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Quantum ergodicity on graphs: From
spectral to spatial delocalization

By Nalini Anantharaman and Mostafa Sabri

Abstract

We prove a quantum-ergodicity theorem on large graphs, for eigenfunc-

tions of Schrödinger operators in a very general setting. We consider a

sequence of finite graphs endowed with discrete Schrödinger operators, as-

sumed to have a local weak limit. We assume that our graphs have few short

loops, in other words that the limit model is a random rooted tree endowed

with a random discrete Schrödinger operator. We show that an absolutely

continuous spectrum for the infinite model, reinforced by a good control of

the moments of the Green function, imply “quantum ergodicity,” a form of

spatial delocalization for eigenfunctions of the finite graphs approximating

the tree. This roughly says that the eigenfunctions become equidistributed

in phase space. Our result applies, in particular, to graphs converging to

the Anderson model on a regular tree, in the regime of extended states

studied by Klein and Aizenman-Warzel.

1. Introduction

1.1. The problem. Consider a very large, but finite, graph G = (V,E).

Are the eigenfunctions of its adjacency matrix localized, or delocalized? These

words are used in a variety of contexts, with several different meanings.

For discrete Schrödinger operators on infinite graphs (e.g., for the cele-

brated Anderson model describing the metal-insulator transition), localization

can be understood in a spectral, spatial or dynamical sense. Given an interval

I ⊂ R, one can consider

• spectral localization : pure point spectrum in I,

• exponential localization : the corresponding eigenfunctions decay exponen-

tially,

• dynamical localization : an initial state with energy in I that is localized in

a bounded domain essentially stays in this domain as time goes on.
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On the other hand, delocalization may be understood at different levels:

• spectral delocalization : purely absolutely continuous spectrum in I,

• ballistic transport : wave packets with energies in I spread on the lattice at

a specific (ideally, linear) rate as time goes on.

In this paper we want to discuss a notion of spatial delocalization. Since the

wavefunctions corresponding to the absolutely continuous spectrum are not

square summable, a natural interpretation of spatial delocalization is to con-

sider a sequence of growing “boxes” or finite graphs (GN ) approximating the

infinite system in some sense, and to ask if the eigenfunctions on (GN ) become

delocalized as N → ∞. Can they concentrate on small regions or, on the

contrary are they uniformly distributed over (GN )? Large, finite graphs are

also a subject of interest on their own. Actually, an infinite system is often an

idealized version of a large finite one.

Localization/delocalization of eigenfunctions is believed to bear some re-

lation with spectral statistics: localization is supposedly associated with Pois-

sonian spectral statistics, whereas delocalization should be associated with

Random Matrix statistics (GOE/GUE). In the field of quantum chaos, the

former notion is often associated with integrable dynamics and the latter with

chaotic dynamics [16], [17], [18]. However, specific examples show that the

relation is not so straightforward [38], [39], [34]. Understanding how far one

can push these ideas is one amongst many reasons for studying models of large

graphs [31], [41], [42].

Recently, the question of delocalization of eigenfunctions of large matrices

or large graphs has been a subject of intense activity. Let us mention several

ways of testing delocalization that have been used. Let MN be a large symmet-

ric matrix of size N×N , and let (ψj)
N
j=1 be an orthonormal basis of eigenfunc-

tions. The eigenfunction ψj defines a probability measure
∑N
x=1 |ψj(x)|2δx.

The goal is to compare this probability measure with the uniform measure,

which puts mass 1/N on each point:

• `∞ norms : Can we have a pointwise upper bound on |ψj(x)|, in other words,

is ‖ψj‖∞ small, and how small compared with 1/
√
N ?

• `p norms : Can we compare ‖ψj‖p with N1/p−1/2 ? In [24], a state ψj
is called non-ergodic (and multi-fractal) if ‖ψj‖p behaves like Nf(p) with

f(p) 6= 1/p− 1/2. Related criteria appear in [2].

• Scarring : Can we have full concentration (
∑
x∈Λ |ψj(x)|2 ≥ 1−ε) or partial

concentration (
∑
x∈Λ |ψj(x)|2 ≥ ε) with Λ a set of “small” cardinality? We

borrow the term “scarring” from the term used in the theory of quantum

chaos [38].

• Quantum ergodicity : Given a function a : {1, . . . , N} −→ C, can we com-

pare
∑
x a(x)|ψj(x)|2 with 1

N

∑
x a(x)? This criterion, borrowed again from
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quantum chaos, was applied to discrete regular graphs in [7], [5]. Quantum

ergodicity means that the two averages are close for most j. If they are

close for all j, one speaks of quantum unique ergodicity.

As was demonstrated in a recent series of papers, adding some randomness

may allow the problem to be settled completely. For instance, almost sure op-

timal `∞-bounds and quantum unique ergodicity for various models of random

matrices and random graphs, such as Wigner matrices, sparse Erdös-Rényi

graphs, random regular graphs of slowly increasing or bounded degrees were

obtained in [28], [29], [20], [27], [13], [11], [12]. The invariance of the probability

distribution under certain elementary transformations plays an important role.

The completely different point of view that we adopt is to consider determinis-

tic graphs and to prove delocalization as resulting directly from the geometry

of the graphs. Up to now, in this deterministic setting, only eigenfunctions of

the adjacency matrix of regular graphs have been treated, taking advantage of

the completely explicit Fourier analysis on regular trees. The papers [7], [21],

[5] give various proofs of quantum ergodicity; the paper [22] proves the absence

of scarring on sets of cardinality N1−ε and also contains (although not stated)

a logarithmic upper bound on the `∞ norms.

The aim of this paper is to prove a quantum ergodicity theorem for eigen-

functions of discrete Schrödinger operators on quite general large graphs. As

we will see, a particularly interesting point of our result is that it gives a direct

relation between spectral delocalization of infinite systems and spatial delocal-

ization of large finite systems. Our result may be summarized as follows (with

proper additional assumptions to be described later):

“If a large finite system is close (in the Benjamini-Schramm

topology) to an infinite system having a purely absolutely con-

tinuous spectrum in an interval I , then the eigenfunctions (with

eigenvalues lying in I) of the finite system satisfy quantum er-

godicity.”

1.2. The results. Consider a sequence of connected graphs without self-

loops and multiple edges (GN )N∈N. We assume each vertex has at least three

neighbors. It will be convenient to write GN as a quotient of a tree fiGN by a

group of automorphisms ΓN , that is, GN = ΓN\fiGN , where ΓN acts freely on

the vertices of fiGN ; i.e., given v ∈fiGN , γ1v = γ2v implies γ1 = γ2. In other

words, fiGN is the “universal cover” of GN . We will work under the assumption

that the degree of fiGN is everywhere smaller than some fixed D.

We denote by ṼN and ẼN the set of vertices and edges of fiGN , respectively.

We denote by VN and EN the vertices and edges of GN , respectively. We

assume |VN | = N and work in the limit N −→∞.
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Define the adjacency operator ‹AN : C›GN → C›GN by

( ‹ANf)(v) =
∑
w∼v

f(w),

where v ∼ w means v and w are nearest neighbors. The operator ‹AN is

bounded on `2(fiGN ). It also preserves the space of ΓN -invariant functions

on ṼN , in other words it defines an operator on `2(VN ), which we denote

by AN . (We will drop the index N and write ‹A,A when no confusion may

arise.) Consider a bounded function fiWN : ṼN −→ R such that fiWN (γ · v) =fiWN (v) for all γ ∈ ΓN . The operator of multiplication by fiWN is bounded

on `2(fiGN ); it also preserves the space of ΓN -invariant functions on ṼN , thus

it defines an operator on `2(VN ), which we denote by WN . We define the

discrete Schrödinger operators ‹HN = ‹AN + fiWN and HN = AN + WN . The

central object of our study are the eigenfunctions of HN , and their behaviour

(localized/delocalized) as N −→ +∞. The fact that ΓN acts freely implies

that HN is symmetric (self-adjoint) on `2(VN ).

For comfort, we will always work under the assumption that WN takes

values in some fixed interval [−A,A]. This implies that the spectrum of all

operators we will encounter is contained in some fixed interval I0 = [−A−D,
A+D].

We define the Laplacian PN : CVN → CVN by

(1.1) (PNf)(x) =
1

dN (x)

∑
y∼x

f(y),

where dN (x) stands for the number of neighbors of x. If we introduce the

positive measure on VN assigning to x the weight dN (x), then PN is self-adjoint

on `2(VN , dN ).

We shall assume the following conditions on our sequence of graphs:

(EXP) The sequence (GN ) forms an expander family. By this we mean that

the Laplacian PN has a uniform spectral gap in `2(VN , dN ). More

precisely, the eigenvalue 1 of PN is simple, and the spectrum of PN is

contained in [−1 + β, 1− β] ∪ {1}, where β > 0 is independent of N .

Note that 1 is always an eigenvalue, corresponding to constant functions. Our

assumption implies, in particular, that each GN is connected and non-bipartite.

It is well known that a uniform spectral gap for PN is equivalent to a Cheeger

constant bounded away from 0; see, for instance, [25, §3].

Our second assumption is that (GN ) has few short loops:

(BST) For all r > 0,

lim
N→∞

|{x ∈ VN : ρGN (x) < r}|
N

= 0,
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where ρGN (x) is the injectivity radius at x, i.e., the largest ρ such that

the ball BGN (x, ρ) is a tree.

The general theory of Benjamini-Schramm convergence (or local weak

convergence), briefly recalled in Appendix A, allows us to assign a limit object

to the sequence (GN ,WN ), which is a probability distribution carried on trees.

More precisely, up to passing to a subsequence, assumption (BST) above is

equivalent to the following assumption:

(BSCT) The sequence (GN ,WN ) has a local weak limit P that is concentrated

on the set of (isomorphism classes of) colored rooted trees, denoted

T D,A
∗ .

Assumption (BSCT) says that (GN ,WN ) converges in a distributional

sense to a random system of rooted trees {[T , o]}, endowed with a map W :

T −→ R. More precisely, the empirical measure of (GN ,WN ), defined by

choosing a root x ∈ VN uniformly at random, converges weakly to a probability

measure P concentrated on trees.

If [T , o,W] ∈ T D,A
∗ and A is the adjacency matrix of T , we denote by

H = A +W the limiting random Schrödinger operator, which is self-adjoint

on `2(T ).

Call (λ
(N)
j )Nj=1 the eigenvalues of HN on `2(VN ). Assumption (BSCT)

implies the convergence of the empirical law of eigenvalues: for any continuous

χ : R −→ R, we have

(1.2)
1

N

N∑
j=1

χ(λ
(N)
j ) −→

N−→+∞
E (〈δo, χ(H)δo〉) =: ρ(χ);

see Remark A.3. Here E is the expectation with respect to P, that is,

E(f) =

∫
T D,A
∗

f([T , o,W]) dP([T , o,W]).

The measure ρ is called the integrated density of states in the theory of random

Schrödinger operators.

We need some notation for our last assumption. Let [T , o,W] ∈ T D,A
∗ .

Given x, y ∈ T , and γ ∈ C \ R, we introduce the Green function

Gγ(x, y) = 〈δx, (H− γ)−1δy〉`2(T ).

Given v, w ∈ T with v ∼ w, we denote by T (v|w) the tree obtained by removing

from the tree T the branch emanating from v that passes through w. We define

the restriction H(v|w)(u, u′) = H(u, u′) if u, u′ ∈ T (v|w) and zero otherwise.

The corresponding Green function is denoted by G(v|w)(·, ·; γ). We then put

ζ̂γw(v) := −G(v|w)(v, v; γ).
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(Green) There is a non-empty open set I1 such that for all s > 0, we have

sup
λ∈I1,η0∈(0,1)

E
( ∑
y:y∼o

| Im ζ̂λ+iη0
o (y)|−s

)
<∞.

To understand (Green), define the (rooted) spectral measure of [T , o,W] ∈
T D,A
∗ by

(1.3) µo(J) = 〈δo, χJ(H)δo〉 for Borel J ⊆ R.

Assumption (Green) implies that supλ∈I1,η0>0 E(|Gγ(o, o)|2) < ∞; see Re-

mark A.4. As shown in [32], this implies that for P-a.e. [T , o,W] ∈ T D,A
∗ , the

spectral measure µo is absolutely continuous in I1, with density 1
π ImGλ+i0(o,o).

Hence, (Green) implies that P-a.e. operator H has a purely absolutely contin-

uous spectrum in I1. This is a natural assumption since our aim is to prove

delocalization properties of eigenfunctions.

Now let (ψ
(N)
j )Nj=1 be an orthonormal basis of `2(VN ) consisting of eigen-

functions of HN . Pick j ∈ {1, . . . , N}. The problem of quantum ergodicity is

to understand if the probability measure
∑
x∈VN |ψ

(N)
j (x)|2δx on VN is “local-

ized” (essentially carried by o(N) vertices) or “delocalized” (ideally, close to

the uniform measure on VN , or maybe, to some other natural measure on VN ,

comparable to the uniform measure). More generally, we want to know if the

correlations ψ
(N)
j (x)ψ

(N)
j (y), for x and y ∈ VN at some fixed distance, ap-

proach some limiting object. From a mathematical point of view, the question

was addressed in [7], [21] for eigenfunctions of the adjacency matrix of large

deterministic regular graphs, and for the adjacency matrix of random regular

graphs or Erdös-Rényi graphs in the recent works [27], [13], [11], [12]. The

main motivation of our paper is to extend the results of [7] to disordered sys-

tems, that is, to non-regular graphs, possibly with a potential on the vertices

or weights on the edges. This necessarily requires a different method from that

of [7], which was specific to regular graphs. New methods to prove quantum

ergodicity were already explored in [5]. We insist on the fact that, contrary

to [27], [13], [11], [12], [30], our sequence of graphs and potentials are deter-

ministic. The results may, in particular, be applied to random graphs and/or

random potentials, provided one knows that Assumptions (EXP), (BSCT) and

(Green) hold true for some realizations. We discuss the relation with existing

work more extensively in Section 1.5.

Let us state the main abstract result; its concrete meaning will be explored

afterwards. For x, y ∈ ‹VN , and γ ∈ C\R, we introduce the lifted Green function

(1.4) g̃γN (x, y) = 〈δx, (‹HN − γ)−1δy〉`2(ṼN )
.

Recall that we write GN as a quotient ΓN\‹GN , where ‹GN is a tree. We denote

by DN a fundamental domain of the action of ΓN on the vertices of ‹GN . Thus
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DN contains N vertices of ‹GN , each of them projecting to a distinct vertex

of GN .

Let I1 be the open set of Assumption (Green), and let us fix an interval I

(or finite union of intervals) such that Ī ⊂ I1.

Theorem 1.1. Assume that the graphs GN and the potentials WN satisfy

(BSCT), (EXP) and (Green). Call (λ
(N)
j )Nj=1 the eigenvalues of the Schrödinger

operator HN on `2(VN ), and let (ψ
(N)
j )Nj=1 be a corresponding orthonormal

eigenbasis.

For each N , let a = aN be a function on VN with supN supx∈VN |aN (x)|
≤ 1. For γ ∈ C \ R, define 〈a〉γ =

∑
x∈VN a(x)ΦN

γ (x̃, x̃), where ΦN
γ (x̃, x̃) =

Im g̃γN (x̃,x̃)∑
x̃∈DN

Im g̃γN (x̃,x̃)
. Then

lim
η0↓0

lim
N→+∞

1

N

∑
λ

(N)
j ∈I

∣∣∣∣∣∣ ∑x∈VN a(x)|ψ(N)
j (x)|2 − 〈a〉

λ
(N)
j +iη0

∣∣∣∣∣∣ = 0.

Here, x̃ is a lift of x ∈ VN in the universal cover ‹VN .

Corollary 1.2. Under the same assumptions, for any ε > 0, we have

1

N
#

λ(N)
j ∈ I :

∣∣∣∣∣∣ ∑x∈VN a(x)|ψ(N)
j (x)|2 − 〈a〉

λ
(N)
j +iη0

∣∣∣∣∣∣ > ε

 −→
N→+∞, η0↓0

0.

More generally, we have the following result on eigenfunction correlators,

which says that ψj(x)ψj(y) “approaches” the function ΦN
λj+i0

(x̃, ỹ) defined in

(1.5). For technical reasons we have to assume the (ψj) are real-valued. More

precisely, we need ψj(x)ψj(y) to be real for any j = 1, . . . , N and x, y ∈ VN
with x ∼ y.

Theorem 1.3. Assume (GN ,WN ) satisfies (BSCT), (EXP) and (Green).

Call (λ
(N)
j )Nj=1 the eigenvalues of HN on `2(VN ), and let (ψ

(N)
j )Nj=1 be a corre-

sponding orthonormal eigenbasis. Assume the (ψj)
N
j=1 are real-valued.

Fix R ∈ N. For each N , let K = KN be an operator on `2(VN ) whose

kernel K = KN : VN ×VN −→ C is such that K(x, y) = 0 for d(x, y) > R. (In

other words, K is supported at distance ≤ R from the diagonal.) Assume that

supN supx,y∈VN |KN (x, y)| ≤ 1.

For γ ∈ C \ R, define

(1.5)

〈K〉γ =
∑

x̃∈DN ,ỹ∈ṼN

K(x̃, ỹ)ΦN
γ (x̃, ỹ), where ΦN

γ (x̃, ỹ) =
Im g̃γN (x̃, ỹ)∑

x̃∈DN Im g̃γN (x̃, x̃)
.
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Then

lim
η0↓0

lim
N→+∞

1

N

∑
λ

(N)
j ∈I

∣∣∣∣〈ψ(N)
j ,Kψ

(N)
j 〉`2(VN ) − 〈K〉λ(N)

j +iη0

∣∣∣∣ = 0.

The “kernel” above is the matrix of K in the basis (δx), i.e., K(x, y) =

〈δx,Kδy〉`2(VN ). To define (1.5) properly, we lift K to ‹VN × ‹VN by letting

(1.6) K(x̃, ỹ) = K(x, y)1ldist
G̃N

(x̃,ỹ)≤R

if x, y ∈ VN = ΓN\‹VN are the projections of x̃, ỹ ∈ ‹VN .

If we know, in addition, that ρ(∂I1) = 0, where ρ is the integrated density

of states measure (1.2), then our main theorems hold with I replaced by I1;

see the end of Section 10. Note that if (Green) holds on I1, then ρ(∂I1) = 0.

Although we tend to skip it from the notation, the “observables” K and

a necessarily depend on N . On the other hand, they do not depend on j,

the index of the eigenfunction. (They are actually allowed to depend on λ
(N)
j

in the proof, but this dependence cannot be wild — it has to be at least

continuous.) We interpret Corollary 1.2 as follows: for a given observable a,

the average
∑
x∈VN a(x)|ψ(N)

j (x)|2 is close to 〈a〉
λ

(N)
j +iη0

for most indices j.

It follows similarly from Theorem 1.3 that
∑
x,y∈VN K(x, y)ψ

(N)
j (x)ψ

(N)
j (y) is

close to 〈K〉
λ

(N)
j +iη0

for most j. One of the subtleties of the result is that the

indices j for which this holds may a priori depend on the observables a, K. If

we wanted to have a common set of indices j that do the job for all observables

(whose number is exponential in N), we would need to have an exponential

rate of convergence in Theorems 1.1 and 1.3. As is seen in the case of regular

graphs and W = 0 [5], our proof gives a rate that is at best a negative power

of a parameter related to the girth, which is typically of order logN . So, the

result is far from showing that |ψ(N)
j (x)|2 is close to the uniform measure in

total variation.

Note the presence of the extra parameter η0, in comparison with the case

of regular graphs [7], [5]. This is due to the fact that, generally speaking, the

quantities 〈a〉
λ

(N)
j +iη0

and 〈K〉
λ

(N)
j +iη0

are not necessarily bounded as η0 ↓ 0

for fixed N . They will however stay bounded in the limits N → +∞ followed

by η0 ↓ 0 (as a result of (A.14) and (Green)).

1.3. Understanding the weighted averages. In order to clarify the relevance

of Theorems 1.1 and 1.3, we now investigate the meaning of the quantities

〈a〉λ+iη0 and 〈K〉λj+iη0 . Let us start with Theorem 1.1. A good illustration

is to choose aN = 1lΛN , the characteristic function of a set ΛN ⊂ VN of size

≈ αN for some α ∈ (0, 1), say α = 1
2 .
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In the special case where (GN ) is regular and HN = AN , and also for

the anisotropic model treated in [5], the Green function g̃γN (x̃, ỹ) does not

depend on N , as it coincides with the limiting Green function Gγ(x̃, ỹ). More-

over, Gγ(x̃, x̃) = Gγ(o, o) for all x̃ ∈ DN . It follows that 〈1lΛN 〉λj+iη0 =∑
x∈ΛN

Gλj+iη0 (o,o)

NGλj+iη0 (o,o)
= α. So Corollary 1.2 implies that ‖1lΛNψ

(N)
j ‖2 ≈ α for

most ψ
(N)
j . This shows that most ψ

(N)
j are uniformly distributed, in the sense

that if we consider any ΛN ⊂ VN containing half the vertices, we find half the

mass of ‖ψ(N)
j ‖2. As we show in the next subsection, such an iterpretation is

also valid for the Anderson model.

For general models, we cannot assert that 〈1lΛN 〉λ+iη0 = α. Still, we prove

in Section A.3 that there exists cα > 0 such that for any ΛN ⊂ VN with

|ΛN | ≥ αN , we have

(1.7) inf
η0∈(0,1)

lim inf
N−→∞

inf
λ∈I1
〈1lΛN 〉λ+iη0 ≥ 2cα.

Combined with Corollary 1.2, this implies

Corollary 1.4. For any α ∈ (0, 1), there exists cα > 0 such that for any

ΛN ⊂ VN with |ΛN | ≥ αN , we have

1

N
#

ß
λ

(N)
j ∈ I :

∥∥∥1lΛNψ(N)
j

∥∥∥2
< cα

™
−→

N−→+∞
0.

Hence, while in the simple case we had ‖1lΛNψ
(N)
j ‖2 ≈ α for most ψ

(N)
j , in

the general case, we can still assert that ‖1lΛNψ
(N)
j ‖2 ≥ cα > 0 for most ψ

(N)
j .

This indicates that our theorem can truly be interpreted as a delocalization

theorem. The bad indices j (for which ‖1lΛNψ
(N)
j ‖2 < cα) will a priori depend

on ΛN .

We now turn to the general averages 〈K〉γj . Recall that ΦN
γ (x̃, ỹ) =

Im g̃γN (x̃,ỹ)∑
x̃∈DN

Im g̃γN (x̃,x̃)
. We will show in Section A.3 that under assumption (BSCT),

we have uniformly in λ ∈ I0,

(1.8)
1

N

∑
x∈VN

Im g̃λ+iη0

N (x, x) −→
N−→+∞

E
Ä
ImGλ+iη0(o, o)

ä
.

This already shows that ΦN
γ (x̃, ỹ) is of order 1/N , since the denominator in its

expression is of order N . We strengthen this observation by proving that for

any continuous F : R→ R, we have uniformly in λ ∈ I0,

1

N

∑
x∈VN

∑
y,d(y,x)=k

F
Ä
NΦN

λ+iη0
(x̃, ỹ)

ä
−→

N−→+∞
E

Ñ ∑
v,d(v,o)=k

F

Ç
ImGλ+iη0(o, v)

E (ImGλ+iη0(o, o))

åé
.

(1.9)
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This says that the empirical distribution of
Ä
NΦN

γ (x̃, ỹ)
ä

(when x is chosen

uniformly at random in VN and y is then chosen uniformly among the points

at distance k from x) converges to the law of
(

ImGγ(o,v)
E(ImGγ(o,o))

)
(v being chosen

uniformly among the points at distance k from the root o). This is a second

way of saying that ΦN
γ (x̃, ỹ) is of order 1/N : when multiplied by N , it has a

non-trivial limiting distribution.

1.4. Case of the Anderson model. It is important to check that the models

covered by the assumptions of our main theorems are not reduced to the case

of the Laplacian on regular graphs, already treated in [7], [21], [5]. Here we

consider the important case of the Anderson model on regular graphs, i.e., the

Laplacian with a random potential. We will show that if the strength of the

disorder is small enough, then the assumptions of Theorems 1.1 and 1.3 are

satisfied for almost every realization of the potential.

Let Tq be the (q + 1)-regular tree. Let ν be a probability measure on R,

supported on a compact interval [−A,A], and for every ε > 0 let νε be the

image of ν under the homothety x 7→ εx. (Now νε is supported on [−εA, εA].)

Let Ω = RTq , and define Pε on Ω by Pε = ⊗v∈Tq νε. We shall denote by Eε the

expectation with respect to Pε. Given ω = (ωv) ∈ Ω, define W ω(v) = ωv for

v ∈ Tq. Then the {ωv}v∈Tq are independent and identically distributed random

variables with common distribution νε. Here ε ∈ R is fixed and parametrizes

the strength of the disorder.

Let GN = (VN , EN ) be a (deterministic) sequence of (q+1)-regular graphs

with |VN | = N . This means that ‹GN = Tq for all N . Let ΩN = RVN and

PεN = ⊗x∈VN νε on ΩN . We denote ‹Ω =
∏
N∈N ΩN and let Pε be any probability

measure on ‹Ω having PεN as a marginal on the factor ΩN . Given (ωN )N∈N ∈ ‹Ω,

so that ωN = (ωx)x∈VN ∈ ΩN , we define WωN (x) = ωx for x ∈ VN .

The results of this section are proved in a companion paper [8].

Proposition 1.5. Suppose (GN ) satisfies (BST). Then (BSCT) holds

for Pε-a.e. realization of the potential. More precisely, for Pε-a.e. (ωN ) ∈‹Ω, the sequence (GN ,W
ωN ) has a local weak limit Pε that is concentrated on

{[Tq, o,W ω] : ω ∈ Ω}, where o ∈ Tq is fixed and arbitrary. The measure Pε
acts by taking the expectation with respect to Pε; that is, if D = q + 1, then

∫
GD,εA∗

f([G, v,W ]) dPε([G, v,W ]) =

∫
Ω
f([Tq, o,W ω]) dPε(ω)

= Eε[f([Tq, o,W ω])].

We make the following assumption on the random variables:

(POT) The measure ν is Hölder continuous; i.e., there exist Cν > 0 and b ∈
(0, 1] such that ν(I) ≤ Cν |I|b for all bounded I ⊂ R.
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The following proposition is by no means trivial; it comes from the results

of [32], [3].

Proposition 1.6. Fix 0 < λ0 < 2
√
q. There exists ε(λ0) such that if |ε| <

ε(λ0), then assumption (Green) holds for the measure Pε of Proposition 1.5 on

I1 = (−λ0, λ0).

Corollary 1.7. If the graphs GN form an expander family and satisfy

(BST) and if the disorder ε is small enough, the conclusions of Theorems 1.1

and 1.3 hold true for Pε-a.e. realization (ωN ) ∈ ‹Ω, with I1 = (−λ0, λ0).

This gives a rich enough family of examples where the assumptions of

Theorems 1.1 and 1.3 hold true. Thus the conclusions of the theorems hold

for any observables aN ,KN . If, in addition, aN or KN are independent of the

disorder, some extra averaging takes place, and we may replace 〈K〉λ+iη0 by a

simpler average as follows.

Theorem 1.8. Assume that (POT), (EXP) and (BST) hold. Given

(ωN ) ∈ ‹Ω, let (ψωNi )Ni=1 be an orthonormal basis of eigenfunctions of Hω
N =

AN +WωN in `2(VN ), with corresponding eigenvalues (λωNi )Ni=1.

Let KN : VN × VN → C, supN supx,y∈VN |KN (x, y)| ≤ 1, KN (x, y) = 0 if

d(x, y) > R, and assume KN is independent of (ωN ). Fix 0 < λ0 < 2
√
q. If

|ε| < ε(λ0), we have for Pε-a.e. (ωN ),

lim
η0↓0

lim
N→∞

1

N

∑
λ
ωN
i ∈(−λ0,λ0)

∣∣∣〈ψωNi ,KNψ
ωN
i 〉 − 〈KN 〉η0

λ
ωN
i

∣∣∣ = 0,

where for γ ∈ C \ R,

(1.10) 〈K〉η0

λ =
∑

x,y∈VN

K(x̃, ỹ)‹Φγ(x̃, ỹ) and ‹Φγ(x̃, ỹ) =
1

N
·Eε[ImG

γ(x̃, ỹ)]

Eε[ImGγ(o, o)]
.

As in the previous theorems, if R = 0, the ψj are arbitrary, while if R > 0,

we assume the ψj are real-valued.

For the Anderson model, Eε (ImGγ(v, w)) depends only on d(v, w):

Eε (ImGγ(v, w)) = Eε (ImGγ(o, u)) ,

where u is any vertex of Tq such that d(o, u) = d(v, w).

In the special case R = 0, we have 〈aN 〉η0

λ = 1
N

∑
x∈VN a(x). So choosing

aN = 1lΛN , Theorem 1.8 implies the strong form of delocalization given by the

uniform distribution of ψ
(N)
j on VN , as explained in Section 1.3.

1.5. Relation with previous work. Our main Theorem 1.3 holds for de-

terministic sequences of graphs and potentials. For any sequence (GN ,WN )

satisfying the assumptions of the theorem, the conclusion holds for any observ-

able K; in particular, K may depend on the graphs. As already noted, the
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result only says something about the delocalization of “most” eigenfunctions,

where the “good” eigenfunctions exhibiting delocalization may depend on the

choice of the observable K.

In the past years, there has been tremendous interest in spectral sta-

tistics and delocalization of eigenfunctions of random sequences of graphs

and potentials. Many papers consider random regular graphs, with degree

going slowly to infinity [44], [26], [13], [11] or fixed [30], [12], sometimes

adding a random independent and identically distributed potential [30]. In

particular, the recent papers [13], [11], [12] show “quantum unique ergodic-

ity” for the adjacency matrix of random regular graphs: given an observ-

able aN : {1, . . . , N} −→ R, for most (q + 1)-regular graphs on the vertices

{1, . . . , N}, we have that
∑N
x=1 aN (x)|ψ(N)

j (x)|2 is close to 〈aN 〉 for all indices

j. This is a considerable strengthening of Corollary 1.2 (or of the similar result

in [7]), which only says something for most indices j. This possibility to prove

QUE is, of course, due to the fact that aN has to be independent of the choice

of the graph and that results holds for almost all graphs.

When “ergodicity” of eigenfunctions is tested numerically as in the physics

papers [24], [23], it is natural to first pick a realization of the graph and of

the potential, and then to test the eigenfunctions one by one to determine

if they can be localized in small parts of the graph. It is then natural to

allow the test-observables to depend on the graph and the potential (which

our Theorem 1.3 does, but not the results of [13], [12]), but also on the index

j of the eigenfunction, which neither of the rigourous mathematical results

achieves. The numerical results of [23] seem to indicate that, as soon as a

random disorder is turned on, the eigenfunctions will be localized in small

parts of the graph. This is not in contradiction with our results: the region of

localization of ψ
(N)
j might depend on j, but our result does not allow to test

this. Note also that the results of [24], [23] were recently questioned in [43],

where the authors argue that N has not been taken large enough to see the

delocalization take place.

The paper [10] proves a very important result, saying that if ψj is an

“almost eigenvector” of the adjacency matrix on a random regular graph G,

then for almost all G and all j, the value distribution of ψj(x) as x runs over

{1, . . . , N} is close to a Gaussian N (0, σ2
j ) with σj ≤ 1. Proving that σj = 1 is

a challenge; it would amount to proving that eigenfunctions cannot be localized

in small parts of the graph. Our result does not say this, again because we

can only test one observable a at a time. The indices j for which Corollary 1.2

proves delocalization depend on a. If we wanted to have a common set of indices

j that do the job for all observables (whose number is exponential in N), we

would need to have an exponential rate of convergence in Theorems 1.1 and 1.3.

Our proof gives a rate that is at best a negative power of logN .
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Finally we would also like to mention the paper [19], where the existence

of some absolutely continuous spectrum for percolation graphs on the (q+ 1)-

regular tree is proven, if the percolation parameter is close enough to 1. Since

the absolutely continuous spectrum is mixed with purely discrete spectrum,

one cannot expect a quantum ergodicity result that claims delocalization of

most eigenfunctions, but only a “partial delocalization” result for a positive

proportion of eigenfunctions. These are the contents of [19, Th. 9]. It would be

nice to investigate what the methods of our paper would give for that model.

1.6. Outline of the proof. We borrowed the name “Quantum Ergodicity”

from a result about Laplacian eigenfunctions on Riemannian manifolds [46],

[47], [45], [48]. The proof in the setting of Laplacian eigenfunctions on man-

ifolds is made of four steps, of unequal difficulty . These four steps are also

present in our proof.

Step 0. Define the quantum variance. The goal is to show that this goes

to 0 as N → ∞. A novelty of our proof is that we replace the usual quan-

tum variance (10.1) by a “non-backtracking” one (3.3), where we replace the

eigenfunctions ψj by eigenfunctions fj , f
∗
j of a non-backtracking random walk

(Section 3). These new fj , f
∗
j are thus eigenfunctions of a non-selfadjoint prob-

lem. This causes new difficulties, which however will be compensated by the

fact that the non-backtracking random walk has simpler trajectories than the

“simple” random walk generated by the adjacency matrix A.

Step 1. Show that the quantum variance is controlled by the Hilbert-

Schmidt norm of K. Although this is obvious for the original quantum vari-

ance, this will be much harder for the “non-backtracking quantum variance”

(Section 4). This uses (BSCT) and (Green).

Step 2. Due to the fact that fj , f
∗
j satisfy an eigenfunction problem, the

quantum variance is invariant under certain transformations (Section 5).

Step 3. One should see behind these transformations the emergence of a

“classical dynamical system.” In the setting of Laplacian eigenfunctions on

manifolds, this is the geodesic flow. Here, what we get is a family of stationary

Markov chains on the set of infinite non-backtracking paths (Section 6, Re-

mark 6.1). This step has been called “classicalization” by U. Smilansky in a

private conversation; this is supposed to mean the opposite of “quantization.”

Step 4. Iterate the classical dynamical system, and use its ergodicity to

show that the quantum variance is small (Section 9). Here, the ergodicity of

our Markov chains (more precisely, the fact that the mixing rate is independent

on N) comes from the (EXP) condition. Assumption (Green) is also used to

control the probability transitions.

There is an additional step that does not exist in the traditional setting:
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Step 5. Translate the result for the “non-backtracking quantum variance”

(involving fj , f
∗
j ) into a result for the original one, involving the ψj (Section 10).

Assumptions (EXP), (BSCT) and (Green) are used here again to show that

the transformation sending ψj to fj , f
∗
j is well behaved in the limit N −→ +∞.

2. Basic identities

2.1. “Quantization procedure” on trees and their quotients. Let G = GN ,

G = (V,E). Most of the time we will drop the subscript N in the notation.

As in Section 1.2, we regard G as a quotient: G = Γ\‹G, and we let π : ‹V → V

denote the projection. Fix a fundamental domain D ⊂ ‹V for the action of Γ

on ‹V . Then |D| = |V |.
Each edge {x0, x1} ∈ ‹E gives rise to two oriented edges e = (x0, x1)

and ê = (x1, x0) in the reverse direction. We let oe and te be the origin and

terminus of e, respectively. We then let ‹B1, or simply ‹B, be the set of all such

oriented edges of ‹G. More generally, let ‹Bk be the set of non-backtracking

paths of length k in ‹G. By convention, ‹B0 := ‹V . If ω = (x0, . . . , xk) and

ω′ = (x′0, . . . , x
′
k) ∈ ‹Bk, then we write ω  ω′ if x′0 = x1, . . . , x

′
k−1 = xk and

(x0, . . . , xk, x
′
k) ∈ ‹Bk+1. We also denote oω = x0, tω = xk.

These notions descend to the quotient. We denote by Bk := Γ\‹Bk the

set of non-backtracking paths of length k in G. By convention, B0 := V . For

k = 1, we let B = B1. The set Bk is in bijection with the subset D(k) ⊂ ‹Bk of

elements having their origin in D.

Let Hk = CBk (the complex-valued functions on Bk), H = ⊕∞k=0 Hk and

H≤k := ⊕k`=0 H`. It will be convenient to identify CBk with the Γ-invariant

elements of CB̃k or with CD(k)
. For K ∈ Hk and (x0, . . . , xk) ∈ ‹Bk, we will

sometimes use the short-hand notation K(x0;xk) for K(x0, . . . , xk). This is

justified by the fact that on ‹G, the endpoints (x0;xk) determine the path

(x0, . . . , xk) uniquely. We will also use this short-hand notation on Bk, al-

though in that case one should keep in mind that K(x0;xk) actually depends

on the full path (x0, . . . , xk).

Any K ∈ Hk (regarded as a Γ-invariant element of CB̃k) may be used to

define an operator K̂ on the space of finitely supported functions on ‹V , with

kernel 〈δv, K̂δw〉`2(Ṽ )
= K(v;w). It also defines an operator K̂G on CV , with

kernel

KG(x, y) =
∑
γ∈Γ

K(x̃; γ · ỹ),

where x̃, ỹ ∈ ‹V are representatives of x, y ∈ V . The map K ∈ Hk 7→ KG

is a priori not one-to-one. However, if ρG(x) ≥ k, then KG(x, ·) determines

K(x̃, ·) uniquely. To see that K ∈ Hk 7→ KG is surjective, consider k :

V × V −→ C supported at distance k from the diagonal, and let K(x̃, ỹ) =
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k(π(x̃), π(ỹ))1ldist(x̃,ỹ)≤k(]{γ ∈ Γ,dist(x̃, γ · ỹ) ≤ k})−1. Then KG = k, and this

coincides with the lift (1.6) except at the few points where ρG(x) ≤ k.

Define the non-backtracking adjacency operator B : CB̃ → CB̃ by

(2.1) (Bf)(x0, x1) =
∑

x2∈Nx1\{x0}
f(x1, x2),

where Nx means the set of neighbors of x. Then an element K ∈Hk may also

be used to define an operator K̂
B̃

on `2(‹B), with kernel

〈δb1 , K̂B̃
δb2〉`2(B̃)

=

K(ob1 ; tb2) if Bk−1(b1, b2) 6= 0,

0 otherwise.

Thus 〈δb1 , K̂B̃
δb2〉`2(B̃)

6= 0 only if there is a non-backtracking path of length k

in ‹G, starting with the oriented edge b1 and ending with b2.

Finally, K ∈ Hk also defines an operator K̂B on CB, with matrix KB :

B ×B → C given by

KB(b1, b2) =
∑
γ∈Γ

K(b̃1; γ · b̃2),

where b̃1, b̃2 ∈ ‹B are lifts of b1, b2 ∈ B. By linearity, this extends to K ∈H≤k.
Note that if K ∈Hk, then

〈ψ,KGφ〉`2(V ) =
∑

(x0,...,xk)∈Bk

ψ(x0)K(x0;xk)φ(xk)

for any ψ, φ ∈ `2(V ). Similarly, if f, g ∈ `2(B), then we have

〈f,KBg〉`2(B) =
∑

(x0,...,xk)∈Bk

f(x0, x1)K(x0;xk)g(xk−1, xk),(2.2)

‖KBf‖2`2(B) =
∑

(x0,x1)∈B

∣∣∣∣ ∑
x0,1 (x2;xk)

K(x0;xk)f(xk−1, xk)

∣∣∣∣2,(2.3)

where
∑

x0,1 (x2;xk) sums over all (x2;xk) ∈ Bk−2 such that x2 ∈ Nx1 \{x0}. Al-

ternatively, we may simply sum over (x2;xk) ∈ Bk−2 but decide that K(x0;xk)

= 0 if (x0, . . . , xk) 6∈ Bk.

Remark 2.1. The maps K 7→ K̂, K 7→ K̂G, K 7→ K̂
B̃

and K 7→ K̂B

associate an operator to a function on the set of paths. It is tempting to

view this as a form of “quantization procedure” as those used for quantum

ergodicity on manifolds.
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2.2. Green functions on trees. Assumption (BST) says that our graphs

have few short loops, in other words, that most balls of a given radius look like

trees. One of the ingredients of our proof is that the Green function on trees

satisfies certain algebraic relations, which follow from the fact that removing

a vertex (or cutting an edge) from a tree suffices to disconnect it.

Here we recall some standard facts that hold for an arbitrary tree T =

(V (T ), E(T )), endowed with a discrete Schrödinger of the form H = A + W

acting on `2(V (T )), where A is the adjacency matrix and W : V (T ) −→ R
is a bounded function. Given γ ∈ C \ R and v, w ∈ T , the Green function is

denoted in this section by

G(v, w; γ) = 〈δv, (H − γ)−1δw〉`2(V (T )).

If v ∼ w, we denote by T (v|w) the tree obtained by removing from T the

branch emanating from v that passes through w. We define the restriction

H(v|w)(u, u′) = H(u, u′) if u, u′ ∈ T (v|w), and zero otherwise. The correspond-

ing Green function is denoted by g̃(v|w)(·, ·; γ). We finally denote

−1

2mγ
v

= G(v, v; γ) and ζγw(v) = −g̃(v|w)(v, v; γ).

Later on, we will apply these results for (T,W ) = (‹GN , W̃N ). In this case

the (full) Green function will be denoted by g̃γN (x, y), and the restricted one

by ζγx (y). In the case (T,W ) = (T ,W) (the random colored rooted trees of

assumption (BSCT)), the Green function will be denoted by Gγ(v, w), and the

restricted one by ζ̂γw(v). As a general rule, the objects defined on the limit

(T ,W) will wear a hat ·̂ to distinguish them from similar objects defined on

(‹GN , W̃N ); see also Remark A.3.

The Green functions on trees satisfy some classical recursive relations; the

following lemma is proved, for instance, in [9]. Given v ∈ V (T ), we denote by

Nv its set of nearest neighbors.

Lemma 2.2. For any v ∈ T and γ ∈ C \ R, we have

γ = W (v) +
∑
u∼v

ζγv (u) + 2mγ
v ,(2.4a)

γ = W (v) +
∑

u∈Nv\{w}
ζγv (u) +

1

ζγw(v)
.(2.4b)

For any non-backtracking path (v0; vk) in T ,

(2.5) G(v0, vk; γ) =
−∏k−1

j=0 ζ
γ
vj+1

(vj)

2mγ
vk

,

(2.6) G(v0, vk; γ) = ζγv1
(v0)G(v1, vk; γ) = ζγvk−1

(vk)G(v0, vk−1; γ).
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Also, for any w ∼ v, we have

(2.7) ζγw(v) =
mγ
w

mγ
v
ζγv (w) and

1

ζγw(v)
− ζγv (w) = 2mγ

v .

For any v, w ∈ T , we have

(2.8) G(v, w; γ) = G(w, v; γ).

Next, if γ = λ± iη with λ ∈ R, η > 0, then

(2.9)
∑

u∈Nv\{w}
| Im ζγv (u)| = | Im ζγw(v)|

|ζγw(v)|2
− η.

Finally, if Ψγ,v(w) = ImG(v, w; γ), then for any path (v0, . . . , vk) in T , k ≥ 1,

(2.10) Ψγ,v0(vk)− ζγvk−1
(vk)Ψγ,v0(vk−1) = Im ζγvk−1

(vk) ·G(v0, vk−1; γ).

Note that |ζλ+iη
v (u)| ≤ η−1. It follows from (2.4b) that for any λ ∈

[−(A+D), A+D] and η ∈ (0, 1),

(2.11)

∣∣∣∣∣ 1

ζλ+iη
w (v)

∣∣∣∣∣ ≤ cD,Aη−1,

where cD,A = 2(A+D) + 1.

Corollary 2.3. Given γ ∈ C \ R, for any v0, v1 ∈ T , v0 ∼ v1, we have

Ψγ,v1(v1)− ζγv0(v1)Ψγ,v1(v0)− ζγv0
(v1)Ψγ,v0(v1) + |ζγv0

(v1)|2Ψγ,v0(v0)

= | Im ζγv0
(v1)|.

(2.12)

Also, for any non-backtracking path (v0; vk) in T , k ≥ 1, we have

Ψγ,v0(vk)− ζγv1(v0)Ψγ,v1(vk)− ζγvk−1
(vk)Ψγ,v0(vk−1)

+ζγv1(v0)ζγvk−1
(vk)Ψγ,v1(vk−1) = 0.

(2.13)

Proof. By (2.10), Ψγ,v0(v1)− ζγv0
(v1)Ψγ,v0(v0) = Im ζγv0

(v1)G(v0, v0; γ). As

Ψγ,v1(v0) = Ψγ,v0(v1), using (2.6) we thus get

(2.14) ζγv0(v1)Ψγ,v1(v0)− |ζγv0
(v1)|2Ψγ,v0(v0) = Im ζγv0

(v1) ·G(v0, v1; γ).

Next, since G(v1, v1; γ) = G(v0,v1;γ)
ζγv1 (v0)

and 1
ζγv1 (v0)

= ζγv0
(v1) + 2mγ

v0
, we have

G(v1, v1; γ) = ζγv0
(v1)G(v0, v1; γ) + 2mγ

v0
G(v0, v1; γ)

= ζγv0
(v1)G(v0, v1; γ)− ζγv0

(v1),
(2.15)

so

Ψγ,v1(v1) = Im ζγv0
(v1)[ReG(v0, v1; γ)− 1] + Re ζγv0

(v1)Ψγ,v0(v1),
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and thus

Ψγ,v1(v1)− ζγv0
(v1)Ψγ,v0(v1)

= Im ζγv0
(v1)[ReG(v0, v1; γ)− 1]− i Im ζγv0

(v1)Ψγ,v0(v1)

= Im ζγv0
(v1)G(v0, v1; γ)− Im ζγv0

(v1).

(2.16)

This completes the proof of the first claim, by (2.14). Next, we use again that

Ψγ,v0(v1)− ζγv0
(v1)Ψγ,v0(v0) = Im ζγv0

(v1)G(v0, v0; γ). In addition, by (2.16),

ζγv1(v0)[Ψγ,v1(v1)− ζγv0
(v1)Ψv1(v0)] = Im ζγv0

(v1)[ζγv1(v0)G(v0, v1; γ)− ζγv1(v0)]

= Im ζγv0
(v1)G(v0, v0; γ),

where the last equality is proved as in (2.15). This proves the second claim for

k = 1.

Now let k ≥ 2. If we apply (2.10) with v1 instead of v0 and use (2.6), we

get

ζγv1(v0)Ψγ,v1(vk)− ζγv1(v0)ζγvk−1
(vk)Ψγ,v1(vk−1) = Im ζγvk−1

(vk) ·G(v0, vk−1; γ).

The second claim for k ≥ 2 now follows by (2.10). �

We conclude by recalling the fact that for Lebesgue-a.e. λ ∈ R, the Green

function has a finite limit on the real axis almost surely. Remember that T D,A
∗

is the set of colored rooted trees and that P is the probability measure on T D,A
∗

appearing in (BSCT).

Proposition 2.4. There exists a Lebesgue-null set A ⊂ R such that, to

each λ ∈ S := R \ A, there is Ωλ ⊆ T D,A
∗ with P(Ωλ) = 1, such that if

[T , o,W] ∈ Ωλ, then the limit G(v, w;λ + i0) := limη↓0G(v, w;λ + iη) exists

for any v, w ∈ T .

Proof. Fix [T , o,W]. By [9, Lemma 3.3], there is a Lebesgue-null set

A[T ,o,W] ⊂ R such that for any λ ∈ S[T ,o,W] := R \ A[T ,o,W], G(v, w;λ + i0)

exists for all v, w ∈ T . Let D = {([T , o,W], λ) : the limit does not exist}.
Then

(P⊗Leb)(D) =

∫
T D,A
∗

Leb(D[T ,o,W]) dP([T , o,W]),

where D[T ,o,W] = {λ ∈ R : ([T , o,W], λ) ∈ D}. Since D[T ,o,W] ⊆ A[T ,o,W], we

have Leb(D[T ,o,W]) = 0 for all [T , o,W]. Hence,

0 = (P⊗Leb)(D) =

∫
R
P(Dλ) dλ,

where Dλ = {[T , o,W] ∈ T D,A
∗ : ([T , o,W], λ) ∈ D}. It follows that P(Dλ) = 0

on a Lebesgue-full set S. Taking Ωλ = Dc
λ completes the proof. �
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3. The non-backtracking quantum variance

Our strategy follows the one discovered in [5]. We find a transformation

turning the eigenfunctions of A + W on G = Γ\‹G into eigenfunctions of a

“non-backtracking” random walk. The new operator is not self-adjoint, but

this difficulty is superseded by the fact that the trajectories of non-backtracking

random walks (on a tree) are much simpler than those of usual random walks.

The notation is the same as in the introduction except that we drop the

subscript N . Suppose (ψj) is an orthonormal basis of eigenfunctions for H =

A+W , say Hψj = λjψj .

Fix η0 ∈ (0, 1), let γj = λj + iη0, and let

fj(x0, x1) = ζ
γj
x0(x1)−1ψj(x1)− ψj(x0),

where ζγx (y) = −g̃(y|x)
N (y, y; γ); see notation in Section 2.2. If B is the non-

backtracking operator (2.1), we have

(Bζγjfj)(x0, x1)

=
∑

x2∈Nx1\{x0}
[ψj(x2)− ζγjx1(x2)ψj(x1)]

= [λjψj(x1)−W (x1)ψj(x1)− ψj(x0)]− ψj(x1)

ñ
γj −W (x1)− 1

ζ
γj
x0(x1)

ô
= fj(x0, x1)− iη0 ψj(x1),

where we used (2.4b). Hence we get

(3.1) B(ζγjfj) = fj − iη0 τ+ψj ,

where τ± : `2(V )→ `2(B) are defined by

(τ−ψ)(x0, x1) = ψ(x0) and (τ+ψ)(x0, x1) = ψ(x1).

In [5] it was possible to set η0 = 0, and (3.1) said exactly that fj was an eigen-

function of the weighted non-backtracking operator Bζγj for the eigenvalue 1.

At our level of generality, we do not know if ζλj+i0 is well defined on ‹GN . We

have to work with η0 > 0 and let η0 tend to 0 only at the end of the proof, after

N has gone to ∞. Hence, fj is not exactly an eigenfunction, and our formulas

will contain error terms of size η0 that we will need to estimate precisely, to

show that they disappear as N → +∞, followed by η0 ↓ 0.

Similarly, if we put

f∗j (x0, x1) = ζ
γj
x1(x0)−1ψj(x0)− ψj(x1),

we note that f∗j = ιfj , where ι is the edge reversal involution, and we get

(3.2) B∗(ιζγjf∗j ) = f∗j − iη0 τ−ψj .
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Let I be an open interval such that I ⊂ I1. For K ∈Hk, we define

(3.3) VarI
nb,η0

(K) =
1

N

∑
λj∈I

∣∣∣¨f∗j ,KBfj
∂∣∣∣ .

The dependence of this quantity on η0 is hidden in the definition of fj , f
∗
j . The

scalar product 〈·, ·〉 is on `2(B) endowed with the uniform measure; cf. (2.2).

Remark 3.1. We call (3.3) “quantum variance,” in analogy to the quantity

bearing this name in quantum chaos. However, there are some significant

differences:

• We use the functions fj and f∗j instead of the original ψj . They are

(quasi)-eigenfunctions, respectively of the non-selfadjoint operators Bζγj
and B∗ιζγj .
• In general VarI

nb,η0
(1l) 6= 1. Actually, in the special case of regular graphs

with W ≡ 0, one has VarI
nb,η0

(1l) = 0.

• We did not take the square of
∣∣∣¨f∗j ,KBfj

∂∣∣∣ in the definition. This is purely

for technical convenience; the square will appear later when we apply the

Cauchy-Schwarz inequality.

We will need to extend (3.3) to operators K that depend on the eigenvalue

λj in a holomorphic fashion, as spelled out in the following definition. Note

that K also depends on N ; this tends to be implicit in our notation. We let

C+ = {γ ∈ C, Im γ > 0}.

Definition 3.2 (Assumptions (Hol)). We assume that γ 7→ Kγ = Kγ
N is a

map from γ ∈ C+ to Hk such that

• For η0 > 0, for each N and (x0;xk), the function λ 7→ Kλ+iη0(x0;xk) from

R→ C has an analytic extension Kη0 to the strip {z : | Im z| < η0/2}.
• Given η0 > 0, we have

sup
N

sup
Re z∈I1,| Im z|<η0/2

sup
(x0;xk)

|Kz
N,η0

(x0;xk)| < +∞

and

sup
N

sup
Re z∈I1,| Im z|<η0/2

sup
(x0;xk)

|∂zKz
N,η0

(x0;xk)| < +∞.

We write |||K|||η0
for the maximum of these two quantities.

• For all s > 0,

(3.4) sup
η1∈(0,1)

lim sup
N→+∞

sup
λ∈I1

1

N

∑
(x0;xk)∈Bk

|Kλ+iη1

N (x0;xk)|s < +∞.

If γ 7→ Kγ is holomorphic on C+, then it obviously satisfies the first

point of the definition with Kη0(z) = Kz+iη0 . For instance, if Kγ(x0;xk)

has the form
∑
n≥0 a

(n)
(x0;xk)γ

n, then we see that λ 7→ Kλ+iη0(x0;xk) extends
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to Kη0(z) =
∑
n≥0 a

(n)
(x0;xk)(z + iη0)n. Note that although γ 7→ Kγ is not

holomorphic, its restriction to an horizontal line is still a real-analytic map

R 3 λ 7→ Kλ+iη0(x0;xk), as it possesses an analytic extension given by z 7→∑
n≥0 a

(n)
(x0;xk)(z − iη0)n. So Kγ will satisfy (Hol) if Kγ does.

Conditions (Hol) are stable under the sum and composition of operators.

We extend (3.3) to this setting, by letting

(3.5) VarI
nb,η0

(Kγ) =
1

N

∑
λj∈I

∣∣∣〈f∗j ,Kλj+iη0

B fj
〉∣∣∣ .

Most of the paper is devoted to showing

Theorem 3.3. Under the assumptions (EXP), (BSCT), and (Green), if

Kγ ∈Hk has the form Kγ = FγK for the operators Fγ in Corollary 10.3, then

lim
η0↓0

lim
N→+∞

VarI
nb,η0

(Kγ) = 0.

These γ 7→ FγK satisfy (Hol). The fact that this implies Theorem 1.3

is proven in Section 10, which may be read independently of the proof of

Theorem 3.3.

4. Step 1: Bound on the non-backtracking quantum variance

Given γ ∈ C+, we introduce a norm on each Hk, k ≥ 1, defined by

(4.1) ‖K‖2γ =
1

N

∑
(x0;xk)∈Bk

| Im ζγx1
(x0)|

|ζγx1(x0)|2
· |K(x0;xk)|2 ·

| Im ζγxk−1
(xk)|

|ζγxk−1(xk)|2
.

We denote the associated scalar product by 〈·, ·〉γ . The reason for introducing

the weight | Im ζγx (y)|
|ζγx (y)|2 will be apparent in Section 6. The aim of this section is

to prove Theorem 4.1. Here, we assume that I = (a, b), with [a, b] ⊂ I1. This

implies that there is ηa,b such that (a − 2η, b + 2η) ⊂ I1 for all η ≤ ηa,b. We

then assume that η ≤ min(η0/2, ηa,b).

Theorem 4.1. Under assumptions (BSCT) and (Green), if Kγ ∈ Hk

satisfies the set of assumptions (Hol), then for any interval I = (a, b) as above,

lim
η0↓0

lim sup
N→+∞

VarI
nb,η0

(Kγ)2

≤ D |I| lim
η0↓0

lim
η↓0

lim sup
N→∞

∫ b+2η

a−2η
‖Kλ+i(η4+η0)‖2λ+i(η4+η0) dλ.

In the scheme of Section 1.6, this corresponds to Step 1. This is more

complicated than usual, due to the fact that we have replaced the orthonor-

mal family (ψj) by non-orthogonal functions (fj), (f
∗
j ), and also because K

“depends on λj” in (3.5).
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Recall that D above is the maximal degree and we assumed |WN (x)| ≤ A.

In particular, any eigenvalue λj lies in I0 := [−(A + D), A + D]. For λ ∈ R
and η0 ∈ (0, 1), let

αλ+iη0(x0, x1) =
| Im ζλ+iη0

x1
(x0)|1/2

ζλ+iη0
x1 (x0)

.

Denoting γj = λj + iη0, we have (by a double application of the Cauchy-

Schwarz inequality)

VarI
nb,η0

(Kγ) ≤ 1

N

∑
λj∈I

∥∥∥αγj−1f∗j

∥∥∥ ∥∥∥αγjKγj
B fj

∥∥∥
≤ 1

N

( ∑
λj∈I

∥∥∥αγj−1f∗j

∥∥∥2 )1/2( ∑
λj∈I

∥∥∥αγjKγj
B fj

∥∥∥2 )1/2
.

(4.2)

We check at the end of the section that

(4.3) lim
η0↓0

lim sup
N→+∞

1

N

∑
λj∈I

∥∥∥αγj−1f∗j

∥∥∥2
≤ D · |I|.

We now introduce an approximation χ of 1lI by an entire function, by the

standard convolution procedure: Fix 0 < η ≤ η0/2. Let φ(x) = 1
π1/2 e

−x2
, and

denote φε(x) = ε−1φ(x/ε). Let χ be the convolution χ = φη3/2 ∗1lI on R. Then

χ extends to an entire function on C given by

(4.4) χ(z) =
1

η3/2π1/2

∫
I
e−(z−y)2/η3

dy.

Note that 0 ≤ χ(x) ≤ 1 for x ∈ R, and |χ(z)| ≤ eη5
for | Im z| ≤ η4. We assume

η is small enough so that χ ≥ 1
31lI and |χ(z)| ≤ e−1/η on

{z ∈ C : | Im z| ≤ η4, d(Re z, I) ≥ 2η}.

We finally note that | ∂χ∂t2 (t1 + it2)| ≤ Cη−3eη
5

for any z = t1 + it2 with t1 ∈ I0

and |t2| ≤ η4.

By (4.2) and (4.3), we have

(4.5) lim sup
N→∞

VarI
nb,η0

(Kγ)2 ≤ lim sup
N→∞

3D |I|
N

N∑
j=1

χ(λj) ‖αγjK
γj
B fj‖

2.

Now by (2.3), we have

‖αγjK
γj
B fj‖

2 =
∑

(x0,x1)∈B

∑
(x2;xk),(y2;yk)

|αγj (x0, x1)|2Kγj (x0;xk)Kγj (x0; yk)

· [ζγjxk−1(xk)
−1ψj(xk)−ψj(xk−1)][ζ

γj
yk−1(yk)−1ψj(yk)−ψj(yk−1)],

where (x0;xk) = (x0, x1, x2, . . . , xk), (x0; yk) = (x0, x1, y2, . . . , yk) and with

the convention that Kγj (x0;xk) = 0 if the path (x0, x1, x2, . . . , xk) backtracks.
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The function λ 7→ |αλ+iη0(x0, x1)|2 =
− Im ζ

λ+iη0
x1

(x0)

|ζλ+iη0
x1

(x0)|2
extends analytically to the

rectangle

R = {z ∈ C : Re z ∈ [−(A+D + η), (A+D + η)], Im z ∈ [−η4, η4]}

through the formula
ζ
z−iη0
x1

(x0)−ζz+iη0x1
(x0)

2i ζ
z+iη0
x1

(x0)ζ
z−iη0
x1

(x0)
. We denote this by αzη0

(x0, x1) (which

is not the same as |αz+iη0(x0, x1)|2). The same is true for the other ζ terms. We

denote the extension of λ 7→ Kλ+iη0(x0;xk)Kλ+iη0(x0; yk) by Kz
η0

(x0;xk, yk).

Again, if (x0; yk) = (x0;xk), this is not the same as |Kz+iη0(x0;xk)|2. However,

see Lemma 4.4 to compare both.

Given x, y ∈ V and z ∈ C \ R, let

gz(x, y) = 〈δx, (H − z)−1δy〉`2(V ) =
N∑
j=1

ψj(x)ψj(y)

λj − z
be the Green function of H on the finite graph G. Then by Cauchy’s integral

formula,

1

N

N∑
j=1

χ(λj) ‖αγjK
γj
B fj‖

2

=
−1

2iπN

∫
z∈∂R

∑
(x0,x1)∈B

∑
(x2;xk),(y2;yk)

χ(z)αzη0
(x0, x1)

Kz
η0

(x0;xk, yk) ·
[ gz(xk, yk)

ζz+iη0
xk−1 (xk)ζ

z−iη0
yk−1 (yk)

− gz(xk, yk−1)

ζz+iη0
xk−1 (xk)

− gz(xk−1, yk)

ζz−iη0
yk−1 (yk)

+ gz(xk−1, yk−1)
]

dz.

(4.6)

We now observe that the integral over the vertical segments of the contour

do not contribute as η, η0 ↓ 0. More precisely,

Lemma 4.2. The integral −1
2iπN

∫
z∈∂R F (z) dz in (4.6) may be replaced by

1
2iπN (

∫ b+2η
a−2η F (λ+ iη4) dλ−

∫ b+2η
a−2η F (λ− iη4) dλ), up to an error term at most

Ck,D,Aη
−3
0 η−4|||K|||2η0

e−1/η .

Proof. The error is the integral of F (z) on the two vertical paths

{Re z = −A−D− η, Im z ∈ [−η4, η4]}, {Re z = A+D+ η, Im z ∈ [−η4, η4]},
and the four connected components of the set

{Im z = ±η4,Re z ∈ [−A−D − η,A+D + η] \ (a− 2η, b+ 2η)}.

On these pieces, we know that |χ(z)| ≤ e−1/η. Moreover, |Kz
η0

(x0;xk, yk)| ≤
|||K|||2η0

. Next, by (2.11),

|αzη0
| = 1

2

∣∣∣∣∣ 1

ζz+iη0
x1 (x0)

− 1

ζz−iη0
x1 (x0)

∣∣∣∣∣ ≤ cD,A
Å

1

η0 + η4
+

1

η0 − η4

ã
.
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Since η ≤ η0/2 by assumption, this yields |αzη0
| ≤ CD,Aη

−1
0 . The Green func-

tions and ζ terms may be bounded similarly by 4cD,Aη
−2
0 η−4. A factor Ck,D

comes from the number of paths, divided by N . �

Our next aim is to lift this expression to the universal cover ‹G. In other

words, we wish to replace gz by g̃z everywhere, to be able to use the identities

of Section 2.2.

Lemma 4.3. Denote z = λ+ iη4. Given R ∈ N∗, there is dR,k,η > 0 such

that the integral 1
2iπN

∫ b+2η
a−2η F (z) dλ in Lemma 4.2 may be replaced by

1

2iπN

∫ b+2η

a−2η

∑
ρG(x0)≥dR,k,η

∑
x1∼x0

∑
(x2;xk),(y2;yk)

χ(z)αzη0
(x0, x1)

Kz
η0

(x0;xk, yk) ·
[ g̃z(x̃k, ỹk)

ζz+iη0
ek ζz−iη0

e′
k

− g̃z(x̃k, ỹk−1)

ζz+iη0
ek

− g̃z(x̃k−1, ỹk)

ζz−iη0

e′
k

+ g̃z(x̃k−1, ỹk−1)
]

dλ,

where ζγek = ζγxk−1
(xk) and ζγe′

k
= ζγyk−1

(yk), up to an error termÇ
#{ρG(x0) < dR,k,η}

N
η−4 +

1

R

å
Ck,D,Aη

−3
0 |||K|||

2
η0
eη

5
.

Similarly, 1
2iπN

∫ b+2η
a−2η F (z̄) dλ in Lemma 4.2 may be replaced by

1

2iπN

∫ b+2η

a−2η

∑
ρG(x0)≥dR,k,η

∑
x1∼x0

∑
(x2;xk),(y2;yk)

χ(z̄)αz̄η0
(x0, x1)K z̄

η0
(x0;xk, yk)

·
[ g̃z̄(x̃k, ỹk)

ζ z̄+iη0
ek ζ z̄−iη0

e′
k

− g̃z̄(x̃k, ỹk−1)

ζ z̄+iη0
ek

− g̃z̄(x̃k−1, ỹk)

ζ z̄−iη0

e′
k

+ g̃z̄(x̃k−1, ỹk−1)
]

dλ

up to an error term (
#{ρG(x0)<dR,k,η}

N η−4 + 1
R)Ck,D,Aη

−3
0 |||K|||

2
η0
eη

5
.

Proof. We first approximate λ 7→ gλ+iη4
(x, y) by a polynomial on the

compact interval I0. Let hη(t) = −(t − iη4)−1, and choose a polynomial qη
with ‖hη − qη‖∞ < 1

R . Then ‖hη(H − λ)− qη(H − λ)‖ < 1
R , so

|gλ+iη(x, y)− qη(H − λ)(x, y)| < 1

R

for any x, y and λ. So replacing each gλ+iη4
(x, y) by qη(H − λ)(x, y) in the

sums gives an error term
Ck,D,Aη

−3
0 |||K|||

2
η0
eη

5

R as in Lemma 4.2.
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Denote Ck,D,A,η0 = Ck,D,Aη
−3
0 ‖K‖2η0

. Let dR,η be the degree of qη. Sup-

pose ρG(x0) ≥ dR,η + k =: dR,k,η. Then it is easy to see that

qη(H − λ)(xk, yk) = qη(‹H − λ)(x̃k, ỹk);

cf. Lemma A.1. The same holds for the other edges (xk, yk−1) and so on. The

terms with ρG(x0) < dR,k,η bring an error term
#{ρG(x0)<dR,k,η}

N η−4Ck,D,A,η0 .

Finally, we replace the qη(‹H − λ)(x̃, ỹ) by g̃λ+iη4
(x̃, ỹ), which yields again an

error of the form
Ck,D,A,η0

R . This proves the first statement, and the second one

is proven similarly. �

We continue to simplify the expression and record the following.

Lemma 4.4. If we replace

αzη0
(x0, x1)Kz

η0
(x0;xk, yk) and αz̄η0

(x0, x1)K z̄
η0

(x0;xk, yk)

in Lemma 4.3 by

|αz+iη0(x0, x1)|2Kz+iη0(x0;xk)Kz+iη0(x0; yk),

then as N →∞, the error we get is at most Ck,D,Aη
−6
0 |||K|||

2
η0
eη

5
η4.

We may also replace χ(λ ± iη4) by χ(λ), modulo the asymptotic error

Ck,D,Aη
−3
0 |||K|||

2
η0
eη

5
η. Finally, we may replace each ζ z̄+iη0

ek
by ζz+iη0

ek
and ζz−iη0

e′
k

by ζ z̄−iη0

e′
k

, modulo an asymptotic error Ck,D,Aη
−6
0 |||K|||

2
η0
eη

5
η4.

Proof. We start with αzη0
(x0, x1)Kz

η0
(x0;xk, yk). Denote e = (x0, x1) and

ζγe = ζγx1
(x0). We note that∣∣∣αzη0
(x0, x1)− |αz+iη0(x0, x1)|2

∣∣∣ =

∣∣∣∣∣ζz−iη0
e − ζz+iη0

e

2iζz+iη0
e ζz−iη0

e

− ζ z̄−iη0
e − ζz+iη0

e

2iζz+iη0
e ζ z̄−iη0

e

∣∣∣∣∣
=

1

2

∣∣∣∣∣ 1

ζ z̄−iη0
e

− 1

ζz−iη0
e

∣∣∣∣∣ ≤ CD,Aη−2
0

∣∣∣ζz−iη0
e − ζ z̄−iη0

e

∣∣∣
≤ CD,Aη−4

0 |z − z̄| = 2CD,Aη
−4
0 η4,

where we used (2.11) in the first inequality and the resolvent identity in the sec-

ond one. Similarly, Kz+iη0(x0;xk)Kz+iη0(x0; yk) is the same as Kz
η0

(x0;xk, yk),

but with each z − iη0 replaced by z̄ − iη0. It follows that

|Kz
η0

(x0;xk, yk)−Kz+iη0(x0;xk)Kz+iη0(x0; yk)|
≤ 2 sup |∂zK(v0; vk)| sup |K(v0; vk)| · |z − z̄|

≤ 4|||K|||2η0
η4.

Hence, αzη0
(x0, x1)Kz

η0
(x0;xk, yk) is the same as

|αz+iη0(x0, x1)|2Kz+iη0(x0;xk)Kz+iη0(x0; yk),
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modulo CD,Aη
−4
0 |||K|||

2
η0
η4. This error is further multiplied by the function χ.

Bounding the ζ terms by some cD,Aη
−2
0 and |χ(z)| by eη

5
, we end up with an

error term at most∫ b+2η

a−2η

CD,Aη
−6
0 ‖K‖2η0

eη
5
η4

N

∑
(x0,x1)

∑
(x2;xk),(y2;yk)

∣∣∣g̃λ±iη4
(x̃k, ỹk)

∣∣∣ dλ

and a similar upper bound for each term involving g̃λ±iη
4
. Since Iη =

(a − 2η, b + 2η) ⊂ I1, we may use Remark A.5 to deduce that the integrand

is uniformly bounded over λ ∈ Iη by Ck,D,Aη
−6
0 |||K|||

2
η0
eη

5
η4 as N → ∞. Note

that |Iη| ≤ |I0| = 2(D +A).

This proves the first claim. The second claim is similar; for example,

|αz̄η0
(x0, x1)− |αz+iη0(x0, x1)|2| ≤ CD,Aη−2

0 |ζ
z+iη0
e − ζ z̄+iη0

e | ≤ 2CD,Aη
−4
0 η4.

Moreover, K z̄
η0

(x0;xk, yk) is the same asKz+iη0(x0;xk)Kz+iη0(x0; yk) with each

z+iη0 replaced by z̄+iη0, so the proof carries on. For the third claim, note that

|χ(λ± iη4)− χ(λ)| ≤ sup
z∈R

∣∣∣∣ ∂χ∂x2
(z)

∣∣∣∣ · η4 ≤ Ceη5
η.

For the last claim, |(ζz±iη0
e )−1 − (ζ z̄±iη0

e )−1| ≤ 2CD,Aη
−4
0 η4 as we previously

saw when analyzing αzη0
, so we get a similar error. �

By virtue of Lemmas 4.3 and 4.4, denoting z = λ + iη4, we know at this

stage that modulo some error terms, the expression (4.6) may be replaced by

1

πN

∫ b+2η

a−2η

∑
ρG(x0)≥dR,k,η

∑
x1∼x0

∑
(x2;xk),(y2;yk)

χ(λ)|αz+iη0(x0, x1)|2

·Kz+iη0(x0;xk)Kz+iη0(x0; yk)

·

Ñ
Im g̃z(x̃k, ỹk)

ζz+iη0
ek ζ z̄−iη0

e′
k

− Im g̃z(x̃k, ỹk−1)

ζz+iη0
ek

− Im g̃z(x̃k−1, ỹk)

ζ z̄−iη0

e′
k

+ Im g̃z(x̃k−1, ỹk−1)

é
dλ.

(4.7)

We now make the expression more homogeneous as follows:

Lemma 4.5. Assume we have made all the replacements in Lemma 4.4.

If we finally replace each of the four Im g̃z(x̃, ỹ) by Im g̃z+iη0(x̃, ỹ) in (4.7),

then the error term vanishes as N →∞, followed by η ↓ 0, followed by η0 ↓ 0.
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Proof. We only analyze the first error term; the other three are similar.

Choose p, q, r such that 1
p + 1

q + 1
r = 1, and use the Hölder’s inequality

∣∣∣∣ 1

πN

∫ b+2η

a−2η

∑
ρG(x0)≥dR,k,η

∑
x1∼x0

∑
(x2;xk),(y2;yk)

χ(λ)Kz+iη0(x0;xk)Kz+iη0(x0; yk)

· |αz+iη0(x0, x1)|2

ζz+iη0
ek ζ z̄−iη0

e′
k

Ä
Im g̃z(x̃k, ỹk)− Im g̃z+iη0(x̃k, ỹk)

ä
dλ

∣∣∣∣
≤ eη

5

πN

Ñ∫ ∑
(x0,x1)∈B

∑
(x2;xk),(y2;yk)

∣∣∣Kz+iη0(x0;xk)K
z+iη0(x0; yk)

∣∣∣p dλ

é1/p

×

Ñ∫ ∑
(x0,x1)∈B

∑
(x2;xk),(y2;yk)

∣∣∣∣ |αz+iη0(x0, x1)|2

ζz+iη0
ek ζ z̄−iη0

e′
k

∣∣∣∣q dλ

é1/q

×

Ñ∫ ∑
(x0,x1)∈B

∑
(x2;xk),(y2;yk)

∣∣∣Im g̃z(x̃k, ỹk)− Im g̃z+iη0(x̃k, ỹk)
∣∣∣r dλ

é1/r

.

Here
∫

=
∫ b+2η
a−2η . The first sum is bounded by

Dk−1
∑

(x0;xk)∈Bk

|Kz+iη0(x0;xk)|2p.

Assumption (Hol) on K implies that

sup
η0,η

lim sup
N→∞

1

N

∫ ∑
(x0;xk)∈Bk

|Kλ+iη4+iη0(x0;xk))|2p dλ < +∞.

Next, by Remark A.3,

lim
N→∞

1

N

∫ ∑
(x0,x1)∈B

∑
(x2;xk),(y2;yk)

∣∣∣∣ |αz+iη0(x0, x1)|2

ζz+iη0
ek ζ z̄−iη0

e′
k

∣∣∣∣q dλ

=

∫
E

Ñ ∑
(x0;xk),(y0;yk),x0=y0=o

∣∣∣∣ |α̂z+iη0(x0, x1)|2

ζ̂z+iη0
ek ζ̂ z̄−iη0

e′
k

∣∣∣∣q
é

dλ,

and the right-hand side is uniformly bounded in η, η0 ∈ (0, 1) by Remark A.4.

Remember the convention that objects wearing a hat ·̂ are defined on the limit

(T ,W), by similar formulas to those on GN . We also refer to Section 2.2 for

notation related to Green functions.
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Finally, again by Remark A.3 we have

lim
N→∞

1

N

∫ ∑
(x0,x1)∈B

∑
(x2;xk),(y2;yk)

∣∣∣Im g̃z(x̃k, ỹk)− Im g̃z+iη0(x̃k, ỹk)
∣∣∣r dλ

=

∫
E

Ñ ∑
(v0;vk),(w0;wk),v0=w0=o

∣∣∣ImGz(vk, wk)− ImGz+iη0(vk, wk)
∣∣∣r
é

dλ.

We check that the right-hand side vanishes as η, η0 ↓ 0. Let

Xη0
η = ImGλ+i(η4+η0)(vk, wk)− ImGλ+iη4

(vk, wk),

Xη0 = ImGλ+iη0(vk, wk)− ImGλ+i0(vk, wk), and Y η0
η = Xη0

η −Xη0 .

Denote
∑
vk,wk =

∑
(v0;vk),(w0;wk),v0=w0=o . For any M > 0, we have∫
E
∑
vk,wk

|Y η0
η |r =

∫
E
∑
vk,wk

|Y η0
η |r1|Y η0η |≤M

+

∫
E
∑
vk,wk

|Y η0
η |r1|Y η0η |>M .

By Proposition 2.4,
∑
vk,wk |Y

η0
η |r→ 0 for Lebesgue-a.e. λ ∈R and P-a.e.

[T , o,W] ∈ T D,A
∗ as η ↓ 0. So the first term tends to 0 by dominated conver-

gence. For the second, for any s > r,∫
E
∑
vk,wk

|Y η0
η |r1|Y η0η |>M ≤

1

M s−r

∫
E
∑
vk,wk

|Y η0
η |s ≤

Cs
M s−r

by Remark A.4 and Fatou’s lemma. This vanishes as M → ∞. Thus,∫
E∑vk,wk |Y

η0
η |r → 0 as η ↓ 0. Similarly,

∫
E∑vk,wk |X

η0 |r → 0 as η0 ↓ 0.

Since |Xη0
η |r ≤ 2r−1(|Y η0

η |r + |Xη0 |r), it follows that
∫
E∑vk,wk |X

η0
η |r → 0 as

η ↓ 0 followed by η0 ↓ 0. �

By virtue of Lemma 4.5, denoting Ψγ,v(w) = Im g̃γ(v, w), the term in

parentheses in (4.7) may be replaced by

(4.8)Ñ
Ψz+iη0,x̃k(ỹk)

ζz+iη0
ek ζ z̄−iη0

e′
k

− Ψz+iη0,x̃k(ỹk−1)

ζz+iη0
ek

−
Ψz+iη0,x̃k−1

(ỹk)

ζ z̄−iη0

e′
k

+ Ψz+iη0,x̃k−1
(ỹk−1)

é
.

Recall that ek=(xk−1, xk), e
′
k=(yk−1, yk) and that there are non-backtracking

paths (x0, x1, . . . , xk−1, xk) and (x0, x1, . . . , yk−1, yk). Moreover, ρG(x0) ≥
dR,η,k ≥ k.

Suppose e′k 6= ek. Then there is a path (v0, . . . , vs) with v0 = x̃k, v1 =

x̃k−1, vs−1 = ỹk−1 and vs = ỹk. Taking the complex conjugate in identity

(2.13), noting that Ψz+iη0,v(w) is real, we see that (4.8) is zero. If ek = e′k,

then (2.12) tells us that (4.8) equals
| Im ζ

z+iη0
xk−1

(xk)|

|ζz+iη0xk−1
(xk)|2

.
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Since ρG(x0) ≥ k in Lemma 4.3, the paths (x0, x1, x2, . . . , xk) and (x0, x1,

y2, . . . , yk) are determined by ek and e′k, respectively. So the terms in the sum

are only nonzero if (x0, x1, x2, . . . , xk) = (x0, x1, y2, . . . , yk). Hence, if we make

all replacements in Lemmas 4.4 and 4.5, modulo the errors appearing in these

lemmas, the expression (4.6) finally takes the form

1

πN

∫ b+2η

a−2η

∑
ρG(x0)≥dR,k,η

∑
x1∼x0

∑
(x2;xk)

χ(λ)|αz+iη0(x0, x1)|2|Kz+iη0(x0;xk)|2

·
| Im ζz+iη0

xk−1
(xk)|

|ζz+iη0
xk−1 (xk)|2

dλ ≤ 1

π

∫ b+2η

a−2η
‖Kz+iη0‖2z+iη0

dλ,

where we used that χ(λ) ≤ 1 on R. Collecting all estimates on the error terms,

taking N →∞, then η ↓ 0, then η0 ↓ 0, then R→∞, we finally get

1

N

N∑
j=1

χ(λj)‖αγjK
γj
B fj‖

2 .
1

π

∫ b+η

a−2η
‖Kz+iη0‖2z+iη0

dλ.

Recalling (4.5), if we prove (4.3), this will complete the proof of Theorem 4.1.

We have

‖αγj−1f∗j ‖2 =
∑

(x0,x1)∈B

1

| Im ζ
γj
x1(x0)|

|ψj(x0)− ζγjx1(x0)ψj(x1)|2.

Repeating the same arguments, we see that modulo asymptotically vanishing

error terms, we have

1

N

∑
λj∈I
‖αγj−1f∗j ‖2 .

3

πN

∫ b+2η

a−2η

∑
ρG(x0)≥dR,η

∑
x1∼x0

χ(λ)

| Im ζz+iη0
x1 (x0)|

·
î
Ψz+iη0,x̃0(x̃0)− ζz+iη0

x1
(x0)Ψz+iη0,x̃1(x̃0)− ζz+iη0

x1 (x0)Ψz+iη0,x̃0(x̃1)

+ |ζz+iη0
x1

(x0)|2Ψz+iη0,x̃1(x̃1)
ó

dλ.

The term in square brackets is just | Im ζz+iη0
x1

(x0)| by (2.12). Hence, using

χ(λ) ≤ 1 we get 1
N

∑
λj∈I ‖αγj−1f∗j ‖2 .

3(|I|+4η)D
π for any small η > 0, and

(4.3) follows.

5. Step 2: Invariance property of the quantum variance

In the scheme of Section 1.6, we are now in Step 2. Using the functional

equations (3.1) and (3.2) satisfied by fj , f
∗
j , we show that there are certain

transformations Rγn,r : Hk = CBk → Hn+k = CBn+k that leave the quantum

variance (3.3) unchanged.

Recall from Section 3 that B(ζγjfj) = fj − iη0 τ+ψj and B∗(ιζγjf∗j ) = f∗j
− iη0 τ−ψj if γj = λj + iη0. So

(Bζγj )2fj = Bζγjfj − iη0Bζγjτ+ψj = fj − iη0(I + Bζγj )τ+ψj .
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Iterating r times,

(Bζγj )rfj = fj − iη0

r−1∑
t=0

(Bζγj )tτ+ψj .

Similarly,

(B∗ιζγj )n−rf∗j = f∗j − iη0

n−r−1∑
t′=0

(B∗ιζγj )t′τ−ψj .

If we define for r ≤ n and γ ∈ C \ R the operator Rγn,r : Hk →Hn+k by

(Rγn,rK)(x0;xn+k) = ζγx1(x0)ζγx2(x1) · · · ζγxn−r(xn−r−1)K(xn−r;xn−r+k)

· ζγxn−r+k(xn−r+k+1)ζγxn−r+k+1
(xn−r+k+2) · · · ζγxn+k−1

(xn+k),

we thus get

〈f∗j , (R
γj
n,rK)Bfj〉

=
∑

(xn−r;xn−r+k)

î
(B∗ιζγj )n−rf∗j

ó
(xn−r, xn−r+1)K(xn−r;xn−r+k)

· [(Bζγj )rfj ] (xn−r+k−1, xn−r+k)

=
¨
(B∗ιζγj )n−rf∗j ,KB(Bζγj )rfj

∂
= 〈f∗j ,KBfj〉 − En,r,j(η0,K),

where the E stands for an “error term” that should vanish as η0 ↓ 0:

En,r,j(η0,K) = iη0

r−1∑
t=0

〈f∗j ,KB(Bζγj )tτ+ψj〉+ iη0

n−r−1∑
t′=0

〈(B∗ιζγj )t′τ−ψj ,KBfj〉

+ η2
0

r−1∑
t=0

n−r−1∑
t′=0

〈(B∗ιζγj )t′τ−ψj ,KB(Bζγj )tτ+ψj〉.

Since this holds for each 1≤r≤n and K=Kγ , by the triangle inequality we get

(5.1) VarI
nb,η0

(Kγ) ≤ VarI
nb,η0

( 1

n

n∑
r=1

Rγn,rKγ
)

+
1

N

∑
λj∈I

∣∣∣∣ 1n
n∑
r=1

En,r,j(η0,K
γ)

∣∣∣∣.
We first show that the latter term may be neglected.

Lemma 5.1. Suppose Kγ∈Hk satisfies assumptions (Hol), and let Ī⊆I1.

Then for all n ∈ N,

lim
η0↓0

lim sup
N→∞

Ç
1

N

∑
λj∈I

∣∣∣∣ 1n
n∑
r=1

En,r,j(η0,K
γ)

∣∣∣∣
å2

= 0.

Proof. We haveÑ
1

N

∑
λj∈I
| 1
n

n∑
r=1

En,r,j |

é2

≤ 1

n

n∑
r=1

Ñ
1

N

∑
λj∈I
|En,r,j |

é2

.
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Now, letting γj = λj + iη0 as above,Ç ∑
λj∈I
|En,r,j |

å2

≤ η2
0cn,r

® r−1∑
t=0

( ∑
λj∈I

∣∣∣¨f∗j ,Kγj
B (Bζγj )tτ+ψj

∂∣∣∣ )2

+
n−r−1∑
t′=0

( ∑
λj∈I

∣∣∣¨(B∗ιζγj )t′τ−ψj ,Kγj
B fj

∂∣∣∣ )2

+ η2
0

∑
t,t′

( ∑
λj∈I

∣∣∣¨(B∗ιζγj )t′τ−ψj ,Kγj
B (Bζγj )tτ+ψj

∂∣∣∣ )2
´
,

where cn,r = n+r(n−r). So it suffices to show that lim supN
Ä

1
N

∑
λj∈I |〈·, ·〉|

ä2

is uniformly bounded in η0 for each t, t′. For the first term, we have

( 1

N

∑
λj∈I
|〈f∗j ,K

γj
B (Bζγj )tτ+ψj〉|

)2
≤ 1

N

∑
λj∈I
‖αγj−1f∗j ‖2

· 1

N

∑
λj∈I
‖αγjK

γj
B (Bζγj )tτ+ψj‖2.

The first sum is uniformly bounded as η0 ↓ 0, by (4.3). Next, by (2.3), we have

‖αγjK
γj
B (Bζγj )tτ+ψj‖2

=
∑

(x0,x1)∈B

∑
(x2;xk),(y2;yk)

|αγj (x0, x1)|2Kγj (x0;xk)

·Kγj (x0; yk) · [(Bζγj )tτ+ψj ](xk−1, xk)[(Bζγj )tτ+ψj ](yk−1, yk).

Arguing as in Section 4, applying Lemma 4.2 to Lemma 4.4, for z = λ + iη4

we get

1

N

∑
λj∈I
‖αγjK

γj
B (Bζγj )tτ+ψj‖2

.
3

πN

∫ b+2η

a−2η

∑
ρG(x0)≥dR,k,t,η

∑
x1∼x0

∑
(x2;xk+t),(y2;yk+t)

· χ(λ)|αz+iη0(x0, x1)|2Kz+iη0(x0;xk)Kz+iη0(x0; yk)ζ
z+iη0
xk

(xk+1)

· · · ζz+iη0
xk+t−1

(xk+t)ζ
z+iη0
yk (yk+1) · · · ζz+iη0

yk+t−1(yk+t)Ψz,x̃k+t
(ỹk+t) dλ.

Using Hölder’s inequality as in Lemma 4.5, we see that as N → ∞, this

quantity is uniformly bounded in η, η0 by (Hol) and (Green). One bounds
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1
N

∑
λj ‖K

γj
B fj‖2 similarly. Finally,

1

N

∑
λj∈I
‖(B∗ιζγj )t′τ−ψj‖2

≤ Dt′

N

∑
λj∈I

∑
(x0;xt′+1)

|ψj(x0)|2|ζγjx1(x0) · · · ζγjxt′ (xt′−1)|2

.
3Dn

πN

∫ b+2η

a−2η

∑
(x0;xt′+1),ρG(x0)≥dR,η,t′

χ(λ)Ψz,x̃0(x̃0)|ζz+iη0
x1

(x0)

· · · ζz+iη0
xt′

(xt′−1)|2 dλ,

which is asymptotically bounded using Hölder’s inequality as before. �

Using the invariance law (5.1), Theorem 4.1 with K̃γ = 1
n

∑n
r=1Rγn,rKγ ,

and Lemma 5.1, we deduce the following statement:

Proposition 5.2. Under the assumptions of Theorem 4.1,

lim
η0↓0

lim sup
N→+∞

VarI
nb,η0

(Kγ)2

≤ D |I| lim
η0↓0

lim
η↓0

lim sup
N→∞

∫ b+2η

a−2η

∥∥∥∥ 1

n

n∑
r=1

Rλ+i(η4+η0)
n,r Kλ+i(η4+η0)

∥∥∥∥2

λ+i(η4+η0)
dλ.

6. Step 3: A stationary Markov chain appears

Denoting γ = λ+ i(η4 +η0) in Proposition 5.2, we are now concerned with

estimating

(6.1)

∥∥∥∥∥ 1

n

n∑
r=1

Rγn,rKγ

∥∥∥∥∥
2

γ

=
1

n2

n∑
r,r′=1

¨
Rγn,rKγ ,Rγn,r′K

γ
∂
γ
.

Suppose r ≥ r′, so that n− r ≤ n− r′. Then

〈Rγn,rK,R
γ
n,r′K〉γ

=
1

N

∑
(x0;xn+k)∈Bn+k

| Im ζγx1
(x0)|

|ζγx1(x0)|2
· |ζγx1

(x0) · · · ζγxn−r(xn−r−1)|2

· |ζγxn−r′+k(xn−r′+k+1) · · · ζγxn+k−1
(xn+k)|2

·K(xn−r;xn−r+k) ζ
γ
xn−r+k(xn−r+k+1) · · · ζγxn−r′+k−1

(xn−r′+k)

· ζγxn−r+1(xn−r) · · · ζγxn−r′ (xn−r′−1)K(xn−r′ ;xn−r′+k)

·
| Im ζγxn+k−1

(xn+k)|
|ζγxn+k−1(xn+k)|2

.
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Letting η1 = Im γ, (2.9) tells us that

∑
x0∈Nx1\{x2}

| Im ζγx1
(x0)| =

| Im ζγx2
(x1)|

|ζγx2(x1)|2
− η1.

Similarly, we have

∑
xn+k∈Nxn+k−1

\{xn+k−2}
| Im ζγxn+k−1

(xn+k)| =
| Im ζγxn+k−2

(xn+k−1)|
|ζγxn+k−2(xn+k−1)|2

− η1.

By iteration, this induces some simplifications:

〈Rγn,rK,R
γ
n,r′K〉γ

=
1

N

∑
(xn−r;xn−r′+k)∈Bk+r−r′

| Im ζγxn−r+1
(xn−r)|

|ζγxn−r+1(xn−r)|2
K(xn−r;xn−r+k)

·K(xn−r′ ;xn−r′+k) · ζγxn−r+k(xn−r+k+1) · · · ζγxn−r′+k−1
(xn−r′+k)

· ζγxn−r+1(xn−r) · · · ζγxn−r′ (xn−r′−1)

·
| Im ζγxn−r′+k−1

(xn−r′+k)|
|ζγxn−r′+k−1

(xn−r′+k)|2
−En,r,r′(η1,K),

(6.2)

with the error term

En,r,r′(η1,K) =
η1

N

n−r∑
s=1

∑
(xs;xn+k)

|ζγxs+1
(xs) · · · ζγxn−r(xn−r−1)|2

· |ζγxn−r′+k(xn−r′+k+1) · · · ζγxn+k−2
(xn+k−1)|2 · | Im ζγxn+k−1

(xn+k)|

·K(xn−r;xn−r+k) ζ
γ
xn−r+k(xn−r+k+1) · · · ζγxn−r′+k−1

(xn−r′+k)

· ζγxn−r+1(xn−r) · · · ζγxn−r′ (xn−r′−1)K(xn−r′ ;xn−r′+k)

+
η1

N

n+k−1∑
s′=n−r′+k

∑
(xn−r′ ;xs′ )

| Im ζγxn−r+1
(xn−r)|

|ζγxn−r+1(xn−r)|2

· |ζγxn−r′+k(xn−r′+k+1) · · · ζγxs′−1
(xs′)|2

·K(xn−r;xn−r+k) ζ
γ
xn−r+k(xn−r+k+1) · · · ζγxn−r′+k−1

(xn−r′+k)

· ζγxn−r+1(xn−r) · · · ζγxn−r′ (xn−r′−1)K(xn−r′ ;xn−r′+k).

The expression is slightly nicer if we replace K by ZγK defined by

(6.3) (ZγK)(x0;xk) = ζγx0
(x1) · · · ζγxk−1

(xk)K(x0;xk).
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If γ 7→ Kγ satisfies (Hol), then so does γ 7→ ZγK
γ . Using (2.7), in that case

we get

〈Rγn,rZγKγ ,Rγn,r′ZγK
γ〉γ

=
1

N

∑
(xn−r;xn−r′+k)∈Bk+r−r′

| Im ζγxn−r+1
(xn−r)|

|mγ
xn−r+1 |2|ζ

γ
xn−r(xn−r+1)|2

· |ζxn−r(xn−r+1) · · · ζxn−r′+k−1
(xn−r′+k)|2mγ

xn−rK
γ(xn−r;xn−r+k)

·mγ
xn−r′

Kγ(xn−r′ ;xn−r′+k) · uγxn−r+1
(xn−r) · · ·uγxn−r′ (xn−r′−1)

·
| Im ζγxn−r′+k−1

(xn−r′+k)|
|ζγxn−r′+k−1

(xn−r′+k)|2
−En,r,r′(η1, ZγK

γ),

(6.4)

where uγx(y) is the complex number of modulus 1 given by

(6.5) uγx(y) = ζγx (y)ζγx (y)−1.

Let us define a positive measure µγk on the set Bk of non-backtracking paths

of length k, by putting

(6.6) µγk [(x0;xk)] =
| Im ζγx1

(x0)|
|mγ

x1ζ
γ
x0(x1)|2

· |ζx0(x1) · · · ζxk−1
(xk)|2 ·

| Im ζγxk−1
(xk)|

|ζγxk−1(xk)|2
.

Let us also introduce the operator

(SuγK)(x0;xk)

=
|ζγx1

(x0)|2

| Im ζγx1(x0)|
∑

x−1∈Nx0\{x1}
| Im ζγx0

(x−1)|uγx0(x−1)K(x−1;xk−1).
(6.7)

Then, using (2.7) again, we see that (6.4) takes the nicer form

(6.8)

〈Rγn,rZγKγ ,Rγn,r′ZγK
γ〉γ =

1

N
〈Sr−r′uγ mγKγ ,mγKγ〉`2(µγ

k
) −En,r,r′(η1, ZγK

γ),

where we let (mγK)(x; y) = mγ
xK(x; y). Let us also define

(6.9) (SγK)(x0;xk) =
|ζγx1

(x0)|2

| Im ζγx1(x0)|
∑

x−1∈Nx0\{x1}
| Im ζγx0

(x−1)|K(x−1;xk−1).

Such operators would be called “transfer operators” in ergodic theory, or “tran-

sition matrices” in the theory of Markov chains. Note that Sγ has non-negative

coefficients and that Suγ just differs from Sγ by the “phases” uγx0(x−1). The

effect of adding a phase to a stochastic operator is a much studied subject

in the theory of Markov chains, or more generally in ergodic theory. (See

Wielandt’s theorem [35, Ch. 8], or in the context of hyperbolic dynamical

systems [36, Ch. 4].)
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The matrix elements of Sγ are given by

(6.10) Sγ(ω, ω′) =
|ζγx1

(x0)|2

| Im ζγx1(x0)|
| Im ζγx0

(x−1)|

if ω = (x0;xk), ω
′ = (x−1;xk−1) and ω′  ω, and Sγ(ω, ω′) = 0 other-

wise. Recall from Section 2.1 that if ω = (x0;xk), we write ω′  ω if

ω′ = (x−1, x0, . . . , xk−1) for some x−1 ∈ Nx0 \ {x1}.
Note that Sγ is substochastic:

∑
ω′∈Bk Sγ(ω, ω′) ≤ 1 for any ω ∈ Bk, by

(2.9). More precisely, if ω = (x0;xk) and η1 = Im γ > 0, then

(6.11)
∑
ω′∈Bk

Sγ(ω, ω′) = 1− η1
|ζγx1

(x0)|2

| Im ζγx1(x0)|
.

Taking the adjoint in `2(µγk), a direct calculation gives

(S∗γK)(x0;xk) =
|ζγxk−1

(xk)|2

| Im ζγxk−1(xk)|
∑

xk+1∈Nxk\{xk−1}
| Im ζγxk(xk+1)|K(x1;xk+1).

The adjoint S∗γ is also substochastic, with

(6.12)
∑
ω′∈Bk

S∗γ(ω, ω′) = 1− η1

|ζγxk−1
(xk)|2

| Im ζγxk−1(xk)|
.

Remark 6.1. By (2.9), for any (x0;xk−1) ∈ Bk−1, we have

(6.13)
∑

xk∈Nxk−1
\{xk−2}

µγk [(x0;xk)] ≤ µγk−1 [(x0;xk−1)]

and for any (x1;xk) ∈ Bk−1,

(6.14)
∑

x0∈Nx1\{x2}
µγk [(x0;xk)] ≤ µγk−1 [(x1;xk)] .

In (6.1) we take γ = λ + i(η4 + η0) (cf. Proposition 5.2), and thus η1 =

Im γ = η4 + η0. In the limiting case η1 = 0, (6.13) and (6.14) turn into

equalities. Equation (6.13) is then the Kolmogorov compatibility condition: it

tells us that the family of measures (µγk) may be extended to a positive measure

(actually, a Markov measure) on the set B∞ of infinite non-backtracking paths.

Equality in condition (6.14) means that this Markov chain is stationary. This

stationarity is the property that makes the measures µγk nice, and this is the

reason for introducing (somewhat artificially) the weight Im ζγx (y)
|ζγx (y)|2 in (4.1).

This family of stationary Markov chains (indexed by γ) is in some sense

the “classical dynamical system” that we were seeking in Section 1.6.
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Since η1 = η4 + η0 is non-zero (but small), we do not actually have exact

equality in (6.13) and (6.14). This causes some error terms that we need to

control as η, η0 −→ 0.

7. Spectral gap and mixing

In this section, we convert the expanding assumption (EXP) into an esti-

mate on the rate of mixing of the “Markov chains” (µγk) defined in (6.6). Every

transitive Markov chain is mixing, but here we need estimates that are uniform

both as N −→ +∞ and as γ approaches the real axis.

A technical difficulty is that the measures (µγk) are not a priori bounded

from above, and the transition probabilities are not bounded from below as γ

approaches the real axis. Peaks of (µγk), as well as small transition probabilities,

tend to “disconnect” the graph and are bad for mixing. So we will need to

show that there are few peaks and few small transitions (Proposition 7.6).

Let

(7.1) νγk =
1

µγk(Bk)
µγk

be the normalized measure. We denote by `2(νγk ) the set `2(Bk) endowed with

the scalar product 〈f, g〉νγ
k

=
∑
ω∈Bk ν

γ
k (ω)f(ω)g(ω).

We anticipate the calculations of Section 10, where we will need to consider

the non-backtracking quantum variance of operators Kγ of the form Kγ = FγK
where K is independent of γ, and Fγ : Hm → Hk is a γ-dependent operator

for some 1 ≤ k ≤ m + 1, having the form Fγ = Lγd−1ST,γ , T γ , Oγ1 , Uγj , Oγj ,

Pγj , j ≥ 2, or a polynomial combination thereof. See (10.3), (10.4), (10.5),

(10.7), (10.8), and (10.9) for the definitions. In the case Fγ = Lγd−1ST,γ , the

operator depends on an additional parameter T ∈ N∗, which has to be taken

arbitrarily large in Corollary 10.3.

Comparing with equation (6.8), this means that we will need to deal with

〈Sr−r′uγ Kγ ,Kγ〉µγ
k
, where now Kγ = BγK, K is γ-independent, and Bγ : Hm

→Hk is defined by

Bγ = mγZ−1
γ Fγ .

For simplicity, the calculations below are written for k = 1. This suffices

for our purposes, as we shall see in Section 9. Like in the statement of The-

orem 1.3, we will always assume that the γ-independent operator K satisfies

‖K‖∞ := supx,y∈V |K(x, y)| ≤ 1.

The main results of this section are the two following propositions, which

estimate the norm of the transfer operator Sγ (6.10) on proper subspaces. We

call F the space of functions f on B such that f(e) “depends only on the

terminus,” that is, f(e) = f(e′) if te = te′ . The first proposition estimates the
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norm of Sγ on the orthogonal of F , and the second one estimates the norm of

S2
γ on the orthogonal of constant functions.

We denote by `2(B1, U) the set `2(B1) endowed with the scalar prod-

uct 〈f, g〉U = 1
N

∑
e∈B1

f(e)g(e). Let PF,U be the orthogonal projector on F

in `2(B1, U):

(7.2) PF,UK(e) =
1

d(te)

∑
e′: te′=te

K(e′).

We use as a “reference operator” the transfer operator S defined by

S : `2(B,U)−→ `2(B,U)

Sf(e) =
1

q(oe)

∑
e′ e

f(e′),

where q(x) = d(x) − 1. Both S and S∗ are stochastic if the adjoint of S is

taken in `2(B1, U). The influence of the spectral gap assumption (EXP) on

the spectrum of S is studied in [6], and we will use these results below.

We denote Q = S∗S and Q2 = S2 ∗S2. Note that Q(e, e′) = 0 unless there

exists e′′ such that e  e′′ and e′  e′′. In this case, we say that [e, e′] is a

pair ; [e, e′] form a pair if and only if they share the same terminus. The set of

pairs is denoted by P (B1).

Proposition 7.1. Let BγK ∈H1. Let w = PF⊥,νBγK be the orthogonal

projection of BγK on F⊥ in `2(νγ1 ). Then for any M > 0, we have

‖Sγw‖2νγ1 ≤ (1− 3
4M

−2) · ‖w‖2νγ1 + CN,M (Bγ) · ‖K‖2∞,

where

CN,M (Bγ) = sup
‖K‖∞=1

M−1

2N

∑
[e,e′]∈Badp(M)

Q(e, e′)|BγK(e)−BγK(e′)|2

+M−2
∑

e∈Bad(M)

νγ1 (e)|BγK(e)− PF,UBγK(e)|2.
(7.3)

The sets Bad(M) of bad edges and Badp(M) of bad pairs of edges will

be defined in the course of the proof. They correspond to the aforementioned

peaks of µγ1 and problems of small transition probabilities. If there were no bad

edges and bad pairs, Proposition 7.1 would be a genuine spectral gap estimate.

Proposition 7.2. Let BγK ∈H1. Let f = P1⊥,νBγK be the orthogonal

projection of BγK on 1⊥ in `2(νγ1 ). Then for any M > 0 we have

‖S2
γf‖2νγ1 ≤ (1−M−2c(D,β)) · ‖f‖2νγ1 + CN,M,2(Bγ) · ‖K‖2∞,
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where c(D,β) > 0 is explicit and depends only on D (upper bound on the

degree) and the spectral gap β of (EXP), and

CN,M,2(Bγ) = sup
‖K‖∞=1

M−1

2N

∑
[e,e′]∈Badp(2,M)

Q2(e, e′)|BγK(e)−BγK(e′)|2

+M−2
∑

e∈Bad(M)

νγ1 (e)|BγK(e)− P1,UBγK(e)|2,

where P1,U is the orthogonal projector on 1 in `2(B1, U).

Here, Badp(2,M) is another set of bad edge-couples defined in the proof.

The quantities CN,M (Bγ), CN,M,2(Bγ) are estimated in Proposition 7.7.

Proof of Proposition 7.1. Let Qγ = S∗γSγ (where now the adjoint is con-

sidered in `2(νγ1 )). The operator Qγ being self-adjoint on `2(νγ1 ) is equivalent

to the relation

(7.4) νγ1 (e)Qγ(e, e′) = νγ1 (e′)Qγ(e′, e)

for all e, e′ ∈ B1. Note that Qγ(e, e′) = 0 unless [e, e′] is a pair.

Define Dγ(e) =
∑
e′ Qγ(e, e′) ≤ 1 and Mγ(e, e′) = Dγ(e)δe=e′ −Qγ(e, e′).

Then using (7.4), we have the Dirichlet identity

(7.5)
1

2

∑
e,e′

νγ1 (e)Qγ(e, e′)|K(e)−K(e′)|2 = 〈K,MγK〉νγ1 .

We observe that for any K ∈ `2(νγ1 ),

(7.6) ‖SγK‖νγ1 ≤ ‖K‖νγ1 .

Indeed, denoting 〈·, ·〉ν := 〈·, ·〉νγ1 , by Dirichlet we have ‖SγK‖2ν = 〈K,QγK〉ν
and 〈K,MγK〉ν ≥ 0, so ‖K‖2ν ≥ 〈K,DγK〉ν ≥ 〈K,QγK〉ν as claimed.

Remark 7.3. The Dirichlet identity shows that F = {K∈CB :MγK = 0}
= {K ∈ CB : (I −Q)K = 0}.

Remark 7.4. If J ⊥ F in `2(B1, U), then 〈J, (I−Q)J〉U ≥ 3
4 ‖J‖

2
U . Indeed,

〈τ+δy, J〉U = 0 for all y ∈ V , so
∑
x∼y J(x, y) = 0 for all y ∈ V and thus

(QJ)(x0, x1) = (S∗SJ)(x0, x1) = J(x0,x1)
q(x1)2 . (Recall that q(x) = d(x)− 1 where

d(x) is the degree of x.) As min q(x) ≥ 2, we get ‖QJ‖U ≤ 1
4 ‖J‖U and the

claim follows.

Fix a large M > 0. We call e ∈ B1 bad if νγ1 (e) > M
N . We call a pair

[e, e′] ∈ P (B1) bad if νγ1 (e)Qγ(e, e′) < M−1

N . We call Bad(M) and Badp(M)

the sets of bad e and [e, e′], respectively.
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To prove Proposition 7.1, we first note that by (7.5), and letting Kγ =

BγK, we have

‖w‖2ν − ‖Sγw‖2ν ≥ 〈w,Mγw〉ν = 〈Kγ ,MγKγ〉ν

=
1

2

∑
[e,e′]∈P (B1)

νγ1 (e)Qγ(e, e′)|Kγ(e)−Kγ(e′)|2

≥ M−1

2N

∑
[e,e′]6∈Badp(M)

Q(e, e′)|Kγ(e)−Kγ(e′)|2

= M−1〈Kγ , (I −Q)Kγ〉U

− M−1

2N

∑
[e,e′]∈Badp(M)

Q(e, e′)|Kγ(e)−Kγ(e′)|2,

(7.7)

where we used Q(e, e′) ≤ 1. By Remark 7.4,

〈Kγ , (I −Q)Kγ〉U = 〈Kγ − PF,UKγ , (I −Q)(Kγ − PF,UKγ)〉U

≥ 3

4
· ‖Kγ − PF,UKγ‖2U .

Now

‖Kγ − PF,UKγ‖2U ≥M−1
∑

e 6∈Bad(M)

νγ1 (e)|Kγ(e)− PF,UKγ(e)|2

= M−1‖Kγ − PF,UKγ‖2ν −M−1
∑

e∈Bad(M)

νγ1 (e)|Kγ(e)− PF,UKγ(e)|2

≥M−1‖w‖2ν −M−1
∑

e∈Bad(M)

νγ1 (e)|Kγ(e)− PF,UKγ(e)|2.

(7.8)

We used that ‖Kγ − PF,UKγ‖2ν ≥ ‖w‖2ν since w = PF⊥,ν(Kγ − PF,UKγ). The

result is obtained by putting together (7.7) and (7.8). �

Proof of Proposition 7.2. We now let Qγ2 = S2 ∗
γ S2

γ (where the adjoint is

taken in `2(νγ1 )). Then Qγ2(e, e′) 6= 0 if and only if there exists e′′, e1, e
′
1 such

that e  e1  e′′ and e′  e′1  e′′. We denote the set of such couples [e, e′]

by P2(B1), and let Mγ
2(e, e′) = D2δe=e′ −Q2(e, e′), where

D2(e) =
∑
e′
Qγ2(e, e′) ≤ 1.

Fix M > 0. We say that [e, e′] ∈ P2(B1) is bad if νγ1 (e)Q2(e, e′) < M−1

N .

We call Badp(2,M) the set of bad couples in P2(B1).

The proof is then similar to Proposition 7.1, replacing the space F by the

space of constant functions and using [6, Th. 1.1] instead of Remark 7.4. In

particular, the quantity c(β,D) is the one appearing in [6, Th. 1.1]. �
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Later on, we will need to iterate the result of Proposition 7.2, considering

S2r
γ instead of S2

γ . Since S∗γ is not exactly stochastic, Sγ does not preserve

the orthogonal of constants. Still, we can iterate (6.12) to get S∗ lγ 1 = 1 −
η1
∑l−1
s=0 S∗ sγ ξγ , where ξγ(x0, x1) =

|ζγx0
(x1)|2

| Im ζγx0
(x1)| . Hence, for any K, we have

〈1,S lγK〉ν = 〈1,K〉ν − η1〈
∑l−1
s=0 S∗ sγ ξγ ,K〉ν . Denoting

ZlK := ξγ
2l−1∑
s=0

SsγK, Z0K := 0,

we see that if K ⊥ 1, then (S2l
γ K + η1ZlK) ⊥ 1.

Proposition 7.5. Let K ∈ Hm. Let f = P1⊥,νBγK be the orthogonal

projection of BγK on 1⊥ in `2(νγ1 ). Then for any M > 0, we have

‖S2r
γ f‖ν ≤

Ä
1−M−2c(D,β)

är/2 ‖f‖ν
+
r−1∑
l=0

CN,M,l,2(Bγ)1/2‖K‖∞ + 2η1

r−1∑
l=1

‖Zlf‖ν ,

where CN,M,l,2(Bγ) = CN,M,2((S2l
γ + η1Zl)P1⊥,νBγ).

Proof. The proof is by induction on r. This holds for r = 1 by Propo-

sition 7.2. Assume the result holds for r. If f ⊥ 1, we have just seen that

(S2r
γ + η1Zr)f ⊥ 1 in `2(νγ1 ). So using Proposition 7.2 and (7.6),

‖S2(r+1)
γ f‖ν ≤ ‖S2

γ(S2r
γ + η1Zr)f‖ν + η1‖Zrf‖ν

≤
Ä
1−M−2c(D,β)

ä1/2 ‖(S2r
γ + η1Zr)f‖ν

+ CN,M,r,2(Bγ)1/2 ‖K‖∞ + η1‖Zrf‖ν .

Since ‖(S2r
γ + η1Zr)f‖ ≤ ‖S2r

γ f‖+ η1‖Zrf‖, the claim follows. �

The rest of this section is devoted to estimating the “bad” quantities.

Proposition 7.6. Under assumptions (BSCT) and (Green), for any

s ≥ 1, there exists Cs such that for all M > 1, we have

sup
η1∈(0,1)

lim sup
N→∞

sup
Re γ∈I1,Im γ=η1

νγ1 (Bad(M)) ≤ CsM−s

and

lim sup
N→∞

#Badp(M)

N
≤ CsM−s.

Proof. We have νγ1 (Bad) = νγ1 {e : νγ1 (e) > M
N }, so

νγ1 (Bad) ≤M−sN s
∑
e∈B1

νγ1 (e)νγ1 (e)s = M−s
( N

µγ1(B1)

)s+1 1

N

∑
e∈B1

µγ1(e)s+1.
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Recalling the definition of µγ1 (6.6), and using Remark A.3, we get( N

µγ1(Bk)

)s+1 1

N

∑
e∈B1

µγ1(e)s+1

−→
N−→+∞

1

E[
∑
o′∼o µ̂

γ
1(o, o′)]s+1

E
ñ∑
o′∼o

µ̂γ1(o, o′)s+1

ô
uniformly in Re γ ∈ I1, for any fixed Im γ = η1. By Remark A.4, this is

bounded by some constant Cs. The second assertion is proved similarly. �

Proposition 7.7. For all t ∈ N,

CN,M (StuγBγ) ≤ 2M−1

N
#Badp(M)1/3

Ç∑
e

1

νγ1 (e)

å1/3

·
Ç∑

e

νγ1 (e)
(∑

w

|Bγ(e, w)|
)6
å1/3

+ 2M−2νγ1 (Bad(M))1/2

Ç∑
e

νγ1 (e)
(∑

w

|Bγ(e, w)|
)4
å1/2

+ 2M−2νγ1 (Bad(M))1/2

Ç∑
e

[(PF,Uν
γ
1 )(e)]2

νγ1 (e)

å1/4

·
Ç∑

e

νγ1 (e)
(∑

w

|Bγ(e, w)|
)8
å1/4

,

where (PF,Uν
γ
1 )(e) = 1

d(te)

∑
te′=te

νγ1 (e′), and

CN,M,2(StuγBγ) ≤ 2M−1

N
#Badp(2,M)1/3

·
Ç∑

e

1

νγ1 (e)

å1/3Ç∑
e

νγ1 (e)
(∑

w

|Bγ(e, w)|
)6
å1/3

+ 2M−2νγ1 (Bad(M))1/2

Ç∑
e

νγ1 (e)
(∑

w

|Bγ(e, w)|
)4
å1/2

+ 2M−2νγ1 (Bad(M))1/2

Ç
1

N2

∑
e

1

νγ1 (e)

å1/4

·
Ç∑

e

νγ1 (e)
(∑

w

|Bγ(e, w)|
)8
å1/4

.

(7.9)

Similar estimates hold if Bγ is replaced by P1⊥,νBγ , where P1⊥,ν is the projec-

tion on the orthogonal of constants in `2(νγ1 ).
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We first deduce the following corollary. Recall that the operators Fγ from

Corollary 10.3 depend on a parameter T ∈ N∗, and Bγ = mγZ−1
γ Fγ . In this

section, T is fixed, but it will be taken to +∞ in Section 10.

Corollary 7.8. For any s > 0, there exists Cs,T such that, for all M ,

sup
η1∈(0,1)

lim sup
N→∞

sup
Re γ∈I1,Im γ=η1

sup
t∈N

CN,M (StuγBγ) ≤ Cs,TM−s

and

sup
η1∈(0,1)

lim sup
N→∞

sup
Re γ∈I1,Im γ=η1

sup
t∈N

CN,M,2(StuγBγ) ≤ Cs,TM−s.

Similar estimates hold if Bγ is replaced by P1⊥,νBγ .

Proof of Corollary 7.8. This will follow from Propositions 7.6 and 7.7 if

we show that

sup
η1∈(0,1)

lim sup
N→∞

sup
Re γ∈I1,Im γ=η1

N−2
∑
e

1

νγ1 (e)
< +∞,(7.10)

sup
η1∈(0,1)

lim sup
N→∞

sup
Re γ∈I1,Im γ=η1

∑
e

νγ1 (e)
(∑

w

|Bγ(e, w)|
)α

< +∞(7.11)

(α = 4, 6, 8), and

(7.12) sup
η1∈(0,1)

lim sup
N→∞

sup
Re γ∈I1,Im γ=η1

∑
e

1

νγ1 (e)

1

d(te)2

( ∑
te′=te

νγ1 (e′)
)2
< +∞.

For (7.10), we have by Remark A.3 that

N−2
∑
e

1

νγ1 (e)
=

∑
e µ

γ
1(e)

N
· 1

N

∑
e

1

µγ1(e)

−→
N→∞

E
(∑
o′∼o

µ̂γ1(o, o′)

)
· E
(∑
o′∼o

1

µ̂γ1(o, o′)

)

uniformly in Re γ ∈ I1, for any fixed Im γ = η1. So the claim follows Re-

mark A.4.

For (7.12), we have

1

d(te)2

( ∑
te′=te

νγ1 (e′)
)2
≤

∑
te′=te

νγ1 (e′)2,

so we deduce the upper bound D(
∑
e

1
νγ1 (e)2 )1/2(

∑
e ν

γ
1 (e)4)1/2, which is uni-

formly bounded by

D

E (
∑
o′∼o µ̂

γ
1(o, o′))

E
(∑
o′∼o

1

µ̂γ1(o, o′)2

)1/2

E
(∑
o′∼o

µ̂γ1(o, o′)4

)1/2

.
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Finally, for (7.11), we write

∑
e

νγ1 (e)
(∑

w

|Bγ(e, w)|
)α

≤ N∑
e µ

γ
1(e)

Ç
1

N

∑
e

µγ1(e)2|mγ
oe |

2α

|ζγoe(te)|2α

å1/2Ç
1

N

∑
e

(∑
w

|Fγ(e, w)|
)2α

å1/2

.

The first two terms are bounded by 1
E(
∑

o′∼o µ̂
γ
1 (o,o′))

(E∑o′∼o
µ̂γ1 (o,o′)2|m̂γo |2α

|ζ̂γo (o′)|2α
)1/2

and the last term is shown to be uniformly bounded in Remark 10.4. This

completes the proof. �

Proof of Proposition 7.7. An important point here is to obtain a bound

that does not depend on t. Recalling (7.3), we first estimate∑
[e,e′]∈Badp(M)

Q(e, e′)|StuγBγK(e)− StuγBγK(e′)|2

≤ 4
∑

[e,e′]∈Badp(M)

Q(e, e′)|StuγBγK(e)|2 = 4
∑
e

n(e)|StuγBγK(e)|2,
(7.13)

where n(e) =
∑
e′:[e,e′]∈Badp(M)Q(e, e′). Using Hölder, this is less than

4

Ç∑
e

n3(e)

å1/3Ç∑
e

1

νγ1 (e)

å1/3Ç∑
e

νγ1 (e)|StuγBγK(e)|6
å1/3

.

But again by Hölder and the fact that Q is stochastic, we have∑
e

n3(e) ≤
∑
e

(∑
e′

1l[e,e′]∈Badp(M)

)(∑
e′
Q(e, e′)3/2

)2
≤ #Badp(M).

Next, recalling (6.7) and (6.9), we have |StuγBγK(e)| ≤ (Stγ |BγK|)(e). As Stγ
and S∗ tγ are substochastic, and νγ1 (e)Stγ(e, e′) = νγ1 (e′)S∗ tγ (e′, e), we have

∑
e

νγ1 (e)[Stγ |BγK|(e)]6 ≤
∑
e

νγ1 (e)
(∑

e′
Stγ(e, e′)

)5(∑
e′
Stγ(e, e′)[|BγK|(e′)]6

)
≤
∑
e,e′

νγ1 (e′)S∗ tγ (e′, e)[|BγK|(e′)]6

≤
∑
e′
νγ1 (e′)[|BγK|(e′)]6.

Collecting the estimates, we showed that (7.13) is bounded by

4 (#Badp(M))1/3

Ç∑
e

1

νγ1 (e)

å1/3Ç∑
e

νγ1 (e) [|BγK|(e)]6
å1/3

.
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For the second term in (7.3), we have∑
e∈Bad(M)

νγ1 (e)|StuγBγK(e)− PF,UStuγBγK(e)|2

≤ 2
∑

e∈Bad(M)

νγ1 (e)
(î
Stγ |BγK|(e)

ó2
+
î
PF,UStγ |BγK|(e)

ó2)(7.14)

and again, as Stγ and S∗ tγ are substochastic,

∑
e∈Bad(M)

νγ1 (e)
î
Stγ |BγK|(e)

ó2 ≤ νγ1 (Bad(M))1/2

Ç∑
e

νγ1 (e) [|BγK|(e)]4
å1/2

.

Also,∑
e∈Bad(M)

νγ1 (e)
î
PF,UStγ |BγK|(e)

ó2
≤ νγ1 (Bad(M))1/2

Ç∑
e

νγ1 (e)
î
PF,UStγ |BγK|(e)

ó4å1/2

.

Using that PF,U is stochastic and Stγ is substochastic, we have∑
e

νγ1 (e)
î
PF,UStγ |BγK|(e)

ó4 ≤∑
e,e′

νγ1 (e)PF,U (e, e′)
î
Stγ |BγK|(e′)

ó4
≤
(∑

e′

[(PF,Uν
γ
1 )(e′)]2

νγ1 (e′)

)1/2(∑
e′
νγ1 (e′)

î
Stγ |BγK|(e′)

ó8)1/2

≤
Ç∑

e

[(PF,Uν
γ
1 )(e)]2

νγ1 (e)

å1/2Ç∑
e

νγ1 (e) [|BγK|(e)]8
å1/2

.

This yields the first inequality. The second one is proven similarly. �

Remark 7.9. Note that if ‖K‖∞ ≤ 1, then

(7.15) ‖BγK‖2νγ1 =
∑
e∈B

νγ1 (e)|BγK(e)|2 ≤
∑
e

νγ1 (e)
(∑

w

|Bγ(e, w)|
)2
,

so supη1>0 lim supN→∞ supRe γ∈I1,Im γ=η1
‖BγK‖2νγ1 ≤ CT by the proof in Corol-

lary 7.8; see also Remark 10.4.

For a quantity A(N, γ, κ) depending onN, γ (and possibly on an additional

parameter κ), we will write A(N, γ, κ) = Oκ(1)N−→+∞,γ to mean that, for any

given κ,

sup
η1∈(0,1)

lim sup
N→∞

sup
Re γ∈I1,Im γ=η1

A(N, γ, κ) < +∞.

For instance, if ‖K‖∞ ≤ 1, then ‖BγK‖2νγ1 = OT (1)N−→+∞,γ . This is true

more generally for ‖BγK‖2νγ
k
, with Bγ = mγ

Zγ
Fγ : Hm → Hk, and Fγ as in

Corollary 10.3.
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Similarly, for the operator Zl appearing in Proposition 7.5, the arguments

in Corollary 7.8 and Remark 10.4 show that ‖Zlf‖νγ1 = Ol,T (1)N−→+∞,γ .

Finally, by Corollary 7.8, suptCN,M,2(StuγBγ) is uniformly bounded by

Cs,TM
−s for any M and s, as N → +∞. To express this, we use the notation

OT (M−∞)N−→+∞,γ .

8. Transition matrices with phases

We now consider the operator Suγ given in (6.7). If we denote by Muγ the

multiplication operator (MuγK)(x0;xk) = uγx1(x0)K(x0;xk), where uγx1
(x0) is

the function of modulus 1 defined in (6.5), then Suγ = SγMuγ .

It is well known that putting phases into a matrix with positive entries

will strictly diminish its spectral radius, unless the phases satisfy very special

relations: this is the contents of Wielandt’s theorem [35, Ch. 8]. This is re-

flected in Proposition 8.1 below. Without the error term, part (i) says that

the norm of S4
uγ is strictly smaller than one, in contrast to S4

γ . (The latter

only contracts the norm on proper subspaces; see Section 7.) The contraction

property of S4
uγ holds true except in special cases, described in part (ii) of

Proposition 8.1.

Note that we are not using Wielandt’s theorem directly, as we want some

information on the norm of the operator S4
uγ instead of its spectral radius. In

addition, as in Section 7, we need estimates that are uniform both as N →∞
and as γ approaches the real axis.

Recall from Section 7 that Bγ is an operator Hm →Hk with 1 ≤ k ≤ m.

As in Section 7, the case k = 1 suffices for our purposes, but we need more

general operators Aγ : Hm → H1 defined in terms of Bγ . The quantities

CN,M (Aγ), CN,M,2(Aγ) were introduced in Propositions 7.1 and 7.2. In partic-

ular, CN,M,2(I) corresponds to the case where Aγ is the identity operator. The

measure νγ1 is defined in (6.6) and (7.1).

Proposition 8.1. Fix γ ∈ C+, AγK ∈ H1, ε ∈ (0, 1), M > 0 and a

graph G = GN . Denote η1 = Im γ. Then

(i) Either we have

(8.1) ‖S4
uγAγK‖2νγ1 ≤ (1− ε)2‖AγK‖2νγ1 + C̃N,M,2(Aγ) · ‖K‖2∞

with

C̃N,M,2(Aγ) = max{CN,M (Aγ), CN,M,2(Aγ), CN,M (SuγAγ), CN,M,2(S2
uγAγ)},

(ii) or there exist θ : V → R and constants sj with |sj | ≤ 1, j = 1, 2, such that∥∥∥∥uγx1
(x0)− s2

e−i[θ(x0)+θ(x1)]

nγx0

∥∥∥∥2

νγ1

≤ cM,β

[
ε1/2 + η1 ‖ξγ‖νγ1 + η2

1 ‖ξγ‖2νγ1
]

+ C ′N,M ,
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and

‖uγx1
(x0)−s1n

γ
x1
ei[θ(x0)+θ(x1)]‖2νγ1 ≤ cM,β

[
ε1/2 + η1 ‖ξγ‖νγ1 + η2

1 ‖ξγ‖2νγ1
]
+C ′N,M ,

where

ξγ(x0, x1) =
|ζγx0

(x1)|2

| Im ζγx0(x1)|
, nγx = (mγ

x)(mγ
x)−1, C ′N,M =

8M2CN,M,2(I)

c(D,β)
.

Moreover, there is an explicit f(β,D), depending only on the spectral gap

β and on the degree, such that cM,β ≤ f(β,D)M3 as M → +∞.

In particular, in case (ii),

(8.2)

‖uγx0
(x1)uγx1

(x0)− s1s2‖2νγ1 ≤ 4cM,β

[
ε1/2 + η1 ‖ξγ‖νγ1 + η2

1 ‖ξγ‖2νγ1
]

+ 4C ′N,M .

Proof. (a) We start with some preliminary inequalities. Denote 〈·, ·〉ν =

〈·, ·〉νγ1 . Recall that we denote by F the space of functions on B that depend

only on the terminus.

Let δ1 = 3
4M

−2, Kγ = AγK, and let w = PF⊥Kγ be the orthogonal

projection of Kγ on F⊥ in `2(νγ1 ). By the proof of Proposition 7.1,

〈w,Mγw〉ν ≥ δ1 ‖w‖2ν − CN,M (Aγ)‖K‖2∞.

By Remark 7.3 and the fact that Mγ∗ =Mγ , we have

〈w,Mγw〉ν = 〈Kγ ,MγKγ〉ν ≤ ‖Kγ‖2ν − ‖SγKγ‖2ν .

So if f = PFKγ = Kγ − w ∈ F is the projection of Kγ on F , we have

(8.3) ‖Kγ − f‖2ν ≤ δ−1
1

Ä
‖Kγ‖2ν − ‖SγKγ‖2ν + CN,M (Aγ)‖K‖2∞

ä
.

Similarly, if δ2 = M−2c(D,β) and C 1 = P1|Kγ | is the projection of |Kγ | on 1,

then using Proposition 7.2, we get

(8.4) ‖ |Kγ | − C 1‖2ν ≤ δ
−1
2

Ä
‖Kγ‖2ν − ‖S2

γ |Kγ | ‖2ν + CN,M,2(Aγ)‖K‖2∞
ä
.

Now ∥∥∥∥∥Kγ − ‖Kγ‖ν
f

|f |

∥∥∥∥∥
ν

≤ ‖Kγ − f‖ν +

∥∥∥∥∥f − ‖Kγ‖ν
f

|f |

∥∥∥∥∥
ν

and ∥∥∥∥∥f − ‖Kγ‖ν
f

|f |

∥∥∥∥∥
ν

= ‖ |f | − ‖Kγ‖ν 1‖ν .

(This is true even if f vanishes, if we give an arbitrary value of modulus 1 to
f
|f | in this case.) Also,

‖ |f | − ‖Kγ‖ν 1‖ν ≤ ‖ |Kγ | − |f |‖ν + ‖ |Kγ | − ‖Kγ‖ν 1‖ν
and

‖ |Kγ | − |f |‖ν ≤ ‖Kγ − f‖ν .



FROM SPECTRAL TO SPATIAL DELOCALIZATION 799

Finally,

‖ |Kγ | − ‖Kγ‖ν 1‖ν ≤ ‖ |Kγ | − C 1‖ν + | ‖Kγ‖ν − C | ≤ 2 ‖ |Kγ | − C 1‖ν .

Putting all these inequalities together, we obtain

(8.5)

∥∥∥∥∥Kγ − ‖Kγ‖ν
f

|f |

∥∥∥∥∥
ν

≤ 2 ‖Kγ − f‖ν + 2 ‖ |Kγ | − C 1‖ν .

Comparing with (8.3) and (8.4), this says the following: If ‖S2
γ |Kγ | ‖ν is close

to ‖Kγ‖ν and if ‖SγKγ‖ν is close to ‖Kγ‖ν , then Kγ must be close to ‖Kγ‖ν f
|f | ,

where f is a function that depends only on the terminus.

Repeating the arguments of (8.3) with MuγSuγKγ instead of Kγ , then

taking f̃ = PFMuγSuγKγ ∈ F , we get

(8.6)

‖MuγSuγKγ − f̃‖2ν ≤ δ−1
1

Ä
‖SuγKγ‖2ν − ‖S2

uγKγ‖2ν + CN,M (SuγAγ)‖K‖2∞
ä
.

Similarly to (8.4), if C̃ 1 = P1|SuγKγ |, we get∥∥∥ |SuγKγ | − C̃ 1
∥∥∥2

ν

≤ δ−1
2

Å
‖SuγKγ‖2ν −

∥∥∥S2
γ |SuγKγ |

∥∥∥2

ν
+ CN,M,2(SuγAγ)‖K‖2∞

ã
.

(8.7)

Finally, arguing as in (8.5), we have∥∥∥∥∥MuγSuγKγ − ‖Kγ‖ν
f̃

|f̃ |

∥∥∥∥∥
ν

≤ 2
∥∥∥MuγSuγKγ − f̃

∥∥∥
ν

+ 2
∥∥∥ |SuγKγ | − C̃ 1

∥∥∥
ν

+ ‖Kγ‖ν − ‖SuγKγ‖ν .
(8.8)

(b) We can now start the proof itself. Suppose (i) is not true:

‖S4
uγKγ‖2ν > (1− ε)2‖Kγ‖2ν + C̃N,M,2(Aγ) · ‖K‖2∞.

Using

‖S4
uγKγ‖ν ≤ ‖SuγKγ‖ν = ‖SγMuγKγ‖ν ,

‖S4
uγKγ‖ν ≤ ‖S2

γ |Kγ |‖ν = ‖S2
γ |MuγKγ |‖ν ,

‖S4
uγKγ‖ν ≤ ‖S2

γ |SuγKγ |‖ν and ‖Kγ‖ν ≥ ‖SuγKγ‖ν ,

we see that we must also have

‖Kγ‖2ν − ‖SγMuγKγ‖2ν < 2ε ‖Kγ‖2ν − C̃N,M,2(Aγ) · ‖K‖2∞,

‖Kγ‖2ν − ‖S2
γ |MuγKγ |‖2ν < 2ε ‖Kγ‖2ν − C̃N,M,2(Aγ) · ‖K‖2∞,

‖SuγKγ‖2ν − ‖S2
γ |SuγKγ |‖2ν < 2ε ‖SuγKγ‖2ν − C̃N,M,2(Aγ) · ‖K‖2∞

as well as

‖SuγKγ‖2ν − ‖S2
uγKγ‖2ν < 2ε ‖SuγKγ‖2ν − C̃N,M,2(Aγ) · ‖K‖2∞.
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Applying (8.3), (8.4) and (8.5) to MuγKγ instead of Kγ , and f = PFMuγKγ ,

it follows that

(8.9)

∥∥∥∥∥MuγKγ − ‖Kγ‖ν
f

|f |

∥∥∥∥∥
2

ν

≤ 16(δ−1
1 + δ−1

2 ) ε · ‖Kγ‖2ν .

Applying (8.6), (8.7) and (8.8) yields

(8.10)

∥∥∥∥∥MuγSuγKγ − ‖Kγ‖ν
f̃

|f̃ |

∥∥∥∥∥
2

ν

≤ 24(δ−1
1 + δ−1

2 ) ε · ‖Kγ‖2ν + 6ε · ‖Kγ‖2ν .

As f, f̃ ∈ F , we have f
|f |(x0, x1) = eiθ(x1) and f̃

|f̃ |(x0, x1) = eiθ
′(x1) for some

θ, θ′ : V → R. Note that in this case,Ç
Sγ

f

|f |

å
(x0, x1) = eiθ(x0) − η1ξ

γ(x1, x0)eiθ(x0),

where ξγ(x0, x1) =
|ζγx0

(x1)|2

| Im ζγx0
(x1)| , using (6.11). Applying Sγ to (8.9), we thus get

∥∥∥SuγKγ − ‖Kγ‖νeiθ(x0)
∥∥∥2

ν
≤ 2

∥∥∥∥∥SγMuγKγ − ‖Kγ‖νSγ
f

|f |

∥∥∥∥∥
2

ν

+ 2η2
1 ‖ξγ‖2ν · ‖Kγ‖2ν

≤ 32(δ−1
1 + δ−1

2 ) ε · ‖Kγ‖2ν + 2η2
1 ‖ξγ‖2ν · ‖Kγ‖2ν .

Applying Muγ and comparing with (8.10), it follows that∥∥∥uγx1(x0)eiθ(x0) − eiθ′(x1)
∥∥∥2

ν
≤ (2× 32 + 2× 24)(δ−1

1 + δ−1
2 ) · ε

+ 4η2
1 ‖ξγ‖2ν + 12ε.

(8.11)

Repeating the procedure with Kγ replaced by SuγKγ , and f replaced by f̃ ,

the same arguments show that there exists θ′′ : V → R such that

(8.12)
∥∥∥uγx1(x0)eiθ

′(x0) − eiθ′′(x1)
∥∥∥2

ν
≤ (112δ−1

1 + 112δ−1
2 + 12) · ε+ 4η2

1‖ξγ‖2ν .

Thus we have proved uγx1
(x0) is close to both ei(θ(x0)−θ′(x1)) and ei(θ

′(x0)−θ′′(x1)).

(c) Because of relation (2.7), the function u satisfies uγx1
(x0) = uγx0

(x1)
nγx1

nγx0

,

where nγx = (mγ
x)(mγ

x)−1.

To conclude the proof, we show that if ei(θ(x0)−θ′(x1)) and ei(θ
′(x0)−θ′′(x1))

are close to uγ , and if the function uγx1
(x0) satisfies the relation above, then

this gives constraints on θ, θ′, θ′′ that imply part (ii) of the proposition.

Let g(x0, x1) = ei(θ(x0)−θ′(x1)) and c = (112δ−1
1 + 112δ−1

2 + 12). We have

shown in (b) that ‖uγx1
(x0) − g‖2ν ≤ cε + 4η2

1‖ξγ‖2ν . Recall that we denote by
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ι the involution of edge reversal. Hence, if we define g̃(x0, x1) = g(x1, x0)
nγx1

nγx0

,

we get

(8.13) ‖g̃ − uγx1
(x0)‖2ν = ‖ιg − uγx0

(x1)‖2ν ≤ cε+ 4η2
1 ‖ξγ‖2ν .

Thus, ‖g̃ − g‖2ν ≤ 4cε+ 16η2
1 ‖ξγ‖2ν . Hence, defining

h1(x0, x1) = nγx1
ei[θ(x1)+θ′(x1)] and h2(x0, x1) = nγx0

ei[θ(x0)+θ′(x0)],

we get

‖h1 − h2‖2ν = ‖g̃ − g‖2ν ≤ 4cε+ 16η2
1 ‖ξγ‖2ν .

Note that the functions h1, h2 have modulus 1, and Sγh1 = h2 − η1ιξ
γh2, so

‖S2
γh1 − h1‖ν ≤ 2 ‖Sγh1 − h1‖ν ≤ 2 (‖h2 − h1‖ν + η1‖ξγ‖ν)

≤ 4c1/2ε1/2 + 8η1 ‖ξγ‖ν .

Consider P1,νh1 = s1, the projection of h1 to the space of constant functions.

Arguing as in (8.4), we can write

‖h1 − s1‖2ν ≤ δ−1
2 (‖h1‖2ν − ‖S2

γh1‖2ν + 4CN,M,2(I)).

But ‖h1‖2 − ‖S2
γh1‖2 = (‖h1‖ + ‖S2

γh1‖)(‖h1‖ − ‖S2
γh1‖) ≤ 2 ‖S2

γh1 − h1‖.
Hence,

‖h1 − s1‖2ν ≤ 8δ−1
2 c1/2ε1/2 + 16η1δ

−1
2 ‖ξ

γ‖ν + 4δ−1
2 CN,M,2(I).

We observe that

‖h1 − s1‖ = ‖nγx1
ei(θ(x1)+θ′(x1)) − s1‖

= ‖g̃nγx0
ei(θ

′(x0)+θ′(x1)) − s1‖ =

∥∥∥∥g̃ − e−i(θ
′(x0)+θ′(x1))

nγx0

s

∥∥∥∥.
Thus, comparing with (8.13),∥∥∥∥uγx1

(x0)− s e
−i(θ′(x0)+θ′(x1))

nγx0

∥∥∥∥2

ν
≤ 16δ−1

2 c1/2ε1/2 + 32η1δ
−1
2 ‖ξ

γ‖ν

+ 8δ−1
2 CN,M,2(I) + 2cε+ 8η2

1‖ξγ‖2ν .

This is the first half of (ii) with

(8.14) cM,β = max{16δ−1
2 c1/2, 2c, 32δ−1

2 , 8}.

Remembering that δ1 = 3
4M

−2, δ2 =M−2c(D,β) and c=(112δ−1
1 +112δ−1

2 +12),

we see that there is an explicit f(β,D) such that cM,β ≤ f(β,D)M3 as M →
+∞. Note that |s| ≤ 1 since ‖h1‖ν = 1.

The second half of (ii) is proven similarly, using (8.12) instead of (8.11).

Here we take g′(x0, x1) = ei(θ
′(x0)−θ′′(x1)), h′1(x0, x1) = 1

nγx1

e−i[θ
′(x1)+θ′′(x1)],

s′1 = P1h
′
1 and h′2(x0, x1) = 1

nγx0

e−i[θ
′(x0)+θ′′(x0)].
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To prove (8.2), we write

∥∥∥uγx1
(x0)2 − ss′

nγx1

nγx0

∥∥∥2
≤ 2

∥∥∥uγx1
(x0)[uγx1

(x0)− se
−iθ̃(x0,x1)

nγx0

]
∥∥∥2

+ 2
∥∥∥se−iθ̃(x0,x1)

nγx0

[uγx1
(x0)− s′eiθ̃(x0,x1)nγx1

]
∥∥∥2
,

where we put θ̃(x0, x1) = θ′(x0) + θ′(x1). Since uγx1
(x0)2 n

γ
x0

nγx1

= uγx1
(x0)uγx0

(x1),

the proof is complete. �

9. Step 4: End of the proof of Theorem 3.3

Our aim is to show that limη0↓0 limN→+∞VarI
nb,η0

(FγK) = 0 for the op-

erators Fγ that appear in Corollary 10.3. A main step was carried out in

Proposition 5.2, and the upper bound was put in a convenient form in (6.8).

We now use the estimates of Sections 7 and 8 to complete the proof. We de-

note Bγ = mγ

Zγ
Fγ : Hm → Hk as in Section 7, where Zγ is defined in (6.3). It

should be kept in mind that Fγ may depend on a parameter T that is fixed in

this section, but will be taken arbitrarily large in the next one.

Recall that we take γ = λ+ i(η4 + η0), where λ, η, η0 come from Proposi-

tion 5.2. In other words, γ = λ+ iη1 ∈ C+ with λ ∈ I1 and η1 = η4 + η0. Let

K ∈Hm so that BγK ∈Hk. Applying (6.8), recalling that νγk = 1
µγ
k

(Bk)
µγk , we

obtain

1

n2

n∑
r,r′=1

〈Rγn,rFγK,R
γ
n,r′FγK〉γ

=
µγk(Bk)

Nn2

∑
r′≤r≤n

〈Sr−r′uγ BγK,BγK〉νγ
k

+
µγk(Bk)

Nn2

∑
r<r′≤n

〈BγK,Sr
′−r
uγ BγK〉νγ

k
+

1

n2

n∑
r,r′=1

En,r,r′(η1,FγK).

(9.1)

Fix M very large and take n = M9. We apply Proposition 8.1 with

ε = M−8 to the family of operators {S4j
uγBγK}M

9

j=1. Let

˜̃CN,M (Bγ) = max
1≤j≤M9

C̃N,M,2(S4j+k−1
uγ Bγ)1/2 ·

√
µγ1(B)

µγk(Bk)
.

We use the notation in Remark 7.9 throughout the section. In particular,
˜̃CN,M (Bγ) = OT (M−∞)N−→+∞,γ thanks to Corollary 7.8.

Remark 9.1. It is useful to note that the norm ‖Sjuγ‖νγ
k
→νγ

k
for k > 1 is

controlled by the same norm for k = 1. To see this, note that for K ∈ `2(νγk ),
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we have

(Sk−1
uγ K)(x0;xk) =

∑
(x−k+1;x−1)x0,1

Λ(x−k+1;x1)K(x−k+1;x1)

for some function Λ(x−k+1;x1). Here the sum is over those (x−k+1;x−1) for

which the path (x−k+1, x−k+2, . . . , x−1, x0, x1) does not backtrack; cf. (2.3).

So (Sk−1
uγ K)(x0;xk) only depends on (x0, x1). We may define φK ∈ `2(νγ1 ) by

φK(x0, x1) = (Sk−1
uγ K)(x0;xk). If I : `2(νγ1 )→ `2(νγk ) is the map (I φ)(x0;xk)

= φ(x0, x1), we have for any j ≥ k, [Sj−k+1
uγ I φK ](x0;xk) = (SjuγK)(x0;xk).

Moreover, [SuγI φ](x0;xk) = [I (Suγφ)](x0;xk). Thus,

‖SjuγK‖2νk = ‖Sj−k+1
uγ I φK‖2νk = ‖I (Sj−k+1

uγ φK)‖2νk ≤
µγ1(B)

µγk(Bk)
‖Sj−k+1

uγ φK‖2ν1
,

where we used that
∑

x0,1 (x2;xk) µk(x0;xk) ≤ µ1(x0, x1) by (6.13). Hence,

‖SjuγK‖2νk ≤
µγ1(B)

µγk(Bk)
‖Sj−k+1

uγ ‖2ν1→ν1
· ‖φK‖2ν1

.

But using (2.9) repeatedly, we have∑
(x−k+1;x−1)x0,1

|Λ(x−k+1;x1)|

=
∑

(x−k+1,x−1)x0,1

|ζγx1
(x0)ζγx0

(x−1) · · · ζγx−k+3
(x−k+2)|2| Im ζγx−k+2

(x−k+1)|
| Im ζγx1(x0)|

≤ 1,

and µγ1(x0, x1)|Λ(x−k+1;x1)| = µγk(x−k+1;x1) by (6.6) and (2.7). Hence,

‖φK‖2µ1
=

∑
(x0,x1)

µγ1(x0, x1)

∣∣∣∣ ∑
(x−k+1;x−1)x0,1

Λ(x−k+1;x1)K(x−k+1;x1)

∣∣∣∣2
≤

∑
(x0,x1)

µγ1(x0, x1)
∑

(x−k+1;x−1)x0,1

|Λ(x−k+1;x1)| · |K(x−k+1;x1)|2

=
∑

(x−k+1;x1)

µγk(x−k+1;x1) · |K(x−k+1;x1)|2 = ‖K‖2µk .

So ‖φK‖2ν1
≤ µγ

k
(Bk)

µγ1 (B)
‖K‖2

νγ
k
. Summarizing, we have shown that for any j ≥ k,

we have

‖Sjuγ‖νk→νk ≤ ‖S
j−k+1
uγ ‖ν1→ν1 .
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First alternative. For γ, ε as above, assume that case (i) of Proposition 8.1

is satisfied for all the operators {S4j
uγBγK}M

9

j=1. Applying (8.1) for S4t
uγBγK,

t ≤ j, if k = 1, we obtain

(9.2) ‖S4j
uγBγK‖νγ1 ≤ (1− ε)j‖BγK‖νγ1 + j max

1≤t≤j
{C̃N,M,2(S4t

uγBγ)1/2} · ‖K‖∞.

For higher k, we apply (9.2) to

φBγK(x0, x1) = (Sk−1
uγ BγK)(x0;xk) = (AγK)(x0, x1),

where Aγ = Sk−1
uγ Bγ , instead of BγK. By Remark 9.1 we get

‖S4j+k−1
uγ BγK‖νγ

k
≤ (1− ε)j‖BγK‖νγ

k
+ j ˜̃CN,M (Bγ) · ‖K‖∞.

Using the euclidean division r′ − r − k + 1 = 4mr,r′ + nr,r′ with nr,r′ < 4, we

see that for r′ − r ≥ 4 + k − 1,

|〈BγK,Sr
′−r
uγ BγK〉νγ

k
| ≤ ck(1− ε)(r′−r)/4‖BγK‖2νγ

k

+ n ˜̃CN,M (Bγ) · ‖K‖∞‖BγK‖νγ
k
,

where ck = 1

(1−ε)(k−1+nr,r′ )/4
≤ 2

k+2
4 if ε ≤ 1

2 . Note that (1 − ε)1/4 ≤ (1 − ε
5).

Hence, since 4 + k − 1 ≤ 4k, we have∣∣∣∣ ∑
r′≤n

∑
r<r′
〈BγK,Sr

′−r
uγ BγK〉νγ

k

∣∣∣∣
≤
( ∑
r′≤n

∑
r≤r′−4k

|〈BγK,Sr
′−r
uγ BγK〉νγ

k
|+ 4nk‖BγK‖2νk

)

≤
[
4nk + nck

n∑
m=1

(1− ε)m/4
]
‖BγK‖2νγ

k
+ n3 ˜̃CN,M (Bγ) · ‖K‖∞‖BγK‖νγ

k

≤ n(5ck + 4k)

ε
‖BγK‖2νγ

k
+ n3 ˜̃CN,M (Bγ) · ‖K‖∞‖BγK‖νγ

k
.

Recall that ε = M−8 and n = M9. Comparing with (9.1), we get∥∥∥∥ 1

n

n∑
r=1

Rγn,rFγK
∥∥∥∥2

γ

≤
µγk(Bk)

N

( c′k
M
‖BγK‖2νγ

k
+M9 ˜̃CN,M (Bγ) · ‖K‖∞‖BγK‖νγ

k

)
+

1

n2

n∑
r,r′=1

En,r,r′(η1,FγK).

(9.3)



FROM SPECTRAL TO SPATIAL DELOCALIZATION 805

Second alternative. Now assume case (ii) of Proposition 8.1 is satisfied

(with some complex numbers sj = sj(N) and some function θ). We denote

‖ ‖ν = ‖ ‖`2(νγ
k

), θ0(x0;xk) = θ(x0), θ1(x0;xk) = θ(x1), nγ0(x0;xk) = nγx0
and

nγ1(x0;xk) = nγx1
. Then we have

Proposition 9.2. Let ‖K‖∞ ≤ 1. For AγK = S`uγBγK , we have for

any t ∈ N∗,∣∣∣〈BγK,S2t
uγAγK〉ν − (s1s2)t〈BγK, eiθ0S2t

γ e
−iθ0AγK〉ν

∣∣∣
≤ t

Ä
cM,β

î
ε1/2 + η1O(1)N−→+∞,γ

ó
+ C ′N,M

ä1/4
OT (1)N−→+∞,γ .

Proof. Recall that Suγ = SγMuγ with Muγ the multiplication by uγx1(x0).

We have∥∥∥S2
uγAγK − s1s2e

iθ0S2
γe
−iθ0AγK

∥∥∥
ν

=

∥∥∥∥∥S2
uγAγK − s1s2Sγnγ0e

i[θ0+θ1]Sγ
e−i[θ0+θ1]

nγ1
AγK

∥∥∥∥∥
ν

≤
∥∥∥SγMuγSγMuγAγK − s2Sγnγ0e

i[θ0+θ1]SγMuγAγK
∥∥∥
ν

+

∥∥∥∥∥s2Sγnγ0e
i[θ0+θ1]SγMuγAγK − s1s2Sγnγ0e

i[θ0+θ1]Sγ
e−i[θ0+θ1]

nγ1
AγK

∥∥∥∥∥
ν

.

Using (7.6) and Cauchy-Schwarz, the first term is bounded by∥∥∥uγx1(x0)− s2n
γ
0e
i[θ0+θ1]

∥∥∥
`4(νγ

k
)
‖SγMuγAγK‖`4(νγ

k
) .

But uγ , s2, n
γ
0 all have modulus bounded by 1, so

|uγx1(x0)− s2n
γ
0e
i[θ0+θ1]|4 ≤ 4 |uγx1(x0)− s2n

γ
0e
i[θ0+θ1]|2.

Hence,

‖uγx1(x0)− s2n
γ
0e
i[θ0+θ1]‖`4(νγ1 ) ≤ (4cM,β

î
ε1/2 + η1O(1)N−→+∞,γ

ó
+ 4C ′N,M )1/4

by the first part of (ii). For higher k, using
∑

x0,1 (x2;xk) µk(x0;xk) ≤ µ1(x0, x1)

by (6.13), we get

∥∥∥∥uγx1(x0)− s2n
γ
0e
i[θ0+θ1]

∥∥∥∥
`4(νγ

k
)
≤
Ç
µγ1(B)

µγk(Bk)

å1/4 ∥∥∥∥uγx1(x0)− s2n
γ
0e
i[θ0+θ1]

∥∥∥∥
`4(νγ1 )

.

Next, ‖SγMuγAγK‖`4(νγ
k

) = ‖S`+1
uγ BγK‖`4(νγ

k
). Arguing as in Proposi-

tion 7.7 and Corollary 7.8, we see this is OT (1)N−→+∞,γ . Bounding the second
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term similarly, we get∥∥∥S2
uγAγK − s1s2e

iθ0S2
γe
−iθ0AγK

∥∥∥
ν

≤
Ä
cM,β

î
ε1/2 + η1O(1)N−→+∞,γ

ó
+ C ′N,M

ä1/4
OT (1)N−→+∞,γ .

Since ‖BγK‖ν = OT (1)N−→+∞,γ (see Remark 7.9), this proves the result for

t = 1.

For higher t, let X = s1s2e
iθ0S2

γe
−iθ0 and Y = S2

uγ . Then

‖(Xt − Y t)AγK‖ =

∥∥∥∥ t∑
i=1

Xt−i(X − Y )Y i−1AγK

∥∥∥∥
≤

t∑
i=1

‖(X − Y )Y i−1AγK‖.

Again, ‖Y i−1AγK‖`4(νγ
k

) = OT (1)N−→+∞,γ for each i, and the claim follows.

�

In sums like (9.1), we can make packets of size 2t, and we have for all m

and for any t,∣∣∣∣∣∣
t−1∑
r=0

〈BγK,S2r+m
uγ BγK〉ν −

t−1∑
r=0

(s1s2)r〈BγK, eiθ0S2r
γ e
−iθ0SmuγBγK〉ν

∣∣∣∣∣∣
≤ t2

Ä
cM,β

î
ε1/2 + η1O(1)N−→+∞,γ

ó
+ C ′N,M

ä1/4
OT (1)N−→+∞,γ .

(9.4)

As we will see below, the size 2t of packets should be chosen so that

t(cM,βε
1/2)1/4 is small as M gets large. Remembering that cM,β ≤ f(D,β)M3

and ε = M−8, we take t = Mα with 0 < α < 1/4. We then group the sum

(9.1) into packets and write∣∣∣∣ ∑
r′≤r≤n

〈Sr−r′uγ BγK,BγK〉ν
∣∣∣∣ =

∣∣∣∣ n∑
r′=1

n−r′∑
r=0

〈SruγBγK,BγK〉ν
∣∣∣∣

≤
∣∣∣∣ n∑
r′=1

bn−r
′

2t
c−2∑

a=0

2t(a+1)−1∑
r=2ta

〈SruγBγK,BγK〉ν
∣∣∣∣+ 4nt ‖BγK‖2ν ,

where we estimated∣∣∣∣ n∑
r′=1

n−r′∑
r=2t(bn−r′

2t
c−1)

〈SruγBγK,BγK〉ν
∣∣∣∣ ≤ 4nt‖BγK‖2ν .

Note that

2t(a+1)−1∑
r=2ta

〈Sruγ ·, ·〉 =
t−1∑
r=0

〈S2r+2ta
uγ ·, ·〉+

t−1∑
r=0

〈S2r+1+2ta
uγ ·, ·〉.
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So using (9.4),

∣∣∣∣ n∑
r′=0

bn−r
′

2t
c−2∑

a=0

2t(a+1)−1∑
r=2ta

〈SruγBγK,BγK〉ν
∣∣∣∣

≤
∣∣∣∣ n∑
r′=0

bn−r
′

2t
c−2∑

a=0

t−1∑
r=0

(s1s2)r
Ä
〈BγK, eiθ0S2r

γ e
−iθ0(S2ta

uγ + S2ta+1
uγ )BγK〉ν

ä ∣∣∣∣
+ n · n

t
· t2

Ä
cM,β

î
ε1/2 + η1O(1)N−→+∞,γ

ó
+ C ′N,M

ä1/4
OT (1)N−→+∞,γ .

(9.5)

Lemma 9.3. Let ‖K‖∞ ≤ 1. For AγK = S2ta
uγ BγK or S2ta+1

uγ BγK we

have for any L,∣∣∣∣∣∣
t−1∑
r=0

(s1s2)r〈BγK, eiθ0S2r
γ e
−iθ0AγK〉ν

∣∣∣∣∣∣
≤ L2ck
c(D,β)

OT (1)N−→∞,γ + tOT (L−∞)N−→∞,γ

+ η1OM,T (1)N−→+∞,γ +
1

|s1s2 − 1|
OT (1)N−→∞,γ .

Proof. First assume k = 1. We decompose e−iθ0AγK = C1 + f , where

f ⊥ 1 in `2(νγ1 ). So S2r
γ e
−iθ0AγK = CS2r

γ 1 + S2r
γ f .

For the term S2r
γ f , we use Proposition 7.5, which yields, for any L,

‖S2r
γ f‖ν ≤

Ä
1− L−2c(D,β)

är/2 ‖f‖ν
+
r−1∑
l=0

CN,L,l,2(e−iθ0Aγ)1/2 + 2η1

r−1∑
l=1

‖Zlf‖ν .

By Corollary 7.8 (recalling that r ≤ t ≤Mα), we have

r−1∑
l=0

CN,L,l,2(e−iθ0Aγ)1/2 = tOT (L−∞)N−→+∞,γ .

Indeed, the term e−iθ0 has no impact, as it can be bounded by 1 in the proof

of Proposition 7.7. We also have ‖f‖ν ≤ ‖AγK‖ν ≤ ‖BγK‖ν = OT (1)N−→∞,γ ,

and ‖Zlf‖ν = Ol,T (1)N−→∞,γ by Remark 7.9. Thus,∣∣∣∣∣∣
t−1∑
r=0

(s1s2)r〈BγK, eiθ0S2r
γ f〉ν

∣∣∣∣∣∣
≤ 2L2

c(D,β)
OT (1)N−→∞,γ + tOT (L−∞)N−→∞,γ + η1OM,T (1)N−→∞,γ .
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For the term CS2r
γ 1, we have S lγ1 = 1− η1

∑l−1
s=0 S sγ ιξγ = 1 + η1Ol(1)N−→∞,γ

by (6.11). Thus,∣∣∣∣ t−1∑
r=0

(s1s2)r〈BγK, eiθ0S2r
γ 1〉ν

∣∣∣∣
≤
∣∣∣∣ t−1∑
r=0

(s1s2)r〈BγK, eiθ01〉ν
∣∣∣∣+ η1OM (1)N−→∞,γ‖BγK‖ν

=

∣∣∣∣(s1s2)t − 1

s1s2 − 1
〈BγK, eiθ01〉ν

∣∣∣∣+ η1OM (1)N−→∞,γ‖BγK‖ν

≤
Ç

2

|s1s2 − 1|
+ η1OM (1)N−→∞,γ

å
‖BγK‖ν .

Since |C| ≤ ‖AγK‖ν ≤ ‖BγK‖ν , this completes the proof for k = 1.

For higher k, as in Remark 9.1, we have

‖S2r
γ f‖νk ≤

√
µγ1(B)

µγk(Bk)
‖S2r−k+1

γ φf‖ν1 ,

where now φf (x0, x1) = (Sk−1
γ f)(x0;xk). We then note that f ⊥ 1 in `2(νγk )

if and only if φf ⊥ 1 in `2(νγ1 ). Indeed, 〈1, φf 〉ν1 =
µγ
k

(Bk)

µγ1 (B)
〈1, f〉νk , since

〈1, φf 〉ν1 =
∑

(x0,x1) ν1(x0, x1)(Sk−1
γ f)(x0;xk), so applying (6.9), (6.6) and

(2.7), the claim follows. Hence, ‖S2r−k+1
γ φf‖ν1 . c(1−L−2C)r/2‖φf‖ν1 , where

c = 1
(1−L−2)(k+3)/4 ≤ 2k+1 for large L. The error terms are the same, this time

with ‖Zlφf‖ν1 = Ol,T (1)N−→∞,γ . Finally, ‖φf‖ν1 ≤
…

µγ
k

(Bk)

µγ1 (B)
‖f‖νk . �

Starting from (9.5) and applying the lemma, we obtain for ‖K‖∞ ≤ 1,

1

n2

∣∣∣∣∣∣∑r′≤n
∑
r≥r′
〈Sr−r′uγ BγK,BγK〉ν

∣∣∣∣∣∣
≤ 1

t

ñ
2L2

c(D,β)
OT (1)N−→∞,γ + tOT (L−∞)N−→∞,γ

+ η1OM,T (1)N−→+∞,γ +
1

|s1s2 − 1|
OT (1)N−→+∞,γ

ô
+ t

Ä
cM,β

î
ε1/2 + η1O(1)N−→+∞,γ

ó
+OT (M−∞)N−→∞,γ

ä1/4

·OT (1)N−→+∞,γ + 4n−1t ‖BγK‖2ν .

(9.6)

Remember that n = M9 and t = Mα with 0 < α < 1/4. For the term 1
t

2L2

c(D,β)

to be small, we choose L = Mα′ with 0 < 2α′ < α. For instance, take α = 3/16

and α′ = 1/16. For the other terms, we have t(cM,βε
1/2)1/4 = O(Mα−1/4) and
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n−1t = M−9+α. The terms η1OM,T (1)N−→+∞,γ tend to 0 as η1 = η0 +η −→ 0,

M and T being fixed. Finally, ‖BγK‖2ν = OT (1)N−→+∞,γ assuming ‖K‖∞ ≤ 1.

We can gather the first and second alternative into one statement:

Proposition 9.4. Let A > 0. For all M , for all γ that fall either into

the first alternative or into the second one with |sγ1(N)sγ2(N)−1| ≥ A, we have

for ‖K‖∞ ≤ 1 and for n = M9,∥∥∥∥ 1

n

n∑
r=1

Rγn,rFγK
∥∥∥∥2

γ
≤ 1

M3/16

ñ
2M1/8

c(D,β)
OT (1)N−→∞,γ +OT (M−∞)N−→∞,γ

+ η1OM,T (1)N−→+∞,γ +
1

A
OT (1)N−→+∞,γ

ô
+OT (M−1/16)N−→+∞,γ + η

1/4
1 OM,T (1)N−→+∞,γ .

Proof. The arguments in Remark 10.4 readily show that

1

n2

n∑
r,r′=1

En,r,r′(η1, FγK) = η1On,T (1)N−→∞,γ .

The assertion follows from (9.1), (9.3) and (9.6). �

Proposition 9.5. Let I ⊂ I1 with Ī ⊂ I1. There exists a0 such that, if

a ≤ a0, M is large enough, η1 is small enough (M ≥ M(a), η1 ≤ η(a)), and

N is large enough. For any γ falling into the second alternative on GN , the

sequence sγ(N) = sγ1(N)sγ2(N) must satisfy |sγ(N) − 1| > a13, if γ stays in a

set of the form

Aa,η1 = {γ : Re γ ∈ I, Im γ = η1,P(|W(o)− γ| < a) ≤ 1− a} .

Before proving the proposition, let us finally give the

Proof of Theorem 3.3. We apply Proposition 5.2 and use Proposition 9.5

to show that we are in the framework of Proposition 9.4.

Two cases may happen.

Case 1: W(o) is deterministic. There exists E0 such that P(W(o) = E0)

= 1. In this case, we fix a small a > 0, let J1 = I \ [E0 − 2a,E0 + 2a] and

J2 = I ∩ [E0 − 2a,E0 + 2a]. We then write VarI
nb,η0

(FγK) = VarJ1
nb,η0

(FγK) +

VarJ2
nb,η0

(FγK). For Re γ ∈ J1, we have |γ−E0| > 2a, so P(|W(o)−γ| < a) = 0

and Proposition 9.5 applies with a arbitrarily small. Proposition 9.4, applied

with A = a13, thus allows to control VarJ1
nb,η0

(FγK), while VarJ2
nb,η0

(FγK) =

OT (a).

Case 2: IfW(o) is not deterministic, there exists a such that for all E ∈ R,

P(|W(o)−E| < a) ≤ 1−a. Thus, for any complex γ, P(|W(o)−γ| < a) ≤ 1−a.

In this case Proposition 9.5 may be applied with the fixed value A = a13 and

all γ.



810 NALINI ANANTHARAMAN and MOSTAFA SABRI

Either way, we showed that there exists a0 such that, for all a ≤ a0,

M ≥M(a), we have for any s and T ,

lim
η0↓0

lim sup
N→∞

VarI
nb,η0

(FγK)2 ≤ |I|2 1

M3/16

ñ
2M1/8

c(D,β)
CT + Cs,TM

−s +
CT
a13

ô
+ |I|2CTM−1/16 + aCT .

(9.7)

Taking M →∞ followed by a ↓ 0, this completes the proof of Theorem 3.3. �

We conclude the section with the following:

Proof of Proposition 9.5. We use the following consequences of (Green):

• There exists 0 < c0 <∞ such that for all γ ∈ C+, Re γ ∈ I1,

(9.8)

E
(∑
y∼o

µ̂γ1(o, y)

)
≤ c0, E

(∑
y∼o

(µ̂γ1(o, y))−1

)
≤ c0, E

(∑
y∼o
|ζ̂γy (o)|−2

)
≤ c0.

In fact, µ̂γ1(o, y) =
| Im ζ̂γy (o) Im ζ̂γo (y)|
|m̂γy ζ̂γo (y)|2

, so this follows from (Green) and its

consequences (A.9) and (A.10).

• There exists 0 < c1 <∞, such that for all γ ∈ C+, Re γ ∈ I1,

P
Å
|2 Im m̂γ

o | ≥ 2r and |2m̂γ
o | ≤

1

2
r−1

ã
≥ 1− c1r,(9.9a)

P
(∑
y∼o
|ζ̂γo (y)| ≤ 1

2
r−1

)
≥ 1− c1r.(9.9b)

In fact, E(|2 Im m̂o|−1)+E(|2m̂γ
o |) ≤ c1/2 by (A.9), so the first claim follows

by Markov’s inequality. The second one follows similarly from (A.10).

We may now begin the proof. If γ falls into the second alternative, then

‖uγx0
(x1)uγx1

(x0)− sγ(N)‖2ν(9.10)

≤ 4f(β,D)M3
î
M−4 + η1O(1)N−→+∞,γ

ó
+ 4C ′N,M .

Let a0 = (2c0)−2(6 + 3c1)−12; this choice will become clear later on. Take

a ≤ a0. There exist M(a), η(a) and N(a) such that if M ≥ M(a), η1 ≤ η(a)

and N ≥ N(a), then the right-hand side side in (9.10) is ≤ a26. We fix ρ ≥ a26.

So take any a≤a0, M≥M(a), η1≤η(a), and assume towards a contradic-

tion that we can find a subsequence Nk = Nk(η1) −→ +∞ and a sequence γk ∈
Aa,η1 , each falling into the second alternative on GNk , such that |sγk(Nk)− 1|2
≤ ρ. After extracting further subsequences, let limNk→+∞ s

γk(Nk) = s and

γ0 = limNk→+∞ γk ∈ C. Then |s − 1|2 ≤ ρ, Re γ0 ∈ I1, Im γ0 = η1, and by
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(9.10) and Remark A.3,

E
(∑
y∼o
|ûγ0
o (y)ûγ0

y (o)− s|2µ̂γ0
1 (o, y)

)
≤ ρE

(∑
y∼o

µ̂γ0
1 (o, y)

)
,

which implies, using (9.8),

E
(∑
y∼o
|ûγ0
o (y)ûγ0

y (o)− 1|2µ̂γ0
1 (o, y)

)
≤ 4ρE

(∑
y∼o

µ̂γ0
1 (o, y)

)
≤ 4c0ρ.

By the Cauchy-Schwarz inequality,

E
(∑
y∼o
|ûγ0
o (y)ûγ0

y (o)− 1|2µ̂γ0
1 (o, y)

)1/2

≥
E
Ä∑

y∼o |ûγ0
o (y)ûγ0

y (o)− 1|
ä

E
Ä∑

y∼o(µ̂
γ0
1 (o, y))−1

ä1/2

and thus, by (9.8),

(9.11)

E
(∑
y∼o
|ûγ0
o (y)ûγ0

y (o)− 1|
)
≤
(

4c0ρE
(∑
y∼o

(µ̂γ0
1 (o, y))−1

))1/2

≤ 2c0ρ
1/2.

Since the value of γ0 is now fixed, let us omit it from the notation.

Let us write ζ̂γ0
o (y) = ζ̂o(y) = r(o, y)e−iθ(o,y) with r ∈ R+ and θ ∈ R. This

implies ûo(y) = e2iθ(o,y) and

|ûo(y)ûy(o)− 1| = |(eiθ(y,o) + e−iθ(o,y))(eiθ(y,o) − e−iθ(o,y))|.

Now (9.11) implies that

(9.12) E
(∑
y∼o

min
ε=±1

|eiθ(y,o) − εe−iθ(o,y)|2
)
≤ 2c0ρ

1/2.

Let us call ε(o, y) the value of ε achieving the min. By (2.7) we have

2m̂o = ζ̂y(o)
−1 − ζ̂o(y) = r(y, o)−1eiθ(y,o) − r(o, y)e−iθ(o,y)

for all y ∼ o. Thus, using (9.8),

E
(∑
y∼o

∣∣∣e−iθ(o,y)
Ä
ε(o, y)r(y, o)−1 − r(o, y)

ä
− 2m̂o

∣∣∣)

= E
(∑
y∼o

∣∣∣Äeiθ(y,o) − ε(o, y)e−iθ(o,y)
ä
r(y, o)−1

∣∣∣)

≤
√

2c0ρ
1/4E

(∑
y∼o

r(y, o)−2

)1/2

≤ 2c0ρ
1/4 =: r6.

(9.13)

Denote to,y = ε(o, y)r(y, o)−1 − r(o, y) ∈ R. It follows by Markov’s inequality

that

(9.14)
∑
y∼o

∣∣∣to,ye−iθ(o,y) − 2m̂o

∣∣∣ ≤ r5
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with probability ≥ 1− r.
The probability that |2 Im m̂o| ≥ 2r and |2m̂o| ≤ 1

2r
−1 is at least 1 − c1r

by (9.9a). Thus, (9.14) implies that with probability ≥ 1 − r − c1r, we have

for any y ∼ o,

(9.15) r ≤ |to,y| ≤ r−1.

Combining (9.14) and (9.15), we see that for any y, y′ ∼ o,

(9.16)
∣∣∣e−iθ(o,y) − to,y′t−1

o,ye
−iθ(o,y′)

∣∣∣ ≤ r4.

Now (2.4a) says that

γ0 =W(o) +
∑
y∼o

ζo(y) + 2m̂o =W(o) +
∑
y∼o

r(o, y)e−iθ(o,y) + 2m̂o.

Using (9.14) and (9.16), we get for any fixed y′ ∼ o,∣∣∣∣γ0 −W(o)−
Ç
to,y′ +

∑
y∼o

r(o, y)to,y′t
−1
o,y

å
e−iθ(o,y

′)
∣∣∣∣

≤
∣∣∣2m̂o − to,y′e−iθ(o,y

′)
∣∣∣+

∣∣∣∣∣∣∑y∼o r(o, y)
Ä
e−iθ(o,y) − to,y′t−1

o,ye
−iθ(o,y′)

ä∣∣∣∣∣∣
≤ r5 + r4

∑
y∼o

r(o, y) ≤ 2r3

(9.17)

with probability ≥ 1− r − 2c1r. Here we used that
∑
y∼o r(o, y) ≤ 1

2r
−1 with

probability ≥ 1− c1r; see (9.9b). Since |γ0 −W(o)| ≥ a with probability ≥ a,

it follows that ∣∣∣∣to,y′ + ∑
y∼o

r(o, y)to,y′t
−1
o,y

∣∣∣∣ ≥ a− 2r3

with probability ≥ 1 − r − 2c1r − (1 − a). Recall that r(o, y) and to,u are

real. Taking the imaginary part in (9.17), we thus get | Im e−iθ(o,y
′)| ≤ 2r3+η1

a−2r3 .

Assume η1 ≤ r3. Then if r < a/5, we get | Im e−iθ(o,y
′)| < r2. Hence,

P(| Im e−iθ(o,y
′)| ≥ r2) ≤ (2c1 + 1)r + 1− a. But we know that |2 Im m̂o| ≥ 2r,

so taking the imaginary part in (9.14) and using (9.15), we also have that

| Im e−iθ(o,y
′)| ≥ r2 with probability ≥ 1 − r − c1r. If (2 + 3c1)r < a, this will

give a contradiction.

To prove the proposition, we take r = a
6+3c1

and choose

a0 ≤ (2c0)−2(6 + 3c1)−12.

Recalling that 2c0ρ
1/4 = r6, we get ρ1/2 = (2c0)−2( a

6+3c1
)12 ≥ a13 for a ≤ a0,

as required. We also take M > M(a) and η1 ≤ min(r3, η(a)). �
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10. Step 5: Back to the original eigenfunctions

In this section, we show that it suffices to consider the non-backtracking

quantum variance in order to prove quantum ergodicity; in other words, The-

orem 1.3 can be retrieved from Theorem 3.3. This part may be read before or

after the others.

Given K ∈Hk, we define the quantum variance by

(10.1) VarI(K) =
1

N

∑
λj∈I
|〈ψj ,KGψj〉| ,

where KG is as in Section 2.1.

More generally, fix η0 > 0 and suppose Kγ ∈Hk satisfies conditions (Hol).

We denote

VarI
η0

(Kγ) =
1

N

∑
λj∈I

∣∣∣〈ψj ,Kλj+iη0

G ψj
〉∣∣∣ ,

where the subscript η0 indicates that inside the variance, Im γ is fixed and

equal to η0. Denote γj = λj + iη0, and define

gj(x0, x1) = ζ
γj
x0(x1)

−1
ψj(x1)− ψj(x0)

and

g∗j (x0, x1) = ζ
γj
x1(x0)

−1
ψj(x0)− ψj(x1),

so g∗j and gj are defined like f∗j and fj (Section 3), respectively, with ζ replaced

by ζ. Put ‚�VarI
nb,η0

(Kγ) =
1

N

∑
λj∈I

∣∣∣¨g∗j ,Kγj
B gj

∂∣∣∣ .
Next, given γ ∈ C+, define the function Nγ : V −→ R+ by

(10.2) Nγ(x) = Im g̃γ(x̃, x̃),

where x̃ is a point in ‹G projecting down to G = Γ\‹G. Recall the Laplacian

P defined in (1.1). We next introduce the operators Pγ ,ST,γ , S̃T,γ : CV → CV
defined by

(10.3)

Pγ =
d

Nγ
P
Nγ

d
, ST,γ =

1

T

T−1∑
s=0

(T − s)P sγ and S̃T,γ =
1

T

T∑
s=1

P sγ

for T ∈ N∗, and the operators Lγ , L̃γ : CV → CB defined by

(LγJ)(x0, x1) =
|ζγx0

(x1)|2

|2mγ
x0 |2

(
J(x0)

Nγ(x1)
− J(x1)

ζγx0(x1)ζγx1(x0)Nγ(x0)

)
,

(L̃γJ)(x0, x1) =
|ζγx0

(x1)|2

|2mγ
x0 |2

(
J(x0)

Nγ(x1)
− J(x1)

ζγx0(x1)ζγx1(x0)Nγ(x0)

)
.
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Finally, denote VarI
η0

(K − 〈K〉γ) := VarI
η0

(K − 〈K〉γ1), where 1 ∈ H0 is the

constant function equal to 1 (so that, with the notation of Section 2.1, 1̂ is the

identity operator).

Proposition 10.1. Fix η0 > 0 and T ∈ N∗. For any J ∈H0, we have

VarI
η0

(J − 〈J〉γ) ≤ VarI
nb,η0

Ä
Lγd−1ST,γ (J − 〈J〉γ)

ä
+ ‚�VarI

nb,η0

Ä
L̃γd−1ST,γ (J − 〈J〉γ)

ä
+ VarI

η0

Ä
S̃T,γ (J − 〈J〉γ)

ä
.

Proof. We have

〈f∗j , (LγjJ)Bfj〉 =
∑

(x0,x1)∈B

(
(LγjJ)(x0, x1)

ζ
γj
x1(x0)ζ

γj
x0(x1)

+ (LγjJ)(x1, x0)

)
ψj(x0)ψj(x1)

−
∑

(x0,x1)∈B
(LγjJ)(x0, x1)

(
|ψj(x0)|2

ζ
γj
x1(x0)

+
|ψj(x1)|2

ζ
γj
x0(x1)

)
.

(10.4)

We calculate 〈g∗j , (L̃γjJ)Bgj〉 similarly. We then note that

(LγjJ)(x0, x1)

ζ
γj
x1(x0)ζ

γj
x0(x1)

+ (LγjJ)(x1, x0)− (L̃γjJ)(x0, x1)

ζ
γj
x1(x0)ζ

γj
x0(x1)

− (L̃γjJ)(x1, x0) = 0,

using that
|ζγx1

(x0)|2

|mγx1
|2 =

|ζγx0
(x1)|2

|mγx0
|2 , by (2.7). Hence,

〈f∗j , (LγjJ)Bfj〉 − 〈g∗j , (L̃γjJ)Bgj〉

=
∑

(x0,x1)∈B
(L̃γjJ)(x0, x1)

(
|ψj(x0)|2

ζ
γj
x1(x0)

+
|ψj(x1)|2

ζ
γj
x0(x1)

)

−
∑

(x0,x1)∈B
(LγjJ)(x0, x1)

(
|ψj(x0)|2

ζ
γj
x1(x0)

+
|ψj(x1)|2

ζ
γj
x0(x1)

)
.

Let αx1
x0

=
|ζγx0

(x1)|2

|2mγx0
|2Nγ(x1)

, and note that αx0
x1

=
|ζγx0

(x1)|2

|2mγx0
|2Nγ(x0)

by (2.7). Then

(L̃γjJ)(x0, x1)

ζ
γj
x1(x0)

− (LγjJ)(x0, x1)

ζ
γj
x1(x0)

= −2i

ñ
Im ζ

γj
x1(x0)

|ζγjx1(x0)|2
αx1
x0
J(x0)− Im ζ

γj
x0(x1)

|ζγjx1(x0)ζ
γj
x0(x1)|2

αx0
x1
J(x1)

ô
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and

(L̃γjJ)(x0, x1)

ζ
γj
x0(x1)

− (LγjJ)(x0, x1)

ζ
γj
x0(x1)

= 2i

ñ
Im ζ

γj
x0(x1)

|ζγjx0(x1)|2
αx1
x0
J(x0)− Im ζ

γj
x1(x0)

|ζγjx1(x0)ζ
γj
x0(x1)|2

αx0
x1
J(x1)

ô
.

Hence,

〈f∗j , (LγjJ)Bfj〉 − 〈g∗j , (L̃γjJ)Bgj〉

= −2i
∑
x0∈V

|ψj(x0)|2J(x0)
∑
x1∼x0

Ç
Im ζ

γj
x1(x0)

|ζγjx1(x0)|2
αx1
x0

+
Im ζ

γj
x0(x1)

|ζγjx0(x1)ζ
γj
x1(x0)|2

αx1
x0

å
+ 2i

∑
x0∈V

|ψj(x0)|2
∑
x1∼x0

Ç
Im ζ

γj
x0(x1)

|ζγjx1(x0)ζ
γj
x0(x1)|2

αx0
x1

+
Im ζ

γj
x1(x0)

|ζγjx1(x0)|2
αx0
x1

å
J(x1).

Now, by (2.7),

Im ζγx0
(x1) + Im ζγx1

(x0) · |ζγx0
(x1)|2 = |ζγx0

(x1)|2
[ Im ζγx0

(x1)

|ζγx0(x1)|2
+ Im ζγx1

(x0)
]

= −2 Immγ
x1
· |ζγx0

(x1)|2.

Since 2 Immγ
x1

= Nγ(x1)|2mγ
x1
|2, we get

Im ζγx0
(x1) + Im ζγx1

(x0)|ζγx0
(x1)|2

|ζγx0(x1)ζγx1(x0)|2
=
−Nγ(x1)|2mγ

x1
|2

|ζγjx1(x0)|2
.

Since αx1
x0

=
|ζγx1

(x0)|2

Nγ(x1)|2mγx1
|2 and αx0

x1
=

|ζγx1
(x0)|2

Nγ(x0)|2mγx1
|2 by (2.7), we thus have

〈f∗j , (LγjJ)Bfj〉 − 〈g∗j , (L̃γjJ)Bgj〉

= 2i
∑
x0∈V

|ψj(x0)|2d(x0)J(x0)

− 2i
∑
x0∈V

|ψj(x0)|2 1

Nγ(x0)

∑
x1∼x0

Nγ(x1)J(x1) = 2i 〈ψj , [(I − Pγj )dJ ]Gψj〉.

Hence,

VarI
η0

[(I − Pγ)J ] ≤ VarI
nb,η0

(Lγd−1J) + ‡VarI
nb(L̃γd−1J).

Now note that Pγ(ST,γK) = 1
T

∑T
s=1(T − s + 1)P sγK = ST,γK −K + S̃T,γK.

Hence,

K = (I − Pγ)ST,γK + S̃T,γK



816 NALINI ANANTHARAMAN and MOSTAFA SABRI

for any K ∈H0. Taking Kγ = J − 〈J〉γ , we thus get

VarI
η0

(Kγ) ≤ VarI
η0

[(I − Pγ)ST,γKγ ] + VarI
η0

(S̃T,γKγ)

≤ VarI
nb,η0

(Lγd−1ST,γKγ)

+ ‡VarI
nb(L̃γd−1ST,γKγ) + VarI

η0
(S̃T,γKγ). �

We now consider K ∈Hm for m> 0. Define T γ : H1→H1 and Oγ1 : H1

→H0 by

(T γK)(x0, x1) =
ζγx1(x0)ζγx0

(x1)

ζγx1(x0)ζγx0(x1) + 1
K(x0, x1),(10.5)

(Oγ1K)(x0) =
∑

x−1∼x0

(T γK)(x−1, x0)

ζγx−1(x0)
+

∑
x1∼x0

(T γK)(x0, x1)

ζγx1(x0)
.(10.6)

Form ≥ 2, define Uγm : Hm →Hm, Oγm : Hm →Hm−1 and Pγm : Hm →Hm−2

by

(10.7) (UγmK)(x0;xm) = ζγx1(x0)ζγxm−1
(xm)K(x0;xm),

(OγmK)(x0;xm−1) =
∑

x−1∈Nx0\{x1}
ζγx0(x−1)K(x−1;xm−1)

+
∑

xm∈Nxm−1\{xm−2}
K(x0;xm)ζγxm−1

(xm).
(10.8)

(10.9)

(PγmK)(x1;xm−1) =
∑

x0∈Nx1\{x2},xm∈Nxm−1\{xm−2}
ζγx1(x0)K(x0;xm)ζγxm−1

(xm).

Proposition 10.2. Fix η0 > 0. Suppose ψj(x0)ψj(x1) ∈ R for any j =

1, . . . , N and (x0, x1) ∈ B. Then for any K ∈H1, we have

VarI
η0

(K − 〈K〉γ) ≤ VarI
nb,η0

(T γK) + VarI
η0

(Oγ1K − 〈O
γ
1K〉γ),

and for any K ∈Hm, m ≥ 2, we have

VarI
η0

(K − 〈K〉γ) ≤ VarI
nb,η0

(UγmK)

+ VarI
η0

(OγmK − 〈OγmK〉γ) + VarI
η0

(PγmK − 〈PγmK〉γ).

Proof. Let K ∈H1. Since ψj(x0)ψj(x1) ∈ R for all (x0, x1), we have

〈f∗j , (T γjK)Bfj〉 =
∑

(x0,x1)

ψj(x0)ψj(x1)
( 1

ζ
γj
x1(x0)ζ

γj
x0(x1)

+ 1
)
T γj (x0, x1)

−
∑

(x0,x1)

(T γjK)(x0, x1)
( |ψj(x0)|2

ζ
γj
x1(x0)

+
|ψj(x1)|2

ζ
γj
x0(x1)

)
.
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By definition of T γ and Oγ1 , this implies

〈f∗j , (T γjK)Bfj〉 = 〈ψj ,KGψj〉 − 〈ψj , (O
γj
1 K)Gψj〉

and thus

VarI
η0

(K − 〈K〉γ) ≤ VarI
nb,η0

(T γK) + VarI
η0

(Oγ1K − 〈K〉γ).

Recall the definition of 〈K〉γ in (1.5). We claim that

(10.10) 〈Oγ1K〉γ = 〈K〉γ .

Indeed, we have 〈K〉γ =
∑

(x0,x1)∈BK(x0, x1)Φγ(x0, x1). On the other hand,

〈Oγ1K〉γ =
∑

(x0,x1)∈B

(T γK)(x0, x1)Φγ(x1, x1)

ζγx0(x1)

+
∑

(x0,x1)∈B

(T γK)(x0, x1)Φγ(x0, x0)

ζγx1(x0)
.

But
Φγ(x1,x1)
ζγx0

(x1)
+

Φγ(x0,x0)

ζγx1
(x0)

=
1+ζγx1

(x0)ζγx0
(x1)

ζγx0
(x1)ζγx1

(x0)
Φγ(x0, x1) by (2.13) and the fact that

Ψγ,x(y) = Ψγ,y(x) by (2.8), so that Φγ(x, y) = Φγ(y, x). Hence,

〈Oγ1K〉γ =
∑

(x0,x1)∈B

ζγx1(x0)ζγx0
(x1)

ζγx1(x0)ζγx0(x1) + 1
K(x0, x1)

·
1 + ζγx1(x0)ζγx0

(x1)

ζγx0(x1)ζγx1(x0)
Φγ(x0, x1) = 〈K〉γ .

This proves the proposition for m=1. Now let m≥2. It is easily checked that

〈f∗j , (U
γj
mK)Bfj〉 = 〈ψj , (K −O

γj
mK + PγjmK)Gψj〉,

and thus

(10.11) VarI
η0

(K − 〈K〉γ) ≤ VarI
nb,η0

(UγmK) + VarI
η0

(OγmK − PγmK − 〈K〉γ).

We now note that

(10.12) 〈K〉γ = 〈OγmK − PγmK〉γ .

Indeed, we have

〈OγmK − PγmK〉γ =
∑

(x−1;xm−1)∈Bm

ζγx0(x−1)K(x−1;xm−1)Φγ(x0, xm−1)

+
∑

(x0;xm)∈Bm

K(x0;xm)ζγxm−1
(xm)Φγ(x0, xm−1)

−
∑

(x0;xm)∈Bm

ζγx1(x0)K(x0;xm)ζγxm−1
(xm)Φγ(x1, xm−1),

so (10.12) follows from (2.13). Using (10.11), this completes the proof. �
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We introduce one last operator Xγ : H0 →H0 given by

XγK = 〈K〉γ1.

The following corollary then holds assuming all eigenfunctions ψj are real. Note

that this assumption is not needed in the special case m = 0, corresponding

to Theorem 1.1.

Corollary 10.3. Suppose we have shown that

lim
η0↓0

lim sup
N→∞

VarI
nb,η0

(FγK) = 0, lim
η0↓0

lim sup
N→∞

‚�VarI
nb,η0

(‹FγK) = 0

for any Fγ : Hm → Hk that is a polynomial combination of Lγd−1ST,γ , Xγ ,

Uγj , T γ , Oγj and Pγj (T fixed), ‹Fγ being the same combination with Lγ replaced

by L̃γ . Suppose that

(10.13) lim
T−→+∞

lim
η0↓0

lim sup
N→∞

VarI
η0

Ä
S̃T,γ(CγK − 〈CγK〉γ)

ä
= 0,

where Cγ : Hm → H0 is any polynomial combination of Uγj , T γ , Oγj and

Pγj . Then it will follow that limη0↓0 lim supN→∞VarI
η0

(K − 〈K〉γ) = 0 for any

K ∈Hm. In other words, Theorem 1.3 will follow.

Proof. The case m = 0 holds by Proposition 10.1 and the triangle inequal-

ity VarI
nb,η0

(K−〈K〉γ) ≤ VarI
nb,η0

(K) + VarI
nb,η0

(XγK). Here, Fγ has the form

Lγd−1ST,γ , Lγd−1ST,γXγ and Cγ = I.

The result for higher m follows by induction using Proposition 10.2. For

example, for m = 2, the conclusion is obtained by taking Fγ of the form Uγ2 ,

T γOγ2 , Lγd−1ST,γOγ1O
γ
2 , Lγd−1ST,γXγOγ1O

γ
2 , Lγd−1ST,γPγ2 , Lγd−1ST,γXγPγ2 ,

and Cγ of the form Oγ1O
γ
2 and Pγ2 . �

Remark 10.4. All the operators in Corollary 10.3 satisfy the assumptions

(Hol) from Definition 3.2. Indeed, the first two points of (Hol) are clear. (The

derivative of any Green function such as ζz or Gz may be assessed, for example,

using the resolvent equation, yielding |∂zζz| ≤ (Im z)−2.)

For the third point, we should estimate 1
N

∑
ω∈Bk |FγK(ω)|s. Assume first

that Xγ is not contained in Fγ . Then assuming ‖K‖∞ ≤ 1, we write

|FγK(ω)| =

∣∣∣∣∣∣ ∑ω′∈BmFγ(ω, ω′)K(ω′)

∣∣∣∣∣∣ ≤ ∑
ω′∈Bm

|Fγ(ω, ω′)|.

Now Fγ = A(1) · · ·A(`) is a composition of operators A(r), each of which is

either a multiplication or of nearest-neighbor type (with ST,γ a composition of

Laplacians). So the sum
∑
ω′ A

(r)(ω, ω′) reduces to
∑
ω′≈ω A

(r)(ω, ω′), where

depending on the operator, ω′ ≈ ω means ω′ = ω, ω′ ∼ ω, ω′ ∈ {oω, tω} (origin
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and terminus of ω), ω′ ∈ {(x, ω), (ω, y) : x ∼ oω, y ∼ tω} or ω′ ∈ {(x, ω, y) :

x ∼ oω, y ∼ tω}. In any case, #{ω′ ≈ ω} ≤ 2D. So

Fγ(ω, ω′) =
∑
ω1≈ω

· · ·
∑

ω`−1≈ω`−2

A(1)(ω, ω1) . . . A(`)(ω`−1, ω
′)

and thus∑
ω′∈Bm

|Fγ(ω, ω′)| ≤
∑
ω1≈ω

· · ·
∑

ω`≈ω`−1

|A(1)(ω, ω1) . . . A(`)(ω`−1, ω`)|.

It follows that

|FγK(ω)|s ≤ (2`D)s−1
∑
ω1≈ω

· · ·
∑

ω`≈ω`−1

|A(1)(ω, ω1) . . . A(`)(ω`−1, ω`)|s.

Using Hölder’s inequality, if
∑`
r=1

1
pr

= 1, using Remark A.3 we get that

(10.14)

1

N

∑
ω∈Bk

|FγK(ω)|s ≤ CD,`,k,s
∏̀
r=1

Ñ
1

N

∑
ωr−1

∑
ωr≈ωr−1

|A(r)(ωr−1, ωr)|spr
é1/pr

−→
N−→+∞

CD,`,k,s
∏̀
r=1

E

 ∑
ωr−1 : oωr−1=o

∑
ωr≈ωr−1

|Â(r)(ωr−1, ωr)|spr
1/pr

uniformly in λ. Here, ` may depend on T . By definition, all Â(r)(ω, ω′) are

well-behaved functions of ζ̂ and Gz, so the previous expression is finite us-

ing Remark A.4. For example, if Fγ = T γ , we are reduced to estimating

E
Ä∑

o′∼o |
ζγ
o′ (o)ζ̂

γ
o (o′)

ζ̂γ
o′ (o)ζ̂

γ
o (o′)+1

|s
ä
. Using (2.7), we observe that

|ζ̂γo (o′)|∣∣∣∣ζ̂γo (o′) + ζ̂γo′(o)
−1
∣∣∣∣ =

|ζ̂γo (o′)|
|2 Re ζ̂γo (o′) + 2m̂γ

o |
≤ |ζ̂

γ
o (o′)|

2 Im m̂γ
o
,

and we know from Remark A.4 that supγ E
Ä∑

o′∼o
|ζ̂γo (o′)|s

(2 Im m̂γo )s

ä
<∞. Similarly,

if Fγ = Lγd−1ST,γ , then

|(FγK)(e)|

≤
|ζγoe(te)|

2

|mγ
oe |2

1

Nγ(oe)Nγ(te)

T−1∑
r=0

ñ
|(P rd−1NγK)(oe)|+

|(P rd−1NγK)(te)|
|ζγoe(te)ζ

γ
te(oe)|

ô
,
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so (10.14) reduces to

CD,T,s E
(∑
o′∼o

( |ζ̂γo (o′)|2

|m̂γ
o |2N̂γ(o)N̂γ(o′)

)p1s
)1/p1

E
Ä
N̂γ(o)p2s

ä1/p2

+ CD,T,s E
(∑
o′∼o

( |ζ̂γo (o′)|
|m̂γ

o |2N̂γ(o)N̂γ(o′)|ζ̂γo′(o)|

)p1s
)1/p1

E
Ä
N̂γ(o)p2s

ä1/p2

for some p1, p2.

The previous discussion was under the assumption A(r) 6= Xγ . If Fγ =

F γ1 XγF
γ
2 with F γ1 and F γ2 as in the previous paragraph, we write

FγK(ω) =
∑
ω′
F γ1 (ω, ω′)〈F γ2 K〉γ ,

with

|〈F γ2 K〉γ | =
∣∣∣∣∑xNγ(x)(F γ2 K)(x)∑

xNγ(x)

∣∣∣∣
=

∣∣∣∣∑x
∑
wNγ(x)F γ2 (x,w)K(w)∑

xNγ(x)

∣∣∣∣ ≤ ∑
x
∑
wNγ(x)|F γ2 (x,w)|∑

xNγ(x)
.

Hence,

|FγK(ω)| ≤
∑
ω′
|F γ1 (ω, ω′)| · N∑

xNγ(x)
· 1

N

∑
x

∑
w

Nγ(x)|F γ2 (x,w)|.

Applying Hölder’s inequality to

1

N

∑
ω∈Bk

(∑
ω′
|F γ1 (ω, ω′)|

)s
and

Ç
1

N

∑
x

Nγ(x)
∑
w

|F γ2 (x,w)|
ås

and taking the limit, we obtain a uniform control as before. Thus, all points

of (Hol) are satisfied.

In view of Remark 10.4, we may use Theorem 3.3 to conclude that for the

Fγ in Corollary 10.3, we have limη0↓0 lim supN→∞VarI
nb,η0

(FγK) = 0.

Since ‚�VarI
nb,η0

(‹FγK) is defined exactly like VarI
nb,η0

(FγK) except that ζ is

replaced by ζ, it is clear that it can be shown to vanish asymptotically using the

same arguments, simply replacing ζ by ζ when necessary. By Corollary 10.3,

to finish the proof of Theorem 1.3, it suffices to show (10.13). This is what we

do now.

Recall that we introduced ‖K‖γ for K ∈Hk, k ≥ 1, in (4.1). For K ∈H0,

we let

‖K‖2γ = ‖NγK‖2H0
=

1

N

∑
x∈V

N2
γ (x)|K(x)|2.
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We also define

(YγK)(x) =
d(x)

Nγ(x)
·
∑
y∈V Nγ(y)K(y)∑

y∈V d(y)
.

Denoting 〈J〉U := 1
N

∑
x∈V J(y) as the uniform average of J , we have YγK =

〈NγK〉U
〈d〉U · d

Nγ
. Fix I = (a, b) ⊂ I1 as in Section 4.

Proposition 10.5. Under assumptions (BSCT) and (Green), if Kγ ∈
H0 satisfies the set of assumptions (Hol), then for any interval I = (a, b) as

above,

lim
η0↓0

lim sup
N→+∞

VarI
η0

(S̃T,γKγ−YγKγ)2≤ D |I|
β2T 2

lim
η0↓0

lim
η↓0

lim sup
N→∞

∫ b+2η

a−2η
‖Kλ+i(η4+η0)

−Yλ+i(η4+η0)K
λ+i(η4+η0)‖2λ+i(η4+η0) dλ.

Proof. We follow the steps in the proof of Theorem 4.1. Let

Jγ = (S̃T,γ − Yγ)Kγ and αγj (x) = N1/2
γj (x).

Then

VarI
η0

(Jγ)2 ≤

Ñ
1

N

∑
λj∈I
‖α−1

γj ψj‖
2

éÑ
1

N

∑
λj∈I
‖αγjJ

γj
G ψj‖

2

é
.

As in the proof of (4.3),

1

N

∑
λj∈I
‖α−1

γj ψj‖
2 .

3

πN

∫ b+2η

a−2η

∑
ρG(x)≥dR,η

Ψz+iη0,x̃(x̃)

Nλ+iη0(x)
dλ ≤ 3(|I|+ 4η)

π

for any small η > 0, since Nγ(x) = Ψγ,x̃(x̃).

Hence,

lim
η0↓0

lim sup
N→∞

VarI
η0

(Jγ)2 ≤ 3|I|
π

lim
η0↓0

lim sup
N→∞

1

N

∑
λj∈I
‖αγjJ

γj
G ψj‖

2.

Now

‖αγjJ
γj
G ψj‖

2 =
∑
x∈V

Nγj (x)|Jγj (x)|2|ψj(x)|2.

Arguing as in Section 4, we get

1

N

∑
λj∈I
‖αγjJ

γj
G ψj‖

2

≤ 3

πN

∫ b+2η

a−2η

∑
ρG(x)≥dR,η

χ(λ)Nz+iη0(x)|Jz+iη0(x)|2Ψz+iη0,x̃(x̃) dλ,

where z := λ+ iη4. This is bounded by 3
π

∫ b+2η
a−2η ‖Jz+iη0‖2z+iη0

dλ, since Ψγ,x̃(x̃)

= Nγ(x) and χ(λ) ≤ 1 on R.

Summarizing, we have
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lim
η0↓0

lim sup
N→∞

VarI
η0

(Jγ)2 ≤ 9|I|
π2

∫ b+2η

a−2η
‖Jz+iη0‖2z+iη0

dλ.

Now recall that S̃T,γ = 1
T

∑T
s=1 P

s
γ and Pγ = d

Nγ
P
Nγ
d , so that P sγ =

d
Nγ
P s

Nγ
d . Moreover, YγK = d

Nγ

〈NγK〉U
〈d〉U . So denoting γ = z + iη0, ‖K‖2d =

1
N

∑
x∈V d(x)|K(x)|2, we have

‖Jγ‖2γ = ‖NγJ
γ‖2H0

=
1

N

∑
x∈V

∣∣∣∣ 1T
T∑
s=1

d(x)
(
P s
NγK

γ

d

)
(x)− 〈NγK

γ〉U
〈d〉U

d(x)

∣∣∣∣2
≤ D ·

∥∥∥∥ 1

T

T∑
s=1

P s
(NγK

γ

d
− 〈NγK

γ〉U
〈d〉U

1
)∥∥∥∥2

d

≤ D

T 2

Ç T∑
s=1

(1− β)s
∥∥∥∥NγK

γ

d
− 〈NγK

γ〉U
〈d〉U

1

∥∥∥∥
d

å2

≤ D

β2T 2

∥∥∥∥NγK
γ

d
− 〈NγK

γ〉U
〈d〉U

1

∥∥∥∥2

d
.

Here we used (EXP) and the fact that
NγKγ

d − 〈NγK
γ〉U

〈d〉U 1 is orthogonal to

the constants in `2(V, d). Indeed, the orthogonal projector onto 1 in `2(V, d)

is P1,dJ = 〈1,J〉d
〈1,1〉d 1 = 〈dJ〉U

〈d〉U 1. Since
〈NγKγ〉U
〈d〉U 1 =

NγYγKγ

d and 1
d ≤ 1, the

proposition follows. �

Corollary 10.6. For any Cγ : Hm → H0 as in Corollary 10.3 and

Ī ⊂ I1, ‖K‖∞ ≤ 1,

lim
η0↓0

lim sup
N→+∞

VarI
η0

Ä
S̃T,γ (CγK − 〈CγK〉γ)

ä2 ≤ c |I|2

β2T 2
.

Proof. Let K ′γ = CγK − 〈CγK〉γ1. Then YγK
′
γ = 0, since YγCγK =

d
Nγ

〈NγCγK〉U
〈d〉U and 〈CγK〉γYγ1 =

〈NγCγK〉U
〈Nγ〉U

d
Nγ

〈Nγ〉U
〈d〉U . Hence, denoting z = λ +

i(η4 + η0),

lim
η0↓0

lim sup
N→+∞

VarI
η0

Ä
S̃T,γ (CγK − 〈CγK〉γ)

ä2

≤ D |I|
β2T 2

lim
η0↓0

lim
η↓0

lim sup
N→∞

∫ b+2η

a−2η
‖CzK − 〈CzK〉z‖2z dλ.

Now

‖CzK‖2z =
1

N

∑
x∈V

N2
z (x)|(CzK)(x)|2 ≤ 1

N

∑
x∈V

N2
z (x)

[ ∑
w∈Bm

|Cz(x,w)|
]2
.

Similarly, |〈CzK〉z| ≤ 1∑
x
Nz(x)

∑
xNz(x)

∑
w |Cz(x,w)|. For our operators Cz,

we thus get ‖CzK‖2z = O(1)N−→+∞,z and |〈CzK〉z| = O(1)N−→+∞,z, as in

Remark 10.4. �

This proves (10.13) and ends the proof of Theorem 1.3 on the interval I.
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Suppose further that ρ(∂I1) = 0. As I1 is open, we have I1 = ∪j∈NJj for

open intervals Jj = (aj , bj). Let J ςj = (aj + ς, bj − ς) with ς > 0 small. Then

J ςj ⊂ I1, so using (9.7) and Corollary 10.6, we get

lim
η0↓0

lim sup
N→∞

Var
Jςj
η0(K − 〈K〉γ) = 0.

Now VarI1
η0

(K ′) =
∑M
j=1 Var

Jςj
η0(K ′) + Var

I1\∪M
j=1Jςj

η0 (K ′) for any given M . By

(A.14) and (Green), we have

Var
I1\∪M

j=1Jςj
η0 (K − 〈K〉γ) ≤

]{λj ∈ I1 \ ∪Mk=1J
ς
k}

N
O(1)N−→+∞,γ .

By the convergence of empirical spectral measures (Remark A.3), and using

the fact that ρ(∂I1) = 0, we have
]{λj∈I1\∪Mk=1J

ς
k
}

N → ρ(I1 \ ∪Mk=1J
ς
k). Finally,

ρ(I1 \ ∪Mk=1J
ς
k) → 0 as ς ↓ 0 and M −→ +∞. The conclusion of Theorem 1.3

thus holds with I replaced by I1.

Finally, if (Green) holds on I1, then

ρ({λ}) = lim
η↓0

η ImE(Gλ+iη(o, o)) = 0

for any λ ∈ I1, since supη>0 ImE(Gλ+iη(o, o)) <∞. In particular, ρ(∂I1) = 0.

Appendix A. Benjamini-Schramm topology

A.1. Generalities. Here we collect known facts on the Benjamini-Schramm

convergence; we refer the reader to [1], [4], [15], [14], [37] for details.

A colored rooted graph (G, o,W ) is a graph G = (V,E) with a marked

vertex o ∈ V called the root, and a map W : V → R that we see as a “coloring”;

it can also be regarded as a potential on `2(V ). This is a special case of what

is called a network in [4]. All graphs are assumed to be locally finite; i.e., each

vertex has a finite degree.

If G is connected, we denote by BG(x, r) the r-ball {y ∈ V : dG(x, y) ≤ r},
where dG is the length of the shortest path between x and y in G.

As in [4], we define a distance between colored connected graphs by

(A.1) dloc

Ä
(G, o,W ), (G′, o′,W ′)

ä
=

1

1 + α
,

α := sup
¶
r > 0 : ∃ graph isomorphism φ : BG(o, brc)→ BG′(o

′, brc) with

φ(o) = o′ and |W ′(φ(v))−W (v)| < 1/r ∀v ∈ BG(o, brc)
©
.

Two colored rooted graphs (G, o,W ) and (G′, o′,W ′) are equivalent if there

is a graph isomorphism φ : G→ G′ such that φ(o) = o′ and W ′ ◦ φ = W . We

denote the equivalence class of (G, o,W ) by [G, o,W ].
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Let G∗ be the set of equivalence classes of connected colored rooted graphs.

Then dloc turns G∗ into a separable complete metric space. We may thus

consider the set of probability measures on G∗, denoted by P(G∗).
Any finite connected colored graph (G,W ), G = (V,E), defines a probabil-

ity measure U(G,W ) ∈ P(G∗) by choosing the root x uniformly at random in V :

(A.2) U(G,W ) =
1

|V |
∑
x∈V

δ[G,x,V ].

If (Gn,Wn) is a sequence of finite colored graphs, we say that P ∈ P(G∗) is

the local weak limit of (Gn,Wn) if U(Gn,Wn) converges weakly-∗ to P in P(G∗).
This notion of convergence was introduced in [15] and generalized in [4]. In this

case, we also say that (Gn,Wn) converges in the sense of Benjamini-Schramm.

The subset GD,A
∗ ⊂ G∗ of equivalence classes [G, o,W ] such that G is of

degree bounded by D, and W takes values in [−A,A], is compact. It follows

that P(GD,A
∗ ) is compact in the weak-∗ topology. Hence, if CD,Afin denotes the

set of finite colored graphs (G,W ), G = (V,E), of degree bounded by D

and coloring W : V → [−A,A], then any sequence (Gn,Wn) ⊂ CD,Afin has a

subsequence that converges in the sense of Benjamini-Schramm.

Let C(GD,A
∗ ) be the set of continuous functions f : GD,A

∗ → R. Then a

sequence (Gn,Wn) ⊂ CD,Afin has a local weak limit P if and only if there is an

algebra A ⊂ C(GD,A
∗ ) that separates points such that for all f ∈ A ,

(A.3) lim
n→∞

1

|Vn|
∑
x∈Vn

f ([Gn, x,Wn]) =

∫
GD,A∗

f ([G, o,W ]) dP ([G, o,W ]) .

This follows from the compactness of GD,A
∗ ; see [33, Ch. 13].

It may not be very clear what a continuous function on GD,A
∗ looks like,

so we give a basic example. If BF (o, r) is an r-ball, the sets CF = {[G, x,W ] :

BG(x, r) ∼= BF (o, r)} turn out to be clopen in GD,A
∗ , so the characteristic

function χCF is continuous. Here BG(x, r) ∼= BF (o, r) means there exists a

graph isomorphism φ : BG(x, r)→ BF (o, r) with φ(x) = o. Using (A.3), it can

be shown that in the special case where there is no coloring, (Gn) ⊂ CD,Afin has

a local weak limit P if and only if

lim
n→∞

#{x : BGn(x, r) ∼= BF (o, r)}
|Vn|

= P({[G, x] : BG(x, r) ∼= BF (o, r)})

for any BF (o, r). This was in fact the original criterion in [15]. Using it, one

readily checks that a sequence of (q+ 1)-regular graphs (Gn) satisfies (BST) if

and only if it converges to the (q+1)-regular tree Tq in the sense of Benjamini-

Schramm, i.e., if and only if (Gn) has the local weak limit δ[Tq ,o], with o ∈ Tq
arbitrary. More generally, by considering the clopen sets Cr = {[G, x,W ] :

BG(x, r) is not a tree}, one sees that if (Gn,Wn) ⊂ CD,Afin has a local weak
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limit P that is concentrated on the subset T D,A
∗ ⊂ GD,A

∗ of colored rooted

trees, then (Gn) satisfies (BST). Conversely, if (Gn) satisfies (BST) and if a

subsequence of (Gn,Wn) has a local weak limit P, then P must be concentrated

on T D,A
∗ .

A.2. Convergence of empirical spectral measures. We now show Benjamini-

Schramm convergence implies convergence of the empirical spectral measures.

This is already known in some settings [1], [37], [40]. In this paper we need

the variant stated as Corollary A.2.

Given [G, o,W ] ∈ GD,A
∗ , γ ∈ C+ = {z, Im z > 0} and x ∼ y ∈ G, we define

ζγx (y) as in Section 2.2. Like in Section 2.1, Bk is the set of non-backtracking

paths of length k on G.

Fix s ∈ N. Let F : (C \ {0})2s → C be a continuous function and γ ∈ C+.

Let

(A.4)

Fγ([G, o,W ]) =
∑

(x0;xs)∈Bs :x0=o

F
Ä
ζγx0

(x1), ζγx1
(x0), . . . , ζγxs−1

(xs), ζ
γ
xs(xs−1)

ä
.

For s = 1, the sum reduces to
∑
x1:x1∼o. One can remark that Fγ([G, o,W ]) =

Fγ([‹G, õ, W̃ ]), where ‹G is the universal cover of G and õ, W̃ are lifts of o,W .

Next, given Borel J ⊆ R, we define the measure

µ
(G,W )
o,F,γ (J) = Fγ([G, o,W ])〈δo, χJ(HG,W )δo〉.

Fix a compact I ⊂ R, and fix η ∈ (0, 1).

Lemma A.1. Suppose that (λn, [Gn, on,Wn]) ⊂ I × GD,A
∗ converges to

(λ, [G, o,W ]) in I × GD,A
∗ . Then µ

(Gn,Wn)
on,F,λn+iη converges weakly-∗ to µ

(G,W )
o,F,λ+iη .

Proof. Since all operators Hn = H(Gn,Wn) and H = H(G,W ) are uniformly

bounded by D + A, the supports of the spectral measures is compact, so it

suffices to show that for any k ∈ N, µ
(Gn,Wn)
on,F,λn+iη(t

k) → µ
(G,W )
o,F,λ+iη(t

k); see [33,

Ch. 13].

Let k ∈ N. Denote γn = λn + iη, γ = λ+ iη. We have∣∣∣µ(Gn,Wn)
on,F,γn

(tk)− µ(G,W )
o,F,γ (tk)

∣∣∣
=
∣∣∣Fγn([Gn, on,Wn])〈δon , Hk

nδon〉 − Fγ([G, o,W ])〈δo, Hkδo〉
∣∣∣ .

We first approximate F by a polynomial.

We have |ζλ+iη
x (y)| ≤ η−1 and | Im ζλ+iη

x (y)|=η ‖(‹H(ỹ|x̃)−λ−iη)−1δỹ‖2
`2(G̃)

.

Since ‖‹H(x|y)− λ− iη‖`2→`2 ≤ A+D+ cI + 1 =: c for all λ ∈ I and η ∈ (0, 1),

we get | Im ζλ+iη
x (y)| ≥ ηc−2.

So letO ⊂ C be the compact region {ηc−2 ≤ |z| ≤ η−1}. If F is continuous

on O2s ⊂ C2s, by Stone-Weierstrass, given R ∈ N∗, there is a polynomial PR
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of 4s variables such that

sup
(z1;z2s)∈O2s

|F (z1, . . . , z2s)− PR(z1, z̄1, . . . , z2s, z̄2s)| ≤
1

2R
.

Hence, for any λ ∈ I and (x0;xs), if γ = λ+ iη, then∣∣∣∣F Äζγx0
(x1), ζγx1

(x0), . . . , ζγxs(xs−1)
ä

− PR
Ä
ζγx1

(x0), ζγx1(x0), . . . , ζγxs(xs−1)
ä ∣∣∣∣ ≤ 1

2R
.

(A.5)

Let hη(t) = −(t − iη)−1. Given ε > 0, we may choose a polynomial Qε = Qηε
such that ‖hη−Qε‖∞ < ε. It follows that ‖hη(H(x̃|ỹ)

G̃
−λ)−Qε(H(x̃|ỹ)

G̃
−λ)‖ < ε.

In particular, if Zγε (x, y) := Qε(H
(ỹ|x̃)

G̃
− λ)(ỹ, ỹ), we have for any λ ∈ I and

(x, y) ∈ B,

(A.6) |ζγx (y)− Zγε (x, y)| < ε.

As PR is Lipschitz-continuous on O2s, we may thus find CR,η−1 such that∣∣∣∣PR Äζγx0
(x1), . . . , ζγxs(xs−1)

ä
−PR

Ä
Zγε (x0, x1), . . . , Zγε (xs, xs−1)

ä ∣∣∣∣ ≤ CR,η−1 · ε =
1

2R

by choosing ε = 1
2R

1
CR,η−1

. Using (A.5), we thus get uniformly in λ ∈ I,

(x0;xs),

(A.7)∣∣∣F Äζγx0
(x1), ζγx1

(x0), . . . , ζγxs(xs−1)
ä
− PR

Ä
ZγR(x0, x1), . . . , ZγR(xs, xs−1)

ä∣∣∣ ≤ 1

R
,

where we now denote ZR because ε is a function of R. Define

Pγ([G, o,W ]) =
∑

(x1;xs),x0=o

PR
Ä
ZγR(x0, x1), . . . , ZγR(xs, xs−1)

ä
.

Then up to an error
CD,s,A,k

R , it suffices to consider∣∣∣Pγn([Gn, on,Wn])〈δon , Hk
nδon〉 − Pγ([G, o,W ])〈δo, Hkδo〉

∣∣∣ .
Let dR be the degree of QR, and choose an arbitrary integer r ≥ dR + s +

k =: dR,s,k. Then we may find nr such that for n ≥ nr, there exists ϕr :

BGn(on, r)
∼−→ BG(o, r) with ‖W ◦ ϕr −Wn‖BGn (o,r) < 1/r. Now

〈δon , Hk
nδon〉 =

∑
u0,...,uk−1

Hn(on, u0)Hn(u0, u1) . . . Hn(uk−1, on)

and

Hn(v, w) = An(v, w) +Wn(v)δw(v).
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This only depends on BGn(on, k) and its coloring. Similarly, the quantity

ZγR(x, y) corresponding to (Gn, on,Wn) only depends on BGn(y, dR) and its

coloring. Since r ≥ dR,s,k and ϕr : BGn(on, r)
∼−→ BG(o, r), if we let Hn = AG+

Wn◦ϕ−1
r onG, we get 〈δon , Hk

nδon〉 = 〈δo,Hknδo〉. Similarly, Pγn([Gn, on,Wn]) =

Pγn([G, o,Wn ◦ ϕ−1
r ]). Let W ′n = Wn ◦ ϕ−1

r . Then for n ≥ nr,∣∣∣µ(Gn,Wn)
on,F,γn

(tk)− µ(G,W )
o,F,γ (tk)

∣∣∣
≤ C

R
+
∣∣∣Pγn([G, o,W ′n])〈δo,Hknδo〉 − Pγ([G, o,W ])〈δo, Hkδo〉

∣∣∣ .
Writing Hkn −Hk =

∑k
i=1Hk−in (Hn −H)H i−1, we have

|〈δo, (Hkn −Hk)δo〉| ≤ C ′k,D,A‖Wn ◦ ϕ−1
r −W‖BG(o,r) ≤

C ′k,D,A
r

.

A similar argument yields

|Pγ([G, o,W ′n])− Pγ([G, o,W ])| ≤ CR,D,s,A
r

and

|Pγn([G, o,W ′n])− Pγ([G, o,W ′n])| ≤ CR,D,s,A,I |λn − λ| ≤
CR,D,s,A,I

r

for n ≥ n′r. We thus showed that for any r ≥ dR,s,k, there exists n′′r such that

if n ≥ n′′r , then

|µ(Gn,Wn)
on,F,γn

(tk)− µ(G,W )
o,F,γ (tk)| ≤ CD,s,A,k

R
+
C ′k,D,A + CR,D,s,A + CR,D,s,A,I

r
.

It follows that lim supn→∞ |µ
(Gn,Wn)
on,F,γn

(tk) − µ(G,W )
o,F,γ (tk)| ≤ CD,s,A,k

R . Since R is

arbitrary, the proof is complete. �

If (G,W ) ∈ CD,Afin , we now define, for γ ∈ C+,

µ
(G,W )
F,γ =

1

|V |
∑
x∈V

µ
(G,W )
x,F,γ .

Corollary A.2. Suppose (Gn,Wn) ⊂ CD,Afin has a local weak limit P.

Fix a compact I ⊂ R and η ∈ (0, 1). Then µ
(Gn,Wn)
F,λ+iη converges weakly to∫

GD,A∗
µ

(G,W )
o,F,λ+iη dP([G, o,W ]), uniformly in λ ∈ I . In other words, for any

continuous ϕ : R→ R, we have uniformly in λ ∈ I ,

1

|Vn|
∑
x∈Vn

Fλ+iη([Gn, x,Wn])〈δx, ϕ(H(Gn,Wn))δx〉

−→
N−→+∞

∫
GD,A∗

Fλ+iη([G, o,W ])〈δo, ϕ(H(G,W ))δo〉 dP([G, o,W ]).
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Proof. Given continuous ϕ : R → R, define ϕ̂ : I × GD,A
∗ → R by

ϕ̂(λ, [G, o,W ]) =
∫
ϕ(t) dµ

(G,W )
o,F,λ+iη(t). Lemma A.1 states ϕ̂ is continuous on

I × GD,A
∗ — hence, uniformly continuous. Let ϕ̂λ([G, o,W ]) = ϕ̂(λ, [G, o,W ]).

Local convergence means that the measures U(Gn,Wn) (defined in (A.2)) con-

verge weakly to P. Thus, for any λ ∈ I,
∫
ϕ̂λ dU(Gn,Wn) →

∫
ϕ̂λ dρ, i.e.,

1
|Vn|

∑
x∈Vn ϕ̂λ([Gn, x,Wn])→

∫
ϕ̂λ([G, o,W ]) dP([G, o,W ]), which is the state-

ment of the lemma for fixed λ ∈ I.

Uniformity in λ comes from the uniform continuity of ϕ̂, which implies

that the maps λ 7→
∫
ϕ̂λ dU(Gn,Wn) form a uniformly equicontinuous family. �

Remark A.3. Taking F ≡ 1 we get, in particular, the convergence of

empirical spectral measures. On the other hand, when ϕ ≡ 1 we get, in

particular, that under assumption (BSCT), if I ⊂ R is compact and η ∈ (0, 1)

is fixed, then uniformly in λ ∈ I,

1

N

∑
(x0;xs)∈Bs

F
Ä
ζλ+iη
x0

(x1), ζλ+iη
x1

(x0), . . . , ζλ+iη
xs−1

(xs), ζ
λ+iη
xs (xs−1)

ä
−→

N−→+∞
E

 ∑
(v0;vs)∈Bs:v0=o

F
Ä
ζ̂λ+iη
v0

(v1), ζ̂λ+iη
v1

(v0), . . . , ζ̂λ+iη
vs−1

(vs), ζ̂
λ+iη
vs (vs−1)

ä.
(A.8)

In this article, we often encounter expressions of the form

ϑγ(x0, x1) = F (ζγx0
(x1), ζγx1

(x0))

in the left-hand side of (A.8). In this case, we write

ϑ̂γ(v0, v1) := F (ζ̂γv0
(v1), ζ̂γv1

(v0))

for the object defined similarly at the limit. For instance, µ̂γ1 is defined like

µγ1 but on the limiting tree (T ,W). In the particular case of mγ , we have

m̂γ
o = −1

2Gγ(o,o) .

It is worth noting that E[
∑
o′∼o F (ζ̂γo (o′))] = E[

∑
o′∼o F (ζ̂γo′(o))]. This

holds because 1
N

∑
(x0,x1) F (ζγx0

(x1)) = 1
N

∑
(x0,x1) F (ζγx1

(x0)).

Remark A.4. Using (2.4b), we have |ζ̂γo′(o)|s ≤ | Im ζ̂γo (u)|−s for any u ∈
No \ {o′}. In particular, |ζ̂γo′(o)|s ≤

∑
o′′∼o | Im ζ̂γo (o′′)|−s. We thus see by

(Green) that for any s > 0,

(A.9)

sup
λ∈I1,η∈(0,1)

E(| ImGλ+iη(o, o)|−s) <∞, sup
λ∈I1,η∈(0,1)

E(|Gλ+iη(o, o)|s) <∞,

(A.10)

sup
λ∈I1,η∈(0,1)

E
(∑
y∼o
|ζ̂λ+iη
y (o)|s

)
<∞, sup

λ∈I1,η∈(0,1)
E
(∑
y∼o
|ζ̂λ+iη
o (y)|s

)
<∞,
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sup
λ∈I1,η∈(0,1)

E
(∑
y∼o
| Im ζ̂λ+iη

y (o)|−s
)
<∞.

We also have

sup
λ∈I1,η∈(0,1)

E

 ∑
(v0;vt)∈Bt:v0=o

∣∣∣ζ̂λ+iη
v0

(v1)ζ̂λ+iη
v1

(v0) · · · ζ̂λ+iη
vt−1

(vt)ζ̂
λ+iη
vt (vt−1)

∣∣∣s
<∞.

To see this, consider for simplicity E[
∑

(v0;v2),v0=o |ζ̂γv0
(v1)ζ̂γv1

(v2)|s]. This is the

limit of 1
N

∑
(x0;x2)∈B2

|ζγx0
(x1)ζγx1

(x2)|s. This sum is bounded byÑ
1

N

∑
(x0;x2)∈B2

|ζγx0
(x1)|2s

é1/2

·

Ñ
1

N

∑
(x0;x2)∈B2

|ζγx1
(x2)|2s

é1/2

for any N . Using |Nx1 | − 1 ≤ D and taking N → ∞, we see the limit is

bounded by

DE
(∑
o′∼o
|ζ̂γo (o′)|2s

)1/2

E
(∑
o′∼o
|ζ̂γo (o′)|2s

)1/2

≤ DCs

by (A.10), for any λ ∈ I1 and η > 0. Hence,

sup
λ∈I1,η>0

E

 ∑
(v0;v2),v0=o

|ζ̂γv0
(v1)ζ̂γv1

(v2)|s
 ≤ DCs.

Remark A.5. Let us now look at the quantity

1

N

∑
(x0,x1)

∑
(x2;xk),(y2;yk)

|g̃γ(x̃k, ỹk)|s,

which we had to control in Section 4.

Let xk ∧ yk be the vertex of maximal length in (x0;xk) ∩ (x0; yk), so

xk ∧ yk = xt for some 1 ≤ t ≤ k. Then

g̃γ(x̃k, ỹk) =
−∏k−t−1

l=0 ζγxk−l(xk−l−1) · ζγxt(yt+1)
∏k−1
l=t+1 ζ

γ
yl

(yl+1)

2mγ
xk

.

We then write

1

N

∑
(x0,x1)

∑
(x2;xk),(y2;yk)

=
1

N

∑
(x0,x1)

k∑
t=1

∑
(x2;xk),(y2;yk),xk∧yk=xt

,

use Hölder’s inequality, and take N → ∞ to get a uniform bound involving

E[
∑
o′∼o |ζ̂γo (o′)|s2 ] and E[|2m̂o|−s1 ], both of which are finite. Hence,

1

N

∑
(x0,x1)

∑
(x2;xk),(y2;yk)

|g̃γ(x̃k, ỹk)|s

is uniformly bounded as N →∞.
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A.3. Proofs of auxiliary results. We now turn to the proofs of some claims

in Section 1. In what follows, η0 ∈ (0, 1) is fixed.

Claim (1.8). Let χ : GD,A
∗ → R and F : C → R be continuous. Then

under (BSCT),

1

N

∑
x∈VN

χ([GN , x])
∑

y,d(y,x)=k

F (g̃λ+iη0

N (x̃, ỹ))

−→
N−→+∞

E
(
χ([T , o])

∑
v,d(v,o)=k

F (Gλ+iη0(o, v))
)(A.11)

uniformly in λ ∈ I0. This is a variant of Corollary A.2 when one considers Fγ,χ :

(λ, [G, x,W ]) 7→ χ([G, x])
∑
y,d(y,x)=k F (g̃γ(x, y)) instead of Fγ . In particular,

taking k = 0 and χ = 1, we obtain (1.8).

Claim (1.9). We may assume F is compactly supported (cf. Lemma A.1),

hence uniformly continuous. Let

hN (t) =
1

N

∑
x∈VN

χ([GN , x])
∑

y,d(y,x)=k

F (t Im g̃λ+iη0

N (x, y)),

h(t) = E
Ä
χ([T , o])

∑
v,d(v,o)=k

F (t ImGλ+iη0(o, v))
ä
,

and let

cN (λ) =
N∑

x̃∈DN Im g̃λ+iη0

N (x̃, x̃)
and c(λ) =

1

E(ImGλ+iη0(o, o))
.

The family hN is uniformly equicontinuous, and as in (A.11) it converges uni-

formly to h. By (1.8), cN (λ)→ c(λ) uniformly in λ. So |hN (cN (λ))− h(c(λ))|
→ 0 uniformly in λ. This proves (1.9).

We now turn to the proof of Claim (1.7). Consider the set of (double)-

colored rooted graphs (G, o,W, a), where now W : V −→ R and a : V → {0, 1}.
We say (G, o,W, a) and (G′, o′,W ′, a′) are equivalent if there is φ : G → G′

with φ(o) = o′, W ′ ◦ φ = W and a′ ◦ φ = a. We let “GD,A
∗ be the corresponding

set of equivalence classes and endow it with a metric dloc defined similarly to

(A.1). This amounts to the same definition as before, except that the colorings

now take values in R×{0, 1} instead of R. The notion of local weak limit may

obviously be extended to this situation.

Assuming that (BSCT) holds, then up to passing to a subsequence,

(GN ,WN , 1lΛN )

will have a local weak limit P̂ concentrated on {[T , o,W, a]}, whose marginals

on T D,A
∗ coincides with P. The fact that |ΛN | ≥ αN implies P̂(a(o) = 1) ≥ α,
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since {a(o) = 1} is clopen in “GD,A
∗ . We claim that

(A.12) lim
N−→+∞

〈1lΛN 〉λ+iη0 =
Ê
Ä
a(o) ImGλ+iη0(o, o)

ä
E (ImGλ+iη0(o, o))

uniformly in λ ∈ I0. Indeed, as in Lemma A.1, if F : I0 × “GD,A
∗ → C is

given by F (λ, [G, x,W, a]) = a(x) Im g̃λ+iη0(x, x), then F is continuous. So∫
Fλ dUGN ,WN ,1lΛN

→
∫
Fλ dP̂ uniformly in λ as in Corollary A.2. Combined

with (1.8), this yields (A.12). We next note that for any α > 0,

(A.13) inf
λ∈I1,η0∈(0,1)

inf
a,P̂(a(o)=1)≥α

Ê
Ä
a(o) ImGλ+iη0(o, o)

ä
E (ImGλ+iη0(o, o))

> 0.

In fact, suppose on the contrary that for all ε > 0, we can find λ ∈ I1, η0 ∈ (0, 1)

and a such that P̂(a(o) = 1) ≥ α and Ê
Ä
a(o) ImGλ+iη0(o, o)

ä
≤ ε. The latter

implies

P̂
Ä
a(o) = 1, ImGλ+iη0(o, o) ≥ ε1/2

ä
≤ ε1/2.

On the other hand, since a takes only the values 0 and 1,

P̂
Ä
a(o) = 1, ImGλ+iη0(o, o) ≥ ε1/2

ä
≥ P̂(ImGλ+iη0(o, o) ≥ ε1/2)− P̂(a(o) = 0).

Thus,

P̂(ImGλ+iη0(o, o) ≥ ε1/2)− P̂(a(o) = 0) ≤ ε1/2.

Equation (A.9) with s = 2 implies that P̂(ImGλ+iη0(o, o) < ε1/2) ≤ Cε for some

constant C < ∞ independent of λ, η0. So P̂(ImGλ+iη0(o, o) ≥ ε1/2) ≥ 1 − Cε.
By assumption, P̂(a(o) = 0) ≤ 1− α. Taking ε→ 0 we would obtain α ≤ 0, a

contradiction. We thus proved (A.13). Since (A.12) holds uniformly in λ, we

get (1.7).

Finally, as in the proof of (A.12), we may consider the set of double-

colored rooted graphs (G, o,W,K), where K is a coloring of pairs of vertices

x, y ∈ G, dG(x, y) ≤ R, with values in {|z| ≤ 1} ⊂ C. Assuming (BSCT) holds,

up to passing to a subsequence, (GN ,WN ,KN ) will have a local weak limit P̂
concentrated on {[T , o,W,K]} whose marginals on T D,A

∗ coincides with P. We

then deduce as before that uniformly in λ ∈ I0,

(A.14) lim
N−→+∞

〈KN 〉λ+iη0
=

Ê
Ä∑

y:d(y,o)≤RK(o, y) ImGλ+iη0(o, y)
ä

E (ImGλ+iη0(o, o))
.
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[29] L. Erdős, B. Schlein, and H.-T. Yau, Semicircle law on short scales and

delocalization of eigenvectors for Wigner random matrices, Ann. Probab. 37

no. 3 (2009), 815–852. MR 2537522. Zbl 1175.15028. https://doi.org/10.1214/

08-AOP421.

[30] L. Geisinger, Convergence of the density of states and delocalization of eigen-

vectors on random regular graphs, J. Spectr. Theory 5 no. 4 (2015), 783–827.

MR 3433288. Zbl 1384.60024. https://doi.org/10.4171/JST/114.

[31] J. P. Keating, Quantum graphs and quantum chaos, in Analysis on Graphs and

its Applications, Proc. Sympos. Pure Math. 77, Amer. Math. Soc., Providence,

RI, 2008, pp. 279–290. MR 2459875. Zbl 1153.81501. https://doi.org/10.1090/

pspum/077/2459875.

[32] A. Klein, Extended states in the Anderson model on the Bethe lattice, Adv.

Math. 133 no. 1 (1998), 163–184. MR 1492789. Zbl 0899.60088. https://doi.

org/10.1006/aima.1997.1688.

[33] A. Klenke, Probability Theory. A Comprehensive Course, Universitext,

Springer, London, 2014. MR 3112259. Zbl 1295.60001. https://doi.org/10.1007/

978-1-4471-5361-0.

[34] J. Marklof, Pair correlation densities of inhomogeneous quadratic forms, Ann.

of Math. (2) 158 no. 2 (2003), 419–471. MR 2018926. Zbl 1106.11018. https:

//doi.org/10.4007/annals.2003.158.419.

[35] C. D. Meyer, Matrix Analysis and Applied Linear Algebra, Society for Indus-

trial and Applied Mathematics (SIAM), Philadelphia, PA, 2000. MR 1777382.

Zbl 0962.15001.

[36] W. Parry and M. Pollicott, Zeta functions and the periodic orbit structure of
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