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Ricci flow with surgery on manifolds
with positive isotropic curvature

By Simon Brendle

Abstract

We study the Ricci flow for initial metrics with positive isotropic curva-

ture (strictly PIC for short).

In the first part of this paper, we prove new curvature pinching estimates

that ensure that blow-up limits are uniformly PIC in all dimensions. More-

over, in dimension n ≥ 12, we show that blow-up limits are weakly PIC2.

This can be viewed as a higher-dimensional version of the fundamental

Hamilton-Ivey pinching estimate in dimension 3.

In the second part, we develop a theory of ancient solutions that have

bounded curvature, are κ-noncollapsed, are weakly PIC2, and are uniformly

PIC. This is an extension of Perelman’s work; the additional ingredients

needed in the higher dimensional setting are the differential Harnack in-

equality for solutions to the Ricci flow satisfying the PIC2 condition, and a

rigidity result due to Brendle-Huisken-Sinestrari for ancient solutions that

are uniformly PIC1.

In the third part of this paper, we prove a Canonical Neighborhood The-

orem for the Ricci flow with initial data with positive isotropic curvature,

which holds in dimension n ≥ 12. This relies on the curvature pinching

estimates together with the structure theory for ancient solutions. This

allows us to adapt Perelman’s surgery procedure to this situation. As a

corollary, we obtain a topological classification of all compact manifolds

with positive isotropic curvature of dimension n ≥ 12 that do not contain

nontrivial incompressible (n− 1)-dimensional space forms.
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1. Introduction

Our goal in this paper is to study the formation of singularities under the

Ricci flow for initial metrics with positive isotropic curvature. Positive isotropic

curvature is a natural curvature condition that makes sense in dimension n ≥ 4.

It was introduced in the work of Micallef and Moore [29] in their study of

minimal two-spheres in Riemannian manifolds. Variants of this condition play

a central role in the proof of the Differentiable Sphere Theorem [8]. We first

recall the relevant definitions:

Definition 1.1. (i) We denote by PIC the set of all algebraic curvature ten-

sors that have nonnegative isotropic curvature in the sense that R(ϕ, ϕ̄) ≥ 0 for

all complex two-forms of the form ϕ = (e1+ie2)∧(e3+ie4), where {e1, e2, e3, e4}
is an orthonormal four-frame.

(ii) We denote by PIC1 the set of all algebraic curvature tensors satisfying

R(ϕ, ϕ̄) ≥ 0 for all complex two-forms of the form ϕ = (e1 + ie2)∧ (e3 + iλe4),

where {e1, e2, e3, e4} is an orthonormal four-frame and λ ∈ [0, 1].

(iii) We denote by PIC2 the set of all algebraic curvature tensors satisfying

R(ϕ, ϕ̄) ≥ 0 for all complex two-forms of the form ϕ = (e1 + iµe2)∧ (e3 + iλe4),

where {e1, e2, e3, e4} is an orthonormal four-frame and λ, µ ∈ [0, 1].

Note that PIC2 ⊂ PIC1 ⊂ PIC. The curvature tensor of a Riemannian

manifold M lies in the PIC1 cone if and only if the curvature tensor of M ×R
lies in the PIC cone. Similarly, the curvature tensor of M lies in the PIC2 cone

if and only if the curvature tensor of M × R2 lies in the PIC cone.

The significance of the curvature conditions above stems from the fact that

they are all preserved by the Ricci flow. For an initial metric that is weakly

PIC2, the subsequent solution of the Ricci flow satisfies a differential Harnack

inequality (cf. [19], [3]). For an initial metric that is strictly PIC1, it was shown

in [2] that the Ricci flow will converge to a metric of constant curvature after

rescaling. (See [1], [8], [22], [26], [27], [28], [32] for earlier work on the subject.)
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For an initial metric that is strictly PIC, it has been conjectured that the Ricci

flow should only form so-called neck-pinch singularities. For n = 4, this was

proved in a fundamental paper by Hamilton [21] (see also [12], [11]). Our goal

in this paper is to confirm the conjecture for n ≥ 12.

A key step in our analysis is a new curvature pinching estimate in higher

dimensions. By work of Hamilton [17], [18], the curvature tensor satisfies the

evolution equation

DtR = ∆R+Q(R).

Here, Dt denotes the covariant time derivative, and Q(R) is a quadratic ex-

pression in the curvature tensor. More precisely, Q(R) = R2 + R#, where R2

and R# are defined by

(R2)ijkl =
n∑

p,q=1

RijpqRklpq

and

(R#)ijkl = 2
n∑

p,q=1

(RipkqRjplq −RiplqRjpkq).

Note that the definitions of R2, R#, and Q(R) make sense for any algebraic

curvature tensor R. In fact, the definitions even make sense if R does not satisfy

the first Bianchi identity. It is sometimes convenient to consider curvature-type

tensors that do not satisfy the first Bianchi identity (see Section 3 below);

however, unless stated otherwise, we will assume that the first Bianchi identity

is satisfied.

In order to prove pinching estimates for the Ricci flow, we need to analyze

the Hamilton ordinary differential equation (ODE) d
dtR = Q(R) on the space

of algebraic curvature tensors. Our first main result is a pinching estimate for

the Hamilton ODE:

Theorem 1.2. Assume that n ≥ 12. Let K be a compact set of algebraic

curvature tensors in dimension n that is contained in the interior of the PIC

cone, and let T > 0 be given. Then there exist a small positive real number θ, a

large positive real number N , an increasing concave function f > 0 satisfying

lims→∞
f(s)
s = 0, and a continuous family of closed, convex, O(n)-invariant

sets {Ft : t ∈ [0, T ]} such that the family {Ft : t ∈ [0, T ]} is invariant under

the Hamilton ODE d
dtR = Q(R); K ⊂ F0; and

Ft ⊂ {R : R− θ scal id ? id ∈ PIC}
∩ {R : Ric11 + Ric22 − θ scal +N ≥ 0}
∩ {R : R+ f(scal) id ? id ∈ PIC2}

for all t ∈ [0, T ].
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Here, ? denotes the Kulkarni-Nomizu product. More precisely, if A and

B are symmetric bilinear forms, then (A?B)ijkl = AikBjl−AilBjk−AjkBil+
AjlBik.

Via Hamilton’s PDE-ODE principle (cf. [14, Th. 3] or [13, Th. 10.16]),

Theorem 1.2 gives curvature pinching estimates for solutions to the Ricci flow

starting from initial metrics with positive isotropic curvature:

Corollary 1.3. Let (M, g0) be a compact manifold of dimension n ≥ 12

with positive isotropic curvature, and let g(t) denote the solution to the Ricci

flow with initial metric g0. Then there exist a small positive real number θ,

a large positive real number N , and an increasing concave function f sat-

isfying lims→∞
f(s)
s = 0 such that the curvature tensor of (M, g(t)) satisfies

R−θ scal id? id ∈ PIC, Ric11 +Ric22−θ scal+N ≥ 0, and R+f(scal) id? id ∈
PIC2 for all t ≥ 0.

The estimate R + f(scal) id ? id ∈ PIC2 ensures that blow-up limits are

weakly PIC2. This can be viewed as a higher dimensional version of the fun-

damental Hamilton-Ivey pinching estimate in dimension 3 (cf. [20], [25]). The

estimate R − θ scal id ? id ∈ PIC ensures that blow-up limits are uniformly

PIC. Unlike the curvature pinching estimates in [21], this estimate is not sharp

on the cylinder.

The proof of Theorem 1.2 will occupy Sections 2–5. In Section 2, we

construct a family of closed, convex, O(n)-invariant sets {G(0)
t : t ∈ [0, T ]}

with the property that {G(0)
t : t ∈ [0, T ]} is invariant under the Hamilton

ODE. Furthermore, K ⊂ G(0)
0 and

G(0)
t ⊂ {R : R− θ scal id ? id ∈ PIC}
∩ {R : Ric11 + Ric22 − θ scal +N ≥ 0}.

This construction works in dimension n ≥ 5. In Sections 3 and 4, we construct

two families of invariants cones C(b), 0 < b ≤ bmax, and C̃(b), 0 < b ≤ b̃max.

The family C(b) deforms the cone {R ∈ PIC : Ric11 + Ric22 ≥ 0} inward. The

family C̃(b) deforms the cone C(bmax) ∩ PIC1 outward. In dimension n ≥ 12,

we are able to join the two families of cones together (see Proposition 4.3

below). This allows us to construct a family of sets that pinches toward PIC1.

Combining this with ideas in [2], we are able to construct a family of sets that

pinches toward PIC2. This is discussed in Section 5.

In Section 6, we study ancient solutions to the Ricci flow that have

bounded curvature, are κ-noncollapsed, are weakly PIC2, and are uniformly

PIC. In particular, such ancient solutions satisfy a Harnack inequality and a

long-range curvature estimate. Moreover, we show that such an ancient solu-

tion either splits locally as a product, or it is strictly PIC2. If the solution

locally splits as a product, results in [7] imply that the solution is isometric to
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a family of shrinking cylinders Sn−1×R or a quotient of Sn−1×R by standard

isometries. If the solution is strictly PIC2, it is either compact (in which case

it is diffeomorphic to a quotient of Sn by standard isometries) or noncompact

(in which case it is diffeomorphic to Rn and has the structure of a tube with

a cap attached).

In Section 7, we establish an analogue of Perelman’s Canonical Neigh-

borhood Theorem. To explain this, let (M, g0) be a compact manifold of

dimension n ≥ 12 with positive isotropic curvature, and let g(t) denote the

solution to the Ricci flow with initial metric g0. The Canonical Neighborhood

Theorem asserts that the high curvature regions in (M, g(t)) are modeled on

ancient κ-solutions. Combining this with the results on the structure of ancient

κ-solutions established in Section 6, we conclude that every point where the

curvature is sufficiently large either lies on a neck, or on a cap adjacent to a

neck, or on a quotient neck. Note that we may encounter singularities modeled

on quotients of Sn−1×R. As in Hamilton’s work [21], these quotient necks can

be ruled out if we assume that M does not contain nontrivial incompressible

(n − 1)-dimensional space-forms. This makes it possible to extend the flow

beyond singularities by a surgery procedure as in Perelman’s work (cf. [33],

[35], [34]). Moreover, the surgically modified flow must become extinct in fi-

nite time. This is discussed in Sections 8–11. One simplification compared to

Perelman’s work is that we have an upper bound for the extinction time in

terms of the infimum of the scalar curvature of the initial metric. This allows

us to choose the surgery parameters independent of time t.

As a corollary, we obtain a topological classification of all compact man-

ifolds of dimension n ≥ 12 that admit metrics of positive isotropic curvature

and do not contain nontrivial incompressible (n− 1)-dimensional space forms:

Theorem 1.4. Let (M, g0) be a compact manifold of dimension n ≥ 12

with positive isotropic curvature. If M does not contain any nontrivial in-

compressible (n − 1)-dimensional space forms, then M is diffeomorphic to a

connected sum of finitely many spaces, each of which is a quotient of Sn or

Sn−1 × R by standard isometries.

Conversely, it follows from work of Micallef and Wang [30] that every

manifold that is diffeomorphic to a connected sum of quotients of Sn and

Sn−1 × R admits a metric with positive isotropic curvature. Earlier results

on the topology of manifolds with positive isotropic curvature (which rely on

minimal surface techniques) are discussed in [15], [16], [29]. Theorem 1.4 is

reminiscent of the topological classification of three-manifolds that admit met-

rics with positive scalar curvature (which is a consequence of Perelman’s work).

Finally, we mention an interesting connection between Ricci flow on mani-

folds with positive isotropic curvature and mean curvature flow for two-convex
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hypersurfaces. If M is a two-convex hypersurface in Rn+1 (n ≥ 4), then the

induced metric on M has positive isotropic curvature (see Lemma A.2). If

we evolve a two-convex hypersurface by mean curvature flow, then results of

Huisken and Sinestrari [23], [24] imply that every blow-up limit is weakly con-

vex and that the flow only forms neck-pinch singularities.

Acknowledgements. The author would like to thank Hong Huang and Flo-

rian Johne for comments on an earlier version of this paper. He is especially

grateful to an anonymous referee for many insightful remarks. This project was

supported by the National Science Foundation and by the Simons Foundation.

2. A preliminary pinching estimate

Throughout this section, we assume that n ≥ 5. Let K be a compact set

of algebraic curvature tensors in dimension n that is contained in the interior

of the PIC cone. Our goal in this section is to construct a set of inequalities

that are satisfied on the set K and that are preserved under the Hamilton

ODE. We first explain the intuition. Our starting point is the observation

that, if R ∈ PIC and the sum of the two smallest eigenvalues of the Ricci

tensor is negative, then the sum of the two smallest eigenvalues of the Ricci

tensor is increasing under the Hamilton ODE. In particular, the set {R ∈ PIC :

Ric11 + Ric22 ≥ −2} is preserved under the Hamilton ODE.

Our goal is to deform the set {R ∈ PIC : Ric11 + Ric22 ≥ −2} inward in

such a way that the deformed sets are still preserved under the Hamilton ODE.

To that end, we use the maps `a,b introduced in [1]. Following [1], we define

`a,b(S) = S + bRic(S) ? id +
1

n
(a− b) scal(S) id ? id

for every algebraic curvature tensor S. Under the map `a,b, the scalar curva-

ture changes by a factor of 1+2(n−1)a, the tracefree Ricci tensor changes by a

factor of 1+(n−2)b, and the Weyl tensor is unchanged. It is shown in [1] that

`−1
a,b(Q(`a,b(S)) = Q(S) +Da,b(S),

where Da,b(S) is defined by

Da,b(S) = (2b+ (n− 2)b2 − 2a)
o

Ric(S) ?
o

Ric(S)

+ 2aRic(S) ? Ric(S) + 2b2
o

Ric(S)2 ? id

+
nb2(1− 2b)− 2(a− b)(1− 2b+ nb2)

n(1 + 2(n− 1)a)
|

o
Ric(S)|2 id ? id.
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The Ricci tensor of Da,b(S) is given by

Ric(Da,b(S)) = −4bRic(S)2 +
4

n
(2b+ (n− 2)a) scal(S) Ric(S)

+ 2
n2b2 − 2(n− 1)(a− b)(1− 2b)

n(1 + 2(n− 1)a)
|

o
Ric(S)|2 id

+
4

n2
(a− b) scal(S)2 id.

Hence, if R evolves by the Hamilton ODE d
dtR = Q(R), then S = `−1

a,b(R)

evolves by the ODE d
dtS = Q(S) +Da,b(S). As in [1], it is convenient to con-

sider combinations of small positive numbers a, b such that 2a = 2b+(n−2)b2.

In this case, the evolution equations for S and Ric(S) take the form

d

dt
S = Q(S) + 2aRic(S) ? Ric(S) + positive terms

and

d

dt
Ric(S) = 2S ∗ Ric(S)− 4bRic(S)2 +

4

n
(2b+ (n− 2)a) scal(S) Ric(S)

+ positive terms,

where we have used the notation (S ∗ H)ik :=
∑n
p,q=1 SipkqHpq. In order to

show that S remains in the PIC cone, we need a lower bound for the sum of

the two smallest eigenvalues of Ric(S). However, when we try to show that a

lower bound for the sum of the smallest eigenvalues of Ric(S) is preserved, we

encounter a problem, in that the evolution equation for Ric(S)11 + Ric(S)22

contains a term of the form −4b ((Ric(S)2)11 + (Ric(S)2)22), which has an un-

favorable sign. To overcome this problem, we impose an additional inequality,

which allows us to control the difference Ric(S)22 − Ric(S)11 in terms of the

sum
∑n
p=3(R1p1p + R2p2p). This is the crucial ingredient needed to preserve

the lower bound for Ric(S)11 + Ric(S)22. The price to pay is that we need to

verify that this additional inequality is itself preserved.

After these preparations, we now state the main result of this section:

Theorem 2.1. Let K be a compact set of algebraic curvature tensors in

dimension n that is contained in the interior of the PIC cone, and let T > 0

be given. Then there exist a small positive real number θ, a large positive

real number N and a continuous family of closed, convex, O(n)-invariant sets

{G(0)
t : t ∈ [0, T ]}, such that the family {G(0)

t : t ∈ [0, T ]} is invariant under the

Hamilton ODE d
dtR = Q(R). Furthermore, K ⊂ G(0)

0 and

G(0)
t ⊂ {R : R− θ scal id ? id ∈ PIC}
∩ {R : Ric11 + Ric22 − θ scal +N ≥ 0}

for all t ∈ [0, T ].
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In the remainder of this section, we give the proof of Theorem 2.1. With-

out loss of generality, we may assume that Ric11+Ric22 ≥ −1 for all R ∈ K. We

first give the definition of the sets G(0)
t . The definition depends on a parameter

δ > 0, which we choose small enough.

Definition 2.2. For δ > 0 small, we denote by G(0)
t the set of all algebraic

curvature tensors R satisfying the following conditions:

(i) If 0 ≤ b ≤ δe−8t, 2a = 2b+ (n− 2)b2, and S = `−1
a,b(R), then S ∈ PIC.

(ii) If 0 ≤ b ≤ δe−8t, 2a = 2b + (n − 2)b2, and S = `−1
a,b(R), then Ric(S)11 +

Ric(S)22 + 2b
5
4 scal(S) ≥ −2.

(iii) R− 4δ id ? id ∈ PIC.

(iv) For every orthonormal frame {e1, . . . , en}, the inequality

R1313 +R1414 +R2323 +R2424 − 2R1234

≥ δ
1
4 scal(R)−3

Ç n∑
p,q=1

(R13pq −R24pq)
2 +

n∑
p,q=1

(R14pq +R23pq)
2

å2

holds.

It is easy to see that K ⊂ G(0)
0 if δ > 0 is sufficiently small.

Lemma 2.3. The set G(0)
t is convex for each t.

Proof. It is clear that the inequalities (i), (ii), (iii) define a convex set.

The inequality (iv) can be rewritten as

scal
3
4 (R1313 +R1414 +R2323 +R2424 − 2R1234)

1
4

≥ δ
1
16

Ç n∑
p,q=1

(R13pq −R24pq)
2 +

n∑
p,q=1

(R14pq +R23pq)
2

å 1
2

.

For each orthonormal frame {e1, . . . , en}, the function

R 7→ scal
3
4 (R1313 +R1414 +R2323 +R2424 − 2R1234)

1
4

is concave, while the function

R 7→
Ç n∑
p,q=1

(R13pq −R24pq)
2 +

n∑
p,q=1

(R14pq +R23pq)
2

å 1
2

is convex. This shows that the inequality (iv) defines a convex set.

We now verify that the family {G(0)
t : t ∈ [0, T ]} is invariant under the

Hamilton ODE d
dtR = Q(R) if δ > 0 is sufficiently small. Let R(t) be a

solution of the ODE d
dtR(t) = Q(R(t)). Moreover, suppose that R(t0) lies in

the interior of G(0)
t0 for some time t0 ∈ [0, T ]. We will show that R(t) ∈ G(0)

t for
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all t ∈ [t0, T ], provided that δ > 0 is sufficiently small. To prove this, we argue

by contradiction. Suppose that R(t) /∈ G(0)
t for some t ∈ [t0, T ], and let

t̂ := inf{t ∈ [t0, T ] : R(t) /∈ G(0)
t }.

Clearly, t̂ ∈ (t0, T ], R(t) ∈ G(0)
t for all t ∈ [0, t̂], and R̂ := R(t̂) ∈ ∂G(0)

t̂
.

Our strategy is to show that, at time t̂, conditions (i)–(iv) hold with strict

inequalities. We begin with several technical lemmata:

Lemma 2.4. For every orthonormal frame {e1, . . . , en}, the inequality

R̂1313 + R̂1414 + R̂2323 + R̂2424

≥ δ
1
4 scal(R̂)−3

Ç n∑
p,q=1

(R2
13pq +R2

14pq +R2
23pq +R2

24pq)

å2

holds.

Proof. The condition (iv) gives a lower bound for R̂1313 + R̂1414 + R̂2323 +

R̂2424 − 2R̂1234 and R̂1313 + R̂1414 + R̂2323 + R̂2424 + 2R̂1234. If we add these

inequalities, the assertion follows.

Lemma 2.5. Suppose that 0 < b̂ ≤ δe−8t̂, 2â = 2b̂ + (n − 2)b̂2, and

Ŝ := `−1

â,b̂
(R̂). If we define

U :=
1

1 + (n− 2)b̂
Ric(Ŝ) ? id

− 1

n

( 1

1 + (n− 2)b̂
− 1 + (n− 2)b̂

1 + 2(n− 1)â

)
scal(Ŝ) id ? id,

then U ∈ TŜPIC.

Proof. Since condition (i) still holds at time t̂, we know that `−1
b+(n−2)b2/2,b(R̂)

∈ PIC for all 0 < b ≤ b̂. This implies

U = − d

db
`−1
b+(n−2)b2/2,b(R̂)

∣∣∣∣
b=b̂
∈ TŜPIC,

as claimed.

Lemma 2.6. Suppose 0 < b̂ ≤ δe−8t̂, 2â = 2b̂+(n−2)b̂2, Ŝ := `−1

â,b̂
(R̂), and

U :=
1

1 + (n− 2)b̂
Ric(Ŝ) ? id

− 1

n

( 1

1 + (n− 2)b̂
− 1 + (n− 2)b̂

1 + 2(n− 1)â

)
scal(Ŝ) id ? id.

Then

8b̂ U − 4âRic(Ŝ) ? id− 4â id ? id + b̂
17
8 scal(Ŝ)2 id ? id ∈ TŜPIC

if δ > 0 is sufficiently small.
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Proof. Suppose that {e1, e2, e3, e4} is an orthonormal four-frame satisfying

Ŝ1313 + Ŝ1414 + Ŝ2323 + Ŝ2424 − 2Ŝ1234 = 0.

We need to show that

b̂ (U1313 + U1414 + U2323 + U2424 − 2U1234)

− â (Ric(Ŝ)11 + Ric(Ŝ)22 + Ric(Ŝ)33 + Ric(Ŝ)44)− 4â+ b̂
17
8 scal(Ŝ)2 ≥ 0

for this particular orthonormal four-frame {e1, e2, e3, e4}.

Case 1: Suppose first that Ric(Ŝ)11 + Ric(Ŝ)22 + Ric(Ŝ)33 + Ric(Ŝ)44 ≤ 8.

Using condition (iii), we obtain R̂− 4b̂ id ? id ∈ PIC. Therefore,

32b̂ ≤ R̂1313 + R̂1414 + R̂2323 + R̂2424 − 2R̂1234

= Ŝ1313 + Ŝ1414 + Ŝ2323 + Ŝ2424 − 2Ŝ1234

+ 2b̂ (Ric(Ŝ)11 + Ric(Ŝ)22 + Ric(Ŝ)33 + Ric(Ŝ)44) +
4(n− 2)b̂2

n
scal(Ŝ)

≤ 16b̂+
4(n− 2)b̂2

n
scal(Ŝ),

hence b̂ scal(Ŝ) ≥ 4n
n−2 . Since U ∈ TŜPIC by Lemma 2.5, we conclude that

b̂ (U1313 + U1414 + U2323 + U2424 − 2U1234)

− â (Ric(Ŝ)11 + Ric(Ŝ)22 + Ric(Ŝ)33 + Ric(Ŝ)44)− 4â+ b̂
17
8 scal(Ŝ)2

≥ −â (Ric(Ŝ)11 + Ric(Ŝ)22 + Ric(Ŝ)33 + Ric(Ŝ)44)− 4â+ b̂
17
8 scal(Ŝ)2

≥ −12â+
16n2

(n− 2)2
b̂

1
8

> 0

if b̂ > 0 is sufficiently small.

Case 2: Suppose finally that Ric(Ŝ)11+Ric(Ŝ)22+Ric(Ŝ)33+Ric(Ŝ)44 ≥ 8.

By definition of U , we obtain

b̂ (U1313 + U1414 + U2323 + U2424 − 2U1234)

− â (Ric(Ŝ)11 + Ric(Ŝ)22 + Ric(Ŝ)33 + Ric(Ŝ)44)− 4â+ b̂
17
8 scal(Ŝ)2

=
( 2b̂

1 + (n− 2)b̂
− â

)
(Ric(Ŝ)11 + Ric(Ŝ)22 + Ric(Ŝ)33 + Ric(Ŝ)44)

− 8b̂

n

( 1

1 + (n− 2)b̂
− 1 + (n− 2)b̂

1 + 2(n− 1)â

)
scal(Ŝ)− 4â+ b̂

17
8 scal(Ŝ)2
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≥ 8
( 2b̂

1 + (n− 2)b̂
− â

)
− 4â+ b̂

17
8 scal(Ŝ)2

− 8b̂

n

( 1

1 + (n− 2)b̂
− 1 + (n− 2)b̂

1 + 2(n− 1)â

)
scal(Ŝ)

≥ b̂+ b̂
17
8 scal(Ŝ)2 − C(n) b̂2 scal(Ŝ)

> 0

if b̂ > 0 is sufficiently small.

Lemma 2.7. Let â, b̂ be real numbers such that 0 ≤ b̂ ≤ δe−8t̂, 2â =

2b̂ + (n − 2)b̂2, and let Ŝ := `−1
a,b(R̂). Then Ŝ lies in the interior of the PIC

cone.

Proof. In view of condition (iii), R̂ lies in the interior of the PIC cone.

Therefore, the assertion is true for b̂ = 0. Hence, it suffices to consider the

case 0 < b̂ ≤ δe−8t̂. Let us define functions a(t), b(t) by b(t) = e8(t̂−t)b̂ and

a(t) = 2b(t)+(n−2)b(t)2. Moreover, let S(t) := `−1
a(t),b(t)(R(t)). Since condition

(i) holds up to time t̂, we know that S(t) ∈ PIC for all t ∈ [0, t̂]. The evolution

of S(t) is given by

d

dt
S(t)

∣∣∣∣
t=t̂

= Q(Ŝ) +Dâ,b̂(Ŝ)− b′(t̂)U = Q(Ŝ) +Dâ,b̂(Ŝ) + 8b̂ U,

where

U =
1

1 + (n− 2)b̂
Ric(Ŝ) ? id

− 1

n

( 1

1 + (n− 2)b̂
− 1 + (n− 2)b̂

1 + 2(n− 1)â

)
scal(Ŝ) id ? id.

We claim that Dâ,b̂(Ŝ) + 8b̂ U lies in the interior of the tangent cone TŜPIC.

To verify this, we distinguish two cases:

Case 1: Suppose first that Ric(Ŝ) is strictly two-positive. By Lemma A.2,

Ric(Ŝ) ? Ric(Ŝ) lies in the interior of the PIC cone. Since 2â = 2b̂+ (n− 2)b̂2,

this implies that Dâ,b̂(Ŝ) lies in the interior of the PIC cone. Since U ∈ TŜPIC

by Lemma 2.5, it follows that Dâ,b̂(Ŝ) + 8b̂ U lies in the interior of the tangent

cone TŜPIC, as claimed.

Case 2: Suppose next that Ric(Ŝ) is not strictly two-positive. In this case,

scal(Ŝ) ≤ C(n) |
o

Ric(Ŝ)|. Since 2â = 2b̂+ (n− 2)b̂2, it follows that

Dâ,b̂(Ŝ)− 2âRic(Ŝ) ? Ric(Ŝ)− 2b̂
17
8 scal(Ŝ)2 id ? id ∈ PIC
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if b̂ > 0 is sufficiently small. Condition (ii) implies Ric(Ŝ) + (1 + b̂
5
4 scal(Ŝ)) id

is weakly two-positive. Using Lemma A.2, we obtain

2âRic(Ŝ) ? Ric(Ŝ)

+ 4â(1 + b̂
5
4 scal(Ŝ)) Ric(Ŝ) ? id + 4â(1 + b̂

5
2 scal(Ŝ)2) id ? id

= 2â [Ric(Ŝ) + (1 + b̂
5
4 scal(Ŝ)) id] ? [Ric(Ŝ) + (1 + b̂

5
4 scal(Ŝ)) id]

+ 2â(1− b̂
5
4 scal(Ŝ))2 id ? id ∈ PIC.

On the other hand, Lemma 2.6 gives

8b̂ U − 4âRic(Ŝ) ? id− 4â id ? id + b̂
17
8 scal(Ŝ)2 id ? id ∈ TŜPIC.

Moreover, if b̂ > 0 is sufficiently small, then âb̂
5
4 is much smaller than b̂

17
8 .

Since |Ric(Ŝ)| ≤ C(n) scal(Ŝ), it follows that

b̂
17
8 scal(S)2 id ? id− 4âb̂

5
4 scal(Ŝ) Ric(Ŝ) ? id− 4âb̂

5
2 scal(Ŝ)2 id ? id

lies in the interior of the PIC cone. Adding all four formulae, we conclude that

Dâ,b̂(Ŝ) + 8b̂ U lies in the interior of the tangent cone TŜPIC.

To summarize, we have shown that Dâ,b̂(Ŝ) + 8b̂ U lies in the interior of

the tangent cone TŜPIC. Since Q(Ŝ) ∈ TŜPIC by Proposition 7.5 in [5], we

conclude that d
dtS(t)

∣∣∣
t=t̂

lies in the interior of the tangent cone TŜPIC. Hence,

if Ŝ lies on the boundary of the PIC cone, then S(t) lies outside the PIC cone

if t ∈ [0, t̂) is sufficiently close to t̂. This is a contradiction. This completes the

proof of Lemma 2.7.

Lemma 2.8. Let a, b be real numbers such that 0 ≤ b ≤ δe−8t̂, 2a =

2b+(n−2)b2, and let Ŝ := `−1
a,b(R̂). Then Ric(Ŝ)11+Ric(Ŝ)22+2b

5
4 scal(Ŝ) > −2

for every pair of orthonormal vectors {e1, e2}.

Proof. Suppose that the assertion is false. Then

Ric(Ŝ)11 + Ric(Ŝ)22 + 2b
5
4 scal(Ŝ) = −2

for some pair of orthonormal vectors {e1, e2}. We may assume that {e1, e2} are

eigenvectors of Ric(Ŝ), and Ric(Ŝ)22 ≥ Ric(Ŝ)11. Let us extend {e1, e2} to an

eigenbasis {e1, . . . , en} of Ric(Ŝ). Clearly, Ric(Ŝ)pp ≥ Ric(Ŝ)22 for 3 ≤ p ≤ n.

For each t ∈ [0, t̂], we define S(t) := l−1
a,b(R(t)). Since condition (ii) holds up to

time t̂, we know that

Ric(S(t))11 + Ric(S(t))22 + 2b
5
4 scal(S(t)) ≥ −2
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for all t ∈ [0, t̂]. The evolution of S(t) is given by d
dtS(t)

∣∣∣
t=t̂

= Q(Ŝ) +Da,b(Ŝ).

Using the formula for Ric(Da,b(Ŝ)), we obtain

0 ≥ 1

2

d

dt

Ä
Ric(S(t))11 + Ric(S(t))22 + 2b

5
4 scal(S(t))

ä∣∣∣∣
t=t̂

≥
n∑
p=1

(Ŝ1p1p + Ŝ2p2p)Ric(Ŝ)pp

+
3

2
b

5
4 |Ric(Ŝ)|2 − 2b ((Ric(Ŝ)2)11 + (Ric(Ŝ)2)22)

+
4

n
(2b+ (n− 2)a) scal(Ŝ) (Ric(Ŝ)11 + Ric(Ŝ)22)

=
n∑
p=3

(Ŝ1p1p + Ŝ2p2p)(Ric(Ŝ)pp −
1

2
(Ric(Ŝ)11 + Ric(Ŝ)22)) +

3

2
b

5
4 |Ric(Ŝ)|2

+
1

2
(1− 2b) (Ric(Ŝ)11 + Ric(Ŝ)22)2 − b (Ric(Ŝ)22 − Ric(Ŝ)11)2

+
4

n
(2b+ (n− 2)a) scal(Ŝ) (Ric(Ŝ)11 + Ric(Ŝ)22)

if b ≥ 0 is sufficiently small. Note that |Ric(Ŝ)|2 ≥ 1
n scal(Ŝ)2. Hence, if b ≥ 0

is sufficiently small, then

1

2
b

5
4 |Ric(Ŝ)|2 +

1

2
(1− 2b) (Ric(Ŝ)11 + Ric(Ŝ)22)2

> − 4

n
(2b+ (n− 2)a) scal(Ŝ) (Ric(Ŝ)11 + Ric(Ŝ)22)

by Young’s inequality. This gives

0 ≥ 1

2

d

dt

Ä
Ric(S(t))11 + Ric(S(t))22 + 2b

5
4 scal(S(t))

ä∣∣∣∣
t=t̂

>
n∑
p=3

(Ŝ1p1p + Ŝ2p2p)(Ric(Ŝ)pp −
1

2
(Ric(Ŝ)11 + Ric(Ŝ)22))

+ b
5
4 |Ric(Ŝ)|2 − b (Ric(Ŝ)22 − Ric(Ŝ)11)2.

At this point, we distinguish two cases:

Case 1: Suppose first that Ŝ1p1p + Ŝ2p2p ≥ 0 for all p ∈ {3, . . . , n}. In this

case,

n∑
p=3

(Ŝ1p1p + Ŝ2p2p)(Ric(Ŝ)pp −
1

2
(Ric(Ŝ)11 + Ric(Ŝ)22))

≥ 1

2

n∑
p=3

(Ŝ1p1p + Ŝ2p2p) (Ric(Ŝ)22 − Ric(Ŝ)11),
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hence

0 ≥ 1

2

d

dt

Ä
Ric(S(t))11 + Ric(S(t))22 + 2b

5
4 scal(S(t))

ä∣∣∣∣
t=t̂

>
1

2

n∑
p=3

(Ŝ1p1p + Ŝ2p2p) (Ric(Ŝ)22 − Ric(Ŝ)11)

+ b
5
4 |Ric(Ŝ)|2 − b (Ric(Ŝ)22 − Ric(Ŝ)11)2.

If b = 0 or Ric(Ŝ)22 − Ric(Ŝ)11 ≤ b
1
8 |Ric(Ŝ)| or

∑n
p=3(Ŝ1p1p + Ŝ2p2p) ≥

2b (Ric(Ŝ)22−Ric(Ŝ)11), then the right-hand side is nonnegative and we arrive

at a contradiction. Therefore, we must have b > 0 and Ric(Ŝ)22 − Ric(Ŝ)11 ≥
b

1
8 |Ric(Ŝ)| and

∑n
p=3(Ŝ1p1p + Ŝ2p2p) ≤ 2b (Ric(Ŝ)22 −Ric(Ŝ)11). Since |R̂− Ŝ|

≤ C(n)b scal(R̂), it follows that Ric(R̂)22 − Ric(R̂)11 ≥ c(n) b
1
8 scal(R̂) and∑n

p=3(R̂1p1p + R̂2p2p) ≤ C(n)b scal(R̂). On the other hand, using Lemma 2.4,

we obtain

R̂1p1p + R̂2p2p + R̂1q1q + R̂2q2q

≥ c(n) b
1
4 scal(R̂)−3 (|R̂1p1p|+ |R̂2p2p|+ |R̂1q1q|+ |R̂2q2q|)4

for 3 ≤ p < q ≤ n. Summation over p and q gives

n∑
p=3

(R̂1p1p + R̂2p2p) ≥ c(n) b
1
4 scal(R̂)−3

Ç n∑
p=3

(|R̂1p1p|+ |R̂2p2p|)
å4

≥ c(n) b
1
4 scal(R̂)−3 (Ric(R̂)22 − Ric(R̂)11)4

≥ c(n) b
3
4 scal(R̂).

This contradicts the inequality
∑n
p=3(R̂1p1p + R̂2p2p) ≤ C(n)b scal(R̂) if b is

sufficiently small.

Case 2: Suppose next that Ŝ1m1m + Ŝ2m2m < 0 for some m ∈ {3, . . . , n}.
Since Ŝ ∈ PIC, Lemma A.3 implies that each eigenvalue of Ric(Ŝ) is bounded

from above by the sum of all the other eigenvalues. Therefore,∑
p∈{1,...,n}\{m}

Ric(Ŝ)pp ≥ Ric(Ŝ)mm.

Since Ric(Ŝ)11 + Ric(Ŝ)22 ≤ 0, it follows that∑
p∈{3,...,n}\{m}

(Ric(Ŝ)pp −
1

2
(Ric(Ŝ)11 + Ric(Ŝ)22))

≥ Ric(Ŝ)mm −
1

2
(Ric(Ŝ)11 + Ric(Ŝ)22).
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This implies

n∑
p=3

(Ŝ1p1p + Ŝ2p2p)

Å
Ric(Ŝ)pp −

1

2
(Ric(Ŝ)11 + Ric(Ŝ)22)

ã
≥

∑
p∈{3,...,n}\{m}

(Ŝ1m1m + Ŝ2m2m + Ŝ1p1p + Ŝ2p2p)

·
Å

Ric(Ŝ)pp −
1

2
(Ric(Ŝ)11 + Ric(Ŝ)22)

ã
≥ 1

2

∑
p∈{3,...,n}\{m}

(Ŝ1m1m + Ŝ2m2m + Ŝ1p1p + Ŝ2p2p) (Ric(Ŝ)22 − Ric(Ŝ)11),

hence

0 ≥ 1

2

d

dt

Ä
Ric(S(t))11 + Ric(S(t))22 + 2b

5
4 scal(S(t))

ä∣∣∣∣
t=t̂

>
1

2

∑
p∈{3,...,n}\{m}

(Ŝ1m1m + Ŝ2m2m + Ŝ1p1p + Ŝ2p2p) (Ric(Ŝ)22 − Ric(Ŝ)11)

+ b
5
4 |Ric(Ŝ)|2 − b (Ric(Ŝ)22 − Ric(Ŝ)11)2.

If b = 0 or Ric(Ŝ)22 − Ric(Ŝ)11 ≤ b
1
8 |Ric(Ŝ)| or∑

p∈{3,...,n}\{m}
(Ŝ1m1m + Ŝ2m2m + Ŝ1p1p + Ŝ2p2p) ≥ 2b (Ric(Ŝ)22 − Ric(Ŝ)11),

then the right-hand side is nonnegative, and we arrive at a contradiction.

Therefore, we must have b > 0 and Ric(Ŝ)22 − Ric(Ŝ)11 ≥ b
1
8 |Ric(Ŝ)| and∑

p∈{3,...,n}\{m}
(Ŝ1m1m + Ŝ2m2m + Ŝ1p1p + Ŝ2p2p) ≤ 2b (Ric(Ŝ)22 − Ric(Ŝ)11).

Since |R̂− Ŝ| ≤ C(n)b scal(R̂), it follows that

Ric(R̂)22 − Ric(R̂)11 ≥ c(n) b
1
8 scal(R̂)

and ∑
p∈{3,...,n}\{m}

(R̂1m1m + R̂2m2m + R̂1p1p + R̂2p2p) ≤ C(n)b scal(R̂).

On the other hand, using Lemma 2.4, we obtain

R̂1m1m + R̂2m2m + R̂1p1p + R̂2p2p

geqc(n) b
1
4 scal(R̂)−3 (|R̂1m1m|+ |R̂2m2m|+ |R̂1p1p|+ |R̂2p2p|)4
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for p ∈ {3, . . . , n} \ {m}. Summation over p ∈ {3, . . . , n} \ {m} gives∑
p∈{3,...,n}\{m}

(R̂1m1m + R̂2m2m + R̂1p1p + R̂2p2p)

≥ c(n) b
1
4 scal(R̂)−3

Ç n∑
p=3

(|R̂1p1p|+ |R̂2p2p|)
å4

≥ c(n) b
1
4 scal(R̂)−3 (Ric(R̂)22 − Ric(R̂)11)4

≥ c(n) b
3
4 scal(R̂).

This contradicts the inequality∑
p∈{3,...,n}\{m}

(R̂1m1m + R̂2m2m + R̂1p1p + R̂2p2p) ≤ C(n)b scal(R̂)

if b is sufficiently small.

Lemma 2.9. The tensor R̂−4δ id? id lies in the interior of the PIC cone.

Proof. By assumption, R(t0) − 4δ id ? id lies in the interior of the PIC

cone. Using Proposition A.5, we conclude that R(t̂) − 4δ id ? id lies in the

interior of the PIC cone.

Lemma 2.10. If δ > 0 is sufficiently small, then

R̂1313 + R̂1414 + R̂2323 + R̂2424 − 2R̂1234

≥ δ
1
4 scal−3

Ç n∑
p,q=1

(R̂13pq − R̂24pq)
2 +

n∑
p,q=1

(R̂14pq + R̂23pq)
2

å2

for every orthonormal frame {e1, . . . , en}.

Proof. Suppose that

R̂1313 + R̂1414 + R̂2323 + R̂2424 − 2R̂1234

= δ
1
4 scal(R̂)−3

Ç n∑
p,q=1

(R̂13pq − R̂24pq)
2 +

n∑
p,q=1

(R̂14pq + R̂23pq)
2

å2

for some orthonormal frame {e1, . . . , en}. In view of condition (iii), the left-

hand side of the equation is strictly positive. We now argue as in Section

7.3 of [5]. Lemmas 7.8, 7.10, and 7.12 in [5] hold with error terms that

are bounded by C(n) δ
1
4 scal(R̂)−1

Ä∑n
p,q=1(R̂13pq − R̂24pq)

2 +
∑n
p,q=1(R̂14pq +

R̂23pq)
2
ä
. Consequently, Lemmas 7.9, 7.11, and 7.13 in [5] hold with error terms

that are bounded by C(n) δ
1
4

Ä∑n
p,q=1(R̂13pq−R̂24pq)

2+
∑n
p,q=1(R̂14pq+R̂23pq)

2
ä
.
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Putting these facts together, we obtain an inequality of the form

(R̂#)1313 + (R̂#)1414 + (R̂#)2323 + (R̂#)2424 + 2(R̂#)1342 + 2(R̂#)1423

≥ −C(n) δ
1
4

Ç n∑
p,q=1

(R̂13pq − R̂24pq)
2 +

n∑
p,q=1

(R̂14pq + R̂23pq)
2

å
.

This implies

d

dt
(R(t)1313 +R(t)1414 +R(t)2323 +R(t)2424 − 2R(t)1234)

∣∣∣∣
t=t̂

= (R̂2)1313 + (R̂2)1414 + (R̂2)2323 + (R̂2)2424 + 2(R̂2)1342 + 2(R̂2)1423

+ (R̂#)1313 + (R̂#)1414 + (R̂#)2323 + (R̂#)2424 + 2(R̂#)1342 + 2(R̂#)1423

≥ (1− C(n) δ
1
4 )

Ç n∑
p,q=1

(R̂13pq − R̂24pq)
2 +

n∑
p,q=1

(R̂14pq + R̂23pq)
2

å
.

On the other hand, since the norm of R̂ is controlled by scal(R̂), we obtain

d

dt

ï
scal(R(t))−3

Å n∑
p,q=1

(R(t)13pq −R(t)24pq)2 +
n∑

p,q=1

(R(t)14pq +R(t)23pq)2
ã2ò∣∣∣∣

t=t̂

≤ C(n)

Å n∑
p,q=1

(R̂13pq − R̂24pq)2 +
n∑

p,q=1

(R̂14pq + R̂23pq)2
ã
.

Thus, we conclude that

d

dt

ï
R(t)1313 +R(t)1414 +R(t)2323 +R(t)2424 − 2R(t)1234

− δ 1
4 scal(R(t))−3

Å n∑
p,q=1

(R(t)13pq −R(t)24pq)2 +
n∑

p,q=1

(R(t)14pq +R(t)23pq)2
ã2ò∣∣∣∣

t=t̂

≥ (1− C(n) δ
1
4 )

Å n∑
p,q=1

(R̂13pq − R̂24pq)2 +
n∑

p,q=1

(R̂14pq + R̂23pq)2
ã
.

If we choose δ > 0 sufficiently small, then the right-hand side is strictly positive.

Hence, if t ∈ [0, t̂) is sufficiently close to t̂, then

R(t)1313 +R(t)1414 +R(t)2323 +R(t)2424 − 2R(t)1234

< δ
1
4 scal(R(t))−3

Ç n∑
p,q=1

(R(t)13pq −R(t)24pq)
2 +

n∑
p,q=1

(R(t)14pq +R(t)23pq)
2

å
.

This contradicts the fact that condition (iv) holds up to time t̂.

Combining Lemmas 2.7, 2.8, 2.9, and 2.10, we conclude that R̂ lies in the

interior of the set G(0)

t̂
. This contradicts the definition of t̂. Therefore, the

family of sets {G(0)
t : t ∈ [0, T ]} is invariant under the Hamilton ODE.
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Finally, we verify that, for a curvature tensor in G(0)
t , the isotropic cur-

vature is uniformly bounded from below by a small multiple of the scalar

curvature:

Lemma 2.11. We can find a small positive constant θ (depending only on

K and T ) such that

G(0)
t ⊂ {R : R− θ scal id ? id ∈ PIC}
∩ {R : Ric11 + Ric22 − θ scal + 4 ≥ 0}.

Proof. Suppose that R ∈ G(0)
t . By definition, we may write R = `a,b(S),

where b = δe−8t, 2a = 2b + (n − 2)b2, S ∈ PIC, and Ric(S)11 + Ric(S)22 +

2b
5
4 scal(S) ≥ −2. Since S ∈ PIC, Lemma A.4 implies Ric(S) ? id ∈ PIC.

Consequently,

R− (n− 2)b2

2n
scal(S) id ? id = S + bRic(S) ? id ∈ PIC.

Moreover,

Ric11 + Ric22 = (1 + (n− 2)b) (Ric(S)11 + Ric(S)22)

+
2

n
(nb+ (n− 1)(n− 2)b2) scal(S)

≥
[ 2

n
(nb+ (n− 1)(n− 2)b2)− 2(1 + (n− 2)b) b

5
4

]
scal(S)

− 2(1 + (n− 2)b).

From this, the assertion follows.

3. A one-parameter family of invariant cones C(b)

Theorem 2.1 gives uniform lower bounds for the isotropic curvature and

for the sum of the two smallest eigenvalues of the Ricci tensor. However,

the pinching constant θ in Theorem 2.1 is extremely small. In this section,

we prove estimates of a similar nature, but with a more efficient pinching

constant. To that end, we construct a one-parameter family of cones C(b)
that are invariant under the Hamilton ODE d

dtR = Q(R). Like in Section 2,

the basic strategy is to consider the cone {R ∈ PIC : Ric11 + Ric22 ≥ 0}
(which is invariant under the Hamilton ODE) and deform it inward using

the maps `a,b introduced in [1]. However, these deformed sets by themselves

are not preserved under the Hamilton ODE, so we need to impose additional

conditions. These conditions are formulated in terms of a tensor T . This tensor

T is required to satisfy all algebraic properties of a curvature tensor, except

for the first Bianchi identity. We say that T ≥ 0 if T (ϕ, ϕ̄) ≥ 0 for every

complex two-form ϕ. As in Definition 1.1, we say that T ∈ PIC if T (ϕ, ϕ̄) ≥ 0

for every complex two-form of the form ϕ = (e1 + ie2) ∧ (e3 + ie4), where
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{e1, e2, e3, e4} is an orthonormal four-frame. In other words, T ∈ PIC if and

only if T1313 +T1414 +T2323 +T2424 +2T1342 +2T1423 ≥ 0 for every orthonormal

four-frame {e1, e2, e3, e4}.
Throughout this section, we assume that n ≥ 12. Let bmax = 1

4n . To each

0 < b ≤ bmax, we associate real numbers a, γ, and ω by

a =
(2 + (n− 2)b)2

2(2 + (n− 3)b)
b,

γ =
b

2 + (n− 3)b
,

ω2 =
27(2 + (n− 2)b)

8

(1− 4(n− 2)b2)4(1 + (n− 2)b)2

n2b2(2 + (n− 3)b)2
.

Definition 3.1. For 0 < b ≤ bmax as above, let E(b) denote the set of all

curvature tensors S for which there exists a tensor T satisfying the following

conditions:

(i) T satisfies all the algebraic properties of a curvature tensor, except for the

first Bianchi identity. Moreover, T ≥ 0.

(ii) S − T ∈ PIC.

(iii) Ric(S)11 + Ric(S)22 + 2γ
n scal(S) ≥ 0.

(iv) For every orthonormal frame {e1, . . . , en}, the following inequality holds:

Ric(S)22 − Ric(S)11 ≤ ω
1
2 scal(S)

1
2

( n∑
p=3

(T1p1p + T2p2p)
) 1

2

+ 2(n− 2)b
n∑
p=3

(T1p1p + T2p2p).

Moreover, we define C(b) = `a,b(E(b)).

Clearly, C(b) is convex for each b. The following is the main result of this

section:

Theorem 3.2. For each 0 < b ≤ bmax, the cone C(b) is transversally

invariant under the Hamilton ODE d
dtR = Q(R).

In the remainder of this section, we give the proof of Theorem 3.2. We

begin with an elementary lemma:

Lemma 3.3. Let n ≥ 12, let 0 < b ≤ bmax, and let a and ω be defined as

above. Then

2 + (n− 8)b− 2(n+ 2)(n− 2)b2 − n(n− 2)2b3 > 0

and(n− 2

n− 3
+

2(n− 2)

n
(2b+(n−2)a)+8(n−3)b2

)(n− 2

n− 3
+2(2b+(n−2)a)

)
≤ ω

2
.
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Proof. Note that 2− 2(n+ 2)(n− 2)b2 ≥ 0 and (n− 8)b−n(n− 2)2b3 ≥ 0.

If we add these inequalities, the first statement follows.

To prove the second statement, we observe that

2 + (n− 2)b

(2 + (n− 3)b)2
≥ 1

2 + nb
≥ 4

9
.

This implies

ω = (1− 4(n− 2)b2)2
( 1

nb
+
n− 2

n

)√27

8

2 + (n− 2)b

(2 + (n− 3)b)2

≥
(
1− n− 2

4n2

)2 5n− 2

n

 
3

2
.

On the other hand, we have a = (2+(n−2)b)2

2(2+(n−3)b) b ≤
2+nb

2 b ≤ 9
8 b. This implies

2b+ (n− 2)a ≤ na ≤ 9n
8 b ≤ 9

32 , which gives

n− 2

n− 3
+

2(n− 2)

n
(2b+ (n− 2)a) + 8(n− 3)b2 ≤ n− 2

n− 3
+

9(n− 2)

16n
+
n− 3

2n2

and
n− 2

n− 3
+ 2(2b+ (n− 2)a) ≤ n− 2

n− 3
+

9

16
.

It is elementary to verify that(n− 2

n− 3
+

9(n− 2)

16n
+
n− 3

2n2

) (n− 2

n− 3
+

9

16

)
≤
(
1− n− 2

4n2

)2 5n− 2

n

 
3

8
for n ≥ 12. This proves the assertion.

Lemma 3.4. Let 0 < b ≤ bmax, and let a be defined as above. Then

(2b+ (n− 2)b2 − 2a)xy + 2a(x+ 2)(y + 2) + b2(x2 + y2) ≥ 0

whenever x, y ≥ −2(2+(n−2)b)
2+(n−3)b .

Proof. Let D = {(x, y) ∈ R2 : x, y ≥ −2(2+(n−2)b)
2+(n−3)b }, and define ψ : D → R

by ψ(x, y) = (2b+ (n− 2)b2 − 2a)xy+ 2a(x+ 2)(y+ 2) + b2(x2 + y2). Clearly,

ψ(x, y) → ∞ as (x, y) ∈ D approaches infinity. Hence, there exists a point in

D where ψ attains its minimum. The Hessian of ψ is given byñ
2b2 2b+ (n− 2)b2

2b+ (n− 2)b2 2b2

ô
.

Since the Hessian of ψ has two eigenvalues of opposite signs, the function ψ

attains its minimum on the boundary of D. On the other hand, a straightfor-

ward calculation gives

ψ
(
− 2(2 + (n− 2)b)

2 + (n− 3)b
, y
)

= b2y2 ≥ 0.

Thus, ψ ≥ 0 on ∂D. This implies ψ ≥ 0 on D.
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Lemma 3.5. Suppose that S ∈ E(b). Then (2b+ (n− 2)b2 − 2a)
o

Ric(S) ?
o

Ric(S) + 2aRic(S) ? Ric(S) + 2b2
o

Ric(S)2 ? id ∈ PIC.

Proof. Let

U := (2b+(n−2)b2−2a)
o

Ric(S)?
o

Ric(S)+2aRic(S)?Ric(S)+2b2
o

Ric(S)2?id.

Let ζ, η ∈ Cn be linearly independent vectors satisfying g(ζ, ζ) = g(ζ, η) =

g(η, η) = 0. We claim that U(ζ, η, ζ̄, η̄) ≥ 0. We can find vectors z, w ∈
span{ζ, η} such that g(z, z̄) = g(w, w̄) = 2, g(z, w̄) = 0, and Ric(S)(z, w̄) = 0.

The identities g(ζ, ζ) = g(ζ, η) = g(η, η) = 0 give g(z, z) = g(z, w) = g(w,w)

= 0. Consequently, we may write z = e1 + ie2 and w = e3 + ie4 for some or-

thonormal four-frame {e1, e2, e3, e4} ⊂ Rn. Using the identity Ric(S)(z, w̄)=0,

we obtain

U(z, w, z̄, w̄)

= 2(2b+ (n− 2)b2 − 2a) (
o

Ric(S)11 +
o

Ric(S)22)(
o

Ric(S)33 +
o

Ric44)

+ 4a (Ric(S)11 + Ric(S)22)(Ric(S)33 + Ric(S)44)

+ 4b2 ((
o

Ric(S)2)11 + (
o

Ric(S)2)22 + (
o

Ric(S)2)33 + (
o

Ric(S)2)44)

≥ 2(2b+ (n− 2)b2 − 2a) (
o

Ric(S)11 +
o

Ric(S)22)(
o

Ric(S)33 +
o

Ric44)

+ 4a (Ric(S)11 + Ric(S)22)(Ric(S)33 + Ric(S)44)

+ 2b2 ((
o

Ric(S)11 +
o

Ric(S)22)2 + (
o

Ric(S)33 +
o

Ric(S)44)2)

=
2 scal(S)2

n2
[(2b+ (n− 2)b2 − 2a)xy + 2a(x+ 2)(y + 2) + b2(x2 + y2)],

where x and y are defined by x := n
scal(S) (

o
Ric(S)11 +

o
Ric(S)22) and y :=

n
scal(S) (

o
Ric(S)33 +

o
Ric(S)44). Condition (iii) implies that x, y ≥ −2γ − 2 =

−2(2+(n−2)b)
2+(n−3)b . Using Lemma 3.4, we obtain U(z, w, z̄, w̄) ≥ 0. Since span{ζ, η}

= span{z, w}, it follows that U(ζ, η, ζ̄, η̄) ≥ 0. Thus, U ∈ PIC, as claimed.

Lemma 3.6. Suppose that S ∈ E(b)\{0}. Then Da,b(S) lies in the interior

of the PIC cone.

Proof. If |
o

Ric(S)|2 = 0, the assertion is trivial. If |
o

Ric(S)|2 > 0, the

assertion follows from Lemma 3.5, taking into account the fact that

nb2(1− 2b)− 2(a− b)(1− 2b+ nb2)

=
b2

2 + (n− 3)b

Ä
2 + (n− 8)b− 2(n+ 2)(n− 2)b2 − n(n− 2)2b3

ä
> 0

for 0 < b ≤ bmax.
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After these preparations, we now give the proof of Theorem 3.2. It suffices

to show that the cone E(b) is transversally invariant under the ODE d
dtS =

Q(S) + Da,b(S) for each 0 < b ≤ bmax. By Lemma 3.6, we can find a small

positive number ε (depending on b) such that Da,b(S)−2ε scal(S)2 id?id ∈ PIC

for all S ∈ E(b). We evolve T by the ODE d
dtT = S2 + ε scal(S)2 id ? id.

Lemma 3.7. Suppose that S ∈ E(b) \ {0}, T ≥ 0, and S−T ∈ PIC. Then
d
dtT > 0.

Proof. This follows immediately from the evolution equation for T .

Lemma 3.8. Suppose that S ∈ E(b) \ {0}, T ≥ 0, and S−T ∈ PIC. Then
d
dt(S − T ) lies in the interior of the tangent cone TS−TPIC.

Proof. We compute d
dt(S−T ) = S#+Da,b(S)−ε scal(S)2 id?id. Applying

Proposition A.9 with U := S−T , we conclude that S# ∈ TS−TPIC. Moreover,

by our choice of ε, Da,b(S) − ε scal(S)2 id ? id lies in the interior of the PIC

cone. Putting these facts together, the assertion follows.

Lemma 3.9. Suppose that S ∈ E(b) \ {0} and Ric(S)11 + Ric(S)22 +
2γ
n scal(S) = 0 for some pair of orthonormal vectors {e1, e2}. Then

d

dt

Å
Ric(S)11 + Ric(S)22 +

2γ

n
scal(S)

ã
> 0.

Proof. We may assume {e1, e2} are eigenvectors of Ric(S), and Ric(S)22

≥ Ric(S)11. Let us extend {e1, e2} to an eigenbasis {e1, . . . , en} of Ric(S).

Clearly, Ric(S)pp ≥ Ric(S)22 for 3 ≤ p ≤ n. We compute

1

2

d

dt

Ä
Ric(S)11 + Ric(S)22 +

2γ

n
scal(S)

ä
=

n∑
p=1

(S1p1p + S2p2p)Ric(S)pp +
4(1 + γ)

n2
(a− b) scal(S)2

+
2γ

n
(1− 2b) |Ric(S)|2 − 2b (Ric(S)2

11 + Ric(S)2
22)

+ 2(1 + γ)
n2b2 − 2(n− 1)(a− b)(1− 2b)

n(1 + 2(n− 1)a)
|

o
Ric(S)|2

=
n∑
p=3

(S1p1p + S2p2p)(Ric(S)pp −
1

2
(Ric(S)11 + Ric(S)22))

+
4(1 + γ)

n2
(a− b) scal(S)2 +

2γ(1 + γ)

n2
(1− 2b) scal(S)2

− b (Ric(S)22 − Ric(S)11)2 +
2γ

n
(1− 2b) |

o
Ric(S)|2

+ 2(1 + γ)
n2b2 − 2(n− 1)(a− b)(1− 2b)

n(1 + 2(n− 1)a)
|

o
Ric(S)|2.
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Using the identity

2(a− b) + γ (1− 2b) =
b(1 + (n− 2)b)2

2 + (n− 3)b

and the inequality

n2b2 − 2(n− 1)(a− b)(1− 2b)

=
2b2

2 + (n− 3)b

Ä
(2n− 1) + (3n− 2)(n− 2)b+ (n− 1)(n− 2)2b2

ä
≥ 0,

we obtain

1

2

d

dt

Ä
Ric(S)11 + Ric(S)22 +

2γ

n
scal(S)

ä
≥

n∑
p=3

(S1p1p + S2p2p)(Ric(S)pp −
1

2
(Ric(S)11 + Ric(S)22))

+
2(1 + γ)

n2

b(1 + (n− 2)b)2

2 + (n− 3)b
scal(S)2 − b (Ric(S)22 − Ric(S)11)2.

By Lemma A.3, each eigenvalue of Ric(S) is bounded from above by the sum

of all the other eigenvalues. Therefore,∑
p∈{1,...,n}\{m}

Ric(S)pp ≥ Ric(S)mm.

Since Ric(S)11 + Ric(S)22 ≤ 0, we deduce that∑
p∈{3,...,n}\{m}

(Ric(S)pp −
1

2
(Ric(S)11 + Ric(S)22))

≥ Ric(S)mm −
1

2
(Ric(S)11 + Ric(S)22)

for each m ∈ {3, . . . , n}. Since S − T ∈ PIC, it follows that

n∑
p=3

(S1p1p + S2p2p − T1p1p − T2p2p) (Ric(S)pp −
1

2
(Ric(S)11 + Ric(S)22)) ≥ 0.

Since T ≥ 0, we know that T1p1p + T2p2p ≥ 0 for 3 ≤ p ≤ n. This gives

n∑
p=3

(S1p1p + S2p2p)(Ric(S)pp −
1

2
(Ric(S)11 + Ric(S)22))

≥
n∑
p=3

(T1p1p + T2p2p)(Ric(S)pp −
1

2
(Ric(S)11 + Ric(S)22))

≥ 1

2

n∑
p=3

(T1p1p + T2p2p) (Ric(S)22 − Ric(S)11).
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Putting these facts together, we obtain

1

2

d

dt

Ä
Ric(S)11 + Ric(S)22 +

2γ

n
scal(S)

ä
≥ 1

2

n∑
p=3

(T1p1p + T2p2p) (Ric(S)22 − Ric(S)11)

+
2(1 + γ)

n2

b(1 + (n− 2)b)2

2 + (n− 3)b
scal(S)2 − b (Ric(S)22 − Ric(S)11)2.

At this point, we distinguish two cases:

Case 1: Suppose that
∑n
p=3(T1p1p + T2p2p) ≥ 2b (Ric(S)22 −Ric(S)11). In

this case, we clearly have

1

2

d

dt

Ä
Ric(S)11 + Ric(S)22 +

2γ

n
scal(S)

ä
> 0.

Case 2: Suppose next that
∑n
p=3(T1p1p+T2p2p) < 2b (Ric(S)22−Ric(S)11).

In this case, condition (iv) gives

Ric(S)22 − Ric(S)11

≤ ω
1
2 scal(S)

1
2

( n∑
p=3

(T1p1p + T2p2p)
) 1

2
+ 2(n− 2)b

n∑
p=3

(T1p1p + T2p2p)

< ω
1
2 scal(S)

1
2

( n∑
p=3

(T1p1p + T2p2p)
) 1

2
+ 4(n− 2)b2 (Ric(S)22 − Ric(S)11).

Consequently,

n∑
p=3

(T1p1p + T2p2p) >
(1− 4(n− 2)b2)2

ω

(Ric(S)22 − Ric(S)11)2

scal(S)
.

Using the elementary inequality 2x+ y ≥ 3(x2y)
1
3 for x, y ≥ 0, we obtain

(1− 4(n− 2)b2)2

2ω

(Ric(S)22 − Ric(S)11)

scal(S)

+
2(1 + γ)

n2

b(1 + (n− 2)b)2

2 + (n− 3)b

scal(S)2

(Ric(S)22 − Ric(S)11)2

≥ 3
((1− 4(n− 2)b2)4

8ω2

1 + γ

n2

b(1 + (n− 2)b)2

2 + (n− 3)b

) 1
3

= b,



RICCI FLOW ON MANIFOLDS WITH POSITIVE ISOTROPIC CURVATURE 489

where in the last step we have used the definitions of γ and ω. Thus, we

conclude that

1

2

d

dt

Ä
Ric(S)11 + Ric(S)22 +

2γ

n
scal(S)

ä
>

(1− 4(n− 2)b2)2

2ω

(Ric(S)22 − Ric(S)11)3

scal(S)

+
2(1 + γ)

n2

b(1 + (n− 2)b)2

2 + (n− 3)b
scal(S)2 − b (Ric(S)22 − Ric(S)11)2

≥ 0.

This proves the assertion.

Lemma 3.10. Suppose that S ∈ E(b) \ {0}, T ≥ 0, and S − T ∈ PIC.

Moreover, suppose that

Ric(S)22 − Ric(S)11

= ω
1
2 scal(S)

1
2

( n∑
p=3

(T1p1p + T2p2p)
) 1

2
+ 2(n− 2)b

n∑
p=3

(T1p1p + T2p2p).

Then

d

dt
(Ric(S)22 − Ric(S)11)

<
d

dt

ñ
ω

1
2 scal(S)

1
2

( n∑
p=3

(T1p1p + T2p2p)
) 1

2
+ 2(n− 2)b

n∑
p=3

(T1p1p + T2p2p)

ô
.

Proof. If
∑n
p=3(T1p1p+T2p2p) = 0, then the right-hand side is infinite, and

the inequality is trivially true. In the following, we assume that
∑n
p=3(T1p1p +

T2p2p) > 0. Clearly, Ric(S)22−Ric(S)11 ≥ 0 and Ric(S)12 = 0. Without loss of

generality, we may assume that Ric(S)pq = 0 for 3 ≤ p < q ≤ n. We may write

d

dt
(Ric(S)22 − Ric(S)11) = J1 + J2 + J3 + J4 + J5 + J6,

where

J1 := 2
n∑
p=3

(S2p2p − S1p1p) Ric(S)pp,

J2 := −4
n∑
p=3

S121p Ric(S)2p,

J3 := 4
n∑
p=3

S212p Ric(S)1p,

J4 := −2S1212 (Ric(S)22 − Ric(S)11),

J5 := 4b ((Ric(S)2)11 − (Ric(S)2)22),

J6 :=
4

n
(2b+ (n− 2)a) scal(S) (Ric(S)22 − Ric(S)11).
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The terms J1, J2, J3 can be estimated by

J1 ≤ τ
n∑
p=3

(S2p2p − S1p1p)
2 +

1

τ

n∑
p=3

(Ric(S)pp)
2,

J2 ≤
2(n− 2)τ

n− 3

n∑
p=3

(S121p)
2 +

2(n− 3)

(n− 2)τ

n∑
p=3

(Ric(S)2p)
2,

J3 ≤
2(n− 2)τ

n− 3

n∑
p=3

(S212p)
2 +

2(n− 3)

(n− 2)τ

n∑
p=3

(Ric(S)1p)
2,

where τ is an arbitrary positive number. To estimate J4, we observe that

0 ≤
∑

3≤p,q≤n, p 6=q
(S1212 + S1p1p + S2q2q + Spqpq)

= (n− 2)(n− 3)S1212 + (n− 4)
n∑
p=3

(S1p1p + S2p2p) +
n∑
p=3

Ric(S)pp

since S ∈ PIC. This gives

J4 ≤
2(n− 4)

(n− 2)(n− 3)

n∑
p=3

(S1p1p + S2p2p) (Ric(S)22 − Ric(S)11)

+
2

(n− 2)(n− 3)
(Ric(S)22 − Ric(S)11)

( n∑
p=3

Ric(S)pp
)

=
2(n− 4)

(n− 2)(n− 3)

n∑
p=3

(S1p1p + S2p2p) (Ric(S)22 − Ric(S)11)

+
2

(n− 2)(n− 3)

( n∑
p=3

(S2p2p − S1p1p)
) ( n∑

p=3

Ric(S)pp
)
,

hence

J4 ≤
(n− 2)τ

n− 3

n∑
p=3

(S1p1p + S2p2p)
2 +

(n− 4)2

(n− 2)2(n− 3)τ
(Ric(S)22 − Ric(S)11)2

+
τ

n− 3

n∑
p=3

(S2p2p − S1p1p)
2 +

1

(n− 3)τ

n∑
p=3

(Ric(S)pp)
2

for each τ > 0. Adding these inequalities gives

J1 + J2 + J3 + J4

≤ 2(n− 2)τ

n− 3

n∑
p=3

((S1p1p)
2 + (S2p2p)

2 + (S121p)
2 + (S212p)

2)

+
n− 2

(n− 3)τ

n∑
p=3

(Ric(S)pp)
2 +

2(n− 3)

(n− 2)τ

n∑
p=3

((Ric(S)1p)
2 + (Ric(S)2p)

2)
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+
(n− 4)2

(n− 2)2(n− 3)τ
(Ric(S)22 − Ric(S)11)2

≤ (n− 2)τ

n− 3

n∑
p=3

((S2)1p1p + (S2)2p2p)

+
n− 2

(n− 3)τ
|Ric(S)|2 − n− 2

2(n− 3)τ
(Ric(S)11 + Ric(S)22)2

for each τ > 0. Moreover,

J5 ≤ −4b (Ric(S)22 − Ric(S)11) (Ric(S)11 + Ric(S)22) + 4b
n∑
p=3

(Ric(S)1p)
2

= −4b
n∑
p=3

(S2p2p − S1p1p) (Ric(S)11 + Ric(S)22)

+ 4b
n∑
p=3

(
S12p2 +

n∑
q=3

S1qpq

)2

≤ 8(n− 3)b2τ
n∑
p=3

(S2p2p − S1p1p)
2 +

n− 2

2(n− 3)τ
(Ric(S)11 + Ric(S)22)2

+ 4(n− 2)b
n∑
p=3

(
(S12p2)2 +

n∑
q=3

(S1qpq)
2
)

≤ (8(n− 3)b2τ + 2(n− 2)b)
n∑
p=3

((S2)1p1p + (S2)2p2p)

+
n− 2

2(n− 3)τ
(Ric(S)11 + Ric(S)22)2

for each τ > 0. Finally,

J6 =
4

n
(2b+ (n− 2)a)

( n∑
p=3

(S2p2p − S1p1p)
) ( n∑

p=1

Ric(S)pp
)

≤ 2(n− 2)τ

n
(2b+ (n− 2)a)

n∑
p=3

(S2p2p − S1p1p)
2

+
2(2b+ (n− 2)a)

τ
|Ric(S)|2

≤ 2(n− 2)τ

n
(2b+ (n− 2)a)

n∑
p=3

((S2)1p1p + (S2)2p2p)

+
2(2b+ (n− 2)a)

τ
|Ric(S)|2
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for each τ > 0. Putting these facts together, we obtain

d

dt
(Ric(S)22 − Ric(S)11)

≤
ñ(n− 2

n− 3
+

2(n− 2)

n
(2b+ (n− 2)a) + 8(n− 3)b2

)
τ + 2(n− 2)b

ô
·
n∑
p=3

((S2)1p1p + (S2)2p2p)

+
(n− 2

n− 3
+ 2(2b+ (n− 2)a)

) 1

τ
|Ric(S)|2

for each τ > 0. If we put τ = 2σ
Ä
n−2
n−3 +2(2b+(n−2)a)

ä
and use the inequality(n− 2

n− 3
+

2(n− 2)

n
(2b+ (n−2)a) + 8(n−3)b2

)(n− 2

n− 3
+ 2(2b+ (n−2)a)

)
≤ ω

2

(cf. Lemma 3.3), we conclude that for each σ > 0,

d

dt
(Ric(S)22 − Ric(S)11)

≤ (ωσ + 2(n− 2)b)
n∑
p=3

((S2)1p1p + (S2)2p2p) +
1

2σ
|Ric(S)|2.

On the other hand, Lemma 3.6 implies scal(Da,b(S)) > 0, hence d
dtscal(S)

> 2 |Ric(S)|2. Using the inequality

d

dt

n∑
p=3

(T1p1p + T2p2p) >
n∑
p=3

((S2)1p1p + (S2)2p2p),

we obtain

d

dt

ñ
ω

1
2 scal(S)

1
2

( n∑
p=3

(T1p1p + T2p2p)
) 1

2
+ 2(n− 2)b

n∑
p=3

(T1p1p + T2p2p)

ô
> (ωσ + 2(n− 2)b)

n∑
p=3

((S2)1p1p + (S2)2p2p) +
1

2σ
|Ric(S)|2,

where σ := 1
2 ω
− 1

2 scal(S)
1
2

Ä∑n
p=3(T1p1p + T2p2p)

ä− 1
2 . Putting these facts to-

gether, the assertion follows.

4. A one-parameter family of invariant cones C̃(b)
that pinch toward PIC1

In this section, we construct another one-parameter family of cones C̃(b)
that are invariant under the Hamilton ODE. These cones pinch toward the

PIC1 cone and can be joined continuously to the family C(b) constructed in

Section 3. More precisely, we start from the cone C(bmax) ∩ PIC1 (which is

invariant under the Hamilton ODE) and deform it outward in such a way
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that the deformed cones are all preserved under the ODE. To that end, we

consider curvature conditions that interpolate between the PIC condition and

the PIC1 condition. To show that these conditions are preserved, we will

use Proposition A.8 in a crucial way. We also make use of the quantitative

estimates in Section 3.

Throughout this section, we assume that n ≥ 12. We define

b̃max =


1

3(n−6)2 n ≥ 13,
1

115 n = 12.

Definition 4.1. Assume that 0 < b ≤ b̃max, and let 2a = 2b+(n−2)b2. We

denote by Ẽ(b) the set of all algebraic curvature tensors S such that `a,b(S) ∈
C(bmax) and

Z := S1313 + λ2S1414 + S2323 + λ2S2424 − 2λS1234

+
√

2a (1− λ2) (Ric(S)11 + Ric(S)22) ≥ 0

for every orthonormal four-frame {e1, e2, e3, e4} and every λ ∈ [0, 1]. Moreover,

we define C̃(b) = `a,b(Ẽ(b)).

Clearly, C̃(b) is convex for each b. In the first step, we verify that the

family of cones C(b), 0 < b ≤ bmax, can be joined with the family of cones

C̃(b), 0 < b ≤ b̃max, constructed in Section 3. Recall that bmax = 1
4n . For

abbreviation, we define

amax =
(2 + (n− 2)bmax)2

2(2 + (n− 3)bmax)
bmax and γmax =

bmax

2 + (n− 3)bmax
.

Lemma 4.2. Let b̃max be defined as above, and let ãmax be defined by

2ãmax = 2b̃max + (n− 2)b̃2max. Then

1 + (n− 2)bmax

1 + (n− 2)b̃max

√
2ãmax ≥

n2 − 5n+ 4

n2 − 7n+ 14

1

n− 4
,

amax − ãmax

1 + 2(n− 1)ãmax
− bmax − b̃max

1 + (n− 2)b̃max

≥ 0,

and

2
( amax − ãmax

1 + 2(n− 1)ãmax
− (1 + γmax)

bmax − b̃max

1 + (n− 2)b̃max

)
+
(2(n− 1)(amax − ãmax)

1 + 2(n− 1)ãmax
− (n− 2)(bmax − b̃max)

1 + (n− 2)b̃max

)√
2ãmax

≥ 1 + (n− 2)bmax

1 + (n− 2)b̃max

n
√

2ãmax

n2 − 5n+ 4
.
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Proof. To verify the first statement, we observe that

ãmax ≥ (1 + (n− 2)b̃max)2 (1− 3(n− 2)

4
b̃max)2 b̃max.

This implies

1 + (n− 2)bmax

1 + (n− 2)b̃max

√
2ãmax ≥ (1 + (n− 2)bmax)

(
1− 3(n− 2)

4
b̃max

)»
2b̃max

≥
(
1 +

n− 2

4n

) (
1− n− 2

4(n− 6)2

) 1

n− 6

 
2

3

≥ n2 − 5n+ 4

n2 − 7n+ 14

1

n− 4

for n ≥ 13. Moreover, it is straightforward to verify that the first inequality

holds for n = 12.

To prove the second statement, we observe that

1 + 2(n− 1)ãmax ≤ (1 + nb̃max)(1 + (n− 2)b̃max).

This implies

amax − ãmax

1 + 2(n− 1)ãmax
− bmax − b̃max

1 + (n− 2)b̃max

≥ (amax − ãmax)− (1 + nb̃max)(bmax − b̃max)

(1 + nb̃max)(1 + (n− 2)b̃max)

≥ amax − (1 + nb̃max)bmax

(1 + nb̃max)(1 + (n− 2)b̃max)

≥ 0

for n ≥ 12. From this, the second statement follows.

It remains to verify the third statement. Arguing as above, we obtain

amax − ãmax

1 + 2(n− 1)ãmax
− (1 + γmax)

bmax − b̃max

1 + (n− 2)b̃max

≥ (amax − ãmax)− (1 + nb̃max)(1 + γmax)(bmax − b̃max)

(1 + nb̃max)(1 + (n− 2)b̃max)

≥ amax − (1 + nb̃max)(1 + γmax)bmax

(1 + nb̃max)(1 + (n− 2)b̃max)
.
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Using the identity amax = (1 + n−2
2 bmax)(1 + γmax)bmax and the inequality

n−2
2 bmax − nb̃max ≥ n−8

8n (1 + nb̃max) for n ≥ 20, we obtain

amax − ãmax

1 + 2(n− 1)ãmax
− (1 + γmax)

bmax − b̃max

1 + (n− 2)b̃max

≥
(n−2

2 bmax − nb̃max)(1 + γmax)bmax

(1 + nb̃max)(1 + (n− 2)b̃max)

≥ 1

1 + (n− 2)b̃max

n− 8

32n2

for n ≥ 20. On the other hand, the inequality 2ãmax ≤ 3b̃max = 1
(n−6)2 gives

1 + (n− 2)bmax

1 + (n− 2)b̃max

n
√

2ãmax

n2 − 5n+ 4
≤ 1

1 + (n− 2)b̃max

5

4(n− 6)

n

n2 − 5n+ 4

for n ≥ 13. Since n−8
16n2 ≥ 5

4(n−6)
n

n2−5n+4
for n ≥ 36, we conclude that the

third statement holds for n ≥ 36. It is straightforward to verify that the third

inequality holds for 12 ≤ n ≤ 35.

Proposition 4.3. Let bmax and b̃max be defined as above. Then C̃(b̃max) =

C(bmax).

Proof. The inclusion C̃(b̃max) ⊂ C(bmax) follows immediately from the def-

inition. We now prove the reverse inclusion C(bmax) ⊂ C̃(b̃max). For abbrevia-

tion, we put b = b̃max and a = ãmax. Moreover, suppose that S is an algebraic

curvature tensor such that `a,b(S) ∈ C(bmax). We claim that S ∈ Ẽ(b). To

verify this claim, we need to show that

Z := S1313 + λ2S1414 + S2323 + λ2S2424 − 2λS1234

+
√

2a (1− λ2) (Ric(S)11 + Ric(S)22) ≥ 0

for every orthonormal four-frame {e1, e2, e3, e4} and every λ ∈ [0, 1]. To prove

this, we consider the algebraic curvature tensor T = `−1
amax,bmax

(`a,b(S)) ∈
E(bmax). Clearly, T ∈ PIC and Ric(T )11 + Ric(T )22 + 2γmax

n scal(T ) ≥ 0.

Note that S and T have the same Weyl tensor. Moreover,
o

Ric(S) =
1+(n−2)bmax

1+(n−2)b

o
Ric(T ) and scal(S) = 1+2(n−1)amax

1+2(n−1)a scal(T ). This gives

Ric(S) =
1 + (n− 2)bmax

1 + (n− 2)b
Ric(T )

+
1

n

(2(n− 1)(amax − a)

1 + 2(n− 1)a
− (n− 2)(bmax − b)

1 + (n− 2)b

)
scal(T ) id
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and

S = T +
bmax − b

1 + (n− 2)b
Ric(T ) ? id

+
1

n

( amax − a
1 + 2(n− 1)a

− bmax − b
1 + (n− 2)b

)
scal(T ) id ? id.

Consequently,

Z = T1313 + λ2T1414 + T2323 + λ2T2424 − 2λT1234

+
bmax − b

1 + (n− 2)b
[(1 + λ2) Ric(T )11 + (1 + λ2) Ric(T )22

+ 2 Ric(T )33 + 2λ2 Ric(T )44]

+
4

n

( amax − a
1 + 2(n− 1)a

− bmax − b
1 + (n− 2)b

)
(1 + λ2) scal(T )

+
1 + (n− 2)bmax

1 + (n− 2)b

√
2a (1− λ2) (Ric(T )11 + Ric(T )22)

+
2

n

(2(n− 1)(amax − a)

1 + 2(n− 1)a
− (n− 2)(bmax − b)

1 + (n− 2)b

)√
2a (1− λ2) scal(T ).

Using Lemma A.6, we obtain

Z ≥ −1− λ2

n− 4
(Ric(T )11 + Ric(T )22 − 2T1212)

+
bmax − b

1 + (n− 2)b
[(1 + λ2) Ric(T )11 + (1 + λ2) Ric(T )22

+ 2 Ric(T )33 + 2λ2 Ric(T )44]

+
4

n

( amax − a
1 + 2(n− 1)a

− bmax − b
1 + (n− 2)b

)
(1 + λ2) scal(T )

+
1 + (n− 2)bmax

1 + (n− 2)b

√
2a (1− λ2) (Ric(T )11 + Ric(T )22)

+
2

n

(2(n− 1)(amax − a)

1 + 2(n− 1)a
− (n− 2)(bmax − b)

1 + (n− 2)b

)√
2a (1− λ2) scal(T )

=: RHS.

We claim that RHS ≥ 0 for all λ ∈ [0, 1]. Since RHS is a linear function of λ2,

it suffices to examine the endpoints of the interval:

Case 1: Suppose first that λ = 1. In this case,

RHS = 2
bmax − b

1 + (n− 2)b
[Ric(T )11 + Ric(T )22 + Ric(T )33 + Ric(T )44]

+
8

n

( amax − a
1 + 2(n− 1)a

− bmax − b
1 + (n− 2)b

)
scal(T ).
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Using Lemma A.4, Ric(T )11 + Ric(T )22 + Ric(T )33 + Ric(T )44 ≥ 0. Using

Lemma 4.2, we conclude that RHS ≥ 0.

Case 2: Suppose next that λ = 0. Recall that

1

n− 4
≤ 1 + (n− 2)bmax

1 + (n− 2)b

√
2a

n2 − 7n+ 14

n2 − 5n+ 4

by Lemma 4.2. Using the inequalities

Ric(T )11 + Ric(T )22 − 2T1212 ≥ 0

and

Ric(T )11 + Ric(T )22 + 2 Ric(T )33

= (Ric(T )11 + Ric(T )33) + (Ric(T )22 + Ric(T )33) ≥ −4γmax

n
scal(T ),

we obtain

RHS ≥ −1 + (n− 2)bmax

1 + (n− 2)b

√
2a

n2 − 7n+ 14

n2 − 5n+ 4
(Ric(T )11 + Ric(T )22 − 2T1212)

− 4γmax

n

bmax − b
1 + (n− 2)b

scal(T )

+
4

n

( amax − a
1 + 2(n− 1)a

− bmax − b
1 + (n− 2)b

)
scal(T )

+
1 + (n− 2)bmax

1 + (n− 2)b

√
2a (Ric(T )11 + Ric(T )22)

+
2

n

(2(n− 1)(amax − a)

1 + 2(n− 1)a
− (n− 2)(bmax − b)

1 + (n− 2)b

)√
2a scal(T ).

Since T ∈ PIC, we can estimate the term T1212 in terms of Ric(T )11 +Ric(T )22

and scal(T ):

0 ≤
∑

3≤p,q≤n, p 6=q
(T1212 + T1p1p + T2q2q + Tpqpq)

= (n2 − 7n+ 14)T1212 + (n− 5)(Ric(T )11 + Ric(T )22) + scal(T ).

This finally gives

RHS ≥ −1 + (n− 2)bmax

1 + (n− 2)b

2
√

2a

n2 − 5n+ 4
scal(T )− 4γmax

n

bmax − b
1 + (n− 2)b

scal(T )

+
4

n

( amax − a
1 + 2(n− 1)a

− bmax − b
1 + (n− 2)b

)
scal(T )

+
2

n

(2(n− 1)(amax − a)

1 + 2(n− 1)a
− (n− 2)(bmax − b)

1 + (n− 2)b

)√
2a scal(T ).

Using Lemma 4.2, we obtain RHS ≥ 0. This completes the proof of Proposi-

tion 4.3.
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In the remainder of this section, we show that the cone C̃(b) is preserved

by the Hamilton ODE for 0 < b ≤ b̃max. We first state an elementary lemma:

Lemma 4.4. Assume that 0 < b ≤ b̃max, and let a be defined by 2a =

2b+ (n− 2)b2. Then

nb2(1− 2b)− 2(a− b)(1− 2b+ nb2) ≥ 0,

n2b2 − 2(n− 1)(a− b)(1− 2b) ≥ 0.

Moreover, if we put

ζ :=
1 + 2(n− 1)a

1 + 2(n− 1)amax

1 + (n− 2)bmax

1 + (n− 2)b
(1 + γmax),

then ζ ≤ 1 and 1 + (n− 2)(1− ζ) ≥ 2ζ2 n2−2n+2
(n−2)2 .

Proof. To prove the first and second statements, we write

nb2(1− 2b)− 2(a− b)(1− 2b+ nb2) = b2(2− 4b− n(n− 2)b2) ≥ 0

and

n2b2 − 2(n− 1)(a− b)(1− 2b) = b2(3n− 2 + 2(n− 1)(n− 2)b) ≥ 0.

To verify the third and fourth statements, we observe that

1 + 2(n− 1)a

1 + (n− 2)b
≤ 1 + 2(n− 1)ãmax

1 + (n− 2)b̃max

,

hence

ζ ≤ ζmax :=
1 + 2(n− 1)ãmax

1 + 2(n− 1)amax

1 + (n− 2)bmax

1 + (n− 2)b̃max

(1 + γmax).

It is elementary to check that ζmax ≤ 1 and

1 + (n− 2)(1− ζmax) ≥ 2ζ2
max

n2 − 2n+ 2

(n− 2)2
.

This implies ζ ≤ 1 and 1 + (n− 2)(1− ζ) ≥ 2ζ2 n2−2n+2
(n−2)2 .

Lemma 4.5. Suppose that S ∈ Ẽ(b) and

ζ :=
1 + 2(n− 1)a

1 + 2(n− 1)amax

1 + (n− 2)bmax

1 + (n− 2)b
(1 + γmax) ≤ 1.

Then Ric(S)11 + Ric(S)22 ≥ 2(1−ζ)
n scal(S).
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Proof. Let T = `−1
amax,bmax

(`a,b(S)) ∈ E(bmax). Recall that
o

Ric(S) =

1+(n−2)bmax

1+(n−2)b

o
Ric(T ) and scal(S) = 1+2(n−1)amax

1+2(n−1)a scal(T ). Using the inequality
o

Ric(T )11 +
o

Ric(T )22 + 2(1+γmax)
n scal(T ) ≥ 0, we obtain

o
Ric(S)11 +

o
Ric(S)22 +

2ζ
n scal(S) ≥ 0, which implies the claim.

After these preparations, we now prove the main result of this section:

Theorem 4.6. For each 0 < b ≤ b̃max, the cone C̃(b) is transversally

invariant under the Hamilton ODE d
dtR = Q(R).

Proof. It suffices to show that Ẽ(b) is transversally invariant under the

ODE d
dtS = Q(S) +Da,b(S). Suppose that S ∈ Ẽ(b) \ {0}. Then

Z := S1313 + λ2S1414 + S2323 + λ2S2424 − 2λS1234

+
√

2a (1− λ2) (Ric(S)11 + Ric(S)22) ≥ 0

for every orthonormal four-frame {e1, e2, e3, e4} and every λ ∈ [0, 1]. Moreover,

we assume that Z = 0 for some orthonormal four-frame {e1, e2, e3, e4} and

some λ ∈ [0, 1]. We will show that d
dtZ > 0 for this particular four-frame

{e1, e2, e3, e4} and this particular λ ∈ [0, 1]. We distinguish two cases:

Case 1: Suppose that λ ∈ [0, 1). Using the formula for Da,b(S), we obtain

d

dt
S = Q(S) + 2aRic(S) ? Ric(S) + 2b2

o
Ric(S)2 ? id

+
nb2(1− 2b)− 2(a− b)(1− 2b+ nb2)

n(1 + 2(n− 1)a)
|

o
Ric(S)|2 id ? id

and

d

dt
Ric(S) = 2S ∗ Ric(S)− 4b

o
Ric(S)2

+
4(n− 2)a

n
scal(S) Ric(S) +

4a

n2
scal(S)2 id

+ 2
n2b2 − 2(n− 1)(a− b)(1− 2b)

n(1 + 2(n− 1)a)
|

o
Ric(S)|2 id,

where (S ∗H)ik :=
∑n
p,q=1 SipkqHpq. This implies

d

dt
Z ≥ Q(S)1313 + λ2Q(S)1414 +Q(S)2323 + λ2Q(S)2424 − 2λQ(S)1234

+ 2a (Ric(S) ? Ric(S))1313 + 2aλ2 (Ric(S) ? Ric(S))1414

+ 2a (Ric(S) ? Ric(S))2323 + 2aλ2 (Ric(S) ? Ric(S))2424

− 4aλ (Ric(S) ? Ric(S))1234

+ 2
√

2a (1− λ2) ((S ∗ Ric(S))11 + (S ∗ Ric(S))22)
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+
4(n− 2)a

n

√
2a (1− λ2) scal(S) (Ric(S)11 + Ric(S)22)

− 4b
√

2a (1− λ2) ((
o

Ric(S)2)11 + (
o

Ric(S)2)22)

+
8a

n2

√
2a (1− λ2) scal(S)2.

Applying Proposition A.8 with H =
√

2aRic(S), we obtain

Q(S)1313 + λ2Q(S)1414 +Q(S)2323 + λ2Q(S)2424 − 2λQ(S)1234

+ 2a (Ric(S) ? Ric(S))1313 + 2aλ2 (Ric(S) ? Ric(S))1414

+ 2a (Ric(S) ? Ric(S))2323 + 2aλ2 (Ric(S) ? Ric(S))2424

− 4aλ (Ric(S) ? Ric(S))1234

+ 2
√

2a (1− λ2) ((S ∗ Ric(S))11 + (S ∗ Ric(S))22) ≥ 0.

Since S ∈ Ẽ(b) ⊂ PIC, Lemma A.3 implies that the largest eigenvalue of Ric(S)

is bounded from above by 1
2 scal(S). Moreover, by Lemma 4.5, the sum of the

two smallest eigenvalues of Ric(S) is bounded from below by 2(1−ζ)
n scal(S).

Applying Lemma A.1 with H = Ric(S) and ρ = b
a gives

(n− 2)a

n
scal(S) (Ric(S)11 + Ric(S)22)− b ((

o
Ric(S)2)11 + (

o
Ric(S)2)22)

≥ 2

n2

(
a(n− 2)(1− ζ)− 2bζ2 n

2 − 2n+ 2

(n− 2)2

)
scal(S)2.

Putting these facts together, we conclude that

d

dt
Z ≥ 8

n2

(
a(1 + (n− 2)(1− ζ))− 2bζ2 n

2 − 2n+ 2

(n− 2)2

)√
2a (1− λ2) scal(S)2.

On the other hand, Lemma 4.4 implies

a(1 + (n− 2)(1− ζ)) ≥ 2aζ2 n
2 − 2n+ 2

(n− 2)2
> 2bζ2 n

2 − 2n+ 2

(n− 2)2
.

Since λ ∈ [0, 1), it follows that d
dtZ > 0.

Case 2: Finally, suppose that λ = 1. In this case,

d

dt
Z = Q(S)1313 +Q(S)1414 +Q(S)2323 +Q(S)2424 − 2Q(S)1234

+ 2a (Ric(S) ? Ric(S))1313 + 2a (Ric(S) ? Ric(S))1414

+ 2a (Ric(S) ? Ric(S))2323 + 2a (Ric(S) ? Ric(S))2424

− 4a (Ric(S) ? Ric(S))1234.

Since S ∈ PIC and Z = S1313 + S1414 + S2323 + S2424 − 2S1234 = 0, we obtain

Q(S)1313 +Q(S)1414 +Q(S)2323 +Q(S)2424 − 2Q(S)1234 ≥ 0
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for this particular four-frame {e1, e2, e3, e4}. By Lemma 4.5, the sum of the

two smallest eigenvalues of Ric(S) is strictly positive. This implies

(Ric(S) ? Ric(S))1313 + (Ric(S) ? Ric(S))1414

+ (Ric(S) ? Ric(S))2323 + (Ric(S) ? Ric(S))2424

− 2 (Ric(S) ? Ric(S))1234 > 0

by Lemma A.2. Putting these facts together, we conclude that d
dtZ > 0. This

completes the proof of Theorem 4.6.

5. Pinching towards PIC2 and proof of Theorem 1.2

Theorem 5.1. Assume that n ≥ 12. Let K be a compact set of algebraic

curvature tensors in dimension n that is contained in the interior of the PIC

cone, and let T > 0 be given. Then there exist a small positive real number

θ, a large positive real number N , a smooth, increasing, and concave function

g > 0 satisfying lims→∞
g(s)
s = 0, and a continuous family of closed, convex,

O(n)-invariant sets {Gt : t ∈ [0, T ]} such that the family {Gt : t ∈ [0, T ]} is

invariant under the Hamilton ODE d
dtR = Q(R). Furthermore, K ⊂ G0 and

Gt ⊂ {R : R− θ scal id ? id ∈ PIC}
∩ {R : Ric11 + Ric22 − θ scal +N ≥ 0}
∩ {R : R+ g(scal) id ? id ∈ PIC1}

for all t ∈ [0, T ].

Proof. By Proposition 4.3, we have C̃(b̃max) = C(bmax). For each b ∈
(0, bmax + b̃max), we define

Ĉ(b) :=

C(b) for b ∈ (0, bmax],

C̃(bmax + b̃max − b) for b ∈ (bmax, bmax + b̃max).

Therefore, Ĉ(b) is a family of closed, convex, O(n)-invariant cones that depends

continuously on the parameter b ∈ (0, bmax + b̃max). Moreover, for each b ∈
(0, bmax + b̃max), the cone Ĉ(b) is transversally invariant under the Hamilton

ODE.

By Theorem 2.1, there exists a family of closed, convex, O(n)-invariant

sets {G(0)
t : t ∈ [0, T ]} such that the family {G(0)

t : t ∈ [0, T ]} is invariant under

the Hamilton ODE d
dtR = Q(R). Furthermore, K ⊂ G(0)

0 and

G(0)
t ⊂ {R : R− θ scal id ? id ∈ PIC}
∩ {R : Ric11 + Ric22 − θ scal +N ≥ 0}
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for all t ∈ [0, T ]. Consequently, we can find a small positive number β0 (de-

pending on θ) such that

G(0)
t ⊂ {R : R+N id ? id ∈ Ĉ(β0)}

for all t ∈ [0, T ].

Arguing as in Theorem 4.1 in [1] (see also Proposition 16 in [8]), we can

construct an increasing sequence β0 < β1 < β2 < · · · with limj→∞ βj =

bmax + b̃max and a sequence of families of sets {G(j)
t : t ∈ [0, T ]} with the

following properties:

• For j = 0, the family of sets {G(0)
t : t ∈ [0, T ]} coincides with the one

constructed in Theorem 2.1.

• For each j ≥ 1, the family of sets {G(j)
t : t ∈ [0, T ]} is defined by

G(j)
t = {R ∈ G(j−1)

t : R+ 2jN id ? id ∈ Ĉ(βj)}

for t ∈ [0, T ].

• For each j ≥ 1, the family {G(j)
t : t ∈ [0, T ]} is invariant under the Hamilton

ODE.

• For each j ≥ 1, we have K ⊂ G(j)
0 .

Since limj→∞ βj = bmax + b̃max, we can find a sequence of positive numbers εj
such that limj→∞ εj = 0 and Ĉ(βj) ⊂ {R : R + εj scal id ? id ∈ PIC1}. This

implies

G(j)
t ⊂ {R : R+ εj scal id ? id + 2jN (1 + 2n(n− 1)εj) id ? id ∈ PIC1}

for all t ∈ [0, T ].

We now define Gt =
⋂
j∈N G

(j)
t for each t ∈ [0, T ]. Then {Gt : t ∈ [0, T ]}

is a family of closed, convex, O(n)-invariant sets satisfying K ⊂ G0. Moreover,

the family of sets {Gt : t ∈ [0, T ]} is invariant under the Hamilton ODE.

Furthermore,

Gt ⊂ {R ∈ G(0)
t : R+ h(scal) id ? id ∈ PIC1}

for all t ∈ [0, T ], where h(s) := infj∈N(εjs+ 2jN (1 + 2n(n− 1)εj)). Clearly, h

is an increasing concave function satisfying lims→∞
h(s)
s = 0. Finally, we put

g(s) :=
∫ 1

0 χ(r)h(s + r) dr, where χ is a nonnegative smooth function that is

supported in [0, 1] and satisfies
∫ 1

0 χ(r) dr = 1. Clearly, g(s) ≥ h(s). It is easy

to see that g has all the required properties.

Proposition 5.2. There exists a small positive constant κ > 0 with the

following property : If R ∈ Gt, then

R1313 + λ2R1414 + µ2R2323 + λ2µ2R2424 − 2λµR1234 ≥ 0

for every orthonormal four-frame {e1, e2, e3, e4} and all λ, µ ∈ [0, 1] satisfying

λ2(1− µ2)2 + µ2(1− λ2)2 + (1− λ2)2(1− µ2)2 ≤ κ.
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Proof. This follows immediately from the fact that R−θ scal id? id ∈ PIC

for all R ∈ Gt.
We now turn to the proof of Theorem 1.2. To any curvature tensor R ∈ Gt,

we associate a curvature tensor S ∈ PIC1 by S = R + 2 g(scal) id ? id. Note

that |Q(R) − Q(S)| is bounded by a large multiple of (scal + g(scal)) g(scal).

In particular,

Q(R)−Q(S) + L(n) (scal + g(scal)) g(scal) id ? id ∈ PIC2,

where L(n) is a large constant that depends only on n.

Definition 5.3. Let g be chosen as in Theorem 5.1, let κ be chosen as in

Proposition 5.2, and let L(n) be chosen as above. Let f(s) :=Λ
»

(s+ g(s)) g(s),

where Λ ≥ 16
√

L(n)
κ . For each t ∈ [0, T ], we denote by Ft the set of all algebraic

curvature tensors R ∈ Gt such that

S1313 + λ2S1414 + µ2S2323 + λ2µ2S2424 − 2λµS1234

+(1− λ2)(1− µ2) f(scal) ≥ 0

for all λ, µ ∈ [0, 1], where S is defined by S = R+ 2 g(scal) id ? id.

Clearly, f is smooth, increasing, and concave, and lims→∞
f(s)
s = 0. Since

f and g are concave functions, the set Ft is convex for each t ∈ [0, T ].

Theorem 5.4. If Λ ≥ 16
√

L(n)
κ , then the family of sets {Ft : t ∈ [0, T ]}

is invariant under the Hamilton ODE d
dtR = Q(R). Moreover, Ft ⊂ {R : R+

2 (f(scal) + g(scal)) id ? id ∈ PIC2}. Finally, if we choose Λ sufficiently large,

then K ⊂ F0.

Proof. We first show that the family of sets {Ft : t ∈ [0, T ]} is preserved

by the Hamilton ODE d
dtR = Q(R). To prove this, we assume that R ∈ Ft,

S = R+ 2 g(scal) id ? id, and

S1313 + λ2S1414 + µ2S2323 + λ2µ2S2424 − 2λµS1234

+ (1− λ2)(1− µ2) f(scal) = 0

for one particular orthonormal four-frame {e1, e2, e3, e4} and one particular

pair λ, µ ∈ [0, 1]. Since S lies in the interior of the PIC1 cone, it follows that

λ, µ ∈ [0, 1). Moreover,

R1313 + λ2R1414 + µ2R2323 + λ2µ2R2424 − 2λµR1234

< S1313 + λ2S1414 + µ2S2323 + λ2µ2S2424 − 2λµS1234 ≤ 0.

Hence, Proposition 5.2 implies that

λ2(1− µ2)2 + µ2(1− λ2)2 + (1− λ2)2(1− µ2)2 > κ.
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Since λ, µ ∈ [0, 1), the first order conditions corresponding to variations of λ

and µ give

λ(1− µ2) f(scal) = λS1414 + λµ2S2424 − µS1234

= (λS1414 + µS1423)− µ(S1324 − λµS2424)

and

(1− λ2)µ f(scal) = µS2323 + λ2µS2424 − λS1234

= (λS1423 + µS2323)− λ(S1324 − λµS2424).

Moreover,

(1− λ2)(1− µ2) f(scal) = −(S1313 − λµS1324)− λ(λS1414 + µS1423)

− µ(λS1423 + µS2323) + λµ(S1324 − λµS2424).

Consequently,

[λ2(1− µ2)2 + µ2(1− λ2)2 + (1− λ2)2(1− µ2)2] f(scal)2

≤ 2 (λS1414 + µS1423)2 + 2µ2(S1324 − λµS2424)2

+ 2 (λS1423 + µS2323)2 + 2λ2(S1324 − λµS2424)2

+ 4 (S1313 − λµS1324)2 + 4λ2(λS1414 + µS1423)2

+ 4µ2(λS1423 + µS2323)2 + 4λ2µ2(S1324 − λµS2424)2

≤ 16
n∑

p,q=1

(S13pq − λµS24pq)
2 + 16

n∑
p,q=1

(λS14pq + µS23pq)
2.

Putting these facts together, we obtain

n∑
p,q=1

(S13pq − λµS24pq)
2 +

n∑
p,q=1

(λS14pq + µS23pq)
2 ≥ κ

16
f(scal)2.

On the other hand, Proposition 7.26 in [5] implies

(S#)1313 + λ2(S#)1414 + µ2(S#)2323

+ λ2µ2(S#)2424 + 2λµ(S#)1342 + 2λµ(S#)1423 ≥ 0.

Adding these inequalities gives

Q(S)1313 + λ2Q(S)1414 + µ2Q(S)2323 + λ2µ2Q(S)2424

− 2λµQ(S)1234 ≥
κ

16
f(scal)2.

Since Q(R)−Q(S) +L(n) (scal + g(scal)) g(scal) id? id ∈ PIC2, it follows that

Q(R)1313 + λ2Q(R)1414 + µ2Q(R)2323 + λ2µ2Q(R)2424 − 2λµQ(R)1234

≥ κ

16
f(scal)2 − 8L(n) (scal + g(scal)) g(scal).
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Since f and g are monotone increasing, we conclude that

d

dt

Ä
S1313 + λ2S1414 + µ2S2323 + λ2µ2S2424 − 2λµS1234

+ (1− λ2)(1− µ2) f(scal)
ä

≥ κ

16
f(scal)2 − 8L(n) (scal + g(scal)) g(scal),

and the right-hand side is positive in view of our choice of f . This shows that

the family of sets {Ft : t ∈ [0, T ]} is invariant under the Hamilton ODE.

If R ∈ Ft and S = R+ 2 g(scal) id ? id, then S + 2 f(scal) id ? id ∈ PIC2

(cf. Proposition 7.18 in [5]), and consequently R+2 (f(scal)+g(scal)) id? id ∈
PIC2.

Finally, if we choose Λ sufficiently large, we can arrange that the following

holds: if R ∈ K and S = R+ 2 g(scal) id ? id, then

S1313 + λ2S1414 + µ2S2323 + λ2µ2S2424 − 2λµS1234

+ (1− λ2)(1− µ2) f(scal) ≥ 0

for λ, µ ∈ [0, 1]. This ensures that K ⊂ F0.

6. Ancient solutions that are weakly PIC2 and uniformly PIC

In this section, we study ancient solutions to the Ricci flow of dimension

n ≥ 5 that are weakly PIC2 and uniformly PIC. An important ingredient is the

differential Harnack inequality for the curvature tensor. This inequality was

proved in a fundamental paper by Hamilton [19] for solutions to the Ricci flow

with nonnegative curvature operator. In [3], we showed that the differential

Harnack inequality holds on any solution to the Ricci flow that is weakly PIC2.

Theorem 6.1 (cf. R. Hamilton [19]). Assume that (M, g(t)), t ∈ (0, T ),

is a solution to the Ricci flow that is complete with bounded curvature and is

weakly PIC2. Then

∂

∂t
scal + 2 〈∇scal, v〉+ 2 Ric(v, v) +

1

t
scal ≥ 0

for every tangent vector v. In particular, the product t scal is monotone in-

creasing at each point in space.

On an ancient solution, the Harnack inequality gives the following esti-

mate:

Corollary 6.2. Assume that (M, g(t)) is an ancient solution to the Ricci

flow that is complete with bounded curvature and is weakly PIC2. Then

∂

∂t
scal + 2 〈∇scal, v〉+ 2 Ric(v, v) ≥ 0
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for every tangent vector v. In particular, the scalar curvature is monotone

increasing at each point in space.

The following inequality is obtained by integrating the differential Harnack

inequality along paths in space-time:

Corollary 6.3. Assume that (M, g(t)) is an ancient solution to the Ricci

flow that is complete with bounded curvature and is weakly PIC2. Then

scal(x1, t1) ≤ exp
(dg(t1)(x1, x2)2

2(t2 − t1)

)
scal(x2, t2)

whenever t1 < t2.

The following result from [7] plays a central role in our argument:

Theorem 6.4 (S. Brendle, G. Huisken, C. Sinestrari [7]). Assume that

(M, g(t)) is a complete, nonflat ancient solution to the Ricci flow with bounded

curvature. Suppose that (M, g(t)) is uniformly PIC1, so that R−θ scal id?id ∈
PIC1 for some uniform constant θ > 0. Then (M, g(t)) has constant curvature

for each t.

Proof. If M is compact, the assertion follows from Theorem 2 in [7]. The

proof of Theorem 2 in [7] relies exclusively on the maximum principle. (See

Corollary 7 in that paper.) Since the maximum principle works on complete

manifolds with bounded curvature (see [13, Th. 12.35]), the arguments in [7]

carry over to that setting.

We note that the conclusion of Theorem 6.4 still holds if (M, g(t)) has

unbounded curvature (see [37]).

We next state several splitting theorems, which are based on the strict

maximum principle (see [18] and [5]). The first version works locally:

Proposition 6.5. Let (M, g(t)), t ∈ (0, T ], be a (possibly incomplete)

solution to the Ricci flow that is weakly PIC2 and strictly PIC. Moreover,

suppose that there exist a point (p0, t0) in space-time and a unit vector v ∈
Tp0M with the property that Ric(v, v) = 0. Then, for each t ≤ t0, the flow

(M, g(t)) locally splits as a product of an (n−1)-dimensional manifold with an

interval.

Proof. Suppose that the assertion is false. Then there exists a time τ ∈
(0, t0) with the property that (M, g(τ)) does not locally split as a product of

an (n − 1)-dimensional manifold with an interval. Since (M, g(τ)) is strictly

PIC, we conclude that (M, g(τ)) is locally irreducible.

The Ricci tensor of (M, g(t)) satisfies the evolution equation

DtRic = ∆Ric + 2R ∗ Ric,
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where (R∗Ric)ik =
∑n
p,q=1RipkqRicpq. Since R is weakly PIC2, the term R∗Ric

is weakly positive definite. Using the strict maximum principle (see [5, §9]

or [18]), we conclude that the null space of Ricg(τ) defines a parallel subbundle

of the tangent bundle of (M, g(τ)). Since (M, g(τ)) is locally irreducible, this

subbundle must have rank 0. Consequently, the Ricci curvature of (M, g(τ))

is strictly positive.

Let Ω be a bounded open neighborhood of the point p0 with smooth

boundary. Let us choose a smooth function f : Ω̄→ R with the property that

f > 0 in Ω, f = 0 on ∂Ω, and Ricg(τ) − f id is weakly positive definite. Let

F : Ω̄× [τ, t0]→ R denote the solution of the linear heat equation with respect

to the evolving metric g(t) with initial data F (·, τ) = f and Dirichlet boundary

condition F = 0 on ∂Ω × [τ, t0]. Using the maximum principle, we conclude

that Ricg(t) − F (·, t) id is weakly positive definite at each point in Ω × [τ, t0].

Since F (p0, t0) > 0, the Ricci curvature at (p0, t0) is strictly positive, contrary

to our assumption.

Proposition 6.6. Let (M, g(t)), t ∈ (0, T ], be a complete solution to

the Ricci flow (possibly with unbounded curvature). Moreover, we assume that

(M, g(t)) is weakly PIC2 and strictly PIC. Suppose that there exists a point

(p0, t0) in space-time with the property that the curvature tensor at (p0, t0) lies

on the boundary of the PIC2 cone. Then, for each t ≤ t0, the universal cover

of (M, g(t)) splits off a line.

Proof. Suppose that the assertion is false. Then there exists a time τ ∈
(0, t0) with the property that the universal cover of (M, g(τ)) does not split

off a line. Since (M, g(τ)) is strictly PIC, we conclude that (M, g(τ)) is locally

irreducible. In view of Berger’s holonomy classification theorem, there are four

possible cases:

Case 1: Suppose first that Hol0(M, g(τ)) = SO(n). If we fix an arbitrary

pair of real numbers λ, µ ∈ [0, 1], then Theorem 9.13 in [5] implies that the set

of all orthonormal four-frames {e1, e2, e3, e4} satisfying

Rg(τ)(e1, e3, e1, e3) + λ2Rg(τ)(e1, e4, e1, e4)

+ µ2Rg(τ)(e2, e3, e2, e3) + λ2µ2Rg(τ)(e2, e4, e2, e4)

− 2λµRg(τ)(e1, e2, e3, e4) = 0

is invariant under parallel transport. Since Hol0(M, g(τ)) = SO(n), we con-

clude that

Rg(τ)(e1, e3, e1, e3) + λ2Rg(τ)(e1, e4, e1, e4)

+ µ2Rg(τ)(e2, e3, e2, e3) + λ2µ2Rg(τ)(e2, e4, e2, e4)

− 2λµRg(τ)(e1, e2, e3, e4) > 0
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for all orthonormal four-frames {e1, e2, e3, e4} and all λ, µ ∈ [0, 1]. In other

words, the curvature tensor of (M, g(τ)) lies in the interior of the PIC2 cone.

Let Ω be a bounded open neighborhood of the point p0 with smooth

boundary. Let us choose a smooth function f : Ω̄ → R with the property

that f > 0 in Ω, f = 0 on ∂Ω, and Rg(τ) − 1
2 f id ? id ∈ PIC2. Let F :

Ω̄× [τ, t0]→ R denote the solution of the linear heat equation with respect to

the evolving metric g(t) with initial data F (·, τ) = f and Dirichlet boundary

condition F = 0 on ∂Ω × [τ, t0]. Let S := Rg(t) − 1
2 F (·, t) id ? id. Then

DtS = ∆S +Q(S) + 2F Ric(S) ? id + (n− 1)F 2 id ? id. Using the maximum

principle, we conclude that Rg(t) − 1
2 F (·, t) id ? id ∈ PIC2 at each point in

Ω × [τ, t0]. Since F (p0, t0) > 0, the curvature tensor at (p0, t0) lies in the

interior of the PIC2 cone, contrary to our assumption.

Case 2: Suppose that n = 2m and Hol0(M, g(τ)) = U(m). In this case,

the universal cover of (M, g(τ)) is a Kähler manifold. This is impossible since

(M, g(τ)) is strictly PIC.

Case 3: Suppose next that n = 4m ≥ 8 and Hol0(M, g(τ)) = Sp(m) ·
Sp(1). In this case, the universal cover of (M, g(τ)) is a quaternionic Kähler

manifold. In particular, (M, g(τ)) is an Einstein manifold. Since (M, g(τ))

is strictly PIC, we conclude that the universal cover of (M, g(τ)) is a round

sphere (cf. [4]). This is impossible.

Case 4: Suppose finally that Hol0(M, g(τ)) 6= SO(n) and (M, g(τ)) is

locally symmetric. In this case, (M, g(τ)) is an Einstein manifold, for otherwise

the eigenspaces of the Ricci tensor give a splitting of the tangent bundle into

parallel subbundles, which is impossible since (M, g(τ)) is locally irreducible.

Since (M, g(τ)) is strictly PIC, it follows that the universal cover of (M, g(τ)) is

a round sphere (cf. [4]). This contradicts the fact that Hol0(M, g(τ)) 6= SO(n).

This completes the proof of Theorem 6.6.

By combining Proposition 6.6 and Theorem 6.4, we can draw the following

conclusion:

Corollary 6.7. Let (M, g(t)), t ∈ (−∞, T ], be a complete, nonflat an-

cient solution to the Ricci flow with bounded curvature. Moreover, we assume

that (M, g(t)) is weakly PIC2 and satisfies R − θ scal id ? id ∈ PIC for some

uniform constant θ > 0. Suppose that there exists a point (p0, t0) in space-

time with the property that the curvature tensor at (p0, t0) lies on the boundary

of the PIC2 cone. Then, for each t ≤ t0, the universal cover of (M, g(t)) is

isometric to a family of shrinking cylinders Sn−1 × R.

Proof. By the strict maximum principle, the scalar curvature of (M, g(t))

is strictly positive. Consequently, (M, g(t)) is strictly PIC. By Proposition 6.6,
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the universal cover of (M, g(t)) is isometric to a product (X, gX(t)) × R for

each t ≤ t0. Clearly, (X, gX(t)), t ≤ t0, is a complete, nonflat ancient solution

to the Ricci flow of dimension n − 1, which is weakly PIC2 and uniformly

PIC1. Since (X, gX(t)) has bounded curvature, Theorem 6.4 implies that the

universal cover of (X, gX(t)) is isometric to a family of shrinking spheres. This

completes the proof of Corollary 6.7.

We next recall two results due to Perelman, which play a fundamental

role in the argument:

Proposition 6.8 (G. Perelman). Assume that (M, g) is a complete non-

compact manifold that is weakly PIC2. Fix a point p ∈ M and let pj be a

sequence of points such that d(p, pj) → ∞. Moreover, suppose that λj is a

sequence of positive real numbers satisfying λj d(p, pj)
2 → ∞. If the rescaled

manifolds (M,λjg, pj) converge in the Cheeger-Gromov sense to a smooth limit,

then the limit splits off a line.

Proposition 6.9 (G. Perelman). Let (M, g) be a complete noncompact

Riemannian manifold that is weakly PIC2. Then (M, g) does not contain a

sequence of necks with radii converging to 0.

The proofs of Proposition 6.8 and Proposition 6.9 are based on Topono-

gov’s theorem. For a detailed exposition of these results of Perelman we refer

to [12, Props. 2.2 and 2.3].

We now define the class of ancient solutions that we will study.

Definition 6.10. An ancient κ-solution is a nonflat ancient solution to the

Ricci flow of dimension n that is complete; has bounded curvature; is weakly

PIC2; and is κ-noncollapsed on all scales.

The following result is a consequence of Proposition 6.9 and Corollary 6.7.

Proposition 6.11. Suppose that (M, g(t)), t ∈ (−∞, 0], is a complete

ancient solution to the Ricci flow that is κ-noncollapsed on all scales, is weakly

PIC2, and satisfies R− θ scal id ? id ∈ PIC for some uniform constant θ > 0.

Moreover, suppose that (M, g(t)) satisfies the Harnack inequality

∂

∂t
scal + 2 〈∇scal, v〉+ 2 Ric(v, v) ≥ 0

for every tangent vector v. Then (M, g(t)) has bounded curvature.

Proof. Since (M, g(t)) satisfies the Harnack inequality, it suffices to show

that (M, g(0)) has bounded curvature. The proof is by contradiction. Suppose

that (M, g(0)) has unbounded curvature.

By the strict maximum principle, we can find a real number δ > 0 with the

property that the scalar curvature (M, g(t)) is strictly positive for t ∈ (−δ, 0].
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Consequently, (M, g(t)) is strictly PIC for t ∈ (−δ, 0]. We distinguish two

cases:

Case 1: Suppose first that (M, g(0)) is strictly PIC2. In this case, M

is diffeomorphic to Rn by the soul theorem (cf. [10]). By a standard point-

picking argument, there exists a sequence of points xj ∈ M such that Qj :=

scal(xj , 0) ≥ j4 and

sup

x∈Bg(0)(xj ,2j Q
− 1

2
j )

scal(x, 0) ≤ 4Qj .

Since (M, g(t)) satisfies the Harnack inequality, we obtain

sup

(x,t)∈Bg(0)(xj ,2j Q
− 1

2
j )×[−4j2Q−1

j ,0]

scal(x, t) ≤ 4Qj .

Using Shi’s interior derivative estimate, we obtain bounds for all the deriva-

tives of curvature on Bg(0)(xj , j Q
− 1

2
j ) × [−j2Q−1

j , 0]. We now dilate the flow

(M, g(t)) around the point (xj , 0) by the factor Qj . Using the noncollapsing

assumption and the curvature derivative estimates, we conclude that, after

passing to a subsequence, the rescaled flows converge in the Cheeger-Gromov

sense to a smooth nonflat ancient solution (M∞, g∞(t)), t ∈ (−∞, 0]. The limit

(M∞, g∞(t)) is complete, has bounded curvature, is weakly PIC2, and satisfies

R− θ scal id ? id ∈ PIC. By Proposition 6.8, the manifold (M∞, g∞(0)) splits

off a line. By Corollary 6.7, universal cover of (M∞, g∞(t)) is isometric to a

family of shrinking cylinders Sn−1×R. Therefore, (M∞, g∞(0)) is isometric to

a quotient (Sn−1/Γ)× R. If Γ is nontrivial, then a result of Hamilton implies

that M contains a nontrivial incompressible (n − 1)-dimensional space form

Sn−1/Γ (cf. [6, Th. A.2]), but this is impossible since M is diffeomorphic to

Rn. Thus, Γ is trivial, and (M∞, g∞(0)) is isometric to a standard cylinder

Sn−1 × R. Consequently, (M, g(0)) contains a sequence of necks with radii

converging to 0. This contradicts Proposition 6.9.

Case 2: Suppose finally that (M, g(0)) is not strictly PIC2. By Proposi-

tion 6.6, the universal cover of (M, g(t)) is isometric to a product (X, gX(t))×R
for each t ∈ (−δ, 0]. Clearly, (X, gX(t)), t ∈ (−δ, 0], is a complete solution to

the Ricci flow of dimension n−1, which is κ-noncollapsed on all scales, weakly

PIC2, and uniformly PIC1. By assumption, (X, gX(0)) has unbounded cur-

vature. Using a point-picking lemma, we can construct a sequence of points

xj ∈ X such that Qj := scal(xj , 0) ≥ j4 and

sup

x∈BgX (0)(xj ,2j Q
− 1

2
j )

scal(x, 0) ≤ 4Qj .
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As in Case 1, the Harnack inequality and Shi’s interior derivative estimate give

bounds for all the derivatives of curvature on BgX(0)(xj , j Q
− 1

2
j )× [−j2Q−1

j , 0].

We now dilate the manifold (X, gX(0)) around the point xj by the factor Qj .

Passing to the limit as j → ∞, we obtain a smooth nonflat limit that is

uniformly PIC1 and that must split off a line by Proposition 6.8. This is a

contradiction.

We next recall a key result from Perelman’s first paper:

Theorem 6.12 (cf. G. Perelman [33, Cor. 11.6]). Given a positive real

number w > 0, we can find positive constants B and C (depending on w and n)

such that the following holds : Let (M, g(t)), t ∈ [0, T ], be a solution to the

Ricci flow that is weakly PIC2. Suppose that the ball Bg(T )(x0, r0) is compactly

contained in M , and r−n0 volg(t)(Bg(t)(x0, r0)) ≥ w for each t ∈ [0, T ]. Then

scal(x, t) ≤ Cr−2
0 +Bt−1 for all t ∈ (0, T ] and all x ∈ Bg(t)(x0,

1
4 r0).

Note that Perelman imposes the stronger assumption (M, g(t)) has non-

negative curvature operator. However, his proof works under the weaker as-

sumption that (M, g(t)) is weakly PIC2. One main ingredient in Perelman’s

work is the trace Harnack inequality (see Theorem 6.1). The proof also relies

on the fact that a solution to the Ricci flow that has evolved for some positive

time cannot contain an open set that is isometric to a piece of a nonflat cone.

This argument relies on the strict maximum principle and works if the solution

is weakly PIC2 (see Proposition 6.5).

One of the main tools in Perelman’s theory is the long-range curvature

estimate for ancient κ-solutions in dimension 3. In the next step, we verify

that this estimate holds in our situation.

Theorem 6.13 (cf. G. Perelman [33, §11.7]). Given κ > 0, we can find a

positive function ω : [0,∞)→ (0,∞) (depending on n and κ) with the following

property : Let (M, g(t)) be a an ancient κ-solution. Then

scal(x, t) ≤ scal(y, t)ω(scal(y, t) dg(t)(x, y)2)

for all points x, y ∈M and all t.

Proof. The proof is essentially the same as in Section 11.7 in Perelman’s

paper [33] (see also [12]). We sketch the argument for the convenience of

the reader. Let us fix a point y ∈ M . By rescaling, we can arrange that

scal(y, 0) = 1. For abbreviation, let A = {x ∈ M : scal(x, 0) dg(0)(y, x)2 ≥ 1}.
We distinguish two cases:

Case 1: Suppose that A = ∅. In this case, we can find a point z ∈M such

that supx∈M scal(x, 0) = scal(z, 0). Using the Harnack inequality, we obtain

sup
x∈M

scal(x, t) ≤ scal(z, 0)
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for all t ∈ (−∞, 0]. By Shi’s derivative estimates, ∂
∂tscal(z, t) ≤ C(n) scal(z, 0)2

for all t ∈ [−scal(z, 0)−1, 0]. Moreover, dg(0)(y, z) ≤ scal(z, 0)−
1
2 since A = ∅.

Hence, we can find a small positive constant β, depending only on n, such that

for all t ∈ [−β scal(z, 0)−1, 0],

scal(z, t) ≥ 1

2
scal(z, 0) and dg(t)(y, z) ≤ 2 scal(z, 0)−

1
2 .

If we apply the Harnack inequality (cf. Corollary 6.3) with t = −β scal(z, 0)−1,

then we obtain

1

2
scal(z, 0) ≤ scal(z, t)

≤ exp
(dg(t)(y, z)2

(−2t)

)
scal(y, 0)

≤ exp
( 2

(−t) scal(z, 0)

)
scal(y, 0)

= exp
( 2

β

)
.

Putting these facts together, we conclude that supx∈M scal(x, 0) ≤ 2 exp
Ä

2
β

ä
.

Case 2: Suppose now that A 6= ∅. In this case, we choose a point z ∈ A
that has minimal distance from y with respect to the metric g(0). Note that

scal(z, 0) = dg(0)(y, z)
−2 since z lies on the boundary of A. Let p be the

mid-point of the minimizing geodesic in (M, g(0)) joining y and z. Clearly,

Bg(0)(p,
1
4 dg(0)(y, z)) ∩A = ∅. This implies

sup
x∈Bg(0)(p,

1
4
dg(0)(y,z))

scal(x, 0) ≤ 16 dg(0)(y, z)
−2.

By the Harnack inequality,

sup
x∈Bg(t)(p, 14 dg(0)(y,z))

scal(x, t) ≤ 16 dg(0)(y, z)
−2

for all t ∈ (−∞, 0]. The noncollapsing assumption gives

volg(t)
Ä
Bg(t)(p,

1

4
dg(0)(y, z))

ä
≥ κ (

1

4
dg(0)(y, z))

n

for all t ∈ (−∞, 0]. This implies

(4r)−n volg(t)(Bg(t)(p, 4r)) ≥ κ (
1

16
r−1 dg(0)(y, z))

n

for all t ∈ (−∞, 0] and all r ≥ dg(0)(y, z). Applying Theorem 6.12 with x0 := p,

r0 := 4r, and w := κ ( 1
16 r
−1 dg(0)(y, z))

n, we obtain

sup
x∈Bg(0)(p,r)

scal(x, 0) ≤ dg(0)(y, z)
−2 ω(dg(0)(y, z)

−1 r)
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for all r ≥ dg(0)(y, z), where ω : [1,∞) → [0,∞) is a positive and increasing

function that may depend on n and κ. In particular, if we put r = dg(0)(y, z)

and apply the Harnack inequality, we obtain

sup
x∈Bg(0)(p,dg(0)(y,z))

scal(x, t) ≤ dg(0)(y, z)
−2 ω(1),

for all t ∈ (−∞, 0]. By Shi’s derivative estimates,

∂

∂t
scal(z, t) ≤ C(n, κ) dg(0)(y, z)

−4

for all t ∈ [−dg(0)(y, z)
2, 0]. Moreover, scal(z, 0) = dg(0)(y, z)

−2 by our choice

of z. Therefore, we can find a small positive constant β, depending only on n

and κ, such that scal(z, t) ≥ 1
2 dg(0)(y, z)

−2 and dg(t)(y, z) ≤ 2 dg(0)(y, z) for all

t ∈ [−β dg(0)(y, z)
2, 0]. If we apply the Harnack inequality (cf. Corollary 6.3)

with t = −β dg(0)(y, z)
2, then we obtain

1

2
dg(0)(y, z)

−2 ≤ scal(z, t)

≤ exp
(dg(t)(y, z)2

(−2t)

)
scal(y, 0)

≤ exp
(2 dg(0)(y, z)

2

(−t)

)
scal(y, 0)

= exp
( 2

β

)
.

This finally implies

sup
x∈Bg(0)(y,r)

scal(x, 0) ≤ sup
x∈Bg(0)(p,r+dg(0)(y,z))

scal(x, 0)

≤ dg(0)(y, z)
−2 ω(dg(0)(y, z)

−1 r + 1)

≤ 2 e
2
β ω(
√

2 e
1
β r + 1)

for all r ≥ 0. This completes the proof of Theorem 6.13.

Combining the long-range curvature estimate in Theorem 6.13 with Shi’s

interior derivative estimates, we can bound the m-th covariant derivative of

the Riemann curvature tensor by a constant times scal
m+2

2 at each point in

space-time. In particular, we can draw the following conclusion:

Corollary 6.14. Given κ > 0, we can find a large positive constant

η = η(n, κ) with the following property : Let (M, g(t)) be an ancient κ-solution.

Then |Dscal| ≤ η scal
3
2 and | ∂∂tscal| ≤ η scal2 at each point in space-time.

We next establish an analogue of Perelman’s compactness theorem for

ancient κ-solutions:
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Corollary 6.15 (cf. G. Perelman [33, §11.7]). Fix κ > 0 and θ > 0. As-

sume (M (j), g(j)(t)) is a sequence of ancient κ-solutions satisfying R−θ scal id?
id ∈ PIC. Suppose that xj is a point on M (j) satisfying scal(xj , 0) = 1. Then,

after passing to a subsequence if necessary, the sequence (M (j), g(j)(t), xj)

converges in the Cheeger-Gromov sense to an ancient κ-solution satisfying

R− θ scal id ? id ∈ PIC.

Proof. It follows from the noncollapsing assumption and the long-range

curvature estimate in Theorem 6.13 that, after passing to a subsequence if nec-

essary, the sequence (M (j), g(j)(t), xj) converges in the Cheeger-Gromov sense

to a smooth nonflat ancient solution (M∞, g∞(t)). Clearly, (M∞, g∞(t)) is

κ-noncollapsed on all scales, is weakly PIC2, and satisfies R − θ scal id ? id ∈
PIC. It remains to show that (M∞, g∞(t)) has bounded curvature. Since

(M (j), g(j)(t)) has bounded curvature, the flow (M (j), g(j)(t)) satisfies the Har-

nack inequality
∂

∂t
scal + 2 〈∇scal, v〉+ 2 Ric(v, v) ≥ 0

(cf. Corollary 6.2). Passing to the limit as j →∞, we conclude that the Har-

nack inequality holds on the limit (M∞, g∞(t)). Consequently, (M∞, g∞(t))

has bounded curvature by Proposition 6.11.

In the remainder of this section, we establish a structure theorem and a

universal noncollapsing theorem for ancient κ-solutions. This was first estab-

lished by Perelman [35] in the three-dimensional case, and it was adapted to

dimension 4 in [12].

Definition 6.16. Let us fix a small number ε0 = ε0(n) and let 0 < ε < ε0
4 .

We say that a compact domain Ω ⊂ (M, g) is an ε-cap if the following hold:

• The domain Ω is diffeomorphic to Bn, and the boundary ∂Ω is a cross-

sectional sphere of an ε-neck.

• If Ω̃ ⊂ Ω is a compact domain diffeomorphic to Bn and the boundary ∂Ω̃ is a

cross-sectional sphere of an (ε0− ε)-neck, then there exist a diffeomorphism

F : Ω̃ → Bn and an (ε0 + ε)-isometry f : ∂Ω̃ → Sn−1 with the property

that F |∂Ω̃ : ∂Ω̃→ Sn−1 is isotopic to f .

The second condition in Definition 6.16 will play a crucial role when we

analyze how the diffeomorphism type of the manifold changes under surgery

(see Proposition 8.1 below).

Proposition 6.17. Let (M, g) be a complete, noncompact manifold of

dimension n ≥ 5 which is strictly PIC2. Suppose that Σ is a cross-sectional

sphere of an ε0-neck N in (M, g). Then Σ bounds a compact domain Ω.

Moreover, there exists a diffeomorphism F : Ω → Bn and an ε0-isometry

f : ∂Ω→ Sn−1 with the property that F |∂Ω : ∂Ω→ Sn−1 is isotopic to f .
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Proof. By the soul theorem (cf. [10]), M is diffeomorphic to Rn. By the

solution of the Schoenflies conjecture in dimension n ≥ 5, Σ bounds a compact

domain Ω that is diffeomorphic to Bn. Let us choose a diffeomorphism F : Ω→
Bn, and let f : ∂Ω → Sn−1 be an ε0-isometry. Without loss of generality, we

may assume that the map F |∂Ω ◦ f−1 : Sn−1 → Sn−1 is orientation-preserving.

We claim that the map F |∂Ω◦f−1 : Sn−1 → Sn−1 is isotopic to the identity. To

prove this, let z denote the height function on the neck N , so that {z = 0} = Σ

and {z ∈ [−10, 0)} ⊂ Ω. Moreover, let ϕ(z) = e−
1
z for z ∈ (0, 1

10 ]. Let us define

a modified metric g̃ as follows. The metric g̃ agrees with g inside Ω. In the

region {z ∈ (0, 1
20 ]}, we change the metric conformally by g̃ = e−2ϕ g. In the

region {z ∈ ( 1
20 ,

1
10 ]}, we define g̃ = e−2ϕ (χ(z) g+(1−χ(z)) ḡ), where ḡ denotes

the standard metric on the cylinder and χ : ( 1
20 ,

1
10 ]→ [0, 1] is a smooth cutoff

function satisfying χ(z) = 1 for z ∈ [ 1
20 ,

1
18 ] and χ(z) = 0 for z ∈ [ 1

12 ,
1
10 ]. Since

the original metric g is strictly PIC2, the modified metric g̃ will be strictly

PIC2 in the region {z ∈ (0, 1
10 ]}. Moreover, the surgically modified metric g̃

is rotationally symmetric for z ∈ [ 1
12 ,

1
10 ]. Consequently, we can extend g̃ by

gluing in a rotationally symmetric cap. This can be done in such a way that

the glued metric is strictly PIC2. To summarize, we obtain a closed manifold

that is obtained by gluing two balls, and that admits a metric that is strictly

PIC2. If the map F |∂Ω ◦ f−1 is not isotopic to the identity, then this glued

manifold is an exotic sphere, that contradicts the fact that exotic spheres do

not admit metrics that are strictly PIC2 (cf. [8]).

We now state the structure theorem in the noncompact case.

Theorem 6.18 (cf. G. Perelman [33, Cor. 11.8], Chen-Zhu [12, Prop. 3.4]).

Given ε > 0 and θ > 0, we can find large positive constants C1 = C1(n, θ, ε)

and C2 = C2(n, θ, ε) with the following property : Suppose that (M, g(t)) is

a noncompact ancient κ-solution satisfying R − θ scal id ? id ∈ PIC that is

not locally isometric to a family of shrinking cylinders. Then, for each point

(x0, t0) in space-time, we can find a neighborhood B of x0 satisfying

Bg(t0)(x0, C
−1
1 scal(x0, t0)−

1
2 ) ⊂ B ⊂ Bg(t0)(x0, C1 scal(x0, t0)−

1
2 )

and

C−1
2 scal(x0, t0) ≤ scal(x, t0) ≤ C2 scal(x0, t0)

for all x ∈ B. Moreover, B satisfies one of the following conditions :

• B is an ε-neck with center at x0.

• B is an ε-cap in the sense of Definition 6.16.

In particular, (M, g(t0)) is κ0-noncollapsed for some universal constant κ0 =

κ0(n, θ).
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A key point is that the constants C1 and C2 in Theorem 6.18 do not

depend on κ.

Proof. It suffices to prove the assertion for t0 = 0. Suppose that x0 does

not lie at the center of an ε-neck in (M, g(0)). Since (M, g(t)) is not locally

isometric to a family of shrinking cylinders, Corollary 6.7 implies that (M, g(t))

is strictly PIC2. By the soul theorem (cf. [10]), M is diffeomorphic to Rn. We

denote by Mε the set of all points that do not lie at the center of an ε
4 -neck in

(M, g(0)). Note that x0 lies in the interior of Mε.

Step 1: We claim that the closure of Mε is compact. If this is false, we can

find a sequence of points xj ∈Mε such that dg(0)(x0, xj)→∞. The long-range

curvature estimate in Theorem 6.13 implies limj→∞ scal(xj , 0) dg(0)(x0, xj)
2

=∞. We now dilate the flow (M, g(t)) around the point (xj , 0) by the factor

scal(xj , 0). By Corollary 6.15, the rescaled flows converge in the Cheeger-

Gromov sense to an ancient κ-solution (M∞, g∞(t)) satisfying R − θ scal id ?
id ∈ PIC. By Proposition 6.8, the manifold (M∞, g∞(0)) splits off a line. Since

the limit (M∞, g∞(t)) has bounded curvature, Corollary 6.7 implies that the

universal cover of (M∞, g∞(t)) is isometric to a family of shrinking cylinders

Sn−1×R. Therefore, (M∞, g∞(0)) is isometric to a quotient (Sn−1/Γ)×R. If

Γ is nontrival, then Theorem A.2 in [6] implies that M contains a nontrivial

incompressible (n− 1)-dimensional space form Sn−1/Γ, but this is impossible

since M is diffeomorphic to Rn. Thus, Γ is trivial, and (M∞, g∞(0)) is isomet-

ric to a standard cylinder Sn−1 × R. Consequently, xj lies at the center of an
ε
8 -neck if j is sufficiently large. This contradicts the assumption that xj ∈Mε.

Step 2: We now consider an arbitrary point y ∈ ∂Mε. By definition of Mε,

y lies at the center of an ε
2 -neck in (M, g(0)). The Harnack inequality gives

scal(x, t) ≤ scal(x, 0) ≤ 2 scal(y, 0) for all x ∈ Bg(0)(y, scal(y, 0)−
1
2 ) and all

t ≤ 0. Using Shi’s derivative estimates, we obtain ∂
∂tscal(y, t) ≤ C(n) scal(y, 0)2

for all t ∈ [−scal(y, 0)−1, 0]. Hence, we can find a small constant β = β(n) > 0

such that scal(y, t) ≥ 1
2 scal(y, 0) and

volg(t)
Ä
Bg(t)(y, scal(y, 0)−

1
2 )
ä
≥ β scal(y, 0)−

n
2

for all t ∈ [−β scal(y, 0)−1, 0]. Applying Theorem 6.12, we obtain

scal(x, 0) ≤ scal(y, 0)ω(scal(y, 0) dg(0)(x, y)2)

for all x ∈M , where ω : [0,∞)→ [0,∞) denotes a positive function that does

not depend on κ. Using the Harnack inequality, we conclude that

scal(x, t) ≤ scal(y, 0)ω(scal(y, 0) dg(0)(x, y)2)

for all x ∈M and all t ≤ 0.
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Step 3: We again consider an arbitrary point y ∈ ∂Mε. Recall that y

lies at the center of an ε
2 -neck in (M, g(0)). By work of Hamilton [21], a neck

admits a unique foliation by constant mean curvature (CMC) spheres. Let Σy

denote the leaf of the CMC foliation of (M, g(0)) that passes through y. By

Proposition 6.17, Σy bounds an ε-cap, which we denote by Ωy.

We next show that scal(y, 0) diamg(0)(Ωy)
2 ≤ C, where C depends on

n, θ, and ε, but not on κ. The proof is by contradiction. Suppose that

(M (j), g(j)(t)) is a sequence of noncompact ancient κj-solutions that satisfy

R−θ scal id? id ∈ PIC and that are not locally isometric to a family of shrink-

ing cylinders. Suppose further that yj ∈M (j) is a sequence of points such that

yj ∈ ∂M (j)
ε and scal(yj , 0) diamg(j)(0)(Ωyj )

2 →∞, where Ωyj denotes the region

in (M (j), g(j)(0)) that is bounded by the CMC sphere passing through yj . We

dilate the flow (M (j), g(j)(t)) around the point (yj , 0) by the factor scal(yj , 0).

Using the long-range curvature estimate established in Step 2, we conclude

that, after passing to a subsequence if necessary, the rescaled manifolds con-

verge to a complete, smooth, nonflat ancient solution (M∞, g∞(t)) that is

weakly PIC2 and satisfies R−θ scal id? id ∈ PIC. Since yj ∈ ∂M (j)
ε for each j,

the limit y∞ := limj→∞ yj lies at the center of an ε
2 -neck in (M∞, g∞(0)).

Since scal(yj , 0) diamg(j)(0)(Ωyj )
2 → ∞, the manifold (M∞, g∞(0)) contains a

minimizing geodesic line. By the Cheeger-Gromoll splitting theorem (cf. [9]),

the manifold (M∞, g∞(0)) is isometric to a product X×R. Since y∞ lies at the

center of an ε
2 -neck, the cross-section X is compact and is nearly isometric to

Sn−1. In particular, (M∞, g∞(0)) has bounded curvature. By Corollary 6.7,

(M∞, g∞(t)) is isometric to family of shrinking cylinders Sn−1×R. Therefore,

if j is sufficiently large, then yj lies at the center of an ε
8 -neck. This contradicts

the fact that yj lies on the boundary of M
(j)
ε .

Step 4: By Step 3, we have scal(y, 0) dg(0)(x, y)2 ≤ C for all y ∈ ∂Mε and

all x ∈ Ωy, where C is a positive constant that depends only on n, θ, and ε, but

not on κ. Combining this estimate with the long-range curvature estimate in

Step 2, we conclude that scal(x, t) ≤ C scal(y, 0) and scal(y, 0) dg(t)(x, y)2 ≤ C
for all y ∈ ∂Mε, all x ∈ Ωy, and all t ∈ [−β scal(y, 0)−1, 0]. Here, C is a positive

constant that depends only on n, θ, and ε, but not on κ. Using the Harnack

inequality (cf. Corollary 6.3), we obtain

scal(x, 0) ≥ 1

C
scal(y,−β scal(y, 0)−1) ≥ 1

2C
scal(y, 0)

for all y∈∂Mε and all x∈Ωy, where C depends only on n, θ, and ε, but not on κ.

Step 5: Finally, we claim that we can find a point y ∈ ∂Mε such that

x0 ∈ Ωy. To prove this, let γ : [0,∞)→ (M, g(0)) be a minimizing unit-speed

geodesic with γ(0) = x0. We define s̄ := sup{s ∈ [0,∞) : γ(s) ∈ Mε}. Note
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that s̄ > 0 since x0 lies in the interior of Mε, and s̄ < ∞ since the closure

of Mε is compact. Let ȳ := γ(s̄). Clearly, ȳ ∈ ∂Mε. In particular, ȳ lies

at the center of an ε
2 -neck. Since x0 does not lie at the center of an ε-neck,

we must have dg(0)(x0, ȳ) > 100n scal(ȳ, 0)−
1
2 . We claim that x0 ∈ Ωȳ. Sup-

pose this is false. Then the curve γ must enter and exit the cap Ωȳ. More

precisely, we have γ(0) /∈ Ωȳ ∪ Bg(0)(ȳ, 100n scal(ȳ, 0)−
1
2 ), γ(s̄) ∈ Ωȳ, and

γ(s) /∈ Ωȳ ∪ Bg(0)(ȳ, 100n scal(ȳ, 0)−
1
2 ) when s is sufficiently large. This is

impossible since γ minimizes length. Consequently, x0 ∈ Ωȳ. The inequal-

ity dg(0)(x0, ȳ) > 100n scal(ȳ, 0)−
1
2 implies Bg(0)(x0, C

−1 scal(ȳ, 0)−
1
2 ) ⊂ Ωȳ.

Moreover, the diameter estimate in Step 3 gives Ωȳ ⊂ Bg(0)(x0, C scal(ȳ, 0)−
1
2 ).

Here, C is a positive constant that depends only on n, θ, and ε, but not

on κ. Finally, by Step 4, we can estimate scal(x0, 0) from above and be-

low in terms of scal(ȳ, 0). Putting these facts together, we conclude that

Bg(0)(x0, C
−1 scal(x0, 0)−

1
2 ) ⊂ Ωȳ and Ωȳ ⊂ Bg(0)(x0, C scal(ȳ, 0)−

1
2 ), where

C is a positive constant that depends only on n, θ, and ε, but not on κ. To

summarize, the set B := Ωȳ has all the required properties.

Theorem 6.19 (cf. G. Perelman [33], Chen-Zhu [12]). Fix θ > 0. We

can find a constant κ0 = κ0(n, θ) such that the following holds : Suppose that

(M, g(t)) is an ancient κ-solution for some κ > 0, which in addition satisfies

R − θ scal id ? id ∈ PIC. Then either (M, g(t)) is κ0-noncollapsed for all t;

or (M, g(t)) is a metric quotient of the round sphere Sn; or (M, g(t)) is a

noncompact metric quotient of the standard cylinder Sn−1 × R.

Proof. If M is noncompact, the assertion follows from Theorem 6.18.

Hence, we may assume that M is compact. Moreover, we may assume that

(M, g(t)) is not a metric quotient of the round sphere Sn. The noncollapsing

assumption implies that (M, g(t)) cannot be a compact quotient of a standard

cylinder. By Corollary 6.7, (M, g(t)) is strictly PIC2.

Consider a sequence of times tj → −∞ and a sequence of points qj ∈ M
such that `(qj , tj) ≤ n, where ` denotes the reduced distance. By Perelman’s

work, `(x, tj) + (−tj)R(x, tj) ≤ C(n) for all x ∈ Bg(tj)(qj , (−tj)
1
2 ). If we

dilate the flow (M, g(t)) around the point (qj , tj) by the factor (−tj)−1, then

the rescaled flows converge to a complete ancient solution (M̄, ḡ(t)) (cf. [33,

§11.2]). Perelman proved that the limit (M̄, ḡ(t)) is a nonflat shrinking gradient

Ricci soliton. Clearly, (M̄, ḡ(t)) is κ-noncollapsed, weakly PIC2, and satisfies

R − θ scal id ? id ∈ PIC. Moreover, since the Harnack inequality holds on

(M, g(t)), it holds on the limit (M̄, ḡ(t)). By Proposition 6.11, (M̄, ḡ(t)) has

bounded curvature. We distinguish two cases:

Case 1: We first consider the case that M̄ is compact. A shrinking soliton

(M̄, ḡ(t)) cannot be isometric to a compact quotient of a standard cylinder. By
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Corollary 6.7, (M̄, ḡ(t)) is strictly PIC2. Since (M̄, ḡ(t)) is a shrinking soliton,

results in [8] imply that (M̄, ḡ(t)) must be isometric to a metric quotient of

the round sphere Sn. Consequently, the original ancient solution (M, g(t)) is

a metric quotient of Sn, contrary to our assumption.

Case 2: Suppose next that M̄ is noncompact. In view of Theorem 6.18,

there are two possibilities: either (M̄, ḡ(t)) is κ0-noncollapsed for some uni-

versal constant κ0 = κ0(n, θ), or else (M̄, ḡ(t)) is isometric to a noncompact

quotient of the standard cylinder. The second case can be divided into two

subcases:

• If the dimension n is odd and M̄ is a noncompact quotient (Sn−1 ×R)/Γ,

then there are only finitely many possibilities for the group Γ, and the

resulting quotients are all noncollapsed with a universal constant.

• If the dimension n is even and M̄ is a noncompact quotient (Sn−1×R)/Γ,

then the center slice (Sn−1 × {0})/Γ is incompressible in M by Theorem

A.1 in [6]. Moreover, since (M, g(t)) is strictly PIC2, the fundamental

group of M has order at most 2 by Synge’s theorem. Hence, there are

only finitely many possibilities for the group Γ, and the resulting quotients

(Sn−1 × R)/Γ are noncollapsed with a universal constant.

To summarize, we have shown that the asymptotic shrinking soliton (M̄, ḡ(t)) is

noncollapsed with a universal constant that depends only on n and θ. This im-

plies lim infj→∞(−tj)−
n
2 volg(tj)

Ä
Bg(tj)(qj , (−tj)

1
2 )
ä
≥ 1

C(n,θ) . Hence, if V (t) =∫
M (−t)−

n
2 e−`(·,t) dvolg(t) denotes the reduced volume, then lim infj→∞ V (tj) ≥

1
C(n,θ) . Perelman’s monotonicity formula gives V (t) ≥ 1

C(n,θ) . Thus, (M, g(t))

is noncollapsed with a universal constant that depends only on n and θ.

Corollary 6.20. Fix θ > 0. We can find a constant η = η(n, θ) such

that the following holds : Suppose that (M, g(t)) is an ancient κ-solution for

some κ > 0, which in addition satisfies R−θ scal id?id ∈ PIC. Then |Dscal| ≤
η scal

3
2 and | ∂∂tscal| ≤ η scal2 at each point in space-time.

Proof. If (M, g(t)) is a metric quotient of Sn or Sn−1 × R, the assertion

is trivial. Otherwise, Theorem 6.19 implies that (M, g(t)) is an ancient κ0-

solution, where κ0 depends only on n and θ. Hence, the assertion follows from

Corollary 6.14.

Theorem 6.21 (cf. G. Perelman [35, §1.5]). Given ε > 0 and θ > 0,

there exist positive constants C1 = C1(n, θ, ε) and C2 = C2(n, θ, ε) such that

the following holds : Assume that (M, g(t)) is an ancient κ-solution satisfying

R − θ scal id ? id ∈ PIC. Then, for each point (x0, t0) in space-time, there

exists a neighborhood B of x0 such that Bg(t0)(x0, C
−1
1 scal(x0, t0)−

1
2 ) ⊂ B ⊂

Bg(t0)(x0, C1 scal(x0, t0)−
1
2 ) and C−1

2 scal(x0, t0) ≤ scal(x, t0) ≤ C2 scal(x0, t0)

for all x ∈ B. Finally, B satisfies one of the following conditions :
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• B is an ε-neck with center at x0.

• B is an ε-cap.

• B is a closed manifold diffeomorphic to Sn/Γ.

• B is an ε-quotient neck of the form (Sn−1 × [−L,L])/Γ.

Proof. If M is noncompact, the assertion follows from Theorem 6.18.

Hence, it suffices to consider the case when M is compact. As usual, it is

enough to consider the case t0 = 0. Suppose that the assertion is false. Then

we can find a sequence of compact ancient κj-solutions (M (j), g(j)(t)) satis-

fying R − θ scal id ? id ∈ PIC and a sequence of points xj ∈ M (j) with the

following property: There does not exist a neighborhood B of xj with the

property that Bg(j)(0)(xj , j
−1 scal(xj , 0)−

1
2 ) ⊂ B ⊂ Bg(j)(0)(xj , j scal(xj , 0)−

1
2 ),

j−1 scal(xj , 0) ≤ scal(x, 0) ≤ j scal(xj , 0) for all x ∈ B, and such that B is

either an ε-neck with center at xj ; or an ε-cap; or a closed manifold diffeomor-

phic to Sn/Γ; or an ε-quotient neck. By scaling, we may assume scal(xj , 0) = 1

for each j.

The noncollapsing assumption implies that (M (j), g(j)(t)) cannot be iso-

metric to a compact quotient of the standard cylinder. By Corollary 6.7,

(M (j), g(j)(t)) is strictly PIC2. Clearly, (M (j), g(j)(t)) cannot be isometric to a

quotient of a round sphere. By Theorem 6.19, (M (j), g(j)(t)) is κ0-noncollapsed

for some uniform constant κ0 that is independent of j.

We now apply the compactness theorem for ancient κ0-solutions (cf. Corol-

lary 6.15) to the sequence (M (j), g(j)(t), xj). Consequently, after passing to a

subsequence if necessary, the sequence (M (j), g(j)(t), xj) will converge in the

Cheeger-Gromov sense to an ancient κ0-solution satisfying R− θ scal id ? id ∈
PIC. Let us denote this limiting ancient κ0-solution by (M∞, g∞(t)), and let

x∞ denote the limit of the sequence xj . There are two possibilities:

Case 1: We first consider the case that M∞ is compact. In this case,

the diameter of (M (j), g(j)(0)) has a uniform upper bound independent of j.

Therefore, if j is sufficiently large, then B(j) := M (j) is a neighborhood of

the point xj satisfying Bg(j)(0)(xj , j
−1) ⊂ B(j) ⊂ Bg(j)(0)(xj , j) and j−1 ≤

scal(x, 0) ≤ j for all x ∈ B(j). Since (M (j), g(j)(t)) is strictly PIC2, results

in [8] imply that B(j) = M (j) is diffeomorphic to Sn/Γ. This contradicts our

choice of xj .

Case 2: We now consider the case that M∞ is noncompact. If (M∞, g∞(t))

is isometric to a noncompact quotient of the standard cylinder, then, for j large

enough, the point xj lies at the center of an ε-neck or it lies on an ε-quotient

neck. This contradicts our choice of xj . Consequently, (M∞, g∞(t)) is not

isometric to a quotient of the standard cylinder. At this point, we apply

Theorem 6.18 to (M∞, g∞(t)) (and with ε replaced by ε
2). Therefore, we can



RICCI FLOW ON MANIFOLDS WITH POSITIVE ISOTROPIC CURVATURE 521

find a neighborhood B∞ ⊂M∞ of the point x∞ satisfying Bg∞(0)(x∞, C
−1
1 ) ⊂

B∞ ⊂ Bg∞(0)(x∞, C1) and C−1
2 ≤ scal(x, 0) ≤ C2 for all x ∈ B∞. Further-

more, B∞ is either an ε
2 -neck with center at x∞ or an ε

2 -cap. Hence, if we

choose j sufficiently large, then we can find a neighborhood B(j) ⊂ M (j) of

the point xj satisfying Bg(j)(0)(xj , (2C1)−1) ⊂ B(j) ⊂ Bg(j)(0)(xj , 2C1) and

(2C2)−1 ≤ scal(x, 0) ≤ 2C2 for all x ∈ B(j). Furthermore, B(j) is either an

ε-neck with center at xj or an ε-cap. This contradicts our choice of xj .

For the purpose of the surgery construction, we will need the following

refinement of Theorem 6.21:

Corollary 6.22 (cf. G. Perelman [35, §1.5]). Given ε > 0 and θ > 0,

there exist positive constants C1 = C1(n, θ, ε) and C2 = C2(n, θ, ε) such that

the following holds : Assume that (M, g(t)) is an ancient κ-solution satisfying

R − θ scal id ? id ∈ PIC. Then, for each point (x0, t0) in space-time, there

exists a neighborhood B of x0 such that Bg(t0)(x0, C
−1
1 scal(x0, t0)−

1
2 ) ⊂ B ⊂

Bg(t0)(x0, C1 scal(x0, t0)−
1
2 ) and C−1

2 scal(x0, t0) ≤ scal(x, t0) ≤ C2 scal(x0, t0)

for all x ∈ B. Finally, B satisfies one of the following conditions :

• B is a strong ε-neck (in the sense of [35]) with center at x0.

• B is an ε-cap.

• B is a closed manifold diffeomorphic to Sn/Γ.

• B is an ε-quotient neck of the form (Sn−1 × [−L,L])/Γ.

Proof. Given ε > 0, we can find a positive real number ε̃ < ε, depending

only on n, θ, and ε such that, if (x0, t0) lies at the center of an ε̃-neck, then

(x0, t0) lies at the center of a strong ε-neck. Hence, the assertion follows from

Theorem 6.21.

7. A Canonical Neighborhood Theorem for Ricci flows starting

from initial metrics with positive isotropic curvature

In this section, we consider a solution of the Ricci flow starting from

a compact manifold of dimension n ≥ 12 with positive isotropic curvature.

Our goal is to establish an analogue of Perelman’s Canonical Neighborhood

Theorem. We begin with a definition:

Definition 7.1. Assume that f : [0,∞)→ [0,∞) is a concave and increas-

ing function satisfying lims→∞
f(s)
s = 0, and θ is a positive real number. We say

that a Riemannian manifold has (f, θ)-pinched curvature if R+f(scal) id?id ∈
PIC2 and R− θ scal id ? id ∈ PIC.

If (M, g0) is a compact manifold of dimension n ≥ 12 with positive

isotropic curvature, then Corollary 1.3 implies that the subsequent solution to

the Ricci flow has (f, θ)-pinched curvature for some suitable choice of f and θ.
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Theorem 7.2 (cf. G. Perelman [33, Th. 12.1]). Let (M, g0) be a compact

manifold with positive isotropic curvature of dimension n ≥ 12, which does not

contain any nontrivial incompressible (n − 1)-dimensional space forms. Let

g(t), t ∈ [0, T ), denote the solution to the Ricci flow with initial metric g0.

Given a small number ε̃ > 0 and a large number A0, we can find a positive

number r̂ with the following property : If (x0, t0) is a point in space-time with

Q := scal(x0, t0) ≥ r̂−2, then the parabolic neighborhood Bg(t0)(x0, A0Q
− 1

2 ) ×
[t0 − A0Q

−1, t0] is, after scaling by the factor Q, ε̃-close to the corresponding

subset of an ancient κ-solution satisfying R− θ scal id ? id ∈ PIC.

The proof of Theorem 7.2 is an adaptation of Perelman’s work [33]. (See

also [12], where the four-dimensional case is treated.) By Corollary 1.3, the flow

(M, g(t)) has (f, θ)-pinched curvature for some function f satisfying lims→∞
f(s)
s

= 0 and some constant θ > 0. Let us fix a small number ε > 0, and let

C1 = C1(n, θ, ε) and C2 = C2(n, θ, ε) denote the constants in Corollary 6.22.

It suffices to prove the assertion when A0 ≥ 8C1 and ε̃ is much smaller than

ε. To do that, we argue by contradiction. If the assertion is false, then we can

find a sequence of points (xj , tj) in space-time with the following properties:

(i) Qj := scal(xj , tj) ≥ j2.

(ii) After dilating by the factor Qj , the parabolic neighborhood

Bg(tj)(xj , A0Q
− 1

2
j )× [tj −A0Q

−1
j , tj ]

is not ε̃-close to the corresponding subset of any ancient κ-solution satis-

fying R− θ scal id ? id ∈ PIC.

By a point-picking argument, we can arrange that (xj , tj) satisfies the following

condition:

(iii) If (x̃, t̃) is a point in space-time such that t̃ ≤ tj and Q̃ := scal(x̃, t̃) ≥ 4Qj ,

then the parabolic neighborhood Bg(t̃)(x̃, A0Q̃
− 1

2 )× [t̃−A0Q̃
−1, t̃] is, after

dilating by the factor Q̃, ε̃-close to the corresponding subset of an ancient

κ-solution satisfying R− θ scal id ? id ∈ PIC.

Our strategy is to rescale the flow (M, g(t)) around the point (xj , tj) by the fac-

tor Qj . We will show that the rescaled flows converge to an ancient κ-solution

satisfying R− θ scal id ? id ∈ PIC. To that end, we proceed in several steps:

Step 1: We first establish a pointwise curvature derivative estimate. By

Corollary 6.20, we can find a large constant η, depending only on n and θ, such

that |Dscal| ≤ η scal
3
2 and | ∂∂tscal| ≤ η scal2 on every ancient κ-solution. Using

property (iii) above, we conclude that |Dscal| ≤ 2η scal
3
2 and | ∂∂tscal| ≤ 2η scal2

for each point (x, t) in space-time satisfying t ≤ tj and scal(x, t) ≥ 4Qj .
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Step 2: We next prove bounds for the higher order covariant derivatives

of the curvature tensor. Suppose that (x, t) is a point in space-time satisfy-

ing scal(x, t) +Qj ≤ r−2
0 . The pointwise curvature derivative estimate in Step

1 implies that scal ≤ 8r−2
0 in the parabolic neighborhood P (x0, t0,

r0
100η ,−

r2
0

100η ).

Using Shi’s interior derivative estimates, we conclude |DmR|≤C(n,m, η)r−m−2
0

at the point (x0, t0).

Step 3: We next prove a long-range curvature estimate. Given any ρ > 0,

we define

M(ρ) = lim sup
j→∞

sup

x∈Bg(tj)(xj ,ρQ
− 1

2
j )

Q−1
j scal(x, tj).

Here, we allow the possibility that M(ρ) =∞. The pointwise curvature deriv-

ative estimate in Step 1 implies that M(ρ) ≤ 8 for 0 < ρ < 1
100η .

We claim that M(ρ) <∞ for all ρ > 0. Suppose this is false. Let

ρ∗ = sup{ρ ≥ 0 : M(ρ) <∞} <∞.

Clearly, ρ∗ ≥ 1
100η . By definition of ρ∗, we have an upper bound for the curva-

ture in the geodesic ball Bg(tj)(xj , ρQ
− 1

2
j ) for each ρ < ρ∗. By Step 2, we obtain

bounds for the covariant derivatives of the curvature tensor in the geodesic ball

Bg(tj)(xj , ρQ
− 1

2
j ) for each ρ < ρ∗. Moreover, Perelman’s noncollapsing estimate

gives a lower bound for the volume. We rescale around (xj , tj) by the factor

Qj and pass to the limit as j → ∞. In the limit, we obtain an incomplete

manifold (B∞, g∞) that is weakly PIC2 (cf. [31, Th. 5.6]).

By definition of ρ∗, we can find a sequence of points yj such that

ρj := Q
1
2
j dg(tj)(xj , yj)→ ρ∗ and Q−1

j scal(yj , tj)→∞.

For each j, we can find a unit speed geodesic γj : [0, ρjQ
− 1

2
j ]→ (M, g(tj)) such

that γj(0) = xj and γj(ρjQ
− 1

2
j ) = yj . Let γ∞ : [0, ρ∗)→ (B∞, g∞) denote the

limit of γj . Using the pointwise curvature derivative estimate in Step 1, we

obtain

scalg∞(γ∞(s)) = lim
j→∞

Q−1
j scal(γj(sQ

− 1
2

j ), tj) ≥ (η(ρ∗ − s))−2 ≥ 100

if s ∈ [ρ∗ − 1
100η , ρ

∗).

Let us consider a real number s̄ ∈ [ρ∗− 1
100η , ρ

∗) such that 8C1η(ρ∗−s̄) ≤ s̄.

We claim that γj(s̄Q
− 1

2
j ) lies at the center of a 2ε-neck if j is sufficiently large

(depending on s̄). Indeed, if j is sufficiently large, it follows from property (iii)

and Corollary 6.22 that the point (γj(s̄Q
− 1

2
j ), tj) has a Canonical Neighborhood

that is either a 2ε-neck; or a 2ε-cap; or a closed manifold diffeomorphic to Sn/Γ;
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or a 2ε-quotient neck. Furthermore, the Canonical Neighborhood is contained

in a geodesic ball around γj(s̄Q
− 1

2
j ) of radius 2C1 scal(γj(s̄Q

− 1
2

j ), tj)
− 1

2 , and

the scalar curvature is at most 2C2 scal(γj(s̄Q
− 1

2
j ), tj) at each point in the

Canonical Neighborhood. Since M(s̄) <∞, we obtain

lim
j→∞

scal(γj(s̄Q
− 1

2
j ), tj)

−1 scal(yj , tj) =∞;

consequently, scal(yj , tj) ≥ 4C2 scal(γj(s̄Q
− 1

2
j ), tj) if j is sufficiently large.

Hence, if j is sufficiently large, then the Canonical Neighborhood does not

contain the point yj . We next observe that

8C1 scalg∞(γ∞(s̄))−
1
2 ≤ 8C1η(ρ∗ − s̄) ≤ s̄.

This implies 4C1 scal(γj(s̄Q
− 1

2
j ), tj)

− 1
2 ≤ s̄Q−

1
2

j if j is sufficiently large. Hence,

if j is sufficiently large, then the Canonical Neighborhood does not contain

the point xj . In particular, if j is sufficiently large, then the Canonical Neigh-

borhood of (γj(s̄Q
− 1

2
j ), tj) cannot be a closed manifold diffeomorphic to Sn/Γ.

Moreover, if the Canonical Neighborhood of (γj(s̄Q
− 1

2
j ), tj) is a 2ε-cap, then

the geodesic γj must enter and exit this 2ε-cap, but this is impossible since

γj minimizes length. Finally, if the Canonical Neighborhood of (γj(s̄Q
− 1

2
j ), tj)

is a quotient neck, then Theorem A.1 in [6] implies that M contains a non-

trivial incompressible (n−1)-dimensional space form, contrary to our assump-

tion. To summarize, if j is sufficiently large (depending on s̄), then the point

(γj(s̄Q
− 1

2
j ), tj) has a Canonical Neighborhood that is a 2ε-neck. In particular,

if j is sufficiently large (depending on s̄), then we have |Dscal| ≤ C(n)ε scal
3
2

at the point (γj(s̄Q
− 1

2
j ), tj).

Passing to the limit as j →∞, we conclude that |Dscalg∞ | ≤ C(n)ε scal
3
2
g∞

at the point γ∞(s̄). Integrating this estimate along γ∞ gives scalg∞(γ∞(s̄)) ≥
(C(n)ε(ρ∗−s̄))−2. Moreover, since (γj(s̄Q

− 1
2

j ), tj) lies at the center of a 2ε-neck

for j sufficiently large, the point γ∞(s̄) must lie on a C(n)ε-neck in (B∞, g∞).

As in [33, §12.1], there is a sequence of rescalings that converges to a piece

of a nonflat metric cone in the limit. Using the pointwise curvature derivative

estimate established in Step 1, we can extend the metric backwards in time.

This gives a locally defined solution to the Ricci flow that is weakly PIC2

and that, at the final time, is a piece of nonflat metric cone. This contradicts

Proposition 6.5.

Step 4: We now rescale the manifold (M, g(tj)) around the point xj by the

factor Qj . By Step 3, we have uniform bounds for the curvature at bounded
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distance. Using the curvature derivative estimate in Step 1 together with

Shi’s interior derivative estimates, we conclude that the covariant derivatives

of the curvature tensor are bounded at bounded distance. Combining this

with Perelman’s noncollapsing estimate, we conclude that (after passing to a

subsequence) the rescaled manifolds converge in the Cheeger-Gromov sense to a

complete smooth limit manifold (M∞, g∞). Since (M, g(tj)) has (f, θ)-pinched

curvature, the curvature tensor of (M∞, g∞) is weakly PIC2 and satisfies R−
θ scal id ? id ∈ PIC. Using property (iii) and Corollary 6.22, we conclude that

every point in (M∞, g∞) with scalar curvature greater than 4 has a Canonical

Neighborhood that is either a 2ε-neck; or a 2ε-cap; or a 2ε-quotient neck. Note

that the last possibility cannot occur; indeed, if (M∞, g∞) contains a quotient

neck, then (M, g(tj)) contains a quotient neck for j sufficiently large, and

Theorem A.1 in [6] then implies that M contains a nontrivial incompressible

(n− 1)-dimensional space form, contrary to our assumption.

We claim that the limit manifold (M∞, g∞) has bounded curvature. In-

deed, if there is a sequence of points in (M∞, g∞) with curvature going to

infinity, then (M∞, g∞) contains a sequence of necks with radii converging

to 0, contradicting Proposition 6.9. Thus, (M∞, g∞) has bounded curvature.

Step 5: We now extend the limit (M∞, g∞) backwards in time. By Step 4,

the scalar curvature of (M∞, g∞) is bounded from above by a constant Λ > 4.

Using the pointwise curvature derivative estimate in Step 1, we conclude that

lim sup
j→∞

sup

(x,t)∈Bg(tj)(xj ,AQ
− 1

2
j )×[tj− 1

100ηΛ
Q−1
j ,tj ]

Q−1
j scal(x, t) ≤ 2Λ

for each A > 1. Hence, if we put τ1 := − 1
200ηΛ , then we can extend (M∞, g∞)

backwards in time to a complete solution (M∞, g∞(t)) of the Ricci flow that

is defined for t ∈ [τ1, 0] and satisfies Λ1 := supt∈[τ1,0] supM∞ scalg∞(t) ≤ 2Λ.

In the next step, we put τ2 := τ1 − 1
200ηΛ1

. Using the pointwise curvature

derivative estimate in Step 1, we can extend the solution (M∞, g∞), t ∈ [τ1, 0],

backwards in time to a solution (M∞, g∞(t)), t ∈ [τ2, 0]. Moreover, Λ2 :=

supt∈[τ2,0] supM∞ scalg∞(t) ≤ 2Λ1. Continuing this process, we can extend the

solution backwards in time to the interval [τm, 0], where τm+1 := τm − 1
200ηΛm

and Λm+1 := supt∈[τm+1,0] supM∞ scalg∞(t) ≤ 2Λm.

Let τ∗ = limm→∞ τm ≤ − 1
200ηΛ . Using a standard diagonal sequence

argument, we obtain a complete, smooth limit flow (M∞, g∞(t)) that is defined

on the interval (τ∗, 0] and that has bounded curvature for each t ∈ (τ∗, 0]. Since

(M, g(t)) has (f, θ)-pinched curvature, the curvature tensor of the limit flow

(M∞, g∞(t)) is weakly PIC2 and satisfies R− θ scal id ? id ∈ PIC.

Step 6: We claim that τ∗ = −∞. To prove this, we argue by contradiction.

Suppose τ∗ > −∞. Clearly, limm→∞(τm−τm+1) = 0, hence limm→∞ Λm =∞.
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By the Harnack inequality (cf. Theorem 6.1 above), the function t 7→
(t − τ∗) scalg∞(t)(x) is monotone increasing at each point x ∈ M∞. Since

scalg∞(0)(x) ≤ Λ for all x ∈M∞, we obtain

scalg∞(t)(x) ≤ −τ∗

t− τ∗
Λ

for all x ∈ M∞ and all t ∈ (τ∗, 0]. Using Lemma 8.3(b) in [33], we conclude

that

0 ≤ − d

dt
dg∞(t)(x, y) ≤ C(n)

 
−τ∗
t− τ∗

Λ

for all x, y ∈M∞ and all t ∈ (τ∗, 0]. Integrating over t gives

dg∞(0)(x, y) ≤ dg∞(t)(x, y) ≤ dg∞(0)(x, y) + C(n) (−τ∗)
√

Λ

for all x, y ∈M∞ and all t ∈ (τ∗, 0].

By the maximum principle,

inf
M∞

scalg∞(t) ≤ inf
M∞

scalg∞(0) ≤ 1

for all t ∈ (τ∗, 0]. Hence, we can find a point y∞ ∈M∞ such that scalg∞(t)(y∞)

≤ 4 for t = τ∗ + 1
1000ηΛ ∈ (τ∗, 0]. Using the pointwise curvature derivative

estimate in Step 1, we obtain scalg∞(t)(y∞) ≤ 8 for all t ∈ (τ∗, τ∗+ 1
1000ηΛ ]. In

particular, scalg∞(τm)(y∞) ≤ 8 if m is sufficiently large. Arguing as in Step 3,

we can show that

lim sup
m→∞

sup
Bg∞(τm)(y∞,A)

scalg∞(τm) <∞

for every A > 1.

Consequently, a subsequence of the manifolds (M∞, g∞(τm), y∞) con-

verges in the Cheeger-Gromov sense to a complete, smooth limit. If this limit

manifold has unbounded curvature, then (by property (iii) above) it contains

a sequence of necks with radii converging to 0, contradicting Proposition 6.9.

Therefore, a subsequence of the manifolds (M∞, g∞(τm), y∞) converges in the

Cheeger-Gromov sense to a complete, smooth limit with bounded curvature.

Consequently, we can find a constant Λ∗ > Λ (independent of A) such that

lim inf
m→∞

sup
Bg∞(τm)(y∞,A)

scalg∞(τm) ≤ Λ∗

for every A > 1. Using the distance estimate, we obtain Bg∞(0)(y∞, A) ⊂
Bg∞(τm)(y∞, A + C(n) (−τ∗)

√
Λ). Putting these facts together, we conclude

that

lim inf
m→∞

sup
Bg∞(0)(y∞,A)

scalg∞(τm) ≤ Λ∗
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for every A > 1. Hence, for each A > 1, we can find a large integer m

(depending on A) such that τm ∈ (τ∗, τ∗ + 1
1000ηΛ∗ ] and

sup
Bg∞(0)(y∞,A)

scalg∞(τm) ≤ 2Λ∗.

Using the pointwise derivative estimate in Step 1, we obtain

sup
t∈(τ∗,τ∗+ 1

1000ηΛ∗ ]

sup
Bg∞(0)(y∞,A)

scalg∞(t) ≤ 4Λ∗

for every A > 1. Since Λ∗ is independent of A, we conclude that

sup
t∈(τ∗,τ∗+ 1

1000ηΛ∗ ]

sup
M∞

scalg∞(t) ≤ 4Λ∗.

Therefore, the flow (M∞, g∞(t)), t ∈ (τ∗, 0], has bounded curvature. This

contradicts the fact that limm→∞ Λm =∞. Thus, τ∗ = −∞.

To summarize, if we dilate the flow (M, g(t)) around the point (xj , tj)

by the factor Qj , then (after passing to a subsequence), the rescaled flows

converge in the Cheeger-Gromov sense to an ancient κ-solution (M∞, g∞(t)),

t ∈ (−∞, 0], satisfying R − θ scal id ? id ∈ PIC. Here, κ depends only on

the initial data. This contradicts statement (ii). This completes the proof of

Theorem 7.2.

Finally, by combining Theorem 7.2 with Theorem 6.22, we can draw the

following conclusion:

Corollary 7.3 (cf. G. Perelman [33, Th. 12.1]). Let (M, g0) be a compact

manifold with positive isotropic curvature of dimension n ≥ 12, which does not

contain any nontrivial incompressible (n − 1)-dimensional space forms. Let

g(t), t ∈ [0, T ), denote the solution to the Ricci flow with initial metric g0.

Given any ε > 0, there exists a positive number r̂ with the following property :

If (x0, t0) is a point in space-time with Q := scal(x0, t0) ≥ r̂−2, then we can

find a neighborhood B of x0 such that

Bg(t0)(x0, (2C1)−1 scal(x0, t0)−
1
2 ) ⊂ B ⊂ Bg(t0)(x0, 2C1 scal(x0, t0)−

1
2 )

and

(2C2)−1 scal(x0, t0) ≤ scal(x, t0) ≤ 2C2 scal(x0, t0)

for all x ∈ B. Furthermore, B satisfies one of the following conditions :

• B is a strong 2ε-neck (in the sense of [35]) with center at x0.

• B is a 2ε-cap in the sense of Definition 6.16.

• B is a closed manifold diffeomorphic to Sn/Γ.

Here, C1 = C1(n, θ, ε) and C2 = C2(n, θ, ε) are the constants appearing in

Corollary 6.22. Finally, we have |Dscal| ≤ 2η scal
3
2 and | ∂∂tscal| ≤ 2η scal2 at

the point (x0, t0), where η is a constant that depends only on n and θ.
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8. The behavior of the flow at the first singular time

Throughout this section, we fix a compact initial manifold (M, g0) of di-

mension n ≥ 12 that has positive isotropic curvature and does not contain

any nontrivial incompressible (n − 1)-dimensional space forms. Let (M, g(t))

be the solution of the Ricci flow with initial metric g0, and let [0, T ) de-

note the maximal time interval on which the solution is defined. Note that

T ≤ n
2 infx∈M scal(x,0) . By Theorem 1.2, we can find a continuous family of

closed, convex, O(n)-invariant sets {Ft : t ∈ [0, T ]} such that the family

{Ft : t ∈ [0, T ]} is invariant under the Hamilton ODE d
dtR = Q(R); the

curvature tensor of (M, g0) lies in the set F0; and

Ft ⊂ {R : R− θ scal id ? id ∈ PIC}
∩ {R : R+ f(scal) id ? id ∈ PIC2}

for all t ∈ [0, T ]. Here, f is a concave and increasing function satisfying

lims→∞
f(s)
s = 0, and θ and N are positive numbers. Note that f , θ, and N

depend only on the initial data. By Hamilton’s PDE-ODE principle (cf. [14,

Th. 3], or [13, Th. 10.16]), the curvature tensor of (M, g(t)) lies in the set Ft
for each t ∈ [0, T ).

By Corollary 7.3, every point in space-time where the scalar curvature is

sufficiently large admits a Canonical Neighborhood that is either a 2ε-neck;

or a 2ε-cap; or a closed manifold diffeomorphic to Sn/Γ. Let ρ be a small

positive number with the property that every point with scal ≥ 1
4 ρ
−2 satisfies

the conclusion of the Canonical Neighborhood Theorem. In particular, we have

|Dscal| ≤ 2η scal
3
2 and | ∂∂tscal| ≤ 2η scal2 whenever scal ≥ 1

4 ρ
−2. We define

Ω := {x ∈M : lim sup
t→T

scal(x, t) <∞}.

The pointwise curvature derivative estimate implies that Ω is an open subset

of M . Using the pointwise curvature derivative estimate together with Shi’s

interior estimates, we conclude the metrics g(t) converge to a smooth metric

g(T ) on Ω. Following [33], we consider the set

Ωρ := {x ∈M : lim sup
t→T

scal(x, t) ≤ ρ−2} = {x ∈ Ω : scal(x, T ) ≤ ρ−2}.

We distinguish two cases:

Case 1: Suppose that Ωρ = ∅. Using the inequality | ∂∂tscal| ≤ 2η scal2,

we obtain infx∈M scal(x, t) ≥ 1
2 ρ
−2 if t is sufficiently close to T . Hence, if

t is sufficiently close to T , then every point in (M, g(t)) admits a Canoni-

cal Neighborhood that is either a 2ε-neck; or a 2ε-cap; or a closed manifold

diffeomorphic to Sn/Γ.
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Case 2: Suppose now that Ωρ 6= ∅. The Canonical Neighborhood Theorem

guarantees that every point in Ω \ Ωρ lies either on a 2ε-tube with boundary

components in Ωρ; or on a 2ε-cap with boundary in Ωρ; or on a 2ε-horn with

boundary in Ωρ; or on a double 2ε-horn; or on a capped 2ε-horn; or on a closed

manifold diffeomorphic to Sn/Γ. (Here, we use the definitions from Perelman’s

paper [35].) Following Perelman [35], we perform surgery on each 2ε-horn with

boundary in Ωρ. We discard all double 2ε-horns, all capped 2ε-horns, and all

closed manifolds diffeomorphic to Sn/Γ. We leave unchanged all the 2ε-tubes

with boundary in Ωρ, and all 2ε-caps with boundary in Ωρ.

Proposition 8.1. The pre-surgery manifold M is diffeomorphic to a con-

nected sum of the post-surgery manifold with a finite collection of standard

spaces, each of which is a quotient of Sn or Sn−1 × R by standard isometries.

Proof. Suppose first that Ωρ = ∅. In this case, M is diffeomorphic to

either a quotient of Sn by standard isometries; or a tube with caps attached

on both sides; or an Sn−1-bundle over S1 with a fiberwise round metric. In

the second case, Definition 6.16 ensures that M is diffeomorphic to Sn. To

handle the third case, we note that that there are two Sn−1-bundles over S1

with a fiberwise round metric. One of them is orientable, the other one is not.

Both are diffeomorphic to quotients of Sn−1 × R by standard isometries. To

summarize, M is diffeomorphic to a quotient of Sn or a quotient of Sn−1 × R
by standard isometries.

Suppose next that Ωρ 6= ∅. In this case, we can recover the pre-surgery

manifold M from the post-surgery manifold as follows. We first reinstate

the components that were discarded after surgery. More precisely, we form a

disjoint union of the post-surgery manifold and a finite collection of standard

spaces, each of which is a quotient of Sn or Sn−1 × R by standard isometries.

In the next step, we reverse the surgery by gluing in finitely many handles

of the form Sn−1 × I. Note that, as we glue in these handles, the attaching

maps are nearly isometric. Thus, the pre-surgery manifold is diffeomorphic to

a connected sum of the post-surgery manifold with finitely many quotients of

Sn and Sn−1 × R. This completes the proof of Proposition 8.1.

In the remainder of this section, we show that the surgery procedure pre-

serves our curvature pinching estimates, provided that the surgery parameters

are sufficiently fine.

Proposition 8.2. Suppose that the curvature tensor of a δ-neck lies in

the set Ft prior to surgery. If δ is sufficiently small and the curvature of

the neck is sufficiently large, then the curvature tensor of the surgically mod-

ified manifold lies in the set Ft. Moreover, the scalar curvature is pointwise

increasing under surgery.
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Proof. Suppose that the scalar curvature of the neck is close to h−2, where

h is small. Let us rescale by the factor h−1 so that the scalar curvature of

the neck is close to 1 after rescaling. Let us, therefore, assume that g is a

Riemannian metric on Sn−1 × [−10, 10] that is close to the round metric with

scalar curvature 1, and that has curvature in the set h2Ft. We first recall

the definition of the surgically modified metric g̃ (cf. [21, §4.1]). To that end,

let z denote the height function on Sn−1 × [−10, 10], and let ϕ(z) = e−
1
z for

z ∈ (0, 1
10 ]. In the region Sn−1×[−10, 0], the metric is unchanged under surgery,

i.e., g̃ = g. In the region Sn−1×(0, 1
20 ], we change the metric conformally by g̃ =

e−2ϕ g. In the region Sn−1× ( 1
20 ,

1
10 ], we define g̃ = e−2ϕ (χ(z) g+(1−χ(z)) ḡ),

where ḡ denotes the standard metric on the cylinder and χ : ( 1
20 ,

1
10 ] → [0, 1]

is a smooth cutoff function satisfying χ(z) = 1 for z ∈ [ 1
20 ,

1
18 ] and χ(z) = 0

for z ∈ [ 1
12 ,

1
10 ]. In particular, the surgically modified metric g̃ is rotationally

symmetric for z ∈ [ 1
12 ,

1
10 ]. Hence, we may extend g̃ by gluing in a rotationally

symmetric cap.

We now analyze the curvature of the surgically modified metric g̃. It

suffices to consider the case when z > 0 is small. In this region, g̃ = e−2ϕg.

Let {e1, . . . , en} denote a local orthonormal frame with respect to the metric g.

If we put ẽi = eϕei, then {ẽ1, . . . , ẽn} is an orthonormal frame with respect to

the metric g̃. We will express geometric quantities associated with the metric g

relative to the frame {e1, . . . , en}, while geometric quantities associated with g̃

will be expressed in terms of {ẽ1, . . . , ẽn}. With this understood, the curvature

tensor after surgery is related to the curvature tensor before surgery by the

formula

R̃ = e2ϕR+ e2ϕ
(
D2ϕ+ dϕ⊗ dϕ− 1

2
|dϕ|2 id

)
? id.

This implies

|R̃−R− z−4 e−
1
z (dz ⊗ dz) ? id| � z−4 e−

1
z

for z > 0 sufficiently small. Consequently, scal(R̃) > scal(R) if z > 0 is

sufficiently small. Since the metric g is close to the cylindrical metric, we

obtain ∣∣∣∣R− 1

2
(id− 2 z ⊗ z) ? id

∣∣∣∣� 1,

hence∣∣∣∣R̃− (1− z−4 e−
1
z )R− 1

2
z−4 e−

1
z id ? id

∣∣∣∣
≤ |R̃−R− z−4 e−

1
z (dz ⊗ dz) ? id|+ z−4 e−

1
z

∣∣∣∣R− 1

2
(id− 2 z ⊗ z) ? id

∣∣∣∣
� z−4 e−

1
z

for z > 0 sufficiently small. Therefore, we may write

R̃ = (1− z−4 e−
1
z )R+ z−4 e−

1
z S,
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where |S − 1
2 id ? id| � 1 for z > 0 sufficiently small. Consequently, S ∈ h2Ft

if z > 0 is sufficiently small. Moreover, R ∈ h2Ft in view of our assumption.

Since Ft is a convex set, we conclude that R̃ ∈ h2Ft if z > 0 is sufficiently

small. This easily implies that R̃ ∈ h2Ft for all z ∈ (0, 10).

9. The standard solution

In this section, we recall some basic facts concerning the so-called standard

solution. The standard solution is used to model the evolution of a cap that is

glued in during a surgery procedure. More precisely, suppose that (Sn−1 × R,

g(t)), t < 0, is a family of shrinking cylinders, normalized so that scalg(t) =
1

1− 2t
n−1

for t < 0. Suppose that we perform surgery at time t = 0; that is, we

remove a half-cylinder and glue in a cap that is rotationally symmetric and

has positive curvature. This gives a rotationally symmetric metric g(0) on Rn.

The standard solution is obtained by evolving the manifold (Rn, g(0)) under

the Ricci flow.

The following results were proved by Perelman [35] in dimension 3 and

were extended to higher dimensions in [12].

Theorem 9.1 (G. Perelman [35, §2]; B.L. Chen, X.P. Zhu [12, Th. A.1]).

There exists a complete solution (Rn, g(t)), t ∈ [0, n−1
2 ), to the Ricci flow with

the following properties :

(i) The initial manifold (Rn, g(0)) is isometric to a standard cylinder with

scalar curvature 1 outside of a compact set, and this compact set is iso-

metric to the cap used in the surgery procedure.

(ii) For each t ∈ [0, n−1
2 ), the manifold (Rn, g(t)) is rotationally symmetric.

(iii) For each t ∈ [0, n−1
2 ), the manifold (Rn, g(t)) is asymptotic to a cylinder

with scalar curvature 1
1− 2t

n−1

at infinity.

(iv) The scalar curvature is bounded from below by 1
Kstnd (1− 2t

n−1
)
, where Kstnd

is a positive constant that depends only on n.

(v) For each t ∈ [0, n−1
2 ), the manifold (Rn, g(t)) is weakly PIC2 and satisfies

R− θ scal id ? id ∈ PIC for some constant θ > 0 that depends only on n.

(vi) The flow (Rn, g(t)) is κ-noncollapsed for some constant κ > 0 that depends

only on n.

(vii) There exists a function ω : [0,∞)→ (0,∞) such that

scal(x, t) ≤ scal(y, t)ω(scal(y, t) dg(t)(x, y)2)

for all points x, y and all t ∈ [0, n−1
2 ).

Proof. The statements (i), (ii), (iii), (iv), (vi) and (vii) are established

in [12, App. A]. Moreover, it is shown in [12] that (Rn, g(t)) has nonnegative

curvature operator. Hence, it remains to show that R − θ scal id ? id ∈ PIC.
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To see this, we observe that the initial manifold (Rn, g(0)) is uniformly PIC.

Moreover, on the initial manifold (Rn, g(0)), the sum of the two smallest eigen-

values of the Ricci tensor is bounded from below by a small multiple of the

scalar curvature. Hence, we can find a small constant b ∈ (0, bmax) such that

the curvature tensor of (Rn, g(0)) lies in the cone C(b). By Hamilton’s PDE-

ODE principle (see [13, Th. 12.34]), the curvature tensor of (Rn, g(t)) lies in

C(b) for each t ≥ 0. Consequently, the curvature tensor of (Rn, g(t)) satisfies

R− θ scal id ? id ∈ PIC for each t ≥ 0.

It turns out that the standard solution satisfies a Canonical Neighborhood

Property:

Theorem 9.2 (cf. G. Perelman [35]; B.L. Chen, X.P. Zhu [12, Cor. A.2]).

Given a small number ε̃ > 0 and a large number A0 > 0, we can find a

number α ∈ [0, n−1
2 ) with the following property : If (x0, t0) is a point on

the standard solution such that t0 ∈ [α, n−1
2 ), then the parabolic neighbor-

hood P (x0, t0, A0 scal(x0, t0)−
1
2 ,−A0 scal(x0, t0)−1) is, after scaling by the fac-

tor scal(x0, t0), ε̃-close to the corresponding subset of a noncompact ancient

κ0-solution satisfying R− θ scal id ? id ∈ PIC.

Proof. Suppose that the assertion is false. Then we can find a sequence

of points (xj , tj) on the standard solution such that tj → n−1
2 and the para-

bolic neighborhood P (xj , tj , A0 scal(xj , tj)
− 1

2 ,−A0 scal(xj , tj)
−1) is not ε̃-close

to the corresponding subset of a noncompact ancient κ0-solution satisfying

R−θ scal id? id ∈ PIC. We dilate the solution around the point (xj , tj) by the

factor scal(xj , tj). Using statement (vii) in Theorem 9.1 together with the Har-

nack inequality (cf. Theorem 6.1), we conclude that the rescaled flows converge

to a complete, noncompact ancient solution (M∞, g∞(t)). The limiting ancient

solution (M∞, g∞(t)) is weakly PIC2 and satisfies R − θ scal id ? id ∈ PIC.

Moreover, the limiting ancient solution is κ0-noncollapsed.

By Theorem 6.1, the standard solution satisfies the Harnack inequality

∂

∂t
scal + 2 〈∇scal, v〉+ 2 Ric(v, v) +

1

t
scal ≥ 0

for t ∈ (0, n−1
2 ). Consequently, the limiting ancient solution (M∞, g∞(t))

satisfies
∂

∂t
scal + 2 〈∇scal, v〉+ 2 Ric(v, v) ≥ 0.

Using Proposition 6.11, we conclude that (M∞, g∞(t)) has bounded curvature.

Thus, (M∞, g∞(t)) is a noncompact ancient κ0-solution satisfying R−θ scal id

? id ∈ PIC. This is a contradiction.

Corollary 9.3 (cf. G. Perelman [35]; B.L. Chen, X.P. Zhu [12, Cor. A.2]).

Given ε > 0, there exist positive constants C1 = C1(n, ε) and C2 = C2(n, ε)
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such that the following holds : For each point (x0, t0) on the standard solution,

there exists a neighborhood B of x0 such that

Bg(t0)(x0, C
−1
1 scal(x0, t0)−

1
2 ) ⊂ B ⊂ Bg(t0)(x0, C1 scal(x0, t0)−

1
2 )

and

C−1
2 scal(x0, t0) ≤ scal(x, t0) ≤ C2 scal(x0, t0)

for all x ∈ B. Furthermore, B satisfies one of the following conditions :

• B is a strong ε-neck (in the sense of [35]) with center at x0. In particular,

if t0 − R(x0, t0)−1 ≤ 0, then B is disjoint from the surgical cap that was

glued in at time 0.

• B is an ε-cap in the sense of Definition 6.16.

Finally, we have |Dscal| ≤ η scal
3
2 and | ∂∂tscal| ≤ η scal2.

Proof. If t0 is sufficiently close to n−1
2 (depending on ε), this follows from

Theorems 9.2 and 6.18. If t0 is bounded away from n−1
2 , this follows from the

fact that the standard solution is asymptotic to a cylinder at infinity.

Finally, we state a lemma that will be needed later.

Lemma 9.4. Given α ∈ [0, n−1
2 ) and l > 0, we can find a large number A

(depending on α and l) with the following property : Suppose that t1 ∈ [0, α] and

γ is a space-time curve on the standard solution (parametrized by the interval

[0, t1]) such that γ(0) lies on the cap at time 0, and
∫ t1

0 |γ′(t)|2g(t) dt ≤ l. Then

the curve γ is contained in the parabolic neighborhood P (γ(0), 0, A2 , t1).

Proof. Using the inequality
∫ t1

0 |γ′(t)|2g(t) dt ≤ l and Hölder’s inequality,

we obtain
∫ t1

0 |γ′(t)|g(t) dt ≤ α
1
2 l

1
2 . From this, the assertion follows easily.

10. A priori estimates for Ricci flow with surgery

In this section, we give the definition of Ricci flow with surgery. Moreover,

we discuss how Perelman’s noncollapsing estimate and the Canonical Neigh-

borhood Theorem can be extended to Ricci flow with surgery. Throughout this

section, we fix a compact initial manifold (M, g0) of dimension n ≥ 12 that has

positive isotropic curvature and does not contain any nontrivial incompressible

(n − 1)-dimensional space forms. As above, let {Ft : t ∈ [0, T ]} be a family

of closed, convex, O(n)-invariant sets such that the family {Ft : t ∈ [0, T ]}
is invariant under the Hamilton ODE d

dtR = Q(R); the curvature tensor of

(M, g0) lies in the set F0; and

Ft ⊂ {R : R− θ scal id ? id ∈ PIC}
∩ {R : R+ f(scal) id ? id ∈ PIC2}
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for all t ∈ [0, T ]. Here, f is a concave and increasing function satisfying

lims→∞
f(s)
s = 0, and θ and N are positive numbers.

Having fixed θ, we can find a universal constant κ0 such that the con-

clusion of Theorem 6.19 holds. Moreover, we fix a constant η such that the

conclusions of Corollary 6.20 and Corollary 9.3 hold. In other words, we have

|Dscal| ≤ η scal
3
2 and | ∂∂tscal| ≤ η scal2 on any ancient κ-solution, and the same

inequalities hold on the standard solution.

Let us fix a small positive number ε > 0. Moreover, we fix constants C1 =

C1(n, θ, ε) and C2 = C2(n, θ, ε) such that the conclusions of Corollaries 6.22

and 9.3 hold.

Definition 10.1. A Ricci flow with surgery on the interval [0, T ) consists

of the following data:

• A decomposition of [0, T ) into a disjoint union of finitely many subintervals

[t−k , t
+
k ), k ∈ {0, 1, . . . , l}. In other words, t−0 = 0, t+l = T , and t−k = t+k−1 for

k ∈ {1, . . . , l}.
• A collection of smooth Ricci flows (M (k), g(k)(t)), defined for t ∈ [t−k , t

+
k )

and going singular as t→ t+k for k ∈ {0, 1, . . . , l − 1}.
• Positive numbers ε, r, δ, h, where δ ≤ ε and h ≤ δr. These are referred to

as the surgery parameters.

For each k ∈ {0, 1, . . . , l − 1}, we put Ω(k) = {x ∈ M (k) : lim supt→t+
k

scal(x, t)

<∞}. We assume that the following conditions are satisfied:

• The manifold (M (0), g(0)(0)) is isometric to the given initial manifold (M, g0).

• The manifold (M (k), g(k)(t−k )) is obtained from (Ω(k−1), g(k−1)(t+k−1)) by per-

forming surgery on finitely many necks. For each neck on which we perform

surgery, we can find a point (x0, t0) at the center of that neck such that

scal(x0, t0) = h−2; moreover, the parabolic neighborhood

P (x0, t0, δ
−1h,−δ−1h2)

is free of surgeries and is a δ-neck.

• After each surgery, we discard all double 4ε-horns and all capped 4ε-horns.

Moreover, we remove all connected components that are diffeomorphic to

Sn/Γ.

• Each flow (M (k), g(k)(t)) satisfies the Canonical Neighborhood Property

with accuracy 4ε on all scales less than r. That is to say, if (x0, t0) is

an arbitrary point in space-time satisfying scal(x0, t0) ≥ r−2, then there

exists a neighborhood B of x0 with the property that

Bg(t0)(x0, (8C1)−1 scal(x0, t0)−
1
2 ) ⊂ B ⊂ Bg(t0)(x0, 8C1 scal(x0, t0)−

1
2 )

and

(8C2)−1 scal(x0, t0) ≤ scal(x, t0) ≤ 8C2 scal(x0, t0)
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for all x ∈ B. Moreover, B is either a strong 4ε-neck (in the sense of [35])

with center at x0 or a 4ε-cap (in the sense of Definition 6.16).

• If (x0, t0) is an arbitrary point in space-time satisfying scal(x0, t0) ≥ r−2,

then |Dscal| ≤ 4η scal
3
2 and | ∂∂tscal| ≤ 4η scal2 at (x0, t0).

Note that the manifold M (k) may have multiple connected components.

In the following, we will write the surgically modified solution simply as g(t).

However, it is important to remember that the underlying manifold changes

across surgery times.

In the first step, we prove an upper bound for the length of the time

interval on which the solution is defined.

Proposition 10.2. Suppose that we have a Ricci flow with surgery start-

ing from (M, g0) that is defined on [0, T ). Then T ≤ n
2 infx∈M scal(x,0) .

Proof. By the maximum principle, the function

t 7→ n

2 infx∈M scal(x, t)
+ t

is monotone decreasing under smooth Ricci flow. By Proposition 8.2, this

function is monotone decreasing across surgery times. From this, the assertion

follows.

Proposition 10.3. Let f and θ be as above. Moreover, let g(t) be a

Ricci flow with surgery starting from (M, g0). Then (M, g(t)) has (f, θ)-pinched

curvature.

Proof. By Theorem 1.2 and Hamilton’s PDE-ODE principle (cf. [14, Th. 3]

or [13, Th. 10.16]), the property that the curvature tensor of g(t) lies in Ft
is preserved by the Ricci flow. By Proposition 8.2, the property that the

curvature tensor lies in Ft is preserved under surgery. Therefore, the property

that the curvature tensor of g(t) lies in Ft is preserved under Ricci flow with

surgery.

Proposition 10.4. Let g(t) be a Ricci flow with surgery, and let ε, r, δ, h

denote the surgery parameters. Let (x0, t0) be a point in space time and let r0

be a positive real number such that t0 ≥ r2
0 and scal(x, t) ≤ r−2

0 for all points

(x, t) ∈ P (x0, t0, r0,−r2
0). Then |DmR| ≤ C(n,m) r−m−2

0 at the point (x0, t0).

Proof. If the parabolic neighborhood P (x0, t0,
r0
2 ,−

r2
0
4 ) is free of surgeries,

this follows from the classical Shi estimate. Suppose next that the para-

bolic neighborhood P (x0, t0,
r0
2 ,−

r2
0
4 ) does contain surgeries. At each point

modified by surgery, the scalar curvature is at least 1
4 h
−2. Consequently,

1
4 h
−2 ≤ r−2

0 . The classical Shi estimate implies |DmR| ≤ C(n,m)h−m−2 ≤
C(n,m) r−m−2

0 on each strong neck on which we perform surgery. Moreover,
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|DmR| ≤ C(n,m)h−m−2 ≤ C(n,m) r−m−2
0 at each point modified by surgery.

The assertion now follows from Theorem 3.29 in [31].

Proposition 10.5 (cf. G. Perelman [35, Lemma 4.5]). Fix ε > 0 small,

α ∈ [0, n−1
2 ), and A > 1. Then there exists δ̄ > 0 (depending on α and A)

with the following property : Suppose that we have a Ricci flow with surgery

with parameters ε, r, δ, h, where δ ≤ δ̄. Suppose that T0 ∈ [0, T ) is a surgery

time, and let x0 be a point that lies on a gluing cap at time T0. Let T1 =

min{T, T0 + αh2}. Then one of the following statements holds :

(i) The flow is defined on P (x0, T0, Ah, T1 − T0). Moreover, after dilating

the flow by h−2 and shifting time T0 to 0, the parabolic neighborhood

P (x0, T0, Ah, T1−T0) is A−1-close to the corresponding subset of the stan-

dard solution.

(ii) There exists a surgery time t+ ∈ (T0, T1) such that the flow is defined on

P (x0, T0, Ah, t
+ − T0). Moreover, the parabolic neighborhood

P (x0, T0, Ah, t
+ − T0)

is, after dilation by the factor h−2, A−1-close to the corresponding subset

of the standard solution. Finally, for each point x ∈ Bg(T0)(x0, Ah), the

flow exists exactly until time t+.

The proof is the same as the proof of Lemma 4.5 in Perelman’s paper [35].

We omit the details.

As in Perelman’s work [35], it is crucial to establish a noncollapsing esti-

mate in the presence of surgeries.

Definition 10.6. Suppose we are given a Ricci flow with surgery. We say

that the flow is κ-noncollapsed on scales less than ρ if the following holds. If

(x0, t0) is a point in space-time and r0 is a positive number such that r0 ≤ ρ

and scal(x, t) ≤ r−2
0 for all points (x, t) ∈ P (x0, t0, r0,−r2

0) for which the flow

is defined, then volg(t0)(Bg(t0)(x0, r0)) ≥ κ rn0 .

As in Perelman’s work [35], the noncollapsing estimate for Ricci flow with

surgery will follow from the monotonicity formula for the reduced volume.

Definition 10.7. Suppose we are given a Ricci flow with surgery. A curve in

space-time is said to be admissible if it stays in the region unaffected by surgery.

A curve in space-time is called barely admissible if it is on the boundary of the

set of admissible curves.

Lemma 10.8 (cf. G. Perelman [35, Lemma 5.3]). Fix ε, r, L. Then we can

find a real number δ̄ > 0 (depending on r and L) with the following property :

Suppose that we have a Ricci flow with surgery with parameters ε, r, δ, h, where

δ ≤ δ̄. Let (x0, t0) be a point in space-time such that scal(x0, t0) ≤ r−2, and
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let T0 < t0 be a surgery time. Finally, let γ be a barely admissible curve

(parametrized by the interval [T0, t0]) such that γ(T0) lies on the boundary of

a surgical cap at time T0, and γ(t0) = x0. Then∫ t0

T0

√
t0 − t (scal(γ(t), t) + |γ′(t)|2g(t)) dt ≥ L.

Proof. By Definition 10.1, we have |Dscal| ≤ 4η scal
3
2 and | ∂∂tscal| ≤

4η scal2 whenever scal ≥ r−2. Since scal(x0, t0) ≤ r−2, it follows that scal ≤
4r−2 in P (x0, t0,

r
100η ,−

r2

100η ). Let γ be a barely admissible curve in space-time

satisfying the assumptions of Lemma 10.8, and suppose that∫ t0

T0

√
t0 − t (scal(γ(t), t) + |γ′(t)|2g(t)) dt < L.

Using Hölder’s inequality and the positivity of the scalar curvature, we obtain∫ t0
t0−τ |γ

′(t)|g(t) dt < (2L)
1
2 τ

1
4 for τ > 0. Hence, we can find a real number

τ ∈ (0, r2

100η ), depending only on r and L, such that γ|[t0−τ,t0] is contained in

the parabolic neighborhood P (x0, t0,
r

100η ,−
r2

100η ). This implies

scal(γ(t), t) ≤ 4r−2

for all t ∈ [t0 − τ, t0].

Having chosen τ , we define real numbers α ∈ [0, n−1
2 ) and l > 0 by the

relations
(n− 1)

√
τ

4Kstnd

∣∣∣∣ log
(
1− 2α

n− 1

)∣∣∣∣ = L

and
l

2

√
τ = L.

Having fixed α and l, we choose a large constant A so that the conclusion of

Lemma 9.4 holds. Having chosen α and A, we choose δ̄ so that the conclusion of

Proposition 10.5 holds. Moreover, by choosing δ̄ small enough, we can arrange

that Kstnd δ̄
2 ≤ 1

16 .

In the following, we assume that δ ≤ δ̄. Let T1 ∈ [T0, T0 + αh2] denote

the largest number with the property that γ|[T0,T1] is contained in the para-

bolic neighborhood P (γ(T0), T0, Ah, αh
2). By Proposition 10.5, the parabolic

neighborhood P (γ(T0), T0, Ah, T1 − T0) is close to the corresponding subset of

the standard solution. Since h ≤ δr, it follows that

scal(γ(t), t) ≥ 1

2Kstnd (h2 − 2(t−T0)
n−1 )

≥ 1

2Kstnd δ2r2
≥ 8r−2

for all t ∈ [T0, T1]. Since scal(γ(t), t) ≤ 4r−2 for all t ∈ [t0− τ, t0], the intervals

[T0, T1] and [t0− τ, t0] are disjoint. In other words, T1 ≤ t0− τ . We distinguish

two cases:
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Case 1: Suppose that T1 < T0 + αh2. In this case, the curve γ|[T0,T1]

exits the parabolic neighborhood P (γ(T0), T0, Ah, αh
2) at time T1. Since the

parabolic neighborhood P (γ(T0), T0, Ah, T1−T0) is close to the corresponding

subset of the standard solution, Lemma 9.4 implies that
∫ T1

T0
|γ′(t)|2g(t) dt ≥

l
2 .

(Here, we have used the fact that
∫
|γ′(t)|2g(t) dt is invariant under scaling.)

Consequently,

L >

∫ T1

T0

√
t0 − t (scal(γ(t), t) + |γ′(t)|2g(t)) dt

≥
√
τ

∫ T1

T0

|γ′(t)|2g(t) dt

≥ l

2

√
τ ,

which contradicts our choice of l.

Case 2: Suppose that T1 = T0 + αh2. In this case,

L >

∫ T1

T0

√
t0 − t (scal(γ(t), t) + |γ′(t)|2g(t)) dt

≥
√
τ

∫ T1

T0

scal(γ(t), t) dt

≥
√
τ

∫ T1

T0

1

2Kstnd (h2 − 2(t−T0)
n−1 )

dt

=
(n− 1)

√
τ

4Kstnd

∣∣∣∣ log
(
1− 2α

n− 1

)∣∣∣∣,
which contradicts our choice of α.

Proposition 10.9 (cf. G. Perelman [35, Lemma 5.2]). Fix a small number

ε > 0. Then we can find a positive number κ and a positive function δ̃(·) with

the following property : Suppose that we have a Ricci flow with surgery with

parameters ε, r, δ, h, where δ ≤ δ̃(r). Then the flow is κ-noncollapsed on all

scales less than ε.

Note that the constant κ in the noncollapsing estimate may depend on

the initial data, but it is independent of the surgery parameters ε, r, δ, h.

Proof. Consider a point (x0, t0) in space-time and a positive number r0 ≤ ε
such that scal(x, t) ≤ r−2

0 for all points (x, t) ∈ P (x0, t0, r0,−r2
0) for which the

flow is defined. We need to show that volg(t0)(Bg(t0)(x0, r0)) ≥ κ rn0 for some

uniform constant κ > 0. We distinguish three cases:
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Case 1: Suppose first that scal(x0, t0) ≥ r−2. In this case, the Canonical

Neighborhood Assumption implies that volg(t0)(Bg(t0)(x0, r0)) ≥ κ rn0 for some

uniform constant κ > 0.

Case 2: Suppose next that the parabolic neighborhood P (x0, t0,
r0
2 ,−

r2
0
4 )

contains points modified by surgery. Let (x, t) be a point in P (x0, t0,
r0
2 ,−

r2
0
4 )

that lies on a surgical cap. Clearly, 1
4 h
−2 ≤ scal(x, t) ≤ r−2

0 , hence r0 ≤ 2h.

This implies volg(t)(Bg(t)(x,
r0

100)) ≥ κ rn0 for some uniform constant κ > 0.

Since Bg(t)(x,
r0

100) ⊂ Bg(t0)(x,
r0
4 ), we deduce that volg(t)(Bg(t0)(x0, r0)) ≥

volg(t)(Bg(t0)(x,
r0
4 )) ≥ κ rn0 .

Case 3: Suppose finally that scal(x0, t0) ≤ r−2 and the parabolic neigh-

borhood P (x0, t0,
r0
2 ,−

r2
0
4 ) is free of surgeries. Note that t0 is bounded from

above by Proposition 10.2. By Lemma 10.8, we can find a positive function

δ̃(·) such that the following holds: Suppose that the surgery parameters satisfy

δ ≤ δ̃(r), and suppose further that T0 < t0 is a surgery time and γ is a barely

admissible curve (parametrized by the interval [T0, t0]) such that γ(T0) lies on

the boundary of a surgical cap at time T0 and γ(t0) = x0. Then∫ t0

T0

√
t0 − t (scal(γ(t), t) + |γ′(t)|2g(t)) dt ≥ 8n

√
t0.

Thus, if δ ≤ δ̃(r), then every barely admissible curve has reduced length greater

than 2n.

In the following, we assume that δ ≤ δ̃(r). For t < t0, we denote by `(x, t)

the reduced distance from (x0, t0), i.e., the infimum of the reduced length over

all admissible curves joining (x, t) and (x0, t0). We claim that infx `(x, t) ≤ n
2

for all t < t0. This is clearly true if t is sufficiently close to t0. Now, if `(x, t)

< 2n for some point (x, t) in space-time, then the reduced length is attained by

a strictly admissible curve. Hence, we may apply results of Perelman (cf. [33,

§7]) to conclude that
∂

∂t
` ≥ ∆`+

1

t0 − t

(
`− n

2

)
whenever ` < 2n. Using the maximum principle, we deduce that infx `(x, t) ≤
n
2 for all t < t0.

In particular, there exists a point y ∈ M such that `(y, ε) ≤ n
2 . Hence,

we can find a radius ρ > 0 such that supx∈Bg(0)(y,ρ) `(x, 0) ≤ n. Note that

ρ depends only on ε and the initial data (M, g0), but not on the surgery

parameters. Hence, for each point x ∈ Bg(0)(y, ρ), the reduced distance is

attained by a strictly admissible curve, and this curve must be an L-geodesic.

Given a tangent vector v at (x0, t0), we denote by γv(t) = Lt,t0 expx0
(v)

the L-geodesic satisfying limt→t0
√
t0 − t γ′v(t) = v. Note that, due to the

presence of surgeries, γv(t) may not be defined on the entire interval [0, t0).
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Let V denote the set of all tangent vectors v at (x0, t0) with the property that

γv is defined on [0, t0); γv has minimal L-length; and γv(0) ∈ Bg(0)(y, ρ). In

view of the discussion above, the map L0,t0 expx0
: V → Bg(0)(y, ρ) is onto. For

each t ∈ [0, t0), we define

V (t) =

∫
V

(t0 − t)−
n
2 e−`(γv(t),t) Jv(t),

where Jv(t) = det(DLt,t0 expx0
)v denotes the Jacobian determinant of the L-

exponential map, and the integration is with respect to the standard Lebesgue

measure on the tangent space (Tx0M, g(t0)). For each tangent vector v ∈
V, Perelman’s Jacobian comparison theorem (cf. [33, §7]) implies that the

function t 7→ (t0 − t)−
n
2 e−`(γv(t),t) Jv(t) is monotone increasing. Moreover,

limt→t0(t0− t)−
n
2 e−`(γv(t),t) Jv(t) = 2n e−|v|

2
for each v ∈ V. The monotonicity

property for the Jacobian determinant implies that the function t 7→ V (t) is

monotone increasing.

We first estimate the reduced volume from below in terms of the initial

data. Since `(x, 0) ≤ n for all points x ∈ Bg(0)(y, ρ), we obtain a uniform lower

bound for V (0):

V (0) =

∫
V
t
−n

2
0 e−`(γv(0),0) Jv(0)

≥
∫
Bg(0)(y,ρ)

t
−n

2
0 e−`(x,0) dvolg(0)(x)

≥ t−
n
2

0 e−n volg(0)(Bg(0)(y, ρ)).

We next estimate the reduced volume from above. By assumption, the para-

bolic neighborhood P (x0, t0,
r0
2 ,−

r2
0
4 ) is free of surgeries, and we have scal ≤

r−2
0 in P (x0, t0,

r0
2 ,−

r2
0
4 ). Using Shi’s interior derivative estimates, we conclude

that the covariant derivatives of the Riemann curvature tensor are bounded by

C(n) r−3
0 and the second covariant derivatives of the Riemann curvature tensor

are bounded by C(n) r−4
0 in P (x0, t0,

r0
4 ,−

r2
0

16). Using the L-geodesic equation,

we conclude that there exists a small positive constant µ(n) (depending only

on n) with the following property: if t̄ ∈ [t0−µ(n)r2
0, t0) and |v| ≤ r0

32
√
t0−t̄

, then

√
t0 − t |γ′v(t)|g(t) ≤ r0

16
√
t0−t̄

and γv(t) ∈ Bg(t0)(x0,
r0
√
t0−t

4
√
t0−t̄

) ⊂ Bg(t0)(x0,
r0
4 ) for

all t ∈ [t̄, t0). This implies

V (0) ≤ V (t̄) ≤
∫
{v∈V:|v|≤ r0

32
√
t0−t̄
}
(t0 − t̄)−

n
2 e−`(γv(t̄),t̄) Jv(t̄)

+

∫
{v∈V:|v|≥ r0

32
√
t0−t̄
}
(t0 − t̄)−

n
2 e−`(γv(t̄),t̄) Jv(t̄)
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≤
∫
{v∈V:|v|≤ r0

32
√
t0−t̄
}
(t0 − t̄)−

n
2 Jv(t̄)

+

∫
{|v|≥ r0

32
√
t0−t̄
}

2n e−|v|
2

≤ (t0 − t̄)−
n
2 volg(t̄)(Bg(t0)(x0,

r0

4
))

+

∫
{|v|≥ r0

32
√
t0−t̄
}

2n e−|v|
2

for all t̄ ∈ [t0 − µ(n)r2
0, t0). Putting these facts together gives

(t0 − t̄)−
n
2 volg(t̄)(Bg(t0)(x0,

r0

4
))

≥ t−
n
2

0 e−n volg(0)(Bg(0)(y, ρ))−
∫
{|v|≥ r0

32
√
t0−t̄
}

2n e−|v|
2

for all t̄ ∈ [t0−µ(n)r2
0, t0). Finally, we choose t̄ ∈ [t0−µ(n)r2

0, t0) so that t0− t̄
is a small, but fixed, multiple of r2

0, and the quantity

t
−n

2
0 e−n volg(0)(Bg(0)(y, ρ))−

∫
{|v|≥ r0

32
√
t0−t̄
}

2n e−|v|
2

is bounded from below by a positive constant. This gives a lower bound for

r−n0 volg(t̄)(Bg(t0)(x0,
r0
4 )), as desired.

We now state the main result of this section. This result guarantees that,

for a suitable choice of ε, r̂, δ̂, every Ricci flow with surgery with parameters

ε, r̂, δ̂, h will satisfy the Canonical Neighborhood Property with accuracy 2ε on

all scales less than 2r̂.

Theorem 10.10 (cf. G. Perelman [35, §5]). Fix a small number ε > 0.

Then we can find positive numbers r̂ and δ̂ with the following property : Suppose

that we have a Ricci flow with surgery with parameters ε, r̂, δ̂, h that is defined

on some interval [0, T ). Moreover, suppose that (x0, t0) is an arbitrary point

in space-time satisfying scal(x0, t0) ≥ (2r̂)−2. Then there exists a neighborhood

B of x0 such that

Bg(t0)(x0, (2C1)−1 scal(x0, t0)−
1
2 ) ⊂ B ⊂ Bg(t0)(x0, 2C1 scal(x0, t0)−

1
2 )

and

(2C2)−1 scal(x0, t0) ≤ scal(x, t0) ≤ 2C2 scal(x0, t0)

for all x ∈ B. Moreover, B is either a strong 2ε-neck (in the sense of [35]) with

center at x0 or a 2ε-cap. Finally, we have |Dscal| ≤ 2η scal
3
2 and | ∂∂tscal| ≤

2η scal2 at the point (x0, t0).
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Proof. We argue by contradiction. Suppose that the assertion is false.

Then we can find a sequence of Ricci flows with surgery M(j) and a sequence

of points (xj , tj) in space-time with the following properties:

(i) The flow M(j) is defined on the time interval [0, Tj) and has surgery

parameters ε, r̂j , hj , δ̂j , where r̂j ≤ 1
j and δ̂j ≤ min{δ̃(r̂j), 1

j }. Here, δ̃(·)
is the function introduced in Proposition 10.9.

(ii) Qj := scal(xj , tj) ≥ (2r̂j)
−2.

(iii) The point (xj , tj) does not satisfy the conclusion of Theorem 10.10.

Condition (iii) means that at least one of the following statements is true:

• There does not exist a neighborhood B of xj with the property that

Bg(tj)(xj , (2C1)−1 scal(xj , tj)
− 1

2 ) ⊂ B ⊂ Bg(tj)(xj , 2C1 scal(xj , tj)
− 1

2 ) and

(2C2)−1 scal(xj , tj) ≤ scal(x, tj) ≤ 2C2 scal(xj , tj) for all x ∈ B, and such

that B is either a strong 2ε-neck (in the sense of [35]) with center at xj or

a 2ε-cap.

• |Dscal| > 2η scal
3
2 at (xj , tj).

• | ∂∂tscal| > 2η scal2 at (xj , tj).

We will proceed in several steps:

Step 1: By Definition 10.1, we have |Dscal| ≤ 4η scal
3
2 and | ∂∂tscal| ≤

4η scal2 for each point (x, t) in space-time satisfying scal(x, t) ≥ 4Qj . Moreover,

by Proposition 10.9, the flow M(j) is κ-noncollapsed on scales less than ε

for some uniform constant κ that may depend on the initial data, but it is

independent of j.

Step 2: Suppose that (x0, t0) is a point in space-time satisfying scal(x0, t0)

+ Qj ≤ r−2
0 . The pointwise curvature derivative estimate implies that scal ≤

8r−2
0 in the parabolic neighborhood P (x0, t0,

r0
100η ,−

r2
0

100η ). Using Proposi-

tion 10.4, we conclude that |DmR| ≤ C(n,m, η) r−m−2
0 at the point (x0, t0).

Moreover, Proposition 10.9 implies volg(t0)(Bg(t0)(x0, r0)) ≥ κrn0 for some uni-

form constant κ that is independent of j.

Step 3: We next prove a long-range curvature estimate. Given any ρ > 0,

we put

M(ρ) = lim sup
j→∞

sup

x∈Bg(tj)(xj ,ρQ
− 1

2
j )

Q−1
j scal(x, tj).

The pointwise curvature derivative estimate implies that M(ρ) ≤ 16 for 0 <

ρ < 1
100η .

We claim that M(ρ) <∞ for all ρ > 0. Suppose this is false. Let

ρ∗ = sup{ρ ≥ 0 : M(ρ) <∞} <∞.
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By definition of ρ∗, we have an upper bound for the curvature in the geodesic

ball Bg(tj)(xj , ρQ
− 1

2
j ) for each ρ < ρ∗. Using the results in Step 2, we obtain

bounds for all the covariant derivatives of the curvature tensor in the geodesic

ball Bg(tj)(xj , ρQ
− 1

2
j ) for each ρ < ρ∗. Moreover, the noncollapsing estimate

in Step 2 gives a lower bound for the volume. We rescale around (xj , tj) by

the factor Qj and pass to the limit as j → ∞. In the limit, we obtain an

incomplete manifold (B∞, g∞) that is weakly PIC2 (cf. [31, Th. 5.6]).

By definition of ρ∗, there exists a sequence of points yj such that

ρj := Q
1
2
j dg(tj)(xj , yj)→ ρ∗ and Q−1

j scal(yj , tj)→∞.

Let γj : [0, ρjQ
− 1

2
j ]→ (M, g(tj)) be a unit-speed geodesic such that γj(0) = xj

and γj(ρjQ
− 1

2
j ) = yj , and let γ∞ : [0, ρ∗) → (B∞, g∞) denote the limit of γj .

Using the estimate |Dscal| ≤ 4η scal
3
2 we obtain for s ∈ [ρ∗ − 1

100η , ρ
∗),

scalg∞(γ∞(s)) = lim
j→∞

Q−1
j scal(γj(sQ

− 1
2

j ), tj) ≥ (2η(ρ∗ − s))−2 ≥ 100.

Let us consider a real number s̄∈ [ρ∗− 1
100η , ρ

∗) such that 64C1η(ρ∗−s̄)≤ s̄.

We claim that γj(s̄Q
− 1

2
j ) lies at the center of a strong 4ε-neck if j is sufficiently

large (depending on s̄). Indeed, if j is sufficiently large, then the Canon-

ical Neighborhood Assumption implies that the point (γj(s̄Q
− 1

2
j ), tj) has a

Canonical Neighborhood that is either a strong 4ε-neck or a 4ε-cap. Fur-

thermore, the Canonical Neighborhood is contained in a geodesic ball around

γj(s̄Q
− 1

2
j ) of radius 8C1 scal(γj(s̄Q

− 1
2

j ), tj)
− 1

2 , and the scalar curvature is at

most 8C2 scal(γj(s̄Q
− 1

2
j ), tj) at each point in the Canonical Neighborhood.

Since M(s̄) <∞, we obtain limj→∞ scal(γj(s̄Q
− 1

2
j ), tj)

−1 scal(yj , tj) =∞; con-

sequently, scal(yj , tj) ≥ 16C2 scal(γj(s̄Q
− 1

2
j ), tj) if j is sufficiently large. Hence,

if j is sufficiently large, then the Canonical Neighborhood does not contain the

point yj . We next observe that 32C1 scalg∞(γ∞(s̄))−
1
2 ≤ 64C1η(ρ∗ − s̄) ≤ s̄.

This implies 16C1 scal(γj(s̄Q
− 1

2
j ), tj)

− 1
2 ≤ s̄Q−

1
2

j if j is sufficiently large. Hence,

if j is sufficiently large, then the Canonical Neighborhood does not contain the

point xj . If the Canonical Neighborhood of (γj(s̄Q
− 1

2
j ), tj) is a 4ε-cap, then

the geodesic γj must enter and exit this 4ε-cap, but this is impossible since

γj minimizes length. To summarize, if j is sufficiently large (depending on s̄),

then the point (γj(s̄Q
− 1

2
j ), tj) has a Canonical Neighborhood that is a strong

4ε-neck. In particular, if j is sufficiently large (depending on s̄), then we have

|Dscal| ≤ C(n)ε scal
3
2 at the point (γj(s̄Q

− 1
2

j ), tj).

Passing to the limit as j →∞, we conclude that |Dscalg∞ | ≤ C(n)ε scal
3
2
g∞

at the point γ∞(s̄). Integrating this estimate along γ∞ gives scalg∞(γ∞(s̄)) ≥
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(C(n)ε(ρ∗− s̄))−2. Moreover, since (γj(s̄Q
− 1

2
j ), tj) lies at the center of a strong

4ε-neck for j sufficiently large, the point γ∞(s̄) must lie on a strong C(n)ε-neck

in (B∞, g∞).

As in [33, §12.1], there is a sequence of rescalings that converges to a piece

of a nonflat metric cone in the limit. Let us fix a point on this metric cone. In

view of the preceding discussion, this point must lie on a strong C(n)ε-neck.

This gives a locally defined solution to the Ricci flow that is weakly PIC2

and that, at the final time, is a piece of nonflat metric cone. This contradicts

Proposition 6.5.

Step 4: We now dilate the manifold (M, g(tj)) around the point xj by the

factor Qj . By Step 3, we have uniform bounds for the curvature at bounded

distance. Using the results in Step 2, we obtain bounds for all the covari-

ant derivatives of the curvature tensor at bounded distance. Using these esti-

mates together with the noncollapsing estimate in Step 2, we conclude that the

rescaled manifolds converge in the Cheeger-Gromov sense to a complete limit

manifold (M∞, g∞). Since (M, g(tj)) has (f, θ)-pinched curvature, the curva-

ture tensor of (M∞, g∞) is weakly PIC2 and satisfies R− θ scal id ? id ∈ PIC.

Using the Canonical Neighborhood Assumption, we conclude that every point

in (M∞, g∞) with scalar curvature greater than 4 has a neighborhood that is

either a strong 8ε-neck or a 8ε-cap.

We claim that (M∞, g∞) has bounded curvature. Indeed, if there is a se-

quence of points in (M∞, g∞) with curvature going to infinity, then (M∞, g∞)

contains a sequence of necks with radii converging to 0, contradicting Propo-

sition 6.9. This shows that (M∞, g∞) has bounded curvature.

Step 5: We now extend the limit (M∞, g∞) backwards in time. By Step 4,

the scalar curvature of (M∞, g∞) is bounded from above by a constant Λ > 4.

We claim that, given any A > 1, the parabolic neighborhood

P

Å
xj , tj , AQ

− 1
2

j ,− 1

100ηΛ
Q−1
j

ã
is free of surgeries if j is sufficiently large. To prove this, fix A > 1 and suppose

that P (xj , tj , AQ
− 1

2
j ,− 1

100ηΛ Q
−1
j ) contains points modified by surgery. Let

sj ∈ [0, 1
100ηΛ ] be the largest number such that P (xj , tj , AQ

− 1
2

j ,−sjQ−1
j ) is free

of surgeries. The pointwise curvature derivative estimate gives

sup

P (xj ,tj ,AQ
− 1

2
j ,−sjQ−1

j )

scal ≤ 2ΛQj

if j is sufficiently large. Since the scalar curvature is greater than 1
2 h
−2
j at each

point modified by surgery, we deduce that 1
2 h
−2
j ≤ 2ΛQj if j is sufficiently

large. In particular, sjQ
−1
j ≤ 1

10η h
2
j if j is sufficiently large. Since δ̂j → 0,
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Proposition 10.5 implies that the parabolic neighborhood

P (xj , tj , AQ
− 1

2
j ,−sjQ−1

j )

is, after dilating by the factor hj , arbitrarily close to a piece of the standard

solution when j is sufficiently large. Using Corollary 9.3, we conclude that

(xj , tj) lies on a 2ε-neck or a 2ε-cap when j is sufficiently large. If (xj , tj)

lies on an 2ε-neck, then this neck is actually a strong 2ε-neck, since we are

assuming that each δ̂j-neck on which we perform surgery has a large backward

parabolic neighborhood that is free of surgeries (cf. Definition 10.1). Moreover,

Corollary 9.3 implies that |Dscal| ≤ 2η scal
3
2 and | ∂∂tscal| ≤ 2η scal2 at the point

(xj , tj). Therefore, the point (xj , tj) satisfies the conclusion of Theorem 10.10,

and this contradicts statement (iii). Thus, given any A > 1, the parabolic

neighborhood P (xj , tj , AQ
− 1

2
j ,− 1

100ηΛ Q
−1
j ) is free of surgeries if j is sufficiently

large.

Let τ1 := − 1
200ηΛ . In view of the preceding discussion, we may extend

(M∞, g∞) backwards in time to a complete solution (M∞, g∞(t)) that is de-

fined for t ∈ [τ1, 0] and satisfies Λ1 := supt∈[τ1,0] supM∞ scalg∞(t) ≤ 2Λ.

We now repeat this process. Suppose that we can extend (M∞, g∞) back-

wards in time to a complete solution (M∞, g∞(t)) that is defined for t ∈ [τm, 0],

and satisfies Λm := supt∈[τm,0] supM∞ scalg∞(t) <∞. Let τm+1 := τm− 1
200ηΛm

.

We claim that we can extend the solution (M∞, g∞(t)) backward to the inter-

val [τm+1, 0], and Λm+1 := supt∈[τm+1,0] supM∞ scalg∞(t) ≤ 2Λm.

Indeed, if this is not possible, then there exists a number A > 1 with the

property that P (xj , tj , AQ
− 1

2
j , (τm− 1

100ηΛm
)Q−1

j ) contains points modified by

surgery for j sufficiently large. Let sj ∈ [0, 1
100ηΛm

] be the largest number such

that P (xj , tj , AQ
− 1

2
j , (τm−sj)Q−1

j ) is free of surgeries. The pointwise curvature

derivative estimate gives

sup

P (xj ,tj ,AQ
− 1

2
j ,(τm−sj)Q−1

j )

scal ≤ 2ΛmQj

if j is sufficiently large. Let us choose αm ∈ [0, n−1
2 ) so that αm

Kstnd (1− 2αm
n−1

)
≥

8Λm ( 1
100ηΛm

− τm). If (sj − τm)Q−1
j ≥ αmh

2
j for j sufficiently large, then

Proposition 10.5 together with the lower bound for the scalar curvature on the

standard solution (cf. Theorem 9.1) gives

sup

P (xj ,tj ,AQ
− 1

2
j ,(τm−sj)Q−1

j )

scal ≥ 1

2Kstnd (1− 2αm
n−1 )

h−2
j

≥ αm

2Kstnd (1− 2αm
n−1 )

(sj − τm)−1Qj

≥ 4ΛmQj
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for j sufficiently large, which is impossible. Consequently, (sj−τm)Q−1
j ≤ αmh2

j

for j sufficiently large. Since δ̂j → 0, Proposition 10.5 implies that the par-

abolic neighborhood P (xj , tj , AQ
− 1

2
j , (τm − sj)Q

−1
j ) is, after dilating by the

factor hj , arbitrarily close to a piece of the standard solution when j is suffi-

ciently large. Using Corollary 9.3, we conclude that (xj , tj) lies on a 2ε-neck

or a 2ε-cap when j is sufficiently large. If (xj , tj) lies on an 2ε-neck, then

this neck is actually a strong 2ε-neck, since we are assuming that each δ̂j-neck

on which we perform surgery has a large backward parabolic neighborhood

that is free of surgeries (cf. Definition 10.1). Moreover, Corollary 9.3 im-

plies that |Dscal| ≤ 2η scal
3
2 and | ∂∂tscal| ≤ 2η scal2 at the point (xj , tj).

Therefore, the point (xj , tj) satisfies the conclusion of Theorem 10.10, and

this contradicts statement (iii). Thus, we may extend the flow (M∞, g∞(t))

backward to the interval [τm+1, 0], where τm+1 := τm − 1
200ηΛm

, and we have

Λm+1 := supt∈[τm+1,0] supM∞ scalg∞(t) ≤ 2Λm.

Let τ∗ = limm→∞ τm ≤ − 1
100ηΛ . Using a standard diagonal sequence

argument, we obtain a complete, smooth limit flow (M∞, g∞(t)) that is defined

on the interval (τ∗, 0] and that has bounded curvature for each t ∈ (τ∗, 0].

Step 6: We next show that τ∗=−∞. Indeed, if τ∗>−∞, it follows that

limm→∞(τm− τm+1) = 0, hence limm→∞ Λm =∞. Arguing as in Step 6 in the

proof of Theorem 7.2, we can show that the limit flow (M∞, g∞(t)), t ∈ (τ∗, 0]

has bounded curvature. This contradicts the fact that limm→∞ Λm = ∞.

Thus, τ∗ = −∞. Hence, if we dilate the flow (M, g(t)) around the point

(xj , tj) by the factor Qj , then (after passing to a subsequence) the rescaled

flows converge to an ancient solution that is complete, has bounded curvature,

is weakly PIC2, and satisfies R − θ scal id ? id ∈ PIC. By Proposition 10.9,

the limiting ancient solution is κ-noncollapsed for some κ > 0 that depends

only on the initial data. By Corollary 6.22, the point (xj , tj) has a Canonical

Neighborhood that is either a strong 2ε-neck with center at xj ; or a 2ε-cap;

or a closed manifold diffeomorphic to Sn/Γ; or a quotient neck. Recall that

we have discarded all connected components that are diffeomorphic to Sn/Γ

(see Definition 10.1). Hence, the Canonical Neighborhood of (xj , tj) cannot be

a closed manifold diffeomorphic to Sn/Γ. If the Canonical Neighborhood of

(xj , tj) is a quotient neck, then Theorem A.1 in [6] implies that the underlying

manifold contains a nontrivial incompressible (n− 1)-dimensional space form,

contrary to our assumption. Consequently, the point (xj , tj) has a Canonical

Neighborhood that is either a strong 2ε-neck with center at xj or a 2ε-cap.

Finally, Corollary 6.20 implies that |Dscal| ≤ 2η scal
3
2 and | ∂∂tscal| ≤ 2η scal2

at the point (xj , tj). In summary, we have shown that the point (xj , tj) sat-

isfies the conclusion of Theorem 10.10. This contradicts statement (iii). This

completes the proof of Theorem 10.10.
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11. Global existence of surgically modified flows

As in the preceding sections, we fix a compact initial manifold (M, g0)

of dimension n ≥ 12 that has positive isotropic curvature and does not con-

tain any nontrivial incompressible (n − 1)-dimensional space forms. In this

section, we will show that there exists a Ricci flow with surgery starting from

(M, g0), which exists globally and becomes extinct in finite time. We begin by

finalizing our choice of the surgery parameters. As above, we fix a small num-

ber ε > 0. Having chosen ε, we choose numbers r̂, δ̂ such that the conclusion of

Theorem 10.10 holds. Having chosen ε, r̂, δ̂, we choose h so that the following

holds:

Proposition 11.1 (cf. G. Perelman [35, Lemma 4.3]). Given ε, r̂, δ̂, we

can find a small number h ∈ (0, δ̂r̂) with the following property : Suppose that

we have a Ricci flow with surgery with parameters ε, r̂, δ̂, h that is defined on

the time interval [0, T ) and goes singular at time T . Let x be a point that

lies in an 4ε-horn in (Ω, g(T )) and has curvature scal(x, T ) = h−2. Then the

parabolic neighborhood P (x, T, δ̂−1h,−δ̂−1h2) is free of surgeries. Moreover,

P (x, T, δ̂−1h,−δ̂−1h2) is a δ̂-neck.

Proof. Suppose that the assertion is false. Then there exists a sequence

of positive numbers hj → 0, a sequence of Ricci flows with surgery M(j) and

a sequence of points xj with the following properties:

(i) The flowM(j) has surgery parameters ε, r̂, hj , δ̂. It is defined on the time

interval [0, Tj) and goes singular as t→ Tj .

(ii) The point (xj , Tj) lies on an 4ε-horn and scal(xj , Tj) = h−2
j .

(iii) The parabolic neighborhood P (xj , Tj , δ̂
−1hj ,−δ̂−1h2

j ) contains points

modified by surgery, or it is not a δ̂-neck.

By Definition 10.1, we have |Dscal| ≤ 4η scal
3
2 whenever scal ≥ r̂−2. Since

hj → 0, it follows that infx∈Bg(Tj)(xj ,Ahj) scal(x, Tj) ≥ (1 + 2ηA)−2 h−2
j . In

particular, if j is sufficiently large (depending on A), then

inf
x∈Bg(Tj)(xj ,Ahj)

scal(x, Tj) ≥ 10 (δ̂r̂)−2.

We claim that for each A > 1 there exists a constant Q(A) (depending

on A, but not on j) such that supx∈Bg(Tj)(xj ,Ahj)
scal(x, Tj) ≤ Q(A)h−2

j if j

is sufficiently large. The proof of this statement is analogous to Claim 2 in

Theorem 12.1 in [33]. Indeed, if no such constant Q(A) exists, then we can

find a sequence of points (yj , Tj) (lying on the same horn as (xj , Tj)) such that

the blow-up limit around (yj , Tj) is a piece of nonflat metric cone. Since the

flowM(j) satisfies the Canonical Neighborhood Assumption with accuracy 4ε,

the point (yj , Tj) either lies on a strong 4ε-neck or on a 4ε-cap. The second case
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can easily be ruled out, so (yj , Tj) must lie on a strong 4ε-neck. In particular,

there exists a small parabolic neighborhood of (yj , Tj) that is free of surgeries.

In view of Proposition 10.3, the blow-up limit around (yj , Tj) is weakly PIC2.

Hence, Proposition 6.5 implies that the limit cannot be a piece of a nonflat

metric cone. This proves the claim.

In particular, if j is sufficiently large (depending on A), then the distance

of the point xj from either end of the horn is at least Ahj .

We now continue with the proof of Proposition 11.1. Let us fix a number

A > 1. Since the point (xj , Tj) lies on a 4ε-horn, no point in Bg(Tj)(xj , Ahj)

can lie on a 4ε-cap. Hence, the Canonical Neighborhood Assumption implies

that every point in Bg(Tj)(xj , Ahj) lies on a strong 4ε-neck. Using Shi’s es-

timate, we obtain bounds for all the covariant derivatives of the curvature

tensor in Bg(Tj)(xj ,
1
2Ahj). Note that these bounds may depend on A, but

are independent of j. We now pass to the limit, sending j → ∞ first and

A → ∞ second. In the limit, we obtain a complete manifold with two ends

that, by Proposition 10.3, is uniformly PIC and weakly PIC2. By the Cheeger-

Gromoll splitting theorem, the limit is isometric to a product X×R; moreover,

the cross-section X is compact and is nearly isometric to Sn−1. Since every

point in Bg(Tj)(xj , Ahj) lies on a strong 4ε-neck, we conclude that, for each

A > 1, the parabolic neighborhood P (xj , Tj , Ahj ,−
3h2
j

4 ) is free of surgeries if

j is sufficiently large (depending on A). After rescaling and passing to the

limit, we obtain a solution to the Ricci flow that is defined on the time interval

[−1
2 , 0] and that splits off a line. Now, if j is sufficiently large (depending on

A), then no point in P (xj , Tj , Ahj ,−
h2
j

2 ) can lie on a 4ε-cap. Hence, if j is

sufficiently large (depending on A), then every point in the parabolic neigh-

borhood P (xj , Tj , Ahj ,−
h2
j

2 ) lies on a strong 4ε-neck. This allows us to extend

the limit solution backward in time to the interval [−1, 0]. Repeating this

argument, we can extend the limit solution backwards in time, so that it is

defined on [−1, 0], [−3
2 , 0], [−2, 0], etc. To summarize, we produce a limit so-

lution that is ancient, uniformly PIC, weakly PIC2, and splits as a product of

a line with a manifold diffeomorphic to Sn−1. By Theorem 6.4, the limiting

solution is a family of standard cylinders. Therefore, if j is sufficiently large,

then the parabolic neighborhood P (xj , Tj , δ̂
−1hj ,−δ̂−1h2

j ) is free of surgeries,

and P (xj , Tj , δ̂
−1hj ,−δ̂−1h2

j ) is a δ̂-neck. This contradicts (iii).

We are now able to prove the main result of this section:

Theorem 11.2. Let us fix a small number ε > 0. Let r̂, δ̂ be chosen as

described at the beginning of this section, and let h be chosen as in Proposi-

tion 11.1. Then there exists a Ricci flow with surgery with parameters ε, r̂, δ̂, h,

which is defined on some finite time interval [0, T ) and becomes extinct as

t→ T .
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Proof. We evolve the initial metric g0 by smooth Ricci flow until the flow

becomes singular for the first time. It follows from Theorem 10.10 and a

standard continuity argument that the flow satisfies the Canonical Neighbor-

hood Property with accuracy 2ε on all scales less than 2r̂, up until the first

singular time. At the first singular time, we perform finitely many surgeries

on δ̂-necks that have curvature level h−2. The existence of such necks is en-

sured by Proposition 11.1. After performing surgery, we restart the flow and

continue until the second singular time. Using Theorem 10.10 and a stan-

dard continuity argument, we conclude that the flow with surgery satisfies the

Canonical Neighborhood Property with accuracy 2ε on all scales less than 2r̂,

up until the second singular time. Consequently, Proposition 11.1 ensures that,

at the second singular time, we can again find δ̂-necks on which to perform

surgery. After performing surgery, we continue the flow until the third singular

time. Again, Theorem 10.10 guarantees that the flow with surgery satisfies the

Canonical Neighborhood Property with accuracy 2ε on all scales less than 2r̂,

up until the third singular time. We can now perform surgery again and repeat

the process.

Since each surgery reduces the volume by at least c(n)hn, we have an

upper bound for the number of surgeries. By Proposition 10.2, the flow with

surgery must become extinct by time n
2 infx∈M scal(x,0) at the latest. This com-

pletes the proof of Theorem 11.2.

Corollary 11.3. The manifold M is diffeomorphic to a connected sum

of finitely many spaces, each of which is a quotient of Sn or Sn−1 × R by

standard isometries.

Proof. This follows by combining Theorem 11.2 with Proposition 8.1.

Appendix A. Auxiliary results

In this section, we collect various technical results that are needed in

Sections 2–4. We assume throughout that n ≥ 5.

Lemma A.1. Let 0 ≤ ζ ≤ 1 and 0 < ρ ≤ 1. Assume that H is a symmetric

bilinear form with the property that the largest eigenvalue of H is bounded from

above by 1
2 tr(H), and the sum of the two smallest eigenvalues of H is bounded

from below by 2(1−ζ)
n tr(H). Then

n− 2

n
tr(H) (H11 +H22)− ρ ((

o
H2)11 + (

o
H2)22)

≥ 2

n2

(
(n− 2)(1− ζ)− 2ζ2ρ

n2 − 2n+ 2

(n− 2)2

)
tr(H)2
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for every pair of orthonormal vectors {e1, e2}, where
o
H denotes the tracefree

part of H .

Proof. By scaling, we may assume that tr(H) = n. Moreover, we may

assume that H is diagonal with diagonal entries λ1 ≤ · · · ≤ λn. By assumption,

each eigenvalue is bounded from above by n
2 , and the sum of any two distinct

eigenvalues of H is bounded from below by 2(1− ζ). It suffices to prove that

(n−2) (λi+λj)−ρ ((λi−1)2 + (λj−1)2) ≥ 2(n−2)(1− ζ)−4ζ2ρ
n2 − 2n+ 2

(n− 2)2

or, equivalently,

λi
(n− 2

ρ
+2−λi

)
+λj

(n− 2

ρ
+2−λj

)
≥ 2(1− ζ)

(n− 2

ρ
+1+ ζ

)
− 2n2ζ2

(n− 2)2

for i < j. Note that n−2
ρ + 2 ≥ n. Moreover, λn ≤ n

2 by assumption. We

distinguish two cases:

Case 1: Suppose first that λi ≥ 1− ζ. Since i < j, we have 1− ζ ≤ λi ≤
λj ≤ n

2 . Since the function λ 7→ λ
Ä
n−2
ρ + 2−λ

ä
is monotone increasing on the

interval (−∞, n2 ], we obtain

λi
(n− 2

ρ
+ 2− λi

)
+ λj

(n− 2

ρ
+ 2− λj

)
≥ 2(1− ζ)

(n− 2

ρ
+ 1 + ζ

)
,

which implies the claim.

Case 2: Suppose finally that λi ≤ 1−ζ. Since the sum of any two distinct

eigenvalues is at least 2(1 − ζ), we obtain 2(1 − ζ) − λi ≤ λj ≤ n
2 . Since the

function λ 7→ λ
Ä
n−2
ρ + 2− λ

ä
is monotone increasing on the interval (−∞, n2 ],

we obtain

λi
(n− 2

ρ
+ 2− λi

)
+ λj

(n− 2

ρ
+ 2− λj

)
≥ λi

(n− 2

ρ
+ 2− λi

)
+ (2(1− ζ)− λi)

(n− 2

ρ
+ 2ζ + λi

)
= 2(1− ζ)

(n− 2

ρ
+ 1 + ζ

)
− 2(1− ζ − λi)2.

Since the sum of any two distinct eigenvalues is at least 2(1−ζ), it follows that

λi ≥ 1− 2(n−1)ζ
n−2 . Consequently, 0 ≤ 1− ζ − λi ≤ nζ

n−2 . Thus, we conclude that

λi
(n− 2

ρ
+2−λi

)
+λj

(n− 2

ρ
+2−λj

)
≥ 2(1−ζ)

(n− 2

ρ
+1+ζ

)
− 2n2ζ2

(n− 2)2
,

as claimed.

Lemma A.2. Let H be a symmetric bilinear form. If H is weakly two-

positive, then H ?H ∈ PIC.
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Proof. Let ζ, η ∈ Cn be linearly independent vectors satisfying g(ζ, ζ) =

g(ζ, η) = g(η, η) = 0. We claim that (H ? H)(ζ, η, ζ̄, η̄) ≥ 0. We can find

vectors z, w ∈ span{ζ, η} such that g(z, z̄) = g(w, w̄) = 2, g(z, w̄) = 0, and

H(z, w̄) = 0. The identities g(ζ, ζ) = g(ζ, η) = g(η, η) = 0 give g(z, z) =

g(z, w) = g(w,w) = 0. Consequently, we may write z = e1 + ie2 and w =

e3 + ie4 for some orthonormal four-frame {e1, e2, e3, e4} ⊂ Rn. Using the

identity H(z, w̄) = 0, we obtain

(H ?H)(z, w, z̄, w̄) = 2 (H11 +H22)(H33 +H44) ≥ 0.

Since span{ζ, η} = span{z, w}, we conclude that (H ? H)(ζ, η, ζ̄, η̄) ≥ 0, as

claimed.

Lemma A.3. Suppose that S ∈ PIC. Then the largest eigenvalue of the

Ricci tensor of S is bounded from above by 1
2 scal(S).

Proof. Since S has nonnegative isotropic curvature, we have

scal(S)− 2 Ric(S)nn =
n−1∑
k,l=1

Sklkl ≥ 0,

as claimed.

Lemma A.4. Assume S ∈ PIC. Then Ric(S)11 + Ric(S)22 + Ric(S)33 +

Ric(S)44 ≥ 0 for every orthonormal four-frame {e1, e2, e3, e4}.

Proof. The condition S ∈ PIC implies Ric(S)11 + Ric(S)33 ≥ 2S1313,

Ric(S)11 + Ric(S)44 ≥ 2S1414, Ric(S)22 + Ric(S)33 ≥ 2S2323, Ric(S)22 +

Ric(S)44 ≥ 2S2424. Taking the sum of all four inequalities yields

Ric(S)11 + Ric(S)22 + Ric(S)33 + Ric(S)44 ≥ S1313 +S1414 +S2323 +S2424 ≥ 0,

as claimed.

Proposition A.5.Suppose R(t) is a solution of the Hamilton ODE d
dtR =

Q(R), and κ(t) is a nonnegative function satisfying d
dtκ(t) ≤ 2(n − 1)κ(t)2.

Then the condition R(t)− 1
2 κ(t) id ? id ∈ PIC is preserved.

Proof. Let S(t) = R(t)− 1
2 κ(t) id ? id. As in [4], we compute

Q(S(t)) + 2κ(t) Ric(S) ? id + (n− 1)κ(t)2 id ? id = Q(R(t)).

This gives

d

dt
S(t) = Q(S(t)) + 2κ(t) Ric(S(t)) ? id− 1

2

( d
dt
κ(t)− 2(n− 1)κ(t)2

)
id ? id.

If S ∈ PIC, then Proposition 7.5 in [5] implies Q(S) ∈ TSPIC. Moreover, if

S ∈ PIC, then the sum of the four smallest eigenvalues of Ric(S) is nonnegative

by Lemma A.4, and consequently Ric(S) ? id ∈ PIC. Therefore, the condition

S(t) ∈ PIC is preserved.
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Lemma A.6. Assume that S ∈ PIC. Then

S1313 + λ2S1414 + S2323 + λ2S2424 − 2λS1234

+
1− λ2

n− 4
(Ric(S)11 + Ric(S)22 − 2S1212) ≥ 0

for every orthonormal four-frame {e1, e2, e3, e4} and every λ ∈ [0, 1].

Proof. Since S ∈ PIC, we have

S1313 + S1414 + S2323 + S2424 − 2S1234 ≥ 0

for every orthonormal four-frame {e1, e2, e3, e4}. We now replace e4 by λe4 ±√
1− λ2ep for some fixed p ∈ {5, . . . , n}, and we take the arithmetic mean of

the resulting inequalities. This gives

S1313 + λ2S1414 + S2323 + λ2S2424 − 2λS1234 + (1− λ2)(S1p1p + S2p2p) ≥ 0

for all p ∈ {5, . . . , n}. In the next step, we take the mean value over all

p ∈ {5, . . . , n}. Using the inequality
n∑
p=5

(S1p1p + S2p2p) ≤
n∑
p=3

(S1p1p + S2p2p) = Ric(S)11 + Ric(S)22 − 2S1212,

we obtain

S1313 + λ2S1414 + S2323 + λ2S2424 − 2λS1234

+
1− λ2

n− 4
(Ric(S)11 + Ric(S)22 − 2S1212) ≥ 0.

This proves the assertion.

Lemma A.7. Let S be an algebraic curvature tensor, and let H be a sym-

metric bilinear form on Rn. Let us define an algebraic curvature tensor T on

Rn+1 by

Tijkl = Sijkl, Tijk0 = 0, Ti0k0 = Hik

for i, j, k, l ∈ {1, . . . , n}. If

S1313 + λ2S1414 + S2323 + λ2S2424 − 2λS1234 + (1− λ2) (H11 +H22) ≥ 0

for every orthonormal four-frame {e1, e2, e3, e4} and every λ ∈ [0, 1], then T ∈
PIC.

Proof. Let ζ̃, η̃ ∈ Cn+1 be two linearly independent vectors satisfying

g(ζ̃, ζ̃) = g(ζ̃, η̃) = g(η̃, η̃) = 0. We claim that T (ζ̃, η̃,
¯̃
ζ, ¯̃η) ≥ 0. We can

find a nonzero vector z̃ ∈ span{ζ̃, η̃} such that z̃ = (z, 0) for some z ∈ Cn.

Moreover, we can find a nonzero vector w̃ ∈ span{ζ̃, η̃} such that g(z̃, ¯̃w) = 0.

We normalize z̃ and w̃ such that g(z̃, ¯̃z) = g(w̃, ¯̃w) = 2. We can further

arrange that w̃ = (w, ia), where w ∈ Cn and a ∈ [0,∞). The identities

g(ζ̃, ζ̃) = g(ζ̃, η̃) = g(η̃, η̃) = 0 imply g(z̃, z̃) = g(z̃, w̃) = g(w̃, w̃) = 0.
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Consequently, we may write z = e1 + ie2, w = e3 + iλe4, and a =
√

1− λ2 for

some orthonormal four-frame {e1, e2, e3, e4} ⊂ Rn and some λ ∈ [0, 1]. This

implies

T (z̃, w̃, ¯̃z, ¯̃w) = S1313 + λ2S1414 + S2323

+ λ2S2424 − 2λS1234 + (1− λ2) (H11 +H22) ≥ 0.

Since span{ζ̃, η̃} = span{z̃, w̃}, it follows that T (ζ̃, η̃,
¯̃
ζ, ¯̃η) ≥ 0, as claimed.

Proposition A.8. Let S be an algebraic curvature tensor, and let H be

a symmetric bilinear form on Rn such that

Z := S1313 + λ2S1414 + S2323 + λ2S2424 − 2λS1234 + (1− λ2) (H11 +H22) ≥ 0

for every orthonormal four-frame {e1, e2, e3, e4} and every λ ∈ [0, 1]. Moreover,

suppose that Z = 0 for one particular orthonormal four-frame {e1, e2, e3, e4}
and one particular λ ∈ [0, 1). Then

Q(S)1313 + λ2Q(S)1414 +Q(S)2323 + λ2Q(S)2424 − 2λQ(S)1234

+ (H ?H)1313 + λ2(H ?H)1414

+ (H ?H)2323 + λ2(H ?H)2424

− 2λ(H ?H)1234

+ 2(1− λ2) ((S ∗H)11 + (S ∗H)22)

≥ (1 + λ2)(H11 +H22)2

for this particular four-frame {e1, e2, e3, e4} and this particular λ ∈ [0, 1). Here,

S ∗H is defined by (S ∗H)ik :=
∑n
p,q=1 SipkqHpq .

Proof. We define a curvature tensor T on Rn+1 by

Tijkl = Sijkl, Tijk0 = 0, Ti0k0 = Hik

for i, j, k, l ∈ {1, . . . , n}. By Lemma A.7, we know that T ∈ PIC. Suppose

that Z = 0 for one particular orthonormal four-frame {e1, e2, e3, e4} ⊂ Rn and

one particular λ ∈ [0, 1). Then {e1, e2, e3, λe4 +
√

1− λ2e0} is an orthonormal

four-frame in Rn+1 that has zero isotropic curvature for T . Using Proposition

7.4 in [5], we obtain

0 ≤
n∑

p,q=0

(T1p1q + T2p2q)

· (T3p3q + λ2T4p4q + λ
√

1− λ2T4p0q + λ
√

1− λ2T0p4q + (1− λ2)T0p0q)

−
n∑

p,q=0

T12pq (λT34pq +
√

1− λ2T30pq)

−
n∑

p,q=0

(T1p3q + λT2p4q +
√

1− λ2T2p0q) (T3p1q + λT4p2q +
√

1− λ2T0p2q)
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−
n∑

p,q=0

(λT1p4q +
√

1− λ2T1p0q − T2p3q) (λT4p1q +
√

1− λ2T0p1q − T3p2q)

=
n∑

p,q=0

(T1p1q + T2p2q) (T3p3q + λ2T4p4q + (1− λ2)T0p0q)

−
n∑

p,q=0

T12pq λT34pq

−
n∑

p,q=0

(T1p3q + λT2p4q) (T3p1q + λT4p2q)

−
n∑

p,q=0

(λT1p4q − T2p3q) (λT4p1q − T3p2q).

This implies

0 ≤
n∑

p,q=1

(T1p1q + T2p2q) (T3p3q + λ2T4p4q + (1− λ2)T0p0q)

−
n∑

p,q=1

T12pq λT34pq

−
n∑

p,q=1

(T1p3q + λT2p4q) (T3p1q + λT4p2q)

−
n∑

p,q=1

(λT1p4q − T2p3q) (λT4p1q − T3p2q)

+ (H11 +H22) (H33 + λ2H44)

− (H13 + λH24)2 − (λH14 −H23)2

=
n∑

p,q=1

(S1p1q + S2p2q) (S3p3q + λ2S4p4q + (1− λ2)Hpq)

−
n∑

p,q=1

S12pq λS34pq

−
n∑

p,q=1

(S1p3q + λS2p4q) (S3p1q + λS4p2q)

−
n∑

p,q=1

(λS1p4q − S2p3q) (λS4p1q − S3p2q)

+ (H11 +H22) (H33 + λ2H44)

− (H13 + λH24)2 − (λH14 −H23)2.



RICCI FLOW ON MANIFOLDS WITH POSITIVE ISOTROPIC CURVATURE 555

Since λ ∈ [0, 1), we have Z = ∂Z
∂λ = 0. This gives λS1414 + λS2424 − S1234 =

λ(H11 +H22) and S1313 + S2323 − λS1234 = −(H11 +H22). Consequently,

(1 + λ2)(H11 +H22)2 =
î
(λS1414 + S1423) + (λS2424 − S1324)

ó2
+
î
(S1313 − λS1324) + (S2323 + λS1423)

ó2
≤ 2(λS1414 + S1423)2 + 2(λS2424 − S1324)2

+ 2(S1313 − λS1324)2 + 2(S2323 + λS1423)2

≤
n∑

p,q=1

(S13pq − λS24pq)
2 +

n∑
p,q=1

(λS14pq + S23pq)
2.

Putting these facts together, we conclude that

Q(S)1313 + λ2Q(S)1414 +Q(S)2323 + λ2Q(S)2424 − 2λQ(S)1234

=
n∑

p,q=1

(S13pq − λS24pq)
2 +

n∑
p,q=1

(λS14pq + S23pq)
2

+ 2
n∑

p,q=1

(S1p1q + S2p2q) (S3p3q + λ2S4p4q)

− 2
n∑

p,q=1

S12pq λS34pq

− 2
n∑

p,q=1

(S1p3q + λS2p4q) (S3p1q + λS4p2q)

− 2
n∑

p,q=1

(λS1p4q − S2p3q) (λS4p1q − S3p2q)

≥ (1 + λ2)(H11 +H22)2 − 2 (1− λ2)
n∑

p,q=1

(S1p1q + S2p2q)Hpq

− 2 (H11 +H22) (H33 + λ2H44)

+ 2 (H13 + λH24)2 + 2 (λH14 −H23)2.

This completes the proof.

Finally, we consider tensors S and U that do not necessarily satisfy the

first Bianchi identity. The following result generalizes Proposition 7.4 in [5]

(see also [36]):

Proposition A.9. Assume that S and U are tensors that satisfy all the

algebraic properties of a curvature tensor, except for the first Bianchi identity.

Moreover, suppose that U ∈ PIC and S − U ≥ 0. Then S# ∈ TUPIC.
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Proof. Consider a complex two-form ϕ with the property that ϕ =

(e1 + ie2) ∧ (e3 + ie4) for some orthonormal four-frame {e1, e2, e3, e4} and

U(ϕ, ϕ̄) = 0. Since U ∈ PIC, U(e−tσϕetσ, e−tσϕetσ) ≥ 0 for all σ ∈ so(n,C)

and all t ∈ R. This implies d2

dt2
U(e−tσϕetσ, e−tσϕetσ)

∣∣∣
t=0
≥ 0 for all σ ∈

so(n,C); consequently,

U([[ϕ, σ], σ], ϕ̄) + U(ϕ, [[ϕ, σ], σ]) + 2U([ϕ, σ], [ϕ, σ]) ≥ 0

for all σ ∈ so(n,C) (cf. [36]). If we replace σ by iσ and add the resulting in-

equalities, we obtain U([ϕ, σ], [ϕ, σ]) ≥ 0 for all σ ∈ so(n,C). Since S − U ≥ 0,

it follows that S([ϕ, σ], [ϕ, σ]) ≥ 0 for all σ ∈ so(n,C). Let us define a lin-

ear transformation L : so(n,C) → so(n,C) by Lσ = [ϕ, σ]. The adjoint

L∗ : so(n,C)→ so(n,C) is given by L∗σ = −[ϕ̄, σ]. Let P : so(n,C)→ so(n,C)

be a linear transformation with the property that σ = LPσ whenever σ lies

in the image of L. Clearly, L = LPL, and consequently L∗ = L∗P ∗L∗. Since

L∗SL ≥ 0 and LSL∗ ≥ 0, we obtain

tr(SLSL∗) = tr((L∗SL)P (LSL∗)P ∗) ≥ 0.

From this, we deduce that S#(ϕ, ϕ̄) ≥ 0. Since this inequality holds for every

two-form ϕ = (e1 + ie2) ∧ (e3 + ie4) satisfying U(ϕ, ϕ̄) = 0, we conclude that

S# ∈ TUPIC.
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