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Knot Floer homology
obstructs ribbon concordance

By Ian Zemke

Abstract

We prove that the map on knot Floer homology induced by a ribbon

concordance is injective. As a consequence, we prove that the Seifert genus

is monotonic under ribbon concordance. Generalizing theorems of Gabai

and Scharlemann, we also prove that the Seifert genus is super-additive

under band connected sums of arbitrarily many knots. Our results give

evidence for a conjecture of Gordon that ribbon concordance is a partial

order on the set of knots.

1. Introduction

If K0 and K1 are knots in S3, a concordance from K0 to K1 is a smoothly

embedded annulus in [0, 1]×S3 with boundary −{0}×K0∪{1}×K1. A ribbon

concordance is a concordance C with only index 0 and 1 critical points. A slice

knot is one that is concordant to the unknot (or equivalently, one that bounds

a smoothly embedded disk in B4). A ribbon knot is one that admits a ribbon

concordance from the unknot to K.

A major open problem in low-dimensional topology is the slice-ribbon

conjecture, which asks whether every slice knot is ribbon. In this paper, we

discuss the related problem of determining when two concordant knots are

ribbon concordant.

Some classical results about ribbon concordances are due to Gordon [Gor81].

Suppose C is a ribbon concordance from K0 to K1. Write π1(Ki) for the fun-

damental group of the complement of Ki in S3, and π1(C) for the fundamental

group of the complement of C in [0, 1]×S3. Gordon [Gor81, Lemma 3.1] proved

that

π1(K0)→ π1(C) is injective and π1(K1)→ π1(C) is surjective.
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Note that in Gordon’s terminology, such a concordance goes “from” K1 “to”

K0, though this is the opposite of the cobordism orientation, which is more

convenient for our present paper.

In contrast to the slice-ribbon conjecture, it is well known that there are

knots that are concordant, but not ribbon concordant. For example, if Tr and

Tl denote the right- and left-handed trefoils and F8 denotes the figure eight

knot, then K0 := Tr#Tl and K1 := F8#F8 are concordant. However since both

are fibered and have the same genus, a result of Gordon [Gor81, Lemma 3.4]

implies that if K0 and K1 were ribbon concordant, then they would be isotopic.

In this paper, we show that knot Floer homology gives an obstruction to

ribbon concordance.

births

saddles

K0

K1

Figure 1. A ribbon concordance from K0 to K1.

1.1. Knot Floer homology and ribbon concordances. If K ⊆ S3 is a knot,

there is a bigraded F2 vector space

(1) ’HFK (K) =
⊕
i,j∈Z

’HFK i(K, j),

constructed independently by Ozsváth and Szabó [OS04b], and Rasmussen

[Ras03]. The subscript i in equation (1) denotes the Maslov grading, and j

denotes the Alexander grading.

If C is a concordance from K0 to K1, Juhász and Marengon [JM16] con-

struct a grading preserving cobordism map

FC : ’HFK (K0)→’HFK (K1),

which is well defined up to two graded automorphisms of knot Floer homology.

The ambiguity corresponds to a choice of decoration on C; see Section 2 for

further details.
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The concordance maps are based on a more general construction of cobor-

dism maps on link Floer homology due to Juhász [Juh16]. We will also make

use of an alternate description given by the author [Zem19b], which extends

to the minus and infinity flavors of link Floer homology.

Our main theorem is the following:

Theorem 1.1. If C is a ribbon concordance from K0 to K1, then the map

FC : ’HFK (K0)→’HFK (K1)

is an injection.

Our argument is easy to summarize. Let C ′ denote the concordance from

K1 to K0 obtained by turning C upside down and reversing its orientation.

We will show that
FC′ ◦ FC = id‘HFK (K0)

,

which immediately implies Theorem 1.1.

We will in fact show that a version of Theorem 1.1 holds for the full knot

Floer complex, CFK∞(K), which contains more information than ’HFK (K);

see Theorem 1.7 and Section 4.

An immediate corollary of Theorem 1.1 is the following:

Theorem 1.2. If there is a ribbon concordance from K0 to K1, then for

each i and j,

rankF2
’HFK i(K0, j) ≤ rankF2

’HFK i(K1, j).

Gordon made the following conjecture:

Conjecture 1.3 ([Gor81]). Ribbon concordance is a partial ordering,

i.e., if there is a ribbon concordance from K0 to K1, and also a ribbon concor-

dance from K1 to K0, then K0 = K1.

Our Theorem 1.1 gives the following immediate corollary, which supports

Gordon’s conjecture:

Theorem 1.4. If there is a ribbon concordance from K0 to K1, and also

a ribbon concordance from K1 to K0, then’HFK (K0) ∼= ’HFK (K1),

as bigraded vector spaces over F2.

A caveat to Theorem 1.4 is that although ’HFK detects the unknot [OS04a],

as well as trefoils and the figure-eight knot [Ghi08], [Ni07], there are infinite

families of non-isotopic knots that have the same knot Floer homology [HW18,

Th. 1].

1.2. Monotonicity of the Seifert genus. If K is a knot, let d(K) denote

the degree of the Alexander polynomial of K. Gordon [Gor81, Lemma 3.4]
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showed that if there is a ribbon concordance from K0 to K1, then

(2) d(K0) ≤ d(K1).

Ozsváth and Szabó [OS04a, Th. 1.2] proved that knot Floer homology

detects the Seifert genus:

(3) g3(K) = max
{
i : ’HFK (K, i) 6= {0}

}
.

Juhász gave an alternate argument using surface decompositions and sutured

manifolds [Juh08, Th. 1.5].

Analogous to Gordon’s result in equation (2), an immediate consequence

of Theorem 1.1 and equation (3) is the following:

Theorem 1.5. If there is a ribbon concordance from K0 to K1, then

g3(K0) ≤ g3(K1).

1.3. Seifert genus of band connected sums. If K1, . . . ,Kn are knots in S3

that are unlinked from each other, a band connected sum of K1, . . . ,Kn is a

knot L obtained by connecting K1, . . . ,Kn together with n − 1 bands. The

ordinary connected sum is an example of a band connected sum, but in general,

band connected sums will be more complicated.

Gabai [Gab87] proved that if L is a band connected sum of K1 and K2,

then

(4) g3(L) ≥ g3(K1) + g3(K2).

Gabai also proved that if equality holds in equation (4), then L = K1#K2.

Scharlemann [Sch85] independently proved that if the the band connected sum

of two unknots is an unknot, then the band is a trivial band.

Note that the band connected sum of three or more knots is not in gen-

eral an iterated band connected sum of pairs of knots. Gabai’s proof does

not obviously extend to the case of three or more summands. We prove the

following:

Theorem 1.6. If a knot L is a band connected sum of knots K1, . . . ,Kn,

then

(5) g3(L) ≥ g3(K1) + · · ·+ g3(Kn).

Proof. Miyazaki [Miy98] gave an elegant manipulation that shows that if L

is a band connected sum ofK1, . . . ,Kn, then there is a ribbon concordance from

K1# · · ·#Kn to L. Hence, equation (5) follows immediately from our Theo-

rem 1.5, as well as the additivity of the Seifert genus under connected sum. �

Some comments are in order. Miyazaki [Miy18] recently proved super-

additivity of the Seifert genus under the assumption that L is fibered, in fact

showing that K1, . . . ,Kn must all be fibered as well. Miyazaki combines results
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of Gordon [Gor81], Silver [Sil92] and Kochloukova [Koc06] to show that if

equality holds in equation (5) and L is fibered, then L = K1# · · ·#Kn.

1.4. Extension to the full knot Floer complex. Ozsváth and Szabó [OS04b]

defined a more general version of knot Floer homology, called the full knot Floer

complex, denoted CFK∞(K). The object CFK∞(K) is a Z⊕ Z-filtered chain

complex over the ring F2[U,U−1].

The present author gave a functorial construction of cobordism maps for

the full knot Floer complex [Zem19b]. As a generalization to Theorem 1.1, we

will show the following:

Theorem 1.7. If C is a ribbon concordance from K0 to K1, and C ′ is

the concordance from K1 to K0 obtained by turning around and reversing the

orientation of C , then

FC′ ◦ FC ' idCFK∞(K0),

where ' means filtered, F2[U,U−1]-equivariantly chain homotopic.

1.5. Further commentary. A recent paper of Miyazaki [Miy18] points out

that work of Silver [Sil92] and Kochloukova [Koc06] together imply that if

there is a ribbon concordance from K0 to K1, and K1 is fibered, then K0 is

also fibered. Silver reduced the problem to a conjecture of Rapaport [Str75]

about knot-like groups, which Kochloukova proved. In particular, if there is

a ribbon concordance from K0 to K1 and K1 is fibered, and further K0 and

K1 have the same Seifert genus, then [Gor81, Lemma 3.4] implies they must

be isotopic. Note that our Theorem 1.1 gives an alternate proof of this latter

fact that avoids Kochloukova’s result, by using Ni’s theorem that knot Floer

homology detects fibered knots [Ni07] together with [Gor81, Lemma 3.4].

Finally, we remark that a major open problem in symplectic topology is

determining whether every Lagrangian concordance between Legendrian knots

in S3 is decomposable; see [Cha12, Def. 1.4], [EHK16, §6]. Decomposable La-

grangian cobordisms are products of elementary cobordisms corresponding to

Legendrian Reidemeister moves, saddles and births. In particular, decompos-

able Lagrangians are ribbon. One strategy for proving that a given Lagrangian

concordance is not decomposable might be to show that it is not even ribbon

via our Theorem 1.2 (or more ambitiously Theorem 1.1, if one could explicitly

compute the map). Unfortunately the only candidates the author is aware

of [CNS16, §2.2] are satellites of decomposable Legendrian concordances, and

hence are ribbon.

1.6. Acknowledgments. I would like to thank Jen Hom, Tye Lidman,

Jeffrey Meier and Maggie Miller for helpful correspondences. I would also like

to thank David Gabai for pointing out Scharlemann’s work. This problem was

posed by Sucharit Sarkar at the CMO-BIRS Conference Thirty Years of Floer
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Theory for 3-Manifolds in Oaxaca, Mexico; see Problem 26 of the problem list

https://www.birs.ca/cmo-workshops/2017/17w5011/report17w5011.pdf.

2. Background on knot and link Floer homology

Knot Floer homology is an invariant of knots discovered independently

by Ozsváth and Szabó [OS04b], and Rasmussen [Ras03]. Ozsváth and Szabó

[OS08] constructed a generalization, called link Floer homology, associated to

links in 3-manifolds. In this section, we present background material about

knot and link Floer homology.

Definition 2.1. A multi-based link L = (L,w, z) in a 3-manifold Y is

an oriented link L ⊆ Y , together with two disjoint and finite collections of

basepoints w, z ⊆ L such that the following hold:

(1) Each component of L has at least two basepoints.

(2) The basepoints alternate between w and z, as one traverses L.

To a multi-based link L in Y , the link Floer homology group’HFL(Y,L)

is a vector space over F2. If K = (K,w, z) is a doubly based knot in S3, the

group ’HFL(S3,K) coincides with the knot Floer homology group ’HFK (K).

The group ’HFL(Y,L) decomposes along Spinc structures as’HFL(Y,L) =
⊕

s∈Spinc(Y )

’HFL(Y,L, s),

as we outline below.

We briefly describe the construction of link Floer homology. One starts

with a Heegaard diagram (Σ,α,β,w, z) for L; see [OS08, §3.5] for the definition

of a Heegaard diagram of a multi-based link. Write

α = {α1, . . . , αn} and β = {β1, . . . , βn},

where n = g(Σ)+|w|−1 = g(Σ)+|z|−1, and consider the two half-dimensional

tori

Tα = α1 × · · · × αn and Tβ = β1 × · · · × βn

inside of the symmetric product Symn(Σ).

There is a map sw : Tα ∩ Tβ → Spinc(Y ) defined by Ozsváth and Szabó

[OS04c, §2.6]. As a module over F2, the chain complex ’CFL(Y,L, s) is freely

generated by the intersection points x ∈ Tα ∩ Tβ that satisfy sw(x) = s.

The differential ∂ on ’CFL(Y,L, s) is defined by counting holomorphic disks in

https://www.birs.ca/cmo-workshops/2017/17w5011/report17w5011.pdf
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Symn(Σ) with zero multiplicity on w and z:

(6) ∂x =
∑

y∈Tα∩Tβ

∑
φ∈π2(x,y)
µ(φ)=1

nw(φ)=nz(φ)=0

#(M(φ)/R) · y.

The definition of link Floer homology can be extended to disconnected

manifolds via a tensor product, as long as each component of the 3-manifold

contains a component of the link. By convention, we set’HFL(∅) := F2.

Functorial cobordism maps for the hat flavor of link Floer homology were

constructed by Juhász [Juh16]. Juhász’s construction made use of the contact

gluing map defined by Honda, Kazez and Matić [HKM08]. The present author

[Zem19b] gave an alternate construction of link cobordism maps in terms of ele-

mentary cobordisms. The construction is independent of the contact-geometric

construction of Honda, Kazez and Matić. In a joint work with Juhász, the au-

thor showed that the two constructions yield the same cobordism maps [JZ18,

Th. 1.4].

Juhász’s link Floer TQFT uses the following notion of decorated link

cobordism between two multi-based links:

Definition 2.2. Let Y0 and Y1 be 3-manifolds containing multi-based links

L0 = (L0,w0, z0) and L1 = (L1,w1, z1), respectively. A decorated link cobor-

dism from (Y0,L0) to (Y1,L1) is a pair (W,F) = (W, (Σ,A)), satisfying the

following:

(1) W is an oriented cobordism from Y0 to Y1.

(2) Σ is a properly embedded, oriented surface in W with ∂Σ = −L0 ∪ L1.

(3) A is a properly embedded 1-manifold in Σ that divides Σ into two sub-

surfaces Σw and Σz that meet along A, such that w0,w1 ⊆ Σw and

z0, z1 ⊆ Σz.

Using the constructions from [Juh16] and [Zem19b], if s ∈ Spinc(W ), there

is a functorial cobordism map

FW,F ,s : ’HFL(Y0,L0, s|Y0)→’HFL(Y1,L1, s|Y1).

When Spinc(W ) contains only one element, s, we write simply

FW,F := FW,F ,s.

To a concordance C from K0 to K1, we decorate K0 and K1 each with a

pair of basepoints, and we obtain a decorated link cobordism ([0, 1] × S3, C)
by decorating C with two parallel dividing arcs, both going from K0 to K1.

This configuration is studied in [JM16]. The choice of such dividing arcs is

not canonical, since we can always apply a Dehn twist along a homotopically
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nontrivial curve in C. Hence, if C is an undecorated concordance, the induced

cobordism map is only well defined up to the automorphisms of knot Floer

homology induced by the diffeomorphisms that twist K0 or K1 in one full

twist. Note that composition with a grading preserving automorphism does

not affect the statement of Theorem 1.1. The basepoint moving automorphism

map has been studied by Sarkar [Sar15] and by the author [Zem17].

An important property of the link Floer TQFT is that cobordisms with

non-connected ends are allowed. This fact will be important in our proof of

Theorem 1.1. The cobordism map associated to the disjoint union of two link

cobordisms is the tensor product of the two link cobordism maps.

Next, we discuss gradings. If L is a null-homologous link in Y (i.e., the

total class of L vanishes in H1(Y ;Z)) and s is a torsion Spinc structure on Y ,

Ozsváth and Szabó construct two gradings on link Floer homology: the Maslov

and Alexander gradings. In the framework of our TQFT, it is convenient to

repackage these two gradings into three gradings, grw, grz and A, which satisfy

the linear dependency

A =
1

2
(grw− grz).

The Maslov grading described by Ozsváth and Szabó is equal to grw, in our

notation.

The cobordism maps are graded, and the author [Zem19a, Th. 1.4] showed

that if s|Y0 and s|Y1 are torsion, and L0 and L1 are null-homologous, then

(7) grw(FW,F ,s(x))− grw(x) =
c1(s)2 − 2χ(W )− 3σ(W )

4
+ χ̃(Σw)

and

(8) grz(FW,F ,s(x))− grz(x) =
c1(s− PD [Σ])2 − 2χ(W )− 3σ(W )

4
+ χ̃(Σz),

where

χ̃(Σw) := χ(Σw)− 1

2
(|w0|+ |w1|),

and χ̃(Σz) is defined similarly. Special cases of the above grading formulas were

independently proven by Juhász and Marengon [JM18], when W = [0, 1]×S3.

A final property that we will need concerns the behavior of the cobordism

maps for 2-knots in S4:

Lemma 2.3. Suppose (S4,S) : ∅ → ∅ is a decorated link cobordism such

that S is a smooth 2-knot decorated with a single dividing curve. The induced

map

FS4,S : F2 → F2

is an isomorphism.
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Lemma 2.3 follows from [JM16, Th. 1.2]. Alternatively, we can view it

as a consequence of a more general formula for the behavior of the cobordism

maps applied to closed surfaces, due to the author; see Lemma 4.1, below.

3. Proof of Theorem 1.1

Having reviewed the necessary background, we now prove our main result:

Proof of Theorem 1.1. Suppose C is a ribbon concordance from K0 to K1.

Let C denote C, decorated with two parallel dividing arcs running from K0

to K1.

Consider the concordance C ′ from K1 to K0 obtained by turning around

and reversing the orientation of C. Let C′ denote the concordance C ′ with the

decorations induced by C. Write C ′ ◦ C for the concordance from K0 to itself

obtained by concatenating C and C ′, and write C′ ◦C for C ′ ◦C decorated with

the arcs from C and C′.
We claim that

(9) F[0,1]×S3,C′ ◦ F[0,1]×S3,C = F[0,1]×S3,C′◦C = id‘HFK (K0)
.

Note that equation (9) immediately implies Theorem 1.1. The first equality

in equation (9) follows from the composition law for link cobordisms, so it

remains to prove the second.

The concordance C ′ ◦ C will not in general be isotopic to the product

[0, 1]×K0 ⊆ [0, 1]× S3.

Nonetheless, the link Floer TQFT cannot tell the difference, as we now pre-

cisely describe.

Pick a movie presentation of C, with the following form:

(M -1) n births, adding unknots U1, . . . , Un;

(M -2) n saddles, for bands B1, . . . , Bn, such that Bi connects Ui to K0;

(M -3) an isotopy taking the band surgered knot (K0∪U1∪· · ·∪Un)(B1, . . . , Bn)

to K1.

Such a movie can be obtained by taking the concordance C (which by

assumption has only index 0 and 1 critical points) and moving the index 0

critical points below the index 1 critical points. A-priori the bands induced by

the index 1 critical points may not have one end on K0 and one end on one of

U1, . . . , Un. However, after a sequence of band slides, it is easy to arrange for

this configuration.

The concordance C ′ ◦C can be given a movie by concatenating the above

movie with its reverse. In this movie for C ′ ◦C, we run the isotopy from (M -3)

forward in the C-portion of the movie and then immediately run it backwards
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in the C ′-portion. Consequently, we can delete the two adjacent levels corre-

sponding to isotopy in the movie for C ′ ◦C and obtain the following movie for

C ′ ◦ C:

(M ′-1) n births, adding U1, . . . , Un;

(M ′-2) n saddles, for the bands B1, . . . , Bn;

(M ′-3) n saddles, for bands B′1, . . . , B
′
n obtained by reversing B1, . . . , Bn;

(M ′-4) n deaths, deleting U1, . . . , Un.

If we were to omit all 2n bands, the births and deaths determine 2-spheres,

S1, . . . , Sn. For each i, the band Bi, together with its reverse B′i, determines

a tube (i.e., an annulus), for which we write Ti. Consequently, we can view

the concordance C ′ ◦ C as being obtained by taking the identity concordance

[0, 1] × K0, and tubing in the spheres S1, . . . , Sn using the tubes T1, . . . , Tn.

Although the 2-spheres Si are individually unknotted, the tubes Ti may link

the spheres Si in a complicated manner.

We view the tubes as the boundaries of 3-dimensional 1-handles h1, . . . , hn
embedded in [0, 1]×S3 that join the surface [0, 1]×K0 to the spheres S1, . . . , Sn.

The 1-handle hi intersects Si in a disk Di and intersects [0, 1] ×K0 in a disk

D0
i . Define D′i := Si \ int(Di).

The concordance C ′ ◦ C is equal to the union

(10) C ′◦C =

Ç
[0, 1]×K0\

Ä
D0

1 ∪ · · · ∪D0
n

äå
∪(T1∪· · ·∪Tn)∪

(
D′1 ∪ · · · ∪D′n

)
.

If we replace the expression D′1∪ · · ·∪D′n appearing in equation (10) with

D1 ∪ · · · ∪Dn, we obtain a surface that is isotopic to the identity concordance

[0, 1]×K0; see Figure 2.

We now claim that replacing D′i with Di does not change the cobordism

map. Let N(Si) denote a regular neighborhood of Si, and let Yi denote the

boundary of N(Si). Note that

N(Si) ∼= D2 × S2 and Yi ∼= S1 × S2.

The concordance C ′ ◦C intersects Yi in an unknot Oi (equal to the inter-

section of Ti with Yi). We isotope the dividing set on C′ ◦C so that it intersects

Oi in two points and intersects D′i in a single arc. Let D′i denote D′i decorated

with this dividing arc, and let Di denote Di decorated with a single dividing

arc. Let Oi denote the unknot Oi ⊆ Yi, decorated with two basepoints that

are compatible with the dividing arcs.

We now claim that

(11) FN(Si),D′i,t0 = FN(Si),Di,t0 ,
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as maps from’HFL(∅) ∼= F2 to’HFL(Yi,Oi, s0), where t0 ∈ Spinc(N(Si)) denotes

the Spinc structure that evaluates trivially on Si, and s0 denotes its restriction

to Yi.

We note that the link Floer TQFT allows cobordisms that have discon-

nected or empty incoming and outgoing ends. Furthermore, the cobordism

map for a disjoint union of link cobordisms is the tensor product of the link

cobordism maps for each connected component. Hence, equation (11), to-

gether with the composition law for link cobordisms [Zem19b, Th. B], implies

the main claim.

We prove equation (11) in the subsequent Lemma 3.1. �

K0 K0

K0 K0

births

saddles

saddles

deaths

births

saddles

saddles

deaths

K1

Figure 2. The modification of C ′ ◦ C from the proof of Theo-

rem 1.1. On the left is a movie for C ′ ◦ C. On the right is a

movie for the concordance obtained by replacing the disks D′i
with Di. The concordance on the right is isotopic to [0, 1]×K0.
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Lemma 3.1. Suppose D and D′ are two smooth, properly embedded disks

in W := D2 × S2 that intersect S1 × S2 in an unknot O. Let O denote O

decorated with two basepoints, and let D and D′ denote D and D′ decorated

with a single dividing arc, compatibly with the basepoints of O. Let t0 denote the

unique Spinc structure on W whose Chern class evaluates trivially on {0}×S2,

and let s0 denote its restriction to S1 × S2. Then

(12) FW,D,t0 = FW,D′,t0 ,

as maps from F2
∼= ’HFK (∅) to ’HFK (S1 × S2,O, s0).

Proof. A Heegaard diagram for (S1 × S2,O) is shown in Figure 3.

αβ
w
z

Figure 3. A diagram for the unknot O in S1 × S2. The two

intersection points both represent the torsion Spinc structure.

Since O is a doubly based unknot, the gradings grw and grz coincide on

the generators of ’HFK (S1 × S2,O, s0). Indeed both grw and grz are defined

on intersection points using the same formula, since the basepoints are imme-

diately adjacent. We refer to the common grading on ’HFK (S1 × S2,O, s0)

simply as the Maslov grading. Note that’HFK (S1 × S2,O, s0) ∼= (F2)− 1
2
⊕ (F2) 1

2
,

where (F2)p denotes a rank 1 summand of F2, concentrated in Maslov grading

p ∈ Q.

We make two claims:

(c-1) Both FW,D,t0(1) and FW,D′,t0(1) have Maslov grading −1
2 .

(c-2) FW,D,t0(1) and FW,D′,t0(1) are both non-zero.

Claim (c-1) follows from the grading change formulas in equations (7)

and (8). (Both formulas give the same answer.)

Claim (c-2) is proven as follows: Let (W0,D0) : (S1 × S2,O) → ∅ denote

a decorated link cobordism, where W0 is a 3-handle cobordism followed by a

4-handle, and D0 is a smooth disk, decorated with a single dividing arc. Note

that W0 ∪W is diffeomorphic to S4. Write S and S ′ for the 2-spheres D0 ∪D
and D0 ∪ D′, respectively. By the composition law,

(13) FS4,S = FW0,D0 ◦ FW,D,t0 .
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However FS4,S : F2 → F2 is an isomorphism by Lemma 2.3. Consequently

FW,D,t0(1) must be non-zero in light of equation (13). The same argument

shows FW,D′,t0(1) is non-zero, so Claim (c-2) holds.

Noting that ’HFK (S1×S2,O, s0) has rank 1 in Maslov grading −1
2 , Claims

(c-1) and (c-2) imply that FW,D,t0 = FW,D′,t0 , completing the proof. �

4. Extension to the full knot Floer complex

In this section, we prove Theorem 1.7. The argument is only notationally

harder than the one we gave for Theorem 1.1. We first recall the definition of

the relevant version of the full knot Floer complex and the cobordism maps

from [Zem19b], and we state some basic properties.

If L is a multi-based link in Y , we let CFL−(Y,L, s) denote the module

that is freely generated over the two variable polynomial ring F2[u, v] by inter-

section points x ∈ Tα ∩ Tβ with sw(x) = s. Adapting equation (6), we equip

CFL−(Y,L, s) with the differential

∂x =
∑

y∈Tα∩Tβ

∑
φ∈π2(x,y)
µ(φ)=1

#(M(φ)/R) · unw(φ)vnz(φ) · y,

where nw(φ) and nz(φ) denote the total multiplicity of the class φ on the

basepoints w and z.

Note that ’CFL(Y,L, s) is obtained from CFL−(Y,L, s) by setting u=v=0.

A complex CFL∞(Y,L, s) is defined by formally inverting u and v in the module

CFL−(Y,L, s).
The gradings grw, grz and A described in Section 2 all have incarnations on

the minus and infinity flavors. On intersection points, their definitions coincide

with the gradings on ’CFL(Y,L, s). They are extended to CFL−(Y,L, s) by

defining u to have (grw, grz)-bigrading (−2, 0) and defining v to have (grw, grz)-

bigrading (0,−2). The Alexander grading satisfies A = 1
2(grw− grz).

Let K denote a knot K in S3, decorated with two basepoints. The full

knot Floer complex CFK∞(K), as defined in [OS04b], is equal to the sub-

complex of CFL∞(S3,K) in Alexander grading zero. The actions of u and

v are not individually well defined on CFK∞(K), since they have non-zero

Alexander grading. Nonetheless, the group CFK∞(K) can be given an action

of F2[U,U−1], by having U act by the product uv.

The module CFL∞(S3,K) has a natural Z ⊕ Z-filtration G(n,m)(K) ⊆
CFL∞(S3,K), generated by monomials uivj · x with i ≥ n and j ≥ m. The

Z⊕Z-filtration on CFK∞(K) is then given as the intersection of G(n,m)(K) with

CFK∞(K), or equivalently, the homogeneous subset of G(n,m)(K) in Alexander

grading zero.
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To a decorated link cobordism (W,F) : (Y0,L0)→ (Y1,L1), equipped with

a Spinc structure s ∈ Spinc(W ), the author [Zem19b] constructs functorial

cobordism maps

FW,F ,s : CFL−(Y0,L0, s|Y0)→ CFL−(Y1,L1, s|Y1).

If L0 and L1 are both null-homologous and s|Y0 and s|Y1 are torsion (so

grw and grz are defined), then the grading formulas from equations (7) and (8)

hold [Zem19a, Th. 1.4].

Next, we recall the form of the maps for closed surfaces in S4, as computed

by the author [Zem19a, Th. 1.8]:

Lemma 4.1. Suppose that S = (Σ,A) is a closed, decorated surface in S4

such that Σ\A has two connected components, Σw and Σz. Then the cobordism

map

FS4,S : F2[u, v]→ F2[u, v]

is equal to the map

1 7→ ug(Σw)vg(Σz).

In particular, when S is a 2-knot, the cobordism map is the identity.

We are now equipped to prove Theorem 1.7:

Proof of Theorem 1.7. Suppose C is a ribbon concordance from K0 to K1,

and let C and C′ be decorations of C and C ′, as in the proof of Theorem 1.1.

The proof of the present theorem amounts to showing that

(14) F[0,1]×S3,C′ ◦ F[0,1]×S3,C ' F[0,1]×S3,C′◦C ' idCFL−(K0) .

The proof of equation (14) follows the proof of Theorem 1.1 verbatim until

Lemma 3.1. We claim that Lemma 3.1 holds with ’CFL(S1×S2,O, s0) replaced

by CFL−(S1 × S2,O, s0).

Note that grw and grz do not coincide on CFL−(S1 × S2,O, s0), since u

and v have non-zero (grw, grz)-bigrading. We claim that the following analogs

of Claims (c-1) and (c-2) hold:

(c′-1) Both FW,D,t0(1) and FW,D′,t0(1) have (grw, grz)-bigrading (−1
2 ,−

1
2) in

CFL−(S1 × S2,O, s0).

(c′-2) FW,D,t0(1) and FW,D′,t0(1) are both non-zero.

Claim (c′-1) follows from the grading formulas in equations (7) and (8),

as before.

Claim (c′-2) is proven similarly to Claim (c-2), except using Lemma 4.1

for the maps induced by 2-knots.

Finally, we note that

CFL−(S1 × S2,O, s0) ∼=
Ç

(F2)(− 1
2
,− 1

2
) ⊕ (F2)( 1

2
, 1
2

)

å
⊗F2 F2[u, v],
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with vanishing differential. (See Figure 3 for a diagram.) In the above equa-

tion, (F2)(p,q) denotes a summand of F2 concentrated in (grw, grz)-bigrading

(p, q). The homogeneous subset in (grw, grz)-bigrading (−1
2 ,−

1
2) has rank 1,

so Claims (c′-1) and (c′-2) force

FW,D,t0(1) = FW,D′,t0(1)

as elements of CFL−(S1 × S2,O, s0). Using the composition law, the proof is

complete.

�
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