
Annals of Mathematics 189 (2019), 979–1000
https://doi.org/10.4007/annals.2019.189.3.8

An application of Cartan’s equivalence
method to Hirschowitz’s conjecture

on the formal principle

By Jun-Muk Hwang

Abstract

A conjecture of Hirschowitz’s predicts that a globally generated vector

bundle W on a compact complex manifold A satisfies the formal principle;

i.e., the formal neighborhood of its zero section determines the germ of

neighborhoods in the underlying complex manifold of the vector bundle W .

By applying Cartan’s equivalence method to a suitable differential system

on the universal family of the Douady space of the complex manifold, we

prove that this conjecture is true if A is a Fano manifold, or if the global

sections of W separate points of A. Our method shows more generally that

for any unobstructed compact submanifold A in a complex manifold, if the

normal bundle is globally generated and its sections separate points of A,

then a sufficiently general deformation of A satisfies the formal principle.

In particular, a sufficiently general smooth free rational curve on a complex

manifold satisfies the formal principle.

1. Introduction

A fundamental problem in complex geometry is to understand the germ, or

the neighborhood structure, of a (compact) complex submanifold in a complex

manifold. (See [9] for an introduction to various questions on this topic and

[1] for more recent developments.) A natural approach is to study first the

isomorphism types of the finite-order neighborhoods of the submanifold, which

is usually a cohomological question of geometric or algebraic nature. Once all

the finite-order neighborhoods are understood, i.e., the isomorphism type of

the formal neighborhood of the submanifold is determined, then one faces

the question of the convergence of the formal isomorphism or the existence of

biholomorphic isomorphisms approximating the formal isomorphism, which is
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usually a question of analytic nature. Our main interest, the formal principle,

is a version of the latter question. We use the following definition.

Definition 1.1. For a compact complex submanifold A in a complex man-

ifold X,

(i) (A/X)` for a nonnegative integer ` denotes its `-th order neighborhood

(i.e., the analytic space defined by the (` + 1)-th power of the ideal of

A ⊂ X);

(ii) (A/X)∞ denotes the formal neighborhood of A in X; and

(iii) (A/X)O denotes the germ of (Euclidean) neighborhoods of A in X.

We say that A ⊂ X satisfies the formal principle or, equivalently, the formal

principle holds for A ⊂ X, if given

(1) a compact submanifold Ã in a complex manifold X̃;

(2) a formal isomorphism ψ : (A/X)∞ → (Ã/X̃)∞ between the formal neigh-

borhoods; and

(3) a positive integer `,

we can find a biholomorphism Ψ : (A/X)O → (Ã/X̃)O such that Ψ|(A/X)` =

ψ|(A/X)` .

As many authors have been interested in comparing the germ A ⊂ X with

the germ of the zero section of the normal bundle NA/X (see [1] and references

therein), it is convenient to introduce the following terminology.

Definition 1.2. Let W be a vector bundle on a compact complex mani-

fold A. We say that W satisfies the formal principle if the zero section 0A ⊂W ,

regarded as a submanifold of the complex manifold X underlying the vector

bundle W , satisfies the formal principle in the sense of Definition 1.1.

Not every compact complex submanifold in a complex manifold satisfies

the formal principle. In fact, Arnol′d ([2]) discovered a line bundle of degree

0 on an elliptic curve that does not satisfy the formal principle. On the other

hand, the formal principle holds in many cases of A ⊂ X if the normal bun-

dle NA/X satisfies certain positivity or negativity conditions. (See the surveys

in [13] and Section VII.4 of [8].) In [10], Hirschowitz explored the possibil-

ity of replacing complex-analytic or differential-geometric positivity conditions

on the normal bundle NA/X by more geometric conditions in terms of the

deformations of the submanifold A in X and proposed a very interesting con-

jecture. To avoid technicalities, let us assume that the submanifold A ⊂ X is

unobstructed; i.e., all infinitesimal deformations H0(A,NA/X) can be realized

as actual deformations of A in X. (This is equivalent to the smoothness of

the Douady space of X at the point corresponding to A.) Then we can state

Hirschowitz’s conjecture in the introduction of [10] in the following way.
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Conjecture 1.3. Let A ⊂ X be an unobstructed compact submanifold

of a complex manifold. Assume that the normal bundle NA/X is globally gen-

erated ; i.e., the sequence

0→ H0(A,NA/X ⊗mx)→ H0(A,NA/X)→ NA/X,x → 0,

where mx is the maximal ideal at x ∈ A, is exact at every x ∈ A. Then A ⊂ X
satisfies the formal principle.

Note that the zero section 0A in Definition 1.2 is always unobstructed. So

Conjecture 1.3 predicts the following.

Conjecture 1.4. A globally generated vector bundle on a compact com-

plex manifold satisfies the formal principle.

The assumption of global generation in Conjectures 1.3 and 1.4 is a geo-

metric version of the semi-positivity of the normal bundle. In the two extreme

cases of the semi-positivity, i.e., either when the normal bundle is trivial or

when the normal bundle is positive, the conjecture was solved. Indeed, Theo-

rem 2.2 of [13], attributed to Hirschowitz, proves Conjecture 1.3 when NA/X is

trivial. When the normal bundle NA/X is ample in Conjecture 1.3, Commichau

and Grauert’s result in [6] settles it. (See the remark at the end of Section 4

in [13].) Also, Hirschowitz [10] had obtained some results on Conjecture 1.3

under the additional assumption that A has sufficiently many deformations in

X that have nonempty intersections with A, which is a version of the positivity

of the normal bundle. These results cover other works on the formal principle

for submanifolds with positive normal bundle, such as Theorem II of [9]. Their

works were generalized to some singular varieties in [14] and [20]. Since then,

however, there has been little progress on this problem.

A difficulty in attacking the semi-positive situation of Conjecture 1.3 by

the methods used in the works cited above is due to a fundamental difference

of the approaches in the trivial normal bundle case and the positive normal

bundle case. Among others, the methods used for the positive normal bundle

case (both [6] and [10]) proved the convergence of the given formal isomorphism

ψ in Definition 1.1, while the convergence cannot be expected in the trivial

normal bundle case. It is hard to see how to combine these two different

approaches.

In this paper, we employ Cartan’s equivalence method for geometric struc-

tures, to obtain some new results on Conjectures 1.3 and 1.4. Our main re-

sult is formulated in terms of Douady spaces. Recall that for each complex

space X, we have its Douady space denoted by Douady(X), a complex space

parametrizing compact complex subspaces of X, with the associated universal

family morphisms

Douady(X)
ρ← Univ(X)

µ→ X.
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The assignment of Douady(X) to a complex space X is a functor, which is a

complex-analytic version of the Hilbert scheme functor in algebraic geometry.

We refer the reader to [7] or the introductory survey in Section VIII.1 of [8]

for a detailed presentation of Douady spaces.

When interpreted in terms of the Douady space of X, the assumptions

of Conjecture 1.3 say that the Douady space Douady(X) is smooth at [A] ∈
Douady(X) and the morphism µ is submersive along the fiber ρ−1([A]), i.e.,

the differential dyµ : TyUniv(X)→ Tµ(y)X is surjective at every y ∈ ρ−1([A]).

Our main result is the following weak version of Conjecture 1.3.

Theorem 1.5. Let X be a complex manifold, and let K ⊂ Douady(X)

be a subset of the Douady space of X with the associated universal family

morphisms

K ρ← U := ρ−1(K) ⊂ Univ(X)
µ→ X

such that

(i) K is a connected open subset in the smooth loci of Douady(X);

(ii) ρ|U is a smooth morphism with connected fibers ;

(iii) µ is submersive at every point of U ; and

(iv) for the submanifold A ⊂ X corresponding to any point in K, the normal

bundle NA/X satisfies, for any x 6= y ∈ A,

H0(A,NA/X ⊗mx) 6= H0(A,NA/X ⊗my)

as subspaces of H0(A,NA/X).

Then there exists a nowhere-dense subset S ⊂ K such that the submanifold

A ⊂ X corresponding to any point of K \ S satisfies the formal principle.

Note that all of the conditions of Theorem 1.5 are open conditions on

Douady(X). In the setting of Conjecture 1.3, an open neighborhood K of

the point of Douady(X) corresponding to A satisfies (i), (ii) and (iii). Thus

Theorem 1.5 says that if the sections of the normal bundle separate points of A

in the setting of Conjecture 1.3, then the formal principle holds for sufficiently

general deformations of A in X.

The key idea of the proof of Theorem 1.5 is as follows. We introduce a

natural system of differential equations at a general point of U . If we can solve

this system of differential equations, a special local holomorphic solution Ψ in

Definition 1.1 can be obtained in a neighborhood of a point of A, and then we

can analytically continue it along A to obtain a global solution. The additional

condition (iv) in Theorem 1.5 is imposed to prevent the multi-valuedness of

the analytic continuation. Thus the problem is reduced to solving a locally

defined system of differential equations. Our system of differential equations

describes an equivalence problem of certain geometric structures, and it is

solved by applying a result of Morimoto’s in [18]. Morimoto’s result, which is
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a rigorous version of Cartan’s equivalence method ([5]), says that the formal

equivalence of geometric structures implies their biholomorphic equivalence, at

any point outside a nowhere-dense subset. The existence of the biholomorphic

equivalence follows eventually from the Cartan-Kähler theorem with estimates

(e.g., the version given in the appendix of [15] or Theorem IX.2.2 of [4]). Thus

our proof of Theorem 1.5 is essentially a series of geometric arguments, reducing

it to its main analytical ingredient, the Cartan-Kähler theorem.

Theorem 1.5 has several applications. In Conjecture 1.4, the germ of any

holomorphic section of the bundle W → A is biholomorphic to the germ of the

zero section 0A in W . Thus Theorem 1.5 implies the following weaker version

of Conjecture 1.4.

Theorem 1.6. Let W be a globally generated vector bundle on a compact

complex manifold A such that

H0(A,W ⊗mx) 6= H0(A,W ⊗my) for any x 6= y ∈ A.

Then W satisfies the formal principle.

Recall that a compact complex manifold A is Fano if the anti-canonical

line bundle K−1
A = detTA is ample (or positive). We have the following refined

version of Theorem 1.6, which proves Conjecture 1.4 for Fano manifolds.

Theorem 1.7. A globally generated vector bundle on a Fano manifold

satisfies the formal principle.

Theorems 1.5, 1.6 and 1.7 are new, even when the submanifold is the

Riemann sphere P1. The situation of A = P1 in Theorem 1.5 is actually the

original motivation of this work. It implies the following.

Theorem 1.8. Let A ∼= P1 ⊂ X be a smooth rational curve whose normal

bundle is globally generated. (Such a rational curve is called a smooth free

rational curve; see Section II.3 of [12].) Let K ⊂ Douady(A) be a neighborhood

of the point corresponding to A. Then there exists a nowhere-dense subset

S ⊂ K such that any member of K \ S satisfies the formal principle.

When combined with the Cartan-Fubini type extension theorem in [11],

it gives the following.

Theorem 1.9. Let X, X̃ be Fano manifolds of Picard number 1. Let K
(resp. K̃) be an irreducible component of the space (e.g., RatCurves(X) in

[12]) of rational curves on X (resp. X̃) such that the subscheme Kx ⊂ K
(resp. K̃x̃) consisting of members through a general point x ∈ X (resp. x̃ ∈ X̃)

is nonempty, projective and irreducible. Then there exists a nowhere-dense

subset S ⊂ K such that for any member A ⊂ X of K \ S if there exists a
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member Ã of K̃ equipped with a formal isomorphism

ϕ : (ΓA/(P1 ×X))∞ → (ΓÃ/(P
1 × X̃))∞,

where ΓA ⊂ P1 ×X (resp. ΓÃ ⊂ P1 × X̃) is the graph of the normalization of

A (resp. Ã), then ϕ can be extended to a biholomorphic map from X to X̃ .

The original statement (e.g., Theorem 3.9 below) of the Cartan-Fubini

type extension theorem in [11] involves transcendental conditions, in terms

of Euclidean neighborhoods of rational curves. Because such transcendental

conditions are not easy to check effectively, the applicability of the Cartan-

Fubini type extension theorem has been limited. To remedy this, it is essential

to replace the transcendental conditions by algebraic conditions. Theorem 1.9

is the first step in this direction.

When the curves A and Ã are singular in Theorem 1.9, one may wonder

whether it is more natural to formulate the condition in terms of the formal

neighborhoods of A and Ã, not those of ΓA and ΓÃ. Such a formulation might

be possible using the notion of the formal principle for singular subvarieties,

but it would be less useful. In the study of families of rational curves covering

projective varieties, conditions in terms of the graph of the normalization are

more effectively applicable than those in terms of singular curves.

The rest of the paper consists of two sections. In Section 2, we give a

streamlined review of Morimoto’s work on Cartan’s equivalence method, with

some modifications needed for our purpose. The proofs of Theorems 1.5–1.9

are given in Section 3.

Finally, let us mention that the novelty of our argument lies in the obser-

vation that one can use Cartan’s method to obtain results like Theorem 1.5 by

viewing families of submanifolds on a complex manifold as a geometric struc-

ture in the sense of Cartan. This viewpoint was already used in [11] when

the submanifolds are rational curves, and it can be useful also in the study of

finite-order neighborhoods of complex submanifolds.

Acknowledgments. I am very grateful to Takeo Ohsawa for drawing my

attention to Conjecture 1.3 for A = P1, which was the starting point of this

work. He has also provided me with valuable historical information on the

subject of the formal principle. I would like to thank Tohru Morimoto for

helpful discussions on his work [18] and sending me a copy of [21].

2. Review of Morimoto’s work on Cartan’s equivalence method

Roughly speaking, a geometric structure on a complex manifold M is some

holomorphic data imposed on the jet spaces of M . Locally, this is equivalent

to a system of partial differential equations on M . The equivalence problem

for geometric structures asks for methods to check whether two geometric
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structures of the same type are locally isomorphic or not. Élie Cartan ([5]) gave

an outline of a general approach to solve the equivalence problem. Rigorous

realizations of Cartan’s ideas have been presented by many authors in various

settings. To our knowledge, Morimoto’s [18], with a summary in [17], is the

first systematic account of the theory in full generality. Moreover, it states

some of the results in the way most convenient for us. Since [18] is not widely

known and is rather long, we present a streamlined review of part of it, with

some minor complements and modification necessary for our purpose.

2.1. Let us recall the terminology of Sections 2 and 3 in [18]. For a com-

plex manifold M , there are naturally defined complex manifolds with holomor-

phic submersions

M
π0

← R0(M)
π1
0← R1(M)← · · · ← Rk(M)

πk+1
k← Rk+1(M)←

constructed inductively as follows. Fix a vector space V with dimV = dimM .

The submersion π0 : R0(M) → M is the frame bundle of M with the fiber

R0
x(M) at x ∈ M equal to the set Isom(V, TxM) of linear isomorphisms from

V to the tangent space TxM . For each k ≥ 0, the manifold Rk+1(M) is the

set of all pairs (zk, Hk) consisting of a point zk of Rk(M) and a subspace Hk

of TzkRk(M) satisfying inductively

dimHk = dimHk−1, dπkk−1(Hk) = Hk−1 and dπk(Hk) = Tπk(zk)M,

where zk = (zk−1, Hk−1) by induction and πk : Rk(M)→M is the composition

π0◦π1
0 ◦· · ·◦πkk−1. Then πk+1

k : Rk+1(M)→ Rk(M) is defined by πk+1
k (zk+1) =

zk if zk+1 ∈ Rk+1(M) is given by (zk, Hk).

The submersion πk : Rk(M) → M is a Gk(V )-principal bundle over M

for a complex Lie group Gk(V ) with Lie algebra gk(V ), described in Section

1.1 of [18]. The map πkk−1 is equivariant with respect to the actions of Gk(V )

and Gk−1(V ) related by a natural surjective group homomorphism

εkk−1 : Gk(V )→ Gk−1(V ).

The corresponding Lie algebra homomorphism is denoted by the same symbol

εkk−1 : gk(V )→ gk−1(V )

by abuse of notation. The manifold Rk(M) has a natural 1-form Θk−1 with

values in the vector space V k−1 := V + gk−1(V ), called the fundamental form,

which generalizes the soldering form on the frame bundle R0(M) (see page

307 of [18]). The structure function Ck−2 is a holomorphic function on Rk(M)

with values in V k−2 ⊗ ∧2V ∗, whose value Ck−2(z)(u, v) ∈ V k−2 for u, v ∈ V
and z ∈ Rk(M) is given by (see page 311 of [18])

Ck−2(z)(u, v) := 〈(πkk−1)∗dΘk−2, u] ∧ v]〉,
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where u], v] ∈ TzRk(M) are any vectors satisfying

Θk−1(u]) = u and Θk−1(v]) = v.

A biholomorphic map Φ : M → M̃ between two complex manifolds in-

duces, in a canonical way, a biholomorphic map Φ(k) : Rk(M) → Rk(M̃)

satisfying Φ(k)∗Θ̃k−1 = Θk−1, where Θ̃k−1 denotes the fundamental form on

R(k)(M̃). Similarly, for x ∈ M and x̃ ∈ M̃ , a formal isomorphism ϕ :

(x/M)∞ → (x̃/M̃)∞ induces a formal isomorphism

ϕ(k) : ((πk)−1(x)/Rk(M))∞ → ((π̃k)−1(x̃)/Rk(M̃))∞.

2.2. We recall the terminology of Section 4 of [18]. A vector bundle εB :

g → B on a complex manifold B equipped with holomorphically varying Lie

algebra structures on its fibers {g(b), b ∈ B} is called a Lie B-algebra. It defines

a Lie B-group germ, i.e., a submersion εB : G → B (denoted by the same

symbol εB by abuse of notation) of complex manifolds with a distinguished

section e : B → G such that the fiber G(b) of G → B at b ∈ B is the Lie

group germ of the Lie algebra g(b) with the identity e(b). A complex Lie group

(resp. Lie algebra) is regarded as a Lie B-group germ (resp. a Lie B-algebra)

for an isolated point B. We say that a Lie B-group germ εB : G → B is a

Lie B-subgroup germ of a Lie B′-group germ εB′ : G′ → B′ if there exits a

holomorphic map h : B → B′ and an immersion ι : G → G′ ×B′ B such that

εB′ ◦ ι = h ◦ εB and ι|G(b) : G(b) → G′(h(b)) is an injective homomorphism

of Lie group germs for any b ∈ B. In this case, we say that g → B is a Lie

B-subalgebra of a Lie B′-algebra g′ → B′.

The right-action of a Lie B-group germ εB : G→ B on a manifold P with

a submersion P → B is defined as a holomorphic map α : U → P defined on a

neighborhood U ⊂ P ×B G of P ×B e(B) ⊂ P ×B G satisfying the usual group

action property α(z, e(b)) = z for any z ∈ P, b ∈ B and

α(z, g1 · g2) = α(α(z, g1), g2),

whenever both sides make sense.

Let π : P →M be a submersion of complex manifolds. Suppose there exist

a Lie B-group germ εB : G→ B and a submersion πB : M → B with a right-

action of G → B on πB ◦ π : P → B given by α : U → P for a neighborhood

U ⊂ P ×B G of P ×B e(B). Denote by Px the fiber of π : P → M at x ∈ M .

We call such data P (M,B,G) a principal B-bundle germ with the structure

group germ εB : G → B if for any point z ∈ Px and b = πB(x) ∈ B, the

orbit map of the action of the group germ e(b) ∈ G(b) gives a biholomorphism

(e(b)/G(b))O ∼= (z/Px)O. We have the notion of a principal B-subbundle germ

in a similar way.

Let εkB : Gk → B be a Lie B-subgroup germ of the Lie group Gk(V ) for a

nonnegative integer k. We say that it is a regular B-subgroup germ of Gk(V )
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if for each 0 ≤ i ≤ k, the image Gi = εki (G
k) under the composition

εki := εi+1
i ◦ · · · ◦ εkk−1 : Gk(V )→ Gi(V )

is a Lie B-subgroup germ of Gi(V ). Then we have the Lie B-subalgebra gi → B

of the Lie algebra gi(V ).

For a regularB-subgroup germGk → B ofGk(V ), a principalB-subbundle

germ P k(M,B,Gk) of Rk(M) is called a Cartan bundle of order k + 1 on M .

The regularity of Gk → B implies that the image πki (P k(M,B,Gk)) defines a

Cartan bundle P i(M,B,Gi) of order i+ 1 on M for each 0 ≤ i ≤ k.

For two Cartan bundles P k(M,B,G) on M and P̃ k(M̃, B̃, G̃) on M̃ , a

biholomorphism (resp. formal isomorphism)

Φ : M → M̃ (resp. ϕ : (x/M)∞ → (x̃/M̃)∞)

is an isomorphism of the Cartan bundles (resp. a formal isomorphism of the

Cartan bundles) if

Φ(k) : Rk(M)→ Rk(M̃)Ä
resp. ϕ(k)((πk)−1(x)/Rk(M))∞ → ((π̃k)−1(x̃)/Rk(M̃))∞

ä
sends P k(M,B,G) to P̃ k(M̃, B̃, G̃), and there exists a biholomorphism (resp.

formal isomorphism)

h : B → B̃ (resp. f : (πB(x)/B)∞ → (πB̃(x̃)/B̃)∞)

such that πB̃◦Φ = h◦πB (resp. πB̃◦ϕ = f◦πB). Suppose Cartan bundles P k :=

P k(M,B,G) on M and P̃ k := P̃ k(M̃,B,G) on M̃ have the same structural

B-subgroup germ G→ B. Given z ∈ P k and z̃ ∈ P̃ k satisfying

πB ◦ πk(z) = π̃B ◦ π̃k(z̃),

we say that a biholomorphism Ψ : (z/P k)O → (z̃/P̃ k)O is an isomorphism of

Cartan bundles if Ψ = Φ(k) for some biholomorphism

Φ : (x/M)O → (x̃/M̃)O, x = πk(z), x̃ = π̃k(z̃).

Similarly, a formal isomorphism of Cartan bundles ψ : (z/P k)∞ → (z̃/P̃ k)∞
is of the form ψ = ϕ(k) for some formal isomorphism ϕ : (x/M)∞ → (x̃/M̃)∞.

Restricting Θk−1 to a Cartan bundle P k(M,B,G) ⊂ Rk(M), we ob-

tain a V k−1-valued form θk−1 and a V k−2 ⊗ ∧2V ∗-valued function ck−2 on

P k(M,B,G). For a vector space E and a manifold Y , let us denote by EY
the trivial vector bundle on Y with the fiber E. We say that a Cartan bun-

dle P k = P k(M,B,Gk) is Morimoto-normal if θk−1 has values in the vector

subbundle on B

(VB ⊕ gk−1) ⊂ (V + gk−1(V ))B.

(As the word “normal” has different meaning in complex geometry, we use the

term “Morimoto-normal” instead of “normal” used in [18].) This is equivalent
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to saying that every point zk ∈ P k, regarded as a subspace in TRk−1(M), is

tangent to P k−1(M,B,Gk−1) = πkk−1(P k(M,B,Gk)). The restriction ck−2 of

Ck−2 to P k is called the first structure function of P k, which has values in

(VB ⊕ gk−2)⊗∧2V ∗B, if P k is Morimoto-normal. The second structure function

of P k is a holomorphic map

χk : P k → TB ⊗ V ∗B
defined by

χk(zk)(v) = dπB
Ä
πk0 (zk)(v)

ä
∈ TB for zk ∈ P k, v ∈ V,

where πk0 (zk)(v) ∈ TM is the image of v under the isomorphism πk0 (zk) : V →
Tπk(zk)M . It behaves equivariantly under the action of G→ B.

2.3. We recall the equivalence method for involutive Cartan bundles,

from Section 8 of [18].

Throughout, we fix a vector space V . For a vector space W and a subspace

h ⊂ Hom(V,W ), the first prolongation of h is the subspace h(1) ⊂ Hom(V, h)

defined by

h(1) := {h ∈ Hom(V, h), h(u)v = h(v)u for all u, v ∈ V }.

For v1, . . . , vj ∈ V , define

h(v1, . . . , vj) := {h ∈ h ⊂ Hom(V,W ), h(v1) = · · · = h(vj) = 0}.

We say that h is involutive if there exists a basis (v1, . . . , vn) of V such that

dim h(1) = dim h +
n−1∑
i=1

dim h(v1, . . . , vi).

If h is involutive, then h(1) ⊂ Hom(V, h) is also involutive (Proposition 8.2 in

[18] due to Guillemin-Sternberg and Serre).

A Cartan bundle P 0(M,B,G0) of order 1 is involutive if

g0(b) ⊂ g0(V ) = Hom(V, V )

is involutive for any b∈B and the structure functions c−2 and χ0 areB-constant,

i.e.,

c−2(z) = c−2(z′) and χ0(z) = χ0(z′)

for all z, z′ ∈ P 0 satisfying πB(z) = πB(z′). For involutive Cartan bundles

of order 1, we have the following result, which refines Theorem 8.2 of [18]

attributed to [19] and [21].

Theorem 2.1. Let P 0 = P 0(M,B,G0) and P̃ 0 = P̃ 0(M̃,B,G0) be two

involutive Cartan bundles of order 1, with the same structural B-group germ

G0 → B. Then for any positive integer `, any (z, z′) ∈ P 0 ×B P̃ 0 and any
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formal isomorphism of Cartan bundles ϕ : (z/P 0)∞ → (z̃/P̃ 0)∞, there exists

an isomorphism of Cartan bundles Φ : (z ∈ P 0)O → (z̃ ∈ P̃ 0)O such that

Φ|(z/P 0)` = ϕ|(z/P 0)` .

Proof. By Lemma 3.3 of [19] (or Lemma 5 of [21]), the involutiveness of P 0

and P̃ 0 implies that the exterior differential system on the manifold P 0×B P̃ 0

characterizing local biholomorphisms that are isomorphisms of Cartan bundles

P 0 and P̃ 0 is involutive in the sense of Cartan, hence in the sense of Definition

II.3.10 of [16] by Theorem 3.4 in Appendix B of [16]. Thus given a formal

solution of the differential system, we can find a local holomorphic solution

approximating the formal solution up to any given order, by Cartan-Kähler

theorem with estimate, e.g., Theorem 4.2 in the appendix of [15]. (See also

Section III.3 in [16] or Theorem IX.2.2 of [4].) �

Remark 2.2. T. Morimoto pointed out to me that one can also use Propo-

sition 8.5 of [18] to lift the formal isomorphism ϕ to higher order involutive

Cartan bundles and apply the standard Cartan-Kähler theorem to deduce The-

orem 2.1.

Define gi(V ) = Ker(εii−1 : gi(V ) → gi−1(V )). Then there is a natural

inclusion gi(V ) ⊂ Hom(V, gi−1(V )) (page 302 of [18]). For a regular Lie B-sub-

group germ Gk → B of Gk(V ) and the associated Lie B-subalgebra gk → B

of gk(V ), we set gi = εki (g
k) and gi = gi ∩ gi(V ) with a natural inclusion gi ⊂

Hom(V, gi−1(V )). We write g
(1)
i = gi+1 if they coincide under the inclusions

g
(1)
i ⊂ Hom(V, gi) ⊂ Hom(V, gi(V )) and gi+1 ⊂ Hom(V, gi(V )).

A Cartan bundle P k(M,B,Gk) of order k + 1, k ≥ 1, is involutive if

(i) P k is Morimoto-normal;

(ii) the structure functions ck−2 and χk are B-constant, i.e.,

ck−2(z) = ck−2(z′) and χk(z) = χk(z′)

for all z, z′ ∈ P k satisfying πB(z) = πB(z′);

(iii) gk−1(b) is involutive for all b ∈ B; and

(iv) gk−1(b)(1) = gk(b) for all b ∈ B.

Given a Cartan bundle P k(M,B,Gk) of order k + 1 ≥ 2, if we replace B by a

neighborhood of any point on B, we can view the projection

P k(M,B,Gk)→ P k−1(M,B,Gk−1)

as a Cartan bundle of order 1, denoted by P ∗(M,B,G∗k), on the manifold

P k−1(M,B,Gk−1) (Proposition 5.1 in [18]). If P k(M,B,Gk) is involutive,

then P ∗(M,B,G∗k) is involutive (Proposition 8.5 in [18]). Thus Theorem 2.1

implies the following refinement of Theorem 8.1 of [18].
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Theorem 2.3. Let P k = P k(M,B,Gk) and P̃ k = P̃ k(M̃,B,Gk) be two

involutive Cartan bundles with the same structural B-group germ Gk → B.

Then for any positive integer `, any (z, z̃) ∈ P k×B P̃ k and any formal isomor-

phism of Cartan bundles ϕ : (z/P k)∞ → (z̃/P̃ k)∞, there exists an isomorphism

of Cartan bundles Φ : (z/P k)O → (z̃/P̃ k)O such that

Φ|(z/Pk)`
= ϕ|(z/Pk)`

.

2.4. The following is a slightly modified version of Theorem 9.1 of [18].

Theorem 2.4. Let P (M,B,G)→M
πB→ B be a Cartan bundle of order 1.

Then there exists a nowhere-dense subset S ⊂M with the following properties :

(i) S = ∪ri=1Si for some positive integer r, where S1 is a closed analytic

subset of M and Sj+1 is a closed analytic subset of M \ ∪ji=1Si for any

1 ≤ j < r.

(ii) For each x ∈ M \ S, there exists a neighborhood U ⊂ M \ S of x and a

positive integer k0 such that for each integer k ≥ k0, one can construct by

a finite algorithm, in a unique manner compatible with isomorphisms up

to conjugation, an involutive Cartan bundle P k(U,B′, Gk) of order k+ 1

associated with a regular B′-subgroup germ Gk → B′ over a complex

manifold B′ with submersions πB′ : U → B′ and πB
′

B : B′ → Bx over an

open neighborhood Bx of πB(x) in B, satisfying πB|U = πB
′

B ◦ πB′ .

(iii) In (ii), the formal isomorphism type of P (M,B,G) at x ∈M determines

whether x belongs to S or not, and determines the formal structure of

P k(U,B′, Gk) at x if x ∈M \ S.

Proof. Excepting (iii), this is exactly (with slight changes of notation)

Theorem 9.1 of [18]. We sketch Morimoto’s argument, explaining why it im-

plies (iii). The algorithm in (ii), as explained in pages 349–351 of [18], consists

of three kinds of operations: projections by π`0, prolongations (Section 6 of

[18]) and reductions (Section 7 of [18]). These operations at each point x ∈M
depend only on the formal structure of P (M,B,G) at x. Among them, the re-

duction step works only at points where the structure functions c`−2 and χ` of a

Cartan bundle P ` constructed inductively in the algorithm are submersive over

the smooth loci of their images. The closed analytic subset Si ⊂ M \ ∪i−1
j=1Sj

is the locus where the structure functions appearing in the i-th step of the

algorithm are not submersive over the smooth loci of their images. (This is

the condition given after Theorem 7.1 of [18].) Thus the formal isomorphism

type of P (M,B,G) at x determines whether x belongs to S or not, and also

the formal structure of P k(U,B′, Gk) at x ∈M \ S. �

The combination of Theorems 2.3 and 2.4 yields the following.
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Theorem 2.5. Let M, M̃ be two complex manifolds with Cartan bundles

πM : P = P (M,B,G) → M and πM̃ : P̃ = P̃ (M̃,B,G) → M̃ of the same

order with the same structural Lie B-group germs G→ B with the associated

holomorphic maps

M
πB−→ B

π̃B←− M̃.

Then there exists a nowhere-dense subset S ⊂ M of the type described in (i)

of Theorem 2.4 such that

(1) for any z ∈ P and z̃∈ P̃ satisfying πM (z) 6∈S and πB◦πM (z)= π̃B◦πM̃ (z̃);

(2) for any formal isomorphism of Cartan bundles

ϕ : (z/P )∞ → (z̃/P̃ )∞

satisfying π̃B ◦ πM̃ ◦ ϕ = πB ◦ πM |(z/P )∞ ; and

(3) for any positive integer `,

there exists an isomorphism of Cartan bundles Φ : (z/P )O → (z̃/P̃ )O such

that π̃B ◦ πM̃ ◦ Φ = πB ◦ πM |(z/P )O and Φ|(z/P )` = ϕ|(z/P )` .

3. Proofs of Theorems 1.5–1.9

For the proof of Theorem 1.5, it is convenient to introduce the following

terminology.

Definition 3.1. A pair of holomorphic maps K ρ← U µ→ X , where K,U ,X
are complex manifolds, is a nicely separating family if the following properties

hold:

(1) ρ is a proper submersion.

(2) µ is a submersion and embeds each fiber of ρ into X as a compact complex

submanifold.

(3) When p = dimU − dimX , (2) implies that for each u ∈ U , the germ of

ρ(µ−1(µ(u)) at ρ(u) is a p-dimensional submanifold in K. Define a holomor-

phic map ρ′ : U → Gr(p, TK) to the Grassmannian bundle of the tangent

bundle TK by sending a point u ∈ U to the tangent space of ρ(µ−1(µ(u))

at ρ(u). Then ρ′ is injective.

Definition 3.2. In Definition 3.1, consider the two vector subbundles

T ρ := Ker(dρ), Tµ := Ker(dµ) ⊂ TU .

They satisfy T ρ∩Tµ = 0. Fix a vector space V with two subspaces V1, V2 ⊂ V
such that

dimV = dimU , dimV1 = rankT ρ, dimV2 = rankTµ and V1 ∩ V2 = 0.

Let P 0 be the fiber subbundle of the frame bundle R0(U) whose fiber P 0
y at

y ∈ U is

P 0
y := {h ∈ Isom(V, TyU) = R0

y(U), h(V1) = T ρy and h(V2) = Tµy }.
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We call P 0 the canonical Cartan bundle associated with the nicely separating

family K ρ← U µ→ X . Its structure group is the subgroup of GL(V ) preserving

V1 and V2.

Proposition 3.3. Let K ρ← U µ→ X and K̃ ρ̃← Ũ µ̃→ X̃ be two nicely

separating families, with the associated canonical Cartan bundles P 0 and P̃ 0,

respectively. For z ∈ U and z̃ ∈ Ũ , let Φ : O → Õ be a biholomorphism

between a neighborhood O of z and a neighborhood Õ of z̃ that sends z to z̃

and induces an isomorphism of the canonical Cartan bundles P 0 and P̃ 0. Then

after shrinking O and Õ if necessary,

(i) Φ sends fibers of µ|O to fibers of µ̃|Õ descending to a biholomorphic map

Φ[ : µ(O)→ µ̃(Õ);

(ii) Φ sends fibers of ρ|O to fibers of ρ̃|Õ descending to a biholomorphic map

Φ] : ρ(O)→ ρ̃(Õ);

(iii) there exists a biholomorphic map F : U → Ũ from a neighborhood U of

ρ−1(ρ(z)) to a neighborhood Ũ of ρ̃−1(ρ̃(z̃)) such that the germ of F at z

equals the germ of Φ at z; and

(iv) the map F induces a biholomorphic map F [ from a neighborhood of

µ(ρ−1(ρ(z))) in X to a neighborhood of µ̃(ρ̃−1(ρ̃(z̃))) in X̃ that agrees

with Φ[ on (µ(z)/X )O.

Proof. Properties (i) and (ii) are immediate from the definition of the Car-

tan bundles in Definition 3.2. By Definition 3.1, we have injective holomorphic

maps
ρ′ : U → Gr(p, TK) and ρ̃′ : Ũ → Gr(p, T K̃),

which can be regarded as the normalization of the subvarieties

ρ′(U) ⊂ Gr(p, TK) and ρ̃′(Ũ) ⊂ Gr(p, T K̃).

The biholomorphic map Φ] induces a biholomorphic map

dΦ] : Gr(p, Tρ(O))→ Gr(p, T ρ̃(Õ)).

By (i) and (ii), it induces a biholomorphic map dΦ]|ρ′(O) : ρ′(O) ∼= ρ̃′(Õ).

Since ρ′(O) (resp. ρ̃′(Õ)) is an open subset of ρ′(U) (resp. ρ̃′(Ũ)), it induces a

biholomorphic map

dΦ]|ρ′(U) : ρ′(U) ∩Gr(p, Tρ(O)) ∼= ρ̃′(Ũ) ∩Gr(p, T ρ̃(Õ)).

This biholomorphism between two analytic subvarieties can be lifted naturally

to a biholomorphic map F of their normalizations:

ρ−1(ρ(O)) =: U
F−→ Ũ := ρ̃−1(ρ̃(Õ))

ρ′ ↓ ↓ ρ̃′

ρ′(U) ∩Gr(p, Tρ(O))
dΦ]|ρ′(U)−→ ρ̃′(Ũ) ∩Gr(p, T ρ̃(Õ)).
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It is clear that the germ of F at z equals the germ of Φ at z. Finally, (iv) is

immediate from (i) and (iii). �

For the proof of Theorem 1.5, we need two lemmata. The following is a

special case of Proposition 5.9 of [10].

Lemma 3.4. Let A ⊂ X be a compact complex submanifold in a complex

manifold. Then for each nonnegative integer `, there exists a positive integer

`+ such that if an automorphism of the formal neighborhood ψ∞ : (A/X)∞ →
(A/X)∞ fixes (x/X)`+ for a point x ∈ A, then the induced automorphism

ψ` : (A/X)` → (A/X)` of the `-th order neighborhood of A in X must be the

identity.

The next lemma is proved in page 509 of [10] by applying Propositions

5.7 and 5.8 of [10].

Lemma 3.5. Let A ⊂ X and Ã ⊂ X̃ be compact complex submanifolds

in complex manifolds with a formal isomorphism ψ : (A/X)∞ → (Ã/X̃)∞.

Let a ∈ Douady(X) (resp. ã ∈ Douady(X̃) ) be the point corresponding to A

(resp. Ã). Let K ⊂ Douady(X) (resp. K̃ ⊂ Douady(X̃)) be a neighborhood of

a (resp. ã), and let

K ρ← U µ→ X (resp. K̃ ρ̃← Ũ µ̃→ X̃)

be the universal family morphisms over K (resp. K̃). Then ψ induces formal

isomorphisms

ϕ : (ρ−1(a)/U)∞ → (ρ̃−1(ã)/Ũ)∞ and ϕ] : (a/K)∞ → (ã/K̃)∞,

which are compatible with the morphisms ρ, µ, ρ̃ and µ̃.

We prove a slightly refined version of Theorem 1.5 as follows.

Theorem 3.6. Let X be a complex manifold, and let K be a connected

open subset in the smooth loci of Douady(X) such that the associated universal

family morphisms K ρ← U µ→ µ(U) ⊂ X is a nicely separating family. Then

there exists a nowhere-dense subset S = ∪ri=1Si ⊂ K such that

(1) S1 ⊂ K is a closed analytic subset ;

(2) Sj+1 is a closed analytic subset in the complex manifold K\∪ji=1Si for each

1 ≤ j < r; and

(3) the submanifold of X corresponding to a point of K\S satisfies the formal

principle.

Proof. Apply Theorem 2.4 to the canonical Cartan bundle P 0 on M=U
associated with the nicely separating family. We obtain the subset S =

∪ri=1Si ⊂ M satisfying the property in Theorem 2.4. For each Si, let S′i ⊂ Si
be the subset consisting of irreducible components of the closed analytic subset
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Si in M \∪i−1
j=1Sj defined as follows: an irreducible component R of Si is in S′i if

and only if ρ−1(ρ(R)) = R. Set Si := ρ(S′i). As ρ is a proper morphism and S′1
is a closed analytic subset of U , (1) is immediate. To prove (2), assume that it

holds for each 1 ≤ j ≤ k for some k < r. If a ∈ K \ ∪ki=1Si is an accumulation

point of S ′k+1, then each point of ρ−1(a) is an accumulation point of S′k+1.

Choose a point u ∈ ρ−1(a) outside ∪ki=1Si. Then u ∈ Sk+1 by the closedness of

Sk+1 in U \∪ki=1Si. It follows that a ∈ S ′k+1. This shows that Sk+1 is closed in

K\∪ki=1Si. To show that Sk+1 is an analytic subset in K\∪ki=1Si, it suffices to

check it in a neighborhood of each point a ∈ Sk+1 in K. As ρ is a submersion,

we may show that the intersection of ρ−1(Sk+1) with a neighborhood of some

point u ∈ ρ−1(a) in U is analytic near u. This is obvious if we choose u outside

∪ki=1Si.

To prove (3), let a ∈ K \ S, and let A ⊂ X be the corresponding sub-

manifold. Let Ã ⊂ X̃ be a submanifold of a complex manifold with a formal

isomorphism ψ : (A/X)∞ → (Ã/X̃)∞. Let ϕ and ϕ] be the formal isomor-

phisms obtained by applying Lemma 3.5 to our ψ. As the smoothness of a

point of a complex space is a formal property (e.g., by Corollary 1.6 of [3]), we

see that ã is a smooth point of K̃ and Ã is unobstructed in X̃. Moreover, the

normal bundle NÃ/X̃ is isomorphic to NA/X . Thus we can choose a neighbor-

hood K̃ ⊂ Douady(X̃) of the point ã ∈ Douady(X̃) giving a nicely separating

family

K̃ ρ̃← Ũ µ̃→ µ̃(Ũ) ⊂ X̃.
We have the canonical Cartan bundles P 0 on U and P̃ 0 on Ũ . As ϕ is com-

patible with ρ, ρ̃, µ and µ̃, its restriction to any u ∈ ρ−1(a) and ũ = ϕ(u),

ϕu : (u/U)∞ → (ũ/Ũ)∞

gives a formal isomorphism of the Cartan bundles P 0 and P̃ 0.

For a given positive integer `, let `+ be as in Lemma 3.4. By our definition

of S, there exists a point u ∈ ρ−1(a) that is not contained in S. Applying

Theorem 2.5, we have a biholomorphic map

Φ : (u/U)O → (ũ/Ũ)O with Φ|(u/U)`+
= ϕ|(u/U)`+

.

Then Proposition 3.3 gives a biholomorphic map

F [ : (A/X)O → (Ã/X̃)O with F [|(µ(u)/X)`+
= ψ|(µ(u)/X)`+

.

Thus the composition ψ−1 ◦ F [|(A/X)∞ defines an automorphism of (A/X)∞
that fixes (µ(u)/X)`+ . Thus by Lemma 3.4, the induced automorphism of

(A/X)` is the identity, which means F [|(A/X)` = ψ|(A/X)` . Thus A ⊂ X satis-

fies the formal principle, which proves (3). �

Let us derive Theorem 1.6 from Theorem 1.5.
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Proof of Theorem 1.6. In the setting of Theorem 1.6, let X be the under-

lying complex manifold of the bundle W and let 0A ⊂ X be the submanifold

corresponding to the zero section of W . For a section s ∈ H0(A,W ), denote

by s(A) ⊂ X the submanifold given by the values of the section s.

We claim that the formal principle holds for 0A ⊂ X if it holds for s(A) ⊂
X for some s ∈ H0(A,W ). In fact, the translation τs : X → X that sends

w ∈ Wa on the fiber Wa, a ∈ A to τs(w) = w + s(a) is a biholomorphic

automorphism of X that sends (0A/X)O to (s(A)/X)O.

Consider the collection of submanifolds {s(A) ⊂ X, s ∈ H0(A,W )} and let

K ⊂ Douady(X) be the corresponding subset. As each s(A) is unobstructed,

the set K is in the smooth loci of Douady(X). From

dimK = dimH0(A,W ) = dimH0(s(A), Ns(A)/X),

we see that K is a connected open subset in Douady(X). Thus we are in the

setting of Theorem 1.5 with conditions (i) and (ii) satisfied. By the assump-

tion that W is globally generated, condition (iii) of Theorem 1.5 is satisfied.

Condition (iv) is precisely the additional assumption of Theorem 1.6. Thus by

Theorem 1.5, the formal principle holds for s(A) ⊂ X for some s ∈ H0(A,W ),

hence for 0A ⊂ X by the above claim. �

Now we turn to Theorem 1.7. The following lemma is immediate from the

ampleness of K−1
A of a Fano manifold A.

Lemma 3.7. Let A be a Fano manifold. Then there exists a positive in-

teger p such that the p-th tensor power K−pA := (K−1
A )⊗p satisfies

H0(A,K−pA ⊗mx) 6= H0(A,K−pA ⊗my) for any two points x 6= y ∈ A.

Proposition 3.8. Let A be a Fano manifold, and let p be a positive

integer from Lemma 3.7. Let A ⊂ X be an embedding in a complex manifold.

Let L be the underlying complex manifold of the line bundle K−pX on X . Regard

X as the submanifold of L defined by the zero-section of the line bundle K−pX ,

and regard A as a submanifold of L via A ⊂ X ⊂ L. If the normal bundle

NA/X is globally generated, then so is NA/L, and for any x 6= y ∈ A, we have

H0(A,NA/L ⊗mx) 6= H0(A,NA/L ⊗my)

as subspaces in H0(A,NA/L).

Proof. We claim that for any x 6= y ∈ A,

H0(A,K−pX |A ⊗mx) 6= H0(A,K−pX |A ⊗my).
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As NA/X is globally generated, there exists a section η of (detNA/X)⊗p satis-

fying η(x) 6= 0 6= η(y). From K−pX |A = K−pA ⊗ (detNA/X)⊗p, we have

H0(A,K−pA ⊗mx)⊗ η⊂H0(A,K−pX |A ⊗mx),

H0(A,K−pA ⊗my)⊗ η⊂H0(A,K−pX |A ⊗my).

Since H0(A,K−pA ⊗mx)⊗ η 6= H0(A,K−pA ⊗my)⊗ η by Lemma 3.7, we obtain

the claim.

We have a direct sum decomposition of vector bundles on A:

NA/L
∼= NA/X ⊕K

−p
X |A.

Thus NA/L is globally generated. Moreover, for x 6= y ∈ A,

H0(A,NA/L ⊗mx) =H0(A,NA/X ⊗mx)⊕H0(A,K−pX |A ⊗mx),

H0(A,NA/L ⊗my) =H0(A,NA/X ⊗my)⊕H0(A,K−pX |A ⊗my).

ThusH0(A,NA/L⊗mx) 6= H0(A,NA/L⊗my) follows from the above claim. �

Proof of Theorem 1.7. Let W be a globally generated vector bundle on a

Fano manifold A. Let X be the underlying complex manifold of W and regard

A as a submanifold of X by the zero section of W . Let β : X → A be the

natural projection of the vector bundle W .

We claim that the line bundle K−pX → X is isomorphic to the pullback

β∗(K−pA ⊗ (detW )⊗p). Note that the relative tangent bundle

T β := Ker(dβ : TX → β∗TA)

can be canonically identified with β∗W . Thus the exact sequence

0→ T β → TX → β∗TA→ 0

gives

K−1
X = detT β ⊗ β∗K−1

A = β∗ detW ⊗ β∗K−1
A ,

which proves the claim.

Let L be the complex manifold constructed from A ⊂ X in Proposition 3.8,

and let λ : L→ X be the natural projection. By the above claim, we can regard

the composition L
λ→ X

β→ A as the underlying complex manifold of the direct

sum of vector bundles on A

W ′ := W ⊕ (K−pA ⊗ (detW )⊗p).

Proposition 3.8 implies that the vector bundle W ′ satisfies the condition of

Theorem 1.6. We conclude that the formal principle holds for the inclusion

A ⊂ L.
To prove that A ⊂ X satisfies the formal principle, let Ã ⊂ X̃ be an

embedding of A in another complex manifold X̃ with a formal isomorphism

ψ : (A/X)∞ → (Ã/X̃)∞, and pick a positive integer `. Let L̃ be the underlying
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complex manifold of the line bundle K−p
X̃

on X̃ with the natural projection

λ̃ : L̃ → X̃. The formal isomorphism ψ gives rise to a formal isomorphism of

the formal neighborhoods of the zero sections in the line bundles

dψ : (0A/detTX)∞ → (0Ã/ detTX̃)∞,

which induces a formal isomorphism

ϕ : (A/L)∞ → (Ã/L̃)∞ satisfying ϕ|(A/X)∞ = ψ.

Since A ⊂ L satisfies the formal principle, there exists a biholomorphic map

Φ : (A/L)O → (Ã/L̃)O such that

Φ|(A/L)` = ϕ|(A/L)` .

Write X̃ ′ := Φ((A/L)O ∩X) = Φ((A/X)O). Then

(Ã/X̃)` ⊂ X̃ ′ ∩ X̃.

In particular, the submanifold X̃ ′ ⊂ L̃ is tangent to the submanifold X̃ ⊂ L̃

along Ã. Thus the projection λ̃ : L̃→ X̃ induces a biholomorphism

λ̃|X̃′ : (Ã/X̃ ′)O → (Ã/X̃)O.

Then the biholomorphic map

Ψ := λ̃|X̃′ ◦ Φ|(A/X)O : (A/X)O → (Ã/X̃)O

satisfies

Ψ|(A/X)` = Φ|(A/X)` = ϕ|(A/X)` = ψ|(A/X)` .

This proves that A ⊂ X satisfies the formal principle. �

Proof of Theorem 1.8. The normal bundle of the smooth rational curve

A ⊂ X is of the form

NA/X
∼= O(m1)⊕O(m2)⊕ · · · ⊕ O(mr)

for some integers m1 ≥ m2 ≥ · · · ≥ mr and r = dimX−1. As NA/X is globally

generated, we have mr ≥ 0.

Suppose that m1 = · · · = mr = 0; i.e., the normal bundle is trivial. Then

the morphism µ in Theorem 1.5 is biholomorphic over a neighborhood of A

and the formal principle holds for A ⊂ X trivially.

Suppose that m1 > 0. Then for any x 6= y ∈ A, we have

H0(A,O(m1)⊗mx) 6= H0(A,O(m1)⊗my),

which implies condition (iv) of Theorem 1.5. Thus we can apply Theorem 1.5

to finish the proof. �

Let us recall the following version of the Cartan-Fubini type extension

theorem.
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Theorem 3.9. Let X, X̃ be Fano manifolds of the Picard number 1. Let

K (resp. K̃) be an irreducible component of the space of rational curves on X

(resp. X̃) such that the subscheme Kx ⊂ K (resp. K̃x̃) consisting of members

through a general point x ∈ X (resp. x̃ ∈ X̃) is nonempty, projective and

irreducible. Then there exists a nowhere-dense algebraic subset K′ ⊂ K such

that for any member A ⊂ X belonging to K \K′, if there exists a member Ã of

K̃ equipped with a biholomorphic map

Φ : (ΓA/(P1 ×X))O → (ΓÃ/(P
1 × X̃))O,

where ΓA ⊂ P1 ×X (resp. ΓÃ ⊂ P1 × X̃) is the graph of the normalization of

A (resp. Ã), then Φ can be extended to a biholomorphic map from X to X̃ .

Sketch of proof of Theorem 3.9. The assumption of Theorem 3.9 implies

the conclusion of Proposition 2.1 of [11], while the conclusion of Theorem 3.9

is the conclusion of Main Theorem in page 564 of [11]. Thus the proof of

Theorem 3.9 is contained in the derivation of Main Theorem or Theorem 1.2

of [11] from Proposition 2.1 of [11]. This derivation is exactly Sections 3 and 4

of [11]. �

Proof of Theorem 1.9. Note that general members of any family of smooth

rational curves on a complex manifold X whose loci contain an open subset of

X have globally generated normal bundles (e.g., Proof of Theorem II.3.11 in

[12]). Thus in the setting of Theorem 1.9, we can apply Theorem 1.8 to see

that there exists a biholomorphic map

Φ : (ΓA/(P1 ×X))O → (ΓÃ/(P
1 × X̃))O.

Then we are in the setting of Theorem 3.9, which gives the extension to a

biholomorphic map from X to X̃. �

We remark that Cartan-Fubini type extension theorems, like Main The-

orem or Theorem 1.2 of [11], are usually formulated in terms of varieties of

minimal rational tangents. But once one reaches the setting of Theorem 3.9,

or the conclusion of Proposition 2.1 of [11], varieties of minimal rational tan-

gents play no more role.
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