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Choquet-Deny groups and the
infinite conjugacy class property

By Joshua Frisch, Yair Hartman, Omer Tamuz,

and Pooya Vahidi Ferdowsi

Abstract

A countable discrete group G is called Choquet-Deny if for every non-

degenerate probability measure µ onG, it holds that all bounded µ-harmonic

functions are constant. We show that a finitely generated group G is

Choquet-Deny if and only if it is virtually nilpotent. For general countable

discrete groups, we show that G is Choquet-Deny if and only if none of its

quotients has the infinite conjugacy class property. Moreover, when G is

not Choquet-Deny, then this is witnessed by a symmetric, finite entropy,

non-degenerate measure.

1. Introduction

Let G be a countable discrete group. A probability measure µ on G is non-

degenerate if its support generates G as a semigroup.1 A function f : G→ R is

µ-harmonic if f(k) =
∑
g∈G µ(g)f(kg) for all k ∈ G. We say that the measured

group (G,µ) is Liouville if all the bounded µ-harmonic functions are constant;

this is equivalent to the triviality of the Poisson boundary Π(G,µ) [11], [12],

[13]. (It is also called the Furstenberg-Poisson boundary; for formal definitions,

see also, e.g., Furstenberg and Glasner [14], Bader and Shalom [1], or a survey

by Furman [10].)

When G is non-amenable, (G,µ) is not Liouville for every non-degenerate

µ [13]. Conversely, when G is amenable, then there exists some non-degenerate

µ such that (G,µ) is Liouville, as shown by Kaimanovich and Vershik [21] and

Rosenblatt [24]. It is natural to ask for which groups G it holds that (G,µ)
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is Liouville for every non-degenerate µ. We call such groups Choquet-Deny

groups; as we discuss in Section 1.1, there are a few variants of this definition

(see, e.g., [17], [16], [15], or [19]), which, however, we show to be equivalent.

The classical Choquet-Deny Theorem (which was first proved for Zd by

Blackwell [3]) states that abelian groups are Choquet-Deny [4]; the same holds

for virtually nilpotent groups [6]. There are many examples of amenable

groups that are not Choquet-Deny. First examples of such groups2 are due

to Kaimanovich [20] and Kaimanovich and Vershik [21], and they include lo-

cally finite groups. Erschler shows that finitely generated solvable groups that

are not virtually nilpotent are not Choquet-Deny [8], and that even some

groups of intermediate growth are not Choquet-Deny [7]. Kaimanovich and

Vershik [21, p. 466] conjecture that “Given an exponential group G, there

exists a symmetric (nonfinitary, in general) measure with non-trivial bound-

ary.” See Bartholdi and Erschler [2] for additional related results and further

references and discussion.

Our main result is a characterization of Choquet-Deny groups. We say

that G has the infinite conjugacy class property (ICC) if it is non-trivial and if

each of its non-trivial elements has an infinite conjugacy class. We say that µ is

fully supported if suppµ = G; obviously this implies that µ is non-degenerate.

Theorem 1. A countable discrete group G is Choquet-Deny if and only

if it has no ICC quotients. Moreover, when G does have an ICC quotient, then

there exists a fully supported, symmetric, finite entropy probability measure µ

on G such that (G,µ) is not Liouville. In particular, if G is finitely generated,

then it is Choquet-Deny if and only if it is virtually nilpotent.

That a group with no ICC quotients is Choquet-Deny was shown in [18,

Th. 4.8] by Jaworski.3 Our contribution is therefore in the proof of the con-

verse, which appears in Section 2.

Groups with no ICC quotients are known as FC-hypercentral (see, e.g.,

[22], [5], or [23, §4.3]). This class is closed under forming subgroups, quotients,

direct products and finite index extensions, and it includes all virtually nilpo-

tent groups. Among finitely generated groups, virtually nilpotent groups are

precisely those with no ICC quotients (see [22, Th. 2] and [5, Th. 2]); this

implies the result in Theorem 1 for finitely generated groups. Since finitely

generated groups of exponential growth are not virtually nilpotent, Theorem 1

implies that the above mentioned conjecture of Kaimanovich and Vershik [21]

is correct.

2In the Lie group setting, an example of an amenable group that is not Choquet-Deny

was already known to Furstenberg [11].
3In fact, there Jaworski proves a stronger statement; see the discussion in Section 1.1.
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A very recent result by three of the authors of this paper shows that a

countable discrete group is strongly amenable if and only if it has no ICC

quotients [9]. This implies that G is strongly amenable if and only if (G,µ) is

Liouville for every non-degenerate µ, paralleling the above mentioned charac-

terization of amenability as equivalent to the existence of a non-degenerate µ

such that (G,µ) is Liouville. While the proofs of these two similar results are

different, it is natural to ask whether there is some deeper connection between

strong amenability and the Choquet-Deny property.

1.1. Different possible definitions of Choquet-Deny groups. Our definition

of Choquet-Deny groups is not the usual one, which states that a group is

Choquet-Deny if (G,µ) is Liouville for every adapted measure µ, where µ is

called adapted if its support generatesG as a group (rather than as a semigroup,

as in the non-degenerate case) [17], [16], [15]. Yet another definition used in

the literature requires that for every µ, every bounded µ-harmonic function is

constant on the left cosets of Gµ, where Gµ is the subgroup of G generated by

the support of µ [19].

While a priori these are different definitions, they are equivalent, as demon-

strated by our result and by Jaworski’s Theorem 4.8 in [18]. Jaworski’s result

shows that groups with no ICC quotients are Choquet-Deny according to any

of these definitions. Since our construction of µ with a non-trivial boundary

yields measures that are supported on all of G (hence non-degenerate, hence

adapted), it shows that groups with ICC quotients are not Choquet-Deny ac-

cording to any of these definitions. Moreover, our result shows that the class of

Choquet-Deny groups (whether defined with adapted or with non-degenerate

measures) is closed under taking subgroups, which, to the best of our knowl-

edge, was also not previously known.

Acknowledgments. We would like to thank Anna Erschler and Vadim

Kaimanovich for many useful comments on the first draft of this paper. We

thank Wojciech Jaworski for bringing a number of errors to our attention and

suggesting many improvements. We likewise thank an anonymous referee for

many helpful suggestions.

2. Proofs

In this section we prove the main result of our paper, Theorem 1. Unless

stated otherwise, we will assume that all groups are countable and discrete.

Recall that a probability measure µ on G is symmetric if µ(g) = µ(g−1) for

all g∈G. Its Shannon entropy (or just entropy) is H(µ)=−∑g∈G µ(g) logµ(g).

Our Theorem 1 is a direct consequence of [18, Th. 4.8], which proves it

for the case of groups with no ICC quotients, and of the following proposition,

which handles the case of groups with ICC quotients.
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Proposition 2.1. Let G be a group with an ICC quotient. Then there

exists a fully-supported, symmetric, finite entropy probability measure µ on G

such that Π(G,µ) is non-trivial.

The main technical effort in the proof of Proposition 2.1 is in the proof of

the following proposition.

Proposition 2.2. Let G be an amenable ICC group. For every h ∈
G \ {e}, there exists a fully supported, symmetric, finite entropy probability

measure µ such that

(2.1) lim
m→∞

‖hµ∗m − µ∗m‖ > 0.

Here µ∗m is them-fold convolution µ∗· · ·∗µ. We will prove this proposition

later. We now turn to the proof of Proposition 2.1.

Proof of Proposition 2.1. The case of non-amenable G is known, so as-

sume that G is amenable and has an ICC quotient Q. Let h be a non-identity

element of Q. Applying Proposition 2.2 to Q and h yields a finite entropy,

symmetric measure µ̄ on Q that is fully supported and satisfies (2.1).

Since µ̄ has full support and satisfies (2.1), it follows from [15, Th. 2]

that (Q, µ̄) has a non-trivial Poisson boundary. Let µ be any symmetric, finite

entropy non-degenerate probability measure on G that is projected to µ̄; the

existence of such a µ is straightforward. Then (G,µ) has a non-trivial Poisson

boundary. �

2.1. Switching elements. Here we introduce two notions: switching ele-

ments and super-switching elements. We will use these notions in the proof of

Proposition 2.2.

Definition 2.3. Let X be a finite symmetric subset of a group G.

• We call g ∈ G a switching element for X if

X ∩ gXg−1 ⊆ {e}.

• We call g ∈ G a super-switching element for X if

X ∩
Ä
gXg ∪ gXg−1 ∪ g−1Xg ∪ g−1Xg−1

ä
⊆ {e}.

Note that since X is symmetric, g ∈ G is a switching element for X if and

only if g−1 is a switching element for X.

Claim 2.4. Let X be a finite symmetric subset of a group G, and let

g ∈ G be a super-switching element for X . If gw1xgw2 = y for x, y ∈ X and

w1, w2 ∈ {−1,+1}, then x = y = e.

Proof. Let gw1xgw2 = y for x, y ∈ X and w1, w2 ∈ {−1,+1}. Since

y = gw1xgw2 ∈
Ä
gXg ∪ gXg−1 ∪ g−1Xg ∪ g−1Xg−1

ä
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and y ∈ X, it follows from the definition of a super-switching element for X

that y = e.

From gw1xgw2 = y, we get g−w1yg−w2 = x. So, by symmetry, the same

argument shows x = e. �

Proposition 2.5. Let G be a discrete (not necessarily countable) amenable

ICC group, and let X be a finite symmetric subset of G. The set of super-

switching elements for X is infinite.

Proof of Proposition 2.5. Fix an invariant finitely additive probability mea-

sure d on G. For A ⊆ G, we call d(A) the density of A. We will need the facts

that infinite index subgroups have zero density and that d(A) = 0 for every

finite subset A ⊂ G.

Let CG(x) be the centralizer of a non-identity x ∈ X. Then, since X is

finite, there is a finite set of cosets of CG(x) that includes all g ∈ G such that

g−1xg ∈ X. So, non-switching elements for X are in the union of finitely many

cosets of subgroups with infinite index, since G is ICC. This means that the set

of non-switching elements for X has zero density, and so the set S of switching

elements for X has density one.

Let T be the set of all super-switching elements for X. Let A ⊆ G be the

set of involutions {g ∈ G | g2 = e}.
If d(A) > 0, then d(A ∩ S) > 0. On the other hand, for any g ∈ A ∩ S,

since g is switching for X and g−1 = g, g is super-switching for X. Hence

A∩ S ⊆ T . This shows that if d(A) > 0, then d(T ) ≥ d(A∩ S) > 0, and so we

are done.

So, we can assume that d(A) = 0. For any x, y ∈ X, let Sx,y = {g ∈
S | gxg = y}. Note that

T = S \
⋃

x,y∈X
(x,y) 6=(e,e)

Sx,y.

It is thus enough to be shown that each Sx,y has zero density when (x, y) 6=
(e, e). So assume for the sake of contradiction that d(Sx,y) > 0. Fix g ∈ Sx,y.
We have the following for all h ∈ g−1Sx,y:

gxg = y = ghxgh =⇒ (xg) = h(xg)h

=⇒ (xg)−1h−1(xg) = h

=⇒ h = (xg)−1h−1(xg)

= (xg)−1[(xg)−1h−1(xg)]−1(xg)

= (xg)−2h(xg)2

=⇒ h is in the centralizer of (xg)2.
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So, the centralizer of (xg)2 includes g−1Sx,y, which has a positive density. So,

the centralizer of (xg)2 has finite index. This implies that (xg)2 = e, because

in an ICC group only the identity can have a finite index centralizer. Hence

xg ∈ A for all g ∈ Sx,y. So xSx,y ⊆ A. Hence Sx,y also has zero density, which

is a contradiction. �

2.2. A heavy-tailed probability distribution on N. Here we state and prove

a lemma about the existence of a probability distribution on N = {1, 2, . . .}
such that infinite independent and identically distributed samples from this

measure have certain properties. We will use this distribution in the proof of

Proposition 2.2.

Lemma 2.6. Let p be the following probability measure on N: p(n) =

cn−5/4, where 1/c =
∑∞
n=1 n

−5/4. Then p has finite entropy and the following

property : for any ε > 0, there exist constants Kε, Nε ∈ N such that for any

natural number m ≥ Kε, there exists an Eε,m ⊆ Nm such that

(1) p×m(Eε,m) ≥ 1− ε, where p×m is the m-fold product measure p× · · · × p;

(2) for any s=(s1, . . . , sm)∈Eε,m, the maximum of {s1, . . . , sKε} is at most Nε;

(3) for any s = (s1, . . . , sm) ∈ Eε,m and for any Kε ≤ k ≤ m, the maximum

of {s1, . . . , sk} is at least k2;

(4) for any s = (s1, . . . , sm) ∈ Eε,m and for any Kε ≤ k ≤ m, the maximum

of {s1, . . . , sk} appears in (s1, . . . , sk) only once.

Proof. It is straightforward to see that p has finite entropy. Let s =

(s1, s2, . . .) ∈ N∞ have distribution p×∞; i.e., s is a sequence of independent

and identically distributed random variables with distribution p. Since each si
has distribution p, for each n ∈ N, we have

(2.2) P [si ≥ n] =
∞∑
m=n

p(m) = c
∞∑
m=n

m−5/4 ≥ c
∫ ∞
n

x−5/4dx = 4cn−1/4.

For k ≥ 1, let
Mk := max{s1, . . . , sk},

and let
next(k) := min{i > k | si ≥Mk}.

In words, next(k) is the first index i > k for which si matches or exceeds Mk.

We first show that with probability one, Mk ≥ k2 for all k large enough.

To this end, let Ak be the event that Mk < k2. We have

P [Ak] = P
î
si < k2 ∀i ∈ {1, . . . , k}

ó
= (1− P

î
s1 < k2

ó
)k

≤ (1− 4c(k2)−1/4)k

≤ e−4ck
1/2
.
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Since the sum of these probabilities is finite, by Borel-Cantelli we get that

P [Ak infinitely often] = 0.

Hence Mk ≥ k2 for all k large enough, almost surely. Furthermore, the expec-

tation of 1/Mk is small:

E
ï

1

Mk

ò
= E

ï
1

Mk

∣∣∣∣AkòP [Ak] + E
ï

1

Mk

∣∣∣∣¬AkòP [¬Ak] ≤ e−4ck
1/2

+
1

k2
·(2.3)

Next, we show that, with probability one, snext(k) > Mk for all k large

enough. That is, for large enough k, the first time that Mk is matched or

exceeded after index k, it is in fact exceeded.

Let Bk be the event that snext(k) = Mk. We would like to show that this

occurs only finitely often. Note that

P [Bk|Mk] = P
î
snext(k) = Mk

∣∣∣Mk

ó
=

∞∑
i=k+1

P [si = Mk,next(k) = i|Mk].

Applying the definition of next(k) yields

P [Bk|Mk] =
∞∑

i=k+1

P [si = Mk, sk+1, . . . , si−1 < Mk|Mk].

By the independence of the si’s we can write this as

P [Bk|Mk] =
∞∑

i=k+1

P [si = Mk|Mk]

i−(k+1)∏
n=1

P [sk+n < Mk|Mk]

=
∞∑

i=k+1

c

M
5/4
k

P [sk+1 < Mk|Mk]
i−(k+1).

By (2.2), P [sk+1 < Mk|Mk] ≤ 1− 4cM
−1/4
k . Hence

P [Bk|Mk] ≤
c

M
5/4
k

· 1

4cM
−1/4
k

=
1

4Mk
·

Using (2.3) it follows that

P [Bk] = E [P [Bk|Mk]] ≤ E
ï

1

4Mk

ò
≤ 1

4
e−4ck

1/2
+

1

4k2
.

Hence
∑
k P [Bk] <∞, and so by Borel-Cantelli, Bk occurs only finitely often.

Since Ak and Bk both occur for only finitely many k, the (random) index

ind′ at which they stop occurring is almost surely finite and is given by

ind′ = min{` ∈ N : s 6∈ Ak ∪Bk for all k ≥ `}.
Let

ind = next(ind′).

Hence for k ≥ ind, Mk ≥ k2 and Mk appears in (s1, . . . , sk) only once.
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Fix ε > 0. Since ind is almost surely finite, then for large enough constants

Kε ∈ N and Nε ∈ N, the event

Eε = {ind ≤ Kε and MKε ≤ Nε}

has probability at least 1−ε, and additionally, conditioned on Eε it holds that

k ≥ ind for all k ≥ Kε, and hence Mk ≥ k2 and Mk appears in (s1, . . . , sk)

only once. Therefore, if for m ≥ Kε we let Eε,m be the projection of Eε to the

first m coordinates, then Eε,m satisfies the desired properties. �

2.3. Proof of Proposition 2.2. Let 1
8 > ε > 0. Let p, Kε ∈ N, Nε ∈ N, and

Eε,m ⊆ Nm be the probability measure, the constants, and the events from

Lemma 2.6. To simplify notation let N = Nε and K = Kε.

Let G = {a1, a2, . . .}, where a1 = a2 = · · · = aN = e. We define (gn)n,

(An)n, (Bn)n and (Cn)n recursively. Given g1, . . . , gn, letAn={gn, g−1n , an, a
−1
n }

and Bn = ∪i≤nAi. Denote Cn = Bn ∪ {h−1, h}. Note that An, Bn, and Cn
are finite and symmetric for any n ∈ N. Let g1 = g2 = · · · = gN = e. For

n+ 1 > N , given Cn, let gn+1 ∈ G be a super-switching element for (Cn)2n+1

that is not in (Cn)8n+1. The existence of such a super-switching element is

guaranteed by Proposition 2.5 and the facts that (Cn)2n+1 is a finite symmet-

ric subset of G and that (Cn)8n+1 is finite.

For n ∈ N, define a symmetric probability measure µn on An by

µn = ε2−n
Å

1

2
δan +

1

2
δa−1

n

ã
+ (1− ε2−n)

Å
1

2
δgn +

1

2
δg−1

n

ã
.

Here δg is the point mass on g ∈ G. Finally, let

µ =
∞∑
n=1

p(n)µn.

Obviously µ is symmetric and suppµ = G. Since p has finite entropy and each

µn has support of size at most 4, it follows easily that µ has finite entropy.

We want to show that

lim
m→∞

‖hµ∗m − µ∗m‖ > 0.

Fix m ∈ N larger than K and N . For each n ∈ N, define fn : {1, 2, 3, 4}
→ An by

fn(1) = an, fn(2) = a−1n , fn(3) = gn, fn(4) = g−1n ,

and define νn : {1, 2, 3, 4} → [0, 1] by

νn(1) = νn(2) =
1

2
ε2−n, νn(3) = νn(4) =

1

2
(1− ε2−n).

Let

Ω = {(s, w) | s ∈ Nm, w ∈ {1, 2, 3, 4}m}.
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We define the measure η on the countable set Ω by specifying its values

on the singletons:

η({(s, w)}) = p×m(s) νs1(w1) νs2(w2) · · · νsm(wm).

It follows immediately from this definition that η is a probability measure.

Define r : Ω→ G by

r(s, w) = fs1(w1)fs2(w2) · · · fsm(wm).

It is not difficult to see that r∗η=µ∗m, and so we need to show that ‖hr∗η−r∗η‖
is uniformly bounded away from zero for m larger than K and N .

Recall that Eε,m ⊆ Nm is the event given by Lemma 2.6. Fix s ∈ Eε,m.

Define

is,1 = min{j ∈ {1 . . . ,m} | sj > N},
is,2 = min{j > is,1 | sj ≥ sis,1},

...

is,l(s) = min{j > is,l(s)−1 | sj ≥ sis,l(s)−1
}.

Note that by the second property of Eε,m in Lemma 2.6, we know that

K < is,1 < is,2 < · · · < is,l(s),

and by the fourth property,

N < sis,1 < sis,2 < · · · < sis,l(s) = max{s1, . . . , sm}.

Let

W s
ε = {w ∈ {1, 2, 3, 4}m | ∀k ≤ l(s) wis,k = 3, 4}.

For s ∈ Nm let ηs be the measure η, conditioned on the first coordinate

equaling s. That is, let

ηs(A) =
η(A ∩ Ωs)

η(Ωs)
,

where Ωs = {s} × {1, 2, 3, 4}m ⊆ Ω.

Then

ηs({s} ×W s
ε ) = 1− ηs({wis,1 = 1, 2; or wis,2 = 1, 2; . . . ; or wis,l(s) = 1, 2 })

≥ 1−
l(s)∑
k=1

ηs({wis,k = 1, 2})

= 1−
l(s)∑
k=1

ε2
−sis,k

≥ 1−
∞∑
j=1

ε2−j

= 1− ε,
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where the first inequality follows from the union bound, and the last inequality

holds since sis,1 < sis,2 < · · · < sis,l(s) .

Finally, let

Ωε = {(s, w) ∈ Ω | s ∈ Eε,m, w ∈W s
ε }.

By the above, and since η(Eε,m×{1, 2, 3, 4}m) ≥ 1− ε by Lemma 2.6, we have

shown that

η(Ωε) ≥ (1− ε)(1− ε) > 1− 2ε.

Claim 2.7. For any α, β ∈ Ωε, we have hr(α) 6= r(β).

We prove this claim after we finish the proof of the proposition.

Let η1 be equal to η conditioned on Ωε, and let η2 be equal to η conditioned

on the complement of Ωε. We have η = η(Ωε)η1 + (1 − η(Ωε))η2, and by the

above claim we know ‖hr∗η1 − r∗η1‖ = 2. So for m larger than K and N ,

‖hµ∗m − µ∗m‖ = ‖hr∗η − r∗η‖
= ‖η(Ωε)(hr∗η1 − r∗η1) + (1− η(Ωε))(hr∗η2 − r∗η2)‖
≥ η(Ωε) ‖hr∗η1 − r∗η1‖ − 2(1− η(Ωε))

≥ 2(1− 2ε)− 2(2ε) = 2− 8ε,

which is uniformly bounded away from zero since ε < 1
8 . Since ‖hµ∗m − µ∗m‖

is a decreasing sequence, this completes the proof of Proposition 2.2.

Proof of Claim 2.7. Let α= (s, w), β= (t, v)∈Ωε. Hence max{K,N}<m,

s ∈ Eε,m, t ∈ Eε,m, w ∈ W s
ε , and v ∈ W t

ε . Assume that hr(α) = r(β). So, we

have

hfs1(w1) · · · fsm(wm) = ft1(v1) · · · ftm(vm).

Let K < i1 < i2 < · · · < il(s) and K < j1 < j2 < · · · < jl(t) be the indices we

defined for s and t in the proof of Proposition 2.2. We remind the reader that

the unique maximum of (s1, . . . , sm) is attained at il(s), with a corresponding

statement for (t1, . . . , tm) and jl(t). So we have

h

b1︷ ︸︸ ︷
fs1(w1) · · · fsil(s)−1(wil(s)−1) fsil(s) (wil(s))

b2︷ ︸︸ ︷
fsil(s)+1(wil(s)+1) · · · fsm(wm)

= ft1(v1) · · · ftjl(t)−1(vjl(t)−1)︸ ︷︷ ︸
c1

ftjl(t) (vjl(t)) ftjl(t)+1(vjl(t)+1) · · · ftm(vm)︸ ︷︷ ︸
c2

.

Let p = sil(s) = max{s1, . . . , sm} and q = tjl(t) = max{t1, . . . , tm}. Since

w ∈W s
ε and v ∈W t

ε , we know fsil(s) (wil(s)) = g±1p and ftjl(t) (vjl(t)) = g±1q , so

hb1g
±1
p b2 = c1g

±1
q c2.(2.4)
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Since p = max{s1, . . . , sm}, and since m ≥ K, we know that m ≤ m2 ≤ p. So

b1, b2 ∈ (Bp−1)
p−1 ⊆ (Cp−1)

p−1. Similarly, c1, c2 ∈ (Cq−1)
q−1.

Consider the case that p > q. Then c1, c2, g
±1
q ∈ (Cq)

q ⊆ (Cp−1)
p−1.

Hence g±1p = [b−11 ]h−1[c1g
±1
q c2b

−1
2 ] by (2.4), and so

gp ∈ (Cp−1)
4(p−1){h, h−1}(Cp−1)4(p−1) ⊆ (Cp−1)

8(p−1)+1,

which is a contradiction with our choice of gp, since p > N . Similarly, if p < q,

we get a contradiction. So we can assume that p = q.

If p = q, then by (2.4) we have

hb1g
±1
p b2 = c1g

±1
p c2,

and c1, c2, b1, b2 ∈ (Cp−1)
p−1. So, for x = c−11 hb1 ∈ (Cp−1)

2(p−1)+1 we have

g±1p xg±1p = c2b
−1
2 ∈ (Cp−1)

2(p−1) ⊆ (Cp−1)
2(p−1)+1. By the fact that gp is a

super-switching element for (Cp−1)
2(p−1)+1 and from Claim 2.4, we get that x

is the identity.

So hb1 = c1, i.e.,

hfs1(w1) · · · fsil(s)−1(wil(s)−1) = ft1(v1) · · · ftjl(t)−1(vjl(t)−1).

By the exact same argument, we can see this leads to a contradiction unless

hfs1(w1) · · · fsil(s)−1−1(wil(s)−1−1) = ft1(v1) · · · ftjl(t)−1−1(vjl(t)−1−1).

And again, this leads to a contradiction unless

hfs1(w1) · · · fsil(s)−2−1(wil(s)−2−1) = ft1(v1) · · · ftjl(t)−2−1(vjl(t)−2−1).

Note that if l(s) 6= l(t), at some point in this process we get that either all the

si’s or all the ti’s are at most N while the other string has characters strictly

greater than N . This leads to a contradiction similar to the case p 6= q, which

we explained before. So, by continuing this process, we get a contradiction

unless

hfs1(w1) · · · fsi1−1(wi1−1) = ft1(v1) · · · ftj1−1(vj1−1).(2.5)

Note that s1, . . . , si1−1 ≤ N , which implies

fs1(w1) = · · · = fsi1−1(wi1−1) = e.

Similarly, t1, . . . , tj1−1 ≤ N implies that

ft1(v1) = · · · = ftj1−1(vj1−1) = e.

So, from (2.5) we get h = e, which is a contradiction. �
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[20] V. A. Kăımanovich, Examples of nonabelian discrete groups with nontriv-

ial exit boundary, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov.

(LOMI ) 123 (1983), 167–184, Differential geometry, Lie groups and mechanics,

V. MR 0697250.
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