m_ 2 )),
where we defined
(10.18) Cila) = sup [EY(Z, + sY,) 715 s
s€l0,1

Now we have to optimize with respect to the free parameters p, q, 0, m.
We first fix ¢ (hence p) to make (10.18) finite. First let e; > 0. By existence
of negative moments of chaos, for all » > ¢, we get

1
Ci(q) < C(r)[EY/]".
Hence by the chaos moment estimate (12.4), we get sup, C¢(q) < oo if ¢ <

2Q ) n = 4

If ¢, < 0, we bound Y; < Zp, (€1) and Zy11 < Zp, (1) + ZBf(el) to get

g, 951 q(1-) —q24L
Ci(q) < [BYZ, "] < CEZp, (1) 7/ +EZp, (1)1 Zpe(e1) 7],
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The first expectation is finite if q(l + 2"74'5) < %, and by Remark 7.5 the
second one is finite if (12"7—+(s < %(Q —n— %) =1- 27" Due to (10.15) we can
find ¢ > 1 such that this condition holds and hence sup, C¢(q) < 0.

Next, we choose 6 > 0 such that @) — % — 60 > 0 and then m € (0,1) small

enough such that

As we have € < %, from (10.17) we get

t€2
(10.19) |Fiy1 — F| < Ce (e + ).
Hence the sequence F; converges uniformly in compacts of a neighborhood
of (—2n — 0, %) Finally observe that F(e) = lim;_,o Fi(€) for € € R with
€€ (2n,Q). 0

Next we note the following simple lemma on analytic continuation of mo-
ments of random variables:

LEMMA 10.4. LetY > 0 be a random variable with a tail estimate
(10.20) IP(Y >t) — it P — ot ™| S egt™

for some constants c1,ca,¢3 >0 and 0 < B1 < B2 < B3. Then s € C — EY?®
extends to a meromorphic function in the strip 0 < Rs < B3 given by
c18 C28
E[Y?®] = + +r(s),
iy el

where r is holomorphic in 0 < RNs < Ps.

Proof. Since

E[Y?] = s/ P(Y > t)t5 ! dt
0

and P(Y > t) < Ct~5, the mapping s € C — E[Y*] is holomorphic on the set
{s € C;0 < R(s) < f1}. Writing

E[Y®] = s P(Y > 1) — (1P + et =2)1 D
V= [Tt s s et -
the claim follows as the first term on the right-hand side is holomorphic on the
set {s € C;0 < R(s) < f3} due to the assumption (10.20). O

We apply this lemma to the study of the random variable Y = Zp, (.,) +
ZB,(z)- We use the tail estimate Lemma 7.3 for 1 small enough so that az, a3
are both sufficiently close to each other; recall Remark (7.4). We have ) =

— 27”, Bo =1+ 27’7, and some calculation gives

_ _ 2\ = _ _ 2\ —
o = |2z 4nQ|22_Z3| 2(14+Qn+n )R(ag), Co = |z3|4nQ|Z2_23| 2(1-Qn+n )R(ag).
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Then Lemma 10.4 gives

—€)C — €)C
_=9a [ )2+T(€),
€—2n €+ 2n

2|

(10.21) E(ZBl(zz) + ZBl(Za))l_

where r is analytic in a complex neighborhood of (—2n — ¢, %) Since G(e) in
(10.13) is analytic in this region too we conclude by combining Lemma 10.3
and (10.21) that

= al a9
N 6—277+277+6+f(€)
with a1 = G(2n)(y — €)er = %(’y —2n)R(az) = (Q az)R(az) (note that the
z9, z3 dependence has to cancel!) and as = G(— 277)("}/—6)62 = é(Q as)R(as).

Here f is analytic in a complex neighborhood of (—2n — 4, 7) This completes
the proof of Proposition 10.1. O

10.3. The gluing lemma. We introduce the following condition:
4 .
(10.22) Q+7*042*043<;/\’7/\2?;232(@*0@), g, ag < Q.

LEMMA 10.5. Suppose that ag,as satisfy condition (10.22). Then the
function

C | R(@)C,(2Q — a,a2,03)  ifa>Q
is the restriction on the real line of a holomorphic function S defined in a
neighborhood of Q) and given by

(10.23) S(a) = ——A(% — 3, a2,a3)Cy(a — v, a2, 3),

where the function A is defined in (1.9).

Proof. Let us first check that S is analytic in a neighborhood of Q. By
(10.22) we can find € > 0 such that for all « € [Q —€,Q + €],

4
(10.24) 2Q—|—’y—a—a2—a3<7/\’yA 21232(@—0@).
By Theorem 6.1, @« — Cy (o — v, a2, a3) is analytic in the region
4
(10.25) 2Q4+~v—a—az—az3<—A2(Q+~y— a)A min  2(Q — «;),
Y

2<i<3

which holds by (10.24) if e <
First let o € (Q — €,Q). By Theorem 9.1 the shift relation (1.7) holds in
the form (take aq + 3 = )

(10.26) C. (o, g, Gig) = ——A(% — 1,8y, a5)Cy(cx — v, Gig, Aig)
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provided 2Q +v—a —as —ag < 0 and v < a < Q. Thus, for € small enough,
(10.26) holds for as, as € (Q —¢, Q) and both sides are analytic in a9, a3 there.
As we saw already, the right-hand side can be analytically continued to the
values (ag,a3) = (a2, as). By Theorem 6.1, the left-hand side is analytic in
a2, as in a neighbourhood of 2Q —a—as—asz < 0. The point (ag, ag) = (a2, as)
belongs to this region.

Now let us turn to a € (Q,Q + €). By Corollary 10.2 there exists n > 0
such that

SO 1 - -
R(a)Cy(2Q — a, a0, a3) = _H'A(%aa — 4,02,a3)C, (a — v, az,a3)

provided 2Q + vy —a — a2 — a3 < 0 and Q + 3 — o < 7. We saw above that
the right-hand side extends to o € (Q,Q + €) and (ag,a3) = (ag,a3). By
Theorem 6.1 the left-hand side extends to a € (Q,Q +¢) and a — ag — a3 < 0.
The point (a9, a3) = (a2, as) belongs to this region. O

10.4. Proof of the inversion relation (10.2). The strategy is to combine
the crossing relation Proposition 9.9,

(1027) C’Y(a - %7 €, O/) = T(a7 €, O/)R(G)C’Y(a7 QQ —€— %7 O/)v
with the gluing Lemma 10.5 to obtain
(10.28)  Cyla—2,6,0) = T(a,e,a/)R()R(a)C4(2Q — @,2Q — € — 2,a)

and then to take the limit € — 2Q)—« and choose o appropriately. To carry out
this idea we need to check carefully the analyticity domains. Let us consider
the following values for o, o/, e:

(10.29) a=Q-n €e=Q—1, 0/:%,
where we will take |n| and 7 > 0 small in what follows. Formula (10.27) was
proven in Proposition 9.9 for a,e and o’ close but strictly less than @ with
a+a +e>20+ % We use Theorem 6.1 to extend the unit volume three
point structure constant C- (o — %, €,a’) to the values (10.29). The conditions
in (6.1) become n + 1 < % A (% +2n) A 2n' Ay, and this gives n + 7' < 21/
as we are taking |n|,n’ small. Then C,(a — %,e,a’ ) extends to the region
n’—%<77<17'. Notethatn’—%<0.

Similarly, the condition for the function C_’V(a,2Q —€— %,o/ ) becomes
n—n < %/\ (277)/\2(% —n') A~ with n > 0. Since |n|,n’ are small, this condition
holds for n < 7. In conclusion, both unit volume structure constants extend

to the region 0 < 7 <7’ < 3. The structure constants C., also extend to this
—n—n'
v

region since the s-parameters in (4.1) are and 77/7—_" respectively and they
do not take values in Z_ U {0}. Hence (10.27) holds in the common domain
0<n<n <3
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Next, we apply the gluing Lemma 10.5 to the function C (o, 2Q —e— %, o)
to extend it to the region a > @; i.e., n < 0. The condition (10.22) becomes
vy—1n <A 2(% —n’). This holds if ’ < % — 7. We conclude that the
relation (10.28) holds for the values (10.29) with 0 < —n < 7/ if % is small
enough.

Now, we consider the limit of (10.28) as € 1 2Q — «; i.e., ' | —n. We get

. 2 .2y _
6T£1er£a(2Q —a—€)Cy(a— =6 2)=-2

. 2\

eTanla(QQ —a—6)0,(2Q — ,2Q — e — ; =)=
Indeed, the two limits above correspond to insertions such that s goes to 0
in expression (2.17) and can therefore be deduced from the following general
fact for the unit volume structure constant defined in (4.1) and for ai, ag, as
satisfying the extended Seiberg bounds (2.14):

3
(10.30) Cylar,og,a3) =291 i > =2Q.
i=1
Also we get
lim (2Q —a —¢€)l(a) = —, lim (2Q —a—¢) () =1
Jim (2Q-a—all) =, lm (2Q-a-97lip) =1
and
i —a— — ) = 20\ (21 —
61élinoé(QQ a—el(c)la+b—c) =11+ i(-T) =1
We conclude that R(2Q — a)R(«) = 1 for « close to @ hence by analyticity in
a neighbourhood of R. O

10.5. Proof of the % shift equation. We start from the following identity,
obtained in Proposition 9.10, for €, a, o’ close to but strictly less than Q:

(10.31)  R(e)C,(2Q — e — 2,a,a’) = L(e, a, &' ) R(a)Cy (6,2Q — v — 2 a)

where
llce=1Dl(c—a—b+1)
10.32 L N =
(1032 (&) i{c—a)i(c— )
with
o=l tate-Q-1) -3,
_1 1
(10.33) b=1ta-d+e-Q)+3
—1—2(0—
c=1-2Q -0
We will study (10.31) for
(1031 =34, a=ju, @=fin
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where |n/],n,n” will be taken small enough in what follows. We will use The-
orem 6.1 to extend equation (10.31) to these values. First we have
(10.35)

L(e,a,') =

where L; is analytic around the point 3,3 Recalling (4.1) we can then

2
. ’ v '
write

(10.36) R(e)C(2Q — € — %,a,o/) = La(e,a, &' )R(a)Cy(€,2Q — a — 2 a)

where Ly is analytic around the point (2, o 7) By (6.1), C. (2@—6 7 ya,al)
extends to the region 7’ 77 n" <2n',n" > 0;i.e., it is analytic for n',n,n" > 0.

For C(€,2Q —a— ; a'), the condition in (6 1) becomes " —n' —n < 21"
so that it extends to the region

(10.37) n+n">-n.

In particular, equation 10.31 holds in the region n',n,n" > 0.

Next, we want to extend C(2Q —e— 7 ya,) =Cy(Q—1,a,a) ton’ <0
using the gluing lemma. Condition (10.22) becomes v —n—n" < v —2n, which
requires 77 < n”’. Therefore we get

(10.38) R()R(2Q—e—2)C,(e+2,a,0") = L(e, o, @) R(@) Oy (6,2Q—a—2 o)

for ¥ < 0 sufficiently close to 0. By condition (6.1), C.(e+ %, a, ') is analytic

in 0 # n'+n+n" < —2n'. Combining this with (10.37) and (10.32), we conclude

(10.38) holds in the region —n' < n+ n” < —3n’. Therefore we may take the

limit n — —n'. Also using the inversion relation R(2Q — e — %) = R(e+ %)*1

we end up with

(10.39)
R(e)

R(e+ %)

07(6+%7 %+77,/5 Q—G) = L(E’ 1—'_77//7 Q_G)R(%+n,/)07(€7 Q_n/lv Q_E)v

where we used o/ = %4—77’ = @Q—e. This identity holds in the region 0 <n” <27’
We will now take the limit of (10.39) as n” — 0. From equation (10.35)
we have

L(67 % + 77”7Q - E) =
(10.40)




152 ANTTI KUPIAINEN, REMI RHODES, and VINCENT VARGAS

and by the first shift equation (10.1),

R(y+17") _ 2/M( R(v)
U0 + U2 = 3

Hence

T 2
L(e, 3 +1" Q= OR(F +1") = L R(MI(Z(e — QN1 + &) + O("),

where we used I(2)l(—x) = —2~2.

It remains to study the structure constants in (10.39) as n” — 0 using
(2.17). We have

lim "C, (e—l— T+10",Q—¢€) =2

1" —0
since in (10.39), s = "7 The second structure constant is dealt with by
LEMMA 10.6. lim,r_07"Cy(e,Q — 1", Q — €) = —4.

Hence we conclude
(10.41)

R(e)  pmy? B c
Rle+ D)~z TG N = a4 g

with ¢, = “’7‘2 pmR(7y). This is the desired shift equation.

Proof of Lemma 10.6. Using (2.17) with (a1, az,a3) = (Q — 1", Q — €,¢),

we have
Ce @@ -0 = 2 T -LE( [ () T

’x‘l(m +astas)

where

f(x) - |x"yo¢1‘x _ 1"7042 :

Let A := f1|m|<%f(ac)M7(d2x) and B := [1,> %f(a:)MW(de). By sub-
additivity,

T n”’ n”
EAW /f <EA~ +EB~.

"

Now EB?P < oo for some p > 0 independent of 1”. Thus lim,»_,q EB% =1
and then

ll

lim 7"C, (e—|— I+7",Q—¢) =2 lim EAY.

70 n''—0
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Obviously,

"
n

L// /! R
lim EA~ = lim B / 2| 7Y@= M (d)
n""—0 n"'—0 lz| < 1

since only the neighborhood of 0 contributes in the limit ” — 0. From (3.7)
we get

Z > Q-n"
r(n) ::/ m—v(Q—n )Mfy(d:c) law eVMn"/ 8" Zgds,
jal <1 ey

where M, is the supremum of Brownian motion with drift —7”. Then we may

bound
,'7// )
1 ” v " o0 ” L
Q- i Q- 2
E (e'yMn”/ 1B sts) <Er(n)7 <E <67Mn”/ B sts) .
0 —00

Let Ly == [T B Zds. Then by Holder,

" 1"
an

E(em™ L) T < (B Mo )7 (B(1r) ).

" 1
Take 1/q=+/n". Then lim supnu_m(E(Inu)%)E = 1. Recalling P(M,» > v)
1 7 1
= e 2% since p = 14+0O(y/1"), we then get that lim sup,r_,o (e Mynye = 2.
Hence

: "o
limsupEr(n")> <2.
n'’—0

Q—n"" .. .
For the lower bound, we set J,» := fol "B Z.ds and use Holder again:

lim inf ("™ J,) "5 > liminf (Be's Mo P (B(.J,) ve7) "1 = 2.
n''—0 n'"—0
This finishes the proof. U
Remark 10.7. A straightforward computation yields that
2 2 4
RO () = (mpl () F1( %)

Therefore we expect that ¢, is given by (10.4). However, at this stage of the

-1

proof, we can not yet conclude this. In Section 10.6, ¢, will be determined
indirectly.

10.6. Proof that R = RPO%Z. Let ¢(a) = RD#OQ@)’ where 9 is mero-

morphic in a neighborhood of R. Since R and RP9%Z obey the same 3 shift

equation, the function ¢ is 3 periodic. Here 4 is strictly positive in (3,Q),
so by periodicity v is strictly positive on R. By the % shift equation, for all
a € R one has

¥(e) = Chip(a+2)
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for some constant C,. According to Liouville’s theorem, if a continuous func-
tion f, say, has two periods 77 and 75 such that % ¢ Q, then f is a constant
function. Therefore, if 3 and % are independent over the rationals (i.e., if
7% ¢ Q), then we conclude that C, = 1 and (a) = ¢ is constant in a. From
(3.10) we see that R(Q) = 1 and from (3.12), since I'(—z)z — —1 as z — 0,
we get R(Q)) = —1. On the other hand, from (1.15), it follows that we have
RPOZZ(Q) = —1 and hence the constant ¢ = 1. Thus R(a) = RP°%%(a) for
all a. The case 2 € Q follows by continuity. This concludes the proof. O

11. Proof of the DOZZ formula

We suppose that 42 ¢ Q; the general case follows by continuity. Let
us fix ag, a3 in (Q —n,Q) for n sufficiently small and consider the function
F :op — Cy(a1,a2,03). Let us collect what we have proven about F. By
Theorem 6.1, F is analytic on (27,Q) and by Theorem 9.1, it satisfies the 7
shift equation (1.7) for 3+2n < o < % Therefore F extends to a meromorphic
function on a strip of the form R x (—f, ) with 8 > 0 satisfying (1.7). We
call this extension F' too.

Now, using the exact expression for R (or relation (10.3) with ¢, =

4
,Lml(yzz))WQ l(%)_l), Theorem 9.7 can be written as

2 (pml(4))*
T_2(2) =C, (a1—,a2,a3> \F_(z)|2_ ]
! 7 1(5%)
R(aq + %) 9 )
8 2y 201 =7 (2Q - — *,Ozz,ag) [F4(2)]"
(=2 + 55 — 23) v

By the gluing lemma, the extension F' is given in a neighborhood of o = @ by
F(a) = R(a)F(2Q — ). Hence, one can infer from the above expression the
shift equation (1.8) for ay € R x (—/, ) (the same argument as the one used
to derive (1.7)). Hence F satisfies both (1.7) and (1.8).

. . - (1,0, . .
Now, we consider the function ¥a, oy @ @1 + CDSZ(Q“& in the strip
’ DOZZ(ay,a0,03)

R x (=p, B). This function is holomorphic since C and CEOZZ are meromor-
phic with the same simple poles and zeros (which can be read off the % shift
equation (1.7)). Furthermore, 94, o, is v and % periodic since C, and C’,]YDOZZ
both satisfy (1.7) and (1.8). According to Liouville’s theorem, if a continuous
function f, say, has two periods 77 and 75 such that % ¢ Q, then f is a
constant function. Therefore, using Liouville’s theorem, ¥, a5(011) = Cag,as
for some constant ca, q, depending on s, a.

Since Cy and C’]WD O%Z are symmetric in their arguments, we obtain ¥, s (1)
= Yay,05(@2) = Yoy ,a0(3) for a1, az, a3 € (Q—n, Q). Hence cq, o4 is constant
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in ag, az. Therefore C, (a1, a2, 3) = awC]VDOZZ(al, ag, asz) for ag, ag, as satis-
fying (2.14) with N = 3 for some constant a- (by analyticity). Finally, a, =1
since both C, and CEOZZ satisfy Lemma 3.4. U

12. Appendix

12.1. The Cameron-Martin theorem. We state here the classical Cameron-
Martin theorem for the GFF X. Let §’(C) be the space of tempered distribu-
tions. It is well known that X lives in §'(C).

THEOREM 12.1 (The Cameron-Martin theorem). Let X' be some some
Gaussian variable that is measurable with respect to the GFF X. Let F be some
bounded continuous function on §’'(C). Then we have the following identity:

_E[x?]
E[e*™ "2 F((X(2))sec)] = BIF((X(2) + E[X (2)X])zec)].
In particular, we get the following corollary:

COROLLARY 12.2. Let F' be some bounded continuous function on S'(C)
and f some bounded continuous function on C. Then we have the following
identity:

E[(LfWﬂ%ﬂfw)F«X@»m@

12.1
( ) d2u
Jul

:AfwmwﬂX@)HMﬁ@mem@]

Proof. For € > 0, if X, denotes the circle average of X, then by Fubini
(interchanging E[.] and [),

where in the last line we have used the Girsanov Theorem 12.1. In conclusion,
we have

E K/C f(u)ewxe(u)—”;E[Xg(u)z}ﬁ) F((X(l'))we(:)l
Pu
fult

:/Cf(u)]E[F((X(x)+]E[X(x)Xe(U)])me<c)}

We conclude by letting € go to 0. ([l
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12.2. Chaos estimates. We list here estimates for chaos integrals that are
used frequently in the paper. Some estimates are standard in the literature on
GMC and other estimates were recently proved in [28, §6].

12.2.1. Standard moment estimates. We start by reviewing the standard
estimates, and for these estimates we refer to the review [46]. For any open
and bounded subset O, the following condition holds on moments (see [46]):

(12.2) E[M,(OF] < 00 <= pe<m_$).

Moreover, if p € (—o0, %) and z € C, then there exists a constant C' > 0
(depending on z and p) such that for all € < 1 (see [46]),

"/2172

(12.3) E(M, (B(z,€))P) < Ce9P~"3

Let A(z,€) be the annulus with radii €,2¢ and center z. As corollary of
(12.3) we get that for p € [0, ;1—2),

2,2

P
(12.4) E (/ |z — Z|_7°‘M7(d233)> < Q=7
A(z,€)

For negative moments, for a > @ and p > 0 such that « — Q < vp (see the
methods of [28, §6]), we have

(/_h>u—4~WM4f@)

12.2.2. Fusion estimate. The following result follows from the methods of
[28, §6]:

(12.5) E

LEMMA 12.3. Assume (a;)i=1,.. 4 are real numbers satisfying o; < Q and
p = 7_1(2?:1 a; —2Q) > 0. Consider y1,y2,y3,ys € C such that |y1 — yo|
< y1 — sl < ly2 — ysl < mingeqr 03y [ya — wil-

(1) Ifor + a0 < Q, a1 +ag + a3 > Q and ay > 0, then

(L 00)

< C( 1 — s ) s(ar+aztas—Q)°
~ —_—

aitastaztas—Q)?
Y1 — vl

1
1 — ya]2(
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(2) If a1 + a2 > Q, a3 <0 and as + ayq > 0, then

—p—2
</ B(y1,10) ; H|U_yz ’Y%M (d2 )> }

1 2

_ 5(a1+a2—Q)

C <|y1 92|>
ly1 — y3|

(oc1+a2+a3+044—Q)2.

— 1
« (Il TE

‘yl —y4\

12.2.3. FKG inequality. Finally, we recall a result on log-correlated fields
in dimension 2 that comes out of a construction in [45]. Recall that from

> % 041+042+043—Q)2—*

[45], there exists a Gaussian white noise p on some measure space (S,v) (v is

a Radon measure) and deterministic subsets (C(x)), < 1 of § such that the

field (X (), < 1 defined by

||

(12.6) X(z) = p(C(x))

is a Gaussian field with covariance given by

E[X(2)X (y)] =

_l’_
[z — |
where ¢ is some positive constant. In particular, the construction (12.6) implies

that X satisfies the FKG inequality; more precisely, if F, G are two increasing
functions in each coordinate X (z), then

JG((X (2)))) < )] 2 E[F((X(2))),) < DIEIG((X (@), < 1)

2

EF((X(2)) < 1

The above continuum version of the FKG inequality can be deduced from the
standard one (see [22, §2.2] for the case of countable product) by discretization
and taking the limit as the mesh of discretization goes to 0. Since (E(v ()4 < 1
has same distribution as (X (m)+\/EY)‘ 2 <1 where Y is a fixed standard Gauss-
ian independent from X, this implies that (X (z) 4+ /cY), < 1 also satisfies
the FKG inequality.

12.3. Proof of Lemma 3.3. By symmetry, it is enough to show that

00 p
E [(/ e”’B?sts) } < 0.
0

First let p > 0. If 0 < p < 1, then by subadd1t1v1ty we have

E K/OOO evB?sts> } < Z]E K/n 1ewB?sts)p] |

and for 1 <p < 2, by convexity we have
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) . p11/p 00 n+1 . p11/p
[E < / B8 sts) } < Z []E ( / B8 sts) ] .
0 n—1 n

We set v = Q — «. The process BS is stochastically dominated by a
Brownian motion with drift —v starting from origin and conditioned to stay
below 1 (see Section 12.4); hence we have that if By is a standard Brownian
motion starting from 0, then

n+1 o p n+1 p
E [(/ eVBs sts> < CE [(1371,,” < 1/ e“’(BS_”S)ZSds> ]

n+1 p
< OFE [(/ sts) ] E [evpsupse[n,n+l](Bs*Bn)]]E[an_Vn < 16’710(37171/71)}

1 2
_ _1 _ (yt+vn)
< CE[lp,—un < 1eP(Bn ”n)] =Cn"2 / ePYe™ 2 dy,

—0o0

vn

where we used (3.6). Separately considering y < —%* and y € [-5', 1], the
last integral is seen to be exponentially small in n and the claim follows.

Now let p = —¢ < 0. Set 7—1 = inf{s > 0, BY = —1}. The process
BZ, . | +1is a Brownian motion with drift —v starting from 0 and conditioned
to stay below 1. Therefore, we have that if By is a standard Brownian motion
starting from 0 and 8 := sup, -, ((Bs — vs), then

o0 N —q T_1+1 N —-q
E [(/ eVBs sts> (/ VB8 sts>
0 T_1
1 —q
lg<1 < / e’V(BS_”S)ZSds) ]
0

since Z; is stationary and B¢ is independent from Z. Finally, we conclude by

<E

=CE

1 —q
E|ls<1 ( / eW(Bs—”S>sts> ]
0
< E[I,B < 16_QInfse[0,1](Bs_V8)] E (/ sts) < 00,
0
where (3.6) was used. O

12.4. A reminder on diffusions. A drifted Brownian motion (B; + ut)
with g > 0 is a diffusion with generator G, = %j—; + ,u%. When seen until
hitting b > 0, the dual process Y; of By + ut is a diffusion with generator
%j—; —ucoth(,u(b—x))%. Therefore, b — Y}, has generator %% +,ucoth(;m)%
that is the generator of (B; + ut) conditioned to be positive. We denote this

process by BY'. We also denote by BY the standard three-dimensional Bessel
process that corresponds to the case u = 0.
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We have the following comparison principle:

LEMMA 12.4. There exists a probability space such that for 0 < p < p/,
we have almost surely for all t: B < Bl .

Proof. For all x > 0, we consider the drift ¢,(u) = pcoth(ux) as a a
function of u € [0,00). A straightforward computation yields

, _ e — 4ure?rr — 1
QOCE(,LL) - (62“33 _ 1)2

Therefore, o', (11) > 0 since e* — uez — 1 > 0 for all u > 0. O

We will need another comparison principle. Let B}’ A be the drifted Brow-
nian motion (B; + ut) starting from 0 and conditioned to be above —A with
A>0.

LEMMA 12.5. Let p > 0. There exists a probability space such that for
A >0, we have B > B"* almost surely for all t.

Proof. This can also be read off the drift. Indeed, for u,x fixed, we con-
sider ¢, z(A) = pcoth(u(x + A)). We have

Vo> — A, 4 .(A) = 4P (1 - coth(u(z + 4))%) < 0. O

12.5. Functional relations on T% and RPO9%Z_ The function T% defined
by (1.11) can be analytically continued to C, and it satisfies the following
remarkable functional relations for z € C:

1z -z
1 (s 2) = i (3) s

)

2 T 2Z 4.1
(+3)-mim @
The function T 1 has no poles in C, and the zeros of T y are simple (if v? ¢ Q)
and given by the discrete set (—3N — %N) U(Q+ N+ %N) For more on the

function Ty and its properties, see the reviews [35], [48], [53] for instance.

With definition (1.15) and a little algebra, one can show that RP9%Z(qa)
satisfies the following shift equation for all a € C,

N RDOZZ(,
(12.8) RPO% (a B 5) TR T e " 72 ey’
(=PI =PI+ 5 - 5)

as well as the dual shift equation for all o € C,

(12.7)

T (2).

R
R

(ul(2))7 RPOZ(q 4 2)

(=

(12.9) RPO%Z(q) = —

4
L N T 8T 23[R S

=2
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12.6. Derivation of RP9%Z from CEOZZ. Recall that the function T% sat-
isfies the shift equations (12.7). According to the DOZZ formula (1.12), since
T%(O) =0, for &« > 3 and using the above relations, we get

eC(ay €, )
4( l(,Y?) ~ 272/2)2(Qv_a) €2T/%(0)2T”(04)2
So TRy (5) e, (0)°T5 (e — Q)T (a)
2
/')/2 y 2—’)/2/2 Q(Q’;a) Tl(o&)
=1 (0 G  ne
4 2 T%(Oé -Q)
2(Q-)
2 2—+2/2 v
- TN (T
~1(mui(5) 3 )
o— 2 a—
X N Canay (7)1—7<Q—Q+3> rese) (7)i<a—Q>—1
o— 2 9 2(a— 9
F(l—V( 2Q+ )) 2 p(l_%) 2

2(Q—a)

(rue(T)) 7 D02 TCTRE
Tul| —
4 P(V(Q;a)) F(l—l—Z(QV_a))

—a 2(Q—«a
P(-29re)) r(- 2

1(mm(F)
== TH q —a —a
4 p(%) p(@)

= 4RPO%(q).

12.7. An integral formula. We have

LEMMA 12.6. For all p > 0 and a € (1,2), the following identity holds:

/OOO <(1+1U)P - 1) Uiadv _ F(-a—l—l%l?}%v—i—a- 1).

Proof. We set @ = —a+ 1 and b =p+a — 1. We have

1 1 ) 1 © 1
1) =dv - _
/0 ((1 oy vadv /1 Uadv

_ 3 (_1)k(p)k(_a+ Dk 1

a—1
E>1

_ 1 Z (_l)k(p)k(_a+ Dk _ i

T oa-—1 El(—a+2);

k>0

k!(—a+2)k a—1

oFy(@,a+b,a+1,z=—1).
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Next, we have

< 1 1 L |
/ T —dv :/ P2y
1 (1 + U)p e 0 (]. + ’U)p

_ |
ptra—1: ki p + a)k
1 _ _
_ZQFl(b)a+bab+1az:_1)

L@+ 1I(b+1)
- T@+bv
This yields the desired relation since I'(z + 1) = 2I'(2). O

12.8. Some identities. We have the following identity for all z:

2 2 2 _
u— 27— Jul T — L |ul® (2 + )
C |7

Applying 0? to this we get

(7 u— 2%

A (7 - 1) / — __d%

4 \ 4 c (z —u)?|ujy

_1Q@—a1) (v(Q —ay) 1> |27 (@—on) -
i ’ SN CETEEOTCEE S

»

Hence for z = 1, this yields
2
a
(7 ju—1"
— | =-1 ————d“u
4\ 4 c (1 —u)?[ufr>
" ar\ (V¥ u
I A ya1yy(— 22 yor o 2%y
)= =5+ + )
Finally, by taking the 9,z derivative, we get
2 2
(72> / |U B 1| 2 d2
— ————d“u
4/ Jo 1 —uflulre
2

_(’}/2+1_’)/061>
-\ 4 2 Yoy 2 _ oy g %y
L) U(—=T)(2 + 1)

[

(12.11)
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