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Strong cosmic censorship in
spherical symmetry for two-ended
asymptotically flat initial data I.

The interior of the black hole region

By Jonathan Luk and Sung-Jin Oh

Abstract

This is the first and main paper of a two-part series, in which we

prove the C2-formulation of the strong cosmic censorship conjecture for

the Einstein–Maxwell-(real)-scalar-field system in spherical symmetry for

two-ended asymptotically flat data. For this model, it is known through

the works of Dafermos and Dafermos–Rodnianski that the maximal glob-

ally hyperbolic future development of any admissible two-ended asymptot-

ically flat Cauchy initial data set possesses a non-empty Cauchy horizon,

across which the spacetime is C0-future-extendible. (In particular, the

C0-formulation of the strong cosmic censorship conjecture is false.) Nev-

ertheless, the main conclusion of the present series of papers is that for

a generic (in the sense of being open and dense relative to appropriate

topologies) class of such data, the spacetime is future-inextendible with a

Lorentzian metric of higher regularity (specifically, C2).

In this paper, we prove that the solution is C2-future-inextendible under

the condition that the scalar field obeys an L2-averaged polynomial lower

bound along each of the event horizons. This, in particular, improves upon

a previous result of Dafermos, which required instead a pointwise lower

bound. Key to the proof are appropriate stability and instability results in

the interior of the black hole region, whose proofs are in turn based on ideas

from the work of Dafermos–Luk on the stability of the Kerr Cauchy horizon

(without symmetry) and from our previous paper on linear instability of

the Reissner–Nordström Cauchy horizon. In the second paper of the series,

which concerns analysis in the exterior of the black hole region, we show

that the L2-averaged polynomial lower bound needed for the instability re-

sult indeed holds for a generic class of admissible two-ended asymptotically

flat Cauchy initial data.
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1. Introduction

This is the first of a series of two papers in which we prove the C2-for-

mulation of the strong cosmic censorship conjecture for the Einstein–Maxwell-

(real)-scalar-field system in spherical symmetry for two-ended asymptotically

flat initial data on R × S2. A solution to the Einstein–Maxwell-(real)-scalar-

field system consists of (M, g, φ, F ), whereM is a 4-dimensional manifold, g is

a Lorentzian metric onM, φ is a real-valued function onM and F is a 2-form

on M. The system of equations is given by

(1.1)


Ricµν − 1

2gµνR = 2(T
(sf)
µν + T

(em)
µν ),

T
(sf)
µν = ∂µφ∂νφ− 1

2gµν(g−1)αβ∂αφ∂βφ,

T
(em)
µν = (g−1)αβFµαFνβ − 1

4gµν(g−1)αβ(g−1)γσFαγFβσ,

where φ and F satisfy

�gφ = 0, dF = 0, (g−1)αµ∇αFµν = 0.

Here, �g and ∇ respectively denote the Laplace–Beltrami operator and the

Levi–Civita connection associated to the metric g.

An explicit spherically symmetric solution to this system with a vanishing

scalar field is the Reissner–Nordström spacetime, whose metric is given in local

coordinates by1

(1.2) g = −
Ç

1− 2M

r
+

e2

r2

å
dt2 +

Ç
1− 2M

r
+

e2

r2

å−1

dr2 + r2dσS2 ,

1We will use boldface e for the charge in this paper and reserve the notation e for the

Euler number.
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where dσS2 denotes the standard round metric on the 2-sphere with radius 1

and the Maxwell field F is given by2 F = 2e
r2 dt ∧ dr. Here, M and e are

real-valued constants representing the mass and the charge of the spacetime

respectively.

The Reissner–Nordström spacetime is said to be subextremal with non-

vanishing charge if 0 < |e| < M . In this case, the maximal globally hyperbolic

future development of Reissner–Nordström initial data has a Penrose diagram3

given by Figure 1. In particular, the spacetime possesses a smooth Cauchy

horizon CH+ and the maximal globally hyperbolic future development can

be future-extended smoothly but non-uniquely as solutions to the Einstein–

Maxwell system.

I+
1

i+1

i01

H+
1

i02

i+2

H+
2

CH+
1CH+

2

I+
2

Σ0

CH+
1 ∩ CH

+
2

H+
1 ∩H

+
2

Figure 1. Penrose diagram of Reissner–Nordström spacetime.

For the notation, we refer to Theorem 4.1.

A priori, the non-uniqueness of possible future-extensions of the Reissner–

Nordström spacetime challenges the deterministic nature of Einstein’s the-

ory. Nevertheless, it is widely expected that such a feature of the Reissner–

Nordström spacetime is non-generic. This non-genericity, understood from

the point of view of the initial value problem, would follow from the celebrated

strong cosmic censorship of Penrose [44]. Since we will be dealing with the

Einstein–Maxwell-scalar field system in this paper, we state the strong cosmic

censorship conjecture in the following form:4

2We remark on the well-known fact that there are different choices of (spherically symmet-

ric) Maxwell field that together with the metric (1.2) solve the Einstein–Maxwell equations.

Here, we are only giving one such example.
3In this work, we make an extensive use of Penrose diagrams to represent global causal

properties of the spacetime. For an introduction, see [18, App. C].
4One can of course also entertain the strong cosmic censorship conjecture for the Einstein–

Maxwell system or the Einstein vacuum system. The conjecture can also be formulated in

situations where the initial data are not asymptotically flat, for instance in cosmological
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Conjecture 1.1 (Strong cosmic censorship conjecture). Maximal glob-

ally hyperbolic future developments for the Einstein–Maxwell-(real)-scalar field

system to generic asymptotically flat initial data are future-inextendible as suit-

ably regular Lorentzian manifolds.

The strong cosmic censorship conjecture as stated above is not precise

regarding the notion of regularity for the extension. One may entertain the

following slightly more precise formulation of the conjecture:

Conjecture 1.2 (Ck-formulation of the strong cosmic censorship con-

jecture). Maximal globally hyperbolic future developments for the Einstein–

Maxwell-(real)-scalar field system corresponding to generic asymptotically flat

initial data are future-inextendible as time-oriented Lorentzian manifolds with

Ck metrics.

Our purpose in this paper and [37] is to understand Conjecture 1.2 for

generic spherically symmetric solutions. However, when discussing the strong

cosmic censorship conjecture under the assumption of spherical symmetry, one

should be reminded that the set of spherically symmetric solutions is only a

very small subset of solutions and their behavior may not be representative of

the “generic” phenomena in general without symmetry assumptions. Never-

theless, in view of [16], we hope that some of the methods we develop in this

paper may be relevant for Conjecture 1.2 in some settings without symmetry

assumptions.

In view of the fact that the explicit Schwarzschild solution is inextendible

to a larger Lorentzian manifold with a continuous metric [49], one may conjec-

ture a very strong form of the strong cosmic censorship conjecture, namely, the

C0-formulation of Conjecture 1.2 [8]. This would be consistent with the expec-

tation, which is common in the physics literature, that the “tidal deformation

becomes infinite” in the interior of black holes. Indeed, for spherically symmet-

ric solutions such that in addition the Maxwell field is assumed to vanish, i.e.,

for solutions to the Einstein-(real)-scalar field system in spherical symmetry,

the C0-formulation of the strong cosmic censorship conjecture was proven by

Christodoulou:

Theorem 1.3 (Christodoulou [6], [7]). The C0-formulation of the strong

cosmic censorship conjecture for the Einstein-(real)-scalar field system in

spherical symmetry with either one-ended asymptotically flat initial data on

R3 or two-ended asymptotically flat initial data on R× S2 is true.

settings; see, for instance, [47]. We will not discuss the conjecture in such generality in this

paper.
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Nevertheless, Dafermos–Rodnianski showed that as long as the charge is

non-zero,5 all solutions arising from a suitable class of initial data are ex-

tendible with a C0 metric. Hence, if one views the non-vanishing of charge

as a “generic” condition, this implies that the C0-formulation of strong cos-

mic censorship is false for the Einstein–Maxwell -(real)-scalar field system in

spherical symmetry:

Theorem 1.4 (Dafermos [13], Dafermos–Rodnianski [18]). The C0-for-

mulation of the strong cosmic censorship conjecture for the Einstein–Maxwell-

(real)-scalar field system in spherical symmetry with two-ended asymptotically

flat initial data on R× S2 is false.

Our main result in this series of papers is that the C2-formulation of the

strong cosmic censorship conjecture remains true in this setting:

Theorem 1.5 (Main theorem, rough version). The C2-formulation of

the strong cosmic censorship conjecture for the Einstein–Maxwell-(real)-scalar

field system in spherical symmetry with two-ended asymptotically flat initial

data on R× S2 is true.

In view of the above discussion, one only needs to understand the case

where the charge is non-vanishing. We will make this assumption from now on.

Remark 1.6 (W 1,2
loc formulation of the strong cosmic censorship). Theo-

rems 1.4 and 1.5 leave open the question of the validity of some “intermediate”

formulation of the strong cosmic censorship conjecture (for instance, the C1

formulation of the strong cosmic censorship). At the same time, it is also of in-

terest to consider a formulation of the strong cosmic censorship not in the class

of Ck metrics, but in terms of W 1,2
loc metrics. This is particularly relevant to

the problem of determinism since C0∩W 1,2
loc is the minimal known requirement

to define weak solutions to the Einstein–Maxwell-(real)-scalar-field system; see

the discussions in the introduction of [9].

In support of the W 1,2
loc formulation of the conjecture, we show in Appen-

dix C that in a particular C0 extension of a generic solution whose existence

is asserted by Theorem 1.4 (more precisely, see Theorems 5.1 and 5.5 below),

the Christoffel symbols, as well as the gradient of the scalar field, fail to be

5As we will see in Section 2, the charge is a constant for solutions to the Einstein–Maxwell-

(real)-scalar field system in spherical symmetry. It therefore makes sense to discuss solutions

with non-vanishing charge.

Notice that the Schwarzschild solution is not a solution to the Einstein–Maxwell-(real)-

scalar field system in the case where the charge is required to be non-vanishing.
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locally square-integrable.6 The W 1,2
loc formulation of the strong cosmic censor-

ship conjecture would follow if such blow-up could be generalized to arbitrary

nontrivial C0 extensions. We do not pursue this issue in this paper, which

remains an open problem.

We will give a precise statement of Theorem 1.5 in Section 3. In particular,

we will define the notion of genericity, which very roughly is to be understood

as being open in a (weighted) C1 topology and being dense7 in a (weighted) C∞

topology. The theorem will then be proven in Section 7, using some results that

are proven in the later parts of the paper, as well as some results that are proven

in the companion paper [37]. We refer the reader to Section 1.1 below for the

main elements of the proof. Theorem 1.5, in particular, implies that the smooth

Cauchy horizon of Reissner–Nordström is unstable. In the special case of small

perturbations of Reissner–Nordström, we in fact have more precise information

regarding the maximal globally hyperbolic development; see Section 3.6.

Prior to the present paper, the best known result regarding the validity of

the C2-formulation of the strong cosmic censorship for this model in spherical

symmetry was achieved in the seminal work of Dafermos [13] (see also [12],

[15]), who proved a conditional C2-future-inextendibility result.8 The required

condition, however, remains difficult to verify.9 Part of our proof is to obtain a

new and stronger conditional inextendibility result, so that we show moreover

that the condition is satisfied for a generic set of data. See Section 1.2.4 for

further discussions.

We remark at this point that the class of two-ended initial data that we

consider in this paper and [37] can be easily shown to have a complete fu-

ture null infinity (with two connected components) [14]. Indeed, this is the

main simplification that arises from studying the two-ended case so that, in

particular, we do not need to handle potential singularities at the center of

symmetry. For a more “realistic” model (note that there are no regular one-

ended solutions to the Einstein–Maxwell-(real)-scalar field system with data

6In fact, we prove a stronger blow-up result for the Christoffel symbols in this extension

— namely, that they are not in Lploc for all p > 1 — while for the gradient of the scalar field

we only show the failure of the L2
loc condition.

7In fact, a stronger statement is proven: for any element in the complement of the generic

set, there exists a continuous (with respect to a weighted-C∞-topology) one-parameter family

of initial data sets passing through it such that all other elements of the one-parameter family

belong to the generic set.
8In [13], C1-future-inextendibility within spherical symmetry was proven, but C2-future-

inextendibility without symmetry was not explicitly shown. This however follows easily from

the mass inflation result.
9In fact, it is not known whether there exists a single regular solution such that this

condition is satisfied.
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on R3 in the presence of charge), one may for instance study the Einstein–

Maxwell–(charged)-scalar-field system with spherically symmetric initial data

posed on R3, for which the strong cosmic censorship conjecture remains an

open problem. In that case, the full resolution of the strong cosmic censorship

conjecture seems to at least require an understanding of singularities arising at

the centers of symmetry as well as Cauchy horizons emanating from them [33].

The remainder of the introduction will be structured as follows:

• In Section 1.1, we explain the overall structure of the proof of Theorem 1.5.

The reader is encouraged to take this as a guide to our series of papers.

• In Section 1.2, we give a brief overview of some of the relevant previous

results. In particular, we provide comparison of our proof with that of

linear instability of the Reissner–Nordström Cauchy horizon in [36], and

with the possible alternative approach using the conditional instability

theorem of Dafermos [13].

• Finally, we end the introduction with an outline of the remainder of the

paper in Section 1.3.

1.1. Guide to the series : Structure of the proof of Theorem 1.5. In very

rough terms, the proof of Theorem 1.5 proceeds by first showing that the

maximal globally hyperbolic future developments of any “admissible” data

approach Reissner–Nordström in a certain sense, and then using the ideas in

[36] (which were originally for linear instability on fixed Reissner–Nordström;

see Section 1.2 below) to prove nonlinear instability of the Cauchy horizon

in the near-Reissner–Nordström region in the “generic” case. Finally, we use

nonlinear methods specific to the Einstein–Maxwell-(real)-scalar-field system

in spherical symmetry to derive the desired global C2-future-inextendibility

property from the aforementioned nonlinear instability.

To discuss the main result and its proof in more detail, we begin with

a brief description of the notions of “admissible” and “generic” initial data,

which are necessary for a precise formulation of the strong cosmic censorship

conjecture.

Definition of admissible initial data and genericity (Definitions 3.1 and 3.5).

Roughly speaking, we will consider admissible Cauchy initial data sets that

consists of data for the geometric quantities and the matter fields, which are

spherically symmetric, two-ended asymptotically flat, future admissible, and

have non-vanishing charge. Some remarks on these aspects are in order.

• By asymptotically flat, we mean that the data for the metric, the Maxwell

field and the scalar field approach that of the trivial solution (that is,

Minkowski metric with zero Maxwell and scalar fields) near each end at

an appropriate inverse polynomial rate in r (by definition, r →∞ near an

asymptotically flat end).
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• It is in fact necessary for the initial hypersurface to have two asymptotically

flat ends in order to support a non-vanishing charge (or equivalently, a

nontrivial spherically symmetric Maxwell field).

• The future admissibility condition (see Definition 3.1(5)), which was intro-

duced in [15], is a natural generalization of the “no anti-trapped surfaces”

condition of Christodoulou to the 2-ended case. See Steps 1 and 2(a) below

for further discussion of its significance.

It turns out that the precise nature of the strong cosmic censorship that holds

depends on the rates for which the scalar field decays near the asymptotically

ends. In the introduction, in order to simplify the exposition, we will only

consider10 the case where φ = O(r−ω0) near each asymptotically flat end, with

ω0 ≥ 3.

On the space of admissible initial data sets, we define a scale of weighted-

Ck-type distances (see Definition 3.5). The notion of genericity used in the

precise version of Theorem 1.5 (see Theorem 3.14 and the ensuing statements)

is defined (roughly) as being open relative to a weighted-C1-type distance, and

dense relative to a weighted-C∞-type distance.

The proof of Theorem 1.5 can be roughly divided into the following five

steps:

Step 1: An a priori boundary characterization [33] (Theorem 4.1). Thanks

to the future admissibility and asymptotic flatness conditions, we may apply

a result of [33] (or more precisely, by an adaptation of [33] to the two-ended

case in [15]) to show that the maximal globally hyperbolic future development

(M, g, φ, F ) of every admissible initial data set must have a black hole (interior)

region B = Bi+1
∪Bi+2

∪Bnonpert
11 and an exterior region E = E1 ∪ E2 with

two connected components E1, E2 corresponding to the two asymptotically

flat ends of the initial hypersurface. Each connected component of the exterior

region has a complete future null infinity (denoted by I+
1 and I+

2 , respectively)

and approaches a connected component of the exterior region of a subextremal

Reissner–Nordström spacetime. Moreover, the future boundary of the black

hole region can be characterized. In fact, using also the results of [13] and

the fact that the charge is non-vanishing, the quotient Q = M/SO(3) of the

maximal globally hyperbolic future development must be given by one of the

two Penrose diagrams in Figure 2, where we refer the reader to Theorem 4.1

for the notation.

10As we will see in Theorem 3.18, our methods also apply to the case 2 < ω0 < 3, although

the result will be qualitatively different. The significance of the number 3 is that it is the

sharp Price’s law decay rate; assuming faster decay rates of the initial φ and its derivatives

does not improve the decay rate of the future development in general.
11For the definition of B

i+
1

, B
i+
2

, see Step 2(b). Then we define Bnonpert = B\(B
i+
1
∪B

i+
2

).



10 JONATHAN LUK and SUNG-JIN OH

I+
1

i+1

i01

H+
1

i02

i+2

H+
2

CH+
1CH+

2

I+
2

Σ0
E2 E1

Bi+2
Bi+1

Bnonpert

I+
1

i+1

i01

H+
1

i02

i+2

H+
2

CH+
1CH+

2

S

I+
2

Σ0
E2 E1

Bi+2
Bi+1

Bnonpert

Figure 2. Penrose diagram of the maximal globally hyperbolic

future development of admissible initial data.

Combining this theorem with results in [13], [18], it can be shown that

the only way that the spacetime can be C2-future-extendible is if there is an

extension “through the Cauchy horizons CH+
1 ∪ CH

+
2 .” This is what we will

have to rule out in the generic scenario.

Step 2: Convergence to Reissner–Nordström. In order for the linear analy-

sis in [36] to be relevant to the nonlinear problem, it needs to be shown that the

maximal globally hyperbolic development of every admissible initial data set

in fact converges to Reissner–Nordström12 with sufficiently strong estimates.

This step is further divided into two substeps.

• Step 2(a): Price’s law decay in the exterior region [18] (Theorem 1.11,

Theorem 4.4 or [37, §5]). In the exterior region E1 ∪ E2, since the event

horizons are subextremal, the seminal work of Dafermos–Rodnianski shows

that the spacetime approaches Reissner–Nordström and the scalar field

(and its derivatives) decays with an inverse polynomial rate. In our setting,

we will also need some refinements of the theorem of Dafermos–Rodnianski,

for which we refer the reader to [37, §5].

12Note that potentially, the solution approaches two different Reissner–Nordström solu-

tions (i.e., with different parameters of the final masses) “towards two timelike infinities i+1 ,

i+2 .”
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• Step 2(b): C0-stability in the interior region (Theorem 5.1). In view of

the instability result we ultimately prove, in the interior we can only to

hope13 to obtain estimates that degenerate at the Cauchy horizon, con-

sistent with C0-stability of the interior region. This is what we achieve

in Theorem 5.1. More precisely, given the scalar-field decay in Step 2(a)

in the exterior region (specifically, on the event horizon), we show that

the spacetime approaches Reissner–Nordström (with the same parameters

as in the exterior) in some (non-empty!) interior regions Bi+1
, Bi+2

⊂ B

sufficiently close to timelike infinity.

Some of the estimates can be inferred from [13], where the C0-ex-

tendibility of the interior region was shown (cf. Theorem 1.8), but for

the later steps we will need a slightly stronger and more quantitative ver-

sion. For the proof, we combine some ideas from Dafermos–Luk [16] on the

stability of the Kerr Cauchy horizon (without symmetry) with weighted

L∞ estimates that hold in the spherically symmetric setting.

Step 3: The non-vanishing of L(ω0)∞ and L′(ω0)∞ implies W 1,2
loc blow up of

the scalar field near the Cauchy horizon. This can be viewed as a nonlinear

version of the result in [36]. Here we identify a real-valued quantity L(ω0)∞ for

an asymptotically flat end, and a corresponding L′(ω0)∞ for the other asymp-

totically flat end, such that the non-vanishing of these quantities implies that

the W 1,2
loc -norm of the scalar field blow up near each of the Cauchy horizons.

For simplicity, we restrict our attention to one asymptotically flat end

(specifically, the one on the right in Figure 2); the case of the other asymptot-

ically flat end is analogous. Roughly speaking, L(ω0)∞ measures the leading

order coefficient of the expansion of the “incoming” part of ∂φ into powers of

r near i+1 along null infinity I+
1 . More precisely, introducing a double null co-

ordinate system14 (u, v) on the region E1 ⊂ Q oriented so that the constant-u

curves Cu are outgoing, we define

L(ω0)∞ = lim
u→uH+

1

( lim
r→∞

r3(∂vr)
−1∂v(rφ) �Cu),

where uH+
1

denotes the final u-value of null infinity I+
1 .15

We divide the rest of this step into three substeps.

13We will in fact show that the scalar field is not in W 1,2
loc in a C0 extension of the spacetime

(cf. Theorem 5.4). In view of the result for the linear wave equation in [26], one expects in

general that the scalar field is not even in W 1,p
loc for any p > 1. The estimates we prove have

to be consistent with this expectation.
14Throughout this paper, our convention is that du and dv are increasing to the future

and null. See Section 2.
15This definition requires ω0 ≥ 3. The power r3 has the same root as the sharp Price’s

law rate. See Section 3.3 for the definition in the case 2 < ω0 < 3.
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• Step 3(a): The non-vanishing of L(ω0)∞ implies an L2-averaged lower

bound of the scalar field on the event horizon (Theorem 6.1 or [37, Th. 4.1]).

In our previous paper [36] on the linear wave equation on an exact Reissner–

Nordström spacetime, it was shown that if (the suitable linear version of)

L(ω0)∞ is nonzero, then the following L2-averaged lower bound on the event

horizon holds:

(1.3)

∫
H+

1

vα(∂vφ)2 dv =∞ for any α > 7,

where v is the Eddington–Finkelstein advanced null coordinate.

In this substep, we prove the analogous statement in our nonlinear con-

text (see Theorem 6.1). Thanks to the Price’s law decay estimates of

Dafermos–Rodnianski in Step 2(a), we are able to use essentially the same

strategy as in the linear case in [36].

• Step 3(b): The lower bound in Step 3(a) implies W 1,2
loc blow up of the scalar

field on the Cauchy horizon near timelike infinity (Theorem 5.4). In [36],

it was also proven that if the solution φ of the linear wave equation on

exact Reissner–Nordström obeys (1.3), then its W 1,2-norm on a neighbor-

hood of any point on the Cauchy horizon (defined with respect to, say,

the analytic extension of Reissner–Nordström) blows up. By the decay

estimates in our interior C0-stability theorem in Step 2(b), we are again

able to justify the strategy of proof from [36] in our context, and establish

the analogous W 1,2
loc blow up16 of the scalar field on CH+

1 ∩Bi+1
, provided

that the L2-averaged lower bound from Step 2(a) holds on H+
1 . Note that

in view of the instability, the estimates we obtain in Step 2(b) are neces-

sarily degenerate near the Cauchy horizon, but nonetheless turn out to be

sufficient for our purposes.

• Step 3(c): The lower bound in Step 3(a) implies W 1,2
loc blow up of the scalar

field on the entire Cauchy horizon (Theorem 5.5). Finally, we propagate

the W 1,2
loc blow up of the scalar field on CH+

1 ∩Bi+1
shown in Step 3(b) to the

entire Cauchy horizon CH+
1 . This requires analysis in the region Bnonpert,

which is non-perturbative in the sense that the solution is not necessarily

close to Reissner–Nordström. Nevertheless, an important a priori estimate

still holds for the model under consideration, namely, any point on CH+
1

(with the exception of the endpoint) has a neighborhood with finite space-

time volume (see Lemma 10.2). This a priori estimate, in turn, allows us

to propagate both the C0-extendibility and the W 1,2
loc blow-up statements

16Here, the W 1,2 norm is defined with respect to the C0 extension given by Step 2(b).
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on CH+
1 ∩Bi+1

(cf. Steps 2(b) and 3(b), respectively) to the entire Cauchy

horizon CH+
1 .

Step 4: Generic non-vanishing of L(ω0)∞ and L′(ω0)∞. Let G consist of

admissible initial data sets whose maximal globally hyperbolic future devel-

opments obey L(ω0)∞ 6= 0 and L′(ω0)∞ 6= 0, so that the conclusion of Step 3

(namely, W 1,2 blow up of the scalar field on the Cauchy horizon) applies. We

show that G is generic in the sense described earlier. (See also the substeps

below.) This step is naturally divided into two substeps.

• Step 4(a): Nonlinear stability of L(ω0)∞ (Theorem 6.2 or [37, Th. 4.2]). To

establish openness of G, it suffices to show that L(ω0)∞ and L′(ω0)∞ are non-

linearly stable (or continuous) with respect to initial data perturbations.

We focus only on the asymptotically flat end corresponding to L(ω0)∞, as

the other case is similar.

By performing an asymptotic analysis of the wave equation�gφ = 0 near

null infinity (where “r =∞”), the quantity L(ω0)∞ can be decomposed into

L(ω0)∞ = L + L(ω0)0,

where L(ω0)0 = limr→∞ r
3(∂vr)

−1∂v(rφ) �Σ0 is determined directly by the

Cauchy initial data and L is an integral along null infinity:

(1.4) L =

∫
I+

1

2M(u)Φ(u)Γ(u) du.

Here, M(u), Φ(u) and Γ(u) are limits of the Hawking mass (see Re-

mark 1.10), rφ and −1
4

Ω2

∂vr
along the constant-u curve towards null infinity.

Since L(ω0)0 is clearly continuous with respect to initial data perturbations,

it only remains to understand nonlinear stability of L. The key point, evi-

dent from (1.4), is to show that under small perturbations, the integral of

the difference of MΦ in an appropriate gauge (say, in which Γ(u) ≡ −1)

is small.

In order to achieve this goal, we establish asymptotic stability of the

maximal globally hyperbolic development of any admissible initial data

set in the exterior region for initial data perturbations that are small in a

suitably weighted C1 topology. (See Theorem 6.2 for the precise definition

of the topology.) This is, in a sense, the most technically involved part

of the entire series. The ingredients of its proof include the Price’s law

decay theorem in Step 2(a) (to obtain quantitative information about the

background solution), choice of suitable future-normalized double null co-

ordinate systems (since decay is expected only in a well-chosen coordinate

system), an interaction Morawetz estimate (to control the nonlinearity),

rp-weighted energy method of Dafermos–Rodnianski [20], integration along
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characteristics method from [35] (both for proving decay of the nonlinear

perturbation), etc. We refer the reader to [37, §8.1] for further discussions.

• Step 4(b): Existence of a continuous one-parameter family of perturbations

away from L(ω0)∞ = 0 (Theorem 6.3 or [37, Th. 4.3]). As before, we only

discuss the proof of density of {L(ω0)∞ 6= 0}, since the case of L′(ω0)∞ is

analogous.

Suppose that we are given an admissible initial data set whose maximal

globally hyperbolic future development satisfies L(ω0)∞ = 0. The idea is to

place a smooth compactly supported17 outgoing perturbation of the initial

data for φ of size ε > 0 in the region {r ≈ R∗} (near the end corresponding

to L(ω0)∞), where R∗ is sufficiently large. On the one hand, by asymptotic

flatness, we can perform an explicit calculation (essentially as in exact

Reissner–Nordström) in the domain of dependence of the φ-perturbation

to ensure that the contribution to L of the perturbation in this region is

≈ ε. On the other hand, since the φ-perturbation is outgoing, the data on a

fixed outgoing null hypersurface to the future of the domain of dependence

of the φ-perturbation become small as R∗ →∞. Indeed, such data are of

size o(ε) as R∗ →∞, and therefore give negligible contribution to L by the

asymptotic stability theorem in Step 4(a).

Since R∗ can be chosen independent of ε, the above idea leads to con-

struction of a one-parameter family of perturbations away from L(ω0)∞ = 0,

which is continuous in a weighted C∞ topology.18 (See Theorem 6.3 for

the precise definition of the topology.) This implies the desired density of

the set {L(ω0)∞ 6= 0}.

Step 5: C2-future-inextendibility of the maximal globally hyperbolic future

development (Theorem 5.7). In the final step, we prove that the generic blow

up shown in Steps 3 and 4 in fact implies a geometric statement that there

does not exist any future extension of the maximal globally hyperbolic future

development that has a C2 Lorentzian metric. Here, the significance of the

regularity C2 is that it allows us to pointwisely make sense of the curvature

tensor (which is a geometric invariant), whose possible blow up is directly

connected with that of the scalar field through the Einstein–Maxwell-(real)-

scalar-field system (1.1).

More precisely, recall from Step 1 that the goal is to rule out any C2 future

extensions through the Cauchy horizon. The generic W 1,2
loc blow up of the scalar

17Of course, the perturbation of the metric is not compactly supported in general due to

the constraint equation, but it is only the perturbation of the scalar field we arrange to be

compactly supported.
18More precisely, as regular as the admissible initial data set we started with.
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field on the Cauchy horizon implies, through (1.1), that a certain component

of the Ricci curvature in a parallel-transported frame along a geodesic blows

up on the Cauchy horizon, which is inconsistent with the C2 future extension.

As we see from the above steps, the proof of Theorem 1.5 relies on the

analysis both in the interior and the exterior regions of the black hole. The

analysis in the interior region B = Bi+1
∪Bi+2

∪Bnonpert, i.e., Steps 2(b), 3(b),

3(c) and 5,19 are carried out in this paper. The remaining steps, i.e., Steps 3(a),

4(a) and 4(b), which constitute analysis in the exterior region E = E1∪E2, are

carried out in [37]. We refer the reader to Sections 3–7 for precise statements

that are proven for each of these steps and how they fit together.

1.2. Previous works. In this subsection, we provide a brief survey of some

previous works to place our main result (Theorem 1.5) and the ideas of its

proof in context.

1.2.1. Linear wave equation on Reissner–Nordström spacetime. The sim-

plest setting to study the stability and instability properties of the Cauchy hori-

zon in the interior of Reissner–Nordström spacetime is to consider the linear

scalar wave equation �gRNφ = 0 where the background Reissner–Nordström

metric gRN is fixed. This problem has a long tradition in the physics literature

and has attracted much renewed recent interest from the mathematical com-

munity. We refer the reader to [4], [21], [25], [26], [41], [28], [38], [39], [50], [48]

for a sample of results and to the introduction of [36] for further discussions.

In the interior of the black hole, solutions to the linear wave equation exhibit

both stability and instabilty properties. While φ itself is uniformly bounded

and in fact decays along the Cauchy horizon [25], [28], the derivative of φ in

a direction transversal to the Cauchy horizon blows up. Indeed, we have the

following instability result:

Theorem 1.7 (Linear instability on fixed Reissner–Nordström, Luk–Oh

[36]). Generic smooth and compactly supported initial data to the linear wave

equation �gRNφ = 0 on a two-ended asymptotically flat complete Cauchy

hypersurface of a fixed subextremal Reissner–Nordström spacetime with nonva-

nishing charge give rise to solutions that are not in W 1,2
loc in a neighborhood of

any point on the future Cauchy horizon CH+.

As we already discussed in Section 1.1, the methods introduced in [36] also

play a crucial role in establishing instability for the nonlinear problem in spher-

ical symmetry considered in this paper and [37]. Theorem 1.7 is proven via

19Strictly speaking, the proof of inextendibility in Step 5 requires information for both

the interior and the exterior regions. Nevertheless, the most difficult step is to rule out the

possibility of extending the spacetime through the boundary of the interior region.
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showing that the spherically symmetric part of a solution arising from generic

smooth and compactly supported initial data is not in W 1,2
loc in a neighborhood

of any point on the future Cauchy horizon. Its proof has the following three

parts:20

(1) It is shown that in the interior of the black hole region if an L2-averaged

polynomial lower bound holds for the spherically symmetric part of the

solution on the event horizon, then the solution is not in W 1,2
loc in a neigh-

borhood of any point on the future Cauchy horizon.

(2) Moreover, a quantity21 L at future null infinity associated to the spherically

symmetric part of the solution is identified in [36]. The quantity L, which

is real-valued and depends linearly on φ, moreover has the property that

whenever L 6= 0, the L2-averaged polynomial lower bound for the solution

on the event horizon required in part (1) holds.

(3) Finally, it is shown that L is generically non-vanishing, by exhibiting a

spherically symmetric solution to the linear wave equation with smooth

compactly supported initial data on Σ0 for which L 6= 0.

In the language of Section 1.1, Steps 3(b), 3(a) and 4 can be viewed as ana-

logues of (1), (2) and (3) above, respectively, but in a nonlinear setting.

1.2.2. Nonlinear stability and instability of the Cauchy horizon in spherical

symmetry. Going beyond the linear wave equation, the next simplest problem

is to consider a nonlinear model but restricted to spherical symmetry.22 In

part due to the fact that both stable and unstable features can be seen in

the linear theory, the nature of the “singularity” that arises from perturbing

Reissner–Nordström has been widely debated. In particular, it was speculated

that nonlinear perturbations of Reissner–Nordström initial data may lead to a

spacelike singularity. The study of the stability and instability of the Reissner–

Nordström Cauchy horizon was initiated in the pioneering works of Hiscock

[29], Poisson–Israel [45], [46] and Ori [42], who studied the Einstein equation

coupled with null dusts in spherical symmetry. These works suggest that under

nonlinear perturbations, the spacetime is regular up to the Cauchy horizon,

20These concern only one of the two asymptotically flat ends of Reissner–Nordström. An

analogue of each part holds in the other end. In particular, the solution we construct in (3)

can be made to vanish on the other component of the exterior region, and (by linearity) one

can therefore easily add to it a solution that blows up on the “outgoing” part of the Cauchy

horizon, constructed in essentially the same manner, so as to ensure that the solution blows

up on the whole Cauchy horizon.
21Notice that in the present paper we introduce, in addition, the notation L(ω0)∞, which

coincides with L (in both this paper and [36]) for solutions arising from compactly supported

initial data.
22Recall that Reissner–Nordström is spherically symmetric.
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which is, in particular, null, and the spacetime metric extends continuously to

the Cauchy horizon. Nevertheless, generically, the metric “blows up” in the

sense that the Hawking mass (described in Remark 1.10 below) is identically

infinite on the Cauchy horizon.

The stability and instability of the Reissner–Nordström Cauchy horizon

was finally settled mathematically in the seminal work23 of Dafermos [13] (see

also [12]) in the context of the characteristic initial value problem for the

Einstein–Maxwell-(real)-scalar field system posed in the black hole interior.

He showed that for all initial data on the event horizon approaching Reissner–

Nordström sufficiently fast, in a neighborhood of timelike infinity, the space-

time has a null boundary such that the metric remains continuous. In particu-

lar, when sufficiently close to timelike infinity, there are no “first singularities”

arising before the null boundary. The instability of the smooth Cauchy horizon

as suggested by the strong cosmic censorship conjecture only manifests itself

in that for a “large subset” of admissible initial data, the null boundary is

also a null singularity such that the metric cannot be extended beyond in C1

in spherical symmetry. (See further discussions in [13].) We summarize the

stability result in [13] as follows:24

Theorem 1.8 (Stability theorem, Dafermos [13]). Fix M , e and s such

that 0 < |e| < M and s > 1. Consider the characteristic initial value problem

with smooth data given on C−∞ and C1 such that C−∞ approaches the event

horizon of Reissner–Nordström with e and M and such that in an “Eddington–

Finkelstein type” coordinate system, we have

(|φ|+ |∂vφ|) �C−∞ (v) ≤ Ev−s.

Then, by restricting to some nonempty, connected subset C ′1 ⊂ C1, the globally

hyperbolic future development of the data on C ′1∪C−∞ has a Penrose diagram

given by Figure 3. Moreover, the area-radius function r and the scalar field φ

extend continuously to the Cauchy horizon CH+.

The stability theorem in [13] is complemented by the following conditional

instability result:

Theorem 1.9 (Conditional instability theorem, Dafermos [13]). If, in

addition to the assumptions in Theorem 1.8, there exist ε > 0, c > 0 and

23See also [10], [11], [34] for recent extensions of the results of Dafermos.
24In [13], the decay rate for φ is not needed. Also, there is a version of the result requiring

only s > 1
2
. We state here only a version that is easy to compare with Theorem 5.1 in which

we do not optimize the necessary decay rate on the event horizon. This is, in particular,

because the results in [18] show that the bound holds for some s > 1 for solutions arising

from asymptotically flat Cauchy data.
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CH+

C−∞

C1

C ′1

Figure 3. Penrose diagram of the development of data on C ′1 ∪ C−∞.

v∗ ≥ 1 such that the pointwise lower bound

|∂vφ| �C−∞ (v) ≥ cv−3s+ε

holds for all v ≥ v∗ (with s as in Theorem 1.8), then the Hawking mass is

identically infinite along the Cauchy horizon CH+.

Remark 1.10. The Hawking mass described above is a geometric invariant

for spherically symmetric spacetimes on every orbit of the SO(3) action; see

(2.6). The infinitude of the Hawking mass is an obstruction to extending the

spacetime in spherical symmetry with a C1 metric. Moreover, it can be shown

[33] in this setting that the blow up of the Hawking mass implies the blow up

of the Kretschmann scalar, which is an obstruction to extending the metric

in C2 without assuming spherical symmetry for the extension. Note that in

contrast to Theorem 1.9, our proof of Theorem 1.5 does not show the blow up

of the Hawking mass, but instead requires a different geometric argument; cf.

Step 5 in Section 1.1.

1.2.3. Nonlinear Price’s law and the disproof of the C0-formulation of

strong cosmic censorship in spherical symmetry. The preceding two results

of Dafermos in the black hole interior assume inverse polynomial decay rates

of the scalar field along the event horizon as upper and lower bounds (in Theo-

rems 1.8 and 1.9, respectively). These assumptions are consistent with a well-

established heuristics called Price’s law, which predicts that any asymptotically

flat perturbation of Reissner–Nordström leads to a scalar field with a specific

inverse-polynomial upper bound on the event horizon (namely, |φ| ≤ v−3 and

|∂vφ| ≤ v−4 for an “Eddington–Finkelstein type” coordinate v), and that the

same inverse-polynomial lower bound holds in the “generic” case.

Price’s law was derived via a heuristic linear analysis, and recently there

have been numerous works on its rigorous proof in the context of the linear

wave equation on the exterior of a black hole spacetime. We refer the reader
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to [22], [23], [24], [1], [2], [51], [40] for a sample of such results. Remarkably,

in the nonlinear context of the Einstein–Maxwell-(real)-scalar-field system in

spherical symmetry, Dafermos–Rodnianski [18] were able to establish the upper

bound assertion of Price’s law for the maximal development of any admissible

initial data, which may in principle be very far from a small perturbation of

Reissner–Nordström. We summarize a part of their theorem that is relevant

for the current discussion as follows:

Theorem 1.11 (Price’s law, Dafermos–Rodnianski [18]). Consider smooth

spherically symmetric 2-ended Cauchy initial data for (1.1), which are future-

admissible and asymptotically flat (cf. Definition 3.1). Then the maximal glob-

ally hyperbolic future development obeys

|φ|+ |∂vφ| �H+
1

(v) ≤ Esv−s,

for any s < 3 and for some Es > 0, where v is an “Eddington–Finkelstein

type” advanced null coordinate on the event horizon H+
1 (cf. Definition 4.2).

An analogous statement holds on the event horizon H+
2 corresponding to the

other asymptotically flat end.

For more a precise statement and further discussions, see Step 2(a) in

Section 1.1, Theorem 4.4 and [37, §5].

Combining Theorem 1.11 with the interior stability result (Theorem 1.8),

one reaches the striking conclusion that the C0-formulation of the strong cos-

mic censorship conjecture for the Einstein–Maxwell-(real)-scalar-field system

in spherical symmetry is false (Theorem 1.4).

1.2.4. Comparisons with an approach based on Theorem 1.9 in [13]. Given

the interior instability result (Theorem 1.9) and Price’s law, one obvious path

to proving the C2-formulation of the strong cosmic censorship conjecture (The-

orem 1.5) would be to establish the assumed pointwise lower bound in Theo-

rem 1.9 for maximal globally hyperbolic future developments of generic data.

In a recent work of Angelopoulos–Aretakis–Gajic [1], the authors proved an

analogous lower bound25 for generic solutions to the linear wave equation on a

fixed subextremal Reissner–Nordström spacetime with non-vanishing charge.

In view of this, one may conjecture that the same lower bound holds for generic

data in our nonlinear setting in spherical symmetry:

Conjecture 1.12. There exists a generic set of spherically symmetric

admissible Cauchy initial data with non-vanishing charge (cf. Definition 3.1)

25In fact, they obtained a much stronger result giving the precise asymptotics of the

solution. In particular, they proved upper and lower bounds for ∂vφ along the event horizon

with the same rate predicted by Price’s law.
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and compactly supported initial scalar field such that the lower bound in Theo-

rem 1.9 holds with s = 3 on each of the event horizons in the maximal globally

hyperbolic future developments.

As discussed in Section 1.1, however, we take a different route and instead

prove a stronger conditional instability result that requires an L2-averaged,

instead of a pointwise, lower bound. The upshot is that such an L2-averaged

lower bound is considerably easier (even though it is still highly technical)

to prove. In particular, even to prove the lower bound in the linear setting

in [1], it first requires sharp upper bound estimates. Such estimates would be

even harder to obtain in the nonlinear setting in view of the fact that we are

considering large data solutions. In contrast, with our approach, in terms of

the decay rates of a fixed solution, it suffices to use the Dafermos–Rodnianski

decay theorem in [18], in which the decay rates are conjecturally26 not sharp.

While the main motivation for our improved conditional instability theo-

rem is that it is easier to verify than the condition in [13], it should be noted

that our approach based on the new conditional instability theorem also pro-

vides a road map for proving instability for other matter models and for the

vacuum equations without symmetry. This is because in the problem of, say,

the instability of the Reissner–Nordström Cauchy horizon in spherical symme-

try for the Einstein–Maxwell-charged-(complex)-scalar field model, or in the

problem of the instability of the Kerr Cauchy horizon without symmetry con-

dition for the Einstein vacuum equations, the generic solutions along the event

horizon are expected to be oscillatory [30], [31], [32], [3], [43]. This is in con-

trast to the type of behavior that is required by [13], but on the other hand is

consistent with the condition that we require in our approach.

1.3. Outline of the paper. We end the introduction with an outline of the

remainder of the paper.

• In Section 2, we introduce the setup for the Einstein–Maxwell-(real)-scalar-

field system in spherical symmetry.

• In Section 3, we give the precise formulation of strong cosmic censorship

(Theorem 1.5; cf. Theorems 3.14, 3.18 and Corollary 3.21).

The next few sections are dedicated to the main steps of the proof of Theo-

rem 1.5:

• In Section 4, we discuss previous results of Kommemi [33] and Dafermos–

Rodnianski [18] regarding the maximal globally hyperbolic development.

26At the very least, it is known by [1] that the upper bounds in [18] are not sharp for

solutions to the linear wave equation.
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• In Section 5, we give the precise statements of the main theorems (Theo-

rems 5.1, 5.4, 5.5 and 5.7) proved in this paper regarding the interior region.

• In Section 6, we discuss the results in [37] regarding the exterior region.

• In Section 7, combining the results of Sections 5 and 6, we obtain a proof

of Theorems 3.14, 3.18 and Corollary 3.21.

The remaining sections contain the proofs of the theorems:

• In Section 8, we prove the stability theorem (Theorem 5.1).

• In Section 9, we prove the instability theorem (Theorem 5.4).

• In Section 10, the stability and instability theorems are then “globalized”

(Theorem 5.5).

• In Section 11, we prove the theorem on C2 future-inextendibility (Theo-

rem 5.7).

Finally, we have an appendix with three sections.

• In Appendix A, we give a proof of Kommemi’s theorem that the limits along

the event horizons are always subextremal in the model under consideration.

In Appendix B, we give a discussion regarding the gauge condition that we

impose on the event horizon. In Appendix C, we study in more detail

the blow-up behavior of the solution in the C0 extension constructed in

Theorems 5.1 and 5.5, and we show that the Christoffel symbols fail to be

locally Lp-integrable for every p > 1.
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2. Einstein–Maxwell-(real)-scalar-field

system in spherical symmetry

The purpose of this preliminary section is to provide the precise setup for

the model at hand, namely, the Einstein–Maxwell-(real)-scalar-field system in

spherical symmetry. We begin with the definition of spherical symmetry in our

context.
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Definition 2.1 (Spherically symmetric solutions). Let (M, g, φ, F ) be a

suitably regular27 solution to the Einstein–Maxwell-(real)-scalar-field system

(1.1). We say that (M, g, φ, F ) is spherically symmetric if the following prop-

erties hold:

(1) The symmetry group SO(3) acts on (M, g) by isometry with spacelike

orbits.

(2) The metric g on M is given by

(2.1) g = gQ + r2dσS2 ,

where

(2.2) gQ = −Ω2

2
(du⊗ dv + dv ⊗ du)

is a Lorentzian metric on the 2-dimensional manifold Q =M/SO(3) and

r is defined to be the area radius function of the group orbit, i.e.,

r =

 
Area(π−1(p))

4π
,

for every p ∈ Q, where π is natural projection π :M→Q taking a point

to the group orbit it belongs to. Here, as in the introduction, dσS2 denotes

the standard round metric on S2 with radius 1.

(3) The function φ at a point x depends only on π(x); i.e., for p ∈ Q and

x, y ∈ π−1(p), it holds that φ(x) = φ(y).

(4) The Maxwell field F is invariant under pullback by the action (by isometry)

of SO(3) on M. Moreover, there exists e : Q → R such that

F =
e

2(π∗r)2
π∗(Ω2 du ∧ dv).

It is well known that for this system, the real-valued function e is in fact

a constant.

In spherical symmetry, the Einstein-Maxwell-(real)-scalar-field system

thus reduces to the following system of coupled wave equations for (r, φ,Ω):

(2.3)



∂u∂vr =− Ω2

4r
− ∂ur∂vr

r
+

Ω2e2

4r3
,

∂u∂vφ =− ∂vr∂uφ

r
− ∂ur∂vφ

r
,

∂u∂v log Ω =− ∂uφ∂vφ−
Ω2e2

2r4
+

Ω2

4r2
+
∂ur∂vr

r2
.

27The precise regularity is irrelevant here, since the notion of solutions we work with

will be defined later with respect to the reduced system in spherical symmetry. See the

well-posedness statements in Propositions 2.4 and 2.5.
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The solutions moreover satisfy the following Raychaudhuri equations:

(2.4)


∂v

Å
∂vr

Ω2

ã
=− r(∂vφ)2

Ω2
,

∂u

Å
∂ur

Ω2

ã
=− r(∂uφ)2

Ω2
.

If one solves the characteristic initial value problem with initial data posed on

two intersecting null hypersurface, then one can view the equations (2.4) as

constraint equations for the initial data. It is easy to check that if the constraint

equations (2.4) are initially satisfied, then they are propagated by (2.3).

2.1. Formulation in terms of Hawking mass. It will be convenient for our

discussion to introduce the following notation:

(2.5) λ := ∂vr, ν := ∂ur.

Define also the Hawking mass m : Q → R by

(2.6) m :=
r

2
(1− gQ(∇r,∇r)) =

r

2

Å
1 +

4λν

Ω2

ã
,

where gQ is as defined in (2.2), as well as the modified Hawking mass

(2.7) $ = m+
e2

2r
.

As a consequence of (2.3), (2.4), (2.6), (2.7), the following equations hold:

(2.8)



∂u∂vr =
2($ − e2

r )

r2

∂ur∂vr

1− µ
,

∂u∂vφ =− ∂vr∂uφ

r
− ∂ur∂vφ

r
,

∂v$ =
1

2

1− µ
∂vr

r2(∂vφ)2,

∂u$ =
1

2

1− µ
∂ur

r2(∂uφ)2,

where we denote

(2.9) µ :=
2m

r
.

2.2. Cauchy problem formulation. We give a brief discussion of Cauchy

problem formulations of the Einstein–Maxwell-(real)-scalar-field system in

spherical symmetry.

Definition 2.2 (Cauchy data). A Cauchy initial data set for the Einstein–

Maxwell-(real)-scalar-field system in spherical symmetry consists of a curve Σ0

(without boundary), a collection of six real-valued functions (r, f, h, `, φ, φ̇) on

Σ0 and a real number e. We require r ∈ C2(Σ0;R), f, `, φ ∈ C1(Σ0;R) and
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h, φ̇ ∈ C0(Σ0;R). Moreover, f, r are required to be strictly positive everywhere

on Σ0. For Σ0 parametrized28 by ρ, the collection of functions together with

e give rise to geometric data consisting of the following:

(1) the initial hypersurface Σ0 = Σ0 × S2 is endowed with the intrinsic Rie-

mannian metric

ĝ = f2(ρ) dρ2 + r2(ρ) dσS2 ;

(2) the symmetric 2-tensor k̂ on the initial hypersurface Σ0 (which will be the

second fundamental form of the solution) given by

k̂ = h(ρ) dρ2 + `(ρ) dσS2 ;

(3) the initial data on Σ0 for the matter fields29

(φ, nφ) �Σ0= (φ, φ̇), F (n, ∂ρ) �Σ0=
ef

r2
,

where n denotes the unique future-directed unit normal to Σ0 in M.

Moreover, the following constraint equations are satisfied:

Rĝ − |k̂|2ĝ + (trĝk̂)2 = 4T (n, n) = 2φ̇2 +
2

f2
(∂ρφ)2 +

2e2

r4
,(2.10)

(divĝk̂)ρ − ∂ρ(trĝk̂) = 2T (n, ∂ρ) = 2φ̇(∂ρφ).(2.11)

Here, T = T
(sf)
µν + T

(em)
µν (cf. (1.1)) and Rĝ is the scalar curvature of ĝ.

Any Cauchy initial data can be related to initial data for (r, φ, log Ω) in a

double null coordinate system. We give the relation in the following lemma,

but will omit the proof, which is a straightforward computation:

Lemma 2.3. Consider a parametrization ρ 7→Σ0(ρ) of the initial curve Σ0,

and consider a double null coordinate system (u, v) on M normalized by the

conditions

du

dρ
= −1,

dv

dρ
= 1 on Σ0.

28At this point, we allow ρ to have either finite or infinite range. We will require Σ0 = R
later in Definition 3.1.

29We abuse notation slightly here, where φ is used to both denote the scalar field in the

spacetime and its restriction to the initial slice Σ0.
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Then the following identities hold on Σ0:

∂u �Σ0 =
1

2
(−∂ρ + fn), ∂v �Σ0 =

1

2
(∂ρ + fn),

∂ur �Σ0 = −1

2
∂ρr +

f

2r
`, ∂vr �Σ0 =

1

2
∂ρr +

f

2r
`,

∂uφ �Σ0 =
1

2
(−∂ρφ+ fφ̇), ∂vφ �Σ0 =

1

2
(∂ρφ+ fφ̇),

∂u log Ω �Σ0 =
1

2f
(−∂ρf + h), ∂v log Ω �Σ0 =

1

2f
(∂ρf + h),

Ω �Σ0 = f,

where n denotes the unique future-directed unit normal to Σ0 in Q.

By the Choquet-Bruhat–Geroch theorem [5] (suitably adapted to the

present setting with matter fields), the initial Cauchy data set gives rise to

a unique maximal globally hyperbolic future development. This development

also inherits the spherical symmetry of the data. In fact, it is easy to verify

that the maximal globally hyperbolic future development of the initial data

corresponds to the maximal future (u, v) domain for which (2.3) and (2.4) are

solved. We summarize the result below but omit the details.

Proposition 2.4 (Local well-posedness in C1 for the Cauchy problem).

Given a Cauchy initial data set as in Definition 2.2, there exist a unique max-

imal future30 domain Q ⊂ R2 of the (u, v)-plane, a constant e and functions

(r, φ,Ω) ∈ C2(Q) × C1(Q) × C1(Q) (with r, Ω > 0) such that both (2.3) and

(2.4) are satisfied, and that the initial Cauchy data (as in Definition 2.2) and

the initial gauge conditions (as in Lemma 2.3) are achieved.

Let (M, g, φ, F ) be related to (Q, r, φ,Ω, e) according Definition 2.1. Then,

moreover, (M, g, φ, F ) is the maximal globally hyperbolic future development

of the given Cauchy initial data set for the system (1.1).

2.3. Characteristic initial value problem formulation. As is well known,

(1.1) can also be solved via a characteristic initial value problem. This is

particularly relevant in this paper for the study of the interior region, where

the question of the stability and instability of the Cauchy horizon is most

conveniently phrased in terms of a characteristic initial value problem; see

Section 5. The analogue of Proposition 2.4 in the setting of the characteristic

initial value problem is given in the following proposition (whose proof we

again omit):

30Here, causality is to be understood with respect to the standard Minkowski metric

gR2 = − 1
2
(du⊗ dv + dv ⊗ du) in the (u, v)-plane.
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Proposition 2.5 (Local well-posedness in C1 for the characteristic initial

value problem). Let C in and Cout be two transversally intersecting null curves

parametrized by C in = {(u, v1) : u ∈ [u1, u2)} and Cout = {(u1, v) : v ∈
[v1, v2)}, where u1, v1 ∈ R and u2, v2 ∈ R ∪ {+∞} with u1 < u2, v1 < v2.

Given characteristic initial data

• a constant e;

• (r, φ,Ω) ∈ C2(C in)× C1(C in)× C1(C in) with r > 0 and Ω > 0; and

• (r, φ,Ω) ∈ C2(Cout)× C1(Cout)× C1(Cout) with r > 0 and Ω > 0

such that

• the values of (r, φ,Ω) at (u1, v1) coincide;

• the Raychaudhuri equations (2.4) are satisfied on C in and Cout,

there exists a unique maximal globally hyperbolic future development (r, φ,Ω, e)

in the (u, v) coordinate system such that e is a constant and (r, φ,Ω) ∈ C2 ×
C1×C1 obeys the system of wave equations (2.3). Moreover, the Raychaudhuri

equations (2.4) are also satisfied. In particular, (M, g, φ, F ), which is related

to (Q, r, φ,Ω, e) as in Definition 2.1, is a solution to (1.1).

3. Formulation of strong cosmic censorship

In this section we give a precise formulation of strong cosmic censorship

for maximal globally hyperbolic future development of admissible initial data

(Theorem 3.14; see also Theorem 3.18). Before that, we need to introduce

three important notions:

• A class of admissible Cauchy data: This includes the assumptions of the

regularity and asymptotic flatness of the initial data. We will impose an ad-

ditional future admissibility condition (see the last point in Definition 3.1),

which can be thought of as an analogue of Christodoulou’s “no anti-trapped

surface” condition suitably adapted to the case of two-ended asymptotically

flat data; see [15]. This will be introduced in Section 3.1.

• Topologies on the set of admissible Cauchy data: The various topologies will

allow us to make precise the genericity condition, which can be understood

as openness and density statements in appropriate topologies. This will be

introduced in Section 3.2.

• The constants L(ω)∞ and L′(ω)∞: For every admissible Cauchy data set,

the constants L(ω)∞ and L′(ω)∞ are introduced to give an easy-to-check

criterion that, when verified, would guarantee that the maximal globally

hyperbolic future development is C2-future-inextendible. These constants

will be featured in the statement of strong cosmic censorship and will be

introduced in Section 3.3.
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We will then give the main statement of strong cosmic censorship in Sec-

tion 3.4. This is followed in Section 3.5 by a (much) simpler statement if a

sufficiently slowly decaying inverse polynomial tail is allowed in the initial data.

We will end the section with a discussion on the global stability and instability

of the Reissner–Nordström Cauchy horizon in Section 3.6. All of the results

stated in this section will be proven in Section 7.

3.1. Admissible Cauchy data. We now define the class of Cauchy initial

data for which we will establish strong cosmic censorship.

Definition 3.1 (Admissible Cauchy initial data). Let ω0 > 2. An ω0-

future-admissible spherically symmetric two-ended asymptotically flat Cauchy

initial data set with non-vanishing charge (in short, an ω0-admissible initial

data set) is a Cauchy initial data set Θ = (r, f, h, `, φ, φ̇, e) on Σ0 = R satisfying

the following properties:

(1) φ, f ∈ C2(Σ0;R), φ̇, h ∈ C1(Σ0;R) (i.e., they are more regular31 than

required in Definition 2.2).

(2) The following asymptotic flatness conditions32 hold as ρ → ±∞ (i.e., to-

wards each end):

f(ρ)− 1 = O2(|ρ|−1), h(ρ) = O1(|ρ|−2),

r(ρ)− |ρ| = O2(log |ρ|), `(ρ) = O1(1).
(3.1)

Here the notation Oi(|ρ|−n) denotes that the function on the left-hand side

is O(|ρ|−n) and the j-th derivative is O(|ρ|−n−j) for all j ≤ i. In the case

n = 0, we simply write Oi(1) = Oi(|ρ|0). The notation Oi(log |ρ|) is defined

similarly.

(3) The following asymptotic flatness conditions hold for the scalar field:

(3.2) φ(ρ) = O2(|ρ|−ω0), φ̇(ρ) = O1(|ρ|−ω0−1) as ρ→ ±∞.

Furthermore, the following limits exist:

(3.3)

L(ω0)0[Θ] := lim
ρ→∞

rmin{ω0,3}

∂ρr + f`
r

Å
∂ρ(rφ) +

f`

r
φ+ frφ̇

ã
,

L′(ω0)0[Θ] := lim
ρ→−∞

rmin{ω0,3}

−∂ρr + f`
r

Å
−∂ρ(rφ) +

f`

r
φ+ frφ̇

ã
.

31Note that while the regularity assumptions in Definition 2.2 are sufficient for the local

existence and uniqueness result in Proposition 2.4 (and in fact also for global decay result —

see [18]), we need additional regularity in order to control the difference of the gauges in two

different solutions in [37]. This is of course unsurprising in view of the quasilinear nature of

the problem.
32These conditions are essentially the asymptotic flatness condition in [18, §A.4] with

α = 1.
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(4) e 6= 0.

(5) The following future admissibility condition holds: There exist ρ1 < ρ2

such that

(3.4)Å
−∂ρr +

f`

r

ã
(ρ) < 0 for all ρ ≥ ρ1 and

Å
∂ρr +

f`

r

ã
(ρ) < 0 for all ρ ≤ ρ2.

We denote the set of all ω0-admissible initial data sets by AID(ω0).

Remark 3.2 (Future admissibility condition in double null coordinates).

By Lemma 2.3, the future admissibility condition can be understood as requir-

ing that (∂ur) �Σ0 (ρ) < 0 for ρ ≥ ρ1 and (∂vr) �Σ0 (ρ) < 0 for ρ ≤ ρ2. In

particular, there exist trapped surfaces33 in Σ0.

Remark 3.3 (Stability of future admissibility condition). The future ad-

missibility condition is manifestly stable against small perturbations (say, with

respect to the distances defined in Section 3.2).

Example 3.4 (Reissner–Nordström initial data). An example of an

ω0-future-admissible Cauchy initial data in the sense of Definition 3.1 (for any

ω0 > 2) is the Cauchy initial data set of a subextremal Reissner–Nordström

solution with e 6= 0 on a suitable initial hypersurface Σ0. More precisely, we

take Σ0 to be a (sufficiently smooth) spherically symmetric Cauchy hypersur-

face that intersects the black hole region (shaded region in Figure 4). Note that

φ = φ̇ = 0 in this case. We also note that, by (an extension of) Birkhoff’s theo-

rem for the Einstein–Maxwell system, any admissible initial data set satisfying

Definition 3.1 with φ = φ̇ = 0 is necessarily an embedded Cauchy hypersurface

in some subextremal Reissner–Nordström solution.

3.2. Topologies on the set of admissible Cauchy data. To formulate strong

cosmic censorship, we next introduce various topologies on the set of admissible

initial data AID(ω0) to measure the size of initial data perturbations.

Definition 3.5 (Distances dk,ω on AID(ω0)). Given any positive integer k

and real numbers ω, ω0 > 2, we define the distance dk,ω on the set AID(ω0)

of ω0-admissible initial data with two asymptotic ends (cf. Definition 3.1) as

follows (we allow34 dk,ω(Θ,Θ) =∞):

dk,ω(Θ,Θ) := ‖〈ρ〉 log(f/f)(ρ)‖C0(3.5)

+
k∑
i=1

Ä
‖〈ρ〉1+i∂iρ log(f/f)(ρ)‖C0 + ‖〈ρ〉1+i∂i−1

ρ (h− h)(ρ)‖C0

ä
33We say that a sphere of symmetry S = π−1(p) (for some p ∈ Q) is a trapped surface if

(∂ur)(p) < 0 and (∂vr)(p) < 0.
34This happens, in particular, when the initial data are not k-times differentiable.
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Figure 4. Penrose diagram of a subextremal Reissner–

Nordström spacetime. A Cauchy hypersurface Σ0, which in-

tersects the black hole region (shaded) and hence gives rise to

admissible Cauchy data, is depicted. For a further description

of the diagram in the future of Σ0, we refer to Theorem 4.1.

The analogous structures in the past of Σ0 are marked with the

superscript −.

+ ‖ log−1(1 + 〈ρ〉)(r − r)(ρ)‖C0

+
k∑
i=1

Ä
‖〈ρ〉i∂iρ(r − r)(ρ)‖C0 + ‖〈ρ〉i−1∂i−1

ρ (f`− f`)(ρ)‖C0

ä
+ ‖〈ρ〉ω(φ− φ)(ρ)‖C0

+
k∑
i=1

(
‖〈ρ〉ω+i∂iρ(φ− φ)‖C0 + ‖〈ρ〉ω+i∂i−1

ρ (fφ̇− fφ̇)(ρ)‖C0

)
+ |e− e|.

Here, 〈ρ〉 = (1 + ρ2)1/2 and ρ± = max{0,±ρ}.

Remark 3.6. Some simple remarks concerning the distances dk,ω are in

order.

(1) Note that dk,ω ≤ dk′,ω for k ≤ k′, and dk,ω ≤ dk,ω′ for ω ≤ ω′.
(2) For k ≥ 1 and ω ≥ ω0, we have

|L(ω0)0[Θ]− L(ω0)0[Θ]|+ |L′(ω0)0[Θ]− L′(ω0)0[Θ]| ≤ Cdk,ω(Θ,Θ).

In fact, if ω > ω0, then dk,ω(Θ,Θ) < ∞ implies L(ω0)0[Θ] = L(ω0)0[Θ] and

L′(ω0)0[Θ] = L′(ω0)0[Θ].

With the help of Definition 3.5, we introduce the subclass of Ckω initial

data sets in AID(ω0).
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Definition 3.7 (Ckω initial data). For k ∈ N with k ≥ 2 and ω, ω0 > 2, we

say that Θ ∈ AID(ω0) is Ckω if dk,ω(Θ,ΘRN,M,e) <∞ for some ΘRN,M,e that

is an admissible smooth Cauchy initial data set for a fixed Reissner–Nordström

solution with parameter 0 < |e| < M such that outside a compact set [−R,R],

(r, f, h, `, φ, φ̇, e) = (|ρ|, (1− 2M
|ρ| + e2

ρ2 )−
1
2 , 0, 0, 0, 0, e).

Remark 3.8. Some remarks regarding this definition are in order.

(1) By definition, any Θ ∈ AID(ω0) is automatically C2
ω0

.

(2) If dk,ω(Θ,ΘRN,M1,e) <∞ for some M1 > |e|, then dk,ω(Θ,ΘRN,M2,e) <∞
for any M2 > |e|.

3.3. Definition of L(ω0)∞ for developments of ω0-admissible Cauchy data.

Next, we define a quantity, which we denote by L(ω0)∞, that seeks to capture

the asymptotic size of the incoming scalar field radiation along future null

infinity I+ towards timelike infinity. In order to discuss the definition, we

will necessarily consider the maximal globally hyperbolic future development

of initial data. Here, we only need to use the fact that the maximal globally

hyperbolic future development has two components of future null infinity. We

refer the reader to Theorem 4.1 for further discussions about the relevant

geometric notions.

Let (M, g, φ, F ) be the maximal globally hyperbolic future development

of an ω0-admissible initial data Θ (cf. Definition 3.1; we take ω0 > 2), and

consider the asymptotically flat end where ρ → ∞ on the initial hypersur-

face Σ0. Denote the component of future null infinity corresponding to this

asymptotically flat end by I+, and let it be parametrized by the u-coordinate.

Definition 3.9 (Definition of L(ω0)∞). Let (u, v) be a double null coordi-

nates normalized as in Lemma 2.3. To define L(ω0)∞ in the case ω0 ≥ 3, we

first introduce

L :=

∫
I+

2M(u)Φ(u)Γ(u) du,(3.6)

where

M(u) = lim
v→∞

$(u, v), Φ(u) = lim
v→∞

rφ(u, v),

Γ(u) = lim
v→∞

∂ur

1− µ
(u, v).

We then define

(3.7) L(ω0)∞ :=

L(ω0)0 + L if ω0 ≥ 3,

L(ω0)0 if ω0 ∈ (2, 3),

where L(ω0)0 = L(ω0)0[Θ] depends only on the initial data and is defined as

in (3.3).
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Remark 3.10 (Well-definedness of L). We first note that the definition of

L is independent of the choice of the u-coordinate. Moreover, the quantity

L is in fact well defined as a finite real number: Indeed, Theorem 4.4 below

shows that the limits as v →∞ exist and that the quantity 2M(u)Φ(u)Γ(u) is

integrable towards the future. The fact that it is also past-integrable follows

from asymptotic flatness and will be proven in [37].

Definition 3.11 (Definition of L′(ω)∞). Corresponding to the other asymp-

totically flat end (where ρ→ −∞ on Σ0), we analogously define L′ and L′(ω)∞
(switching the roles of u and v).

3.4. Statement of the strong cosmic censorship theorem in spherical sym-

metry. Before we give the statement of strong cosmic censorship, we need to

make precise the notion of C2-future-inextendibility:

Definition 3.12 (C2-future-inextendibility). A C2 Lorentzian 4-manifold

(M, g) is said to be future-extendible with a C2 Lorentzian metric if there exists

a time-oriented, connected C2 Lorentzian 4-manifold (›M, g̃) and an isometric

embedding ι :M→ ›M such that ι(M) is a proper subset of ›M and, moreover,

for every p ∈ ›M\M, I+(p) ∩M = ∅. (M, g) is said to be future-inextendible

with a C2 Lorentzian metric (in short, C2-future-inextendible) otherwise.

Definition 3.13 (C2-future-inextendibility of solutions to (1.1)). We say

that a solution (M, g, φ, F ) to (1.1) is C2-future-inextendible if the underlying

Lorentzian manifold (M, g) is C2-future-inextendible (as in Definition 3.12).

The following is the strong cosmic censorship theorem for ω0-admissible

initial data, with ω0 ≥ 3.

Theorem 3.14 (Strong cosmic censorship in spherical symmetry for

two-ended asymptotically flat data). Let ω0 ≥ 3, and let G be the subset of

AID(ω0) (cf. Definition 3.1) consisting of elements whose maximal globally

hyperbolic future developments satisfy L(ω0)∞ 6= 0 and L′(ω0)∞ 6= 0 (cf. Defini-

tion 3.9). Such a set G obeys the following properties :

(1) (C2-future-inextendibility of solutions arising from the generic set). The

maximal globally hyperbolic future development of any element in G is

C2-future-inextendible (cf. Definition 3.12).

(2) (Openness of the generic set with respect to d1,2+). If Θ ∈ G, then for every

ω > 2, there exists ε > 0 such that all Θ ∈ AID(ω0) with d1,ω(Θ,Θ) +

|L(ω0)0[Θ]− L(ω0)0[Θ]|+ |L′(ω0)0[Θ]− L′(ω0)0[Θ]| < ε are in G.

(3) (Density of the generic set). Let Θ ∈ AID(ω0) \ G. Then there exists a

one-parameter family (Θε)ε∈(−ε∗,ε∗) ⊆ AID(ω0) of admissible initial data

sets (for some ε∗ = ε∗(Θ) > 0) such that
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• Θ0 = Θ;

• Θε ∈ G for all ε ∈ (−ε∗, ε∗) \ {0};
• if Θ ∈ Ckω0

for k ∈ N, k ≥ 2, then ε 7→ Θε is continuous with respect

to dk,ω for all ω > 2;

• L(ω0)0[Θε] = L(ω0)0[Θ] and L′(ω0)0[Θε] = L′(ω0)0[Θ] for all ε ∈ (−ε∗, ε∗).
In particular, G∩

Ä
∩k≥2C

k
ω

ä
is dense in AID(ω0)∩C`ω0

with respect to d`,ω
for any ` ≥ 2 and ω > 2.

Remark 3.15 (Topologies for the initial data). As a quick consequence of

Theorem 3.14, observe that G is open and dense with respect to d2,ω0 , with

respect to which AID(ω0) is an open subset of a complete metric space. (We

omit the obvious proof.) Theorem 3.14, however, is much stronger in that it

allows for different topologies for the openness and density statements.

Remark 3.16 (ω-weights in the density statement). Notice that the density

statement holds for an arbitrary ω > 2. In particular, Θ is not required to be

in Ckω. In such a case, the perturbations Θε can nonetheless still be constructed

so that dk,ω(Θ,Θε)→ 0 as ε→ 0.

Remark 3.17 (Density of the generic set in C∞ω0
). Theorem 3.14 in fact

implies that G (when restricted to appropriately weighted C∞ data sets) is

dense with respect to a weighted C∞ topology defined as follows. Let ω0 ≥ 3,

and define C∞ω0
as the following space:

C∞ω0
:= ∩k≥2C

k
ω0
,

where Ckω0
is as in Definition 3.7. For every ω > 2, define a distance on C∞ω0

by

(3.8) dω(Θ,Θ) =
∞∑
k=1

2−k
dk,ω(Θ,Θ)

1 + dk,ω(Θ,Θ)
.

In particular, when ω = ω0, the distance dω0 (which is obviously complete)

makes C∞ω0
a Fréchet space. It follows from Theorem 3.14 that in fact for every

ω > 2, G ∩C∞ω is dense in AID(ω0)∩C∞ω0
with respect to the distance defined

by (3.8).

3.5. Strong cosmic censorship in the case 2 < ω0 < 3. Our strategy also

gives a strong cosmic censorship theorem for ω0-admissible initial data with

2 < ω0 < 3. In this case, however, the nature of the density statement is

qualitatively different, since the backscattering effect (captured by L) is too

weak to modify the leading order tail of ∂v(rφ) near the future endpoint of I+

(captured by L(ω0)∞).

Theorem 3.18 (Strong cosmic censorship in the case 2 < ω0 < 3). Let

ω0 ∈ (2, 3). Let G be the subset of AID(ω0) (cf. Definition 3.1) consisting of
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elements whose maximal globally hyperbolic future developments satisfy L(ω0)∞
6= 0 and L′(ω0)∞ 6= 0 (cf. Definition 3.9). Such a set G obeys the same properties

as (1) and (2) in Theorem 3.14, but instead of (3), it satisfies the following :

(3′) Let Θ∈AID(ω0)\G.Then there exists a one-parameter family (Θε)ε∈(−ε∗,ε∗)
⊆ AID(ω0) of admissible initial data sets (for some ε∗ = ε∗(Θ) > 0) such

that
• Θ0 = Θ;

• Θε ∈ G for all ε ∈ (−ε∗, ε∗) \ {0};
• if Θ∈Ckω0

for k∈N, k≥2, ε 7→Θε is continuous with respect to dk,ω0 .

In particular, G ∩
Ä
∩k≥2C

k
ω

ä
is dense in AID(ω0) ∩ C`ω0

with respect to

d`,ω0 for any ` ≥ 2.

Remark 3.19 (L(ω0)∞ depends only on the initial data for ω0 ∈ (2, 3)). The

proof of Theorem 3.18 is much simpler than its counterpart (Theorem 3.14)

when ω0 ≥ 3. In fact, the philosophies of the proofs for Theorems 3.18 and 3.14

are rather different. For Theorem 3.18, since when ω0 ∈ (2, 3), L(ω0)∞ = L(ω0)0

and L′(ω0)∞ = L′(ω0)0 depend only on the initial data, it suffices to perturb the

incoming part of the data with a (precise) polynomial tail to modify L(ω0)0

and L′(ω0)0. In contrast, in the proof of Theorem 6.3 in [37], we add a (smooth)

compactly supported perturbation to the outgoing part of the data to perturb

the dynamically defined quantity L, rather than L(ω0)0 on Σ0. On a technical

level, in the case ω0 ∈ (2, 3), we can completely bypass Theorem 6.2, which is

in some sense the most technically involved step of the proof.

Remark 3.20 (Topology of the initial data). We note explicitly that the

difference between the statements (3) in Theorem 3.14 and (3′) in Theorem 3.18

is that in (3′), the perturbations are only close to Θ with respect to dk,ω0 ,

instead of with respect to dk,ω for arbitrary ω > 0. This is because in the case

ω0 ∈ (2, 3), we are forced to add in a polynomial tail to make L(ω0)0 and L′(ω0)0

non-zero. Any perturbation with a faster decay rate as r → ∞ cannot alter

L(ω0)∞ and L′(ω0)0, which restricts the topology in (3′) to dk,ω0 .

3.6. Specializing to a (small) neighborhood of Reissner–Nordström. Since

there exist Cauchy hypersurfaces in subextremal Reissner–Nordström space-

times with non-vanishing charge for which the induced data are future-ad-

missible (cf. Example 3.4) and the admissibility condition is a stable prop-

erty (cf. Remark 3.3), it follows a fortiori from Theorem 3.14 that there exist

arbitrarily small perturbations of Reissner–Nordström data such that the max-

imal globally hyperbolic future developments are C2-future-inextendible.

In fact, more can be said in the case of solutions arising from small per-

turbations of Reissner–Nordström data. First, a result of Dafermos [15] shows

that the interior of the black hole (and similarly the white hole) has a global
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bifurcate Cauchy horizon and the boundary does not contain any spacelike por-

tion. (In the language of Theorem 4.1 in Section 4 below, this means S = ∅.)
Second, though perhaps not so physically relevant, one can use the main the-

orem together with Cauchy stability to obtain the following result on the in-

stability of Reissner–Nordström, which is global to the future and to the past:

Corollary 3.21 (Instability of Reissner–Nordström). Given (M, e) with

0 < |e| < M , there exists a sequence (Θi)i∈N of smooth perturbations of

Reissner–Nordström data with parameters M and e such that
• Θi ∈ AID(ω) ∩ C∞ω for all ω > 2, for all i ∈ N (cf. Definition 3.1 and

Remark 3.17).

• The initial data for φ and φ̇ for Θi are compactly supported for all i ∈ N.

Moreover, “the support is uniformly bounded for all i” in the sense that

sup
i∈N

sup
supp(φ)∪ supp(φ̇)

r <∞.

• As i → ∞, Θi → ΘRN,M,e with respect to the distance dω for any ω > 2

(cf. Definition 3.7 and (3.8)).

• (Dafermos [15]). For each i ∈ N, the maximal globally hyperbolic future-

and-past development arising from Θi has the identical Penrose diagram as

a subextremal Reissner–Nordström spacetime, as depicted in Figure 4. In

particular, it has global bifurcate Cauchy horizons both to the future and to

the past.

• For every i ∈ N, the maximal globally hyperbolic future-and-past develop-

ment are C2-future-and-past-inextendible.

4. Maximal globally hyperbolic future development

of admissible Cauchy data

We now begin discussing the ingredients of the proof of Theorem 3.14 (and

Theorem 3.18 and Corollary 3.21). In the next few sections, we will build up

to the proof in Section 7. In this section, we collect some known results regard-

ing the maximal globally hyperbolic future development of admissible Cauchy

data. This corresponds to Steps 1 and 2(a) in the discussion in Section 1.1 in

the introduction.

We begin with a preliminary characterization of the future boundary of

the maximal globally hyperbolic future development of an admissible data set

can be obtained35 from the work of Kommemi [33].

Theorem 4.1. Let (M, g, φ, F ) be the maximal globally hyperbolic future

development of an admissible Cauchy initial data set (with arbitrary ω0 > 2 —

35The original theorem of Kommemi applies in the case with one asymptotically flat end.

The ideas, however, can be applied in our setting; see discussions in [15].
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cf. Definition 3.1), and denote by (Q =M/SO(3), gQ) the quotient Lorentzian

manifold. Then the following statements hold :

(1) (Q, gQ) can be conformally embedded36 into a bounded subset of R1+1.

(2) Let Q+ be the closure of Q with respect to the topology induced by the

conformal embedding described in part (1). Then the boundary37 of Q in

Q+ has the following components :

(a) the initial hypersurface Σ0;

(b) spatial infinities i01 and i02 that are the end-points of Σ0 in Q+, with the

convention that i01 is the end-point with ρ→∞ and i02 is the end-point

with ρ→ −∞;

(c) two connected components of null infinity, denoted by I+
1 and I+

2 re-

spectively, each of which is an open null segment,38 defined as the part

of the boundary such that the r diverges to ∞ along a transversal null

curve towards I+
1 and I+

2 ;

(d) timelike infinities i+1 and i+2 , which are defined to be future end-points

of I+
1 and I+

2 respectively ;

(e) the Cauchy horizons39 CH+
1 and CH+

2 , which are defined to be half

open40 null segments emanating from future null infinities I+
1 and I+

2

respectively such that the area-radius function r extends continuously

to CH+
1 ∪ CH

+
2 and is strictly positive except possibly at the future

endpoints of CH+
1 or CH+

2 ;

(f) a (possibly empty) achronal set41 S , which is defined to be the subset

of the boundary on which r extends continuously to 0.

Moreover, Q+ can be given by the Penrose diagram in Figure 5.

4.1. Subextremality of the event horizons. Given the boundary character-

ization, one can define the event horizons; see Definition 4.2. We will recall a

36Note that this is equivalent to (Q, gQ) having a global system of double null coordinates;

cf. (2.2).
37We abuse notation slightly to name the image of Q under the conformal embedding also

as Q. We will similarly do this for subsets of Q, such as Σ0.
38The fact that it is open and that r does not diverge to ∞ along H+

1 and H+
2 (see

Definition 4.2 below) follows from [14].
39In the general setting of [33], CH+

1 and CH+
2 may be empty. Nevertheless, it is non-empty

in our setting thanks to Theorem 5.1.
40Both CH+

1 and CH+
2 are chosen to include their future endpoints. Therefore, in the case

where S is empty (or contains only a single point of Q), by our convention the bifurcation

sphere is part of both CH+
1 and CH+

2 .
41In [33], Kommemi further distinguishes the sets for which r extends to 0 into null

segments emanating from the endpoints of CH+
1 or CH+

2 and another piece that does not

intersect any null rays emanating from future null infinity. We do not need such distinction

here and will simply consider one achronal set S on which r extends to 0.
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I+
1

i+1

i01

H+
1

i02

i+2

H+
2

CH+
1CH+

2

S

I+
2

Σ0

Figure 5. Penrose diagram of the maximal globally hyperbolic

future development. The black hole interior is the shaded region.

The black hole exterior consists of two connected components

in white.

result of Kommemi that under the admissibility condition, the event horizons

are subextremal ; see Proposition 4.3. The most important consequence of the

subextremality statement is that the Price’s law decay of Dafermos–Rodnianski

applies. We will discuss this in the next subsection.

We now begin with the definition of the event horizons. For this, introduce

the notation u(v) and v(u) so that (u, v(u)), (u(v), v) ∈ Σ0.

Definition 4.2 (Event horizons). Given the maximal globally hyperbolic

future development of an admissible Cauchy initial data set (with arbitrary

ω > 2; cf. Definition 3.1), define the event horizon

H+
1 := {(u, v) : u = uH+

1
, v ≥ v(uH+)},

where uH+
1

:= sup{u : sup r(u′, ·) =∞ for all u′ < u} and v(uH+) is such that

(uH+ , v(uH+))∈Σ0. Abusing notation, we will also refer to the setH+
1 ×S2⊂M

as the event horizon. Notice that this is well defined by Theorem 4.1 and can

be viewed as the past-directed null curve emanating from i+1 .

We also define the event horizon H+
2 emanating from i+2 in a completely

analogous manner, namely,

H+
2 := {(u, v) : v = vH+

2
, u ≥ u(vH+

2
)},

where vH+
2

:= sup{v : sup r(·, v′) = ∞ for all v′ < v} and u(vH+
2

) is such that

(u(vH+
2

), vH+
2

) ∈ Σ0.

Importantly, the event horizons H+
1 and H+

2 are subextremal, in the sense

that sup$(uH+
1
, ·) > |e| and sup$(·, vH+

2
) > |e|. This is a result in the Ph.D.
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thesis of Kommemi [34]. We include a proof in Appendix A for the convenience

of the reader.

Proposition 4.3 (Subextremality of the event horizons, Kommemi [34]).

The following strict inequalities hold :

sup$(uH+
1
, ·) > |e|, sup$(·, vH+

2
) > |e|.

4.2. Price’s law decay theorem of Dafermos–Rodnianski. By the subex-

tremality assertion (Proposition 4.3), the Prices law decay theorem due to

Dafermos–Rodnianski is applicable. For our purposes in this paper, it suffices

to only state a subset of the estimates that are proven in [18].

Theorem 4.4 (Price’s law decay, Dafermos–Rodnianski [18]). Consider

the maximal globally hyperbolic future development (M, g, φ, F ) of an admis-

sible Cauchy initial data set with some ω0 > 2 (cf. Definition 3.1). Let (u, v)

be a coordinate system defined in connected component of the exterior region

bounded in the future by H+
1 and I+

1 such that v = ∞ at42 I+
1 and u = ∞ at

H+
1 with the normalizations

(4.1) lim
v→∞

(−∂ur)
1− µ

(u, v) = 1, C−1
0 ≤ lim

u→∞
∂vr

1− µ
(u, v) ≤ C0

for some constants C0. Then, for every η > 0, there exists some B > 0

depending on C0, η, as well as the solution, such that the following (future)

decay estimates hold along the event horizon H+
1 :

|φ|(∞, v) + |∂vφ|(∞, v) ≤ Bv−min{ω,3}+η for v ≥ 1,

and the following (future) decay estimates hold along future null infinity I+
1 :

r|φ|(u,∞) ≤ Bu−min{ω,3}+1 for u ≥ 1.

An analogous statement obviously holds in the exterior region bounded in

the future by H+
2 and I+

2 with obvious modifications.

Remark 4.5 (Completeness of null infinity and event horizon). It is implicit

in Theorem 4.4 that both I+
1 and H+

1 are complete.43 This follows from the

existence of double null coordinates u, v that satisfy the normalization (4.1)

and have infinite range, as required by Theorem 4.4.

42This statement and the statement H+
1 = {(u, v) : u =∞} are to be understood in terms

of the conformal embedding of Q given in Theorem 4.1; i.e., for every fixed u and a sequence

vi → ∞, (u, vi) corresponds to a sequence of points converging to I+
1 with respect to the

topology induced by the conformal embedding.
43See [14] for a definition of the completeness of null infinity
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Remark 4.6 (Applicability of Theorem 4.4 in our setting). At this point, it

may not be entirely obvious that the results in [18], which are originally stated

for a characteristic initial value problem, are applicable in our setting where

we start with a Cauchy initial data set. However, using asymptotic flatness,

one can indeed reduce the problem to the characteristic initial value problem

considered in [18]. Moreover, the existence of a double null coordinate system

(u, v) satisfying the conditions of Theorem 4.4 (and hence completeness of I+
1

and H+
1 by Remark 4.5) can be proven. Detailed proofs of these statements

can be found in [37, §5].

5. Main theorems for the interior region proven in this paper

In this section, we state the main theorems for the interior region. These

are the precise versions of the results corresponding to Steps 2(b), 3(b), 3(c)

and 5 in Section 1.1. These results will be proven in Sections 8, 9, 10 and 11

respectively. We also refer the reader to the beginning of each of those sections

for brief discussions of the ideas of the proofs.

5.1. Geometry of Reissner–Nordström interior. In this subsection, we

briefly digress to discuss the geometry of the interior of Reissner–Nordström.

This will provide the language and notation for some of the statements in the

remainder of the paper.

Let e and M be real numbers such that 0 < |e| < M . The interior of

the Reissner–Nordström black hole is the manifold R2 × S2 together with the

metric (1.2):

g = −
Ç

1− 2M

r
+

e2

r2

å
dt2 +

Ç
1− 2M

r
+

e2

r2

å−1

dr2 + r2dσS2 ,

where r ranges over (r−, r+) with r± := M ±
√
M2 − e2 and t ranges over

(−∞,∞). We will attach the event horizon H+
total = H+

1 ∪ H
+
2 and Cauchy

horizon CH+
total = CH+

1 ∪ CH
+
2 as boundaries of the interior of the Reissner–

Nordström black hole such that (R2× S2)∪H+
total ∪ CH

+
total is a manifold with

corners. (See Section 5.1.2 and the shaded region in Figure 1.)

In Section 5.1.1, we will introduce a set of null coordinates (u, v) and put

the metric in the form (2.1), (2.2) as discussed in Section 2. We then introduce

the notions of the event horizon and the Cauchy horizon in Section 5.1.2. In

Sections 5.1.3 and 5.1.4, we will introduce two more systems of null coordinates,

namely, the (U, v) and (u, V ) coordinate system, which are regular at the

event horizon and Cauchy horizon respectively. In this paper (especially in the

proof of Theorem 5.1), we will use all of these coordinate systems to compare

the metric of the spacetime solution in question with that of the Reissner–

Nordström spacetime.
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5.1.1. The (u, v) coordinate system. We first define the r∗ coordinate in

the interior of the Reissner–Nordström black hole:

r∗ = r +

Ç
M +

2M2 − e2

2
√
M2 − e2

å
log(r+ − r) +

Ç
M − 2M2 − e2

2
√
M2 − e2

å
log(r − r−).

Then define the null coordinates

v =
1

2
(r∗ + t), u =

1

2
(r∗ − t),

which implies
∂

∂v
=

∂

∂r∗
+
∂

∂t
,

∂

∂u
=

∂

∂r∗
− ∂

∂t
.

According to (1.2), in this coordinate system, the Reissner–Nordström metric

takes the form

gRN = −Ω2
RN

2
(du⊗ dv + dv ⊗ du) + r2

RNdσS2 ,

where Ω2
RN = −4

Ä
1 − 2M

rRN
+ e2

r2
RN

ä
. Here and below, we use the notation

rRN (u, v) to denote the Reissner–Nordström area radius function r in the (u, v)

coordinates that we just defined. The following holds:

(5.1) ∂vrRN = ∂urRN = 1− 2M

rRN
+

e2

r2
RN

.

Define κ+ > 0 and κ− > 0 to be44

κ+ =
r+ − r−

2r2
+

, κ− =
r+ − r−

2r2
−

.

The coordinate r∗ can then be alternatively written as

r∗ = rRN +
1

2κ+
log(r+ − rRN )− 1

2κ−
log(rRN − r−).

We compute that when rRN is close to r+, we have

r+ − rRN = e−2κ+r+(r+ − r−)
κ+
κ− e2κ+r∗(1 +O(r+ − rRN )).

In other words, as rRN → r+,

1

4
Ω2
RN = −∂urRN = −∂vrRN

=
e−2κ+r+(r+ − r−)

1+
κ+
κ−

r2
+

e2κ+r∗(1 +O(r+ − rRN )).

(5.2)

On the other hand, when rRN is close to r−, we have

rRN − r− = e2κ−r−(r+ − r−)
κ−
κ+ e−2κ−r∗(1 +O(rRN − r−)).

44Note that this is different from the definition in [36] in which κ− is taken to be negative.
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As a consequence, as rRN → r−,

1

4
Ω2
RN = −∂urRN

= −∂vrRN =
e−2κ−r−(r+ − r−)

1+
κ−
κ+

r2
−

e−2κ−r∗(1 +O(rRN − r−)).

(5.3)

Moreover, for every r1, r2 such that r− < r1 < r2 < r+, there exists Cr1,r2,M,e

depending on r1, r2, M and e such that whenever rRN (u, v) ∈ [r1, r2], the

following holds:

1

4
Ω2
RN (u, v) = −∂urRN (u, v) = −∂vrRN (u, v) ≤ Cr1,r2,M,e.

5.1.2. The event horizon and the Cauchy horizon. In this subsection, we

introduce the event horizon and the Cauchy horizon. For this purpose, we will

need to introduce a few additional sets of null coordinates. Define the functions

UH+(u), UCH+(u), VH+(v) and VCH+(v) that are smooth and strictly increas-

ing functions of their arguments and satisfy the following ordinary differential

equations:

(5.4)
dUH+

du
= e2κ+u and UH+(u)→ 0 as u→ −∞,

(5.5)
dUCH+

du
= e−2κ−u and UCH+(u)→ 1 as u→ +∞,

(5.6)
dVH+

dv
= e2κ+v and VH+(v)→ 0 as v → −∞,

(5.7)
dVCH+

dv
= e−2κ−v and VCH+(v)→ 1 as v → +∞.

In the (UH+ , VH+) coordinate system, we attach the boundaries H+
1 :=

{UH+ = 0} and H+
2 := {VH+ = 0}. Denote also the event horizon as H+

total =

H+
1 ∪ H

+
2 . In the (UCH+ , VCH+) coordinate system, we attach the boundaries

CH+
1 := {VCH+ = 1} and CH+

2 := {UCH+ = 1}. Denote also the Cauchy

horizon as CH+
total = CH+

1 ∪CH
+
2 . Notice that in our convention, the bifurcation

sphere of H+
total, which is given by {(UH+ , VH+) : UH+ = VH+ = 0} belongs

to both H+
1 and H+

2 . (In fact, it is precisely H+
1 ∩ H

+
2 .). Our convention

is similar for the the bifurcation sphere of CH+
total. Notice that the metric

extends smoothly to the boundaries. We refer the reader to the shaded region

of Figure 1 for a depiction of these boundaries.
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5.1.3. The (U, v) coordinate system. Here and in Section 5.1.4, we will

compute the metric in two more systems of null coordinates. In particular,

these coordinate systems will be regular near H+
1 and CH+

1 respectively. In

view of the fact that Theorems 5.1 and 5.4 are stated and proved in the neigh-

borhood of one component of the event horizon and one component of the

Cauchy horizon, without loss of generality, we will consider a neighborhood of

H+
1 and CH+

1 . In particular, it will be convenient to introduce the convention

that H+ and CH+ (without subscripts) refer to H+
1 and CH+

1 respectively and

that U = UH+ and V = VCH+ . We will often abuse terminology to also call

H+ and CH+ the event horizon and the Cauchy horizon respectively.

Using the above convention, U = UH+ is given by (5.4), i.e.,

(5.8)
dU

du
= e2κ+u and U(u)→ 0 as u→ −∞.

To distinguish the metric in this coordinate system to that in the (u, v) coor-

dinate, we use an extra index H. The metric in the coordinate system (U, v)

takes the form

gRN,H = −
Ω2
RN,H
2

(dU ⊗ dv + dv ⊗ dU) + r2
RNdσS2 ,

where

Ω2
RN,H = − 4

2κ+

Ç
1− 2M

rRN
+

e2

r2
RN

å
U−1.

Notice that for every fixed v, limU→0 Ω2
RN,H(U, v) is non-zero, i.e., (U, v) is a

regular coordinate system near the event horizon. In fact, we have

lim
U→0

Ω2
RN,H(U, v) =

4e−2κ+r+(r+ − r−)
1+

κ+
κ−

r2
+

e2κ+v.

Moreover, for every r0 ∈ (r−, r+), we have the following estimates if rRN (U, v)

∈ [r0, r+]:

(5.9) Ω2
RN,H + |∂UrRN | ≤ Cr0,M,ee

2κ+v, |∂vrRN | ≤ Cr0,M,eUe
2κ+v,

where Cr0,M,e > 0 is a constant depending only on r0 and the parameters of

the Reissner–Nordström spacetime M and e.

5.1.4. The (u, V ) coordinate system. Finally, we introduce the coordinate

system (u, V ) by defining V = VCH+ as in (5.7), i.e.,

(5.10)
dV

dv
= e−2κ−v and V (v)→ 1 as v →∞.

We use the index CH to denote the metric in this coordinate system; i.e.

gRN,CH = −
Ω2
RN,CH

2
(du⊗ dV + dV ⊗ du) + r2

RNdσS2 ,
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where

Ω2
RN,CH = − 4

2κ−

Ç
1− 2M

rRN
+

e2

r2
RN

å
(1− V )−1.

In this coordinate system, the CH+ is given by {V = 1}. Notice that in

Reissner–Nordström, (u, V ) is a smooth coordinate system up to the Cauchy

horizon.

In the proofs of Theorems 5.1 and 5.5, we will also show that the metric

extends continuously to {V = 1} in the (u, V ) coordinate system. On the other

hand, we will of course not show that the metric extends smoothly as in the

Reissner–Nordström case — indeed, in view of Theorems 5.4 and 5.7, this is

false for a large class of initial data.

5.2. Stability and instability of the Cauchy horizon. We first state the

stability theorem (cf. Step 2(b) in Section 1.1), which, except for the precise

quantitative rates, was first proven by Dafermos in [13]. The theorem is for-

mulated below in a gauge that is most convenient for deriving estimates in this

paper. We will then compare this with an “equivalent gauge”45 in Remark 5.2,

which is more convenient for applying Theorem 4.4.

To give the statement of the theorem, we will use three coordinate sys-

tems: (u, v), (U, v) and (u, V ). They should be thought of as analogues of

the corresponding coordinate systems on the Reissner–Nordström spacetime

introduced in Sections 5.1.1, 5.1.3 and 5.1.4 respectively.

We will choose our coordinates as follows. First, we pick the coordinate

system (U, v), where U and v are normalized by the gauge conditions (5.11)

and (5.13) below. We then define u(U) and V (v), which relate to U and v

according to (5.8) and (5.10) respectively.

Theorem 5.1. Fix M , e and s such that 0 < |e| < M and s > 1.

Consider the characteristic initial value problem (cf. Proposition 2.5) with e 6=
0 and data given on C−∞ and C1 satisfying the constraint equations (2.4) such

that the following hold for some E > 0:

(1) C−∞ := {(U, v) : U = 0, v ≥ 1} (which will be viewed as the event hori-

zon H+) is an affine complete null hypersurface approaching a subextremal

Reissner–Nordström event horizon with 0 < |e| < M . More precisely, in

45Here, we say that two null coordinates v and v′ are equivalent if c−1
0 < dv

dv′ (v
′) < c0 for

some c0 > 0.
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the gauge46

(5.11) Ω2
H =

4e−2κ+r+(r+ − r−)
1+

κ+
κ−

r2
+

e2κ+v,

we have

(a) r →M +
√
M2 − e2 as v →∞;

(b) the following decay rate holds for all v ≥ 1 for the scalar field and its

derivative:

(5.12) |φ|(0, v) + |∂vφ|(0, v) ≤ Ev−s;

(2) On C1 := {(U, v) : v = 1, U ≤ U0} (where U0 > 0), after normalizing U

by

(5.13) ∂Ur = −1,

the following holds for all U ≤ U0:

(5.14) |∂Uφ|(U, 1) ≤ E.

Then, by restricting to some nonempty, connected subset C ′1 := {(U, v) : v = 1,

U ≤ Us} ⊂ C1 for some Us > 0 sufficiently small, the globally hyperbolic future

development of the data on C ′1∪C−∞ has a Penrose diagram given by Figure 3

(Section 1.2.2). Moreover, in the (u, V ) coordinate system,47 we can attach the

null boundary CH+ := {V = 1} to the spacetime such that the metric extends

continuously to CH+.

In addition, for us = u(Us), the following estimates hold in the (u, v)

coordinate system for u < us and for some constant C > 0 depending on M ,

e, E and s:

|φ|(u, v) + |r − rRN |(u, v) + | log Ω− log ΩRN |(u, v) ≤ C(v−s + |u|−s+1),

|∂vφ|(u, v) + |∂v(r − rRN )|(u, v) + |∂v(log Ω− log ΩRN )|(u, v) ≤ Cv−s.
Furthermore, for every A ∈ R, there exists C > 0 depending on A, M , e, E,

U0 and s such that the following estimates hold in the (u, v) coordinate system

for u < us:

|∂uφ|(u, v) + |∂u(r − rRN )|(u, v) + |∂u(log Ω− log ΩRN )|(u, v)

≤

CΩ2
RNv

−s for u+ v ≤ A,
C|u|−s for u+ v ≥ A.

46Here, r± and κ± are defined with respect to the fixed parameters M and e.

To see that one can indeed choose such a gauge, see Remark 5.2 and Appendix B.
47We remind the reader again that once the (U, v) coordinate system is defined, the (u, v)

and (u, V ) coordinate systems are given by the conditions (5.8) and (5.10).
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Remark 5.2 (Alternative formulation of the gauge condition). While the

gauge condition on the event horizon as in Theorem 5.1 is suitable for proving

estimates, it is less convenient to apply the theorem with this gauge condition.

For that purpose, we note that one can alternatively consider the gauge condi-

tion ∂vr
1−µ = 1 on the set C−∞ (with the conditions on C1 remain unchanged).

This will be discussed in detail in Proposition B.1 in Appendix B.

Remark 5.3 (Assumptions in Theorem 5.1 always hold in the global set-

ting). In fact, the assumptions in Theorem 5.1 always hold for C−∞ = H+
1

(or for H+
2 , with appropriate changes of u and v) with some s > 2, and an

arbitrary choice of a transversal initial null curve C1. We check this for H+
1 ,

as H+
2 is similar.

We first normalize U by the gauge condition (5.13) on C1 (which will later

coincide with {(U, v) : v = 1, U ≤ U0}). Note that this is possible because the

future-admissibility condition in Definition 3.1 guarantees that for any point

on H+
1 , r is decreasing towards the increasing u direction; see Lemma A.1 in

Appendix A.

Next, instead of (1), it suffices to verify the conditions in Proposition B.1.

Note that

(1) H+
1 is affine complete in view of Remark 4.5.

(2) r and $ have limits as in (b) and (c) in Remark 5.2 thanks to (A.4) and

(A.5) in Appendix A. Moreover, ∂vr ≥ 0 on H+
1 (see Lemma A.1) and

infH+
1
r > 0 since r is initially positive.

(3) By Theorem 4.4, (5.12) holds in the gauge ∂vr
1−µ = 1 .

Moreover, by the C1 regularity of the initial data, (5.14) follows from standard

local existence after a suitable translate of v.

Thus, as pointed out in celebrated work of Dafermos–Rodnianski [18],

one has unconditionally that the boundary of the maximal globally hyperbolic

development has non-empty CH+
1 and CH+

2 .

Next, we state our instability theorem (cf. Step 3(b) in Section 1.1):

Theorem 5.4. Assume that the assumptions of Theorem 5.1 hold with

s > 2. If, moreover, there exists a non-integer48 α′ with α0 := dα′e ∈ [3, 4s−2)

such that on C−∞

(5.15)

∫ ∞
1

vα
′
(∂vφ �C−∞)2(v) dv =∞,

48This is simply to guarantee that α0 > α′.

Notice that α′ cannot be too small, as it would be inconsistent with the assumptions in

Theorem 5.1.
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then, after taking us more negative if necessary, the following holds for all

u < us:

(5.16)

∫ ∞
−us

logα0
+

Å
1

Ω

ã
(∂vφ)2(u, v)dv =∞,

where log+ x =

®
log x if x ≥ e,
1 otherwise.

Moreover, there exists uλ < us such that

for every u < uλ, the following blow up holds :

(5.17) lim
v→∞

λ

Ω2
(u, v) = −∞.

In particular, (5.16) implies that the scalar field is not in W 1,2
loc in the C0

extension constructed in Theorem 5.1 and (5.17) implies that the metric is not

in C1 in the C0 extension constructed in Theorem 5.1.

Theorems 5.1 and 5.4 give a fairly complete picture of nonlinear stability

and instability properties of the Cauchy horizon in a region that is perturbative

in the sense that it is C0 close to a Reissner–Nordström spacetime. Our next

result combines these results with Theorem 4.1 to extend this picture to a

suitable global non-perturbative setting (cf. Step 3(c) in Section 1.1). For

simplicity, we formulate the theorem only for CH+
1 ; an entirely symmetric

statement holds for CH+
2 .

Theorem 5.5. Let (M, g, φ, F ) be the maximal globally hyperbolic future

development of an admissible Cauchy initial data set (with arbitrary ω0 > 2;

cf. Definition 3.1). In a neighborhood of H+
1 in the interior of the black

hole, consider the null coordinates (u, V ) characterized by (5.11), (5.6) on H+
1

for V , and (5.13), (5.4) for u. Denote by pCH+
1

= (uCH+
1
, 1) ∈ Q+ the future

endpoint49 of CH+
1 . Then the metric components Ω2(u, V ) and r(u, V ), as well

as the scalar field φ(u, V ), extend continuously to

CH+
1 \ {pCH+

1
} = {(u, V ) : −∞ < u < uCH+

1
, V = 1}.

Moreover, if the lower bound (5.15) holds on H+
1 , then for every u ∈

(−∞, uCH+
1

), the following blow up of ∂V φ and ∂V r hold :∫ 1

0

(∂V φ)2

Ω2
(u, V )dV =∞,(5.18)

lim
V→1

∂V r

Ω2
(u, V ) = −∞.(5.19)

49The existence of such a uCH+
1
∈ (−∞,∞] is a straightforward consequence of the coor-

dinate choice; see Lemma 10.1.
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In particular, the scalar field is not in W 1,2
loc and the metric is not in C1 in the

above C0 extension obtained by adjoining {(u, V ) : −∞ < u < uCH+
1
, V = 1}.

Remark 5.6. According to Theorem 4.1, if S = ∅, then CH+
1 ∩ CH

+
2 con-

sists of a bifurcation sphere with positive area radius. In this case, the metric

components and the scalar field extend continuously in the (UCH+
2
, VCH+

1
) co-

ordinates to the bifurcate sphere (UCH+
2
, VCH+

1
) = (1, 1), where VCH+

1
coincides

with V in Theorem 5.5 and UCH+
2

is defined analogously to V but with respect

to H+
2 ; i.e., v in (5.11) is replaced by u, and (5.7) is replaced by (5.5). We

refer to Remark 10.6 for a proof.

5.3. C2-future-inextendibility. The inextendibility statement for the inte-

rior region in Theorem 5.5 depends on the particular C0 extension in the (u, V )

coordinates. Our final result asserts a geometric formulation of inextendibil-

ity of the whole maximal globally hyperbolic future development, namely,

C2-future-inextendibility , which is independent of such a choice (cf. Step 5

in Section 1.1). Notice that since by Remark 5.3, the assumptions in Theo-

rem 5.1 always hold with s > 2 when considering the maximal globally hyper-

bolic future development, we do not need to state those assumptions explicitly

in Theorem 5.7.

Theorem 5.7. Let (M, g, φ, F ) be the maximal globally hyperbolic future

development of an admissible Cauchy initial data set (with arbitrary ω0 > 2, cf.

Definition 3.1). Assume furthermore that the lower bound (5.15) holds on H+
1 ,

as well as on H+
2 (with v replaced by u). Then (M, g) is future-inextendible

with a C2 Lorentzian metric.

6. Main theorems for the exterior region proven in [37]

We now discuss the main results for the exterior region, which correspond

to Steps 3(a) and 4 in Section 1.1. All of the results in this section are proven

in our companion paper [37].

In all the results in this section, the quantities L(ω0)0, L and L(ω0)∞ play

an important role. All statements in this section concerning L(ω0)0, L and

L(ω0)∞ on one asymptotically flat end apply equally well to L′(ω0)0, L′ and

L′(ω0)∞ (respectively) on the other asymptotically flat end. We focus on the

first asymptotically flat end (i.e., towards which v and −u increase) for the

sake of concreteness.

Our first main theorem states that nonvanishing of L(ω0)∞ implies some

integrated lower bound for the incoming radiation ∂vφ along H+.

Theorem 6.1. For ω0 > 2, let Θ = (r, f, h, `, φ, φ̇, e) be an ω0-admissible

data set, and let (M, g, φ, F ) be the corresponding maximal globally hyperbolic
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future development. Suppose that

L(ω0)∞ 6= 0.

Then for an advanced null coordinate v such that

C−1 < inf
H+

∂vr

1− µ
≤ sup
H+

∂vr

1− µ
< C

for some C > 0, we have ∫
H+

vα(∂vφ)2 dv =∞

for every α > min{2ω0 + 1, 7}.

Our next theorem asserts stability of the quantity L, which is the dy-

namically defined part of L(ω0)∞ in the case ω0 ≥ 3. (Observe that L(ω0)0 is

determined by the initial data.)

Theorem 6.2. Fix ω0 > 2. Let

Θ = (r, f, h, `, φ, φ̇, e) and Θ = (r, f , h, `, φ, φ̇, e)

be ω0-admissible data sets (cf. Definition 3.1) such that d+
1,ω0

(Θ,Θ) < ε, where

d+
1,ω0

(Θ,Θ) := ‖〈ρ+〉 log(f/f)(ρ)‖C0

+ ‖〈ρ+〉2∂ρ log(f/f)(ρ)‖C0 + ‖〈ρ+〉2(h− h)(ρ)‖C0

+ ‖ log−1(1 + 〈ρ+〉)(r − r)(ρ)‖C0 + ‖〈ρ+〉∂ρ(r − r)(ρ)‖C0

+ ‖(f`− f`)(ρ)‖C0

+ ‖〈ρ+〉ω0(φ− φ)(ρ)‖C0 + ‖〈ρ+〉ω0+1∂ρ(φ− φ)(ρ)‖C0

+ ‖〈ρ+〉ω0+1(fφ̇− fφ̇)(ρ)‖C0 + |e− e|.

Here, 〈ρ+〉 := (1 + ρ2
+)1/2 and ρ+ := max{0, ρ}.

Then, for L := L[Θ] and L := L[Θ], there exists a constant CΘ, which

depends only on Θ, such that ∣∣∣L− L
∣∣∣ ≤ CΘ ε.

Our final theorem concerns instability of the condition L(ω0)∞ = 0.

Theorem 6.3. For ω0 ≥ 3, let Θ = (r, f , h, `, φ, φ̇, e) be an ω0-admissible

data set. Suppose that

L(ω0)∞[Θ] = 0.

Then for some ε∗=ε∗(Θ) > 0, there exists a one-parameter family (Θε)ε∈(−ε∗,ε∗)
of ω0-admissible initial data sets such that

• Θ0 = Θ;

• L(ω0),∞[Θε] 6= 0 for all ε ∈ (−ε∗, ε∗) \ {0};
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• if Θ ∈ Ckω0
for k ∈ N, k ≥ 2, then ε 7→ Θε is continuous with respect to

dk,ω for all ω > 2;

• L(ω0)0[Θε] = L(ω0)0[Θ] and L′(ω0)0[Θε] = L′(ω0)0[Θ] for all ε ∈ (−ε∗, ε∗).
In fact, there exist ρ̄2 > ρ̄1 � 1 such that

• Θε = Θ in {ρ ∈ Σ0 : ρ < ρ̄1} for all ε ∈ (−ε∗, ε∗);
• denoting Θε = (rε, fε, hε, `ε, φε, φ̇ε, eε), it holds that

φ = φε, f φ̇ = fεφ̇ε

in {ρ ∈ Σ0 : ρ > ρ̄2} for all ε ∈ (−ε∗, ε∗).

7. Proof of strong cosmic censorship

(Theorems 3.14 and 3.18 and Corollary 3.21)

Combining the results in Sections 4, 5 and 6, we now give the proof of

strong cosmic censorship. We first prove the main strong cosmic censorship

theorem, which holds for ω0 ≥ 3.

Proof of Theorem 3.14. Step 1. The inextendibility assertion (first state-

ment) follows from Theorems 5.7 and 6.1 (suitably applied to both asymptot-

ically flat ends).

Step 2. The openness assertion (second statement) follows from Theo-

rem 6.2 (where we take ω0 to be the smaller number among ω0 and ω in The-

orem 3.14(2)) applied to both asymptotically flat ends. Indeed, Theorem 6.2

implies that L and L′ are stable, while by assumption L(ω0)0 and L′(ω0)0 are

only allowed to be modified by a small perturbation, hence (recalling (3.7))

L(ω0)∞ and L′(ω0)∞ are also stable.

Step 3. The density assertion (third statement) is a mere restatement of

Theorem 6.3 applied to both asymptotically flat ends. �

Next, we turn to the case where ω0 ∈ (2, 3).

Sketch of proof of Theorem 3.18. This is much simpler than the proof of

Theorem 3.14 since for ω0 ∈ (2, 3), L(ω0)∞ and L′(ω0)∞ are not dynamical; i.e.,

L(ω0)∞ = L(ω0)0, L′(ω0)∞ = L′(ω0)0 can be computed from initial data alone.

The inextendibility assertion again follows immediately from Theorems 5.7

and 6.1. The openness assertion is obvious, in view of the fact L(ω0)∞ = L(ω0)0,

L′(ω0)∞ = L′(ω0)0. Finally, for the density assertion, say, for L(ω0)0, it suffices to

construct a one-parameter family of initial data such that the incoming part

∂u(rφ) = −∂ρ(rφ) + frφ̇ + f`φ
r (cf. Lemma 2.3) has an ερ−ω0 tail as ρ → ∞.

Such a one-parameter family of initial data (satisfying constraint) is easily seen

to exist if one follows the ideas for solving the constraint equations in the proof

of Theorem 6.3 in [37]. We omit the details. �
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Finally, we prove the instability of both the future and past smooth

Cauchy horizons of Reissner–Nordström.

Proof of Corollary 3.21. Given i ∈ N, we construct Θi as follows. By

Theorem 6.3 (and considerations in Remark 3.17), one can perturb a future-

admissible hypersurface Σ0 (i.e., one on which the induced data are future-

admissible) in Reissner–Nordström to obtain a perturbation

Θ̃i ∈ ∩ω>2(AID(ω) ∩ C∞ω )

with compactly supported scalar field such that d3(Θ̃i,ΘRN,M,e) < 2−i and

L(3)∞[Θ̃i] 6= 0 and L′(3)∞[Θ̃i] 6= 0. If the maximal globally hyperbolic future-

and-past development is C2-past-extendible, we take Θi = Θ̃i. Otherwise, one

can, by Cauchy stability, solve towards the past to obtain a past-admissible

Cauchy data set. Both the openness and density assertions in Theorem 3.14

and Cauchy stability imply the existence of a Θi ∈ ∩ω>2(AID(ω)∩C∞ω ), again

with compactly supported scalar field, such that

• on Σ0, d3(Θi, Θ̃i) < 2−i;

• L(3)∞[Θi] 6= 0 and L′(3)∞[Θi] 6= 0;

• the maximal globally hyperbolic future-and-past development arising from

Θi is C2-future-and-past-inextendible.

We now show that the sequence (Θi)i∈N satisfies the desired properties.

• Assertion 1: Θi ∈ ∩ω>2(AID(ω) ∩ C∞ω ) for all i ∈ N. This holds by

construction.

• Assertion 2: Compact support of initial scalar field. Note that the final

assertion in Theorem 6.3 (when suitably applied to both asymptotically

flat ends) implies that the support of the perturbations of φ and φ̇ is

contained in a fixed large interval [−ρ̄2, ρ̄2]. Since the scalar field vanishes

on Reissner–Nordström, the assertion follows.

• Assertion 3: Θi → ΘRN,M,e as i → ∞ with respect to the metric dω .

For ω = 3, it follows from the construction (and triangle inequality) that

d3(Θi,ΘRN,M,e) < 2−i+1 → 0. That this also holds for all ω > 3 follows

from the (uniform) compact support of the scalar field.

• Assertion 4: Existence of future-and-past bifurcate Cauchy horizons. This

is proven in [15].

• Assertion 5: Future-and-past inextendibility. This holds by construction.

�

This concludes the proof of strong cosmic censorship, assuming the results

in Sections 5 and 6. The remainder of this paper will be devoted to the proofs

of the theorems in Section 5.
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8. Stability of the Cauchy horizon: Proof of Theorem 5.1

In this section, we carry out the proof of Theorem 5.1. First, we begin

with a brief discussion on the ideas of the proof in Section 8.1. We then

introduce the quantity Ψ that we will bound in Section 8.2. In the same section,

we derive the bounds for the metric components on the initial hypersurface.

Then, in Section 8.3, we will discuss the strategy of the proof, in which we

will in particular introduce a partition of the spacetime into the red-shift and

blue-shift regions.50 We will then derive estimates for Ψ separately in the

red-shift and blue-shift regions in Sections 8.4 and 8.5 respectively. We will

then prove the C0 stability statement in Section 8.6 and conclude the proof

of Theorem 5.1. Finally, we end with Section 8.7, in which we prove some

additional estimates for ∂vr that will be used in the proof of the instability

theorem.

8.1. Ideas of the proof. Our proof is strongly inspired by the recent work [16]

on the stability of the Kerr Cauchy horizon. More precisely, it is based on the

following ideas:

(1) We view the problem as a stability problem and control only the quantities

that remain close to the background Reissner–Nordström spacetime. We

bound the difference of these quantities with their background Reissner–

Nordström value and call these differences Ψ. These quantities include the

scalar field, the metric components, as well as their appropriately weighted

derivatives.51 In particular, unlike in [13], no estimates are derived for the

Hawking mass, which according to [13] blows up for a large subclass of

initial data.

(2) In spherical symmetry, instead of working in L2 based spaces as in [16],

one can directly control Ψ and its derivatives in L∞ with weights in u and

v. The key is to prove estimates for Ψ and its derivatives that are weighted

in |u|s or vs with no loss in the polynomial power s compared to initial

data. To this end, we first observe that the background values of52 Ω, ∂ur

and ∂vr in the (u, v) coordinate system are exponential functions in u+ v.

50We comment on the nomenclature of these regions. The naming of the regions as the

red-shift and blue-shift regions originates in [12], [13]. In these works, Dafermos estimated

the gauge invariant derivatives of φ including ∂uφ
∂ur

and ∂vφ
∂vr

. These quantities tend to decay

or grow in the red-shift or blue-shift region respectively. In the present work, since we bound

coordinate derivatives of the scalar field, such growth or decay is not manifest. Nevertheless,

it should be noted that our choice of the norms is inspired in part by the red-shift/blue-shift

estimates in [12], [13].
51Notice that we control, for instance, ∂vΨ, but ∂v is in fact a degenerate derivative near

the Cauchy horizon.
52See definitions in Sections 2 and 5.1.
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One can use basic calculus facts such as Lemmas 8.4 and 8.8 to ensure

that the estimates for ∂uΨ and ∂vΨ do not lose in the polynomial weights.

For Ψ itself, we will bound a degenerate quantity e−κ−(u+v)Ψ in order to

to ensure that we have no loss in the polynomial weight.

(3) Finally, we point out the source of smallness that we can exploit in this

problem. By restricting ourselves to the future development of C ′1 ∪C−∞,

we create a smallness parameter that is sufficient to deal with all terms

that are nonlinear in Ψ. On the other hand, to deal with the linear terms,

we face the problem that we need to prove estimates in a “large” region of

spacetime and this largeness is reflected by the fact that the r difference

between two points in this region need not be small. To handle this, we

divide the spacetime into finitely many regions, each of which has small

r difference. This is a way of exploiting the linearity of these terms and

can be viewed as a naive substitute of Grönwall’s inequality in this setting

with two variables.53

8.2. Setup and bounds for the initial data. As mentioned before, we will

work with all of the following coordinate systems: (u, v), (U, v) and (u, V ).

The (U, v) coordinates are chosen on the initial hypersurfaces by the gauge

conditions (5.11) and (5.13). We then define the u and V coordinates by (5.8)

and (5.10) respectively.

For any fixed choice of null coordinate system, we write the metric in

the form given by (2.1) and (2.2). We will label the metric components54 by

(Ω2
H, r), (Ω2, r) and (Ω2

CH, r) in the (U, v), (u, v) and (u, V ) coordinate systems

respectively.

In the proof of the main theorem, we will estimate the scalar field as well

as the difference of the metric components with the corresponding Reissner–

Nordström spacetime. We find it convenient to introduce the quantity Ψ,

which we will estimate in the proof of Theorem 5.1. In the coordinate system

(U, v), define

(8.1) Ψ =

 φ

r − rRN
log ΩH

ΩRN,H

 .

Notice that here we have taken the functions rRN and ΩRN,H to be the metric

components of a Reissner–Nordström spacetime with parameters M and e

53A similar idea was exploited to derive the BV estimates for the scalar field in Section

13 of [13].
54Notice that the values of r are independent of the choice of the null coordinates.
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equal to that in Theorem 5.1. In the (u, v) coordinate system, we also define

Ψ =

 φ

r − rRN
log Ω

ΩRN


We make a similar definition in the (u, V ) coordinate system.

The functions r and φ are manifestly independent of the choice of the null

coordinates. Notice that we also have log ΩH
ΩRN,H

= log Ω
ΩRN

= log ΩCH
ΩRN,CH

. We

will therefore refer to Ψ without mentioning explicitly which coordinate system

we are considering.

To proceed, we further introduce the notation that

|Ψ|2 := |φ|2 + |r − rRN |2 +

∣∣∣∣∣log
ΩH

ΩRN,H

∣∣∣∣∣
2

.

We also define |∂vΨ|, |∂V Ψ|, |∂uΨ| and |∂UΨ| in the obvious manner.

Before we end this subsection, we prove some bounds for Ψ and its deriva-

tives on the initial hypersurfaces. This will be the starting point of the later

subsections in which we bound Ψ in the spacetime solution.

Proposition 8.1. Under the assumptions of Theorem 5.1, there exists a

constant D = D(M, e, s, E) > 0 such that on {U = 0}, we have

(8.2) |Ψ|(0, v) + |∂vΨ|(0, v) ≤ Dv−s;

and on {v = 1}, we have

(8.3) |∂UΨ|(U, 0) ≤ D.

Moreover, by choosing D = D(M, e, s, E) > 0 larger if necessary, we have the

additional estimate on {U = 0},

(8.4) |∂UΨ|(0, v) ≤ De2κ+vv−s;

and on {v = 1}, we also have

(8.5) |Ψ|(U, 1) + |∂vΨ|(U, 1) ≤ D.

Proof. On {U = 0}, we recall the gauge condition (5.11):

Ω2
H =

4e−2κ+r+(r+ − r−)
1+

κ+
κ−

r2
+

e2κ+v.

Hence, by definition, for ΩH in the (U, v) coordinate system, we have

(8.6) (log ΩH − log ΩRN,H) (0, v) = 0.

Since ∂vφ is given, r can be computed by (2.4); namely,

∂v(e
−2κ+v∂vr) = −e−2κ+vr(∂vφ)2.
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Integrating this equation from v = 1 to v =∞, we obtain

lim
v→∞

(e−2κ+v∂vr(0, v) +

∫ v

1
e−2κ+v′r(∂vφ)2(0, v′) dv′) = e−2κ+∂vr(0, 1).

We claim that

lim
v→∞

∫ v

1
e−2κ+v′r(∂vφ)2(0, v′) dv′ = e−2κ+∂vr(0, 1).

If not, since we also know that ∂vr(0, v) ≥ 0 (by Lemma A.1), it then follows

that there exists c > 0 so that for v sufficiently large, ∂vr(0, v) ≥ ce2κ+v.

This then contradicts the fact that r → M +
√
M2 − e2 as v → ∞. Now the

claim also implies that limv→∞ e
−2κ+v∂vr(0, v) = 0. Therefore, integrating the

∂v(e
−2κ+v∂vr) equation above, we obtain

|∂vr|(0, v) ≤ CM,e,se
2v−2s,

|r − rRN | = |r − (M +
√
M2 − e2)|(0, v) ≤ CM,e,se

2v−2s+1.
(8.7)

We then note that by the assumptions of Theorem 5.1, φ and ∂vφ obey the

desired estimate. This fact, together with (8.6) and (8.7), prove (8.2).

We turn to the proof of (8.3). On {v = 1}, we set the gauge by the

condition ∂Ur = −1. Combined with the bound (5.9) for ∂UrRN , (8.3) follows

for ∂U (r − rN ). Moreover, by (2.4), we have

∂U

Ç
1

Ω2
H

å
=
r(∂Uφ)2

Ω2
H

,

which implies that for U ≤ Us ≤ 1,

|∂U log ΩH|(U, 1) ≤ CM,e(∂Uφ)2(U, 1).

These observations, together with the assumption of Theorem 5.1 on ∂Uφ,

imply (8.3).

Once we have proven (8.2) and (8.3), it is easy to see that (8.4) and (8.5)

follow directly from integration and the use of the equations (2.3). �

8.3. Strategy of the proof. From this point onwards, we work under the

assumptions of Theorem 5.1. In order to prove Theorem 5.1, we will estimate

Ψ (as defined in (8.1)) and its derivatives. Since we are allowed to restrict to

the future development of a subset C ′1 of C1, we only need to prove the bounds

in 0 ≤ U ≤ Us for some Us sufficiently small (or equivalently, −∞ < u ≤ us for

some us sufficiently negative). These estimates will be proven in the following

two steps:

(1) First, we prove estimates in a neighborhood of the event horizon, {(u, v) :

v ≥ 1, u + v ≤ A1} for A1 sufficiently negative. This will be called the

red-shift region R. The choice of A1 depends on the size of the initial data

(in particular, on D in Proposition 8.1).
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(2) Second, after A1 is fixed, we further divide the remaining region. Define

Bi := {(u, v) : Ai ≤ u + v < Ai+1, u ≤ ui} for i = 1, . . . , n, where A1 <

A2 < · · · < An < An+1 :=∞, u1 > u2 > · · · > un. (All of these parameters

will be chosen in the course of the proof.) The choice of Ai depends only

on A1, the parameters of the background Reissner–Nordström spacetime

M , e, and also s. In particular, it does not depend explicitly on the size

of the data. We then show that as long as ui is sufficiently negative and

ui ≤ ui−1 (in a way that can depend on the size of the data), one can

obtain good estimates for the solution in each of these regions. Finally,

choosing us ≤ un, we conclude the proof of the main theorem.

We will call B := (∪ni=1Bi) ∩ {(u, v) : u ≤ us} the blue-shift region.

A depiction of the partition of the spacetime and the various parameters

involved is given in Figure 6.

u+ v = A1

u+ v = A2

........

u+ v = An

u = u1

u = un

H+

CH+

u = u0

Figure 6. Setup for the proof of main theorem.
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We will carry out the estimates in the two steps above in the next two

subsections. We then combine these bounds and conclude the proof of the

main theorem in Section 8.6.

8.4. The red-shift region. In this subsection, we work with the (U, v) co-

ordinate system since it is regular in the red-shift region. Define the red-shift

region as follows:

R := {(U, v) : Ue2κ+v ≤ δ, v ≥ 1, U ≥ 0},

where δ > 0 is a small constant to be chosen later. Moreover, as we will show

later, the choice of δ depends only on M , e, s and D. Notice that this definition

of R is the same as that in Section 8.3 if A1 := 1
2κ+

log(2κ+δ).

We proceed by writing down a schematic wave equation Ψ under certain

bootstrap assumptions. Assume that the following bound holds throughout R:

(8.8) |Ψ| ≤ 4D.

We also need the following bootstrap assumptions:

(8.9) | log ΩH − log ΩRN,H| ≤
1

100

and

(8.10) |∂UΨ|(u, v) ≤ ∆e2κ+vv−s,

where ∆ is a large constant to be chosen later.

Subtracting the equations for the Reissner–Nordström solution from that

for (M, g, φ, F ) and using (8.8), we obtain

(8.11)

|∂U∂vΨ| ≤ CM,e,s,D

Ä
e2κ+v(|∂vΨ|+ |Ψ|) + |U |e2κ+v|∂UΨ|+ |∂UΨ∂vΨ|

ä
,

where CM,e,s,D is a constant depending only on M , e, s and D. Notice that in

the above we have used the estimates (5.9) on Reissner–Nordström spacetime

and also the bound

(8.12)
Ω2
H − Ω2

RN,H
Ω2
RN,H

≤ C (log ΩH − log ΩRN,H) ,

which holds under the bootstrap assumption (8.9).

Our goal in the remainder of this subsection is to use equation (8.11)

to obtain estimates for Ψ, ∂vΨ and ∂uΨ. In particular, we will recover the

bootstrap assumptions (8.8), (8.9) and (8.10). We can immediately observe

that in fact we can obtain a bound for Ψ using (8.10). In particular, since v ≥ 1,

the estimate in the following proposition improves the bootstrap assumptions

(8.8) and (8.9):
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Proposition 8.2. Under the bootstrap assumptions (8.8), (8.9), (8.10),

for δ = δ(∆, D) > 0 sufficiently small, the following hold for (U, v) ∈ R:

|Ψ|(U, v) ≤ 2Dv−s

and

| log ΩH − log ΩRN,H|(U, v) ≤ 1

200
.

Proof. We apply the bound for the initial data in Proposition 8.1, the

bootstrap assumption (8.10) and the fact that Ue2κ+v ≤ δ to get

|Ψ|(U, v) ≤ |Ψ|(0, v) +

∫ U

0
|∂UΨ|(U ′, v)dU ′

≤ Dv−s +

∫ U

0
∆e2κ+vv−s dU ′ ≤ (D + ∆δ)v−s ≤ 2Dv−s,

after choosing δ to be sufficiently small. To show the second bound stated

in the proposition, notice that by (8.6), log ΩH − log ΩRN,H is vanishing for

U = 0. We can therefore repeat the argument above without the Dv−s term;

i.e., we have

| log ΩH − log ΩRN,H|(U, v) ≤
∫ U

0
∆e2κ+vv−s dU ′ ≤ ∆δv−s ≤ 1

200

for δ sufficiently small. �

Using this we get a bound for ∂vΨ:

Proposition 8.3. Under the bootstrap assumptions (8.8)–(8.10), for δ =

δ(M, e,∆, D) > 0 sufficiently small, the following estimate holds for (U, v) ∈
R:

|∂vΨ|(U, v) ≤ 2Dv−s.

Proof. Integrating (8.11) and using Proposition 8.1, the bootstrap as-

sumption (8.10) and Proposition 8.2, we obtain

|∂vΨ|(U, v) ≤ |∂vΨ|(0, v) +

∫ U

0
|∂U∂vΨ|(U ′, v)dU ′

≤ Dv−s + CM,e,s,D

∫ U

0

(
e2κ+v(|∂vΨ|+ |Ψ|)

+ |U ′|e2κ+v|∂UΨ|+ |∂UΨ||∂vΨ|
)
(U ′, v) dU ′

≤ (D + 2CM,e,s,DUe
2κ+v + CM,e,s,D∆U2e4κ+v)v−s

+ CM,e,s,D

∫ U

0

Ä
e2κ+v + |∂UΨ|(U ′, v)

ä
|∂vΨ|(U ′, v) dU ′.

Recalling that in the red-shift region Ue2κ+v ≤ δ, we can thus choose δ to

be sufficiently small such that the first term is ≤ 3D
2 v
−s. We then apply
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Grönwall’s inequality to get

|∂vΨ|(U, v) ≤ 3D

2
v−seCM,e,s,DUe

2κ+v+CM,e,s,D
∫ U

0
|∂UΨ|(U ′,v) dU ′

≤ 3D

2
v−seCM,e,s,Dδ+CM,e,s,D∆δv−s .

Choosing δ to be sufficiently small depending on M , e, D and ∆, we thus have

obtained the desired conclusion. �

Our goal is then to use the above bounds to control ∂UΨ and to improve

the bootstrap assumption (8.10). Before we proceed to the estimates for ∂UΨ,

we first prove a simple lemma:

Lemma 8.4. For every real numbers s ≥ 0 and v ≥ 1, we have∫ v

1
e2κ+v′(v′)−s dv′ ≤ Cκ+,se

2κ+vv−s

for some Cκ+,s > 0 depending only on κ+ and s.

Proof. Integrating by parts twice, we obtain∫ v

1
e2κ+v′(v′)−s dv′ ≤ 1

2κ+
e2κ+vv−s +

s

2κ+

∫ v

1
e2κ+v′(v′)−s−1 dv′

≤ 1

2κ+
e2κ+vv−s +

s

4κ2
+

e2κ+vv−s−1

+
s(s+ 1)

4κ2
+

∫ v

1
e2κ+v′(v′)−s−2 dv′.

The last term can be bounded by

≤ s(s+ 1)

4κ2
+

e2κ+vv−s
∫ v

1
(v′)−2 dv′ ≤ s(s+ 1)

4κ2
+

e2κ+vv−s.

Combining all the bounds above gives the desired conclusion. �

Finally, we use equation (8.11) and the above lemma to estimate ∂UΨ and

close the bootstrap assumption (8.10).

Proposition 8.5. Under the bootstrap assumptions (8.8)–(8.10), for δ =

δ(M, e,∆, D) > 0 sufficiently small, the following estimate holds for (U, v) ∈
R:

|∂UΨ|(U, v) ≤ CM,e,s,De
2κ+vv−s,

where CM,e,s,D is a constant depending only on M , e, s and D.
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Proof. Integrating (8.11) in the v-direction, applying Proposition 8.1 and

using Propositions 8.2 and 8.3 together with Lemma 8.4, we get

|∂UΨ|(U, v)

≤D + CM,e,s,D

∫ v

1

Ä
e2κ+v′(|∂vΨ|+ |Ψ|) + |U |e2κ+v|∂UΨ|+ |∂UΨ||∂vΨ|

ä
dv′

≤ D + CM,e,s,D

∫ v

1
e2κ+v′(v′)−s dv′ + CM,e,s,D

∫ v

1
(|U |e2κ+v + |∂vΨ|)|∂UΨ| dv′

≤ D + CM,e,s,De
2κ+vv−s + CM,e,s,D

∫ v

1
(|U |e2κ+v + |∂vΨ|)|∂UΨ| dv′.

Finally, we apply Grönwall’s inequality to get the desired conclusion. �

Choosing ∆ > CM,e,s,D, we have thus improved the bootstrap assumption

(8.10) and completed the proof of the following result:

Theorem 8.6. There exist constants δ=δ(M, e, s,D)>0 and CM,e,s,D>0

such that the following estimate holds for (U, v) ∈ R:

|Ψ|(U, v) + |∂vΨ|(U, v) + e−2κ+v|∂UΨ|(U, v) ≤ CM,e,s,Dv
−s.

Proof. By (8.2), (8.3), (8.4), (8.5) and (8.6), the bootstrap assumptions

(8.8), (8.9) and (8.10) hold on the initial hypersurfaces. We then choose

∆ > CM,e,s,D, where CM,e,s,D is the constant appearing in the statement of

Proposition 8.5. After choosing55 δ = δ(M, e, s,D) > 0 sufficiently small,

Propositions 8.2, 8.3 and 8.5 then imply that the bootstrap assumptions (8.8),

(8.9) and (8.10) can in fact be improved and hold with a better constant. A

standard continuity argument then shows that the desired estimates hold. �

We now fix a δ so that Theorem 8.6 holds.

8.5. The blue-shift region. We now turn to the blue-shift region. In this

region, it is convenient to use the (u, v) coordinate system. Recall that U and u

are related by (5.8). The blue-shift region is given in the (u, v) coordinates by

B := {(u, v) : u+ v ≥ 1

2κ+
log(2κ+δ) =: A1, u ≤ us, v ≥ 1}.

As mentioned before, we will define a partition Bi so that B = (∪ni=1Bi) ∩
{(u, v) : u ≤ us}. Given δB > 0 (which will be chosen below — see Theo-

rem 8.7) and A1 = 1
2κ+

log(2κ+δ) ∈ (−∞,∞) (which is fixed by Theorem 8.6),

define a sequence A1 < A2 < · · · < An such that

min{e−κ−Ai − e−κ−Ai+1 , e−2κ−Ai − e−2κ−Ai+1} = δB.

55Notice that since the choice of ∆ depends only on M , e, s and D, we can choose δ to

depend only on M , e, s and D.
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We require n to be such that

e−2κ−An ≤ δB.

Moreover, we will use the convention that

An+1 =∞.

Now define Bi by

Bi := {(u, v) : Ai ≤ u+ v ≤ Ai+1, u ≤ ui, v ≥ 1},

where ui is a decreasing sequence to be chosen below (see Theorem 8.7).

We now state the following main estimates of this subsection:

Theorem 8.7. Consider the statements

(8.13) sup
u+v=Ai, u≤ui, v≥1

|u|s(|∂uΨ|(u, v) + |∂vΨ|(u, v) + |Ψ|(u, v)) ≤ Bi

and

sup
(u,v)∈Bi

(
|u|s(|∂uΨ|(u, v) + |e−κ−(v+u)Ψ|(u, v))

+(v −Ai)s|∂vΨ|(u, v) + |u|s−1|Ψ|(u, v)
)
≤ CM,e,s,A1Bi

(8.14)

on the hypersurface {u+ v = Ai} and in the region Bi respectively.

Then, given A1 ∈ (−∞,∞) and Bi ≥ 0, there exist δB = δB(M, e, s, A1)

> 0 sufficiently small56 and ui = ui(M, e, s, Bi) sufficiently negative such that

(8.13) implies (8.14) with a constant CM,e,s,A1 depending only on M , e, s

and A1.

In order to prove the estimates, we make the following bootstrap assump-

tions:

(8.15) sup
(u,v)∈Bi

|Ψ|(u, v) ≤ 1

100

and

(8.16) sup
(u,v)∈Bi

|u|s|∂uΨ|(u, v) ≤ 2Bi.

The bound (8.16) obviously holds initially by (8.13). Notice also that by (8.13),

(8.15) holds initially on {(u, v) : u + v = Ai, u ≤ ui, v ≥ 1} if ui is chosen to

be sufficiently negative.

The equations for Ψ together with (8.15) imply that

(8.17) |∂u∂vΨ| ≤ CM,e,A1

(
e−2κ−(v+u)(|Ψ|+ |∂vΨ|+ |∂uΨ|) + |∂uΨ∂vΨ|

)
.

Here, we have used an analogue of (8.12) that holds in this setting due to (8.15).

56We emphasize that the choice of δB is independent of Bi.
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Our goal is to show that under the bootstrap assumptions (8.15) and

(8.16), we can use equation (8.17) to control Ψ and its derivatives. Before we

proceed to the estimates, we need a calculus lemma, which can be viewed as

an analogue of Lemma 8.4 in the blue-shift region:

Lemma 8.8. For 1 ≤ α ≤ 2 and u ≤ −1, we have∫ u

−v+Ai

e−ακ−(v+u′)|u′|−s du′ ≤ Ce−ακ−Ai(v −Ai)−s,

where the constant C depends on M , e and s.

Proof. Integrating by parts, we obtain57∫ u

−v+Ai

e−ακ−(v+u′)|u′|−s du′

≤ 1

ακ−
e−ακ−Ai(v −Ai)−s +

s

ακ−

∫ u

−v+Ai

e−ακ−(v+u′)|u′|−s−1 du′.

The second term can be treated as an error term as follows:58∫ u

−v+Ai

e−ακ−(v+u′)|u′|−s−1 du′

=

∫ u

−v+Ai+
s

ακ−
log(v−Ai)

e−ακ−(v+u′)|u′|−s−1 du′

+

∫ −v+Ai+
s

ακ−
log(v−Ai)

−v+Ai

e−ακ−(v+u′)|u′|−s−1 du′

≤ 1

s
e−ακ−Ai(v −Ai)−s|u|−s +

s

ακ−
e−ακ−Ai(v −Ai)−s−1 log(v −Ai).

Combining the bounds above and using u+v ≥ Ai give the desired conclusion.

�

We now turn to the estimates for Ψ and its derivatives. Using Lemma 8.8,

the bootstrap assumption (8.16) immediately implies the following bound on Ψ:

Proposition 8.9. Under the bootstrap assumptions (8.15) and (8.16),

there exist δB = δB(M, e, s, A1) > 0 sufficiently small and ui = ui(M, e, s, Bi)

sufficiently negative such that the following estimate holds for (u, v) ∈ Bi:

|e−κ−(v+u)Ψ|(u, v) ≤ CM,e,sBie
−κ−Ai |u|−s.

57Notice that the boundary term at u′ = u has a good sign.
58In the case u ≤ −v + Ai + s

ακ−
log(v − Ai), we can ignore the first integral below and

obtain a better bound.
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Proof. Using the bootstrap assumption (8.16) and Lemma 8.8, we first

derive the following bound on a weighted integral of |∂uΨ|:∫ u

−v+Ai

e−κ−(v+u′)|∂uΨ|(u′, v) du′

≤ 2Bi

∫ u

−v+Ai

e−κ−(v+u′)|u′|−s du′

≤ CM,e,sBie
−κ−Ai(v −Ai)−s ≤ CM,e,sBie

−κ−Ai |u|−s.

(8.18)

Now, to estimate e−κ−(v+u)|Ψ|, notice that

1

2
∂u(e−κ−(v+u)Ψ)2 = e−2κ−(v+u)Ψ∂uΨ− κ−(e−κ−(v+u)Ψ)2.

The second term has a good sign, and therefore by integrating along a constant

v curve, we obtain

(e−κ−(v+u)Ψ)2(u, v) ≤ e−2κ−AiB2
i (v −Ai)−2s

+ C

∫ u

−v+Ai

e−2κ−(v+u′)|Ψ∂uΨ|(u′, v)du′.

This implies that, after dividing by59 supu′∈[v+Ai,u] e
−κ−(v+u′)|Ψ|(u′, v) on both

sides,

(8.19)

e−κ−(v+u)|Ψ|(u, v) ≤ Ce−κ−AiBi|u|−s + C

∫ u

−v+Ai

e−κ−(v+u′)|∂uΨ(u′, v)|du′.

The conclusion follows from combining (8.18) and (8.19). �

We then turn to the estimate for ∂vΨ:

Proposition 8.10. Under the bootstrap assumptions (8.15) and (8.16),

there exist δB = δB(M, e, s, A1) > 0 sufficiently small and ui = ui(M, e, s, Bi)

sufficiently negative such that the following estimate holds for (u, v) ∈ Bi:

|∂vΨ|(u, v) ≤ CM,e,s,A1Bi(v −Ai)−s.

Proof. Integrating equation (8.17) and using the initial data bound (8.13),

we have

|∂vΨ|(u, v) ≤ |∂vΨ|(−v +Ai, v) +

∫ u

−v+Ai

|∂u∂vΨ|du′ ≤ Bi(v −Ai)−s

+ CM,e,A1

∫ u

−v+Ai

(
e−2κ−(v+u′)(|∂uΨ|+ |∂vΨ|+ |Ψ|)

+ |∂uΨ||∂vΨ|
)
(u′, v)du′.

(8.20)

59Note that we only apply this division in the case supu′∈[v+Ai,u] e
−κ−(v+u′)|Ψ|(u′, v) ≥

e−κ−AiBi(v −Ai)−s since the estimate is trivial otherwise.
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Combining the bootstrap assumption (8.16) and Lemma 8.8 with α = 2, we

get ∫ u

−v+Ai

e−2κ−(v+u′)|∂uΨ|(u′, v)du′ ≤ CM,e,sBie
−2κ−Ai(v −Ai)−s.

Similarly, using the bound in Proposition 8.9 together with Lemma 8.8 with

α = 1, we obtain∫ u

−v+Ai

e−2κ−(v+u′)|Ψ|(u′, v)du′ ≤ CM,e,sBie
−2κ−Ai(v −Ai)−s.

Therefore, we have

|∂vΨ|(u, v) ≤ CM,e,s,A1Bi(v −Ai)−s

+ CM,e,A1

∫ u

−v+Ai

Ä
e−2κ−(v+u′)|∂vΨ|+ |∂uΨ||∂vΨ|

ä
(u′, v)du′.

(8.21)

To conclude, notice that∫ u

−v+Ai

e−2κ−(v+u′)du′ ≤ CM,e(e−2κiAi − e−2κiAi+1) ≤ CM,eδB

and ∫ u

−v+Ai

|∂uΨ|(u′, v)du′ ≤ CsBi|u|−s+1 ≤ CsBi|ui|−s+1.

Therefore, applying Grönwall’s inequality to (8.21), we obtain

|∂vΨ|(u, v) ≤ CM,e,s,A1Bi(v −Ai)−seCM,eδB+CsBi|ui|−s+1

≤ CM,e,s,A1Bi(v −Ai)−s,

where in the last inequality, we have chosen δB = δB(M, e, s) to be suffi-

ciently small and ui = ui(M, e, s, Bi) to be sufficiently negative such that

eCM,eδB+CsBi|ui|−s+1 ≤ 2. �

This allows us to estimate ∂uΨ and recover the bootstrap assumption (8.16).

Proposition 8.11. Under the bootstrap assumptions (8.15) and (8.16),

there exist δB = δB(M, e, s, A1) > 0 sufficiently small and ui = ui(M, e, s, Bi)

sufficiently negative such that the following estimate holds in Bi:

|∂uΨ|(u, v) ≤ 3

2
Bi|u|−s.
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Proof. Using (8.17) and the initial data bound (8.13), we have

|∂uΨ|(u, v) ≤ |∂uΨ|(u,−u+Ai) +

∫ v

−u+Ai

|∂v∂uΨ|dv′

≤ Bi|u|−s + CM,e,A1

∫ v

−u+Ai

(
e−2κ−(v′+u)(|∂uΨ|+ |∂vΨ|+ |Ψ|)

+ |∂uΨ||∂vΨ|
)
(u, v′)dv′.

(8.22)

By Propositions 8.9 and 8.10 and u+ v ≥ Ai, we have∫ v

−u+Ai

Ä
e−2κ−(v′+u)(|Ψ|+ |∂vΨ|)

ä
(u, v′)dv′

≤ CM,e,s,A1Bi|u|−s
∫ v

−u+Ai

e−2κ−(v′+u)dv′ ≤ CM,e,s,A1BiδB|u|−s ≤
Bi
5
|u|−s,

after choosing δB = δB(M, e, s, A1) to be sufficiently small. Returning to

(8.22), we get

|∂uΨ|(u, v) ≤ 6Bi
5
|u|−s

+ CM,e,A1

∫ v

−u+Ai

Ä
e−2κ−(v′+u)|∂uΨ|+ |∂uΨ||∂vΨ|

ä
(u, v′)dv′.

(8.23)

In order to apply Grönwall’s inequality, notice that∫ v

−u+Ai

e−2κ−(v′+u)dv′ ≤ CM,eδB

and ∫ v

−u+Ai

|∂vΨ|(u, v′)dv′ ≤ CM,e,s,A1Bi

∫ v

−u+Ai

(v′ −Ai)−sdv′

≤ CM,e,s,A1Bi|ui|−s+1,

where the latter bound is obtained using Proposition 8.10. Substituting these

bounds into (8.23), we then obtain

|∂uΨ|(u, v) ≤ 6Bi
5
|u|−s × eCM,eδB+CM,e,s,A1

Bi|ui|−s+1 ≤ 3Bi
2
|u|−s,

after choosing δB=δB(M, e,s,A1) to be sufficiently small and ui=ui(M, e,s,Bi)

to be sufficiently negative. �

Now, notice that the bound for Ψ derived in Proposition 8.9 is not suf-

ficiently strong to improve the bootstrap assumption (8.15). Nonetheless, we

also have the following estimate:
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Proposition 8.12. Under the bootstrap assumptions (8.15) and (8.16),

there exist δB = δB(M, e, s, A1) > 0 sufficiently small and ui = ui(M, e, s,Bi)

sufficiently negative such that the following estimate holds in Bi:

|Ψ| ≤ CsBi|u|−s+1.

Proof. Using the assumption on the data in Theorem 8.7 and the boot-

strap assumption (8.16), we have

|Ψ|(u, v) ≤ |Ψ|(−v +Ai, v) +

∫ u

−v+Ai

|∂uΨ|(u′, v) du′

≤ Bi(v −Ai)−s + 2Bi

∫ u

−v+Ai

du′

|u′|s
≤ CsBi

Ä
(v −Ai)−s + |u|−s+1

ä
.

Finally, we conclude by noting that v −Ai ≥ |u|. �

According to Proposition 8.12, we have thus improved the bootstrap as-

sumption (8.15) after choosing ui to be sufficiently negative depending on Bi
and s. Moreover, we have also improved the bootstrap assumption (8.16) in

Proposition 8.11. Together with Propositions 8.9 and 8.10, we conclude the

proof of Theorem 8.7. Finally, by iterating the estimate in Theorem 8.7, we

obtain the following bounds in the region B.

Theorem 8.13. Given the estimates in the red-shift region R in The-

orem 8.6, there exists us = us(M, e, s,D) sufficiently negative such that the

following estimates hold for (u, v) ∈ B:

|∂uΨ|(u, v) ≤ CM,e,s,D|u|−s, |Ψ|(u, v) ≤ CM,e,s,D|u|−s+1,

|∂vΨ|(u, v) ≤ CM,e,s,Dv
−s.

Proof. To prove the estimates, we apply Theorem 8.7. First, notice that

according to Theorem 8.7, δB depends only on M , e, s and A1. Therefore,

given A1 (which depends on M , e, s and D), we can choose δB and partition

the blue-shift region in Bi. We now repeatedly apply Theorem 8.7 for each of

the Bi to show that the following holds for every i:

sup
(u,v)∈Bi

(
|u|s(|∂uΨ|(u, v) + |e−κ−(v+u)Ψ|(u, v)) + (v −Ai)s|∂vΨ|(u, v)

+ |u|s−1|Ψ|(u, v)
)
≤
Ä
C∗M,e,s,A1

äi
e2iκ−AnC∗∗M,e,s,D,

(8.24)

where C∗M,e,s,A1
is the constant in the conclusion of Theorem 8.7 and C∗∗M,e,s,D

is a constant that exists by the conclusion of Theorem 8.6. From this we can

easily obtain the conclusion. First, note that (v−Ai)−s ≤ CM,e,s,Dv
−s. Finally,

we observe that the right-hand side of (8.24) can be bounded uniformly by a

constant depending on M , e, s and D. �
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8.6. C0 stability and conclusion of proof of Theorem 5.1. The estimates in

the previous two subsections already imply that the spacetime remains regular

in the region u ≤ us, v ≥ 1. In this subsection, we will further show that the

metric and the scalar field can be extended in C0 and, moreover, the solution

approaches Reissner–Nordström in C0 in the sense given by the last statement

in Theorem 5.1.

First, we have the following C0 extendibility statement:

Proposition 8.14. In the (u, V ) coordinate system, one can attach the

boundary CH+ := {V = 1} such that r, φ and log ΩCH extend continuously

to CH+.

Proof. Because the metric components of Reissner–Nordström rRN and

log ΩRN,CH are smooth up to {V = 1}, it suffices to show that Ψ is continuous

up to {V = 1}.
First, we note that by the conclusions in Theorems 8.6 and 8.13, the

following holds in the (u, V ) coordinate system if u ≤ us, V ≥ 1
2 :

|∂uΨ|(u, V ) ≤ CM,e,s,D|u|−s,

|∂V Ψ|(u, V ) ≤ CM,e,s,D|1− V |−1 log−s
Å

1

1− V

ã
.

(8.25)

Given a sequence ui → u and Vi → 1, it then suffices to show that Ψ(ui, Vi)

is a Cauchy sequence. Fix ε > 0. Notice that there exists N such that for

i, j ≥ N , we have

|Ψ(ui, Vi)−Ψ(uj , Vj)|

≤
∣∣∣∣∣
∫ uj

ui

|∂uΨ|(u′, Vi) du′
∣∣∣∣∣+

∣∣∣∣∣
∫ Vj

Vi

|∂V Ψ|(uj , V ′) dV ′
∣∣∣∣∣

≤ CM,e,s,D

Ç∣∣∣∣∣∫ uj

ui

|u′|−s du′
∣∣∣∣∣+

∣∣∣∣∣
∫ Vj

Vi

|1− V ′|−1 log−s
Å

1

1− V ′
ã
dV ′

∣∣∣∣∣
å
≤ ε.

This is because for s > 1, the integrands in both integrals are integrable. �

We now have all the ingredients to conclude the proof of Theorem 5.1.

Proof of Theorem 5.1. By Theorems 8.6 and 8.13 and standard local exis-

tence results, the solution remains regular in the region {(u, v) : u ≤ us, v ≥ 1}
as long as us is sufficiently negative. In particular, the spacetime indeed has

a Penrose diagram given by Figure 3. The statement on the continuity of the

metric and the scalar field up to CH+ is given by Proposition 8.14. Finally,

the desired estimates are direct consequences of Theorems 8.6 and 8.13. �

8.7. Refined bounds for ∂vr. In this final subsection, we record an easy

estimate for ∂vr. This estimate is not necessary to close the argument for the

stability theorem, but it will be useful in the next section.
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Proposition 8.15. For us sufficiently negative, we have the following

bound to the future of {u+ v = A1, u ≤ us}:

|∂vr|(u, v) ≤ CM,e,s,D(Ω2
RN + v−2s).

Proof. We use the equation

(8.26) ∂v

Å
∂vr

Ω2

ã
= − r

Ω2
(∂vφ)2.

By the estimates in Theorem 8.6, we have ∂vr
Ω2 ≤ CM,e,s,D on {u + v = A1}.

Thus by integrating (8.26), we get∣∣∣∣∂vrΩ2

∣∣∣∣ (u, v) ≤ CM,e,s,D +

∫ v

−u+A1

r

Ω2
(∂vφ)2(u, v′) dv′

≤ CM,e,s,D + CM,e,s,D

∫ v

−u+A1

e2κ−(v′+u)(v′)−2s dv′

≤ CM,e,s,D + CM,e,s,De
2κ−(v+u)v−2s,

where for the last inequality we have used60 Lemma 8.4. The final conclusion

can be derived after multiplying by Ω2, which using the estimates in Proposi-

tion 8.12, can be bounded up to a constant by e−2κ−(v+u) ≤ CM,e,s,DΩ2
RN in

this region. �

9. Blow up on the Cauchy horizon: Proof of Theorem 5.4

The goal of this subsection is to prove Theorem 5.4. We will first briefly

describe the main ideas of the proof in Section 9.1. In Section 9.2, we will

describe the notation and the setup of the proof. The three main types of

L2 estimates — namely, the almost energy conservation, the integrated local

energy decay and the red-shift estimates — are proven in Sections 9.3, 9.4 and

9.5 respectively. In Section 9.6, we then put together all the estimates to prove

the blow-up statement (5.16). Finally, in Section 9.7, we use the blow up (5.16)

to derive the blow up (5.17).

9.1. Idea of the proof. We prove (5.16) in Theorem 5.4 by showing its con-

trapositive; namely, we assume that (5.16) fails for some u < us and deduce

that the condition (5.15) must also fail on the event horizon. (Once (5.16) is

proved, (5.17) follows straightforwardly; see Section 9.7.) The main idea be-

hind the proof is to view the nonlinear unknown spacetime as a perturbation of

Reissner–Nordström and to apply the argument61 in the proof of Theorem 1.7.

Here, in particular, we use the bounds we obtained in the previous section to

60With κ+ replaced by κ−.
61Recall that the proof Theorem 1.7 consists of an argument in the interior of the black

hole region and an argument in the exterior of the black hole region. More precisely, we apply
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show that the spacetime in question is indeed close to Reissner–Nordström in

an appropriate sense.

We quickly recall here our argument in [36] for proving Theorem 1.7. The

main idea is to recast this as a decay problem. More precisely, we show that if

(the linear analogue of) the conclusion of Theorem 5.4 is assumed to be false for

some u, then we can solve the wave equation towards i+ starting from the black

hole interior and prove a strong enough decay bound on the event horizon which

contradicts (the linear analogue of) the assumption of Theorem 5.4. Here, a

key observation is that the original “blue-shift” effect from the point of view

of the forward problem (which is the source of the instability at the first place)

becomes a “red-shift” effect when the wave equation is solved in this direction.

We then combine the following three types of L2 estimates to show the desired

decay bounds on the event horizon:

(1) an energy identity,

(2) an integrated local energy decay estimate, and

(3) the red-shift estimates near both horizons.

On the other hand, for each of the above estimates, one faces the following

challenges in applying the argument in [36] to the nonlinear setting at hand:

(1) (Almost energy conservation). Unlike in [36], an exact conservation law

does not hold in our setting. Instead, we only have an “almost conservation

law” with error terms that decays according to the stability results proved

in the previous section. In particular, in order to close the estimate for the

almost energy conservation law, we must couple it with both the integrated

local energy decay estimate and the red-shift estimates.

(2) (Integrated local energy decay estimate). Unlike in exact Reissner–

Nordström, in our setting λ and ν cannot be controlled by Ω2. Instead, the

differences λ−λRN and ν−νRN only decay polynomially in either |u| or v.

To deal with this, we use, in particular, a stronger integrated local energy

decay estimate with a weight that is not smooth at the event horizon and

the Cauchy horizon.62

(3) (Red-shift estimates). Moreover, in the proof of the “red-shift” estimates

near the Cauchy horizon (Proposition 9.4), the weaker bounds that we

have for λ compared to the Reissner–Nordström case give much less room

for the argument. Here, it is crucial that we have obtained the improved

estimate in Proposition 8.15. (It is also for this estimate that we need to

impose the condition α0 < 4s− 2.)

here the argument in [36] relevant to the interior region; see point (1) in the paragraph after

the statement of Theorem 1.7.
62This estimate is reminiscent of the “irregular red-shift vector field” of Dafermos–

Rodnianski [19].
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9.2. Setting up the contradiction argument and notation used in this sec-

tion. Before we proceed, we set up some notation for this section. For τ ≥ τ0,

where τ0 is a large parameter to be chosen later, let

Γτ := Γ(1)
τ ∪ Γ(2)

τ ,

where

Γ(1)
τ = {(−τ, v) : v ≥ τ}, Γ(2)

τ = {(u, τ) : u ≤ −τ}.

We denote by H+ the set C−∞ as in Theorem 5.1 and denote by CH+ the

boundary {V = 1} as in Proposition 8.14. We also define

CH+(τ1, τ2) = CH+ ∩ {−τ2 ≤ u ≤ −τ1}, H+(τ1, τ2) = H+ ∩ {τ1 ≤ v ≤ τ2}.

Denote by D(τ1, τ2) the region bounded by Γ
(1)
τ1 , Γ

(2)
τ1 , CH+(τ1, τ2), H+(τ1, τ2),

Γ
(1)
τ2 , Γ

(2)
τ2 . A Penrose diagram representation of these objects is provided in

Figure 7. Note that we will be integrating on the sets D(τ1, τ2), Γ
(1)
τ1 , Γ

(2)
τ1 ,

CH+(τ1, τ2), H+(τ1, τ2), Γ
(1)
τ2 , Γ

(2)
τ2 .

Γ
(1)
τ1

Γ
(2)
τ1

CH+(τ1, τ2)

H+(τ1, τ2)

Γ
(2)
τ2

Γ
(1)
τ2

D(τ1, τ2)

i+

(−τ1, τ1)

(−∞, τ1)

(−τ1,∞)

(−τ2,∞)

(−∞, τ2)

suppχ−

suppχ+

Figure 7.

We introduce the following conventions for integration: On the null hyper-

surfaces Γ
(1)
τ and H+, we integrate with respect to the measure dv; on the null

hypersurfaces Γ
(2)
τ and CH+, we integrate with respect to the measure du; in

the spacetime region D(τ1, τ2), we integrate with respect to the measure du dv.

Notice that the measure du dv is not the volume form induced by the metric.

To improve readability, we will use the convention that
∫

denotes an integral

along a null hypersurface while
∫∫

denotes an integral in a spacetime region.
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We will prove (5.16) in Theorem 5.4 by contradiction. To show (5.16), it

suffices to prove that there exists τ0 sufficiently large such that∫
Γ

(1)

τ ′
0

logα0
+

Å
1

Ω

ã
(∂vφ)2 =∞

for every τ ′0 ≥ τ0. Assume for the sake of contradiction that for every τ0, there

exists τ ′0 ≥ τ0 such that the following holds:

(9.1) Eτ ′0 :=

∫
Γ

(1)

τ ′
0

logα0
+

Å
1

Ω

ã
(∂vφ)2 <∞

for α0 as in Theorem 5.4.

Our goal now is to show that (9.1) together with the estimates derived in

Theorem 5.1 lead to the bound

(9.2)

∫
H+∩{v≥τ ′0}

vα0

log2(1 + v)
(∂vφ)2 <∞,

along H+ towards i+, which, would, in particular, imply that (5.15) does

not hold. Notice that for τ0 sufficiently large, D(τ0,∞) is indeed in the region

where the estimates in Theorem 5.1 apply. In particular, near CH+, the weight

log
Ä

1
Ω

ä
is comparable to u+v (with constants depending on M, e, E, s) thanks

to (5.3) and Theorem 5.1.

Before we proceed, we make a notational convention in the rest of this

subsection. In the remainder of this subsection, we will use C to denote a

general (large) constant that depends on M , e, E, s and α0. We will use the

notation CA+,A− to denote a constant that depends on A−, A+, M , e, E,

s and α0 for A− and A+, which will be defined below; see (9.3), (9.4) and

Propositions 9.4 and 9.5. We will also use C−1 to denote a small constant.

In Propositions 9.1–9.6, we will derive some estimates for the scalar field

in the interior of the black hole. Then, in Proposition 9.7, we will use the

assumption (9.1) to derive (9.2).

In the estimates for the scalar field, we will need to define some cutoff

functions. Let χ− and χ+ be smooth positive functions depending only on

u+ v such that

(9.3) χ−(u, v) =

1 for u+ v ≥ A−,
0 for u+ v ≤ A− − 1,

and

(9.4) χ+(u, v) =

1 for u+ v ≤ A+,

0 for u+ v ≥ A+ + 1,

where A− > A+ are constants to be determined later. The supports of χ+ and

χ− are depicted in Figure 7.
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9.3. Almost conserved energy. We begin with an “almost conserved en-

ergy” in the direction of i+. To derive this, we notice that solutions to the

linear wave equation on the Reissner–Nordström spacetime obeys a conser-

vation law and show that in the coupled setting, the deviation from exact

Reissner–Nordström can be controlled.63

Proposition 9.1. Let γ := min{2, s − 1, 4s − α0 − 1}. The following

holds for any A−, A+ ∈ R with a constant CA−,A+ > 0 depending on A−
and A+: There exists τ0 sufficiently large such that for every τ1, τ2 satisfying

τ0 ≤ τ1 ≤ τ2, we have64

∫
Γ

(1)
τ2

r2(∂vφ)2 +

∫
Γ

(2)
τ2

r2(∂uφ)2 +

∫
CH+(τ1,τ2)

r2(∂uφ)2 +

∫
H+(τ1,τ2)

r2(∂vφ)2

≤
∫

Γ
(1)
τ1

r2(∂vφ)2 +

∫
Γ

(2)
τ1

r2(∂uφ)2

+ CA+,A−τ
−s
1

∫∫
D(τ1,τ2)

Å
log−γ+

Å
1

Ω

ã
+ χ+ logγ+

Å
1

Ω

ãã
(∂uφ)2

+ CA+,A−τ
−s
1

∫∫
D(τ1,τ2)

Å
log−γ+

Å
1

Ω

ã
+ χ− logγ+

Å
1

Ω

ãã
(∂vφ)2.

(9.5)

Proof. Integrating by parts over D(τ1, τ2) the identity

0 = r2(∂uφ− ∂vφ)
(
∂u∂vφ+

λ

r
∂uφ+

ν

r
∂vφ

)
,

and noticing that λRN = νRN in our coordinates, we get∫
Γ

(1)
τ2

r2(∂vφ)2 +

∫
Γ

(2)
τ2

r2(∂uφ)2 +

∫
CH+(τ1,τ2)

r2(∂uφ)2 +

∫
H+

r2(∂vφ)2

=

∫
Γ

(1)
τ1

r2(∂vφ)2 +

∫
Γ

(2)
τ1

r2(∂uφ)2

+

∫∫
D(τ1,τ2)

r(λ− λRN − ν + νRN )(∂uφ)(∂vφ).

63In the coupled setting, there is also a conservation law associated to the renormalized

Hawking mass. We do not apply this in our setting in particular because the renormalized

Hawking mass may be infinite at the Cauchy horizon (see Remark 1.10).
64Notice that for ∂uφ, the weight grows towards the event horizon and is degenerate

towards the Cauchy horizon. For ∂vφ, the weight has the opposite behavior; i.e., it grows

towards the Cauchy horizon and is degenerate towards the event horizon. As we will see

below (see Propositions 9.4 and 9.5), these terms can be controlled since we have stronger

bounds for ∂uφ near the event horizon and for ∂vφ near the Cauchy horizon.
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To handle the last term, we divide the integral into three pieces:∫∫
D(τ1,τ2)

=

∫∫
D(τ1,τ2)∩{u+v≤A+}︸ ︷︷ ︸

=:I

+

∫∫
D(τ1,τ2)∩{A+<u+v<A−}︸ ︷︷ ︸

=:II

+

∫∫
D(τ1,τ2)∩{u+v≥A−}︸ ︷︷ ︸

=:III

.

For each of these pieces, we use the fact that r is bounded, as well as

sup
(u,v)∈D(τ1,∞)

(|λ− λRN |+ |ν − νRN |) (u, v) ≤ Cτ−s1

(both of which follow from Theorem 5.1), and we apply the Cauchy-Schwarz

inequality. Firstly, for the term I localized near the event horizon, we have the

bound∫∫
D(τ1,τ2)∩{u+v≤A+}

r(|λ− λRN |+ |ν − νRN |)|∂uφ||∂vφ|

≤ CA+,A−τ
−s
1

Ç∫∫
D(τ1,τ2)

χ+ logγ+

Å
1

Ω

ã
(∂uφ)2 +

∫∫
D(τ1,τ2)

log−γ+

Å
1

Ω

ã
(∂vφ)2

å
.

For the second term II, since we have upper and lower bounds for r and Ω

(depending on A+ and A−) thanks to the Reissner–Nordström computation in

Section 5.1 and Theorem 5.1, we can put in weights that degenerate to obtain∫∫
D(τ1,τ2)∩{A+<u+v<A−}

r(|λ− λRN |+ |ν − νRN |)|∂uφ||∂vφ|

≤ CA+,A−τ
−s
1

Ç∫∫
D(τ1,τ2)

log−γ+

Å
1

Ω

ã
(∂uφ)2 +

∫∫
D(τ1,τ2)

log−γ+

Å
1

Ω

ã
(∂vφ)2

å
.

Finally, the third integral III, i.e., the term localized near the Cauchy horizon,

we have∫∫
D(τ1,τ2)∩{u+v≥A−}

r(|λ− λRN |+ |ν − νRN |)|∂uφ||∂vφ|

≤ CA+,A−τ
−s
1

Ç∫∫
D(τ1,τ2)

log−γ+

Å
1

Ω

ã
(∂uφ)2 +

∫∫
D(τ1,τ2)

χ− logγ+

Å
1

Ω

ã
(∂vφ)2

å
.

Combining, we obtain∫∫
D(τ1,τ2)

r(|λ− λRN |+ |ν − νRN |)|∂uφ||∂vφ|

≤ CA+,A−τ
−s
1

∫∫
D(τ1,τ2)

Å
log−γ+

Å
1

Ω

ã
+ χ+ logγ+

Å
1

Ω

ãã
(∂uφ)2

+ CA+,A−τ
−s
1

∫∫
D(τ1,τ2)

Å
log−γ+

Å
1

Ω

ã
+ χ− logγ+

Å
1

Ω

ãã
(∂vφ)2.

(9.6)

This concludes the proof of the proposition. �
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9.4. Integrated local energy decay estimate. Using the energy inequality,

we now establish an integrated local energy decay estimate.

Proposition 9.2. Let γ := min{2, s−1, 4s−α0−1}. The following holds

for any A−, A+ ∈ R with a constant CA−,A+ > 0 depending on A− and A+:

For τ0 sufficiently large, and for every τ1, τ2 such that τ0 ≤ τ1 ≤ τ2, we have∫∫
D(τ1,τ2)

log−γ+

Å
1

Ω

ã (
(∂uφ)2 + (∂vφ)2

)
≤ CA+,A−

( ∫
Γ

(1)
τ1

(∂vφ)2

+

∫
Γ

(2)
τ1

(∂uφ)2
)

+ CA+,A−τ
−s
1

∫∫
D(τ1,τ2)

χ+ logγ+

Å
1

Ω

ã
(∂uφ)2

+ CA+,A−τ
−s
1

∫∫
D(τ1,τ2)

χ− logγ+

Å
1

Ω

ã
(∂vφ)2.

(9.7)

Proof. The assumption implies that γ > 1. We can thus define w(u, v) to

be a positive C1 function as follows:

w(u, v) = 2− γ − 1

2

∫ u+v

−∞

dx

(1 + |x|)γ
.

Consequently, w satisfies

1 ≤ w ≤ 2, ∂uw ≤ −C−1
w log−γ+

Å
1

Ω

ã
, ∂vw ≤ −C−1

w log−γ+

Å
1

Ω

ã
for some positive constant Cw.

Given N ≥ 0 to be chosen, consider

0 =

∫∫
D(τ1,τ2)

wN (∂uφ+ ∂vφ)
(
∂u∂vφ+

λ

r
∂uφ+

ν

r
∂vφ

)
dudv

=

∫∫
D(τ1,τ2)

−N
2

(∂vw)wN−1(∂uφ)2 − N

2
(∂uw)wN−1(∂vφ)2

+

∫∫
D(τ1,τ2)

wN

r

(
λ(∂uφ)2 +ν(∂vφ)2 +(λ+ ν)∂uφ∂vφ

)
+(boundary terms)

≥ C−1
w N

2

∫∫
D(τ1,τ2)

wN−1 log−γ+

Å
1

Ω

ã Ä
(∂uφ)2 + (∂vφ)2

ä
− C

∫∫
D(τ1,τ2)

wNΩ2
Ä
(∂uφ)2 + (∂vφ)2

ä
− C

∫∫
D(τ1,τ2)

wN

r

(
|λ− λRN |(∂uφ)2 + |ν − νRN |(∂vφ)2

)
− C

∫∫
D(τ1,τ2)

(|λ− λRN |+ |ν − νRN |)|∂uφ∂vφ| − |boundary terms|,

(9.8)
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where in the last line we have used that λRN = νRN = −Ω2
RN and that ΩRN

and Ω are comparable. Choosing N sufficiently large, we see that the first line

on the right-hand side controls (up to a constant factor) the following:

C−1
w N

2

∫∫
D(τ1,τ2)

wN−1 log−γ+

Å
1

Ω

ã Ä
(∂uφ)2 + (∂vφ)2

ä
− C

∫∫
D(τ1,τ2)

wNΩ2
Ä
(∂uφ)2 + (∂vφ)2

ä
≥ C−1N

∫∫
D(τ1,τ2)

wN log−γ+

Å
1

Ω

ã Ä
(∂uφ)2 + (∂vφ)2

ä
.

(9.9)

It remains to bound the bulk terms containing |λ−λRN | and |ν−νRN | and the

boundary terms. We consider each of the bulk terms. Firstly, by Theorem 5.1,

(9.10) |λ− λRN |(u, v) ≤ Cv−s.

For u+ v ≥ A+ and v ≥ τ1, we additionally have

(9.11) |λ− λRN |(u, v) ≤ CA+τ
−(s−γ)
1 log−γ+

Å
1

Ω

ã
(u, v),

since γ ≤ 2 < s. Therefore,

∫∫
D(τ1,τ2)

wN

r
|λ− λRN |(∂uφ)2

≤ CA+

∫∫
D(τ1,τ2)

wN (τ
−(s−γ)
1 log−γ+

Å
1

Ω

ã
+ τ−s1 χ+)(∂uφ)2.

(9.12)

Here, we have used (9.10) and v ≥ τ1 for u + v < A+ and used (9.11) for

u + v ≥ A+. Similarly, by Theorem 5.1, |ν − νRN |(u, v) ≤ C|u|−s. Hence, for

u+ v ≤ A− and −u ≥ τ1, we have

|ν − νRN |(u, v) ≤ CA−τ
−(s−γ)
1 log−γ+

Å
1

Ω

ã
(u, v).

Consequently,

∫∫
D(τ1,τ2)

wN

r
|ν − νRN |(∂vφ)2

≤ CA−
∫∫
D(τ1,τ2)

wN (τ
−(s−γ)
1 log−γ+

Å
1

Ω

ã
+ τ−s1 χ−)(∂vφ)2.

(9.13)
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Finally, for the remaining bulk term, we estimate it in a similar manner as

(9.6) to get∫∫
D(τ1,τ2)

wN

r
(|λ− λRN |+ |ν − νRN |)|∂uφ∂vφ|

≤ CA+,A−τ
−s
1

∫∫
D(τ1,τ2)

wN
Å

log−γ+

Å
1

Ω

ã
+ χ+ logγ+

Å
1

Ω

ãã
(∂uφ)2

+ CA+,A−τ
−s
1

∫∫
D(τ1,τ2)

wN
Å

log−γ+

Å
1

Ω

ã
+ χ− logγ+

Å
1

Ω

ãã
(∂vφ)2.

(9.14)

Without loss of generality, we may assume that 1 ≤ τ0 ≤ τ1, which implies

τ−s1 ≤ τ−(s−γ)
1 . Combining the estimates in (9.9), (9.12), (9.13) and (9.14), we

then obtain

|boundary terms| ≥ C−1N

∫∫
D(τ1,τ2)

wN−1 log−γ+

Å
1

Ω

ã Ä
(∂uφ)2 + (∂vφ)2

ä
− CA+,A−

∫∫
D(τ1,τ2)

wN
Å
τ
−(s−γ)
1 log−γ+

Å
1

Ω

ã
+ τ−s1 χ+ logγ+

Å
1

Ω

ãã
(∂uφ)2

− CA+,A−

∫∫
D(τ1,τ2)

wN
Å
τ
−(s−γ)
1 log−γ+

Å
1

Ω

ã
+ τ−s1 χ− logγ+

Å
1

Ω

ãã
(∂vφ)2.

On the other hand, the boundary terms65 can be controlled by Proposition 9.1,

the bound 1 ≤ w ≤ 2, and the upper and lower bounds of r so that we have

N

∫∫
D(τ1,τ2)

wN log−γ+

Å
1

Ω

ã (
(∂uφ)2 + (∂vφ)2

)
≤ C2N

Ç∫
Γ

(1)
τ1

r2(∂vφ)2 +

∫
Γ

(2)
τ1

r2(∂uφ)2

å
+ CA+,A−2N

∫∫
D(τ1,τ2)

wN
Å
τ
−(s−γ)
1 log−γ+

Å
1

Ω

ã
+ τ−s1 χ+ logγ+

Å
1

Ω

ãã
(∂uφ)2

+ CA+,A−2N
∫∫
D(τ1,τ2)

wN
Å
τ
−(s−γ)
1 log−γ+

Å
1

Ω

ã
+ τ−s1 χ+ logγ+

Å
1

Ω

ãã
(∂vφ)2.

(9.15)

Since s > 2 ≥ γ, we can take τ0 to be sufficiently large after fixing N > 0 such

that for CA+,A− as in (9.15), we have

CA+,A−2Nτ
−(s−γ)
0 ≤ N

2
.

After subtracting

N

2

∫∫
D(τ1,τ2)

wN log−γ+

Å
1

Ω

ã (
(∂uφ)2 + (∂vφ)2

)

65One can easily check that the boundary integrals on Γ
(1)
τ2 andH+(τ1, τ2) only have (∂vφ)2

terms and the boundary integrals on Γ
(2)
τ2 and CH+(τ1, τ2) only have (∂uφ)2 terms.
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on both sides of (9.15), we obtain

N

2

∫∫
D(τ1,τ2)

wN log−γ+

Å
1

Ω

ã (
(∂uφ)2 + (∂vφ)2

)
≤ C2N

Ç∫
Γ

(1)
τ1

r2(∂vφ)2 +

∫
Γ

(2)
τ1

r2(∂uφ)2

å
+ CA+,A−2Nτ−s1

∫∫
D(τ1,τ2)

wNχ+ logγ+

Å
1

Ω

ã
(∂uφ)2

+ CA+,A−2Nτ−s1

∫∫
D(τ1,τ2)

wNχ− logγ+

Å
1

Ω

ã
(∂vφ)2.

Since N is now fixed, we can absorb it into the constant CA+,A− to obtain the

desired conclusion. �

An immediate corollary is that we can improve the estimate in Proposi-

tion 9.1 by controlling the bulk term with the estimate (9.7) in Proposition 9.2:

Proposition 9.3. There exists τ0 sufficiently large such that for every

τ1, τ2 satisfying τ0 ≤ τ1 ≤ τ2, we have

(9.16)

∫
Γ

(1)
τ2

r2(∂vφ)2

+

∫
Γ

(2)
τ2

r2(∂uφ)2 +

∫
CH+(τ1,τ2)

r2(∂uφ)2 +

∫
H+(τ1,τ2)

r2(∂vφ)2

≤ CA+,A−

( ∫
Γ

(1)
τ1

(∂vφ)2 +

∫
Γ

(2)
τ1

(∂uφ)2
)

+ CA+,A−τ
−s
1

∫∫
D(τ1,τ2)

χ+ logγ+

Å
1

Ω

ã
(∂uφ)2

+ CA+,A−τ
−s
1

∫∫
D(τ1,τ2)

χ− logγ+

Å
1

Ω

ã
(∂vφ)2.

9.5. Red-shift estimates. In the next proposition, we prove an estimate

that is localized near the Cauchy horizon. Since we are solving the wave equa-

tion “backwards” near the Cauchy horizon, the blue-shift effect becomes a

red-shift effect as we approach i+. This estimate, in particular, gives a good

bulk term near the Cauchy horizon that has a better weight than that in (9.7).

Proposition 9.4. There exists A−,0 > 0 sufficiently large such that the

following holds if A− ≥ A−,0 with a constant CA−,A+ > 0 depending on A−
and A+: For τ0 sufficiently large, for every α ∈ [0, α0] and for τ0 ≤ τ1 ≤ τ2,
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we have ∫
Γ

(1)
Γτ2

χ− logα+

Å
1

Ω

ã
(∂vφ)2 + α

∫∫
D(τ1,τ2)

χ− logα−1
+

Å
1

Ω

ã
(∂vφ)2

≤ CA+,A−

( ∫
Γ

(1)
τ1

Ä
1 + χ− logα+

Å
1

Ω

ã ä
(∂vφ)2 +

∫
Γ

(2)
τ1

(∂uφ)2
)

+ CA+,A−τ
−s
1

∫∫
D(τ1,τ2)

χ+ logγ+

Å
1

Ω

ã
(∂uφ)2

+ CA+,A−τ
−s
1

∫∫
D(τ1,τ2)

χ− logγ+

Å
1

Ω

ã
(∂vφ)2.

(9.17)

Proof. Since Ω and ΩRN are comparable (according to Theorem 5.1), it

suffices to derive the desired estimate using ΩRN in the weight. This has the

advantage that we have better control over the derivatives of ΩRN then that

of Ω.

When α = 0, (9.17) follows from (9.5). Hence it suffices to consider the

case α > 0. We begin with

0 =

∫∫
D(τ1,τ2)

χ− logα+
1

ΩRN
∂vφ

(
∂u∂vφ+

λ

r
∂uφ+

ν

r
∂vφ

)
=

1

2

∫
Γ

(1)
τ1

χ− logα+
1

ΩRN
(∂vφ)2 − 1

2

∫
Γ

(1)
τ2

χ− logα+
1

ΩRN
(∂vφ)2(9.18)

− α

4

∫∫
D(τ1,τ2)

χ− logα−1
+

1

ΩRN

(−∂uΩ2
RN )

Ω2
RN

(∂vφ)2(9.19)

− 1

2

∫∫
D(τ1,τ2)

(∂uχ−) logα+
1

ΩRN
(∂vφ)2(9.20)

+

∫∫
D(τ1,τ2)

χ−
r

logα+
1

ΩRN
λ(∂vφ)(∂uφ)(9.21)

+

∫∫
D(τ1,τ2)

χ−
r

logα+
1

ΩRN
ν(∂vφ)2.(9.22)

For each of these terms, we either show that it is bounded by the right-hand

side of (9.17) or we show that it has a good sign, i.e., the same sign as the

boundary integral on Γ
(1)
τ2 in (9.18).

Recall that on Reissner–Nordström, we have

−∂uΩ2
RN = ∂u4

Ç
1− 2M

rRN
+

e2

r2
RN

å
= −2

Ω2
RN

r2
RN

Ç
M − e2

rRN

å
.

The crucial observation here is that

M − e2

r−
< 0.

Hence by choosing A−,0 to be sufficiently large, so that the support of χ− is

close enough to CH+, we have −∂uΩ2
RN ≥ C−1Ω2

RN for some C > 0 on the
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support of χ−, and the space-time integral in (9.19) has the same sign as the

boundary integral on Γ
(1)
τ2 in (9.18). (Notice that this term also gives the good

bulk term on the left-hand side of (9.17).)

The term (9.20) can be controlled using Proposition 9.2, as it is safely lo-

calized away from CH+. For (9.21), we first use the Cauchy-Schwarz inequality

to write

|(9.21)| ≤ ε

2

∫∫
D(τ1,τ2)

χ− logα−1
+

Å
1

Ω

ã
(∂vφ)2

+
1

2ε

∫∫
D(τ1,τ2)

χ−
λ2 logα+1

+

Ä
1
Ω

ä
r2

(∂uφ)2.

Choosing ε > 0 sufficiently small and using the fact that Ω2
RN ∼ Ω2 (by

Theorem 5.1), the first term can be bounded by (9.19). For the second term,

recall from Proposition 8.15 that

|λ| ≤ C(Ω2
RN + v−2s).

In particular, this implies that in the support of χ−, i.e., when u+v ≥ A−−1,

we have

|λ2 logα+1
+

Å
1

Ω

ã
| ≤ C log−4s+α+1

+

Å
1

Ω

ã
≤ C log−γ+

Å
1

Ω

ã
.

Together with the lower bound on r, we thus have∫∫
D(τ1,τ2)

χ−
λ2 logα+1

+

Ä
1
Ω

ä
r2

(∂uφ)2 ≤ C
∫∫
D(τ1,τ2)

log−γ+

Å
1

Ω

ã
(∂uφ)2,

and the right-hand side can be bounded using Proposition 9.2. Finally, for the

term (9.22), notice that since |ν − νRN | ≤ C|u|−s, by choosing τ0 sufficiently

large, we have ν < 0 on {u + v = A− − 1} ∩ {τ ≥ τ0}. By (2.4), ν
Ω2 is mono-

tonically decreasing and we thus have ν ≤ 0 on the support of χ−. Therefore,

(9.22) has the same sign as the boundary integral on Γ
(1)
τ2 in (9.18).

Combining all these estimates and dropping the term (9.22), which has a

good sign, we obtain the desired conclusion. �

Our next proposition is an analogue of Proposition 9.4, but instead local-

ized near the event horizon. As in Proposition 9.4, we capture the red-shift

effect along the event horizon H+ as we approach i+. In particular, we have

a good bulk term for ∂uφ in this region that has a better weight compared to

that in (9.7).

Proposition 9.5. There exists A+,0 < 0 sufficiently negative such that

the following holds if A+ ≤ A+,0 with a constant CA−,A+ > 0 depending on A−
and A+: For τ0 sufficiently large, and for every τ1, τ2 such that τ0 ≤ τ1 ≤ τ2,
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we have ∫
Γ

(2)
τ2

χ+Ω−2(∂uφ)2 +

∫∫
D(τ1,τ2)

χ+Ω−2(∂uφ)2

≤ CA+,A−

( ∫
Γ

(1)
τ1

(∂vφ)2 +

∫
Γ

(2)
τ1

(1 + χ+Ω−2)(∂uφ)2
)

+ CA+,A−τ
−s
1

∫∫
D(τ1,τ2)

χ+ logγ+

Å
1

Ω

ã
(∂uφ)2

+ CA+,A−τ
−s
1

∫∫
D(τ1,τ2)

χ− logγ+

Å
1

Ω

ã
(∂vφ)2.

(9.23)

Proof. As in the proof of Proposition 9.4, we use ΩRN instead of Ω in the

weight since ΩRN and Ω are comparable. We begin with

0 =

∫∫
D(τ1,τ2)

χ+Ω−2
RN∂uφ

(
∂u∂vφ+

λ

r
∂uφ+

ν

r
∂vφ

)
=− 1

2

∫
Γ

(2)
τ1

χ+Ω−2
RN (∂uφ)2 +

1

2

∫
Γ

(2)
τ2

χ+Ω−2
RN (∂uφ)2(9.24)

+
1

2

∫∫
D(τ1,τ2)

χ+
∂vΩ

2
RN

Ω4
RN

(∂uφ)2(9.25)

− 1

2

∫∫
D(τ1,τ2)

(∂vχ+)Ω−2
RN (∂uφ)2(9.26)

+

∫∫
D(τ1,τ2)

1

rΩ2
RN

χ+λ(∂uφ)2(9.27)

+

∫∫
D(τ1,τ2)

1

rΩ2
RN

χ+ν(∂uφ)(∂vφ).(9.28)

As in the proof of Proposition 9.4, for each of these terms, we either control

it or show that it has a good sign. First, we see that if A+,0 is chosen to be

sufficiently negative, then we have

(9.29)

∂vΩ
2
RN = −∂v4

Ç
1− 2M

rRN
+

e2

r2
RN

å
= 2

Ω2
RN

r2
RN

Ç
M − e2

r2
RN

å
≥ C−1Ω2

RN

on the support of χ+. This inequality follows from the observation that M− e2

r+

> 0. In particular, (9.25) has the same sign as the boundary integral on Γ
(2)
τ2 .

The rest of the proof proceeds similarly to that of Proposition 9.4. The

term (9.26) can be bounded by Proposition 9.2 since the term is localized away

from the event horizon. The term (9.27) is estimated slightly differently from

that in Proposition 9.4 since λ does not have a favorable sign. Nevertheless,

since

|λ| ≤ C(Ω2
RN + v−s),
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we have

|(9.27)| ≤ C
∫∫
D(τ1,τ2)

χ+

Ç
1 +

τ−s1

Ω2
RN

å
(∂uφ)2.

Therefore, by (9.29), we can choose A+,0 to be sufficiently negative such that

|(9.27)| can be dominated by (9.25); i.e., we have

(9.30) (9.25) + (9.27) ≥ C−1
∫∫
D(τ1,τ2)

χ+Ω−2
RN (∂uφ)2.

Finally, to handle (9.28), recall the following estimates from Theorem 5.1:

|νRN | ≤ CΩ2
RN , |ν − νRN | ≤ CΩ2

RNv
−s.

Therefore, by the Cauchy-Schwarz inequality, for every ε > 0, we have

|(9.28)| ≤ ε

2

∫∫
D(τ1,τ2)

χ+Ω−2
RN (∂uφ)2 +

C

2ε

∫∫
D(τ1,τ2)

χ+Ω2
RN (∂vφ)2.

Choosing ε sufficiently small the first term can be controlled by (9.30). On the

other hand, since Ω2
RN ≤ C log−γ+

Ä
1
Ω

ä
, the second term can be bounded using

Proposition 9.2. After noting that Ω and ΩRN are comparable, this concludes

the proof of the proposition. �

At this point, we can fix A− and A+ so that A− > A−,0 and A+ < A+,0

as in Propositions 9.4 and 9.5. We now drop the subscripts in the constants

CA+,A− ; i.e., from now on, we use the convention C also depends onA− andA+.

9.6. Putting everything together. We now state a proposition that com-

bines all the bounds that have been proven so far.

Proposition 9.6. For τ0 sufficiently large, for every α ∈ [0, α0] and for

every τ1, τ2 such that τ0 ≤ τ1 ≤ τ2, we have

(9.31)

∫
Γ

(1)
τ2

(
1 + χ− logα+

Å
1

Ω

ã )
(∂vφ)2 +

∫
Γ

(2)
τ2

Ω−2(∂uφ)2

+

∫
CH+(τ1,τ2)

(∂uφ)2 +

∫
H+(τ1,τ2)

(∂vφ)2

+

∫∫
D(τ1,τ2)

ÅÅ
log−γ+

Å
1

Ω

ã
+ αχ− logα−1

+

Å
1

Ω

ãã
(∂vφ)2

+

Å
log−γ+

Å
1

Ω

ã
+ χ+Ω−2

ã
(∂uφ)2

ã
≤ C

( ∫
Γ

(1)
τ1

(
1 + χ− logα+

Å
1

Ω

ã )
(∂vφ)2 +

∫
Γ

(2)
τ1

Ω−2(∂uφ)2
)

+ Cτ−s1

∫∫
D(τ1,τ2)

χ− logγ+

Å
1

Ω

ã
(∂vφ)2.
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Proof. Combining the estimates in Propositions 9.2, 9.3, 9.4 and 9.5, we

obtain (9.31) except that on the right-hand side we instead have

≤ C
Ç∫

Γ
(1)
τ1

Å
1 + χ− logα+

Å
1

Ω

ãã
(∂vφ)2 +

∫
Γ

(2)
τ1

Ω−2(∂uφ)2

å
+ Cτ−s1

∫∫
D(τ1,τ2)

χ+ logγ+

Å
1

Ω

ã
(∂uφ)2

+ Cτ−s1

∫∫
D(τ1,τ2)

χ− logγ+

Å
1

Ω

ã
(∂vφ)2.

Finally, by choosing τ0 to be sufficiently large, we can subtract

Cτ−s1

∫∫
D(τ1,τ2)

χ+ logγ+

Å
1

Ω

ã
(∂uφ)2

from both sides (since logγ+
Ä

1
Ω

ä
≤ CΩ−2 on the support of χ+) and obtain the

desired conclusion. �

Iterating Proposition 9.6, we obtain a decay statement for ∂vφ on H+.

Proposition 9.7. Assume that for every τ0 sufficiently large, there exists

τ ′0 ≥ τ0 such that (9.1) holds. Then for every τ ≥ τ ′0, we have

(9.32)

∫
H+(τ,∞)

(∂vφ)2 ≤ Cτ ′0,Eτ ′
0

τ−α0 .

Proof. We will prove the following statement for every τ ≥ τ ′0 and for

n ≤ α0 by an induction on n:

(9.33)

τn
∫
H+(τ,∞)

(∂vφ)2 +
n∑
j=0

(α0 − j)τ j
∫∫
D(τ,∞)

χ− logα0−j−1
+

Å
1

Ω

ã
(∂vφ)2

+ τn
∫∫
D(τ,∞)

χ+Ω−2(∂uφ)2

+ τn
∫∫
D(τ,∞)

log−γ+

Å
1

Ω

ã (
(∂vφ)2 + (∂uφ)2

)
≤ In,

where In is a positive constant depending on Eτ ′0 , n, τ ′0, M , e, E, s, α0 and is

independent of τ .

We begin with the n = 0 case. By Proposition 9.6 with α = α0, and using

the contradiction assumption (9.1), we get

(9.34)

∫
H+(τ,∞)

(∂vφ)2 + α0

∫∫
D(τ,∞)

χ− logα0−1
+

Å
1

Ω

ã
(∂vφ)2

+

∫∫
D(τ,∞)

χ+Ω−2(∂uφ)2 +

∫∫
D(τ,∞)

log−γ+

Å
1

Ω

ã (
(∂vφ)2 + (∂uφ)2

)
≤ C(1 + Eτ ′0) + Cτ−s

∫∫
D(τ,∞)

χ− logγ+

Å
1

Ω

ã
(∂vφ)2.
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Notice that we have used (9.1) as well as the estimates in Theorem 5.1 to show

that the “data terms” on Γτ ′0 are bounded by C(1 + Eτ ′0). Recall now that

γ ≤ 2 ≤ α0 − 1, and therefore after choosing τ0 to be sufficiently large, we can

subtract Cτ−s
∫∫
D(τ,∞) χ− logγ+

Ä
1
Ω

ä
(∂vφ)2 from both sides of (9.34) to obtain

(9.35)

∫
H+(τ,∞)

(∂vφ)2 + α0

∫∫
D(τ,∞)

χ− logα0−1
+

Å
1

Ω

ã
(∂vφ)2

+

∫∫
D(τ,∞)

χ+Ω−2(∂uφ)2

+

∫∫
D(τ,∞)

log−γ+

Å
1

Ω

ã (
(∂vφ)2 + (∂uφ)2

)
≤ C(1 + Eτ ′0),

which is the desired conclusion for n = 0.

Assume, for the purpose of induction, that (9.33) holds for n = 0, 1, . . . ,

n0 − 1, where n0 is an integer such that 1 ≤ n0 ≤ α0. Then for every k ∈
N ∩ {2k ≥ τ ′0}, by the pigeonhole principle, there exists τ(k) ∈ [2k, 2k+1] such

that

(9.36)

∫
Γ

(1)
τ(k)

(Ä
log−γ+

Å
1

Ω

ã
+ (α0 − n0 + 1)χ− logα0−n0

+

Å
1

Ω

ã ä
(∂vφ)2

)
+

∫
Γ

(2)
τ(k)

(
(log−γ+

Å
1

Ω

ã
+ χ+Ω−2)(∂uφ)2

)
≤ CIn0−1τ

−n0

(k) ,

for some C > 0. Observe that the first two terms on the right-hand side

of (9.31) for α = α0 − n0 and τ1 = τ(k) is bounded by a constant multiple

of the left-hand side of (9.36), where the constant may depend on n0 but is

independent of τ(k). By appealing to Proposition 9.6, we obtain that for every

τ ∈ [τ(k), τ(k+1)):

(9.37)∫
H+(τ(k),τ)

(∂vφ)2 + (α0 − n0)

∫∫
D(τ(k),τ)

χ− logα0−n0−1
+

Å
1

Ω

ã
(∂vφ)2

+

∫∫
D(τ(k),τ)

χ+Ω−2(∂uφ)2 +

∫∫
D(τ(k),τ)

log−γ+

Å
1

Ω

ã (
(∂vφ)2 + (∂uφ)2

)
≤ CIn0−1τ

−n0

(k) + Cτ−s(k)

∫∫
D(τ(k),τ)

χ− logγ+

Å
1

Ω

ã
(∂vφ)2.

We now separate the argument into two cases: either α0−n0 ≥ 2 or α0−n0 ≤ 1.

In the first case, since γ ≤ 2 ≤ α0−n0, we can apply the induction hypothesis

for n = n0 − 1, which gives

τ−s(k)

∫∫
D(τ(k),τ)

χ− logγ+

Å
1

Ω

ã
(∂vφ)2 ≤ Cτ−s(k)

∫∫
D(τ(k),τ)

χ− logα0−n0
+

Å
1

Ω

ã
(∂vφ)2

≤ In0−1τ
−n0−s+1
(k) .
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Since s > 2, combining this with (9.37) thus gives

(9.38)

∫
H+(τ(k),τ)

(∂vφ)2 + (α0 − n0)

∫∫
D(τ(k),τ)

χ− logα0−n0−1
+

Å
1

Ω

ã
(∂vφ)2

+

∫∫
D(τ(k),τ)

χ+Ω−2(∂uφ)2

+

∫∫
D(τ(k),τ)

log−γ+

Å
1

Ω

ã (
(∂vφ)2 + (∂uφ)2

)
≤ CIn0−1τ

−n0

(k) .

In the second case, since n0 − 1 ≥ α0 − 2, we can thus apply the inductive

hypothesis for n = α0 − 2. (Notice that the assumption of Theorem 5.4, in

particular, ensures that α0 − 3 ≥ 0.) By (9.33), we therefore have

τα0−2
∫∫
D(τ,∞)

χ− log

Å
1

Ω

ã
(∂vφ)2

+τα0−3
∫∫
D(τ,∞)

χ− log2
+

Å
1

Ω

ã
(∂vφ)2 ≤ Iα0−2

for all τ ≥ τ ′0. By the Cauchy-Schwarz inequality, since γ ∈ (1, 2], this then

gives ∫∫
D(τ,∞)

χ− logγ+

Å
1

Ω

ã
(∂vφ)2 ≤ CIα0−2τ

−α0+1+γ

for all τ ≥ τ ′0. We can use this to control the last term in (9.37) to get

(9.39)∫
H+(τ(k),τ)

(∂vφ)2 + (α0 − n0)

∫∫
D(τ(k),τ)

χ− logα0−n0−1
+

Å
1

Ω

ã
(∂vφ)2

+

∫∫
D(τ(k),τ)

χ+Ω−2(∂uφ)2 +

∫∫
D(τ(k),τ)

log−γ+

Å
1

Ω

ã (
(∂vφ)2 + (∂uφ)2

)
≤ CIn0−1τ

−n0

(k) + CIα0−2τ
−α0+1+γ−s
(k) ≤ C(In0−1 + Iα0−2)τ−n0

(k) ,

where in the last estimate we have used γ ≤ s− 1 and n0 ≤ α0.

Therefore, in both cases, by (9.38) and (9.39) (and using the induction

hypothesis for the j ≤ n0 − 1 term in the sum below), we conclude that

(9.40)

2kn0

∫
H+(τ(k),4τ(k))

(∂vφ)2

+
n0∑
j=0

(α0 − j)2kj
∫∫
D(τ(k),4τ(k))

χ− logα0−j−1
+

Å
1

Ω

ã
(∂vφ)2

+ 2kn0

∫∫
D(τ(k),4τ(k))

χ+Ω−2(∂uφ)2

+ 2kn0

∫∫
D(τ(k),4τ(k))

log−γ+

Å
1

Ω

ã (
(∂vφ)2 + (∂uφ)2

)
≤ In0 .
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Note, in particular, that [2k+1, 2k+2] ⊆ [τ(k), 4τ(k)]. Hence, for any τ ≥
2dlog2 τ

′
0e+1, we can sum (9.40) for k ≥ blog2 τc − 1 to obtain (9.33) for n = n0.

Finally, for τ ∈ [τ ′0, 2
dlog2 τ

′
0e+1), the desired estimate (9.33) for n = n0 follows

from (9.35). (Recall that the implicit constant is allowed to depend on τ ′0.) The

concludes the induction and proves (9.33). The conclusion of the proposition

follows as an immediate consequence. �

We now conclude the proof of (5.16) in Theorem 5.4:

Proof of (5.16) in Theorem 5.4. Using Proposition 9.7, we have, in par-

ticular, ∫
H+(τ,2τ)

τα0(∂vφ)2 ≤ C

for τ ≥ τ ′0 (for C depending, in particular, on τ ′0 but independent of τ). We

apply this estimate for a sequence τk = 2k to get∫
H+∩{v≥τ ′0}

vα0

log2(1 + v)
(∂vφ)2 ≤ C

∞∑
k=0

∫
H+(τk,τk+1)

τα0

(k + 1)2
(∂vφ)2

≤ C
∞∑
k=0

1

(k + 1)2
<∞.

We have thus achieved (9.2) and conclude the proof of (5.16) in Theorem 5.4.

�

9.7. Blow up of λ
Ω2 .

Proof of (5.17) in Theorem 5.4. This is proven using (2.4):

∂v

Å
λ

Ω2

ã
= − r

Ω2
(∂vφ)2.

By Theorem 5.1, |∂v log Ω−∂v log ΩRN |+ |λ−λRN |(u, v) ≤ Cv−s, |r− rRN | ≤
C max{v−s, |u|−s+1} for all u < us, and therefore there exists Aλ ∈ R suffi-

ciently large and uλ < us such that

(1) λ
Ω2 (u,−u+Aλ) < 0 for all u < uλ;

(2) r(u, v)>r0>0 for every (u, v)∈{(u, v) : u < uλ, v ≥ −u+Aλ} for some r0.

Therefore, by (8.26), we can integrate in the v-direction starting from v =

−u+Aλ to get∣∣∣∣ λΩ2

∣∣∣∣ (u, v) &
∫ v

−u+Aλ

(
r(∂vφ)2

Ω2
)(u, v′) dv′

& r0

∫ v

−u+Aλ

e2κ−(v′+u)(∂vφ)2(u, v′) dv′

&
∫ v

−u+Aλ

e2κ−v′(∂vφ)2(u, v′) dv′,
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for every (u, v) ∈ {(u, v) : u < uλ, v + u ≥ Aλ}, with an implicit constant

depending on r0 and u.

By Theorem 5.4 (and the fact that for every fixed u, Ω ∼ e−κ−v for v

sufficient large with a constant depending on u), the right-hand side → ∞ as

v →∞. This implies the desired conclusion. �

10. Stability and blow up on the entire Cauchy horizon:

Proof of Theorem 5.5

In this section, we prove Theorem 5.5. Unlike Theorems 5.1 and 5.4, we

need to work in the nonperturbative region; i.e., the spacetime is not necessar-

ily close to a Reissner–Nordström in any quantitative sense. Special features

of Einstein–Maxwell-(real)-scalar-field system in spherical symmetry therefore

play an important role in the proof. A key step is propagation of L1-type

bounds on the metric coefficients and φ, which hold initially thanks to Theo-

rem 5.1, in characteristic rectangles with a lower bound on r (Lemma 10.3).

This strengthens the estimates for the scalar field in [13, §13].

We first introduce the coordinates (u, V ), which will be fixed for the re-

mainder of this section. Fix an incoming null curve C1 (maximally extended)

whose past endpoint intersects H+
1 . We define the coordinates (U, v) by the

gauge condition (5.11) on H+
1 and (5.13) (i.e., ∂Ur = −1) on the whole C1, so

that C1 = {(U, v) : v = 1}. In particular, if we use the same initial incoming

curve C1, then this coordinate system extends that of Theorem 5.1 past the

perturbative region U ≤ Us. As before, we define (u, V ) from (U, v) by (5.8)

and (5.10), respectively.

We record a basic observation regarding the coordinates (u, V ) on CH+
1 .

Lemma 10.1. After extending V continuously to Q+ with respect to the

topology of R1+1, the Cauchy horizon CH+
1 coincides with the curve {V = 1}.

Moreover, u is finite and nondegenerate (i.e., du 6= 0) on CH+
1 minus (possi-

bly) the future endpoint. In particular, uCH+
1
∈ (−∞,∞] in the statement of

Theorem 5.5 is well defined.

Proof. Fix an outgoing curve C∗ in Q+ that intersects CH+
1 minus the

future endpoint. Since Q is globally hyperbolic, C∗ intersects the initial hy-

persurface H+
1 ∪ Σ ∪ H+

2 , from which it follows that C∗ intersects C1 in Q.

Since the u coordinate is constant on C∗, it now suffices to verify that u is

finite and nondegenerate on every point in C1 ⊂ Q.

By the condition (5.13), the Raychaudhuri equation (which ensures that

r decreases along C1 in the incoming direction) and the fact that r ≥ 0 on Q,

the function U is finite and nondegenerate on every point on C1 ∩ Q. Since

the change of variables (5.8) is nondegenerate and keeps u(U) finite as long as

U is, the same statement holds for u as desired. �
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Consider a characteristic rectangle

R = {(u, V ) : u1 ≤ u ≤ u2, V1 ≤ V < 1},

where u1, u2, V1 are any numbers such that −∞ < u1 < u2 < uCH+
1

and

V1 > V (1) (see Figure 8).

CH+
1 = {u ≤ uCH+

1
, V = 1}

H+
1

i+{V = V1}

{u = u2}

{u = u1}

R

Figure 8. Characteristic rectangle R.

In the following lemmas, we will assume that the following bounds on r

holds in R:

(10.1) 0 < r0 ≤ r(u, V ) ≤ R < |e| for all (u, V ) ∈ R.

The key restrictive assumption is the lower bound r(u, V ) ≥ r0 > 0. In fact,

the upper bound in (10.1) turns out to be a simple consequence of the fact that

R sits in the interior of a subextremal black hole; see the proof of Theorem 5.5

below.

Under the above assumptions, we first show that the spacetime volume

of R is finite. Its proof requires the use of (10.1) and the precise structure

of the spherically symmetric Einstein–Maxwell-(real)-scalar-field system. (In

particular, the strict inequality R < |e| in (10.1) is crucial.)

Lemma 10.2. Let R = {(u, V ) : u1 ≤ u ≤ u2, V1 ≤ V < 1} ⊂ Q be a

characteristic rectangle such that (10.1) holds. Then the spacetime volume of

R is finite, i.e.,

(10.2)

∫ u2

u1

∫ 1

V1

Ω2(u, V ) dV du ≤ 8R2

|1− e2

R2 |
<∞,

where R as in (10.1).
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Proof. We apply the (2.3) equations in the (u, V ) coordinate. By the

∂u∂V r equation,

(10.3)
1

2
∂u∂V r

2 = ∂u(r∂V r) = r∂u∂V r + ∂ur∂V r = −Ω2

4

Ç
1− e2

r2

å
.

By (10.1), we have 1− e2

r2 ≤ 1− e2

R2 < 0. Therefore,∫ u2

u1

∫ V2

V1

Ω2(u, V ) dV du ≤ 2

|1− e2

R2 |

∫ u2

u1

∫ V2

V1

(∂u∂V r
2)(u, V ) dV du ≤ 8R2

|1− e2

R2 |
,

where the last step simply follows from r2(u1, V1) + r2(u1, V2) + r2(u2, V1) +

r2(u2, V2) ≤ 4R2. �

Next, we prove the key L1 bounds on Ω, r and φ. The idea is to divide R
into sub-rectangles to gain a smallness parameter, which is possible thanks to

the finiteness of the spacetime volume of R.

Lemma 10.3. Let R = {(u, V ) : u1 ≤ u ≤ u2, V1 ≤ V < 1} ⊂ Q be a

characteristic rectangle such that (10.1) holds. Assume furthermore that∫ u2

u1

r|∂ur|(u, V1)du+

∫ u2

u1

r|∂uφ|(u, V1)du+

∫ u2

u1

|∂u log Ω|(u, V1)du

+

∫ 1

V1

r|∂V r|(u1, V )dV +

∫ 1

V1

r|∂V φ|(u1, V )dV

+

∫ 1

V1

|∂V log Ω|(u1, V )dV ≤ DR

(10.4)

for some 0 < DR <∞. Then the following estimates hold :∫ u2

u1

sup
V ∈[V1,1)

r|∂ur|(u, V )du+

∫ 1

V1

sup
u∈[u1,u2]

r|∂V r|(u, V )dV ≤ Cr0,R,e,DR ,(10.5)

∫ u2

u1

sup
V ∈[V1,1)

r|∂uφ|(u, V )du+

∫ 1

V1

sup
u∈[u1,u2]

r|∂V φ|(u, V )dV ≤ Cr0,R,e,DR ,

(10.6)

∫ u2

u1

sup
V ∈[V1,1)

|∂u log Ω|(u, V )du+

∫ 1

V1

sup
u∈[u1,u2]

|∂V log Ω|(u, V )dV ≤ Cr0,R,e,DR .

(10.7)

Proof. We proceed in three steps, obtaining bounds for r, φ and log Ω in

order.

Step 1: L1 estimates for ∂ur and ∂V r. Our goal is to show that there

exist partitions u1 = u(0) < u(1) < · · · < u(m) = u2 and V1 = V (0) < V (1) <
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· · · < V (n) = 1 for some m,n ∈ N such that66

max
0≤i≤m−1

∫ u(i+1)

u(i)
sup

V ∈[V1,V2]

∣∣∣∣∂urr
∣∣∣∣ (u, V ) du

+ max
0≤j≤n−1

∫ V (j+1)

V (j)
sup

u∈[u1,u2]

∣∣∣∣∂V rr
∣∣∣∣ (u, V ) dV ≤ 1

2
.

(10.8)

We will find the partition in V and estimate the second term in (10.8). The

other term can be controlled in a completely analogous manner. Note that

(10.5) follows from (10.8) by summing up in i, j.

Using the bound for r|∂V r|(u1, V ) in (10.4), the bounds for r in (10.1) and

the estimate (10.2) for the spacetime volume, for every δ > 0, we can choose a

partition V1 = V (0) < V (1) < · · · < V (n) = 1 such that

(10.9)

max
0≤j≤n−1

(∫ V (j+1)

V (j)
|r∂V r| (u1, V ) dV +

∫ u2

u1

∫ V (j+1)

V (j)
Ω2(u, V ) dV du

)
≤ δ.

Integrating (10.3) in u, using (10.9) and (10.1) we thus obtain that

max
0≤j≤n−1

∫ V (j+1)

V (j)
sup

u∈[u1,u2]
r |∂V r| (u, V ) dV

≤ δ + max
0≤j≤n−1

Ü
sup

u∈[u1,u2]

V ∈[V (j),V (j+1)]

1

4

∣∣∣∣∣1− e2

r2

∣∣∣∣∣ (u, v)

ê
×
(∫ u2

u1

∫ V (j+1)

V (j)
Ω2(u, V ) dV du

)
≤ Cr0,eδ

(10.10)

for some constant Cr0,e > 0 depending on r0 and e. Using (10.1) again and

choosing δ sufficiently small depending on r0 and e, we thus obtain

max
0≤j≤n−1

∫ V (j+1)

V (j)
sup

u∈[u1,u2]

∣∣∣∣∂V rr
∣∣∣∣ (u, V ) dV ≤ 1

4
.

A similar bound for the first term in (10.8) can be obtained in a completely

identical manner.

Step 2: L1 estimates for ∂uφ and ∂V φ. Our goal is to show (10.6). Note

that
∫ 1
V1
r|∂V φ|(u1, V )dV and

∫ u2

u1
r|∂uφ|(u, V1)du are bounded by (10.4). We

will propagate these bounds in the direction where V and u are both increasing.

66Let us note that the main point in (10.8) is the supremums in the estimates. The same

bounds without the supremums can be easily obtained using (10.1), ∂ur < 0 and the fact

that ∂vr changes sign at most once along a constant u-curve. (The last fact follows from

(2.4).)
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Consider Rij := {(u, V ) : V (j) ≤ V ≤ V (j+1), u(i) ≤ u ≤ u(i+1)} for

0 ≤ i ≤ m− 1, 0 ≤ j ≤ n− 1, where V (j), u(i), etc. are as in the previous step.

Note that by definition ∪m−1
i=0 ∪

n−1
j=0 Rij = R. By the initial L1 boundedness of

|∂V φ| and |∂uφ| mentioned above, it therefore suffices to show that for every

0 ≤ i ≤ m− 1, 0 ≤ j ≤ n− 1,

(10.11)∫ u(i+1)

u(i)
sup

V ∈[V (j),V (j+1))

r|∂uφ|(u, V ) du+

∫ V (j+1)

V (j)
sup

u∈[u(i),u(i+1)]

r|∂V φ|(u, V ) dV

≤ 2

(∫ u(i+1)

u(i)
r|∂uφ|(v, V (j)) +

∫ V (j+1)

V (j)
r|∂V φ|(u(i), V )

)
;

i.e., in every Rij , the L1L∞ norm of r|∂uφ| and r|∂V φ| are at most twice their

initial values on the lower left and right sides. Indeed, since there are finitely

many Rij ’s, iterating (10.11) gives the desired estimate (10.6).

In order to prove (10.11), we rewrite (2.3) as

∂u(r∂V φ) = −(∂V r)(∂uφ), ∂V (r∂uφ) = −(∂ur)(∂V φ).

Integrating these equations in the−∂u and∂V directions respectively, we obtain∫ u(i+1)

u(i)
sup

V ∈[V (j),V (j+1))

r|∂uφ|(u, V ) du+

∫ V (j+1)

V (j)
sup

u∈[u(i),u(i+1)]

r|∂V φ|(u, V ) dV

≤
(∫ u(i+1)

u(i)
r|∂uφ|(v, V (j)) +

∫ V (j+1)

V (j)
r|∂V φ|(u(i), V )

)

+

(
max

0≤i≤m−1

∫ u(i+1)

u(i)
sup

V ∈[V1,V2]

∣∣∣∣∂urr
∣∣∣∣ (u, V ) du

+ max
0≤j≤n−1

∫ V (j+1)

V (j)
sup

u∈[u1,u2]

∣∣∣∣∂V rr
∣∣∣∣ (u, V ) dV

)

×
(∫ u(i+1)

u(i)
sup

V ∈[V (j),V (j+1))

r|∂uφ|(u, V ) du

+

∫ V (j+1)

V (j)
sup

u∈[u(i),u(i+1)]

r|∂V φ|(u, V ) dV

)

≤
(∫ u(i+1)

u(i)
r|∂uφ|(v, V (j)) +

∫ V (j+1)

V (j)
r|∂V φ|(u(i), V )

)

+
1

2

(∫ u(i+1)

u(i)
sup

V ∈[V (j),V (j+1))

r|∂uφ|(u, V ) du

+

∫ V (j+1)

V (j)
sup

u∈[u(i),u(i+1)]

r|∂V φ|(u, V ) dV

)
,
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where the last line is achieved using (10.8). Rearranging this estimate then

gives (10.11).

Step 3: L1 estimates for ∂u log Ω and ∂V log Ω. Our goal is to show that

(10.12)∫ u2

u1

sup
V ∈[V1,1)

|∂u log Ω| (u, V ) du+

∫ 1

V1

sup
u∈[u1,u2]

|∂V log Ω| (u, V ) dV <∞.

Note that
∫ 1
V1
|∂V log Ω|(u1, V )dV and

∫ u2

u1
|∂u log Ω|(u, V1)du are bounded by

(10.4). Using the equation for ∂u∂V log Ω in (2.3), in order to prove (10.12), it

therefore suffices to bound∫ 1

V1

∫ u2

u1

Ç
|∂uφ∂V φ|+

Ω2e2

2r4
+

Ω2

4r2
+
|∂ur∂V r|

r2

å
(u, V ) du dV

=:

∫∫
(I + II + III + IV ).

The term I is bounded using (10.6) and Hölder’s inequality. The terms II and

III are bounded thanks to (10.1) and (10.2). Finally, the term IV is bounded

using the estimate (10.5) and Hölder’s inequality. �

As a consequence of the L1 bounds, C0 extendibility on the entire CH+
1

(excluding the endpoint at which r = 0) can be established.

Lemma 10.4. Let R = {(u, V ) : u1 ≤ u ≤ u2, V1 ≤ V < 1} ⊂ Q be a

characteristic rectangle such that (10.1) and (10.4) hold. Then one can attach

the boundary67 CH+
1 ∩R = {(u, V ) : u1 ≤ u ≤ u2, V = 1} to R, to which r, φ

and log Ω extend continuously.

Proof. We only consider the case of log Ω; the conclusion for r and φ

follows analogously from the bounds in Lemma 10.3. As in Proposition 8.14, it

suffices to show that given any sequence u(i) → u and V(i) → 1, log Ω(u(i), V(i))

is a Cauchy sequence. We have

| log Ω(u(i), V(i))− log Ω(u(j), V(j))|

≤ |
∫ u(j)

u(i)

∂u log Ω(u′, V(i)) du
′|+ |

∫ V(j)

V(i)

∂V log Ω(u(j), V
′) dV ′|

≤
∫ u(j)

u(i)

sup
V ′∈[V1,1)

|∂u log Ω|(u′, V ′) du′ +
∫ V(j)

V(i)

sup
u′∈[u1,u2]

|∂V log Ω|(u′, V ′) dV ′,

where the last line goes to zero as i, j →∞ thanks to (10.7) and the fact that

u(j) − u(i), V(j) − V(i) → 0. �

67Here R refers to the closure of R in the topology induced by the conformal embedding

Q ↪→ R1+1 described in Theorem 4.1.
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Next, we show that the blow up of ∂V r and Ω−2∂V φ propagate along CH+
1 .

Lemma 10.5. Let R = {(u, V ) : u1 ≤ u ≤ u2, V1 ≤ V < 1} ⊂ Q be a

characteristic rectangle such that (10.1) and (10.4) hold. Assume furthermore

that

lim
V→1

∂V r(u1, V ) =−∞.

Then for every u ∈ [u1, u2], we have

lim
V→1

∂V r(u, V ) =−∞,∫ 1

V1

(∂V φ)2

Ω2
(u, V ) dV =∞.

Proof. By Lemma 10.4, there exists a constant C > 0 such that

C−1 ≤ Ω2(u, V ) ≤ C on R.

Fix any u1 ≤ u ≤ u2. Plugging in this bound to (10.3), we see that

(10.13) |∂u(r∂V r)|(u, V ) ≤ 1

4

∣∣∣∣1− e2

r2
0

∣∣∣∣Ω2(u, V ) ≤ C.

By the fundamental theorem of calculus, we may write

−∂V r(u, V ) =
r(u1, V )

r(u, V )
(−∂V r)(u1, V )− 1

r(u, V )

∫ u

u1

∂u(r∂V r)(u, V ) du′.

Then using (10.13), it follows that

lim inf
V→1

(−∂V r)(u, V ) ≥ r0

R
lim inf
V→1

(−∂V r)(u1, V )− C =∞.

By the Raychaudhuri equation (2.4) for Ω−2∂V r, we also have∫ 1

V1

(∂V φ)2

Ω2
(u, V ) dV ≥ 1

R

∫ 1

V1

r
(∂V φ)2

Ω2
(u, V ) dV

= lim
V→1

(−∂V r)
Ω2

(u, V )− (−∂V r)
Ω2

(u, V1) =∞,

which completes the proof. �

We are now ready to prove Theorem 5.5.

Proof of Theorem 5.5. Let us ∈ R be as in Theorem 5.1, and fix u2 ∈
(us, uCH+

1
). Let u1 ∈ (−∞, us] and68 V1 ∈ (V (1), 1) be parameters to be

chosen below.

We claim that there exist r0, R ∈ R such that (10.1) holds in R = {(u, V ) :

u1 ≤ u ≤ u2, V1 ≤ V < 1}. First, by (3.4) and Lemma A.1 in Appendix A, we

68Here, V (1) is the value of V corresponding to v = 1.
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have ∂ur < 0 on Σ0 ∩ J−(I+
1 ). Therefore, by (2.4), we have69 ∂ur

Ω2 < 0 in R.

In particular, r(u, V ) is decreasing in u for every fixed V .

Observe now that the r-value on the Reissner–Nordström Cauchy horizon

r− = M −
√
M2 − e2 satisfies r− < |e| since |e| < M . By Theorem 5.1,

limu→−∞ limv→∞ r(u, v) = r−. Therefore, choosing V1 sufficiently close to 1,

there exists R ∈ (0, |e|) such that r(u1, V ) ≤ R whenever V ∈ [V1, 1). The

monotonicity of r described above then implies that r(u, V ) ≤ R for every

(u, V ) ∈ R.

To show the lower bound in r, we use the fact that (u2, 1) lies on the

non-endpoint of CH+
1 to get limV→1 r(u2, V ) > 0 (cf. Theorem 4.1(2)(e)).

Therefore, choosing V1 sufficiently close to 1, there exists r0 ∈ R such that

r(u2, V ) ≥ r0 > 0 for every V ∈ [V1, 1]. Using the monotonicity of r again, we

therefore obtain r(u, V ) ≥ r0 for every (u, V ) ∈ R.

Next we verify the hypothesis (10.4) of Lemma 10.3. Since u1 ≤ us, the

terms on the second line of (10.4) are finite. On the other hand, finiteness

of the terms on the first line of (10.4) simply follows from the fact that the

segment {(u, V ) : u1 ≤ u ≤ u2, V = V1} is a compact subset of Q.

In conclusion, we see that R satisfies (10.1) and (10.4). By Lemma 10.4,

C0 extendibility to {(u, V ) : u1 ≤ u ≤ u2, V = 1} = R∩CH+
1 holds. Moreover,

by Lemma 10.5 and Theorem 5.4, (5.18)–(5.19) hold for every u ∈ [u1, u2] pro-

vided that (5.15) holds on H+
1 . Since u2 ∈ (us, uCH+

1
] is arbitrary, Theorem 5.5

follows. �

Remark 10.6. In the case S = ∅, so that CH+
1 ∩ CH

+
2 consists of a bifur-

cation sphere p = (uCH+
1
, 1) with r(p) > 0, we may repeat the above proof

in the coordinate system (UCH+
2
, VCH+

1
) (as described in Remark 5.6) with

R = [UCH+
2 ,1
, 1)× [VCH+

1 ,1
, 1), where UCH+

2 ,1
, VCH+

1 ,1
are sufficiently close to 1.

The crucial observation is that the lower bound r ≥ r0 > 0 holds on R. We

leave the details to the reader.

11. C2 inextendibility: Proof of Theorem 5.7

In this section, we prove the C2-future-inextendibility of the maximal glob-

ally hyperbolic future development of the admissible Cauchy data satisfying

the assumptions of Theorem 5.7. The proof will be based on a contradiction

argument. We assume for the sake of argument that (M, g) as in Theorem 5.7

is future-extendible in C2; i.e., we assume that there exist ι and (›M, g̃) as in

Definition 3.12. Our goal will be to derive a contradiction to the blow up of
1

Ω2∂V φ derived in Section 10.

69Here, Ω2 is to be understood in the (u, v) coordinate system.
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In order to lighten the notation, let us write ι(M) simply as M when

there is no danger of confusion. Given (M, g), (›M, g̃) and ι as above, we will

also denote by ∂M the (topological) boundary of ι(M) in ›M.

Let us briefly describe the ideas of the proof of Theorem 5.7. The proof

consists of two main steps:

(1) In the first part of the proof, using ideas in [33], [17], we will reduce the

problem to ruling out radial null geodesics γ that exitM through70 CH+
1 or

CH+
2 and entering ›M and such that r > 0 at γ ∩ ∂M. (Lemmas 11.1–11.6

and Steps 1 and 2 in Lemma 11.7).

(2) Next, suppose a radial null geodesic γ exits Q, say,71 through CH+
1 . We

note that (5.18) implies that the Ricci curvature of a parallel-propagated

vector field blows up along γ. This clearly contradicts that γ is a geodesic

in ›M. (Step 3 in Lemma 11.7)

We now begin the first step of the proof with a standard result:

Lemma 11.1. The boundary ∂M is locally an achronal Lipschitz hyper-

surface.

Proof. This is standard and can be found, for instance, in [27]. �

The next lemma is due to Dafermos–Rendall [17]:

Lemma 11.2. The standard rotations (O1,O2,O3) extend continuously

to ∂M.

Proof. The fact that any Killing vector field in (M, g) extends continu-

ously to the boundary in the C2 extension (›M, g̃) is proven in [17]. The lemma

thus follows as O1,O2,O3 are Killing vector fields in (M, g). �

In particular, this implies,

Lemma 11.3. The area radius function r extends continuously to ∂M.

Proof. This follows from Lemma 11.2 together with r2 = 1
2

∑3
i=1 g(Oi,Oi).

�

Lemma 11.4. Let p ∈ ∂M such that r(p) 6= 0. Then the continuous

extensions of (O1,O2,O3) at Tp›M span a 2-dimensional spacelike subspace of

Tp›M with respect to the metric g̃.

70Strictly speaking, it is the projection π(γ) that exists through CH+
1 or CH+

2 ; i.e., the

closure of π(γ) in Q+ intersects CH+
1 or CH+

2 .
71The case where CH+

1 is replaced by CH+
2 is of course completely analogous.
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Proof. Step 1. We first show that span{O1(p),O2(p),O3(p)} contains a

2-dimensional spacelike subspace. We use the following claim:

Claim. For every point q ∈ M, there exist (i, j) ∈ {1, 2, 3}2 with i 6= j

such that g(Oi,Oi)(q) ≥ 2r2(q)
3 , g(Oj ,Oj)(q) ≥ 2r2(q)

3 , and ‹Oij =Oi− g(Oi,Oj)
g(Oj ,Oj)Oj

satisfies g(‹Oij , ‹Oij)(q) ≥ r2(q)
2 .

Proof of Claim. Rescaling the estimates by the radius of the 2-spheres, it

suffices to show this on a standard 2-sphere with r = 1 embedded in R3 given

by {(x, y, z) : x2 + y2 + z2 = 1}. In Cartesian coordinates, the vector fields are

given by O1 = x∂y − y∂x, O2 = y∂z − z∂y, O3 = z∂x − x∂z. Without loss of

generality, we can assume that

(11.1) g(O1,O1) ≥ g(O2,O2) ≥ g(O3,O3).

In this case, we choose i = 1 and j = 2. Since
∑3
k=1 g(Ok,Ok) = 2, this implies

g(Oi,Oi) ≥ 2
3 and g(Oj ,Oj) ≥ 2

3 . Observe that‹Oij = x∂y − y∂x +
xz

y2 + z2
(y∂z − z∂y) = −y∂x +

xy2

y2 + z2
∂y +

xyz

y2 + z2
∂z.

Using x2 + y2 + z2 = 1,

g(‹Oij , ‹Oij) = y2 +
x2y4 + x2y2z2

(y2 + z2)2
=
y2((y2 + z2)2 + x2y2 + x2z2)

(y2 + z2)2
=

y2

y2 + z2
.

It remains to note that if g(‹Oij , ‹Oij) = y2

y2+z2 <
1
2 , then

g(O3,O3) = x2 + z2 > x2 + y2 = g(O1,O1),

which contradicts (11.1). Therefore, we have g(‹Oij , ‹Oij) ≥ 1
2 . This concludes

the proof of the claim.

We now take a sequence {pk}∞k=1 ⊂ M such that pk → p (which exists

since p ∈ ∂M). After passing to a subsequence if necessary, there exists

(i, j) ∈ {1, 2, 3}2 such that the conclusion of the claim above holds for every

pk (with the same choice of i and j). By continuity, it holds at point p that

g(Oi,Oi)(p) ≥ 2r2(p)
3 , g(Oj ,Oj)(p) ≥ 2r2(p)

3 and g(‹Oij , ‹Oij)(p) ≥ r2(p)
2 . Since

r(p) 6= 0 by assumption, this implies that there exist two linearly independent

spacelike vectors Oi and Oj in Tp›M. This concludes Step 1.

Step 2. We then show that the dimension of span{O1(p),O2(p),O3(p)}
is ≤ 2. Let {pi}∞i=1 ⊂ M be a sequence of points such that pi → p. (Such

a sequence exists since p ∈ ∂M.) Since the tangent space on the standard

2-sphere is 2-dimensional, for every i ∈ N, there exists (a1,i, a2,i, a3,i) ∈ S2,

(i.e., (a1,i, a2,i, a3,i)∈R3 with a2
1,i+a

2
2,i+a

2
3,i=1) such that

∑3
j=1 aj,iOj(pi)=0.

Since S2 is compact, there exists a subsequence ik such that (a1,ik , a2,ik , a3,ik)

converges to some (a1,∞, a2,∞, a3,∞) in S2. The continuity of the Oj at p
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then implies that
∑3
j=1 aj,∞Oj(p) = 0. Therefore, O1, O2 and O3 are linearly

dependent at p.

Combining Steps 1 and 2 yields the desired result. �

Using the above preliminaries, we show in the next lemma that either there

exists a timelike geodesic that exitsM and enters the extension ›M through a

point p ∈ ∂M with r(p) = 0 or there exists a radial null geodesic that exitsM
and enters the extension ›M through a boundary point p ∈ ∂M with r(p) > 0.

Thus, to show that the future extension ›M does not exist, it suffices to rule

out such geodesics. This will indeed be carried out in Lemmas 11.6 and 11.7.

Lemma 11.5. At least one of the following holds :

(1) There exist p ∈ ∂M with r(p) = 0 and a future-directed timelike geodesic

γ : (−ε, ε)→ ›M such that γ((−ε, 0)) ⊂M and γ(0) = p.

(2) There exist p ∈ ∂M with r(p) 6= 0 and a future-directed null geodesic

γ : (−ε, ε) → ›M such that γ((−ε, 0)) ⊂ M, γ(0) = p and such that

γ �(−ε,0) is radial.

Proof. We choose p ∈ ∂M such that ∂M is differentiable at p. Such a p

exists since by Lemma 11.1, the boundary ∂M is Lipschitz and therefore by

Rademacher’s theorem it is differentiable almost everywhere.72 The two cases73

in the statement of the lemma depend on whether r(p) = 0 or r(p) > 0.

Suppose r(p) = 0. We construct γ : (−ε, ε)→ ›M to be any future-directed

timelike geodesic such that γ(0) = p. It suffices to show that for ε sufficiently

small, γ((−ε, 0)) ⊂M. Suppose not; then for every ε, there exists s ∈ (−ε, 0)

such that γ(s) ∈ ›M \M. Since γ is future-directed, we have p ∈ I+(γ(s)).

Since I+(γ(s)) is open, there exists an open neighborhood U of p such that

U ⊂ I+(γ(s)). On the other hand, since p ∈ ∂M, U contains a point ofM. In

other words, I+(γ(s)) contains a point of M, which contradicts the fact that›M is a future extension.

It remains to consider the case where r(p) 6= 0. Let X, Y be two

linearly independent past-directed null vectors at Tp›M that are normal to

span{O1,O2,O3} with respect to the metric g̃. (Since span{O1,O2,O3} is

spacelike and 2-dimensional according to Lemma 11.4, such X and Y exist.

Moreover, the choices of X and Y are unique up to re-scalings.) We claim

that either74 X 6∈ Tp(∂M) or Y 6∈ Tp(∂M). Otherwise, X + Y ∈ Tp(∂M) is

a past-directed timelike vector, and this contradicts Lemma 11.1, which states

that ∂M is achronal. Without loss of generality, we assume X 6∈ Tp(∂M).

72To be understood in terms of the Lebesgue measure with respect to local coordinates.
73Notice that r ≥ 0 in M and thus the limit on ∂M must also be non-negative.
74Note that Tp(∂M) is well defined by the choice of p
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We now construct γ by solving for the unique geodesic through p that is

initially −X. Note that γ is future-directed.

Claim. γ((−ε, 0)) ⊂M for sufficiently small ε.

We assume for the sake of contradiction that there exists a sequence of

negative real numbers sn ↗ 0 such that γ(sn) ∈ ›M\M. First, we see that in

fact for every sn, we must have γ(sn) ∈ ∂M. Otherwise there exists an open

neighborhood U of γ(sn) that is a subset of ›M\M and, in particular, there

exists q ∈ U ⊂ ›M\M such that I+(q) contains p. Since I+(q) is open, it also

contains a small open neighborhood V of p. On the other hand, since p ∈ ∂M
and V is an open neighborhood of p, V must contain a point v ∈ M. Now

v ∈ I+(q) ∩M, where q ∈ ›M\M. This contradicts the assumption that ›M
is a future extension of M.

It thus remains to rule out the possibility that γ(sn) ∈ ∂M for all sn.

This is indeed impossible since γ̇(0) = −X is not tangential to ∂M at p and

∂M is differentiable at p.

Claim. γ �(−ε,0) is radial.

Assume that it is not; i.e., there exists s ∈ (−ε, 0) such that g(γ̇(s),Oi) =

a 6= 0 for some i = 1, 2, 3. On the other hand, since γ is a geodesic and Oi is

Killing in (M, g), we have γ̇ (g(γ̇(s),Oi)) = g(∇γ̇ γ̇,Oi) + g(γ̇,∇γ̇Oi) = 0; i.e.,

g(γ̇(s),Oi) is a constant along γ. In particular, since γ̇, Oi and g̃ are all contin-

uous up to p, we have g̃(−X,Oi)(p) = a 6= 0, contradicting the choice of X. �

Equipped with Lemma 11.5, it now remains to show that both alternatives

(1) and (2) cannot hold. The following lemma is immediate from results in [33]:

Lemma 11.6. The alternative (1) in Lemma 11.5 cannot hold.

Proof. Assume for the sake of contradiction that p and γ are as in (1) in

Lemma 11.5. By the Raychaudhuri equations, as well as the fact that r(p) = 0

while r ≥ 0 everywhere, there exists a neighborhood U ⊂ ›M of p such that

1− 2m
r ≤ 0 (which is equivalent to ∂ur∂vr ≥ 0 in a double null coordinate) on

U∩M. By [33, §5.8], the following lower bound of the Kretschmann scalar holds

on U ∩M: RµναβR
µναβ ≥ c

r4 , where Rµναβ is the Riemann curvature tensor

of (M, g) and c > 0 is a constant (depending on p). This clearly contradicts

the fact that γ is a geodesic in ›M passing through p, at which r(p) = 0. �

Finally, we rule out the possibility that r(p) > 0 for p as in Lemma 11.5:

Lemma 11.7. The alternative (2) in Lemma 11.5 cannot hold.
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Proof. Assume for the sake of contradiction that p and γ are as in (2) in

Lemma 11.5. One sees that γ must exit M through75 CH+
1 or CH+

2 or I+
1 or

I+
2 or i+1 or i+2 . (Recall Theorem 4.1.)

Step 1: γ cannot exit through I+
1 or I+

2 . This simply follows from the fact

that r has a finite limit on ∂M (Lemma 11.3), together with the definition that

r →∞ along radial null curves towards I+
1 or I+

2 .

Step 2: γ cannot exit through i+1 or i+2 . If γ exits through i+1 or i+2 , then

γ∩M ⊂ H+
1 or γ∩M ⊂ H+

2 . However, H+
1 andH+

2 are both future affine com-

plete null geodesics (cf. Remark 4.5); hence it is impossible for γ to leave M.

Step 3: γ cannot exit through CH+
1 or CH+

2 . Suppose the contrary. As-

sume without loss of generality that γ exits through CH+
1 .

We use the same coordinate system (u, V ) as in Theorem 5.5, in which

π(γ(−ε,0)) ∈ Q is given by a constant u curve. Let us assume that it is a subset

of {(u, V ) : u = ur} for some ur ∈ (−∞, uCH+
1

]. Since (›M, g̃) is C2 and γ

is a geodesic, the component of the Ricci curvature lims→0−Ric(γ̇(s), γ̇(s)) is

bounded. Noting that 1
Ω2∂V is geodesic, we have γ̇ = c

Ω2∂V for some constant

c > 0, and therefore by (1.1),

(11.2)
1

Ω4
(∂V φ)2(ur, V ) =

1

2
Ric

Å
1

Ω2
∂V ,

1

Ω2
∂V

ã
(ur, V ) is bounded as V → 1.

When ur < uCH+
1

, this statement in combination with the boundedness of log Ω

from Lemma 10.4 immediately contradicts the blow up (5.18) in Theorem 5.5.

When ur = uCH+
1

, which is only possible when S = ∅ and p is the bifurcation

sphere with r(p) > 0, the same argument works by Remark 10.6. �

Putting together the above lemmas, we conclude the proof of Theorem 5.7:

Proof of Theorem 5.7. Lemmas 11.5, 11.6 and 11.7 obviously lead to a

contradiction. Therefore, no C2-future-extensions as in Definition 3.12 can

exist. �

Appendix A. Subextremality of the event horizons

The goal of this section of the appendix is to prove Proposition 4.3. In

what follows, we denote by (M, g, φ, F ) a maximal globally hyperbolic future

development of an ω0-admissible initial data (where ω0 > 2). First, we will

need two lemmas, which will also be useful in later parts of the paper.

75This means that the closure of the projection of γ �M in Q+ intersects those components

of the boundary.
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Lemma A.1 (The exterior regions are free of trapped (or anti-trapped)

surfaces).76 Let (u, v) be a double null coordinate system on Q = M/SO(3)

normalized according to Lemma 2.3. If u ≤ uH+
1

, then

(A.1) ∂vr(u, v) ≥ 0, ∂ur(u, v) < 0.

If v ≤ vH+
2

, then

(A.2) ∂ur(u, v) ≥ 0, ∂vr(u, v) < 0.

Proof. It clearly suffices to check (A.1) as (A.2) is similar. Suppose u ≤
uH+

1
. We first establish ∂vr(u, v) ≥ 0. Assume this is not the case, i.e.,

there exists (uc, vc) ∈ Q with uc ≤ uH+ such that ∂vr(uc, vc) < 0. Then by

continuity, there exists (u′c, v
′
c) ∈ Q such that u′c < uc ≤ uH+ and ∂vr(u

′
c, v
′
c) <

0. By the Raychaudhuri equation (2.4), we then have ∂vr(u
′
c, v) < 0 for every

v ≥ v′c, which contradicts the fact that sup r(u′c, ·) = ∞ (see Definition 4.2).

Hence, we have established

(A.3) ∂vr(u, v) ≥ 0 for u ≤ uH+ .

Next, by the admissibility condition (3.4) (which by Lemma 2.3 implies

∂ur �Σ0< 0 for ρ ≥ ρ1 and ∂vr �Σ0< 0 for ρ ≤ ρ2) and the Raychaudhuri

equation (2.4), for every (u, v) ∈ Q, either ∂ur(u, v) < 0 or ∂vr(u, v) < 0.

Hence, (A.1) follows from this observation and (A.3). �

Lemma A.2 (Limiting values of r and $ on H+
1 and H+

2 ). Let (u, v) be a

double null coordinate system on Q normalized according to Lemma 2.3. Define

rH+
1

= sup
H+

1

r, rH+
2

= sup
H+

2

r, $H+
1

= sup
H+

1

$, $H+
2

= sup
H+

2

$.

Then

rH+
1

= lim
v→∞

r(uH+
1
, v), rH+

2
= lim

u→∞
r(u, vH+

2
),

(A.4)
$H+

1
= lim

v→∞
$(uH+

1
, v), $H+

2
= lim
u→∞

$(u, vH+
2

).

Moreover,

(A.5) rH+
1

= $H+
1

+
…
$2
H+

1

− e2, rH+
2

= $H+
2

+
…
$2
H+

2

− e2.

Proof. In the proof, we only consider the case of H+
1 ; the other case can

be handled similarly. We recall the (nontrivial!) fact that rH+
1
< ∞. This

follows from the Penrose inequality in the spherically symmetric setting; see

[14, Lemma 3].

76A 2-sphere given by constant (u, v) is called trapped (resp. anti-trapped) if ∂vr and ∂ur

are both negative (resp. positive).
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Step 1: Proof of (A.4). To prove (A.4) for r, note that by Lemma A.1,

r is non-decreasing (towards the future) along the event horizons. To prove

(A.4) for $, note that by Lemma A.1 and the equations for $ in (2.8), $ is

non-decreasing (towards the future) along the event horizons.

Step 2: Proof of rH+
1

= $H+
1
±
√
$2
H+

1

− e2. Recall that

1− µ = −4Ω−2∂ur∂vr.

Thus by Lemma A.1, we have 1 − µ ≥ 0 in the exterior region {u ≤ uH+
1
}.

On H+
1 , we claim that

(A.6) lim inf
v→∞

(1− µ)(uH+
1
, v) =

r2
H+

1

− 2$H+
1
rH+

1
+ e2

r2
H+

1

= 0.

Since 0 < r �Σ0∩H+
1
≤ rH+

1
<∞, the desired formula for rH+

1
would then follow

by the quadratic formula.

For the purpose of contradiction, suppose that (A.6) is false. Hence there

exists c > 0 and v0 such that

(A.7) (1− µ)(uH+
1
, v) ≥ c for v ≥ v0.

The idea is to show that (A.7), when combined with the fact that rH+
1
< ∞,

implies that r is also bounded on nearby outgoing null curves, which contradicts

Definition 4.2.

To make this idea precise, we use a bootstrap argument. Let ε > 0 and

A ≥ 2 be small and large parameters (respectively) to be fixed later. Replacing

v0 by a larger number if necessary, we may ensure that rH+
1
− r(uH+

1
, v0) < ε

and $H+
1
− $(uH+

1
, v0) < ε. Furthermore, we choose u0 < uH+

1
so that

r(u0, v0)− r(uH+
1
, v0) < ε and $(u0, v0)−$(uH+

1
, v0) < ε. Given v1 > v0, we

make the bootstrap assumption

(A.8)

r(u0, v)− r(uH+
1
, v) < 4ε, $(u0, v)−$(uH+

1
, v) < 2Aε for v0 ≤ v ≤ v1,

which initially holds for some v1 > v0 by continuity. For a large enough A and

a sufficiently small ε, we claim that (A.8) can be improved to

(A.9)

r(u0, v)− r(uH+
1
, v) < 2ε, $(u0, v)−$(uH+

1
, v) < Aε for v0 ≤ v ≤ v1.

From the claim, it would follow (via a simple continuity argument) that r(u0, v)

− r(uH+
1
, v) < 2ε for every v ≥ v1, which is impossible due to Definition 4.2

and the fact that rH+
1
<∞.

In what follows, we denote by C any constant that may depend on c, φ or

geometric quantities of the spacetime (e.g., infQ∩{u≤uH+
1
} r, supQ∩{u≤uH+

1
} r,
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supQ∩{u≤uH+
1
} |$|, e etc.), but independent of ε and A. By (A.7) and the

bootstrap assumption (A.8), we have

(1− µ)(u, v) ≥ c

2
for (u, v) ∈ [u0, uH+

1
]× [v0, v1]

for a small enough ε (depending only on c and A). By the first equation in

(2.8), it follows that

|∂v log(−∂ur)| =

∣∣∣∣∣∣2($ − e2

r )

r2(1− µ)
∂vr

∣∣∣∣∣∣ ≤ C∂vr
in [u0, uH+

1
] × [v0, v1]. Integrating in v, we see that e−Cε ≤ −∂ur(u,v)

−∂ur(u,v0) ≤ eCε.

Integrating in u and recalling our choice of (u0, v0), we arrive at

r(u0, v)− r(uH+
1
, v) ≤ εeCε for v ∈ [v0, v1].

Hence, for sufficiently small ε, the first inequality of (A.9) follows.

To improve the estimate for $ (i.e., the second inequality of (A.9)), we

need to use the other equations in (2.8). Let (u, v) ∈ [u0, uH+
1

] × [v0, v1]. By

the first and the second equations, as well as the preceding estimates, we have∣∣∣∣∂v År ∂uφ−∂urã∣∣∣∣ =

∣∣∣∣−∂v log(−∂ur)r
∂uφ

−∂ur
+ ∂vφ

∣∣∣∣ ≤ C∂vr ∣∣∣∣r ∂uφ−∂ur
∣∣∣∣+ |∂vφ|.

By the third equation in (2.8) and Cauchy–Schwarz, we have∫ v

v0

|∂vφ|(u, v′) dv′ ≤
Ç∫ v

v0

1

2
r2(1− µ)

(∂vφ)2

∂vr
(u, v′) dv′

å1/2

×
Ç∫ v

v0

2

r2(1− µ)
∂vr(u, v

′) dv′
å1/2

≤ C($(u, v)−$(u, v0))1/2(r(u, v)− r(u, v0))1/2 ≤ Cε.

Hence, by Grönwall’s inequality, it follows that∣∣∣∣r ∂uφ−∂ur
∣∣∣∣ (u, v) ≤ eCε

Å∣∣∣∣r ∂uφ−∂ur ∣∣∣∣ (u, v0) + Cε

ã
≤ CeCε for (u, v) ∈ [u0, uH+

1
]× [v0, v1],

where the last inequality holds since [u0, uH+
1

] × {v0} is a fixed compact set.

Finally, using the fourth equation in (2.8), as well as the preceding estimates,

we have

|∂u$| =
∣∣∣∣∣12(1− µ)r2 (∂uφ)2

(−∂ur)2
∂ur

∣∣∣∣∣ ≤ C(−∂ur)

in [u0, uH+
1

] × [v0, v1]. Integrating in u and using the bootstrap assumption,

we obtain

$(u0, v)−$(uH+
1
, v) ≤ CεeCε.
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Taking A sufficiently large (depending on C) then ε small enough (depending

on A and C), we obtain the desired improvement for $, which completes the

proof of (A.9).

Step 3: Proof of (A.5). Since rH+
1
> 0, we necessarily have $H+

1
> 0

by the previous step. When $H+
1

= |e|, which corresponds to the extremal

case, there is nothing to prove. Therefore, we may assume that |e| < $H+
1

and

moreover focus on ruling out the scenario rH+
1

= $H+
1
−
√
$2
H+

1

− e2.

By the monotonicity properties of $ in the exterior region u ≤ uH+
1

(us-

ing Lemma A.1), we can find vfar such that $(u, v) > |e| in the characteristic

rectangle R = {u ≤ uH+
1
, v ≥ vfar}. Recall from Step 2 that

1− µ =
r2 − 2$r + e2

r2
≥ 0, where u ≤ uH+

1
.

Since rH+
1

= $H+
1
−
√
$2
H+

1

− e2, it follows (by a continuity argument) that

r(u, v)≤$(u, v)−
»
$2(u, v)− e2 inR. In particular, r≤supΣ0∩{u≤uH+

1
}$<∞

in R, which is impossible in view of Definition 4.2. �

We are now ready to prove Proposition 4.3:

Proof of Proposition 4.3. Define double null coordinates (u, v) according

to Lemma 2.3. Define u(v) and v(u) such that (u, v(u)), (u(v), v) ∈ Σ0. We

prove the proposition only for H+
1 as the proof for H+

2 is similar. For the rest

of this proof, H+
1 will be denoted as H+. Moreover, let uH+ = uH+

1
be defined

as in Definition 4.2. Without loss of generality, we assume that e > 0.

Step 0: Limit must be subextremal or extremal. Let us first note that

the limit along H+ must be either subextremal (limv→∞$(uH+ , v) > e) or

extremal (limv→∞$(uH+ , v) = e). This follows from (A.5) and the fact that

rH+ is real.

Contradiction assumption : Suppose for the sake of contradiction that the

limit along H+ is extremal, i.e., limv→∞$(uH+ , v) = e.

Step 1: Definition of u∗, u∗∗ and v∗. Let

v∗ = inf{v ∈ R : ∂vr(u(v′), v′) ≥ 0 for all v′ ≥ v}.

Such a v∗ exists since the set above is non-empty and bounded below, by the

asymptotic flatness condition 3.1 and Lemma 2.3. Moreover,

(1) it holds that v∗ ≤ v(uH+) by Lemma A.1; and

(2) it also holds that there exists an εc > 0 such that ∂ur(u, v(u)) < 0 for all

u ∈ (−∞, u(v∗) + εc) by the admissibility condition (3.4).

Notice, in particular, that by the continuity of ∂vr, we have ∂vr(u(v∗), v∗) = 0.
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Next, choose u∗ > u(v∗) such that ∂vr(u∗, v(u∗)) < 0. By the definition

of v∗, u∗ > u(v∗) can be chosen arbitrarily close to u(v∗) such that

(1) the region D∗ = {(u, v) : u ∈ [u(v∗), u∗], v ∈ [v(u), v∗]} is contained in the

maximal globally hyperbolic future development of the initial data; and

(2) ∂ur(u, v(u)) < 0 for all u ≤ u∗ (for which we use point (2) in the properties

of v∗ above).

By the Raychaudhuri equation (2.4), it follows that

(A.10) ∂ur(u, v) < 0 for all (u, v) ∈ D∗.

Now on the constant v = v∗ curve, define u∗∗ by

u∗∗ = sup{u ≥ u(v∗) : ∂vr(u
′, v∗) ≥ 0 for all u′ ∈ [u(v∗), u]}.

Such an u∗∗ ≥ u(v∗) exists since the set is nonempty (by the fact ∂vr(u(v∗), v∗)

= 0) and bounded above (since ∂vr(u∗, v∗) < 0 by the choice of u∗ and the

Raychaudhuri equation (2.4)).

The points defined above are depicted in the diagram below:

{u = u∗}{v = v∗}

(u∗∗, v∗) H+ = {u = uH+}

Σ0

D∗
γ

Q
(uH+ , v(uH+))

Figure 9. Depiction of u∗, u∗∗, v∗, D∗ and γ.

Step 2: Monotonicity of $ and r. We now connect H+ to the point

(u∗∗, v∗) via a piecewise smooth curve γ with increasing u and decreasing v

as depicted in Figure 9. More precisely, we connect γ(0) = (uH+ , v(uH+)) to

γ(1
2) = (u(v∗), v∗) following Σ0, then connect γ(1

2) to γ(1) = (u∗∗, v∗) following

the null curve {v = v∗}.
While it is possible that γ is degenerate (i.e., constant in the parameter)

in some parts, we nevertheless have γ̇u ≥ 0 and γ̇v ≤ 0. Moreover, by the

construction in Step 1, we have ∂ur < 0 and ∂vr ≥ 0 on the image of γ.

Therefore, d
dsr◦γ(s) = γ̇u∂ur+γ̇v∂vr ≤ 0 and d

ds$◦γ(s) = γ̇u∂u$+γ̇v∂v$ ≤ 0

(where we used (2.8)). It follows that

$(u∗∗, v∗) ≤ $(uH+ , v(uH+)) ≤ lim
v→∞

$(uH+ , v) = e,(A.11)

r(u∗∗, v∗) ≤ r(uH+ , v(uH+)) ≤ lim
v→∞

r(uH+ , v) = e.(A.12)
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Step 3: Conclusion of the proof. By the first equation in (2.8) and the

definition of µ, we have

(A.13) ∂u∂vr(u∗∗, v∗) = −
Ω2($ − e2

r )

2r2
(u∗∗, v∗) ≥ 0,

where the last inequality follows from (A.11) and (A.12). On the other hand,

it is impossible to have ∂u∂vr(u∗∗, v∗) > 0. Indeed, this contradicts the choice

of u∗∗ as one would then have ∂vr(u, v∗) ≥ 0 for u in a neighborhood of u∗∗.

Therefore, in order to conclude the contradiction argument, it suffices to

rule out ∂u∂vr(u∗∗, v∗) = 0. In view of the above argument, this holds only if

equalities hold in (A.11) and (A.12), i.e., $(u∗∗, v∗) = r(u∗∗, v∗) = e. Now, by

(A.10), ∂ur(u∗∗, v∗) < 0. Importantly, this is a strict inequality. Thus, there

exist c > 0 and εr > 0 such that r(u, v∗)−e ≤ −c(u−u∗∗) for u ∈ [u∗∗, u∗∗+εr].

Using the fact that Ω2, $ and r are C1 and also the monotonicity (A.11), one

deduces that there exist c′ > 0 and ε′r > 0 such that

∂u∂vr(u, v∗) ≥ c′(u− u∗∗)

for u ∈ [u∗∗, u∗∗+ ε′r]. This then contradicts the choice of u∗∗ as ∂vr(u, v∗) ≥ 0

for u in a neighborhood of u∗∗. This concludes the contradiction argument. �

Appendix B. Gauge condition on the event horizon

In the statement of Theorem 5.1, we imposed a gauge condition (5.11) on

C−∞ that is most convenient for proving the estimates. On the other hand,

it is less convenient to apply the theorem with this gauge condition (and in

fact it is a priori not entirely clear that such a gauge exists). In this section of

the appendix, we compare the gauge condition (5.11) with the gauge condition
∂vr
1−µ = 1, which is more often used in the literature (for instance in [18]). More

precisely, we have the following result:

Proposition B.1. Consider a characteristic initial data set on C−∞∪C1

posed in a (U, v) coordinate system defined on [0, U0]× [1,∞) such that C−∞ =

{(U, v) : U = 0, v ≥ 1} and C1 = {(U, v) : 0 ≤ U < U0, v = 1}. Assume that

the following hold on C−∞:

(a) the gauge condition ∂vr
1−µ = 1 (equivalently, ∂Ur

Ω2
H

= −1
4 ) is imposed ;

(b) r is non-decreasing, limv→∞ r = M +
√
M2 − e2 and limv→1+ r = r0 for

some constants 0 < e2 < M and r0 > 0;

(c) limv→∞$ = M , where $ is as in (2.7);

(d) the decay estimate (5.12) holds for some constants E > 0 and s > 1;

(e) ∂Ur < 0.
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Then there exists a change of coordinates ṽ(v) with ṽ : [1,+∞) → [1,+∞)

such that with respect to the (U, ṽ) coordinate system, we have ṽ(1) = 1 and

(B.1) ‹Ω2
H := −2g(∂U , ∂ṽ) =

4e−2κ+r+(r+ − r−)
1+

κ+
κ−

r2
+

e2κ+ṽ on C−∞.

Moreover, the decay estimate (5.12) holds with respect to ṽ on C−∞ with

CE,s,M,e,r0,∂Ur(0,1) ṽ
−s on the right-hand side.

Proof. It suffices to solve for a function ṽ(v) such that ṽ(1) = 1, C−1 ≤
dṽ
dv ≤ C, where the constant C > 0 may depend on E, s, M , e, r0 and ∂Ur(0, 1),

and

(B.2)
e−2κ+r+(r+ − r−)

1+
κ+
κ−

r2
+

e2κ+ṽ(v) = −∂Ur(0, v)

Å
dṽ

dv
(v)

ã−1

.

Since we only work on C−∞, on which U = 0, we suppress the U -coordinate

and simply write ∂Ur(v) = ∂Ur(0, v), etc. Moreover, we omit the dependence

of constants on E, s, M , e, r0 and ∂Ur(0, 1).

Step 1: Estimating the decay of ∂vr. By (b) and (c), it follows that

limv→+∞(1− µ) = 0. Hence, using (a),

(B.3) lim
v→+∞

∂vr = 0.

We now want to get a quantitative decay estimate for ∂vr. Using the Ray-

chaudhuri equations in (2.4), − Ω2

4∂Ur
= ∂vr

1−µ = 1 (cf. (2.6)) and (2.8), we obtain

(B.4) ∂2
vr −

2($ − e2

r )

r2
(∂vr) = −r(∂vφ)2.

By the method of integrating factors, we have

∂vr(v) = lim
v′→∞

e−
∫ v′
v

2($− e2
r )

r2
(v′′) dv′′∂vr(v

′)

+

∫ ∞
v

e−
∫ v′
v

2($− e2
r )

r2
(v′′) dv′′r(∂vφ)2(v′) dv′.

(B.5)

By (B.3) and limv→∞
2($− e2

r
)

r2 (v) = 2κ+, where the latter follows from the

conditions (b) and (c), it follows that the first term on the right-hand side

vanishes.

To further analyze (B.5), we need some information regarding r and $.

For r, we note the preliminary lower and upper bounds r0 ≤ r ≤ M +√
M2 − e2. For $, by (2.8), (c) and (d), we have

(B.6) M −$(v) =
1

2

∫ ∞
v

r2(∂vφ)2(v′) dv′ ≤ Cv−2s+1.
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Consider the interval J = {v ≥ 1 :
2($− e2

r
)

r2 (v′) > κ+ for all v′ ≥ v}, which

is nonempty since
2($− e2

r
)

r2 → 2κ+ as v →∞. On J , (B.5) implies

∂vr(v) ≤
∫ ∞
v

e−κ+(v′−v)r(∂vφ)2(v′) dv′.

Then by (d) and an argument similar to Lemma 8.4, we have

(B.7) 0 ≤ ∂vr(v) ≤ Cv−2s on J,

and as a consequence

(B.8) |M +
√
M2 − e2 − r(v)| ≤ Cv−2s+1 on J,

where C is independent of J .

Bootstrapping the (B.6) and (B.8), we may find v0 that depends only on

E, s, M and e such that [v0,∞) ⊆ J . Estimating ∂vr on the interval [1, v0] by

simply applying Grönwall’s inequality to (B.4) (here we need to use the lower

bound r0 for r), we obtain the following generalization of (B.7) for all v ≥ 1:

(B.9) 0 ≤ ∂vr(v) ≤ Cv−2s.

Step 2: Estimates for ∂Ur. Starting with the first equation in (2.8), then

using (a) and (e), we obtain

(B.10) ∂v(log(−∂Ur)) =
2($ − e2

r )

r2
.

Differentiating in v and using (2.8) then yields

(B.11) ∂2
v(log(−∂Ur)) = (∂vφ)2 − 2(∂vr)

r3

Ç
2$ − 3e2

r

å
.

Using (d) and (B.9), and then integrating (B.11), we obtain∣∣∣∣∂v(log(−∂Ur))(v)− lim
v′→+∞

∂v(log(−∂Ur))(v′)
∣∣∣∣ ≤ Cv−2s.

By (B.10) and the conditions (b) and (c), we obtain that

lim
v′→+∞

∂v(log(−∂Ur))(v′) = 2κ+

so that

(B.12) |∂v(log(−∂Ur))(v)− 2κ+| ≤ Cv−2s.

As a consequence, there exist a constant c0 > 0 and g(v) such that

(B.13)
−∂Ur(v)

−∂Ur(1)
= c0e

−2κ+v(1 + g(v)),

where the following bounds hold for all v ≥ 1:

(B.14) |g(v)| ≤ Cv−2s+1.
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Step 3: Constructing the desired ṽ. We now return to the construction of

ṽ(v). Using (B.13) we may rewrite (B.2) as

(B.15) e2κ+ṽ dṽ

dv
= c1e

2κ+v(1 + g(v))

for some constant c1 > 0 depending on c0, (−∂Ur)(1), r± and κ±. The ordinary

differential equation (B.15) is explicitly solvable with ṽ(1) = 1 by separation

of variables as follows:

ṽ(v) = v +
1

2κ+
log c1

+
1

2κ+
log

Å
1 +

1− c1

c1
e2κ+(1−v) + 2κ+

∫ v

1
e2κ+(v′−v)g(v′) dv′

ã
.

(B.16)

From this formula, it is clear that ṽ exists for all v ≥ 1. Moreover, note that the

magnitude of the v′-integral inside the logarithm may be bounded by Cv−2s+1

using an argument similar to Lemma 8.4. It follows that

|ṽ(v)− v − (2κ+)−1 log c1| ≤ Cv−2s+1,

which, in combination with (B.15), yields the desired bound for dṽ
dv . �

Appendix C. Blow up of Christoffel symbols

In Theorems 5.4 and 5.5 (see, in particular, (5.16) and (5.18)), we have

seen that the scalar field fails to be in W 1,2
loc near every point of CH+

1 in the

C0 extension constructed in Theorems 5.1 and 5.5, respectively, provided that

(5.15) holds on H+
1 . In this section of the appendix, we investigate in more

detail the geometry near CH+
1 under the same assumptions, and we show that

certain Christoffel symbols blow up in any Lploc for p > 1. More precisely, our

goal is to prove the following result:

Proposition C.1. Let (u, V ) be the null coordinates constructed in The-

orem 5.5, with respect to which the solution extends continuously to CH+
1 \

{pCH+
1
}. If the lower bound (5.15) holds on H+

1 , then for every u ∈ (−∞, uCH+
1

)

and p > 1, we have

(C.1)

∫ 1

0
|(σ−1

S2 )ABΓuAB|pΩ2(u, V ) dV =∞.

Moreover, we have supV ∈[0,1) |(σ−1
S2 )ABΓuAB|(V ) =∞.

Recall that, in any null coordinates, we have ΓuAB = 2Ω−2r∂V r(σS2)AB.

In view of continuous extendibility of r, the blow up of the supremum already

follows from (5.17) and (5.19). In what follows, we exploit further the Ray-

chaudhuri equation, (5.16) and bounds proved in Section 10 to upgrade this

blow-up statement.
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Proof. Fix p ∈ (1,∞). We begin with a few reductions. First, by the

above formula for ΓuAB, it suffices to show that

(C.2)

∫ 1

0

Å
−∂V r

Ω2

ãp
Ω2(u, V ) dV =∞ for every u ∈ (−∞, uCH+

1
).

In view of the bounds C−1 ≤ Ω2(u, V ) ≤ C and |∂u(r∂V r)|(u, V ) ≤ C, which

hold in any rectangle R = {(u, V ) : u0 ≤ u ≤ u1, 0 ≤ V < 1} for some

0 < C <∞ (see (10.13) in the proof of Lemma 10.5), it suffices to prove (C.2)

under the additional assumption that u lies in the perturbative region; i.e.,

u < us where us is as in Theorem 5.1. Furthermore, note that both ∂V r
Ω2 and

Ω2 dV on the left-hand side of (C.2) are invariant under any change of the null

coordinate V . Hence, using the (u, v) coordinates in Theorem 5.1, we see that

it suffices to prove

(C.3)

∫ ∞
1

Å
−∂vr

Ω2

ãp
Ω2(u, v) dv =∞ for every u ∈ (−∞, us),

where Ω2 is now defined with respect to the (u, v) coordinates.

In the remainder of the proof, we fix a value of u < us and omit the

dependence of constants on u. Let η > 0 be a parameter to be fixed later

(and allow the constants C below to depend on η). By the integrated blow-up

statement (5.16), we may find a sequence vk ∈ N∩ [2,∞) such that vk increases

to ∞ and

(C.4)

∫ vk

vk−1
logα0

+

Å
1

Ω

ã
(∂vφ)2(u, v) dv ≥ e−ηvk .

Next, by the Raychaudhuri equation (2.4), for any v ≥ vk, we have

−∂vr
Ω2

(u, v) ≥
∫ vk

vk−1

r

Ω2
(∂vφ)2(u, v′) dv′ − ∂vr

Ω2
(u, vk − 1).

By (5.17), we may assume that the last term on the right-hand side is nonneg-

ative (and thus can be dropped) by taking v1 sufficiently large. To estimate

the first term, we use (C.4) and also recall from Theorem 5.1 (in particu-

lar, the bounds for r − rRN and log Ω − log ΩRN ) that C−1 ≤ r ≤ C and

C−1e−κ−v ≤ Ω ≤ Ce−κ−v. Hence,

−∂vr
Ω2

(u, v) ≥ C−1e(2κ−−η)vkv−α0
k for every v ≥ vk.

It follows that∫ ∞
1

Å
−∂vr

Ω2

ãp
Ω2(u, v) dv ≥

∞∑
k=1

∫ vk+1

vk

Å
−∂vr

Ω2

ãp
Ω2(u, v) dv

≥ C−1
∞∑
k=1

e2(p−1)κ−vk−pηvkv−pα0

k .
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Since p > 1, choosing η > 0 sufficiently small ensures that each summand on

the right-hand side is uniformly bounded from below, which in turn makes the

sum infinite as desired. �
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