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Uniqueness of K-polystable
degenerations of Fano varieties

By Harold Blum and Chenyang Xu

Abstract

We prove that K-polystable degenerations of Q-Fano varieties are unique.

Furthermore, we show that the moduli stack of K-stable Q-Fano varieties

is separated. Together with recently proven boundedness and openness

statements, the latter result yields a separated Deligne-Mumford stack

parametrizing all uniformly K-stable Q-Fano varieties of fixed dimension

and volume. The result also implies that the automorphism group of a

K-stable Q-Fano variety is finite.
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1. Introduction

1.1. Moduli spaces of Fano varieties. To give a general framework for in-

trinsically constructing moduli spaces of Fano varieties is a challenging question

in algebraic geometry, especially if one wants to find a compactification. Unlike

the KSBA construction in the canonically polarized case, the Minimal Model

Program often provides more than one limit for a family of Fano varieties over

a punctured curve. Thus, it is unclear how to find a theory that picks the right

limit. In examples, people have obtained a lot of working experience on how to

identify the simplest limit. On the negative side, examples such as [PP10, §2.2],

which gives a family that isotrivially degenerates a homogeneous space to a
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different quasi-homogeneous space (with non-reductive automorphism group),

suggest that we should not consider all smooth Fano varieties.

So when the definition of K-stability from complex geometry [Tia97] and

its algebraic formulation [Don02], which were introduced to characterize when

a Fano variety admits a Kähler-Einstein metric, first appeared in front of al-

gebraic geometers, it seemed bold to expect such a notion would be a key

ingredient in constructing moduli spaces of Fano varieties. However, as the

theory has developed, more and more evidence makes such an expectation

believable.

We now expect that the moduli functor MKss
n,V of n-dimensional K-semi-

stable Q-Fano varieties of volume V , which sends S ∈ Schk to

MKss
n,V (S) =


Flat proper morphisms X → S, whose geometric fibers are

n-dimensional K-semistable Q-Fano varieties with

volume V , satisfying Kollár’s condition


is represented by an Artin stack MKss

n,V of finite type and admits a projective

good moduli spaceMKss
n,V →MKps

n,V (in the sense of [Alp13]), whose closed points

are in bijection with n-dimensional K-polystable Q-Fano varieties of volume

V . Here, Kollár’s condition means that the reflexive power ω
[m]
X/S is flat over S

and commutes with arbitrary base change for each m ∈ Z; see [Kol09, 24].

While smooth Kähler-Einstein Fano manifolds with finite automorphism

group are asymptotically Chow stable [Don01], examples in [OSY12] and

[LLSW17] show that the GIT approach likely fails to treat those with infi-

nite automorphism groups or singularities. (See [WX14] for examples where

asymptotic Chow stability fails to construct compact moduli spaces in the

KSBA setting.) Therefore, we need to take a more abstract approach to con-

structing MKps
n,V .

The construction of MKps
n,V reduces to proving a number of concrete state-

ments about families of Q-Fano varieties. We list the main ones:

(I) Boundedness: There is a positive integer N = N(n, V ) such that if

X ∈ MKss
n,V (k), then −NKX is a very ample Cartier divisor. This is

settled in [Jia17] using results in [Bir19].

(II) Zariski openness: If X → S is a family of Q-Fano varieties, then the

locus where the fiber is K-semistable is a Zariski open set.

Together, (I) and (II) show that MKss
n,V is an Artin stack of finite type

and is a global quotient. The following statements are needed to show MKss
n,V

admits a projective good moduli space.

(III) Good quotient : The stack MKss
n,V admits a good moduli space. To prove

this, it suffices to show the following:
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(III.a) Reductive automorphism group: If X is a K-polystable Q-Fano va-

riety X, then Aut(X) is reductive.

(III.b) Gluing of local quotients: Near each K-polystable Q-Fano vari-

ety X ∈ MKss
n,V (k), there exists a local atlas around [X] given

by an Aut(X) slice. Furthermore, a point in the slice is GIT

(poly/semi)stable with respect to Aut(X) if and only if the corre-

sponding Q-Fano variety is K-(poly/semi)stable. To complete this

step, it remains to verify that the local GIT quotient spaces glue

together to give the good quotient MKps
n,V (e.g., the hypotheses of

[AFS17, Th. 1.2] are satisfied).

(IV) Separatedness: Any two K-semistable degenerations of a family of

K-semistable Q-Fano varieties over a punctured curve C◦ = C \ 0 lie in

the same S-equivalence class; i.e., they degenerate to a common K-semi-

stable Q-Fano variety via special test configurations.

(V) Properness: Roughly speaking, any family of K-semistable Fano varieties

over a punctured curve C◦ = C \ 0 can be filled in over 0 to a family of

K-semistable Q-Fano varieties over C.

(VI) Projecitivty : A sufficiently divisible multiple of the CM-line bundle yields

an ample line bundle on MKps
n,V .

We note that there are subtleties related to the requirement that objects

inMKss
n,V (S) satisfy Kollár’s condition. Luckily, such issues are of a local nature

and have all been addressed in the construction of the moduli space of KSBA

stable varieties (see [Kol09], [Kol19]).

Strong evidence for the above picture is that, aside from (VI) (the pro-

jectivity of MKps
n,V ), the problem is completely solved in [LWX19] (see also

[SSY16], [Oda15]) for Q-Fano varieties with a Q-Gorenstein smoothing and

some progress on the projectivity was made in [LWX18b]. However, these re-

sults rely heavily on the deep analytic tools established in [CDS15], [Tia15].

Therefore, a completely algebraic proof is highly desirable. Such a proof would

likely allow us to drop the smoothable assumption.

The main result in this paper gives a complete solution to (IV). In the

smoothable case, this step is solved in [LWX19], [SSY16] using analytic tools.

The argument in this document is purely algebraic.

1.2. Separatedness result. The following statement is our main result.

Theorem 1.1. Let π : (X,∆)→C and π′ : (X ′,∆′)→C be Q-Gorenstein

families of log Fano pairs over a smooth pointed curve 0 ∈ C . Assume there

exists an isomorphism

φ : (X,∆)×C C◦ → (X ′,∆′)×C C◦

over C◦ : = C \ 0.
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(1) K-semistable case: If (X0,∆0) and (X ′0,∆
′
0) are K-semistable, then they

are S-equivalent.

(2) K-polystable case: If (X0,∆0) and (X ′0,∆
′
0) are K-polystable, then they are

isomorphic.

(3) K-stable case: If (X0,∆0) is K-stable and (X ′0,∆
′
0) is K-semistable, then

φ extends to an isomorphism (X,∆) ' (X ′,∆′) over C .

Remark 1.2.

(1) The K-polystable case of Theorem 1.1 follows immediately from the K-semi-

stable case and Definitions 2.5 and 2.6.

(2) By [LWX18a], the K-semistable case of Theorem 1.1 can be strengthened

to say (X0,∆0) and (X ′0,∆
′
0) have a common K-polystable degeneration.

(3) A special case of Theorem 1.1 was proved in [Oda12, 1.4] with the ad-

ditional assumption that α(X0,∆0) > dim(X0)/(dim(X0) + 1) (see also

[Che09, 5.7]).

Theorem 1.1 implies the following special case of Step (III.a).

Corollary 1.3. Let (X,∆) be log Fano pair. If (X,∆) is K-stable, then

Aut(X,∆) is finite.

1.3. Moduli of uniformly K-stable Fano varieties. We now specialize our

study to the moduli of uniformly K-stable Fano varieties. Consider the moduli

functor MuKs
n,V that sends S ∈ Schk to

MuKs
n,V (S) =


flat, proper morphisms X → S, whose geometric fibers

are n-dimensional uniformly K-stable Q-Fano varieties

of volume V , satisfying Kollár’s condition

 .
Combining the recent results

(Iu) Boundedness: proved in [Jia17],

(IIu) Zariski openness: proved in [BL18], and

(IIIu) Separatedness (as a stack): Theorem 1.1.3,

we obtain the following corollary.

Corollary 1.4. The functorMuKs
n,V is a separated Deligne-Mumford stack

of finite type, which has a coarse moduli space MuKs
n,V that is a separated alge-

braic space.

One still missing property is

(IVu) Quasi-projectivity : MuKs
n,V is quasi-projective.

Significant progress on this problem was made in [CP18].

1.4. Summary of the paper. The original definition of K-stability in [Tia97]

and [Don02] is defined in terms of the sign of the generalized Futaki invariant
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on all test configurations or at least special test configurations (see [LX14]).

Recently, there has been tremendous progress in reinterpreting K-stability in

terms of invariants associated to valuations rather than test configurations.

More specifically, in [BHJ17], the data of a test configuration was trans-

lated into the data of a filtration and it was shown that a nontrivial special test

configuration yields a divisorial valuation. Then in a series of papers [Fuj16],

[Fuj19b], [Fuj18] of K. Fujita, all divisorial valuations were studied and an in-

variant β was defined for each divisorial valuation. After [Li17], it became more

natural to extend the setup to all valuations over the log Fano variety rather

than only considering divisorial valuations (see also [LX16], [BJ17]). Moreover,

a characterization of K-stability notions in terms of the sign of β-invariant for

divisorial valuations was proved in [Li17], [Fuj19b], and they lead to another

characterization by the δ-invariant in [FO18], [BJ17]. These interpretations

of K-stability using valuations have made it easier to apply techniques from

birational geometry, especially the Minimal Model Program, to the study of

K-stability.

In Section 2, we will have a short discussion on the above materials. More

precisely, we will provide information on the language of valuations and filtra-

tions following [BHJ17], [Fuj19a], [Li17] and the invariants β and δ associated

to them following [Fuj19a], [FO18], [BJ17]. We also discuss the normalized vol-

ume function from [Li18] and its relation with the K-stability of Fano varieties

(see [Li17], [LX16]).

To proceed with our discussion, let us define the above invariants. Let

(X,∆) be a log Fano pair. Given a divisor E over X (i.e., E ⊂ Y is a prime

divisor, where Y is a normal variety with a proper birational morphism π :

Y → X), the β-invariant of E is given by

βX,∆(E) := AX,∆(E)(−KX −∆)n −
∫ ∞

0
vol(π∗(−KX −∆)− tE)dt,

where AX,∆(E) is the log discrepancy of E. This invariant was defined in

[Fuj18], and the K-(semi)stability of (X,∆) can be phrased in terms of the

positivity of βX,∆(E) [Fuj19b], [Li17].

Next is the δ-invariant of (X,∆), which, as defined in [FO18], measures

log canonical thresholds of a certain classes of anti-log canonical divisors of

(X,∆). It is shown in [BJ17] that

(1) δ(X,∆) = inf
E

AX,∆(E)(−KX −∆)n∫∞
0 vol(π∗(−KX −∆)− tE)dt

.

Hence, we say that a divisor E over X computes δ(X,∆) if it achieves the

infimum in (1). The pair (X,∆) is uniformly K-stable (resp. K-semistable) if

and only if δ(X,∆) > 1 (resp. δ(X,∆) ≥ 1) [FO18], [BJ17].
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In Section 3, before attacking Theorem 1.1 in full generality, we con-

sider the special case in which (X0,∆0) is uniformly K-stable and (X ′0,∆
′
0) is

K-semistable. In this case, we provide a short proof of the separatedness result

by using properties of the δ-invariant to reduce the question to the well-known

separatedness statement for the moduli functor of klt log Calabi-Yau pairs

(Proposition 3.2). This argument is more straightforward than the general

case and takes a slightly different approach. We hope this perspective can be

applied in other cases.

To prove Theorem 1.1 in full generality is more involved. We need to

study the case when the δ-invariants of the special fibers equal one. In general,

analyzing the valuation computing δ = 1 is quite subtle. For instance, the

following statement has been conjectured by experts.

Conjecture 1.5. Let (X,∆) be a log Fano pair. If δ(X,∆) ≤ 1, then

δ(X,∆) is computed by a divisor over X and any such divisor is dreamy.

The special case of Conjecture 1.5 when δ(X,∆) = 1 implies K-stability

is equivalent to the apparently stronger notion of uniform K-stability. This is

known for smooth Fano varieties by [BBJ15], but the proof relies on analytic

tools, in particular the existence of Kähler-Einstein metrics.

In Section 4, we will prove some special cases of Conjecture 1.5 that are

needed in our proof of Theorem 1.1. The first result is that if (X,∆) is a log

Fano variety with δ(X,∆) = 1, then any divisor computing δ(X,∆) is neces-

sarily dreamy and induces a special test configuration of (X,∆). The proof

relies on the MMP techniques developed in [LWX18a], which build upon work

in [Li17], [LX16], [LX18]. Specifically, we consider the cone over our log Fano

pair and use the calculation in [Li17], [LX16] that shows that βX,∆(E) equals

the derivative of the normalized volume function on the valuation space of the

cone along the path given by the interval connecting the divisorial valuation

associated to the pullback of E and the canonical valuation. A careful study

as in [LWX18a, Th. 3.2] shows that E is indeed a dreamy divisor and induces

a special test configuration. In Sections 4.2 and 4.3, we also address the situa-

tions when the δ-invariant can be calculated by an ideal or a Q-divisor. These

results may be of independent interest.

Section 5 is the core of this paper and where we prove Theorem 1.1. The

majority of the work in this section is to construct the S-equivalence stated in

the theorem.

Step 1: We first observe that a pair of two different degenerations will

induce filtrations on each other’s section rings. Furthermore, the associated

graded rings of the filtrations are isomorphic with a grading shift matching the

calculation of β-invariant.
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Let us explain the above construction in more detail. Assume we have two

Q-Gorenstein families of log Fano pairs π : (X,∆)→ C and π′ : (X ′,∆′)→ C

over a smooth affine curve C and an isomorphism

φ : (X,∆)×C C◦ → (X ′,∆′)×C C◦

that does not extend to an isomorphism over C◦ = C \ 0. Fix r so that

L := −r(KX + ∆) and L := −r(KX′ + ∆′) are Cartier. We choose a proper

birational model over X and X ′, “X
X X ′,

ψ′ψ

φ

and we write ‹X0 and ‹X ′0 for the birational transforms of X0 and X ′0 on “X.

The divisor ‹X ′0 induces a filtration F on the section ring of (X0,∆0) defined

by

s ∈ FpH0(X0,mL0) if and only if ord
X̃′0

(s̃) ≥ p

for some (non-unique) extension s̃ ∈ H0(X,mL). Then we define

β := (−KX0 −∆0)nAX,∆+X0(‹X ′0)− lim
m→∞

∫ ∞
0

dimFmxH0(X0,mL0)

rn+1mn/n!
dx.

Similarly, we can define a filtration F ′ of the section ring of (X ′0,∆
′
0) and the

value β′ using the divisor ‹X0. The construction here can be viewed as a relative

version of the one in [BHJ17, §5], where they consider a test configuration and

a trivial family.

Next, we observe that there is an isomorphism of the associated graded

rings of the filtrations⊕
m∈N

⊕
p∈Z

grpFH
0(X0,mL0)

ϕ−→
⊕
m∈N

⊕
p∈Z

gr
mr(a+a′)−p
F ′ H0(X ′0,mL

′
0),(2)

where a := AX,∆+X0(‹X ′0) and a′ := AX′,∆′+X′0(‹X0). Using this isomorphism,

we deduce that β + β′ = 0.

If we assume (X0,∆0) and (X ′0,∆
′
0) are K-semistable, then the β-invariant

of any divisor over X0 or X ′0 is non-negative [Fuj19b], [Li17]. A similar result

is extended to filtrations in [BL18].1 We can then conclude that β = β′ = 0.

Step 2: At this point, we know X0 and X ′0 have a common degeneration.

Indeed, the Rees construction gives degenerations

X0  X0 := Proj

Ç⊕
m∈N

⊕
p∈Z

grpFH
0(X0,mL0)

å
1This is also independently obtained by Chi Li and Xiaowei Wang in [LW18].
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and

X ′0  X ′0 := Proj

Ç⊕
m∈N

⊕
p∈Z

grpF ′H
0(X ′0,mL

′
0)

å
.

By (2), the degenerations X0 and X ′0 are isomorphic.

An immediate concern is that the above graded rings are not necessarily

finitely generated. (Note that notions of K-stability have been investigated in

the setting of non-finitely generated filtrations [WN12], [Sze15].) Since we aim

to prove (X0,∆0) and (X ′0,∆
′
0) have a common degeneration to a K-semistable

log Fano pair, we must show that the filtrations F and F ′ are finitely generated

and induce special test configurations with generalized Futaki invariant zero.

By [LWX18a, 3.1], this will imply that the degenerations are K-semistable log

Fano pairs.

To proceed, we rely on the fact that our filtrations are induced by divisors

over our families. More precisely, we use that β = 0 to show that there exists

an extraction Y → X of ‹X ′0 and the fiber Y0 = V ∪W , where V and W are

the birational transforms of X0 and X ′0. Now, we set E = W |V and observe

that E induces a filtration FE on the section ring of (X0,∆0). We then show

F := Supp(E) is a prime divisor and βX0,∆0(F ) = 0. Using Theorem 4.1, we

see FE is finitely generated and the corresponding degeneration of (X0,∆0) is

a special test configuration with generalized Futaki invariant zero.

Next, we seek to show that the filtrations F and FE are equal. This

statement is equivalent to the surjectivity of certain restriction maps and is

non-trivial. To achieve the result, we take the relative cone of (X,∆) over C

and run an analysis similar to the proof of Theorem 4.1. After completing this

argument, we can conclude that the degenerations (X0,D0) and (X ′0,D′0) are

naturally K-semistable pairs.

Finally, we need to show that the isomorphism X0 ' X ′0 sends the degener-

ation of ∆0 to the degeneration of ∆′0, so that we get an isomorphism of pairs.

To verify this, we choose a divisor B ⊆ Supp(∆) and write B′ ⊆ Supp(∆′) for

its birational transform. Now, B0 degenerates to a divisor on X0 that corre-

sponds to the initial ideal in(IB0) in the associated graded ring. Rather than

showing ϕ(in(IB0)) = in(IB′0), we introduce auxiliary ideals I and I ′ such that

the equality ϕ(I) = I ′ is clear. (The ideal I is defined by restricting elements of

the relative section ring that vanish to certain orders along B and ‹X ′0.) Using

the relative cone construction again, we show that I and I ′ agree with in(IB0)

to in(IB′0) at codimension one points. We can then conclude that the desired

isomorphism of boundaries holds.

Acknowledgements. We are grateful to Roman Bezrukavnikov, Giulio

Codogni, Tommaso de Fernex, Christopher Hacon, Mattias Jonsson, János

Kollár, Chi Li, Yuchen Liu, Mircea Mustaţă, Yuji Odaka, Xiaowei Wang, and
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2. Preliminaries on valuations and K-stability

2.1. Conventions. We work over an algebraically closed field k of charac-

teristic 0. We follow the terminologies in [KM98], [Kol13]. A pair (X,∆) is

composed of a normal variety X and an effective Q-divisor ∆ on X such that

KX + ∆ is Q-Cartier. See [KM98, 2.34] for the definitions of klt, plt, and lc

pairs. A pair (X,∆) is log Fano if X is projective, (X,∆) is klt, and −KX−∆

is ample. A variety X is Q-Fano if (X, 0) is log Fano.

Definition 2.1. A Q-Gorenstein family of log Fano pairs π : (X,∆) → C

over a smooth curve C is composed of a flat proper morphism π : X → C and

an effective Q-divisor ∆, not containing any fiber of π, satisfying the following:

(1) π has normal, connected fibers (hence, X is normal as well);

(2) −KX −∆ is Q-Cartier and π-ample; and

(3) (Xt,∆t) is klt for all t ∈ C.

2.2. Valuations. Let X be a variety. A valuation on X will mean a valu-

ation v : K(X)× → R that is trivial on k and has center on X. Recall, v has

center on X if there exists a point ξ ∈ X such that v ≥ 0 on OX,ξ and > 0

on the maximal ideal. Since X is assumed to be separated, such a point ξ is

unique, and we say v has center cX(v) := ξ. See [JM12, 3.1] for the definition

of quasimonomial valuations.

Following [JM12], [BdFFU15], we write ValX for the set of valuations on X

and Val∗X for the set of non-trivial ones. To any valuation v ∈ ValX and p ∈ N,

there is an associated valuation ideal ap(v) . For an affine open subset U ⊆ X,

ap(v)(U) = {f ∈ OX(U) | v(f) ≥ p} if cX(v) ∈ U and ap(v)(U) = OX(U)

otherwise.

For an ideal a ⊆ OX and v ∈ ValX , we set

v(a) := min{v(f) | f ∈ a · OX,cX(v)} ∈ [0,+∞].

We can define v(s) when L is a line bundle on X and s ∈ H0(X,L). After

trivializing L at cX(v), we set v(s) = v(f), where f is the local function
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corresponding to s under this trivialization. (This is independent of choice of

trivialization.)

2.2.1. Divisors over X . Let X be a variety and π : Y → X be a proper

birational morphism, with Y normal. A prime divisor E ⊂ Y defines a valua-

tion ordE : K(X)× → Z given by order of vanishing at E. Note that cX(ordE)

is the generic point of π(E) and, assuming X is normal, ap(v) = π∗OY (−pE).

We identify two such prime divisors on Y1 and Y2 as above if one is the

birational transform of the other. Equivalently, they induce the same valuation

of K(X). A divisor over X is an equivalence class given by this relation.

2.2.2. Log discrepancies. Let (X,∆) be a pair. We write

AX,∆ : Val∗X → R ∪ {+∞}

for the log discrepancy function with respect to (X,∆) as in [JM12], [BdFFU15].

(See [Blu18b] for the case when ∆ 6= 0.)

When π : Y → X is a proper birational morphism with Y normal and

E ⊂ Y a prime divisor,

AX,∆(ordE) = 1 + coeffE (KY − π∗(KX + ∆)) .

We will often write AX,∆(E) for the above value.

The function AX,∆ is homogeneous of degree 1, i.e., AX,∆(λv) = λ ·
AX,∆(v) for λ ∈ R>0 and v ∈ ValX . A pair (X,∆) is klt (resp. lc) if and

only if AX,∆(v) > 0 (resp. ≥ 0) for all v ∈ Val∗X .

2.2.3. Graded sequences. A graded sequence of ideals a• = (ap)p∈Z>0 on a

variety X is a sequence of ideals on X satisfying ap ·aq ⊆ ap+q for all p, q ∈ Z>0.

By convention, a0 = OX . We set M(a•) := {p ∈ Z>0 | ap 6= (0)} and always

assume M(a•) is nonempty. If v ∈ Val∗X , then a•(v) is a graded sequence of

ideals.

Let a• be a graded sequence of ideals on X and v ∈ ValX . It follows from

Fekete’s Lemma that the limit

v(a•) := lim
M(a•)3m→∞

v(am)

m

exists and equals infm≥1
v(am)
m ; see [JM12, §2.1].

Let x ∈ X be a closed point. If a• is a graded sequence of ideals on X

and each ideal ap is mx-primary, we set

mult(a•) := lim
p→∞

dimk(OX/ap)
pn/n!

.

If v ∈ ValX has center {x}, then ap(v) is mx-primary for each p > 0. In this

case, we call vol(v) := mult(a•(v)) the volume of v.
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2.2.4. Log canonical thresholds. Let (X,∆) be an lc pair. Given a nonzero

ideal a ⊆ OX , the log canonical threshold of a is given by

lct(X,∆; a) := sup{c ∈ Q≥0 | (X,∆ + ac) is lc}.

If a• a graded sequence of ideals on X, the log canonical threshold of a• is

given by

lct(X,∆; a•) := lim
M(a•)3m→∞

m · lct(X,∆; am).

Fekete’s Lemma (see [JM12, 2.5]) implies that the above limit exists and equals

supmm · lct(X,∆; am).

It is straightforward to show lct(X,∆; a•) ≤
AX,∆(v)
v(a•)

for v ∈ Val∗X satisfy-

ing 0 6= AX,∆(v) < +∞. Hence, if v ∈ Val∗X satisfies AX,∆(v) 6= 0, then

(3) lct(X,∆; a•(v)) ≤ AX,∆(v),

since v(a•(v)) = 1 [Blu18b, 3.4.9].

2.2.5. Extractions. Let E be a divisor over a normal variety X. We say

that µ : XE → X is an extraction of E if µ is a proper birational morphism

where XE is normal, E arises as a prime divisor E ⊂ XE , and −E is µ-ample.

Note that if µ : XE → X is an extraction of E, then E ⊇ Exc(µ) and

equality holds if codimX(cX(ordE)) ≥ 2. Indeed, Lemma 4.5 implies that

if p ∈ Z>0 is sufficiently divisible, then µ is the blowup along ap(ordE) and

ap(ordE) · OY = OY (−pE).

The following technical statement gives a criterion for when an exceptional

divisor may be extracted. The criterion will be used repeatedly in Section 5.

Proposition 2.2. Let (X,∆) be a klt pair or a plt pair such that b∆c = S

is a non-zero Q-Cartier divisor. If E is a divisor over X satisfying

a := AX,∆(E)− lct(X,∆; a•(ordE)) < 1,

then there exists an extraction µ : XE → X of E and (XE , µ
−1
∗ (∆) + (1−a)E)

is lc.

The proposition is a consequence of [BCHM10] and properties of the log

canonical threshold of a graded sequence of ideals.

Proof. See the argument in [Blu17, 1.5] for the case when (X,∆) is klt. If

(X,∆) is plt, observe that (X,∆ε := ∆− εS) is klt for 0 < ε < 1. If we set

aε := AX,∆ε(ordE)− lct(X,∆ε; a•(ordE)),

then lim
ε→0

aε = a and we may reduce to the klt case. �
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2.3. Filtrations. Let (X,∆) be a n-dimensional log Fano pair. Fix a pos-

itive integer r such that L := −r(KX + ∆) is Cartier, and write

R = R(X,L) =
⊕
m∈N

Rm =
⊕
m∈N

H0(X,OX(mL))

for the section ring of L. Set M(L) := {m ∈ N |H0(X,OX(mL)) 6= 0}.

Definition 2.3. A filtration F of R will mean the data of a family of vector

subspaces FλRm ⊆ Rm for m ∈ N and λ ∈ R satisfying

(1) FλRm ⊆ Fλ
′
Rm when λ ≥ λ′;

(2) FλRm = ∩λ′<λFλ
′
Rm;

(3) F0Rm = Rm and FλRm = 0 for λ� 0;

(4) FλRm · FλRm′ ⊆ Fλ+λ′Rm+m′ .

A filtration F of R is called an N-filtration if FλRm = FdλeRm for all m ∈ N
and λ ∈ R. To give an N-filtration F , it suffices to give a family of subspaces

FpRm ⊆ Rm for m, p ∈ N satisfying (1), (3), and (4).

A filtration F is linearly bounded if there exists C > 0 so that FCmRm = 0

for all m ∈ N and trivial if FλRm = 0 for all m ∈ N and λ > 0.

2.3.1. Rees construction. Let F be an N-filtration of R. The Rees algebra

of F is the k[t]-algebra

Rees(F) :=
⊕
m∈N

⊕
p∈Z

(FpRm)t−p ⊆ R[t, t−1].

The associated graded ring of F is

grFR :=
⊕
m∈N

⊕
p∈Z

grpFRm, where grpFRm =
FpRm
Fp+1Rm

.

Note that

(4) Rees(F)⊗k[t] k[t, t−1] ' R[t, t−1] and
Rees(F)

tRees(F)
' grFR.

Hence, Rees(F) is said to give a degeneration of R to the associated graded

ring of F .

An N-filtration F is finitely generated if Rees(F) is a finitely generated

k[t]-algebra. In this case, we set X := ProjA1 (Rees(F)). By (4),

XA1\0 ' X × (A1 \ 0) and X0 ' Proj(grFR).

We write D for the Q-divisor that is the closure of ∆ × (A1 \ 0) under the

embedding of X × (A1 \ 0) in X .

The scheme X can naturally be endowed with the structure of a test

configuration of (X,∆). The test configuration is called special if (X ,D)→ A1

is a Q-Gorenstein family of log Fano pairs. See [LX14, §3] and [BHJ17, §2] for

information on test configurations and the generalized Futaki invariant.
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With the above setup, consider a subscheme Z ⊂ X and write IZ ⊂ R for

the corresponding homogenous ideal.The scheme theoretic closure of Z×(A1\0)

in X , denoted by Z, is defined by the ideal⊕
m∈N

⊕
p∈Z

(FpRm ∩ IZ)t−p ⊆ Rees(F).

Indeed, the corresponding subscheme agrees with Z × (A1 \ 0) away from 0

and is torsion free over 0. The above description of Z yields that its scheme

theoretic fiber along 0 is given by the initial ideal

in(IZ) :=
⊕
m∈N

⊕
p∈Z

im(FpRm ∩ IZ → grpFRm) ⊂ grpFRm.

2.3.2. Volume. Given a filtration F of R, we set

vol(FR(x)) := lim sup
m→∞

dim(FxmRm)

mn/n!

for x ∈ R≥0. Assuming F is linearly bounded (which implies vol(FR(x)) = 0

for x� 0), we set

S(F) :=
1

rn+1(−KX −∆)n

∫ ∞
0

vol(FR(x)) dx.2

By [BC11] (see also [BHJ17, 5.3]),

(5) S(F) = lim
m→∞

Ç
1

r dim(Rm)

∫ ∞
0

dim(FmxRm) dx

å
.

In particular, if F is an N-filtration, then S(F) = limm→∞

∑
p≥0(p dim grpFRm)
mr dimRm

.

2.3.3. Base ideals. Given a filtration F of R, set

bp,m := im (FpRm ⊗OX(−mL)→ OX)

for p,m ≥ 0. We set bp(F) := bp,m for m � 1. The ideal bp(F) is well

defined, and b•(F) is a graded sequence of ideals assuming F is non-trivial

[BJ17, 3.17–3.18].

2.3.4. Filtrations induced by valuations. Given v ∈ Val∗X , we set

FλvRm = {s ∈ Rm | v(s) ≥ λ}

for each λ ∈ R and m ∈ N. Equivalently, FλvRm = H0(X,OX(mL) ⊗ aλ(v)).

Note that Fv is a non-trivial filtration of R.

If AX,∆(v) < +∞ , then Fv is linearly bounded [BJ17, 3.1]. In this case,

we set S(v) := S(Fv).

2Note that this differs from the definition of S(F) in [BJ17], [BL18] by a factor of 1/r.

Since we are interested in the polarization −KX −∆, not L, such a convention is natural.
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2.3.5. Filtrations induced by divisors. If E is a divisor over X, we write

FE := FordE and S(E) := S(FE). Following [Fuj19b], we say E is dreamy if

FE is a finitely generated filtration of R.

When E arises as a prime divisor on a proper normal model µ : Y → X,

FλERm = H0
Ä
Y,OY (mrµ∗(−KX −∆)− dλeE)

ä
.

Therefore,

S(E) =
1

(−KX −∆)n

∫ ∞
0

vol(µ∗(−KX −∆)− xE) dx.

2.4. K-stability. Based on the original analytic definition in [Tia97], an

algebraic definition of K-(semi,poly)-stability was introduced in [Don02]. Here,

we will define these notations for log Fano pairs using valuations.

2.4.1. β-invariant. Let (X,∆) be an n-dimensional log Fano pair and E

a divisor over X. Following [Fuj19b],

βX,∆(E) := (−KX −∆)n (AX,∆(E)− S(E)) .

More generally, if v ∈ ValX with AX,∆(v) < +∞, then we set βX,∆(v) :=

(−KX −∆)n
Ä
AX,∆(v)− S(v)

ä
.

Definition 2.4. A log Fano pair (X,∆) is

(1) K-semistable if βX,∆(E) ≥ 0 for all divisors E over X;

(2) K-stable if βX,∆(E) > 0 for all dreamy divisors E over X;

(3) uniformly K-stable if there exists an ε > 0 such that

βX,∆(E) ≥ εAX,∆(E)(−KX −∆)n

for all divisors E over X.

The equivalence of the above definition with the original definitions was

addressed in [Fuj19b, Fuj19a, Li17] and the arguments rely on the special

degeneration theory of [LX14]. In Corollary 4.2, we will show that the wordy

dreamy may be removed from Definition 2.4.2.

Definition 2.5. A log Fano pair (X,∆) is K-polystable if it is K-semi-

stable and any special test configuration (X ,D)→ A1 of (X,∆) with (X0,D0)

K-semistable satisfies (X ,D) ' (X,∆)× A1.

The equivalence of the above definition with the definition in [LX14, 6.2]

relies on the following result: If (X,∆) is a K-semistable log Fano pair and

(X ,D) is a special test configuration of (X,∆), then Fut(X ,D) = 0 if and only

if (X0,D0) is K-semistable [LWX18a, 3.1].

Definition 2.6. Two K-semistable log Fano pairs (X,∆) and (X ′,∆′) are

S -equivalent if they degenerate to a common K-semistable log Fano pair via

special test configurations.
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By [LWX18a, 3.2], S-equivalent log Fano pairs degenerate to a common

K-polystable pair via special test configurations. Furthermore, the K-poly-

stable pair is uniquely determined up to isomorphism.

2.4.2. δ-invariant. We recall an interpretation of the above discussion us-

ing an invariant introduced in [FO18].

Let (X,∆) be a log Fano pair. Fix a positive integer r so that L :=

−r(KX + ∆) is a Cartier divisor and H0(X,OX(L)) 6= 0. Given m ∈ rN, we

say D ∼Q −KX − ∆ is m-basis type if there exists a basis {s1, . . . , sNm} of

H0(X,OX(−m(KX + ∆)) such that

D =
1

mNm

Ä
{s1 = 0}+ · · ·+ {sNm = 0}

ä
.

We set δm(X,∆) := min{lct(X,∆;D) |D ∼Q −KX −∆ is m-basis type}. The

δ-invariant (also known as the stability threshold) of (X,∆) is

δ(X,∆) = lim sup
m→∞

δmr(X,∆)

and is independent of the choice of r [BJ17, 4.5]. The invariant may also be

calculated in terms of valuations or filtrations.

Theorem 2.7 ([BJ17, Ths. A,C]). We have

δ(X,∆) = inf
E

AX,∆(E)

S(E)
= inf

v

AX,∆(v)

S(v)
,

where the first infimum runs through all divisors E over X and the second

through all v ∈ Val∗X with AX,∆(v) < +∞. Also, lim
m→∞

δmr(X,∆) exists.

Proposition 2.8 ([BL18, Prop. 4.10]). We have

δ(X,∆) = inf
F

lct(X,∆; b•(F))

S(F)
,

where the infimum runs through all non-trivial linearly bounded filtrations of

R(X,L).

Combining Definition 2.4 and Theorem 2.7, we immediately see

Theorem 2.9 ([FO18], [BJ17]). A log Fano pair (X,∆) is uniformly

K-stable (resp. K-semistable) if and only if δ(X,∆) > 1 (resp. ≥ 1).

While in Section 3 we will use the definition of the δ-invariant in terms of

m-basis type divisors, in Section 5 we will rely on its characterization in terms

of valuations and filtrations.
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2.5. Normalized volume. In this section, we discuss an invariant similar

to the δ-invariant, but defined in a local setting. The invariant was first in-

troduced in [Li18] and is closely related to the K-semistability of log Fano

pairs.

Let (X,∆) be an n-dimensional klt pair and x ∈ X a closed point. The

non-archimedean link of X at x is defined as

ValX,x := {v ∈ ValX | cX(v) = x } ⊂ ValX .

Definition 2.10 ([Li18]). The normalized volume function”vol(X,∆),x : ValX,x → (0,+∞]

is defined by”vol(X,∆),x(v) =

A(X,∆)(v)n · vol(v) if A(X,∆)(v) < +∞,
+∞ if A(X,∆)(v) = +∞.

The volume of the singularity (x ∈ (X,∆)) is defined as”vol(x,X,∆) := inf
v∈ValX,x

”vol(X,∆),x(v).

The previous infimum is a minimum by the main result in [Blu18a].

See [LLX18] for a survey on the recent study of the normalized volume

function, especially the guiding question, the Stable Degeneration Conjecture

(see [Li18, 7.1] and [LLX18, 4.1]).

2.5.1. Relation to K-stability. The connection between the normalized vol-

ume function and K-semistability is via the cone construction first studied

in [Li17].

Let (X,∆) be a log Fano pair and r a positive integer so that L :=

−r(KX+∆) is a Cartier divisor. Let (Z,Γ) denote the cone over X with respect

to the polarization L and x ∈ Z denote the vertex. Specifically, Z = Spec(R),

where R = R(X,L) and Γ is the closure of the pullback of ∆ via the projection

map Z \ {x} → X.

There is a natural map XL → Z, where XL := SpecX
Ä⊕

p≥0OX(pL)
ä

is

the total space of the line bundle on X whose sheaf of sections is OX(L). The

map is an isomorphism over Z \ x and the preimage of the vertex is the zero

section Xzs ⊂ XL. We call v0 := ordXzs the canonical valuation over the cone.

Theorem 2.11 ([Li17], [LL19], [LX16]). The canonical valuation v0 is a

minimizer of ”vol(Z,Γ),x if and only if (X,∆) is K-semistable.

At first sight, using the normalized volume function to study the K-stability

of log Fano pairs may seem indirect. However, this approach yields a number
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of new results (for example, see [LX16], [LWX18a]). In this paper, the follow-

ing key ingredient in the proof of Theorem 2.11 plays an important role in the

proof of our main result.

Following [Li17], [LX16], let E be a divisor over X that arises on a proper

normal model µ : Y → X. Consider the natural birational maps

YL → XL → Z,

where YL := SpecY
Ä⊕

m≥0OY (mµ∗L)
ä
. Let Yzs ⊂ YL denote the zero section

and E∞ the preimage of E under the projection YL → Y . Setting vt equal to

the quasimonomial valuation with weights (1, t) along Yzs and E∞ gives a ray

of valuations

{vt | t ∈ [0,∞)} ⊂ ValZ,x,

where v0 = ordXzs and v∞ = ordE∞ . When k ∈ N, there exists a divisor Ek
over Z satisfying v 1

k
= 1

kordEk .

By the formula for the log discrepancy of a quasimonomial valuation

[JM12, 5.1],

AZ,Γ(vt) = AZ,Γ(ordXzs) + tAZ,Γ(ordE∞) = r−1 + tAX,∆(ordE).

The valuation ideals are given, for t > 0, by

ap(vt) =
⊕
m≥0

FE(p−m)/tRm ⊆ R and ap(v0) =
⊕
m≥p

Rm ⊆ R.

To see that the previous formula holds, fix a uniformizer ω ∈ OY,E and a

local section s of OY (µ∗L) that trivializes the sheaf at the generic point of E.

The choice of s induces a rational map YL 99K Y ×A1 that is an isomorphism

at the generic point of Yzs ∩E∞. The birational transforms of Yzs and E∞ on

Y × A1 are Y × 0 and E × A1.

Fix f =
∑
m≥0 fm ∈ R. For m such that fm 6= 0, set gm := fm/ω

ordE(fm),

which, at the generic point of E, is a non-vanishing section of OY (µ∗L). The

image of f in OY×A1,E×0 equals
∑
m

(gm
sm
)
ωordE(fm)πm, where π is the param-

eter for A1. Since π and ω are local equations for Y × 0 and E × A1 at the

generic point of E × 0 and gm
sm does not vanish at E × 0,

vt(f) := min
m
{t · ordE(fm) +m | fm 6= 0},

and the formula for ap(vt) follows.

By the calculation in [Li17, (31, 32)] (see also the proof of [LX16, 4.5] or

Lemma 2.12),

(6)
d

dt
”vol(vt)

∣∣∣
t=0+

= (n+ 1)βX,∆(E).

This equation is a key input in our proof of Theorem 4.1. More specifically,

we will follow ideas from [LWX18a] and analyze directions along which the

normalized volume function has a derivative equal to zero.
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2.5.2. C. Li ’s derivative formula. In the proof of Theorem 1.1, we will

need a more general version of (6). The more general formula follows from the

original argument in [Li17].

Let (X,∆) be an n-dimensional log Fano pair and r ∈ Z>0 so that L :=

−r(KX + ∆) is Cartier. Set R = R(X,L), and fix a linearly bounded filtration

F of R.

Associated to F , we define a collection of graded sequences of ideals of R.

For t ∈ R>0 and j ∈ Z>0, set

bt,j :=
⊕
m≥0

F (j−m)/tRm ⊂ R and b0,j :=
⊕
m≥j

Rm ⊂ R.

Note that bt,• is a graded sequence of ideals of R for each for each t ∈ R≥0.

Additionally, bt,j contains ⊕m≥jRm.

Lemma 2.12. With the above notation, fix A > 0 and set

f(t) = (r−1 +At)n+1mult(bt,•)

for t ∈ R≥0. The following hold :

(1) mult(bt,•) = rn(−KX −∆)n − (n+ 1)
∫∞

0 vol(FR(x)) t dx
(1+tx)n+2 ;

(2) df
dt |t=0+ = (n+ 1)(−KX −∆)n (A− S(F)).

Proof. This follows from the argument in [Li17, (18)–(25)]. We give a

brief proof here for the reader’s convenience. For t ∈ R>0, we have

mult(bt,•) = lim
j→∞

(n+ 1)!

jn+1
dim(R/bt,j)

= lim
j→∞

(n+ 1)!

jn+1

∞∑
m=0

dim(Rm/F (j−m)/tRm)

= lim
j→∞

(n+ 1)!

jn+1

j∑
m=0

Ä
dimRm − dimF (j−m)/tRm

ä
= vol(L)− lim

j→∞

(n+ 1)!

jn+1

j∑
m=0

dimF (j−m)/tRm.

Statement (1) now follows from [Li17, (25)], where c1 = 0, α = β = 1
t .

For (2), compute

df

dt

∣∣∣∣
t=0+

= (n+ 1)Ar−nmult(b0,•) + r−n−1 d

dt
(mult(bt,•))

∣∣∣∣
t=0+

.

From (1), we know that mult(b0,•) = rn(−KX −∆)n and

d

dt
(mult(bt,•))

∣∣∣∣
t=0+

= −(n+ 1)

∫ ∞
0

Ç
vol(FR(x))

Ç
1− (n+ 1)tx

(1 + tx)n+3

åå∣∣∣∣
t=0+

dx.

Since the latter simplifies to −(n+ 1)
∫∞
0 vol(FR(x))dx, (2) is complete. �
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3. Uniformly K-stable Fanos

Now, we prove a special case of Theorem 1.1 for uniformly K-stable Fano

varieties. We will then apply the result to study the moduli functor MuKs
n,V .

3.1. Separatedness result. The following result is a special case of Theo-

rem 1.1 and will be reproved in Section 5. We present its proof independently,

since the following argument is simpler than the proof in Section 5.

Theorem 3.1. Let π : (X,∆)→ C and π′ : (X ′,∆′)→ C be Q-Gorenstein

families of log Fano pairs over a smooth pointed curve 0 ∈ C . Assume there

exists an isomorphism

φ : (X,∆)×C C◦ → (X ′,∆′)×C C◦

over C◦ := C \ 0. If (X0,∆0) is uniformly K-stable and (X ′0,∆
′
0) is K-semi-

stable, then φ extends to an isomorphism (X,∆) ' (X ′,∆′) over C .

The proof of Theorem 3.1 follows from properties of the δ-invariant and

the following birational geometry fact.

Proposition 3.2. Let π : (X,∆)→ C and π′ : (X ′,∆′)→ C be Q-Goren-

stein families of log Fano pairs over a smooth pointed curve 0 ∈ C . Assume

there exists an isomorphism

φ : (X,∆)×C C◦ → (X ′,∆′)×C C◦

over C◦ := C \ 0. If there exist effective horizontal3 Q-divisors D and D′ on

X and X ′ satisfying

(1) D ∼Q,C −KX −∆ and D′ ∼Q,C −KX′ −∆′;

(2) D is the birational transform of D′; and

(3) (X0,∆0 +D0) is klt and (X ′0,∆
′
0 +D′0) is lc,

then φ extends to an isomorphism (X,∆) ' (X ′,∆′) over C .

The above proposition is well known to experts and follows from the sep-

aratedness of the moduli functor of klt log Calabi-Yau pairs (e.g., see [Oda12,

Th. 4.3], [LWX19, Th. 5.2]). For the convenience of the reader, we prove the

result.

Proof. Fix a common log resolution “X of (X,∆) and (X ′,∆′),“X
X X ′,

ψ′ψ

φ

and write ‹X0 and ‹X ′0 for the birational transforms of X0 and X ′0 on “X.

3A Q-divisor on X or X ′ is called horizontal if its support does not contain a fiber of the

map to C.
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First, assume ‹X0 = ‹X ′0. This equality implies φ : X 99K X ′ is an isomor-

phism in codimension one. Thus, φ induces an isomorphism

π∗OX(−m(KX + ∆)) ' π′∗OX′(−m(KX′ + ∆′))

for all m ∈ N. Since

X = ProjC
⊕
m≥0

π∗OX(−m(KX + ∆))

and

X ′ = ProjC
⊕
m≥0

π′∗OX′(−m(KX′ + ∆′)),

we conclude φ extends to an isomorphism over C.

We now assume ‹X0 6= ‹X ′0 and aim for a contradiction. Write

K
X̂

+ ψ−1
∗ (∆ +D) = ψ∗(KX + ∆ +D) + a‹X ′0 + P

and

K
X̂

+ ψ′∗
−1

(∆′ +D′) = ψ′∗(KX′ + ∆′ +D′) + a′ ‹X0 + P ′,

where the components of Supp(P ) ∪ Supp(P ′) are both ψ and ψ′-exceptional.

By assumption (2), P − P ′ is supported on “X0.

Inversion of adjunction and our assumption that (X0,∆0+D0) is klt imply

(X,∆ +D +X0) is plt in a neighborhood of X0. Hence,

−1 < a(‹X ′0, X,∆ +D +X0) = a− ord
X̃′0

(X0).

Since ord
X̃′0

(X0) = 1, we see a > 0. The same argument, but with the assump-

tion that (X ′0,∆
′
0 +D′0) is lc implies a′ ≥ 0.

Observe a‹X ′0 − a′ ‹X0 + (P − P ′) ∼Q,C 0, since KX + ∆ + D ∼Q,C 0,

KX′ + ∆′ + D′ ∼Q,C 0, and ψ−1
∗ (D + ∆) = ψ′∗

−1(D′ + ∆′). Therefore, there

exists a rational number c so that

a‹X ′0 − a′ ‹X0 + (P − P ′) ∼Q,C cψ
∗(X0).

Comparing the coefficients of ‹X ′0 on the two sides implies c > 0, while com-

paring the coefficients of ‹X0 implies c ≤ 0. This is a contradiction. �

Lemma 3.3. Keep the notation and setup of Theorem 3.1. If m ∈ Z>0 is

sufficiently divisible, then there exist effective horizontal Q-divisors B and B′

on X and X ′ such that

(1) B ∼Q,C −KX −∆ and B′ ∼Q,C −KX′ −∆′;

(2) B is the birational transform of B′; and

(3) B0 and B′0 are m-basis type with respect to (X0,∆0) and (X ′0,∆
′
0).

Proof. Fix a positive integer m so that L := −m(KX − ∆) and L′ :=

−m(KX′ − ∆′) are Cartier and π∗OX(L) and π′∗OX′(L) are nonzero. Since



UNIQUENESS OF K-POLYSTABLE DEGENERATIONS OF FANO VARIETIES 629

H i(Xt,OXt(Lt)) and H i(X ′t,OX′t(L
′
t)) are zero for all i > 0 and t ∈ C by

Kawamata-Viehweg vanishing, π∗OX(L) and π′∗OX′(L′) are vector bundles.

Furthermore, the sheaves satisfy cohomology and base change.

Now, the birational map φ induces a map from local sections of π∗OX(L)

to rational sections of π′∗OX′(L′). After twisting by dX ′0, where d� 0, we get

a morphism

π∗OX(L)→ π′∗OX′(L′ + dX ′0)

that is an isomorphism away from 0 ∈ C. Tensoring by OC,0 gives a morphism

ϕ : π∗OX(L)⊗OC OC,0 → π′∗OX′(L′ + dX ′0)⊗OC OC,0,

of locally free OC,0 modules, that is an isomorphism after tensoring with K(C).

Write t for the uniformizer of OC,0. Since OC,0 is a principal ideal domain,

there exist bases {s1, . . . , sN} and {s′1, . . . , s′N} for the above free modules so

that the transformation matrix is diagonal. Hence, for each 1 ≤ i ≤ N , there

exist pi ∈ Z≥0 and ai ∈ O×C,0 so that ϕ(si) = ait
pis′i.

For a sufficiently small neighborhood 0 ∈ U ⊂ C, we may extend each si
to a section s̃i ∈ π∗OX(L)(U) and s′i to a section s̃′i ∈ π′∗OX′(L′)(U). Let B

and B′ denote the closures of

1

mN

Ä
{s̃1 = 0}+ · · ·+ {s̃N = 0}

ä
and

1

mN

Ä
{s̃′1 = 0}+ · · ·+ {s̃′N = 0}

ä
in X and X ′. By construction, B0 and B′0 are both m-basis type divisors and

B is the birational transform of B′. �

Proof of Theorem 3.1. Since X0 is uniformly K-stable and X ′0 is K-semi-

stable,

δ(X0,∆0) > 1 and δ(X ′0,∆
′
0) ≥ 1.

Hence, we may choose 0 < ε� 1 so that

(7)
1− ε

δ(X0,∆0)
+

ε

α(X0,∆0)
< 1,

where α(X0,∆0) is Tian’s α-invariant, i.e.,

α(X0,∆0) = inf{ lct(X0,∆0;D) | 0 ≤ D ∼Q −KX0 −∆0}.

Next, choose a positive integer M so that

(8)
1− ε

δm(X0,∆0)
+

ε

α(X0,∆0)
< 1 and δm(X ′0,∆

′
0) > 1− ε

for all positive integers m divisible by M . Such a choice is possible by (7), the

inequality δ(X ′0,∆
′
0) ≥ 1, and the fact that δ is a limit.

Now, fix a positive integer m divisible by M so that the conclusion of

Lemma 3.3 holds for m and −m(KX′+∆′) is relatively base point free over C.

Hence, we may find Q-divisors B ∼Q,C −KX − ∆ and B′ ∼Q,C −KX′ − ∆′
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satisfying the conclusion of Lemma 3.3 for m. Since B0 and B′0 are m-basis

type,

lct(X0,∆0;B0) ≥ δm(X0,∆0) and lct(X ′0,∆
′
0;B′0) ≥ δm(X ′0,∆

′
0) > 1− ε.

The latter implies (X ′0,∆
′
0 + (1− ε)B′0) is lc.

Since −m(KX′ + ∆′) is relatively base point free over C, after shrinking

C in a neighborhood of 0, we may apply [KM98, Lemma 5.17] to find an

effective divisor G′ ∈ | −m(KX′ + ∆′)| in general position so that (X ′0,∆
′
0 +

(1 − ε)B′0 + (ε/m)G′0) remains lc. Write G for the birational transform of G′

on X. Note that G ∼Q,C −m(KX + ∆), since the statement holds over C◦.

Thus, lct(X0,∆0; (1/m)G0) ≥ α(X0,∆0).

Now, consider the divisors

D := (1− ε)B +
ε

m
G and D′ := (1− ε)B′ + ε

m
G′.

Observe that D ∼Q,C −KX−∆ and D′ ∼Q,C −KX′−∆′. As mentioned above,

(X0,∆
′
0 +D′0) is lc. Additionally, the pair (X0,∆0 +D0) is klt. Indeed, since

1/lct(D + F ) ≤ 1/lct(D) + 1/lct(F )

for any two effective Q-Cartier Q-divisors D and F on a klt pair, we know

1

lct(X0,∆0;D0)
≤ 1

lct(X0,∆0; (1− ε)B0)
+

1

lct(X0,∆0; (ε/m)G0)

≤ 1− ε
δm(X0,∆0)

+
ε

α(X0,∆0)
,

which is < 1 by (8). Proposition 3.2 now implies φ extends to an isomorphism.

�

Remark 3.4. If (X0,∆0) and (X ′0,∆
′
0) are only assumed to be K-semi-

stable, then they are not necessarily isomorphic (but are S-equivalent by The-

orem 1.1). Therefore, we do not expect the above strategy to be useful in this

more general case.

Recall that if (X,∆) is a log Fano pair, then Aut(X,∆) is the closed

subgroup of Aut(X) defined by

Aut(X,∆) := {g ∈ Aut(X) | g∗∆ = ∆}.

The following result is an immediate corollary of Theorem 3.1 and a special

case of Corollary 1.3.

Corollary 3.5. Let (X,∆) be a log Fano pair. If (X,∆) is uniformly

K-stable, then Aut(X,∆) is finite.

Proof. Since Aut(X,∆) is a linear algebraic group, it is affine. To conclude

that Aut(X,∆) is finite, it suffices to show that it is proper. To see the
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properness, consider a map g : C◦ → Aut(X,∆), where 0 ∈ C is a smooth

pointed curve and C◦ = C \ 0. The map g induces an isomorphism

(X × C,∆× C)×C C◦ → (X × C,∆× C)×C C◦

over C◦. By applying Theorem 3.1 to the above isomorphism, we see f extends

to a map g : C → Aut(X,∆). Hence, Aut(X,∆) is proper, and the proof is

complete. �

In [BHJ19, Cor. E], it is shown that the polarized automorphism group

of a uniformly K-stable polarized manifold (X,L) is finite. Their proof uses

analytic tools.

Remark 3.6. Our proofs of Theorem 3.1 and Corollary 3.5 extend to the

case of polarized klt pairs (X,∆;L) (that is, (X,∆) is a projective klt pair

and L an ample Q-Cartier divisor on X) such that KX + ∆ + L is nef and

δ(X,∆;L) > 1.

3.2. Moduli spaces.

Proof of Corollary 1.4. As previously noted, the result relies on [Jia17],

[BL18] and Theorem 3.1. Indeed, [Jia17] (see also [Che18] or [LLX18, 6.14])

states that the set of varieties MuKs
n,V (k) is bounded. Hence, there exists a

positive integer M so that −MKX is a very ample Cartier divisor for all

X ∈ MuKs
n,V (k). Furthermore, the set of Hilbert functions m 7→ χ

Ä
ω

[−mM ]
X

ä
with X ∈MuKs

n,V (k) is finite.

For such a Hilbert function h, consider the subfunctor MuKs
h ⊂ MuKs

n,V

parametrizing uniformly K-semistable Q-Fano varieties with Hilbert function h.

Note that MuKs
n,V =

∐
hMuKs

h . Set N := h(1) − 1, and let Hilb(PN ) be the

Hilbert scheme parametrizing closed subschemes of PN with Hilbert polyno-

mial h. Write X → Hilb(PN ) for the corresponding universal family.

Now, let U ⊂ Hilb(PN ) denote the open subscheme parametrizing normal,

Cohen-Macaulay varieties. By [HK04, 3.11], there is a locally closed subscheme

V ⊂ U such that a map T → U factors through V if and only if there is an

isomorphism ω
[−M ]
XT /T

' LT ⊗OXT (1), where LT is the pullback of a line bundle

from T . By applying [BL18] to the normalization of V , we see

V ′ := {t ∈ V |Xt is a uniformly K-stable Q-Fano variety}

is open in V . Finally, we apply [Kol09, 25] or [AH11] to find a locally closed

decomposition W → V ′ such that a morphism T → V ′ factors through W if

and only if XT → X satisfies Kollár’s condition.

As a consequence of the above discussion,MuKs
h ' [W/PGL(N+1)]. The-

orem 3.1 implies MuKs
h is a separated Deligne-Mumford stack. Furthermore,
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we may apply [KM97] to see MuKs
h has a coarse moduli space MuKs

h , which is

a separated algebraic space. �

4. Places computing the δ-invariant

In this section, we will study the cases when valuations, Q-divisors, and

ideals compute the δ-invariant. The results proved here are related to Conjec-

ture 1.5 and will be used in the proof of Theorem 1.1.

4.1. Divisors computing δ.

Theorem 4.1. Let (X,∆) be a K-semistable log Fano pair. If E is a

divisor over X satisfying δ(X,∆) =
AX,∆(E)
S(E) = 1, then E is dreamy and induces

a non-trivial special test configuration (X ,D) such that Fut(X ,D) = 0. In

particular, (X,∆) is not K-stable.

The proof follows an argument in [LWX18a, §3.1]. The argument will be

used again in the proof of Lemma 5.10 in a relative setting.

Proof. Fix a positive integer r so that L := −r(KX+∆) is a Cartier divisor

and set R = R(X,L). Consider the cone (Z,Γ) over (X,∆) with respect to

the polarization L.

The divisor E over X induces a ray of valuations

{vt | t ∈ [0,∞)} ⊂ ValZ,x

(see Section 2.5.1). For k ∈ Z>0, there is a divisor Ek over Z so that v 1
k

=
1
kordEk . By (6),

d

dt
”vol(vt)

∣∣∣
t=0+

= (n+ 1)βX,∆(E).

Since AX,∆(E)− S(E) = 0, we know βX,∆(E) = 0. Defining f(t) := ”vol(vt), a

Taylor expansion gives

f(t) = f(0) +O(t2) for 0 ≤ t� 1.

For a fixed positive integer k, set

ak,• := a•(ordEk) and ck := lct(Z,Γ; ak,•).

Note that ck ≤ AZ,Γ(Ek) by (3). This implies

f(0) ≤ cn+1
k ·mult(ak,•) ≤ f

Ç
1

k

å
= AZ,Γ(Ek)

n+1 ·mult(ak,•),

where the first inequality follows from [Liu18, 7] and the assumption that

(X,∆) is K-semistable. Therefore,Ç
1

1 +O(1/k2)

å 1
n+1

≤
Ç

f(0)

f(1/k)

å 1
n+1

≤ ck
AZ,Γ(Ek)

≤ 1.
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Since (1 +O(1/k2))1/(n+1) is of the order 1 +O(1/k2), we see

1−O
Å

1

k2

ã
=

ck
AZ,Γ(Ek)

≤ 1.

Using that AZ,Γ(Ek) = kr−1 +AX,∆(E),

lim
k→∞

(AZ,Γ(Ek)− ck) = lim
k→∞

Ç
AZ,Γ(Ek)

Ç
1− ck

AZ,Γ(Ek)

åå
= 0.

Hence, we may fix k � 0 so that AZ,Γ(Ek)− ck < 1.

By Proposition 2.2, there exists a proper birational morphism µk : Zk → Z

such that Ek ⊂ Zk and −Ek is ample over Z. Therefore,
⊕
p≥0 µk∗OZk(−pEk)

is a finitely generated OZ-algebra. Since µk∗(OZk(−pEk)) = ap(kv1/k), the

latter implies ⊕
p∈N

⊕
m∈N
Fp−mkE Rm

is a finitely generated R-algebra. Therefore, Rees(FE) is finitely generated as

well and E is dreamy.

Let (X ,D) denote the test configuration induced by FE . The test config-

uration is normal and non-trivial [Fuj17, 3.8] and Fut(X ,D) is a multiple of

AX,∆(E)− S(E) [Fuj19b, 6.12], which is zero. We conclude (X ,D) is special,

since otherwise there would exist a test configuration of (X,∆) with negative

Futaki invariant [LX14, 1]. �

An immediate corollary to Theorem 4.1 is the following strengthening of

[Fuj19b, 1.6] and [Li18, 3.7]. The result was expected in the arXiv version of

[Li18].

Corollary 4.2. A log Fano pair (X,∆) is K-stable if and only if βX,∆(E)

> 0 for any divisor E over X .

Proof. Theorem 4.1 implies the forward implication. The reverse implica-

tion was shown in [Fuj19b, 1.6] and [Li18, 3.7]. �

4.2. Ideals computing δ. Let (X,∆) be a log Fano pair and a ( OX a

nonzero ideal. Write π : Y → X for the normalized blowup of X along a and

E for the effective Cartier divisor on Y such that a · OY = OY (−E). We set

S(a) :=
1

vol(−KX −∆)

∫ +∞

0
vol(π∗(−KX −∆)− tE) dt.

Proposition 4.3. If (X,∆) is a log Fano pair and a ( OX a nonzero

ideal, then

(9)
lct(X,∆; a)

S(a)
≥ δ(X,∆).
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Furthermore, write π : Y → X for the normalized blowup of a and E for the

Cartier divisor on Y such that a · OY = OY (−E). If (9) is an equality, then

Supp(E) is a prime divisor and computes δ(X,∆).

The above proposition is an analog of [LX16, Th. 3.11] for the δ-invariant

and is similar to [Fuj19a, Cor. 3.22].

Proof. Choose a divisor F over X computing lct(X,∆; a). By [BCHM10],

there is an extraction ρ : XF → X of F . Set p := ordF (a). Hence, AX,∆(F )/p

= lct(X,∆; a) and ak · OXF ⊆ OXF (−kpF ) for all k ∈ N.

By the previous inclusion, if we set L := −KX −∆, then

vol(π∗L− tE) ≤ vol(ρ∗L− tpF )

for all t ∈ R≥0. Hence, S(a) ≤ p−1S(F ), and we see

lct(a)

S(a)
≥ AX,∆(F )

S(F )
.

Since AX,∆(F )/S(F ) ≥ δ(X,∆), (9) holds.

Now assume (9) is an equality. In this case, the above argument implies

F computes δ(X,∆). To finish the proof, it suffices to show Y = XF and

Supp(E) = F .

Fix a positive integer k so that −kpF is Cartier, and choose an ideal

c ⊆ OXF such that

ak · OXF = c · OXF (−pkF ).

Write τ : Z → XF for the normalized blowup of XF along c and G for the

Cartier divisor on Z such that c · OZ = OZ(−G). Since Z is normal and

ak · OZ = (c · OXF (−pkF )) · OZ = OZ(−pkτ∗(F )−G)

is locally free, ρ ◦ τ factors through π:

Z

Y XF

X.

σ τ

π ρ

Additionally, σ∗(E) = τ∗(pF ) + k−1G.

If we can show c = OXF , the proof will be complete. Indeed, if c = OXF ,

then τ is an isomorphism and σ∗E = pF . But, since σ∗E = pF is anti-ample

over X, σ must also be an isomorphism and we are done.

We claim that if c ( OXF , then

vol(π∗L− tE) < vol(ρ∗L− tpF )
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for 0 < t� 1 and, thus, S(a) < (1/p)S(F ). Since we will then have

δ(X,∆) ≤ AX,∆(F )

S(F )
<

lct(a)

S(a)
= δ(X,∆),

a contradiction will be reached.

To prove the above claim, fix 0 < ε � 1/k so that H := pτ∗F + εG is

anti-ample over X. Note that by our choice of ε, we also have

vol(π∗L− tE) = vol(τ∗(ρ∗L)− tσ∗E) ≤ vol(τ∗(ρ∗L)− tH).

Therefore, it suffices to show

vol(τ∗(ρ∗L)− tH) < vol(ρ∗L− tpF )

for 0 < t� 1.

Fix 0 < t� 1 so that both At := ρ∗L− tpF and Bt := τ∗(ρ∗L)− tH are

ample. Following an argument in [Fuj19a, 3.3], we note that for 0 ≤ i ≤ n− 1,

0 ≤ εtG · (τ∗At)i ·Bn−i−1
t

= (τ∗At −Bt) · (τ∗At)i ·Bn−i−1
t ,

since G is effective, τ∗At is nef, and Bt is ample. Additionally,

0 < (τ∗At −Bt) ·Bn−1
t .

We now see

0 <
n−1∑
i=0

Ä
(τ∗At −Bt) · (τ∗At)i ·Bn−i−1

t

ä
= (τ∗At)

n − (Bt)
n

= vol(ρ∗L− tpF )− vol(τ∗(ρ∗L)− tH),

and we conclude vol(ρ∗L− tpF ) < vol(τ∗(ρ∗L)− tH) for 0 < t� 1. �

4.3. Q-divisors computing δ. Let (X,∆) be a log Fano pair, µ : Y → X

a proper birational morphism with Y normal, and E an effective Q-Cartier

Q-divisor on Y such that −E is µ-ample. We set ap(E) := µ∗OY (−dpEe)
⊆ OX and

S(E) :=
1

(−KX −∆)n

∫ ∞
0

vol(µ∗(−KX −∆)− tE) dt.

Proposition 4.4. With the above notation, we have

(10)
lct(X,∆; a•(E))

S(E)
≥ δ(X,∆).

Furthermore, if (10) is an equality, then Supp(E) is a prime divisor.

The statement is a consequence Proposition 4.3 and the following elemen-

tary lemma.
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Lemma 4.5. Let µ : Y → X be a proper birational morphism of normal

varieties and E an effective Q-Cartier Q-divisor on Y such that −E is µ-ample.

Set

ap(E) := µ∗OY (−dpEe) ⊆ OX .

If p ∈ Z>0 is sufficiently divisible, then

(1) Y is the blowup of X along ap(E);

(2) ap(E) · OY = OY (−pE); and

(3) (ap(E))` = ap`(E) for all ` ∈ Z>0.

Proof. Since −E is ample over X,
⊕
m∈N am(E) is a finitely generated

OX -algebra and Y ' ProjX
Ä⊕

m∈N am(E)
ä
. The former statement implies

that if p ∈ Z>0 is sufficiently divisible, then the p-th Veronese,
⊕
m∈N apm(E),

is finitely generated in degree 1. Hence, (1) and (3) are complete. For (2),

observe that the natural map µ∗µ∗OX(−pE) → OY (−pE) is surjective for

p ∈ Z>0 sufficiently divisible, since −E is µ-ample. �

Proof of Proposition 4.4. Fix p ∈ Z>0 satisfying (1)–(3) of Lemma 4.5,

and set a := ap(E). By (1) and (2), p · S(a) = S(E). By (3),

lct(X,∆; a•(E)) := lim
m→∞

(mp · lct(X,∆; apm(E))) = p · lct(X,∆; a).

The result now follows immediately from Proposition 4.3. �

5. Constructing the S-equivalence

In this section, we prove Theorem 1.1. In Section 5.1 we will construct

filtrations of

R =
⊕
m∈N

H0(X0,−mr(KX0 + ∆0))

and

R′ =
⊕
m∈N

H0(X ′0,−mr(KX′0
+ ∆′0)),

whose associated graded rings are isomorphic. Then in Section 5.2, we con-

centrate on proving that these filtrations and their associated graded rings are

finitely generated.

5.1. Filtrations induced by degenerations. Let

π : (X,∆)→ C and π′ : (X ′,∆′)→ C

be Q-Gorenstein families of n-dimensional log Fano pairs over a smooth pointed

curve 0 ∈ C. Assume there exists an isomorphism

φ : (X,∆)×C C◦ → (X ′,∆′)×C C◦
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over C◦ := C \ 0 that does not extend to an isomorphism (X,∆) ' (X ′,∆′)

over C. Furthermore, assume C is affine and there exists t ∈ O(C) so that

divC(t) = 0.

From this setup, we will construct filtrations on the section rings of the

special fibers. Set L := −r(KX + ∆) and L′ := −r(KX′ + ∆′), where r is a

positive integer so that L and L′ are Cartier. For each non-negative integer m,

set

Rm := H0(X,OX(mL)), R′m := H0(X ′,OX′(mL′)),

Rm := H0(X0,OX0(mL0)), R′m := H0(X ′0,OX′0(mL′0)).

Additionally, set

R := ⊕mRm, R := ⊕mRm, R′ := ⊕mR′m, and R′ := ⊕mR′m.

Observe that the natural maps

Rm ⊗ k(0)→ Rm and R′m ⊗ k(0)→ R′m

are isomorphisms. Indeed, Kawamata-Viehweg applied to the fibers of π and

π′ implies Riπ∗OX(mL) and Riπ′∗OX′(mL′) vanish for all i > 0 and m ≥ 0.

Hence, π∗OX(mL) and π′∗OX′(mL′) are vector bundles and their cohomology

commutes with base change. Since C is affine, Rm and R′m can be identified

with the OC-module π∗OX(mL) and π′∗OX′(mL′), and the statement follows.

Fix a common log resolution “X of (X,∆) and (X ′,∆′)“X
X X ′,

ψ′ψ

φ

and write ‹X0 and ‹X ′0 for the birational transforms of X0 and X ′0 on “X. Set

a := AX,∆+X0(‹X ′0) and a′ := AX′,∆′+X′0(‹X0).(11)

Observe that ‹X0 6= ‹X ′0, since otherwise φ would extend to an isomorphism

over C by the second paragraph of the proof of Proposition 3.2.

5.1.1. Definition of filtrations. For each p ∈ Z and m ∈ N, set

FpRm := {s ∈ Rm | ord
X̃′0

(s) ≥ p} and F ′pR′m := {s ∈ R′m | ord
X̃0

(s) ≥ p}.

We define N-filtrations of R and R′ by setting

FpRm := im(FpRm → Rm) and F ′pR′m := im(F ′pR′m → R′m),

where the previous maps are given by restriction of sections. It is straightfor-

ward to check that F and F ′ are filtrations of R and R′.
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Observe that Rm ' Rm/tRm and FpRm ' im(FpRm → Rm/tRm) '
FpRm

FpRm∩tRm . A similar statement holds for F ′. Therefore, we have natural

isomorphisms

grpFRm '
FpRm

(FpRm ∩ tRm) + Fp+1Rm
,

grpF ′R
′
m '

F ′pR′m
(F ′pR′m ∩ tR′m) + F ′p+1R′m

.

(12)

5.1.2. Relating the filtrations. We aim to show that grFR and grF ′R
′ are

isomorphic up to a grading shrift.

Since ψ∗(X0) = ψ′∗(X ′0) have multiplicity one along ‹X0 and ‹X ′0, we may

write

K
X̂

+ ψ−1
∗ (∆) = ψ∗(KX + ∆) + a‹X ′0 + P

and

K
X̂

+ ψ′∗
−1

(∆′) = ψ′∗(KX′ + ∆′) + a′ ‹X0 + P ′,

where the components of Supp(P ) ∪ Supp(P ′) are both ψ and ψ′-exceptional.

Now,

FpRm ' H0
(“X,O

X̂

Ä
mψ∗L− p‹X ′0ä)

= H0
Ä “X,O

X̂

Ä
mψ′∗L′ + (mra− p)‹X ′0 −mra′ ‹X0 +mr(P − P ′)

ää
.

Hence, for s ∈ FpRm, multiplying ψ∗s by tmra−p gives an element of

H0
(“X,O

X̂

Ä
mψ′∗L′ − (mr(a+ a′)− p)‹X0

ä)
,

which can be identified with F ′mr(a+a′)−pR′m.

As described above, for each p ∈ Z and m ∈ N, there is a map

ϕ̃p,m : FpRm −→ F ′mr(a+a′)−pR′m,

which, when Rm and R′m are viewed as submodules of K(X) and K(X ′), sends

s 7→ tmra−p(φ−1)∗(s). Similarly, there is a map

ϕ̃′p,m : F ′pR′m −→ Fmr(a+a′)−pRm,

which sends s′ 7→ tmra
′−pφ∗(s′). Observe that ϕ̃′mr(a+a′)−p,m ◦ ϕ̃p,m is the

identity map, since the composition corresponds to multiplication by

tmra
′−(mr(a+a′)−p)tmra−p = 1.

Hence, ϕ̃p,m is an isomorphism.

Lemma 5.1. For each p ∈ Z and m ∈ N,

(1) ϕ̃p,m(FpRm ∩ tRm) = F ′mr(a+a′)−p+1R′m;

(2) ϕ̃p,m(Fp+1Rm) = F ′mr(a+a′)−pR′m ∩ tR′m.
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Proof. To see (1), fix s ∈ FpRm. Now, s ∈ tRm if and only if s vanishes

along X0, which is equivalent to the condition that

ψ∗s ∈ H0
(“X,O

X̂

Ä
mψ∗L− p‹X ′0 − ‹X0

ä)
.

Since the latter holds precisely when

tmra−pψ∗s ∈ H0
(“X,O

X̂

Ä
mψ′∗L′ − (mr(a+ a′)− p+ 1)‹X0

ä)
,

which is identified with F ′mr(a+a′)−p+1R′m, (1) holds. (2) follows from a similar

argument. �

Proposition 5.2. The collection of maps (ϕ̃p,m) induce an isomorphism

of graded rings

ϕ :
⊕
m∈N

⊕
p∈Z

grpFRm →
⊕
m∈N

⊕
p∈Z

gr
mr(a+a′)−p
F ′ R′m.

Hence, grpFRm and grpF ′R
′
m vanish for p > mr(a+ a′).

Proof. For fixed p ∈ Z and m ∈ N, consider the natural maps

% : FpRm → grpFRm and %′ : F ′mr(a+a′)−pR′m → gr
mr(a+a′)−p
F ′ R′m.

By (12) and Lemma 5.1, ϕ̃p,m sends the kernel of % to the kernel %′. Hence,

ϕ̃p,m induces an isomorphism ϕp,m : grpFRm → gr
mr(a+a′)−p
F ′ R′m.

Write ϕ : grFR → grF ′R
′
m for the induced module isomorphism on the

direct sums. Since

ϕ̃p,m(s̃1)ϕ̃q,`(s̃2) = ϕ̃p+q,m+`(s̃1 · s̃2)

for any s̃1 ∈ FpRm and s̃2 ∈ FqR`, we see that ϕ is a ring isomorphism.

Since grpFRm and grpF ′R
′
m vanish when p < 0, the isomorphism ϕ implies the

vanishing when p > mr(a+ a′). �

5.1.3. Properties of the filtrations.

Lemma 5.3. For each positive integer p,

bp(F) = ap(ord
X̃′0

) · OX0 and bp(F ′) = ap(ord
X̃0

) · OX′0 .

Proof. Recall that

bp(F) := im(FpRm ⊗OX0(−mL0)→ OX0)

for m� 0. Since FpRm := im(FpRm → Rm), we see

bp(F) = im
Ä
FpRm ⊗OX(−mL)→ OX

ä
· OX0 .

Therefore, proving the first equality reduces to showing

ap(ord
X̃′0

) = im
Ä
FpRm ⊗OX(−mL)→ OX

ä
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for m � 0. Since FpRm = H0(X,OX(mL) ⊗ ap(ord
X̃′0

)) and L is π-ample,

the latter statement holds. The argument for bp(F ′) is the same. �

Proposition 5.4. The following hold :

(1) a ≥ lct(X ,∆ +X0 ; a•(ord
X̃′0

)) = lct(X0,∆0; b•(F));

(2) a′ ≥ lct(X ′,∆′ +X ′0; a•(ord
X̃0

)) = lct(X ′0,∆
′
0; b•(F ′)).

Proof. The first pair of inequalities holds by (3). The second pair follows

from Lemma 5.3 and inversion of adjunction. �

Proposition 5.5. The filtrations F and F ′ of R and R′ are linearly

bounded, non-trivial, and satisfy

a+ a′ = S(F) + S(F ′).

Proof. Proposition 5.2 implies FpRm = 0 and F ′pR′m = 0 when m > 0

and p > mr(a+ a′). Therefore, F and F ′ are linearly bounded.

The base ideals bp(F) and bp′(F ′) are non-zero for p > 0 by Lemma 5.3.

Therefore, the filtrations cannot be trivial.

Applying Proposition 5.2, we see∑
p≥0

(p dim grpFRm) +
∑
p≥0

(
p dim grpF ′R

′
m

)
=
∑
p≥0

(p dim grpFRm) +
∑
p≥0

Ä
p dim gr

mr(a+a′)−p
F Rm

ä
=
∑
p≥0

(
mr(a+ a′) dim grpFRm

)
.

= mr(a+ a′) dimRm.

Combining the previous equation with (5) gives S(F) + S(F ′) = a+ a′. �

It also natural to rescale the above values and set

β := (−KX0 −∆0)n(a− S(F)) and β′ := (−KX′0
−∆′0)n(a′ − S(F ′)).

In this language, Proposition 5.5 states that β + β′ = 0.

5.2. Proof of Theorem 1.1. The goal of this subsection is to prove The-

orem 1.1. To do so, we consider the filtrations defined in Section 5.1. Under

the hypothesis that (X0,∆0) and (X ′0,∆
′
0) are K-semistable, we will show that

the filtrations are induced by dreamy divisors.

Furthermore, we will prove that these dreamy divisors induce special test

configurations (X ,D) and (X ′,D′) of (X0,∆0) and (X ′0,∆
′
0) with generalized

Futaki invariant zero. Hence, the log Fano pairs cannot be K-stable. Proposi-

tion 5.2 will then be used to show that (X0,D0) ' (X ′0,D′0) and will allow us
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to conclude that (X0,∆0) and (X ′0,∆
′
0) degenerate to a common K-semistable

log Fano pair.

Proof of Theorem 1.1. Assume (X0,∆0) and (X ′0,∆
′
0) are both K-semi-

stable and φ does not extend to an isomorphism. We must show (X0,∆0) and

(X ′0,∆
′
0) are S-equivalent and not K-stable. To do so, we use the filtrations F

and F ′ constructed in Section 5.1.

Since (X0,∆0) and (X ′0,∆
′
0) are K-semistable, Proposition 2.8 implies

lct(X0,∆0; b•(F)) ≥ S(F) and lct(X ′0,∆
′
0; b•(F ′)) ≥ S(F ′).

Combining the previous inequalities with Propositions 5.4 and 5.5, we see

(13) a = lct(X,∆ +X0; a•(ord
X̃′0

)) = lct(X0,∆0; b•(F)) = S(F)

and

(14) a′ = lct(X ′,∆′ +X ′0; a•(ord
X̃0

)) = lct(X ′0,∆
′
0; b•(F ′)) = S(F ′).

Furthermore, δ(X0,∆0) = δ(X ′0,∆
′
0) = 1.

By the first pair of equalities in (13) and (14), we may apply Proposi-

tion 2.2 to extract ‹X ′0 over X and ‹X0 over X ′. Specifically, there exist proper

birational morphisms µ and µ′,

V ∪W ⊂ Y Y ′ ⊃ V ′ ∪W ′

X0 ⊂ X X ′ ⊃ X ′0

C,

µ µ′

φ

π π′

such that the following hold:

(1) the fibers of Y (respectively, Y ′) over 0 contains two components V and

W (respectively, V ′ and W ′), and they are the birational transforms of X0

and X ′0;

(2) −W and −V ′ are ample over X and X ′ respectively;

(3) (Y, V +W + µ−1
∗ ∆) and (Y ′, V ′ +W ′ + µ′−1

∗ ∆′) are lc.

We write

µ0 : V → X0 and µ′0 : W ′ → X ′0

for the restrictions of µ and µ′ to V and W ′. Clearly, µ0 and µ′0 are proper

birational morphisms.

Lemma 5.6. The pairs (Y, V + µ−1
∗ ∆) and (Y ′,W ′ + µ′−1

∗ ∆′) are plt.

Hence, V and W ′ are normal.
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Proof. By inversion of adjunction, (X,X0 + ∆) is plt. Therefore, (Y, V +

µ−1
∗ ∆) is plt away from Exc(µ) = W . Since (Y, V +W + µ−1

∗ ∆) is lc, (Y, V +

µ−1
∗ ∆) cannot have lc centers in W . Therefore, (Y, V + µ−1

∗ ∆) is plt, and V is

normal by [KM98, 5.52]. The same argument works for Y ′. �

Now, consider the restrictions of W and V ′ to the birational transforms

of X0 and X ′0:

E := W |V and E′ := V ′|W ′ .
Since W and V ′ are Q-Cartier, but not necessarily Cartier, E and E′ may have

fractional coefficients.

The Q-divisors E and E′ induce N-filtrations on R and R′ defined by

FpERm := H0
(
V,OV

Ä
µ∗0(mL0)− dpEe

ä)
⊆ Rm

and

FpE′R
′
m := H0

(
W ′,OW ′

Ä
µ0
′∗(mL′0)− dpE′e

ä)
⊆ R′m

for p,m ≥ 0. Note that

FpRm ⊆ FpERm and F ′pR′m ⊆ F
p
E′R

′
m.

Therefore,

(15) S(F) ≤ S(FE) and S(F ′) ≤ S(FE′).

Lemma 5.7. The supports F := Supp(E) and F ′ := Supp(E′) are prime

divisors Furthermore,

(1) F computes δ(X0,∆0) and E = 1
dF for some positive integer d;

(2) F ′ computes δ(X ′0,∆
′
0) and E′ = 1

d′F
′ for some positive integer d′.

Proof. Since −W is ample over X, the restriction map

µ∗OY (−pW )→ µ0∗OV (−pE)

is surjective for all positive integers p sufficiently divisible. Hence, if we set

ap(E) := µ0∗OV (−pE) ⊆ OX0 ,

then ap(E) = ap(ordW ) · OX0 for such p and inversion of adjunction yields

lct(X0,∆0; a•(E)) = lct(X,∆ +X0; a•(ordW )).

Combining the previous equality with (13) and (15) yields

(16) lct(X0,∆0; a•(E)) = S(F) ≤ S(FE).

Since (X0,∆0) is K-semistable, Proposition 4.4 implies (16) is an equality

and F := Supp(E) is a prime divisor. Therefore, S(F) = S(FE), and F :=

Supp(E) is a prime divisor that computes δ(X0,∆0).

To see E = 1
dF for a positive integer d, we cut by hyperplanes to reduce

the statement to a surface computation. The statement then follows from the
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fact that (Y, V + W + µ−1
∗ (∆)) is lc and the classification of lc surface pairs

([Kol13, 3.32] and [Kol13, 3.35.2]). The argument for E′ is identical. �

Lemma 5.8. For all but finitely many x ∈ R≥0,

vol(FER(x)) = vol(FR(x)) and vol(FE′R′(x)) = vol(F ′R′(x)).

Proof. As shown in the proof of Lemma 5.7, S(F) = S(FE). Hence,

1

rLn

∫ ∞
0

vol(FR(x)) dx = S(F) = S(FE) =
1

rLn

∫ ∞
0

vol(FER(x)) dx.

Since vol(FR(x)) ≤ vol(FER(x)) by (15) and the two functions are continuous

at all but one value [BHJ17, 5.3.ii], the desired equality holds. �

Proposition 5.9. For all p ∈ Z and m ∈ N,

FpRm = FpERm and F ′pR′m = FpE′R
′
m.

Proving this key proposition amounts to showing that the restriction map

H0
(
Y,OY

Ä
mµ∗L− pW

ä)
→ H0

(
V,OV

Ä
mµ∗0L0 − dpEe

ä)
is surjective. Since such a statement is quite subtle, we will not study this

restriction map directly. Instead, we use a construction that originated in

[Li17] (with a refining analysis from [LWX18a]) and work on the cone over our

family of log Fano pairs.

Consider the relative cone over (X,∆)→ C with polarization L given by

Z := C(X/C,L) = Spec(R)→ C.

Write σ : C → Z for the section of cone points and Γ for the closure of the

inverse image of ∆ under the projection Z \ σ(C)→ X. Note that the fiber of

(Z,Γ) over 0, denoted (Z0,Γ0), is the cone over (X0,∆0) and Z0 = Spec(R).

There is a natural proper birational morphism YL → Z, where YL :=

SpecY
Ä⊕

m≥0OY (mL)
ä
, and it is the total space of the line bundle whose sheaf

of sections is OY (mL). We write Yzs ⊂ YL for the zero section and W∞ for the

preimage of W under the projection map YL → Y . Hence, Yzs ∩W∞ 'W .

Associated to the divisor W over X is a ray of valuations

{wt | t ∈ [0,∞)} ⊂ ValZ ,

where wt is the quasi-monomial valuation with weights (1, t) along Yzs and

W∞. For each positive integer k, let Wk denote the divisor over X such that

w1/k = 1
kordWk

.

Note that

AZ,Γ+Z0(wt) = AZ,Γ+Z0(ordYzs) + tAZ,Γ+Z0(ordW∞)

= AZ,Γ+Z0(ordYzs) + tAX,∆+X0(ordW )

= r−1 + ta
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and, by a local computation as in 2.5.1,

(17) ap(wt) =
⊕
m∈N
F (p−m)/tRm ⊆ R.

Therefore,

(18) ap(wt) · OZ0 =
⊕
m∈N
F (p−m)/tRm ⊆ R.

We also consider a ray in the valuation space of Z0. Consider the natural

map VL0 → Z0, where VL0 = SpecV
Ä⊕

m≥0OV (mµ∗0L0)
ä
. We write Vzs ⊂ VL0

for the zero section and F∞ for the inverse image of F under the projection

VL0 → V . Let vt denote the the quasi-monomial valuation with weights (1, td)

along Vzs and F∞. Note that

(19) ap(vt) =
⊕
m∈N
F (p−m)d/t
F Rm =

⊕
m∈N
F (p−m)/t
E Rm ⊆ R.

For each positive integer k divisible by d, there is a divisor Fk over Z0 such that

v1/k = d
kordFk . Since F computes δ(X0,∆0) = 1, the proof of Theorem 4.1

implies that Fk may be extracted for k � 0. Let

ρk : Z0,Fk → Z0

denote this extraction.

Lemma 5.10. For k � 0, there exists an extraction τk : ZWk
→ Z of Wk

over Z such that (ZWk
,Wk + τk∗

−1(Γ + Z0)) is lc.

Proof. For t ∈ R≥0, let a•(wt) · OZ0 denote the restriction of a•(wt) to a

graded sequence of ideals on Z0. By Lemmas 2.12.1 and 5.8,

(20) mult(a•(wt) · OZ0) = mult(a•(vt))

for each t ∈ R≥0.

Set

f(t) :=
Ä
r−1 + at

än+1
mult(a•(wt) · OZ0).

Applying Lemma 2.12, we see

f(0) = (−KX0 −∆0)n and f ′(0) = (−KX0 −∆0)n(a− S(F)) = 0.

Hence, a Taylor expansion gives f(t) = f(0) +O(t2) for 0 < t� 1.

For each positive integer k, define

ck := lct(Z,Γ + Z0; a•(ordWk
)).

Note that ck ≤ AZ,Γ+Z0(Wk) = kr−1 + a by (3). Additionally,

ck = k · lct(Z,Γ + Z0; a•(w1/k)) = k · lct(Z0,Γ0; a•(w1/k) · OZ0)
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by inversion of adjunction and the relation a•k(ordWk
) = a•(w1/k). Therefore,

f(0) ≤ lct
Ä
Z0,Γ0; a•(w1/k) · OZ0

än+1
mult

Ä
a•(w1/k) · OZ0

ä
=

Å
ck
k

ãn+1

mult
Ä
a•(w1/k) · OZ0

ä
≤ f
Ç

1

k

å
,

where the first inequality follows from [Liu18, 7] and the assumption that

(X0,∆0) is K-semistable (see also [Li17, Th. 3.1] and [LX16, Th. A]).

Now, set ak := AZ,Γ+Z0(Wk) − ck. As in the proof of Theorem 4.1, the

previous inequalities imply lim
k→∞

ak = 0. Hence, if k � 0, Proposition 2.2 yields

an extraction τk : ZWk
→ Z of Wk such that the pair

(ZWk
, τk
−1
∗ (Γ + Z0) + (1− ak)Wk)

is lc. Since lim
k→∞

(1 − ak) = 1, the ascending chain condition for log canonical

thresholds [HMX14] implies (ZWk
, τk
−1
∗ (Γ +Z0) +Wk) must be lc when k�0.

�

From now on, we fix a positive integer k so that d divides k, there exist

extractions

ρk : Z0,Fk → Z0 and τk : ZWk
→ Z,

and (ZWk
, τk
−1
∗ (Γ + Z0) + Wk) is lc. The argument used to prove Lemma 5.6

implies (ZWk
, τk
−1
∗ (Γ + Z0)) is plt and τk

−1
∗ (Z0) is normal.

Lemma 5.11. We have a diagram

Fk ⊂Z0,Fk ZWk
⊃Wk

Z0 Z

ρk τk

(that is, the birational transform of Z0 on ZWk
is the extraction of Fk). Addi-

tionally,

(i) Wk|Z0,Fk
= 1

dFk; and

(ii) dWk is Cartier at the generic point of Fk.

Proof. Since −Wk and −Fk are ample over Z and Z0, we may find a

positive integer p so that

apd(ordWk
) ⊆ OZ and ap(ordFk) ⊆ OZ0

satisfy the conclusions of Lemma 4.5. Hence, ZWk
is the blowup of Z along

apd(ordWk
) and Z0,Fk is the blowup of Z0 along ap(ordFk). The former state-

ment implies τk
−1
∗ (Z0) is the blowup of Z0 along apd(ordWk

) · OZ0 .

Claim. mult(apd(ordWk
) · OZ0) = mult(ap(ordFk)).
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To compute these multiplicities, observe

mult(ap(ordFk)) = pn+1 ·mult (a•(ordFk)) = (pd/k)n+1mult
Ä
a•(v1/k)

ä
,

since ap`(ordFk) = ap(ordFk)` for all ` ≥ 0 and d
kordFk = v1/k. Similar reason-

ing implies

mult(apd(ordWk
) · OZ0) = (pd/k)n+1mult

Ä
a•(w1/k) · OZ0

ä
.

Equation 20 now completes the claim.

Observe apd(ordWk
) · OZ0 ⊆ ap(ordFk), since

apd(ordWk
) · OZ0 =

⊕
m∈N
Fpd−mkRm ⊆

⊕
m∈N
Fpd−mkE Rm = ap(ordFk).

A theorem of Rees [Ree61] now implies that apd(ordWk
) · OZ0 and ap(ordFk)

have the same integral closure.

The latter implies apd(ordWk
) · OZ0 and ap(ordFk) have the same normal-

ized blowups. Since the corresponding blowups equal τk
−1
∗ (Z0) and Z0,Fk and

are already normal, they must be isomorphic. The equality of the integral

closures further implies pdWk|τk−1
∗ (Z0) = pFk, which completes (1).

To see (2), cut by n − 1 generic hyperplanes to get a lc surface pair.

The statement then follows from the fact that (Y, V + W + µ−1
∗ (∆)) is lc

and the classification of lc surface singularities (see [Kol13, 3.32] and [Kol13,

3.35.2]). �

Proof of Proposition 5.9. With the above results, the equality of the two

filtrations is now a statement concerning valuation ideals (see equations 18 and

19).

Let us consider the restriction sequence

(21) 0→ OZWk (−pdWk − Z0,Fk)→ OZWk (−pdWk)→ OZ0,Fk
(−pFk)→ 0,

where p is a positive integer. By the proof [KM98, 5.26], the sequence is exact

if pdWk is Cartier at all codimension two points of ZWk
contained in Z0,Fk .

Since the latter holds by Lemma 5.11, (21) is exact.

Claim. R1τk∗OZWk (−pdWk − Z0,Fk) = 0 for all p > 0.

Note that (ZWk
, τk
−1
∗ (Γ)) is klt, since (ZWk

, τk
−1
∗ (Γ+Z0)) is plt. Therefore,

[Kol13, 10.37] implies the desired vanishing holds as long as

(22) − pdWk − Z0,Fk − (KZWk
+ τk

−1
∗ (Γ))

is τk-nef. To prove the latter, observe

KZWk
+ τk

−1
∗ (Γ) ∼Q,τk KZWk

+ τk
−1
∗ (Γ)− τ∗k (KZ + Γ + Z0)

= (AZ,Γ+Z0(ordWk
)− 1)Wk − Z0,Fk .
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Therefore, (22) is relatively Q-linearly equivalent to

−(pd+AZ,Γ+Z0(ordWk
)− 1)Wk.

Since −Wk is τk-ample, (22) is τk-nef when p > 0 and the proof of the claim is

complete.

Returning to the proof of the proposition, we apply τk∗ to (21) and see

0→ τk∗OZWk (−pdWk − Z0,Fk)→ apd(ordWk
)→ ap(ordFk)→ 0

is exact for all p > 0. The right exactness implies Fpd−mkRm = Fpd−mkE Rm
for all p > 0 and m ≥ 0. Since k was chosen to be a multiple of d, the latter

implies FpdRm = FpdE Rm for all p,m ≥ 0. Using the relations

FpRm ⊆ FpERm = Fdp/dedE Rm,

we conclude FpRm = FpERm for all p,m ≥ 0. �

We now return to the proof of Theorem 1.1. Recall that F := Supp(E)

and F ′ := Supp(E′) compute δ(X0,∆0) and δ(X ′0,∆
′
0), which are both one.

Theorem 4.1 implies F and F ′ are dreamy. Therefore, (X0,∆0) and (X ′0,∆
′
0)

are not K-stable.

It remains to show that (X0,∆0) and (X ′0,∆
′
0) are S-equivalent. Consider

the filtrations F and F ′, which agree with FE and FE′ by Proposition 5.9.

The filtrations F and F ′ are finitely generated (since F and F ′ are dreamy).

Let (X ,D) and (X ′,D′) denote the test configuration of (X0,∆0) and (X ′0,∆
′
0)

associated to these filtrations.

We claim that (X ,D) and (X ′,D′) are non-trivial special test configura-

tions and the fibers over 0 ∈ A1 are K-semistable. Indeed, (X ,D) is a normal

non-trivial test configuration [Fuj17, 3.8], and its Futaki invariant is a multiple

of AX0,∆0(F )− S(F ) [Fuj19b, 6.12], which is zero. Therefore, (X ,D) must be

special, since otherwise there would exist a test configuration of (X0,∆0) with

negative Futaki invariant [LX14, 1]. Now [LWX18a, 3.1] implies (X0,D0) is

K-semistable. Since the same argument may be applied to (X ′,D′), the claim

holds.

To finish the proof of the S-equivalence, we are left to show that there is

an isomorphism (X0,D0) ' (X ′0,D′0). Note that

X0 = Proj

Ç⊕
m∈N

⊕
p∈N

grpFRm

å
and X ′0 = Proj

Ç⊕
m∈N

⊕
p∈N

grpF ′R
′
m

å
.

Therefore, the isomorphism ϕ : grFR → grF ′R
′ in Proposition 5.2 induces an

isomorphism X0 ' X ′0. This proves Theorem 1.1 in the case when the bound-

aries ∆ and ∆′ are trivial. We claim that ϕ indeed induces an isomorphism of

pairs (X0,D0) ' (X ′0,D′0). Proving D0 and D′0 match under the isomorphism

X0 ' X ′0 is quite delicate.
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To proceed, fix a prime divisor B ⊂ Supp(∆), and let B′ ⊂ Supp(∆′)

denote its birational transform on X ′. Write B ⊂ Supp(D) and B′ ⊂ Supp(D)

for the degenerations of B0 ⊂ X0 and B′0 ⊂ X ′0 on X and X ′. To complete the

proof, we will show that the isomorphism X0 ' X ′0 sends B0 to B′0, where B0

and B′0 denote the divisorial parts of the scheme theoretic fibers of B and B′
over 0.

Recall that the scheme theoretic fibers of B and B′ over 0 are defined by

the ideals

in(IB0) ⊂ grFR and in(IB′0) ⊂ grF ′R
′,

where IB0 ⊂ R and IB′0 ⊂ R denote the ideals defining B0 and B′0. Observe

that in(IB0) and in(IB′0) are homogenous with respect to the gradings by m

and p. Furthermore, the graded components may be expressed as

in(IB0)p,m := in(IB0) ∩ grpFRm

= im (FpRm ∩ IB0 → grpFRm) ' FpRm ∩ IB0

Fp+1Rm ∩ IB0

and

in(IB′0)p,m := in(IB′0) ∩ grpF ′R
′
m

= im
Ä
F ′pR′m ∩ IB′0 → grpF ′R

′
m

ä
'
F ′pR′m ∩ IB′0
F ′p+1R′m ∩ IB′0

.

Rather than showing that the isomorphism grFR→ grF ′R
′ sends in(IB0)

to in(IB′0), we introduce auxiliary ideals defined using sections of the relative

section rings that vanish along B and B′. For p,m ≥ 0, set

Ip,m := im (FpRm ∩ IB → grpFRm) and I ′p,m := im
(
F ′pR′m ∩ IB′ → grpF ′R

′
m

)
,

where IB ⊂ R and IB′ ⊂ R′ are the ideals defining B and B′. It is straight-

forward to check that

I :=
⊕
m∈N

⊕
p∈N

Ip,m ⊂ grFR and I ′ :=
⊕
m∈N

⊕
p∈N

I ′p,m ⊂ grF ′R
′

are ideals and are contained in in(IB0) and in(IB′0) .

The following two propositions show that the isomorphism X0 ' X ′0 in-

duced by ϕ sends B0 to B′0. Indeed, Proposition 5.12 states that the isomor-

phism X0 ' X ′0 sends V (I) to V (I ′). Since V (I) and V (I ′) agree with B0

and B′0 away from codimension two subsets by Proposition 5.13, the result

follows. �

We are left to prove the following two propositions used in the above proof.

Proposition 5.12. The isomorphism ϕ : grFR→ grF ′R
′ sends I to I ′.
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Proof. Observe that for s̃ ∈ FpRm,

s̃ ∈ FpRm ∩ IB if and only if ϕ̃p,m(s̃) ∈ F ′mr(a+a′)−pR′m ∩ IB′ .

Indeed, s̃ and ϕ̃p,m(s̃) differ by a unit away from 0 ∈ C and membership in

the ideals IB and IB′ may be tested away from 0 ∈ C, since B and B′ are

horizontal. Therefore, ϕ(Ip,m) = I ′mr(a+a′)−p,m, and the result follows. �

The next proposition is more difficult to prove.

Proposition 5.13. The subschemes defined by

(1) in(IB0) and I on X0;

(2) in(IB′0) and I ′ on X ′0
agree away from codimension 2 subsets.

To prove the statement for (1), it suffices to show that

(23) dim

Ç⊕
p≥0

in(IB0)p,m
Ip,m

å
= O(mn−2).

To bound the dimension of the previous module, we return to the cone con-

struction argument used earlier in this section.

Consider the the relative cone (Z,Γ) and the extractions

τk : ZWk
→ Z and ρk : Z0,Fk → Z0

used in the proof of Proposition 5.9. Let G ⊆ Supp(Γ) denote the prime divisor

defined via pulling back B ⊆ Supp(∆). Write ‹G and ‹G0 for the birational

transforms of G and G0 on ZWk
and Z0,Fk .

Observe that for j ≥ 0,

ajd(ordWk
) ∩ IG =

⊕
m≥0

Ä
F jd−mkRm ∩ IB

ä
and

aj(ordFk) ∩ IG0 =
⊕
m≥0

Ä
F jd−mkRm ∩ IB0

ä
.

Therefore,

(24)
aj(ordFk) ∩ IG0

(ajd(ordWk
) ∩ IG) · OZ0 + (aj+1(ordFk) ∩ IG0)

'
⊕
m≥0

in(IB0)jd−mk,m
Ijd−mk,m

.

Lemma 5.14. We have

aj(ordFk) ∩ IG0

(ajd(ordWk
) ∩ IG) · OZ0 + (aj+1(ordFk) ∩ IG0)

= O(jn−2).

A key subtlety in proving this lemma is that the divisors ‹G and ‹G0 may

fail to be Q-Cartier. The proof we will utilize the fact that

(ZWk
,Wk + Z0,Fk + τk∗

−1(Γ))
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is lc. The latter implies Fk = Wk ∩ Z0,Fk is not contained in Supp(τk∗
−1(Γ))

by [Kol13, 2.32.2]. Hence, Fk 6⊂ G̃.

Proof. Fix a positive integer q such that qdWk is Cartier. For each r ∈
{0, . . . , q − 1}, set

Qr := coker
Ä
OZWk (−‹G− rdWk)→ OZ0,Fk

(−‹G0 − rFk)
ä
,

where the previous map is defined via restriction.

Claim. The support of Qr is contained in the intersection of Z0,Fk and

the locus where ‹G is not Q-Cartier.

To prove the claim, it suffices to show that

OZWk (−‹G− rdWk)→ OZ0,Fk
(−‹G0 − rFk)→ 0

is exact along

U := {z ∈ ZWk
| ‹G is Q-Cartier at z}.

The the proof of [KM98, 5.26] implies that the statement holds, assuming

(i) (‹G+ rdWk)|U and Z0,Fk |U are Q-Cartier; and

(ii) (‹G + rdWk)|U is Cartier at all codimension two points of U contained in

Z0,Fk |U .

Statement (i) is clear, since Wk and Z0,Fk are Q-Cartier and U is the

locus where ‹G is Q-Cartier. For (ii), observe that G+ rdWk is Cartier at the

generic point of Fk, since Fk 6⊂ ‹G and dWk is Cartier at the generic point of Fk.

Note that ZWk
is regular at the remaining codimension two points contained

in Z0,Fk . Indeed, ZWk
\Wk ' Z \σ(C), and Z is regular along all codimension

one points of Z0, since Z0 is a normal Cartier divisor on Z.

We now return to the proof of the lemma. Given a positive integer j,

write j = bq + r, where r ∈ {0, . . . , q − 1}. Consider the exact sequence

OZWk (−‹G− jdWk)→ OZ0,Fk
(−‹G0 − jFk)→ Qr(−bqdWk)→ 0.

Pushing forward the sequence by τk∗, we see

ajd(ordWk
) ∩ IG → aj(ordFk) ∩ IG0 → τk∗Qr(−bqdWk)→ 0

is exact for b� 0, since −Wk is τk-ample. Hence,

dim

Ç
aj(ordFk) ∩ IG0

(ajd(ordWk
) ∩ IG) · OZ0 + (aj+1(ordFk) ∩ IG0)

å
≤ dim

Ç
aj(ordFk) ∩ IG0

(ajd(ordWk
) ∩ IG) · OZ0 + (aj+q(ordFk) ∩ IG0)

å
≤ dim

Ä
coker (τk∗Qr(−bqdWk)→ τk∗Qr(−(b+ 1)qdWk))

ä
.

We are now reduced to showing that the last term equals O(bn−2).
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Let D denote the effective Cartier divisor qdWk. Consider the exact se-

quence

Qr(−(b+ 1)D)→ Qr(−bD)→ Qr(−bD)|D → 0.

After pushing forward by τk, we see

τk∗Qr(−(b+ 1)D)→ τk∗Qr(−bD)→ H0(D,Qr(−bD)|D)→ 0

is exact for b� 0. Since Qr is supported on the locus of Z0,Fk where ‹G is not

Q-Cartier, Lemma 5.15 implies Qr|D has dimension at most dim(Z0,Fk)− 3 =

n− 2. Therefore,

H0(D,Qr|D(−bD|D)) = O
Ä
bn−2

ä
,

and the lemma is complete. �

The previous proof used the following property of lc pairs.

Lemma 5.15. Let (X,∆ + E1 + E2) be an lc pair such that

(i) (X,∆) is klt; and

(ii) E1 and E2 are Q-Cartier prime divisors.

If x ∈ X is a codimension three point and x ∈ E1 ∩ E2 ∩ Supp(∆), then X is

Q-factorial at x.

Proof. After taking appropriate index one covers, we can assume E1 and

E2 are Cartier. By cutting, we can assume dim(X) = 3 and x is a closed point.

Since (X,∆) is klt, E1 is Cohen-Macaulay [KM98, 5.25].

We claim E1 is normal at x. If not, since E1 is S2, it cannot be R1 by

Serre’s Theorem. Hence, E1 is singular on a curve C passing through x. Note

that C 6⊂ Supp(∆) ∪ E2 by [Kol13, 2.32]. If we consider the normalization

Eν1 → E1, we see DiffEν1 (∆) has coefficient one along the divisors in the preim-

age of C and positive coefficient along the preimage of Supp(∆). By [Kol13,

2.31], this implies that (Eν1 ,DiffEν1 (∆) + E2|Eν1 ) is not lc, which contradicts

adjunction.

Shrinking around x, we may assume E1 is normal. Adjunction gives

(E1,∆|E1 + E2|E1) is lc. Since E2|E1 is Cartier, (E1,∆|E1) is canonical at x.

Using that x ∈ Supp(∆|E1), [Kol13, 2.29.2] yields that E1 is smooth at x.

Hence, X is smooth at x. �

Proof of Proposition 5.13. To prove the statement for (1), it suffices to

show that

(25)
∑
p≥0

dimNp,m = O(mn−2),

whereNp,m :=in(IB0)p,m/Ip,m. The previous estimate follows from Lemma 5.14.
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Indeed, by Lemma 5.14 and (24),∑
m≥0

dimNjd−mk,m = O
Ä
jn−2

ä
.

Since F is linearly bounded, there exists a positive integer C so that grpFRm = 0

for all p ≥ mC. Hence, Np,m = 0 for p ≥ mC and we see

M∑
m=0

∑
p≥0

dimNpd,m ≤
M(C+k)/d∑

j=0

∑
m≥0

dimNjd−mk,m = O
Ä
Mn−1

ä
.

Therefore, ∑
p≥0

dimNpd,m = O(mn−2).

Observe that grpFRm = 0 for all p not divisible by d by Proposition 5.9 and the

fact that E = d−1F . Therefore, the previous equation implies that (25) holds.

Hence, (1) holds and (2) holds by an identical argument. �

Proof of Corollary 1.3. The proof is the same as the proof of Corollary 3.5,

but with Theorem 3.1 replaced by Theorem 1.1(3). �
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Zürich, 2011, pp. 1–38. MR 2779465. Zbl 1223.14039. https://doi.org/

10.4171/007-1/1.

[Alp13] J. Alper, Good moduli spaces for Artin stacks, Ann. Inst. Fourier

(Grenoble) 63 no. 6 (2013), 2349–2402. MR 3237451. Zbl 1314.14095.

Available at http://aif.cedram.org/item?id=AIF 2013 63 6 2349 0.

[AFS17] J. Alper, M. Fedorchuk, and D. I. Smyth, Second flip in the Hassett-

Keel program: existence of good moduli spaces, Compos. Math. 153 no. 8

(2017), 1584–1609. MR 3649808. Zbl 1403.14038. https://doi.org/10.

1112/S0010437X16008289.

[BBJ15] R. Berman, S. Boucksom, and M. Jonsson, A variational approach

to the Yau-Tian-Donaldson conjecture, 2015. arXiv 1509.04561.

[Bir19] C. Birkar, Anti-pluricanonical systems on Fano varieties, Ann. of Math.

(2) no. 2 (2019), 345–463. https://doi.org/10.4007/annals.2019.190.2.1.

[BCHM10] C. Birkar, P. Cascini, C. D. Hacon, and J. McKernan, Existence

of minimal models for varieties of log general type, J. Amer. Math. Soc.

23 no. 2 (2010), 405–468. MR 2601039. Zbl 1210.14019. https://doi.org/

10.1090/S0894-0347-09-00649-3.

[Blu17] H. Blum, On divisors computing MLD’s and LCT’s, 2017. arXiv 1605.

09662v3.

http://www.ams.org/mathscinet-getitem?mr=2779465
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1223.14039
https://doi.org/10.4171/007-1/1
https://doi.org/10.4171/007-1/1
http://www.ams.org/mathscinet-getitem?mr=3237451
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1314.14095
http://aif.cedram.org/item?id=AIF_2013__63_6_2349_0
http://www.ams.org/mathscinet-getitem?mr=3649808
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1403.14038
https://doi.org/10.1112/S0010437X16008289
https://doi.org/10.1112/S0010437X16008289
http://www.arxiv.org/abs/1509.04561
https://doi.org/10.4007/annals.2019.190.2.1
http://www.ams.org/mathscinet-getitem?mr=2601039
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1210.14019
https://doi.org/10.1090/S0894-0347-09-00649-3
https://doi.org/10.1090/S0894-0347-09-00649-3
http://www.arxiv.org/abs/1605.09662v3
http://www.arxiv.org/abs/1605.09662v3


UNIQUENESS OF K-POLYSTABLE DEGENERATIONS OF FANO VARIETIES 653

[Blu18a] H. Blum, Existence of valuations with smallest normalized volume, Com-

pos. Math. 154 no. 4 (2018), 820–849. MR 3778195. Zbl 1396.14007.

https://doi.org/10.1112/S0010437X17008016.

[Blu18b] H. Blum, Singularities and K-stability, 2018, Ph.D. thesis. Univ. of

Michigan. Available at https://deepblue.lib.umich.edu/handle/2027.42/

146044.

[BJ17] H. Blum and M. Jonsson, Thresholds, valuations, and K-stability, 2017.

arXiv 1706.04548.

[BL18] H. Blum and Y. Liu, Openness of uniform K-stability in families of

Q-Fano varieties, 2018. arXiv 1808.09070.

[BC11] S. Boucksom and H. Chen, Okounkov bodies of filtered linear series,

Compos. Math. 147 no. 4 (2011), 1205–1229. MR 2822867. Zbl 1231.

14020. https://doi.org/10.1112/S0010437X11005355.

[BdFFU15] S. Boucksom, T. de Fernex, C. Favre, and S. Urbinati, Valu-

ation spaces and multiplier ideals on singular varieties, in Recent Ad-

vances in Algebraic Geometry, London Math. Soc. Lecture Note Ser.

417, Cambridge Univ. Press, Cambridge, 2015, pp. 29–51. MR 3380442.

Zbl 1330.14025. https://doi.org/10.1017/CBO9781107416000.004.

[BHJ17] S. Boucksom, T. Hisamoto, and M. Jonsson, Uniform K-stability,

Duistermaat-Heckman measures and singularities of pairs, Ann. Inst.

Fourier (Grenoble) 67 no. 2 (2017), 743–841. MR 3669511. Zbl 1391.

14090. https://doi.org/10.5802/aif.3096.

[BHJ19] S. Boucksom, T. Hisamoto, and M. Jonsson, Uniform K-stability,

and asymptotics of energy functionals in kähler geometry, J. Eur. Math.

Soc. (2019), published online first: 2019-05-24. https://doi.org/10.4171/

JEMS/894.

[Che09] I. Cheltsov, On singular cubic surfaces, Asian J. Math. 13 no. 2 (2009),

191–214. MR 2559108. Zbl 1191.14045. https://doi.org/10.4310/AJM.

2009.v13.n2.a3.

[Che18] W. Chen, Boundedness of varieties of Fano type with alpha-invariants

and volumes bounded below, 2018. arXiv 1810.04019.

[CDS15] X. Chen, S. Donaldson, and S. Sun, Kähler-Einstein metrics on Fano

manifolds. I: Approximation of metrics with cone singularities, J. Amer.

Math. Soc. 28 no. 1 (2015), 183–197. MR 3264766. Zbl 1312.53096. https:

//doi.org/10.1090/S0894-0347-2014-00799-2.

[CP18] G. Codogni and Z. Patakfalvi, Positivity of the CM line bundle for

families of K-stable klt Fanos, 2018. arXiv 1806.07180.

[Don01] S. K. Donaldson, Scalar curvature and projective embeddings. I, J.

Differential Geom. 59 no. 3 (2001), 479–522. MR 1916953. Zbl 1052.

32017. https://doi.org/10.4310/jdg/1090349449.

[Don02] S. K. Donaldson, Scalar curvature and stability of toric varieties, J.

Differential Geom. 62 no. 2 (2002), 289–349. MR 1988506. Zbl 1074.

53059. https://doi.org/10.4310/jdg/1090950195.

http://www.ams.org/mathscinet-getitem?mr=3778195
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1396.14007
https://doi.org/10.1112/S0010437X17008016
https://deepblue.lib.umich.edu/handle/2027.42/146044
https://deepblue.lib.umich.edu/handle/2027.42/146044
http://www.arxiv.org/abs/1706.04548
http://www.arxiv.org/abs/1808.09070
http://www.ams.org/mathscinet-getitem?mr=2822867
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1231.14020
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1231.14020
https://doi.org/10.1112/S0010437X11005355
http://www.ams.org/mathscinet-getitem?mr=3380442
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1330.14025
https://doi.org/10.1017/CBO9781107416000.004
http://www.ams.org/mathscinet-getitem?mr=3669511
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1391.14090
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1391.14090
https://doi.org/10.5802/aif.3096
https://doi.org/10.4171/JEMS/894
https://doi.org/10.4171/JEMS/894
http://www.ams.org/mathscinet-getitem?mr=2559108
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1191.14045
https://doi.org/10.4310/AJM.2009.v13.n2.a3
https://doi.org/10.4310/AJM.2009.v13.n2.a3
http://www.arxiv.org/abs/1810.04019
http://www.ams.org/mathscinet-getitem?mr=3264766
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1312.53096
https://doi.org/10.1090/S0894-0347-2014-00799-2
https://doi.org/10.1090/S0894-0347-2014-00799-2
http://www.arxiv.org/abs/1806.07180
http://www.ams.org/mathscinet-getitem?mr=1916953
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1052.32017
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1052.32017
https://doi.org/10.4310/jdg/1090349449
http://www.ams.org/mathscinet-getitem?mr=1988506
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1074.53059
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1074.53059
https://doi.org/10.4310/jdg/1090950195


654 HAROLD BLUM and CHENYANG XU

[Fuj16] K. Fujita, On K-stability and the volume functions of Q-Fano varieties,

Proc. Lond. Math. Soc. (3) 113 no. 5 (2016), 541–582. MR 3570238.

Zbl 1375.14139. https://doi.org/10.1112/plms/pdw037.

[Fuj17] K. Fujita, K-stability of log Fano hyperplane arrangements, 2017.

arXiv 1709.08213.

[Fuj18] K. Fujita, Optimal bounds for the volumes of Kähler-Einstein Fano

manifolds, Amer. J. Math. 140 no. 2 (2018), 391–414. MR 3783213.

Zbl 1400.14105. https://doi.org/10.1353/ajm.2018.0009.

[Fuj19a] K. Fujita, Uniform K-stability and plt blowups of log Fano pairs, Kyoto

J. Math. 59 no. 2 (2019), 399–418. MR 3960299. https://doi.org/10.1215/

21562261-2019-0012.

[Fuj19b] K. Fujita, A valuative criterion for uniform K-stability of Q-Fano

varieties, J. Reine Angew. Math. 751 (2019), 309–338. MR 3956698.

Zbl 07062939. https://doi.org/10.1515/crelle-2016-0055.

[FO18] K. Fujita and Y. Odaka, On the K-stability of Fano varieties and

anticanonical divisors, Tohoku Math. J. (2) 70 no. 4 (2018), 511–521.

MR 3896135. Zbl 07040974. https://doi.org/10.2748/tmj/1546570823.

[HMX14] C. D. Hacon, J. McKernan, and C. Xu, ACC for log canonical

thresholds, Ann. of Math. (2) 180 no. 2 (2014), 523–571. MR 3224718.

Zbl 1320.14023. https://doi.org/10.4007/annals.2014.180.2.3.
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