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Heights in families of abelian varieties and
the Geometric Bogomolov Conjecture

By Ziyang Gao and Philipp Habegger

Abstract

On an abelian scheme over a smooth curve over Q a symmetric relatively

ample line bundle defines a fiberwise Néron–Tate height. If the base curve

is inside a projective space, we also have a height on its Q-points that

serves as a measure of each fiber, an abelian variety. Silverman proved an

asymptotic equality between these two heights on a curve in the abelian

scheme. In this paper we prove an inequality between these heights on a

subvariety of any dimension of the abelian scheme. As an application we

prove the Geometric Bogomolov Conjecture for the function field of a curve

defined over Q. Using Moriwaki’s height we sketch how to extend our result

when the base field of the curve has characteristic 0.
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1. Introduction

In 1998, Ullmo [49] and S. Zhang [65] proved the Bogomolov Conjecture

over number fields. However, its analog over function fields, which came to be

known as the Geometric Bogomolov Conjecture, remains open in full generality.

The main goal of this paper is to prove a height inequality on a subvariety

of an abelian scheme over a smooth curve over Q, Theorem 1.4. It is then not

hard to deduce the Geometric Bogomolov Conjecture over the function field

of a curve in the characteristic 0 case. See Section 11 and Appendix A. Our

height inequality may be of independent interest and does not seem to follow

from the Geometric Bogomolov Conjecture. It can serve as a substitute in

higher dimension of Silverman’s Height Limit Theorem [46], used by Masser

and Zannier [37] to prove a first case of the relative Manin–Mumford Conjecture

for sections of the base curve; we refer to Pink’s work [42] and Zannier’s book

[63] on such problems.

Let k be an algebraically closed field of characteristic 0, K a field extension

of k, and K a fixed algebraic closure of K. Let A be an abelian variety over K.

We let AK/k denote the K/k-trace of A⊗K K; it is an abelian variety over k,

and we have a trace map

τA,K/k : AK/k ⊗k K → A⊗K K,

which is a closed immersion since char(k) = 0. By abuse of notation we

consider AK/k⊗kK as an abelian subvariety of A⊗KK. We refer to Section 2

for references and more information on the trace.

Suppose now that K is the function field of a smooth projective curve

over k. In particular, we have trdeg(K/k) = 1.

Let L be a symmetric ample line bundle on A. We can attach to A,L, and

K the Néron–Tate height ĥK,A,L : A(K)→ [0,∞); see Section 2.1 for additional

background on the Néron–Tate height. This height satisfies the following. For

any P ∈ A(K), we have

ĥK,A,L(P ) = 0 if and only if P ∈ (AK/k ⊗k K)(K) +Ator;

here Ator denotes the subgroup of points of finite order of A(K).

A coset in an abelian variety is the translate of an abelian subvariety. We

call it a torsion coset if it contains a point of finite order.

Our main result towards the Geometric Bogomolov Conjecture is the fol-

lowing theorem. We first concentrate on the important case k = Q.

Theorem 1.1. We keep the notation from above and assume k = Q. Let

X be an irreducible, closed subvariety of A defined over K such that X ⊗K K

is irreducible and not of the form B + (Z ⊗k K) for some closed irreducible

subvariety Z of AK/k and some torsion coset B in A⊗K K . Then there exists



RELATIVE AND GEOMETRIC BOGOMOLOV: 1− p CASE 529

a constant ε > 0 such that

{x ∈ X(K) : ĥK,A,L(x) ≤ ε}
is not Zariski dense in X .

In Appendix A we sketch a proof for when k is any algebraically closed

field of characteristic 0 using Moriwaki’s height.

Yamaki [59, Conj. 0.3] proposed a general conjecture over function fields,

which we will call the Geometric Bogomolov Conjecture; it allows trdeg(K/k)

to be greater than 1 and k algebraically closed of arbitrary characteristic. The

reference to geometry distinguishes Yamaki’s Conjecture from the arithmetic

counterpart over a number field.

The Geometric Bogomolov Conjecture was proven by Gubler [26] when A

is totally degenerate at some place of K. He has no restriction on the character-

istic of k and does not assume that K/k has transcendence degree 1. When X

is a curve embedded in its Jacobian A and when trdeg(K/k) = 1, Yamaki dealt

with non-hyperelliptic curves of genus 3 in [57] and with hyperelliptic curves of

any genus in [58]. Moreover, if char(k) = 0, Faber [18] proved the conjecture

for X of small genus (up to 4, effective) and Cinkir [13] covered the case of

arbitrary genus. Prior to these work, Moriwaki also gave some partial results

in [38]. Yamaki [62] reduced the Geometric Bogomolov Conjecture to the case

where A has good reduction everywhere and has trivial K/k-trace. He also

proved the cases (co)dimX = 1 [61] and dim(A⊗K K/(AK/k ⊗k K)) ≤ 5 [60].

As in Gubler’s setup, Yamaki works in arbitrary characteristic and has no

restriction on K/k. These results involve techniques ranging from analytic

tropical geometry [27] to Arakelov theory; the latter method overlaps with

Ullmo and S. Zhang’s original approach for number fields.

Our approach differs and is based on a height inequality on a model of A

to be stated below in Theorem 1.4. (See Appendix A for a version involving

the Moriwaki height.) In a recent collaboration with Cantat and Xie [11] we

were able to resolve the Geometric Bogomolov Conjecture completely in char-

acteristic 0. While the methods in [11] were motivated by those presented here,

they do not bypass through or recover a height inequality such as Theorem 1.4.

To prove Theorem 1.1 we must work in the relative setting. Let us setup

the notation. Let S be a smooth irreducible curve over k, and let π : A → S

be an abelian scheme of relative dimension g ≥ 1. Let A be the generic fiber

of A → S; it is an abelian variety over k(S), the function field of S. We will

prove the Geometric Bogomolov Conjecture for A and K = k(S). Let us also

fix an algebraic closure k(S) of k(S).

Definition 1.2. An irreducible closed subvariety Y of A is called a generi-

cally special subvariety of A, or just generically special, if it dominates S and if

its geometric generic fiber Y ×S Spec k(S) is a finite union of (Z ⊗k k(S)) +B,
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where Z is a closed irreducible subvariety of Ak(S)/k and B is a torsion coset

in A⊗k(S) k(S).

For any irreducible closed subvariety X of A, we set

X∗ = X \
⋃
Y⊆X,

Y is a generically special
subvariety of A

Y.

We start with the following proposition, which clarifies the structure of X∗.

Its proof relies on a uniform version of Raynaud’s [43] resolution of the Manin–

Mumford Conjecture in characteristic 0 as well as the Lang–Néron Theorem,

the generalization of the Mordell–Weil Theorem to finitely generated fields.

Proposition 1.3. Let X and A be as above. There are at most finitely

many generically special subvarieties of A that are contained in X , maximal

with respect to the inclusion for this property. In particular, X∗ is Zariski open

in X and is empty if and only if X is generically special.

Let us now assume k = Q and turn to height functions. We write h(·) for

the absolute logarithmic Weil height on projective space.

Let S be a smooth projective curve over Q containing S as a Zariski open

and dense subset. Let M be an ample line bundle on S, and let M = M|S .

The Height Machine [7, Ch. 2.4] attaches to (S,M) a function S(Q) → R
that is well defined up to addition of a bounded function. Let hS,M be the

restriction to S(Q) of a representative of this class of functions. AsM is ample

on S, we may take such a representative that hS,M(s) ≥ 0 for each s ∈ S(Q).

Let L be a relatively ample and symmetric line bundle on A/S defined

over Q. Then for any s ∈ S(Q), the line bundle Ls on the abelian variety

As = π−1(s) is symmetric; note that As is defined over Q. Tate’s Limit

Process provides a fiberwise Néron–Tate height ĥAs,Ls : As(Q) → [0,∞). It

is determined uniquely by the restriction of L to As; there is no need to fix

a representative here. Finally define ĥA,L : A(Q) → [0,∞) to be the total

Néron–Tate height given by P 7→ ĥAπ(P ),Lπ(P )
(P ) for all P ∈ A(Q).

These two height functions are unrelated in the following sense. It is not

difficult to construct an infinite sequence of points P1, P2, . . . ∈ A(Q) such that

ĥA,L(Pi) is constant and hS,M(π(Pi)) unbounded; just take Pi of finite order

in Aπ(Pi) and the sequence π(Pi) of unbounded height.

The main technical result of this paper is a height inequality that relates

these two heights on an irreducible subvariety X of A. The discussion in the

last paragraph suggests that we should at least remove all curves in X that

dominate S and contain infinitely many points of finite order. This turns out

to be insufficient, and we must also remove subvarieties that are contained in
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constant abelian subschemes ofA. In fact, we must remove precisely generically

the special subvarieties of A from Definition 1.2 that are contained in X.

Theorem 1.4. Let π : A → S, L and M be as above with k = Q and

dimS = 1. Let X be a closed irreducible subvariety of A over Q, and let X∗

be as above Proposition 1.3. Then there exists c > 0 such that

(1.1) hS,M(π(P )) ≤ c
Ä
1 + ĥA,L(P )

ä
for all P ∈ X∗(Q).

Suppose X dominates S, so we think of X as a family of (dimX − 1)-

dimensional varieties. Then our height inequality (1.1) can be interpreted as a

uniform version of the Bogomolov Conjecture along the 1-dimension base S if

hS,M(π(P )) ≥ 2c. Indeed, then ĥA,L(P ) ≥ 1
2chS,M(π(P )). From this point of

view it would be interesting to have an extension of Theorem 1.4 to dimS > 1.

For the main obstacle to pass from dimS = 1 to the general case, we refer to

Section 1.1, Part 1 and above.

Theorem 1.4 was proven by the second-named author [28] when A is a

fibered power of a non-isotrivial 1-parameter family of elliptic curves. This

theorem had applications towards special points problems [28, Ths. 1.1 and

1.2] and towards some cases of the relative Manin–Mumford Conjecture [29].

After this work was submitted, Ben Yaacov and Hrushovski informed the

authors of their similar height inequality for a 1-parameter family of genus

g ≥ 2 curves in an unpublished note [4] by reducing it to Cinkir’s result [13].

In this paper we treat arbitrary abelian schemes over algebraic curves,

possibly with non-trivial isotrivial part, and hope to extend the aforementioned

applications in future work.

Before proceeding, we point out that we shall prove Theorem 1.4 for a

particular relatively ample line bundle L on A/S that is fiberwise symmetric

and a particular ample line bundle M on S. Then Theorem 1.4 holds for

arbitrary such L andM by formal properties of the Height Machine. Moreover

we will prove the following slightly stronger form of Theorem 1.4.

We may attach a third height function on A in the following way. Let

L′ = L ⊗ π∗M. By [44, Th. XI 1.4] and [22, Cor. 5.3.3 and Prop. 4.1.4], our

abelian scheme admits a closed immersion ι : A → PMQ ×S over S arising from

(L′)⊗n for some n� 1. As we will see in Section 2.2 the existence of a closed

immersion is more straight-forward if we allow ourselves to remove finitely

many points from S, a procedure that is harmless in view of our application.

Define the naive height of P to be hA,L′(P ) = 1
nh(P ′) + hS,M(π(P )), where

ι(P ) = (P ′, π(P )) ∈ PMQ (Q)× S(Q).

Theorem 1.4′. Let π : A → S and ι be as above with k=Q and dimS=1.

Let X be a closed irreducible subvariety of A over Q, and let X∗ be as above
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Proposition 1.3. Then there exists c > 0 such that

hS,M(π(P )) ≤ hA,L′(P ) ≤ c
Ä
1 + ĥA,L(P )

ä
for all P ∈ X∗(Q).

1.1. Outline of proof of Theorems 1.1 and 1.4 and organization of the

paper. We give an overview of the proof of Theorem 1.4 in three parts.

Consider an abelian scheme π : A → S over a smooth algebraic curve S of

relative dimension g ≥ 1.

The Ax–Schanuel Theorem [3] is a function theoretic version of the famous

and open Schanuel Conjecture in transcendence theory. Stated for algebraic

groups, the case of an abelian variety deals with algebraic independence of

functions defined using the uniformizing map. It has seen many applications

to problems in Diophantine geometry [63].

For our purpose we need an Ax–Schanuel property for families of abelian

varieties, which is not yet available. However, the assumption dimS = 1

simplifies the situation: Instead of the full power of functional transcendence,

we only need to study a functional constancy property. The first part of the

proof deals with this functional constancy property where the so-called Betti

map plays the role of the uniformizing map. We briefly explain this map and

refer to Section 4 for more details.

Part 1: The Betti map and a functional constancy property. Any point

of S(C) has a complex neighborhood that we can biholomorphically identify

with the open unit disc ∆ ⊆ C. The fiber of A → S above a point s ∈ ∆ is

biholomorphic to a complex torus Cg/Ω(s)Z2g where the columns of Ω(s) ∈
Matg,2g(C) are a period lattice basis. Of course Ω(s) is not unique. The choice

of a period lattice basis Ω(s) enables us to identify As with T2g as real Lie

groups, with T the unit circle in C. As ∆ is simply connected, we can arrange

that the period map s 7→ Ω(s) is holomorphic on ∆. In turn we can identify

A∆ = π−1(∆) with the constant family ∆× T2g as families over ∆. This can

be done in a way that we get group isomorphisms As(C) → T2g fiberwise.

Note that the complex structure is lost and that the isomorphism in play is

only real analytic.

The Betti map b : A∆ → T2g is the composite of the isomorphism A∆
∼=

∆ × T2g with the projection to T2g. It depends on several choices, but two

different Betti maps on A∆ differ at most by composing with a continuous

automorphism of T2g.

Let X be an irreducible closed subvariety of A that dominates S. In

Section 5 we study the restriction of b to Xan; the superscript an denotes

complex analytification. We say that X is degenerate if the restriction of

b : A∆ → T2g to Xan ∩ A∆ has positive dimensional fibers on a non-empty,

open subset Xan; being open refers to the complex topology. The main result

of Section 5, Theorem 5.1, states that a degenerate subvariety is generically
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special. This will allow us to explain the analytic notion of degeneracy in

purely algebraic terms.

Let us give some ideas of what goes into the proof of Theorem 5.1. In

general, the period mapping s 7→ Ω(s) cannot extend to the full base due

to monodromy. This obstruction is a powerful tool in our context. Indeed,

fix a base point s ∈ San. Monodromy induces a representation on the fun-

damental group π1(San, s) → Aut(H1(Aan
s ,Z)). Moreover, by transporting

along the fibers of the Betti map above a loop in San we obtain a repre-

sentation π1(San, s) → Aut(Aan
s ) whose target is the group of real analytic

automorphisms of As. This new representation induces the representation on

homology. Moreover, we can identify Aut(Aan
s ) with GL2g(Z) because As and

T2g are isomorphic in the real analytic category. So the canonical mapping

Aut(Aan
s )→ Aut(H1(Aan

s ,Z)) is an isomorphism of groups.

Now suppose that X is degenerate. The assumption dimS = 1 forces

that Xan ∩A∆ = b−1(b(Xan ∩A∆)).1 In other words, the fibers Xs = π|−1
X (s)

do not depend on s ∈ ∆ for the identification Aan
s = T2g. So the action of

π1(San, s) on Aan
s leaves Xs invariant. Thus it suffices to understand subsets

of As that are invariant under the action of a subgroup of GL2g(Z). We use

Deligne’s Theorem of the Fixed Part [16] and the Tits Alternative [48] to

extract information from this subgroup. Indeed, under a natural hypothesis

on A, the image of the representation in GL2g(Z) contains a free subgroup

on two generators. In particular, the image is a group of exponential growth.

We then use a variant of the Pila–Wilkie Counting Theorem [40], due to Pila

and the second-named author, and Ax’s Theorem [3] for a constant abelian

variety. From this we will be able to conclude that X is generically special if

it is degenerate.

Let us step back and put some of these ideas into a historic perspective. In

the special case where A is the fibered power of the Legendre family of elliptic

curves, the second-named author [28] used local monodromy to investigate

degenerate subvarieties. In the current work local monodromy is insufficient

as S could be complete to begin with. So we need global information. Zannier

introduced the point counting strategy and together with Pila gave a new proof

of the Manin–Mumford Conjecture [41] using the Pila–Wilkie Theorem [40].

Masser and Zannier [37] showed the usefulness of the Betti coordinates for

problems in Diophantine geometry by solving a first case of the relative Manin–

Mumford Conjecture. Ullmo and Yafaev [50] exploited exponential growth in

groups in combination with the Pila–Wilkie Theorem to prove their hyperbolic

Ax–Lindemann Theorem for projective Shimura varieties. A recent result of

1This is no longer true if dimS > 1, making the remaining argument in this part fail for

dimS > 1.
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André, Corvaja, and Zannier [1] also deals with the rank of the Betti map on

the moduli space of principally polarized abelian varieties of a given dimension.

More recently, Cantat, Xie, and the authors [11] gave a different approach

to the functional constancy problem that does not rely on the Pila–Wilkie

Theorem but rather on results from dynamical systems.

Part 2: Eliminating the Néron–Tate height. The second part of the proof

deals with reducing the height inequality in Theorem 1.4 to one that only

involves Weil heights; we refer to Section 2.1 for nomenclature on heights.

We will embed S into Pm and A into PM × Pm such that π : A → S is

compatible with the projection PM ×Pm → Pm and other technical conditions

are fulfilled. Let h(P,Q) = h(P ) + h(Q) for P ∈ PM (Q), Q ∈ Pm(Q), where

h denotes the absolute logarithmic Weil height on projective space. For an

integer N , let [N ] denote the multiplication-by-N morphism A → A.

Let N ≥ 1 be a sufficiently large integer (which we assume to be a power

of 2 for convenience). If X is not generically special, we show in Proposition 9.1

that

(1.2) N2h(P ) ≤ c1h([N ](P )) + c2(N)

for all P ∈ U(Q) where U is Zariski open and dense in X and where c1 > 0

and c2(N) are both independent of P . Note that U and c2(N) may depend

on N .

One is tempted to divide (1.2) by N2 and take the limit N → ∞ as in

Tate’s Limit Process. However, this is not possible a priori, as U and c2(N)

could both depend on N . So we mimic Masser’s strategy of “killing Zimmer

constants” explained in [63, App. C]. This step is carried out in Section 10

where we terminate Tate’s Limit Process after finitely many steps when N is

large enough in terms of c1; for this it is crucial that c1 is independent of N .

Part 3: Counting lattice points and an inequality for the Weil height. At

this stage we have reduced proving Theorem 1.4 to (1.2) if X is not generically

special. Recall that from Part 1 of the proof that we know that X is not

degenerate. Therefore, the restricted Betti map b|Xan : Xan → T2g has discrete

fibers. The image of this restriction has the same real dimension as Xan. (The

dimension is well defined as the image is subanalytic.)

Part 3a: The hypersurface case. To warm up let us assume for the moment

thatX is a hypersurface inA, so dimX = g. In this case the image b(Xan∩A∆)

contains a non-empty, open subset of T2g. By a simple Geometry of Numbers

argument in the covering R2g → T2g, the image contains� N2g points of order

dividing N ; the implicit constant is independent of N . As the Betti map is a

group isomorphism on each fiber of A, we find that X contains � N2g points

of order dividing N .
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Obtaining (1.2) requires an auxiliary rational map ϕ : A 99K Pg. Suppose

for simplicity that we can choose ϕ such that ϕ−1([1 : 0 : · · · : 0]) is the

image of the zero section S → A. Then the composition ϕ ◦ [N ] restricts to a

rational map X 99K Pg that maps the� N2g torsion points constructed above

to [1 : 0 : · · · : 0].

If we are lucky and all these torsion points are isolated in the fiber of

ϕ◦ [N ], then deg(ϕ◦ [N ])� N2g. A height-theoretic lemma [28], restated here

as Lemma 9.4, implies (1.2) for N a power of 2. The factor N2 on the left

in (1.2) equals N2 dimX/N2(dimX−1) and has the following interpretation. The

numerator comes from the degree lower bound as dimX = g. The denominator

is a consequence of the following fact. Given a suitable embedding of an abelian

variety into some projective space, the duplication morphism can be described

by a collection of homogeneous polynomials of degree 22 = 4. So [N ] can be

described by homogeneous polynomials of degree ≤ N2.

If we are less lucky and some torsion point is not isolated in ϕ ◦ [N ], then

an irreducible component of ker[N ] ⊆ A is contained in X. This situation is

quite harmless, as roughly speaking, it cannot happen too often for a variety

that is not generically special.

The restriction dimX = g is more serious, however. The second-named

author was able to reduce [28] to the hypersurface case inside a fibered power

of the Legendre family of elliptic curves. This is not possible for general A, so

we must proceed differently.

Part 3b: The general case. For general X, we will still construct a suitable

ϕ : X 99K PdimX as above and apply Lemma 9.4. As a stepping stone we first

construct in Section 6 an auxiliary subvariety Z of A in sufficiently general

position such that

(1.3) dimX + dimZ = dimA = g + 1.

The rational map ϕ is constructed using Z in Section 9, and one should think

of Z as an irreducible component of ϕ|−1
X ([1 : 0 : · · · : 0]). Being in general

position and (1.3) mean that ϕ|X has finite generic fiber on its domain.

Now we want ϕ◦ [N ] : X → PdimX to have degree� N2 dimX , and for this

it suffices to find � N2 dimX isolated points in the preimage of [1 : 0 : · · · : 0].

As ϕ(Z) = [1 : 0 : · · · : 0], we need to find � N2 dimX isolated points in

X ∩ [N ]−1(Z). (Additional verifications must be made to ensure that isolated

intersection points lead to isolated fibers.)

We ultimately construct these points using the Geometry of Numbers.

More precisely, we need a volume estimate and Blichfeldt’s Theorem. Since

X is not degenerate, we have a point around which the local behavior of X

is similar to the local behavior of its image in T2g under the Betti map. This

allows us to linearize the problem as follows. In order to count the number of
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such X ∩ [N ]−1(Z), we can instead count points x ∈ T2g, coming from points

of X(C) under the Betti map, such that Nx = z lies in the image of Z(C).

If we let x, z range over the image under the Betti map of small enough open

subsets of X(C) and Z(C), then Nx − z ranges over an open subset of T2g.

This conclusion makes crucial use of the fact that X is not degenerate and

that Z is in general position. Lifting via the natural map R2g → T2g we are

led to the counting lattices points. Indeed, we must construct elements of

Nx̃− z̃ ∈ Z2g, where x̃, z̃ are lifts of points x, z as before. We denote the set of

all possible Nx̃− z̃ by UN . A careful volume estimate done in Section 7 leads

to vol(UN ) � N2 dimX . So we expect to find this many lattice points. But

there is no reason to believe that UN is convex, and it is not hard to imagine

open subsets of R2g of arbitrary large volume that meet Z2g in the empty set.

To solve this problem we apply Blichfeldt’s Theorem, which claims that some

translate γ + UN of UN contains at least vol(UN ) lattice points in Z2g.

This approach ultimately constructs enough points to prove a suitable

lower bound for the degree of ϕ ◦ [N ] and to complete the proof. However,

additional difficulties arise. For example, we must deal with non-zero γ and

making sure that the points constructed are isolated in X ∩ [N ]−1(Z). These

technicalities are addressed in Section 8.

The remaining results. In Section 3 we prove Proposition 1.3. This section

is mainly self-contained, and the main tool is a uniform version of the Manin–

Mumford Conjecture in characteristic 0.

The proof of Theorem 1.1 in Section 11 follows the blueprint laid out

in [28]. We need to combine our height bound, Theorem 1.4, with Silverman’s

Height Limit Theorem [46] used in his specialization result.

In Appendix A we sketch how to adapt our height inequality, Theorem 1.4,

to more general fields in characteristic 0. This shows how to deduce Theo-

rem 1.1 for any algebraically closed field of characteristic 0. Appendix B con-

tains some comments on the situation when dimS > 1. Finally, in Appendix C

we give a self-contained and quantitative version of Brotbek’s Hyperbolicity

Theorem [9] in the case of an abelian variety (which is much simpler than the

general case).

Acknowledgements. Both authors would like to thank the organizers of

the conference “On Lang and Vojta’s conjectures” in Luminy 2014, where our

collaboration began. They would like to thank Bas Edixhoven for providing

the current proof of Proposition 6.7. They would like to thank Shouwu Zhang

for providing the proof using the essential minimum at the end of Appendix A.

The authors also thank Gabriel Dill and Walter Gubler for useful remarks.

ZG would like to thank the Department of Mathematics and Computer Science

at the University of Basel for the invitation, and for the stimulating atmosphere

and SNF grant number 165525 for financial support.



RELATIVE AND GEOMETRIC BOGOMOLOV: 1− p CASE 537

2. Notation

Let N = {1, 2, 3, . . .} denote the set of positive integers. Let Q be the

algebraic closure of Q in C.

If X is a variety defined over C, then we write Xan for X(C) with its

structure as a complex analytic space. We refer to Grauert and Remmert’s

book [21] for the theory of complex analytic spaces.

Given an abelian scheme A over any base scheme and an integer N , we

let [N ] denote the multiplication-by-N morphism A → A. The kernel of [N ]

is A[N ], and it is a group scheme over the base of A. An endomorphism of A
is a morphism A → A that takes the zero section to itself.

If A is an abelian variety over field K and if K ⊇ K is a given algebraic

closure of K, then Ator denotes the group of points of finite order of A(K).

Suppose k is a subfield of K whose algebraic closure in K equals k and

char(k) = 0. We write AK/k for the K/k-trace of A and let τA,K/k : AK/k ⊗k
K → A denote the associated trace map. We refer to [14, §6] for general

facts and the universal property. Note that our notation AK/k is denoted by

TrK/k(A) in loc. cit. By [14, Th. 6.2 and below], τA,K/k is a closed immersion

since char(k) = 0. We sometimes consider AK/k⊗kK as an abelian subvariety

of A.

By abuse of notation we sometimes abbreviate (A⊗KK)K/k by AK/k and,

in this notation, consider AK/k ⊗k K as an abelian subvariety of A⊗k K.

2.1. Heights. A place of a number field K is an absolute value | · |v : K →
[0,∞) whose restriction to Q is either the standard absolute value or a p-adic

absolute value for some prime p with |p| = p−1. We set dv = [Kv : R] in

the former and dv = [Kv : Qp] in the latter case. The absolute, logarithmic,

projective Weil height, or just height, of a point P = [p0 : . . . : pn] ∈ PnQ(K)

with p0, . . . , pn ∈ K is

h(P ) =
1

[K : Q]

∑
v

dv log max{|p0|v, . . . , |pn|v},

where the sum runs over all places v of K. The value h(P ) is independent of

the choice of projective coordinates by the product formula. For this and other

basic facts, we refer to [7, Ch. 1]. Moreover, the height does not change when

replacing K by another number field that contains the p0, . . . , pn. Therefore,

h(·) is well defined on PnQ(K) where K is an algebraic closure of K.

In this paper we also require heights in a function field K. With our results

in mind, we restrict to the case where K = k(S) and S is a smooth projective

irreducible curve over an algebraically closed field k. Let K be an algebraic

closure of K. In this case, we can construct a height hK : PnK(K) → R as

follows.
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The points S(k) correspond to the set of places | · |v of K. They extend

in the usual manner to finite extensions of K. If P = [p0 : · · · : pn] ∈ PnK(K)

with p0, . . . , pn ∈ K ′, where K ′ is a finite extension of K, then we set

hK(P ) =
1

[K ′ : K]

∑
v

dv log max{|p0|v, . . . , |pn|v},

where dv are again local degrees such that the product formula holds. We refer

to [7, §1.3. and 1.4.6] for more details or [14, §8] on generalized global fields.

In the function field case we keep K in the subscript of hK to emphasize that

K is our base field. Indeed, in the function field setting one must keep track

of the base field “at the bottom” that plays the role of Q in the number field

setting.

Now let K be either a number field or a function field as above. Suppose

that A is an abelian variety defined overK that is embedding in some projective

space PMK with a symmetric line bundle. Tate’s Limit Process induces the

Néron–Tate or canonical height on A(K). If K is a number field, we write

(2.1) ĥA(P ) = lim
N→∞

h([2N ](P ))

4N

for the Néron–Tate height on A(K); we refer to [7, Ch. 9.2] for details. The

Néron–Tate height depends also on the choice of the symmetric, ample line

bundle, but we do not mention it in ĥA.

The construction in the function field is the same. For the same reason

as above, we retain the symbol K and write ĥA,K for the Néron–Tate height

on A(K).

2.2. Embedding our abelian scheme. In this paper we are often in the

following situation. Let k be an algebraically closed subfield of C. Let S be a

smooth irreducible algebraic curve over k, and let A be an abelian scheme of

relative dimension g ≥ 1 over S with structural morphism π : A → S.

Let us now see how to embed A into PMS = PMk × S for some M > 0

after possibly removing finitely many points from S. Note that removing

finitely many points is harmless in the context of our problems. Indeed, our

Theorem 1.4 is not weakened by this action, and so we do it at leisure.

The generic fiber A of A → S is an abelian variety defined over the

function field of S. Let L be a symmetric ample line bundle on A. Then L⊗3

is very ample. Replace L by L⊗3g. A basis of H0(A,L) gives a projectively

normal closed immersion A→ PMk(S) for some M > 0.

We take the scheme theoretic image A′ of A → PMk(S) → PMS , hence A′ is

the Zariski closure of the image of A in PMS with the reduced induced struc-

ture. After removing finitely many points of S we obtain an abelian scheme

A′ ⊆ PMS such that the morphism from A to the generic fiber of A′ → S is
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an isomorphism. An abelian scheme over S is the Néron model of its generic

fiber, so the Néron mapping property holds. Therefore the canonical morphism

A → A′ is an isomorphism, and we have thus constructed a closed immersion

ιS : A → PMS = PMk × S.

Note that L is the generic fiber of the relatively very ample line bundle L =

ι∗SOS(1) on A/S. Moreover for any s ∈ S(k), we have that Ls is the g-th

tensor-power of a very ample line bundle on As.
We may furthermore find an immersion (which need not be open or closed)

of S into some Pmk . Composing yields the desired immersion A → PMk × Pmk .

By abuse of notation we consider A ⊆ PMk(S) and A ⊆ PMk × Pmk from now on.

Let us recapitulate.

(A1) We have an immersion A → PMk × Pmk such that the diagram involving

π : A → S and the projection PMk × Pmk → Pmk commutes. Moreover, for

all s ∈ S(k), the closed immersion As → PMk is induced by a symmetric

very ample line bundle.

Of course this immersion depends on the choice of the immersions of A and

of S.

The image of A in PMk(S) is projectively normal, and [2]∗L is isomorphic to

L⊗4. Therefore, [2] is represented globally by M+1 homogeneous polynomials

of degree 4 on the image of A. Here the base field is the function field k(S).

But we can extend it to the model after possibly removing finitely many points

of S. So we may assume the following:

(A2) The morphism [2] is represented globally on A ⊆ PMk × Pmk by M + 1

bi-homogeneous polynomials, homogeneous of degree 4 in the projective

coordinates of PMk and homogeneous of a certain degree in the projective

coordinates of Pmk .

Finally, we explain why we took the additional factor g in the exponent

3g of L⊗3g. By Proposition C.1 we have the additional and useful property.

(A3) For given s ∈ S(k) and P ∈ As, any generic hyperplane section of As
passing through P does not contain a positive dimensional coset in As.

At the cost of possibly increasing the factor g we could also refer to Brotbek’s

deep result [9] for more general projective varieties.

An immersion ι : A → PMk ×Pmk for which (A1), (A2), and (A3) above are

satisfied will be called admissible.

The construction above adapts easily to show the following fact. Let A

be an abelian variety defined over k(S). After possibly shrinking S we can

realize A as the generic fiber of an abelian scheme A → S with an admissible

immersion A → PMk × Pmk .
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If k = Q, we have two height functions on A(Q). Say P ∈ A(Q). We

write P = (P ′, π(P )) with P ′ ∈ PMQ (Q) and π(P ) ∈ PmQ (Q). Then

(2.2) h(P ) = h(P ′) + h(π(P ))

defines our first height A(Q) → [0,∞), which we call the naive height on A
(relative to the immersion A ⊆ PMQ × PmQ ).

The second height is the fiberwise Néron–Tate or canonical height

(2.3) ĥA(P ) = ĥAπ(P )
(P );

cf. (2.1). We obtain a function ĥA : A(Q) → [0,∞). It is quadratic on each

fiber as the line bundle on the generic fiber A is symmetric, and this extends

along the fibers of A → S.

In the end we explain these height functions in terms of Height Machine.

Let A, resp. S, be the Zariski closure of the image of the immersion A ⊆
PMQ × PmQ , resp. S ⊆ PmQ . If we let L′ = O(1, 1)|A and M = O(1)|S , then h(·)
represents the class of functions hA,L′ defined up to O(1) and h ◦ π represents

hS,M ◦ π. Furthermore, the fiberwise Néron–Tate height ĥA is the map P 7→
ĥAπ(P ),Lπ(P )

(P ), where L = ι∗SOS(1) as above.

3. Proof of Proposition 1.3

The goal of this section is to prove Proposition 1.3. In fact, we will prove

a statement of independent interest that implies Proposition 1.3.

Let k be an algebraically closed field of characteristic 0. Let S be a smooth

irreducible curve over k, and fix an algebraic closure K of the function field

K = k(S). Let A be an abelian variety over K.

Furthermore, let V0 be an irreducible variety defined over k and V =

V0 ⊗k K. We consider V0(k) as a subset of V (K).

The next proposition characterizes subvarieties V × A that contain a

Zariski dense set of points in Σ = V0(k)×Ator ⊆ V (K)×A(K). See Yamaki’s

[62, Prop. 4.6] for a related statement.

Proposition 3.1. Suppose AK/k = 0, and let Y be an irreducible closed

subvariety of V ×A.

(i) If Y (K) ∩ Σ is Zariski dense in Y , then Y = (W0 ⊗k K)× (P + B) with

W0 ⊆ V0 an irreducible closed subvariety, P ∈ Ator, and B an abelian

subvariety of A.

(ii) There are at most finitely many subvarieties of the form (W0 ⊗k K) ×
(P + B) (with W0, P, and B as in (i)) that are contained in Y , maximal

with respect to the inclusion for this property.
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Part (i) implies (ii) for the following reason. If W0, P, and B are as in the

conclusion of (i), then it suffices to observe that ((W0⊗kK)× (P +B))(K)∩Σ

is Zariski dense in (W0 ⊗k K)× (P +B).

The assumption dimS = 1 is used only at one place in the proof. In

Appendix B, we will explain how to remove it.

3.1. Proposition 2.1 implies Proposition 1.3. Now we go back to the set-

ting of Proposition 1.3: S is a smooth irreducible curve over k, and π : A → S

is an abelian scheme of relative dimension g ≥ 1. Let A denote the geometric

generic fiber of π; it is an abelian variety over K.

By [14, Th. 6.4 and below] there is a unique abelian subvariety A′ ⊆ A

such that (A/A′)K/k = 0 and such that we may identify A′ with AK/k ⊗k K.

We fix an abelian subvariety A′′ ⊆ A with A′ +A′′ = A and such that A′ ∩A′′
is finite. Then the addition morphism restricts to an isogeny ψ : A′ ×A′′ → A

and (A′′)K/k = 0.

Let W0 be an irreducible closed subvariety of AK/k, B an abelian subva-

riety of A′′, and P ∈ A′′(K). We can map ψ((W0⊗kK)× (P +B)) ⊆ A to the

generic fiber of A; its Zariski closure is a generically special subvariety of A.

Conversely, any generically special subvariety of A arises this way.

Let X ⊆ A be an irreducible closed subvariety that dominates S and

X ⊆ A its geometric generic fiber. We apply Proposition 3.1 where AK/k, A′′

play the role of V0, A respectively. There are at most finitely many subvarieties

of A of the form (W0⊗kK)× (P +B) that are contained in ψ−1(X), maximal

for this property. This shows that there are at most finitely many generically

special subvarieties ofA that are contained in X , maximal for this property. �

3.2. Proof of Proposition 2.1. Now we prove Proposition 3.1. To do this

we require a uniform version of the Manin–Mumford Conjecture in character-

istic 0.

Theorem 3.2 (Raynaud, Hindry, Hrushovski, Scanlon). Let K be as

above, let A be an abelian variety, and let V be an irreducible, quasi-projective

variety, both defined over K . Suppose Y is an irreducible closed subvariety of

V ×A. For v ∈ V (K), we let Yv denote the projection of V ∩ ({v} ×A) to A.

Then there exists a finite set M of abelian subvarieties of A and D ∈ Z with

the following property. For all v ∈ V (K), the Zariski closure of Yv(K) ∩ Ator

in Yv is a union of at most D translates of members of M by points of finite

order in Ator.

Proof. Raynaud proved the Manin–Mumford Conjecture in characteristic

zero. Automatical uniformity then follows from Scanlon’s [45, Th. 2.4]; see

also work of Hrushovski [34] and Hindry’s [32, Th. 1] for k = Q. Indeed, the

number of irreducible components is uniformly bounded in an algebraic family.
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Moreover, it is well known that if an irreducible component of a fiber of an

algebraic family is a coset in A, then only finitely many possible underlying

abelian subvarieties arise as one varies over the fibers. �

Proof of Proposition 3.1. We have already seen that it suffices to prove (i).

We keep the notation Yv for fibers of Y above v ∈ V (K) introduced in Theo-

rem 3.2. Let M and D be as in this theorem.

For all v ∈ V (K), we have

Yv(K) ∩Ator =
⋃
i

(Pv,i +Bv,i),

where Pv,i ∈ Ator, Bv,i ∈M, and the union has at most D members. Note that

for v ∈ V (K), any torsion coset contained in Yv is contained in some Pv,i+Bv,i.

Moreover,

(3.1) Y (K) ∩ Σ =
⋃

v∈V0(k)

⋃
i

{v} ×
(
Pv,i + (Bv,i)tor

)
.

We decompose Y (K) ∩ Σ into a finite union of

ΣB =
⋃

v∈V0(k)

⋃
i

Bv,i=B

{v} × (Pv,i +Btor)

by collecting entries on the right of (3.1) that come from B ∈M . The set ΣB

must be Zariski dense in Y for some B ∈M . There is possibly more than one

such B, so we choose one that is maximal with respect to inclusion.

We fix a finite field extension F/K with F ⊆ K, such that Y,A, and B are

stable under the action of Gal(K/F ). For this proof we consider these three

varieties and V as over F . Note that AK/k = 0 remains valid.

Now suppose v ∈ V0(k), and let Pv,i be as in the definition of ΣB, hence

Bv,i = B and Pv,i + B ⊆ Y . For all σ ∈ Gal(K/F ), we have σ(Pv,i) + B =

σ(Pv,i+B) ⊆ σ(Yv) = Yv, by our choice of F and since σ acts trivially on V0(k).

So the torsion coset σ(Pv,i) + B is contained in Pv,j + B′ for some B′ ∈ M

and some j. This implies B ⊆ B′. If B ( B′, then by maximality of B the

Zariski closure ΣB′ is not all of Y . After replacing F by a finite extension

of itself we may assume σ(ΣB′) = ΣB′ for all σ ∈ Gal(K/F ). In particular,

{v}× (Pv,i+B) ⊆ ΣB′ . We remove such torsion cosets from the union defining

ΣB to obtain a set Σ′ ⊆ Y (K) ∩ Σ that remains Zariski dense in Y .

If Pv,i + B is in the union defining Σ′, then B = B′ and σ(Pv,i + B) =

Pv,j +B for some j and there are at most D possibilities for σ(Pv,i +B) with

σ ∈ Gal(K/F ).



RELATIVE AND GEOMETRIC BOGOMOLOV: 1− p CASE 543

Let ϕ : A → A/B be the canonical map, then σ(ϕ(Pv,i)) = ϕ(σ(Pv,i)) =

ϕ(Pv,j). We have proven that the Galois orbit of ϕ(Pv,i) has at most D ele-

ments. In particular, [F (ϕ(Pv,i)) : F ] ≤ D; recall that D is independent of v

and i.

Claim. Without loss of generality we may assume that the torsion points

Pv,i contributing to Σ′ have uniformly bounded order.

Indeed, we may replace each Pv,i by an element of Pv,i + Btor. So by a

standard argument involving a complement of B in A it is enough to show the

following statement: The order of any point in

(3.2) {P ∈ (A/B)tor : [F (P ) : F ] ≤ D}

is bounded in terms of A/B and D only.

This is the only place in the proof of Proposition 3.1 where we use the

hypothesis dimS = 1. In Appendix B we will explain how to remove this

hypothesis.

Let S
′
be an irreducible smooth projective curve with k(S

′
) = F and P as

in (3.2). The inclusion F ⊆ F (P ) corresponds to a finite covering S
′′ → S

′
of

degree [F (P ) : F ], where S
′′

is another smooth projective curve with function

field F (P ). Then A/B has good reduction above S′(k) \ Z for some finite

subset Z of S′(k), where we have identified S′(k) with the set of places of F .

Note that S′ and Z are independent of P . All residue characteristics are zero,

so by general reduction theory of abelian varieties we find that F (P )/F is

unramified above the places in S′(k) \ Z. In other words, the finite morphism

S
′′ → S

′
is unramified above S′ \ Z. So we get a finite étale covering of S \ Z

of degree [F (P ) : F ].

Let L be the compositum in K of all extensions of F of degree at most

D that are unramified above S′ \ Z. Then L/F a finite field extension by [53,

Cor. 7.11] if k ⊆ C and for general k of characteristic 0 since the étale funda-

mental group of S′ \ Z is topologically finitely generated by [25, Exposé XIII

Cor. 2.12]. In particular, P ∈ (A/B)(L) for all P in (3.2).

Now (A/B)K/k = 0 since the same holds for A. The extension L/k is

finitely generated, so the Lang–Néron Theorem (cf. [35, Th. 1] or [14, Th. 7.1])

implies that (A/B)(L) is a finitely generated group. Thus [N ](P ) = 0 for some

N ∈ N that is independent of P . Our claim follows.

Define a morphism ψ : V × A → V × (A/B) by ψ(v, t) = (v, [N ] ◦ ϕ(P )).

By choice of N we have ψ(Σ′) ⊆ V ×{0}, so Σ′ ⊆ V ×(Θ+B), where Θ ⊆ Ator

is finite. We pass to the Zariski closure and find Y ⊆ V × (P + B) for some

P ∈ Ator as Y is irreducible.

Let p : V ×A→ V be the first projection; it is proper, and p(Y ) is Zariski

closed in V . A fiber of p|Y containing a point of Σ′ contains a subvariety of
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dimension dimB. We use that Σ′ is Zariski dense in Y one last time together

with the Fiber Dimension Theorem [31, Exer. II.3.22] to conclude dimB ≤
dimY − dim p(Y ). As Y ⊆ p(Y )× (P +B), we conclude

(3.3) Y = p(Y )× (P +B).

Finally, p(Σ′) is Zariski dense in p(Y ) ⊆ V . But p(Σ′) consists of elements

in V0(k), with k the base field of V0. We conclude that p(Y ) = W0 ⊗k K
for some irreducible subvariety W0 ⊆ V0. We conclude the proposition from

(3.3). �

4. The Betti map

In this section we describe the construction of the Betti map.

Let S be a smooth, irreducible, algebraic curve over C and suppose π : A →
S is an abelian scheme of relative dimension g. We construct

Proposition 4.1. Let A and S be as above. For all s ∈ S(C), there exists

an open neighborhood ∆ of s in San and a real analytic mapping b : A∆ → T2g ,

called Betti map, with the following properties :

(i) for each s ∈ ∆, the restriction b|Aan
s

: Aan
s → T2g is a group isomorphism ;

(ii) for each ξ ∈ T2g , the preimage b−1(ξ) is a complex analytic subset of Aan
∆ ;

(iii) the product (b, π|A∆
) : A∆ → T2g ×∆ is real bianalytic.

Remark 4.2. We remark that b from the proposition above is not unique

as we can compose it with a continuous group endomorphism of T2g. However,

if b, b′ : A∆ → T2g both satisfy the conclusion of the proposition and if ∆ is

path-connected, then using homotopy and (iii) we find b′ = α ◦ b for some

α ∈ GL2g(Z).

Before giving the concrete construction, let us explain the idea. Assume

S = Ag is the moduli space of principally polarized abelian varieties with

level-3-structure, and A = Ag is the universal abelian variety. The universal

covering H+
g → Ag, where H+

g is the Siegel upper half space, gives a polarized

family of abelian varieties AH+
g
→ H+

g ,

AH+
g

:= Ag ×Ag H
+
g

//

��

Ag

��
H+
g

// Ag.

For the universal covering u : Cg ×H+
g → AH+

g
and for each τ ∈ H+

g , the kernel

of u|Cg×{τ} is Zg + τZg. Thus the map Cg × H+
g → Rg × Rg × H+

g → R2g,

where the first map is the inverse of (a, b, τ) 7→ (a + τb, τ) and the second

map is the natural projection, descends to a map AH+
g
→ T2g. Now for each
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s ∈ S(C) = Ag(C), there exists an open neighborhood ∆ of s in Aan
g such that

A∆ = (Ag)|∆ can be identified with AH+
g
|∆′ for some open subset of H+

g . The

composite b : A∆
∼= AH+

g
|∆′ → T2g is clearly real analytic and satisfies the three

properties listed in Proposition 4.1. Thus b is the desired Betti map in this

case. Note that for a fixed (small enough) ∆, there are infinitely choices of ∆′;

but for ∆ small enough, if ∆′1 and ∆′2 are two such choices, then ∆′2 = α ·∆′1
for some α ∈ Sp2g(Z).

Now let us give the concrete construction. Let s0 ∈ San. By Ehresmann’s

Theorem [51, Th. 9.3], there is an open neighborhood ∆ of s0 in San such that

A∆ = π−1(∆) and As0×∆ are diffeomorphic as families over ∆. The map f in

(4.1)

As0 ×∆ A∆

∆

f

is a diffeomorphism, the diagonal arrow is the natural projection, and the ver-

tical arrow is the restriction of the structural morphism. After translating we

may assume that (0, s) maps to the unit element in As for all s ∈ ∆. We may

assume that ∆ is simply connected. Fiberwise we obtain a diffeomorphism

fs : As0 → As.
As Aan is a complex analytic space, we may assume that the fibers of f−1

in (4.1) are complex analytic; see [51, Prop. 9.5].

We fix a basis γ1, . . . , γ2g of the Z-module H1(Aan
s0 ,Z). Each γi is repre-

sented by a loop ‹γi : [0, 1]→ Aan
s0 based at the origin of Aan

s0 .

For all s∈∆, we have a map H1(Aan
s ,R)→H1(Aan

s0 ,R) resp. H1(Aan
s ,C)→

H1(Aan
s0 ,C) induced by fs; it is an isomorphism of R- resp. C-vector spaces.

We denote the latter by f∗s and note that f∗s (v) = f∗s (v) where complex con-

jugation · is induced by the real structure.

The Hodge decomposition yields

H1(Aan
s ,C) = H0(Aan

s ,Ω
1)⊕H0(Aan

s ,Ω
1),

where H0(Aan
s ,Ω

1) is the g-dimensional vector space of global holomorphic

1-forms on Aan
s . As s varies over ∆, we obtain a collection

f∗sH
0(Aan

s ,Ω
1)

of subspaces of H1(Aan
s0 ,C). As f∗s commutes with complex conjugation, we

have

H1(Aan
s0 ,C) = f∗sH

0(Aan
s ,Ω

1)⊕ f∗s (H0(Aan
s ,Ω

1)).

For s ∈ ∆, the image f∗sH
0(Aan

s ,Ω
1) corresponds to a point in the Grass-

mannian variety of g-dimensional subspaces of H1(Aan
s0 ,C). As a particular
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case of Griffith’s Theorem, this association is a holomorphic function. We

draw the following conclusion from Griffith’s result.

Fix a basis ω0
1, . . . , ω

0
g of H0(Aan

s0 ,Ω
1); then ω0

1, . . . , ω
0
g , ω

0
1, . . . , ω

0
g is a basis

H1(Aan
s0 ,C). There exist holomorphic functions

aij : ∆→ C and bij : ∆→ C (1 ≤ i, j ≤ g)

such that

f∗sωi(s) =

g∑
j=1

Ä
aij(s)ω

0
j + bij(s)ω0

j

ä
for all i ∈ {1, . . . , g} and all s ∈ ∆, where ω1(s), . . . , ωg(s) is a basis of

H0(Aan
s ,Ω

1) with ωi(s0) = ω0
i for all i.

For s ∈ ∆, we define the period matrix

Ω(s) =

Ç∫
fs∗γ̃j

ωi(s)

å
1≤i≤g

1≤j≤2g

∈ Matg,2g(C)

for all s ∈ ∆; the integral is taken over the loop in Aan
s0 fixed above. Note that∫

fs∗γ̃j

ωi(s) =

∫
γ̃j

f∗sωi(s) =

g∑
j=1

Ç
aij(s)

∫
γ̃j

ω0
j + bij(s)

∫
γ̃j

ω0
j

å
by a change of variables. So Ω(s) is holomorphic in s. In this notation and with

A(s) = (aij(s)) ∈ Matg(C) and B(s) = (bij(s)) ∈ Matg(C), we can abbreviate

the above by

(4.2)

Ç
Ω(s)

Ω(s)

å
=

Ç
A(s) B(s)

B(s) A(s)

åÇ
Ω(0)

Ω(0)

å
;

here Ω(0) = Ω(s0). So the first matrix on the right of (4.2) is invertible.

Let P ∈ Aan where s = π(P ) ∈ ∆, and suppose γP is a path in Aan
s

connecting 0 and P . Let Q ∈ Aan
s0 with fs(Q) = P and γQ the path in Aan

s0

such that fs∗γQ = γP . We define

(4.3)

L(P ) =

Ö ∫
γP
ω1(s)
...∫

γP
ωg(s)

è
=

Ü ∫
γQ
f∗sω1(s)

...∫
γQ
f∗sωg(s)

ê
= (A(s)B(s))

Ç
L∗(Q)

L∗(Q)

å
,

where

L∗(Q) =

Ü ∫
γQ
ω0

1(s)
...∫

γQ
ω0
g(s)

ê
.
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Replacing γP by another path connecting 0 and P in Aan
s will translate

the value of L(P ) by a period in Ω(s)Z2g. By passing to the quotient we obtain

the Albanese map Aan
s → Cg/Ω(s)Z2g. It is a group isomomorphism.

Further, we set

b̃(P ) =

Ç
Ω(s)

Ω(s)

å−1Ç L(P )

L(P )

å
and observe b̃(P ) ∈ R2g as these are the coordinates of L(P ) in terms of the

period lattice basis Ω(s).

By replacing γP by another path connecting 0 and P , we find that b̃(P )

is translated by a vector in Z2g. Therefore, b̃ induces a real analytic map

b : A∆ → T2g, where T is the circle group, which we identify with R/Z. We

will prove that b satisfies the three properties listed in Proposition 4.1.

On a given fiber, i.e., for fixed s, the map b restricts to a group isomor-

phism As → T2g as we have seen above. So part (i) of Proposition 4.1 holds.

Let us investigate such a fiber. For this we recall (4.3). By the period

transformation formula (4.2), we see

b̃(P ) =

Ç
Ω(0)

Ω(0)

å−1Ç L∗(Q)

L∗(Q)

å
.

Fixing the value of b̃ amounts to fixing the value of L∗(Q). As L∗ induces

the Albanese map on Aan
s , fixing b amounts to fixing Q. Recall that Q maps

to P under the trivialization (4.1). Therefore, a fiber of b equals a fiber of

the trivialization. As these fibers are complex analytic, we obtain part (ii) of

Proposition 4.1.

Finally, the association

(ξ + Z2g, s) 7→
ÇÇ

Ω(0)

Ω(0)

å
(ξ + Z2g), s

å
7→ (Q, s) 7→ fs(Q) ∈ A∆

induces the inverse of the product A∆ → T2g ×∆. This is part (iii) of Propo-

sition 4.1.

5. Degenerate subvarieties

Let S be a smooth irreducible algebraic curve over C, and let π : A → S

be an abelian scheme of relative dimension g ≥ 1. We define and characterize

the degenerate subvarieties of A in this section. Let Y be an irreducible closed

subvariety of A that dominates S.

Let s0 ∈ S(C), and let ∆ ⊆ San be an open neighborhood of s0 in San

with the Betti map b : A∆ = π−1(∆)→ T2g as in Proposition 4.1 with T ⊆ C
the circle group. We say that a point P ∈ Y sm,an ∩ A∆ is degenerate for Y

if it is not isolated in b|−1
Y sm,an∩A∆

(b(P )). We say that Y is degenerate if there
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is a non-empty and open subset of Y sm,an ∩ A∆ consisting of points that are

degenerate for Y .

For technical purposes, our notation of degeneracy formally depends on

the choice of ∆. But this dependency is harmless as we will see.

Recall that generically special subvarieties of A were introduced in Def-

inition 1.2. A generically special subvariety is degenerate. In this section we

prove the converse.

Theorem 5.1. An irreducible closed subvariety of A that is degenerate is

a generically special subvariety of A.

This proposition, which has a definite Ax–Schanuel flavor, is proved us-

ing a variant of the Pila–Wilkie Counting Theorem for definable sets in an

o-minimal structure. Abundantly many rational points arise from the expo-

nential growth of a certain monodromy group.

5.1. Invariant subsets of the torus. We write | · |2 for the `2-norm on Rn.

For n ∈ N, we consider the real n-dimensional torus Tn equipped with the

standard topology. We will use the continuous left-action of GLn(Z) on Tn and

use the additive notation for Tn. Suppose X is a closed subset of Tn such that

γ(X) = X

for all γ in a subgroup Γ of GLn(Z). What can we say about X?

To rule out subgroups that are too small we ask that Γ contains a (non-

abelian) free subgroup on two generators. Moreover, we will assume that X is

sufficiently “tame” as a set.

To formulate the last property precisely, let exp: Rn → Tn denote the

exponential map (t1, . . . , tn) 7→ (e2πit1 , . . . , e2πitn). Let X ⊆ Tn be a subset and

X = exp |−1
[0,1]n(X).

We will work in a fixed o-minimal structure and call X definable if X is a

definable subset of Rn in the given o-minimal structure. We refer to van den

Dries’ book [17] for the theory of o-minimal structures. We will work with Ran,

the o-minimal structure generated by restricting real analytic functions on Rn
to [−1, 1]n.

We say that X ⊆ Tn is of Ax-type if it satisfies the following property. For

any continuous, semi-algebraic map y : [0, 1]→ X that is real-analytic on (0, 1),

there is a closed subgroup G ⊆ Tn such that exp ◦y([0, 1]) ⊆ y(0) +G ⊆ X.

The main example comes from a g-dimensional abelian variety A defined

over C. Indeed, then there is a real bianalytic map Aan → T2g. Moreover, the

image of X(C) is definable and of Ax-type for any Zariski closed subset of A;

for the latter claim, we refer to Ax’s Theorem [2].
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Lemma 5.2. Let X ⊆ Tn be a closed definable set of Ax-type. Let Γ be a

free subgroup of GLn(Z) on two generators such that γ(X) = X for all γ ∈ Γ.

Then one of the following properties holds true:

(1) The set X is contained in a finite union of closed and proper subgroups

of Tn.

(2) There are a non-empty, open subset U of X and a closed, connected, infi-

nite subgroup G ⊆ Tn with U +G ⊆ X .

Proof. By assumption, Γ is generated by elements γ1, γ2 that do not satisfy

any non-trivial relation. Any element γ ∈ Γ is uniquely represented by a

reduced word in γ±1
1 , γ±1

2 whose length is l(γ). For all real t ≥ 1, we have

#{γ ∈ Γ : l(γ) ≤ t} ≥ 2t.

We define c1 = max{2, |γ1|2, |γ1|2} ≥ 2 and observe |γ|2 ≤ c
l(γ)
1 for all

γ ∈ Γ. The height H(b) of any integral vector b = (b1, . . . , bm) ∈ Zm is

max{1, |b1|, . . . , |bm|}. So

H(γ) ≤ cl(γ)
1 .

Let T ≥ c1, and let t = (log T )/(log c1) ≥ 1. There are at least 2t =

T (log 2)/ log c1 elements γ ∈ Γ with H(γ) ≤ T .

Let x ∈ X = exp |−1
[0,1]n(X). For all γ ∈ Γ, there is a = aγ ∈ Zn such that

yγ = γx− aγ ∈ X . Then (x, γ, aγ , yγ) lies in the definable set

Z = {(x, γ, a, y) ∈ X ×GLn(R)× Rn ×X : γx− a = y} .

We view it as a family of definable sets parametrized by x ∈ X with fibers

Xx ⊆ Rn2+n+n. Moreover,

H(aγ) ≤ max{1, |aγ |2} = max{1, |γx− yγ |2}

≤ max{1, |γ|2|x|2 + |yγ |2} ≤
√
n(|γ|2 + 1) ≤ 2n2H(γ).

(5.1)

Let c2 be the constant from the semi-rational variant of the Pila–Wilkie

Theorem [30, Cor. 7.2] applied to the family Z and ε = (log 2)/(2 log c1). Here

the coordinates assigned to (γ, a) are treated as rational and the coordinates

assigned to y are not. We fix T large enough in terms of c1 and c2; more

precisely, we will assume that T ≥ c1 and

(5.2) T (log 2)/ log c1 > c2(2n2T )(log 2)/(2 log c1).

We keep x fixed and vary γ. Let us first see how to reduce to the case that

many different yγ must arise this way if H(γ) ≤ T . Indeed, suppose γ′ ∈ Γ

satisfies H(γ′) ≤ T . Then y′γ′ = γ′x − a′γ′ ∈ X for some a′ ∈ Z. If yγ = y′γ′ ,

then γx − aγ = γ′x − a′γ′ , so γx − γ′x ∈ Zn. Then exp(x) lies in the closed

subgroup of Tn defined by the kernel of γ−1γ′−1 6= 0, i.e., the largest subgroup

of Tn stabilized by γ−1γ′. So it lies in a finite union G1 ∪ · · · ∪ GN of closed

proper subgroups of Tn, each defined as the subgroup stabilized by some γ−1γ′
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as above. Here N is bounded only in terms of T and thus only in terms of

c1, c2, and n. It is independent of x.

If X ⊆ G1 ∪ · · · ∪GN , then we are in case (1). Otherwise, V = X \ (G1 ∪
· · · ∪GN ) lies open in X and is non-empty.

Now suppose x ∈ X with exp(x) ∈ V and γ ∈ G with H(γ) ≤ T . Recall

that yγ = γx − aγ ∈ X . By our choice of V and the arguments above the

number of yγ that arise is the number of elements in Γ of height at most T .

This number is at least T (log 2)/ log c1 . Note that the height of (γ, aγ) equals

max{H(γ), H(aγ)} and this is at most 2n2T by (5.1).

By (5.2) we have enough yγ to apply the counting result [30, Cor. 7.2].

We thus obtain continuous, definable maps γ : [0, 1]→ GLn(R), a : [0, 1]→ Rn,

and y : [0, 1]→ X such that γ and a are semi-algebraic, y is non-constant, and

γ(s)x− a(s) = y(s)

for all s ∈ [0, 1]. So s 7→ y(s) is semi-algebraic too and exp ◦y([0, 1]) ⊆ X. After

rescaling [0, 1] we may assume that y is real-analytic on (0, 1). By looking at

the proof of [30, Cor. 7.2(iii)], we may arrange γ(0) ∈ Γ and a(0) ∈ Zn.

Recall that X is of Ax-type. So there is a closed subgroup G′x ⊆ Tn with

exp ◦y([0, 1]) ⊆ exp(y(0)) + G′x ⊆ X. We may assume that G′x is connected.

Observe that G′x is infinite as exp ◦y is continuous and non-constant. We find

exp(x) +Gx ⊆ γ(0)−1(X) = X, where Gx = γ(0)−1G′x.

We have proved that for any x ∈ X with exp(x) ∈ V , we have

exp(x) +Gx ⊆ X

for some connected, closed, infinite subgroup Gx ⊆ Tn.

For any connected closed subgroup G ⊆ Tn, we define

E(G) = {z ∈ V : z +G ⊆ X} = V ∩
⋂
g∈G

(X − g).

Then E(G) is closed in V . Our conclusion from above can be restated as

V =
⋃

x∈exp |−1
X (V )

E(Gx).

By Kronecker’s Theorem, Tn has countably many closed subgroups. So

this union contains at most countably many different members. Now V , being

non-empty, Hausdorff, and locally compact satisfies the hypothesis of Baire’s

Theorem. Hence there exists a connected, closed, infinite subgroup G ⊆ Tn
such that V \E(G) is not dense in V . So E(G) contains a non-empty and open

subset of X, as claimed in (2). �

Now suppose that A is an abelian variety of dimension g ≥ 1 defined

over C. We attach to A the associated complex manifold Aan whose underlying

set of points is A(C). There is a real bi-analytic map b : Aan → T2g that is
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a group isomorphism. We will not need to vary A in a family here as in

Proposition 4.1.

Suppose a group Γ acts faithfully and continuously on Aan; we do not

ask for elements of Γ to act by holomorphic maps. Any continuous group

automorphism of T2g can be identified with an element of GL2g(Z). So using

b we may consider Γ as a subgroup of GL2g(Z).

We say that the action of Γ is of monodromy-type if γ(B(C)) = B(C) for

all γ ∈ Γ and all abelian subvarieties B ⊆ A. Later we will study the action

of the fundamental group of an abelian scheme on a fixed fiber in sufficiently

general position. This action will leave the abelian subvarieties of the said fiber

invariant and is thus of monodromy-type.

Proposition 5.3. Let A, g, b, and Γ ⊆ GL2g(Z) be above so, in particular,

Γ acts continuously on Aan and is of monodromy-type. We assume in addition

that Γ contains a free subgroup on two generators and that there are no Γ-

invariant elements in Z2g \ {0}. Let Z be an irreducible closed subvariety of A

with γ(Z(C)) = Z(C) for all γ ∈ Γ. Then one of the following properties holds :

(1) the subvariety Z is contained in a proper torsion coset in A;

(2) there exists an abelian subvariety B ⊆ A with dimB ≥ 1 and Z +B = Z .

Proof. We write X for the image of Z(C) under the real analytic isomor-

phism b : Aan → T2g. Then X is closed and definable in the sense as introduced

before Lemma 5.2. By Ax’s Theorem [2], the set X is of Ax-type. We apply

Lemma 5.2 to a free subgroup of Γ on two generators.

If we are in case (1) of Lemma 5.2, then X is contained in a finite union of

proper closed subgroups G1, . . . , GN ( T2g. By the Baire Category Theorem

we may assume that X ∩G1 has non-empty interior in X.

The analytification Zan is an irreducible complex analytic space, and

Zsm,an is arc-wise connected by [21, Ths. 9.1.2 and 9.3.2]. Moreover, Zsm,an is

an open and dense subset of Zan.

Let P,Q ∈ Zsm,an, and suppose b(P ) lies in the interior of X∩G1. We can

connect P and Q via an arc [0, 1]→ Zsm,an whose restriction to (0, 1) is piece-

wise real analytic on finitely many pieces. A neighborhood of b(P ) in X lies in

G1, and G1 is defined globally by relations in integer coefficients. By analytic

continuation we find that b(Q) ∈ G1. In particular, b(Zsm,an) ⊆ G1 and thus

b(Zan) ⊆ G1. So Zan is contained in the proper subgroup b−1(G1) ( Aan.

The sum of sufficiently many copies of Z − Z is an abelian subvariety B

of A. We have B 6= A because B(C) lies in b−1(G1). So Z ⊆ P + B for some

P ∈ A(C). Moreover, any coset in A containing Z must contain P +B.

Let B′ be the complementary abelian subvariety of B in A with respect

to a fixed polarization; see [5, §5.3]. So B + B′ = A and B ∩ B′ is finite. By

the former property we may assume P ∈ B′(C).
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By hypothesis we have Z(C) = γ(Z(C)) ⊆ γ(P )+γ(B(C)) = γ(P )+B(C)

for all γ ∈ Γ. Thus γ(P )−P ∈ B(C) for all γ ∈ Γ. As B′ is invariant under γ,

we find γ(P ) − P ∈ (B ∩ B′)(C). So γ(Q) − Q = 0 for all γ ∈ Γ, where

Q = [#B ∩B′](P ).

The point b(Q) ∈ T2g is the image of some t ∈ R2g under the canonical

map R2g → T2g. Our action of Γ on Aan was defined using b, and Γ acts on

T2g via a matrix in Mat2g(Z). We find that γ(t) − t ∈ Z2g for all γ ∈ Γ with

the standard action of GL2g(Z) on R2g.

Thus t ∈ R2g is the solution of a system of inhomogeneous linear equations,

parametrized by Γ, with integral coefficients and integral solution vector. The

corresponding homogeneous equation has only the trivial solution as there are

no non-trivial Γ-invariant vectors in Z2g. So t was the unique solution, and we

conclude t ∈ Q2g. Therefore Q and thus P have finite order. So P + B is a

torsion coset in A and we are in case (1) of the current proposition.

Now suppose we are in case (2) of Lemma 5.2, and suppose U and G are

as given therein. Then
⋂
P∈b−1(G)(Z − P ) is Zariski closed in Z since 0 ∈ G.

By Lemma 5.2 its complex points contain b−1(U), which is Zariski dense in Z.

So Z−P = Z for all P ∈ b−1(G). This equality continues to hold for C-points

in the Zariski closure B of b−1(G) in A. As G is a connected subgroup of Aan,

we find that B is an abelian subvariety of A. Moreover, dimB ≥ 1 since G is

infinite. So we are in case (2) of the proposition. �

5.2. Degeneracy and global information. Let A be an abelian scheme over

S of relative dimension g ≥ 1, and let S be an irreducible and smooth curve

over C.

Recall that Betti maps were introduced in Section 4. Around each point of

San we fix an open neighborhood in San and a Betti map as in Proposition 4.1.

This yields an open cover of San, which we now refine for our application

later on. After shrinking each member, we may assume that each member is

bounded and diffeomorphic to an open subset of R2. As San is paracompact,

we may refine this cover to obtain an open cover of San that is locally finite.

Each member of this cover is relatively compact. We may refine the cover again

and assume that a finite intersection of members is empty or contractible; see

Weil’s treatment [55, §1]. A non-empty open subset of San is naturally a

Riemann surface; if it is contractible, then it is homeomorphic to the open

unit disc. Therefore, a finite intersection of members of our cover is empty or

homeomorphic to the open unit disc.

Let s ∈ San be a base point. We describe the monodromy representation

of π1(San, s) using the Betti map.

Let γ : [0, 1] → San be a loop around s. We can find a Betti map in a

neighborhood around each point of γ([0, 1]). As this image is compact, we find
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0 = a0 < a1 < · · · < an = 1 such that γ([ai−1, ai]) ⊆ ∆i, where ∆i is a member

of the cover above and bi is its associated Betti map.

We can glue the Betti maps as follows. For each i ∈ {1, . . . , n − 1}, we

have si = γ(ai) ∈ ∆i ∩ ∆i+1. So bi|Aan
si
◦ (bi+1|Aan

si
)−1 is a continuous group

isomorphism M : T2g → T2g, thus represented by a matrix in GL2g(Z). On

replacing bi+1 by M ◦ bi+1, we may arrange that bi and bi+1 coincide on Aan
si .

Now γ(0) = γ(1) = s. Both b1 and bn define homeomorphisms Aan
s → T2g.

By composing we obtain a homeomorphism Aan
s → Aan

s that is a group isomo-

morphism. This homeomorphism induces an automorphism of the Z-module

H1(Aan
s ,Z) that depends on the loop γ. Another loop that is homotopic to

γ relative {0, 1} will lead to the same automorphism of H1(Aan
s ,Z). The in-

duced mapping π1(San, s) → Aut(H1(Aan
s ,Z)) is the monodromy representa-

tion from [52, §3.1.2]. We denote its dual by

(5.3) ρ : π1(San, s)→ Aut(H1(Aan
s ,Z)).

Proposition 5.4. In the notation above there is a group homomorphism

ρ̃ = ρ̃A : π1(San, s)(5.4)

→ {homeomorphisms Aan
s → Aan

s that are group homomorphisms}

that satisfies

(5.5) ρ̃(h)∗ = ρ(h) for all h ∈ π1(San, s)

with the following properties :

(i) There exists a path-connected open neighborhood ∆ ⊆ San of s and b a

Betti map on A∆ as in Proposition 4.1. Let Y ⊆ A be an irreducible

closed subvariety such that P ∈ Y an with π(P ) = s is not isolated in the

fiber of b|Y an∩A∆
. Then ρ̃(h)(P ) ∈ Y an for all h ∈ π1(San, s). Moreover,

if P has finite order N in As(C), then dimP Y ∩ A[N ] ≥ 1.

(ii) Let B be a further abelian scheme over S and α : A → B be a morphism

of abelian schemes over S. Then for all h ∈ π1(San, s),

ρ̃B(h)(α|Aan
s

) = (α|Aan
s

)ρ̃A(h).

Although the Betti map b in Proposition 4.1 is not uniquely determined,

Remark 4.2 implies that the non-isolation condition in the hypothesis above is

independent of any choice of b.

Before we come to the proof we will patch together the Betti maps and

extract global information.

Suppose i ∈ {1, . . . , n− 1}, and set ∆ = ∆i ∩∆i+1 3 γ(ai). We consider

the two real bi-analytic maps

b∗i |A∆
and b∗i+1|A∆

: A∆ → T2g ×∆,
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where the star signifies passing to the product as in Proposition 4.1(iii). By

composing we obtain

(5.6) b∗i+1|A∆
◦ (b∗i |A∆

)−1 : T2g ×∆→ T2g ×∆,

which is, over each fiber of ∆, a continuous group isomorphism T2g → T2g.

By construction it is the identity over γ(ai) ∈ ∆. Each continuous group

isomorphism of T2g is represented by a matrix in GL2g(Z). By homotopy,

(5.6) is the identity above all points in the path component of ∆ containing

γ(ai). But ∆ is path connected by construction, and therefore bi|A∆
= bi+1|A∆

for all i ∈ {1, . . . , n− 1}.

Proof of Proposition 5.4. Let s, Y, and P be as in the hypothesis. We

abbreviate Y∆1 = Y an ∩ A∆1 ; it is a complex analytic space.

We will transport P in Aan above along a loop γ in San based at s and keep

the Betti coordinates fixed. After completing the loop we will have returned

to the fiber As. But P will have transformed according to the monodromy

representation (5.3). The degeneracy condition imposed on P implies that this

new point lies again in Y . This is guaranteed by the fact that the Betti fibers

are complex analytic; see (ii) of Proposition 4.1 and our hypothesis dimS = 1.

Let us check the details. We set P0 = P and ξ = b1(P0) and define

Z1 = b−1
1 (ξ).

So Z1 is a complex analytic subset of the complex analytic space A∆1 by (ii)

of Proposition 4.1. Therefore, Z1 ∩ Y∆1 is complex analytic in Y∆1 . As P0 is

not isolated in Z1 ∩ Y∆1 , we find dimP0 Z1 ∩ Y∆1 ≥ 1; see [21, Ch. 5] for the

dimension theory of complex analytic spaces.

If P = P0 happens to be a point of finite order N in Aπ(P )(C), then all

points of Z1 have order N in their respective fibers as β is fiberwise a group

isomorphism. From the degeneracy of P we conclude dimP Y ∩A[N ] ≥ 1, and

this yields the second claim of (i).

The natural projection Z1 7→ ∆1 is holomorphic and a homeomorphism.

So dimQ Z1 ≤ dimπ(Q) ∆1 = 1 for all Q ∈ Z1. So we conclude dimP0 Z1∩Y∆1 =

dimP0 Z1 = 1 and dimZ1 = 1. The singular points of Z1 are isolated in

Z1; see [21, Ch. 6, §2.2]. Since Z1 is homeomorphic to ∆1 and the latter is

homeomorphic to the open unit disc, we conclude that the smooth locus of Z1

is path connected. Therefore, we can apply the Identity Lemma [21, Ch. 9,

§1.1] to conclude that Z1 ∩ Y∆1 = Z1, and hence

Z1 ⊆ Y∆1 .

In particular, the point P1 = b−1
1 (ξ, γ(a1)) ∈ Z1 also lies in Y∆1 .

Observe that we used the fact that San is a curve in a crucial way. Indeed,

for higher dimensional S, we cannot exclude dimZ1 ∩ Y∆1 < dimZ1 in the

paragraph above. This makes applying the Identity Lemma impossible.
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We have reached γ(a1) and will continue on the circuit along γ. However,

by construction, b∗1 and b∗2 agree on Aan
s1 where s1 = γ(a1). They also agree on

Aan
s for all s sufficiently close to s1. Let t1, t2, . . . be a sequence of elements in

[0, a1] with limit a1. Then b∗1
−1(ξ, γ(tk)) converges to P1 as k →∞. For k suffi-

ciently large, we have γ(tk) ∈ ∆2 and therefore b∗1
−1(ξ, γ(tk)) = b∗2

−1(ξ, γ(tk)).

So P1 ∈ π−1
1 (∆1 ∩∆2) is not isolated in the fiber of b2 : A∆2 → T2g restricted

to Y∆2 above ξ.

Now we repeat the process and transport P1 along γ([a1, a2]) to obtain

P2 ∈ Y∆2 with π(P2) = γ(a2) that is not isolated in b3|Y∆3
. Eventually, we will

have returned to the fiber As. The final point lies in Y an
s , and it is obtained

from P0 ∈ Y an by a continuous group automorphism of Aan
s that depends on

the homotopy class of γ relative to {0, 1}. More precisely, by construction the

final point is ρ̃([γ])(P0), where

ρ̃ : π1(San, s)

→ {homeomorphisms Aan
s → Aan

s that are group homomorphisms}

is a group homomorphism that is compatible with the monodromy represen-

tation (5.3); indeed,

ρ̃(h)∗ = ρ(h) for all h ∈ π1(San, s),

and part (i) follows.

The proof of (ii) relies on (5.5) and some basic functoriality. Let s ∈ San.

A homomorphism α : A → B of abelian schemes over S induces a group

homomorphism (α|Aan
s

)∗ : H1(Aan
s ,Z) → H1(Ban

s ,Z). Moreover, this group

homomorphism is equivariant with respect to the action of π1(San, s) on both

homology groups. By abuse of notation let ρ̃ denote the continuous action of

π1(San, s) on As and Bs, and let ρ be the induced action on homology. We

find (
ρ̃(h)α|Aan

s

)
∗ = ρ(h)(α|Aan

s
)∗ = (α|Aan

s
)∗ρ(h) = (α|Aan

s
ρ̃(h))∗

for all h ∈ π1(San, s); the first and third equality follow from (5.5), and the sec-

ond one follows since the monodromy action commutes with homomorphisms

of abelian varieties. Both self-maps ρ̃(h)α|Aan
s

and α|Aan
s
ρ̃(h) are continuous

group endomorphisms of Aan
s , which is homeomorphic to T2g. As their induced

maps on homology coincide, they must coincide as well. �

5.3. Monodromy on abelian schemes. Let S be an irreducible and smooth

curve over C, and let A be an abelian scheme over S of relative dimension

g ≥ 1. We write C(S) for an algebraic closure of the function field C(S) of S.

For a base point s ∈ S(C), the monodromy representation is (5.3). Let Gs
denote the Zariski closure of Γs = ρ(π1(San, s)) in AutQH1(Aan

s ,Q), and let

G0
s be its connected component containing the unit element. Deligne proved

in [16, Cor. 4.2.9] that G0
s is a semisimple algebraic group.
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The next lemma uses a theorem of Tits connected to his famous “alterna-

tive.”

Lemma 5.5. In the notation above suppose that G0
s is not trivial. Then

any finite index subgroup of Γs has a free subgroup on two generators.

Proof. Let Γ′ be a finite index subgroup of Γs. As G0
s is of finite index

in Gs, we see that Γ′ ∩ G0
s(Q) lies Zariski dense in G0

s. Our lemma follows

from [48, Th. 3] applied to G0
s and Γ′ ∩G0

s(Q). �

Certainly, Gs andG0
s etc. depend on s. However, their isomorphism classes

do not, and the index [Gs : G0
s] is independent of s ∈ San; see the comments

before Zarhin’s [64, Th. 3.3].

Lemma 5.6. Let A be the generic fiber of A → S. It is an abelian variety

over C(S). If s ∈ S(C) and H1(Aan
s ,Z) has a non-zero element that is invariant

under the monodromy action (5.3), then the C(S)/C-trace of A is non-zero.

Proof. We write H1(Aan
s ,Z)ρ for the elements in H1(Aan

s ,Z) that are in-

variant under (5.3). A conclusion of Deligne’s Theorem of the Fixed Part

(see [16, Cor. 4.1.2]) implies that the weight −1 Hodge structure on H1(Aan
s ,Z)

restricts to a Hodge structure on H1(Aan
s ,Z)ρ.

It is well known that Hodge substructures ofH1(Aan
s ,Z) come from abelian

subvarieties of As. Hence H1(Aan
s ,Z)ρ gives rise to an abelian subvariety B ⊆

As of dimension 1
2RankH1(Aan

s ,Z)ρ. As H1(Aan
s ,Z)ρ 6= 0 by hypothesis, we

have dimB ≥ 1.

Then B = B ×Spec (C) S is a constant abelian scheme over S. The mon-

odromy representation π1(San, s) → Aut(H1(Ban
s ,Z)) is certainly trivial. The

inclusion Bs → As induces a homomorphism H1(Ban
s ,Z) → H1(Aan

s ,Z) and

the restriction of ρ from (5.3) to the image of this homomorphism is trivial. A

theorem of Grothendieck [23] implies that any element in

Hom(Bs,As) ∩Hom(H1(Ban
s ,Z), H1(Aan

s ,Z))

is induced by the restriction of a morphism ϕ : B → A over S to Bs such that

ϕ ◦ 0B = 0A, where 0A : S → A and 0B : S → B are the zero sections. See

also [16, 4.1.3.2].

The restriction of ϕ to the generic fiber of B is a homomorphism B ⊗C
C(S) → A ×S SpecC(S) = A of abelian varieties over C(S). If the C(S)/C-

trace of A is trivial, then the said homomorphism is trivial. In this case, the

morphism ϕ and the zero section both extend B ⊗C C(S)→ A to a morphism

B → A. As the generic fiber lies Zariski dense in A, we find that ϕ is the zero

section. But then B must be trivial, and this is a contradiction. �

For us, an abelian subscheme of A is the image of an endomorphism of A.

We call s ∈ S(C) extendable for A if any abelian subvariety Bs ∈ As extends
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to an abelian subscheme B of A; i.e., there exists an abelian subscheme B of

A such that B ∩ As = Bs.

For readers who are familiar with Hodge theory, extendable points of S

are closely related to Hodge generic points. We shall not go into details, but

we state the following corollary of a result of Deligne for our purpose.

Lemma 5.7. In the notation above, suppose G0
s = Gs for some s ∈ S(C).

There is an at most countable infinite subset of S(C) whose complement con-

sists only of extendable points of A.

Proof. We refer to [64, Cor. 3.5 and the preceding comments] for this

result. In fact in the reference, it is pointed out that the extendable points are

precisely the Hodge generic points under this mild assumption (G0
s = Gs for

some s ∈ S(C)).

More precisely, [64, Cor. 3.5 and the preceding comments] says that any

s ∈ S(C) outside an at most countably infinite set Σ satisfies the following

property: For any αs ∈ End(As), there exists n ∈ N such that nαs is the

restriction of an endomorphism of A. Now for any s ∈ S(C) \ Σ, any abelian

subvariety Bs of As is the image of some αs ∈ End(As). There exists n ∈ N
such that nαs is the restriction of an element α ∈ End(A). And then we can

take B to be the image of α. �

Let Y be an irreducible closed subvariety of A that dominates S. Then Y

is flat over S by [31, Prop. III.9.7]. We write Ys for the fiber of Y → S above

s with the reduced induced structure. By [31, Cor. III.9.6], we see that Ys is

equidimensional of dimension dimY − 1.

We say that Y is virtually monodromy invariant above s ∈ S(C) if there

exists an irreducible component Z of Ys and a subgroup G ⊆ π1(San, s) of

finite index such that

ρ̃(γ)(Z(C)) = Z(C) for all γ ∈ G

for the representation ρ̃ defined in Proposition 5.4.

Lemma 5.8. In the notation above we suppose Y is an irreducible closed

subvariety of A that dominates S. We assume that there is an uncountable set

M ⊆ S(C) satisfying all of the following properties :

(i) for all irreducible S′ that are finite and étale over S, the generic fiber of

A×S S′ → S′ has trivial C(S′)/C-trace;

(ii) all elements in M are extendable for A (see Lemma 5.7 and above for

definition);

(iii) and the variety Y is virtually monodromy invariant above all elements

in M .

Then there exist an abelian scheme C over S and a homomorphism A → C of

abelian schemes over S whose kernel contains Y and has dimension dimY .
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Proof. Our proof is by induction on

dimA.

The small possible value is 2 as we require g ≥ 1. We call this the minimal

case, and we treat it directly below.

Let s ∈ S(C) be arbitrary for the moment. If G0
s, defined near the begin-

ning of this subsection, is trivial, then the image of π1(San, s) under (5.3) is

finite. By the Riemann Existence Theorem there is an irreducible curve S′ that

is finite and étale over S such that the monodromy representation of the fun-

damental group of S′ at some base point s′ ∈ S′(C) on H1((A×S S′)an
s′ ,Z) is

trivial. Recall that g ≥ 1. By Lemma 5.6, the generic fiber of A×SS′ → S′ has

non-zero C(S′)/C-trace, contradicting our hypothesis. Therefore, dimG0
s ≥ 1.

Let s ∈ M with M as in the hypothesis. A finite index subgroup of

π1(San, s) acts on Zs(C) via (5.4), where Zs is an irreducible component of

Ys. We write Γ′s for the image of this finite index subgroup under the mon-

odromy representation (5.3). Then Γ′s has a free subgroup on two generators

by Lemma 5.5. We invoke Lemma 5.6 by using hypothesis (i) and passing to a

covering of S, and we find that no non-zero element of H1(Aan
s ,Z) is invariant

under the action of Γ′s.

We aim to apply Proposition 5.3. But first let us verify that Γ′s is of mon-

odromy type with respect to corresponding Betti map. Indeed, an abelian

subvariety B of As extends to an abelian subscheme B of A by hypothe-

sis (ii). Then ρ̃A(γ)(Ban) = ρ̃A(γ)(ι(Ban)) = ι(ρ̃B(γ)(Ban)) = Ban by Propo-

sition 5.4(ii) for all γ ∈ π1(San, s), where ι : B → A is the inclusion.

By Proposition 5.3. we are in one of two cases for any given s ∈ M .

Let M1,2 be the set of s ∈ M such that we are in case 1, 2, respectively. As

M = M1 ∪M2, one among M1,M2 is uncountable.

Case 1: The set M1 is uncountable. For all s ∈ M1, the subvariety Zs is

contained in the translate of a proper abelian subvariety Bs of As by a point

Ps of finite order Ns ∈ N. As M1 is uncountable and N is countable, we may

replace M1 by an uncountable subset and assume that there exists N ∈ N such

that [N ]Ps = 0 for all s ∈M1.

Let us treat the minimal case dimA = 2 now. Then Bs = {0} and thus

Zs = {Ps} for all s ∈ M1. But then Y contains an infinite, and hence Zariski

dense, set of points lying in ker([N ] : A → A). This completes the proof in the

minimal case as we can take C = A and [N ] : A → A.

We now treat the non-minimal case dimA ≥ 3. By condition (ii) there

exists an abelian subscheme B(s) of A such that B(s)∩As = Bs for any s ∈M1.

But M1 is uncountable and A has only countably many abelian subschemes,

so we may replace M1 by an uncountable subset and assume that there exists

an abelian subscheme B of A with B(s) = B, i.e., B ∩As = Bs, for all s ∈M1.
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We have [N ]Zs ⊆ B∩As for all s ∈M1. But
⋃
s∈M1

[N ]Zs is Zariski dense

in [N ]Y by dimension reasons, so [N ]Y ⊆ B by taking the Zariski closures on

both sides.

Clearly B satisfies the analog trace condition (i) of the current lemma by

basic properties of the trace. Any s ∈ M1 is extendable for B because it is

extendable for A and B is an abelian subscheme of A. Finally [N ]Y , as a

subvariety of B, is virtually monodromy invariant at each s ∈M1. To see this

it suffices to prove that [N ]Y is virtually monodromy invariant as a subvariety

of A by Proposition 5.4(ii). But then it suffices to show that [N ]Zs is an

irreducible component of [N ]Ys. This is true because [N ]Zs is Zariski closed (as

[N ] is proper) and dim[N ]Ys = dim[N ]Y −1 = dimY −1 = dimZs = dim[N ]Zs.

We observe that dimB = dimBs + 1 ≤ (dimAs − 1) + 1 = dimA− 1. By

induction there is an abelian scheme C over S and a homomorphism ψ : B→C of

abelian schemes over S whose kernel contains [N ]Y and dim kerψ = dim[N ]Y

= dimY . Then (kerψ)◦, the identity component [8, §6.4] of kerψ, has dimen-

sion dimY and is an abelian subscheme of B and hence of A. There exists an

integer m ∈ N such that [m] kerψ ⊆ (kerψ)◦. In particular, [mN ]Y ⊆ (kerψ)◦.

Note that dim(kerψ)◦ = dim kerψ = dimY .

Now it suffices to take A → C to be the composition A [mN ]−−−→ A →
A/(kerψ)◦.

Case 2: The set M2 is uncountable. For all s ∈M2, there exists an abelian

subvariety Bs ⊆ As with dimBs ≥ 1 and Zs +Bs = Zs. Note that dimY ≥ 2

since dimZs ≥ 1, so we are not in the minimal case.

By condition (ii) there exists an abelian subscheme B(s) of A such that

B(s)∩As = Bs for any s ∈M2. Since M2 is uncountable and A has only count-

ably many abelian subschemes, we may replace M2 by an uncountable subset

and assume that there exists an abelian subscheme B of A with B(s) = B, i.e.,

B ∩ As = Bs, for all s ∈M2.

We shall work with the abelian scheme A/B over S. Let ϕ : A → A/B be

the natural quotient. Then any fiber of ϕ has dimension dimS B = dimB − 1.

The condition Zs + Bs = Zs implies that the fibers of ϕ|Zs have dimension

dimBs = dimB − 1 for all s ∈ M2. Since
⋃
s∈M2

Zs is Zariski dense in Y by

dimension reasons, we see that a general fiber of ϕ|Y has dimension dimB− 1.

Thus by Fiber Dimension Theorem we have

dimY = dimB − 1 + dimϕ(Y ).

Clearly A/B satisfies the analog trace condition (i) of the current lemma

by basic properties of the trace. Any s ∈ M2 is extendable for A/B because

any abelian subvariety of (A/B)s is the quotient of an abelian subvariety of
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As and s is extendable for A. Finally ϕ(Y ) is virtually monodromy invariant

above all points in M2 by Proposition 5.4(ii).

Now since dim(A/B) = dimA − dimBs ≤ dimA − 1, there exist by

induction an abelian scheme C over S and a homomorphism ψ : A/B → C
whose kernel has dimension ϕ(Y ) and contains ϕ(Y ). Then Y ⊆ ker(ψ ◦ ϕ)

since ϕ(Y ) ⊆ ker(ψ). But

dim ker(ψ ◦ ϕ) = dimS B + dim ker(ψ) = dimB − 1 + dimϕ(Y ) = dimY.

So ψ ◦ ϕ : A → C is what we desire. �

5.4. End of the proof of Theorem 4.1. Now we are ready to prove The-

orem 5.1. Let Y be an irreducible closed subvariety that is degenerate. We

want to prove that Y is generically special.

Note that being generically special is a property on the geometric generic

fiber. Moreover, it is enough to show that one irreducible component on the

geometric generic fiber of Y has the property stated in Definition 1.2. We

will remove finitely many points from S and replace S by a finite and étale

covering S′, which we assume to be irreducible throughout this proof. Observe

that the base change Y ′ of Y may no longer be irreducible. But it is étale over

Y and thus reduced. In particular, Y ′ is flat over Y and thus over S. It follows

that Y ′ is equidimensional of dimension dimY by [31, Cor. III.9.6]. Note that

if U is an open subset of Y an consisting of degenerate points for Y , then its

preimage will be open in Y ′an and consist of degenerate points.

So to ease notation, we will write S′ = S below and take Y to be an

irreducible component of Y ′.

Let A be the generic fiber of A. After possibly removing finitely many

points from S and replacing them by a finite étale covering, we may assume

that AC(S)/C = AC(S)/C. We also assume that all abelian subvarieties of A⊗C(S)

C(S) are defined over C(S). By passing to a further finite étale covering we

may assume that A satisfies the hypothesis of Lemma 5.7. Let Σ ⊆ S(C) be a

countable subset such that any element in S(C) \ Σ is extendable for A.

Let U be a non-empty, open subset of Y an ∩ A∆ consisting of degenerate

points for Y ; here is ∆ as above Theorem 5.1.

If s ∈ San, then π1(San, s) acts on Aan
s via (5.4). We have proven in

Proposition 5.4 that ρ̃(γ)(P ) ∈ Y an for all P ∈ U and all γ ∈ π1(San, s).

This property continues to hold with U replaced by the union
⋃
γ ρ̃(γ)(U)

over π1(San, s). Note that U is open and invariant under the action of the

fundamental group.

Let Z be an irreducible component of Ys with Zan ∩ U 6= ∅. The repre-

sentation ρ̃ maps Zan ∩U into Y an
s . As everything is real analytic, we see that

for each γ ∈ π1(San, s), there is an irreducible component Z ′ of Ys such that
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ρ̃(γ)(Zan ∩ U) ⊆ Z ′an ∩ U . Because all irreducible components of Ys have di-

mension equal to dimY −1, by the Invariance of Domain Theorem we conclude

that Z ′ is uniquely determined by ρ̃(γ)(Zan ∩ U) ⊆ Z ′an ∩ U among all irre-

ducible components of Ys. We conclude that π1(San, s) acts on the finite set of

irreducible components of Ys that meet U . Therefore, ρ̃(γ)(Zan∩U) ⊆ Zan∩U
for all γ in a finite index subgroup of π1(San, s).

The smooth locus of Zan is path-connected, lies dense in Zan, and contains

a point of Zan ∩ U . By fixing piece-wise real analytic paths we find that

ρ̃(γ)(Zan) ⊆ Zan for all γ in the finite index subgroup mentioned before.

The arguments above show that Y is virtually monodromy invariant

above s. Clearly, U\Σ is an uncountable set as U is open in San and non-empty.

Let us suppose AC(S)/C = 0 for the moment. We can apply Lemma 5.8

to Y,A, and M equal to the set of s obtained from U\Σ and conclude that

Y is an irreducible component of a subgroup scheme of A that is generically

special. This completes the proof of Theorem 5.1 in the current case.

Let us turn to the general case. Recall that π : A → S is an abelian

scheme with generic fiber A whose C(S)/C-trace is AC(S)/C. We take A0

to be AC(S)/C ⊗C C(S) ⊆ A. So the C(S)/C-trace of A/A0 vanishes; cf. [14,

Th. 6.4 and the following comment]. Moreover, (A/A0)C(S)/C = 0 as AC(S)/C =

AC(S)/C.

By [8, Prop. 3, §7.5], the Néron model B of A/A0 is an abelian scheme

over S and sits in the short exact sequence of abelian schemes over S

0→ AC(S)/C × S → A ϕ→ B → 0.

In A we fix an abelian subvariety C that meets A0 in a finite set and

with A0 + C = A. Let C be the Néron model of C. It is an abelian scheme

over S, and we may assume C ⊆ A. The restriction ϕ|C : C → B is dominant

and proper, hence surjective. It is fiberwise an isogeny of abelian varieties. We

conclude (AC(S)/C × S) + C = B.

As Y is degenerate, there exists an open and non-empty U subset of Y an

of degenerate points. By shrinking U , we may assume that ϕ|Y : Y → ϕ(Y )

is smooth at all points of U . So ϕ(U) is open in ϕ(Y )an. This set consists

of degenerate points for ϕ(Y ). By the previous case (AC(S)/C = 0), the set

of P ∈ U such that ϕ(P ) has finite order in the corresponding fiber of B lies

Zariski dense in Y .

We consider such a P , suppose ϕ(P ) has order N , and write P = Q+ R

with Q ∈ (AC(S)/C × S)(C) and R ∈ C(C), where Q,R lie in the same fiber

above S as P . So 0 = [N ](ϕ(P )) = ϕ([N ](R)). As R ∈ C(C), it must have

finite order N ′. Moreover, R ∈ Y − σQ, where σQ is the image of a constant

section S → AC(S)/C × S with value Q.
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The Betti map is constant on sufficiently small open subsets of σQ as

AC(S)/C × S is a constant abelian scheme. Therefore, R is a degenerate point

of Y − σQ.

Recall that the order of a point is constant on a fiber of the Betti map. By

the second claim in Proposition 5.4(i), there exists an irreducible component

C ⊆ C[N ′] containing R with C ⊆ Y − σQ.

We conclude that P is a point of σQ +C, a generically special subvariety

of A. As this holds for a Zariski dense set of P in Y , we conclude from

Proposition 1.3 that Y is generically special.

6. Construction of the auxiliary variety

In this section we work in the category of schemes over an algebraically

closed subfield F of C. We abbreviate PmF by Pm throughout this section.

Suppose S is a smooth irreducible algebraic curve. Let A be an abelian scheme

of relative dimension g ≥ 1 over S with structural morphism π : A → S. For a

closed subvariety X ⊆ A and s ∈ S(F ), we write Xs = π−1(s).

We assume that A comes equipped with an admissible immersion A →
PM × Pm as in Section 2.2; i.e., it satisfies conditions (A1), (A2), and (A3)

in Section 2.2. In particular, each fiber As of π with s ∈ S(F ) is an abelian

variety in PM . On this projective space we let deg(·) denote the degree of an

algebraic set.

In this section X will denote an irreducible, closed subvariety of A that

dominates S and with X 6= A. Hence π|X : X → S is surjective as π|X is

proper. We write dimX = dimA − n = g + 1 − n, where n ≥ 1 is the

codimension of X in A.

Let ∆ ⊆ San be a non-empty open subset with Betti map b : π−1(∆) =

A∆ → T2g; see Proposition 4.1. We recall that T denotes the circle group. It

is convenient to write X∆ = Xan ∩ A∆.

The following convention will be used in this section. If P is a point on

a real (resp. complex) analytic manifold Y , then TP (Y ) denotes the tangent

space of Y at P . This is an R- resp. C-vector space, depending on whether

Y is a real or complex analytic manifold. If Z is another real (resp. complex)

analytic manifold and f : Y → Z is a real (resp. complex) analytic mapping,

then TP (f) denotes the differential TP (Y )→ Tf(P )(Z). It is R- (resp. C)-linear.

Let im(TP (f)) denote the image of TP (f) in Tf(P )(Z).

Recall that Xsm,an is the complex analytic space attached to the smooth

locus Xsm of X. If P ∈ A∆ ∩A(F ), then b|Xsm,an∩A∆
: Xsm,an ∩A∆ → T2g is a

real analytic map. The condition in the proposition below concerns the image

of its differential.
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Proposition 6.1. We keep the notation from above and assume that X

is not generically special. Suppose P ∈ A∆ ∩A(F ) with π(P ) = s such that P

is a smooth point of Xs and of X with

(6.1) dim im(TP (b|Xsm,an∩A∆
)) = 2 dimX.

Then there exists a closed irreducible subvariety Z ⊆ A over F with the fol-

lowing properties :

(i) We have dimZ = n and Z dominates S.

(ii) We have that P is a smooth point of Zs and of Z .

(iii) The fiber Zs does not contain any positive dimensional coset in As.
(iv) There exists D ≥ 1 such that degZt ≤ D for all t ∈ S(C).

(v) We have im(TP (b|Xsm,an∩A∆
)) ∩ im(TP (b|(Zs)sm,an)) = 0 in Tb(P )(T2g).

Moreover, the set

{t ∈ S(C) : Zt contains a positive dimensional coset in At}

is finite.

Condition (v) implies that Zs and Xs intersect transversally in As. Con-

dition (i) implies that Zt is equidimensional of dimension n−1 for all t ∈ S(F )

by [31, Cor. III.9.6 and Prop. III.9.7].

We will prove this proposition in the next few subsections; see Sections 6.1–

6.2 for the construction of Z and Section 6.4 for the “Moreover” part. But

first, let us relate its hypothesis (6.1) to our notion of generically special. A

crucial point is to use Theorem 5.1.

Lemma 6.2. Suppose that X is not generically special. Then there exists

P ∈ Xsm(F ) with π(P ) ∈ ∆ and P ∈ (Xπ(P ))
sm(F ) that satisfies (6.1).

Proof. Let us consider the restriction

b|Xsm,an∩A∆
: Xsm,an ∩ A∆ → T2g.

Observe that domain and target are smooth manifolds of dimension 2 dimX

and 2g, respectively.

Let r ∈ {0, . . . , 2g} denote the largest possible rank of TP (b|Xsm,an∩A∆
) as

P ranges over the domain. Then there exists an open and non-empty subset

U of Xsm,an ∩A∆ on which the rank is r. It follows from [56, App. II, Cor. 7F]

that any fiber of b|U : U→ b(U) is a smooth manifold of dimension 2 dimX− r.
By hypothesis and Theorem 5.1 the variety X is not degenerate. In par-

ticular, there exists P ∈ U that is not degenerate for X. So the fiber of b|U
through P contains P as an isolated point. So we have r = 2 dimX.

By continuity we may assume that (6.1) holds for all P ∈ U, after possibly

shrinking U.
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On the other hand, the set U={P ∈Xsm(F ) : π|X : X→S is smooth at P}
is Zariski open and dense in X. So U(F ) ∩ U 6= ∅ because F is algebraically

closed and dense in C. Now any point P ∈ U(F ) ∩ U satisfies the desired

properties as S is smooth. �

For the further construction of Z, we assume that P is as in this lemma.

6.1. The first four properties. We show how to construct Z satisfying the

first four properties in the proposition. Indeed, our construction will show that

a generic choice, in a suitable sense, of Z will suffice for (i)–(iv). Later on we

will see how to obtain, in addition, (v) and deduce the final statement.

Let P be as in the hypothesis of Proposition 6.1. Recall that A comes

with an admissible immersion A → PM × Pm as in Section 2.2. Observe

that As ⊆ PM is Zariski closed, irreducible, and contains P as a smooth

point as it is an abelian variety. By property (A3) a generic homogeneous

linear form f ∈ F [X0, . . . , XM ] vanishing at P satisfies the following property.

The intersection of the zero locus Z (f) of f with As contains no positive

dimensional cosets inAs. Here generic means that we may allow the coefficients

of f to come from a Zariski open dense subset of all possible coefficient vectors.

According to Bertini’s Theorem there are linearly independent homoge-

neous linear forms f1, . . . , fg+1−n ∈ F [X0, . . . , XM ] such that their set of com-

mon zeros Z (f1, . . . , fg+1−n) in PM intersects As in a Zariski closed set Z ′ that

is smooth at P and of dimension dimAs− (g+1−n) = g− (g+1−n) = n−1.

If n ≥ 2, we may arrange that Z ′ is irreducible by applying a suitable variant

of Bertini’s Theorem. By the previous paragraph, we can arrange that Z ′ con-

tains no positive dimensional cosets in As. We will see that this establishes

(ii), (iii), and (iv) with our choice of Z below.

Note that a generic choice of (f1, . . . , fg+1−n) in F [X0, . . . , XM ]⊕(g+1−n),

where each entry has degree one, that vanishes at P will have the property

described in the previous paragraph. Here generic means that we may allow

the coefficient vector attached to (f1, . . . , fg+1−n) to come from a Zariski open

dense subset of all possible coefficient vectors that lead to linear forms with

coefficients in F vanishing at P . We may arrange f1 to be an f as in the last

paragraph, so Z ′ contains no coset of positive dimension.

Each irreducible component of

(6.2) (Z (f1, . . . , fg+1−n)× Pm) ∩ A

has dimension at least n. Suppose Z is an irreducible component of (6.2)

that contains P . By the Fiber Dimension Theorem we find dimZs ≥ dimZ −
dimπ(Z) ≥ dimZ−1. As dimZ ′ = n−1 and Zs ⊆ Z ′, we conclude dimZ ≤ n.

Thus dimZ = n,dimπ(Z) = 1, and dimZs = n− 1. This implies both claims

in (i).
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If n = 1, then dimZs = 0 and hence P is smooth in Zs. If n ≥ 2, then

Zs = Z ′ and hence P is smooth in Zs by construction. Now as P is smooth in

Zs and s is smooth in S, P is also smooth in Z. This establishes (ii).

If n = 1, then dimZs = 0 and (iii) clearly holds. If n ≥ 2, then by

construction Zs satisfies (iii). In both cases, Zt is a union of irreducible com-

ponents of Z (f1, . . . , fg+1−n) ∩ At for all but at most finitely many t ∈ S(C).

For these t, we conclude degZt ≤ degAt from Bézout’s Theorem. But A → S

is a flat family embedded in PM × S → S, so degAt ≤ D for some D ≥ 1

depending only on A and the immersion. We can take care of the remaining

finitely many fibers by increasing D if necessary. Thus we have established (iv).

6.2. The fifth property.

6.2.1. Linear algebra. For a C-vector space T , we write TR for T with its

natural structure as an R-vector space. For example, if T is finite dimensional,

then dimTR = 2 dimT . A vector subspace V0 of TR is naturally an R-vector

space. We denote by CV0 the smallest vector subspace of T containing V0. For

example, if V0 = Rv1 + · · ·+Rvk, then CV0 = Cv1 + · · ·+Cvk. Let J denote the

multiplication by
√
−1 map J : T → T . Then (CV0)R = V0 + JV0. A vector

subspace of TR is a vector subspace of T if and only if it is J-invariant.

In this section g ≥ 1 is an integer. We show that an even dimensional

real subspace of Cg intersects some complex subspace of complementary real

dimension transversally.

Lemma 6.3. Let T be a C-vector space of dimension g, and suppose W

is a vector subspace of T with dimW = m. Let V0 be a vector subspace of TR
of dimension 2m+ 2k that contains W . Then there exists a vector subspace V

of T of dimension g − (m+ k) such that V ∩ V0 = 0.

Before proving this lemma, let us do the following preparation.

Lemma 6.4. Let C2k be the standard complex vector space of dimension

2k, and let R2k ⊆ C2k be the real part of C2k, i.e., C2k = R2k⊕
√
−1R2k. Then

there exists a vector subspace V of C2k of dimension k such that V ∩R2k = 0.

Proof. For any j = 1, . . . , 2k, we let ej = (0, . . . , 0, 1, 0, . . . , 0) ∈ C2k be

the vector with the j-th entry being 1 and the other entries being 0.

For any i = 1, . . . , k, we let vi = e2i−1 +
√
−1e2i ∈ C2k. We show that the

complex vector space V = Cv1 + · · ·+ Cvk satisfies the desired property.

Indeed, dimV = k as v1, . . . , vk are C-linearly independent. So it remains

to show V ∩R2k = 0. Any vector in V is of the form c1v1 + · · ·+ ckvk for some

c1, . . . , ck ∈ C. If c1v1 + · · ·+ ckvk ∈ R2g, then we have

ci ∈ R and
√
−1ci ∈ R for all i = 1, . . . , k.

Thus c1 = · · · = ck = 0. �
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Lemma 6.5. Let U be a C-vector space of dimension 2k and let V0 be a

vector subspace of UR of dimension 2k such that CV0 = U . Then there exists

a vector subspace V of U of dimension k such that V ∩ V0 = 0.

Proof. We take a basis of V0, which is an R-vector space, and call it

e1, . . . , e2k. Since CV0 = U , we have U = Ce1 + · · · + Ce2k. But dimU = 2k,

so e1, . . . , e2k form a basis of U .

Now under the identification U = C2k via the basis e1, . . . , e2k, the vector

subspace V0 of U becomes the real part of C2k. We can apply the previous

lemma to conclude. �

Now we are ready to prove Lemma 6.3.

Proof of Lemma 6.3. We begin by showing that we can reduce to the case

m = 0. If the lemma is known when m = 0, then we apply it to the C-vector

space T/W and the image of the R-vector space V0 in this quotient to get a

vector subspace V ′ of T/W of dimension g − (m + k). Let W⊥ be a vector

subspace of T with W +W⊥ = T and W ∩W⊥ = 0. Then the natural linear

map W⊥ → T/W is an isomorphism. The preimage of V ′ under this map is

the vector subspace that we desire.

Now we treat the case m = 0; note that W = 0 in this case. As above we

write J for multiplication by
√
−1 on T . Then (CV0)R = V0 + JV0.

Case (i): The R-vector space V0 contains no non-zero vector subspace

of T . In this case V0 ∩ JV0, being a J-invariant vector subspace of V0, must

be trivial. So dim(CV0)R = dimV0 + dim JV0 = 2k + 2k = 4k and hence

dimCV0 = 2k ≤ g. Thus we can apply the previous lemma to U = CV0 and

V0 to get a vector subspace V ′ of CV0 of dimension k such that V ′ ∩ V0 = 0.

Then it suffices to take V = V ′ + V ′′ for any vector subspace V ′′ ⊆ T with

CV0 + V ′′ = T and CV0 ∩ V ′′ = 0.

Case (ii): General case. We write V J
0 for the largest J-invariant vector

subspace of V0. As it is J-invariant by definition, we consider it as a C-vector

space. Then T ′ = T/V J
0 is a C-vector space of dimension g − dimV J

0 , and

V ′0 = V0/V
J

0 is a vector subspace of T ′R of dimension 2(k − dimV J
0 ).

We claim that V ′0 contains no non-zero vector subspace of the C-vector

space T ′. If U ′ is a vector subspace of T ′ with U ′ ⊆ V ′0 , then its preimage

under the quotient T → T ′ = T/V J
0 is a vector subspace of T that is contained

in V0 and that contains V J
0 . The maximality of V J

0 yields U ′ = 0.

Now we can apply case (i) to T ′ and V ′0 ⊆ T ′R to get a vector subspace V ′

of T ′ of dimension (g− dimV J
0 )− (k− dimV J

0 ) = g− k such that V ′ ∩V ′0 = 0.

Let V ′′ be the preimage of V ′ under the quotient T → T ′ = T/V J
0 . Then V ′′ is

a vector subspace of T with dimension g−k+dimV J
0 such that V ′′∩V0 = V J

0 .
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Recall that V J
0 is a vector subspace of the C-vector space T and hence a vector

subspace of V ′′. Now it suffices to let V be any complement of V J
0 in V ′′. �

Let g and T be as in Lemma 6.3, and suppose k ≥ 0 is an integer. Let

Gr(TR, 2k) denote the set of all 2k-dimensional vector subspaces of TR. On

identifying TR with R2g we may use Plücker coordinates to identify Gr(TR, 2k)

with a closed subset of PN (R), where N =
(2g

2k

)
− 1.

Note that PN (R) is equipped with the archimedean topology that makes it

a compact Hausdorff space. We will use this topology and its induced subspace

topology on Gr(TR, 2k).

Multiplication by
√
−1 induces an R-linear automorphism TR → TR and

hence a self-map Gr(TR, 2k)→ Gr(TR, 2k). By the Cauchy-Binet Formula this

self-map can be described on Gr(TR, 2k) ⊆ PN (R) by linear forms. Its fixpoints

are precisely the 2k-dimensional vector subspaces of TR that are k-dimensional

vector subspaces of T . We write Gr(T, k) for the set of these fix points. It is

a closed subset of Gr(TR, 2k). In this notation we can use Lemma 6.3 to prove

the following.

Lemma 6.6. Let T be a C-vector space of dimension g, and suppose W is

a vector subspace of T with dimW = m ≤ g− 1. Let V be a vector subspace of

TR of dimension 2(m+1) that contains W . There exists a non-empty open (in

the archimedean topology) subset U ⊆ Gr(T, g −m− 1) such that V ′ ∩ V = 0

for all V ′ ∈ U.

Proof. By the Cauchy-Binet Formula the set

{V ′ ∈ Gr(TR, 2(g −m− 1)) : V ′ ∩ V = 0}

is the complement in Gr(TR, 2(g −m− 1)) of the zero set of a homogeneous lin-

ear polynomial defined on the projective coordinates of PN . So the set in ques-

tion is open in Gr(TR, 2(g −m− 1)). Its intersection U with Gr(T, g −m− 1)

lies open in Gr(T, g −m− 1). But U 6= ∅ by Lemma 6.3 applied to the case

k = 1. �

6.2.2. Verification of (v) in Proposition 5.1. We retain the conventions

made in Sections 6 and 6.1. So P is as in the hypothesis. We set up the

various vector spaces needed in Lemma 6.6.

For T , we take the tangent space TP (Aan
s ), which is a C-vector space of

dimension g. Note that P and π are defined over F , so this complex space T

also descends to F .

For W , we take the image of TP ((Xs)
sm,an) under the linear map

TP ((Xs)
sm,an)→ TP (Aan

s )

induced by the inclusion (Xs)
sm → As. (Recall that P is a smooth point of Xs.)

Its dimension equals dimXs = dimX−1 = g−n ≤ g−1, which we define as m.
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Finally, we take V = im(TP (b|Xsm,an∩A∆
)), which is a vector subspace of

the R-vector space Tb(P )(T2g). As b|Aan
s

: Aan
s → T2g is an isomorphism of

real analytic spaces, we can identify TP (Aan
s ) = T with Tb(P )(T2g) as R-vector

spaces. Therefore, V ⊆ TR as in the setup of Lemma 6.6. Note that V does

not carry a complex structure since we treat T2g as a real analytic space.

Our hypothesis (6.1) implies dimV = 2 dimX = 2(m + 1). So the hy-

pothesis of Lemma 6.6 is satisfied.

So there exists U open in Gr(T, g −m− 1); the latter is a compact Haus-

dorff space. Its points correspond to (g−m− 1)-dimensional vector subspaces

of the C-vector space T .

In Section 6.1 we saw that a generic choice of f1, . . . , fg+1−n vanishing at

P yields properties (i)–(iv) in the proposition. To obtain (v) we must make

sure that V ∩ im(TP (b|(Zs)sm,an)) = 0. According to Lemma 6.6 this holds if

im(TP (b|(Zs)sm,an)), a vector subspace of the C-vector space TP (Aan
s ), under the

identification of Tb(P )(T2g) with TP (Aan
s ) made above, lies in U. Ranging over

all possible choices of f1, . . . , fg+1−n as in Section 6.1 yields points in U(F )

for some Zariski open dense subset U ⊆ Gr(T, g −m− 1). As U is open in the

archimedean topology and since U(F ) lies dense in Gr(T, g −m− 1), we have

U ∩ U(F ) 6= ∅. Any element in U ∩ U(F ) is sufficient, and this completes the

proof. �

6.3. A detour to Bézout’s Theorem. In this subsection we prove the fol-

lowing degree bound on long intersections. It will be used to prove the “More-

over” part of Proposition 6.1 in the next subsection. In this subsection we

temporarily allow F to be any algebraically closed field of characteristic 0.

Proposition 6.7. Suppose V1, . . . , Vm are irreducible closed subvarieties

of PnF = Pn such that deg(Vi) ≤ δ for all i ∈ {1, . . . ,m}. Let C1, . . . , Cr be all

the irreducible components of V1 ∩ · · · ∩ Vm of top dimension, which we denote

by k. Then

(6.3)
r∑
i=1

deg(Ci) ≤ δn−k.

The crucial aspect of (6.3) is that the right-hand side is independent of m.

Lemma 6.8. Let V be an irreducible closed subvariety of Pn of degree δ.

Then there exist finitely many irreducible hypersurfaces of Pn of degree at most

δ such that V is their intersection.

Proof. This is Faltings’ [19, Prop. 2.1]. �

Proof of Proposition 6.7. By Lemma 6.8, we may assume that every Vi is

an irreducible hypersurface for all i ∈ {1, . . . ,m}. Then Vi = Z (fi) is the zero
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locus of an irreducible homogeneous polynomial fi ∈ F [X0, . . . , Xn] of degree

at most δ.

We shall prove inductively on s ∈ {1, . . . , n − k} that there exist hyper-

surfaces H1, . . . ,Hn−k (possibly reducible) of degree at most δ such that for

all s ∈ {1, . . . , n− k},
(i) each irreducible component of

⋂s
j=1Hj has dimension at most n− s;

(ii) and Ci ⊆
⋂s
j=1Hj for each i ∈ {1, . . . , r}.

Assume this for s = n−k. Then each Ci, being of dimension k, is an irreducible

component of
⋂n−k
j=1 Hj , and thus

r∑
i=1

degCi ≤
n−k∏
j=1

degHj ≤ δn−k

by Bézout’s Theorem (cf. [20, Exam. 8.4.6]), which holds here even though the

hypersurfaces Hj may be reducible.

Let us take H1 = V1. Then degH1 ≤ δ. Now suppose we have constructed

H1, . . . ,Hs−1 for some 2 ≤ s ≤ n − k. Let W1, . . . ,Wt be the irreducible

components of H1 ∩ · · · ∩ Hs−1. Let l ∈ {1, . . . , t}. Since s ≤ n − k, we

have dimWl > k. By assumption each irreducible component of
⋂m
i=1 Z (fi) =⋂m

i=1 Vi has dimension at most k, so there exists some i0 ∈ {1, . . . ,m} such

that f̃l = fi0 does not vanish on Wl. Then f̃l ∈ F [X0, . . . , Xn] has degree at

most δ and vanishes on C1 ∪ · · · ∪ Cr. We may assume that deg f̃l = δ after

possibly multiplying f̃l with a homogeneous polynomial of a suitable degree in

general position.

Let F [X0, . . . , Xn]δ be the union of 0 and the homogeneous polynomials in

F [X0, . . . , Xn] of degree δ. We can identify F [X0, . . . , Xn]δ with A(n+δ
n )(F ) =

F (n+δ
n ). Then

{f ∈ A(n+δ
n )(F ) : f vanishes on C1 ∪ · · · ∪ Cr}

is the set of F -points of a linear subvariety L ⊆ A(n+δ
n ), and {f ∈ L(F ) :

f |Wl
6= 0} defines a Zariski open Ul in L that is non-empty as f̃l ∈ Ul(F ). Now

L is irreducible, and so Ul is Zariski open and dense in L. In particular, the

intersection

Θ =
t⋂
l=1

Ul(F )

is non-empty.

Now fix any fs ∈ Θ and let Hs = Z (fs). Then Hs has degree at most

δ and no irreducible component of H1 ∩ · · · ∩ Hs−1 ∩ Hs is an irreducible

component of H1 ∩ · · · ∩Hs−1. So the irreducible components of H1 ∩ · · · ∩Hs

have dimension at most n− s using (i) in the case s− 1. Property (ii) clearly

holds by the construction of the Ul. �
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6.4. Control of bad fibers. In this subsection we prove the “Moreover” part

of Proposition 6.1.

Recall our setting: π : A → S is an abelian scheme of relative dimension

g ≥ 1 over a smooth irreducible curve, defined over F ⊆ C. For simplicity,

we assume F = C. We have constructed an auxiliary subvariety Z of A in

Proposition 6.1. It remains to show that

{t ∈ S(C) : Zt contains a positive dimensional coset in At}

is finite. It fact, we show that it follows from condition (iii) of Proposition 6.1.

More precisely, we shall prove the following result.

Proposition 6.9. Let Z be an irreducible closed subvariety of A dom-

inating S. Suppose s ∈ S(C) such that Zs contains no positive dimensional

cosets in As. Then

{t ∈ S(C) : Zt contains a positive dimensional coset in At}

is finite.

Proof. Let ` be a prime that we will choose in terms of A, Z, and s later on.

We begin by introducing full level ` structure. We will take care to ensure that

various quantities are uniform in `.

Let S′ be an irreducible, quasi-projective curve over C that is also finite

and étale over S such the base change A′ = A ×S S′ admits all `2g torsion

sections

S′ → A′[`].
We write Z ′ = Z ×S S′, which comes with a closed immersion Z ′ → A′.

Observe that Z may no longer be irreducible. But Z ′ → S′ is flat as Z → S

is; cf. [31, Prop. III.9.7]. So all irreducible components of Z ′ dominate S′.

The morphism Z ′ → Z is finite and flat since S′ → S is. Therefore Z ′ is

equidimensional of dimension dimZ by [31, Cor. III.9.6]. Finally, Z ′ is re-

duced since Z ′ → Z is étale and Z is reduced. For any t′ ∈ S′(C) above

t ∈ S(C), we may identify the fiber Zt with Z ′t′ and the fiber At with At′ .
Let Z ′1, . . . , Z

′
r be the irreducible components of Z ′. Both (Z ′i)t′ and Zt are

equidimensional of dimension dimZ ′ − 1 = dimZ − 1 as Z ′ → S′ and Z → S

are flat; cf. [31, Cor. III.9.6]. Since (Z ′i)t′ ⊆ Zt, an irreducible component of

(Z ′i)t′ is also an irreducible component of Zt. Moreover, Zt contains a positive

dimensional coset in At if and only if one among (Z ′1)t′ , . . . , (Z
′
r)t′ contains a

positive dimensional coset in A′t′ .
To prove the proposition we may thus suppose that S = S′, A = A′, and

Z is some Z ′i. In particular, `2g distinct torsion sections S → A[`] exist.

For any non-zero torsion section σ : S → A[`], we define

Z(σ) = Z ∩ (Z − σ) ∩ (Z − [2] ◦ σ) ∩ · · · ∩ (Z − [`− 1] ◦ σ)
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by identifying a section S → A with its image in A. Then Z(σ) is Zariski

closed in A.

Now suppose t ∈ S(C) such that Zt contains P +B, where P ∈ At(C) and

B ⊆ At is an abelian subvariety of positive dimension. Therefore, B[`] is a non-

trivial group and there exists a section σ : S → A[`] such that σ(t) ∈ B[`]\{0}.
Hence σ(t) +B = B, and we find

P +B = P +B − [k](σ(t)) ⊆ Zt − [k](σ(t)) for all k ∈ Z.

This implies P +B ⊆ Z(σ)t. In particular, t ∈ π(Z(σ)).

Now π is a proper morphism, and so π(Z(σ)) is Zariski closed in S for all

of the finitely many σ as above. In order to prove the proposition it suffices to

show that s from Proposition 6.1 does not lie in any π(Z(σ)) if σ 6= 0, for then

all π(Z(σ)) are finite. We will prove that Z(σ)s = ∅ for all non-zero sections

σ : S → A[`].

Recall that the admissible immersion from the beginning of this section

induces a polarization on As and, as usual, we use deg(·) to denote the degree.

This polarization and As do not depend on the base changed defined using `.

Let us assume Z(σ)s 6= ∅. This will lead to a contradiction for ` large in terms

of Zs,As, and the polarization.

Note that

(6.4) Z(σ)s = Zs ∩ (Zs − σ(s)) ∩ · · · ∩ (Zs − [`− 1] ◦ σ(s))

is Zariski closed in As and stable under translation by the subgroup of As(C)

of order ` that is generated by σ(s). Observe that if W ′ is an irreducible

component of Z(σ)s of maximal dimension, then σ(s)+W ′ is also an irreducible

component of Z(σ)s. We define W to be the union of the top dimensional

irreducible components of Z(σ)s. The group generated by σ(s) acts on the set

of irreducible components of W .

Recall that Zs and thus each Zs− [k](σ(s)) with k ∈ Z is equidimensional

of dimension dimZ − 1. All irreducible components that appear have degree

bounded by a constant independent of the auxiliary prime `. By (6.4) and

Proposition 6.7 the degree deg(W ) is bounded from above by a constant c ≥ 1

that is independent of `.

The number N of irreducible components of W is at most deg(W ) ≤ c.

If we assume ` > N , then the symmetric group on N symbols contains no

elements of order `. So if we assume ` > c, as we may, then σ(s) + W ′ = W ′

for all irreducible components W ′ of W .

Now let us fix such an irreducible component W ′. Then the subgroup

generated by σ(s) lies in the stabilizer Stab(W ′) of W ′. By [15, Lemme 2.1(ii)],

the degree of the stabilizer Stab(W ′) is bounded from above solely in terms

deg(W ′) and dimW ′ ≤ g. Note also that deg(W ′) ≤ deg(W ) ≤ c. Thus if ` is

large in terms of c and g, then we can arrange ` > deg Stab(W ′). But Stab(W ′)
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contains σ(s), which has order `. Therefore B, the connected component of

Stab(W ′) containing the neutral element, has positive dimension. Fix any

P ∈W ′(C). Then

P +B ⊆W ′ ⊆W ⊆ Zs
contradicts the hypothesis that Zs does not contain a positive dimensional

coset. �

7. Lattice points

For our abelian scheme A → S and subvariety X ⊆ A, we want to count

the number of points in [N ]X ∩ Z for each N � 1 where Z ⊆ A is of compli-

mentary dimension of X (as constructed in Proposition 6.1). It is equivalent to

count the intersection points of [N ]X −Z and the zero section of A → S. Via

the Betti map and a local lift with respect to R2g → T2g, we obtain a subset

ŨN ⊆ R2g from [N ]X −Z and we are led to counting lattice point in ŨN . The

goal of this section is to settle the lattice point counting problem.

Suppose m,m′ ∈ N, and let ψ be a function defined on a non-empty open

subset U of Rm′ with values in Rm. We suppose that the coordinate functions

of ψ lie in C1(U), the R-vector space of real valued functions on U that are

continuously differentiable. We write Dz(ψ) ∈ Matmm′(R) for the jacobian

matrix of ψ evaluated at z ∈ U . We also set

|ψ|C1 = max

ß
sup
x∈U
|ψ(x)|, sup

x∈U

∣∣∣∣ ∂ψ∂x1
(x)

∣∣∣∣ , . . . , sup
x∈U

∣∣∣∣ ∂ψ∂xm′
(x)

∣∣∣∣™ ∈ R ∪ {∞};

here |·| is the maximum norm on Rm. We write vol(·) for the Lebesgue measure

on Rm. Recall that all open subsets of Rm are measurable.

For i ∈ {0, 1, 2}, let mi ∈ N. Suppose Ui is a non-empty open subset

of Rmi . Let π1 : Rm0+m1+m2 → Rm0+m1 be defined by π1(w, x, y) = (w, x) and

π2 : Rm0+m1+m2 → Rm0+m2 by π2(w, x, y) = (w, y).

We now suppose m0 = 2 and m = 2 + m1 + m2. Let φ1 : U0 × U1 → Rm
and φ2 : U0 × U2 → Rm have continuously differentiable coordinate functions

and satisfy |φ1|C1 <∞ and |φ2|C1 <∞. Define

(7.1) ψN (w, x, y) = Nφ1(w, x)− φ2(w, y),

where w ∈ U0, x ∈ U1, and y ∈ U2. Thus ψN has target Rm and coordinate

functions in C1(U) where U = U0 × U1 × U2.

We write φ1j and φ2j for the coordinate functions of φ1 and φ2, respec-

tively. By abuse of notation we sometimes write φ1j(z) for φ1j(w, x) and φ2j(z)

for φ2j(w, x) if z = (w, x, y) with w ∈ U0, x ∈ U1, y ∈ U2.

The jacobian matrix D(w,x,y)(ψN ) ∈ Matm(R) equalsÄ
N ∂φ1

∂w1
− ∂φ2

∂w1
N ∂φ1

∂w2
− ∂φ2

∂w2
N ∂φ1

∂x1
· · · N ∂φ1

∂xm1
−∂φ2

∂y1
· · · − ∂φ2

∂ym2

ä
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evaluated at (w, x, y) ∈ U . For fixed (w, x, y), the determinant detD(w,x,y)(ψN )

is a polynomial in N of degree at most 2 +m1. More precisely, we have

detD(w,x,y)(ψN ) = δ0(w, x, y)N2+m1 + δ1(w, x, y)N1+m1 + δ2(w, x, y)Nm1 ,

where the crucial term is

(7.2)

δ0(w, x, y) = det
Ä

∂φ1

∂w1

∂φ1

∂w2

∂φ1

∂x1
· · · ∂φ1

∂xm1
−∂φ2

∂y1
· · · − ∂φ2

∂ym2

ä ∣∣∣
(w,x,y)

.

If x is in any power of R and r > 0, we let Br(x) denote the open ball of

radius r around x with respect to | · |.

Lemma 7.1. In the notation above, let z0 ∈ U with δ0(z0) 6= 0. There

exist two bounded open neighborhoods U ′′ ⊆ U ′ of z0 in U and a constant

c ∈ (0, 1] with the following properties :

(i) the map φ1 is injective when restricted to π1(U ′) ⊆ R2+m1 ,

and for all real numbers N ≥ c−1,

(ii) the map ψN |U ′ : U ′ → Rm is injective and open,

(iii) we have vol(ψN (U ′′)) ≥ cN2+m1 , and

(iv) we have Bc(ψN (U ′′)) ⊆ ψN (U ′).

Proof. As the first order partial derivatives of all φij are continuous we can

find an open neighborhood U ′ of z0 = (w, x, y) in U such that the determinant

of

(7.3)Ñ ∂φ11
∂w1

(z̃1)
∂φ11
∂w2

(z̃1)
∂φ11
∂x1

(z̃1) · · · ∂φ11
∂xm1

(z̃1) − ∂φ21
∂y1

(z̃1) · · · − ∂φ21
∂ym2

(z̃1)

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

∂φ1m
∂w1

(z̃m)
∂φ1m
∂w2

(z̃m)
∂φ1m
∂x1

(z̃m) · · · ∂φ1m
∂xm1

(z̃m) − ∂φ2m
∂y1

(z̃m) · · · − ∂φ2m
∂ym2

(z̃m)

é
has absolute value at least ε = |δ(z0)|/2 > 0 for all z̃1, . . . , z̃m ∈ U ′.

Observe that Dπ1(z0)(φ1) is an m× (2 +m1)-matrix consisting of the first

2+m1 columns as in the determinant (7.2). Our hypothesis δ0(z0) 6= 0 implies

that Dπ1(z0)(φ1) has maximal rank 2 +m1. By the Inverse Function Theorem

we may, after shrinking U ′, assume that φ1 restricted to π1(U ′) is injective.

This implies (i).

We may shrink U ′ further and assume that

(7.4) U ′′ = Bδ(z0) ⊆ U ′ = B2δ(z0) ⊆ U

for some δ > 0, a property we will need later on. Our constant c will depend

on δ but not on N .

To show injectivity in (ii), let z, z′ ∈ U ′ and N ∈ R be such that ψN (z) =

ψN (z′). Let j ∈ {1, . . . ,m}, then Nφ1j(z) − φ2j(z) = Nφ1j(z
′) − φ2j(z

′). By
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the Mean Value Theorem there exists z̃j ∈ U ′ on the line segment connecting

z and z′ such that the column vector z − z′ lies in the kernel ofÅ
N
∂φ1j

∂w1
− ∂φ2j

∂w1
,N

∂φ1j

∂w2
− ∂φ2j

∂w2
,N

∂φ1j

∂x1
, . . . , N

∂φ1j

∂xm1

,−∂φ2j

∂y1
, . . . ,− ∂φ2j

∂ym2

ã ∣∣∣
z̃j

Thus z−z′ lies in the kernel of M(z̃1, . . . , z̃m) ∈ Matm(R) whose rows are these

expressions as j ∈ {1, . . . ,m}.
The determinant of this matrix can be expressed as

δ̃0(z̃1, . . . , z̃m)N2+m1 + δ̃1(z̃1, . . . , z̃m)N1+m1 + δ̃2(z̃1, . . . , z̃m)Nm1 ,

where δ̃0(z̃1, . . . , z̃m) is the determinant of (7.3). In particular, |δ̃0(z̃1, . . . , z̃m)|
≥ ε.

We recall that |φ1,2|C1 <∞. So for i = 1, 2, we find |δ̃i(z̃1, . . . , z̃m)| ≤ C,

where C depends only on φ1 and φ2. For all sufficiently large N ≥ 1, we have

|δ̃0(z̃1, . . . , z̃m)N2+m1 + · · ·+ δ̃2(z̃1, . . . , z̃m)Nm1 | ≥ εN2+m1 − 2CN1+m1

≥ ε

2
N2+m1 .

(7.5)

And so, in particular, detM(z̃1, . . . , z̃m) 6= 0. As z − z′ lies in the kernel of

the relevant matrix, we conclude z = z′. Therefore, ψN |U ′ is injective for all

large N . We conclude injectivity (ii)

If N is sufficiently large, then (7.5) implies |detM(z, . . . , z)| ≥ εN2+m1/2

for all z ∈ U ′. In particular, Dz(ψN ) = M(z, . . . , z) is invertible for all z ∈ U ′.
Hence ψN is locally invertible on U ′ and ψN |U ′ is an open map. This completes

the proof of (ii).

As ψN |U ′′ is injective and for N large, Integration by Substitution implies

vol(ψN (U ′′)) =

∫
ψN (U ′′)

du =

∫
U ′′
|detDz(ψN )|dz ≥ ε

2
N2+m1vol(U ′′).

This yields our claim in (iii) for small enough c.

To prove (iv) it suffices to verify that if z ∈ U ′′, then the distance ∆(z)

of ψN (z) to Rm \ ψN (U ′) 6= ∅ is at least c for c > 0 sufficiently small and

independent of N .

As the set Rm \ ψN (U ′) is closed in Rm, it contains v, which depends on

z and N , such that ∆(z) = |ψN (z) − v|. As v realizes the minimal distance,

the ball B1/n(v) must meet ψN (U ′) for all n ∈ N. Let us fix zn ∈ U ′ with

|ψN (zn) − v| < 1/n. Now U ′ is bounded, so after passing to a convergent

subsequence we may assume that zn converges towards z′ ∈ U ′ = B2δ(z0).

We claim that z′ 6∈ U ′. Indeed, otherwise ψN (zn) would converge towards

ψN (z′) ∈ ψN (U ′). But then ψN (z′) = v ∈ Rm \ ψN (U ′) is a contradiction. We

conclude

(7.6) |z′ − z0| = 2δ.
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By the Mean Value Theorem we find

(7.7) ψN (z)− ψN (zn) = M(z̃1, . . . , z̃m)(z − zn),

where M(·) is the matrix above and z̃1, . . . , z̃n lie on the line segment be-

tween z and zn and thus in U ′. As above, the absolute determinant of this

matrix is at least εN2+m1/2 for N large enough. The entries of the adjoint

matrix have absolute value bounded by a fixed multiple of N2+m1 . We find

|M(z̃1, . . . , z̃m)−1| ≤ c1 for the maximum norm where c1 > 0 is independent of

N and z̃1, . . . , z̃m. We find that (7.7) implies

|z − zn| = |M(z̃1, . . . , z̃m)−1(ψN (z)− ψN (zn))| ≤ c2|ψN (z)− ψN (zn)|,

where c2 > 0 is independent of N . Hence

|z − zn| ≤ c2(|ψN (z)− v|+ |v − ψN (zn)|) = c2(∆(z) + |ψN (zn)− v|)

by our choice of v. Recall that |ψN (zn) − v| < 1/n and z ∈ U ′′, which was

defined in (7.4), so

|zn − z0| − δ ≤ |zn − z0| − |z0 − z| ≤ |z − zn| ≤ c2(∆(z) + 1/n).

By taking the limit as n → ∞ we can replace zn by z′ on the left. We recall

(7.6) and conclude ∆(z) ≥ δ/c2. Part (iv) follows as we may assume δ/c2 ≥ c.
�

Our aim is to find many integral points in ψN (U). If ψN (U) has volume v,

one could hope that ψN (U) contains at least v points in Zm. Of course, simple

examples show that this does not need to be true in general. Blichfeldt’s

Theorem guarantees that we can find at least this number of lattice points

after possibly translating by a point in Rm. In our situation we will be able

to translate by a rational point of controlled denominator. For the reader’s

convenience, we repeat the hypothesis in the next proposition.

Proposition 7.2. Let U0 ⊆ R2, U1 ⊆ Rm1 , and U2 ⊆ Rm2 be non-empty

open subsets, and suppose φ1 : U0 × U1 → Rm and φ2 : U0 × U2 → Rm have

coordinate functions in C1(U0×U1) and C1(U0×U2), respectively, where m =

2 + m1 + m2. We suppose that |φ1,2|C1 < ∞. Let z0 ∈ U = U0 × U1 × U2

with δ0(z0) 6= 0. For N ∈ R, we define ψN as in (7.1). There exists a bounded

open neighborhood U ′ of z0 in U and a constant c ∈ (0, 1] with the following

property. For all integers N0 ≥ c−1 and all real numbers N ≥ c−1, we have

#
(
ψN (U ′) ∩N−1

0 Zm
)
≥ cN2+m1 .

Moreover, φ1|π1(U ′) is injective, and ψN |U ′ is injective for all N ≥ c−1.

Proof. Let U ′′ ⊆ U ′ and c1 > 0 be as in Lemma 7.1, and suppose N ≥ c−1
1 .

Below we will use vol(ψN (U ′′)) ≥ c1N
2+m1 and Bc1(ψN (U ′′)) ⊆ ψN (U ′).

By Blichfeldt’s Theorem [12, Ch. III.2, Th. I], there exists x ∈ Rm, which

may depend onN , such that #(−x+ψN (U ′′))∩Zm ≥ vol(ψN (U ′′)) ≥ c1N
2+m1 .
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So there exist an integer M ≥ c1N
2+m1 , a1, . . . , aM ∈ Zm, and z1, . . . , zM ∈ U ′′

such that
−x+ ψN (zi) = ai ∈ Zm for all i ∈ {1, . . . ,M}

and the ai are pairwise distinct.

There exists c2 > 0 such that if N0 is any integer with N0 ≥ c−1
2 , then

Bc1(x′) ∩N−1
0 Zm 6= ∅ for all x′ ∈ Rm.

Let us fix q ∈ Bc1(x)∩N−1
0 Zm, where x comes from Blichfeldt’s Theorem.

Then

q + ai = (q − x) + x+ ai = (q − x) + ψN (zi) ∈ Bc1(ψN (zi)) ⊆ ψN (U ′).

Observe q + ai ∈ N−1
0 Zm for all i ∈ {1, . . . ,M}.

We have proved #(ψN (U ′) ∩ N−1
0 Zm) ≥ M ≥ c1N

2+m1 for all N ≥ c−1
1

and all N0 ≥ c2
−1. The proposition follows by taking c = min{c1, c2} and by

the injectivity statements in (i) and (ii) of Lemma 7.1. �

8. Intersection numbers

Let F be an algebraically closed subfield of C. Let S be a smooth irre-

ducible curve over F , and let π : A → S be an abelian scheme over F of relative

dimension g ≥ 1. In this section we abbreviate PmF by Pm for integers m ≥ 1.

We will use the basic setup introduced in Section 2.2. In particular, A ⊆
PM × Pm is an admissible immersion.

Proposition 8.1. Suppose X is an irreducible, closed subvariety of A
defined over F that dominates S and is not generically special. Then there exist

• a constant c > 0,

• a finite and étale covering S′ → S where S′ is an irreducible curve over F ,

• and finitely many closed (not necessarily irreducible) subvarieties Y1, . . . , YR
of A′ = A×S S′,

such that the following holds for X ′ = X×SS′. For each integer N ≥ c−1, there

exists Y ∈ {Y1, . . . , YR} such that X ′∩[N ]−1(Y ) contains at least r ≥ cN2 dimX

irreducible components of dimension 0.

Note that X ′ from the proposition is a closed subvariety of the abelian A′
scheme. It may not be irreducible, but it is equidimensional of dimension dimX

since S′ → S is finite and étale. Note also that each irreducible component of

X ′∩ [N ]−1(Y ) consists of one F -rational point as X ′ and [N ]−1(Y ) are defined

over F .

We will prove Proposition 8.1 in the next few subsections.

8.1. Constructing a covering S′ → S. Further down we will need to pass

to a finite and étale covering S′ of S. In this subsection we make some prepa-

rations and mention some facts.
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We recall our convention F ⊆ C and fix P ∈ X(F ) as in Lemma 6.2.

By assumption on X and P , we have an irreducible closed subvariety Z ⊆ A
defined over F satisfying the conclusion of Proposition 6.1. In particular,

dimZ = codimAX = n.

We fix a prime number ` satisfying

(8.1) ` > D2g+1(g+1),

where D comes from (iv) of Proposition 6.1. Later on, we will impose a second

lower bound on `.

There is a finite étale covering S′ → S such that A′/S′ admits all the `2g

torsion sections S′ → A′[`], where A′ is the abelian scheme A×SS′ over S′. We

may assume that S′ is irreducible. The prescribed closed immersion A → PMS
induces a closed immersion A′ → PMS′ .

Observe that the induced morphism ρ : A′ → A is finite and étale. So the

pre-image of any irreducible subvariety Y of A′ is equidimensional of dimension

dimY .

Let Z ′ = Z ×S S′; this is a closed subvariety of A′ that may not be

irreducible. It is equidimensional of dimension dimZ. A further and crucial

observation for our argument is that the fibers Zt and Z ′t′ are equal if t′ ∈ S′(F )

maps to t ∈ S(F ). So by Proposition 6.1(iv),

(8.2) the degree of any Z ′t′ ⊆ PM is bounded by D for all t′ ∈ S′(F ),

and by the “Moreover” part of Proposition 6.1,

(8.3)
at most finitely many fibers of Z ′ → S′ over S′(C) contain a coset

of positive dimension in the respective fiber of A′ → S′.

8.2. Local parametrization and lattice points. We keep the notation intro-

duced above and prove the following intermediate counting result.

Lemma 8.2. Let X be as in Proposition 8.1. Then there exist

• a constant c > 0;

• a prime number ` satisfying (8.1);

• and a finite étale covering S′ → S, with S′ irreducible, admitting all the

`2g torsion sections S′ → A′[`], with π′ : A′ → S′ the canonical morphism,

X ′ = X ×S S′, and Z ′ = Z ×S S′

such that for all integers N ≥ c−1, the following holds. There exist r ≥
cN2 dimX pairs (P ′1, Q

′
1), . . . , (P ′r, Q

′
r) ∈ X ′(C)×Z ′(C) such that the P ′1, . . . , P

′
r

are pairwise distinct with the following properties for all i ∈ {1, . . . , r}:
(i) we have π′(P ′i ) = π′(Q′i) and [`N ](P ′i ) = [`](Q′i);

(ii) the Zariski closed subset Z ′π′(P ′i )
of A′π′(P ′i ) does not contain any coset of

positive dimension ;
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(iii) if Y ′ is an irreducible closed subvariety of A′ such that Q′i ∈ Y ′(C) and

P ′i is not isolated in X ′ ∩ [`N ]−1([`](Y ′)), then there exists an `-torsion

section σ : S′ → A′[`] with σ 6= 0 and Q′i ∈ Y ′(C) ∩ (Y ′ − imσ)(C).

Proof. We make use of the lattice point counting technique from Section 7.

By Lemma 6.2 we have that P is a smooth point of Xan and Xan
π(P ). We have

dimX = g+1−n, so we can trivialize the family Xan → San in a neighborhood

of P in Xan using a smooth map φ̃1 defined on U0 × U1, where U0 ⊆ R2 and

U1 ⊆ R2(g−n) are both open and non-empty. We may assume that φ̃1(0) = P .

After possibly shrinking U0 and U1, we compose φ̃1 with b̃, the Betti map

b : A∆ → T2g composed by a local inverse of R2g → T2g. This yields a smooth

map φ1 : U0 × U1 → R2g that produces the Betti coordinates relative to the

local parametrization of Xan.

Now P is also a smooth point of Zan. Recall that dimZ = n. The same

construction yields a non-empty and open subset U2 ⊆ R2(n−1) and a smooth

map φ̃2 : U0 × U2 → Zan with φ̃2(0) = P . We restrict if necessary and write

φ2 = b̃ ◦ φ̃2 : U0 × U2 → R2g. The subsets U0, U1 and U2 can be chosen to be

bounded.

In this setting φ1 parametrizes b̃(U), where U ⊆ Xan is a neighborhood of

P in X and b̃ is a local lift of the Betti map to R2g. Similarly, φ2 parametrizes

b̃(V ), where V is a neighborhood of P in Zan.

We may assume, after shrinking U0, U1, and U2 if necessary, that |φ1|C1

< ∞ and |φ2|C1 < ∞. By Proposition 6.1(iii), the fiber Zπ(P ) contains no

positive dimensional cosets in Aπ(P ). By (8.3) and up to shrinking U0, we may

assume that
(8.4)

Zt contains no positive dimensional cosets in At for all t ∈ π(φ̃1(U0 × U1)).

For any N ∈ N and (w, x, y) ∈ U0 × U1 × U2, we define a map

ψN (w, x, y) = Nφ1(w, x)− φ2(w, y) ∈ R2g.

Let πi : U0 × U1 × U2 → U0 × Ui be the natural projection for i = 1, 2 and

δ0(w, x, y) as above Lemma 7.1.

Condition (v) of Proposition 6.1 implies that δ0(0) 6= 0. So we can ap-

ply Proposition 7.2. There exists a bounded open neighborhood U ′ of 0 in

U0×U1×U2 and a constant c ∈ (0, 1] with the following property. For all inte-

gers N0 ≥ c−1 and N ≥ c−1, we have that φ1|π1(U ′) and ψN |U ′ are injective and

(8.5) #
(
ψN (U ′) ∩N−1

0 Z2g
)
≥ cN2+2(g−n) = cN2 dimX .

Proposition 7.2 allows us to increase N0. From now on we fix N0 to be

a prime number ` that satisfies (8.1) and ` ≥ c−1. As in Section 8.1 we fix a

finite étale covering S′ → S with S′ irreducible such that A′ := A×S S′ → S′

admits all the `2g torsion sections S′ → A′[`].
Recall that |φ2|C1 <∞, so is φ2(U0 × U2) is bounded and
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(8.6)

# (φ2(U0 × U2)− φ2(U0 × U2)) ∩ `−1Z2g ≤ C for some C independent of N .

Suppose (w, x, y) ∈ U ′ satisfies ψN (w, x, y) ∈ `−1Z2g. Then `Nφ1(w, x)−
`φ2(w, y) ∈ Z2g. For the Betti coordinates, we find on A that

[`N ](φ̃1(w, x)) = [`](φ̃2(w, y)) ∈ [`](Z)(C).

Thus we get a mapping

(8.7) ψN (U ′) ∩ `−1Z2g 3 ψN (w, x, y) 7→ (φ̃1(w, x), φ̃2(w, y)) ∈ X(C)× Z(C).

The image points are of the form (Pi, Qi) and lie in the same fiber above S

and with [`N ](Pi) = [`](Qi). By (8.5) these points arise from at least cN2 dimX

elements of ψN (U ′) ∩ `−1Z2g for all large N . We claim that up to adjusting c

the number of different Pi is also at least cN2 dimX .

So let (w, x, y) ∈ U ′ with ψN (w, x, y) ∈ `−1Z2g whose image under (8.7)

is (Pi, Qi). Let (Pj , Qj) be a further pair with Pi = Pj that comes from

ψN (w′, x′, y′) ∈ `−1Z2g, where (w′, x′, y′) ∈ U ′. Hence (w′, x′) = (w, x) as

φ1|π1(U ′) is injective. Thus φ2(w′, y′)−φ2(w, y) = ψN (w, x, y)−ψN (w′, x′, y′) ∈
`−1Z2g. By (8.6) there are at most C possibilities for ψN (w′, x′, y′), when

(x, y, z) is fixed. So there are at most C possibilities for (w′, x′, y′) as ψN is

injective on U ′; recall that C may depend on ` but not on N .

After omitting pairs with duplicate Pi and replacing c by c/C we have

found (Pi, Qi) with pairwise different Pi for 1 ≤ i ≤ r and r ≥ cN2 dimX .

Let ρ : A′ → A denote the canonical morphism. We fix lifts P ′i , Q
′
i ∈ A′(C)

of Pi, Qi respectively in the same fiber of A′ → S′. So

(8.8) [`N ](P ′i ) = [`](Q′i) for all i ∈ {1, . . . , r}.

This yields claim (i) of the lemma.

As our points Pi lie above points in π(φ̃1(U0 × U1)), we deduce (ii)

from (8.4).

It remains to prove part (iii). Let Y ′ be as in (iii); namely, Q′i ∈ Y ′(C) and

P ′i is not isolated in X ′ ∩ [`N ]−1([`](Y ′)) for some i ∈ {1, . . . , r}. To simplify

notation we write P ′ = P ′i and Q′ = Q′i.

Then there is a sequence (Pα)α∈N of pairwise distinct points of X ′(C)

that converges in X ′an to P ′ with [`N ](Pα) ∈ [`](Y ′)(C) for all α ∈ N. We fix

Qα ∈ Y ′(C) with [`N ](Pα) = [`](Qα) for all α ∈ N. Thus π′(Pα) = π′(Qα) and

by continuity the sequence [`](Qα) converges. Since [`] induces a proper map

(A′)an → (A′)an, we may assume, after passing to a subsequence, that the Qα

converge in (Y ′)an to some Q′′ ∈ Y ′(C). Taking the limit we see by continuity

and (8.8) that [`](Q′′) = [`N ](P ′) = [`](Q′) and, in particular, π′(Q′′) = π′(Q′).

Hence

Q′′ = Q′ + T ∈ Y ′(C)
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for some T that is either trivial or of finite prime order ` in A′π′(Q′)(C).

All `2g torsion sections S′ → A′[`] exist, so there is one σ with σ(π′(Q′))

= T . Hence Q′ ∈ Y ′(C) ∩ (Y ′ − imσ)(C).

To complete the proof it remains to verify σ 6= 0, i.e., T 6= 0. For

this we assume the converse and derive a contradiction. For α large enough,

the sequence member ρ(Pα) will be close enough to ρ(P ′) = Pi as to lie in

φ̃1(U ′). As Q′′ = Q′, the analog statement holds for the sequence of ρ(Qα),

i.e., ρ(Qα) ∈ φ̃2(U ′) for all sufficiently large α. For α sufficiently large, we may

write ρ(Pα) = φ̃1(wα, xα) and ρ(Qα) = φ̃2(wα, yα) with (wα, xα, yα) ∈ U ′. The

condition [`N ](Pα) = [`](Qα) implies [`N ](ρ(Pα)) = [`](ρ(Qα)), and hence

ψN (wα, xα, wα) = Nφ1(wα, xα)− φ2(wα, yα) ∈ `−1Z2g.

By continuity, the sequence ψN (wα, xα, wα) is eventually constant. But ψN is

injective on U ′ by Proposition 7.2 and hence (wα, xα, wα) is eventually con-

stant. So ρ(Pα) is eventually constant and, as ρ is finite, Pα attains only

finitely many values. But this contradicts the fact that the Pα are pairwise

distinct and concludes the proof of (iii). �

8.3. Induction and isolated intersection points. Let X, `,A′ → S′, X ′, and

Z ′ be as in Lemma 8.2. The conclusion of Lemma 8.2 is already close to what

we are aiming at in Proposition 8.1. However, we must first deal with the possi-

bility that most P ′i from the lemma are not isolated in X ′∩[`N ]−1([`](Z ′)); oth-

erwise we could just take Y1 = [`]−1([`](Z ′)). We will handle this in the current

subsection by introducing additional auxiliary subvarieties derived from Z ′.

Recall that D was introduced in Section 8.1 and ultimately comes from

Proposition 6.1(iv). For brevity, we write A′[`](S′) for the group of torsion

sections S′ → A′[`] of order dividing `. Recall also that X ′ is equidimensional

of dimension dimX = g + 1− n.

We now describe a procedure to construct a finite set Σ of auxiliary sub-

varieties. To be more precise we will construct for each k ∈ {0, . . . , n} a finite

set Σk with the following properties:

(i) if Y ′ ∈ Σk, then Y ′ is an irreducible closed subvariety of Z ′ with dimY ′ ≤
n− k;

(ii) if Y ′ ∈ Σk and t ∈ S′(C) such that Y ′t 6= ∅, then deg Y ′t ≤ D2k ;

(iii) if k ≤ n − 1, then for all Y ′ ∈ Σk and all σ ∈ A′[`](S′) such that Y ′ 6⊆
Y ′ − imσ, all irreducible components of Y ′ ∩ (Y ′ − imσ) are elements of

Σk+1.

We define Σ0 to be the set of irreducible components of Z ′. Clearly, (i)

is satisfied as Z ′ is equidimensional of dimension dimZ = n. Moreover, (ii) is

satisfied due to (8.2).



RELATIVE AND GEOMETRIC BOGOMOLOV: 1− p CASE 581

We construct the remaining Σ1, . . . ,Σn and verify the properties induc-

tively. Suppose k ∈ {0, . . . , n− 1} and that Σk has already been constructed.

Consider the set of all Y ′ ∈ Σk and σ ∈ A′[`](S′) with Y ′ 6⊆ Y ′ − imσ.

There are only finitely many such pairs (Y ′, σ), and we take as Σk+1 all

irreducible components of all Y ′ ∩ (Y ′ − imσ) that arise this way. This

choice makes (iii) automatically hold true for all k ∈ {0, . . . , n − 1}. If

Y ′′ ∈ Σk+1 is such an irreducible component, then Y ′′ ( Y ′ ⊆ Z ′ and

dimY ′′ ≤ dimY ′ − 1 ≤ n − (k + 1) by (i) applied to k. This implies (i)

for k + 1.

We now verify (ii). If Y ′′ does not dominate S′, then the image of Y ′′ in

S′ is a point t, hence Y ′′ = Y ′′t . In this case Y ′′t is an irreducible component of

Y ′t ∩ (Y ′t − σ(t)). By Bézout’s Theorem and since deg Y ′t = deg(Y ′t − σ(t)),

we find deg Y ′′t ≤ (deg Y ′t )2. By (ii) applied to Y ′t this implies deg Y ′′t ≤
(D2k)2 = D2k+1

. So (ii) holds for all Y ′′ that do not dominate S′. If Y ′′

dominates S′, then for all but at most finitely many t ∈ S′(C), all irreducible

components of Y ′′t are also irreducible components of Y ′t ∩ (Y ′t − σ(t)). For

such a t, we have, again by Bézout’s Theorem, deg Y ′′t ≤ (deg Y ′t )2 ≤ D2k+1
,

which implies (ii). For any remaining t ∈ S′(C), observe that Y ′′ is flat over

S′ by [31, Prop. III.9.7] since dimS′ = 1 and Y ′′ is irreducible. As cycles of

PM , the fibers of Y ′′ are pairwise algebraically equivalent. So deg Y ′′t ≤ D2k+1

for all t ∈ S(C); see Fulton [20, Chs. 10.1 and 10.2] on the conservation of

numbers. More precisely, let H1, . . . ,HdimY ′′−1 be generic hyperplane sections

of PM × S → S such that Y ′′ ∩
⋂dimY ′′−1
i=1 Hi is flat of relatively dimension

0 over S, and then, using the notation of loc. cit., apply [20, Cor. 10.2.2] to

Y = PM , T = S, α1 = [Y ′′] and αi = [Hi−1] for i = 2, . . . ,dimY ′′. So we

conclude (ii) for all fibers of Y ′′ regardless whether it dominates S′ or not.

We define

Σ = Σ0 ∪ · · · ∪ Σn.

It is crucial for us that the following bound involving Y ′ ∈ Σ is independent

of `:

(8.9) deg Y ′t ≤ D2n ≤ D2g+1
for all t ∈ S′(C) with Y ′t 6= ∅.

We are now ready to prove the main result of this section.

Proof of Proposition 8.1. Let X, c, `,A′ → S′, X ′, and Z ′ be as in

Lemma 8.2. We will prove that {[`]−1([`](Y ′)) : Y ′ ∈ Σ} is the desired set

of closed subvarieties of A′.
ForN ≥ c−1, Lemma 8.2 produces r≥ cN2 dimX pairs (P ′1, Q

′
1), . . . , (P ′r, Q

′
r)

∈ X ′(C) × Z ′(C) with the stated properties. Note that each Q′i is a point of

some element of Σ. Indeed, it is a point of Z ′ whose irreducible components are
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in Σ0. To each i ∈ {1, . . . , r} we assign an auxiliary variety in Σk containing

Q′i and with maximal k.

By the Pigeonhole Principle there exist k and an auxiliary variety Y ′ ∈ Σk

that is hit at least r/#Σ times. As #Σ is independent of N , we may assume,

after adjusting c, that r ≥ cN2 dimX and Q′i ∈ Y ′(C) for all i ∈ {1, . . . , r}.
Let Y = [`]−1([`](Y ′)). We prove that Y is what we want; i.e., X ′ ∩

[N ]−1(Y ) contains at least r ≥ cN2 dimX isolated points.

Observe that P ′1, . . . , P
′
r are points of X ′∩[N ]−1(Y ). If they are all isolated

in this intersection, then the proposition follows as they are pairwise distinct.

We assume that some P ′i is not isolated in X ′ ∩ [N ]−1(Y ) and will arrive

at a contradiction. By Lemma 8.2(iii) there exists a non-trivial σ ∈ A′[`](S′)
such that Y ′ ∩ (Y ′ − imσ) contains Q′i. In particular, Y ′ cannot be a point.

Let us assume Y ′ 6⊆ Y ′− imσ for now. Thus properties (i) and (iii) of Σk

listed above imply 1 ≤ dimY ′ ≤ n− k and that Q′i lies in an element of Σk+1.

This contradicts the maximality of k. Hence Y ′ ⊆ Y ′− imσ and, in particular,

Y ′t ⊆ Y ′t − σ(t) where t is the image of Q′i under A′ → S′.

If Y ′ dominates S′, then Y ′t is equidimensional of dimension dimY ′ − 1.

If Y ′ does not dominate S′, then Y ′ = Y ′t is irreducible and, in particular,

equidimensional. In both cases we find Y ′t = Y ′t −σ(t) and the group generated

by σ(t) acts on the set of irreducible components of Y ′t .

The number of irreducible components of Y ′t is at most deg Y ′t ≤ D2g+1

by (8.9). Furthermore, σ(t) has precise order ` since σ 6= 0 and ` is prime.

By (8.1) we have ` > D2g+1
. As ` is a prime, there is no non-trivial group

homomorphism from Z/`Z to the symmetric group on deg Y ′t symbols. We

conclude that σ(t) +W = W for all irreducible components W of Y ′t .

The stabilizer Stab(W ) in A′t of any irreducible component of Y ′t of W

satisfies deg Stab(W ) ≤ deg(W )dimW+1 ≤ deg(W )g+1 by [15, Lemme 2.1(ii)].

We obtain degW ≤ deg Y ′t ≤ D2g+1
again from (8.9). Putting these bounds

together gives deg Stab(W ) ≤ D2g+1(g+1). But Stab(W ) contains σ(t), a point

of order ` > deg Stab(W ) by (8.1). In particular, Stab(W ) has positive di-

mension. But this implies that Y ′t contains a positive dimensional coset. By

property (i) in the construction of Σ we have Y ′t ⊆ Z ′t, and therefore Z ′t contains

a coset of positive dimension. This contradicts Lemma 8.2(ii). �

9. Height inequality in the total space

In this section, and if not stated otherwise, we work with the category

of schemes over Q and abbreviate PmQ by Pm for integers m ≥ 1. Let S be a

smooth irreducible curve defined over Q. Let π : A → S be an abelian scheme

over Q of relative dimension g ≥ 1.
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We will use the basic setup introduced in Section 2.2. In particular, A ⊆
PM × Pm is an admissible immersion.

Our principal result is the following proposition. It makes use of the naive

height given by (2.2).

Proposition 9.1. Suppose X is an irreducible closed subvariety of A that

dominates S and is not generically special. Then there exists a constant c > 0

depending on X and the data introduced above with the following property. For

any integer N ≥ c−1, there exist a non-empty Zariski open subset UN ⊆ X

and a constant c′(N), both of which depend on N , such that

h([2N ]Q) ≥ c4Nh(Q)− c′(N) for all Q ∈ UN (Q).

9.1. Polynomials defining multiplication-by-2 on A. Let X = [X0 : · · · :

XM ] denote the projective coordinates on PM , and let Y = [Y0 : · · · : Ym]

denote the projective coordinates on Pm. Recall condition (ii) of the admissible

setting A ⊆ PM × Pm: the morphism [2] is represented globally on A ⊆
PM × Pm by M + 1 bi-homogeneous polynomials, homogeneous of degree 4

in X and homogeneous of a certain degree, say c0, in Y . In other words,

there exist G0, . . . , GM ∈ Q[X;Y ], each Gi being homogeneous of degree 4 on

the variables X and homogeneous of degree c0 on the variables Y , such that

[2](a) = ([G0(a1; a2) : · · · : GM (a1; a2)]; a2) for any a ∈ A(C). Here we write

a = (a1; a2) under A ⊆ PM ×Pm. Note that c0 depends only on the immersion

A ⊆ PM × Pm.

9.2. An auxiliary rational map.

Lemma 9.2. Let X and Y be locally closed algebraic subsets of PM , and

suppose that X is irreducible. There exists δ ∈ N that depends only on Y with

the following property. Suppose r ≥ 1 and Q1, . . . , Qr ∈ X(Q) ∩ Y (Q) for

all i ∈ {1, . . . , r}. There exist homogeneous polynomials ϕ0, ϕ1, . . . , ϕdimX ∈
Q[X0, . . . , XM ] of degree δ, whose set of common zeros is denoted by Z ⊆ PM ,

such that the rational map ϕ = [ϕ0 : · · · : ϕdimX ] : PM 99K PdimX satisfies the

following :

(i) we have ϕ(Y \Z) = [1 : 0 : · · · : 0] and Qi /∈ Z(Q) for all i ∈ {1, . . . , r};
(ii) if C is an irreducible subvariety of X and i ∈ {1, . . . , r} with Qi ∈ C(Q)

such that ϕ|C\Z is constant, then C ⊆ Y , where Y is the Zariski closure

of Y in PM .

Proof. The Zariski closure Y of Y in PM is the zero set of finitely many

homogeneous polynomials g1, . . . , gm ∈ Q[X0, . . . , XM ]. We may assume that

g1, . . . , gm all have the same degree δ. Note that δ depends only on Y .

We may further fix g0 ∈ Q[X0, . . . , XM ], also of degree δ, such that

g0(Qi) 6= 0 for all i ∈ {1, . . . , r}. For example, we can take g0 to be the
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δ-th power of a linear polynomial whose zero set avoids the Qi’s. The set of

common zeros ZG of all gi does not contain any Qi and thus not all of Y .

We obtain a rational map G = [g0 : · · · : gm] : PM 99K Pm. Observe that

G(Y \ZG) = [1 : 0 : · · · : 0]. Observe also that G(X\ZG) is constructible

in Pm and its Zariski closure is of dimension at most dimX. This image also

contains [1 : 0 : · · · : 0], so there exist homogeneous linear forms l1, . . . , ldimX ∈
Q[X0, . . . , Xm] such that

(9.1) [1 : 0 : · · · : 0] is isolated in Z (l1, . . . , ldimX) ∩G(X\ZG).

We set l0 = X0 and consider [l0 : · · · : ldimX ] as a rational map Pm 99K PdimX .

It is well defined at [1 : 0 : · · · : 0] ∈ Pm(Q) and maps this point to [1 : 0 : · · · :
0] ∈ PdimX(Q).

We set ϕ0 = l0(g0, . . . , gm), . . . , ϕdimX = ldimX(g0, . . . , gm). Then ϕi is

homogeneous of degree δ for all i ∈ {0, 1, . . . ,dimX}. Let Z be the set of

common zeros of the ϕi. Then Qi 6∈ Z(Q) for all i by construction. The

rational map ϕ = [ϕ0 : · · · : ϕdimX ] : PM 99K PdimX is defined on Qi and maps

Y \Z to [1 : 0 : · · · : 0]. We conclude (i).

Let C be as in claim (ii). Then C\Z is non-empty and is mapped to

[1 : 0 : · · · : 0] ∈ PdimX(Q) under ϕ. So l1, . . . , ldimX vanish on G(C\Z). As

the image G(C\Z) ⊆ G(C\ZG) contains G(Qi) = [1 : 0 : · · · : 0] ∈ Pm(Q), we

infer from (9.1) that the g1, . . . , gm vanish on C\Z. Hence C\Z ⊆ Y and so

C ⊆ Y since C\Z is Zariski dense in the irreducible C. �

The map ϕ depends on the collection of Qi in the previous proposition,

but the degree δ does not. Also note that the Qi’s are not necessarily pairwise

distinct.

9.3. Height change under scalar multiplication. The following lemmas are

proven by the second-named author in [28]. Lemma 9.4 is our main tool

to deduce the desired height inequality (Proposition 9.1) from the “division

intersection points” counting (Proposition 8.1).

Lemma 9.3. Let X be an irreducible variety over C, and let ϕ : X 99K
PdimX
C be a rational map. Then for any Q ∈ PdimX(C), the number of zero-

dimensional irreducible components of ϕ−1(Q) is at most degϕ. By convention

we say that degϕ = 0 if ϕ is not dominant.

Proof. This is [28, Lemma 4.2]. The crucial point is that PdimX
C is a normal

variety. �

Lemma 9.4. Let X ⊆ PM be an irreducible closed subvariety over Q of

positive dimension. Let ϕ : X 99K PdimX be the rational map given by ϕ =

[ϕ0 : · · · : ϕdimX ], where ϕi are homogeneous polynomials with coefficients in

Q that are not all identically zero on X and have equal degree at most D ≥ 1.
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Then there exist a constant c = c(X,ϕ) and a Zariski open dense subset U of

X such that ϕ0, . . . , ϕdimX have no common zeros on U and

h(ϕ(P )) ≥ 1

4dimX deg(X)

degϕ

DdimX−1
h(P )− c

for any P ∈ U(Q).

Proof. This is [28, Lemma 4.3]. �

Now we are ready to prove Proposition 9.1. ToX, recall that we associated

in Proposition 8.1 a finite étale covering S′ → S. Set X ′ = X ×S S′. Then

X ′ is a closed subvariety of A′ = A ×S S′ and equidimensional of dimension

dimX. Let ρ : A′ → A denote the natural projection; it is finite and étale. Let

S be the Zariski closure of S in Pm . We fix a smooth projective curve S′ that

contains S′ as a Zariski open subset. Then S′ → S extends to a morphism

S′ → S. Some positive power of the pullback of O(1) under S′ → S → Pm
yields a closed immersion S′ → Pm′ for some m′ ∈ N. The pullback of the

closed immersion A → PM × S yields a closed immersion A′ → PM × S′ and

thus an immersion A′ → PM × Pm′ .
We recall that [2] on A ⊆ PM × Pm is presented globally by bihomoge-

neous polynomials G0, . . . , GM on A described in Section 9.1. The morphism

S′ → S → Pm is defined Zariski locally on S′ by an (m+ 1)-tuple of homoge-

neous polynomials in m′ + 1 variables. In other words, there is a finite open

cover {S′α}
n1
α=1 of S′ such that S′ → S is represented on each S′α by a tuple

Fα of homogeneous polynomials of equal degree and no common zero on S′α.

Above each S′α the morphism [2] is defined by [2](a1, a2) = ([G0(a1, Fα(a2)) :

· · · : GM (a1, Fα(a2))], a2); here a = (a1, a2) ∈ A′(Q) ⊆ PM (Q) × Pm′(Q) lies

above S′α. Iterating [2] we find that for all integers N ≥ 1 and above each S′α
the morphism [2N ] is defined by bihomogeneous polynomials with degree in a1

equal to 4N and degree in a2 at most c1(4N − 1)/3; here c1 = c0 degFα and

c0 is as in Section 9.1. As for several constants below, c1 may depend on A′
and X ′, but not on N .

Let us embed A′ in P(M+1)(m′+1)−1 by composing the immersion A′ →
PM × Pm′ with the Segre morphism PM × Pm′ → P(M+1)(m′+1)−1. After lo-

cally inverting the Segre morphism and increasing n1, we obtain to an open

cover {Vα}n1
α=1 of A′, a refinement of {A′|S′α}α, such that [2N ]|Vα : Vα → A′ is

represented by a tuple of homogeneous polynomials of degree at most c24N on

each Vα. Here n1 and c2 are independent of N .

For any irreducible component X ′0 of X ′, the restriction ρ|X′0 : X ′0 → X

is dominant and dimX ′0 = dimX. So Silverman’s height inequality [47] ap-

plies; here we could have also used the Height Machine and Lemma 9.4. To

prove the proposition, it suffices to find a constant c > 0 that is independent
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of N with the following property. For any integer N ≥ c−1, there exist an

irreducible component X ′0 of X ′, a non-empty Zariski open subset U ′N ⊆ X ′0,

and a constant c′(N,X ′0) such that h([2N ]Q) ≥ c4Nh(Q) − c′(N,X ′0) for all

Q ∈ U ′N (Q). Then we can take UN to be a non-empty Zariski open subset of

X with UN ⊆ ρ(U ′N ) and c′(N) = c′(N,X ′0).

Let c3 > 0 be the c in Proposition 8.1, and let Y1, . . . , YR be the subva-

rieties of A′ therein. The constant c3 and the varieties Y1, . . . , YR will depend

on X and A, but not on N . We work with 2N instead of N in Proposi-

tion 8.1. So for any sufficiently large (but fixed) N , we let P1, . . . , Pr ∈ X ′(Q)

with r ≥ c34N dimX be pairwise distinct points as in Proposition 8.1 and Y ∈
{Y1, . . . , YR} such that [2N ](Pi) ∈ Y (Q) and Pi is isolated in X ′ ∩ [2N ]−1(Y )

for all i.

Suppose X ′ has n2 irreducible components. Then n2 is independent on N .

We apply the Pigeonhole Principle to find α ∈ {1, . . . , n1} and some irre-

ducible component of X ′ such that at least c34N dimX/(n1n2) points Pi lie on

Vα and this component. Replace X ′ by the said component, and replace c3 by

c3/(n1n2). Now we may assume that there is a tuple of homogeneous polyno-

mials of equal degree at most c24N that define [2N ] on a Zariski open subset

of X ′ ⊆ A′ ⊆ P(M+1)(m′+1)−1 that contains all the Pi’s.

We apply Lemma 9.2 to [2N ](X ′) ⊆ A′ ⊆ P(M+1)(m′+1)−1, Y , and the

points [2N ](P1), . . . , [2N ](Pr). Thus we obtain a rational mapϕ: P(M+1)(m′+1)−1

99K PdimX′ defined at all [2N ](Pi) that arises from homogeneous polynomials

of equal degree δY . Observe that δY depends only on Y ∈ {Y1, . . . , YR}. Let

δ = maxY ∈{Y1,...,YR} δY . Now that {Y1, . . . , YR} is fixed as N varies, this does

not endanger our application. There exists a constant c4(ϕ) ≥ 0 such that

(9.2) h(ϕ(Q)) ≤ δh(Q) + c4(ϕ)

for any Q outside the set of common zeros of the polynomials involved in ϕ;

see [33, Th. B.2.5.(a)]. To emphasize that ϕ may depend on N , we write c4(N)

for c4(ϕ).

For N as before, we define ϕ(N) = ϕ ◦ [2N ] : X ′ 99K PdimX′ . Then by

Lemma 9.2(i), each Pi is mapped via ϕ(N) to [1 : 0 : · · · : 0].

We would like to invoke Lemma 9.3 to bound degϕ(N) from below by r.

To do this we must verify that each Pi is isolated in the fiber of ϕ(N) above

[1 : 0 : · · · : 0]. Let us suppose C ⊆ X ′ is irreducible, contains Pi, and is

inside a fiber of ϕ(N). Apart from finitely many points, [2N ](C) is in a fiber

of ϕ. Now we apply Lemma 9.2(ii) to conclude that [2N ](C) is contained in the

Zariski closure of Y inside P(M+1)(m′+1)−1. But Y ⊆ A′, so C ⊆ [2N ]−1(Y ).

Now Proposition 8.1 implies C = {Pi}.
This settles our claim that Pi is isolated in the fiber of ϕ(N), and we

conclude degϕ(N) ≥ r ≥ c34N dimX .
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Recall that there is a tuple of homogeneous polynomials of equal de-

gree at most c24N that define [2N ] on a Zariski open subset of X ′ ⊆ A′ ⊆
P(M+1)(m′+1)−1 that contains all Pi. So we can describe ϕ(N) on this subset of

X ′ using polynomials of degree at most c2δ4
N . We apply Lemma 9.4 to ϕ(N)

and the Zariski closure of X ′ in P(M+1)(m′+1)−1 to conclude that there exist

a constant c5 > 0, independent of N , and a constant c6(N) ≥ 0, which may

depend on N , such that

(9.3) h(ϕ(N)(P )) ≥ c54Nh(P )− c6(N)

for all P ∈ U ′N (Q), where U ′N is non-empty Zariski open in X ′ and may depend

on N .

Now by letting Q = [2N ]P and dividing by δ in (9.2), we get by (9.3) that

h([2N ]P ) ≥ c5

δ
4Nh(P )− c7(N)

for all P ∈ U ′N (Q) after possibly shrinking U ′N . The proof is complete as c5/δ

is independent of N . �

10. Néron–Tate height and height on the base

The goal of this section is to prove Theorem 1.4 and the slightly stronger

Theorem 1.4′. We will use the basic setup introduced in Section 2.2. Thus S is

a smooth, irreducible curve over Q, π : A → S is an abelian scheme of relative

dimension ≥ 1, and A ⊆ PMQ × PmQ is an admissible immersion. All varieties in

this sections are defined over Q.

10.1. Auxiliary proposition. We prove the following proposition; recall

that both heights below are defined as in Section 2.2.

Proposition 10.1. Assume X is an irreducible closed subvariety of A
that is not generically special. Then there exist a non-empty Zariski open

subset U ⊆ X defined over Q and a constant c > 0 depending only on A/S, X ,

and the admissible immersion such that

(10.1) h(P ) ≤ c
Ä
1 + ĥA(P )

ä
for all P ∈ U(Q).

Proof. By the theorem of Silverman-Tate [46, Th. A], there exists a con-

stant c1 ≥ 0 such that

(10.2) |ĥA(P )− h(P )| ≤ c1

(
1 + h(π(P ))

)
for all P ∈ A(Q); observe that this proof also holds without the smoothness

assumption when working with line bundles instead of Weil divisors.

To prove the proposition we may thus assume that π is non-constant on X.

Therefore, X dominates S.
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Since X is not generically special, we can apply Proposition 9.1 to X.

There exists a constant c2 > 0, depending on X,A, and its admissible immer-

sion, such that the following holds. For any integer N ≥ c−1
2 , there exist a

Zariski open dense subset UN ⊆ X and a constant c3(N) ≥ 0 such that

(10.3) h([2N ]P ) ≥ c24Nh(P )− c3(N)

for all P ∈ UN (Q); we stress that UN and c3(N) ≥ 0 may depend on N in

addition to X,A, and the immersion.

Now for any integer N ≥ c−1
2 and any P ∈ UN (Q), we have

ĥA([2N ](P )) ≥ h([2N ](P ))− c1

Ä
1 + h(π([2N ](P )))

ä
by (10.2)

= h([2N ](P ))− c1 (1 + h(π(P )))

≥ c24Nh(P )− c3(N)− c1 (1 + h(P )) by (10.3)

and h(π(P )) ≤ h(P ) (2.2).

But ĥA([2N ]P ) = 4N ĥA(P ), and dividing by 4N yields

ĥA(P ) ≥
(
c2 −

c1

4N

)
h(P )− c3(N) + c1

4N

for all N ≥ c−1
2 and all P ∈ UN (Q).

Recall that c2 and c3 are independent of N . We fix N to be the least

integer such that 4N ≥ 2c1/c2 and N ≥ c−1
2 . Then

ĥA(P ) ≥ c2

2
h(P )− c3(N) + c1

4N

for all P ∈ UN (Q). Since N is fixed now, the Zariski open dense subset UN of

X is also fixed. For an appropriate c > 0, depending on N, c1, c2, and c3(N)

we conclude (10.1). �

10.2. Proof of Theorem 1.4. The first inequality in (1.1) follows from the

definition of hA,ι(·) and since the absolute logarithmic Weil height is non-

negative. To prove the second inequality we may assume, by properties of

the Height Machine, that the two height functions appearing in the conclusion

arise from an admissible immersion. We do an induction on dimX. When

dimX = 0, this result is trivial. So let us assume dimX ≥ 1.

If X is generically special, then X∗ = ∅, and there is nothing to show.

Otherwise we may apply Proposition 10.1, and so the inequality (10.1) holds

for any x ∈ (X\Z)(Q) for some proper closed subvariety Z of X defined over Q.

Let Z = Z1∪· · ·∪Zr be the decomposition into irreducible components. Since

dimZi ≤ dimX − 1, we may do induction on the dimension. By the induction

hypothesis, the inequality (10.1) holds for all points in Z∗1 (Q) ∪ · · · ∪ Z∗r (Q).

Therefore the inequality (10.1) holds for all points in (X \ Z)(Q) ∪ Z∗1 (Q) ∪
· · · ∪ Z∗r (Q).
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To prove that the inequality (10.1) holds for all points in X∗(Q), it suffices

to verify

X∗ ⊆ (X \ Z) ∪ Z∗1 ∪ · · · ∪ Z∗r .
But this is equivalent to the inclusion

(10.4) X \X∗ ⊇ Z ∩ (X \ Z∗1 ) ∩ · · · ∩ (X \ Z∗r ) = (Z \ Z∗1 ) ∩ · · · ∩ (Z \ Z∗r ).

Finally, a generically special subvariety of A contained in some Zi will be

contained in X, and therefore (10.4) holds true.

Now the inequalities in Theorem 1.4 and Theorem 1.4′ hold since, by (2.2),

h(π(P )) ≤ h(P ) for any P ∈ A(Q). �

11. Application to the Geometric Bogomolov Conjecture

In this section we prove Theorem 1.1 over the base field Q and abbreviate

PmQ by Pm. More general base fields can be handled using the Moriwaki height

version of Theorem 1.4. More details are presented in Appendix A.

There exists a smooth, irreducible, quasi-projective curve S over Q whose

function field is K. We fix an algebraic closure K ⊇ K of K. As in Section 2.2,

we can find, up to removing finitely many points of S, an abelian schemeA → S

whose generic fiber is A from Theorem 1.1. We equip A with an admissible

immersion A → PM ×Pm; cf. Section 2.2. In particular, we have an immersion

ι : S → Pm. For s ∈ S(Q), we set

(11.1) hS(s) =
1

degS
h(ι(s)),

where h on the right-hand side is the height on Pm(Q) and degS is the de-

gree of the Zariski closure of ι(S) in Pm. We use the same normalization as

in Silverman’s work [46, §4], which will play an important role momentarily.

In addition, we have the fiberwise Néron–Tate height ĥA : A(Q) → [0,∞);

cf. (2.3). On A we also have a Néron–Tate height hK,A : A(K) → [0,∞); cf.

the end of Section 2.1.

Before we get to the nuts and bolts we state Silverman’s Height Limit

Theorem.

Recall that we can represent a point x ∈ A(K) = (A ⊗K K)(K) using a

section S′ → A×S S′, where S′ is a smooth, irreducible curve and ρ : S′ → S is

generically finite morphism. We write σx for the composition S′ → A×S S′ →
A. We may evaluate ĥA at σx(t) ∈ Aρ(t) for all t ∈ S′(Q).

Theorem 11.1 (Silverman). In the notation above we have

(11.2) lim
t∈S′(Q)

hS(ρ(t))→∞

ĥA(σx(t))

hS(ρ(t))
= ĥK,A(x).
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Proof. This follows from [46, Th. B] via a base change argument as follows.

The smoothness condition in this reference can be dropped when using line

bundles instead of Weil divisors. Observe that Silverman’s Theorem deals

with the rational case x ∈ A(K), which comes from a section S → A.

We have a morphism σx : S′ → A, which composed with A → S equals

ρ : S′ → S. We write K ′ = Q(S′) and AK′ = A ⊗K K ′. Then hS′ : S
′(Q) →

[0,∞) is defined analog to hS via an immersion of S′ into some projective space

and then normalizing as in (11.1). Of course, hS′ depends on the choice of this

immersion. But we have hS(ρ(t))/hS′(t) → deg ρ = [K ′ : K] for t ∈ S′(Q)

as hS′(ρ(t)) → ∞ by quasi-equivalent of heights on curves; cf. [7, Cor. 9.3.10]

and our choice of normalization. Silverman’s Theorem applied to x ∈ A(K ′)

implies ĥA(σx(t))/hS′(t) → ĥK′,AK′ (x) as hS(t) → ∞ for t ∈ S′(Q). Thus

ĥA(σx(t))/hS(ρ(t))→ [K ′ : K]−1ĥK′,AK′ (x) for t ∈ S′(Q) and hS(ρ(t))→∞.

Now ĥK,A and ĥK′,A′ are related by ĥK′,AK′ = [K ′ : K]ĥK,A. This follows

from the related statement for naive heights (cf. [14, Rem. 9.2]) and passing to

the limit. The factor [K ′ : K] cancels out with the same factor coming from

quasi-equivalence of heights, and this yields (11.2). �

Now we complete the proof of Theorem 1.1. It is enough to prove the

theorem for the symmetric line bundle L attached to the closed immersion

A→ PMK .

Let X be the Zariski closure ofX insideA ⊇ A ⊇ X. Then X is irreducible

and flat over S and X is the generic fiber of X → S.

Therefore by the assumption on X, the variety X is not generically special.

We will apply Proposition 10.1, so let U be the Zariski open and dense subset

of X from this proposition.

We define U = U ∩X, where the intersection is inside A. This is a Zariski

open and dense subset of X.

It suffices to prove that there exists ε > 0 such that x ∈ U(K) implies

ĥK,A(x) ≥ ε. Indeed, let x ∈ U(K ′), where K ′ is a finite field extension of K

contained in K. As above, there are an irreducible, quasi-projective curve S′

over Q with function field K ′, a generically finite morphism ρ : S′ → S, and a

section S′ → A×S S′ determined by x. We write σx : S′ → A for this section

composed with A×S S′ → A.

The Zariski closure Y in A of the image of σx is an irreducible closed curve

in A. We have Y ⊆ X as x ∈ X(K ′). Moreover, Y ∩ U 6= ∅ since x ∈ U(K).

So Y ∩ U is a curve that differs from Y in only finitely many points.

We fix a sequence t1, t2, . . . ∈ S′(Q) such that limn→∞ hS(ρ(tn)) = ∞.

Silverman’s Theorem implies

(11.3) lim
n→∞

ĥA(σx(tn))

hS(ρ(tn))
= ĥK,A(x).
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For n large enough, we have σx(tn) ∈ U(Q). By Proposition 10.1 there

exists a constant c > 0, independent of x, σx, and n, such that

(11.4) h(σx(tn)) ≤ c
Ä
1 + ĥA(σx(tn))

ä
for all large integers n.

By (2.2) the naive height h(σx(tn)) is at least the height of ι(π(σx(tn))) =

ι(ρ(tn)) ∈ Pm(Q). By our choice (11.1), we have h(ι(ρ(tn))) = deg(S)hS(ρ(tn)).

We insert into (11.4) and divide by hS(ρ(tn)) to obtain

degS ≤ c1 + ĥA(σx(tn))

hS(ρ(tn))
.

Finally, we pass to the limit n→∞ and recall (11.3) to conclude ĥK,A(x)

≥ deg(S)/c. The theorem follows as c and deg(S) are independent of x. �

Appendix A. Passing from Q to any field of characteristic 0

In this appendix, we sketch a proof of Theorem 1.1 for any k algebraically

closed of characteristic 0. We do this by proving a Moriwaki height version

of Theorem 1.4, allowing Q to be replaced by any algebraically closed field of

finite transcendence degree over Q. Then we repeat the proof of Theorem 1.1

for k = Q (Section 11) with this new height function to get the result when

trdegQk <∞. Finally we use essential minimum to reduce to this case.

A.1. Moriwaki height. Here we review Moriwaki’s height theory [39]. Let

k0 be a finitely generated field over Q with trdeg(k0/Q) = d. Moriwaki [39]

developed the following height theory, generalizing the classical height theory

for Q.

Fix a polarization B = (B;H1, . . . ,Hd; τ) of the field k0, i.e., a flat and

quasi-projective integral scheme over Z, a collection of nef smooth hermitian

line bundles H1, . . . ,Hd on B, and an isomorphism of fields τ : Q(B) → k0.

In most of the literature, including Moriwaki’s paper, the isomorphism τ is

omitted as it is fixed.

Let X be an irreducible projective variety over k0, and let L be a line

bundle on X that is defined over k0. Moriwaki [39] defines a height function

(A.1) hBk0,X,L : X(k0)→ R,

which is well defined modulo the set of bounded functions on X(k0). We will

not repeat the exact definition of the Moriwaki height here, but will mention

some properties. If the field k0 is clear from the context, then we abbreviate

hBk0,X,L
to hBX,L. Furthermore, if X is clear, then we abbreviate it to hBL .

Before going on, let us make the following remark. If k′0 is a field with an

isomorphism ι : k0 → k′0, then we have a polarization B
′
= (B;H1, . . . ,Hd; ι◦τ)

of k′0. For any algebraic closure k0
′

of k′0, ι extends (non-uniquely) to an
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isomorphism k0 → k0
′
, which we still denote by ι by abuse of notation. Then

hB
′

k′0
◦ ι = hBk0

.

As is pointed out by Moriwaki, if k0 is a number field, then we recover

the classical height functions. Just as the classical height, the Moriwaki height

(A.1) satisfies the several properties.

Proposition A.1 (Height Machine for the Moriwaki height). We keep

the notation from above.

(1) (Additivity) If M is another line bundle on X , then hBL⊗M = hBL + hBM .

(2) (Functoriality) Let q : X → Y be a quasi-finite morphism of projective

varieties over k0, and let M be a line bundle on Y . Then

hBq∗M = hBM ◦ q.

(3) (Boundedness) The function hBL is bounded below away from the base locus

of L. In particular, hBL is bounded on X(k0) if L = OX .

(4) (Northcott) If L is ample, and if B is big, i.e., the H i’s are nef and big,

then for any real numbers B,D, the set

{P ∈ X(k0) : hBL (P ) ≤ B, [k0(P ) : k0] ≤ D}

is finite.

(5) (Algebraic Equivalence) If L and M are algebraically equivalent and L is

ample, then

lim
hBL (P )→∞

hBM (P )

hBL (P )
= 1.

Proof. Part (1), (3) and (4) are proven by Moriwaki [39, Prop. 3.3.7(2-4)].

See [54, Prop. 2(iv)] for a proof of part (2). Note that the smoothness assump-

tion is unnecessary and that q must be generically finite in [39, Prop. 1.3(2)].

Part (5) can be proven by a verbalized copy of [36, Ch. 4, Prop. 3.3 and Cor. 3.4]

with the usual height function replaced by the Moriwaki height. �

Proposition A.1 enables us to transfer results involving only properties of

the height listed in the Height Machine to the Moriwaki height.

Next we turn to abelian varieties. Let A be an abelian variety over k0,

and let L be a symmetric ample line bundle on A that is defined over k0. The

limit

(A.2) ĥBL (P ) = lim
n→∞

2−2nhBL ([2n]P ) for all P ∈ A(k0)

exists and is independent of the choice of a representative of the height function.

Then ĥBL is called the canonical or Néron–Tate height on A(k0) attached of L

with respect to B. If k0 = Q, then ĥBL coincides with the usual Néron–Tate

height over Q. Moriwaki [39, §3.4] proved that the Néron–Tate height ĥBL is

quadratic, i.e.,



RELATIVE AND GEOMETRIC BOGOMOLOV: 1− p CASE 593

ĥBL ([N ]P ) = N2ĥBL (P ) for all P ∈ A(k0).

The following proposition is proven by Moriwaki [39, Prop. 3.4.1].

Proposition A.2.

(i) We have ĥBL (P ) ≥ 0 for all P ∈ A(k0).

(ii) We have ĥBL (P ) = 0 for all P ∈ A(k0)tor.

(iii) Assume B is big ; i.e., H i’s are nef and big. Then ĥBL (P ) = 0 if and only

if P is a torsion point.

A.2. Height inequality. Let k0 be a finitely generated field extension of Q.

Let B be a polarization of k0. Let k0 be an algebraic closure of k0.

Let S be a smooth irreducible quasi-projective curve over k0, and let

π : A → S be an abelian scheme over k0 of relative dimension g ≥ 1. We fix

a smooth, irreducible projective curve S over k0 that contains S as a Zariski

open subset. LetM be an ample line bundle on S defined over k0. Let L be a

symmetric relatively ample line bundle on A/S defined over k0. Then we have

the following analogue of Theorem 1.4.

Theorem A.3. Let X be a closed irreducible subvariety of A over k0,

and let X∗ be as above Proposition 1.3 with k = k0. Then there exists c > 0

depending only on B,A/S,X,L, and M such that

hBS,M(P ) ≤ c
Ä
1 + ĥBA,L(P )

ä
for all P ∈ X∗(k0),

where hBS,M is the Moriwaki height defined by (A.1), and ĥBA,L(x) is the Néron–

Tate height ĥBLπ(x)
(x) defined by (A.2) on the abelian variety Aπ(x).

If k0 is a subfield of C, then we can take k0 ⊆ C. In this case we can

proceed as in the proof of Theorem 1.4, with the usual height over Q replaced

by the Moriwaki height over k0. In fact, we only used Q in the arguments

involving heights, i.e. Proposition 9.1 (in fact, only Lemma 9.4 and below) and

Proposition 10.1. (For this we need the Moriwaki height version of Silverman-

Tate, which is [54, Th. 2].) Now Proposition A.1 provides us with the Height

Machine for hBL , and hence all the arguments are still valid.

For general k0 finitely generated over Q, we have that k0 is isomorphic to

a subfield k′0 of C via some ι. Let k0
′

be the algebraic closure of k′0 in C, then

ι extends to some ι : k0 → k0
′
. As explained in the paragraph below (A.1), we

can get a polarization B
′

of k′0 such that hB
′

k′0
◦ ι = hBk0

. So we are reduced to

the case where k0 is a subfield of C and hence we are done.

A.3. Geometric Bogomolov Conjecture. Suppose that we are in the situa-

tion of Theorem 1.1. There exists a smooth, irreducible, quasi-projective curve

S over k whose function field is K. We can find, up to removing finitely many
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points of S, an abelian scheme A → S whose generic fiber is A. We write X for

the Zariski closure of X under A ⊆ A. Then X is a closed irreducible subvari-

ety of A. We fix an algebraic closure K ⊇ K of K and a smooth, irreducible,

projective curve S that contains S as a Zariski open subset.

The symmetric ample line bundle L extends, up to removing finitely many

points of S, to a symmetric relatively ample line bundle L onA/S. There exists

a field k0 finitely generated over Q such that S, A/S, L and X are defined

over k0. We treat these objects as being over k0.

Let us take an ample line bundle on S defined over k0. By [24, EGA IV2,

Prop. 2.8.5], X is flat over S and i−1(X ) = X, so X is the generic fiber of

X → S. Therefore X is not generically special by the assumption on X.

Hence X ∗ is Zariski open dense in X by Proposition 1.3.

Take algebraic closures k0 in k and k0(S) in K. From now on we see X,A,

and L as defined over k0(S). We claim that there exists a constant ε > 0 such

that

(A.3) {P ∈ X(k0(S)) : ĥk0(S),A,L(P ) ≤ ε}

is not Zariski dense in X.

We indicate how to modify the proof in Section 11 to prove this claim.

The only changes are

• The Zariksi open subset U of X is replaced by X ∗.
• Instead of Proposition 10.1, we use the generalized version of Theorem 1.4.

More precisely, let B be a big polarization of k0; i.e., the H i’s are nef and

big. Apply Theorem A.3 to the subvariety X ⊆ A and (k0,B) to obtain a

constant c > 0.

• The polarization B is big, so there exists a sequence of points t1, t2, . . . ∈
S(k0) such that limn→∞ h

B
S,M(tn) = ∞. Also the Moriwaki height ver-

sion of Silverman’s Theorem (11.2) still holds; see [54, Th. 3]. In fact,

Proposition A.1 provides us with the Height Machine for hBL , and hence

Silverman’s original proof still works with the usual height function re-

placed by the Moriwaki height.

We are not done yet because we want to replace k0(S) by K in (A.3).

Indeed, K = k0(S)⊗k0 k contains k, which is an arbitrary field of characteristic

0 and therefore possibly not finitely generated over Q. To proceed we prove

the following statement on the essential minimum:

µess(X)

= inf
¶
ε > 0 : {P ∈ X(k0(S)) : ĥk0(S),A,L(P ) ≤ ε} is Zariski dense in X

©
.

The analog µess(XK) where XK = X ⊗k0(S) K is defined similarly but in-

volves K.
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Claim. If µess(XK) = 0, then µess(X) = 0.

S. Zhang proved two inequalities relating the essential minima and the

height of a subvariety of an abelian variety in the number field case [66]. To

prove our claim we require Gubler’s [26, Cor. 4.4] version of Zhang’s inequalities

for function fields. See §3 of [26] for the definition of the height of a subvariety

of A.

More precisely, µess(X) = 0 if and only if ĥk0(S),A,L(X) = 0. Moreover,

µess(XK) = 0 if and only if ĥK,AK ,L(XK) = 0. Finally, we sketch how to prove

the equality ĥk0(S),A,L(X) = ĥK,AK ,LK (XK), which settles our claim. The base

change involves only an extension of the field of constants k/k0 under which

the naive height on projective height remains unchanged. The height of a

subvariety of some projective space can be defined as the height of a Chow

form and is thus invariant under base change as well. Finally, the canonical

height of a subvariety of A is a limit as in Tate’s argument and is thus invariant

under base change.

Appendix B. Proposition 1.3 for Higher Dimensional Base

In this appendix, we explain how to generalize Proposition 3.1 to higher

dimensional base. We work under the frame of Section 3 except that we do

not make any assumption on dimS. In other words, our setting is as follows.

Let k be an algebraically closed field of characteristic 0. Let S be a smooth

irreducible quasi-projective variety over k, and fix an algebraic closure K of

K = k(S). Let A be an abelian variety over K.

We start with the following proposition.

Proposition B.1. Assume AK/k = 0. The order of any point in

(B.1) {P ∈ A(K)tor : [K(P ) : K] ≤ D}

is bounded in terms of A and D only.

Proof. Fix an irreducible projective variety S over k whose function field

is K. We may take S as a Zariski open dense subset of S such that A extends

to an abelian scheme A → S; namely, the generic fiber of A → S is A. We

may furthermore shrink S such that S is smooth and that S \ S is purely of

codimension 1. We denote by i : A→ A the natural morphism.

Any P ∈ A(K)tor defines a morphism σP : SpecK → A. Suppose the or-

der of P is N . Then the Zariski closure of Im(i ◦ σP ), which we denote by T ,

is irreducible, dominates S and satisfies [N ]T = 0. So T is an irreducible com-

ponent of the kernel of [N ] : A → A by comparing dimensions. In particular,

T ↪→ ker[N ] is an open and closed immersion. But ker[N ]→ S is finite étale,

and so is T → S. Thus T → S is an étale covering of degree [K(P ) : K].
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In other words, any torsion point P ∈ A(K)tor yields an étale covering of

S of degree [K(P ) : K].

By Lemma B.2 below, the compositum F in K of all such extensions K(P )

of K of degree at most D is a finite field extension of K. For S a curve, we

cited [53, Cor. 7.11]. In particular, P ∈ A(F ) for all P in (B.1).

Now AK/k = 0. So the Lang–Néron Theorem (cf. [35, Th. 1] or [14,

Th. 7.1]) implies that A(F ) is a finitely generated group. Thus [M ](P ) = 0 for

some M ∈ N that is independent of P . Our claim follows. �

Lemma B.2. Let k be an algebraically closed field of characteristic 0, and

let S be a smooth irreducible quasi-projective variety over k. Then for any

integer D > 0, there are at most finitely many étale coverings of S of degree

≤ D.

Proof. It suffices to prove that the étale fundamental group π1(S) is topo-

logically finitely generated.

Let k0 be an algebraically closed subfield of k that is of finite transcendence

degree over Q such that S is defined over k0. Then we can fix an embedding

k0 ↪→ C. We write S0 for the descent of S to k0, namely, S = S0 ⊗k0 k. We

also write SC = S0 ⊗k0 C for the base change of S0 to C.

Let s0 : Speck0 → S0 be a geometric point. Denote by s : Speck → S,

resp. sC : SpecC→ SC, the corresponding geometric points.

It is a classical result that the topological fundamental group π1(San
C , sC)

is finitely generated. Hence by Riemann’s Existence Theorem [25, Exposé XII,

Th. 5.1], the étale fundamental group π1(SC, sC) is topologically finitely gen-

erated. But then π1(SC, sC) ∼= π1(S0, s0) by [10, Cor. 6.5 and Rem. 6.8]. So

π1(S0, s0) is topologically finitely generated. Then again by [10, Cor. 6.5 and

Rem. 6.8], we have π1(S, s) ∼= π1(S0, s0). So π1(S, s) is topologically finitely

generated. �

Now we are ready to prove

Proposition B.3. Let V0 be an irreducible variety defined over k and

V = V0 ⊗k K . By abuse of notation we consider V0(k) as a subset of V (K).

Define Σ = V0(k)×Ator ⊆ V (K)×A(K).

Let Y be an irreducible closed subvariety of V × A such that Y (K) ∩ Σ

lies Zariski dense in Y . If AK/k = 0, then Y = (W0⊗kK)× (t+B), where

W0 ⊆ V0 is an irreducible closed subvariety, t∈A(K)tor, and B is an abelian

subvariety of A.

The only difference of this proposition from Proposition 3.1 is that we do

not make any assumption on dimS. As we have pointed out, in the proof of

Proposition 3.1 the only place where we used the assumption dimS = 1 is to
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prove the statement involving (3.2). But for S of arbitrary dimension, this

follows from Proposition B.1.

Appendix C. Hyperbolic hypersurfaces of abelian varieties

Suppose F is an algebraically closed field of characteristic zero. For each

integer d ≥ 0, we let F [X0, . . . , XM ]d be the vector space of homogeneous

polynomials of degree d in F [X0, . . . , XM ] together with 0. In this section we

identify F [X0, . . . , XM ]d with A(M+d
M )(F ), where we abbreviate AM = AMF and

PM = PMF .

Brotbek’s deep result [9] implies that a generic sufficiently ample hypersur-

face in a smooth projective variety over C is hyperbolic. In the very particular

case of an abelian variety we give an independent proof that involves an ex-

plicit bound on the degree. Recall that an irreducible subvariety of an abelian

variety is hyperbolic if and only if it does not contain a coset of positive di-

mension by the Bloch–Ochiai Theorem. The main results of this paper do not

depend on the Bloch–Ochiai Theorem.

Proposition C.1. Let A be an abelian variety over F of dimension g ≥ 1

with A ⊆ PM , and suppose d ≥ g − 1. There exists a Zariski open and dense

subset U ⊆ A(M+d
M ), whose complement in A(M+d

M ) has codimension at least

d+ 2− g, such that if f ∈ U(F ), then A∩Z (f) does not contain any positive

dimensional coset.

A direct corollary of this proposition is the following statement. Let L

be a very ample line bundle on A giving rise to a projectively normal, closed

immersion A ↪→ PM , and say P ∈ A(F ). Then the hypersurface defined by

a generic choice of a section in H0(Pn,O(d)) vanishing at P is hyperbolic for

d ≥ g.

Suppose V is an irreducible, closed subvariety of PM with ideal I ⊆
F [X0, . . . , XM ]. We write Id = I ∩ F [X0, . . . , XM ]d. Then F [X0, . . . , XM ]d/Id
is a finite dimensional F -vector space, and the Hilbert function of V is de-

fined as

HV (d) = dim(F [X0, . . . , XM ]d/Id)

for all d ≥ 0.

Lower bounds for HV (d) were obtained by Nesterenko, Chardin, Sombra,

and others. We only require a very basic inequality.

Let r = dimV ≥ 0. After permuting coordinates, which does not affect the

problem, we suppose that X0 6∈ I and that X1/X0, . . . , Xr/X0 are algebraically

independent elements when taken as in the function field of V . It follows that

the composition

F [X0, . . . , Xr]d
inclusion−−−−−→ F [X0, . . . , XM ]d → F [X0, . . . , XM ]d/Id
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is injective. Therefore,

HV (d) ≥ dimF [X0, . . . , Xr]d =

Ç
r + d

r

å
for all d ≥ 0.

We assume r ≥ 1 is an integer. By basic properties of the binomial

coefficients, we have
(r+d
r

)
≥
(1+d

1

)
= d+ 1. So

(C.1) HV (d) ≥
Ç

dimV + d

dimV

å
≥ d+ 1

if dimV ≥ 1.

We begin with a preliminary lemma that involves cosets in A with fixed

stabilizer.

Lemma C.2. Let M,A, and g be as in the proposition above with g≥2.

Let B be an abelian subvariety of A of positive dimension such that d ≥
max{1, g−dimB}. There exists a Zariski open and dense subset U ⊆ A(M+d

M ),

whose complement in A(M+d
M ) has codimension at least d+ 1 + dimB− g, such

that if f ∈ U(F ), then A ∩Z (f) does not contain any translate of B.

Proof. Say N =
(M+d
M

)
≥M+d ≥ g ≥ 2. For the proof, we abuse notation

and consider elements in PN−1(F ) as classes of homogeneous polynomials in

F [X0, . . . , XM ] \ {0} of degree d up-to scalar multiplication. So f(P ) = 0 is

a well-defined statement for f ∈ PN−1(F ) and P ∈ PM (F ), and the incidence

set

{(f, P ) ∈ PN−1(F )×A(F ) : f(P ) = 0}
determines a Zariski closed subset Z ⊆ PN−1 ×A.

We consider the two projections π : PN−1×A→PN−1 and ρ : PN−1×A→A.

Then ρ|Z : Z → A is surjective and each fiber of ρ|Z is linear variety of dimen-

sion N − 2.

Say B is an abelian subvariety of A with dimB ≥ 1. Let ϕ : A→ A/B de-

note the quotient map. We write ϕ = (idPN−1 , ϕ) : PN−1×A→ PN−1×(A/B);

this morphism sends (f, P ) to (f, ϕ(P )). The fibers of ϕ have dimension dimB,

and so

{(f, P ) ∈ Z(F ) : dim(f,P ) ϕ|Z−1(ϕ(f, P )) ≥ dimB}
= {(f, P ) ∈ Z(F ) : P +B ⊆ Z (f)}

(C.2)

defines a Zariski closed subset Zϕ of Z. If Zϕ is empty, then the lemma follows

with U = AN\{0}. Otherwise, let W1, . . . ,Wr be the irreducible components

of Zϕ.

If P ∈ A(F ), then the fiber of ρ|Zϕ above P is empty or has dimension

dim I(P +B)d − 1 = dimF [X0, . . . , XM ]d − 1−HP+B(d) ≤ N − 1− (d+ 1),
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where we used (C.1). So any non-empty fiber of ρ|Wi has dimension at most

N − 1− (d+ 1), and by the Fiber Dimension Theorem we conclude

(C.3) dimWi ≤ N − 1− (d+ 1) + dim ρ(Wi) ≤ N − d+ g − 2

for all i ∈ {1, . . . , r} as dim ρ(Wi) ≤ dimA ≤ g.

If (f, P ) ∈Wi(F ), then {f}× (P +B) ⊆ Zϕ. So if (f, P ) is not contained

in any Wj with i 6= j, then {f}× (P +B) ⊆Wi by the irreducibility of P +B.

We conclude that a general fiber of π|Wi has dimension at least dimB. By the

Fiber Dimension Theorem we find that dimWi ≥ dimB + dimπ(Wi) for all

i ∈ {1, . . . , r}; note that π(Wi) is Zariski closed in PN−1.

Together with (C.3) we conclude dimπ(Zϕ) = max1≤i≤r dimπ(Wi) ≤ N−
d+ g − 2− dimB and thus

codimPN−1π(Zϕ) ≥ d+ 1− g + dimB.

As π(Zϕ) is Zariski closed in PN−1, we conclude that U ′ = PN−1 \ π(Zϕ)

is Zariski open and dense in PN−1 if d ≥ g−dimB. If f ∈ U ′(F ), then there is

no P ∈ A(F ) with P +B ⊆ Z (f). Otherwise we have, in particular, f(P ) = 0

and so (f, P ) ∈ Z(F ), which entails the contradiction (f, P ) ∈ Zϕ(F ) by (C.2).

The lemma follows if we take U to be the preimage of U ′ under the cone map

AN \ {0} → PN−1. �

Proof of Proposition C.1. If g = 1, then A ∩ Z (f) is finite for a generic

f that is homogeneous and of degree d. The proposition is clearly true in this

case.

Now say g≥2. If f ∈F [X0, . . . , XM ]d, then a coset contained in Z (f) ∩ A
is already contained in some irreducible componentX of Z (f)∩A. By Bézout’s

Theorem, degX is bounded solely in terms of d and A; here deg(·) denotes the

usual degree as a subvariety of PM .

By a theorem of Bogomolov, [6, Th. 1], the maximal cosets contained in

X are translates of abelian subvarieties whose degree are bounded in terms of

degX,A, and the chosen polarization only. Observe that the proof of Bogo-

molov’s Theorem works for algebraically closed fields in characteristic zero. As

A contains only finitely many abelian subvarieties of given degree, Bogomolov

produces a finite set of abelian subvarieties that depends only on degX and

A ⊆ PM , thus only on d and A ⊆ PM .

For any abelian subvariety B ⊆ A of positive dimension that arises in this

set, we write UB for the Zariski open and dense set produced by Lemma C.2.

To rule out that X contains a coset of positive dimension, it suffices to take f ∈
U(F ) where U =

⋂
B UB is the intersection over the finite set from Bogomolov’s

Theorem. �
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Sci. Éc. Norm. Supér. (4) 49 no. 4 (2016), 813–858. MR 3552014. Zbl 1364.

11110. https://doi.org/10.24033/asens.2296.

http://www.ams.org/mathscinet-getitem?mr=1633348
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0953.03045
https://doi.org/10.1017/CBO9780511525919
http://www.ams.org/mathscinet-getitem?mr=2555704
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1186.11035
https://doi.org/10.1080/10586458.2009.10129049
http://www.ams.org/mathscinet-getitem?mr=1109353
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0734.14007
https://doi.org/10.2307/2944319
https://doi.org/10.2307/2944319
http://www.ams.org/mathscinet-getitem?mr=1644323
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0885.14002
https://doi.org/10.1007/978-1-4612-1700-8
https://doi.org/10.1007/978-1-4612-1700-8
http://www.ams.org/mathscinet-getitem?mr=0755331
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0537.32001
https://doi.org/10.1007/978-3-642-69582-7
https://doi.org/10.1007/978-3-642-69582-7
http://www.ams.org/mathscinet-getitem?mr=0217084
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0153.22301
http://www.numdam.org/item/PMIHES_1967__32__5_0/
http://www.numdam.org/item/PMIHES_1967__32__5_0/
http://www.ams.org/mathscinet-getitem?mr=0217089
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0147.20302
https://doi.org/10.1007/BF01403390
https://doi.org/10.1007/BF01403390
http://www.ams.org/mathscinet-getitem?mr=0238860
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0153.22301
http://www.numdam.org/item/PMIHES_1967__32__5_0
http://www.numdam.org/item/PMIHES_1967__32__5_0
http://www.ams.org/mathscinet-getitem?mr=0217088
http://www.ams.org/mathscinet-getitem?mr=2318560
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1153.14029
https://doi.org/10.1007/s00222-007-0049-y
https://doi.org/10.1007/s00222-007-0049-y
http://www.ams.org/mathscinet-getitem?mr=2318559
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1153.14036
https://doi.org/10.1007/s00222-007-0048-z
https://doi.org/10.1007/s00222-007-0048-z
http://www.ams.org/mathscinet-getitem?mr=3181568
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1318.14023
http://www.ams.org/mathscinet-getitem?mr=3137460
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1281.14026
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1281.14026
http://www.ams.org/mathscinet-getitem?mr=3552014
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1364.11110
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1364.11110
https://doi.org/10.24033/asens.2296


602 ZIYANG GAO and PHILIPP HABEGGER

[31] R. Hartshorne, Algebraic Geometry, 52, Springer-Verlag, New York, 1977,

Grad. Texts in Math. MR 0463157. Zbl 0367.14001.

[32] M. Hindry, Autour d’une conjecture de Serge Lang, Invent. Math. 94

no. 3 (1988), 575–603. MR 0969244. Zbl 0638.14026. https://doi.org/10.1007/

BF01394276.

[33] M. Hindry and J. H. Silverman, Diophantine Geometry. An Introduction,

Grad. Texts in Math. 201, Springer-Verlag, New York, 2000. MR 1745599.

Zbl 0948.11023. https://doi.org/10.1007/978-1-4612-1210-2.

[34] E. Hrushovski, The Manin-Mumford conjecture and the model theory of dif-

ference fields, Ann. Pure Appl. Logic 112 no. 1 (2001), 43–115. MR 1854232.

Zbl 0987.03036. https://doi.org/10.1016/S0168-0072(01)00096-3.
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