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KdV is well-posed in H−1

By Rowan Killip and Monica Vişan

Abstract

We prove global well-posedness of the Korteweg–de Vries equation for

initial data in the space H−1(R). This is sharp in the class of Hs(R) spaces.

Even local well-posedness was previously unknown for s < −3/4. The proof

is based on the introduction of a new method of general applicability for the

study of low-regularity well-posedness for integrable PDE, informed by the

existence of commuting flows. In particular, as we will show, completely

parallel arguments give a new proof of global well-posedness for KdV with

periodic H−1 data, shown previously by Kappeler and Topalov, as well as

global well-posedness for the fifth order KdV equation in L2(R).

Additionally, we give a new proof of the a priori local smoothing bound

of Buckmaster and Koch for KdV on the line. Moreover, we upgrade this

estimate to show that convergence of initial data in H−1(R) guarantees

convergence of the resulting solutions in L2
loc(R×R). Thus, solutions with

H−1(R) initial data are distributional solutions.

1. Introduction

The Korteweg–de Vries equation

(KdV)
d

dt
q = −q′′′ + 6qq′

was derived in [44] to explain the observation of solitary waves in a shallow

channel of water. Specifically, they sought to definitively settle (to use their

words) the debate over whether such solitary waves are consistent with the

mathematical theory of a frictionless fluid, or whether wave fronts must neces-

sarily steepen. The equation itself, however, appears earlier; see [7, p. 77]. The

term solitary wave has now been supplanted by soliton, a name coined in [69]

and inspired by the particle-like interactions they observed between solitary

waves in their numerical simulations of (KdV).

In a series of papers, researchers at Princeton’s Plasma Physics Labo-

ratory demonstrated that equation (KdV) exhibits a wealth of novel features,
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including the existence of infinitely many conservation laws [54] and the connec-

tion to the scattering problem for one-dimensional Schrödinger equations [19].

Nowadays, we say that (KdV) is a completely integrable system (cf. [70]).

Although we shall focus on mathematical matters here, (KdV) continues

to be an important effective model for a diverse range of physical phenomena;

see, for example, the review [15] occasioned by the centenary of [44].

One of the most basic mathematical questions one may ask of (KdV) is

whether it is well-posed. This is the question of the existence and uniqueness

of solutions, together with the requirement that the solution depends continu-

ously on time and the initial data. As we shall discuss, this topic has attracted

several generations of researchers who have successively enlarged the class of

initial data for which well-posedness can be shown. Our principal contribution

is the following:

Theorem 1.1 (Global well-posedness). The equation (KdV) is globally

well-posed for initial data in H−1(R) or H−1(R/Z) in the following sense: In

each geometry, the solution map extends uniquely from Schwartz space to a

jointly continuous map Φ : R ×H−1 → H−1. Moreover, for each initial data

q ∈ H−1, the orbit {Φ(t, q) : t ∈ R} is uniformly bounded and equicontinuous

in H−1.

On the circle R/Z, Schwartz space is coincident with C∞(R/Z); on the

line, it is comprised of those C∞(R) functions that decay (along with their

derivatives) faster than any polynomial as |x| → ∞. For the definition of

H−1(R) and H−1(R/Z), see Section 1.2; informally, they are comprised of

those tempered distributions that are derivatives of L2 functions. For the

precise definition of equicontinuity in the Hs setting, see (4.1).

The fact that Schwartz-space initial data leads to unique global solutions

to (KdV) that remain in Schwartz class has been known for some time; see,

for example, [4], [34], [63], [64], [65]. Indeed, in this class, the solution map is

known not only to be continuous, but infinitely differentiable in both variables.

We shall rely on this result in what follows.

In the case of (KdV) posed on the torus (or equivalently for periodic initial

data), Theorem 1.1 reproduces the principal results of [30]. Note that because

the circle is compact, uniform boundedness and equicontinuity of the orbit is

equivalent to it being pre-compact. In the line case, one does not expect orbits

to be pre-compact; both solitons and radiation preclude tightness from holding

globally in time.

The papers [55], [56] show that well-posedness cannot persist (in either

geometry) in Hs for any s < −1. In this sense, Theorem 1.1 is sharp. On

the other hand, one may consider well-posedness at higher regularity s > −1.

Existence and uniqueness are immediate from the case s = −1; the key is to
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demonstrate that continuous dependence remains valid in this stronger topol-

ogy. In this paper, we will settle the cases left open by prior work, namely,

the well-posedness of (KdV) in Hs(R) with −1 ≤ s < −3
4 . (On the circle,

all s ≥ −1 were treated already in [30].) In fact, the proof of Corollary 5.3

provides a simple uniform treatment of all −1 ≤ s < 0 and adapts trivially to

the case of the circle also.

The notion of solution used here (unique limits of Schwartz solutions)

coincides with that in [30] and is informed by several important considerations.

Firstly, as the notion of a solution in the case of Schwartz initial data is firmly

settled, any notion of a solution to (KdV) leading to well-posedness in H−1

must produce solutions identical to those given by Theorem 1.1.

Secondly, for functions that are merely CtH
−1
x , it is not possible to make

sense of the nonlinearity in (KdV) as a space-time distribution in either geom-

etry. While the local smoothing effect (see Section 1.1) provides a potential

resolution of this problem in the line setting, there is no natural alternative

notion of a weak solution in the circle geometry. Any methodology that pur-

ports to apply in wide generality must adopt a notion of solution that applies

in wide generality.

A wider notion of solution was considered in [9], namely, limits of smooth

solutions in the presence of smooth asymptotically vanishing forcing. That

paper shows (see [9, §2.7]) that with this wider notion of solution, uniqueness

cannot be guaranteed for CtH
s(R/Z) solutions to (KdV) already for s < 0.

From Theorem 1.1, we see that the map Φ is continuous, as was also shown

in [30] for the circle case. It is natural to ask if this continuity may be expressed

more quantitatively. In some sense, the answer is no: it is shown in [10] that

the data to solution map cannot be uniformly continuous on bounded sets

when s < −3
4 in the line case or when s < −1

2 in the circle case. Nevertheless,

the arguments presented here are sufficiently transparent that one may readily

obtain information on the modulus of continuity of q 7→ Φ(t, q). Specifically,

we find that the key determiners of the modulus of continuity at an initial

datum q ∈ H−1(R) are the time t in question and the rate at which∫ |q̂(ξ)|2 dξ
ξ2 + 4κ2

→ 0 as κ→∞.

Evidently, this integral does not converge to zero uniformly on any open set of

initial data.

Let us now turn our attention to a discussion of prior work proving well-

posedness for (KdV). Discussion of weak solutions (without uniqueness) is

postponed until Section 1.1. Our discussion will not be exhaustive; the body

of literature on (KdV) is simply immense. Nor will we insist on a strict

chronology.
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Early work on the local and global well-posedness of (KdV) treated it

as a quasi-linear hyperbolic problem. The appearance of the derivative in

the nonlinearity prohibits simple contraction mapping arguments from clos-

ing. The principal methods employed were (i) compactness and uniqueness

arguments (e.g., [61], [65]) combined with parabolic regularization, (ii) conver-

gence of Picard iterates with (e.g., [66]) or without (e.g., [33]) parabolic reg-

ularization, and (iii) approximation by the Benjamin–Bona–Mahoney (BBM)

equation [5], [4].

The BBM equation was introduced in [3]; this equation has a much more

regular nonlinearity, and global well-posedness was shown there by simple con-

traction mapping arguments. The BBM equation has the same Hamiltonian

as (KdV), namely,

(1.1) HKdV(q) :=

∫
1
2q
′(x)2 + q(x)3 dx;

however the underlying symplectic structure is different. Of all the prior ap-

proaches we know of, the one we follow here is closest in spirit to that of

Bona–Smith [4], since both we and they employ the idea of approximating the

full flow by another Hamiltonian evolution that is more readily controlled.

Incidentally, the problem of local well-posedness of (KdV) in Schwartz

space, which we shall take for granted here, is rather easier than the works just

cited, because one may safely lose regularity in proving continuous dependence

of the solution on the initial data.

While multiple authors sought to obtain well-posedness in Hs for s as

small as possible, these early attempts did not succeed in proving local well-

posedness beyond the regime s > 3/2. Most significantly, this does not reach

the level s = 1 at which one may upgrade local to global well-posedness by ex-

ploiting conservation of the Hamiltonian. Nevertheless, global well-posedness

was obtained at this time for s ≥ 2 by using the conserved quantities at such

higher regularity discovered in [54].

To progress further in this vein, the key has been to exploit the dispersive

property of (KdV). Global well-posedness for finite energy initial data on

the line was first proved in [36], by utilizing local smoothing and maximal

function estimates. The paper actually proves local well-posedness in Hs(R)

for s > 3/4; the global H1(R) result follows trivially from this and conservation

of the Hamiltonian.

The next conspicuous benchmark for the well-posedness theory was the

treatment of initial data with finite momentum

(1.2) P (q) :=

∫
1
2q(x)2 dx,

that is, data in L2. Momentum is the appropriate term here; this quantity is

the generator of translations with respect to the standard symplectic structure.
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Moreover, this quantity is conserved under the KdV flow. The mass of a wave

is given by
∫
q(x) dx, which is also conserved, and represents the total deficit

(or surplus) of water relative to q ≡ 0.

Well-posedness of (KdV) in L2 was proved both on the line and on the

circle by Bourgain in [6]. At the heart of this work is the use of Xs,b spaces,

which efficiently capture the dispersive nature of the equation and effectively

control the deviation of the KdV dynamics from solutions to the linear equation

∂tq = −q′′′. After developing suitable estimates in these spaces, the proof

proceeds by contraction mapping arguments; thus the solutions constructed

depend analytically on the initial data.

Further development and refinement of the methods employed in [6] ulti-

mately led to a proof of local well-posedness for (KdV) in Hs(R) for s ≥ −3/4

and in Hs(R/Z) for s ≥ −1/2. Excepting the endpoints, this was proved by

Kenig–Ponce–Vega in [37]. For a discussion of the endpoints, see [10] and [12],

[13], [14]. These ranges of s are sharp if one requires the data to solution map

to be uniformly continuous on bounded sets; see [10].

These local well-posedness results were made global in time in [12], ex-

cepting the endpoint case H−3/4(R), which was proved later in [22], [42]. At

that time, no exact conservation laws were known that were adapted to nega-

tive regularity. To obtain such global results, these authors constructed almost

conserved quantities, whose growth in time they were able to control.

While it is true that the conspicuous manifestations of complete integra-

bility of KdV played no particular role in the series of works we have just

described, it is difficult to completely decouple these successes from the exact

structure of the KdV equation. In the first place, many of these arguments

rely on the absence of unfavorable resonances. This appears in the multilin-

ear Xs,b estimates and (rather more explicitly) in the construction of almost

conserved quantities in [12]. This is akin to the construction of Birkoff normal

form, which may fail due to resonances, but which does succeed in completely

integrable systems (cf. [68], [71]). As we will discuss below, we now know that

KdV admits exact conservation laws adapted to every regularity s ≥ −1; this

offers a rather transparent explanation for the otherwise startling success of

[12] in constructing almost conserved quantities.

The Miura map [53], implements a first iteration toward the construc-

tion of Birkoff normal form by converting the KdV equation to the mKdV

equation, which has a nonlinearity that is one degree higher. This transforma-

tion was one of the first indications that there was something peculiar about

(KdV). Moreover, a one-parameter generalization of this transformation, due

to Gardner, led to the first proof of the existence of infinitely many polynomial

conservation laws; see [54]. The Miura map has been very popular in the study

of KdV at low regularity. Most particularly, it allows one to work at positive
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regularity, where many nonlinear transformations (e.g., pointwise products)

are much better behaved.

The breakdown of traditional techniques from partial differential equations

(PDE) ultimately stems from a high-high-low frequency interaction that makes

it impossible to approximate the KdV flow by a linear evolution even locally

in time. This particular frequency interaction appears in many fluid models,

due to the ubiquity of the advection nonlinearity (u · ∇)u, and it is exploited

crucially in the construction of solutions exhibiting energy growth.

It is worth noting that among the family of monomial gKdV equations,

namely, those of the form ∂tq = −∂3
xq ± ∂x(qk), only for the completely inte-

grable models (i.e., k = 2, 3) does the local well-posedness threshold deviate

from scaling. Indeed, the completely integrable models are less well-posed

relative to scaling than those with k ≥ 4. Ultimately, we see that complete

integrability does not completely ameliorate the severity of this nonlinearity

when acting on solutions of low regularity.

In this vein, we contend that the complete integrability of a system is not

divorced from the class of initial data on which it is studied. The PDE ∂tq =

∂xq posed on the line might immediately be classed as completely integrable;

it even belongs to the KdV hierarchy. However, when the initial data is white-

noise, we see that the dynamics is mixing! On the basis of the results of this

paper, we may say that the term completely integrable continues to apply to

(KdV) in the class Hs(R) when s ≥ −1.

We have not yet explained in what sense (KdV) can be regarded as com-

pletely integrable. The most common definition applied in finite-dimensional

mechanics is that the system has sufficiently many Poisson commuting, func-

tionally independent, conserved quantities. Here, sufficiently many means half

the dimension of the ambient symplectic manifold. As noted earlier, the fact

that (KdV) admits infinitely many independent conserved quantities was first

proved in [54]. We have already seen three: the mass, momentum, and energy.

In the original paper, the conservation laws were presented in a microscopic

form, that is, as

(1.3) ∂tρ(t, x) + ∂xj(t, x) = 0,

where the densities ρ and the currents j are given by particular polynomials in

q and its derivatives. The (macroscopic) conserved quantities are then obtained

integrating ρ over the whole line or circle, as appropriate.

The polynomial nature of these conserved quantities is such that, except

in the case of H∞ data (i.e., all derivatives square integrable), all but finitely

many of them are infinite. Moreover, it is also not immediately clear whether

these constitute a sufficient number of conserved quantities to call the system

completely integrable, even in Schwartz space. These concerns turn out to be

unwarranted. To explain, we begin with an innovation of Lax [45], namely, the
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introduction of the Lax pair: Defining

L(t) := −∂2
x + q(t, x) and P (t) := −4∂3

x + 3
Ä
∂xq(t, x) + q(t, x)∂x

ä
,

it is easy to verify that

q(t) solves (KdV) ⇐⇒ d

dt
L(t) = [P (t), L(t)].

As P (t) is always anti-self-adjoint, this shows that at each time slice, the

Schrödinger operator with potential q(t, x) is unitarily equivalent to that built

from the initial data q(0, x). Speaking loosely, we may say that all spectral

properties of L(t) are conserved under the KdV flow.

One of the beauties of the Lax pair is that it works equally well in both

geometries. However, once we try to speak more precisely about which spectral

properties are conserved, this unity quickly dissolves. We will first discuss the

periodic case where related ideas have been most successful in tackling the

well-posedness problem.

The Schrödinger operator on the circle with (periodic) potential q has

purely discrete spectrum. This remains true for potentials that are merely H−1

because such perturbations of −∂2
x are relatively compact. The Lax pair shows

that these (periodic) eigenvalues are then conserved under the flow and so we

obtain an infinite sequence of conserved quantities that extend to the case of

very low regularity. There is a direct connection between these eigenvalues and

the polynomial conservation laws mentioned earlier; see, for example, [50, §3].

As it turns out, these eigenvalues are not the most convenient objects

for further development. Rather, one should consider the spectrum of the

Schrödinger operator associated to the 1-periodic potential, acting on the whole

line. This set is wholly determined by the periodic eigenvalues; see [20]. Never-

theless, this new perspective suggests an alternate set of conserved quantities,

namely, the lengths of the gaps in the spectrum. The virtue of these new

quantities can be seen already in the fact that these numbers effectively cap-

ture the Hs norms of the potential, at least if s ≥ 0; see [49]. While such

a priori bounds are useful for well-posedness questions (particularly, to extend

solutions globally in time), they do not suffice.

For the purposes of well-posedness, there is no better expression of com-

plete integrability than the existence of action-angle coordinates. Such coordi-

nates are now known to exist for (KdV) with data in H−1(R/Z), and this result

was decisive in the proof of global well-posedness in [30]. A key step down this

path was the discovery that one should adopt the Dirichlet spectrum (together

with the gap lengths) to form a complete set of coordinates and secondly, that

these points (which lie in the gaps) should properly be interpreted as lying on

the Riemann surface obtained by gluing together two copies of the complex

plane cut along the spectrum. These considerations lead to the definition of
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angle variables (cf. [17], [51]) and thence to associated actions [18]. A very

pedagogical account of these constructions can be found in [29]; moreover, this

monograph culminates in a proof that these variables define global action-angle

coordinates on each symplectic leaf in the phase-space L2(R/Z).

The proof in [30] of global well-posedness in H−1(R/Z) required two more

steps. The first, carried out in [26], was the extension of these coordinates (as

a global analytic symplectic diffeomorphism) to H−1(R/Z). The second was to

gain adequate control of the frequencies (i.e., the time derivatives of the angles).

Usually, these frequencies are computed as the derivatives of the Hamiltonian

with respect to the corresponding actions. However, the Hamiltonian HKdV

does not make sense as a function on H−1(R/Z)!

Let us now turn our attention to the case of (KdV) posed on the line.

We begin by describing a system of coordinates discovered already in [19] that

linearize the flow (at least for a suitable class of data). While not action-angle

variables themselves, such variables can be readily expressed in terms of them;

see [70].

To the best of our knowledge, the broadest class in which the construction

that follows has been successfully completed is L1
1 := {q ∈ L1(R) : xq(x) ∈

L1(R)}; see [48], [52]. As we will discuss later, there are compelling reasons

to doubt that this construction can be taken much further without substantial

new ideas.

Given q ∈ L1
1 and k ∈ C with Im k ≥ 0, there are unique solutions f±(x; k)

to the ordinary differential equation (ODE)

−f ′′(x) + q(x)f(x) = k2f(x) satisfying f±(x) = e±ikx + o(1) as x→ ±∞.

These are known as Jost solutions and depend analytically on k. For k ∈
R \ {0}, f+(x;±k) are linearly independent solutions to our ODE. Thus we

may define connection coefficients, say a(k) and b(k), so that

(1.4) f−(x; k) = a(k)f+(x;−k) + b(k)f+(x; k).

Note that a(k) extends analytically to the upper half-plane, since it can be

expressed through the Wronskian of f+ and f−. There is no such extension

of b(k). The relation to the Wronskian also shows that a(k) has zeros in the

upper half-plane precisely at those points iκn for which −κ2
n is an eigenvalue

of the Schrödinger operator.

The objects introduced so far do not uniquely characterize the potential q.

To do so, one must also consider norming constants, cn > 0, associated to each

eigenvalue −κ2
n. These describe the large-x asymptotics of the L2-normalized

eigenfunction ψn(x); specifically, eκnx|ψ(x)| → cn as x→ +∞.

As shown already in [19], the objects just described evolve very simply

under (KdV): a(k), |b(k)|, and the eigenvalues remain constant, while arg(b(k))

and log(cn) evolve linearly. As the forward and inverse scattering problems
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have been shown to be well-posed in the class L1
1, this yields a proof of well-

posedness of (KdV) in this class. This is the natural analogue of the argument

that has proven so successful in the circle geometry.

Unfortunately, well-posedness of the forward/inverse scattering problems

(as they are currently understood) begins to break down under very mild re-

laxations of the condition q ∈ L1
1. For example, the scattering data fails to

determine q already for potentials that are bounded and O(x−2) at infinity, due

to the presence of zero-energy eigenvalues; see [16]. Relaxing our decay restric-

tions on q to merely O(|x|−1) at infinity, gives rise to further problems: positive

energy (embedded) eigenvalues may occur (cf. [59, §XIII.13]); moreover, Jost

solutions may fail to exist (without WKB correction) at every positive energy.

In [41], it is shown that embedded singular continuous spectrum can occur

as soon as one passes beyond O(|x|−1) decay, even in the slightest. Moreover,

potentials q∈L2(R) can yield an essentially arbitrary embedded singular spec-

trum; see [39]. The appearance of such exotic spectra leads us to believe that

seeking a solution to the well-posedness problem for (KdV) in H−1(R) through

the inverse scattering methodology has little chance of success at this time. In

particular, we are not aware of any proposal for action-angle variables in such a

scenario. This raises the following question: What other manifestation of com-

plete integrability may hold the key to further progress on the well-posedness

problem?

Our answer, in this paper, is the existence of a wealth of commuting

flows. As we will see, the method we propose does not completely supplant

PDE techniques, but rather, like the Miura map, provides a new avenue for

their application to the KdV problem. As the existence of an abundance of

commuting flows is a necessary (but not sufficient) condition for a system to

be considered completely integrable, the method has a good chance of being

applicable to any PDE that is considered completely integrable.

The commuting flows associated to the traditional sequence of conserved

quantities (based on polynomials in q and its derivatives) are not what we

have in mind. Their well-posedness is at least as difficult as for (KdV) itself.

Moreover, there is no sense in which they approximate the KdV flow; they are

better considered as flowing in orthogonal directions. Rather, we begin our

discussion with

(1.5) α(κ; q) := − log[a(iκ; q)] + 1
2κ

∫
q(x) dx,

where a(k; q) denotes the coefficient a(k) from (1.4) associated to the poten-

tial q. As noted previously, both a(k; q) and
∫
q are conserved under the KdV

flow; thus one should expect α(κ) to also be conserved whenever it is defined.

Unaware that the same idea had already been implemented by Rybkin

in [60], the authors together with X. Zhang showed in [40] that α(κ; q) is a
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real-analytic function of q ∈ H−1(R), provided κ ≥ 1+45‖q‖2H−1 . We also gave

a direct proof that it is conserved for Schwartz initial data. In these arguments,

both we and Rybkin use the fact that a(k; q) can also be written as a Fredholm

determinant; see (2.21) below. That such a determinant representation of

this scattering coefficient is possible was first noticed in the setting of three-

dimensional central potentials in [25]. (See [62, Prop. 5.4] or [38, Lemma 2.8]

for simple proofs in one dimension.)

The renormalization of log |a(k)| appearing in (1.5) is essential for consid-

ering q ∈ H−1(R); without it, one would need to restrict to potentials that are

at least conditionally integrable. Incidentally, this renormalizing term can also

be predicted as the leading behavior of the phase shift via WKB theory.

The goal of the paper [40] was the construction of a variety of low-

regularity conservation laws for KdV both on the line and on the circle. (The

cubic nonlinear Schrödinger equation (NLS) and complex mKdV were also

treated there by the same method.) In the case of H−1(R) bounds for KdV,

our argument is essentially that of Rybkin [60], who obtained the same result.

Another proof (also independent of Rybkin) can be found in [8]. In the line

setting, general Hs(R) bounds for KdV, NLS, and mKdV were obtained, inde-

pendently, by Koch and Tataru [43]. For an earlier partial result, see also [46].

In the circle setting, bounds of this type were obtained considerably earlier;

see [26].

In this paper, we will not rely on the results of [8], [26], [40], [43], [60].

In fact, the proof of Theorem 1.2 below relies on our development of an alter-

nate argument, which also yields the global H−1 bound. Specifically, we will

develop a microscopic version (cf. (1.3)) of the macroscopic conservation law

from [40], [60].

A priori bounds of the type just described do not in themselves yield well-

posedness. Indeed, conservation of momentum was known already to Korteweg

and de Vries, yet the corresponding well-posedness result did not appear un-

til [6]. The key obstacle is always to control differences of solutions. While

individual solutions admit infinitely many conservation laws, the difference of

two solutions need not have any.

As discussed previously, the map q 7→ α(κ; q) is analytic; therefore, its

derivative (with respect to q) is represented (in the sense (1.7)) by an analytic

H1-valued function of q ∈ H−1. Thus, when we consider the Hamiltonian

evolution induced by this functional, namely,

d

dt
q(t) = ∂x

δα

δq
,

we see that the right-hand side is a Lipschitz function on H−1 and so well-

posedness of this equation follows by the standard ODE argument. Our ambi-

tion (and this appears to be a new idea) is to approximate (KdV) by this flow.
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It turns out that this is possible after one further renormalization, as we will

now explain.

It was observed already in [70] that log[a(iκ)] acts as a generating function

for the polynomial conserved quantities; in particular, this yields the asymp-

totic expansion

α(κ; q) = 1
4κ3

P (q)− 1
16κ5

HKdV(q) +O(κ−7),

using the notation of (1.1) and (1.2). Inspired by this, one may then postulate

that the Hamiltonian

Hκ := −16κ5α(κ; q) + 4κ2P (q)

provides a good approximation to the KdV Hamiltonian for κ large. More

ambitiously, one may hope that the KdV flow is well approximated by the flow

under Hκ. Verifying this and so deducing Theorem 1.1 occupies the central

portion of the paper, namely, Sections 3–5.

Several observations are in order. Firstly, while α(κ, q) is a analytic func-

tion on H−1, the approximate Hamiltonian Hκ is not, because momentum is

not. Nevertheless, well-posedness of the resulting flow is still elementary; see

Proposition 3.2.

The problem of estimating the discrepancy between the Hκ flow and the

full KdV flow is much simplified by the fact that the two flows commute.

Indeed, it reduces the question of such an approximation to showing that the

flow induced by the difference HKdV − Hκ is close to the identity for κ large

and bounded time intervals.

Naturally, one needs to show that this flow is close to the identity in

the H−1 metric; however, this follows from proximity in much weaker norms,

say H−3. The central point here is equicontinuity, or what is equivalent, tight-

ness on the Fourier side; see Lemma 4.2. The equicontinuity of orbits under

the flows of interest to us follows from the fact that all conserve α(κ; q); see

Lemma 4.3. Indeed, from (2.20), we see that this functional effectively captures

how much of the H−1 norm of q lives at frequencies ξ with |ξ| & κ.

One further innovation informs our implementation of the program laid

out above, namely, the adoption of the “good unknown” x 7→ κ− 1
2g(x) . Here

g(x) := g(x;κ, q) denotes the diagonal of the Green’s function associated to

the potential q at energy −κ2. For a discussion of this object, see Section 2.

In particular, it is shown there that the map from q(x) to κ − 1
2g(x) is a real-

analytic diffeomorphism, thus, justifying the notion that g(x) may effectively

replace the traditional unknown q(x).

Both the diagonal Green’s function and its reciprocal appear naturally in

several places in our argument, including in the conserved density ρ introduced

in (2.18) and in the dynamics associated to the Hamiltonian Hκ; see (3.11).



260 ROWAN KILLIP and MONICA VIŞAN

Although our embracement of g(x) is certainly responsible for the simplicity

of many of our estimates and concomitantly, for the brevity of the paper, we

caution the reader that it is not in itself the key to overcoming the fundamental

obstacle confounding previous investigators, namely, the problem of estimating

differences between two solutions.

We are not aware of any obstruction to extending the method employed

here to a wide range of integrable systems, including those in the AKNS family.

As evidence in favour of this assertion, we demonstrate in Section 6 how our

method applies in the setting of KdV on the circle. In Appendix A we apply

it to the next equation in the KdV hierarchy, following up on an enquiry of

a referee. Regarding models in the AKNS family, we note that the functional

α(κ, q) discussed in [40] is easily seen to have several of the favorable properties

needed for our arguments, such as providing global norm control, yielding

equicontinuity, and inducing a well-posed Hamiltonian flow.

We do not consider what our results may imply for (real) mKdV via the

Miura map. Rather, it is our hope that our method may soon be adapted

to give an intrinsic treatment of the more general complex mKdV, which fits

within the AKNS family of integrable systems.

Finally, while the ideas presented here are rooted in the complete integra-

bility of KdV, we believe they may prove fruitful beyond this realm. Specif-

ically, we envision the Hκ flow being used as a leading approximation for

KdV-like equations in much the same way as the Airy equation, ∂tq = −q′′′,
has been used as an approximation of KdV itself.

1.1. Local smoothing. The local smoothing effect is observed for a wide

range of dispersive equations in Euclidean space, both linear and nonlinear.

The underlying physical principle is that when high-frequency components of

a wave travel very quickly, they must spend little time in any fixed finite

region of space. Thus, one should expect a gain in regularity locally in space

on average in time. This phenomenon seems to have been first appreciated by

Kato, both for linear [31], [32] and nonlinear [34] problems. In [34], it is shown

that for Schwartz solutions to (KdV), one has∫ 1

−1

∫ 1

−1
|q′(t, x)|2 dx dt . ‖q(0)‖2L2 + ‖q(0)‖6L2 .

This is then used to prove the existence of global weak solutions to (KdV) for

initial data in L2(R). Prior to this, existence of global weak solutions (in either

geometry) was known only for data in H1; see [65].

In [8], Buckmaster and Koch proved the existence of an analogous a priori

local-smoothing estimate one degree lower in regularity (on both sides). This

is achieved by using a Miura-type map and adapting Kato’s local smoothing

estimate for mKdV to the presence of a kink. This technology is then used to
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prove the existence of global weak/distributional solutions to (KdV) with initial

data in H−1(R). (The nonlinearity may now be interpreted distributionally,

because local smoothing guarantees that q(t, x) is locally square integrable in

space-time.) As is usual with the construction of weak solutions, the arguments

do not yield uniqueness and continuity in time is only shown with respect to

the weak topology. (Continuous dependence on the initial data is hopeless

without first knowing uniqueness.) For a restricted class of H−1 initial data

(namely, that in the range of the traditional Miura map), the existence of weak

solutions was shown earlier in [28]; see also [67].

In Section 7 we will give a new derivation of the a priori local smoothing

bound of [8]. Our argument is based on the discovery of a new microscopic

conservation law (3.7) adapted to regularity H−1(R), which is then integrated

against a suitably chosen weight function. It is not difficult to extend the

a priori bound to the full class of solutions constructed in Theorem 1.1. How-

ever, we are able to take the argument one step further and show the following

(cf. Proposition 7.2):

Theorem 1.2. Let q and {qn : n ∈ N} be solutions to (KdV) on the line

in the sense of Theorem 1.1. If the initial data obey qn(0)→ q(0) in H−1(R),

then

(1.6)

∫∫
K

∣∣∣q(t, x)− qn(t, x)
∣∣∣2 dx dt→ 0 as n→∞

for every compact set K ⊂ R× R.

It follows immediately from this result that the solutions we construct are

indeed distributional solutions in the line case.

Acknowledgements. R. K. was supported, in part, by NSF grant DMS-

1600942 and M. V. by grant DMS-1500707. We would also like to thank the

referee, whose comments and questions led to the inclusion of Appendix A.

1.2. Notation and Preliminaries. Many of the functions considered in this

paper have numerous arguments. For example, the diagonal Green’s function

ultimately depends on the location in space x, an energy parameter κ, and

the wave profile q, which itself depends on time. We find it advantageous to

readability to suppress some of these dependencies from time to time.

We use the abbreviations LHS and RHS to refer to the left-hand and

right-hand sides of equations, respectively.

We use prime solely to indicate derivatives in x; thus f ′ = ∂xf .

Our conventions for the Fourier transform are as follows:

f̂(ξ) = 1√
2π

∫
R
e−iξxf(x) dx so f(x) = 1√

2π

∫
R
eiξxf̂(ξ) dξ
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for functions on the line and

f̂(ξ) =

∫ 1

0
e−iξxf(x) dx so f(x) =

∑
ξ∈2πZ

f̂(ξ)eiξx

for functions on the circle R/Z. Concomitant with this, we define

‖f‖2Hs(R) =

∫
R
|f̂(ξ)|2(4 + |ξ|2)s dξ and ‖f‖2Hs(R/Z) =

∑
ξ∈2πZ

(4 + ξ2)s|f̂(ξ)|2.

The use of the number 4 here rather than the more traditional 1 has no mean-

ingful effect on these Hilbert spaces (the norms are equivalent); however, this

definition simplifies our exposition by making certain key relations exact iden-

tities. More generally, we define

‖f‖2Hs
κ(R) =

∫
R
|f̂(ξ)|2(4κ2 + |ξ|2)s dξ

and

‖f‖2Hs
κ(R/Z) =

∑
ξ∈2πZ

(4κ2 + ξ2)s|f̂(ξ)|2.

Note that H1
κ is an algebra in either geometry. Indeed, one readily sees

that

‖fg‖H1
κ
. ‖f‖H1‖g‖H1

κ
≤ ‖f‖H1

κ
‖g‖H1

κ
uniformly for κ ≥ 1.

By duality, this implies that

‖fh‖H−1
κ
. ‖f‖H1‖h‖H−1

κ
uniformly for κ ≥ 1.

Throughout the paper, we will employ the L2 pairing. This informs our

identification of H−1 and H1 as dual spaces and our notation for functional

derivatives:

(1.7)
d

ds

∣∣∣∣∣
s=0

F (q + sf) = dF
∣∣∣
q
(f) =

∫
δF

δq
(x)f(x) dx.

We write Ip for the Schatten class of compact operators whose singular

values are `p summable. In truth, we shall use the Hilbert–Schmidt class

I2 almost exclusively. When we do use I1, it will only be as a notation for

products of Hilbert–Schmidt operators; see (6.5). Let us quickly recall several

facts about the class I2 that we will use repeatedly: An operator A on L2(R) is

Hilbert–Schmidt if and only if it admits an integral kernel a(x, y) ∈ L2(R×R);

moreover,

‖A‖L2→L2 ≤ ‖A‖I2 =

∫∫
|a(x, y)|2 dx dy.

The product of two Hilbert–Schmidt operators is trace class; moreover,

tr(AB) :=

∫∫
a(x, y)b(y, x) dy dx = tr(BA) and | tr(AB)| ≤ ‖A‖I2‖B‖I2 .
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Lastly, Hilbert–Schmidt operators form a two-sided ideal in the algebra of

bounded operators; indeed,

‖BAC‖ ≤ ‖B‖L2→L2‖A‖I2‖C‖L2→L2 .

All of this (and much more) is explained very clearly in [62].

For the arguments presented here, the problem (KdV) posed on circle is

more favorably interpreted as a problem on the whole line with periodic initial

data. Correspondingly, even in this case, we will be dealing primarily with

operators on the whole line, albeit with periodic coefficients. When we do

need to discuss operators acting on the circle R/Z in connection with prior

work, these will be distinguished by the use of calligraphic font.

2. Diagonal Green’s function

The goal of this section is to discuss the Green’s function G(x, y) associ-

ated to the whole-line Schrödinger operator

L := −∂2
x + q

for potentials

(2.1) q ∈ Bδ := {q ∈ H−1(R) : ‖q‖H−1(R) ≤ δ}
and δ small. Particular attention will be paid to the diagonal g(x) := G(x, x)

and its reciprocal 1/g(x); the latter appears in the energy density associated

to the key microscopic conservation law for KdV.

Let us briefly recall one key fact associated to the Schrödinger operator

with q ≡ 0: The resolvent

R0(κ) = (−∂2
x + κ2)−1 has integral kernel G0(x, y;κ) = 1

2κe
−κ|x−y|(2.2)

for all κ > 0.

Proposition 2.1. Given q ∈ H−1(R), there is a unique self-adjoint op-

erator L associated to the quadratic form

ψ 7→
∫
|ψ′(x)|2 + q(x)|ψ(x)|2 dx with domain H1(R).

It is semi-bounded. Moreover, for δ ≤ 1
2 and q ∈ Bδ , the resolvent is given by

the norm-convergent series

R := (L+ κ2)−1 =
∞∑
`=0

(−1)`
√
R0

(√
R0 q

√
R0

)`√
R0(2.3)

for all κ ≥ 1.

Proof. The key estimate on which all rests is the following:∥∥∥∥√R0 q
√
R0

∥∥∥∥2

op
≤
∥∥∥∥√R0 q

√
R0

∥∥∥∥2

I2(R)
=

1

κ

∫ |q̂(ξ)|2

ξ2 + 4κ2
dξ.(2.4)
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For q ∈ S(R), the Hilbert–Schmidt norm can be evaluated directly using (2.2):∥∥∥∥√R0 q
√
R0

∥∥∥∥2

I2(R)
=

1

4κ2

∫∫
q(x)e−2κ|x−y|q(y) dx dy = RHS(2.4).

This then extends to all q ∈ H−1(R) by approximation.

From (2.4), we see that∫
q(x)|ψ(x)|2 dx ≤ κ−1/2‖q‖H−1

∫
|ψ′(x)|2 + κ2|ψ(x)|2 dx

for all ψ ∈ H1(R), at least for all κ ≥ 1. (Note that the LHS here should be

interpreted via the natural pairing between H−1, which contains q, and H1,

which contains |ψ|2.) This estimate shows that q is an infinitesimally form-

bounded perturbation of the case q ≡ 0, and so the existence and uniqueness

of L follows from [58, Th. X.17].

In view of (2.4), the series (2.3) converges provided we just choose δ < 1.

�

Proposition 2.2 (Diffeomorphism property). There exists δ > 0 so that

the following are true for all κ ≥ 1:

(i) For each q ∈ Bδ , the resolvent R admits a continuous integral kernel

G(x, y;κ, q); thus, we may unambiguously define

g(x;κ, q) := G(x, x;κ, q).(2.5)

(ii) The mappings

q 7→ g − 1
2κ and q 7→ κ− 1

2g(2.6)

are (real analytic) diffeomorphisms of Bδ into H1(R).

(iii) If q(x) is Schwartz, then so are g(x)− 1
2κ and κ− 1

2g(x) . Indeed,

‖g′(x)‖Hs .s ‖q‖Hs−1 and ‖〈x〉sg′(x)‖L2 .s ‖〈x〉sq‖H−1(2.7)

for every integer s ≥ 0.

Remark. The diffeomorphism property is necessarily restricted to a neigh-

borhood of the origin because for q large, the spectrum of L may intersect −κ2.

Proof. Initially, we ask that δ ≤ 1
2 ; later, we will add further restrictions.

From (2.3) and (2.4), we see that∥∥∥∥»κ2 − ∂2
x

Ä
R−R0

ä»
κ2 − ∂2

x

∥∥∥∥
I2

<∞ for all q ∈ Bδ and all κ ≥ 1.

Consequently, G−G0 exists as an element of H1(R)⊗H1(R). Here we mean

tensor product in the Hilbert-space sense (cf. [57]); note that H1(R)⊗H1(R)
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is comprised of those f ∈ H1(R2) for which ∂x∂yf ∈ L2(R2). It follows that

G(x, y;κ, q) is a continuous function of x and y, and we may define

g(x) = g(x;κ, q) = 1
2κ +

∞∑
`=1

(−1)`
〈√

R0δx,
(√

R0 q
√
R0

)`√
R0δx

〉
,(2.8)

where inner products are taken in L2(R). This settles (i).

Next we observe that by (2.3) and (2.4),∣∣∣∣∫ f(x)
î
g(x)− 1

2κ

ó
dx

∣∣∣∣ ≤ ∞∑
`=1

∥∥∥∥√R0 f
√
R0

∥∥∥∥
I2(R)

∥∥∥∥√R0 q
√
R0

∥∥∥∥`
I2(R)

≤ 2δκ−1‖f‖H−1(R)

for any Schwartz function f . Thus g − 1
2κ ∈ H

1(R); indeed,

(2.9)
∥∥∥g − 1

2κ

∥∥∥
H1(R)

≤ 2δκ−1.

Moreover, this argument shows that the series (2.8) converges and so that the

mapping from q ∈ Bδ to g − 1
2κ ∈ H

1(R) is real analytic.

Given f ∈ H−1(R), the resolvent identity implies

(2.10)
d

ds

∣∣∣∣∣
s=0

g(x; q + sf) = −
∫
G(x, y)f(y)G(y, x) dy.

In particular, by (2.2),
dg
∣∣∣
q≡0

= −κ−1R0(2κ),

which is an isomorphism of H−1
κ onto H1

κ, with condition number equal to 1.

Moreover, by (2.4), (2.3), and duality,

(2.11)
∥∥∥dg∣∣∣

q≡0
− dg

∣∣∣
q

∥∥∥
H−1
κ →H1

κ

. κ−1‖q‖H−1
κ
. δ

∥∥∥∥Ädg∣∣∣q≡0

ä−1
∥∥∥∥−1

H1
κ→H−1

κ

.

Thus choosing δ sufficiently small, the inverse function theorem guarantees that

(2.12) q 7→ g − 1
2κ is a diffeomorphism of {q : ‖q‖H−1

κ
≤ δ} into H1

κ.

Note that (2.11) combined with the standard contraction-mapping proof of the

implicit function theorem guarantees that δ can be chosen independently of κ.

The claimedH−1 → H1 diffeomorphism property of this map then follows since

‖q‖H−1
κ
≤ ‖q‖H−1 and ‖f‖H1

κ
.κ ‖f‖H1 .

Choosing δ even smaller if necessary, (2.9) together with the embedding

H1 ↪→ L∞ guarantees that

1
4κ ≤ g(x) ≤ 3

4κ for all q ∈ Bδ.

Consequently, the second mapping in (2.6) is also real-analytic. To prove that

it is a diffeomorphism (for some κ-independent choice of δ), we simply note that

f 7→ f

1 + f
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is a diffeomorphism from a neighbourhood of zero in H1(R) into H1(R), write

κ− 1
2g = κ

2κ(g − 1
2κ)

1 + 2κ(g − 1
2κ)

,

and use (2.9) together with (2.12).

We now turn our attention to part (iii). The Green’s function associ-

ated to a translated potential is simply the translation of the original Green’s

function. Correspondingly,

g(x+ h; q) = g
Ä
x; q(·+ h)

ä
for all h ∈ R.(2.13)

Differentiating with respect to h at h = 0 and invoking (2.8) yields∫ î
∂sxg(x)

ó
f(x) dx ≤

∞∑
`=1

∑
σ

Ç
s

σ

å∥∥∥∥√R0 f
√
R0

∥∥∥∥
I2(R)

∏̀
k=1

∥∥∥∥√R0 q
(σk)

√
R0

∥∥∥∥
I2(R)

.

Here, the inner sum extends over multi-indices σ = (σ1, . . . , σ`) with |σ| = s.

Maximizing over unit vectors f ∈ H−1, exploiting (2.4), and using

∏̀
k=1

∥∥∥q(σk)
∥∥∥
H−1
≤
∥∥∥q(s)

∥∥∥
H−1

∥∥∥q∥∥∥`−1

H−1
,

which is merely an application of Holder’s inequality in Fourier variables, this

yields ∥∥∥∂sxg(x)
∥∥∥
H1
≤
∞∑
`=1

`s
∥∥∥q(s)

∥∥∥
H−1

δ`−1 .s
∥∥∥q∥∥∥

Hs−1
.

Thus we have verified the first claim in (2.7).

To address the second assertion in (2.7), we first make the following claim:

For every integer s ≥ 0,

〈x〉sR0 =
s∑
r=0

√
R0Ar,s

√
R0 〈x〉r with operators ‖Ar,s‖L2→L2 .s 1.(2.14)

This is easily verified recursively, by repeatedly using the following commuta-

tors:

(2.15)

î
〈x〉, R0

ó
= R0

î
−∂2

x + κ2, 〈x〉
ó
R0 = −R0

Ä
x
〈x〉∂x + ∂x

x
〈x〉

ä
R0,î

x
〈x〉∂x + ∂x

x
〈x〉 , 〈x〉

ó
= 2 x2

〈x〉2 .

In connection with (2.14), let us also pause to note that∥∥∥〈x〉rq∥∥∥
H−1
.s

∥∥∥〈x〉sq∥∥∥
H−1

for any pair of integers 0 ≤ r ≤ s,(2.16)

since 〈x〉−1 ∈ H1(R), which is an algebra.

By applying (2.8), (2.4), (2.14), and (2.16), we deduce that∫
f(x)〈x〉s

î
g(x)− 1

2κ

ó
dx
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.s
∞∑
`=1

s∑
r=0

∥∥∥∥√R0 f
√
R0

∥∥∥∥
I2(R)

∥∥∥∥√R0 〈x〉rq
√
R0

∥∥∥∥
I2(R)

δ`−1

.s
∥∥∥f∥∥∥

H−1

∥∥∥〈x〉sq∥∥∥
H−1

.

Optimizing over f ∈ H−1(R), it then follows that

‖〈x〉sg′(x)‖L2(R) .s
∥∥∥〈x〉sîg(x)− 1

2κ

ó∥∥∥
H1(R)

.s ‖〈x〉sq‖H−1 ,

thereby completing the proof of (2.7) and so the proof of the proposition. �

Proposition 2.3 (Elliptic PDE). The diagonal Green’s function obeys

g′′′(x) = 2
î
q(x)g(x)

ó′
+ 2q(x)g′(x) + 4κ2g′(x).(2.17)

Proof. By virtue of being the Green’s function,Ä
−∂2

x + q(x)
ä
G(x, y) = −κ2G(x, y) + δ(x− y) =

Ä
−∂2

y + q(y)
ä
G(x, y)

and consequently,Ä
∂x + ∂y

ä3
G(x, y) =

Ä
q′(x) + q′(y)

ä
G(x, y) + 2

Ä
q(x) + q(y)

äÄ
∂x + ∂y

ä
G(x, y)

−
Ä
q(x)− q(y)

äÄ
∂x − ∂y

ä
G(x, y) + 4κ2

Ä
∂x + ∂y

ä
G(x, y).

Thus specializing to y = x, we deduce that

g′′′(x) = 2q′(x)g(x) + 4q(x)g′(x) + 4κ2g′(x),

which agrees with (2.17) after regrouping terms. �

Remark. As will be discussed in the proof of Lemma 2.5, the Green’s func-

tion can be expressed in terms of two solutions ψ±(x) to the Sturm–Liouville

equation (the Weyl solutions); see (2.26). In this sense, g(x) = ψ+(x)ψ−(x)

was seen to obey (2.17) already in [1].

Proposition 2.4 (Introducing ρ). There exists δ > 0 so that

ρ(x;κ, q) := κ− 1
2g(x) + 1

2

∫
e−2κ|x−y|q(y) dy(2.18)

belongs to L1(R) ∩H1(R) for all q ∈ Bδ and κ ≥ 1. Moreover, fixing x ∈ R,

the map q 7→ ρ(x) is nonnegative and convex. Additionally,

α(κ; q) :=

∫
R
ρ(x) dx(2.19)

defines a nonnegative, real-analytic, strictly convex function of q ∈ Bδ , and

satisfies

α(κ; q) ≈ 1

κ

∫
R

|q̂(ξ)|2 dξ
ξ2 + 4κ2

,(2.20)
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uniformly for q ∈ Bδ and κ ≥ 1. Lastly,

α(κ; q) = − log det2

Ä
1 +

√
R0 q

√
R0

ä
.(2.21)

Remarks. 1. Although we shall have no use for the strict convexity of

q 7→ α(κ; q) in this paper, it does have important consequences. Most notably,

by the Radon–Riesz argument, it shows that weakly continuous solutions con-

serving α(κ) are automatically norm-continuous.

2. As noted in the introduction (see (1.5) and subsequent discussion), the

quantity α(κ; q) is essentially the logarithm of the transmission coefficient and

so is well studied. Nevertheless, none of the literature we have studied contains

the representation (2.19) in terms of the reciprocal of the Green’s function.

Rather, prior works employ an integral representation based on the logarithmic

derivative of one of the Jost solutions; see (2.28). To the best of our knowledge,

this approach originates in [70, §3], where it was shown to be an effective

tool for deriving polynomial conservation laws and for demonstrating that

these polynomial conservation laws appear as coefficients in the asymptotic

expansion of the logarithm of the transmission coefficient as κ→∞.

Before turning to the proof of Proposition 2.4, we first explain the meaning

of RHS(2.21) and then present two lemmas that we shall need.

The symbol det2 denotes the renormalized Fredholm determinant intro-

duced by Hilbert in [24]; see [62] for a more up-to-date exposition. In the

context of Proposition 2.4, our choice of δ guarantees that the operator

A =
√
R0 q

√
R0 obeys ‖A‖I2 < 1.

Consequently, it suffices for what follows to exploit only the notion of the trace

of an operator (rather than determinant) thanks to the identity

− log det2

Ä
1 +A

ä
= tr

Ä
A− log(1 +A)

ä
=
∞∑
`=2

(−1)`

`
tr
Ä
A`
ä
.(2.22)

We shall not delve deeply into such matters here, since (2.21) has no bearing on

the proof of well-posedness for KdV; indeed, our only reason for verifying this

identity is to make the link to the prior works [40], [60], which might otherwise

seem unrelated.

Lemma 2.5. There exists δ > 0 so that∫
G(x, y;κ, q)G(y, x;κ, q)

2g(y;κ, q)2
dy = g(x;κ, q)(2.23)

for all q ∈ Bδ and all κ ≥ 1.

Remark. Augmenting the proof below with the results of [11, §8.3] shows

that (2.23) holds also for q ∈ H−1(R/Z) and κ ≥ 1 obeying (6.1). As below, one
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first uses analyticity to reduce to a case where one may apply ODE techniques,

more specifically, to the case of small smooth periodic potentials.

Proof. We choose δ > 0 as needed for Proposition 2.2. In this case, both

sides of (2.23) are analytic functions of q. Consequently, it suffices to prove

the result under the additional hypotheses that q is Schwartz and ‖q‖L∞ < 1.

Techniques in Sturm–Liouville theory (cf. [11, §3.8]) show that there are

solutions ψ±(x) to

−ψ′′ + qψ = −κ2ψ(2.24)

that decay (along with derivatives) exponentially as x→ ±∞ and grow expo-

nentially as x→ ∓∞. Constancy of the Wronskian guarantees that these Weyl

solutions (as they are known) are unique up to scalar multiples; we (partially)

normalize them by requiring the Wronskian relation

(2.25) ψ+(x)ψ′−(x)− ψ′+(x)ψ−(x) = 1

and that ψ±(x) > 0. Note that the Sturm oscillation theorem guarantees that

neither solution may change sign.

Using the Weyl solutions, we may write the Green’s function as

G(x, y) = ψ+(x ∨ y)ψ−(x ∧ y).(2.26)

In this way, the proof of the lemma reduces to showing that

1
2

∫ x

−∞

[
ψ+(x)
ψ+(y)

]2
dy + 1

2

∫ ∞
x

[
ψ−(x)
ψ−(y)

]2
dy = ψ+(x)ψ−(x).(2.27)

However, by (2.25), we have

d
dy

ψ−(y)
ψ+(y) = 1

ψ+(y)2
and d

dy
ψ+(y)
ψ−(y) = − 1

ψ−(y)2
.

Thus (2.27) follows by the fundamental theorem of calculus and the exponential

behavior of ψ±(y), as |y| → ∞. �

Remark. As mentioned above, there is an alternate integral representation

of α(κ; q) introduced much earlier. The proof of Lemma 2.5 provides the

requisite vocabulary to explain what that is:

log[a(iκ)] = −
∫

ψ′+(y)

ψ+(y) + κ dy =

∫
ψ′−(y)

ψ−(y) − κ dy.(2.28)

Here ψ± represent the Weyl solutions; however, the formula applies equally

well using the Jost solutions, since they differ only in normalization. It is in

this equivalent form that the first identity appears in [70, §3]. Averaging these

two representations and invoking (2.25) and then (2.26) yields

log[a(iκ)] =

∫
1

2ψ−(y)ψ+(y) − κ dy =

∫
1

2g(y) − κ dy,(2.29)
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which is readily seen to be equivalent to (2.19). One easy way to distinguish

these three representations is the fact that ψ+(y) depends only on the values

of q on the interval [y,∞), while ψ−(y) is determined by q on the interval

(−∞, y]; on the other hand, g(y) depends on the values of q throughout the

real line.

The following identity will be used not only in the proof of Proposition 2.4,

but also in Section 3.

Lemma 2.6. Given Schwartz functions f and q,∫
G(x, y;κ, q)

î
−f ′′′(y) + 2q(y)f ′(y) + 2

Ä
q(y)f(y)

ä′
+ 4κ2f ′(y)

ó
G(y, x;κ, q) dy

= 2f ′(x)g(x;κ, q)− 2f(x)g′(x;κ, q).

This identity also holds if merely f(x)− c is Schwartz for some constant c.

Proof. The argument that follows applies equally well irrespective of the

presence/absence of the constant c. Alternately, as both sides of the identity

are linear in f , the cases f Schwartz and f constant can be treated separately.

However, when f is constant the identity can be obtained more swiftly by other

means; see (3.9).

The most elementary proof proceeds from the defining property of G,

namely,Ä
−∂2

y + q(y) + κ2
ä
G(y, x) =

Ä
−∂2

y + q(y) + κ2
ä
G(x, y) = δ(x− y)

and integration by parts. However, we find the argument more palatable

when presented in terms of operator identities. Specifically, from the oper-

ator identity

−f ′′′ = (−∂2 + κ2)f ′ + f ′(−∂2 + κ2)

− 2(−∂2 + κ2)f∂ + 2∂f(−∂2 + κ2)− 4κ2f ′,

it follows that

−Rf ′′′R = f ′R− 2Rqf ′R+Rf ′ − 2f∂R− 2R[∂, qf ]R+ 2R∂f − 4κ2Rf ′R.

Noting, for example, that

g′(x) = 〈δx, [∂,R]δx〉,

the lemma then follows by considering the diagonal of the associated integral

kernel. �

Proof of Proposition 2.4. By (2.2),

1
2

∫
e−2κ|x−y|q(y) dy = 2κ[R0(2κ)q](x).
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Combined with Proposition 2.2, this shows ρ ∈ H1(R). Next we write

ρ(x) = 2κ2
î
g − 1

2κ + 1
κR0(2κ)q

ó
(x)− 2κ2

g(x) [g(x)− 1
2κ ]2.

The second summand belongs to L1(R) by Proposition 2.2; thus it remains to

consider the first summand. To this end, we use (2.8) and (2.4) to obtain∫ î
g − 1

2κ + 1
κR0(2κ)q

ó
(x)f(x) dx

=
∞∑
`=2

(−1)` tr
{√

R0f
√
R0

(√
R0 q

√
R0

)`}
≤ ‖f‖L∞

∥∥∥∥√R0

∥∥∥∥2

op

∥∥∥∥√R0 q
√
R0

∥∥∥∥2

I2

∞∑
`=2

δ`−2,

(2.30)

from which we may conclude that ρ ∈ L1(R). Note that the arguments just

presented actually show that q 7→ ρ is real analytic as a mapping of Bδ into

L1 ∩H1.

To show convexity at fixed x, we compute derivatives. As in (2.10), the

resolvent identity guarantees that

d[ρ(x)]
∣∣∣
q
(f) = −1

2g(x)2

∫
G(x, y)f(y)G(y, x) dy + 1

2 [e−2κ|·| ∗ f ](x)(2.31)

and thence

d2[ρ(x)]
∣∣∣
q
(f, h) = −1

g(x)3

∫∫
G(x, y)f(y)G(y, x)G(x, z)h(z)G(z, x) dy dz

+ 1
g(x)2

∫∫
G(x, y)f(y)G(y, z)h(z)G(z, x) dy dz.

(2.32)

Multiplying through by g(x)3 > 0 we then see that the convexity of ρ(x) is

reduced to the assertion that¨√
Rδx,

√
Rδx
∂¨√

Rδx,
√
RfRf

√
R
√
Rδx
∂
−
¨√

Rδx,
√
Rf
√
R
√
Rδx
∂2 ≥ 0

for all f ∈ H−1(R). (Here inner-products are taken in L2(R), which con-

tains
√
Rδx.) The veracity of this assertion now follows immediately from the

Cauchy–Schwarz inequality.

Specializing (2.31) to q ≡ 0 and substituting (2.2) shows

δρ(x)

δq

∣∣∣∣∣
q≡0

= 0.(2.33)

Note also that ρ(x) ≡ 0 when q ≡ 0. In this way the convexity of q 7→ ρ(x)

guarantees its positivity.

Let us now turn our attention to α(κ; q). In view of the preceding, we

already know that this is a nonnegative, convex, and real-analytic function of

q ∈ Bδ. It remains to show strict convexity, (2.20), and (2.21).
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As we have already noted, ρ(x) ≡ 0 when q ≡ 0. Thus (2.21) holds

trivially in this case. In general (2.21) follows easily from

δα

δq
= 1

2κ − g(x) =
δ

δq
− log det2

Ä
1 +

√
R0 q

√
R0

ä
,(2.34)

which we will now verify.

From (2.31) and Lemma 2.5,

d

ds

∣∣∣∣∣
s=0

α(κ; q + sf) = −
∫∫

G(y, x)G(x, y)

2g(x)2
f(y) dx dy + 1

2κ

∫
f(y) dy

=

∫ [
1

2κ − g(x)
]
f(x) dx,

at least for Schwartz functions f . This proves the first equality in (2.34).

From (2.22) and (2.8), we have

d

ds

∣∣∣∣∣
s=0

− log det2

Ä
1 +

√
R0 (q + sf)

√
R0

ä
=
∞∑
`=2

(−1)` tr
{(√

R0 q
√
R0

)`−1√
R0 f

√
R0

}
=

∫ [
1

2κ − g(x)
]
f(x) dx.

This verifies the second equality in (2.34) and so finishes the proof of (2.21).

Toward verifying strict convexity and (2.20), let us first compute the Hes-

sian of α(κ) at q ≡ 0. From (2.32) and (2.2), we have

d2α
∣∣∣
q≡0

(f, f) = − 1
2κ

∫∫∫
e−2κ|x−y|−2κ|x−z|f(y)f(z) dx dy dz

+ 1
2κ

∫∫∫
e−κ|x−y|−κ|y−z|−κ|z−x|f(y)f(z) dx dy dz

= 1
4κ2

∫∫
e−2κ|y−z|f(y)f(z) dy dz = 1

κ

∫ |f̂(ξ)|2

ξ2 + 4κ2
dξ.

(2.35)

As α(κ) is real analytic, this immediately shows strict convexity and (2.20)

in some neighbourhood of q ≡ 0; however, to verify that the size δ of this

neighbourhood may be taken independent of κ, we must adequately control

the modulus of continuity of the Hessian. From (2.11) and the first identity in

(2.34), we have∣∣∣∣(d2α
∣∣∣
q≡0
− d2α

∣∣∣
q

)
(f, f)

∣∣∣∣ . δκ−1
∫ |f̂(ξ)|2

ξ2 + 4κ2
dξ,

thereby settling the matter. �
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3. Dynamics

The natural Poisson structure on S(R) or C∞(R/Z) associated to the KdV

equation is

{F,G} =

∫
δF

δq
(x)

Ç
δG

δq

å′
(x) dx.(3.1)

This structure is degenerate: q 7→
∫
q is a Casimir (i.e., Poisson commutes

with everything). It is common practice to say that this is the Poisson bracket

associated to the (degenerate) almost complex structure J = ∂x and the L2

inner product. We shall not need such notions; however, they do suggest a

very convenient notation for the time-t flow under the Hamiltonian H:

q(t) = etJ∇Hq(0).

Note that under our sign conventions,

d

dt
F ◦ etJ∇H = {F,H} ◦ etJ∇H .

As two simple examples, we note that for

P :=

∫
1
2 |q(x)|2 dx and HKdV :=

∫
1
2 |q
′(x)|2 + q(x)3 dx,

we have

δP

δq
(x) = q(x) and

δHKdV

δq
(x) = −q′′(x) + 3q(x)2.(3.2)

Thus, the flow associated to P is precisely ∂tq = ∂xq, which is to say, P

represents momentum (= generator of translations); the flow associated to

HKdV is precisely the KdV equation. Note that HKdV and P Poisson commute:

{HKdV, P} =

∫ Ä
−q′′(x) + 3q(x)2

ä
q′(x) dx =

∫ Ä
−1

2q
′(x)2 + q(x)3

ä′
dx = 0.

This simultaneously expresses that the KdV flow conserves P and that HKdV

is conserved under translations. Moreover, the two flows commute:

esJ∇P ◦ etJ∇HKdV = etJ∇HKdV ◦ esJ∇P for all s, t ∈ R,

at least as mappings of Schwartz space. The claim that the KdV flow com-

mutes with translations is without controversy; nonetheless, it is important for

what follows to see that it stems precisely from the vanishing of the Poisson

bracket. Fortunately, by restricting our attention to Schwartz-space solutions,

we may simply apply the standard arguments from differential geometry; see,

for example, [2, §39].

We will also consider one more Hamiltonian, namely,

Hκ := −16κ5α(κ) + 2κ2
∫
q(x)2 dx(3.3)
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which, formally at least, converges to

HKdV :=

∫
1
2 |q
′(x)|2 + q(x)3 dx

as κ→∞. In due course, we will see that Hκ leads to a well-posed flow on H−1

and that it Poisson commutes with both P and HKdV, at least as a functional

on Schwartz space. For the moment, however, let us describe the evolution of

the diagonal Green’s function under the KdV flow.

Proposition 3.1. Given δ > 0, there is a δ0 > 0 so that for every

Schwartz solution q(t) to KdV with initial data q(0) ∈ Bδ0 , we have

sup
t∈R
‖q(t)‖H−1(R) ≤ δ.(3.4)

Moreover, for each κ ≥ 1, the quantities g(t, x) = g(x;κ, q(t)), ρ(t, x) =

ρ(x;κ, q(t)), and α(κ; q(t)) obey

d
dt g(t, x) = −2q′(t, x)g(t, x) + 2q(t, x)g′(t, x)− 4κ2g′(t, x),(3.5)

d
dt

1
2g(t,x) =

(
q(t,x)
g(t,x) −

2κ2

g(t,x) + 4κ3
)′
,(3.6)

d
dtρ(t, x) =

(
3
2

î
e−2κ|·| ∗ q2

ó
(t, x) + 2q(t, x)

î
κ− 1

2g(t,x)

ó
− 4κ2ρ(t, x)

)′
,(3.7)

d
dtα(κ; q(t)) = 0.(3.8)

Proof. Without loss of generality, we may require that δ is as small as

we wish. We shall require that δ meets the requirements of Propositions 2.2,

2.3, and 2.4. As an initial choice, we then set δ0 = 1
2δ. This guarantees that

these propositions are all applicable to q(t) for some open interval of times

containing t = 0. (Schwartz solutions are necessarily continuous in H−1(R).)

We will show below that equations (3.5)–(3.8) are valid on this time interval.

But then, choosing κ = 1 in (2.20) and (3.8), we obtain

‖q(t)‖H−1 . ‖q(0)‖H−1

on this interval. Thus we see that (3.4) holds globally in time, after updating

our choice of δ0, if necessary.

It remains to show that the stated differential equations apply to Schwartz

solutions whose H−1 norm is small enough that the results of Section 2 apply.

We begin the proof in earnest after one minor preliminary: By taking an h

derivative in (2.13) and using the resolvent identity, we have

g′(x; q) = −
∫
G(x, y)q′(y)G(y, x) dy.(3.9)
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By the resolvent identity, then Lemma 2.6, and then (3.9),

d

dt
g(x; q(t)) = −

∫
G(x, y)

î
−q′′′(t, y) + 6q(t, y)q′(t, y)

ó
G(y, x) dy

= −2q′(t, x)g(x; q(t)) + 2q(t, x)g′(x; q(t))

+ 4κ2
∫
G(x, y)q′(t, y)G(y, x) dy

= −2q′(t, x)g(x; q(t)) + 2q(t, x)g′(x; q(t))− 4κ2g′(x; q(t)).

This proves (3.5). Alternately, (3.5) can be derived from the Lax pair formu-

lation of KdV; specifically,

d

dt

Ä
L(t) + κ2

ä−1
=
î
P (t),

Ä
L(t) + κ2

ä−1ó
.

We leave the details to the interested reader.

Equation (3.6) follows immediately from (3.5) and the chain rule, while

(3.7) is simply a combination of (3.6) and (KdV). Lastly, (3.8) follows from

integrating (3.7) in x over the whole line. �

Remark. Combining (2.17) and (3.5) yields

d
dt g(x) =

(
2g′′(x)− 6q(x)g(x)− 12κ2g(x) + 6κ

)′
,(3.10)

from which we see that there is also a microscopic conservation law for the

KdV flow associated to g(x). Ultimately, however, this turns out to be a

consequence of the conservation of α(κ); specifically, we have

d

dκ
α(κ) = −2κ

∫
g(x)− 1

2κ + 1
4κ3

q(x) dx.

Proposition 3.2. Fix κ≥1. The Hamiltonian evolution induced by Hκ is

d
dt q(x) = 16κ5g′(x;κ) + 4κ2q′(x).(3.11)

This flow is globally well-posed for initial data in Bδ , for δ > 0 small enough

(independent of κ), and conserves α(κ) for any κ ≥ 1. Moreover, in the case

of Schwartz-class initial data, the solution is Schwartz-class for all time, the

associated diagonal Green’s function evolves according to

d
dt

1
2g(x;κ) = − 4κ5

κ2−κ2

(
g(x;κ)
g(x;κ) −

κ
κ

)′
+ 4κ2

(
1

2g(x;κ) − κ
)′

if κ 6= κ,(3.12)

and the flow commutes with that of HKdV.

Proof. From (2.34) and (3.2) we see that

δHκ

δq
= −16κ5

î
1

2κ − g(x;κ, q)
ó

+ 4κ2q(x),

from which (3.11) immediately follows.
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Rewriting (3.11) as the integral equation

q(t, x) = q(0, x+ 4κ2t) +

∫ t

0
16κ5g′

Ä
x+ 4κ2(t− s);κ, q(s)

ä
ds,

we see that local well-posedness follows by Picard iteration and the estimate∥∥∥g′(x, q)− g′(x, q̃)∥∥∥
H−1
.
∥∥∥g(x, q)− g(x, q̃)

∥∥∥
H1
. ‖q − q̃‖H−1 ,

which in turn follows from the diffeomorphism property.

Global well-posedness follows from local well-posedness, once we prove

that α(κ) is conserved, since we may then use (2.20) to guarantee that the

solution remains small in H−1. (This argument appeared already in Proposi-

tion 3.1.) Moreover, because the problem is H−1-locally well-posed, it suffices

to verify conservation of α(κ) just in the case of Schwartz initial data. Note

that (2.7) shows that solutions with Schwartz initial data remain in Schwartz

class. So let us consider a Schwartz solution q(t) to (3.11) and endeavor to

prove conservation of α(κ). Actually, it suffices to prove (3.12), because con-

servation of α(κ) follows from this and (3.11).

By the resolvent identity and (3.11),

d
dt

1
2g(t,x;κ) = 8κ5

g(t,x;κ)2

∫
G(x, y;κ, q(t))g′(t, y;κ)G(y, x;κ, q(t)) dy

+ 2κ2

g(t,x;κ)2

∫
G(x, y;κ, q(t))q′(t, y)G(y, x;κ, q(t)) dy.

From here we substitute the following rewriting of (2.17),

4(κ2 − κ2)g′(y;κ)

= −
î
−g′′′(y;κ) + 2

Ä
q(y)g(y;κ)

ä′
+ 2q(y)g′(y;κ) + 4κ2g′(y;κ)

ó
,

into the first term and use Lemma 2.6, while for the second term we employ

(3.9). In this way, we deduce that

d
dt

1
2g(t,x;κ) = − 4κ5

(κ2−κ2)g(t,x;κ)2

î
g′(t, x;κ)g(t, x;κ)− g(t, x;κ)g′(t, x;κ)

ó
− 2κ2

g(t,x;κ)2
g′(t, x;κ),

which agrees with (3.12).

Lastly, by (3.3) and Proposition 3.1,

{Hκ, HKdV} = −16κ5{α(κ), HKdV}+ 4κ2{P,HKdV} = 0,

which shows that the Hκ and HKdV flows commute, at least as mappings on

Schwartz space. �
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4. Equicontinuity

Let us first recall the meaning of equicontinuity:

Definition 4.1. A subset Q of Hs is said to be equicontinuous if

q(x+ h)→ q(x) in Hs as h→ 0, uniformly for q ∈ Q.(4.1)

This definition works in great generality. For Hs spaces, it is also com-

mon to define equicontinuity as tightness of the Fourier transform. The two

approaches are easily reconciled, as our next lemma shows.

Lemma 4.2. Fix −∞ < σ < s <∞. Then

(i) a bounded subset Q of Hs(R) is equicontinuous in Hs(R) if and only if

(4.2)

∫
|ξ|≥κ

|q̂(ξ)|2(ξ2 + 4)s dξ → 0 as κ→∞, uniformly for q ∈ Q;

(ii) a sequence qn is convergent in Hs(R) if and only if it is convergent in

Hσ(R) and equicontinuous in Hs(R).

Proof. As Q is bounded and∫
|eiξh − 1|2|q̂(ξ)|2(ξ2 + 4)s dξ . κ2h2

∫
|q̂(ξ)|2(ξ2 + 4)s dξ

+

∫
|ξ|>κ

|q̂(ξ)|2(ξ2 + 4)s dξ,

we see that (4.2) implies (4.1). To prove the converse, we note that∫
|eiξh − 1|2 κe−2κ|h| dh = 2ξ2

ξ2+4κ2
& 1− χ[−κ,κ](ξ)

and hence∫
‖q(x+ h)− q(x)‖2Hs(R)κe

−2κ|h| dh &
∫
|ξ|>κ

|q̂(ξ)|2(ξ2 + 4)s dξ.

Let us now turn attention to (ii). As the forward implication is trivial, we

need only consider sequences qn that are convergent in Hσ(R) and equicontin-

uous in Hs(R). But then writing∫
|q̂n(ξ)− q̂m(ξ)|2(ξ2 + 4)s dξ ≤ (κ2 + 4)s−σ

∫
|q̂n(ξ)− q̂m(ξ)|2(ξ2 + 4)σ dξ

+

∫
|ξ|>κ

|q̂n(ξ)− q̂m(ξ)|2(ξ2 + 4)s dξ

and employing (4.2), we see that the sequence is Cauchy in Hs(R) and so

convergent there also. �

It is now easy to see that equicontinuity in H−1(R) is readily accessible

through the conserved quantity α(κ; q):
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Lemma 4.3. A subset Q of Bδ is equicontinuous in H−1(R) if and only if

κα(κ; q)→ 0 as κ→∞, uniformly for q ∈ Q.(4.3)

Proof. By virtue of (2.20), it suffices to show that Q is equicontinuous in

H−1(R) if and only if

lim
κ→∞

sup
q∈Q

∫
R

|q̂(ξ)|2

ξ2 + 4κ2
dξ = 0.(4.4)

That (4.4) implies (4.2) and hence equicontinuity follows immediately from∫
|ξ|≥κ

|q̂(ξ)|2

ξ2 + 4
dξ .

∫
R

|q̂(ξ)|2

ξ2 + 4κ2
dξ.

On the other hand, (4.2) implies (4.4) by virtue of the boundedness of Q and∫ |q̂(ξ)|2

ξ2 + 4κ2
dξ . κ2

κ2

∫ |q̂(ξ)|2
ξ2 + 4

dξ +

∫
|ξ|>κ

|q̂(ξ)|2 dξ
ξ2 + 4

. �

From the preceding lemma and the conservation of α(κ) we readily deduce

the following:

Proposition 4.4. Let Q ⊂ Bδ be a set of Schwartz functions that is

equicontinuous in H−1(R). Then

Q∗ =
¶
eJ∇(tHKdV+sHκ)q : q ∈ Q, t, s ∈ R, and κ ≥ 1

©
(4.5)

is equicontinuous in H−1(R). By virtue of this,

4κ3
î

1
2κ − g(x;κ, q)

ó
→ q in H−1(R) as κ→∞,(4.6)

uniformly for q ∈ Q∗.

Proof. By Lemma 4.3 and (2.20), the boundedness and equicontinuity of

Q guarantees that α(κ; q) is uniformly bounded on Q and that

lim
κ→∞

κα(κ; q) = 0 uniformly for q ∈ Q.

But then since α(κ; q) is conserved under these flows, we may reverse this

reasoning to deduce that Q∗ is equicontinuous as well.

Looking back to (2.30), (2.4), and (2.20), we have

κ3
∥∥∥ 1

2κ − g( · ;κ, q)− 1
κR0(2κ)q

∥∥∥
L1
. κα(κ; q),

which converges to zero as κ→∞ uniformly for q ∈ Q∗ by (4.3). In this way,

the proof of (4.6) is reduced to the simple calculation

‖4κ2R0(2κ)q − q‖2H−1 =

∫
ξ4|q̂(ξ)|2

(ξ2 + 4κ2)2

dξ

ξ2 + 4
≤
∫ |q̂(ξ)|2

ξ2 + 4κ2
dξ

and (4.4). �
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5. Well-posedness

Theorem 5.1. Let qn(t) be a sequence of Schwartz solutions to (KdV)

on the line, and fix T > 0. If qn(0) converges in H−1(R), then so does qn(t),

uniformly for t ∈ [−T, T ].

Proof. Let us first reduce to the case qn(0) ∈ Bδ for any fixed δ > 0, which

is required in order to apply many of the results of the previous sections. This

is easily handled by a simple scaling argument: if q(t, x) is a Schwartz solution

to (KdV), then so is

qλ(t, x) = λ2q(λ3t, λx)(5.1)

for any λ > 0; moreover,

‖qλ(0)‖2H−1(R) = λ

∫ |q̂(0, ξ)|2 dξ
ξ2 + 4λ−2

,(5.2)

which converges to zero as λ → 0. Although it is incidental to the current

proof, let us note here that

(5.3)
G(x, y;κ, qλ) = λ−1G(λx, λy;λ−1κ, q),

ρ(x;κ, qλ) = λρ(λx;λ−1κ, q), and α(κ; qλ) = α(λ−1κ; q).

By commutativity of the flows, we have

qn(t) = etJ∇(HKdV−Hκ) ◦ etJ∇Hκqn(0).

Thus, setting Q = {qn(0)} and defining Q∗ as in (4.5), we have

sup
|t|≤T

‖qn(t)− qm(t)‖H−1 ≤ sup
|t|≤T

‖etJ∇Hκqn(0)− etJ∇Hκqm(0)‖H−1

+ 2 sup
q∈Q∗

sup
|t|≤T

‖etJ∇(HKdV−Hκ)q − q‖H−1 .
(5.4)

Note that Q∗ is equicontinuous in H−1(R); this follows from Proposition 4.4.

For fixed κ, the first term in RHS(5.4) converges to zero as n,m→∞ due

to the well-posedness of the Hκ flow; see Proposition 3.2. Thus, it remains to

prove that

lim
κ→∞

sup
q∈Q∗

sup
|t|≤T

‖etJ∇(HKdV−Hκ)q − q‖H−1 = 0.(5.5)

We prove (5.5) by considering the reciprocal of the diagonal Green’s func-

tion at some fixed energy. To this end, we fix κ ≥ 1 and adopt the following

notation: given q ∈ Q∗ and κ ≥ κ + 1,

q(t) := etJ∇(HKdV−Hκ)q and g(t, x;κ) := g(x;κ, q(t)).

Note that q(t) ∈ (Q∗)∗ = Q∗ for any t ∈ R.
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Combining (3.6) and (3.12), we obtain

d
dt

1
2g(t,x;κ)

=
{

1
g(t,x;κ)

(
q(t, x) + 4κ5

κ2−κ2

î
g(t, x;κ)− 1

2κ

ó
− 4κ5

κ2−κ2

î
g(t, x;κ)− 1

2κ

ó)}′
and thence∥∥∥ddtÄκ − 1

2g(t;κ)

ä∥∥∥
H−2
.
∥∥∥q(t, x) + 4κ3

î
g(t, x;κ)− 1

2κ

ó∥∥∥
H−1

+ κ
∥∥∥g(t, x;κ)− 1

2κ

∥∥∥
H−1

+ κ−2
∥∥∥g(t, x;κ)− 1

2κ

∥∥∥
H−1

uniformly for q ∈ Q∗ and κ ≥ κ + 1. (The implicit constants here depend

on κ.) But then, by the fundamental theorem of calculus and Proposition 4.4,

lim
κ→∞

sup
q∈Q∗

sup
|t|≤T

∥∥∥ 1
2g(t;κ) −

1
2g(0;κ)

∥∥∥
H−2

= 0.(5.6)

In view of Lemma 4.2(ii), we may upgrade this convergence to

lim
κ→∞

sup
q∈Q∗

sup
|t|≤T

∥∥∥ 1
2g(t;κ) −

1
2g(0;κ)

∥∥∥
H1

= 0,(5.7)

due to the equicontinuity of the set

E :=
{
κ − 1

2g(x;κ,q(t)) ∈ H
1(R) : q ∈ Q∗ and t ∈ R

}
in H1(R). This property of E holds because, by the diffeomorphism property

and the relation (2.13), it is equivalent to equicontinuity of Q∗.

Lastly, the diffeomorphism property shows that (5.7) implies (5.5) and so

completes the proof of Theorem 5.1. �

The line case of Theorem 1.1 follows from the next corollary. We then

extend this to higher values of s.

Corollary 5.2. The KdV equation is globally well-posed in H−1(R) in

the following sense: The solution map extends (uniquely) from Schwartz space

to a jointly continuous map

Φ : R×H−1(R)→ H−1(R).

In particular, Φ has the group property : Φ(t+s) = Φ(t)◦Φ(s). Moreover, each

orbit {Φ(t, q) : t ∈ R} is bounded and equicontinuous in H−1(R). Concretely,

sup
t
‖q(t)‖H−1(R) . ‖q(0)‖H−1(R) + ‖q(0)‖3H−1(R).(5.8)

Proof. Given q ∈ H−1(R), we may define Φ(t, q) by choosing some se-

quence of Schwartz solutions qn(t) with qn(0)→ q in H−1(R) and then set

Φ(t, q) = lim
n→∞

qn(t).
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By virtue of Theorem 5.1, this limit exists in H−1(R), it is independent of the

sequence qn, and the convergence is uniform on compact intervals of time.

Now consider a sequence qn → q ∈ H−1(R) and fix T > 0. Theorem 5.1

guarantees that there is a sequence of Schwartz solutions q̃n so that

sup
|t|≤T

‖q̃n(t)− Φ(t, qn)‖H−1 → 0 as n→∞.

But then q̃n(0)→ q in H−1, and so Theorem 5.1 implies

sup
|t|≤T

‖q̃n(t)− Φ(t, q)‖H−1 → 0 as n→∞.

As each q̃n(t) is itself H−1(R)-continuous in time, this proves joint continuity

of Φ.

As Φ is continuous, the group property on H−1(R) is inherited from that

on Schwartz space.

For small initial data, boundedness and equicontinuity of orbits follows

from conservation of α(κ), (2.20), and Lemma 4.3. In fact, this argument

shows that

sup
t
‖q(t)‖H−1(R) . ‖q(0)‖H−1(R) for q(0) ∈ Bδ

and δ > 0 sufficiently small. Equicontinuity and (5.8) for large data then follow

from the scaling transformation (5.1). �

Corollary 5.3. The KdV equation is globally well-posed in Hs(R) for

all s ≥ −1.

Proof. In view of the preceding, it suffices to prove an analogue of Theo-

rem 5.1 in Hs(R). We shall content ourselves with the treatment of s ∈ (−1, 0)

here, since we may do so in a simple and uniform manner; moreover, to-

gether with Corollary 5.2, this covers all cases not previously known, namely,

s ∈ [−1,−3
4).

Given Schwartz solutions qn(t) to (KdV) with qn(0) convergent in Hs(R)

and T > 0, we may apply Theorem 5.1 to obtain convergence of qn(t) in

H−1(R), uniformly for t ∈ [−T, T ]. The goal is to upgrade this to uniform

convergence in Hs(R). In view of Lemma 4.2, this amounts to demonstrating

Hs(R)-equicontinuity of the set {qn(t) : n ∈ N and t ∈ [−T, T ]}.
To prove equicontinuity, we employ the following trick we used in [40]:

Integrating both sides of (2.20) against the measure κ2+2s dκ over the interval

[κ0,∞), we obtain∫ ∞
κ0

α(κ; q)κ2+2s dκ ≈
∫
|q̂(ξ)|2(ξ2 + 4κ2

0)s dξ,(5.9)
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where the implicit constants depend only on s. Notice that LHS(5.9) is con-

served by the flow and so, it follows that∫
|q̂n(t, ξ)|2(ξ2 + 4κ2

0)s dξ ≈
∫
|q̂n(0, ξ)|2(ξ2 + 4κ2

0)s dξ(5.10)

uniformly for n ∈ N and t ∈ R. As the initial data qn(0) are Hs(R)-convergent,

they are Hs(R)-equicontinuous, and so RHS(5.10) converges to zero as κ0 →∞
uniformly in n. But then LHS(5.10) converges to zero as κ0 → ∞ uniformly

in n, thus proving equicontinuity of {qn(t) : n ∈ N and t ∈ R}. �

6. The periodic case

With the exception of Section 2, very little of substance changes in carry-

ing over the arguments presented so far to the case of KdV with initial data

in H−1(R/Z). Nevertheless, there are several reasons why we chose not to

present both geometries simultaneously (as in our prior work [40]). First and

foremost, we avoid the necessity of continually interrupting the principal line

of reasoning to discuss minor changes (often notational) associated to the two

geometries.

Secondly, in the nonperiodic setting, the scaling transformation (5.1) al-

lows us effortlessly to focus attention on small solutions; this smallness assump-

tion manifests in the appearance of δ throughout our arguments thus far. To

overcome the lack of scaling-invariance in the periodic case, we follow the ap-

proach we used in [40]. Although we still maintain that this is the best solution,

we can attest that it burdens the exposition considerably. Looking to (5.2) and

(5.3), we see that rescaling q transforms the parameter κ. Correspondingly,

the smallness condition for q can be replaced by a relation involving κ and

q. On the other hand, many formulas become tremendously ugly if we do not

employ the simplifications made possible by requiring κ ≥ 1. This reasoning

leads to the following coupled conditions on q and κ that we shall impose:

(6.1) κ ≥ 1 and κ−1/2‖q‖H−1(R/Z) ≤ δ.

Here δ > 0 remains our over-arching smallness parameter, whose value will be

allowed to shrink as the argument progresses. Concomitant with this, for fixed

κ ≥ 1, we define

(6.2) Bδ,κ := {q ∈ H−1(R/Z) : κ−1/2‖q‖H−1(R/Z) ≤ δ
©
.

To make the arguments as parallel as possible, we shall insist on working

with a Lax operator

L = −∂2
x + q(x)

(and its resolvent) acting on L2(R) with periodic coefficients and not as an

operator on L2(R/Z). This deviates from our treatment in [40].
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In light of our convention, L is no longer a relatively Hilbert–Schmidt (or

even relatively compact) perturbation of the case q ≡ 0. As many arguments

in Section 2 were founded on (2.4), which is the quantitative expression of

this, those arguments do not automatically carry over to the periodic case. In

Lemma 6.1 we obtain the key substitute for (2.4). We will then show how to

use this to obtain the analogues of the results from Section 2 in the periodic

setting.

By comparison, Section 3 is almost devoid of estimates (and those that

do appear are easily adapted). Rather, it is preoccupied with identities that

hold pointwise in space and so are immune to the ambient geometry.

Once we have proved (6.10) below, everything in Section 4 carries over by

simply replacing every instance of integration with respect to ξ by summation

over ξ ∈ 2πZ.

The principal difficulty in transferring the proof of Theorem 5.1 to the

circle case is the absence of the scaling symmetry (5.1); we have already ex-

plained how this can be avoided. The only change needed for the treatment of

the remaining results in Section 5, namely, Corollaries 5.2 and 5.3, is to employ

(6.10) whenever the original argument calls on (2.20).

Let us turn now to the central matter at hand, namely, obtaining ana-

logues of the principal results of Section 2 in the periodic setting.

Lemma 6.1. Fix ψ ∈ C∞c (R). If q, f ∈ H−1(R/Z), then

∥∥∥√R0 q
√
R0

∥∥∥2

L2(R)→L2(R)
. κ−1

∑
ξ∈2πZ

|q̂(ξ)|2

ξ2 + 4κ2
,(6.3)

∥∥∥√R0 fψR0q
√
R0

∥∥∥
I1(L2(R))

. κ−1‖f‖H−1
κ (R/Z)‖q‖H−1

κ (R/Z),(6.4)

both uniformly for κ ≥ 1.

Note that I1(L2(R)) denotes the ideal of trace-class operators acting on

the Hilbert space L2(R). Here and below, we simply use trace-class as a

notational convenience for denoting operators representable as a product of

Hilbert–Schmidt operators:

‖B‖I1 = inf
¶
‖B1‖I2‖B1‖I2 : B = B1B2

©
.(6.5)

For a proper discussion of trace-class, including the veracity of (6.5), see [62].

Before beginning the proof of Lemma 6.1, we describe one more prelimi-

nary: Given f ∈ L2(R) and θ ∈ [0, 2π], we define

fθ(x) =
∑
ξ∈2πZ

f̂(ξ + θ)eix(ξ+θ),
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which may be regarded as a jointly square-integrable function of x ∈ [0, 1] and

θ ∈ [0, 2π]. Indeed, ∫
R
|f(x)|2 dx =

∫ 2π

0
‖fθ‖2L2([0,1]) dθ.

Moreover, any (pseudo)differential operator L with 1-periodic coefficients acts

fibre-wise, which is to say it commutes with multiplication by any function

of θ. Note that what we describe here is simply the standard direct integral

representation of a periodic operator (cf. [59, §XIII.16]).

Proof of Lemma 6.1. As the operator appearing in (6.3) is self-adjoint, it

suffices to take f ∈ L2(R) and consider

〈f,
√
R0q

√
R0 f〉L2 =

∫ 2π

0
〈fθ,MθqMθfθ〉 dθ,

where Mθ : L2([0, 1])→ L2([0, 1]) is defined via

Mθ :
∑
ξ∈2πZ

cξe
ix(ξ+θ) 7→

∑
ξ∈2πZ

cξe
ix(ξ+θ)»

(ξ + θ)2 + κ2
.

In this way, we see that

‖
√
R0q

√
R0‖L2(R)→L2(R) =

∥∥∥‖MθqMθ‖L2([0,1])→L2([0,1])

∥∥∥
L∞
θ

.

The estimate (6.3) now follows by bounding operator norms by Hilbert–

Schmidt norms and the equivalence

‖MθqMθ‖2I2(L2([0,1])) ≈ κ
−1

∑
ξ∈2πZ

|q̂(ξ)|2

ξ2 + 4κ2
,(6.6)

which is valid uniformly for θ ∈ [0, 2π).

We turn now to (6.4). From (2.15), we find√
R0 fψR0q

√
R0 =

√
R0 fψ〈x〉R0〈x〉−1q

√
R0

+
√
R0 fψ

√
R0A

√
R0 〈x〉−1q

√
R0

with

A =
√
R0

Ä
x
〈x〉∂x + ∂x

x
〈x〉

ä√
R0.

Evidently, A is an L2(R)-bounded operator. From (2.4) we obtain∥∥∥√R0 〈x〉−1q
√
R0

∥∥∥
I2(L2(R))

. κ−1/2
∥∥∥〈x〉−1q

∥∥∥
H−1
κ (R)

. κ−1/2
∥∥∥q∥∥∥

H−1
κ (R/Z)

and similarly,∥∥∥√R0 fψ
√
R0

∥∥∥
I2(L2(R))

+
∥∥∥√R0 fψ〈x〉

√
R0

∥∥∥
I2(L2(R))

. κ−1/2
∥∥∥f∥∥∥

H−1
κ (R/Z)

.

Combining the preceding immediately yields (6.4). �
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Proposition 6.2. Let q ∈ H−1(R/Z). There is a unique self-adjoint

operator L acting on L2(R) associated to the semi-bounded quadratic form

ψ 7→
∫
R
|ψ′(x)|2 + q(x)|ψ(x)|2 dx.

Furthermore, there exists δ > 0, so that if q and κ obey (6.1), then the resolvent

R := (L+ κ2)−1 admits a continuous integral kernel G(x, y;κ, q) given by the

uniformly convergent series

G(x, y;κ, q) = 1
2κe
−κ|x−y| +

∞∑
`=1

(−1)`
〈√

R0 δx,
(√
R0 q

√
R0

)`√
R0 δy

〉
.(6.7)

Proof. Regarding the existence and uniqueness of L, we note that (6.3)

guarantees that q is an infinitesimally form bounded perturbation and then

apply [58, Th. X.17]. This is the same argument used in the proof of Proposi-

tion 2.1.

Using Plancherel, it is easy to check that x 7→
√
R0δx is Hölder-continuous

as a map from R to L2(R). Thus, convergence of the series (6.7) and continuity

of the result follows whenever
√
R0 q
√
R0 is a contraction; this in turn follows

from (6.1) and (6.3) when δ is small enough. �

We define g(x;κ, q) and ρ(x;κ, q) exactly as in Section 2; see (2.5) and

(2.18). Let us now demonstrate their basic properties:

Proposition 6.3. There exists δ > 0, so that the following are true for

all κ ≥ 1:

(i) The mappings

q 7→ g − 1
2κ and q 7→ κ− 1

2g(6.8)

are (real analytic) diffeomorphisms of Bδ,κ into H1(R/Z).

(ii) For every q ∈ Bδ,κ and every integer s ≥ 0,

‖g′(x)‖Hs(R/Z) .s ‖q‖Hs−1(R/Z).(6.9)

(iii) For every q ∈ Bδ,κ, ρ(x; q) is nonnegative and in H1(R/Z). Moreover,

α(κ, q) :=

∫ 1

0
ρ(x) dx ≈ κ−1

∑
ξ∈2πZ

|q̂(ξ)|2

ξ2 + 4κ2
,(6.10)

uniformly for κ ≥ 1 and q ∈ Bδ,κ.

Proof. First we show that g ∈ H1(R/Z). That it is periodic is self-evident

from (6.7). To estimate its norm, we pick ψ ∈ C∞c (R) so that∑
k∈Z

ψ(x− k) ≡ 1.
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The utility of this partition of unity for us stems from the duality relation

‖h‖H1
κ(R/Z) = sup

®∫
R
h(x)ψ(x)f(x) dx : f ∈ C∞(R/Z) and ‖f‖H−1

κ (R/Z) ≤ 1

´
.

Now given f ∈ C∞(R/Z), from (6.7) we obtain that∫ î
g(x)− 1

2κ

ó
ψ(x)f(x) dx =

∞∑
`=1

(−1)` tr
{√

R0 fψ
√
R0

(√
R0 q

√
R0

)`}
(6.11)

and thence, using (6.4), (6.3), and (6.2),∥∥∥g(x)− 1
2κ

∥∥∥
H1(R/Z)

. κ−1‖q‖H−1(R/Z),(6.12)

provided δ is chosen sufficiently small. Moreover, this argument shows that

the first mapping in (6.8) is real-analytic by directly proving convergence of

the power series.

When combined with (2.13), the estimates just presented also lead to a

proof of (6.9); for further details, see the proof of Proposition 2.2.

We consider now the inverse mapping. As in Section 2,

κ · dg
∣∣∣
q≡0

= −R0(2κ)

is a unitary map of H−1
κ (R/Z) onto H1

κ(R/Z). Thus, by the inverse function

theorem, q 7→ g − 1
2κ is a diffeomorphism in some neighbourhood of zero. We

must verify that the inverse mapping extends to the whole of Bδ,κ. Differenti-

ating (6.11) with respect to q and applying (6.3) and (6.4) yields∥∥∥∥dg − dg∣∣∣q≡0

∥∥∥∥
H−1
κ →H1

κ

. κ−3/2‖q‖H−1(R/Z),(6.13)

which suffices for this task.

The diffeomorphism property extends from the first map in (6.8) to the

second by exactly the same argument presented in the proof of Proposition 2.2.

We turn now to part (iii), focusing on (6.10). As previously, we proceed

by computing derivatives, beginning with

d

ds

∣∣∣∣∣
s=0

∫ 1

0

dy

2g(y; q + sf)
=

∫ 1

0
g(x)f(x) dx.(6.14)

This may be proved as follows: By the resolvent identity, periodicity, and

Lemma 2.5,

LHS(6.14) =

∫ 1

0

∫
R

G(y, x)f(x)G(x, y)

2g(y)2
dx dy

=
∑
k∈Z

∫ 1

0

∫ 1

0

G(y, x+ k)f(x+ k)G(x+ k, y)

2g(y)2
dx dy
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=
∑
k∈Z

∫ 1

0

∫ 1

0

G(y − k, x)f(x)G(x, y − k)

2g(y − k)2
dx dy

=

∫ 1

0

∫
R

G(y, x)G(x, y)

2g(y)2
dy f(x) dx = RHS(6.14).

Beginning with (6.14) and using (2.10) shows

d2α
∣∣∣
q≡0

(f, f) = 1
4κ2

∫ 1

0

∫
R
e−2κ|y−z|f(y)f(z) dy dz = 1

κ

∑
ξ∈2πZ

|f̂(ξ)|2

ξ2 + 4κ2
.

Relying also on (6.13) yields∣∣∣∣d2α(f, f)− d2α
∣∣∣
q≡0

(f, f)

∣∣∣∣ . κ−3/2‖q‖H−1(R/Z)‖f‖2H−1
κ (R/Z)

.

In this way, we see that the power series expansion of α as a function of q is

dominated by its quadratic term throughout (6.2), thus proving (6.10). �

Proposition 6.3 contains no analogue of (2.21). Unlike in the decaying

case, the quantity defined in (6.10) does not coincide precisely with the renor-

malized perturbation determinant considered in [40]. To describe the connec-

tion, we must introduce several new objects. Henceforth, we consider only

q ∈ C∞(R/Z). Once we have established suitable identities in this setting,

they may be extended via analyticity to q that are merely H−1(R/Z).

Let R0 denote the resolvent associated to the Laplacian on [0, 1] with

periodic boundary conditions; concretely,

R0 :
∑
ξ∈2πZ

cξe
iξx 7→

∑
ξ∈2πZ

cξe
iξx

ξ2 + κ2
.

Note that this coincides withM2
0, whereM0 is as in the proof of (6.3). Using

(6.6), we see that the resolvent of the operator L = −∂2
x+q, acting on L2([0, 1])

with periodic boundary conditions, can be expanded in a convergent series

R = R0 +
∞∑
`=1

(−1)`
√
R0

Ä√
R0 q

√
R0

ä`√R0

whenever κ and q satisfy (6.1) for suitable δ > 0. Moreover, the kernels of

these operators can be found by the method of images:

〈δx,R0δy〉 =
∑
k∈Z
〈δx, R0δy+k〉 = 1

2κ(1−e−κ)

î
e−κ‖x−y‖ + e−κ(1−‖x−y‖)

ó
,(6.15)

where ‖x− y‖ = dist(x− y,Z), and similarly,

G(x, y) := 〈δx,Rδy〉 =
∑
k∈Z

G(x, y + k).(6.16)

The last object we need to define is the Lyapunov exponent. Let ψ±(x;κ)

be the Weyl solutions introduced earlier in this section. Due to the periodicity



288 ROWAN KILLIP and MONICA VIŞAN

of q, we see that x 7→ ψ+(x+1) and x 7→ ψ−(x+1) constitute equally good Weyl

solutions and so must differ from the originals by numerical constants. Noting

the constancy of the Wronskian as well as the square-integrability constraint,

we see that there is a γ = γ(κ) > 0 so that

ψ+(x+ 1;κ) = e−γ(κ)ψ+(x;κ) and ψ−(x+ 1;κ) = e+γ(κ)ψ−(x;κ).

This quantity γ is known as the Lyapunov exponent. Employing these relations

to sum in (6.16), we deduce that

G(x, x) =
1 + e−γ

1− e−γ
G(x, x).(6.17)

Proposition 6.4. For q ∈ C∞(R/Z) and κ satisfying (6.1), we have

(6.18) γ(κ) =

∫ 1

0

dx

2g(x)
,

tr
Ä√
R0 q

√
R0

ä
= 1+e−κ

1−e−κ

∫ 1

0

î
1
2e
−2κ|·| ∗ q

ó
(x) dx

= 1
2κ

1+e−κ

1−e−κ

∫ 1

0
q(x) dx,

(6.19)

which is a Casimir, and

log det
Ä
1 +

√
R0 q

√
R0

ä
= log

Ä
eγ − 2 + e−γ

ä
− log

Ä
eκ − 2 + e−κ

ä
.(6.20)

Here the trace and determinant are with respect to the Hilbert space L2(R/Z).

Proof. The proof of (6.18) is very simple: combining g(x) = ψ+(x)ψ−(x)

with the Wronskian relation (2.25), we have∫ 1

0

dx

2g(x)
= 1

2

∫ 1

0

d

dx
log
[
ψ−(x)
ψ+(x)

]
dx = 1

2 log
[
ψ−(x+1)ψ+(x)
ψ−(x)ψ+(x+1)

]
= γ.

By (6.15), we have

tr
{√
R0 q

√
R0

}
=

(1 + e−κ)

2κ(1− e−κ)

∫ 1

0
q(x) dx,

while∫ 1

0

∫
R

1
2e
−2κ|x−y|q(y) dy dx =

∑
k∈Z

∫ 1

0

∫ 1

0

1
2e
−2κ|x−k−y|q(y) dy dx

=

∫ 1

0

∫
R

1
2e
−2κ|x−y|q(y) dx dy = 1

2κ

∫ 1

0
q(y) dy.

This proves (6.19).

The identity (6.20) can be readily deduced from [47, Th. 2.9], which is a

recapitulation of venerable results of Hill and of Whittaker and Watson. For

completeness, we give an alternate proof paralleling our arguments from the

rapidly decreasing case.
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By (6.18), we see that (6.20) holds in the case q ≡ 0. Moreover, arguing

as in the decaying case, we find that for any f ∈ C∞(R/Z),

d

ds

∣∣∣∣∣
s=0

log det
Ä
1 +

√
R0 (q + sf)

√
R0

ä
(x) =

∫ 1

0
G(x, x)f(x) dx.

On the other hand, by (6.18) and (6.14),

d

ds

∣∣∣∣∣
s=0

log
Ä
eγ(κ;q+sf) − 2 + e−γ(κ;q+sf)

ä
=

eγ − e−γ

(eγ − 2 + e−γ)

∫ 1

0
g(x)f(x) dx.

In view of (6.17), these two derivatives agree. Thus equality in (6.20) extends

to all q ∈ Bδ,κ. �

Corollary 6.5. For smooth initial data, the conservation of∫ 1

0
ρ(x) dx

under the KdV flow, which follows from (3.7), is equivalent to conservation of

− log det2

Ä
1 +

√
R0 q

√
R0

ä
,

which was proved in [40].

7. Local smoothing

Our first goal in this section is to derive a local smoothing result for

H−1-solutions to (KdV) on the line. A similar a priori estimate was obtained

by Buckmaster and Koch in [8] via the Miura map.

Lemma 7.1 (Local smoothing). There exists δ > 0 so that for every

H−1(R)-solution q(t) to (KdV), in the sense of Corollary 5.2, with initial

data q(0) ∈ Bδ ,

(7.1) sup
t0,x0∈R

∫ 1

0

∫ 1

0
|q(t− t0, x− x0)|2 dx dt . δ2.

Proof. As noted already in Proposition 3.1, conservation of α(κ = 1)

guarantees that

‖q‖2
L∞x H

−1
x
. δ2.

This allows us to choose δ sufficiently small that all results from Section 3 can

be applied at all times t ∈ R. It also means that it suffices to prove (7.1) with

t0 = x0 = 0.

Let us now fix a smooth function φ whose derivative φ′ is positive and

Schwartz and define

ψ(x) = 3
2

∫
R
e−2|x−y|φ′(y) dy,

which is positive everywhere.
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Suppose first that q(t) is a Schwartz solution to (KdV). Setting κ = 1

in (3.7), we obtain

d
dtρ(t, x) =

(
3
2

î
e−2|·| ∗ q(t)2

ó
(x) + 2q(t, x)

î
1− 1

2g(t,x)

ó
− 4ρ(t, x)

)′
.

Integrating this against φ(x) and integrating by parts yields∫ 1

0

∫
R
|q(t, x)|2ψ(x) dx dt =

∫
R

[ρ(0, x)− ρ(1, x)]φ(x) dx

− 2

∫ 1

0

∫
R
q(t, x)

î
1− 1

2g(t,x)

ó
φ′(x) dx dt

+ 4

∫ 1

0

∫
R
ρ(t, x)φ′(x) dx dt.

(7.2)

But by the results of Section 3, the right-hand side is bounded uniformly; thus

(7.1) follows for Schwartz solutions.

Next we allow q(t) to be a general (not Schwartz) solution to (KdV)

and suppose qn(t) is a sequence of Schwartz solutions with qn(0) → q(0) in

H−1(R). By weak lower-semicontinuity of the L2-norm and the fact that weak

convergence is guaranteed by Theorem 5.1,∫ 1

0

∫ 1

0
|q(t, x)|2 dx dt ≤ lim inf

n→∞

∫ 1

0

∫ 1

0
|qn(t, x)|2 dx dt.

Thus, (7.1) for such general solutions q(t) follows from the Schwartz-class case

already proven. �

Using this a priori bound as a stepping stone, we will now show that so-

lutions whose initial data converge in H−1(R) actually converge in the local

smoothing norm as claimed in Theorem 1.2. In fact, the following proposition

is strictly stronger than this theorem because of the additional uniformity in x0.

Proposition 7.2. Let q(t) and qn(t) be H−1(R)-solutions to (KdV), in

the sense of Corollary 5.2, with initial data qn(0) → q(0) in H−1(R). Then

for every T > 0,

(7.3) lim
n→∞

sup
x0∈R

∫ T

−T

∫ 1

0
|q(t, x− x0)− qn(t, x− x0)|2 dx dt = 0.

In particular, solutions in the sense of Corollary 5.2 are distributional solu-

tions.

A major part of the argument leading to Proposition 7.2 is a refinement

of the proof of Lemma 7.1. The key improvement stems from analyzing the

behavior of the various terms in (7.2) as κ → ∞, rather than simply setting

κ = 1. We begin with the following preliminary estimates:
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Lemma 7.3. Fix ψ ∈ C∞c (R) with supp(ψ) ⊂ (0, 1). There exists δ > 0

so that

∥∥∥ψ(x)
î
g(x)− 1

2κ

ó
+ κ−1[R0(2κ)(qψ)](x)

∥∥∥2

L2(R)
. κ−7

ñ
1 +

∫ 1

0
|q(x)|2 dx

ô
,

(7.4)

∥∥∥ψ(x)
î
κ− 1

2g(x)

ó
+ 2κ[R0(2κ)(qψ)](x)

∥∥∥2

L2(R)
. κ−3

ñ
1 +

∫ 1

0
|q(x)|2 dx

ô
,(7.5) ∣∣∣∣∣

∫
ρ(x)ψ(x)2 dx− 1

2κ

∫ |”qψ(ξ)|2 dξ
ξ2 + 4κ2

∣∣∣∣∣ . κ−7/2

ñ
1 +

∫ 1

0
|q(x)|2 dx

ô
,(7.6) ∣∣∣∣∣

∫∫
q(x)2κe−2κ|x−y|ψ(y)2 dx dy −

∫
q(x)2ψ(x)2 dx

∣∣∣∣∣ .
∫
R

|q(x)|2 dx
κ(1 + x2)

(7.7)

for every q ∈ Bδ and κ ≥ 1. (Note that the implicit constants depend on ψ.)

Proof. We begin with a commutator calculation:

[ψ(x), R0] = R0

Ä
−2∂xψ

′(x) + ψ′′(x)
ä
R0

= R0

Ä
−2∂x

ä
[ψ′(x), R0] +R0

Ä
−2∂x

ä
R0ψ

′(x) +R0ψ
′′(x)R0.

This shows that for κ ≥ 1, we can write

[ψ(x), R0] =
√
R0A

√
R0 =

√
R0B

√
R0 +

√
R0C

√
R0ψ

′(x)(7.8)

with ‖A‖L2→L2 + ‖C‖L2→L2 . κ−1 and ‖B‖L2→L2 . κ−2.

From the series (2.8), we have∫
R
{ψ(x)

î
g(x)− 1

2κ

ó
+ κ−1[R0(2κ)(qψ)](x)

©
f(x) dx

=
∑
`≥2

(−1)` tr
{√

R0 f
√
R0

√
R0 ψq

√
R0

(√
R0 q

√
R0

)`−1}
+
∑
`≥1

(−1)` tr
{√

R0 f
√
R0B

(√
R0 q

√
R0

)`}
+
∑
`≥1

(−1)` tr
{√

R0 f
√
R0C

√
R0 ψ

′q
√
R0

(√
R0 q

√
R0

)`−1}
.

(7.9)

Using

(7.10)

∥∥∥∥√R0 h
√
R0

∥∥∥∥
I2

. κ−3/2‖h‖L2 and

∥∥∥∥√R0 q
√
R0

∥∥∥∥
I2

. κ−1/2‖q‖H−1 ,

which follow from (2.4), we then deduce that

LHS(7.9) ≤ κ−7/2‖f‖L2

{
‖ψq‖L2 + 1 + ‖ψ′q‖L2

}
,
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provided, say, δ ≤ 1
2 . This proves (7.4). For future use, we also note that with

the aid of (7.4), one may readily show

∫ Ä
g(x)− 1

2κ

ä2
ψ(x)2 dx+

∥∥∥κ−1R0(2κ)(qψ)
∥∥∥2

L2(R)
. κ−6

ñ
1 +

∫ 1

0
|q(x)|2 dx

ô
.

(7.11)

Next we prove (7.5). This almost follows from (7.4); indeed, writing

κ− 1
2g(x) = 2κ2

Ä
g(x)− 1

2κ

ä
− 2κ2

g(x)

Ä
g(x)− 1

2κ

ä2
(7.12)

and invoking (7.4), we are left only to prove∫
2κ2

g(x)

Ä
g(x)− 1

2κ

ä2
ψ(x)2 dx . κ−3

ñ
1 +

∫ 1

0
|q(x)|2 dx

ô
.(7.13)

This then follows from (7.11).

We begin the proof of (7.6) by expanding one step further than (7.12) to

write

ρ(x) =
3∑
i=1

ρi(x) with ρ1(x) := 2κ2
¶
g(x)− 1

2κ + 1
κ [R0(2κ)q](x)

©
,

ρ2(x) := −4κ3
Ä
g(x)− 1

2κ

ä2
and ρ3(x) := 4κ3

Ä
g(x)− 1

2κ

ä3
/g(x).

Let us begin our analysis with the contribution of ρ1. From (2.8), we have∫
ρ1(x)ψ(x)2 dx = 2κ2

∑
`≥2

(−1)` tr
{
ψ(x)2

√
R0

(√
R0 q

√
R0

)`√
R0

}
.

Now for any ` ≥ 2, we have from (7.10), (7.8) and its adjoint that

tr
{
ψ(x)2

√
R0

(√
R0 q

√
R0

)`√
R0

}
= tr

{√
R0 ψqR

2
0ψq

√
R0

(√
R0 q

√
R0

)`−2}
+O

Ç
κ−6δ`−2

ñ
1 +

∫ 1

0
|q(x)|2 dx

ôå
.

The error term here sums acceptably over ` ≥ 2. The contribution of the first

term is also acceptable provided we restrict to ` ≥ 3; indeed,∣∣∣∣tr{√R0 ψqR
2
0ψq

√
R0

(√
R0 q

√
R0

)`−2}∣∣∣∣ . κ−5− `−2
2 δ`−2

∫ 1

0
|q(x)|2 dx.

Combining all of this, we deduce that∫
ρ1(x)ψ(x)2 dx = 2κ2 tr

{
R0ψqR0ψqR0

}
+O

Ç
κ−7/2

ñ
1 +

∫ 1

0
|q(x)|2 dx

ôå
.
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We turn now to ρ2. Combining (7.11) and (7.4) gives∣∣∣∣∣
∫ Ä

g(x)− 1
2κ

ä2
ψ(x)2 dx− κ−2

∥∥∥R0(2κ)(qψ)
∥∥∥2

L2(R)

∣∣∣∣∣
. κ−13/2

ñ
1 +

∫ 1

0
|q(x)|2 dx

ô
.

Therefore,∫
ρ2(x)ψ(x)2 dx = −4κ

∥∥∥R0(2κ)(qψ)
∥∥∥2

L2(R)
+O

Ç
κ−7/2

ñ
1 +

∫ 1

0
|q(x)|2 dx

ôå
.

We now consider ρ3. From (2.4) we have∥∥∥∥√R0 h
√
R0

∥∥∥∥2

I2

. κ−1‖h‖2L1

∫
dξ

ξ2 + 4κ2
. κ−2‖h‖2L1 .

Employing this to estimate the series (2.8) via duality, we obtain∥∥∥g − 1
2κ

∥∥∥
L∞
. κ−3/2δ.

Combining this with (7.11) yields∫
ρ3(x)ψ(x)2 dx . κ−7/2

ñ
1 +

∫ 1

0
|q(x)|2 dx

ô
.

To derive the claim (7.6) by combining our results on each part of ρ, we

need one additional identity, namely,

2κ2 tr
{
R0ψqR0ψqR0

}
− 4κ

∥∥∥R0(2κ)(qψ)
∥∥∥2

L2(R)
= 1

2κ

∫ |”qψ(ξ)|2 dξ
ξ2 + 4κ2

.

That this equality holds follows from the same calculation we carried out

in (2.35).

The last estimate (7.7) is relatively trivial. As
∫
κe−2κ|x−y| dy = 1,∣∣∣∣∣ψ(x)2 −

∫
κe−2κ|x−y|ψ(y)2 dy

∣∣∣∣∣ .
∫
κe−2κ|y−x||x− y| dy . κ−1,

which settles the case |x| ≤ 10. For |x| ≥ 10, we have∣∣∣∣∣ψ(x)2 −
∫
κe−2κ|x−y|ψ(y)2 dy

∣∣∣∣∣ =

∫ 1

0
κe−2κ|y−x|ψ(y)2 dy . κe−κ|x|,

which offers more than enough decay in both x and κ. �

Lemma 7.4. There is a δ > 0 so that the following is true: Let Q be a

family of Schwartz solutions to (KdV) on the line such that {q(0) : q ∈ Q} is

an equicontinuous subset of Bδ . Then, for any ψ ∈ C∞c (R) and any T > 0, we

have

(7.14) lim
κ→∞

sup
q∈Q

∫ T

−T

∫
ξ2|”qψ(t, ξ)|2 dξ

ξ2 + 4κ2
dξ dt = 0.
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Proof. Without loss of generality, we may assume that supp(ψ) ⊂ (0, 1).

Throughout the proof, we regard ψ and T as fixed, and implicit constants may

depend on them. Multiplying (3.7) by κ and integrating against

φ(x) =

∫ x

−∞
ψ(y)2 dy,

we obtain ∫
κ[ρ(T, x)− ρ(−T, x)]φ(x) dx(7.15)

= −3
2

∫ T

−T

∫∫
|q(t, x)|2κe−2κ|x−y|ψ(y)2 dx dy dt(7.16)

− 2κ

∫ T

−T

∫
q(t, x)

î
κ− 1

2g(t,x)

ó
ψ(x)2 dx dt(7.17)

+ 4κ3
∫ T

−T

∫
ρ(t, x)ψ(x)2 dx dt.(7.18)

We will discuss these terms one at a time.

From Proposition 2.4, we have∣∣∣(7.15)
∣∣∣ . κα(κ; q),

which converges to zero as κ→∞ uniformly for q ∈ Q; see Lemma 4.3.

Combining (7.7) and Lemma 7.1 yields∣∣∣∣∣(7.16) + 3
2

∫ T

−T

∫
|q(t, x)|2ψ(x)2 dx dt

∣∣∣∣∣ . κ−1,

or equivalently, by Plancherel,∣∣∣∣∣(7.16) + 3
2

∫ T

−T

∫
|”ψq(t, ξ)|2 dξ dt∣∣∣∣∣ . κ−1.

From (7.5) and Lemma 7.1, we have∣∣∣∣∣(7.17)−
∫ T

−T

∫∫
ψ(x)q(t, x)κe−2κ|x−y|q(t, y)ψ(y) dx dy dt

∣∣∣∣∣ . κ−1/2,

or equivalently (see (2.2)),∣∣∣∣∣(7.17)−
∫ T

−T

∫
4κ2|”ψq(t, ξ)|2
ξ2 + 4κ2

dξ dt

∣∣∣∣∣ . κ−1/2.

From (7.6) and Lemma 7.1,∣∣∣∣∣(7.18)− 1
2

∫ T

−T

∫
4κ2|”ψq(t, ξ)|2
ξ2 + 4κ2

dξ dt

∣∣∣∣∣ . κ−1/2.

The claim (7.14) now follows from recombining (7.15)–(7.18). �
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Proof of Proposition 7.2. By the same scaling argument as in Theorem 5.1,

it suffices to prove (7.3) for solutions that are small in L∞t H
−1
x . Moreover, we

may assume that qn are Schwartz solutions, since Proposition 7.2 in this re-

duced generality provides precisely the tool necessary to obtain the full version

by approximation.

Let us fix ψ ∈ C∞c (R), not identically zero, with supp(ψ) ⊆ (0, 1). By a

simple covering argument, it suffices to show that

lim
n→∞

sup
x0∈R

∫ T

−T

∥∥∥∥îqn(t, x)− q(t, x)
ó
ψ(x+ x0)

∥∥∥∥2

L2(R)
dt = 0.(7.19)

We will do this by breaking into high- and low-frequency components, using

a refined local smoothing argument to handle the former, and applying The-

orem 5.1 to handle the latter. The frequency decomposition is based on the

multipliers

mhi(ξ) =
|ξ|√

ξ2 + 4κ2
and mlo(ξ) =

»
1−mhi(ξ)2 =

2κ√
ξ2 + 4κ2

.

We begin with the low frequencies. For κ fixed, Theorem 5.1 implies

lim
n→∞

sup
x0∈R

∫ T

−T

∥∥∥∥mlo(−i∂x)
(î
qn(t)− q(t)

ó
ψ(·+ x0)

)∥∥∥∥2

L2(R)
dt

. κT lim
n→∞

sup
x0∈R

∥∥∥∥îqn(t, x)− q(t, x)
ó
ψ(x+ x0)

∥∥∥∥
L∞t H

−1
x ([−T,T ]×R)

. κT‖ψ‖H1(R) lim
n→∞

∥∥∥qn(t, x)− q(t, x)
∥∥∥
L∞t H

−1
x ([−T,T ]×R)

= 0.

(7.20)

We turn now to the high-frequency part. As the sequence qn(0) is con-

vergent in H−1(R), it is equicontinuous there. Proposition 4.4 then guaran-

tees that {qn(t) : t ∈ R and n ∈ N} is also H−1(R)-equicontinuous. Thus

Lemma 7.4 implies

(7.21) lim
κ→∞

sup
n

∫ T

−T

∥∥∥∥mhi(−i∂x)[qn(t)ψ(·+ x0)]

∥∥∥∥2

L2(R)
dt = 0.

Note that by Theorem 5.1 and weak lower-semicontinuity, it then follows that

(7.22) lim
κ→∞

∫ T

−T

∥∥∥∥mhi(−i∂x)[q(t)ψ(·+ x0)]

∥∥∥∥2

L2(R)
dt = 0.

We are now ready to put the pieces together. From (7.21) and (7.22), we

see that we can make the high-frequency contribution to LHS(7.19) small, uni-

formly in n, by choosing κ sufficiently large. But then by (7.20), we may make

the low-frequency contribution as small as we wish by choosing n sufficiently

large. This proves (7.19) and so (7.3).
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Lastly, integration by parts shows that Schwartz solutions are distribu-

tional solutions of the initial-value problem, which is to say∫
h(0, x)q(0, x) dx+

∫ ∞
0

∫
[∂th](t, x)q(t, x) dx dt

=

∫ ∞
0

∫
−[∂3

xh](t, x)q(t, x) + 3[∂xh](t, x)q(t, x)2 dx dt

for every h ∈ C∞c (R × R) (as well as the analogous statement backwards in

time). This now extends to H−1 solutions via Corollary 5.2 and Proposi-

tion 7.2. �

Appendix A. Fifth order KdV

The first polynomial conservation law for (KdV) beyond those discussed

in the body of the paper is

H5th(q) :=

∫
1
2q
′′(x)2 + 5q(x)q′(x)2 + 5

2q(x)4 dx,

which generates the dynamics

d

dt
q = q(5) − 20q′q′′ − 10qq′′′ + 30q2q′ =

Ä
q(4) − 10qq′′ − 5[q′]2 + 10q3

ä′
(A.1)

under the Poisson structure (3.1).

Local well-posedness of (A.1) in Hs(R) for s ≥ 5
4 was shown in [23], [35],

which immediately implies global well-posedness in the energy space H2(R);

see also [21] for a thorough discussion of results in Fourier–Lebesgue spaces.

As reviewed therein, these papers represent the culmination of a considerable

body of prior work. In particular, we do not know of any further progress on

the low regularity problem on the line. On the torus, however, an optimal

well-posedness result was obtained in [27]. Specifically, they prove that (A.1)

is well-posed in L2(R/Z) and moreover, that the solution map does not admit

a continuous extension to Hs(R/Z) for any s < 0. Our goal in this appendix

is to show that a direct adaptation of the methods introduced in this paper

yields an analogous well-posedness result on the line:

Theorem A.1. Equation (A.1) is globally well-posed in L2(R).

As the proof of this theorem follows closely the treatment of (KdV) in the

main body of the paper, we shall focus on recording the central estimates and

identities, rather than recapitulating the arguments.

By the rescaling argument presented earlier and the fact that (A.1) pre-

serves the L2-norm, it suffices to show well-posedness of this equation in

Bδ := {q ∈ L2(R) : ‖q‖L2 ≤ δ} (endowed with the L2 topology)
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for some δ > 0. As this is a subset of the ball (2.1), all results of Sections 2 and 3

still apply. Nevertheless some updating is required by the shift in regularity

considered here:

Proposition A.2. There exists δ > 0 so that the following are true:

(a) For all κ ≥ 1, the two mappings in (2.6) are diffeomorphisms from Bδ
onto a neighbourhood of the origin in H+2(R).

(b) For all q ∈ Bδ ,

16κ5
Ä
g − 1

2κ

ä
+ 4κ2q −→ −q′′ + 3q2 in H−2(R) as κ→∞.(A.2)

Moreover, convergence is uniform on L2-bounded and equicontinuous sets.

Proof. As in the main body of the paper, the statements follow readily

from certain basic estimates on the terms in the series (2.8). As we must delve

more deeply into the series than previously, we adopt the following notation:

h`(x;κ) := (−1)`〈δx, R0(qR0)`δx〉 so that g(x;κ)− 1
2κ =

∞∑
`=1

h`(x;κ).(A.3)

The same computations that yielded (2.4) also show that

ĥ1(ξ) = − q̂(ξ)

κ(ξ2 + 4κ2)
.

Easy consequences of this include

(A.4) ‖h1‖H2
κ

= κ−1‖q‖L2

and

(A.5) 16κ5h1 + 4κ2q + q′′ −→ 0 in H−2 as κ→∞;

moreover, this convergence is uniform on L2-bounded and equicontinuous sets.

Elementary, though rather tiresome, calculations show that

ĥ2(ξ) =
1

2κ
√

2π

∫
(ξ − η)2 + η2 + ξ2 + 24κ2

[ξ2 + 4κ2][η2 + 4κ2][(ξ − η)2 + 4κ2]
q̂(ξ − η)q̂(η) dη,

which should be compared with”q2(ξ) =
1√
2π

∫
q̂(ξ − η)q̂(η) dη.

Indeed, expanding out the difference in partial fractions reveals that as κ→∞,

(A.6) 16κ5h2 − 3q2 −→ 0 in L1(R), and so also in H−2(R).

Moreover, convergence (even in L1) is uniform for q belonging to L2-bounded

and equicontinuous sets.

For any ` ≥ 2 and any Schwartz f ,∣∣∣∣∣
∫
f(x)h`(x) dx

∣∣∣∣∣ =
∣∣∣trÄR0fR0q(R0q)

`−1
ä∣∣∣ ≤ ‖R0fR0‖op‖qR0q‖I1‖R0q‖`−2

op ,
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which we shall now use to estimate h` via duality. First, we apply the elemen-

tary estimates

‖R0fR0‖op . ‖f‖H−2
κ
, ‖qR0q‖I1 = 1

2κ‖q‖
2
L2 , and ‖R0q‖op . κ

−3/2‖q‖L2

to deduce that the series (A.3) converges uniformly in H2
κ on Bδ for δ > 0

sufficiently small. Indeed, this analysis readily yields also that∥∥∥g − 1
2κ − h1

∥∥∥
H2
κ

. κ−1‖q‖2L2 and
∥∥∥dg − dh1

∥∥∥
L2→H2

κ

. κ−1δ.

Combined with (A.4), these two estimates allow one to readily complete the

proof of part (a) by mimicking the arguments used to prove Proposition 2.2;

compare, in particular, (2.9) and (2.11).

It remains to justify (A.2). In view of (A.5) and (A.6), this follows from∥∥∥g − 1
2κ − h1 − h2

∥∥∥
H−2
. κ−13/2‖q‖3L2 ,

which follows in turn by incorporating the elementary bound

‖R0fR0‖op . κ
−4‖f‖L∞ . κ−4‖f‖H2

into the preceding duality analysis. �

Our next task is to decide on a proper replacement for Hκ. Proceeding

formally, one is lead to the asymptotic expansion

α(κ; q) = 1
4κ3

P (q)− 1
16κ5

HKdV(q) + 1
64κ7

H5th(q) +O(κ−9)

and thus to a natural proposal for renormalized Hamiltonians, namely,

H5th
κ (q) := 64κ7α(κ; q)− 16κ4P (q) + 4κ2HKdV(q) = 4κ2

î
HKdV(q)−Hκ(q)

ó
.

We will now discuss analogues of Propositions 3.1, 3.2, and 4.4:

Proposition A.3. There exists δ > 0 so that the following hold :

(a) The flow generated by H5th
κ is

d
dt q(x) = −64κ7g′(x;κ, q)− 16κ4q′(x) + 4κ2

î
−q′′′(x) + 6q(x)q′(x)

ó
,(A.7)

which is globally well-posed on Bδ for any κ ≥ 1; moreover, under this

flow,

d
dt

1
2g(x;κ) = 16κ7

κ2−κ2

(
g(x;κ)
g(x;κ)

)′
− 16κ4

(
1

2g(x;κ)

)′
+ 4κ2

(
q(x)−2κ2

g(x;κ)

)′
(A.8)

for any 1 ≤ κ < κ, and α(q;κ) is conserved.

(b) Consider now the H5th flow (A.1), which is globally well-posed on H2(R).

For initial data in Bδ ∩H2 and any κ ≥ 1,

d
dt

1
2g(x;κ,q(t)) =

(
−q′′(t,x)+3q(t,x)2−4κ2q(t,x)+8κ4

g(x;κ,q(t))

)′
;(A.9)

moreover, H5th
κ is conserved.
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(c) Let Q ⊆ Bδ ∩H2 be L2-equicontinuous, and let

Q∗ =
¶
eJ∇(tH5th+sH5th

κ )q : q ∈ Q, t, s ∈ R, and κ ≥ 1
©
.(A.10)

Then Q∗ is L2-equicontinuous, and so convergence in (A.2) is uniform

on Q∗.

Proof. As H5th
κ = 4κ2[HKdV − Hκ], equation (A.7) follows from (3.11),

while (A.8) follows directly from Propositions 3.1 and 3.2. Well-posedness and

commutativity of these constituent flows (together with conservation of P )

immediately guarantees the well-posedness of this flow in the H−1 topology

on Bδ. Continuity in the L2-topology will follow when we prove part (c) below.

The conservation of α(q;κ) under the H5th
κ follows from its conservation

under the HKdV and Hκ flows. It may also be deduced directly from (A.7)

and (A.8).

As noted earlier, the well-posedness of (A.1) on H2(R) is a result of [23],

[35]. To verify (A.9), we first observe that (A.1) can be rewritten as

d

dt
q = (−∂3

x + 2q∂x + 2∂xq + 4κ2∂x)(−q′′ + 3q2 − 4κ2q) + 16κ4q′,

which is little more that the biHamiltonian relation for the KdV hierarchy.

Applying Lemma 2.6 just as in the proof of Proposition 3.1, we deduce that

d
dt g = −2(−q′′ + 3q2 − 4κ2q)′g + 2(−q′′ + 3q2 − 4κ2q)g′ + 16κ4g′,

where we abbreviate g = g(x;κ, q). This then leads to (A.9) via the chain rule.

To verify that the H5th flow conserves H5th
κ , it suffices to verify that it

conserves P (q), HKdV(q), and α(q;κ). The first two follow from elementary

calculations, while the conservation of α follows from (A.1) and (A.9).

The conservation of α holds the key to proving part (c); we simply need to

modify Lemma 4.3 in the following way (cf. [40, Prop. 3.6]): In view of (2.4),∣∣∣∣∣4κ3α(q;κ)− 1
2

∫
4κ2|q̂(ξ)|2 dξ
ξ2 + 4κ2

∣∣∣∣∣ ≤ 4κ3
∞∑
`=3

∥∥∥√R0q
√
R0

∥∥∥`
op
. κ−3/2

uniformly for q ∈ Bδ and κ ≥ 1, provided δ is sufficiently small. Thus

Q∗ is L2-equicontinuous

⇐⇒ [P (q)− 4κ3α(q;κ)]→ 0 uniformly on Q∗ as κ →∞,

and (by conservation of α) this holds if and only if Q is L2-equicontinuous. �

Proof of Theorem A.1. Reviewing what has gone before, we see that it

suffices to show that for any L2-equicontinuous set Q ⊆ Bδ ∩H2,

lim
κ→∞

sup
q∈Q∗

sup
|t|≤T

‖etJ∇(H5th−H5th
κ )q − q‖L2 = 0.(A.11)
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With a view to further reduction, let us define

g(t, x) = g(x;κ, q(t)) where q(t) = etJ∇(H5th−H5th
κ )q and q ∈ Q∗.

In view of Proposition A.2(a), (2.13), and the equicontinuity of Q∗, we see that

E :=
{

1
2g(t,x) − κ : q ∈ Q∗ and t ∈ R

}
is H2(R)-equicontinuous.

Thus, by Lemma 4.2(ii) and Proposition A.2(a), we may verify (A.11) by

showing that ∥∥∥ddtÄκ − 1
2g(t;κ)

ä∥∥∥
H−3
→ 0(A.12)

as κ→∞ uniformly for q ∈ Q∗ and t ∈ R.

We now verify (A.12). Combining (A.8) and (A.9), we deduce (after

considerable rearrangement) that

d
dt

1
2g(x;κ) =

(−q′′(t,x)+3q(t,x)2−16κ5(g(x;κ)− 1
2κ

)−4κ2q

g(x;κ)

)′
+ κ2

(−4q(t,x)−16κ3(g(x;κ)− 1
2κ

)

g(x;κ)

)′
− κ4κ2

κ2−κ2

(
16κ(g(x;κ)− 1

2κ
)

g(x;κ)

)′
− κ6

κ2−κ2

(
8

g(x;κ)

)′
.

That this converges to zero in the desired sense then follows trivially from (A.2).

�
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