Explicit Chabauty–Kim for the split Cartan modular curve of level 13

By JENNIFER S. BALAKRISHNAN, NETAN DOGRA, J. STEFFEN MÜLLER, JAN TUITMAN, and JAN VONK

Abstract

We extend the explicit quadratic Chabauty methods developed in previous work by the first two authors to the case of non-hyperelliptic curves. This results in a method to compute a finite set of p-adic points, containing the rational points, on a curve of genus $g \geq 2$ over the rationals whose Jacobian has Mordell–Weil rank g and Picard number greater than one, and which satisfies some additional conditions. This is then applied to determine the rational points of the modular curve $X_s(13)$, completing the classification of non-CM elliptic curves over Q with split Cartan level structure due to Bilu–Parent and Bilu–Parent–Rebolledo.

Contents

Keywords: Diophantine equations, modular curves, p-adic heights, non-abelian Chabauty AMS Classification: Primary: 14G05, 11Y50, 11G50, 11G18.

c 2019 Department of Mathematics, Princeton University.

1. Introduction

In this paper, we explicitly determine the rational points on $X_s(13)$, a genus 3 modular curve defined over Q with simple Jacobian having Mordell– Weil rank 3. This computation makes explicit various aspects of Minhyong Kim's nonabelian Chabauty programme and completes the "split Cartan" case of Serre's uniformity question on residual Galois representations of elliptic curves. Moreover, the broader techniques are potentially of interest for determining rational points on other curves. The main technical development is an algorithm for computing Frobenius structures on the unipotent isocrystals that arise in the Chabauty–Kim method. We begin with an overview of Serre's question, outline our strategy to compute $X_{s}(13)(\mathbf{Q})$ in the context of Kim's nonabelian Chabauty, and end with some remarks on the scope of the method in the toolbox for explicitly determining rational points on curves.

1.1. Modular curves associated to residual representations of elliptic curves. If E/\mathbf{Q} is an elliptic curve and ℓ is a prime number, then there is a natural residual Galois representation

$$
\rho_{E,\ell}: \operatorname{Gal}(\bar{\mathbf{Q}}/\mathbf{Q}) \to \operatorname{Aut}(E[\ell]) \simeq \operatorname{GL}_2(\mathbf{F}_{\ell}).
$$

Serre $\lceil \text{Ser72} \rceil$ showed that if E does not have complex multiplication $\lceil \text{CM} \rceil$, then $\rho_{E,\ell}$ is surjective for all primes $\ell \gg 0$.

Question (Serre). Is there a constant ℓ_0 such that $\rho_{E,\ell}$ is surjective for all elliptic curves E/\mathbf{Q} without CM and all primes $\ell > \ell_0$?

It is known that if ℓ_0 exists, then it must be at least 37. To tackle this question, one may use the fact that a maximal subgroup of $GL_2(\mathbf{F}_\ell)$ is either a Borel subgroup, normaliser of (split or non-split) Cartan subgroup, or exceptional subgroup. The Borel and the exceptional cases were handled by Mazur [\[Maz78\]](#page-58-0) and Serre [\[Ser72\]](#page-59-0), respectively, and the case of normalisers of split Cartan subgroups (for $\ell > 13$) follows from Bilu–Parent [\[BP11\]](#page-55-0) and Bilu–Parent–Rebolledo [\[BPR13\]](#page-55-1), which we now recall.

For a prime ℓ , we write $X_{s}(\ell)$ for the modular curve $X(\ell)/C_{s}(\ell)^{+}$, where $C_s(\ell)^+$ is the normaliser of a split Cartan subgroup of $GL_2(\mathbf{F}_{\ell})$. Since all such subgroups $C_s(\ell)^+$ are conjugate, $X_s(\ell)$ is well-defined up to Q-isomorphism. Bilu–Parent [\[BP11\]](#page-55-0) proved the existence of a constant ℓ_s such that $X_s(\ell)(\mathbf{Q})$ only consists of cusps and CM points for all primes $\ell > \ell_s$. This was later improved by Bilu–Parent–Rebolledo [\[BPR13\]](#page-55-1) who showed that the statement holds for all $\ell > 7, \ell \neq 13$. This proves that, for all primes $\ell > 7, \ell \neq 13$, there exists no elliptic curve E/\mathbf{Q} without CM whose mod- ℓ Galois representation has image contained in the normaliser of a split Cartan subgroup of $GL_2(\mathbf{F}_{\ell})$. However, they were unable to prove this statement for $\ell = 13$.

Bilu, Parent, and Rebolledo use a clever combination of several techniques for finding $X_s(\ell)(\mathbf{Q})$, but one of the crucial ingredients is Mazur's method [\[Maz78\]](#page-58-0) for showing an integrality result for non-cuspidal rational points on $X_{\rm s}(\ell)$. This relies on the statement

$$
Jac(X_{\rm s}(\ell))\sim Jac(X_0^+(\ell^2))\sim J_0(\ell)\times Jac(X_{\rm ns}(\ell))
$$

proved by Chen [\[Che98\]](#page-56-0), where $X_{\text{ns}}(\ell)$ is the modular curve associated to the normaliser of a non-split Cartan subgroup of $GL_2(\mathbf{F}_{\ell})$, similar to the split case. Mazur's method applies whenever $J_0(\ell) \neq 0$, which is the case for $\ell = 11$ and $\ell \geq 17$. But since $J_0(13) = 0$, it follows that $Jac(X_s(13)) \sim Jac(X_{ns}(13))$ and $Jac(X_s(13))$ is absolutely simple, which is the underlying reason that their analysis does not succeed in tackling that case; they call 13 the cursed level in [\[BPR13,](#page-55-1) Rem. 5.11].

In fact, Baran [\[Bar14b\]](#page-54-1), [\[Bar14a\]](#page-54-2) showed that more is true: There is a **Q**-isomorphism between $Jac(X_s(13))$ and $Jac(X_{ns}(13))$, and we further have

$$
(1) \tX_{\rm ns}(13) \simeq_{\mathbf{Q}} X_{\rm s}(13).
$$

She derives [\(1\)](#page-3-1) in two different ways: by computing explicit smooth plane quartic equations for both curves and observing that they are isomorphic [\[Bar14b\]](#page-54-1) on the one hand, and by invoking Torelli's theorem [\[Bar14a\]](#page-54-2) and an isomorphism between the Jacobians on the other. There is no known modular interpretation of the isomorphism [\(1\)](#page-3-1). Since the problem of computing rational points on modular curves associated to normalisers of non-split Cartan subgroups is believed to be hard in general, this may give some indication why $X_{\rm s}(13)$ is more difficult to handle than $X_{\rm s}(\ell)$ for other $\ell \ge 11$.

Galbraith [\[Gal02\]](#page-57-0) and Baran [\[Bar14b\]](#page-54-1) computed all rational points up to a large height bound; they found six CM points and one cusp. In addition to Mazur's method, other standard approaches for proving that this is the complete set of rational points do not seem to work for $X_s(13)$. The method of Chabauty and Coleman (see [Section 1.3\)](#page-4-0) fails as the rank of $Jac(X_s(13))$ is at least 3, and the genus of $X_{s}(13)$ is 3. The Mordell–Weil sieve cannot be applied on its own, as $X_s(13)(\mathbf{Q}) \neq \emptyset$. As no suitable covers of $X_s(13)$ are readily available, it does not seem possible to apply descent and elliptic curve Chabauty.

In this paper we show, using quadratic Chabauty, that the only rational points on $X_{s}(13)$ are indeed the points found by Galbraith and Baran.

THEOREM 1.1. The rational points on $X_{s}(13)$ consist of six CM points and one cusp.

Together with the results of Bilu–Parent and Bilu–Parent–Rebolledo, this allows us to complete the characterisation of all primes ℓ such that the mod ℓ Galois representation of a non-CM elliptic curve over **Q** is contained in the normaliser of a split Cartan subgroup of $GL_2(\mathbf{F}_{\ell})$.

THEOREM 1.2. The set of primes ℓ for which there exists an elliptic curve E/\mathbf{Q} without CM such that $\rho_{E,\ell}$ is contained in the normaliser of a split Cartan subgroup is $\{2, 3, 5, 7\}.$

Via the isomorphism [\(1\)](#page-3-1), we also find

COROLLARY 1.3. We have $|X_{ns}(13)(\mathbf{Q})|=7$, and all points are CM.

Remark 1.4. As was noted by Serre [\[Ser97\]](#page-59-1) a complete determination of $X_{\text{ns}}(N)(\mathbf{Q})$ for some N leads to a proof of the class number one problem. [Corollary 1.3](#page-3-2) therefore gives a new proof of this theorem.

1.2. Notation. Throughout this paper, X/\mathbf{Q} denotes a smooth projective geometrically connected curve of genus $g \geq 2$ such that $X(\mathbf{Q}) \neq \emptyset$, with Jacobian J; we write $r := \text{rk}(J/Q)$ and $\rho := \text{rk}(NS(J))$. Fix an algebraic closure \overline{Q} of Q, and write $G_Q := \text{Gal}(\overline{Q}/Q)$ and $\overline{X} := X \times \overline{Q}$. Fix a base point $b \in X(\mathbf{Q})$ and a prime p of good reduction for X. The field End(J) $\otimes \mathbf{Q}$ is denoted by K , and we set

(2)
$$
\mathcal{E} := \mathrm{H}^{0}(X_{\mathbf{Q}_{p}}, \Omega^{1})^{*} \otimes \mathrm{H}^{0}(X_{\mathbf{Q}_{p}}, \Omega^{1})^{*}.
$$

Let T_0 be the set of primes of bad reduction of X, and let $T = T_0 \cup \{p\}$. We denote G_T for the maximal quotient of G_Q unramified outside T and G_v for the absolute Galois group of \mathbf{Q}_v for any prime v.

1.3. Chabauty–Coleman and Chabauty–Kim. Chabauty [\[Cha41\]](#page-55-2) proved the Mordell conjecture for curves X as above, satisfying an additional assumption on the rank of the Jacobian. More precisely, Chabauty showed that the set $X(Q)$ is finite if $r < q$. Following Coleman [\[Col85\]](#page-56-1), one may explain the proof as follows. The choice of base point b gives an inclusion of X into J, defined over Q. On $\mathfrak{J}(\mathbf{Q}_p)$ there is a linear integration pairing on the Jacobian defined by explicit power series integration on individual residue polydisks, extended via the group law

$$
J(\mathbf{Q}_p) \times H^0(J_{\mathbf{Q}_p}, \Omega^1) \longrightarrow \mathbf{Q}_p : (D, \omega) \mapsto \int_0^D \omega,
$$

inducing a homomorphism

$$
\log : J(\mathbf{Q}_p) \, \longrightarrow \, \mathrm{H}^0(\mathrm{J}_{\mathbf{Q}_p}, \Omega^1)^*.
$$

Via the canonical identification of $H^0(J_{\mathbf{Q}_p}, \Omega^1)$ with $H^0(X_{\mathbf{Q}_p}, \Omega^1)$, this gives rise to the following commutative diagram:

(3)

$$
X(\mathbf{Q}) \longrightarrow X(\mathbf{Q}_p) \longrightarrow AJ_b
$$

$$
J(\mathbf{Q}) \longrightarrow J(\mathbf{Q}_p) \longrightarrow \text{log} \longrightarrow H^0(X_{\mathbf{Q}_p}, \Omega^1)^*,
$$

where the Abel–Jacobi morphism AJ_b is defined to be the map sending a point x to the linear functional $\omega \mapsto \int_0^{[x-b]} \omega$. Chabauty's proof involves a combination of global "arithmetic" or "motivic" information with local "analytic" information. The global arithmetic input is that, when $r < g$, the closure $J(Q)$ of $J(Q)$ with respect to the *p*-adic topology is of codimension ≥ 1 . Hence there is a non-zero ω_J that vanishes on $\overline{J(Q)}$, so that $X(Q)$ is annihilated by the function

(4)
$$
x \longmapsto \mathrm{AJ}_{\mathrm{b}}(x)(\omega_{\mathrm{J}}).
$$

The local analytic input is that, on each residue disk of $X(\mathbf{Q}_p)$, AJ_b has Zariski dense image and is given by convergent p -adic power series, so the function in [\(4\)](#page-4-1) can have only finitely many zeroes on each residue disk of $X(\mathbf{Q}_p)$. The non-trivial steps in solving for the function in [\(4\)](#page-4-1) are

- determine, on each residue disk, the power series AJ_b to sufficient p-adic accuracy;
- evaluate $AJ_b(P_i)$ on a basis $\{P_i\}$ of $J(Q) \otimes Q$.

With the aim of removing the restrictive condition $r < g$, Kim [\[Kim05\]](#page-57-1), [\[Kim09\]](#page-57-2) has initiated a programme to generalise Chabauty's approach. Very roughly, the Chabauty–Kim method produces locally analytic functions $X(\mathbf{Q}_p)$ $\rightarrow \mathbf{Q}_p$ that are higher analogues of the Coleman integrals $\mathrm{AJ}_{b}(\omega)$, and that (in favourable circumstances) satisfy algebraic identities on rational points, coming from their interpretation in terms of étale fundamental groups. The fact that these locally analytic functions have an ´etale topological interpretation rests on deep theorems in p -adic Hodge theory [\[Ols11\]](#page-58-1). The analytic description of these functions implies such identities can only be satisfied at finitely many points, producing finite subsets of $X(\mathbf{Q}_p)$ containing $X(\mathbf{Q})$. As in the method of Chabauty and Coleman, one hopes to be able to translate Kim's approach into a practical explicit method for computing (a finite set of p -adic points containing) $X(\mathbf{Q})$ in practice for a given curve X/\mathbf{Q} having $r \geq g$. In part due to the technical nature of the objects involved, this is a rather delicate task. Kim's results [\[Kim05\]](#page-57-1) on integral points on $\mathbb{P}^1 \setminus \{0, 1, \infty\}$ have been made explicit by Dan-Cohen and Wewers [\[DCW15\]](#page-56-2) and used to develop an algorithm to solve the S-unit equation $[DCW16]$, $[DC18]$ using iterated p-adic integrals. The work [\[BDCKW18\]](#page-54-3) of the first author with Dan-Cohen, Kim and Wewers contains explicit results for integral points on elliptic curves of ranks 0 and 1.

1.4. Quadratic Chabauty. One approach that has led to some explicit results involves p -adic heights. We now formalise this approach in elementary terms. Suppose that $r = g$ and that the *p*-adic closure of $J(Q)$ has finite index in J (\mathbf{Q}_p) . Then AJ_b induces an isomorphism $\mathrm{J}(\mathbf{Q}) \otimes \mathbf{Q}_p \simeq \mathrm{H}^0(X_{\mathbf{Q}_p}, \Omega^1)^*$, meaning that we cannot detect global points among local points using linear relations in AJ_b . The idea of the quadratic Chabauty method is to replace linear relations by bilinear relations. Suppose we can find a function $\theta: X(\mathbf{Q}_p) \to \mathbf{Q}_p$ and a finite set $\Upsilon \subset \mathbf{Q}_p$ with the following properties:

(a) On each residue disk of $X(\mathbf{Q}_p)$, the map

$$
(\mathrm{AJ}_{\mathrm{b}}, \theta) \; : \; X(\mathbf{Q}_p) \; \longrightarrow \; \mathrm{H}^0(X_{\mathbf{Q}_p}, \Omega^1)^* \times \mathbf{Q}_p
$$

has Zariski dense image and is given by a convergent power series. (b) There exist

• an endomorphism E of $\mathrm{H}^{0}(X_{\mathbf{Q}_{p}}, \Omega^{1})^*$ and a functional

 $c \in \mathrm{H}^0(X_{\mathbf{Q}_p}, \Omega^1)^*;$

• a bilinear form $B: \mathrm{H}^{0}(X_{\mathbf{Q}_{p}}, \Omega^{1})^* \otimes \mathrm{H}^{0}(X_{\mathbf{Q}_{p}}, \Omega^{1})^* \to \mathbf{Q}_{p}$, such that, for all $x \in X(\mathbf{Q}),$

(5)
$$
\theta(x) - B(\mathrm{AJ}_{\mathrm{b}}(x), E(\mathrm{AJ}_{\mathrm{b}}(x)) + c) \in \Upsilon.
$$

This gives a finite set of p-adic points containing $X(Q)$, since property (a) implies that only finitely many p -adic points can satisfy equation (5) , and property (b) implies all rational points satisfy it. As in the Chabauty–Coleman method, finiteness is obtained by a combination of local analytic information and global arithmetic information, corresponding to (a) and (b), respectively. We shall refer to (θ, Υ) as a quadratic Chabauty pair. The objects E, c, and B will be referred to as its endomorphism, constant and pairing, respectively.

The goal of the quadratic Chabauty method is to use a quadratic Chabauty pair (or several of them) to determine $X(Q)$. Let us clarify how the pair (θ, Υ) (as well as knowledge of the implicit E and c)^{[1](#page-6-1)} gives a method for determining a finite set containing $X(Q)$. For $\alpha \in \Upsilon$, define

$$
X(\mathbf{Q}_p)_{\alpha} := \{ x \in X(\mathbf{Q}_p) : \theta(x) - B(\mathrm{AJ}_{\mathrm{b}}(x), E(\mathrm{AJ}_{\mathrm{b}}(x)) + c) = \alpha \}.
$$

By definition, $X(Q) \subset \coprod_{\alpha \in \Upsilon} X(Q_p)_{\alpha}$, and we focus on the problem of describing $X(\mathbf{Q}_p)_{\alpha}$. The following result gives an explicit equation for a finite subset of $X(\mathbf{Q}_p)$ containing $X(\mathbf{Q}_p)_{\alpha}$. Suppose we have $P_1, \ldots, P_m \in X(\mathbf{Q})$ such that

$$
\mathrm{AJ}_{\mathrm{b}}(P_i)\otimes(E(\mathrm{AJ}_{\mathrm{b}}(P_i))+c)
$$

form a basis of \mathcal{E} , where \mathcal{E} is as in [\(2\)](#page-4-2) (see the end of [Section 1.7](#page-9-0) for a discussion of this assumption), and suppose that ψ_1, \ldots, ψ_m form a basis of \mathcal{E}^* . Assume furthermore that we have $P_i \in X(\mathbf{Q}_p)_{\alpha_i}$, where $\alpha_i \in \Upsilon$. For $x \in X(\mathbf{Q}_p)$, define the matrix $T(x) = T_{(\theta,\Upsilon)}(x)$ by

(6)
$$
T(x) = \begin{pmatrix} \theta(x) - \alpha & \Psi_1(x) & \dots & \Psi_m(x) \\ \theta(P_1) - \alpha_1 & \Psi_1(P_1) & \dots & \Psi_m(P_1) \\ \vdots & \vdots & \ddots & \vdots \\ \theta(P_m) - \alpha_m & \Psi_1(P_m) & \dots & \Psi_m(P_m) \end{pmatrix}
$$

where $\Psi_i(x) := \psi_i(\mathrm{AJ}_b(x) \otimes (E(\mathrm{AJ}_b(x)) + c)).$ Since B is a linear combination of the ψ_i , we get

,

LEMMA 1.5. If $x \in X(\mathbf{Q}_p)_{\alpha}$, then we have $\det(T(x)) = 0$.

¹In practice, one calculates E and c, but B is something one has to solve for, in the same way that one solves for the annihilating differential in the Chabauty–Coleman method.

Remark 1.6. An important piece of input is a large supply of points ${P_i}_{i=1,\dots,m}$ in $X(\mathbf{Q})$ — enough so that the set

$$
{\rm \{AJ_b}(P_i) \otimes (E(\rm AJ_b(P_i)) + c)\}_{i=1,\ldots,m}
$$

forms a basis of $\mathcal E$ and, in particular, $m = g^2$, which, together with the base point b, means we a priori require $1 + g^2$ points. This may be reduced to $1 + g$, using instead the notion of *equivariant* p -adic heights, which is used in the example of $X_{s}(13)$ worked out in [Section 6;](#page-41-0) see the discussions in [Section 1.7](#page-9-0) and [Remark 3.9.](#page-23-0) One could bypass this requirement completely by replacing the input with a set of generators for a finite index subgroup of $J(Q)$; see [Remark 1.7.](#page-10-1)

1.5. Quadratic Chabauty pairs for rational points. The definition of quadratic Chabauty pairs is inspired by an approach for computing integral points on rank 1 elliptic curves [\[BB15\]](#page-54-4), and more generally, on odd degree hyperelliptic curves [\[BBM16\]](#page-54-5), which satisfy the assumptions of [Section 1.4](#page-5-0) as follows.

Let $h: J(\mathbf{Q}) \to \mathbf{Q}_p$ be the p-adic height function in the sense of Coleman– Gross [\[CG89\]](#page-56-5). Then for any rational point $x \in X(\mathbf{Q})$, there is a decomposition

(7)
$$
h(x - \infty) = h_p(x) + \sum_{v \neq p} h_v(x)
$$

of $h(x-\infty)$ into a sum of local heights such that $x \mapsto h_p(x)$ extends to a locally analytic function $\theta: X(\mathbf{Q}_p) \to \mathbf{Q}_p$ (in fact, a sum of double Coleman integrals). For $v \neq p$, the function $x \mapsto h_v(x)$ maps integral points in $X(\mathbf{Q})$ into a finite subset of \mathbf{Q}_p , and this set is trivial if v is a prime of good reduction. The set Υ of values of $-\sum_{v\neq p} h_v(x)$ for integral $x \in X(\mathbf{Q})$ is therefore finite. As discussed in [Section 1.4,](#page-5-0) our assumptions imply that AJ_b defines an isomorphism

$$
\mathrm{J}(\mathbf{Q})\otimes \mathbf{Q}_p\simeq \mathrm{H}^0(X_{\mathbf{Q}_p},\Omega^1)^*
$$

so that the *p*-adic height can be viewed as a bilinear form B on $\mathrm{H}^{0}(X_{\mathbf{Q}_{p}}, \Omega^{1})^*$. One can explicitly compute θ and Υ , determine B, and obtain the set of integral points; see [\[BBM17\]](#page-54-6).

Following [\[BD18\]](#page-54-7), we construct a quadratic Chabauty pair by associating to points of X a mixed extension of p -adic Galois representations, and then taking the p -adic height in the sense of Nekovář [\[Nek93\]](#page-58-2). This mixed extension depends on a choice of correspondence Z on X, which always exists when $\rho > 1$. In the case of modular curves, such correspondences exist in abundance in the form of the Hecke correspondences. For the illustrative case $X_s(13)$ treated in [Section 6,](#page-41-0) the correspondences we choose are of the form $T_q - \text{Tr}(T_q)I$, where q is a prime. Via the Chabauty–Kim method, this yields a suitable G_L representation $A_Z(b, x)$, constructed for every $x \in X(L)$, where $L = \mathbf{Q}$ or \mathbf{Q}_v . In [\[BD18,](#page-54-7) Th. 1.2], the height of $A_Z(b, x)$ is shown to be equal to the height pairing between two divisors given explicitly in terms of b, x , and Z. In this paper, we work directly with the representation $A_Z(b, x)$, without determining the corresponding divisors. The advantage is that one does not need an explicit geometric description of Z, only its cycle class.

We note that the language of p -adic heights due to Nekovář is more general than that of Coleman–Gross [\[CG89\]](#page-56-5) adopted in [\[BB15\]](#page-54-4), [\[BBM16\]](#page-54-5); see Besser [\[Bes04\]](#page-55-3). We have opted for the former due to its flexibility and potential for generalisations. Henceforth, h denotes Nekovář's p-adic height. Similar to (7) , there is a local decomposition

$$
h(A_Z(b, x)) = h_p(A_Z(b, x)) + \sum_{v \neq p} h_v(A_Z(b, x)),
$$

where $x \mapsto h_p(A_Z(b, x))$ again extends to a locally analytic function θ : $X(\mathbf{Q}_p) \to \mathbf{Q}_p$, and for $v \neq p$, the local heights $h_v(A_Z(b,x))$ take on a finite set of values Υ. By [\[BD18,](#page-54-7) §5], this gives a quadratic Chabauty pair (θ, Υ) whose pairing is h and whose endomorphism is the one induced by Z .

Suppose that X satisfies $r = g$ and $\rho > 1$, and suppose that the padic closure of J(Q) has finite index in J(Q_p). Note that these conditions are satisfied for many modular curves for which Chabauty–Coleman does not apply (see [\[Sik17\]](#page-59-2)), including $X_s(13)$. Suppose that we have enough rational points P_1, \ldots, P_m to generate $\mathcal E$ as in [Section 1.4.](#page-5-0) It follows from [Lemma 1.5](#page-6-2) that, if we can carry out the following steps explicitly, we have an explicit method for computing a finite subset of $X(\mathbf{Q}_p)$ containing $X(\mathbf{Q})$:

- (i) Determine the set of values that $h_v(A_Z(b, x))$ can take for $x \in X(\mathbf{Q}_v)$ and $v \neq p$.
- (ii) Expand the function $x \mapsto h_p(A_Z(b, x))$ into a p-adic power series on every residue disk.
- (iii) Evaluate $h(A_Z(b, P_i))$ for $i = 1, \ldots, m$.

Note that in the context of [Lemma](#page-8-1) [1.5,](#page-6-2) (i) is about the determination of Υ , [whereas \(ii\)](#page-8-2) and [\(iii\)](#page-8-3) are about the determination of $\theta(x)$ and $\theta(P_i) - \alpha_i$. The entries $\Psi_i(x)$ and $\Psi_i(P_i)$ of the matrix T in [\(6\)](#page-6-3) are of a more elementary nature and consist essentially of the Abel–Jacobi map once we have determined the endomorphism and constant of the quadratic Chabauty pair (θ, Υ) , which is done in [Lemma 3.7.](#page-22-0) In this paper, we say nothing about [problem \(i\)](#page-8-1) since $X_s(13)$, our main object of interest, has potentially good reduction everywhere, so that all local heights away from p are trivial. This also reduces [problem \(iii\)](#page-8-3) to [problem \(ii\).](#page-8-2) Nevertheless, in the interest of future applications, we phrase much of the setup in greater generality than needed for the application to $X_{\rm s}(13)$.

1.6. Explicit local p-adic heights at p. The main contribution of this paper is to give an explicit algorithm for solving [problem \(ii\).](#page-8-2) This is already done for hyperelliptic curves in [\[BD17\]](#page-54-8), and we follow the general strategy used there. As in [\[Kim09\]](#page-57-2), [\[Had11\]](#page-57-3), we emphasise the central role played by universal objects in neutral unipotent Tannakian categories. This approach allows us to make several aspects of [\[BD18\]](#page-54-7) and [\[BD17\]](#page-54-8) explicit in a conceptual way.

The definition of Nekovář's local height at p is in terms of p -adic Hodge theory. More precisely, let $M(x)$ denote the image of $A_Z(b, x)$ under Fontaine's \mathbf{D}_{cris} -functor. Then $M(x)$ is a filtered ϕ -module, and to find $h_p(A_Z(b, x))$ it suffices to explicitly describe its Hodge filtration and its Frobenius action. It is shown in [\[BD17\]](#page-54-8) that $M(x)$ can be described as the pullback along x of a certain universal connection A_Z , which also carries a Frobenius structure. Our task is to find a sufficiently explicit description of both the Hodge filtration and the Frobenius structure on A_Z . In [\[BD17\]](#page-54-8), the Hodge filtration is computed using a universal property proved by Hadian [\[Had11\]](#page-57-3), and we follow a similar strategy here. The explicit description of the Frobenius structure constitutes the key new result, which makes our approach work. In the hyperelliptic situation, one gets a description in terms of Coleman integrals, but this crucially relies on the existence of the hyperelliptic involution [\[BD17,](#page-54-8) §6.6]. Here we characterise the Frobenius structure using a universal property, based on work of Kim [\[Kim09\]](#page-57-2).

1.7. Algorithmic remarks and applicability. We note that while many of the constructions in this paper rely on deep results in p -adic Hodge theory, for a given curve, all of this can subsequently be translated into rather concrete linear algebra data that can be computed explicitly. For instance, instead of working with a correspondence Z explicitly, by the p -adic Lefschetz $(1,1)$ theorem it is enough to work with the induced Tate class in $\mathrm{H}^{1}_{\mathrm{dR}}(X_{\mathbf{Q}_p})\otimes$ $\mathrm{H}^{1}_{\mathrm{dR}}(X_{\mathbf{Q}_p}).$ In practice, we fix a basis of $\mathrm{H}^{1}_{\mathrm{dR}}(X_{\mathbf{Q}_p})$ and encode our Tate classes as matrices with respect to this basis. Computing the structure of $M(x)$ as a filtered ϕ -module boils down to computing two isomorphisms of $2g + 2$ -dimensional \mathbf{Q}_p -vector spaces

$$
\mathbf{Q}_p\oplus \mathrm{H}^1_{\operatorname{dR} }(X_{\mathbf{Q}_p})^*\oplus \mathbf{Q}_p(1)\simeq M(x),
$$

one of which respects the Hodge filtration, while the other one is Frobeniusequivariant. In practice, the universal properties discussed above give rise to explicit p -adic differential equations, which we solve using algorithms of the fourth author [\[Tui16\]](#page-59-3), [\[Tui17\]](#page-59-4). Our algorithms have been implemented in the computer algebra system Magma [\[BCP97\]](#page-55-4) and can be found at (BDM^+) .

The results of this paper remain useful in somewhat less restrictive situations than the one considered above. For instance, as noted above, the condition that the curve has potentially good reduction everywhere is only used to give a particularly simple solution to [problem \(i\)](#page-8-1) [\(and \(iii\)\)](#page-8-3). Also, [\[BD18,](#page-54-7) §5.3] discusses an approach to computing a finite set containing $X(Q)$ when $r > g$, but $r + 1 - \rho < g$, and is similar to the one used here. For this approach, one also needs to solve [problem \(ii\),](#page-8-2) and our algorithm for its solution applies without change.

Moreover, recall that we have made the assumption that we have enough rational points available to span $\mathcal E$ as in [Section 1.4.](#page-5-0) In practice, since $\rho > 1$, the algebra $K := \text{End}(J) \otimes \mathbf{Q}$ will be strictly larger than \mathbf{Q} and, following $[BD17]$, we can construct h so that it is K-equivariant. This means we can replace \mathcal{E} by $\mathrm{H}^{0}(X_{\mathbf{Q}_{p}}, \Omega^{1})^* \otimes_{K \otimes \mathbf{Q}_{p}} \mathrm{H}^{0}(X_{\mathbf{Q}_{p}}, \Omega^{1})^*$ in [Lemma 1.5,](#page-6-2) which lowers the number of rational points required. We use this for $X = X_s(13)$, so that we only need four rational points. If we have an algorithm to compute the p -adic height pairing between rational points on the Jacobian, and we have r independent rational points on J , then we only need one rational point on X to serve as our base point.

Remark 1.7. Finally, we note that if $X(Q)$ fails to be large enough, it should still be possible to make our methods work, if one can determine generators for a finite index subgroup of $J(Q)$. Indeed, under our running assumptions, we have an isomorphism

$$
\mathrm{J}(\mathbf{Q})\otimes \mathbf{Q}_p\simeq \mathrm{H}^0(X_{\mathbf{Q}_p},\Omega^1)^*
$$

which, given a basis for a finite index subgroup of $J(Q)$, provides us with enough information to determine the global p -adic height pairing, exactly as in [Lemma 1.5.](#page-6-2) To carry this out in practice, one would need an algorithm to compute the *p*-adic height of points in $J(Q)$. For hyperelliptic curves, such an algorithm was used in [\[BBM17\]](#page-54-6); an extension to general curves is work in progress.

1.8. Outline. In [Section 2,](#page-11-1) we recall the salient points of Chabauty–Kim theory, and in [Section 3,](#page-16-0) we recall the definition of Nekovář's p-adic height and how it can be used to construct quadratic Chabauty pairs. [Section 4](#page-24-0) describes the computation of the Hodge filtration on a universal connection A_Z , and [Sec](#page-33-0)[tion 5](#page-33-0) describes the computation of its Frobenius structure. Both of these rely on universal properties and can be used to determine the structure of $A_Z(b, x)$ as a filtered ϕ -module. All aspects of this theory are then computed explicitly for $X = X_s(13)$ in [Section 6:](#page-41-0) We first show that the rank of $J(Q)$ is exactly 3 and that X has potentially good reduction. We then run our algorithm for the local 17-adic height at $p = 17$ for two independent Tate classes coming from suitable correspondences, leading to two quadratic Chabauty pairs. As a consequence, we prove [Theorem 1.1.](#page-3-3) The appendix contains a discussion of some concepts and results on unipotent neutral Tannakian categories used throughout the paper.

Acknowledgements. We are indebted to Minhyong Kim for proposing this project and for his suggestions and encouragement. We thank Ren´e Schoof and Michael Stoll for comments on an earlier version of this paper. Balakrishnan is supported in part by NSF grant DMS-1702196, the Clare Boothe Luce Professorship (Henry Luce Foundation), and Simons Foundation grant number 550023. Tuitman is a Postdoctoral Researcher of the Fund for Scientific Research FWO-Vlaanderen. Vonk is supported by a CRM/ISM Postdoctoral Scholarship at McGill University.

2. Chabauty–Kim and correspondences

In this section we briefly recall the main ideas in the non-abelian Chabauty method of Kim [\[Kim09\]](#page-57-2). We then recall some results from [\[BD18\]](#page-54-7) that can be used to prove the finiteness of the set of rational points under certain assumptions. We note that a crucial role is played by p -adic Hodge theory, a feature shared with the interesting recent approach to proving finiteness (unconditionally) of Lawrence–Venkatesh [\[LV18\]](#page-58-3). None of the results in this section are new.

In a letter to Faltings, Grothendieck proposed to study rational points on X through the geometric étale fundamental group $\pi_1^{\text{\'et}}(\overline{X}, b)$ of X with base point b. More precisely, he conjectured that the map

$$
X(\mathbf{Q}) \longrightarrow \mathrm{H}^1\left(G_{\mathbf{Q}}, \pi_1^{\text{\'et}}(\overline{X}, b)\right),
$$

given by associating to $x \in X(\mathbf{Q})$ the étale path torsor $\pi_1^{\text{\'et}}(\overline{X};b,x)$, should be an isomorphism. Unfortunately, there seems to a lack of readily available extra structure on the target, which makes it difficult to study directly. However, one can try instead to work with a suitable quotient of $\pi_1^{\text{\'et}}(\overline{X}, b)$, where "suitable" depends on the properties of the curve in question. Most techniques for studying $X(\mathbf{Q})$ can be phrased in this language. Chabauty–Coleman, finite cover descent (see for instance [\[BS09\]](#page-55-5)) and elliptic curve Chabauty [\[FW99,](#page-57-4) [Bru03\]](#page-55-6) rely on abelian quotients, whereas Chabauty–Kim, discussed below, uses unipotent quotients. Following [\[BD18\]](#page-54-7) we will construct quadratic Chabauty pairs for a class of curves including $X_s(13)$ from the simplest non-abelian unipotent quotient when $r = g$ and $\rho > 1$.

2.1. The Chabauty–Kim method. Let $V := H^1_{\text{\'et}}(\overline{X}, \mathbf{Q}_p)^*$, and let $V_{\text{dR}} :=$ $\mathrm{H}^1_{\mathrm{dR}}(X_{\mathbf{Q}_p})^*$, viewed as a filtered vector space with the dual filtration to the Hodge filtration, so that there is an isomorphism

$$
V_{\mathrm{dR}}/\operatorname{Fil}^0 \simeq \mathrm{H}^0(X_{\mathbf{Q}_p}, \Omega^1)^*.
$$

Bloch–Kato show there is an isomorphism $H_f^1(G_p, V) \simeq V_{dR}/\mathrm{Fil}^0$, and it follows from [\[BK90,](#page-55-7) 3.10.1] that there is a commutative diagram

(8)
$$
X(\mathbf{Q}) \longrightarrow X(\mathbf{Q}_p) \longrightarrow \mathbf{A} \mathbf{J}_b
$$
\n
$$
\downarrow \qquad \qquad \downarrow \qquad \qquad \mathbf{A} \mathbf{J}_b
$$
\n
$$
\downarrow \qquad \qquad \downarrow \qquad \qquad \mathbf{A} \mathbf{J}_b
$$
\n
$$
\downarrow \qquad \qquad \downarrow \qquad \qquad \mathbf{A} \mathbf{J}_b
$$
\n
$$
\downarrow \qquad \qquad \downarrow \qquad \qquad \mathbf{A} \mathbf{J}_b
$$
\n
$$
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \downarrow
$$
\n
$$
\mathbf{H}_f^1(G_T, V) \longrightarrow \mathbf{B} \mathbf{H}_f^1(G_p, V) \longrightarrow \mathbf{H}_f^1(G_p, V) \longrightarrow \mathbf{V}_{dR}/\mathbf{Fil}^0
$$

extending the Chabauty [diagram \(3\).](#page-4-3) Here κ and κ_p map a point to its Kummer class, $H^1_f(G_p, V)$ is the subspace of $H^1(G_p, V)$ consisting of crystalline torsors [\[BK90,](#page-55-7) (3.7.2)], and $H_f^1(G_T, V) = \text{loc}_p^{-1} H_f^1(G_p, V)$. The idea of the Chabauty–Kim method is essentially that, if we cut out the middle row of this diagram, we obtain something amenable to generalisation. Namely, for each n, we obtain

(9)
$$
X(\mathbf{Q}) \longrightarrow X(\mathbf{Q}_p)
$$

$$
j_n^{\text{\'et}} \downarrow \qquad j_{n,p}^{\text{\'et}} \downarrow \qquad j_n^{\text{\'et}} \downarrow \downarrow \qquad j_n^{\text{\'et}} \downarrow \qquad j_n^{\text
$$

We now define the objects in this diagram precisely, following [\[Kim09\]](#page-57-2). Let $U_n^{\text{\'et}} := U_n^{\text{\'et}}(b)$ denote the maximal *n*-unipotent quotient of the \mathbf{Q}_p -étale fundamental group of \overline{X} with base point b. This is a finite-dimensional unipotent group over \mathbf{Q}_p with a continuous action of $Gal(\overline{\mathbf{Q}}/\mathbf{Q})$, which contains the maximal *n*-unipotent pro-*p* quotient of $\pi_1^{\text{\'et}}(\overline{X}, b)$ as a lattice. In this paper, we only need $n = 1$ or 2. We have $U_1^{\text{\'et}} = V$, and $U_2^{\text{\'et}}$ is a central extension

(10)
$$
1 \longrightarrow \text{Coker}\left(\mathbf{Q}_p(1) \xrightarrow{\cup^*} \wedge^2 V\right) \longrightarrow U_2 \longrightarrow V \longrightarrow 1.
$$

We obtain for any $x \in X(\mathbf{Q})$ a path torsor $U_n^{\text{\'et}}(b, x)$; see [Appendix A.](#page-49-0) This gives rise to a map

$$
j_n^{\text{\'et}}:X(\mathbf{Q})\ \longrightarrow\ \text{H}^1(G_T,\text{U}_n^{\text{\'et}}),\ x\mapsto \text{U}_n^{\text{\'et}}(b,x),
$$

as well as local versions $j_{n,v}^{\text{\'et}}$ for any finite place v. We obtain the commutative diagram

$$
X(\mathbf{Q}) \longrightarrow \prod_{v \in T} X(\mathbf{Q}_v)
$$

$$
j_n^{\text{\'et}} \downarrow \qquad \qquad \downarrow \prod j_{n,v}^{\text{\'et}}
$$

$$
H^1(G_T, U_n^{\text{\'et}}) \xrightarrow{\prod \text{loc}_{n,v}} \prod_{v \in T} H^1(G_v, U_n^{\text{\'et}}).
$$

As discussed in Kim [\[Kim09,](#page-57-2) §2], it follows from [\[Ols11,](#page-58-1) Th. 1.11] that $j_{n,p}^{\text{\'et}}(X(\mathbf{Q}_p)) \subset \mathrm{H}^1_f(G_p, \mathrm{U}_n^{\text{\'et}})$. It is shown in [\[Kim05\]](#page-57-1) that $\mathrm{H}^1(G_p, \mathrm{U}_n^{\text{\'et}})$ and $H^1(G_T, \mathcal{U}_n^{\text{\'et}})$ are represented by algebraic varieties over \mathbf{Q}_p . By [\[Kim09,](#page-57-2) p. 119], $H^1_f(G_p, U_n^{\text{\'et}})$ is represented by a subvariety of $H^1(G_p, U_n^{\text{\'et}})$, and the analogous statement holds for $H^1_f(G_T, U_n^{\text{\'et}})$. Similar to classical Selmer groups, we add local conditions and define the *Selmer variety* $\text{Sel}(\mathbf{U}_n)$ to be the subvariety of $H^1_f(G_T, U_n^{\text{\'et}})$ consisting of all classes

$$
c\in \bigcap_{v\in T_0} \text{loc}^{-1}_{n,v}(j_{n,v}^{\text{\'et}}(X(\mathbf{Q}_v)))
$$

whose projection to $\mathrm{H}^1_f(G_T, V)$ lies in the image of $\mathrm{J}(\mathbf{Q}) \otimes \mathbf{Q}_p$; see [diagram \(8\)](#page-12-0) above. See [\[BD18,](#page-54-7) Rem. 2.3] for a discussion of how our definition relates to other definitions of Selmer varieties (and schemes) in the literature.

Remark 2.1. Since $X = X_s(13)$ has potentially good reduction everywhere (see [Corollary 6.7\)](#page-44-1), the local conditions at $v \neq p$ are vacuous for this example, and the Selmer variety is simply $H_f^1(G_T, \mathcal{U}_n)$.

Finally, we define the objects on the right side of diagram (9) . Let L be a field of characteristic zero. Deligne [\[Del89,](#page-56-6) §10] constructs the de Rham fundamental group

 $\pi_1^{\mathrm{dR}}(X_L,b),$

a pro-unipotent group over L, defined as the Tannakian fundamental group of the category $C^{dR}(X_L)$ of unipotent vector bundles with flat connection on X with respect to the fibre functor b^* . When there is no risk of confusion, we drop the subscript L. Define $U_n^{dR}(b)$ to be the maximal n-unipotent quotient of $\pi_1^{\text{dR}}(X, b)$, along with path torsors $U_n^{\text{dR}}(b, x)$ for all $x \in X(L)$. Most of the time, L will be a finite extension of \mathbf{Q}_p . In this case, $\mathrm{U}_n^{\mathrm{dR}}(b,x)$ has the structure of a filtered ϕ -module. Kim shows [\[Kim09\]](#page-57-2) that the isomorphism classes of U^{dR}-torsors in the category of filtered ϕ -modules are naturally classified by the scheme U_n^{dR} / Fil⁰. Hence, we get a tower of maps

$$
j_n^{\mathrm{dR}}:X(\mathbf{Q}_p)\,\longrightarrow\, \mathbf{U}_n^{\mathrm{dR}}\,/\,\mathrm{Fil}^0,\ x\mapsto \mathbf{U}_n^{\mathrm{dR}}(b,x).
$$

Furthermore, the non-abelian comparison isomorphism [\[Ols11,](#page-58-1) Th. 1.11] implies that there is a canonical isomorphism $\mathbf{D}_{\text{cris}}(\mathbf{U}_n^{\text{\'et}}(b,x)) \simeq \mathbf{U}_n^{\text{dR}}(b,x)$ that makes the right triangle in [\(9\)](#page-12-1) commute.

More generally, for any Galois stable quotient U of $\mathrm{U}_n^{\text{\'et}}$, we have a diagram similar to [\(9\)](#page-12-1) involving $U^{dR} := \mathbf{D}_{cris}(U)$, where Sel(U) and the corresponding maps $j^{\text{\'et}}_{\text{U}}, j^{\text{dR}}_{\text{U}}$ and $\text{loc}_{\text{U},p}$ are defined in the same way. We then have that $X(\textbf{Q})$ is contained in the subset

$$
X(\mathbf{Q}_p)_{\mathrm{U}} := (j_{\mathrm{U},p}^{\text{\'et}})^{-1}\left(\mathrm{loc}_{\mathrm{U},p}\, \mathrm{Sel}(\mathrm{U})\right) \subset X(\mathbf{Q}_p).
$$

When $U = U_n$, we write $X(\mathbf{Q}_p)_n$ for this subset; its elements are called *weakly* global points. We have

$$
X(\mathbf{Q}) \subset \cdots \subset X(\mathbf{Q}_p)_n \subset X(\mathbf{Q}_p)_{n-1} \subset \cdots \subset X(\mathbf{Q}_p)_2 \subset X(\mathbf{Q}_p)_1 \subset X(\mathbf{Q}_p).
$$

2.2. Diophantine finiteness. In [\[Kim09\]](#page-57-2), Kim showed how the set-up of Chabauty's theorem may be generalised to [diagram \(9\).](#page-12-1) The sets in the bottom row have the structure of \mathbf{Q}_p -points of algebraic varieties, in such a way that the morphisms $\mathrm{loc}_{n,p}$ and **D** are morphisms of schemes (and **D** is an isomorphism). The analogue of the analytic properties of AJ_b is the theorem that j_n^{dR} has Zariski dense image [\[Kim09,](#page-57-2) Th. 1] and is given by a power series on each residue disk. The analogue of Chabauty's $r < g$ condition is non-density of the localisation map $\mathrm{loc}_{U_n,p}$. As in the classical case, this gives the following theorem.

THEOREM 2.2 (Kim). Suppose $\mathrm{loc}_{\mathbf{U},p}$ is non-dominant. Then $X(\mathbf{Q}_p)_{\mathbf{U}}$ is finite.

Kim $\left[\text{Kim}09, \S3\right]$ showed that non-density of loc_{U,p} (and hence finiteness of $X(\mathbf{Q}_p)_U$ is implied by various conjectures on the size of unramified Galois cohomology groups (for example, by the Beilinson–Bloch–Kato conjectures) but is hard to prove unconditionally. One instance where the relevant Galois cohomology groups can be understood by Iwasawa theoretic methods is when the Jacobian of X has CM. This was used by Coates and Kim $\left[CK10\right]$ to prove eventual finiteness of weakly global points. Recently, Ellenberg and Hast [\[EH17\]](#page-57-5) prove, using similar techniques, that the class of curves admitting an étale cover all of whose twists have eventually finite sets of weakly global points includes all solvable Galois covers of \mathbf{P}^1 . In this article the Galois cohomological input needed is of a much more elementary nature. The following result was proved by Balakrishnan–Dogra [\[BD18,](#page-54-7) Lemma 3].

THEOREM 2.3 (Balakrishnan–Dogra). Suppose

 $r < g + \rho - 1$,

where $r = \text{rk } J(Q)$ and $\rho = \rho(J_Q) = \text{rk } NS(J_Q)$. Then $X(Q_p)_2$ is finite.

The idea of the proof of this lemma is as follows. As the map $\mathrm{loc}_{2,p}$ is algebraic, it suffices by [Theorem 2.2](#page-14-2) to construct a Galois-stable quotient U of U₂ for which dim $\mathrm{H}^1_f(G_T, U) < \dim \mathrm{H}^1_f(G_p, U)$, since $X(\mathbf{Q}_p)_2 \subset X(\mathbf{Q}_p)_U$. We can push out (10) to construct a quotient U of U_2 that is an extension

$$
1 \longrightarrow \mathbf{Q}_p(1)^{\oplus(\rho-1)} \longrightarrow \mathbf{U} \longrightarrow V \longrightarrow 1.
$$

Using the six-term exact sequence in nonabelian cohomology and some p-adic Hodge theory, one shows dim $H_f^1(G_T, U) \le r$, whereas dim $H_f^1(G_p, U) = g + \rho - 1$.

2.3. Quotients of fundamental groups via correspondences. [Theorem 2.3,](#page-14-3) as well as the results of [\[CK10\]](#page-56-7), [\[EH17\]](#page-57-5) where finiteness is proved unconditionally in certain cases, say nothing about how to actually *determine* $X(\mathbf{Q}_p)_2$ or $X(Q)$ in practice. In [\[BD18\]](#page-54-7), [\[BD17\]](#page-54-8), the two first-named authors construct a suitable intermediate quotient U between U_2 and V that is non-abelian, but small enough to make explicit computations possible. Working with such quotients U, rather than directly with U_2 , may be thought of as a non-abelian analogue of passing to a nice quotient of the Jacobian as, for instance, in the work of Mazur [\[Maz77\]](#page-58-4) and Merel [\[Mer96\]](#page-58-5). [Theorem 2.3](#page-14-3) was deduced from the finiteness of such a set $X(\mathbf{Q}_p)_U$, and it is these sets that will be computed explicitly in what follows.

Denoting by τ the canonical involution $(x_1, x_2) \mapsto (x_2, x_1)$ on $X \times X$, we say that a correspondence $Z \in Pic(X \times X)$ is symmetric if there are $Z_1, Z_2 \in$ $Pic(X)$ such that

$$
\tau_* Z = Z + \pi_1^* Z_1 + \pi_2^* Z_2,
$$

where π_1, π_2 are the canonical projections $X \times X \to X$. We say that Z is a nice correspondence if Z is nontrivial, symmetric, and ξ_Z has trace 0, where $\xi_Z \in H^1(X) \otimes H^1(X)(1) \simeq \text{End } H^1(X)$ is the cycle class and $H^*(X)$ is any Weil cohomology theory with coefficient field L of characteristic zero.

LEMMA 2.4. Suppose that J is absolutely simple, and let $Z \in Pic(X \times X)$ be a symmetric correspondence. Then the class associated to Z lies in the subspace

$$
\bigwedge^2 H^1(X)(1) \subset H^1(X) \otimes H^1(X)(1).
$$

Moreover, Z is nice if and only if the image of this class in $H^2(X)(1)$ under the cup product is zero.

Proof. It follows from [\[BL04,](#page-55-8) Prop. 11.5.3], whose proof remains valid over any base field, that a correspondence is symmetric if and only if its induced endomorphism of J is fixed by the Rosati involution. By [\[Mum70,](#page-58-6) §IV.20] the subspace of End(J) \otimes Q fixed by the Rosati involution is isomorphic to $NS(J) \otimes \mathbf{Q}$, so we find that Z induces an element of NS(J). Hence the class associated to Z lies in $H^2(J)(1) = \wedge^2 H^1(X)(1)$.

The second statement is a consequence of the observation that the trace of ξ_Z as a linear operator on $H^1(X)$ is equal to the composite of the cup product and the trace isomorphism

$$
H^1(X) \otimes H^1(X)(1) \longrightarrow H^2(X)(1) \simeq L.
$$

We now define quotients U_Z of U_2 attached to the choice of a nice correspondence Z on X. These underlie the proof of [Theorem 2.3](#page-14-3) and play a crucial role in our determination of $X_s(13)(\mathbf{Q})$. By [Lemma 2.4,](#page-15-0) if Z is a nice correspondence on X , we obtain a homomorphism

$$
c_Z: \mathbf{Q}_p(-1) \longrightarrow \text{Ker}\left(\wedge^2 \mathrm{H}^1_{\text{\'et}}(X_{\overline{\mathbf{Q}}}, \mathbf{Q}_p) \stackrel{\cup}{\longrightarrow} \mathrm{H}^2(X_{\overline{\mathbf{Q}}}, \mathbf{Q}_p)\right),
$$

and hence by [\(10\)](#page-12-2), we may form the quotient $U_Z := U_2 / \text{Ker}(c_Z^*)$, which sits in an exact sequence

$$
1 \to \mathbf{Q}_p(1) \to U_Z \to V \to 1.
$$

Remark 2.5. In the computations of this paper, we never work with nice correspondences directly, but rather with their images in $\mathrm{H}^1_{\mathrm{dR}}(X)\otimes \mathrm{H}^1_{\mathrm{dR}}(X)(1)$. In fact, we can carry out these computations for quotients corresponding in the same way to more general Tate classes $\mathrm{H}^1_{\rm dR}(X)\otimes\mathrm{H}^1_{\rm dR}(X)$ that come from a nice $Z \in Pic(X \times X) \otimes \mathbf{Q}_p$, for which we extend the notion of a nice correspondence in the obvious way. For notational convenience, we denote a class obtained in this way by Z as well.

3. Height functions on the Selmer variety

In this section we recall Nekovář's theory of p -adic height functions [\[Nek93\]](#page-58-2) and we summarise some results of $|BD18|$ relating p-adic heights to Selmer varieties and leading to a construction of quadratic Chabauty pairs when $r = g$ and $\rho > 1$.

3.1. Nekovář's p-adic height functions. We start by recalling some definitions from the theory of p -adic heights due to Nekovář [\[Nek93\]](#page-58-2). The necessary background from p-adic Hodge theory can be found in [\[Nek93,](#page-58-2) §1].

For a wide class of *p*-adic Galois representations V, Nekovář [\[Nek93,](#page-58-2) §2] constructs a continuous bilinear pairing

(11)
$$
h: \mathrm{H}^1_{\mathrm{f}}(G_T, V) \times \mathrm{H}^1_{\mathrm{f}}(G_T, V^*(1)) \longrightarrow \mathbf{Q}_p.
$$

For this construction, Nekovář assumes that V satisfies the conditions given in [\[Nek93,](#page-58-2) §2.1.2]. This global height pairing depends only on the choice of

- a continuous idèle class character $\chi : \mathbf{A}^\times_{\mathbf{Q}} / \mathbf{Q}^\times \longrightarrow \mathbf{Q}_p$,
- a splitting $s: V_{\rm dR}/\rm{Fil}^0 V_{\rm dR} \longrightarrow V_{\rm dR}$ of the Hodge filtration, where $V_{\rm dR}$ = ${\bf D}_{\mathrm{cris}}(V).$

Henceforth, we fix such choices once and for all. We will only consider $V =$ $H^1_{\text{\'et}}(X_{\overline{\mathbf{Q}}}, \mathbf{Q}_p)^*$, and we specialise immediately to this case for simplicity, so that $V_{\text{dR}} = H_{\text{dR}}^1 (X_{\mathbf{Q}_p})^*$. By [\[Nek93,](#page-58-2) §5.3], V satisfies the conditions of [Nek93, §2.1.2].

The global p -adic height pairing h decomposes as the sum of local pairings h_v , for every non-archimedean place v of Q, as explained in [\[Nek93,](#page-58-2) §4]. As in the classical decomposition of the height pairing, the local height functions do not define a bilinear pairing, but rather a bi-additive function on a set of equivalence classes of mixed extensions, which we now explain. In the particular example of $X = X_s(13)$, only the local height h_p is of importance. Recall that $T = T_0 \cup \{p\}$, where T_0 is the set of primes of bad reduction of X.

Definition 3.1. Let G be the Galois group G_T or G_v for $v \in T$. We define the category $\mathcal{M}(G; \mathbf{Q}_p, V, \mathbf{Q}_p(1))$ of mixed extensions with graded pieces \mathbf{Q}_p, V , and $\mathbf{Q}_p(1)$ as follows: The objects are triples $(M, M_\bullet, \psi_\bullet)$, where

- *M* is a \mathbf{Q}_p -representation of *G*;
- M_{\bullet} is a G-stable filtration $M = M_0 \supset M_1 \supset M_2 \supset M_3 = 0;$
- ψ_{\bullet} are isomorphisms of G-representations

$$
\begin{cases} \psi_0: M_0/M_1 & \xrightarrow{\sim} \mathbf{Q}_p, \\ \psi_1: M_1/M_2 & \xrightarrow{\sim} V, \\ \psi_2: M_2/M_3 & \xrightarrow{\sim} \mathbf{Q}_p(1), \end{cases}
$$

and the morphisms

$$
(M,M_\bullet,\psi_\bullet) \;\longrightarrow (M',M'_\bullet,\psi'_\bullet)
$$

are morphisms $M \to M'$ of representations that respect the filtrations and commute with the isomorphisms ψ_i and ψ'_i . Let $M(G; Q_p, V, Q_p(1))$ denote the set of isomorphism classes of objects.

When $G = G_T$ or G_p , we denote by $\mathcal{M}_f(G; \mathbf{Q}_p, V, \mathbf{Q}_p(1))$ the full subcategory of $\mathcal{M}(G; \mathbf{Q}_p, V, \mathbf{Q}_p(1))$ consisting of representations that are crystalline at p, and similarly define $M_f(G; \mathbf{Q}_p, V, \mathbf{Q}_p(1)).$

The set $M_f(G_T; \mathbf{Q}_p, V, \mathbf{Q}_p(1))$ is equipped with two natural surjective homomorphisms

$$
\begin{array}{cccc} \pi_1 : & {\rm M_f}(G_T; {\mathbf Q}_p, V, {\mathbf Q}_p(1)) & \longrightarrow & {\rm H_f^1}(G_T, V) \ , & M \mapsto [M/M_2], \\ \pi_2 : & {\rm M_f}(G_T; {\mathbf Q}_p, V, {\mathbf Q}_p(1)) & \longrightarrow & {\rm Ext}^1_{G_T, {\rm f}}(V, {\mathbf Q}_p(1)) \ , & M \mapsto [M_1] \end{array}
$$

(and similarly for the groups G_v for $v \in T$). Throughout this paper, we implicitly identify $H^1_f(G_T, V)$ and $H^1_f(G_T, V^*(1))$ with the groups $\text{Ext}^1_{G_T, f}(\mathbf{Q}_p, V)$ and $\text{Ext}_{G_T, f}^1(V, \mathbf{Q}_p(1))$ respectively, where the subscript f denotes those extensions that are crystalline at p . From Poincaré duality for étale cohomology of curves [\[Mil80,](#page-58-7) §11], we get $V \simeq V^*(1)$, and hence we may view both $\pi_1(M)$ and $\pi_2(M)$ as elements of $\mathrm{H}^1_\mathrm{f}(G_T, V)$. We say M is a mixed extension of $\pi_1(M)$ and $\pi_2(M)$.

Nekovář's global height pairing (11) decomposes as a sum of local heights in the following sense. There exist functions h_p and h_v for every finite place $v \neq p$,

$$
h_p: M_f(G_p; \mathbf{Q}_p, V, \mathbf{Q}_p(1)) \longrightarrow \mathbf{Q}_p, h_v: M(G_v; \mathbf{Q}_p, V, \mathbf{Q}_p(1)) \longrightarrow \mathbf{Q}_p,
$$

such that $h = \sum_{v} h_v$, where h is viewed by abuse of notation as the composite function

$$
\mathrm{M}_{\mathrm{f}}(G_T; \mathbf{Q}_p, V, \mathbf{Q}_p(1)) \xrightarrow{(\pi_1, \pi_2)} \mathrm{H}^1_{\mathrm{f}}(G_T, V) \times \mathrm{Ext}^1_{G_T, \mathrm{f}}(V, \mathbf{Q}_p(1)) \xrightarrow{h} \mathbf{Q}_p.
$$

Note that (π_1, π_2) is surjective by [\[Nek93,](#page-58-2) §4.4]. Unlike the global height h, the local heights h_v do not factor through the map analogous to (π_1, π_2) . We now define the functions h_v for $v \neq p$ and $v = p$, and we refer to Nekovář [\[Nek93,](#page-58-2) §4] for more details.

3.2. The local height away from p. We recall the definition of the local height away from p; see [\[Nek93,](#page-58-2) §4.6]. By Tate duality, for any continuous p-adic representation W of G_v , we have an exact sequence

$$
0 \longrightarrow \mathrm{H}^1_{\mathrm{f}}(G_v, W) \longrightarrow \mathrm{H}^1(G_v, W) \longrightarrow \mathrm{H}^1_{\mathrm{f}}(G_v, W^*(1))^* \longrightarrow 0;
$$

see, for instance, Fontaine–Perrin-Riou [\[FPR94,](#page-57-6) §3.3.9]. We have

$$
\mathrm{H}^1_f(G_v, W) \simeq W^{I_v}/(\mathrm{Fr}-1)W^{I_v},
$$

so if $H^0(G_v, W) = H^0(G_v, W^*(1))^* = 0$, then $H^1(G_v, W) = 0$. By the weightmonodromy conjecture for curves $[Gr 072, Exposé IX, Th. 4.3(b)$ and Cor. 4.4], we have $H^0(G_v, V) = 0$. By Poincaré duality, it follows that also $H^0(G_v, V^*(1))^*$ $= 0$. We conclude that $H^1(G_v, V) = 0$.

The vanishing of $H^1(G_v, V)$ implies that a mixed extension M in

$$
\operatorname{M}_\mathrm{f}(G_v; \mathbf{Q}_p, V, \mathbf{Q}_p(1))
$$

splits as $M \simeq V \oplus N$, where N is an extension of \mathbf{Q}_p by $\mathbf{Q}_p(1)$. We obtain a class $[N] \in H^1(G_v, \mathbf{Q}_p(1))$. Via Kummer theory [\[Nek93,](#page-58-2) §1.12], the local component $\chi_v : \mathbf{Q}_v^{\times} \longrightarrow \mathbf{Q}_p$ gives a map

$$
\chi_v: \mathrm{H}^1(G_v, \mathbf{Q}_p(1)) \simeq \mathbf{Q}_v^{\times} \widehat{\otimes} \mathbf{Q}_p \longrightarrow \mathbf{Q}_p,
$$

where the second map is induced by the valuation $\mathbf{Q}_{v}^{\times} \longrightarrow \mathbf{Z}$. The local height at v is now defined as

$$
h_v(M) := \chi_v([N]).
$$

When M is unramified at v , the local height automatically vanishes. More generally, we have

LEMMA 3.2. Let $v \neq p$, and let $M \in M(G_v; \mathbf{Q}_p, V, \mathbf{Q}_p(1))$ be a mixed extension. Assume that M is potentially unramified. Then $h_v(M) = 0$.

Proof. Suppose that K_v/\mathbf{Q}_v is a finite Galois extension such that the action of G_{K_v} on M is unramified. The inflation-restriction sequence attached to this subgroup gives an exact sequence

$$
0 \longrightarrow \mathrm{H}^1(A, \mathbf{Q}_p(1)^{G_{K_v}}) \longrightarrow \mathrm{H}^1(G_v, \mathbf{Q}_p(1)) \stackrel{\mathrm{res}}{\longrightarrow} \mathrm{H}^1(G_{K_v}, \mathbf{Q}_p(1)),
$$

where $A = G_v/G_{K_v}$ is a finite group. Write $M \simeq V \oplus N$, where N is an extension of \mathbf{Q}_p by $\mathbf{Q}_p(1)$. Then by assumption, we have that the class of N in $H^1(G_{K_v}, \mathbf{Q}_p(1))$ is trivial. On the other hand, the restriction map res is injective, since $\mathbf{Q}_p(1)^{G_{K_v}} = 0$. This shows that the class of N in $\mathrm{H}^1(G_v, \mathbf{Q}_p(1))$ is trivial and, in particular, that $h_v(M) = 0$. 3.3. The local height at $v = p$. Given a mixed extension

$$
M_{\text{\'et}} \in M_{\text{f}}(G_p; \mathbf{Q}_p, V, \mathbf{Q}_p(1)),
$$

the definition of its local height at p is in terms of $M_{\text{dR}} := \mathbf{D}_{\text{cris}}(M_{\text{\'et}})$; see [\[Nek93,](#page-58-2) §4.7]. The module M_{dR} inherits a structure of *mixed extension* similar to that of $M_{\text{\'et}}$, which we formalise in [Definition 3.4.](#page-19-1)

Definition 3.3. A filtered ϕ -module is a finite-dimensional \mathbf{Q}_p -vector space W equipped with an exhaustive and separated decreasing filtration Fil^i and an automorphism $\phi = \phi_W$.

Really, we are only interested in *admissible* filtered ϕ -modules, but since we will only consider iterated extensions of filtered ϕ -modules that are admissible, and any extension of two admissible filtered ϕ -modules is admissible, we will ignore this distinction.

For any filtered ϕ -module W for which $W^{\phi=1} = 0$, we have (see [\[Nek93,](#page-58-2) §3.1]) an isomorphism

.

(12)
$$
\operatorname{Ext}^1_{\mathrm{Fil},\phi}(\mathbf{Q}_p,W)\simeq W/\operatorname{Fil}^0
$$

Explicitly, the map from the Ext-group to W/Fil^0 is defined as follows. Given an extension

$$
0 \longrightarrow W \longrightarrow E \longrightarrow \mathbf{Q}_p \longrightarrow 0,
$$

one chooses a splitting s^{ϕ} : $\mathbf{Q}_{p} \to E$ that is ϕ -equivariant and a splitting s^{Fil} that respects the filtration. Their difference gives an element of W . Since $W^{\phi=1}=0$, the splitting s^{ϕ} is unique, whereas s^{Fil} is only determined up to an element of Fil⁰W. Hence the element $s^{\phi} - s^{\text{Fil}} \in W$ mod Fil⁰ is independent of choices. We leave the construction of the inverse map to the reader.

Definition 3.4. Let V be as above, and let $V_{\text{dR}} = \mathbf{D}_{\text{cris}}(V)$. Define $\mathcal{M}_{\mathrm{Fil},\phi}(\mathbf{Q}_p,V,\mathbf{Q}_p(1))$ as the category of mixed extensions of filtered ϕ -modules, whose objects are tuples $(M, M_{\bullet}, \psi_{\bullet})$, where

- M is a filtered ϕ -module;
- M_{\bullet} is a filtration by sub-filtered ϕ -modules $M = M_0 \supset M_1 \supset M_2 \supset M_3 = 0;$
- ψ_{\bullet} are isomorphisms of filtered ϕ -modules

$$
\begin{cases} \psi_0: M_0/M_1 & \xrightarrow{\sim} \mathbf{Q}_p, \\ \psi_1: M_1/M_2 & \xrightarrow{\sim} V_{\mathrm{dR}}, \\ \psi_2: M_2/M_3 & \xrightarrow{\sim} \mathbf{Q}_p(1) \end{cases}
$$

and whose morphisms are morphisms of filtered ϕ -modules that, in addition, respect the filtrations M_{\bullet} and commute with the isomorphisms ψ_i and ψ'_i . Let $M_{\text{Fil},\phi}(\mathbf{Q}_p,V,\mathbf{Q}_p(1))$ denote the set of isomorphism classes of objects.

Remark 3.5. As a consequence of our definitions, the only jumps in Fil^{i} M are at $i = 0$ and -1 , since we have assumed that $V = H^1_{\text{\'et}}(X_{\overline{\mathbf{Q}}}, \mathbf{Q}_p)^*$ for X as above. In other words, M has "Hodge weights 0 and -1 ." In Nekovář's theory, more general weights can arise.

The structure of a mixed extension of filtered ϕ -modules on M_{dR} = ${\bf D}_{\text{cris}}(M_{\text{\'et}})$ naturally allows us to define extensions $E_1(M)$ and $E_2(M)$ by

(13)
$$
E_1(M) := M_{\rm dR}/\mathbf{Q}_p(1), \qquad E_2(M) := \text{Ker}(M_{\rm dR} \to \mathbf{Q}_p);
$$

compare with the definition of π_1 and π_2 above. For simplicity we will sometimes write these as E_1 and E_2 . We have a short exact sequence

(14)
$$
0 \longrightarrow \mathbf{Q}_p(1) \longrightarrow E_2 / \mathrm{Fil}^0 \longrightarrow V_{\mathrm{dR}} / \mathrm{Fil}^0 \longrightarrow 0.
$$

The image of the extension class $[M] \in H^1_f(G_p, E_2) \simeq E_2/Fil^0$ in the group $V_{\text{dR}}/ \text{Fil}^0 \simeq \text{H}^1_{\text{f}}(G_p, V_{\text{dR}})$ is exactly the extension class [E₁]. We define δ to be the composite map

$$
\delta \;:\; V_{\mathrm{dR}}/\,\mathrm{Fil}^0 \stackrel{s}\longrightarrow V_{\mathrm{dR}} \longrightarrow E_2 \longrightarrow E_2/\,\mathrm{Fil}^0,
$$

where s is the splitting of the Hodge filtration we chose at the beginning of the subsection, the homomorphism $V_{\text{dR}} \to E_2$ is the unique Frobenius-equivariant splitting of

$$
0 \longrightarrow \mathbf{Q}_p(1) \longrightarrow E_2 \longrightarrow V_{\text{dR}} \longrightarrow 0,
$$

and the last map is just the canonical surjection. By construction, $[M]$ and $\delta([E_1])$ have the same image in $V_{\rm dR}/\rm{Fil}^0$, hence via the exact sequence [\(14\)](#page-20-0) their difference defines an element of $\mathbf{Q}_p(1)$. The filtered ϕ -module $\mathbf{Q}_p(1)$ is isomorphic to $H^1_f(G_p, \mathbf{Q}_p(1))$ via [\(12\)](#page-19-2), so we may think of $[M] - \delta([E_1])$ as an element of $H^1_f(G_p, \mathbf{Q}_p(1))$. The local component $\chi_p : \mathbf{Q}_p^{\times} \longrightarrow \mathbf{Q}_p$ gives rise to a map

$$
\chi_p: \mathrm{H}^1_{\mathrm{f}}(G_p, \mathbf{Q}_p(1)) \simeq \mathbf{Z}_p^{\times} \widehat{\otimes} \mathbf{Q}_p \longrightarrow \mathbf{Q}_p,
$$

where the isomorphism follows from Kummer theory. This allows us to define

(15)
$$
h_p(M) := \chi_p([M] - \delta([E_1])) .
$$

For the practical determination of rational points, it will be necessary to make this more explicit. To do so, it is convenient to introduce some notation for filtered ϕ -modules M in $M_{Fil,\phi}(\mathbf{Q}_p, V, \mathbf{Q}_p(1))$. The splitting s of Fil⁰ V_{dR} defines idempotents $s_1, s_2 : V_{\text{dR}} \longrightarrow V_{\text{dR}}$ projecting onto the $s(V_{\text{dR}}/ \text{Fil}^0)$ - and Fil⁰-components, respectively. Suppose we are given a vector space splitting

$$
s_0: \mathbf{Q}_p \oplus V_{\mathrm{dR}} \oplus \mathbf{Q}_p(1) \xrightarrow{\sim} M.
$$

The split mixed extension $\mathbf{Q}_p \oplus V_{\text{dR}} \oplus \mathbf{Q}_p(1)$ has the structure of a filtered ϕ -module as a direct sum. Choose two further splittings,

$$
\begin{array}{rclcl} s^{\phi} & : & \mathbf{Q}_{p} \oplus V_{\mathrm{dR}} \oplus \mathbf{Q}_{p}(1) & \stackrel{\sim}{\longrightarrow} & M, \\ s^{\mathrm{Fil}} & : & \mathbf{Q}_{p} \oplus V_{\mathrm{dR}} \oplus \mathbf{Q}_{p}(1) & \stackrel{\sim}{\longrightarrow} & M, \end{array}
$$

where s^{ϕ} is Frobenius equivariant and s^{Fil} respects the filtrations. Note that the choice of s^{ϕ} is unique, whereas the choice of s^{Fil} is not. Suppose we have chosen bases for \mathbf{Q}_p , V_{dR} , and $\mathbf{Q}_p(1)$ such that with respect to these bases, we have

(16)
$$
s_0^{-1} \circ s^{\phi} = \begin{pmatrix} 1 & 0 & 0 \\ \alpha_{\phi} & 1 & 0 \\ \gamma_{\phi} & \beta_{\phi}^{\mathsf{T}} & 1 \end{pmatrix}, \qquad s_0^{-1} \circ s^{\mathrm{Fil}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \gamma_{\mathrm{Fil}} & \beta_{\mathrm{Fil}}^{\mathsf{T}} & 1 \end{pmatrix}.
$$

Then, Nekovář's local height at p defined by (15) translates in our notation to the simple expression

(17)
$$
h_p(M) = \chi_p \left(\gamma_\phi - \gamma_{\rm Fil} - \beta_\phi^{\rm T} \cdot s_1(\boldsymbol{\alpha}_\phi) - \beta_{\rm Fil}^{\rm T} \cdot s_2(\boldsymbol{\alpha}_\phi) \right).
$$

3.4. Twisting and p-adic heights. We now use Nekovář's theory of p-adic heights to construct a quadratic Chabauty pair (θ, Υ) . See [\[BD18,](#page-54-7) §5] for more details on the twisting construction.

Let $\mathbf{Z}_{p}\llbracket \pi_{1}^{\mathrm{\acute{e}t},p}$ $\mathcal{I}_{1}^{\text{\'et},p}(\overline{X},b)$:= $\varprojlim_{\Omega} \mathbf{Z}_{p}[\pi_{1}^{\text{\'et}}(\overline{X},b)]/N$ where the limit is over all finite quotients of p -power order. Let I denote the augmentation ideal of $\mathbf{Q}_{p}\otimes_{\mathbf{Z}_{p}}\mathbf{Z}_{p}\llbracket\pi_{1}^{\mathrm{\acute{e}t},p}$ $\mathcal{L}_1^{\text{et},p}(\overline{X},b)$. Define the nilpotent algebra

$$
A_n^{\text{\'et}}(b) := \mathbf{Q}_p \otimes_{\mathbf{Z}_p} \mathbf{Z}_p[\![\pi_1^{\text{\'et},p}(\overline{X},b)]\!]/I^{n+1}.
$$

Then the limit of the A_n is isomorphic to the pro-universal enveloping algebra of the \mathbf{Q}_p -unipotent étale fundamental group of X at b; see [\[CK10\]](#page-56-7). There is an isomorphism

$$
I^2/I^3 \simeq \text{Coker}\left(\mathbf{Q}_p(1) \xrightarrow{\cup^*} V^{\otimes 2}\right).
$$

Fix a nice correspondence $Z \in Pic(X \times X)$ (or, more generally, in $Pic(X \times X)$) $\otimes \mathbf{Q}_p$ — see [Remark 2.5\)](#page-16-3), and let U_Z denote the corresponding quotient of U^{ét} as defined in [Section 2.3.](#page-14-1) We define the mixed extension $A_Z(b)$ to be the pushout of $A_2^{\text{\'et}}(b)$ by

$$
\mathrm{cl}_Z^* : \mathrm{Coker}\left(\mathbf{Q}_p(1) \xrightarrow{\cup^*} V^{\otimes 2}\right) \longrightarrow \mathbf{Q}_p(1);
$$

see also [\[BD18,](#page-54-7) §5]. Then $A_Z(b)$ defines an element in $\mathcal{M}_f(G_T; \mathbf{Q}_p, V, \mathbf{Q}_p(1)),$ with respect to the I-adic filtration. The mixed extension $A_Z(b)$ is naturally equipped with a faithful Galois-equivariant action of U_Z that acts unipotently with respect to the filtration.

We use the twisting construction (see [\[Ser02,](#page-59-5) §5.3]) to define $A_Z(b, x)$. Consider the maps

$$
\begin{array}{ccccccccc}\n\tau & : & H^1_f(G_T, U_Z) & \longrightarrow & M_f(G_T; \mathbf{Q}_p, V, \mathbf{Q}_p(1)), & P & \longmapsto & P \times_{U_Z} A_Z(b), \\
\tau_p & : & H^1_f(G_p, U_Z) & \longrightarrow & M_f(G_p; \mathbf{Q}_p, V, \mathbf{Q}_p(1)), & P & \longmapsto & P \times_{U_Z} A_Z(b).\n\end{array}
$$

As explained in [\[BD18,](#page-54-7) §5.1], the map τ is injective. When $x \in X(\mathbf{Q})$ and $P = \pi_1^{\text{\'et}}(\overline{X};b,x)$, we denote

$$
A_Z(b, x) := \tau([P]) = P \times_{\mathcal{U}_Z} A_Z(b).
$$

If $x \in X(\mathbf{Q}_p)$, we likewise define $A_Z(b, x) := \tau_p([P])$ to be the mixed extension of G_p -modules obtained by twisting $A_Z(b)$. Similarly, we define $A_1(b, x)$ and $IA_Z(b, x)$ by twisting $A_1^{\text{\'et}}(b)$ and $IA_Z(b)$.

We can now define (θ, Υ) . Composing the twisting map with the unipotent Kummer map, we define

(18)
$$
\theta : X(\mathbf{Q}_p) \longrightarrow \mathbf{Q}_p ; x \longmapsto h_p(A_Z(b,x)).
$$

Then, using the local heights h_v , for $v \in T_0$, we define the set

(19)
$$
\Upsilon := \left\{ \sum_{v \in T_0} h_v(A_Z(b, x_v)) : (x_v) \in \prod_{v \in T_0} X(\mathbf{Q}_v) \right\} \subset \mathbf{Q}_p.
$$

It follows from Kim–Tamagawa [\[KT08,](#page-58-8) Cor. 0.2] that Υ is finite:

THEOREM 3.6 (Kim–Tamagawa). If $v \neq p$, then $j_{2,v}^{\text{\'et}}$: $X(\mathbf{Q}_v) \to \mathrm{H}^1(G_v, \mathbf{U}_2)$ has finite image.

We now prove that (θ, Υ) is a quadratic Chabauty pair, under the assumptions of [Section 1.4.](#page-5-0)

LEMMA 3.7. Let X be as in [Section](#page-5-0) 1.4. Then (θ, Υ) is a quadratic Chabauty pair. The endomorphism E is that induced by Z , the constant c is $[IA_Z(b)]$, and the bilinear pairing B is the global height h.

Proof. By assumption, we have $r = g$ and $H^1_f(G_T, V) \simeq H^1_f(G_p, V) \simeq$ $H^0(X_{\mathbf{Q}_p}, \Omega^1)^*$, so we can indeed view the global height h as a bilinear pairing

$$
h: \mathrm{H}^{0}(X_{\mathbf{Q}_{p}}, \Omega^{1})^{*} \times \mathrm{H}^{0}(X_{\mathbf{Q}_{p}}, \Omega^{1})^{*} \longrightarrow \mathbf{Q}_{p}.
$$

We now check the conditions for a quadratic Chabauty pair. By [\[BD17,](#page-54-8) Lemma 10], the map

$$
(\pi_*, h_p \circ \tau_p) \; : \; \mathrm{H}^1_{\mathrm{f}}(G_p, \mathrm{U}_Z) \; \longrightarrow \; \mathrm{H}^1_{\mathrm{f}}(G_p, V) \times \mathbf{Q}_p
$$

is an isomorphism of schemes. Recall that $j_{U_Z, p}^{\text{\'et}}$ has Zariski dense image, so that the function

$$
(\mathrm{AJ}_{\mathrm{b}}, \theta) = (\pi_*, h_p \circ \tau_p) \circ j_{\mathrm{U}_Z, p}^{\mathrm{\acute{e}t}},
$$

which is defined by convergent power series on residue disks, also has Zariski dense image. As explained in [\[BD18,](#page-54-7) §5.2], we have for each $x \in X(\mathbf{Q})$ that

$$
(\pi_1, \pi_2)(A_Z(b, x)) = (AJ_b(x), E(AJ_b(x)) + c),
$$

where E is the endomorphism induced by Z and $c = [IA_Z(b)]$. It follows from the decomposition $h = \sum_{v} h_v$ that when $B = h$ and $x \in X(\mathbf{Q})$, we have

$$
\theta(x) - B(\mathrm{AJ}_{\mathrm{b}}(x), E(\mathrm{AJ}_{\mathrm{b}}(x)) + c) \in \Upsilon.
$$

By [Lemma 3.2,](#page-18-1) the local heights away from p are all trivial if X has potentially good reduction everywhere, so that $\Upsilon = \{0\}$. This is the case for $X = X_{\rm s}(13)$. We obtain

COROLLARY 3.8. If X has potential good reduction everywhere and sat-isfies the assumptions of [Section](#page-5-0) 1.4, then $(\theta, \{0\})$ is a quadratic Chabauty pair, where $\theta = h_p(A_Z(b,.))$. The endomorphism E is that induced by Z, the constant c is $[IA_Z(b)]$, and the bilinear pairing B is the global height h.

Remark 3.9. We say the splitting s of the Hodge filtration is K -equivariant if it commutes with the action of $K = \text{End}(J) \otimes \mathbf{Q}$. If s is a K-equivariant splitting, then by [\[BD17,](#page-54-8) §4.1] the associated height pairing on any two extensions E_1, E_2 is K-equivariant, in the sense that for all $\alpha \in K$, we have

$$
h(\alpha E_1, E_2) = h(E_1, \alpha E_2).
$$

This decreases the number of rational points required to determine $X(\mathbf{Q})$ using quadratic Chabauty.

Remark 3.10. The character χ describes how to combine the various local classes in $H^1(G_v, \mathbf{Q}_p(1))$. However, for a curve with potentially good reduction everywhere, the local heights away from p are trivial by [Lemma 3.2,](#page-18-1) so the role of χ is reduced to providing an isomorphism of \mathbf{Q}_p -vector spaces

$$
\mathbf{D}_{\mathrm{dR}}(\mathbf{Q}_p(1)) \simeq \mathrm{H}^1_{\mathrm{f}}(G_p, \mathbf{Q}_p(1)) \simeq \mathbf{Q}_p.
$$

Remark 3.11. The extension class $[IA_Z(b)]$ is the *p*-adic realisation of the Chow-Heegner point associated to the Néron-Severi class Z (see, e.g., [\[DRS12,](#page-56-8) Th. 1]). As explained in [Remark 5.6,](#page-40-1) the methods of this paper give an alternative approach to $[DDLR15]$ for computing Chow–Heegner points; see [\(47\)](#page-40-2).

Remark 3.12. A priori, since the *p*-adic height depends on a choice of splitting of the Hodge filtration and a choice of idèle class character, the quadratic Chabauty pair defined above has a similar dependence. As explained in [\[BD17\]](#page-54-8) (remark below Lemma 3.11), if s_1 and s_2 are two different splittings with associated p-adic heights $h_{p,1}$ and $h_{p,2}$, then $h_{p,1} - h_{p,2}$ will be bilinear, i.e., will factor through

 $\operatorname{Ext}^1_{\operatorname{Fil},\phi}(\mathbf{Q}_p,V_{\operatorname{dR}})\otimes \operatorname{Ext}^1_{\operatorname{Fil},\phi}(V_{\operatorname{dR}},\mathbf{Q}_p(1)).$

This means that, although $\theta(x)$ and $B(\text{AJ}_b(x), E(\text{AJ}_b(x)) + c)$ depend on the splitting, the quantity

(20)
$$
\theta(x) - B(\mathrm{AJ}_{\mathrm{b}}(x), E(\mathrm{AJ}_{\mathrm{b}}(x)) + c)
$$

is independent of it. The dependence of (20) on the choice of idèle class character is linear, and hence the zero set is independent of choices, since $H^1(G_{\mathbf{Q},T},\mathbf{Q}_p)$ is one-dimensional.

4. Explicit computation of the p -adic height I: Hodge filtration

To complete the recipe for finding explicit finite sets containing $X(Q)$, it remains to choose a nice class $Z \in Pic(X \times X) \otimes \mathbf{Q}_p$ and write the resulting locally analytic function

$$
\theta \; : \; X(\mathbf{Q}_p) \; \longrightarrow \; \mathbf{Q}_p \; ; \; x \; \longmapsto \; h_p\left(A_Z(b,x)\right)
$$

as a power series on every residue disk of $X(\mathbf{Q}_p)$. By [equation \(17\),](#page-21-1) all that is needed is a sufficiently explicit description of the filtered ϕ -module $\mathbf{D}_{\text{cris}}(A_Z(b,x))$. We compute the filtration and Frobenius separately, as pullbacks of certain universal objects $\mathcal{A}_Z^{\text{dR}}$ and $\mathcal{A}_Z^{\text{rig}}$ Z_Z respectively. The filtration of $\mathcal{A}_Z^{\text{dR}}$ is made explicit in this section, following the strategy of [\[BD17,](#page-54-8) §6], and the Frobenius structure is determined in [Section 5.](#page-33-0) The bundle $\mathcal{A}_Z^{\text{dR}}$ has "Hodge weights 0 and -1 " in the sense that the only non-trivial jumps in its filtration are at Fil⁰ \mathcal{A}_Z^{dR} and Fil⁻¹ \mathcal{A}_Z^{dR} , which we describe explicitly below.

Remark 4.1. We note that unlike the Frobenius structure, the Hodge filtration has global meaning. In this section, we introduce all necessary objects over Q , even though for the application to rational points, this is not strictly necessary, and it would suffice to work over \mathbf{Q}_p .

4.1. *Notation*. Henceforth, X is a smooth projective curve of genus $q > 1$ over Q, and $Y \subset X$ is an affine open subset defined over Q. Let b be a rational point of Y that is integral at p . Suppose

$$
\#(X\backslash Y)(\overline{\mathbf{Q}})=d,
$$

and let L/\mathbf{Q} be a finite extension over which all the points of $D = X\Y$ are defined. Choose a set $\omega_0, \ldots, \omega_{2g+d-2} \in H^0(Y_{\mathbf{Q}}, \Omega^1)$ of differentials on Y, satisfying the following properties:

• The differentials $\omega_0, \ldots, \omega_{2g-1}$ are of the second kind on X and form a symplectic basis of $\mathrm{H}^1_{\mathrm{dR}}(X/\mathbf{Q})$; i.e., the cup product is the standard symplectic form with respect to this basis.

• The differentials $\omega_{2q}, \ldots, \omega_{2q+d-2}$ are of the third kind on X, i.e., a differential all of whose poles have order one.

We set $V_{\text{dR}}(Y) := H_{\text{dR}}^1(Y/\mathbf{Q})^*$ and let T_0, \ldots, T_{2g+d-2} be the dual basis.

4.2. The universal filtered connection $\mathcal{A}_n^{\mathrm{dR}}$. Let $\mathcal{C}^{\mathrm{dR}}(X)$ be the category of unipotent vector bundles with connection on X. Our base point $b \in X(\mathbf{Q})$ makes $C^{dR}(X)$ into a unipotent Tannakian category, whose fundamental group we denote by $\pi_1^{\text{dR}}(X, b)$. Using the notation from the appendix, we define

$$
A_n^{\mathrm{dR}}(b) = A_n(\mathcal{C}^{\mathrm{dR}}(X, b^*)),
$$

with associated path torsors $A_n^{\text{dR}}(b, x)$. Let $\mathcal{A}_n^{\text{dR}}(b)$, or simply $\mathcal{A}_n^{\text{dR}}$, be the universal *n*-unipotent object, associated to the $\pi_1^{\text{dR}}(X, b)$ -representation $A_n^{\text{dR}}(b)$ via the Tannaka equivalence; see [Section A.1.2.](#page-51-0) This vector bundle carries a Hodge filtration, with the property that the \mathbf{Q}_p -vector space isomorphism

$$
x^* \mathcal{A}_n^{\mathrm{dR}}(b) \simeq A_n^{\mathrm{dR}}(b, x) \qquad \forall x : \mathrm{Spec}(\mathbf{Q}_p) \longrightarrow X
$$

is an isomorphism of filtered vector spaces. For more details, see also [\[Kim09,](#page-57-2) pp. 98–100].

We now describe a closely related bundle $\mathcal{A}_n^{\mathrm{dR}}(Y)$ on the affine open Y, using the notation from [Section 4.1.](#page-24-1) This bundle admits a very simple description, and its relation with $\mathcal{A}_n^{\text{dR}}$ is given in [Corollary 4.4.](#page-27-1) To distinguish it more clearly from $\mathcal{A}_n^{\mathrm{dR}}(Y)$, we will denote $\mathcal{A}_n^{\mathrm{dR}}$ by $\mathcal{A}_n^{\mathrm{dR}}(X)$ in this paragraph.

Set $\mathcal{A}_n^{\mathrm{dR}}(Y) := \bigoplus_{i=0}^n V_{\mathrm{dR}}(Y)^{\otimes i} \otimes \mathcal{O}_Y$, and define the connection

$$
(21) \ \nabla_n \, : \, \mathcal{A}_n^{\mathrm{dR}}(Y) \longrightarrow \mathcal{A}_n^{\mathrm{dR}}(Y) \otimes \Omega_Y^1 \, , \qquad \nabla_n(v \otimes 1) \, = \, \sum_{i=0}^{2g+d-2} -(T_i \otimes v) \otimes \omega_i.
$$

Then $\mathcal{A}_n^{\mathrm{dR}}(Y)$ is *n*-step unipotent, in the sense that it has a filtration

$$
\bigoplus_{i=j}^{n} V_{\mathrm{dR}}(Y)^{\otimes i} \otimes \mathcal{O}_Y \qquad \text{for } j = 0, 1, \dots, n
$$

by sub-bundles preserved by ∇ , where the graded pieces inherit the trivial connection. The following theorem, proved by Kim [\[Kim09,](#page-57-2) p. 99], provides a universal property for the bundle $\mathcal{A}_n^{\mathrm{dR}}(Y)$.

THEOREM 4.2 (Kim). Let $\mathbf{1} = 1 \otimes 1$ be the identity section of $\mathcal{A}_n^{\mathrm{dR}}(Y)$. Then $(\mathcal{A}_n^{\mathrm{dR}}(Y), \mathbf{1})$ is an n-step universal pointed object, in the sense of [Sec](#page-49-1)[tion](#page-49-1) A.1. That is, for any n-step unipotent vector bundle V with connection on Y, and any section v of V, there exists a unique map

$$
f: \mathcal{A}_n^{\mathrm{dR}}(Y) \longrightarrow \mathcal{V}
$$
 such that $f(\mathbf{1}) = v$.

Although universal properties mean $(\mathcal{A}_n^{\mathrm{dR}}(Y), \mathbf{1})$ is unique up to unique isomorphism, the trivialisation of the underlying vector bundle above is not

unique, as it depends on a choice of elements of $\mathrm{H}^{0}(Y_{\mathbf{Q}}, \Omega^{1})$ defining a basis of $H^1_{\text{dR}}(Y/\mathbf{Q})$. This trivialisation has some relation to the algebraic structure of the spaces $A_n^{\text{dR}}(b, x)$, which we now explain. For $x \in Y(\mathbf{Q})$, it gives a canonical isomorphism

(22)
$$
s_0(b,x): \bigoplus_{i=0}^n V_{\mathrm{dR}}(Y)^{\otimes i} \longrightarrow A_n^{\mathrm{dR}}(Y)(b,x) := x^* \mathcal{A}_n^{\mathrm{dR}}(Y).
$$

The left-hand side has a natural algebra structure, by viewing it as a quotient of the tensor algebra of $V_{\text{dR}}(Y)$. On the other hand, for all $x_1, x_2, x_3 \in$ $Y(\mathbf{Q}_p)$, we have maps

(23)
$$
A_n^{dR}(Y)(x_2, x_3) \times A_n^{dR}(Y)(x_1, x_2) \longrightarrow A_n^{dR}(Y)(x_1, x_3).
$$

These may be defined via the isomorphism

(24)
$$
\alpha_{x_2, x_3} : A_n^{\text{dR}}(Y)(x_i, x_j) \simeq \text{Hom}(x_{in}^*, x_{jn}^*)
$$

(see [Section A.1\)](#page-49-1), where x_{in}^* and x_{jn}^* denote the restriction of the functors x_i^* and x_j^* to the full subcategory $C^{\text{dR}}(Y)_n \subset C^{\text{dR}}(Y)$ of *n*-unipotent objects. Then (23) corresponds via (24) to the composition of natural transformations

$$
\operatorname{Hom}(x_{2n}^*,x_{3n}^*)\times \operatorname{Hom}(x_{1n}^*,x_{2n}^*)\ \longrightarrow\ \operatorname{Hom}(x_{1n}^*,x_{3n}^*).
$$

These two structures are respected by the trivialisation s_0 from (22) , in the following sense:

LEMMA 4.3. For all
$$
f_1, f_2 \in A_n^{\text{dR}}(Y)
$$
 and all $x_1, x_2, x_3 \in Y(\mathbf{Q}_p)$,

$$
s_0(x_1, x_3)(f_2 f_1) = s_0(x_2, x_3)(f_2)s_0(x_1, x_2)(f_1).
$$

Proof. To prove the lemma it is enough to prove that

$$
\alpha_{x_2,x_3}(s_0(x_2,x_3)(f_2))\Big(s_0(x_1,x_2)(f_1)\Big) = s_0(x_1,x_3)(f_2f_1)
$$

in $x_3^* A_n^{\text{dR}}(Y)$. To prove this, note that there is a morphism of connections $F: \mathcal{A}_n^{\mathrm{dR}}(Y) \to \mathcal{A}_n^{\mathrm{dR}}(Y)$ given by sending v to vf_1 . Hence the lemma follows from commutativity of

$$
\begin{array}{ccc}\nx_2^*\,\mathcal{A}_n^{\mathrm{dR}}(Y) & \xrightarrow{\alpha} & x_3^*\,\mathcal{A}_n^{\mathrm{dR}}(Y) \\
& \downarrow x_2^*F & & \downarrow x_3^*F \\
x_2^*\,\mathcal{A}_n^{\mathrm{dR}}(Y) & \xrightarrow{\alpha} & x_3^*\,\mathcal{A}_n^{\mathrm{dR}}(Y),\n\end{array}
$$

where $\alpha := \alpha_{x_2, x_3}(s_0(x_2, x_3)(f_2))(\mathcal{A}_n^{\text{dR}}(Y)).$

The following result describes the relation between $\mathcal{A}_n^{\mathrm{dR}}(X)$ and $\mathcal{A}_n^{\mathrm{dR}}(Y)$; see also [\[BD17,](#page-54-8) Lemma 6.2].

COROLLARY 4.4. The connection $\mathcal{A}_n^{\mathrm{dR}}(X)|_Y$ is the maximal quotient of $\mathcal{A}_n^{\mathrm{dR}}(Y)$ that extends to a holomorphic connection (i.e., without log singularities) on the whole of X .

Proof. It is enough to show that, for any surjection of left $\pi_1^{\text{dR}}(Y, b)$ modules

$$
p: A_n^{\mathrm{dR}}(Y) \longrightarrow N,
$$

the associated connection $\mathcal N$ extends to a connection on X without log singularities if and only if p factors through the surjection $A_n^{dR}(Y) \longrightarrow A_n^{dR}(X)$. The latter occurs if and only if N is the pullback of a left $\pi_1^{\text{dR}}(X, b)$ -module. The corollary follows by the Tannaka equivalence between left $\pi_1^{\text{dR}}(X, b)$ -modules and unipotent connections on X.

4.3. The Hodge filtration on $\mathcal{A}_n^{\text{dR}}$. In what follows, we will need to explicitly compute the Hodge filtration of $\mathcal{A}_2^{\text{dR}}$, or rather of a certain quotient \mathcal{A}_Z . To this end, we now state a characterisation of this Hodge filtration via a universal property, due to Hadian [\[Had11\]](#page-57-3).

Recall that a *filtered connection* is defined to be a connection (\mathcal{V}, ∇) on X, together with an exhaustive descending filtration

$$
\cdots \supset \mathrm{Fil}^i \, \mathcal{V} \supset \mathrm{Fil}^{i+1} \, \mathcal{V} \supset \cdots
$$

satisfying the Griffiths transversality property

$$
\nabla(\mathrm{Fil}^i \mathcal{V}) \subset (\mathrm{Fil}^{i-1} \mathcal{V}) \otimes \Omega^1.
$$

A morphism of filtered connections is one that preserves the filtrations and commutes with ∇ .

The universal *n*-unipotent bundle $\mathcal{A}_n^{\mathrm{dR}}(b)$ is associated to the $\pi_1^{\mathrm{dR}}(X, b)$ representation $A_n^{\text{dR}}(b)$, and there is a natural exact sequence of representations

$$
0 \longrightarrow I^{n}/I^{n+1} \longrightarrow A_{n}^{dR}(b) \longrightarrow A_{n-1}^{dR}(b) \longrightarrow 0,
$$

where the kernel I^n/I^{n+1} has trivial $\pi_1^{\text{dR}}(X, b)$ -action. This means that the kernel

$$
\mathcal{A}^{dR}[n] \ := \ \operatorname{Ker} \left(\mathcal{A}^{dR}_n(b) \longrightarrow \mathcal{A}^{dR}_{n-1}(b) \right) \ \simeq \ I^n/I^{n+1} \otimes \mathcal{O}_X
$$

is trivial as a bundle with connection (i.e., isomorphic to a direct sum of copies of (\mathcal{O}_X, d)). The natural surjection $(I/I^2)^{\otimes n} \longrightarrow I^n/I^{n+1}$ gives rise to a surjection $V_{\text{dR}}^{\otimes n} \otimes \mathcal{O}_X \longrightarrow \mathcal{A}^{\text{dR}}[n]$. The Hodge filtration on V_{dR} gives $\mathcal{A}^{\text{dR}}[n]$ its structure of a filtered connection. As explained in [\[BD17\]](#page-54-8), the Hodge filtration on $\mathcal{A}_n^{\mathrm{dR}}(b)$ may now be characterised using Hadian's universal property, proved in [\[Had11\]](#page-57-3).

THEOREM 4.5 (Hadian). For all $n > 0$, the Hodge filtration Fil[•] on $\mathcal{A}_n^{\text{dR}}(b)$ is the unique filtration such that

- (1) Fil[•] makes $(\mathcal{A}_n^{\mathrm{dR}}(b), \nabla)$ into a filtered connection;
- (2) the natural maps induce a sequence of filtered connections:

 $V_{\text{dR}}^{\otimes n} \otimes \mathcal{O}_X \longrightarrow \mathcal{A}_n^{\text{dR}}(b) \longrightarrow \mathcal{A}_{n-1}^{\text{dR}}(b) \longrightarrow 0;$

(3) the identity element of $A_n^{\text{dR}}(b)$ lies in Fil⁰ $A_n^{\text{dR}}(b)$.

Remark 4.6. For our purposes, the important point in Hadian's theorem is the uniqueness of the filtration satisfying the above properties. In what follows, the sub-bundle Fil⁰ of a certain quotient \mathcal{A}_Z of $\mathcal{A}_2^{\text{dR}}$ is determined in an explicit trivialisation on Y , by writing down the general form for a basis, and solving for the coefficients using the fact that it extends to X and satisfies the three constraints in [Theorem 4.5.](#page-27-2) Note that the Griffiths transversality condition is empty, since Fil¹ $A_Z = 0$ and Fil⁻¹ $A_Z = A_Z$. Hence we determine Fil⁰ A_Z using properties (2) and (3) of [Theorem 4.5.](#page-27-2)

4.4. The filtered connection A_Z . We now come to the definition of the main object of study in this paper: the bundle A_Z . It is constructed as a quotient of the universal 2-step unipotent bundle $\mathcal{A}_2^{\text{dR}}$ defined above. As in [Section 3,](#page-16-0) a central role is played by a Tate class, which will come from an algebraic cycle on $X \times X$. Since the contribution to the *p*-adic height is entirely through its realisation as a p -adic de Rham class, we phrase things in this language. Henceforth, let

$$
Z = \sum Z_{ij} \omega_i \otimes \omega_j \in \mathrm{H}^1_{\mathrm{dR}}(X/\mathbf{Q}) \otimes \mathrm{H}^1_{\mathrm{dR}}(X/\mathbf{Q})
$$

be a nonzero cohomology class satisfying the following conditions:

- (a) Z maps to $(\text{H}^1_{\text{dR}}(X/\mathbf{Q}_p) \otimes \text{H}^1_{\text{dR}}(X/\mathbf{Q}_p))^{\phi=p}$ after base change to \mathbf{Q}_p ;
- (b) Z is in $\mathrm{Fil}^1(\mathrm{H}^1_{\mathrm{dR}}(X/\mathbf{Q})\otimes \mathrm{H}^1_{\mathrm{dR}}(X/\mathbf{Q}));$
- (c) Z maps to zero under the cup product

$$
\cup \; : \; \mathrm{H}^1_{\mathrm{dR}}(X/\mathbf{Q}) \otimes \mathrm{H}^1_{\mathrm{dR}}(X/\mathbf{Q}) \longrightarrow \mathrm{H}^2_{\mathrm{dR}}(X/\mathbf{Q});
$$

(d) Z maps to zero under the symmetrisation map

$$
\mathrm{H}^1_{\mathrm{dR}}(X/\mathbf{Q}) \otimes \mathrm{H}^1_{\mathrm{dR}}(X/\mathbf{Q}) \longrightarrow \mathrm{Sym}^2 \mathrm{H}^1_{\mathrm{dR}}(X/\mathbf{Q}).
$$

By [property \(d\),](#page-28-1) we may henceforth think of Z as an element of $\text{H}^2_{\text{dR}}(\text{J}/\textbf{Q})$. It follows from [Lemma 2.4](#page-15-0) that the Tate class associated to a nice correspondence satisfies these properties. Though we will not need it in the sequel, the following result gives a converse to this statement.

LEMMA 4.7. Let Z be a class satisfying [properties](#page-28-2) (a)–[\(d\).](#page-28-1) If $\rho(J)$ = $\rho(\mathrm{J}_{\mathbf{Q}_p}),$ then there exists a nice element of $\mathrm{Pic}(X \times X)$ mapping to Z.

Proof. By the Tate conjecture for H^2 of abelian varieties over finite fields, [property \(a\)](#page-28-2) of Z guarantees that it comes from a \mathbf{Q}_p -divisor on $J_{\mathbf{F}_p}$. By the p -adic Lefschetz $(1,1)$ -theorem of Berthelot–Ogus [\[BO83,](#page-55-9) §3.8], property (b)

implies that it lifts to something in $NS(J_{\mathbf{Q}_p})\otimes \mathbf{Q}_p$. By hypothesis, the map $NS(J_{\bf Q})\otimes {\bf Q}_p \to NS(J_{{\bf Q}_p})\otimes {\bf Q}_p$ is an isomorphism, hence the base change of Z to \mathbf{Q}_p comes from a \mathbf{Q}_p -divisor on $J_{\mathbf{Q}}$. Finally, the element of $Pic(X \times X)$ corresponding to this cycle is nice by [property \(c\)](#page-28-4) of Z .

Recall that we have an exact sequence of filtered connections

(25)
$$
0 \longrightarrow \mathcal{A}^{dR}[2] \longrightarrow \mathcal{A}_2^{dR} \longrightarrow \mathcal{A}_1^{dR} \longrightarrow 0
$$

and an isomorphism of filtered vector bundles

$$
\mathcal{A}^{dR}[2]\simeq \mathrm{Coker}\left(\mathbf{Q}(1)\stackrel{\cup^*}{\longrightarrow}V_{dR}^{\otimes 2}\right)\otimes\mathcal{O}_X.
$$

Define $A_Z(b)$, or simply A_Z , to be the quotient of A_2^{dR} obtained by pushing out [\(25\)](#page-29-0) along

$$
Z\;:\;V_{\rm dR}\otimes V_{\rm dR}\;\longrightarrow\;{\mathbf Q}(1),
$$

which by [property \(c\)](#page-28-4) of Z factors through $V_{\text{dR}}^{\otimes 2}/\text{Im}\cup^*$. Since the connection on $\mathcal{A}^{dR}[2]$ is trivial, \mathcal{A}_Z has the structure of a filtered connection. The importance of this definition lies in the fact that, as we will see in [Section 5,](#page-33-0) we can endow the base change of \mathcal{A}_Z to \mathbf{Q}_p with a Frobenius structure such that we have an isomorphism of filtered ϕ -modules

$$
x^* A_Z \simeq \mathbf{D}_{\mathrm{cris}}(A_Z(b, x))
$$

for all $x \in X(\mathbf{Q}_p)$. The Frobenius structure on \mathcal{A}_Z is the subject of [Section 5,](#page-33-0) and in the remainder of this section we will explicitly compute the connection and Hodge filtration on A_Z .

Using the results of [Section 4.2,](#page-25-0) we may describe the connection of A_Z explicitly on the affine open Y . We use the notation of [Section 4.1](#page-24-1) and denote the matrix of the correspondence Z on $H^1_{\text{dR}}(X/\mathbf{Q})$ also by Z, where we act on column vectors. By [Corollary 4.4](#page-27-1) and the explicit description of the connection on $\mathcal{A}_n^{\mathrm{dR}}(Y)$ given in [\(21\)](#page-25-1), we see that we may choose a trivialisation

(26)
$$
s_0(b, \cdot) : (\mathbf{Q} \oplus V_{\mathrm{dR}} \oplus \mathbf{Q}(1)) \otimes \mathcal{O}_Y \stackrel{\sim}{\longrightarrow} \mathcal{A}_Z(b)|_Y,
$$

such that the connection ∇ on \mathcal{A}_Z via this trivialisation is given by

(27)
$$
s_0^{-1} \circ \nabla \circ s_0 = d + \Lambda
$$
, where $\Lambda := -\begin{pmatrix} 0 & 0 & 0 \\ \omega & 0 & 0 \\ \eta & \omega^T Z & 0 \end{pmatrix}$

for some differential η of the third kind on X that is in the space spanned by $\omega_{2q}, \ldots, \omega_{2q+d-2}$. When there is no risk of confusion we will occasionally write this trivialisation simply as s_0 . The left-hand side of (26) has a filtration as described in (31) , but s_0 is not necessarily an isomorphism of filtered vector bundles.

Remark 4.8. In the notation above, and henceforth in this paper, block matrices are taken with respect to the 2-step unipotent filtration with basis $1, T_0, \ldots, T_{2g-1}, S$, and we use the notation ω for the column vector with entries $\omega_0, \ldots, \omega_{2g-1}.$

Remark 4.9. We note that a priori, we get a trivialisation of $\mathcal{A}_Z|_Y$ from [Corollary 4.4](#page-27-1) with respect to which the connection ∇ is given by [\(27\)](#page-29-2) for some differential

 $\eta = \alpha_0 \omega_0 + \cdots + \alpha_{2q+d-2} \omega_{2q+d-2}, \qquad \alpha_i \in \mathbf{Q}.$

By adjusting the trivialisation further via

$$
T_i \mapsto T_i + \alpha_i S,
$$

we see that we may indeed assume that $\alpha_0, \ldots, \alpha_{2g-1} = 0$ as claimed above. The value of this observation is made apparent in [Lemma 4.10,](#page-30-0) which tells us that η is uniquely determined under this additional restriction and may be computed easily in practice.

This trivialisation allows us to describe the connection \mathcal{A}_Z on the affine open Y . In what follows, it is important to keep track of the fact that it extends to X. In order to do this easily, we introduce some notation, notably the gauge transformations [\(29\)](#page-30-1) at all infinite points x in $D = X\Y$. Recall that L is a finite extension of Q over which all points of D are defined, as introduced in [Section 4.1.](#page-24-1) In a formal neighbourhood of such a point x , with local parameter t_x , we can always find a trivialisation of \mathcal{A}_Z

$$
s_x \; : \; \left((\mathbf{Q} \oplus V_{\mathrm{dR}} \oplus \mathbf{Q}(1)) \otimes L[\![t_x]\!], \; d \; \right) \stackrel{\sim}{\longrightarrow} \left(\mathcal{A}_Z \left| L[\![t_x]\!], \; \nabla \right. \right)
$$

since A_Z is unipotent, and any unipotent connection on a formal disk is necessarily trivial, as may be seen inductively. The difference of bundle trivialisations defines a gauge transformation

$$
C_x := s_x^{-1} \circ s_0 \in \text{End}(\mathbf{Q} \oplus V_{\text{dR}} \oplus \mathbf{Q}(1)) \otimes_{\mathbf{Q}} L(\mathbf{r}_x)
$$

that is unipotent and satisfies

(28)
$$
C_x^{-1} dC_x = \Lambda.
$$

Conversely, any such C_x defines a trivialisation s_x . Expanding out [\(28\)](#page-30-2) shows that C_x is of the form

(29)
$$
C_x = \begin{pmatrix} 1 & 0 & 0 \ \Omega_x & 1 & 0 \ g_x & \Omega_x^{\intercal} Z & 1 \end{pmatrix}, \text{ where } \begin{cases} d\Omega_x = -\omega, \\ dg_x = \Omega_x^{\intercal} Z d\Omega_x - \eta. \end{cases}
$$

LEMMA 4.10. The differential η appearing in [\(27\)](#page-29-2) is the unique differential satisfying

• η is in the space spanned by $\omega_{2a}, \ldots, \omega_{2a+d-2}$;

• the connection ∇ extends to a holomorphic connection on the whole of X.

Proof. From [Corollary 4.4,](#page-27-1) we see that η must satisfy the conditions, hence it suffices to show that it is uniquely determined by them. The defining equations of the gauge transformations C_x in [\(29\)](#page-30-1) imply that we must have

(30)
$$
\operatorname{Res}_{x}(\Omega_{x}^{\mathsf{T}} Z d\Omega_{x} - \eta) = 0 \quad \text{for all } x \in D.
$$

Since the kernel of the map $H^1_{dR}(Y/\mathbf{Q}) \longrightarrow L^d$ given by the residues at all d points x in D is precisely $H^1_{dR}(X/\mathbf{Q})$, the first condition implies that η is uniquely determined.

4.5. The Hodge filtration on A_Z . We will now give an explicit description of the Hodge filtration on \mathcal{A}_Z , with respect to the trivialisation s_0 on Y chosen in [\(26\)](#page-29-1). This is achieved by writing down an explicit basis for it and verifying that it extends to X and satisfies the characterising properties of Hadian's [Theorem 4.5.](#page-27-2) Formally, this means that we will find an explicit isomorphism

$$
s^{\mathrm{Fil}}: (\mathbf{Q\oplus}V_{\mathrm{dR}}\oplus \mathbf{Q}(1))\otimes \mathcal{O}_Y\stackrel{\sim}{\longrightarrow} \mathcal{A}_Z
$$

that respects the Hodge filtration on both sides, where the left-hand side is given the filtration

(31)
\n
$$
\text{Fil}^{-1} = (\mathbf{Q} \oplus V_{\text{dR}} \oplus \mathbf{Q}) \otimes \mathcal{O}_Y,
$$
\n
$$
\text{Fil}^0 = (\mathbf{Q} \oplus \text{Fil}^0 V_{\text{dR}}) \otimes \mathcal{O}_Y,
$$
\n
$$
\text{Fil}^1 = 0.
$$

Before we state the result, we introduce some notation. Recall that $1, T_0, \ldots, T_{2g-1}, S$ is the basis for the trivialisation s_0 defined in [\(26\)](#page-29-1). Define the matrix of the inclusion Fil⁰ $V_{\text{dR}} \hookrightarrow V_{\text{dR}}$,

$$
N = (\mathbb{0}_g, \mathbb{1}_g)^\intercal \in \text{Mat}_{2g,g}(\mathbf{Q}),
$$

which has the zero matrix \mathbb{O}_q and identity matrix $\mathbb{1}_q$ of dimension g as blocks. Using the notation for the gauge transformations C_x introduced in [\(29\)](#page-30-1), we define the quantities

(32)
$$
\begin{cases} \gamma_{\text{Fil}} & \in \mathcal{O}_Y, \\ \mathbf{b}_{\text{Fil}} = (b_g, \dots, b_{2g-1})^{\intercal} & \in \mathbf{Q}^g \end{cases}
$$

by the requirements that $\gamma_{\text{Fil}}(b) = 0$ and, for all $x \in (X \backslash Y)$,

$$
g_x + \gamma_{\rm Fil} - \mathbf{b}_{\rm Fil}^{\intercal} N^{\intercal} \Omega_x - \Omega_x^{\intercal} ZNN^{\intercal} \Omega_x \in L[\![t_x]\!].
$$

The existence and uniqueness of γ_{Fil} and \mathbf{b}_{Fil} subject to these requirements follow from a Riemann–Roch argument. We omit the proof; see [\[BD17,](#page-54-8) Lemma 25] for a similar argument. With this notation in place, we are ready to state the main result of this section.

THEOREM 4.11. A basis for Fil⁰ A_Z with respect to the trivialisation [\(26\)](#page-29-1) is given by

(33)
$$
\{ 1 + \gamma_{\text{Fil}} S, T_g + b_g S, \dots, T_{2g-1} + b_{2g-1} S \}.
$$

In other words, we may choose the isomorphism s^{Fil} respecting the Hodge filtrations in such a way that the restriction of $s_0^{-1} \circ s^{\text{Fil}}$ to $(\mathbf{Q} \oplus \text{Fil}^0 V_{\text{dR}}) \otimes \mathcal{O}_Y$ is given by the $(2g + 2) \times (g + 1)$ -matrix

(34)
$$
H = \begin{pmatrix} 1 & 0 \\ 0 & N \\ \gamma_{\text{Fil}} & \mathbf{b}_{\text{Fil}}^{\mathsf{T}} \end{pmatrix}.
$$

Proof. We will check directly that [\(33\)](#page-32-0) spans the Hodge filtration. This is equivalent to

$$
\mathrm{Fil}^0\mathcal{A}_Z|_Y=\mathcal{H},
$$

where $\mathcal{H} \subset \mathcal{A}_Z$ is the image of $(\mathbf{Q} \oplus \mathrm{Fil}^0 V_{\mathrm{dR}}) \otimes \mathcal{O}_Y$ under $s_0 \circ H$. We will use the characterisation of the Hodge filtration provided by Hadian's theorem, which states that it is enough to check the following two things:

- (a) The bundle H on Y extends to a sub-bundle of A_Z on X;
- (b) The bundle H satisfies the three characterising properties of [Theorem 4.5.](#page-27-2) We first check (a). Define for every $x \in X \backslash Y$ the matrix of base change

$$
B_x = \left(\begin{array}{cc} 1 & 0 \\ N^{\intercal}\Omega_x & 1 \end{array}\right) \in \text{End}(\mathbf{Q} \oplus \text{Fil}^0 V_{\text{dR}}).
$$

Then we calculate

$$
(35)
$$

$$
C_x H B_x^{-1} = \begin{pmatrix} 1 & 0 \\ \mathbf{\Omega}_x - N N^{\intercal} \mathbf{\Omega}_x & N \\ g_x + \gamma_{\mathrm{Fil}} - \mathbf{b}_{\mathrm{Fil}}^{\intercal} N^{\intercal} \mathbf{\Omega}_x - \mathbf{\Omega}_x^{\intercal} Z N N^{\intercal} \mathbf{\Omega}_x & \mathbf{\Omega}_x^{\intercal} Z N + \mathbf{b}_{\mathrm{Fil}}^{\intercal} \end{pmatrix}.
$$

Note that NN^{\dagger} is a diagonal block matrix with entries \mathbb{O}_g and $\mathbb{1}_g$, which is simply the projection of V_{dR} onto Fil⁰ V_{dR} . This implies that the vector Ω_x – NN^T Ω_x has entries in L[t_x]. Likewise, the vector $\Omega_x^T ZN$ has entries in $L[[t_x]]$, since $Z \in \text{Fil}^1(\text{H}^1_{\text{dR}}(X) \otimes \text{H}^1_{\text{dR}}(X))$, and therefore has lower right block \mathbb{O}_q . Finally, the lower left entry is regular by definition of the quantities γ_{Fil} and $\mathbf{b}_{\text{Fil}}^{\intercal}$. This is true for every $x \in X \backslash Y$, which implies that \mathcal{H} extends to X.

We now check (b). Condition (1) of [Theorem 4.5](#page-27-2) is vacuous, since the Hodge filtration on A_Z has weights 0 and -1. Condition (2) is satisfied since the top right entry of H is zero and the middle right entry is the inclusion. Finally, condition (3) is satisfied since the middle left entry of H is zero and $\gamma_{\rm Fil}(b)=0.$

We may summarise the computations in this section by saying that, in the notation of (16) , we may choose an isomorphism s^{Fil} respecting the Hodge filtration on A_z , such that

(36)
$$
s_0^{-1} \circ s^{\text{Fil}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \gamma_{\text{Fil}} & \beta_{\text{Fil}}^{\text{T}} & 1 \end{pmatrix},
$$

where $\beta_{\text{Fil}} = (0, \ldots, 0, b_g, \ldots, b_{2g-1})^{\dagger}$, and γ_{Fil} and $\mathbf{b}_{\text{Fil}} = (b_g, \ldots, b_{2g-1})$ are as in [Theorem 4.11.](#page-32-1) These quantities may be computed as follows:

(i) Compute η as in [\(27\)](#page-29-2), as the unique linear combination of $\omega_{2g}, \ldots, \omega_{2q+d-2}$ such that

$$
d\Omega_x^\intercal Z \Omega_x - \eta
$$

has vanishing residue at all $x \in X \backslash Y$.

- (ii) For all $x \in X \backslash Y$, compute power series for ω_x and η up to large enough precision, which means at least (mod $t_x^{d_x}$), where d_x is the order of the largest pole occurring. Use this to solve the system of [equations \(29\)](#page-30-1) for g_x in $L((t_x))/L[[t_x]]$.
- (iii) Compute the constants \mathbf{b}_{Fil} and function γ_{Fil} characterised by $\gamma_{\text{Fil}}(b) = 0$ and

$$
g_x + \gamma_{\rm Fil} - \mathbf{b}_{\rm Fil}^{\intercal} N^{\intercal} \Omega_x - \Omega_x^{\intercal} ZNN^{\intercal} \Omega_x \in L[\![t_x]\!],
$$

where $N = (\mathbb{0}_g, \mathbb{1}_g)^\intercal$ is the $2g \times g$ matrix that has the zero matrix $\mathbb{0}_g$ of dimension g and the identity matrix $\mathbb{1}_q$ of dimension g as blocks. Set $\bm{\beta}_{\text{Fil}} = (0, \ldots, 0, b_g, \ldots, b_{2g-1})^{\intercal}.$

5. Explicit computation of the p -adic height II: Frobenius

The preceding section gives a computationally feasible method for computing the Hodge filtration on the module $\mathbf{D}_{\text{cris}}(A_Z(b,x))$. We now describe its Frobenius structure. When X is hyperelliptic, such a description was given in [\[BD17,](#page-54-8) §6]. We give a description in general, in terms of the Frobenius structure on the isocrystal $\mathcal{A}_Z^{\text{rig}}$ $Z^{rig}(b)$, and compute the latter using universal properties.

Remark 5.1. In contrast with the previous section, everything in this section is local. This means that, unless stated otherwise, we consider the bundle \mathcal{A}_Z over $X_{\mathbf{Q}_p}$, and x will denote a point in $X(\mathbf{Q}_p)$.

5.1. The Frobenius structure on $\mathcal{A}_n^{\text{rig}}$. We first describe the Frobenius structure on the universal *n*-step unipotent connection $\mathcal{A}_n^{dR}(b)$. We henceforth assume that $\mathcal{X} \setminus \mathcal{Y}$ is smooth over \mathbf{Z}_p . Some background on unipotent isocrystals can be found in [Section A.2,](#page-52-0) and we adopt the notation used there.

Let $\mathcal{C}^{\text{rig}}(\mathcal{X}_{\mathbf{F}_p})$ be the category of unipotent isocrystals on the special fibre of X. Pullback by absolute Frobenius induces an auto-equivalence of $\mathcal{C}^{\text{rig}}(\mathcal{X}_{\mathbf{F}_p})$ [\[CLS99,](#page-56-10) Prop. 2.4.2], which yields an action on the path torsors π_1^{rig} $_{1}^{\mathrm{rig}}(\boldsymbol{\mathcal{X}}_{\mathbf{F}_p};\overline{b},\overline{x})$ of its fundamental group, and hence on the n -step unipotent quotients:

$$
\phi_n: A_n^{\text{rig}}(\overline{b}, \overline{x}) \longrightarrow A_n^{\text{rig}}(\overline{b}, \overline{x}).
$$

On the other hand, pullback by absolute Frobenius on $\mathcal{C}^{\text{rig}}(\mathcal{X}_{\mathbf{F}_p})$ induces an auto-equivalence. Therefore, if $(\mathcal{A}_n^{\text{rig}}(\overline{b}), 1)$ is the universal *n*-step unipotent pointed object, so is its pullback, and hence they are canonically isomorphic, yielding a Frobenius structure on $\mathcal{A}_n^{\text{rig}}(\overline{b})$. To describe this Frobenius structure explicitly on the realisation given by the rigid triple (Y, X, \mathfrak{X}) , let $\mathcal{U} \subset \mathcal{Y}$ be a Zariski open subset, and let $\mathfrak X$ and $\mathfrak U$ denote the formal completions of $\mathcal X$ and U along their special fibres. Choose a lift of Frobenius

$$
\phi:\mathfrak{U}\longrightarrow\mathfrak{U}
$$

that extends to a strict open neighbourhood of $|\mathcal{U}_{\mathbf{F}_p}[$. Then the Frobenius structure is an isomorphism

$$
\Phi_n: \phi^* \mathcal{A}_n^{\text{rig}}(\overline{b}) \stackrel{\sim}{\longrightarrow} \mathcal{A}_n^{\text{rig}}(\overline{b})
$$

of overconvergent isocrystals on (Y, X, \mathfrak{X}) . By the functoriality of the isomor-phism in [Lemma A.4,](#page-51-1) we obtain, for all points $\bar{x} \in \mathcal{U}(\mathbf{F}_p)$ with Teichmüller representative x_0 , a commutative diagram

(37)
$$
x_0^* \mathcal{A}_n^{\text{rig}}(\overline{b}) \xrightarrow{\begin{array}{c} x_0^* \Phi_n \\ \downarrow \\ \downarrow \\ A_n^{\text{rig}}(\overline{b}, \overline{x}) \end{array}} x_0^* \mathcal{A}_n^{\text{rig}}(\overline{b})
$$
\n
$$
A_n^{\text{rig}}(\overline{b}, \overline{x}) \xrightarrow{\phi_n} A_n^{\text{rig}}(\overline{b}, \overline{x}).
$$

To compute ϕ_n on $A_n^{\text{rig}}(\overline{b}, \overline{x})$, we are reduced to describing the Frobenius structure Φ_n on the isocrystal $\mathcal{A}_n^{\text{rig}}(\overline{b})$, which has the advantage of being characterised by the following universal property.

LEMMA 5.2. The Frobenius structure on $\mathcal{U}_{\mathbf{F}_p}$ for $\mathcal{A}_n^{\text{rig}}(\overline{b})$ is the unique morphism

(38)
$$
\Phi_n : \phi^* \mathcal{A}_n^{\text{rig}}(\overline{b}) \longrightarrow \mathcal{A}_n^{\text{rig}}(\overline{b})
$$

that, in the fibre at \bar{b} , sends 1 to 1.

Proof. The Frobenius endomorphism in $Hom(\overline{b}^*, \overline{b}^*)$ is a morphism of unital algebras, and hence the Frobenius structure satisfies this property. As explained in [Section A.1,](#page-49-1) a morphism of n-unipotent universal objects is determined by where it sends $1 \in \dot{\bar{b}}^* \mathcal{A}_n^{\text{rig}}(\bar{b})$, which shows uniqueness.

920 J. S. BALAKRISHNAN, N. DOGRA, J. S. MULLER, J. TUITMAN, and J. VONK ¨

5.2. The Frobenius operator on $A_n^{\text{dR}}(b, x)$. We now explain how to define Frobenius operators on $A_n^{\text{dR}}(b, x)$. They will be computed explicitly in the next section on the quotient $A_Z^{\text{dR}}(b, x)$. We start by recalling the following comparison theorem of Chiarellotto–Le Stum [\[CLS99,](#page-56-10) Prop. 2.4.1].

THEOREM 5.3 (Chiarellotto–Le Stum). The analytification functor defines an equivalence of categories

$$
(-)^{\mathrm{an}} \; : \; \mathcal{C}^{\mathrm{dR}}(X_{\mathbf{Q}_p}) \; \xrightarrow{\;\sim\;} \; \mathcal{C}^{\mathrm{rig}}(\mathcal{X}_{\mathbf{F}_p}),
$$

and for any $x \in X(\mathbf{Q}_p)$ with reduction \overline{x} , we have a canonical isomorphism of fibre functors

$$
\iota_x: \overline{x}^* \circ (-)^{\mathrm{an}} \simeq x^*,
$$

such that if $x, y \in X(\mathbf{Q}_p)$ belong to the same residue disk, the canonical isomorphism $\iota_x \circ \iota_y^{-1}$ is given by parallel transport $T_{x,y}$ along the connection, as described in [Section](#page-52-0) A.2.

Via ι_b and ι_x , the pullback of absolute Frobenius on $\mathcal{X}_{\mathbf{F}_p}$ gives a Frobenius action on the fundamental group $\pi_1^{\text{dR}}(X_{\mathbf{Q}_p};b,x)$, and therefore a Frobenius operator on the quotient

$$
\phi_n(b, x) : A_n^{\text{dR}}(b, x) \longrightarrow A_n^{\text{dR}}(b, x).
$$

This Frobenius operator may be related to the isocrystal $\mathcal{A}_n^{\text{rig}}(\overline{b})$ as follows. Let b_0 and x_0 be Teichmüller representatives of b and x, respectively. We then have the equality

$$
\phi_n(b,x) = \tau_{b,x} \circ \phi_n(b_0,x_0) \circ \tau_{b,x}^{-1},
$$

with $\tau_{b,x}$ the canonical isomorphism provided by [Theorem 5.3,](#page-35-1) given by

$$
\tau_{b,x}: \text{Hom}(b_0^*, x_0^*) \xrightarrow{\sim} \text{Hom}(b^*, x^*), \quad g \mapsto T_{x,x_0} \circ g \circ T_{b_0,b}.
$$

5.2.1. Parallel transport. We can describe the effect of $\tau_{b,x}$ on $A_n^{\text{dR}}(b,x)$ explicitly via formal integration on residue disks. Since $A_n^{\text{dR}}(b, x)$ is a quotient of $A_n^{\text{dR}}(Y)(b, x)$, it suffices to describe parallel transport on the latter. Recall the trivialisation

(39)
$$
s_0(b,x) : \bigoplus_{i=0}^n V_{\mathrm{dR}}(Y)^{\otimes i} \xrightarrow{\sim} A_n^{\mathrm{dR}}(Y)(b,x)
$$

from [Section 4.2.](#page-25-0) We showed in [Lemma 4.3](#page-26-3) that via this trivialisation, the composition of functors

$$
\operatorname{Hom}\nolimits(x_0^*, x^*) \times \operatorname{Hom}\nolimits(b_0^*, x_0^*) \times \operatorname{Hom}\nolimits(b^*, b_0^*) \longrightarrow \operatorname{Hom}\nolimits(b^*, x^*)
$$

acting on $\mathcal{A}_n^{\mathrm{dR}}(Y)$ corresponds to multiplication in the algebra. For any $x_1, x_2 \in$ $X(\mathbf{Q}_p)$ that lie on the same residue disk, we define

(40)
$$
\mathbf{I}(x_1, x_2) = 1 + \sum_{w} \int_{x_1}^{x_2} w(\omega_0, \dots, \omega_{2g+2d-2}) \quad \text{in} \quad \bigoplus_{i=0}^{n} V_{dR}(Y)^{\otimes i}.
$$

Here the sum is over all words w in $\{T_0, \ldots, T_{2g+d-2}\}\$ of length at most n, and $w(\omega_0, \ldots, \omega_{2g+d-2})$ denotes the word in $\{\omega_0, \ldots, \omega_{2g+d-2}\}$ obtained by substituting ω_i for T_i . Here, the integrals are given by formal integration of power series on the residue disk of x_1 and x_2 . Then $\tau_{b,x}$, when considered as an operator on $\mathcal{A}_n^{\mathrm{dR}}(Y)$ via the trivialisation [\(39\)](#page-35-2), is given by the left-right multiplication map

(41)
$$
\tau_{b,x} : \bigoplus_{i=0}^{n} V_{\mathrm{dR}}(Y)^{\otimes i} \stackrel{\sim}{\longrightarrow} \bigoplus_{i=0}^{n} V_{\mathrm{dR}}(Y)^{\otimes i}, \quad v \mapsto \mathbf{I}(x_0,x)v \mathbf{I}(b,b_0).
$$

By Besser's theory of Coleman integration on unipotent connections [\[Bes02\]](#page-55-10), we have that for *any* $b, b_0, x, x_0 \in Y(\mathbf{Q}_p)$, the same formula [\(41\)](#page-36-1) describes the unique unipotent Frobenius-equivariant isomorphism

$$
A_n^{\text{dR}}(b_0, x_0) \longrightarrow A_n^{\text{dR}}(b, x)
$$

if the integrals in [formula \(40\)](#page-36-2) are instead interpreted in the sense of Coleman integration.

5.2.2. *Frobenius on* $A_n^{\text{dR}}(b_0, x_0)$. The operator $\phi_n(b_0, x_0)$ is related to the isocrystal $\mathcal{A}_n^{\text{rig}}(\overline{b})$ via

(42)

$$
x_0^* \mathcal{A}_n^{\text{rig}}(\overline{b}) \xrightarrow{\begin{array}{c} x_0^* \Phi_n \\ \downarrow \\ \downarrow \end{array}} x_0^* \mathcal{A}_n^{\text{rig}}(\overline{b})
$$

$$
A_n^{\text{dR}}(b_0, x_0) \xrightarrow{\phi_n(b_0, x_0)} A_n^{\text{dR}}(b_0, x_0).
$$

In the computations below, we explicitly determine $\phi_n(b_0, x_0)$ via this diagram, using [Lemma 5.2](#page-34-0) to characterise the Frobenius structure Φ_n uniquely by its universal property.

5.3. The Frobenius operator on $A_Z^{\text{dR}}(b, x)$. After taking the quotient by a choice of a nice correspondence Z , we obtain Frobenius operators

$$
\phi_Z(b, x) : A_Z^{dR}(b, x) \longrightarrow A_Z^{dR}(b, x).
$$

Likewise, we obtain a quotient $\mathcal{A}_Z^{\text{rig}}$ $Z^{rig}(b)$ of the universal 2-step unipotent isocrystal $\mathcal{A}_2^{\text{rig}}$ $2^{rig}(b)$. Reprising the notation of [Section 5.1](#page-33-1) so that, in particular, ϕ : $\mathfrak{U} \longrightarrow \mathfrak{U}$ is an overconvergent lift of Frobenius, [Theorem 5.3](#page-35-1) gives us an isomorphism

$$
\Phi_Z: \phi^*\operatorname{\mathcal{A}}_Z^{\operatorname{rig}}(\overline{b}) \stackrel{\sim}{\longrightarrow} \operatorname{\mathcal{A}}_Z^{\operatorname{rig}}(\overline{b})
$$

such that we have a commutative diagram

(43)

$$
x_0^* \mathcal{A}_Z^{\text{rig}}(\overline{b}) \xrightarrow{\begin{array}{c} x_0^* \Phi_Z \\ \downarrow \\ \downarrow \end{array}} x_0^* \mathcal{A}_Z^{\text{rig}}(\overline{b})
$$

$$
\begin{array}{c} \downarrow \\ \downarrow \\ A_Z^{\text{dR}}(b_0, x_0) \xrightarrow{\begin{array}{c} \phi_Z(b_0, x_0) \end{array}} A_Z^{\text{dR}}(b_0, x_0). \end{array}
$$

We have the following two equalities, which will be used to determine $\phi_Z(b, x)$ in practice:

$$
\phi_Z(b_0, x_0) = x_0^* \Phi_Z, \qquad \phi_Z(b, x) = \tau_{b,x} \circ \phi_Z(b_0, x_0) \circ \tau_{b,x}^{-1}.
$$

5.3.1. Parallel transport. To compute the isomorphism $\tau_{b,x}$, we use [\(41\)](#page-36-1). Given an element (a, \mathbf{b}, c) of the algebra $\mathbf{Q}_p \oplus V_{\text{dR}} \oplus \mathbf{Q}_p(1)$, its action via left, respectively right, multiplication is given by

(44)
$$
\left(\begin{array}{ccc}a&0&0\\ \mathbf{b}&a&0\\c&\mathbf{b}^{\mathsf{T}}Z&a\end{array}\right), \quad \left(\begin{array}{ccc}a&0&0\\ \mathbf{b}&a&0\\c&-\mathbf{b}^{\mathsf{T}}Z&a\end{array}\right).
$$

When applied to the integrals $\mathbf{I}(x, x_0)$ and $\mathbf{I}(b_0, b)$ from [\(40\)](#page-36-2), we obtain the matrix describing $\tau_{b,x}$.

5.3.2. The F-isocrystal $\mathcal{A}_Z^{\text{dR}}(b)$ ^{an}. The connections on $\mathcal{A}_Z^{\text{dR}}(b)$ ^{an} |_Y and $\phi^* A_Z^{\text{dR}}(b)$ ^{an} |_Y are described with respect to the trivialisation s₀ by [equa](#page-29-2)[tion \(27\),](#page-29-2) and they are equal to $d + \Lambda$ and $d + \Lambda_{\phi}$, where

$$
\Lambda_{\phi} = -\left(\begin{array}{ccc} 0 & 0 & 0 \\ \phi^* \omega & 0 & 0 \\ \phi^* \eta & \phi^* \omega^{\intercal} Z & 0 \end{array}\right).
$$

Henceforth, we set $\phi^* \omega = F \omega + d\mathbf{f}$ for a column vector **f** with entries in $H^0(|Y|,j^{\dagger}\mathcal{O}_Y)$, uniquely determined by the condition that $\mathbf{f}(b_0) = \mathbf{0}$. To make the Frobenius structure explicit, we need to find an invertible $(2g+2) \times (2g+2)$ matrix G with entries in $H^0(]Y[, j^{\dagger} \mathcal{O}_Y),$ such that

$$
\Lambda_{\phi}G + dG = G\Lambda.
$$

Here G is the inverse of the Frobenius structure, i.e., $G = \Phi_Z^{-1}$. It is a straightforward calculation using the relation $F^{\dagger}ZF = pZ$ to check that the matrix (45)

$$
G = \begin{pmatrix} 1 & 0 & 0 \\ \mathbf{f} & F & 0 \\ h & \mathbf{g}^{\mathsf{T}} & p \end{pmatrix}, \text{ where } \begin{cases} d\mathbf{g}^{\mathsf{T}} = d\mathbf{f}^{\mathsf{T}}ZF, \\ dh = \boldsymbol{\omega}^{\mathsf{T}}F^{\mathsf{T}}Z\mathbf{f} + d\mathbf{f}^{\mathsf{T}}Z\mathbf{f} - \mathbf{g}^{\mathsf{T}}\boldsymbol{\omega} + \phi^*\eta - p\eta, \\ h(b_0) = 0 \end{cases}
$$

induces the required identity. From G , we obtain the Frobenius equivariant isomorphism $s^{\phi}(b, x)$ as follows. Define

$$
s_0(b,x)^{-1} \circ s^{\phi}(b,x) =: \begin{pmatrix} 1 & 0 & 0 \\ \boldsymbol{\alpha}_{\phi}(b,x) & 1 & 0 \\ \gamma_{\phi}(b,x) & \boldsymbol{\beta}_{\phi}^{\mathsf{T}}(b,x) & 1 \end{pmatrix}.
$$

Firstly, since the action of ϕ on $A_Z^{\text{dR}}(b_0, x_0)$ is given by $G(x_0)^{-1}$, we have

$$
\begin{pmatrix}\n1 & 0 & 0 \\
\alpha_{\phi}(b_0, x_0) & 1 & 0 \\
\gamma_{\phi}(b_0, x_0) & \beta_{\phi}^{\mathsf{T}}(b_0, x_0) & 1\n\end{pmatrix} = \begin{pmatrix}\n1 & 0 & 0 \\
(I - F)^{-1} \mathbf{f} & 1 & 0 \\
\frac{1}{1 - p} (\mathbf{g}^{\mathsf{T}}(I - F)^{-1} \mathbf{f} + h) & \mathbf{g}^{\mathsf{T}}(F - p)^{-1} & 1\n\end{pmatrix}(x_0).
$$

Using the parallel transport formula from [Section 5.3.1,](#page-37-0) we have that

$$
\begin{pmatrix} 1 & 0 & 0 \ \alpha_{\phi}(b,x) & 1 & 0 \ \gamma_{\phi}(b,x) & \beta_{\phi}^{\intercal}(b,x) & 1 \end{pmatrix}
$$

is equal to the matrix product

$$
\begin{pmatrix}\n1 & 0 & 0 \\
\int_{x}^{x_0} \omega & 1 & 0 \\
\int_{x}^{x_0} \eta + \int_{x_0}^{x} \omega^{\mathsf{T}} Z \omega & \int_{x}^{x_0} \omega^{\mathsf{T}} Z & 1\n\end{pmatrix} \\
\begin{pmatrix}\n1 & 0 & 0 \\
\int_{b_0}^{b} \omega & 1 & 0 \\
\int_{b_0}^{b} \eta + \int_{b_0}^{b} \omega^{\mathsf{T}} Z \omega & -\int_{b_0}^{b} \omega^{\mathsf{T}} Z & 1\n\end{pmatrix}\n\begin{pmatrix}\n1 & 0 & 0 \\
\alpha_{\phi}(b_0, x_0) & 1 & 0 \\
\gamma_{\phi}(b_0, x_0) & \beta_{\phi}^{\mathsf{T}}(b_0, x_0) & 1\n\end{pmatrix}.
$$

5.4. Computing p-adic heights. Recall that for the intended Diophantine application, we set out to compute the function

$$
\theta \; : \; X(\mathbf{Q}_p) \; \longrightarrow \; \mathbf{Q}_p \; ; \; x \; \longmapsto \; h_p \left(A_Z(b,x) \right)
$$

in order to obtain an explicit finite set of points in $X(\mathbf{Q}_p)$ containing $X(\mathbf{Q})$. In [Section 3,](#page-16-0) we reduced this question to finding an explicit description of the filtered ϕ -module $\mathbf{D}_{\text{cris}}(A_Z(b,x)).$

LEMMA 5.4. There is an isomorphism of filtered ϕ -modules

$$
\mathbf{D}_{\mathrm{cris}}(A_Z(b,x)) \simeq A_Z^{\mathrm{dR}}(b,x).
$$

Proof. Olsson's comparison theorem [\[Ols11,](#page-58-1) Th. 1.11] shows that with respect to the Frobenius operator $\phi_n(b, x)$ discussed above, there exist isomorphisms of filtered ϕ -modules

$$
\mathbf{D}_{\mathrm{cris}}(A^{\mathrm{\acute{e}t}}_{n}(b,x)) \xrightarrow{\sim} A^{\mathrm{dR}}_{n}(b,x)
$$

924 J. S. BALAKRISHNAN, N. DOGRA, J. S. MÜLLER, J. TUITMAN, and J. VONK

that on graded pieces $A[n] := \text{Ker}(A_n(b,x) \to A_{n-1}(b,x))$ induces commutative diagrams

We obtain the following commutative diagram with exact rows:

(46)
\n
$$
\begin{array}{ccc}\n & 0 \longrightarrow \mathbf{D}\left(V^{\otimes 2}/\mathbf{Q}_p(1)\right) \longrightarrow \mathbf{D}(A_2^{\text{\'et}}(b,x)) \longrightarrow \mathbf{D}(A_1^{\text{\'et}}(b,x)) \longrightarrow 0 \\
 & \downarrow \downarrow \downarrow \downarrow \downarrow \\
0 \longrightarrow V_{\text{dR}}^{\otimes 2}/\mathbf{Q}_p(1) \longrightarrow A_2^{\text{dR}}(b,x) \longrightarrow A_1^{\text{dR}}(b,x) \longrightarrow 0,\n\end{array}
$$

where $\mathbf{D}(.) := \mathbf{D}_{\text{cris}}(.)$. It follows that $\mathbf{D}_{\text{cris}}(A_Z(b,x))$ may be identified with the filtered ϕ -module $A_Z^{\text{dR}}(b, x)$ obtained by pushing out the bottom exact sequence of diagram (46) by the map

$$
\mathrm{cl}_Z^*: V_{\mathrm{dR}} \otimes V_{\mathrm{dR}} \longrightarrow \mathbf{Q}_p(1),
$$

where we implicitly use the fact that the p -adic comparison isomorphism is compatible with cycle class maps (see, e.g., [\[Fal89,](#page-57-8) Th. 5.6]) and the fact that cl^{*}_Z factors through Coker(∪^{*} \Box

Recall that in [Section 4,](#page-24-0) we obtained a simple algorithm for determining the Hodge filtration on $A_Z(b)$ via Hadian's universal property. The Frobenius structure is computed explicitly on the Teichmüller representative x_0 of x using the algorithms of Tuitman $[Tui16]$, $[Tui17]$ to solve the system of [equations \(45\),](#page-37-1) and then for x via explicit integration in the residue disk. The steps outlined at the end of [Sections 4.5](#page-31-0) and [5.3](#page-36-0) yield matrices

$$
\left(\begin{array}{cccc}1&0&0\\0&1&0\\\gamma_{\mathrm{Fil}}(b,x)&\beta_{\mathrm{Fil}}^{\mathsf{T}}(b)&1\end{array}\right)\qquad\text{and}\qquad\left(\begin{array}{cccc}1&0&0\\{\boldsymbol{\alpha}_{\phi}(b,x)}&1&0\\ \gamma_{\phi}(b,x)&\beta_{\phi}^{\mathsf{T}}(b,x)&1\end{array}\right).
$$

As an immediate consequence of [equation \(17\),](#page-21-1) we obtain from [Lemma 5.4](#page-38-1) the following result.

LEMMA 5.5. For any $x \in X(\mathbf{Q}_p) \cap |\mathcal{U}|$, the local p-adic height of $A_Z(b, x)$ is given by

$$
h_p(A_Z(b,x))
$$

= $\chi_p(\gamma_\phi(b,x) - \gamma_{\text{Fil}}(b,x) - \beta_\phi^{\text{T}}(b,x) \cdot s_1(\alpha_\phi)(b,x) - \beta_{\text{Fil}}^{\text{T}}(b) \cdot s_2(\alpha_\phi)(b,x)).$

Remark 5.6. We also deduce the following formula for the p -adic Abel– Jacobi class of the Chow–Heegner point $[IA_Z(b)]$ discussed in [Remark 3.11.](#page-23-1) Let C denote the matrix describing the cup product. Then

(47)
$$
[IA_Z(b)] = C \cdot (\beta_{\phi}(b, b) - \beta_{\text{Fil}}(b)).
$$

5.5. A trick for dealing with leftover residue disks. The process described above gives a way of computing a finite set containing $X(\mathbf{Q})\cap\mathcal{U}$. This leaves the residue disks where the Frobenius lift is not defined, or where the basis differentials have poles. To deal with those residue disks, we could pass to a different choice of basis and Frobenius lift until the whole of X is covered.

An alternative approach to deal with residue disks where the Frobenius lift is not defined is to change the base point. The effect this has on the quantities computed above, which we spell out now, may be of some independent interest. Suppose $b' \in X(\mathbf{Q})$ lies in a residue disk where none of our basis differentials have poles. The starting point is the observation that the set $X(\mathbf{Q}_p)$ _U is independent of b' . The computation in [Section 4.5](#page-31-0) of the Hodge filtration is largely independent of the base point, yielding

(48)
$$
\begin{cases} \beta_{\text{Fil}}^{\text{T}}(b') = \beta_{\text{Fil}}^{\text{T}}(b) \\ \gamma_{\text{Fil}}(b', x) = \gamma_{\text{Fil}}(b, x) - \gamma_{\text{Fil}}(b, b'). \end{cases}
$$

The effect of changing the base point on the Frobenius structure is described by the following lemma.

LEMMA 5.7. Let $b' \in X(\mathbf{Q}_p)$ lie in a residue disk where none of the basis differentials have poles. Then

$$
s_0^{-1}(b',b') \circ s^{\phi}(b',b') = \begin{pmatrix} 1 & 0 & 0 \\ \alpha_{\phi}(b',b') & 1 & 0 \\ \gamma_{\phi}(b',b') & \beta_{\phi}^{\mathsf{T}}(b',b') & 1 \end{pmatrix}
$$

=
$$
\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & \beta_{\phi}^{\mathsf{T}}(b,b) + 2 \int_{b}^{b'} \omega^{\mathsf{T}}Z & 1 \end{pmatrix}
$$

Proof. Recall that we defined the Frobenius structure on $A_Z(b', b')$ via the quotient map

$$
A_2^{\mathrm{dR}}(Y)(b',b') \longrightarrow A_Z^{\mathrm{dR}}(b',b').
$$

By [equation \(41\),](#page-36-1) there is a ϕ -equivariant unipotent isomorphism

(49)
$$
A_n^{dR}(Y)(b, b) \longrightarrow A_n^{dR}(Y)(b', b'),
$$

$$
s_0(b, b)(v) \longmapsto s_0(b', b') (\mathbf{I}(b, b')v\mathbf{I}(b', b)).
$$

To apply [equation \(49\),](#page-40-3) we first have to describe the algebra structure of $A_Z^{\text{dR}}(b, b)$ thought of as a quotient of $A_2^{\text{dR}}(b, b)$. By [equations \(44\)](#page-37-2) and [\(49\)](#page-40-3), we

.

obtain that $s_0^{-1}(b', b') \circ s^{\phi}(b', b')$ is equal to

$$
\begin{pmatrix}\n1 & 0 & 0 \\
\int_{b}^{b'} \omega & 1 & 0 \\
\int_{b}^{b'} \eta + \int_{b}^{b'} \omega^{\mathsf{T}} Z \omega & \int_{b}^{b'} \omega^{\mathsf{T}} Z & 1\n\end{pmatrix}\n\begin{pmatrix}\n1 & 0 & 0 \\
\int_{b}^{b'} \eta + \int_{b}^{b'} \omega^{\mathsf{T}} Z \omega & -\int_{b}^{b'} \omega^{\mathsf{T}} Z & 1\n\end{pmatrix}^{-1}\n\begin{pmatrix}\n1 & 0 & 0 \\
0 & 1 & 0 \\
0 & \partial_{\phi}^{\mathsf{T}}(b, b) & 1\n\end{pmatrix},
$$

using the composition of Frobenius equivariant isomorphisms

$$
\mathbf{Q}_p \oplus V_{\mathrm{dR}} \oplus \mathbf{Q}_p(1) \xrightarrow{\simeq} A_Z(b, b) \xrightarrow{\simeq} A_Z(b', b) \xrightarrow{\simeq} A_Z(b', b'). \qquad \Box
$$

6. Example: $X_s(13)$

As in the introduction, we denote by $X_{s}(\ell)$ the modular curve associated to the normaliser of a split Cartan subgroup of $GL_2(\mathbf{F}_{\ell})$, where ℓ is a prime number. This curve can be defined over **Q**, and there is a **Q**-isomorphism $X_0^+(\ell^2) \simeq X_{s}(\ell)$ coming from conjugation with $\binom{\ell}{0}$, where $X_0^+(\ell^2)$ is the quotient of $X_0(\ell^2)$ by the Atkin-Lehner involution w_{ℓ^2} .

In this section, we compute the rational points on $X = X_s(13)$, which is a curve of genus 3. We show in [Section 6.1](#page-41-1) that we have $\rho(J_{\mathbf{Q}}) = 3 = \text{rk}(J/\mathbf{Q})$ and in [Section 6.2](#page-42-0) that X has potentially good reduction everywhere. Hence [Corollary 3.8](#page-23-2) implies that

$$
\Upsilon_Z = (\theta_Z, \{0\})
$$

is a quadratic Chabauty pair for X, where $Z \in Pic(X \times X) \otimes \mathbf{Q}_p$ is nice and $\theta_Z(x) = h_p(A_Z(b, x)).$

We work at the prime $p = 17$, and we choose $q + \rho - 1 - r = 2$ independent nice Z ; by [Lemma 1.5](#page-6-2) we get two finite sets of 17-adic points that contain $X(\mathbf{Q})$. Their intersection turns out to be exactly $X(\mathbf{Q})$, which proves [Theorem 1.1.](#page-3-3)

Remark 6.1. The choice of the prime 17 is somewhat arbitrary. For primes less than 11, our chosen basis of de Rham cohomology is not p -integral, and at $p = 13$ the curve has bad reduction.

6.1. Ranks. Modular symbol routines as implemented in Magma [\[BCP97\]](#page-55-4) allow us to compute the space of weight 2 cuspforms for $\Gamma_0^+(169)$, and it turns out that their eigenforms form a single Galois conjugacy class defined over $\mathbf{Q}(\zeta_7)^+$. An explicit eigenbasis is given by the Galois conjugates of the form f, with q -expansion

$$
f = q + \alpha q^2 + (-\alpha^2 - 2\alpha)q^3 + (\alpha^2 - 2)q^4 + (\alpha^2 + 2\alpha - 2)q^5 + (-\alpha - 1)q^6 + \cdots,
$$

where α is a root of $x^3 + 2x^2 - x - 1$. We conclude by [\[Shi70,](#page-59-6) Th. 7.14] and [\[Rib80,](#page-58-9) Cor. 4.2] that End(J) \otimes Q $\simeq K := \mathbf{Q}(\zeta_7)^+$, and J is a simple abelian threefold. Therefore $\rho(J_{\mathbf{Q}})=3$.

PROPOSITION 6.2. We have $\text{rk}(J/\mathbf{Q})=3$.

Proof. Let A_f denote the modular abelian variety $A_f = J_0(169)/I_f$ associated to f, where I_f is the annihilator of f in the Hecke algebra \mathbb{T} acting on $J_0(169)$. Then A_f is an optimal quotient of $J_0(169)$ in the sense that the kernel of $J_0(169) \rightarrow A_f$ is connected. Since J is **Q**-isogenous to A_f (this was already used by Baran in [\[Bar14a\]](#page-54-2)), it suffices to show that $\text{rk}(A_f/\mathbf{Q})=3$. The work of Gross-Zagier [\[GZ86\]](#page-57-9) and Kolyvagin-Logachev [\[KL89\]](#page-58-10) proves that if the order of vanishing of the L-function $L(f, s)$ of f at $s = 1$ is 1, then $\text{rk}(A_f/\mathbf{Q})=g=3.$

We have shown that $\text{ord}_{s=1}L(f, s) > 0$ by computing the eigenvalue of f under the Fricke involution W_{169} and by computing the rational number $c_{A_f}L(f,1)/\Omega_{A_f}$ exactly using the algorithm of [\[AS05\]](#page-54-10), where c_{A_f} is the Manin constant of A_f and Ω_{A_f} is the real period. So it only remains to show that $L'(f,1) \neq 0$, which we did using Magma. We found that the number $L'(f,1)$ was always larger than 0.6 for any embedding $\mathbf{Q}(\alpha) \hookrightarrow \mathbb{C}$ and the error in these computations was smaller than 10^{-100} . . В последните последните последните последните и последните последните последните последните последните после
В последните последните последните последните последните последните последните последните последните последнит

Remark 6.3. An alternative approach was explained to us by Schoof [\[Sch12\]](#page-59-7). The computation of the rank using descent is discussed by Bruin, Poonen and Stoll in [\[BPS16\]](#page-55-11). They show that the rank is at least 3 by exhibiting three rational points in J which are independent modulo torsion. To carry out the descent needed to bound the rank from above, one needs to compute the class group of a certain number field L of degree 28 and discriminant $2^{42} \cdot 13^{12}$. In [\[BPS16\]](#page-55-11), this enables the authors to compute the rank assuming the Generalised Riemann Hypothesis. The authors of [\[BPS16\]](#page-55-11) suggest that "the truly dedicated enthusiast could probably verify unconditionally that the class group of \mathcal{O}_L is trivial."

6.2. Semi-stable reduction of $X_{s}(\ell)$. We show that $X_{s}(13)$ has potentially good reduction by computing, more generally, semi-stable models of the split Cartan modular curves $X_s(\ell)$ for primes $\ell \equiv 1 \pmod{12}$ over the integers in an explicit extension of \mathbf{Q}_{ℓ} , using the work of Edixhoven [\[Edi89\]](#page-57-10), [\[Edi90\]](#page-57-11). For the remainder of this subsection, we let ℓ denote a prime number of the form $\ell = 12k + 1.$

Remark 6.4. For simplicity, we restrict to the case $\ell \equiv 1 \pmod{12}$, when there are no supersingular elliptic curves with j -invariant 0 or 1728. The same analysis would work in general if, in addition, one makes the action of the additional automorphisms explicit, which is done in [\[Edi89,](#page-57-10) §2.1.3]. We also note that additional level structure away from ℓ has little effect on our analysis, and may easily be included, mutatis mutandis.

For a Dedekind domain R, we say $\phi : \mathcal{X} \to \text{Spec } R$ is a model for a smooth, proper, geometrically connected curve X over the field of fractions of R if ϕ is proper and flat, X is integral and normal, and the generic fibre of X is isomorphic to X over the base field. Such a model is called semi-stable if all its geometric fibres are reduced and have at most ordinary double points as singularities. In what follows, we set W to be the ring of Witt vectors over \mathbf{F}_ℓ , with field of fractions $\mathbf{Q}_{\ell}^{\text{nr}}$. Furthermore, we set Ig(ℓ) to be the *Igusa curve*, which is the coarse moduli space over $\overline{\mathbf{F}}_{\ell}$ classifying elliptic curves $E \to S/\overline{\mathbf{F}}_{\ell}$ together with a $\Gamma_1(\ell)$ -Drinfeld level structure on $E^{(\ell)}$ that generates the kernel of the Verschiebung map $V : E^{(\ell)} \to E$; see [\[KM85,](#page-57-12) §12.3].

We start by recalling the work of Edixhoven on the semi-stable reduction of $X_0(\ell^2)$. The description of the model may be found in [\[Edi90\]](#page-57-11), and the statements about w_{ℓ^2} are in [\[Edi89,](#page-57-10) §2.2, 2.3.4].

THEOREM 6.5 (Edixhoven). The curve $X_0(\ell^2)$ obtains semi-stable reduction over $\mathbf{Q}_{\ell}^{\text{nr}}(\varpi)$, where ϖ is such that $\varpi^{12k(6k+1)} = \ell$. Its special fibre consists of the following components:

- k horizontal components, all isomorphic to $u^2 = v^{\ell+1} + 1$;
- four **vertical** components, of which two are rational and two are isomorphic to $\operatorname{Ig}(\ell)/\pm 1$.

Every horizontal component intersects every vertical component exactly once, and there are no other intersections. The Atkin–Lehner operator w_{ℓ^2} stabilises every horizontal component, and it acts via $(u, v) \mapsto (u, -v)$ in the above coordinates. Furthermore, w_{ℓ^2} permutes the rational vertical components and stabilises the Igusa curves.

We write X for this semi-stable model of $X_0(\ell^2)$ over $W[\varpi]$. We denote the maximal ideal of $W[\varpi]$ by m, and for any scheme Y over $W[\varpi]$, we write \mathcal{Y}_s for its special fibre.

THEOREM 6.6. The curve $X_s(\ell)$ obtains semi-stable reduction over the field $\mathbf{Q}_{\ell}^{\text{nr}}(\varpi)$, where $\varpi^{\ell^2-1} = \ell^2$. There exists a semi-stable model, whose special fibre consists of the following components:

- k horizontal components, all isomorphic to $u^2 = v^{6k+1} + 1$;
- three **vertical** components, of which one is rational and two are isomorphic to $\operatorname{Ig}(\ell)/\mathrm{C}_4$.

Every horizontal component intersects every vertical component exactly once, and there are no other intersections.

Proof. Because $X_0^+(\ell^2) \simeq_Q X_s(\ell)$, it follows from [\[Ray90,](#page-58-11) Prop. 5] that the quotient $\mathcal{X}^+ = \mathcal{X}/w_{\ell^2}$ is a semi-stable model for $X_s(\ell)$. To describe the special fibre of this model, note that the order of w_{ℓ^2} is invertible on $\mathcal{O}_{\mathcal{X}}$, and we therefore have

$$
\mathrm H^1\left(\langle w_{\ell^2}\rangle, \mathfrak m\right)=0.
$$

This implies that $\mathcal{O}_{\mathcal{X}}/\mathfrak{m} \simeq (\mathcal{O}_{\mathcal{X}}/\mathfrak{m})^{w_{\ell^2}}$, and hence $\mathcal{X}_s^+ = \mathcal{X}_s/w_{\ell^2}$. The description of the special fibre follows from that of the action of w_{ℓ^2} in [Theo](#page-43-0)[rem 6.5.](#page-43-0) First, we note that both rational components of \mathcal{X}_s are identified by w_{ℓ^2} , giving rise to a unique rational component in the quotient. By [\[Edi89,](#page-57-10) §2.2], the quotients of the non-rational vertical components are isomorphic to the Igusa curves Ig(ℓ)/C₄, which are of genus $(k - 1)(3k - 2)/2$, whereas the quotients of the horizontal components have equation $u^2 = v^{6k+1} + 1$, and are hence of genus 3k. The result follows. \square

Figure 1. Reduction of the semi-stable model of $X_s(\ell)$.

As a consequence, we obtain the genus formula $g = 6k^2 - 3k$ for the curve $X_{\rm s}(\ell)$.

COROLLARY 6.7. The split Cartan modular curve $X_s(13)$ has good reduction outside 13, and potentially good reduction at 13. More precisely, it obtains good reduction over the field $\mathbf{Q}_{13}^{\text{nr}}(\varpi)$, where $\varpi^{84} = 13$.

Proof. The result follows from [Theorem 6.6.](#page-43-1) Indeed, we may contract all three rational curves to obtain a smooth model over $W[\varpi]$.

Remark 6.8. Since $X_{\text{ns}}(13) \simeq X_{\text{s}}(13)$, the same result holds for the nonsplit curve of level 13.

6.3. Defining equations and known rational points. Baran [\[Bar14b\]](#page-54-1) finds an explicit defining equation for $X_s(13)$ as follows. As the curve $X_s(13) \simeq$ $X_0^+(169)$ is of genus 3, it is either hyperelliptic or has a smooth plane quartic model. It may be checked that the q-expansions of the Galois conjugates of f do not satisfy a quadratic relation, but do satisfy a quartic relation, resulting in the plane model^{[2](#page-45-1)}

$$
(-Y - Z)X3 + (2Y2 + YZ)X2 + (-Y3 + Y2Z - 2YZ2 + Z3)X + (2Y2Z2 - 3YZ3) = 0,
$$

which has good reduction away from 13. To apply the algorithms of $[Tui16]$, [\[Tui17\]](#page-59-4), it will be convenient to have a plane quartic model whose Y^4 -coefficient is 1. For this reason we apply the substitution $(X:Y:Z) \mapsto (X-Y: X+Y)$: $(X + Z)$ giving the model $Q(X, Y, Z) = 0$, where

$$
Q(X,Y,Z) = Y^4 + 5X^4 - 6X^2Y^2 + 6X^3Z + 26X^2YZ + 10XY^2Z - 10Y^3Z
$$

$$
-32X^2Z^2 - 40XYZ^2 + 24Y^2Z^2 + 32XZ^3 - 16YZ^3,
$$

which we will use henceforth and which has good reduction away from 2 and 13. With respect to this model, the seven known rational points are as follows:

	$ (1:1:1) (1:1:2) (0:0:1) (-3:3:2) (1:1:0) (0:2:1) (-1:1:0) $		

In the remainder of this section, we show that there are no other rational points on X.

6.4. Finding rational points on the first affine chart. Set Y to be the affine chart $Z \neq 0$ with respect to the model $Q = 0$, with coordinates $x = X/Z$, $y = Y/Z$. Then Y contains all known rational points, except P_4 and P_6 . Let us choose the basepoint to be $b = P_2 = (0, 0)$. Define $Q_y = \partial Q/\partial y$, then a set of differentials that satisfy all the properties in [Section 4.1](#page-24-1) is given by

$$
\omega := \begin{pmatrix}\n & 1 \\
x \\
y \\
-160x^4/3 + 736x^3/3 - 16x^2y/3 + 436x^2/3 - 440xy/3 + 68y^2/3 \\
-80x^3/3 + 44x^2 - 40xy/3 + 68y^2/3 - 32 \\
-16x^2y + 28x^2 + 72xy - 4y^2 - 160x/3 + 272/3\n\end{pmatrix}\n\frac{dx}{Q_y}.
$$

We construct p-adic de Rham classes as in [Section 4.4](#page-28-0) associated to nice correspondences as follows: If q is a prime of good reduction, and if ι denotes the inclusion of $K \otimes \mathbf{Q}_q$ into $\text{End}(\text{H}^1_{\text{dR}}(X_{\mathbf{Q}_q}))$, then by Eichler–Shimura the action of the Hecke operator T_q on $\mathrm{H}^1_{\mathrm{dR}}(X_{\mathbf{Q}_q})$ is given by

(50)
$$
\iota(a_q)(f) = \mathrm{Fr}_q + q \,\mathrm{Fr}_q^{-1}.
$$

Using the algorithms of [\[Tui16\]](#page-59-3), [\[Tui17\]](#page-59-4), we can compute the matrix of Fr_q with respect to the basis ω to any desired precision. Then [\(50\)](#page-45-2) allows us to

²Hopefully, no confusion will arise from our use of the letters X, Y and Z , which also denote other objects in this paper, as projective coordinates.

compute the matrix A_q of T_q with respect to ω , and multiplying $6A_q - \text{tr}(A_q)I_6$ by the inverse of the cup product matrix with respect to ω , we obtain

$$
Z_1 = \left(\begin{array}{ccccc} 0 & -976 & -1104 & 10 & -6 & 18 \\ 976 & 0 & -816 & -3 & 1 & 3 \\ 1104 & 816 & 0 & -3 & 3 & -11 \\ -10 & 3 & 3 & 0 & 0 & 0 \\ 6 & -1 & -3 & 0 & 0 & 0 \\ -18 & -3 & 11 & 0 & 0 & 0 \end{array}\right),
$$

$$
Z_2 = \left(\begin{array}{ccccc} 0 & 112 & -656 & -6 & 6 & 6 \\ -112 & 0 & -2576 & 15 & 9 & 27 \\ 656 & 2576 & 0 & 3 & 3 & -3 \\ 6 & -15 & -3 & 0 & 0 & 0 \\ -6 & -9 & -3 & 0 & 0 & 0 \\ -6 & -27 & 3 & 0 & 0 & 0 \end{array}\right)
$$

using $q = 7$ and $q = 11$, respectively. These matrices encode independent Tate classes $Z_1, Z_2 \in H^1_{\text{dR}}(X) \otimes H^1_{\text{dR}}(X)$ with respect to the basis ω , which satisfy the conditions (a) – (d) of [Section 4.4.](#page-28-0)

We find that a basis of $H^0(X, \mathcal{O}(2D))$ is given by $1, x, y, x^2, xy, y^2$, where $D = X \ Y$. Using the algorithm outlined at the end of [Section 4.5,](#page-31-0) we compute the Hodge filtration of the connections A_{Z_i} :

$$
\eta_{Z_1} = -(44x^2 + 148/3xy + 8y^2)\frac{dx}{Q_y},
$$

\n
$$
\eta_{Z_2} = (-40x^2 + 148xy + 36y^2)\frac{dx}{Q_y},
$$

\n
$$
\beta_{\text{Fil}, Z_1} = (0, 0, 0, 0, 1/2, 1/2)^{\text{T}},
$$

\n
$$
\beta_{\text{Fil}, Z_2} = (0, 0, 0, 0, -1/2, -5/2)^{\text{T}},
$$

\n
$$
\gamma_{\text{Fil}, Z_1} = 5y/6 + 3x/2,
$$

\n
$$
\gamma_{\text{Fil}, Z_2} = -5y/6 - 15x/2.
$$

Define $U_1 := Y_{\mathbf{F}_p} \cap \{Q_y \neq 0\}$. We apply the methods of [\[Tui16\]](#page-59-3) to define a lift Φ of Frobenius on a strict open neighbourhood of $|\mathcal{U}_1|$ satisfying $\Phi(x) = x^p$. The base point $b = P_2$ is a Teichmüller point with respect to our chosen Φ . The Frobenius structure of $\mathcal{A}_Z^{\text{rig}}$ Z_i is determined using the techniques of [Section 5.3.](#page-36-0) This enables us to compute θ_{Z_1} and θ_{Z_2} as a power series on every residue disk in $|\mathcal{U}_1|$ via [Lemma 5.5.](#page-39-1)

6.4.1. Equivariant p-adic heights and quadratic Chabauty pairs. Having computed the Hodge filtration and Frobenius structure for Z_1 and Z_2 , we now explain how to compute the function in [Lemma 1.5](#page-6-2) for the quadratic Chabauty pairs associated to Z_1 and Z_2 , respectively. First, we can compute the action of K on $H^1_{\text{dR}}(X)$ by noting that $a_3 := a_3(f) = -\alpha^2 - 2\alpha$ generates K and by computing the action $\iota(a_3)$ of the Hecke operator T_3 on $\mathrm{H}^1_{\mathrm{dR}}(X)$ using [\(50\)](#page-45-2). This enables us to compute a K -equivariant splitting s of the Hodge filtration on $H^1_{\text{dR}}(X)$; by [Remark 3.9,](#page-23-0) the *p*-adic height h taken with respect to s is K-equivariant. Finally, as in the introduction we set $K_p = K \otimes \mathbf{Q}_p$ and

$$
\mathcal{E} = \mathrm{H}^0(X_{\mathbf{Q}_p}, \Omega^1)^* \otimes_{K_p} \mathrm{H}^0(X_{\mathbf{Q}_p}, \Omega^1)^*.
$$

By [Lemma 3.7,](#page-22-0) we need to consider, for $x \in X(\mathbf{Q}_p)$ and $Z \in \{Z_1, Z_2\}$, the extensions

$$
E_1(x) := E_1(A_Z(b, x)) = AJ_b(x), \quad E_{2,Z}(x) := E_2(A_Z(b, x)) = E(AJ_b(x)) + c,
$$

with notation as in [\(13\)](#page-20-2), viewed as elements of $\mathrm{H}^{0}(X_{\mathbf{Q}_{p}}, \Omega^{1})^*$. We start by computing $E_1(P_i)$ and $E_{2,Z}(P_i)$ for the known points P_1, P_2, P_3, P_5 in $\mathcal{U}_1 \cap X(\mathbf{Q})$ from the Hodge filtration and Frobenius structure of $A_Z(b, P_i)$. We find that $E_1(P_5)$ is nonzero, and hence it generates $\mathrm{H}^0(X_{\mathbf{Q}_p}, \Omega^1)^*$ over K_p . Moreover, we compute that the elements

$$
\iota(a_3)^i \left(E_1(P_5) \otimes_{K_p} E_{2,Z_1}(P_5) \right), \qquad i = 0, 1, 2
$$

are a \mathbf{Q}_p -basis for \mathcal{E} , and we define ψ_1, ψ_2, ψ_3 to be the dual basis of \mathcal{E}^* . We also find that

$$
E_1(P_1) \otimes_{K_p} E_{2,Z_1}(P_1) = \iota(352 + 818\alpha + 294\alpha^2) \left(E_1(P_5) \otimes_{K_p} E_1(P_5) \right),
$$

\n
$$
E_1(P_3) \otimes_{K_p} E_{2,Z_1}(P_3) = \iota(162 + 406\alpha + 150\alpha^2) \left(E_1(P_5) \otimes_{K_p} E_1(P_5) \right),
$$

\n
$$
E_1(P_5) \otimes_{K_p} E_{2,Z_1}(P_5) = \iota(-36 - 62\alpha - 18\alpha^2) \left(E_1(P_5) \otimes_{K_p} E_1(P_5) \right)
$$

so that the three classes on the left form a basis for \mathcal{E} . By [Lemmas 1.5](#page-6-2) and [3.7,](#page-22-0) this gives two matrices

$$
T_i(x) := \begin{pmatrix} \theta_{Z_i}(x) & \Psi_1(Z_i, x) & \Psi_2(Z_i, x) & \Psi_3(Z_i, x) \\ \theta_{Z_1}(P_1) & \Psi_1(Z_1, P_1) & \Psi_2(Z_1, P_1) & \Psi_3(Z_1, P_1) \\ \theta_{Z_1}(P_3) & \Psi_1(Z_1, P_3) & \Psi_2(Z_1, P_3) & \Psi_3(Z_1, P_3) \\ \theta_{Z_1}(P_5) & \Psi_1(Z_1, P_5) & \Psi_2(Z_1, P_5) & \Psi_3(Z_1, P_5) \end{pmatrix}
$$

$$
\Psi_j(Z, z) := \psi_j(E_1(z) \otimes_{K_p} E_{2,Z}(z)),
$$

,

such that the locally analytic functions $\det(T_i(x)) : X(\mathbf{Q}_p) \to \mathbf{Q}_p$ vanish on $X(\mathbf{Q}_p)_2$. It only remains to determine their common zeroes. This may be done by computing up to high enough precision, in the following sense. Let $F_i \in \mathbf{Z}_p[[t]]$, and suppose

$$
G(t) = \sum_{n\geq 0} c_n t^n = \sum a_{ij} \int F_i \left(\int F_j \right) + \sum a_i \int F_i + \sum b_i F_i
$$

is a \mathbf{Q}_p -linear combination of the F_i , their single integrals, and their double integrals. An elementary estimate gives us

$$
v_p(c_n) \ge \min \{ v_p(a_i), v_p(a_{ij}), v_p(b_i) \}_{i,j} - 2\lfloor \log_p(n) \rfloor,
$$

so that if we compute enough coefficients for the power series F_i , the slopes of the Newton polygon of $G(t)$ beyond our precision are bounded below by -1 , and can hence not come from \mathbf{Q}_p -rational points. A table of the zeroes of $\det(T_1(x))$ and $\det(T_2(x))$ on \mathcal{U}_1 may be found in $\mathcal{B}DM^+$. All zeroes of $\det(T_1(x))$ and $\det(T_2(x))$ are simple, and the only simultaneous zeroes are P_1, P_2, P_3 and P_5 . Hence these are the only **Q**-rational points on \mathcal{U}_1 .

Remark 6.9. Note that by construction $\det(T_1(x))$ vanishes on P_1, P_2, P_3 , and P_5 . However, the vanishing of $\det(T_2(x))$ at none of the points P_1, P_3, P_5 is automatic, which seems to us a convincing confirmation of the correctness of our algorithms.

6.5. Rational points on \mathcal{U}_2 . We now consider a second affine chart Y' defined by $X \neq 0$ with respect to the model $Q = 0$, with coordinates $u := Z/X$ and $v := Y/X$. Then Y' contains all known rational points, except P_2 and P_5 . Let us choose the basepoint to be $b = P_6 = (0, -1)$. One may similarly write down a basis of differentials in terms of u and v , which satisfy all the properties in [Section 4.1](#page-24-1) with respect to Y' , and are cohomologous to the previous differentials ω in $H^1_{dR}(X)$, so that the matrices Z_1 and Z_2 remain unchanged. The exact details of the basis we use may be found in $[BDM^+]$.

We calculated the Hodge filtration using the algorithm outlined at the end of [Section 4.5.](#page-31-0) To compute the Frobenius structure, define $\mathcal{U}_2 := Y'_{\mathbf{F}_p} \cap \{Q_v \neq 0\}.$ As our model is monic in v , we can again apply the methods of $[Tui16]$ to define a lift Φ of Frobenius on a strict open neighbourhood of $|\mathcal{U}_2|$ satisfying $\Phi(u) = u^p$. The base point $b = P_6$ is a Teichmüller point with respect to our chosen Φ . The Frobenius structure of $\mathcal{A}_{Z_i}^{\text{rig}}$ Z_i is determined using the techniques of [Section 5.3.](#page-36-0) This enables us to compute θ_{Z_1} and θ_{Z_2} as a power series on every residue disk in $|\mathcal{U}_2|$ via [Lemma 5.5.](#page-39-1)

Using the same rational points as we did in the previous section, we construct two matrices $T_i'(u)$, whose determinant vanishes at all the rational points on \mathcal{U}_2 . It suffices to check the residue disks of $(1:1:0)$, $(1:-1:0)$ and (1 : 1 : 1). The Frobenius lift we chose was not defined on the residue disk of $(1:1:1)$, but for the other two disks we obtain the zeroes of $\det(T'_{1}(u))$ and $\det(T_2(u'))$ to precision $O(17^5)$; see [\[BDM](#page-54-9)⁺]. All zeroes are simple, and the only points that are simultaneous zeroes are $(0, 1)$ and $(0, -1)$. Combined with the calculations of [Section 6.4,](#page-45-0) this shows that there are no points in $X(Q)$ besides the known ones, except perhaps on the residue disk of $(1:1:1)$.

934 J. S. BALAKRISHNAN, N. DOGRA, J. S. MÜLLER, J. TUITMAN, and J. VONK

6.6. Rational points on $(1 : 1 : 1)$. The remaining residue disk lies at the point $P_0 = (1 : 1 : 1)$, which was the disk where the Frobenius lift above is not defined. Rather than choosing a new lift of Frobenius, as explained in [Section 5.5](#page-40-0) we may use [Lemma 5.7](#page-40-4) to reduce the computation of p -adic heights of $A_Z(P_0, x)$, for x in $|P_0|$, to the problem of computing the single integrals $\int_b^{P_0} \omega$. These integrals are computed using the original Frobenius lift, via overconvergence and evaluating at points defined over highly ramified extensions of \mathbf{Q}_p ; see [\[BT17,](#page-54-11) Props. 3.8, 4.3]. We find that for both choices of Z, the only roots of the resulting power series are at $P_0 = (1 : 1 : 1)$ (and are simple). This completes the proof of [Theorem 1.1.](#page-3-3)

Appendix A. Universal objects and unipotent isocrystals

In this appendix, we briefly discuss the notion of universal objects in unipotent Tannakian categories, and we discuss them in the example of the category of unipotent isocrystals on $\mathcal{X}_{\mathbf{F}_p}$.

A.1. Universal objects in unipotent Tannakian categories. We say a neutral Tannakian category $\mathcal C$ is *unipotent* if its fundamental group is pro-unipotent. For a general unipotent neutral Tannakian category $\mathcal C$ with fibre functors ω and ν , we first define universal objects $\mathcal{A}_n(\mathcal{C}, \omega)$. Their utility comes from the fact that one can often compute "extra structure" on fundamental groups and path torsors by instead computing that extra structure on certain universal objects in the category.

It is instructive to first consider the case of fundamental groups of topological spaces. If X is a locally path connected topological space, with universal cover $X,$ then there is a well-known correspondence between deck transformations of X and elements of the fundamental group. This is perhaps most naturally formulated by replacing the universal cover with a *pointed* universal cover

$$
p: (\widetilde{X}, \widetilde{b}) \longrightarrow (X, b).
$$

Then the correspondence is given by the statement that the following map is bijective:

$$
\pi_1(X, b) \longrightarrow p^{-1}(\{b\}), \quad \gamma \longmapsto \gamma(\widetilde{b}).
$$

A.1.1. Universal objects. Similar universal objects may be constructed in certain Tannakian categories. For the main definitions on Tannakian categories and their fundamental groups, we refer to Deligne [\[Del90\]](#page-56-11), and we will make free use of the language introduced there.

Definition A.1. We say a neutral Tannakian category $\mathcal C$ over a field K with fibre functor ω is unipotent if its fundamental group $\pi_1(\mathcal{C}, \omega)$ is pro-unipotent. Equivalently, C is unipotent if every object $V \in \mathcal{C}$ admits a nonzero morphism $1 \longrightarrow V$ from the unit object 1 in C.

Let $\mathcal C$ be a neutral unipotent Tannakian category over a field K of characteristic zero, with fibre functor ω . Let $A(C, \omega)$ denote its pro-universal enveloping algebra, with augmentation ideal I, and define $A_n(\mathcal{C}, \omega) := A(\mathcal{C}, \omega)/I^{n+1}$. Recall that there is a canonical isomorphism

$$
\varinjlim_{n} A_n(\mathcal{C}, \omega)^* \stackrel{\sim}{\longrightarrow} \mathcal{O}(\pi_1(\mathcal{C}, \omega))
$$

between the dual Hopf algebra and the coordinate ring of the affine group scheme $\pi_1(\mathcal{C}, \omega)$. Since $A_n(\mathcal{C}; \omega)$ is a finite dimensional K-representation of $\pi_1(\mathcal{C}, \omega)$, it corresponds by Tannaka duality to an object $\mathcal{A}_n(\mathcal{C}, \omega)$ of the category C, with the property that $\omega(\mathcal{A}_n(\mathcal{C}, \omega)) = A_n(\mathcal{C}, \omega)$.

Now suppose (C, ω) has finite dimensional Ext-groups. A *pointed object* in C is a pair (V, v) , where $V \in \mathcal{C}$ and $v \in \omega(V)$. An object of C is *n*-unipotent if there exists a filtration

$$
V = V_0 \supset \cdots \supset V_n
$$

by sub-objects such that V_i/V_{i+1} is zero or is isomorphic to a direct sum of copies of the trivial object for all i . A morphism between pointed *n*-unipotent objects is a morphism in $\mathcal C$ that respects the filtrations V_i and the chosen vectors v.

Definition A.2. We say a pointed n-unipotent object (\mathcal{E}, e) is a universal pointed *n*-unipotent object if for all pointed *n*-unipotent objects (V, v) , there exists a morphism of pointed n -unipotent objects

$$
(\mathcal{E}, e) \longrightarrow (\mathcal{V}, v).
$$

A universal pointed pro-object in C is a compatible sequence $\{\left(\mathcal{E}_n, e_n\right)\}_{n\geq 1}$ of universal pointed *n*-unipotent objects in \mathcal{C} , equipped with maps of pointed objects

$$
(\mathcal{E}_n, e_n) \longrightarrow (\mathcal{E}_{n-1}, e_{n-1}).
$$

Note that if a universal pointed *n*-unipotent object exists, it is unique up to unique isomorphism. Since we have a canonical identification of $\omega(\mathcal{A}_n(\mathcal{C}, \omega))$ with $A_n(\mathcal{C}, \omega)$, we have an associated *n*-unipotent pointed object $(A_n(\mathcal{C}, \omega), 1)$. Furthermore, the quotient map $A_{n+1}(\mathcal{C}, \omega) \to A_n(\mathcal{C}, \omega)$ induces transition maps

$$
(\mathcal{A}_{n+1}(\mathcal{C},\omega),1)\longrightarrow (\mathcal{A}_n(\mathcal{C},\omega),1).
$$

From the equivalence between representation of $\pi_1(\mathcal{C}, \omega)$ and left $A(\mathcal{C}, \omega)$ modules, we obtain

Lemma A.3.

- (1) For all n, $(A_n(\mathcal{C}, \omega), 1)$ is a universal pointed n-unipotent object in C.
- (2) The inverse system ${((\mathcal{A}_n(\mathcal{C}, \omega), 1))}_{n \geq 1}$ is a universal pointed pro-object in C.

A.1.2. Path torsors. As in the topological case, we can define path torsors of the universal objects $A_n(C, \omega)$ in unipotent neutral Tannakian categories. If ν is another fibre functor of C, then recall there are corresponding path torsors

$$
\pi_1({\mathcal{C}};\omega,\nu)
$$

for the Tannakian fundamental group, given by the tensor compatible isomorphisms between ω and ν . Likewise we define

$$
A_n(\mathcal{C}; \omega, \nu) := A_n(\mathcal{C}, \omega) \times_{\pi_1(\mathcal{C}, \omega)} \pi_1(\mathcal{C}; \omega, \nu),
$$

where the product is interpreted in the following sense: The coordinate ring $\mathcal{O}(\pi_1(\mathcal{C};\omega,\nu))$ has the structure of a free $\mathcal{O}(\pi_1(\mathcal{C},\omega))$ -co-module of rank one, giving $\mathcal{O}(\pi_1(\mathcal{C}; \omega, \nu))^*$ the structure of a free $\mathcal{O}(\pi_1(\mathcal{C}, \omega))^*$ -module of rank 1. Hence we may define

$$
A_n(\mathcal{C}; \omega, \nu) := \big((\mathcal{O}(\pi_1(\mathcal{C}; \omega, \nu))^* \otimes_{\mathcal{O}(\pi_1(\mathcal{C}; \omega))^*} A_n(\mathcal{C}, \omega)^*\big)^*.
$$

In the topological setting, the universal pointed cover has the following useful property. For any point $x \in X$, there is a canonical isomorphism

$$
\pi_1(X; b, x) \simeq p^{-1}(x).
$$

In the case of a neutral unipotent Tannakian category we have the following analogue; see, for instance, Kim [\[Kim09,](#page-57-2) §1] or Betts [\[Bet17,](#page-55-12) §6.2.2].

LEMMA A.4. Let ω and ν be fibre functors, and let ω_n and ν_n denote their restriction to the full subcategory of n-unipotent objects. Then we have functorial isomorphisms

$$
\nu(\mathcal{A}_n(\mathcal{C},\omega)) \simeq A_n(\mathcal{C};\omega,\nu) \simeq \omega(\mathcal{A}_n(\mathcal{C},\nu)).
$$

Proof. By the universal property of \mathcal{A}_n , the map

$$
\text{Hom}(\omega_n, \nu_n) \longrightarrow \nu(\mathcal{A}_n(\mathcal{C}, \omega))
$$

$$
F \longmapsto F(\mathcal{A}_n)(e_n)
$$

is an isomorphism of K-vector spaces. Since $Hom(\omega_n, \omega_n) = A_n(\mathcal{C}, \omega)$, we get a map

$$
\pi_1(\mathcal{C};\omega,\nu)\times_{\pi_1(\mathcal{C},\omega)} A_n(\mathcal{C},\omega) \longrightarrow \text{Hom}(\omega_n,\nu_n) : (\gamma,x) \longmapsto \gamma \circ x.
$$

Since both sides are free $A_n(\mathcal{C}, \omega)$ -modules of rank one, this is an isomorphism.

For the second isomorphism, note that by duality we have an isomorphism $\text{Hom}(\omega_n, \nu_n) \simeq \text{Hom}(\nu_n, \omega_n)$. (That is, the isomorphism is defined by sending $f \in \text{Hom}(\omega_n, \nu_n)$ to the morphism of functors f^* sending $V \in \mathcal{C}$ to $f^*(V) :=$ $(f(V))^*$.) .)

The identification of $A_n(C; \omega, \nu)$ with $\text{Hom}(\omega_n, \nu_n)$ induces composition maps

$$
A_n(C; \omega_2, \omega_3) \times A_n(C; \omega_1, \omega_2) \to A_n(C; \omega_1, \omega_3)
$$

for all fibre functors $\omega_1, \omega_2, \omega_3$. We may also describe the right action of $A_n(\mathcal{C}, \omega)$ on $\nu(\mathcal{A}_n(\mathcal{C}, \omega))$ induced by these isomorphisms. Given $x \in \nu(\mathcal{A}_n(\mathcal{C}, \omega))$ and $y \in A_n(\mathcal{C}; \omega, \nu)$, the product y.x is defined as follows. Take \tilde{x} to be the unique endomorphism $\mathcal{A}_n(\omega)$ such that $\nu(\tilde{x}(e_n)) = x$. Then

$$
y.x = \widetilde{x}(y).
$$

A.2. Unipotent isocrystals on $X_{\mathbf{F}_p}$. We now recall some foundational results about the category of unipotent isocrystals on a curve over \mathbf{F}_p [\[Ber96\]](#page-54-12), [\[CLS99\]](#page-56-10). We first recall the notion of a rigid triple and then define the category $\mathcal{C}^{\operatorname{rig}}({\mathcal X}_{{\mathbf{F}}_p}).$

We start by recalling the notion of a rigid triple. Related notions are those of a triple in [\[CT03\]](#page-56-12), or a \mathbf{Q}_p -frame in [\[LS07\]](#page-58-12). A rigid triple over \mathbf{F}_p is a triple (Y, X, P) , where

- P is a formal p-adic \mathbf{Z}_p scheme;
- X is a closed \mathbf{F}_p -subscheme of P, proper over \mathbf{F}_p ;
- $Y \subset X$ is an open \mathbf{F}_p -subscheme such that P is smooth in a neighbourhood $of Y.$

Given a rigid triple (Y, X, P) , we let $P_{\mathbf{Q}_p}$ denote the Raynaud generic fibre of P. We let

 $]Y[\subset P_{\mathbf{Q}_n}$

denote the tube of Y , which consists of all the points that reduce to a point of Y. Finally, let $j^{\dagger} \mathcal{O}_Y$ be the overconvergent structure sheaf on $|Y|$, as defined in [\[Ber96,](#page-54-12) §2.1.1.3].

Definition A.5. Let $T = (Y, X, P)$ be a rigid triple. An overconvergent isocrystal on T is a locally free $j^{\dagger} \mathcal{O}_Y$ -module with flat connection.

Given rigid triples $T = (Y, X, P)$ and $T' = (Y', X', P')$, and a morphism $f: Y \to Y'$, a compatible morphism $T \to T'$ is a morphism

$$
g: \mathcal{W} \, \longrightarrow \, P'_{\mathbf{Q}_p}
$$

from a strict neighbourhood of $]Y[$ to $P'_{\mathbf{Q}_p}$, which is compatible with f via the specialisation map.

Given two rigid triples $T = (Y, X, P)$ and $T' = (Y, X, P')$, there is a canonical equivalence between the category of overconvergent isocrystals on T and T', via the category of overconvergent isocrystals on $(Y, X, P \times_{\mathbf{Z}_p} P')$; see [\[Ber96,](#page-54-12) §2.3.1] or [\[LS07,](#page-58-12) §7.3.11]. For this reason, we often suppress the choice of rigid triple from our notation and terminology and denote the category of unipotent isocrystals on Y by $\mathcal{C}^{\text{rig}}(Y)$. The category $\mathcal{C}^{\text{rig}}(T)$ is sometimes

referred to as a *realisation* of $\mathcal{C}^{\text{rig}}(Y)$. By functoriality, for any $y \in Y(\mathbf{F}_p)$, we obtain a functor y^* from $\mathcal{C}^{\text{rig}}(Y)$ to the category $\mathcal{C}^{\text{rig}}(\text{Spec } \mathbf{F}_p)$ of unipotent isocrystals on $Spec \, \mathbf{F}_p$, which is canonically identified with the category of \mathbf{Q}_p -vector spaces, via the realisation given by the rigid triple

$$
T = (\operatorname{Spec} \mathbf{F}_p, \operatorname{Spec} \mathbf{F}_p, \operatorname{Spf} \mathbf{Z}_p).
$$

In this way y^* can be viewed as a fibre functor on the unipotent Tannakian category $C^{\text{rig}}(Y_{\mathbf{F}_p}).$

An explicit description of the fibre functor y^* may be given as follows. Choose a lift \tilde{y} of y to |Y|. Then \tilde{y} defines a fibre functor on $\mathcal{C}^{\text{rig}}(T)$ in the obvious way. Whenever we write the fibre functor y^* in this paper we shall mean \tilde{y}^* for some choice of \tilde{y} . The justification for this notation is that if \tilde{y}_1 and \tilde{y}_2 are two different lifts, then there is an isomorphism of functors

$$
T_{\widetilde{y}_1,\widetilde{y}_2}:\widetilde{y}_1\to \widetilde{y}_2
$$

defined by parallel transport as follows. Given an overconvergent isocrystal (V, ∇) on T, the pullback of (V, ∇) to |y| is trivial, and hence the maps

$$
\mathcal{V}(|y|)^{\nabla=0} \xrightarrow{\simeq} \widetilde{y}_i^* \mathcal{V}
$$

are bijective. The natural transformation $T_{\tilde{y}_1,\tilde{y}_2}(\mathcal{V}, \nabla)$ is defined as the com-
posite posite

$$
\widetilde{y}_1^* \mathcal{V} \xleftarrow{\simeq} \mathcal{V}(|y|)^{\nabla=0} \xrightarrow{\simeq} \widetilde{y}_2^* \mathcal{V}.
$$

The main example of interest to us is the following. Using the notation of [Section 4.1,](#page-24-1) we denote by $\mathcal{C}^{\text{rig}}(\mathcal{X}_{\mathbf{F}_p})$ the Tannakian category of unipotent isocrystals on the rigid triple

$$
T = (\mathcal{X}_{\mathbf{F}_p}, \mathcal{X}_{\mathbf{F}_p}, \mathfrak{X}),
$$

where $\mathfrak X$ is the completion of $\mathcal X$ along its special fibre. This will usually be referred to simply as the category of unipotent isocrystals on $\mathcal{X}_{\mathbf{F}_p}$. Its fundamental group will be denoted by

$$
\pi_1^{\mathrm{rig}}({\mathcal X}_{{\mathbf F}_p},\overline{b}):=\pi_1({\mathcal C}^{\mathrm{rig}}({\mathcal X}_{{\mathbf F}_p});\overline{b}),
$$

and the maximal *n*-unipotent quotient and its path torsors are denoted $U_n^{\text{rig}}(\overline{b})$ and $U_n^{\text{rig}}(\overline{b}, \overline{x})$. We also use the notation

$$
\begin{cases} A_n^{\text{rig}}(\overline{b}) &:= A_n(\mathcal{C}^{\text{rig}}(\mathcal{X}_{\mathbf{F}_p}); \overline{b}^*), \\ A_n^{\text{rig}}(\overline{b}, \overline{x}) &:= A_n(\mathcal{C}^{\text{rig}}(\mathcal{X}_{\mathbf{F}_p}); \overline{b}^*, \overline{x}^*), \end{cases}
$$

as well as the notation $\mathcal{A}_n^{\text{rig}}(\overline{b})$ for the corresponding universal *n*-unipotent object. When we want to emphasise the choice of a rigid triple (Y, X, P) , we write $A_n^{\text{rig}}(b, x)$ and $A_n^{\text{rig}}(b)$, where b, x are \mathbf{Q}_p points of $P_{\mathbf{Q}_p}$ lying above \overline{b} and \overline{x} respectively.

References

- [AS05] A. AGASHE and W. STEIN, Visible evidence for the Birch and Swinnerton-Dyer conjecture for modular abelian varieties of analytic rank zero, Math. Comp. 74 no. 249 (2005), 455–484, With an appendix by J. Cremona and B. Mazur. MR [2085902](http://www.ams.org/mathscinet-getitem?mr=2085902). Zbl [1084.11033](http://www.zentralblatt-math.org/zmath/en/search/?q=an:1084.11033). [https://doi.org/10.1090/S0025-5718-04-01644-8.](https://doi.org/10.1090/S0025-5718-04-01644-8)
- [BB15] J. S. Balakrishnan and A. Besser, Coleman-Gross height pairings and the p-adic sigma function, J. Reine Angew. Math. 698 (2015), 89–104. MR [3294652](http://www.ams.org/mathscinet-getitem?mr=3294652). Zbl [1348.11091](http://www.zentralblatt-math.org/zmath/en/search/?q=an:1348.11091). [https://doi.org/10.1515/](https://doi.org/10.1515/crelle-2012-0095) [crelle-2012-0095.](https://doi.org/10.1515/crelle-2012-0095)
- [BBM16] J. S. BALAKRISHNAN, A. BESSER, and J. S. MÜLLER, Quadratic Chabauty: p-adic heights and integral points on hyperelliptic curves, J. Reine Angew. Math. 720 (2016), 51–79. MR [3565969](http://www.ams.org/mathscinet-getitem?mr=3565969). Zbl [1350.11067](http://www.zentralblatt-math.org/zmath/en/search/?q=an:1350.11067). [https://doi.org/10.1515/crelle-2014-0048.](https://doi.org/10.1515/crelle-2014-0048)
- [BBM17] J. S. BALAKRISHNAN, A. BESSER, and J. S. MÜLLER, Computing integral points on hyperelliptic curves using quadratic Chabauty, Math. Comp. 86 no. 305 (2017), 1403–1434. MR [3614022](http://www.ams.org/mathscinet-getitem?mr=3614022). Zbl [1376.11053](http://www.zentralblatt-math.org/zmath/en/search/?q=an:1376.11053). [https://doi.org/10.1090/mcom/3130.](https://doi.org/10.1090/mcom/3130)
- [BDCKW18] J. S. Balakrishnan, I. Dan-Cohen, M. Kim, and S. Wewers, A non-abelian conjecture of Tate-Shafarevich type for hyperbolic curves, Math. Ann. 372 no. 1-2 (2018), 369–428. MR [3856816](http://www.ams.org/mathscinet-getitem?mr=3856816). Zbl [06943973](http://www.zentralblatt-math.org/zmath/en/search/?q=an:06943973). [https://doi.org/10.1007/s00208-018-1684-x.](https://doi.org/10.1007/s00208-018-1684-x)
- [BDM⁺] J. S. BALAKRISHNAN, N. DOGRA, J. S. MÜLLER, J. TUITMAN, and J. Vonk, Magma code. Available at [https://github.com/jtuitman/](https://github.com/jtuitman/Cartan13) [Cartan13.](https://github.com/jtuitman/Cartan13)
- [BD17] J. S. Balakrishnan and N. Dogra, Quadratic Chabauty and rational points, II: Generalised height functions on Selmer varieties, (2017). arXiv [1705.00401](http://www.arxiv.org/abs/1705.00401).
- [BD18] J. S. Balakrishnan and N. Dogra, Quadratic Chabauty and rational points, I: p-adic heights, Duke Math. J. 167 no. 11 (2018), 1981–2038, With an appendix by J. Steffen Müller. MR [3843370](http://www.ams.org/mathscinet-getitem?mr=3843370). Zbl [1401.14123](http://www.zentralblatt-math.org/zmath/en/search/?q=an:1401.14123). [https://doi.org/10.1215/00127094-2018-0013.](https://doi.org/10.1215/00127094-2018-0013)
- [BT17] J. S. BALAKRISHNAN and J. TUITMAN, Explicit Coleman integration for curves, 2017, preprint. arXiv [1710.01673](http://www.arxiv.org/abs/1710.01673).
- [Bar14a] B. Baran, An exceptional isomorphism between level 13 modular curves via Torelli's theorem, Math. Res. Lett. 21 no. 5 (2014), 919–936. MR [3294556](http://www.ams.org/mathscinet-getitem?mr=3294556). Zbl [1327.14120](http://www.zentralblatt-math.org/zmath/en/search/?q=an:1327.14120). [https://doi.org/10.4310/MRL.2014.v21.](https://doi.org/10.4310/MRL.2014.v21.n5.a1) [n5.a1.](https://doi.org/10.4310/MRL.2014.v21.n5.a1)
- [Bar14b] B. Baran, An exceptional isomorphism between modular curves of level 13, J. Number Theory 145 (2014), 273–300. MR [3253304](http://www.ams.org/mathscinet-getitem?mr=3253304). Zbl [1300.](http://www.zentralblatt-math.org/zmath/en/search/?q=an:1300.11055) [11055](http://www.zentralblatt-math.org/zmath/en/search/?q=an:1300.11055). [https://doi.org/10.1016/j.jnt.2014.05.017.](https://doi.org/10.1016/j.jnt.2014.05.017)
- [Ber96] P. BERTHELOT, Cohomologie rigide et cohomologie rigide à supports propres, 1996, preprint.
- [BO83] P. BERTHELOT and A. OGUS, F-isocrystals and de Rham cohomology. I, Invent. Math. 72 no. 2 (1983), 159–199. MR [0700767](http://www.ams.org/mathscinet-getitem?mr=0700767). Zbl [0516.](http://www.zentralblatt-math.org/zmath/en/search/?q=an:0516.14017) [14017](http://www.zentralblatt-math.org/zmath/en/search/?q=an:0516.14017). [https://doi.org/10.1007/BF01389319.](https://doi.org/10.1007/BF01389319)
- [Bes02] A. Besser, Coleman integration using the Tannakian formalism, Math. Ann. 322 no. 1 (2002), 19-48. MR [1883387](http://www.ams.org/mathscinet-getitem?mr=1883387). Zbl [1013.11028](http://www.zentralblatt-math.org/zmath/en/search/?q=an:1013.11028). [https:](https://doi.org/10.1007/s002080100263) [//doi.org/10.1007/s002080100263.](https://doi.org/10.1007/s002080100263)
- [Bes04] A. Besser, The p-adic height pairings of Coleman-Gross and of Nekovář, in Number Theory, CRM Proc. Lecture Notes 36, Amer. Math. Soc., Providence, RI, 2004, pp. 13–25. MR [2076563](http://www.ams.org/mathscinet-getitem?mr=2076563). Zbl [1153.11316](http://www.zentralblatt-math.org/zmath/en/search/?q=an:1153.11316). [https://doi.org/10.1090/crmp/036/02.](https://doi.org/10.1090/crmp/036/02)
- [Bet17] L. A. BETTS, The motivic anabelian geometry of local heights on abelian varieties, 2017. arXiv [1706.04850](http://www.arxiv.org/abs/1706.04850).
- [BP11] Y. Bilu and P. Parent, Serre's uniformity problem in the split Cartan case, Ann. of Math. (2) 173 no. 1 (2011) , 569–584. MR [2753610](http://www.ams.org/mathscinet-getitem?mr=2753610). Zbl [1278.11065](http://www.zentralblatt-math.org/zmath/en/search/?q=an:1278.11065). [https://doi.org/10.4007/annals.2011.173.1.13.](https://doi.org/10.4007/annals.2011.173.1.13)
- [BPR13] Y. BILU, P. PARENT, and M. REBOLLEDO, Rational points on $X_0^+(p^r)$, Ann. Inst. Fourier (Grenoble) 63 no. 3 (2013), 957-984. MR [3137477](http://www.ams.org/mathscinet-getitem?mr=3137477). Zbl [1307.11075](http://www.zentralblatt-math.org/zmath/en/search/?q=an:1307.11075). [https://doi.org/10.5802/aif.2781.](https://doi.org/10.5802/aif.2781)
- [BL04] C. Birkenhake and H. Lange, Complex Abelian Barieties, second ed., *Grundlehren Math. Wissen.* 302, Springer-Verlag, Berlin, 2004. MR [2062673](http://www.ams.org/mathscinet-getitem?mr=2062673). Zbl [1056.14063](http://www.zentralblatt-math.org/zmath/en/search/?q=an:1056.14063). [https://doi.org/10.1007/](https://doi.org/10.1007/978-3-662-06307-1) [978-3-662-06307-1.](https://doi.org/10.1007/978-3-662-06307-1)
- [BK90] S. BLOCH and K. KATO, L-functions and Tamagawa numbers of motives, in The Grothendieck Festschrift, Vol. I, Progr. Math. 86, Birkhäuser Boston, Boston, MA, 1990, pp. 333–400. MR [1086888](http://www.ams.org/mathscinet-getitem?mr=1086888). Zbl [0768.14001](http://www.zentralblatt-math.org/zmath/en/search/?q=an:0768.14001). [https://doi.org/10.1007/978-0-8176-4574-8](https://doi.org/10.1007/978-0-8176-4574-8_9) 9.
- [BCP97] W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user language, *J. Symbolic Comput.* 24 no. 3-4 (1997) , 235–265, Computational algebra and number theory (London, 1993). MR [1484478](http://www.ams.org/mathscinet-getitem?mr=1484478). Zbl [0898.68039](http://www.zentralblatt-math.org/zmath/en/search/?q=an:0898.68039). [https://doi.org/10.1006/jsco.1996.0125.](https://doi.org/10.1006/jsco.1996.0125)
- [Bru03] N. Bruin, Chabauty methods using elliptic curves, J. Reine Angew. Math. 562 (2003), 27–49. MR [2011330](http://www.ams.org/mathscinet-getitem?mr=2011330). Zbl [1135.11320](http://www.zentralblatt-math.org/zmath/en/search/?q=an:1135.11320). [https://doi.](https://doi.org/10.1515/crll.2003.076) [org/10.1515/crll.2003.076.](https://doi.org/10.1515/crll.2003.076)
- [BPS16] N. BRUIN, B. POONEN, and M. STOLL, Generalized explicit descent and its application to curves of genus 3, Forum Math. Sigma 4 (2016), e6, 80. MR [3482281](http://www.ams.org/mathscinet-getitem?mr=3482281). Zbl [06554135](http://www.zentralblatt-math.org/zmath/en/search/?q=an:06554135). [https://doi.org/10.1017/fms.2016.1.](https://doi.org/10.1017/fms.2016.1)
- [BS09] N. Bruin and M. Stoll, Two-cover descent on hyperelliptic curves, Math. Comp. 78 no. 268 (2009), 2347–2370. MR [2521292](http://www.ams.org/mathscinet-getitem?mr=2521292). Zbl [1208.](http://www.zentralblatt-math.org/zmath/en/search/?q=an:1208.11078) [11078](http://www.zentralblatt-math.org/zmath/en/search/?q=an:1208.11078). [https://doi.org/10.1090/S0025-5718-09-02255-8.](https://doi.org/10.1090/S0025-5718-09-02255-8)
- [Cha41] C. CHABAUTY, Sur les points rationnels des courbes algébriques de genre supérieur à l'unité, C. R. Acad. Sci. Paris 212 (1941), 882–885. MR [0004484](http://www.ams.org/mathscinet-getitem?mr=0004484). Zbl [0025.24902](http://www.zentralblatt-math.org/zmath/en/search/?q=an:0025.24902).
- [Che98] I. CHEN, The Jacobians of non-split Cartan modular curves, *Proc. Lon*don Math. Soc. (3) 77 no. 1 (1998), 1–38. MR [1625491](http://www.ams.org/mathscinet-getitem?mr=1625491). Zbl [0903.11019](http://www.zentralblatt-math.org/zmath/en/search/?q=an:0903.11019). [https://doi.org/10.1112/S0024611598000392.](https://doi.org/10.1112/S0024611598000392)
- [CLS99] B. Chiarellotto and B. Le Stum, F-isocristaux unipotents, Com-positio Math. 116 no. 1 (1999), 81-110. MR [1669440](http://www.ams.org/mathscinet-getitem?mr=1669440). Zbl [0936.14017](http://www.zentralblatt-math.org/zmath/en/search/?q=an:0936.14017). [https://doi.org/10.1023/A:1000602824628.](https://doi.org/10.1023/A:1000602824628)
- [CT03] B. CHIARELLOTTO and N. TSUZUKI, Cohomological descent of rigid cohomology for étale coverings, Rend. Sem. Mat. Univ. Padova 109 (2003), 63–215. MR [1997987](http://www.ams.org/mathscinet-getitem?mr=1997987). Zbl [1167.14306](http://www.zentralblatt-math.org/zmath/en/search/?q=an:1167.14306). Available at [http://](http://www.numdam.org/item/?id=RSMUP_2003__109__63_0) [www.numdam.org/item/?id=RSMUP](http://www.numdam.org/item/?id=RSMUP_2003__109__63_0)_2003_109_63_0.
- [CK10] J. COATES and M. KIM, Selmer varieties for curves with CM Jacobians, Kyoto J. Math. 50 no. 4 (2010), 827–852. MR [2740695](http://www.ams.org/mathscinet-getitem?mr=2740695). Zbl [1283.11092](http://www.zentralblatt-math.org/zmath/en/search/?q=an:1283.11092). [https://doi.org/10.1215/0023608X-2010-015.](https://doi.org/10.1215/0023608X-2010-015)
- [Col85] R. F. Coleman, Effective Chabauty, Duke Math. J. 52 no. 3 (1985), 765–770. MR [0808103](http://www.ams.org/mathscinet-getitem?mr=0808103). Zbl [0588.14015](http://www.zentralblatt-math.org/zmath/en/search/?q=an:0588.14015). [https://doi.org/10.](https://doi.org/10.1215/S0012-7094-85-05240-8) [1215/S0012-7094-85-05240-8.](https://doi.org/10.1215/S0012-7094-85-05240-8)
- [CG89] R. F. Coleman and B. H. Gross, p-adic heights on curves, in Algebraic Number Theory, Adv. Stud. Pure Math. 17, Academic Press, Boston, MA, 1989, pp. 73–81. MR [1097610](http://www.ams.org/mathscinet-getitem?mr=1097610). Zbl [0758.14009](http://www.zentralblatt-math.org/zmath/en/search/?q=an:0758.14009). [https:](https://doi.org/10.2969/aspm/01710073) [//doi.org/10.2969/aspm/01710073.](https://doi.org/10.2969/aspm/01710073)
- [DC18] I. Dan-Cohen, Mixed Tate motives and the unit equation II, 2018, preprint. arXiv [1510.01362](http://www.arxiv.org/abs/1510.01362).
- [DCW15] I. DAN-COHEN and S. WEWERS, Explicit Chabauty-Kim theory for the thrice punctured line in depth 2, Proc. Lond. Math. Soc. (3) 110 no. 1 (2015), 133–171. MR [3299602](http://www.ams.org/mathscinet-getitem?mr=3299602). Zbl [1379.11068](http://www.zentralblatt-math.org/zmath/en/search/?q=an:1379.11068). [https://doi.org/](https://doi.org/10.1112/plms/pdu034) [10.1112/plms/pdu034.](https://doi.org/10.1112/plms/pdu034)
- [DCW16] I. Dan-Cohen and S. Wewers, Mixed Tate motives and the unit equation, *Int. Math. Res. Not. IMRN* no. 17 (2016) , 5291-5354. MR [3556439](http://www.ams.org/mathscinet-getitem?mr=3556439). Zbl [1404.11093](http://www.zentralblatt-math.org/zmath/en/search/?q=an:1404.11093). [https://doi.org/10.1093/imrn/rnv239.](https://doi.org/10.1093/imrn/rnv239)
- [DDLR15] H. Darmon, M. Daub, S. Lichtenstein, and V. Rotger, Algorithms for Chow-Heegner points via iterated integrals, Math. Comp. 84 no. 295 (2015), 2505–2547. MR [3356037](http://www.ams.org/mathscinet-getitem?mr=3356037). Zbl [1378.11059](http://www.zentralblatt-math.org/zmath/en/search/?q=an:1378.11059). [https:](https://doi.org/10.1090/S0025-5718-2015-02927-5) [//doi.org/10.1090/S0025-5718-2015-02927-5.](https://doi.org/10.1090/S0025-5718-2015-02927-5)
- [DRS12] H. DARMON, V. ROTGER, and I. SOLS, Iterated integrals, diagonal cycles and rational points on elliptic curves, in Publications Mathématiques de Besançon. Algèbre et Théorie des Nombres, 2012/2, Publ. Math. Be $sanoon Algèbre Théorie Nr. 2012/$, Presses Univ. Franche-Comté, Be-sançon, 2012, pp. 19–46. MR [3074917](http://www.ams.org/mathscinet-getitem?mr=3074917). Zbl [1332.11054](http://www.zentralblatt-math.org/zmath/en/search/?q=an:1332.11054).
- [Del89] P. Deligne, Le groupe fondamental de la droite projective moins trois points, in Galois Groups over Q (Berkeley, CA, 1987), Math. Sci. Res. Inst. Publ. 16, Springer, New York, 1989, pp. 79–297. MR [1012168](http://www.ams.org/mathscinet-getitem?mr=1012168). Zbl [0742.14022](http://www.zentralblatt-math.org/zmath/en/search/?q=an:0742.14022). [https://doi.org/10.1007/978-1-4613-9649-9](https://doi.org/10.1007/978-1-4613-9649-9_3) 3.
- [Del90] P. DELIGNE, Catégories tannakiennes, in The Grothendieck Festschrift, Vol. II, Progr. Math. 87, Birkhäuser Boston, Boston, MA, 1990,

pp. 111–195. MR [1106898](http://www.ams.org/mathscinet-getitem?mr=1106898). [https://doi.org/10.1007/978-0-8176-4575-5](https://doi.org/10.1007/978-0-8176-4575-5_3) [3.](https://doi.org/10.1007/978-0-8176-4575-5_3)

- [Edi89] B. EDIXHOVEN, Stable models of modular curves and applications, 1989, Ph.D. thesis, Utrecht.
- [Edi90] B. EDIXHOVEN, Minimal resolution and stable reduction of $X_0(N)$, Ann. Inst. Fourier (Grenoble) 40 no. 1 (1990), 31–67. MR [1056773](http://www.ams.org/mathscinet-getitem?mr=1056773). Zbl [0679.14009](http://www.zentralblatt-math.org/zmath/en/search/?q=an:0679.14009). Available at [http://www.numdam.org/item?id=AIF](http://www.numdam.org/item?id=AIF_1990__40_1_31_0) [1990](http://www.numdam.org/item?id=AIF_1990__40_1_31_0) - 40 - 1 - 31 - 0.
- [EH17] J. S. ELLENBERG and D. R. HAST, Rational points on solvable curves over **Q** via non-abelian Chabauty, 2017, preprint. arXiv [1706.00525](http://www.arxiv.org/abs/1706.00525).
- [Fal89] G. Faltings, Crystalline cohomology and p-adic Galoisrepresentations, in Algebraic Analysis, Geometry, and Number Theory (Baltimore, MD, 1988), Johns Hopkins Univ. Press, Baltimore, MD, 1989, pp. 25–80. MR [1463696](http://www.ams.org/mathscinet-getitem?mr=1463696). Zbl [0805.14008](http://www.zentralblatt-math.org/zmath/en/search/?q=an:0805.14008).
- [FW99] E. V. Flynn and J. L. Wetherell, Finding rational points on bielliptic genus 2 curves, Manuscripta Math. 100 no. 4 (1999), 519–533. MR [1734798](http://www.ams.org/mathscinet-getitem?mr=1734798). Zbl [1029.11024](http://www.zentralblatt-math.org/zmath/en/search/?q=an:1029.11024). [https://doi.org/10.1007/s002290050215.](https://doi.org/10.1007/s002290050215)
- [FPR94] J.-M. Fontaine and B. Perrin-Riou, Autour des conjectures de Bloch et Kato: cohomologie galoisienne et valeurs de fonctions L, in Motives (Seattle, WA, 1991), Proc. Sympos. Pure Math. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 599–706. MR [1265546](http://www.ams.org/mathscinet-getitem?mr=1265546). Zbl [0821.14013](http://www.zentralblatt-math.org/zmath/en/search/?q=an:0821.14013). [https://doi.org/10.1090/pspum/055.1/1265546.](https://doi.org/10.1090/pspum/055.1/1265546)
- [Gal02] S. D. GALBRAITH, Rational points on $X_0^+(N)$ and quadratic \mathbb{Q} -curves, J. Théor. Nombres Bordeaux 14 no. 1 (2002), 205-219. MR [1925998](http://www.ams.org/mathscinet-getitem?mr=1925998). Zbl [1035.14008](http://www.zentralblatt-math.org/zmath/en/search/?q=an:1035.14008). Available at [http://jtnb.cedram.org/item?id=JTNB](http://jtnb.cedram.org/item?id=JTNB_2002__14_1_205_0) [2002](http://jtnb.cedram.org/item?id=JTNB_2002__14_1_205_0) 14 1 205 0.
- [GZ86] B. H. Gross and D. B. Zagier, Heegner points and derivatives of Lseries, Invent. Math. 84 no. 2 (1986), 225–320. MR [0833192](http://www.ams.org/mathscinet-getitem?mr=0833192). Zbl [0608.](http://www.zentralblatt-math.org/zmath/en/search/?q=an:0608.14019) [14019](http://www.zentralblatt-math.org/zmath/en/search/?q=an:0608.14019). [https://doi.org/10.1007/BF01388809.](https://doi.org/10.1007/BF01388809)
- [Gro72] A. GROTHENDIECK, Groupes de Monodromie en Géométrie Algébrique, 288, 1972.
- [Had11] M. HADIAN, Motivic fundamental groups and integral points, *Duke* Math. J. 160 no. 3 (2011), 503-565. MR [2852368](http://www.ams.org/mathscinet-getitem?mr=2852368). Zbl [1234.14020](http://www.zentralblatt-math.org/zmath/en/search/?q=an:1234.14020). [https://doi.org/10.1215/00127094-1444296.](https://doi.org/10.1215/00127094-1444296)
- [KM85] N. M. KATZ and B. MAZUR, Arithmetic Moduli of Elliptic Curves, Ann. of Math. Stud. 108, Princeton Univ. Press, Princeton, NJ, 1985. MR [0772569](http://www.ams.org/mathscinet-getitem?mr=0772569). Zbl [0576.14026](http://www.zentralblatt-math.org/zmath/en/search/?q=an:0576.14026). [https://doi.org/10.1515/9781400881710.](https://doi.org/10.1515/9781400881710)
- [Kim05] M. KIM, The motivic fundamental group of $\mathbf{P}^1 - \{0, 1, \infty\}$ and the theorem of Siegel, *Invent. Math.* **161** no. 3 (2005), 629–656. MR [2181717](http://www.ams.org/mathscinet-getitem?mr=2181717). Zbl [1090.14006](http://www.zentralblatt-math.org/zmath/en/search/?q=an:1090.14006). [https://doi.org/10.1007/s00222-004-0433-9.](https://doi.org/10.1007/s00222-004-0433-9)
- [Kim09] M. Kim, The unipotent Albanese map and Selmer varieties for curves, Publ. Res. Inst. Math. Sci. 45 no. 1 (2009), 89–133. MR [2512779](http://www.ams.org/mathscinet-getitem?mr=2512779). Zbl [1165.14020](http://www.zentralblatt-math.org/zmath/en/search/?q=an:1165.14020). [https://doi.org/10.2977/prims/1234361156.](https://doi.org/10.2977/prims/1234361156)
- [KT08] M. KIM and A. TAMAGAWA, The *l*-component of the unipotent Albanese map, Math. Ann. 340 no. 1 (2008), 223–235. MR [2349775](http://www.ams.org/mathscinet-getitem?mr=2349775). Zbl [1126.14035](http://www.zentralblatt-math.org/zmath/en/search/?q=an:1126.14035). [https://doi.org/10.1007/s00208-007-0151-x.](https://doi.org/10.1007/s00208-007-0151-x)
- [KL89] V. A. KOLYVAGIN and D. Y. LOGACHEV, Finiteness of the Shafarevich-Tate group and the group of rational points for some modular abelian varieties, Algebra i Analiz 1 no. 5 (1989), 171-196. MR [1036843](http://www.ams.org/mathscinet-getitem?mr=1036843). Zbl [0728.14026](http://www.zentralblatt-math.org/zmath/en/search/?q=an:0728.14026). Available at [http://mi.mathnet.ru/eng/aa47.](http://mi.mathnet.ru/eng/aa47)
- [LV18] B. LAWRENCE and A. VENKATESH, Diophantine problems and p-adic period mappings, 2018. arXiv [1807.02721](http://www.arxiv.org/abs/1807.02721).
- [LS07] B. Le Stum, Rigid Cohomology, Cambridge Tracts in Math. 172, Cambridge Univ. Press, Cambridge, 2007. MR [2358812](http://www.ams.org/mathscinet-getitem?mr=2358812). Zbl [1131.14001](http://www.zentralblatt-math.org/zmath/en/search/?q=an:1131.14001). [https://doi.org/10.1017/CBO9780511543128.](https://doi.org/10.1017/CBO9780511543128)
- [Maz77] B. MAzur, Modular curves and the Eisenstein ideal, *Inst. Hautes* Etudes Sci. Publ. Math. no. 47 (1977), 33–186 (1978). MR [0488287](http://www.ams.org/mathscinet-getitem?mr=0488287). Zbl 0394.14008 . Available at [http://www.numdam.org/item?id=](http://www.numdam.org/item?id=PMIHES_1977__47__33_0) [PMIHES](http://www.numdam.org/item?id=PMIHES_1977__47__33_0)₋₁₉₇₇-47-33-0.
- [Maz78] B. Mazur, Rational isogenies of prime degree (with an appendix by D. Goldfeld), Invent. Math. 44 no. 2 (1978), 129–162. MR [0482230](http://www.ams.org/mathscinet-getitem?mr=0482230). Zbl [0386.14009](http://www.zentralblatt-math.org/zmath/en/search/?q=an:0386.14009). [https://doi.org/10.1007/BF01390348.](https://doi.org/10.1007/BF01390348)
- [Mer96] L. Merel, Bornes pour la torsion des courbes elliptiques sur les corps de nombres, Invent. Math. 124 no. 1-3 (1996), 437–449. MR [1369424](http://www.ams.org/mathscinet-getitem?mr=1369424). Zbl [0936.11037](http://www.zentralblatt-math.org/zmath/en/search/?q=an:0936.11037). [https://doi.org/10.1007/s002220050059.](https://doi.org/10.1007/s002220050059)
- [Mil80] J. S. MILNE, Étale Cohomology, Princeton Math. Ser. 33, Princeton Univ. Press, Princeton, N.J., 1980. MR [0559531](http://www.ams.org/mathscinet-getitem?mr=0559531). Zbl [0433.14012](http://www.zentralblatt-math.org/zmath/en/search/?q=an:0433.14012). [https:](https://doi.org/10.1515/9781400883981) [//doi.org/10.1515/9781400883981.](https://doi.org/10.1515/9781400883981)
- [Mum70] D. Mumford, Abelian Varieties, Tata Inst. Fund. Res. Stud. Math. 5, published for the Tata Institute of Fundamental Research, Bombay; Oxford Univ. Press, London, 1970. MR [0282985](http://www.ams.org/mathscinet-getitem?mr=0282985). Zbl [0223.14022](http://www.zentralblatt-math.org/zmath/en/search/?q=an:0223.14022).
- [Nek93] J. NEKOVÁŘ, On p-adic height pairings, in Séminaire de Théorie des Nombres, Paris, 1990–91, Progr. Math. 108, Birkhäuser Boston, Boston, MA, 1993, pp. 127–202. MR [1263527](http://www.ams.org/mathscinet-getitem?mr=1263527). Zbl [0859.11038](http://www.zentralblatt-math.org/zmath/en/search/?q=an:0859.11038). [https:](https://doi.org/10.1007/s10107-005-0696-y) $// doi.org/10.1007/s10107-005-0696-y.$
- [Ols11] M. C. Olsson, Towards non-abelian p-adic Hodge theory in the good reduction case, Mem. Amer. Math. Soc. 210 no. 990 (2011), vi+157. MR [2791384](http://www.ams.org/mathscinet-getitem?mr=2791384). Zbl [1213.14002](http://www.zentralblatt-math.org/zmath/en/search/?q=an:1213.14002). [https://doi.org/10.](https://doi.org/10.1090/S0065-9266-2010-00625-2) [1090/S0065-9266-2010-00625-2.](https://doi.org/10.1090/S0065-9266-2010-00625-2)
- [Ray90] M. RAYNAUD, p-groupes et réduction semi-stable des courbes, in The Grothendieck Festschrift, Vol. III, Progr. Math. 88, Birkhäuser Boston, Boston, MA, 1990, pp. 179–197. MR [1106915](http://www.ams.org/mathscinet-getitem?mr=1106915). Zbl [0722.14013](http://www.zentralblatt-math.org/zmath/en/search/?q=an:0722.14013). [https:](https://doi.org/10.1007/978-0-8176-4576-2_7) [//doi.org/10.1007/978-0-8176-4576-2](https://doi.org/10.1007/978-0-8176-4576-2_7) 7.
- [Rib80] K. A. RIBET, Twists of modular forms and endomorphisms of abelian varieties, Math. Ann. 253 no. 1 (1980), 43-62. MR [0594532](http://www.ams.org/mathscinet-getitem?mr=0594532). Zbl [0421.](http://www.zentralblatt-math.org/zmath/en/search/?q=an:0421.14008) [14008](http://www.zentralblatt-math.org/zmath/en/search/?q=an:0421.14008). [https://doi.org/10.1007/BF01457819.](https://doi.org/10.1007/BF01457819)
- [Sch12] R. Schoof, The Mordell-Weil group of a modular curve of level 13, 2012, unpublished manuscript.
- [Ser72] J-P. SERRE, Propriétés galoisiennes des points d'ordre fini des courbes elliptiques, Invent. Math. 15 no. 4 (1972), 259–331. MR [0387283](http://www.ams.org/mathscinet-getitem?mr=0387283). Zbl [0235.14012](http://www.zentralblatt-math.org/zmath/en/search/?q=an:0235.14012). [https://doi.org/10.1007/BF01405086.](https://doi.org/10.1007/BF01405086)
- [Ser97] J-P. SERRE, Lectures on the Mordell-Weil Theorem, third ed., Aspects Math., Friedr. Vieweg & Sohn, Braunschweig, 1997, translated from the French and edited by Martin Brown from notes by Michel Waldschmidt, with a foreword by Brown and Serre. MR [1757192](http://www.ams.org/mathscinet-getitem?mr=1757192). Zbl [0863.14013](http://www.zentralblatt-math.org/zmath/en/search/?q=an:0863.14013). [https://doi.org/10.1007/978-3-663-10632-6.](https://doi.org/10.1007/978-3-663-10632-6)
- [Ser02] J-P. Serre, Galois Cohomology, english ed., Springer Monogr. Math., Springer-Verlag, Berlin, 2002, translated from the French by Patrick Ion and revised by the author. MR [1867431](http://www.ams.org/mathscinet-getitem?mr=1867431). Zbl [1004.12003](http://www.zentralblatt-math.org/zmath/en/search/?q=an:1004.12003).
- [Shi70] G. Shimura, On canonical models of arithmetic quotients of bounded symmetric domains, Ann. of Math. (2) 91 (1970), 144–222. MR [0257031](http://www.ams.org/mathscinet-getitem?mr=0257031). Zbl [0237.14009](http://www.zentralblatt-math.org/zmath/en/search/?q=an:0237.14009). [https://doi.org/10.2307/1970604.](https://doi.org/10.2307/1970604)
- [Sik17] S. Siksek, Quadratic Chabauty for modular curves, 2017, preprint. arXiv [1704.00473](http://www.arxiv.org/abs/1704.00473).
- [Tui16] J. TUITMAN, Counting points on curves using a map to \mathbf{P}^1 , Math. Comp. 85 no. 298 (2016), 961–981. MR [3434890](http://www.ams.org/mathscinet-getitem?mr=3434890). Zbl [1402.11096](http://www.zentralblatt-math.org/zmath/en/search/?q=an:1402.11096). [https:](https://doi.org/10.1090/mcom/2996) [//doi.org/10.1090/mcom/2996.](https://doi.org/10.1090/mcom/2996)
- [Tui17] J. TUITMAN, Counting points on curves using a map to \mathbf{P}^1 , II, Finite Fields Appl. 45 (2017), 301–322. MR [3631366](http://www.ams.org/mathscinet-getitem?mr=3631366). Zbl [1402.11097](http://www.zentralblatt-math.org/zmath/en/search/?q=an:1402.11097). [https:](https://doi.org/10.1016/j.ffa.2016.12.008) [//doi.org/10.1016/j.ffa.2016.12.008.](https://doi.org/10.1016/j.ffa.2016.12.008)

(Received: July 7, 2018) (Revised: December 20, 2018)

Department of Mathematics and Statistics, Boston University, Boston, MA E-mail : jbala@bu.edu

JESUS COLLEGE, UNIVERSITY OF OXFORD, OXFORD, UK E-mail : dogra@maths.ox.ac.uk

Bernoulli Institute, University of Groningen, Groningen, The Netherlands E-mail : steffen.muller@rug.nl

Departement Wiskunde, KU Leuven, Leuven, Belgium E-mail : jan.tuitman@kuleuven.be

Mathematical Institute, University of Oxford, Oxford, UK E-mail : vonk@maths.ox.ac.uk