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On the dimension of Bernoulli convolutions
for all transcendental parameters

By Péter P. Varjú

Dedicated to the memory of Jean Bourgain

Abstract

The Bernoulli convolution νλ with parameter λ ∈ (0, 1) is the probability

measure supported on R that is the law of the random variable
∑
±λn,

where the ± are independent fair coin-tosses. We prove that dim νλ = 1

for all transcendental λ ∈ (1/2, 1).

Introduction

Fix a number λ ∈ (0, 1) and let X0, X1, . . . be a sequence of indepen-

dent random variables, which take the values ±1 with equal probability. The

Bernoulli convolution νλ with parameter λ is the probability measure on R

that is the law of the random variable of

∞∑
n=0

Xnλ
n.

Bernoulli convolutions are one of the most studied examples of self-similar

measures, and they are objects of great interest in fractal geometry. The

following two basic questions about them are still open.

Question 1. For which values of λ is νλ absolutely continuous with re-

spect to the Lebesgue measure?

Question 2. For which values of λ does dim νλ = 1 hold?
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The latter question requires some explanation. Feng and Hu [8] proved

that Bernoulli convolutions are exact dimensional, that is to say, there is a

number, which we denote by dim νλ, such that

lim
r→0

log νλ([x− r, x+ r])

log r
= dim νλ

for νλ-almost every x. It is worth noting that dim νλ is also the infimum of the

Hausdorff dimensions of all Borel subsets of R that have positive νλ-measure;

see [7, Prop. 10.2] for a proof of this fact, which holds for all exact dimensional

measures.

For λ < 1/2, the Bernoulli convolution νλ is the Cantor-Lebesgue measure

on a Cantor set; it is singular and has dimension log 2/ log λ−1. For λ > 1/2,

the above questions are still not completely understood. The study of Ques-

tion 1 goes back to Erdős [5], who exhibited the first and only known examples

of parameters λ ∈ (1/2, 1) that make the Bernoulli convolution singular. These

are the inverses of Pisot numbers. Erdős [6] also proved that there is a number

a < 1 such that νλ is absolutely continuous for almost all λ ∈ (a, 1). Solomyak

proved in the landmark paper [20] that one can take a = 1/2 in the above

statement.

In this paper, we make progress on the second question. The above men-

tioned result of Solomyak implies that the set

E := {λ ∈ (1/2, 1) : dim νλ < 1}

is of 0 Lebesgue measure. Hochman proved in another landmark paper [12]

that the set E is of 0 packing and Hausdorff dimension. We take this a step

further and show that E is countable.

Theorem 3. We have dim νλ = 1 for all transcendental λ ∈ (1/2, 1).

The dimension of Bernoulli convolutions for algebraic parameters is not

fully understood. The only known examples of parameters λ ∈ (1/2, 1) with

dim(νλ) < 1 are the inverses of Pisot numbers; this fact can be traced back

to Garsia [10] in some form. Hochman [12] expressed the dimension for al-

gebraic parameters in terms of the so-called Garsia entropy of λ, a quantity

that has been studied recently in [4], [1]. We will briefly recall these results in

Section 1.4.

There is a folklore conjecture predicting that the dimension of self-similar

measures equal their similarity dimension unless exact overlaps occur. See [12,

§§1.1 and 1.2], where this conjecture is discussed. (See also [16, Question 2.6]

for a closely related question about self-similar sets due to Simon.) Theorem 3

together with the results of Hochman [12, Th. 1.5] for algebraic parameters

establish this conjecture for Bernoulli convolutions.
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It is not our aim to give a thorough discussion of the rich literature on

Bernoulli convolutions. Instead, we refer the interested readers to the surveys

[14], [21], [22], [11]. The reader interested in Question 1 is also recommended

to consult the recent papers [18], [19], [23].

Hochman [12] proved Theorem 3 conditionally on the hypothesis that

there is a number C > 0 such that any two algebraic numbers ξ1 and ξ2 that

are roots of (not necessarily the same) polynomials of degree at most n with

coefficients −1, 0 and 1 satisfy the separation condition |ξ1 − ξ2| > C−n. This

hypothesis is very plausible, because there are at most n3n+1 such algebraic

numbers; however, we do not know how to prove it.

On the other hand, we are able to prove the following weaker property.

Let ξ ∈ (1/2, 1/22/3) be an algebraic number of degree at most d with Mahler

measure at most M . (See Section 1.1 for the definition.) Then there are

numbers C1, C2, C3 depending only on M such that the following holds. Let

n > C1d log d be an integer, and let P be a polynomial of degree at most

n with coefficients −1, 0 and 1. Then |P (λ)| > C−n2 for all λ that satisfy

C−n3 ≤ |λ− ξ| ≤ C−n+1
3 .

The proof of Theorem 3 relies heavily on the work of several mathemati-

cians. The statement in the previous paragraph is proved using an estimate

on the values polynomials with small coefficients evaluated on algebraic num-

bers, which was first used in the context of Bernoulli convolutions by Garsia

[9], together with the transversality property of these polynomials proved by

Solomyak [20]. (See also Peres and Solomyak [15].) The algebraic number ξ in

the statement is found using a characterization of parameters with dim νλ < 1

by Breuillard and Varjú [3]. The Mahler measure of ξ is estimated using

another paper [4] of the same authors. Then the conclusion of the above state-

ment is plugged into a result of Hochman [12] to prove dim νλ = 1.

The paper is organized as follows. In Section 1, we recall some facts from

the above mentioned five papers. We then prove Theorem 3 in Section 2 in

just a few strokes.

Acknowledgment. I am grateful to Emmanuel Breuillard, Vesselin Dim-

itrov and Ariel Rapaport for inspiring discussions and for carefully reading the

manuscript. I am grateful to Boris Solomyak and Pablo Shmerkin for helpful

comments, which improved the presentation of this paper. I am also grate-

ful to the anonymous referee for suggesting Remark 10 and for other helpful

comments, which improved the presentation of the paper.

1. Preliminaries

We recall some facts from the literature in this section, which will be used

in the proof of Theorem 3.
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1.1. Estimates for the values of polynomials. Let λ be an algebraic number

with minimal polynomial

adx
d + · · ·+ a1x+ a0 = ad(x− λ1) · · · (x− λd).

The Mahler measure of λ is defined as

M(λ) = |ad|
∏

j:|λj |>1

|λj |.

For more on the basic properties of this quantity, we refer to [2, Ch. 1].

The utility of the following simple lemma (or a variant of it, rather — see

[9, Lemma 1.51]) in the study of Bernoulli convolutions was first pointed out

by Garsia.

Theorem 4. Let P be a polynomial of degree at most n with coefficients

−1, 0 and 1, and let λ be an algebraic number of degree d. Suppose that

P (λ) 6= 0. Then

|P (λ)| ≥M(λ)−n(n+ 1)1−d.

We adapt the proof from [9, Lemma 1.51].

Proof. Let ad and λ = λ1, . . . , λd be as above. Then

and

d∏
j=1

P (λj) ∈ Z.

Indeed, it is clearly in Q, since it is invariant under all automorphisms of Q.

To show that it is an integer, it is enough to show that∣∣∣∣and d∏
j=1

P (λj)

∣∣∣∣
v
≤ 1

for all finite places v of K(λ1, . . . , λd).
(1) Using that | · |v is an ultrametric, we

have ∣∣∣∣and d∏
j=1

P (λj)

∣∣∣∣
v
≤ |ad|nv

d∏
j=1

max(|λj |nv , 1).

Applying Gauss’s lemma (see, e.g., [2, Lemma 1.6.3]) for the product of poly-

nomials
∏
j(x− λj), we get

d∏
j=1

max(|λj |v, 1) = |ad|−1
v ,

which combined with our previous inequality gives the claim.

(1) Indeed, if a number a ∈ Q is not an integer, then the denominator of a is divisible by

a prime p, hence |a|p > 1, and we also have |a|v > 1 for all places v of K(λ1, . . . , λd) that lie

above p. For basic properties of absolute values, we refer to [2, §§1.2, 1.3].
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For each j, we can write

|P (λj)| ≤ (n+ 1) max(1, |λj |)n.

Using ∣∣∣∣and d∏
j=1

P (λj)

∣∣∣∣ ≥ 1,

we get

|P (λ1)| ≥a−nd
d∏
j=2

|P (λj)|−1

≥(n+ 1)1−da−nd

d∏
j=2

max(1, |λj |)−n

≥(n+ 1)1−dM(λ)−n. �

1.2. Transversality. It is clear that a polynomial with coefficients −1, 0

and 1 cannot have a root in the interval (0, 1/2). It is natural to expect that

there is a larger interval (0, a) with a > 1/2, where such a polynomial may

have at most one root. This is indeed true and was established by Solomyak

[20] building on ideas from [17]. In fact, a slightly stronger property called

transversality also holds, which we recall now.

Let A ⊂ Z>0. We write PA for the set of power series of the form

1 +
∑
n∈A

anx
n,

where an ∈ {−1, 0, 1}. Let x0, δ > 0 be numbers. We say that the interval

[0, x0] is an interval of δ-transversality for PA if for all x ∈ [0, x0] and f ∈ PA,

the inequality f(x) < δ implies f ′(x) < −δ.
We note a consequence of this definition. If f(x1) < δ for some x1 ∈ [0, x0],

then f(x) < δ − δ(x − x1) for all x ∈ [x1, x0]. Indeed, if this is not true, by

continuity, there is a smallest x ∈ [x1, x0] with f(x) ≥ δ − δ(x − x1). Clearly

f(t) < δ for all t ∈ [x1, x], which implies f ′(t) < −δ by the definition of

transversality, which contradicts the mean value theorem. This means, in

particular, that a function f ∈ PA may have at most one zero in an interval of

δ-transverasilty.

There are three sets, which we will use in the role of A in this paper, and

now we introduce short notation for them. We write P := PZ>0 and

Pi := P{n∈Z>0:3-n−i}

for i = 1, 2.

We recall the following result from [20], [15].
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Theorem 5. There is an absolute constant δ > 0 such that [0, 2−2/3] is an

interval of δ-transversality for P and [0, 2−1/2] is an interval of δ-transversality

for P1 and P2.

See the proof of Theorem 1 at the end of Section 3 in [15], where these

statements are deduced from the lemma at the beginning of Section 3 in [15].

1.3. Parameters with dimension drop I. Hochman proved that parameters

λ ∈ [1/2, 1) with dim νλ < 1 can be approximated by algebraic numbers with

high precision.

Theorem 6 ([12, Th. 1.9]). Suppose that dim νλ < 1 for some λ ∈
[1/2, 1). Then for every θ ∈ (0, 1) and for all large enough n (depending on λ

and θ), there is a polynomial P 6= 0 of degree at most n with coefficients −1,

0 and 1 such that |P (λ)| < θn.

Since [0, 2−1/2] is not an interval of δ-transversality for P for any δ > 0,

we will need to borrow a trick from [15] and consider trimmed Bernoulli con-

volutions. For a parameter λ ∈ (0, 1), we denote by ν̃λ the law of the random

variable
∑
n:3-n−2Xnλ

n, where Xn is a sequence of independent random vari-

ables taking the values ±1 with equal probability. These trimmed Bernoulli

convolutions satisfy an analogue of Theorem 6 as follows. We note that ν̃λ are

exact dimensional by [8], so we can talk about their dimensions in the same

way as in the case of Bernoulli convolutions. We write Q for the set of poly-

nomials whose coefficients are −1, 0 and 1 and the coefficient of xn is always

0 when 3|n− 2.

Theorem 7. Suppose that dim ν̃λ < 1 for some λ ∈ [2−2/3, 1). Then for

every θ ∈ (0, 1) and for all large enough n (depending on λ and θ), there is a

polynomial P 6= 0 ∈ Q of degree at most n such that |P (λ)| < θn.

This theorem can be deduced from [12, Th. 1.7] in exactly the same way

as [12, Th. 1.9] (which we recalled above in Theorem 6).

1.4. Entropy and Mahler measure. Theorem 6 implies that dim νλ = 1 for

all algebraic parameters λ ∈ (1/2, 1) that are not roots of polynomials with

coefficients −1, 0 and 1. Moreover, Hochman [12] has the following even more

precise result about algebraic parameters.

Theorem 8. Let λ ∈ [1/2, 1) be algebraic. Then

dim νλ = min
(
1,

hλ
log λ−1

)
,

where

hλ = lim
N→∞

1

N
H
(N−1∑
n=0

Xnλ
n
)

and H(·) denotes the Shannon entropy of a discrete random variable.
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See [4, §3.4], where this is formally deduced from the main result of

Hochman [12].

Theorem 8 reduces Question 2 for algebraic parameters to determining

when hλ ≥ log λ−1 holds. The quantity hλ (also called Garsia entropy) received

considerable attention recently. In particular, it was proved by Breuillard and

Varjú [4] that

cmin(log 2, logMλ) ≤ hλ ≤ min(log 2, logMλ)

for an absolute constant c > 0. According to (not rigorous) numerical calcu-

lations reported in [4], the constant c can be taken as 0.44. A recent paper of

Akiyama, Feng, Kempton and Persson [1] gives an algorithm that allows one

to approximate hλ with arbitrary precision with a finite computation. This

means that for all algebraic parameters that satisfy hλ > log λ−1, dim νλ = 1

can, in principle, be proved by finite computation.

The results in [4] also allow us to deduce the following.

Theorem 9. For any h ∈ (0, log 2), there is a number C(h) such that

hλ ≥ h for all algebraic numbers λ with M(λ) ≥ C(h).

Remark 10. This theorem is of independent interest. Following the proof

below, one may compute an explicit function C(h) with which the theorem

holds and use it to give new examples of algebraic parameters that make the

Bernoulli convolution have dimension 1.

Proof. Let X0 be a random variable taking the values ±1 with equal prob-

ability, and let G be an independent (from X0) standard Gaussian random

variable. For a ∈ R≥1, we define

Φ(a) = sup
t>0

(H(X0ta+G)−H(X0t+G)),

where H(·) is now the differential entropy of an absolutely continuous random

variable.

By [4, Prop. 13], we have hλ ≥ Φ(M(λ)) for all algebraic numbers λ. It is

easy to see that

lim
a→∞

H(X0a
−1/2 +G) = H(G)

and

lim
a→∞

H(X0a
1/2 +G) = log 2 +H(G).

Plugging in t = a−1/2 to the definition of Φ, we see that

lim
a→∞

Φ(a) = log 2.

(Here we also used the fact that Φ(a) ≤ log 2, which can be seen for example

from hλ ≤ log 2.) This proves the claim. �
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1.5. Parameters with dimension drop II. Breuillard and Varjú also gave

approximations for parameters λ ∈ [1/2, 1) with dim νλ < 1 by algebraic num-

bers. The following is a simplified version of [3, Th. 1].

Theorem 11. Suppose that dim νλ < 1 for some λ ∈ [1/2, 1). Then there

are arbitrarily large integers d such that there is an algebraic number η = η(d)

with deg η ≤ d, dim νη < 1 and

|λ− η| ≤ exp(−d2).

There are a number of differences compared with Theorem 6. The ap-

proximation is not claimed in Theorem 11 on all sufficiently large scales, but

only on a (possibly very sparse) sequence of scales. However, the approximat-

ing parameter satisfies dim νη < 1 and a better estimate for the distance to λ.

Both of these features and the fact that the approximation is available at all

(sufficiently large) scales in Theorem 6 are critically important for the success

of our proof of Theorem 3.

2. Proof of Theorem 3

We begin by formalizing the statement about lower bounds on the values

of polynomials that we made after Theorem 3. Recall the notation Q from

Section 1.3.

Proposition 12. Let ξ ∈ (1/2, 2−1/2) be an algebraic number of degree

at most d of Mahler measure at most M . Let n > 10d log d be an integer. Let

P 6= 0 ∈ Q be a polynomial of degree at most n. Then |P (λ)| > (20M)−n

for all λ satisfying (5M)−n ≤ |λ − ξ| ≤ (5M)−n+1 provided d is larger than

an absolute constant. If ξ ∈ (1/2, 2−2/3], then the claim also holds for all

polynomials P 6= 0 of degree at most n with coefficients −1, 0 and 1.

Proof. Suppose to the contrary that |P (λ)| ≤ (20M)−n, where λ is a

number in the range specified by the proposition and P 6= 0 is a polynomial of

degree at most n with coefficients in −1, 0 and 1 and P ∈ Q if ξ > 2−2/3.

If P (0) 6= 1, we replace P by ±P/xk for a suitable k such that P (0) = 1

holds. For this new P , we have P ∈ P and, moreover, P ∈ P1∪P2 if ξ > 2−2/3,

and we still have |P (λ)| ≤ (10M)−n. (Recall the definitions of P, P1 and P2

from Section 1.2.)

Let δ > 0 be a number such that (0, 2−2/3) is an interval of δ-transversality

for P and (0, 2−1/2) is an interval of δ-transversality for P1 and P2. Such a

number exists by Theorem 5.

We first show that P (ξ) 6= 0. If this is not the case, then P (ξ), P (λ) < δ

(provided n is large enough), so we have P ′(t) < −δ for all t between ξ and λ.

Since |ξ− λ| ≥ (5M)−n, we have |P (ξ)−P (λ)| > δ(5M)−n by the mean value

theorem, a contradiction.
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Now we can apply Theorem 4 and conclude that

|P (ξ)| ≥ (n+ 1)1−dM(ξ)−n ≥ (2M)−n

since n > 10d log d. Since |P (λ)| ≤ (10M)−n and |λ− ξ| ≤ (5M)−n+1, we get

a contradiction with |P ′(t)| ≤ n2, which holds for all t ∈ [0, 1]. �

Remark 13. After circulating a previous version of this paper, Vesselin

Dimitrov pointed out to me that a variant of Proposition 12 follows from

a result of Mignotte [13], which gives an estimate for the distance between

algebraic numbers if one of the degrees is much larger than the other. In

this version, one may relax the condition ξ ∈ (1/2, 2−2/3) at the expense of

requiring n > d(log d)2. With this approach, one may avoid using the trimmed

version of Bernoulli convolutions ν̃λ later in the proof.

We turn to the proof of Theorem 3. Let λ ∈ (1/2, 1) be a transcendental

number, and assume to the contrary that dim νλ < 1. We show that dim νλk ≤
dim νλ for any k ∈ Z>0. Note that νλ = νλk ∗ µ, where µ is the law of the

random variable
∑
n:k-n±λn. Now let E be a Borel set with νλ(E) > 0. Then

for t belonging to a set of positive µ-measure, we have νλk(E − t) > 0, hence

dimH(E) = dimH(E− t) ≥ dim νλk . This proves dim νλ ≥ dim νλk . Therefore,

we can assume λ < 2−1/2, for otherwise we can replace λ by λk for some

positive integer k so that λk ∈ (1/2, 2−1/2).

By Theorem 11, there is an arbitrarily large integer d, such that there is an

algebraic number ξ of degree at most d with dim νξ < 1 and |ξ−λ| ≤ exp(−d2).

By Theorems 8 and 9, there is a number M depending only on λ (but crucially

not on d) such that M(ξ) ≤M . Choose an integer n such that

(5M)−n ≤ |λ− ξ| ≤ (5M)−n+1.

If ξ ≤ 2−2/3, we apply Theorem 6 with θ = (20M)−1 to find a polynomial

P 6= 0 of degree at most n with coefficients −1, 0 and 1 such that |P (λ)| <
(20M)−n. Crucially, Theorem 6 holds at every sufficiently large scale n. Now,

we have a contradiction with Proposition 12.

If ξ > 2−2/3, then we note that dim ν̃λ ≤ dim νλ < 1, for νλ is the

convolution of ν̃λ with another measure and convolution may only increase the

dimension of measures by the above argument. Hence, we can apply Theorem 7

and find that there is a polynomial P 6= 0 ∈ Q of degree at most n such that

|P (λ)| < (20M)−n, and we reach a contradiction with Proposition 12 again.
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algébriques de grand degré, Ann. Fac. Sci. Toulouse Math. (5) 1 no. 2 (1979),

165–170. MR 0554376. Zbl 0421.10022. Available at http://www.numdam.org/

item?id=AFST 1979 5 1 2 165 0.

[14] Y. Peres, W. Schlag, and B. Solomyak, Sixty years of Bernoulli convolu-

tions, in Fractal Geometry and Stochastics, II (Greifswald/Koserow, 1998), Progr.
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