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On Furstenberg’s intersection conjecture,
self-similar measures,

and the Lq norms of convolutions

By Pablo Shmerkin

Abstract

We study a class of measures on the real line with a kind of self-similar

structure, which we call dynamically driven self-similar measures, and con-

tain proper self-similar measures such as Bernoulli convolutions as special

cases. Our main result gives an expression for the Lq dimensions of such

dynamically driven self-similar measures, under certain conditions. As an

application, we settle Furstenberg’s long-standing conjecture on the dimen-

sion of the intersections of ×p- and ×q-invariant sets. Among several other

applications, we also show that Bernoulli convolutions have an Lq density

for all finite q, outside of a zero-dimensional set of exceptions.

The proof of the main result is inspired by M. Hochman’s approach to

the dimensions of self-similar measures and his inverse theorem for entropy.

Our method can be seen as an extension of Hochman’s theory from entropy

to Lq norms, and likewise relies on an inverse theorem for the decay of

Lq norms of discrete measures under convolution. This central piece of

our approach may be of independent interest, and it is an application of

well-known methods and results in additive combinatorics: the asymmetric

version of the Balog-Szemerédi-Gowers Theorem due to Tao-Vu, and some

constructions of Bourgain.
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1. Introduction and main results

1.1. Transversality of ×p, ×q. In the 1960s, H. Furstenberg proposed a

series of conjectures that, in different ways, aim to capture the heuristic prin-

ciple that “expansions in multiplicatively independent bases (such as 2 and 3)

should have no common structure.” Recall that p, q ∈ N are called multiplica-

tively independent if they are not powers of a common integer or, equivalently,

log p/ log q is irrational. For p ∈ N≥2, let Tp : [0, 1) → [0, 1), x 7→ px mod 1
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denote multiplication by p on the circle. In [19], Furstenberg proved a pioneer-

ing result of this type: if p, q ∈ N≥2 are multiplicatively independent, then no

infinite proper closed subset of [0, 1] can be simultaneously invariant under Tp
and Tq. This gave rise to the famous ×2,×3 conjecture, which remains open

today: if µ is a Borel probability measure on the circle invariant under T2 and

T3, then µ is a linear combination of Lebesgue measure and a purely atomic

measure.

Furstenberg proposed other conjectures with a more geometric flavor. Let

A,B be closed subsets of the circle [0, 1) invariant under Tp, Tq respectively,

with p, q again multiplicatively independent. Furstenberg conjectured that

dimH(A+B) = min(dimH(A) + dimH(B), 1),

where dimH stands for Hausdorff dimension, and A+B = {a+b : a ∈ A, b ∈ B}
is the arithmetic sum. This fits into the general heuristic principle mentioned

above, since the inequality dimH(A+B) ≤ min(dimH(A)+dimH(B), 1) always

holds, and a strict inequality should only occur if A and B have some shared

structure at many scales. This conjecture was proved in [38] in the special case

that A,B are defined by restricting the digits in their base p, q expansion to a

fixed digit set, and in [28] in the general case. Moreover, in [28] a correspond-

ing result for invariant measures was obtained: if µ, ν are Borel probability

measures invariant under ×p,×q respectively, then

(1.1) dimH(µ ∗ ν) = min(dimH(µ) + dimH(ν), 1).

Here dimH denotes the lower Hausdorff dimension of a measure, defined as

dimH(η) = inf{dimH(A) : η(A) > 0}.

We note that this result is trivial if either µ or ν have zero entropy (since

zero entropy implies zero dimension), but in the positive entropy case it is

stronger than the ×2,×3 conjecture. We recall the Rudolph-Johnson theorem,

asserting that if µ, ν are ergodic and invariant under ×p,×q (with log p/ log q

irrational) and µ has positive but not full entropy with respect to ×p, then µ

and ν are singular. We showed in [28] that the Rudolph-Johnson Theorem can

be obtained as an easy corollary of (1.1).

There is an obvious heuristic relationship between the size of the sumset

A+B and the size of the fibers `z = {(x, y) : x ∈ A, y ∈ B, x+y = z}. Namely,

if the sumset is “large,” then “many fibers” should be small, and conversely.

Another conjecture of Furstenberg, and one of the few to be stated explicitly

in print [20, Conj. 1], asserts that for sets invariant under ×2,×3, all fibers

should be small:
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Conjecture 1.1. If A,B are closed subsets of the circle [0, 1), invariant

under Tp, Tq respectively, with p and q multiplicatively independent, then

(1.2) dimH(A ∩B) ≤ max(dimH(A) + dimH(B)− 1, 0).

In Furstenberg’s terminology, the dynamics of Tp and Tq should be trans-

verse. Again, this fits into the general heuristics of “lack of common structure”

since a fiber of larger than expected size can be seen as some shared structure

between A and B (and hence between expansions in bases p and q). To see

why the right-hand side in (1.2) is the natural bound, one can think of the

analogous formula for the dimension of the intersection of transversal linear

subspaces, or Marstrand’s intersection theorem asserting that for any Borel set

E ⊂ R2,

dimH(E ∩ `) ≤ max(dimH(E)− 1, 0)

for almost all lines `, and this fails for any smaller value on the right-hand

side. (We note that E = A × B has dimension dimH(A) + dimH(B).) See for

example [34, Ch. 10].

Also in [20], Furstenberg showed that if

dimH(A ∩ g(B)) ≥ c

for some invertible affine map g : R→ R, then for almost all slopes a, there is

an affine map ga(x) = ax+ b(a) such that

dimH(A ∩ ga(B)) ≥ c.

Using this, it is not hard to show that Conjecture 1.1 holds when dimH(A) +

dimH(B) ≤ 1/2; see [25, Th. 7.9] for an exposition of the argument. More

generally, combining Furstenberg’s result with estimates of Wolff [51] on the

dimension of sets that contain, for almost every v ∈ S1, a subset of a line in

direction v with Hausdorff dimension at least c, one gets

dimH(A ∩ g(B)) ≤ max(dimH(A) + dimH(B)− 1/2, 0).

Note that this is vacuous if dimH(A) ≥ 1/2.

We say that A ⊂ [0, 1) is a p-Cantor set if it is the set of points whose

base p-expansion digits lie in some proper set D ⊂ {0, 1, . . . , p − 1} with at

least two elements. In a different direction, in [17] it was shown that if A and

B are a p-Cantor set and a q-Cantor set respectively, then A cannot be affinely

embedded into B if 0 < dimH(A) < dimH(B) < 1. More precisely, it follows

from [17, Th. 1.6] that in this case there is some (non-effective) δ = δ(A,B) > 0

such that

dimH(A ∩ g(B)) ≤ dimH(A)− δ
for all C1 diffeomorphisms g of R. (Here, and whenever clear from context, we

think of A,B as subsets of [0, 1) ⊂ R rather than the circle.) One can deduce

the same result for general invariant sets by a standard upper approximation.
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D-J. Feng (private communication) developed an algorithm that yields effective

values of δ in specific cases, for example if A is the middle-one quarter Cantor

set and B is the middle-thirds Cantor set; the computed values are still far

from those predicted by Furstenberg’s conjecture.

D-J. Feng (private communication) also constructed, for any multiplica-

tively independent p, q and for any 0 < s, t < 1 and ε > 0, closed Tp, Tq-

invariant sets A,B ⊂ [0, 1) of dimension s, t respectively, for which

dimH(A ∩ g(B)) ≤ max(dimH(A) + dimH(B)− 1, 0) + ε

for all affine maps g. Although this comes close, we note that not a single

example of sets A,B (for some multiplicatively independent p, q) for which the

conjecture holds was known, apart from the trivial cases in which one of the

sets has dimension 0 or 1, and the case in which dimH(A) + dimH(B) ≤ 1/2,

as explained above.

In this article, we prove the following strong version of Furstenberg’s con-

jecture which, in his terminology, says that the maps Tp and Tq on the circle

are strongly transverse:

Theorem 1.2. Let p, q ∈ N≥2 be multiplicatively independent. Then for

any closed sets A,B of the circle [0, 1) invariant under Tp, Tq respectively, and

for any invertible affine map g : R→ R,

dimB(A ∩ g(B)) ≤ max(dimH(A) + dimH(B)− 1, 0).

Here dimB denotes upper box-counting dimension, which is always at least

as large as Hausdorff dimension.

The method we use to establish Theorem 1.2 yields several other new re-

sults on classical problems in fractal geometry and dynamics. Before discussing

our general approach, we present some of these results.

1.2. Dimension and densities of Bernoulli convolutions. Given λ ∈ (0, 1),

let νλ be the distribution of the random series
∑∞
n=0±λn, with the signs cho-

sen independently with equal probabilities. This is the family of Bernoulli

convolutions, whose study goes back to the 1930s. For λ ∈ (0, 1/2), it is well

known that νλ is (up to an affine bijection) a constant multiple of Hausdorff

measure (of the appropriate dimension) on the central Cantor set constructed

by removing a central interval of length 1 − 2λ from [0, 1] and iterating. The

properties of νλ for λ ∈ [1/2, 1) have been studied for some 80 years but are

far from being properly understood. We prove new properties of the densities

and dimension of νλ outside of a small set of parameters.

Perhaps the most significant open problem on Bernoulli convolutions is

to determine for which values of λ the measure νλ turns out to be absolutely

continuous. Erdős already in 1939 [10] showed that if λ−1 is a Pisot number (an
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algebraic unit > 1 such that all its algebraic conjugates are < 1 in modulus),

then νλ is singular. It is still not known if there is any λ ∈ (1/2, 1) such that

νλ is singular and λ−1 is not Pisot.

In light of this open problem, a fruitful strand of research developed to

prove results of the following form: νλ is absolutely continuous, with certain

regularity of the density, outside of some “small” set. This line was also initi-

ated by Erdős [11], who proved that for every k ∈ N, there is εk > 0 such that

νλ has a k-times continuously differentiable density for almost all λ ∈ (1−εk, 1).

Several decades later, Kahane [30] noted that Erdős’ argument yields a stronger

statement, namely, that for every k ∈ N,

lim
ε↓0

dimH{λ ∈ (1− ε, 1) : νλ does not have a Ck density } = 0.

The proof of Erdős-Kahane is based on a combinatorial study of the Fourier

transform of νλ, and no other proof of the statement is known.

The Erdős-Kahane argument only gives non-trivial information very close

to 1. In a landmark paper from 1995, Solomyak [48] showed that νλ is abso-

lutely continuous with an L2 density for almost all λ ∈ (1/2, 1). A simpler

proof was obtained by Peres and Solomyak [39]. The L2 part of the result is

a by-product of the transversality technique used by Solomyak, and a natural

question is whether L2 can be replaced by a better space. In [36], Peres and

Schlag proved that for any ε > 0, there is some (explicit) δ > 0 such that νλ
has fractional derivatives of order δ in L2 for almost all λ ∈ (1/2+ε, 1). By the

Sobolev embedding theorem, in particular, this implies that νλ has a density in

Lq for some q = q(ε) > 2 for almost all λ ∈ (1/2 + ε, 1). Their result still relies

on transversality techniques, which cannot go beyond L2 for λ close to 1/2.

Besides improving on the smoothness of the density, another natural line

to pursue is to make the exceptional set of λ smaller. In the same article [36],

Peres and Schlag proved that for every ε > 0, there is an explicit δ > 0 such that

dimH{λ ∈ (1/2 + ε, 1) : νλ does not have an L2 density } ≤ 1− δ.

Much more recently, the author [42] (relying on deep work of Hochman

[26] that will be discussed in some detail below) proved that νλ is absolutely

continuous for all λ outside of a set of zero Hausdorff dimension. Moreover,

in [46] it was shown that, again outside of a set of zero Hausdorff dimension

of parameters, νλ has a density in Lq for some q > 1 that is not explicit and

depends on λ.

These three lines of work yield somewhat complementary results: the

stronger the information about the densities, the weaker the information about

the exceptional set. They also leave open the question of what is the smallest

natural function space that contains the density of νλ for almost all λ. In this

article, we prove
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Theorem 1.3.

(i) There exists a set E ⊂ (1/2, 1) of zero Hausdorff dimension such that if

λ ∈ (1/2, 1) \ E , then νλ has a density in Lq for all finite q > 1.

(ii) There exists a set E ′ ⊂ (1/
√

2, 1) of zero Hausdorff dimension such that if

λ ∈ (1/
√

2, 1) \ E ′, then νλ has a continuous density.

The new contribution is part (i); part (ii) then follows by a standard argu-

ment. In turn, part (i) follows from a new result about dimensions of Bernoulli

convolutions, together with a result from [46]. To state the dimensional result,

we define the following set (which appears already in [26]).

Definition 1.4. Let Pn be the family of all non-zero polynomials of degree

at most n and coefficients in {−1, 0, 1}. Let

E =

ß
λ ∈ (1/2, 1) :

1

n
log

Å
min
P∈Pn

|P (λ)|
ã
→ −∞

™
.

It is shown in [26] that E has zero packing dimension (in particular, zero

Hausdorff dimension) and does not contain any algebraic number that is not

a root of a polynomial in Pn for some n. In particular, no rational number in

(1/2, 1) is in E .

Theorem 1.5. Let λ ∈ (1/2, 1) \ E . Then for every ε > 0, there is

C = C(ε, λ) > 0 such that

νλ(B(x, r)) ≤ C r1−ε for all x ∈ R, r ∈ (0, 1].

It is known (see [16]) that for any λ, the limit

lim
r↓0

log νλ(B(x, r))

log r

exists and is constant νλ-almost everywhere; this constant value is denoted

dim(νλ) and equals the Hausdorff, packing and entropy dimensions of νλ. In

[26], it is proved that if λ ∈ (1/2, 1) \ E , then dim(νλ) = 1. Theorem 1.5

strengthens this, since it implies, in particular, that

lim inf
r↓0

log νλ(B(x, r))

log r
≥ 1

for all (rather than almost all) x. On the other hand, for any locally finite

measure µ on the real line, it holds that

lim sup
r↓0

logµ(B(x, r))

log r
≤ 1

for µ almost all x. Nevertheless, for any λ ∈ (1/2, 1), there are two points x

(the boundary points of the support of νλ) for which

lim
r↓0

log νλ(B(x, r))

log r
=

log 2

log(1/λ)
> 1,
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and if λ is close to 1/2, there is a positive dimensional set of such points; see

[29, Th. 1.5]. These remarks indicate that Theorem 1.5 is optimal in a number

of ways.

We obtain similar results for more general self-similar measures, including

biased Bernoulli convolutions. We compute the Lq dimension of arbitrary

self-similar measures on the real line under Hochman’s exponential separation

assumption; see Theorems 6.2 and 6.6. We also establish absolute continuity

with Lq density for general parametrized families of homogeneous self-similar

measures, outside of a codimension 1 set of possible exceptions in the super-

critical region. See Theorem 9.2 for details.

Very recently, some striking progress on the dimensions and absolute con-

tinuity of Bernoulli convolutions for algebraic parameters was achieved by

P. Varjú [50] and E. Breuillard and P. Varjú [7]. The latter article also uncovers

some deep connections between Bernoulli convolutions, the famous Lehmer’s

conjecture from number theory, and the growth of subgroups of linear groups.

This line of work goes in a transversal direction to ours: while they obtain new

information for many algebraic (and not only) parameters, which our work is

far from being able to replicate, their methods do not seem to be able to give

information about Frostman exponents or Lq densities for any q > 1.

1.3. Lq dimensions, Frostman exponents, and the size of fibers. At first

sight, Theorems 1.2 and 1.5 may appear to have little in common. However, we

will obtain both as rather direct consequences of a single general result. Our

common approach is based on Lq dimensions. Let µ be a Borel probability

measure on [0, 1]. We denote the family of 2−m-intervals {[j2−m, (j+1)2−m)},
j ∈ Z by Dm. If q > 1, then

log
∑
I∈Dm µ(I)q

(1− q)m
∈ [0, 1],

for any m ∈ N, as can be easily seen from Hölder’s inequality. Here and

throughout the article, the logarithms are to base 2. Moreover, a small value

indicates that µ is nearly concentrated on few intervals in Dm, while a value

close to 1 implies that µ(I), I ∈ Dm is a fairly uniform probability vector.

Thus, it makes sense to consider the limit as m → ∞ of the left-hand side as

a notion of dimension of µ.

Definition 1.6. Let q ∈ (1,∞). If µ is a probability measure on R with

bounded support, then

τ(µ, q) = τµ(q) = lim inf
m→∞

− log
∑
I∈Dm µ(I)q

m
is the Lq spectrum of µ, and

D(µ, q) = Dµ(q) =
τµ(q)

q − 1
is the Lq dimension of µ.
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It is also possible to define Lq dimensions for other values of q, but we will

not need to do so here. It is well known that, for a fixed measure µ, the map

q 7→ D(µ, q) is continuous and decreasing on (1,∞). Moreover,

dimH µ ≥ lim
q↓1

D(µ, q).

See [14] for proofs of these standard facts.

If µ is a finite measure on a metric space X, we say that µ has Frostman

exponent s if µ(B(x, r)) ≤ C rs for some C > 0 and all x ∈ X, r > 0. It is

easy to see that Lq dimensions for large q provide information about Frostman

exponents:

Lemma 1.7. Let µ be a probability measure on a compact interval of R.

If D(µ, q) > s for some q ∈ (1,∞), then there is r0 > 0 such that

µ(B(x, r)) ≤ r(1−1/q)s for all x ∈ R, r ∈ (0, r0].

Proof. If D(µ, q) > s, then there is s′ > s such that for all large enough

m and each J ∈ Dm,

µ(J)q ≤
∑
I∈Dm

µ(I)q ≤ 2−m(q−1)s′ .

Since any ball can be covered by O(1) dyadic intervals of size smaller than the

radius, we get that if r is sufficiently small, then

µ(B(x, r)) ≤ C r(1−1/q)s′ ,

where C is independent of x and r. This gives the claim. �

Hence, in order to establish Theorem 1.5 it is enough to show that, under

the hypotheses of the theorem, D(νλ, q) = 1 for arbitrarily large q; this is what

we will do.

Next, we show how Frostman exponents (and therefore, also Lq dimen-

sions) of projected measures give information about the size of fibers. We re-

call the definition of upper box-counting (or Minkowski) dimension in a totally

bounded metric space (X, d). Given A ⊂ X, let Nε(A) denote the maximal

cardinality of an ε-separated subset of A. The upper box-counting dimension

of A is then defined as

dimB(A) = lim sup
ε↓0

log(Nε(A))

log(1/ε)
.

Lemma 1.8. Let X be a compact metric space, and suppose π : X → R is

a Lipschitz map. Let µ be a probability measure on X such that µ(B(x, r)) ≥
rs for all x ∈ X and all sufficiently small r (independent of x). If πµ has

Frostman exponent α, then there exists C > 0 such that for all balls Bε of

radius ε in R, any ε-separated subset of π−1(Bε) has size at most Cε−(s−α).
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In particular, for any y ∈ R,

dimB(π−1(y)) ≤ s− α.

Proof. Let (xj)
M
j=1 be an ε-separated subset of π−1(Bε) with ε small. Then

µ

Ñ
M⋃
j=1

B(xj , ε/2)

é
≥M(ε/2)s,

while the set in question projects onto an interval of size at most O(ε). Hence

M = O(εα−s), giving the claim. �

1.4. A class of dynamically-driven self-similar measures. It is easy to see

that in order to prove Theorem 1.2, it is enough to consider the case in which

A is a p-Cantor set and B is a q-Cantor set, that is, A is the set of points whose

base p-expansion digits lie in some set D1 ⊂ {0, 1, . . . , p− 1}, and likewise for

B and a set D2 ⊂ {0, 1, . . . , q − 1}. Let ∆i = 1
|Di|

∑
d∈Di δd, and let η1, η2

be the distributions of the random sums
∑∞
i=1Xip

−i,
∑∞
i=1 Yiq

−i, respectively,

where Xi are independent and identically distributed random variables with

distribution ∆1, and Yi are independent and identically distributed random

variables, also independent of the Xi, with distribution ∆2. Finally, set µ =

η1 × η2.

It is easy to see that µ(B(x, r)) = Θ(rdimH A+dimHB) for x ∈ supp(µ) =

A × B. Our goal is to apply Lemma 1.8 to µ and, in light of Lemma 1.7, we

will do this by investigating the Lq dimension of projections of µ. Up to a

smooth change of coordinates in the parametrization, and an affine change of

coordinates in the projections, the family of linear projections of µ in directions

with strictly positive slope is given by

{µx := η1 ∗ Sexη2 : x ∈ R},

where Sa(x) = ax scales by a. Note that µx is an infinite convolution of

Bernoulli random variables, since η1, η2 are. Unlike η1, η2, the measures µx
are not self-similar because η1, η2 are constructed with different contraction

ratios. However, it is still possible to express µx in a way that resembles self-

similarity, but with the geometry at different scales driven by a dynamical

system. Namely, suppose p < q, and let X = [0, log q), T : X → X, x 7→
x + log p mod (log q). Moreover, for each x ∈ X, let ∆(x) be the finitely

supported measure given by

∆(x) =

∆1 ∗ Sex∆2 if x ∈ [0, log p),

∆1 if x ∈ [log p, log q).
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It is then easy to see that µx is the distribution of the random sum
∑∞
i=1 Zip

−i,

where the Zi are independent and have distribution ∆(Tix). Indeed, let

n′(x) = |{j ∈ {1, . . . , n} : Tj(x) ∈ [0, log p)}|.

Note that

Tn(x) = x+ n log p− n′(x) log q,

so that

eT
n(x)p−n = exq−n

′(x).

Hence the distribution µx,n of
∑n
i=1 Zip

−i is equal to the distribution of

n∑
i=1

Xip
−i +

n′(x)∑
i=1

exYiq
−i,

where Xi, Yi are independent and have distribution ∆1,∆2 respectively. This

shows that µx,n → µx weakly.

Although in different language, this decomposition of µx can be traced

back to Furstenberg [20], and it was also used more explicitly in [35] to study

the L2 dimensions of µx.

Based on the above discussion, we introduce the following setup. Let A
be the collection of all probability measures supported on a finite set, i.e.,

A =

{
N∑
i=1

piδ(ti) : N ∈ N, pi > 0,
∑
i

pi = 1, ti ∈ R
}
.

(We denote a delta mass at t either by δt or δ(t).) We topologize A in the nat-

ural way: it consists of countably many connected components, corresponding

to the number of atoms N , and for each N , it inherits the topology from R2N .

If µ is a measure on a metric space X and f : X → Y is a Borel map,

then we denote by fµ the push-forward measure: fµ(A) = µ(f−1A)). Fix

λ ∈ (0, 1). If ∆i is a sequence of measures in A, all supported on a fixed

compact interval, then we can form the infinite Bernoulli convolution

µ = ∗∞i=0Sλi∆i.

(Equivalently, µ is the distribution of the random sum
∑∞
i=0 λ

iZi, where the Zi
are independent and have distribution ∆i.) We are interested in the situation

in which the ∆i are generated dynamically. Let (X,T) be a dynamical system,

and suppose ∆ : X → A is a map such that, for some compact interval I0,

supp(∆(x)) ⊂ I0 for all x ∈ X. Then we can consider the family of measures

(1.3) µx = ∗∞i=0Sλi∆(Tix), x ∈ X.

These measures enjoy a dynamical version of self-similarity. Write

(1.4) µx,n = ∗n−1
i=0 Sλi∆(Tix).
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Then, clearly,

(1.5) µx = µx,n ∗ SλnµTnx.

We will call the tuple X = (X,T,∆, λ) a model generating the mea-

sures µx. We will also refer to the measures µx themselves as dynamically

driven self-similar measures.

Trivially, Bernoulli convolutions also fall into this setting, with X the

one-point space.

1.5. Lq dimensions of dynamically driven self-similar measures. In order

to prove Theorem 1.2 along the lines we have been describing, we need to derive

estimates on the Lq dimensions of η1 ∗ Sexη2 for all values of x. As a matter

of fact, by self-similarity, it is enough to deal with all x in some nonempty

open set, but it is not enough to gain information for almost all values of x.

Note that the underlying dynamical system (X,T) is an irrational rotation on

the circle (thanks to p and q being multiplicatively independent) while, in the

case of Bernoulli convolutions, (X,T) is the trivial one-point system. In the

general case of dynamically driven self-similar measures generated by a model

(X,T,∆, λ), if one hopes to gain any information for all x ∈ X, it is reasonable

to impose strong rigidity and continuity assumptions on the dynamics. The

next definition, clearly satisfied by our two main classes of examples, introduces

the kind of regularity that will be needed in the abstract setting. Recall that

a Borel transformation T : X → X is called uniquely ergodic if there exists

exactly one Borel probability measure P on X such that TP = P.

Definition 1.9. We say that a model (X,T,∆, λ) is pleasant if X is a com-

pact metric space, T is a uniquely ergodic transformation on X, the measures

µx are all non-atomic and supported on some fixed bounded interval, and the

map x 7→ µx is continuous (in the weak topology), outside of a null set (with

respect to the unique invariant measure).

In most of our applications, X will equal either the trivial group {0} or

the circle, and in all applications X will be a torus or the product of a torus

and a cyclic group. In all cases, T will be a translation on X. We recall that

if X is a compact Abelian group, and T(x) = x + y is translation by y ∈ X,

then T is uniquely ergodic if and only if the orbit {ny : n ∈ N} is dense in X.

See, e.g., [9, Th. 4.14].

We will also need to impose a separation condition, albeit an extremely

weak one.

Definition 1.10. Let X = (X,T,∆, λ) be a pleasant model with unique

invariant measure P. We say that X has exponential separation if, for P-almost

all x, there is R > 0 such that the following holds for infinitely many n: all
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the atoms of µx,n are distinct and λRn-separated. By the atoms of µx,n being

distinct we mean that

|supp(µx,n)| =
n−1∏
i=0

|supp(∆(Tix))|;

i.e., there are no exact coincidences among the atoms that make up supp(µx,n).

This definition coincides with the notion of (lack of) super-exponential

separation introduced in [26] in the case of self-similar measures (i.e., when X

is a one-point set). As will become clear later, if X is infinite, then under very

mild non-degeneracy assumptions on the map ∆, exponential separation holds

almost automatically.

The following is the main result of the paper, from which more general

versions of Theorems 1.2, 1.3 and 1.5, as well as other applications, will follow:

Theorem 1.11. Let (X,T,∆, λ) be a pleasant model with exponential

separation, and denote the unique invariant measure by P. Assume further

that the map x 7→ ∆(x) is continuous P-almost everywhere, and the number of

atoms of ∆(x) is uniformly bounded. Then for all q ∈ (1,+∞),

(1.6) lim
m→∞

− log
∑
I∈Dm µx(I)q

(q − 1)m
= min

Ç∫
X log ‖∆(x)‖qq dP(x)

(q − 1) log λ
, 1

å
,

uniformly in x ∈ X . That is, the limit in the definition of Lq dimension of µx
exists and equals the constant value on the right-hand side for all x ∈ X .

In the above statement, and throughout the paper, the Lq norm of a

finitely supported measure ∆ is given by

‖∆‖qq =
∑

y∈supp(∆)

∆(y)q.

We underline that the exponential separation assumption has to be checked

on a set of full P-measure, and this is often very easy to do. On the other hand,

the conclusion of Theorem 1.11 holds for all x ∈ X.

1.6. Outline of proof. We conclude this introduction by presenting an out-

line of the main steps of the proof of Theorem 1.11. The overall strategy is

inspired by the ideas of [26]. Additional complications are caused by the fact

that our model allows measures that are not strictly self-similar; this will be

dealt with by the help of a cocycle introduced in [35]. The key difference, how-

ever, is that Hochman’s method is based on entropy, while we need to deal with

Lq norms. As we will see, this forces substantial changes in the implementation

of the general strategy.

At the heart of [26] is an inverse theorem for the growth of entropy under

convolutions; see [26, Th. 2.7]. We prove an inverse theorem for the decay
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of Lq norms under convolutions, which may be of independent interest. This

theorem is stated in Section 2 and proved in Section 3. Here we give a heuristic

description. Let µ, ν be two probability measures supported on 2−mZ ∩ [0, 1].

By Young’s inequality, ‖µ∗ν‖q ≤ ‖µ‖q. The question the inverse theorem aims

to answer is what can be said if we are close to an equality? Here, and in the rest

of the paper, “close” means in a very weak sense up to some small exponential

loss. More concretely, the inverse theorem asserts that if ‖µ ∗ ν‖q ≥ 2−εm‖µ‖q
for some small ε > 0, then µ and ν are forced to have a multi-scale structure

of a certain kind. We note that equality in Young’s theorem happens if either

µ is the uniform measure on 2−mZ∩ [0, 1], or if ν is a single atom. The inverse

theorem asserts that, after restricting µ, ν to suitable subsets A,B that are

“large” and “regular” in a certain sense, there is a multi-scale decomposition

such that, at each scale, either µ|A is “almost uniform” or ν|B is “almost

discrete.” In spirit this is not unlike [26, Th. 2.7], although the details differ

substantially; see Section 2 below for further discussion. The two main tools

in the proof of the inverse theorem come from additive combinatorics: an

asymmetric version of the Balog-Szemerédi-Gowers Theorem, due to Tao and

Vu, and a structure result on sets with “small” sumset, due to Bourgain. These

results are recalled in Section 3.

We note that the inverse theorem is a statement about arbitrary measures;

no self-similarity is involved. Now let us consider a pleasant model (X,T,∆, λ)

generating measures µx, x ∈ X. The right-hand side in (1.6) is easily seen to

be an upper bound for the left-hand side (for all x), so the task is to show the

reverse inequality. The self-similarity expressed by (1.5), in conjunction with

the pleasantness of the model, can be used to show that there is a function

T : (1,∞) → [0, 1], such that τµx = T for P-almost all x, and τµx ≥ T for all

x ∈ X — see Proposition 4.6 and Corollary 4.8. Thus, in order to complete the

proof, one needs to show that T (q)/(q− 1) equals the right-hand side of (1.6).

We point out that the strategy of studying Lq dimensions via the function

T (q) is borrowed from [35]. The innovation of this work consists in being

able to calculate T (q) for a wider range of models and, crucially, for all finite

q ≥ 1 (while the method of [35], based on Marstrand’s projection theorem, is

restricted to q ∈ (1, 2]).

It is known from general considerations that T (q) is concave so, in par-

ticular, it is continuous and differentiable outside of at most a countable set.

The rest of the proof focuses on the study of T (q) for a fixed differentiability

point q. The “multifractal structure” of a measure µ is known to behave in

a regular way for points q of differentiability of the spectrum τµ. Extending

some elementary results in this direction to the function T (q), we show that

if α = T ′(q) exists and τµx(q) = T (q) (which we have seen happens for almost

all x) then, for large enough m, “almost all” of the contribution to the sum
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∑
I∈Dm µx(I)q comes from ≈ 2T

∗(α)m intervals I such that µx(I) ≈ 2αm; here

T ∗ is the Legendre transform of T . Moreover, using the self-similarity of µx,

we also establish a multi-scale version of this fact; see Proposition 4.13.

Let µ
(m)
x supported on 2−mZ be given by

(1.7) µ(m)
x (j2−m) = µx([j2−m, (j + 1)2−m)).

Then µ
(m)
x is a discretization of µx at scale 2−m, and ‖µ(m)

x ‖qq =
∑
I∈Dm µx(I)q

. 2−mT (q). The inverse theorem, together with the study of the multifractal

structure of µx, is used to show that either T (q) = q− 1 (in which case we are

done) or, otherwise, the following holds: if ρ is an arbitrary measure supported

on 2−mZ ∩ [0, 1] such that ‖ρ‖q ≤ 2−σm, then

(1.8) ‖ρ ∗ µ(m)
x ‖qq ≤ 2−εm2−T (q)m for all x ∈ X,

where ε = ε(σ, q) > 0. That is, convolving µx with ρ results in an exponential

flattening of the Lq norm. (A priori this is not necessarily true for all x, since

‖µ(m)
x ‖qq can be far smaller than 2−T (q)m for some x, but all that is needed

later is an exponential gain over 2−T (q)m.) The heuristic reason for this is the

following: suppose the opposite is true. The inverse theorem then asserts that

there is a regular subset A of supp(µ
(m)
x ) that captures much of the Lq norm.

By the inverse theorem, and since ρ is assumed to have exponentially small Lq

norm, A must have almost full growth (or branching) on a positive density set

of scales in a multi-scale decomposition. But A itself does not have full growth.

(This follows from the assumption T (q) < q − 1, which rules out µ
(m)
x having

too small Lq norm.) So there must also be a positive density set of scales on

which A has smaller than average growth. The regularity of the multifractal

spectrum discussed above rules this out, since it forces A to have an almost

constant growth on almost all scales.

The conclusion of the proof of Theorem 1.11 from (1.8) goes along the

same lines of [26]. By the exponential separation assumption, there is x ∈ X
such that τµx(q) = T (q) and, for some R = R(x) ∈ N,

log ‖µ(Rm)
x,n ‖qq

(q − 1)n log(1/λ)
=

‖µx,n‖qq
(q − 1)n log(1/λ)

=

∑n−1
i=0 log ‖∆(Tix)‖qq
(q − 1)n log(1/λ)

,

where m = m(n) is chosen so that 2−m ∼ λn. Under our running assumption

that T (q) < q − 1, the ergodic theorem for uniquely ergodic systems implies

that the right-hand side above tends to the right-hand side of (1.6) as n→∞.

Hence, it remains to show that

(1.9) lim
n→∞

log ‖µ(Rm)
x,n ‖qq

n log(1/λ)
= T (q).
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In other words, we need to show that the Lq norm of µx,n at scale 2−m ≈ λn

(which is easily seen to be comparable to the Lq norm of µx at scale 2−m)

nearly exhausts the Lq norm of µx,n at the much finer scale 2−Rm which, in

turn, equals the full Lq norm of µx,n, by the exponential separation assumption.

To show (1.9), we recall that µx = µx,n ∗ SλnµTnx, and we use this to

decompose

µ((R+1)m)
x =

∑
I∈Dm

µ(I)ρ̃I ∗ SλnµTnx,

where ρ̃I is the normalized restriction of µx,n to I. Since the supports of

ρ̃I ∗ SλnµTnx have bounded overlap, it is not hard to deduce that

‖µ((R+1)m)
x ‖qq ≈

∑
I∈Dm

µx(I)q‖ρI ∗ µ(Rm)
Tnx ‖

q
q,

where ρI = Sλ−n ρ̃I . This is the point where we apply (1.8), to conclude that if

on the right-hand side above we only add over those I such that ‖ρI‖q ≥ 2−σq,

where σ > 0 is arbitrary, then, provided n is large enough depending on σ,

we still capture almost all of the left-hand side. This follows since (1.8) can

be shown to imply that the contribution of the remaining I is exponentially

smaller than the left-hand side. A similar calculation, now with µ
((R+1)m)
x,n in

place of µ
((R+1)m)
x in the left-hand side, then shows that (1.9) holds, finishing

the proof.

We point out that, simultaneously and independently of this work, Meng

Wu [52] obtained an elegant alternative proof of Theorem 1.2. Wu’s proof is

purely ergodic-theoretical and completely different from ours. His methods do

not seem to yield any analogs of Theorem 1.11 and, in particular, are unable

to reproduce our results on the dimensions and densities of Bernoulli convolu-

tions. Nevertheless, some of our concrete applications (besides Furstenberg’s

conjecture) also follow from Wu’s approach; this is the case for Corollaries 7.3

and 8.3.

1.7. Organization of the paper and summary of applications. We outline

the organization of the rest of the paper. Sections 2–5 are devoted to the proof

of Theorem 1.11, while the remaining Sections 6–9 contain the applications of

Theorem 1.11. More precisely,

• In Section 2 we state and discuss the inverse theorem for the Lq norms

of convolutions of discrete measures. The inverse theorem is proved in

Section 3.

• Section 4 develops some properties of dynamically driven self-similar mea-

sures. In Section 5, these are combined with the inverse theorem to conclude

the proof of Theorem 1.11.
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• In Section 6 we apply Theorem 1.11 to study Lq dimensions and Frostman

exponents of self-similar measures on the line. In particular, we prove The-

orem 6.2, which generalizes Theorem 1.5 to homogeneous self-similar mea-

sures on R, and Theorem 6.6, which extends this to arbitrary self-similar

measures on the line (not necessarily homogeneous).

• In Section 7, we conclude the proof of Theorem 1.2. We also study the Lq

dimensions of convolutions of self-similar measures (Theorems 7.2 and 7.5),

and we deduce a variant of Furstenberg’s conjecture for self-similar sets,

Corollary 7.3.

• Section 8 contains further applications of Theorem 1.11 to projections and

sections of planar self-similar sets and measures. In particular, we prove

an upper bound for the dimensions of arbitrary linear sections of some self-

similar sets on the plane; see Corollary 8.3.

• Finally, in Section 9 we turn our focus to the densities of the measures stud-

ied in the previous sections. We present a general result in the framework

of dynamically defined measures, Theorem 9.1, and deduce Theorem 1.3,

as well as several other applications, as corollaries.

1.8. Notation. We use Landau’s O(·) and related notation: if X,Y are two

positive quantities, then Y = O(X) means that Y ≤ CX for some constant

C > 0, while Y = Ω(X) means that X = O(Y ), and Y = Θ(X) means that

Y = O(X) and X = O(Y ). If the constant C is allowed to depend on some

parameters, these are often denoted by subscripts. For example, Y = Oq(X)

means that Y ≤C(q)X, where C(q) is a function depending on the parameter q.

The following table summarizes some of the notational conventions to be

used throughout the paper:

N Natural numbers {1, 2, . . .}
B(x, r) Open ball of center x, radius r.

dimH Hausdorff dimension

dimB Upper box-counting dimension

[n] {0, 1, . . . , n− 1}
δ, ε, η, κ, σ Small positive numbers

µ, ν, η, ρ Measures (always positive and finite, often discrete)

µ(m) Discretization of µ at scale 2−m

‖ · ‖q Discrete Lq norm

q′ Dual exponent to q

δt, δ(t) Delta mass at t

A Space of finitely supported measures

∆i, ‹∆ Elements of A
∆(x) A-valued functions
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(X,T,∆, λ) A model generating DDSSMs

µx The DDSSM corresponding to x ∈ X
µx,n Discrete approximations to µx
Sλ Map that scales by λ

τ(µ, q) or τµ(q) Lq spectrum

D(µ, q) or Dµ(q) Lq dimension

E , Ei Small exceptional sets

Ds Dyadic intervals of length 2−s

Ds(A) Elements of Ds hitting A

Ns(A) or N (A, s) |Ds(A)|
D 2D=base for tree representation of sets

` Height of tree representing a set

S,S ′,Si Subsets of [`] (representing sets of scales)

Rs, R
′
s, R

′′
s Branching numbers of trees representing regular sets

T (q) The function from Proposition 4.6

f, g, h Maps R→ R, often affine

(fi)i∈I Iterated function system of similarities

Acknowledgments. I am grateful to Mike Hochman and Izabella  Laba for

inspiring discussion related to the themes in this paper, and to Julien Bar-

ral and Eino Rossi for a careful reading and for suggesting numerous small

corrections. I also thank the anonymous referees for helpful comments.

2. An inverse theorem for the decay of Lq norms under convolution

Let µ, ν be probability measures on R (or the circle R/Z). For any rea-

sonable notion of smoothness, the convolution µ ∗ ν is at least as smooth as ν.

A natural question is then if µ ∗ ν is not “much smoother” than µ, can we

deduce any information about the measures µ and ν? Of course, this depends

on the notion of smoothness under consideration and on the precise meaning

of “much smoother.”

We are interested in general, possibly fractal, measures, and their dis-

crete approximations. A general method for defining notions of dimension

(or smoothness) of a measure is to discretize it at a certain scale ε, measure

smoothness at that scale in some standard way (for example, by means of en-

tropy or Lq norms), and then study the growth/decay of this quantity as ε ↓ 0.

Indeed, we have seen that Lq dimensions are defined precisely in this way, and

there is a parallel notion for entropy.

Let µ be a probability measure on R/Z. Its normalized level m entropy is

Hm(µ) =
1

m

∑
I∈Dm

−µ(I) log(µ(I)),
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with the usual convention 0 log 0 = 0. In [26, Th. 2.7], Hochman showed that if

Hm(ν ∗ µ) ≤ Hm(µ) + ε,

where ε > 0 is small, then ν and µ have a certain structure that, very roughly,

is of this form: the set of dyadic scales 0 ≤ s < m can be split into three sets

A ∪ B ∪ C. At scales in A, the measure ν looks “roughly atomic,” at scales

in B the measure µ looks “roughly uniform,” and the set C is small. This

theorem was motivated in part by its applications to the dimension theory of

self-similar measures, as discussed above.

Our goal is to develop a corresponding theory for Lq norms. Given m ∈ N,

we will say that µ is a 2−m-measure if µ is a probability measure supported

on 2−mZ ∩ [0, 1) (and we sometimes identify [0, 1) with the circle). Recall

from (1.7) that if µ is a probability measure on [0, 1), we denote by µ(m) the

associated 2−m-measure, that is, µ(m)(j2−m) = µ([j2−m, (j+1)2−m)). We also

recall that, given a purely atomic measure µ, we define the Lq norms

‖µ‖q =
Ä∑

µ(y)q
ä1/q

and ‖µ‖∞ = maxy µ(y).

From now on, the convolutions are always assumed to take place on the

circle unless otherwise indicated; however, all results immediately transfer to

the real line, using the fact that the map (x, y) 7→ x + y is two-to-one on the

circle so, for example, if µ, ν are 2−m-measures, then the Lq norms of µ ∗ ν as

convolutions on the circle or the real line are comparable up to a multiplicative

constant.

By Young’s inequality (which in this context is a direct consequence the

convexity of t 7→ tq), we know that ‖µ ∗ ν‖q ≤ ‖µ‖q for any q ≥ 1. We aim

to understand under what circumstances ‖µ ∗ ν‖q ≈ ‖µ‖q, where the closeness

is in a weak, exponential sense. More precisely, we are interested in what

structural properties of the measures µ, ν ensure an exponential flattening of

the Lq norm of the form

(2.1) ‖(µ ∗ ν)(m)‖q ≤ 2−εm‖µ(m)‖q.

The Balog-Szemerédi-Gowers Theorem (particularly, its asymmetric formula-

tion — see Theorem 3.2 below) can be seen as providing a partial answer in a

special case, i.e., when µ(m), ν(m) are indicator functions.

While we are not aware of any general results in this direction, we note

that a special case has received considerable attention: if A ⊂ 2−mZ, then

‖1A ∗ 1A‖22 is nothing but the additive energy of A (see (3.1) below), and

estimates of the form

‖1A ∗ 1A‖22 ≤ |A|3−ε
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arise repeatedly in dynamics, combinatorics and analysis; see, e.g., [8, 1] for

some recent examples. In particular, S. Dyatlov and J. Zahl [8, Th. 6] showed

that if µ is an Ahlfors-regular measure, that is, if there are C, s > 0 such that

C−1rs ≤ µ(B(x, r)) ≤ Crs for all x ∈ supp(µ), r ∈ (0, 1],

then

‖(µ ∗ µ)(m)‖ ≤ 2−εm‖µ(m)‖2,

where ε > 0 depends only on the parameters C, s. Their proof does not ap-

pear to readily extend to the convolution of two different measures, or beyond

the Ahlfors-regular case. Outside of the Euclidean setting, the L2 norm of

self-convolutions has been studied in many groups as part of the Bourgain-

Gamburd expansion machine developed to prove that Cayley graphs are ex-

panders; see, e.g., [6].

Here we go in a different direction, by investigating general geometric

conditions on the measures µ, ν that ensure flattening in the sense of (2.1). We

make the trivial observation that if ν = δk2−m or µ = λ =Lebesgue measure on

R/Z, then ‖(µ ∗ ν)(m)‖q = ‖µ(m)‖q. Furthermore, if ν = 2−εmδx + (1− 2εm)λ

and µ is an arbitrary measure, then we still have ‖(µ∗ν)(m)‖q ≥ 2−εm‖µ(m)‖q.
This shows that a subset of measure 2−εm is able to prevent smoothening in

the sense of (2.1), so that (unlike the case of entropy) in order to guarantee

exponential smoothing we need to impose conditions on the structure of the

measures inside sets of exponentially small measure.

There are also less trivial situations in which ‖µ ∗µ‖q ≈ ‖µ‖q. Let D � 1

be a large integer, fix ` � D, and for given subset S of {0, . . . , ` − 1}, define

A as the set of all x ∈ 2−`DZ ∩ [0, 1), such that the s-th digit in the 2−D-base

expansion of x is 0 for all s ∈ S (and is arbitrary otherwise). Then it is not

hard to check that ‖1A ∗1A‖q ≈ ‖1A‖1‖1A‖q. In more combinatorial terms, A

looks like an arithmetic progression at all scales. In similar ways one constructs

probability measures µ, ν supported on sets of widely different sizes, such that

‖µ ∗ ν‖q ≈ ‖µ‖q.
Our inverse theorem asserts that if (2.1) fails to hold, then one can find

subsets A ⊂ supp(µ) and B ⊂ supp(ν), such that A captures a “large” pro-

portion of the Lq norm of µ and B a “large” proportion of the mass of ν, and

moreover µ|A, ν|B are fairly regular; for example, they are constant up to a

factor of 2. The main conclusion, however, is that A and B have a structure

resembling the example above, and also the conclusion of Hochman’s inverse

theorem for entropy: if D is a large enough integer, then for each s, either B

has no branching between scales 2sD and 2(s+1)D (in other words, once the first

s digits in the 2D-adic expansion of y ∈ B are fixed, the next digit is uniquely

determined), or A has nearly full branching between scales 2sD and 2(s+1)D
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(whatever the first s digits of x ∈ A in the 2D-adic expansion, the next digit

can take almost any value).

Before stating the theorem, we summarize our notation for dyadic intervals

to be used throughout the paper (some of it was introduced before):

• Ds is the family of dyadic intervals [j2−s, (j + 1)2−s). We also refer to

elements of Ds as 2−s-intervals.

• Given a set A ⊂ R or R/Z, we write Ds(A) for the family of 2−s-intervals

that hit A. We also write N (A, s) or Ns(A) for |Ds(A)|, i.e., the number of

2−s intervals that hit A.

• Given x∈R or R/Z, we write Ds(x) for the only 2−s-interval that contains x.

• We write aI for the interval of the same center as I and length a times the

length of I.

We also write [`] = {0, 1, . . . , `− 1}.

Theorem 2.1. Given q ∈ (1,∞), δ > 0 and D0 ∈ N, there are ε > 0,

D ≥ D0, such that the following holds for all large enough `.

Let m = `D, and let µ, ν be 2−m-measures such that

‖µ ∗ ν‖q ≥ 2−εm‖µ‖q.

After translating the measures µ, ν by appropriate numbers of the form k2−m,

there exist sets A ⊂ supp(µ), B ⊂ supp(ν), such that

(A-i) ‖µ|A‖q ≥ 2−δm‖µ‖q , where µ|A denotes the (non-normalized) restric-

tion of µ to A.

(A-ii) µ(y) ≤ 2µ(x) for all x, y ∈ A.

(A-iii) There is a sequence R′s, s ∈ [`], such that N(s+1)D(A ∩ I) = R′s for all

I ∈ DsD(A).

(A-iv) x ∈ 1
2DsD(x) for every x ∈ A, s ∈ [`].

(B-i) ν(B) ≥ 2−δm.

(B-ii) ν(y) ≤ 2ν(x) for all x, y ∈ B.

(B-iii) There is a sequence R′′s , s ∈ [`], such that N(s+1)D(B ∩ I) = R′′s for all

I ∈ DsD(B).

(B-iv) y ∈ 1
2DsD(y) for every y ∈ B, s ∈ [`].

Moreover,

(v) For each s, either R′′s = 1, or

(2.2) R′s ≥ 2(1−δ)D.

(vi) Let S be the set of s such that (2.2) holds. Then

log(‖ν‖−q′q )− δm ≤ D|S| ≤ log(‖µ‖−q′q ) + δm.

Here, and throughout the paper, q′ = q/(q−1) denotes the dual exponent.

We make some remarks on the statement.
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(a) The initial translation of the measures, as well as their convolution, take

place on the circle. However, by decomposing the measures into finitely

many pieces it is easy to deduce the same statement with both the trans-

lation and the convolution taking place on the real line.

(b) The translation is only needed for (A-iv) and (B-iv), which are technical

claims that we include in the theorem as they are often useful in applica-

tions.

(c) The main claim in the theorem is part (v). Obtaining sets A,B satisfying

(A-i)–(A-iv) and (B-i)–(B-iv) is not hard, and (vi) is a straightforward

calculation using (v).

(d) The theorem fails for q = 1 and q = ∞. In the first case there is an

equality ‖µ ∗ ν‖1 = ‖µ‖1 for any 2−m-measures, and in the second case

there is always an equality ‖1A ∗ 1−A‖∞ = ‖1A‖1. On the other hand,

the case of arbitrary 1 < q < ∞ is easily reduced to the case q = 2; see

Lemma 3.4 below.

We emphasize that the proof of Theorem 2.1 (including the proofs of the

results it relies on) is elementary, in particular, avoiding any use of the Fourier

transform or quantitative probabilistic estimates such as the Berry-Esseen The-

orem, which is crucial in the approach of [26]. The value of ε is effective in

principle, although it is certainly very poor; the worst loss occurs in the ap-

plication of the asymmetric Balog-Szemerédi-Gowers Theorem (Theorem 3.2

below).

3. Proof of the inverse theorem

3.1. Preliminaries. In this section we prove Theorem 2.1. We begin by

describing the two main tools involved in the proof: a version of the Balog-

Szemerédi-Gowers Theorem that is effective even when the sets have very dif-

ferent sizes, due to Tao and Vu, and the additive part of Bourgain’s discretized

sum-product theorem. We begin with the latter.

We say that A ⊂ [0, 1] or R/Z is a 2−m-set if each element of A is an integer

multiple of 2−m. For a finite set A ⊂ R, we define its doubling constant as

σ[A] = |A + A|/|A|. We will call a 2−m set A such that σ[A] ≤ 2δm an

(m, δ)-small doubling set.

The structure of sets A such that σ[A] ≤ K (where K is independent

of |A|) is characterized by Freiman’s Theorem (see, e.g., [49, Th. 5.32]); such

sets can be densely embedded in a generalized arithmetic progression. However

Freiman’s Theorem gives no information when the doubling constant grows

exponentially with the size of the set. The following structural property of

sets with small exponential doubling is proved by Bourgain [5]. Although it

is not explicitly stated in [5], this theorem emerges from the constructions in

Sections 2 and 3; in particular, see [5, eqs. (3.15), (3.20), (3.21), (3.22)].
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Theorem 3.1. Given a large T ∈ N, the following holds for sufficiently

large m1 ∈ N (depending on T ).

Let m = m1T , and suppose H is a (m, 2−2T−1)-small doubling set. Then

H contains a subset H ′ such that the following holds :

(i) |H ′| ≥ 2−(2 log T/
√
T )m|H|.

(ii) There are a set S ⊂ {0, . . . ,m1 − 1} and integers Rs, ns, s ∈ S , with

ns ∈ [sT, (s+ 1)T ), such that

(a) if s /∈ S , then N (H ′ ∩ I, (s+ 1)T ) = 1 for each I ∈ DsT (H ′);

(b) if s ∈ S , then N (H ′∩ I, ns) = Rs for each I ∈ DsT (H ′), and N (H ′∩
J, (s+ 1)T ) = 1 for each J ∈ Dns(H ′);

(c) 2(1−T−1/2)(ns−sT ) < Rs ≤ 2ns−sT for all s ∈ S .

In particular, |H ′| = ∏
s∈S Rs.

Thus, the theorem says that a set with small exponential doubling con-

tains a fairly dense subset that has no branching between the scales 2−Ts and

2−(T+1)s for s /∈ S and between the scales 2−ns and 2−(T+1)s for s ∈ S; and

it has “uniform and nearly full branching” between the scales 2−Ts and 2ns ,

s ∈ S.

We remark that the proof of Theorem 3.1 is ingenious but elementary,

only relying on the Plünnecke-Ruzsa inequalities, for which a short elementary

proof was recently found by Petridis [41].

Another crucial ingredient in the proof of Theorem 2.1 is the following

version of the celebrated Balog-Szemerédi-Gowers Theorem, due to Tao and

Vu [49], which allows the sets to have widely different sizes. Recall that the

additive energy between two finite sets A,B in a common ambient group is

(3.1) E(A,B) = |{(a1, a2, b1, b2) ∈ A2×B2 : a1 +b1 = a2 +b2}| = ‖1A ∗1B‖22.

Theorem 3.2 (Asymmetric Balog-Szemerédi-Gowers). Given κ>0, there

is τ > 0 such that the following holds for m ∈ N large enough. Let A,B ⊂ [0, 1]

or R/Z be 2−m-sets such that

E(A,B) ≥ 2−τm|A||B|2 = 2−τm‖1B‖21‖1A‖22.

Then there are a (m,κ)-small doubling set H and a 2−m-set X such that

(i) |A ∩ (X +H)| ≥ 2−κm|A| ≥ 2−2κm|X||H|,
(ii) |B ∩H| ≥ 2−κm|B|.

Proof. This follows from [49, Th. 2.35]. Indeed, take L = 2m, α = 2−τm/2,

ε = κ/4. Then by making τ > 0 small enough in terms of κ, we can ensure that

Ωκ

Ä
αOκ(1)L−κ/4

ä
≥ Ωκ(2−(κ/2)m) ≥ 2−κm

if δ is small enough and m large enough in terms of κ. �
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Thus, the theorem asserts that a big part of B is contained in a set with

small doubling H, and a big part of A is densely contained in a union of (nearly)

disjoint translates of H (with X being the set of translations). In particular,

H cannot be much smaller than B (but it can be much larger), and X has size

approximately |A|/|H|. The proof of Theorem 3.2 is also elementary, although

it is rather lengthy.

3.2. Overview. We give a rough sketch of the proof of the inverse theorem.

Our goal is to apply the asymmetric Balog-Szemerédi-Gowers Theorem, Theo-

rem 3.2. In Section 3.3 we present two lemmas involving Lq norms. Recall that

our assumption is that ‖µ ∗ ν‖q ≥ 2−εm‖µ‖q. In Lemma 3.3 we extract two

sets A,B, which already satisfy properties (A-i), (A-ii), (B-i), (B-ii), and such

that similar bounds hold for their indicator functions. Lemma 3.4 (a simple

application of Hölder’s inequality) shows that one can pass from the Lq norm

to the L2 norm, enabling the application of Theorem 3.2.

In Section 3.4, we present some combinatorial regularization lemmas, in-

spired in [5]. Theorem 3.2 produces a set H of small exponential doubling such

that B +H is not much larger than H and A+H is not much larger than A.

Together with the information on the structure of H provided by Theorem 3.1

(or, rather, the version given by Corollary 3.10 below), and with the lemmas

in Section 3.4, this allows us to deduce the remaining properties of A and B

(after passing to suitable dense subsets).

Finally, (vi) is a straightforward consequence of the previous claims.

A point of notation: throughout this section, ` and m will denote suffi-

ciently large integers (given any other relevant data); any inequalities involving

them are understood to hold if they are larger than a constant that is allowed

to depend on any other parameters involved.

3.3. Analytical lemmas. We begin with a lemma, based on Young’s in-

equality and dyadic pigeonholing, that enables the use of the Balog-Szemerédi-

Gowers Theorem. It is an Lq asymmetric version of (the proof of) [6, Prop. 2].

Lemma 3.3. Given ε > 0 and q ∈ (1,∞), the following holds for large

enough m ∈ N. Suppose µ, ν are 2m-measures satisfying ‖µ ∗ ν‖q ≥ 2−εm‖µ‖q .
Then there exist j, j′ ≤ 2εq′m such that, setting

A = {x : 2−j−1‖µ‖q′q < µ(x) ≤ 2−j‖µ‖q′q },

B = {y : 2−j
′−12−m < ν(y) ≤ 2−j

′
2−m},

the following holds :

(i) ‖1A ∗ 1B‖q ≥ 2−2εm‖1A‖q‖1B‖1,

(ii) ‖µ|A‖q ≥ 2−2εm‖µ‖q ,
(iii) ‖ν|B‖1 = ν(B) ≥ 2−2εm.
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Proof. We use the notation X & Y to mean X ≥ C−1m−CY , where C > 0

depends on q only. For j ∈ Z, let

Aj = {x : 2−j−1‖µ‖q′q < µ(x) ≤ 2−j‖µ‖q′q },

Bj = {y : 2−j−12−m < ν(y) ≤ 2−j2−m}.

Firstly, note that Aj = ∅, Bj = ∅ if j ≤ −(m+1) since, by Hölder’s inequality,

1 =
∑
x

µ(x) ≤ ‖µ‖q2m/q
′

=⇒ ‖µ‖q′q ≥ 2−m.

Write ` = d2εq′me, and let E = ∪j≥`Aj , F = ∪j≥`Bj . Note that

‖µ|E‖qq ≤
Å

max
x∈E

µ(x)q−1
ã∑
x∈E

µ(x) ≤ 2−`(q−1)‖µ‖qq,

‖ν|F ‖1 = ν(F ) ≤ 2m2−`−m = 2−`.

By Young’s inequality,

max(‖µ|E ∗ ν‖q, ‖µ ∗ ν|F ‖q) ≤ 2−`/q
′‖µ‖q ≤ 2−εm‖µ ∗ ν‖q.

It follows from the bilinearity of convolution and the triangle inequality that,

if m�ε 1, ∑
−m≤j,j′<`

‖µ|Aj ∗ ν|Bj′‖q ≥
1

2
‖µ ∗ ν‖q.

Pigeonholing and applying Young’s inequality once again, we can pick j, j′ < `

such that, setting A = Aj , B = Bj′ , we have

‖µ|A‖q‖ν|B‖1 ≥ ‖µ|A ∗ ν|B‖q & ‖µ ∗ ν‖q ≥ 2−εm‖µ‖q.

From here it follows that ‖ν|B‖1 & 2−εm and ‖µ|A‖q & 2−εm‖µ‖q. Note that

2j
′+m & |B|. We conclude that

‖1A ∗ 1B‖q & (2j‖µ‖−q′q 2j
′+m)‖µ|A ∗ ν|B‖q

& (2j‖µ‖−q′q 2j
′+m)2−εm‖µ|A‖q

& 2−εm‖1A‖q‖1B‖1. �

The following simple consequence of Hölder’s inequality will allow us to

apply the Balog-Szmerédi-Gowers also in the context of Lq norms, q ∈ (1,+∞):

Lemma 3.4. Let A,B be two 2−m-sets, and let q ∈ (1,∞). If ‖1A∗1B‖q ≥
2−κm|A|1/q|B|, then

‖1A ∗ 1B‖22 ≥ 2−(max(q,q′))κm|A||B|2.

Proof. Consider first the case q ∈ (1, 2). Applying Hölder’s inequality in

the form∑
x

f(x)q =
∑
x

f(x)2−qf(x)2(q−1) ≤
Ç∑

x

f(x)

å2−q Ç∑
x

f(x)2

åq−1
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to f = 1A ∗ 1B yields

‖1A ∗ 1B‖qq ≤ |A|2−q|B|2−q‖1A ∗ 1B‖
2(q−1)
2 .

Hence, using the assumption,

‖1A ∗ 1B‖2(q−1)
2 ≥ 2−qκm

|A||B|q

|A|2−q|B|2−q
= 2−qκm|A|q−1|B|2(q−1),

which gives the claim when q ∈ (1, 2).

Suppose now q ∈ (2,+∞). Then

2−qκm|A||B|q ≤ ‖1A ∗ 1B‖qq ≤ ‖1A ∗ 1B‖22‖1A ∗ 1B‖q−2
∞ ≤ ‖1A ∗ 1B‖22|B|q−2,

and this completes the proof. �

3.4. Combinatorial lemmas. In this section we establish several elemen-

tary combinatorial lemmas. In both the statement and the proof of Theo-

rem 2.1 an important role is played by sets with a “regular tree structure.”

We begin by formalizing this concept. Recall that [`] = {0, 1, . . . , `− 1}.

Definition 3.5. Let D, ` ∈ N, and set m = `D. Given a sequence (Rs)s∈[`]

taking values in [1, 2D], we say that a 2−m-set A is (D, `,R)-uniform if N (A∩I,
(s+ 1)D) = Rs for each s ∈ [`] and I ∈ Ds`(A).

Further, we say that A is (D, `)-uniform if there is a sequence R such that

A is (D, `,R)-uniform.

Given an arbitrary 2−m-set A and D|m, one may associate to it the tree

whose vertices of level s are the 2−sD-intervals intersecting A. Then A is

(D, `)-uniform if and only if the associated tree is spherically symmetric; i.e.,

the number of offspring of a vertex is constant over all vertices at the same

distance to the root (but may vary between vertices of different levels). We will

often informally refer to the tree description of sets, for example by speaking

of branching at certain levels.

In our first lemma we show that any 2−m set contains a fairly large uniform

subset. This fact goes back at least to [5]; we provide details for completeness.

Lemma 3.6. Let D, ` ∈ N, and let A be a 2−m-set, where m = `D. Then

there exists a (D, `)-uniform subset A′ ⊂ A such that

|A′| ≥ (2D)−`|A| = 2(− log(2D)/D)m|A|.

Proof. The construction is similar to that in [5, §2]. We begin from the

bottom of the tree, setting A(`) := A. Once A(s+1) is constructed, we let

A(s,j) =
⋃¶

A(s+1) ∩ J : J ∈ DsD(A(s+1)),

N (J ∩A(s+1), (s+ 1)D) ∈ [2j + 1, 2j+1]
©
.
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Since j takes at most D values, we can pick j = js such that |A(s,j)| ≥
|A(s+1)|/D. By removing at most half of the intervals in A(s+1) from each inter-

val J making up A(s,j), we obtain a set A(s) such that |A(s)| ≥ |A(s+1)|/(2D)

and N (J ∩ A(s), (s + 1)D) = 2j for all J ∈ DsD(A(s)). We see inductively

that N (J ∩ A(s), (s′ + 1)D) is constant over all J ∈ Ds′D(A(s)) for all s′ =

s, s+ 1, . . . , `− 1.

The lemma follows by taking A′ = A(0). �

The next simple lemma (which is also implicit in [5]) asserts that, given

a (D, `,R)-uniform set, it is possible to reduce some of the numbers Rs to 1

without decreasing the size of the set too much.

Lemma 3.7. Given D, ` ∈ N, the following holds. Suppose A is (D, `,R)-

uniform. Then, if S ⊂ [`] is any set, there exists a subset A′ ⊂ A that is

(D, `,R′) uniform, where R′s = 1 for s ∈ S and R′s = Rs for s ∈ [`] \ S , and

|A′| ≥
(∏
s∈S

1

Rs

)
|A| ≥ 2−|S|D|A|.

Proof. We inductively construct a sequence of sets A(s), s ∈ [`]. Set

A(0) = A. Once A(s) is defined, if s /∈ S, set A(s+1) = A(s). Otherwise, for

each I ∈ DsD(A(s)), let JI be any interval in D(s+1)D(A∩ I), and let A(s+1) be

the union of all such intervals JI . Since Rs ≤ 2D, it is clear that A′ = A(`−1)

has the desired properties. �

Given a set A, the next lemma extracts a large subset A′ of a suitable

translation of A, such that points in A′ are “not too close to the boundary” of

2D-adic intervals.

Lemma 3.8. Let D ∈ N≥2, ` ∈ N, and let A be a 2−m-set in R/Z, where

m = `D. Then there are a point x = k2−m and a subset A′ ⊂ A such that

(i) |A′| ≥ 2−(log 3/D)m|A|;
(ii) for all y ∈ A′ and all s ∈ [`], y + x ∈ 1

2DsD(y + x).

Proof. We note the following simple fact: for any y ∈ [0, 1) and any

j ≤ m− 2, there is t ∈ {−2−(j+2), 0, 2−(j+2)} such that y + t ⊂ 1
2Dj(y). With

this in mind, we prune the tree in a similar way to Lemma 3.6 to construct

sets A(s), starting from A(`) = A and moving up to A(0), such that for each

s ∈ [`],

(1) there is ts ∈ {−2−(sD+2), 0, 2−(sD+2)} such that y + xs := y +
∑`−1
s′=s ts′ ∈

1
2DsD(y + xs) for all y ∈ A(s);

(2) moreover, |A(s)| ≥ |A(s+1)|/3.
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Set x = x0 =
∑`−1
s=0 ts and A′ = A(0). It is clear that |A′| ≥ 3−`|A| =

2−(log 3/D)m|A|. Also, since
∑s−1
s′=0 ts′ is a multiple of 2−sD, we have y + x ∈

DsD(y + x) for all y ∈ A′ and s ∈ [`], as claimed. �

The next lemma will allow us to show that if H has small doubling and

A+H is “not too large,” then A and H have a certain shared structure.

Lemma 3.9. Let D, ` ∈ N, and write m = `D. Suppose H,A are 2−m-sets

such H is (D, `,R)-uniform and A is (D, `,R′)-uniform. Then

|A+H| ≥ 2−(1/D)m|H|
∏

s:Rs=1

R′s.

Proof. Write S = {s : Rs = 1}. By replacing A with the subset given by

Lemma 3.7, we may assume that R′s = 1 for all s /∈ S. This makes the problem

symmetric: for each s, either Rs = 1 or R′s = 1. With this in mind, we

inductively show that for each s = 0, 1, . . . , `, there are families Is ⊂ DsD(A),

Js ⊂ DsD(H), such that

(1) |Is||Js| ≥ 2−sNsD(A)NsD(H);

(2) the intervals {I + J : I ∈ Is, J ∈ Js} are pairwise disjoint.

The base case s = 0 is trivial. Suppose this holds for some s < `. Without

loss of generality, Rs+1 = 1. Hence, for each J ∈ Js, we pick the single

J ′ ∈ D(s+1)D(J ∩H) and let Js+1 be the union of all such J ′. Next, for each

I ∈ Is, let (I ′j)
NI
j=1 be a subcollection of D(s+1)D(I ∩A) such that no two of the

I ′j are adjacent, and NI ≥ dR′s+1/2e. We let Is+1 be the union of all I ′j over

all I ∈ Is. It is clear from this construction that (1)–(2) hold.

The claim follows from (1)–(2) applied with s = `. �

We conclude this section with a version of Theorem 3.1 in which the

lengths of the intervals over which there is either no or close to full branching

is kept constant (at the price of worsening the quantitative estimates). This

reduction is a matter of simplicity; a version of Theorem 2.1 in which the

intervals of almost full/no branching have varying lengths could be deduced

directly from Theorem 3.1.

Corollary 3.10. Given a large D ∈ N, the following holds for suffi-

ciently large ` ∈ N (depending on D).

Let m = `D. Suppose H is an (m, 2−2D2−1)-small doubling set. Then

there is a subset H1 ⊂ H such that the following holds :

(i) |H1| ≥ 2−(4(logD)D−1/4)m|H|;
(ii) H1 is (D, `,R)-uniform, where for each u either Ru = 1, or logRu ≥

(1−D−1/4)D.

In particular, |H1| =
∏
u:Ru>1Ru.
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Proof. Let H ′,S, ns, ‹Rs (in place of Rs) be as given by Theorem 3.1 with

T = D2. We assume that m is a multiple of T ; the general case can be deduced

by applying this special case to max{m1T : m1T ≤ m}.
Let S =

∑
s∈S ns − sT . If S < T−1/4m, then

|H| ≤ 2(2 log T/
√
T )m|H ′| ≤ 2(2 log T/

√
T )m2T

−1/4m ≤ 22T−1/4m,

so that a singleton satisfies the conditions in the statement. We therefore

assume that S ≥ T−1/4m.

We apply Lemma 3.6 to H ′ and D, to obtain a (D, `,R)-uniform set H ′′

such that

(3.2) |H ′′| ≥ 2−(log(2D)/D)m|H ′|.

It is clear that Ru = 1 for all u of the form sD + j, j ∈ [D], with s /∈ S, and

also with s ∈ S and jD ≥ ns − sT , since over those scales already H ′ had no

branching. Therefore, there is a set U such that Ru = 1 for u /∈ U , and

(3.3) D|U| ≤ S + (m/T )D ≤ S(1 +D−1/2),

using that S ≥ D−1/2m. Using Theorem 3.1, (3.2) and S ≥ D−1/2m again, we

get

(1− 1/D)S ≤ log |H ′| ≤ log |H ′′|+ log(2D)

D
D1/2S,

so that, recalling (3.3),

log |H ′′| ≥ S(1− 1/D − log(2D)D−1/2) ≥ 1− (2 logD)D−1/2

1 +D−1/2
D|U|.

Hence,

1

|U|
∑
u∈U

logRu
D

=
log |H ′′|
D|U|

≥ 1− 3(logD)D−1/2.

Since logRu/D ∈ [0, 1] for all u, Markov’s inequality yields that log(Ru) ≥
(1−D−1/4)|D| for u outside of a set U ′ with

|U ′| ≤ 3(logD)D−1/4|U| ≤ 3(logD)D−1/4m/D,

provided D is larger than an absolute constant. To obtain our final set H1, we

apply Lemma 3.7 to H ′′ and the set U ′ (that is, we collapse all Ru intervals to

a single one for u ∈ U ′). Recalling Theorem 3.1(i) and (3.2), the resulting set

satisfies

|H1| ≥ 2−D|U
′||H ′′| ≥ 2−4(logD)D−1/4m|H|,

while the claim on the branching structure is clear from the construction. �
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3.5. Proof of Theorem 2.1.

Proof of Theorem 2.1. Let D ∈ N, ε > 0. In the course of the proof, we

will impose several lower bounds to D (depending on D0, δ, q only) and upper

bounds on ε (depending on D, δ, q only), resulting in the verification of all the

claims in the theorem. To begin, we assume D ≥ D0. In the course of the

proof, we write m = D`, and we understand ` and m to be sufficiently large

that any claims involving them hold.

Let τ > 0 be the value given by Theorem 3.2 for κ := 2−2D2−1. We take

ε ≤ τ

2 max(q, q′)
.

(Later we will impose further conditions on ε.)

Apply Lemma 3.3 to obtain sets A1, B1 and j, j′ ≤ 2εq′m satisfying (i)–

(iii) in the lemma (with A1, B1 in place of A,B). By our choice of ε and

Lemma 3.4,

‖1A1 ∗ 1B1‖22 ≥ 2−τm|A1||B1|2,
so that we can apply Theorem 3.2 to A1, B1 to obtain an (m,κ)-small doubling

set H and a 2−m-set X such that

|A1 ∩ (X +H)| ≥ 2−κm|A1|,(3.4)

|A1| ≥ 2−κm|X||H|,(3.5)

|B1 ∩H| ≥ 2−κm|B1|.(3.6)

Thanks to Lemma 3.3, the sets A1, B1 already satisfy (A-ii), (B-ii). As the

final sets A,B will be subsets of A1, B1, these properties are established.

Our next step is to pass to suitable regular subsets of (a translation of)

A1, B1, H:

(1) By our choice κ = 2−2D2−1, we can apply Corollary 3.10 to H. Let H ′ ⊂ H
be the resulting set, with branching numbers Rs, s ∈ [`].

(2) We first apply Lemma 3.8 (this is the point where we need to translate the

original measure), and then Lemma 3.6 and (3.4) , to the set A1∩(X+H),

to obtain a set A ⊂ A1 ∩ (X +H) such that

(a) |A| ≥ 2−(2 logD/D)m|A1∩(X+H)| ≥ 2−(3 logD/D)m|A1|. Hence, in light

of (A-ii), property (A-i) holds if D is taken large enough in terms of δ.

(b) The set A is (`,D,R′)-uniform for some sequence (R′s)s∈[`]. This shows

that (A-iii) holds.

(c) x ∈ 1
2DsD(x) for all x ∈ A and s ∈ [`]. That is, (A-iv) holds.

(3) Similarly, we apply Lemma 3.8, and then Lemma 3.6 and (3.6), to B1 ∩H
to obtain a set B2 ⊂ B1 ∩H (not yet our final set B) such that

(a) |B2| ≥ 2−(2 logD/D)m|B1 ∩H| ≥ 2−(3 logD/D)m|B1|.
(b) The set B2 is (`,D, ‹R)-uniform for some sequence (‹Rs)s∈[`]. This

shows that (B-iii) holds for B2.
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(c) y ∈ 1
2DsD(y) for all y ∈ B2. As the final set B will be a subset of B2,

this establishes (B-iv).

Next, we note that as A+H ′ ⊂ X +H +H, we can use (3.5) and (2)(a)

above to estimate

(3.7) |A+H ′| ≤ |X||H +H| ≤ 2κm|X||H| ≤ 22κm|A1| ≤ 2(4 logD/D)m|A|.

Let S0 = {s ∈ [`] : Rs = 1}, S1 = [`] \ S0, so that S1 indexes the scales

over which H ′ has almost full branching. We will see that A has almost full

branching for a large subset of scales S ⊂ S1; eventually B will be obtained

from B2 by collapsing all the branching at the scales in [`]\S using Lemma 3.7.

According to Lemma 3.9 applied to A and H ′ (which we have seen meet

the hypotheses),

(3.8) |A+H ′| ≥ 2−(1/D)m|H ′|
∏
s∈S0

R′s.

Since |A| =
∏
sR
′
s, |H ′| =

∏
sRs and Rs ≥ 2(1−D−1/4)D for s ∈ S1, we may

combine (3.7) and (3.8) to deduce that∏
s∈S1

R′s =
|A|∏
s∈S0

R′s
≥ 2−(5 logD/D)m|H ′| ≥ 2−(5 logD/D)m2(1−D−1/4)|S1|D.

Consider two cases:

(1) If |S1| < D−1/2` (which we note implies H ′, hence H and B, are very

small), then we set S ′ = S1 and S = ∅.

(2) If |S1| ≥ D−1/2`, then we further deduce from the above that∏
s∈S1

R′s ≥ 2(1−2D−1/4)D|S1|.

Let

S = {s ∈ S1 : R′s ≥ 2(1−D−1/8)D},

S ′ = {s ∈ S1 : R′s < 2(1−D−1/8)D}.

Since R′s ≤ 2D for all s, we have

(1− 2D−1/4)|S1| ≤
∑
s∈S1

logR′s
D

≤ (1−D−1/8)|S ′|+ |S1| − |S ′|,

so that

|S ′| ≤ 2D−1/8|S1| ≤ 2D−1/8`.

We note for later reference that, in either case,

(3.9) |S ′| ≤ max(2D−1/8`,D−1/2`) = 2D−1/8`.

We move on to the construction of B. By Theorem 3.2 and Corollary 3.10,

|B2 +H ′| ≤ |(B1 ∩H) +H| ≤ 2κm|H| ≤ 2(5(logD)D−1/4)m|H ′|.
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Applying Lemma 3.9 to B2 and H ′, we deduce that∏
s∈S0

‹Rs ≤ 2(1/D)m2(5(logD)D−1/4)m ≤ 2(6(logD)D−1/4)m.

We apply Lemma 3.7 to B2 and the set S0 to obtain a new set B3 ⊂ B2 such

that for all s ∈ S0 and I ∈ DsD(B3), there is a single J ∈ D(s+1)D(B3 ∩ I),

while if s /∈ S0, then N (B3 ∩ I, (s + 1)D) = ‹Rs for all I ∈ DsD(B3). By

Lemma 3.7 and (3)(a) above,

|B3| ≥ 2−(6(logD)D−1/4)m|B2| ≥ 2−(7(logD)D−1/4)m|B1|.

Finally, recall that we defined a set S ′, satisfying (3.9). We obtain our final

set B by applying Lemma 3.7 to B3 and S ′. Then

|B| ≥ 2−2D−1/8m|B3| ≥ 2−3D−1/8m|B1|,

and N(s+1)D(I ∩B) = 1 for all I = DsD(B) for each s ∈ S0 ∪ S ′ = [`] \ S. We

had already established (B-ii) and (B-iv). The set B satisfies (B-i) if D is large

enough (thanks to (B-ii)); and it still satisfies (B-iii), with R′′s = 1 for s /∈ S
and R′′s = ‹Rs for s ∈ S.

The claim (v) follows from the construction if D is large enough: either

s ∈ S, in which case R′s ≥ 2(1−oD→∞(1))(D) or s /∈ S, in which case R′′s = 1 as

we have just observed.

It remains to establish (vi). It follows from (B-i)–(B-ii) that ν(x) ≥
1
22−δm|B|−1 for all x ∈ B. On the other hand, we know from (B-iii) and

(v) that |B| ≤ 2D|S|. We get

‖ν‖−q′q ≤ Oq(1)2δmq
′ |B| ≤ Oq(1)2δmq

′
2D|S|,

which gives the left-hand inequality in (vi), with Oq(δ) in place of δ.

By Lemma 3.3, µ(x) ≥ 1
22−2εq′m‖µ‖q′q for all x ∈ A ⊂ A1, whence

2−q2−(2qq′ε)m‖µ‖qq′q |A| ≤ ‖µ‖qq,

so that |A| ≤ 23qq′εm‖µ‖−q′q . Since |A| ≥ 2(1−δ)D|S| by (A-iii) and (v), the right-

hand side inequality in (vi) also follows (with 2δ in place of δ, say), concluding

the proof. �

4. Properties of dynamically driven self-similar measures

4.1. Preliminary lemmas. In this section we initiate the study of measures

generated by pleasant models (recall Definition 1.9). We start by collecting

some standard lemmas for later reference. The short proofs are included for

completeness.
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Lemma 4.1. Let (Y, µ,B) be a probability space. Suppose P,Q are finite

families of measurable subsets of Y such that each element of P can be covered

by at most M elements of Q and each element of Q intersects at most M

elements of P . Then, for every q ≥ 1,∑
P∈P

µ(P )q ≤M q
∑
Q∈Q

µ(Q)q.

Proof. Let QP,1, . . . , QP,MP
, MP ≤ M , be a minimal sub-collection of

Q that covers P ∈ P. Using Hölder’s inequality in the form (
∑m
i=1 ai)

q ≤
mq−1∑m

i=1 a
q
i , we get

∑
P∈P

µ(P )q ≤M q−1
∑
P∈P

MP∑
i=1

µ(QPi)
q ≤M q

∑
Q∈Q

µ(Q)q. �

Lemma 4.2. Let µ =
∑`
i=1 µi, where µi are finitely supported measures

on a space Y , such that each point is in the support of at most M of the µi.

Then

‖µ‖qq ≤M q−1
∑̀
i=1

‖µi‖qq.

Proof. For each x, Hölder’s inequality, together with the assumption that

µi(x) > 0 for at most M values of i, gives (
∑
i µi(x))q ≤M q−1∑

i µi(x)q. The

claim follows. �

Lemma 4.3. For any probability measures µ, ν on R/Z, and any q ∈
(1,∞),

‖(µ ∗ ν)(m)‖qq = Θq(1)‖µ(m) ∗ ν(m)‖qq.

Proof. Given I = [k2−m, (k + 1)2−m) ∈ Dm, let PI = {(x, y) ∈ (R/Z)2 :

x+ y ∈ I} and

QI =
⋃

i∈Z/2mZ
[i2−m, (i+ 1)2−m)× [(k − i)2−m, (k − i+ 1)2−m).

Then ‖(µ ∗ ν)(m)‖qq =
∑
I(µ × ν)(PI)

q and ‖µ(m) ∗ ν(m)‖qq =
∑
I(µ × ν)(QI)

q,

so the claim follows from Lemma 4.1. �

4.2. A sub-multiplicative cocycle, and consequences. Throughout the rest

of this section, we use the following notation. We work with a measure-

preserving system (X,T,P); i.e., T : X → X is a measurable map, and

TP = P. A model X = (X,T,∆, λ) is fixed, and µx, µx,n are as defined in

(1.3), (1.4). Moreover, m = m(n) will denote the smallest integer such that

2−m ≤ λn. (The dependence is omitted when it is clear from context.) We

assume that

(4.1) supp(µx) ⊂ [0, 1] for all x ∈ X,
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which can always be achieved by a change of coordinates, i.e., by replacing the

map ∆ by g ◦∆ for an appropriate affine map g.

For each x ∈ X, we define a code space Ωx =
∏∞
n=0 supp(∆(Tnx)) and a

coding map πx : Ωx → R, via ω 7→ ∑∞
n=0 ωnλ

n. Then, by definition, µx is the

push-down of the product measure
∏
n ∆(Tnx) under this coding map. We

also define the truncated coding maps πx,n : Ωx → R, ω 7→ ∑n−1
i=0 ωiλ

i. Then

µx,n is the image of
∏
n ∆(Tnx) under the truncated coding map.

Lemma 4.4. For every x ∈ X , ‖µ(m)
x ‖qq = Θλ,q(1)‖µ(m)

x,n ‖qq .

Proof. Let η =
∏∞
n=0 ∆(Tnx), so that µx = πxη and µn,x = πn,xη. Then

‖µ(m)
x ‖qq =

∑
I∈Dm

η(π−1
x I)q, ‖µ(m)

x,n ‖qq =
∑
I∈Dm

η(π−1
x,nI)q.

The lemma follows easily from Lemma 4.1 since

‖πx − πx,n‖∞≤O(λn) = Oλ(2m). �

We recall some well-known properties of the Lq spectrum τµ; see, e.g., [33,

Prop. 3.2] for the proofs.

Lemma 4.5. For any probability measure on R of bounded support, the

function τ = τµ : [0,∞)→ R is increasing, concave, and satisfies τ(1) = 0.

The next proposition introduces a sub-multiplicative cocycle (which was

first used in [35], in a special case) that will play a crucial role in the proof of

Theorem 1.11. Let us define the following sequence of functions, parametrized

by q ∈ [1,∞):

φqn(x) = ‖µ(m(n))
x ‖qq.

Proposition 4.6. For any n, n′ ∈ N,

φqn+n′(x) ≤ Oq,λ(1)φqn(x)φqn′(T
nx).

In particular, for each q ∈ [1,∞), there exists a number T (q) such that

(4.2) lim
n→∞

− 1

m
log ‖µ(m)

x ‖qq = T (q)

for P-almost every x. Moreover, for P-almost every x, it holds that T (q) =

τµx(q) for all q ∈ [1,+∞). In particular, T : [1,∞) → R is increasing and

concave, and T (1)=0.

Proof. We estimate
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‖µ(m(n+n′))
x ‖qq ≤ Oλ,q(1)‖µ(m(n+n′))

x,n ∗ (SλnµTnx)(m(n+n′)) ‖qq
≤ Oλ,q(1)

∑
I∈Dm(n)

‖µ(m(n+n′))
x,n |I ∗ (SλnµTnx)(m(n+n′)) ‖qq

≤ Oλ,q(1)
∑

I∈Dm(n)

µx,n(I)q
∑

J∈Dm(n+n′)

µTnx(Sλ−nJ)q

≤ Oλ,q(1)‖µ(m(n))
x ‖qq‖µ

(m(n′))
Tnx ‖qq.

We have used the self-similarity relation (1.5) and Lemma 4.3 in the first

line, Lemma 4.2 in the second line (which is justified since the support of

SλnµTnx has diameter Oλ(2−m(n))), Young’s inequality in the third line, and

Lemmas 4.1, 4.4 in the last line.

The subadditive ergodic theorem applied to the sequence of (bounded and

measurable) functions x 7→ log φqn(x) − Cλ,q for a sufficiently large constant

Cλ,q yields (4.2). More precisely, we know the convergence for the subsequence

m(n), n ∈ N, but since this sequence has positive density, (4.2) follows from

the monotonicity of m 7→ ‖ν(m)‖qq.
Finally, if (qj) is a dense subset of (1,∞), then we know from the previous

claim that τµx(qj) = T (qj) for all j, for P-almost all x. Since τµ is concave and

increasing, and T (q) is clearly increasing, we deduce that the equality extends

to all q ∈ (1,∞).

The last claim is immediate from Lemma 4.5 �

In order to prove Theorem 1.11, we would like to draw conclusions for

all x rather than almost all. Indeed, the strategy will be to prove that the

convergence in (4.2) holds for all x, and T (q) has the “expected” value. It is well

known that for uniquely ergodic systems, the ergodic averages of sufficiently

regular (almost everywhere continuous) observables converge uniformly. The

next known lemma asserts that a one-sided version of this remains valid for

subadditive cocycles.

Lemma 4.7. Let (X,T,P) be a uniquely ergodic measure-preserving sys-

tem, with X a compact metric space, and T continuous. Suppose φn : X → R
are continuous P-almost everywhere and bounded, and

φn+n′(x) ≤ φn(x) + φn′(T
nx)

for all n, n′ ∈ N, x ∈ X . Then, denoting by L the P-almost sure limit of

φn(x)/n, we have

(4.3) lim sup
n→∞

1

n
φn(x) ≤ L uniformly in x ∈ X.

Proof. For continuous φn, the claim was observed by Furman [18, Th. 1].

In the case the φn are only almost everywhere continuous and bounded, a

classical exercise in measure theory yields that for each n and ε > 0, there

exists a continuous function φn,ε such that φn ≤ φn,ε pointwise, and
∫
φn,ε −
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φn dP ≤ ε. Indeed, using compactness and the fact that P is a Radon measure,

we may find a finite open cover (∪iBi) ∪ B′ of X such that the variation

of φn on each Bi is at most ε/2, the discontinuity set of φn is contained in

B′, and P(B′) < ε/(2‖φn‖∞). Let (hi), h
′ be a continuous partition of unity

subordinated to Bi, B
′, and define φn,ε =

∑
i hi‖φn|Bi‖∞ + h′‖φn‖∞.

Other than the uniformity in x, the claim (4.3) follows from [22, Th. 3.5],

which in turn is established by inspecting the proof of the subadditive ergodic

theorem given by Katznelson and Weiss [31]. (Recall that for uniquely ergodic

systems all points are generic.) To deduce the uniform convergence, we recall

that the ergodic averages of the continuous functions φn,ε converge uniformly

(thanks to unique ergodicity) and apply [22, eq. (18)]. �

Furman [18, Th. 1] also showed that, even in the continuous case, the set

of x such that fn(x)/n 6→ L may be nonempty and, indeed, can equal any Fσ,

P-null set.

From Proposition 4.6 and Lemma 4.7 we obtain the following crucial corol-

lary; this is the main place where the pleasantness of the model gets used.

Corollary 4.8. Suppose (X,T,∆, λ) is a pleasant model. Then

lim inf
m→∞

− 1

m
log ‖µ(m)

x ‖qq ≥ T (q) uniformly in x ∈ X,

where T (q) is the function from Proposition 4.6.

Proof. Let ψm : R/Z → [0, 1] be a continuous bump function supported

on the interval [−2−m, 2−m] such that ψm ≡ 1 on [−2−m/2, 2−m/2]. It follows

easily from Lemma 4.1 that

Ψm(x) :=
2m−1∑
k=0

Å∫
ψm(t+ k2−m)dµx(t)

ãq
= Θq(‖µ(m)

x ‖qq).

Since the model is pleasant, Ψm is bounded and continuous P-almost every-

where. The corollary is now immediate from (the proof of) Proposition 4.6

and Lemma 4.7. �

We point out that, in the special case given by Lemma 7.1 below, this

corollary was first obtained in [35].

4.3. Multifractal structure. Next, we investigate the scaling (or multifrac-

tal) properties of measures generated by pleasant models. Throughout the rest

of this section, we always assume the following:

Standing assumption. (X,T,∆, λ) is a pleasant model, and T (q) is the

function given by Proposition 4.6 for this model. Any constants or parameters

are allowed to depend on the model (in particular, on the function T ).
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Later on, in Section 6.4, we will need small variants of the results of this

section in which T is replaced by the Lq spectrum of a fixed (non-homogeneous)

self-similar measure. With a view towards this, it may be useful to observe

that the proofs only use the concavity of T together with Corollary 4.8.

We will establish some regularity of the multifractal structure for those

values of q such that T is differentiable at q. The Legendre transform plays

a key role in multifractal analysis. Given a concave function τ : R → R, its

Legendre transform τ∗ : R→ [−∞,∞) is defined as

τ∗(α) = inf
q∈R

αq − τ(q).

It is easy to check that if τ is concave and is differentiable at q, then

τ∗(α) = αq − τ(q) for α = τ ′(q).

The next lemma is also well known; the short proof is included for com-

pleteness.

Lemma 4.9. If T is differentiable at q > 1, T (q) < q − 1, and α = T ′(q),

then T ∗(α) ≤ α < 1

Proof. Since T (1) = 0 and T (q) < q−1, we have (T (q)−T (1))/(q−1) < 1.

On the other hand, as T is concave and differentiable at q, we must have

α ≤ (T (q)− T (1))/(q− 1) < 1. Furthermore, T ∗(α) ≤ α · 1− T (1) = α, so the

lemma follows. �

It is known that the multifractal structure of general measures displays

some regularity for values of q such that τµ is differentiable at q (or, dually,

values of α such that τ∗ is strictly concave at α); see for example [33, Th. 5.1].

The following lemmas, which are proved with similar ideas, are a further illus-

tration of this. For a single measure µ, the heuristic to keep in mind is that,

whenever α = τ ′µ(q) exists, almost all of the contribution to ‖µ(m)‖qq comes

from ≈ 2τ
∗(α)m intervals, each of mass ≈ 2−αm. In our case, we are dealing

with a family (µx)x∈X ; with the help of Corollary 4.8 we will establish results

that are uniform in x, at the price of dealing with T (q) in place of τµx(q).

Lemma 4.10. Suppose that α0 = T ′(q0) exists for some q0 ∈ (1,∞).

Given ε > 0, the following holds if δ is small enough in terms of ε, q0 and

m is large enough in terms of ε, q0 and δ.

Suppose D′ ⊂ Dm is such that, for some x ∈ X ,

(1) 2−αm ≤ µx(I) ≤ 2 · 2−αm for all I ∈ D′ and some α ≥ 0;

(2)
∑
I∈D′ µx(I)q0 ≥ 2−(T (q0)+δ)m.

Then |D′| ≤ 2m(T ∗(α0)+ε).
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Proof. Set η := ε/(3q0), and pick δ ≤ η2/9, and also small enough that, if

q1 = q0 − δ1/2, then

(4.4) T (q0)− T (q1) ≤ δ1/2α0 + δ1/2η.

On one hand, using (1) and Corollary 4.8, we get

2−(T (q1)−δ)m ≥ ‖µ(m)
x ‖q1q1 ≥ |D

′|2−αq1m

if m is large enough (depending on q0, T , but not on x). On the other hand,

by assumptions (1)–(2),

|D′|2−αq0m ≥ 2−q02(−T (q0)−δ)m ≥ 2(−T (q0)−2δ)m

if m�δ,q0 1. Eliminating |D′| from the last two displayed equations yields

αq0 − T (q0)− 2δ ≤ α(q0 − δ1/2)− T (q0 − δ1/2) + δ,

so that, recalling (4.4),

δ1/2α ≤ T (q0)− T (q0 − δ1/2) + 3δ ≤ δ1/2α0 + δ1/2η + 3δ.

Hence α − α0 < 2η, since we assumed δ ≤ (η/3)2. Using this, a further

application of Corollary 4.8 guarantees that if m�ε 1, then

2(−T (q0)+ε/3)m ≥ ‖µ(m)
x ‖q0q0 ≥ 2−q0αm|D′| ≥ 2−q0α0m2−(q02η)m|D′|.

The conclusion follows from the formula T ∗(α0) = q0α0−T (q0) and our choice

η = ε/(3q0). �

Lemma 4.11. Let q0 > 0 be such that α0 = T ′(q0) exists. Given σ > 0,

there is ε = ε(σ, q0) > 0 such that the following holds for large enough m (in

terms of σ, q0): for all x ∈ X ,

(4.5)
∑
{µx(I)q0 : I ∈ Dm, µx(I) ≥ 2−m(α0−σ)} ≤ 2−m(T (q0)+ε).

Proof. Let η ∈ (0, 1) be small enough that

(4.6) T (q0 + η) ≥ T (q0) + ηα0 − δ,

where δ = ησ/(4 + 2q0).

Let αj = α0 − δj, and write Nx(αj ,m) for the number of intervals I in

Dm such that 2−mαj ≤ µx(I) < 2−mαj+1 . By Corollary 4.8, for any fixed value

of q, if m�q 1, then

Nx(αj ,m)2−mqαj ≤ ‖µ(m)
x ‖qq ≤ 2−m(T (q)−δ).

Applying this to q = q0 + η, and using (4.6), we estimate

Nx(αj ,m)2−mq0αj ≤ 2mηαj2−m(T (q0+η)−δ)

≤ 22δm2−jδηm2−T (q0)m.
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Let Sx be the sum in the left-hand side of (4.5) that we want to estimate.

Using that δ = ησ/(4 + 2q0), we conclude that

Sx ≤
∑

j:δ(j+1)≥σ
Nx(αj ,m)2−mq0αj+1

≤
∑

j:δ(j+1)≥σ
2δq0m22δm2−jδηm2−T (q0)m

≤
∑
j≥0

2−jδηm2(2+q0)δm2−ησm2−T (q0)m

≤ Oδη(1)2(ησ/2−ησ)m2−T (q0)m,

as claimed. �

Lemma 4.12. Let q0 > 1 be such that α0 = T ′(q0) exists. Given κ > 0,

there is ε = ε(κ, q0) > 0 such that the following holds for large enough m (in

terms of q0, ε) and all x ∈ X .

If D′ ⊂ Dm has ≤ 2(T ∗(α0)−κ)m elements, then∑
I∈D′

µx(I)q0 ≤ 2−(T (q0)+ε)m

for all x ∈ X .

Proof. Let σ = κ/(2q0), and fix x ∈ X. In light of Lemma 4.11, we only

need to worry about those I with µx(I) ≤ 2−m(α0−σ). But∑
{µx(I)q0 : I ∈ D′, µx(I) ≤ 2−m(α0−σ)} ≤ 2(T ∗(α0)−κ)m2−(q0α0−q0σ)m

= 2−(κ−q0σ)m2−T (q0)m.

By our choice of σ, κ− q0σ = κ/2 > 0, so this gives the claim. �

The second part of the following proposition can be used to give another

(though closely related) proof of Proposition 4.6, and it was obtained in [40],

[35] in special cases. The first part is proved in a similar way, relying on

Lemma 4.12.

Proposition 4.13. Let q > 1 be such that α = T ′(q) exists.

(i) Given κ > 0, there is η = η(κ, q) > 0 such that the following holds for all

large enough m: for any s ∈ N, I ∈ Ds and x ∈ X , if D′ is a collection of

intervals in Ds+m(I) with |D′| ≤ 2(T ∗(α)−κ)m, then∑
J∈D′

µx(J)q ≤ 2−(T (q)+η)mµx(2I)q.
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(ii) Given δ > 0, the following holds for all large enough m: for any I ∈ Ds,
s ∈ N, and x ∈ X ,∑

J∈Ds+m(I)

µx(J)q ≤ 2−(T (q)−δ)mµx(2I)q.

Proof. We prove (i) first. Let n be the smallest integer such that λn <

2−s−2. Let yj be the atoms of µx,n such that [yj , yj + λn] ∩ I 6= ∅, let pj be

their respective masses, and write

µx,n,I =
∑
j

pjδyj .

Then the support of µx,n,I is contained in the λn-neighborhood of I. Moreover,

since δz ∗ SλnµTnx is supported on [z, z + λn], thanks to (4.1), it follows from

the self-similarity relation µx = µx,n ∗SλnµTnx and the definition of µx,n,I that

µx|I = (µx,n,I ∗ SλnµTnx)|I . Write

p = ‖µx,n,I‖1 =
∑
j

pj ≤ µx(2I),

using that, again by (4.1), the support of µx,n is contained in the λn neighbor-

hood of the support of µx, and that 4λn ≤ 2−s.

We can then estimate∑
J∈D′

µx(J)q =
∑
J∈D′

Ñ∑
j

pjδyj ∗ SλnµTnx(J)

éq

=
∑
J∈D′

Ñ∑
j

pjµTnx(λ−n(J − yj))

éq

≤
∑
J∈D′

pq−1
∑
j

pj µTnx(λ−n(J − yj))q

= pq−1
∑
j

pj
∑
J∈D′

µTnx(λ−n(J − yj))q,

where we used the convexity of tq in the third line. Now for each fixed j,

each interval λ−n(J − yj) with J ∈ D′ can be covered by Oλ(1) intervals in

Dm, and reciprocally each interval in Dm hits at most two intervals among the

λ−n(J − yj). We deduce from Lemmas 4.1 and 4.12 that, still for a fixed j,∑
J∈D′

µTnx(λ−n(J − yj))q ≤ Oλ,q(1)2−(T (q)+ε)m,

provided m is taken large enough, where ε=ε(κ, q) > 0 is given by Lemma 4.12.

Combining the last three displayed equations yields the first claim with η = ε/2.

The second claim follows in the same way, adding over Ds+m(I) instead

of D′, and using Corollary 4.8 instead of Lemma 4.12. �
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5. Proof of Theorem 1.11

5.1. Flattening of Lq norm for dynamically driven self-similar measures.

As noted in the introduction, we aim to prove a generalization of [26, Th. 1.1]

by following the same broad outline. One of the key steps in the proof of [26,

Th. 1.1] consists in showing that convolving a self-similar measure with an

arbitrary measure, on which only a lower bound on the entropy is assumed,

results in an entropy increment; see [26, Cor. 5.5]. In turn, this is derived from

the inverse theorem of [26] by proving that the entropy of self-similar measures

is roughly constant at most scales and locations, a property that Hochman

termed uniform entropy dimension; see [26, Def. 5.1 and Prop. 5.2] for precise

details. Once again, we will follow a different path to obtain a statement for

Lq norms that is similar in spirit.

We continue to work with a fixed pleasant model (X,T,∆, λ) and the

function T from Proposition 4.6.

Theorem 5.1. Given σ > 0 and q > 1 such that T is differentiable at q

and T (q) < q − 1, there is ε = ε(σ, q) > 0 such that the following holds for m

large enough in terms of all previous parameters : if ν is a 2−m-measure with

‖ν‖q′q ≤ 2−σm, and x ∈ X , then

‖ν ∗ µ(m)
x ‖qq ≤ 2−(T (q)+ε)m.

The analogy with [26, Cor. 5.5] is clear. However, there is no useful

analog of the notion of uniform entropy dimension for Lq norms. One of the

key differences is that nearly all of the Lq norm may be (and often is) captured

by sets of extremely small measure, while sets of small measure also have

small entropy. Instead, we will use the regularity of the multifractal spectrum

established in the previous section in the following manner: if the flattening

claimed in the theorem does not hold, then the inverse theorem provides a

regular set A that captures much of the Lq norm of µx. The upper bound on

‖ν‖q′q together with (v)–(vi) in the inverse theorem imply that A has nearly full

branching for a positive proportion of 2D-scales, so it must have substantially

less than average branching also on a positive proportion of scales. On the

other hand, we will call upon the lemmas from the previous section to show

that, in fact, A must have nearly constant branching on nearly all scales (this

is the part that uses the differentiability of T at q), obtaining the desired

contradiction.

Proof of Theorem 5.1. Suppose ν is a 2−m-measure with ‖ν‖q′q ≤ 2−σm.

In the course of the proof, we will choose many numbers that ultimately de-

pend on σ and q only. To ensure that there is no circularity in their defini-

tions, we indicate their dependencies: α = α(q), κ = κ(α, σ), γ = γ(q, α, κ),
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δ′ = δ′(α, σ, κ), η = η(q, κ), δ = δ(q, δ′, γ, η), ξ = ξ(q, δ′, η, γ), D0 = D0(q, σ, δ),

D = D(q, δ,D0), ε = ε(q, δ,D0). Moreover, at different parts of the proof

we will require δ′, δ, ξ to be smaller than certain (positive) functions of the

parameters they depend on; in particular, all of the requirements can be sat-

isfied simultaneously.

Finally, m will be taken large enough in terms of all the previous param-

eters (hence ultimately in terms of q and σ).

Write α = T ′(q), and define κ as

(5.1) κ = (1− T ∗(α))σ/4.

Then κ > 0, thanks to Lemma 4.9 and the assumption T (q) < q − 1. (The

reason for this choice will become clear later.)

We fix x ∈ X for the rest of the proof and observe that all estimates will

in fact be independent of x. Let ξ > 0 be a small enough number to be chosen

later. If ‖µ(m)
x ‖qq ≤ 2−(T (q)+ξ)m, then there is nothing to do, so from now on

we assume that

(5.2) ‖µ(m)
x ‖qq ≥ 2−(T (q)+ξ)m.

We apply Proposition 4.13 to obtain a sufficiently large D0 (in terms of

δ, σ, q, with δ yet to be specified) such that

(1) for any D′ ≥ D0 − 2, any I ∈ Ds′ , s′ ∈ N, and any subset D′ ⊂ Ds′+D′(I)

with |D′| ≤ 2(T ∗(α)−κ)D′ ,∑
J∈D′

µx(J)q ≤ 2−(T (q)+η)D′µx(2I)q,

where η depends on κ and q, hence on σ, q only;

(2) for any D′ ≥ D0 − 2 and any I ∈ Ds′ , s′ ∈ N,∑
J∈Ds′+D′ (I)

µx(J)q ≤ 2−(T (q)−δ)D′µx(2I)q;

(3) 1/D0 < δ.

Let ε > 0, D ∈ N be the numbers given by Theorem 2.1 applied to δ,D0

and q. Suppose

(5.3) ‖ν ∗ µ(m)
x ‖qq ≥ 2−(T (q)+εq/2)m.

We will derive a contradiction from this provided m = `D is large enough,

proving the theorem with εq/2 in place of ε. (If m is not of the form `D, we

apply the argument to bm/DcD instead.)

By Corollary 4.8, if m is large enough (depending only on ε, q) and (5.3)

holds, then

‖ν ∗ µ(m)
x ‖q ≥ 2−εm‖µ(m)

x ‖q.
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We apply Theorem 2.1 to obtain (assuming m is large enough) a set A ⊂
supp(µ

(m)
x ) as in the theorem, with corresponding branching numbers R′s.

The key to the proof is to show, using the structure of A provided by

Theorem 2.1, that

(5.4) |{s ∈ [`] : R′s ≤ 2(T ∗(α)−κ)D}| ≥ γ`,

where γ > 0 depends on q, α and κ only (and κ is given by (5.1)). We first

show how to complete the proof assuming this. Consider the sequence

Ls = − log
∑

I∈DsD(A)

µx(I)q.

By (2) applied with s′ = sD + 2 and D′ = D − 2,

Ls+1 ≥ (T (q)− δ)(D − 2)− log
∑

I∈DsD+2(A)

µx(2I)q.

But if I ∈ DsD+2(A), then 2I is contained in a single interval in DsD(A) by

property (A-iv) from Theorem 2.1, and conversely J ∈ DsD(A) hits at most

two intervals 2I, I ∈ DsD+2(A). We deduce that

Ls+1 ≥ Ls + (T (q)− δ)(D − 2)− 1

for all s ∈ [`]. Likewise, by (1),

Ls+1 ≥ Ls + (T (q) + η)(D − 2)− 1,

whenever R′s ≤ 2(T ∗(α)−κ)D. Recall that η depends on q, κ. In light of (5.4),

and also using (3), we have

L` ≥ (T (q) + η)γ`(D − 2) + (T (q)− δ)(1− γ)`(D − 2)− `
≥ (T (q) + ηγ − δ(1− γ))m− 2δ(T (q) + η)m− δm.

Hence, by choosing δ small enough in terms of T (q), γ and η we can ensure

that, for m large enough,

L` = − log ‖µ(m)
x |A‖qq ≥ (T (q) + ηγ/2)m.

On the other hand, by (A-i) in Theorem 2.1 and our assumption (5.2),

‖µ(m)
x |A‖qq ≥ 2−qδm‖µ(m)

x ‖qq ≥ 2−qδm2−(T (q)+ξ)m.

From the last two displayed equations,

ηγ/2 ≤ qδ + ξ.

Recall that η = η(κ, q), γ = γ(q, α, κ) is yet to be specified, while δ so far was

taken small enough in terms of T (q), γ and η, and no conditions have been yet

imposed on ξ. By ensuring qδ < ηγ/8 and ξ ≤ ηγ/8 we reach a contradiction.

Hence (5.3) cannot hold, which is what we wanted to show.

It remains to establish (5.4). The idea is very simple: Theorem 2.1 (to-

gether with the assumption that ‖ν‖q′q ≤ 2−σm) implies that A has “nearly full
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branching” on a positive proportion of scales. On the other hand, Lemma 4.10

says the size of A is at most roughly 2T
∗(α)m � 2m (by Lemma 4.9), so there

must be a positive proportion of scales on which the average 2D-adic branching

is far smaller than 2T
∗(α)D, which is what (5.4) says.

We proceed to the details. Using (A-i), (A-ii) in Theorem 2.1 and (5.2),

we get that (for m �δ 1) there is α̃ > 0 such that µx(a) ∈ [2−α̃m, 21−α̃m] for

all a ∈ A, and∑
I∈Dm(A)

µx(I)q ≥ 2−qδm
∑
I∈Dm

µx(I)q ≥ 2−(T (q)+qδ+ξ)m.

We let δ ≤ δ′ and ξ be small enough in terms of δ′ and q that, invoking

Lemma 4.10,

(5.5) |A| ≤ 2(T ∗(α)+δ′)m.

Let S ′ = [`] \ S, where S = {s : R′s ≥ 2(1−δ)D}. Using (A-iii) in Theo-

rem 2.1, we see that

(5.6) |A| =
`−1∏
s=0

R′s ≥ 2(1−δ)D|S| ∏
s∈S′

R′s.

Let m1 = D|S|, m2 = D|S ′| = m−m1. Combining (5.5) and (5.6), and using

that δ ≤ δ′, we deduce

(5.7)
∏
s∈S′

R′s ≤ 2−(1−δ)m12(T ∗(α)+δ′)m ≤ 2−(1−T ∗(α)−2δ′)m12(T ∗(α)+δ′)m2 .

Note that 1−T ∗(α) > 0 by Lemma 4.9. At this point we take δ′ small enough

that 1−T ∗(α)−2δ′ > 0. Using (vi) in Theorem 2.1, and the assumptions (5.2)

and ‖ν‖q′q ≤ 2−σm, we further estimate

(5.8) (σ − δ)m ≤ m1 ≤ ((T (q) + ξ)/(q − 1) + δ)m.

We can plug in the left inequality (together with m2 ≤ m) into (5.7) to obtain

the key estimate

log
∏
s∈S′

R′s ≤
(
T ∗(α) + δ′ − (1− T ∗(α)− 2δ′)(σ − δ)

)
m2.

Recalling (5.1), this shows that by making δ′ (hence also δ ≤ δ′) small enough

in terms of α, σ, κ, we have

log
∏
s∈S′

R′s ≤ (T ∗(α)− 2κ)m2.

Let S1 = {s ∈ S ′ : logR′s ≤ (T ∗(α) − κ)D}. Recall that our goal is to show

(5.4), i.e., |S1| ≥ γ(q, α, κ)`. We have

D|S ′ \ S1| ≤
1

T ∗(α)− κ
∑

s∈S′\S1

logR′s ≤
T ∗(α)− 2κ

T ∗(α)− κ
D|S ′|
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so that, using the right-most inequality in (5.8) and recalling that D|S ′| =

m−m1,

D|S1| ≥
κ(m−m1)

T ∗(α)− κ
≥
Ç
κ(1− (T (q) + ξ)/(q − 1)− δ)

T ∗(α)− κ

å
m.

By ensuring that δ, ξ are small enough in terms of q, the right-hand side above

can be bounded below byÇ
κ(1− T (q)/(q − 1))/2

T ∗(α)− κ

å
m,

confirming that (5.4) holds with γ = γ(q, α, κ). �

5.2. Lq norms of µx,n at finer scales. Theorem 1.11 will be an easy con-

sequence of the following proposition, which relies on Theorem 5.1. It is an

analog of [26, Th. 1.4], and we follow a similar outline.

Proposition 5.2. Let (X,T,∆, λ) be a pleasant model, and let T be the

function from Proposition 4.6. Let q ∈ (1,∞) be such that T is differentiable

at q and T (q) < q − 1, and let x ∈ X be such that

(5.9) lim
m→∞

1

m
log ‖µ(m)

x ‖qq = −T (q).

Fix R ∈ N. Then

lim
n→∞

log ‖µ(Rm(n))
x,n ‖qq

n log λ
= T (q),

where m(n) is the smallest integer with 2−m(n) ≤ λn.

Proof. Fix n ∈ N. We write m = m(n) for simplicity and allow all im-

plicit constants to depend on q and the model only. Using the self-similarity

relation (1.5) and Lemma 4.3, we get

‖µ((R+1)m)
x ‖qq ≤ O(1)‖µ((R+1)m)

x,n ∗ (SλnµTnx)((R+1)m)‖qq
= O(1)

∥∥∥ ∑
I∈Dm

µx,n(I)(µx,n)
((R+1)m)
I ∗ (SλnµTnx)((R+1)m)

∥∥∥q
q
.

Here (µx,n)I = µx,n|I/µx,n(I) is the normalized restriction of µx,n to I. (Note

that we are only summing over I such that µx,n(I) > 0.) Since the measures

(µx,n)
((R+1)m)
I ∗ (SλnµTnx)((R+1)m) are supported on I + [0, λn], the support of

each of them hits the supports of O(1) others. We can then apply Lemma 4.2

to obtain

‖µ((R+1)m)
x ‖qq ≤ O(1)

∑
I∈Dm

µx,n(I)q‖(µx,n)
((R+1)m)
I ∗ (SλnµTnx)((R+1)m)‖qq.
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Let ρx,I = Sλ−n(µx,n)I . (We suppress the dependence on n from the notation,

but keep it in mind.) Note that Sa(η) ∗ Sa(η′) = Sa(η ∗ η′) for any a > 0 and

measures η, η′. It follows from Lemmas 4.1 and 4.3 that

‖(µx,n)
((R+1)m)
I ∗ (SλnµTnx)((R+1)m)‖qq ≤ O(1)‖ρ(Rm)

x,I ∗ µ(Rm)
Tnx ‖

q
q

so that, combining the last two displayed formulas,

(5.10) ‖µ((R+1)m)
x ‖qq ≤ O(1)

∑
I∈Dm

µx,n(I)q‖ρ(Rm)
x,I ∗ µ(Rm)

Tnx ‖
q
qh.

On the other hand, using Lemma 4.1 again,

(5.11)

‖µ((R+1)m)
x,n ‖qq =

∑
I∈Dm

µx,n(I)q‖(µx,n)
((R+1)m)
I ‖qq ≥ Ω(1)

∑
I∈Dm

µx,n(I)q‖ρ(Rm)
x,I ‖

q
q.

Fix σ > 0, and let D′ = {I ∈ Dm : ‖ρ(Rm)
x,I ‖qq ≤ 2−σm}. According to

Theorem 5.1, there is ε = ε(σ, q) > 0 such that, if n is taken large enough, then

I ∈ D′ =⇒ ‖ρ(Rm)
x,I ∗ µ(Rm)

Tn(x)‖
q
q ≤ 2−(T (q)+ε)Rm.

Applying this to (5.10), we get

‖µ((R+1)m)
x ‖qq ≤ O(1)2−(T (q)+ε)Rm

∑
I∈D′

µx,n(I)q +O(1)
∑
I /∈D′

µx,n(I)q‖µ(Rm)
Tnx ‖

q
q

≤ O(1)2−(T (q)+ε)Rm‖µ(m)
x ‖qq +O(1)‖µ(Rm)

Tnx ‖
q
q

∑
I /∈D′

µx,n(I)q

using Young’s inequality in the first line and Lemma 4.4 in the second. On the

other hand, our assumption (5.9) implies that

2−(T (q)+ε)Rm‖µ(m)
x ‖qq ≤ 2−εm/2‖µ((R+1)m)

x ‖qq
if n is large enough (depending on x and R). Inspecting the last two displayed

equations, we deduce that if n�x,σ 1, then

∑
I /∈D′

µx,n(I)q ≥ Ω(1)
‖µ((R+1)m)

x ‖qq
‖µ(Rm)

Tnx ‖
q
q

≥ 2−m(T (q)+σ),

where for the right-most inequality we used the assumption (5.9) and Corol-

lary 4.8. Recalling (5.11), we conclude that

‖µ((R+1)m)
x,n ‖qq ≥ Ω(1)

∑
I /∈D′

µx,n(I)q‖ρ(Rm)
x,I ‖

q
q

≥ Ω(1)2−σm
∑
I /∈D′

µx,n(I)q ≥ Ω(1)2−2σm2−mT (q).

The inequality ‖µ((R+1)m)
x,n ‖qq ≤ ‖µ

(m)
x,n ‖qq holds trivially, so that by Lemma 4.4,

‖µ((R+1)m)
x,n ‖qq ≤ ‖µ(m)

x,n ‖qq ≤ 2σm2−mT (q),
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provided n�σ 1. Since σ > 0 was arbitrary and 2−m = Θ(λn), this concludes

the proof. �

5.3. Proof of Theorem 1.11. We can now conclude the proof of the theo-

rem.

Proof of Theorem 1.11. We continue to write m = m(n) = dn log(1/λ)e.
To begin, we note that, without any assumptions on the model, for any q ∈
(1,∞),

(5.12) ‖µ(m)
x,n ‖qq ≥ ‖µx,n‖qq ≥

n−1∏
i=0

‖∆(Tix)‖qq.

(The latter inequality is an equality if and only if there are no overlaps among

the atoms of µx,n.) By our assumptions on the map ∆(·), the function x 7→
‖∆(x)‖qq is bounded away from zero and continuous P-almost everywhere.

Then, by unique ergodicity,

(5.13)

lim
n→∞

1

n
log

n−1∏
i=0

‖∆(Tix)‖qq =

∫
X

log ‖∆(x)‖qq dP(x) uniformly in x ∈ X.

This property of uniquely ergodic systems is well known, or one can apply

Lemma 4.7 to the additive sequence log
∏n−1
i=0 ‖∆(Tix)‖qq. Since ‖ν(m)‖q′q ≥

2−m for any probability measure ν, from (5.12), (5.13) and Lemma 4.4, we

deduce that

lim sup
m→∞

−
log ‖µ(m)

x ‖qq
(q − 1)m

≤ min

Ç∫
X log ‖∆(x)‖qq dP(x)

(q − 1) log λ
, 1

å
,

uniformly in x ∈ X. In light of this and Corollary 4.8, the proof will be

completed if we can show that for each q ∈ (1,∞), either T (q) ≥ q−1 (so that

in fact T (q) = q − 1) or

(5.14) T (q) =

∫
X log ‖∆(x)‖qq dP(x)

log λ
.

Since T (q) is concave, it is enough to prove this for all q such that T is differ-

entiable at q. Hence, we fix q such that T (q) < q − 1 and T is differentiable

at q, and we set out to prove (5.14).

By Proposition 4.6 and the exponential separation assumption, there is

x ∈ X such that (5.9) holds, and the atoms of µx,n are λRn-separated for

infinitely many n and some R ∈ N. (Indeed, this holds for P-almost all x.) We

know from Proposition 5.2 that

(5.15) lim
n→∞

log ‖µ(Rm(n))
x,n ‖qq

n log λ
= T (q).
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On the other hand, if n is such that the atoms of µx,n are λRn-separated, then

(since λRn ≥ 2−Rm(n))

(5.16) ‖µ(Rm(n))
x,n ‖qq = ‖µx,n‖qq =

n−1∏
i=0

‖∆(Tix)‖qq.

Combining equations (5.13), (5.15) and (5.16), we conclude that (5.14) holds,

finishing the proof. �

6. Lq dimensions of self-similar measures, and applications

In this section we apply Theorem 1.11 to prove Theorem 1.5; in fact, we

will obtain a far more general result for self-similar measures on the line. We

also derive some geometric applications.

6.1. Background on self-similar sets and measures. We begin by recalling

some basic facts about self-similar sets and measures, fixing notation along the

way. For further background, see, e.g., [12].

Let I be a finite set with at least two elements. Let (fi)i∈I be a collection

of strictly contracting similarities on Rd (usually referred to as an iterated

function system or IFS). That is, fi(x) = λiOi(x) + ti, where λi ∈ (0, 1), Oi is

an orthogonal map on Rd, and ti ∈ Rd. Then there exists a unique nonempty

compact set A ⊂ Rd such that

A =
⋃
i∈I

fi(A).

If a probability vector (pi)i∈I is also given, then there is a unique Borel prob-

ability measure µ such that

µ =
∑
i∈I

pi fiµ.

Moreover, supp(µ) ⊂ A, with equality if pi > 0 for all i.

If one replaces I by In, (fi) by (fi1 ◦ · · · ◦ fin), and (pi) by (pi1 · · · pin),

then the invariant set A and the invariant measure µ do not change.

The Hausdorff and box counting dimensions agree for any self-similar set.

The open set condition holds if there is a nonempty open set U such that

fi(U) ⊂ U and fi(U) ∩ fj(U) = ∅ for all i 6= j ∈ I. In this case, the

Hausdorff dimension of A is the only positive number s such that
∑
i∈I λ

s
i = 1.

Moreover, the uniform self-similar measure µ given by the weights λsi satisfies

µ(B(x, r)) = Θ(rs) for x ∈ A and r ∈ (0, 1], with the implicit constants

depending only on (fi).

In this article we will be mostly concerned with homogeneous iterated

function systems: those for which λi ≡ λ and Oi ≡ O are constant for all



FURSTENBERG’S INTERSECTION CONJECTURE 367

i ∈ I. In this case, the self-similar set A can be explicitly written as an infinite

arithmetic sum:

A =
∞∑
i=0

Sλi(O
iE),

where E = {ti : i ∈ I} is the set of translations, and the self-similar measure

µ can be expressed as an infinite convolution:

µ = ∗∞i=0Sλi(O
i∆),

where ∆ =
∑
i∈I piδ(ti). Note that in dimension 1 (where most of the focus

will be), O is either the identity or minus the identity, and the latter case can

always be reduced to the first by iterating the IFS, as above.

If the system is homogeneous and the open set condition holds, then there

is c > 0 such that for all n ∈ N, the points in the finite approximation

An =
n−1∑
i=0

Sλi(O
iE)

are all distinct (i.e., there are |E|n of them) and cλn separated. See, e.g., [33,

Ex. 1 in §6]. Moreover, in this case the Lq dimensions of µ are given by

D(µ, q) =
log ‖∆‖qq

(q − 1) log λ
.

The right-hand side majorizes the Lq dimension without any separation as-

sumption (always assuming homogeneity).

Finally, we point out that the limit in the definition of Lq dimension exists

for arbitrary self-similar measures; see [40].

6.2.Lq dimensions and Frostman exponents of self-similar measures. Next,

we obtain Theorem 1.5 as a special case of a result valid for more general self-

similar measures on R. Fix ∆ =
∑
i∈I piδti ∈ A and λ ∈ (0, 1), and let

(6.1) µ = µ∆,λ = ∗∞i=0Sλi∆

be the associated self-similar measure. Bernoulli convolutions correspond to

the special case ∆ = 1
2(δ−1 + δ1).

Definition 6.1. Given a set E ⊂ R and n ∈ N, we let PE,n be the family

of non-zero polynomials of degree at most n and coefficients in E−E. Slightly

abusing notation, we write P∆,n = Psupp(∆),n.

We say that a measure µ as in (6.1) has exponential separation if there

exists R > 0 such that, for infinitely many n,

(6.2) min
P∈P∆,n

|P (λ)| ≥ λRn.
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Note that this is a property of supp(∆) and λ, and not of the particular

distribution of mass on supp(∆). Recall that if the open set condition holds,

then there is c > 0 such that

|P (λ)| ≥ cλn for all n ∈ N, P ∈ P∆,n.

Hence, exponential separation is a weaker property than the open set condition.

Theorem 6.2. Let µ = µ∆,λ be a self-similar measure as in (6.1) with

exponential separation. Then for all q ∈ (1,+∞),

D(µ, q) = min

Ç
log ‖∆‖qq

(q − 1) log λ
, 1

å
.

In particular, for every

α < min

Ç
log ‖∆‖∞

log λ
, 1

å
,

it holds that µ(B(x, r)) ≤ rα for all r ∈ (0, r0(α)) and all x ∈ R.

Before presenting the short deduction from Theorem 1.11, we make some

remarks on this statement:

(a) Theorem 1.5 is an immediate consequence of the last claim in the theorem.

(b) Recall from Section 6.1 that the claim in the theorem is well known under

the open set condition. The point is that the separation assumption is far

weaker than the open set condition. This notion of “exponential separa-

tion” was introduced in [26] and, as explained there, it is a quantitative

version of the “no exact overlaps” condition that is conjectured to already

imply the claims in Theorem 6.2.

(c) As shown by Hochman [26], if λ and all points in supp(∆) are algebraic,

then either (6.2) holds for all n, or λ is a root of some P ∈ P∆,n, n ∈ N
(which corresponds to an exact overlap).

(d) Hochman ([26, Th. 1.8], [27, Th. 1.10]) has also shown that in quite general

parametrized families of self-similar measures, the exponential separation

assumption in Theorem 6.2 holds outside of a set of parameters of packing

and Hausdorff co-dimension at least 1.

(e) The analog of Theorem 6.2 for exact (or Hausdorff) dimension was estab-

lished by Hochman [26, Th. 1.1]. We recover his result in the homogeneous

case by letting q → 1+ in Theorem 6.2.

(f) Note that q 7→ − log ‖∆‖qq is linear if and only if ∆ is uniform on its

support; otherwise, it is a strictly concave real-analytic function. It follows

from the theorem that, under the separation assumption (6.2), the map

q 7→ τµ(q) is differentiable except, perhaps, at a single point q > 1 such

that ‖∆‖qq = λq−1. It follows from a result of D-J. Feng [15] that the

multifractal formalism holds for µ and all q ∈ (1,∞) outside, possibly, of

this point. See [15] for details.
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Proof of Theorem 6.2. We apply Theorem 1.11 with a constant function

∆ (corresponding to a one-point set X = {0}). Such a trivial model is clearly

pleasant and satisfies the continuity assumption in Theorem 1.11. The support

of µn := µ0,n is

n−1∑
i=0

Sλi(∆) =

{
n−1∑
i=0

λiyi : yi ∈ supp(∆)

}
,

so the model has exponential separation if and only if µ has exponential sepa-

ration. The application of Theorem 1.11 is therefore justified, and it yields the

claimed formula for Dµ(q). The latter claim for the Frostman exponent then

follows from Lemma 1.7 by letting q ↑ ∞. �

6.3. Some applications. We present some consequences of Theorem 6.2.

Recall that the one-dimensional Sierpiński Gasket S is the set of all points in

[0, 1]2 of the form{ ∞∑
n=1

Xn3−n : Xn ∈ {(0, 0), (0, 1), (1, 0)}
}
.

The gasket S is a self-similar set, with open set condition, of Hausdorff dimen-

sion 1. Furstenberg conjectured that all orthogonal projections of S in direc-

tions with irrational slope also have Hausdorff dimension 1; this was proved in

[26, Th. 1.6]. We can deduce a stronger statement from Theorem 6.2:

Corollary 6.3. Let Πt(x, y) = x + ty. For every Borel subset A ⊂ S

and for every t ∈ R \Q,

dimH(ΠtA) = dimH(A).

Proof. Let µ be the uniform self-similar measure on S, so that µ(B(x, r)) =

Θ(r) for x ∈ S and r ≤ 1. For each t ∈ R, the projection Πtµ is the uniform

self-similar measure for the iterated function system {x/3, x/3+1, x/3+t}. As

shown in the proof of [26, Th. 1.6], this IFS satisfies the exponential separa-

tion hypothesis (6.2) for all irrational t. From now on let t be a fixed irrational

number. We deduce from Theorem 6.2 that

Πtµ(B(y, ε)) = Ot,δ(ε
1−δ) for all δ > 0.

In turn, Lemma 1.8 says that Π−1
t (B(y, ε)) can be covered by Ot,δ(ε

−δ) balls

of radius ε for any y ∈ R. Indeed, if (xj)j is a maximal ε-separated subset of

some set, then (B(xj , ε))j covers the set.

Now fix a Borel subset A ⊂ S of Hausdorff dimension s, and δ > 0. By

Frostman’s Lemma (see, e.g., [34, Th. 8.8]) there is a Borel probability measure

ν supported on A such that ν(B(x, ε)) = OA,δ(ε
s−δ) for all x ∈ R2, ε > 0. It

follows that

Πtν(B(y, ε)) = OA,δ,t(ε
s−2δ).
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Since δ > 0 was arbitrary, the conclusion follows from the mass distribution

principle (see, e.g., [12, Prop. 2.1]). �

The gasket S could be replaced by the attractor of any iterated function

system in the plane, satisfying the open set condition and of Hausdorff dimen-

sion at most 1, of the form (λx + ai, λy + bi)i∈I with λ, ai, bi all rational. If

λ, ai, bi are only assumed to be algebraic, then the same holds assuming that t

is transcendental, instead of irrational. The proof works verbatim since in this

more general situation ΠtS continues to be a self-similar set satisfying (6.2);

see the proof of [43, Th. 5.3].

When the Hausdorff dimension of the self-similar set is larger than 1 we

cannot reach the same conclusion, but Lemma 1.8 still provides an upper bound

for the size of the fibers. We conclude this section by discussing some concrete

classes of examples.

Corollary 6.4. Let A ⊂ [0, 1) be a p-Cantor set, p ≥ 2. Then for every

irrational number t ∈ R and any u ∈ R,

dimB(A ∩ (tA+ u)) ≤ max(2 dimH(A)− 1, 0).

Proof. The product set S = A × A is the attractor of an iterated func-

tion system with rational coefficients satisfying the open set condition, and

dimH(S) = 2 dimHA. As pointed out above, it is shown in the proof of [43,

Th. 5.3] that ΠtS is a self-similar set satisfying (6.2) whenever t is irrational.

(The argument for this holds regardless of the dimension of the self-similar

set.) Since the fiber Π−1
t (u)∩S is, up to an affine change of coordinates, equal

to A∩ (tA+ u), the conclusion follows from Theorem 6.2 and Lemma 1.8. �

The corollary generalizes to Tp-invariant sets, by embedding them in p-

Cantor sets of arbitrarily close dimension, see the proof of Theorem 1.2 in

Section 7.1 below. The dimension of the intersections of the middle-thirds Can-

tor set with translates of itself (without scaling) was investigated by Hawkes

[23], and this was greatly generalized to Tp-invariant sets by Kenyon and

Peres [32]. Without scaling, the situation is very different; in particular,

dimH(A ∩ A + u) > 2 dimH(A) − 1 for many values of u. We also mention a

related result of M. Hochman [24] for invariant measures: if µ is Tp-invariant,

dimH µ ∈ (0, 1) and f(x) = tx + u with log t/ log p /∈ Q, then µ and fµ are

mutually singular.

Likewise, if S is the standard Sierpiński gasket or the Sierpiński carpet, or

more generally if S is the attractor of an IFS of the form (N−1(x+ai, y+bi))i∈I
with (ai, bi) ∈ [N ]2, and |I| > N (so that dimH S > 1), then

dimB(S ∩ `) ≤ dimH(S)− 1
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for all lines ` with irrational slope. The intersections of these carpets with lines

of rational slope was investigated in several papers; see [3], [4] and references

there. In particular, in those two papers it is shown that for the gasket and

many other carpets S, there are many lines with a given rational slope that

intersect S in a set of dimension > dimH(S)−1. More precisely, given a rational

slope, a typical slice (with respect to the uniform self-similar measure) has a

constant dimension strictly larger than dimH(S)− 1.

6.4. General self-similar measures on the line. We conclude this section

by extending Theorem 6.2 to general (not necessarily homogeneous) self-similar

measures on R. Although we are no longer in a setting in which Theorem 1.11

can be applied, we will see that the same approach, with minor changes, can

be used to directly establish the desired result.

We begin by defining a notion of exponential separation, which again

agrees with that in [26] and extends the one given here in the homogeneous

case. We define a distance between two affine maps gi(x) = λix+ ti on R as

d(g1, g2) =

|t1 − t2| if λ1 = λ2,

1 if λ1 6= λ2.

Let (fi)i∈I be strictly contractive, invertible affine maps on R, i.e., fi(x) =

λi(x) + ti, where |λi| ∈ (0, 1) and ti ∈ R. Given a finite word u ∈ Ik, we write

fu = fu1 · · · fuk , fu(x) = λux+ tu, and pu = pu1 · · · puk . If k ≥ 1, we also write

u− for the word obtained from u by deleting the last symbol.

Given m ∈ N, let Ωm be the family of all words u such that λu ≤ 2−m but

λu− > 2−m. We now have the following definition:

Definition 6.5. We say that the IFS (fi)i∈I has exponential separation if

there are R > 0 and a sequence mj →∞ such that

d(fu, fv) ≥ 2−Rmj for all u 6= v ∈ Ωmj .

Theorem 6.6. Let (fi)i∈I be an IFS with exponential separation, and

consider a self-similar measure

µ =
∑
i∈I

pi fiµ.

Then D(µ, q) = min(τ̃(q)/(q − 1), 1), where τ̃(q) is the only solution to∑
i∈I

pqi |λi|
−τ̃(q) = 1.

As many of the steps in the proof of Theorem 6.6 are small variants of

corresponding steps in the proof of Theorem 1.11, we will present an outline

emphasizing the main differences; we leave the verification of the details to
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the interested reader. For simplicity we will assume that λi > 0 for all i; the

general case can be deduced with minor notational changes.

Let τ(q) = τ(µ, q). We have to show that either τ(q) = q−1 or τ(q) = τ̃(q).

Hence, in order to prove Theorem 6.6, it is enough to establish

Proposition 6.7. Under the assumptions of Theorem 6.6, if q ∈ (1,∞)

is such that τ(q) < q − 1, then τ(q) = τ̃(q).

To prove the proposition, we begin by observing that Lemmas 4.9–4.12

hold if T (q) is replaced by τ(q) and µx by µ. Indeed, the proofs only use

concavity of T and Corollary 4.8, both of which remain true for τ and µ by

the definition and basic properties of τ . (Since we are dealing with just one

measure, one needs not worry about uniform convergence in this context.)

As a consequence, Proposition 4.13 also remains valid with τ in place of

T and µ in place of µx. Indeed, given m ∈ N, we define

µm =
∑
u∈Ωm

puδ(tu).

We note that this does not fully agree with our earlier notation in the homo-

geneous case. Given s ∈ N and I ∈ Ds, we let yj be the atoms of µs+2 such

that [yj , yj + 2−s−2] ∩ I 6= ∅, let pj be their masses, and define

µI =
∑
j

pjδyj .

The proof of Proposition 4.13 then goes through using the measures µI instead

of µx,n,I .

In turn, Theorem 5.1 remains valid if, once again, we replace T (q) by

τ(q) and µx by the fixed self-similar measure µ. This is because the proof of

Theorem 5.1 relies only on Corollary 4.8, Lemmas 4.9 and 4.10, and Proposi-

tion 4.13, all of which we have seen continue to hold in our context.

The main change comes in the proof of the analog of Proposition 5.2,

which nevertheless remains valid:

Proposition 6.8. Using the notation above, fix q ∈ (1,∞) such that τ is

differentiable at q and τ(q) < q − 1. Then, for any R ∈ N,

lim
m→∞

log ‖µ(Rm)
m ‖qq
m

= −τ(q).

Proof. The key difference with the setting of Proposition 5.2 is that µ

is no longer a convolution of a scaled down version of itself and a discrete

approximation. However, µ is still a convex combination of a “small” number

of measures that do have this structure. Indeed, given m ∈ N, let Λm be the

set of contraction ratios {λu : u ∈ Ωm}. For λ ∈ Λm, define

µm,λ =
∑
{puδ(tu) : u ∈ Ωm, λu = λ}.
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Note that µm,λ is positive and finite but does not have mass 1 in general. The

elements of Λm are of the form
∏
i∈I λ

ni
i , where λnii ≥ (mini∈I λi)2

−m. It

follows that

(6.3) |Λm| ≤ O(m|I|),

with the implicit constant depending only on |I| and (λi)i∈I . By self-similarity

we have

(6.4) µ =
∑
u∈Ωm

pu fuµ =
∑
λ∈Λm

µm,λ ∗ Sλµ.

The idea is to apply the argument of the proof of Proposition 5.2 to the con-

volutions µm,λ ∗ Sλµ. Since, thanks to (6.3) and (6.4), µ is the sum of a sub-

exponential number of such measures, the proof will go through with minor

changes.

Recall that µm =
∑
u∈Ωm puδ(tu), so that µm =

∑
λ∈Λm µm,λ. Note also

that, by the self-similarity identity (6.4), we have µ =
∑
u∈Ωm pu(δ(tu)∗Sλuµ).

Since Sλuµ is supported on an interval [−Θ(2−m),Θ(2−m)], an application of

Lemma 4.1 yields

(6.5) ‖µ(m)
m ‖qq = Θq(1)‖µ(m)‖qq.

Using (6.4), the Hölder bound ‖∑j∈Λ νj‖qq≤|Λ|q−1∑
j∈Λ ‖νj‖qq and Lemma 4.3,

we get

‖µ((R+1)m)‖qq ≤ O(1)|Λm|q−1
∑
λ∈Λm

‖µ((R+1)m)
m,λ ∗ Sλµ((R+1)m)‖qq.

Let µm,λ,I be the normalized restriction of µm,λ to I. Note that, for fixed λ ∈
Λm, the family of supports of µ

((R+1)m)
m,λ,I ∗ (Sλµ)((R+1)m) has covering number

O(1). Using this together with Lemma 4.2, we deduce that

‖µ((R+1)m)‖qq ≤ O(1)|Λm|q−1
∑
λ∈Λm

∑
I∈Dm

µm,λ(I)q‖µ((R+1)m)
m,λ,I ∗ (Sλµ)((R+1)m)‖qq.

Let ρm,λ,I = S1/λ(µm,λ,I). Using that λ = Θ(2−m) for λ ∈ Λm together with

Lemmas 4.1 and 4.3, we see that for each λ ∈ Λm and I ∈ Dm, we have

‖µ((R+1)m)
m,λ,I ∗ (Sλµ)((R+1)m)‖qq = Oq(1)‖ρ(Rm)

m,λ,I ∗ µ
(Rm)‖qq.

We deduce from the last two displayed equations that there is λ∗ = λ∗(m) ∈ Λm
such that

‖µ((R+1)m)‖qq ≤ O(1)|Λm|q
∑
I∈Dm

µm,λ∗(I)q‖ρ(Rm)
m,λ∗,I ∗ µ

(Rm)‖qq.

Fix σ > 0, and let D′ = {I ∈ Dm : ‖ρ(Rm)
m,λ∗,I‖qq ≤ 2−σm}. By the analog of

Theorem 5.1 in our context, there exists ε = ε(σ, q) ∈ (0, σ) such that (for m

large enough)

I ∈ D′ =⇒ ‖ρ(Rm)
m,λ∗,I ∗ µ

(Rm)‖qq ≤ 2−εm‖µ(Rm)‖qq.
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Combining the last two displayed equations with the bound O(1)|Λm|q ≤
2−εm/2 valid for m�q,ε 1, we get

‖µ((R+1)m)‖qq
≤ 2εm/22−εm‖µ(Rm)‖qq

∑
I∈D′

µµ,λ∗(I)q + 2εm/2‖µ(Rm)‖qq
∑
I /∈D′

µm,λ∗(I)q

≤ ‖µ(Rm)‖qq

Ñ
2εm/22−εm‖µ(m)‖qq + 2εm/2

∑
I /∈D′

µm,λ∗(I)q

é
.

Since − 1
m log ‖µ(m)‖qq converges (to τ(q)), we know that

2εm/22−εm‖µ(Rm)‖qq‖µ(m)‖qq ≤ 1
2‖µ

((R+1)m)‖qq

for large enough m, and therefore (using ε < σ)∑
I /∈D′

µm,λ∗(I)q ≥ 1
22−εm/2‖µ(Rm)‖−qq ‖µ((R+1)m)‖qq ≥ 2−σm2−τ(q)m.

On the other hand, similarly to (5.11), we can apply the pointwise inequality

µm ≥ µm,λ∗ and then Lemma 4.1 to conclude (always assuming m is large

enough)

‖µ((R+1)m)
m ‖qq ≥ ‖µ

((R+1)m)
m,λ∗ ‖qq ≥ Ω(1)

∑
I∈Dm

µm,λ∗(I)q‖ρ(Rm)
m,λ∗,I‖

q
q

≥
∑
I /∈D′

µm,λ∗(I)q2−σm ≥ 2−(τ(q)+2σ)m.

The opposite inequality

‖µ((R+1)m)
m ‖qq ≤ ‖µ(m)

m ‖qq ≤ O(1)‖µm‖qq ≤ 2−(τ(q)−σ)m

holds for large enough m by (6.5) so, since σ > 0 was arbitrary, this concludes

the proof. �

Proof of Proposition 6.7. It is enough to prove the statement for q such

that τ is differentiable at q. Iterating the definition of τ̃(q), we see that∑
u∈Ωm

pquλ
−τ̃(q)
u = 1.

Since λu ∈ (c2−m, 2−m) for u ∈ Ωm and a constant c > 0 depending only on

the IFS, we deduce that

(6.6) τ̃(q) = lim
m→∞

− log (
∑
u∈Ωm p

q
u)

m
.
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By the exponential separation assumption, there exist R ∈ N and a se-

quence mj →∞ such that, for fixed λ ∈ Λmj , the distance between any two dis-

tinct atoms of µm,λ is at least 2−Rmj . Hence, by (6.4) and Hölder’s inequality,

(6.7) ‖µ(Rmj)
mj ‖qq ≤ |Λmj |q−1

∑
λ∈Λmj

‖µ(Rm)
mj ,λ
‖qq = |Λmj |q−1

∑
u∈Ωmj

pqu.

On the other hand, one always has

(6.8) ‖µ(Rm)
m ‖qq ≥ ‖µm‖qq ≥

∑
u∈Ωm

pqu.

Combining Proposition 6.8 and equations (6.3), (6.6), (6.7) and (6.8)

yields the claimed equality τ(q) = τ̃(q). �

This concludes the proof of Theorem 6.6.

7. Convolutions of self-similar measures

and the proof of Theorem 1.2

7.1. Convolutions of two self-similar measures and Furstenberg ’s conjec-

tures. We turn to convolutions of homogeneous self-similar measures and de-

duce Theorem 1.2 as a corollary. As we observed in Section 1.4, the convolu-

tions of the natural measures on a p-Cantor set and a q-Cantor set fit naturally

into the setting of dynamically driven self-similar measures. The same argu-

ment works in greater generality:

Lemma 7.1. Let 0 < λ2 < λ1 < 1 and ∆1,∆2 ∈ A, and consider the

self-similar measures

(7.1) ηi = ηi(∆i, λi) = ∗∞n=0Sλni ∆i.

Write ai = | log(λi)|. On X = [0, a2), define the map

T(x) = x+ a1 mod (a2).

Moreover, let ∆ : X → A be given by

∆(x) =

∆1 ∗ Sex∆2 if x ∈ [0, a1),

∆1 if x ∈ [a1, a2).

Then if µx is given by (1.3) with λ = λ1, we have

µx =

η1 ∗ Sexη2 if x ∈ [0, a1),

η1 ∗ Sex−a2η2 if x ∈ [a1, a2)

for all x ∈ X .
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Proof. Let n′(x) = |{i ∈ [1, n] : Ti(x) ∈ [0, a1)}|. Then Tn(x) = x+na1−
n′(x)a2, so that eT

n(x)λn1 = exλ
n′(x)
2 , and therefore

(7.2) ∗ni=1 ∆(Tix) =
Ä
∗ni=1Sλi1

∆1

ä
∗ Sex

(
∗n
′(x)
i=1 Siλ2

∆2

)
.

The claim follows by convolving with ∆(x) to get µn+1,x and then letting

n→∞. �

Theorem 7.2. Let η1, η2 be as in (7.1). Assume log λ2/ log λ1 /∈ Q.

Moreover, suppose that there is R > 0 such that for infinitely many n and

all Pj ∈ P∆j ,n (recall Definition 6.1), j = 1, 2, it holds that

|P1(λ1)|, |P2(λ2)| ≥ λRn1 .

Then

(7.3) D(η1 ∗ η2, q) = min (D(η1, q) +D(η2, q), 1)

for all q ∈ (1,∞).

Proof. Let (X,T,∆, λ1) be the model given by Lemma 7.1. We identify X

with the circle (i.e., we identify 0 and log λ1), so that the X becomes compact,

and T is rotation by log λ1/ log λ2 (which is irrational by assumption) on the

circle. Hence T is uniquely ergodic (with the unique invariant measure P being

normalized Lebesgue measure on X). If ∆1 and ∆2 are supported on a single

point, then µx is an atom for all x and there is nothing to do; otherwise, µx
is non-atomic for all x. Finally, the map x 7→ µx has a single discontinuity at

a1, as is evident from Lemma 7.1. We have then checked that the model is

pleasant. The assumptions on x 7→ ∆(x) in Theorem 1.11 also hold trivially.

We claim that our assumption on the separation of η1, η2 implies that our

model has exponential separation. Let

∆n,j =
n−1∑
i=0

Sλij
(∆j) =

{
n−1∑
i=0

yiλ
i
j : yi ∈ ∆j

}
.

Recall from (7.2) that all atoms of µx,n have the form

{u1 + exu2 : u1 ∈ ∆n,1, u2 ∈ ∆n,2}.

Thus, for given x ∈ X, the smallest distance between atoms of µx,n is bounded

above by

Φn(x)=min{|P1(λ1)|, |exP2(λ2)|, |P1(λ1)−exP2(λ2)| : P1 ∈ P∆1,n, P2 ∈ P∆2,n}.

Here |P1(λ1)| corresponds to differences between pairs of atoms for which u2

coincide, |exP2(λ2)| to pairs of atoms for which u1 coincide, and |P1(λ1) −
exP2(λ2)| to pairs of atoms for which neither u1 nor u2 coincide. By assump-

tion, |Pj(λj)| ≥ λRn1 for infinitely many n, so we only have to deal with the

third type of differences. Then fix n such that |Pj(λj)| ≥ λRn1 for all Pj ∈ P∆j ,n.
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Let R′ � R. For fixed Pj ∈ P∆j ,n,

|{x : |P1(λ1)− exP2(λ2)| ≤ λR′n1 }| ≤ O∆1,∆2(1)λ
(R′−R)n
1 .

Since |P∆j ,n| ≤ O|∆j |(1)n, we deduce that

|{x : |P1(λ1)− exP2(λ2)| ≤ λR′n1 for some Pj ∈ P∆j ,n}| ≤ O∆1,∆2(1)nλ
(R′−R)n
1 .

Hence, if R′ is taken large enough (in terms of R,∆1,∆2 only), then there are

infinitely many n ∈ N such that for almost all x ∈ X, it holds that |P1(λ1) −
exP2(λ2)| ≥ λR

′n
1 for any choice of Pj ∈ P∆j ,n. This establishes exponential

separation.

We have verified that the application of Theorem 1.11 is justified. In light

of this theorem, we only need to check that the right-hand side in (7.3) equals

the right-hand side in (1.6). Note that

‖∆1 ∗ Sex∆2‖qq = ‖∆1‖qq‖∆2‖qq
outside of a finite set of x. Hence, keeping in mind the definition of the map

∆ from Lemma 7.1,∫
X

log ‖∆(x)‖qq dP(x) = log ‖∆1‖qq +
log(λ1)

log(λ2)
log ‖∆2‖qq.

Dividing by (q − 1) log(λ1) we get that

D(η1 ∗ η2, q) = min

Ç
log ‖∆1‖qq

(q − 1) log(λ1)
+

log ‖∆2‖qq
(q − 1) log(λ2)

, 1

å
.

Theorem 6.2 applied to η1 and η2 concludes the proof. �

We point out that in the range q ∈ (1, 2], the above result was proved in

[35] in some special cases and then, extending the same ideas, in [22, Cor. 6.2],

in even greater generality. For example, in [22] no separation assumptions

are made on η1, η2. However, the methods of [35], [22] ultimately rely on

Marstrand’s projection theorem, which is known to fail in general if q > 2.

As a corollary, we obtain a Furstenberg-like bound on the intersections of

self-similar sets, which also answers affirmatively a question of D-J. Feng.

Corollary 7.3. Let λ1, λ2 ∈ (0, 1) with log λ1/ log λ2 /∈ Q. Suppose

E1, E2 are finite sets such that {λjx+t : t ∈ Ej} satisfies the open set condition

for j = 1, 2. Let A1, A2 denote the corresponding self-similar sets.

Then for all invertible affine maps g : R→ R,

dimB(A1 ∩ g(A2)) ≤ max(dimH(A1) + dimH(A2)− 1, 0).

Proof. Let ηi be the uniform self-similar measure on Ai, and write µ =

η1 × η2 and s = dimH(A1) + dimH(A2). Then µ(B(x, r)) = Θ(rs) for x ∈
supp(µ), since the corresponding fact holds for η1, η2 thanks to the open set

condition.
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As rescaling A2 does not change the assumptions, it is enough to prove the

claim when g is a translation. Let ∆j be the uniform probability measure on

Ej , and ηj = ηj(λj ,∆j) the associated self-similar measure. The hypotheses

of Theorem 7.2 are met, so we know that

D(η1 ∗ η2, q) = min

Ç
log |E1|

log(1/λ1)
+

log |E2|
log(1/λ2)

, 1

å
= min(s, 1)

for all q > 1. The claim now follows from Lemmas 1.7 and 1.8 applied to the

function (x, y) 7→ x− y restricted to A1 ×A2. �

We can now finish the proof of Theorem 1.2.

Proof of Theorem 1.2. Let A,B be Tp-invariant and Tq-invariant respec-

tively, with p and q multiplicatively independent, and fix δ>0. GivenN ∈N, let

EA,N = {jp−N : A ∩ [jp−N , (j + 1)p−N ) 6= ∅},

and define EB,N likewise. It is well known that Hausdorff and box-counting

dimensions coincide for Tp, Tq-invariant sets; see, e.g., [21, Th. 5.1] for a more

general fact. Hence by taking N large enough we can ensure that

|EA,N | ≤ pN(dimH(A)+δ), |EB,N | ≤ qN(dimH(B)+δ).

Let A′ be the homogeneous self-similar set with contraction p−N and trans-

lation set EA,N , and define B′ analogously. The open set condition holds for

A′, B′ with open set (0, 1). Then

dimH(A′) =
log |EA,N |

log pN
< dimH(A) + δ,

and likewise for B′. Also, by invariance of A,B under TpN , TqN respectively,

A ⊂ A′, B ⊂ B′. (Symbolically, EA,N corresponds to all initial words of length

N in A, and A′ to all concatenations of such words).

Since δ > 0 was arbitrary, the theorem follows from Corollary 7.3 applied

to A′, B′. �

Corollary 7.3 and Theorem 1.2 remain valid for C1 maps g. It is not hard

to deduce this from the affine case and Furstenberg’s theory of CP-processes

[21], but since it would take us too far in a different direction, we defer a

detailed proof of these and related results to a forthcoming article.

Recall from the introduction that another conjecture of Furstenberg, set-

tled in [28], concerns the dimension of the arithmetic sum of a ×p and a ×q
invariant set. As a corollary, we are able to sharpen this when the sum of the

dimensions is at most 1:
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Corollary 7.4. Let p, q be multiplicatively independent, and suppose

that A,B ⊂ [0, 1) are closed and Tp, Tq-invariant, respectively. Assume that

dimH(A) + dimH(B) ≤ 1. Then for any subsets A′ ⊂ A,B′ ⊂ B,

dimH(A′ +B′) = dimH(A′ ×B′)

We note that, in general, dimH(A′ ×B′) ≥ dimH(A′) + dimH(B′) and the

inequality can be strict, but there is an equality if either A′ or B′ have equal

Hausdorff and upper box-counting dimensions.

Proof of Corollary 7.4. Suppose first that dimH(A) + dimH(B) < 1. By

embedding A,B in pN , qN -Cantor sets of almost the same dimension as in the

proof of Theorem 1.2, we may assume that A,B are already a p, q-Cantor set

respectively. The proof is now nearly identical to that of Corollary 6.3, using

Theorem 7.2 in place of Theorem 6.2.

If dimH(A) + dimH(B) = 1, then we proceed in the same way but now the

sums of the dimensions of the p, q-Cantor sets containing A,B is 1 + δ, where

δ is arbitrarily small. The argument of Corollary 6.3 still goes through with

very minor modifications; details are left to the interested reader. �

A minor variant of the same argument recovers the full conjecture of

Furstenberg on sums of Tp and Tq invariant sets. However, apart from some

special cases, the methods from this paper do not appear to yield a different

proof of the corresponding statement for convolutions of invariant measures;

recall (1.1).

7.2. Convolutions of several self-similar measures. Theorem 7.2 general-

izes easily to convolutions of an arbitrary number of self-similar measures. This

provides an example of application of Theorem 1.11 in which X is a torus of

arbitrary dimension.

Theorem 7.5. Let 0 < λ1 < . . . < λk < 1, k ≥ 2, be numbers such that

(1/ log λj)
k
j=1 is linearly independent over Q. Fix ∆1, . . . ,∆k ∈ A, and write

ηj = ηj(∆j , λj) = ∗∞n=0Sλnj ∆j

for the corresponding self-similar measures. Moreover, suppose that there is

R > 0 such that for infinitely many n, it holds that

(7.4) |Pj(λj)| ≥ λRnk for all Pj ∈ P∆j ,n, j = 1, . . . , k.

Then

D(η1 ∗ · · · ∗ ηk, q) = min

Ñ
k∑
j=1

D(ηj , q), 1

é
for all q ∈ (1,∞).
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Proof. The proof is similar to that of Theorem 7.2, so we will skip some

details. We write aj = | log(λj)|. Let X = [0, a1) × · · · × [0, ak−1), and let

T : X → X be given by

T(x1, . . . , xk−1) = (x1 + ak mod a1, . . . , xk−1 + ak mod ak−1).

Up to re-parametrization, this is translation by (ak/a1, . . . , ak/ak−1) on the

(k− 1)-torus, which is uniquely ergodic if (and only if) (1, ak/a1, . . . , ak/ak−1)

is linearly independent over Q; see, e.g., [9, Cor. 4.15]. An easy calculation

using the linear independence of 1/ log λj shows that this is indeed the case.

Given x ∈ X, we let J(x) = {j ∈ {1, . . . , k − 1} : xj ∈ [0, ak)}, and we

define ∆ : X → A as

∆(x) =
Ä
∗j∈J(x)Sexp(xj)∆j

ä
∗∆k.

We have already remarked that (X,T) is uniquely ergodic. The same argument

from Lemma 7.1 shows that the measures generated by this model are

µx = Sexp(x1−1(x1∈[0,ak))a1)η1 ∗ · · · ∗ Sexp(xk−1−1(x1∈[0,ak))ak−1)ηk−1 ∗ ηk.

The model (X,T,∆, λk) is now readily checked to be pleasant, while the map

∆(·) also meets the hypotheses in Theorem 1.11.

To establish exponential separation, we notice that the difference between

two atoms of µx,n has the form

k∑
j=1

sje
xjPj(λj),

where sj ∈ {0, 1}, not all sj are zero, Pj ∈ P∆j ,n, and we set xk = 0. For n

such that (7.4) holds, the same argument in the proof of Theorem 7.2, together

with Fubini and an induction on the number of non-zero sj , shows that the

distance between atoms of µn,x is at least λR
′n

k for almost every x, where R′

depends on R, the ∆i and k only.

We have checked that Theorem 1.11 can be applied. A calculation like

the one in the proof of Theorem 7.2 yields∫
X

log ‖∆(x)‖qq dP(x) = log ‖∆k‖qq +
k−1∑
j=1

log λk
log λj

log ‖∆j‖qq,

so that Theorems 1.11 and 6.2 yield the desired conclusion. �

7.3. Embeddings of self-similar sets. Let us denote by Aλ any self-similar

set arising from a homogeneous IFS with contraction ratio λ, satisfying the

open set condition and of dimension strictly smaller than 1. A special case

of a conjecture of D-J. Feng, W. Huang and H. Rao [17, Conj. 1.2] asserts

that Aλ cannot be affinely embedded into Aλ′ unless log λ/ log λ′ ∈ Q. In [17]

this is proved in some special cases, and some further new cases were recently
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established by A. Algom [2]. However the general case was not known even for

central Cantor sets (i.e., self-similar sets generated by two maps). It follows

immediately from Corollary 7.3 that if log λ/ log λ′ /∈ Q, then for every affine

map h : R→ R,

dimH(Aλ∩h(Aλ′)) ≤ dimH(Aλ)+dimH(Aλ′)−1 < min(dimH(Aλ),dimH(Aλ′)),

so that no affine immersion is possible. We can easily extend this to the case

in which the set we want to embed is an arbitrary non-trivial self-similar set:

Corollary 7.6. Suppose A =
⋃
i∈I λiA + ti, B =

⋃
j∈J λ

′B + t′j are

self-similar sets, with A not a singleton, and B homogeneous, satisfying the

open set condition, and of dimension strictly smaller than 1. If there is a C1

map h : R→ R such that h(A) ⊂ B, then log λi/ log λ′ is rational for all i.

Proof. Suppose that, on the contrary, log λi/ log λ′ is irrational for some i,

and yet h(A) ⊂ B for some C1 map h. Without loss of generality, assume that

log λ1/ log λ′ is irrational. We may also assume that, writing fj(x) = λjx+ tj ,

the fixed points of f1 and f2 are different. (If all the fj had the same fixed point,

then A would equal this point.) If N is sufficiently large, then (f2f
N
1 , f

N
1 f2) is

a homogeneous IFS satisfying the open set condition, and its attractor AN is

contained in A, so that h(AN ) ⊂ A. On the other hand, if log(λ2λ
N
1 )/ log(λ′)

is rational then, by our assumption, log(λ2λ
N+1
1 )/ log(λ′) is irrational.

We have thus reduced the problem to the case of A homogeneous and sat-

isfying the open set condition. Under these assumptions, [17, Th. 1.1] implies

that there is an affine embedding of A into B. But, as we have seen, this is

ruled out by Corollary 7.3. �

8. Sections and projections of planar self-similar sets

Our next geometric application involves homogeneous self-similar sets and

measures on the plane. It was observed in several previous works, going back

at least to [38], that methods devised to study geometric properties of cartesian

products of linear self-similar sets and measures often can also be applied to

the study of self-similar sets and measures on the plane. The next lemma may

help clarify the reason behind this; compare with Lemma 7.1.

Lemma 8.1. Fix α ∈ [0, 2π), λ ∈ (0, 1) and a finitely supported probability

measure ‹∆ =
∑
i∈I piδ(ti) on R2. Denote rotation by α by Rα, and let

µ = ∗∞n=0SλnR
n
α(‹∆)

be the associated homogeneous self-similar measure. Given x ∈ S1, let Px(y) =

〈x, y〉 be the orthogonal projection onto a line in direction x. Furthermore, let

∆(x) = Px‹∆.

Then the measures µx generated by the model (S1,R−α,∆, λ) are the pro-

jections Pxµ. Moreover, the model is pleasant if and only if α/π /∈ Q.
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Proof. The proof is immediate, since

〈x, SλnRn
α(y)〉 =

〈
Rn
−αx, Sλn(y)

〉
,

and rotation by β ∈ [0, 2π) is uniquely ergodic if and only if β/π is irrational.

�

Theorem 8.2. Let µ and Px be as in Lemma 8.1. Assume further that

α/π /∈ Q and that the open set condition holds. Then for every x ∈ S1 and

every q ∈ (1,∞),

D(Pxµ, q) = min

(
log ‖‹∆‖qq

(q − 1) log λ
, 1

)
.

Proof. Let µn = ∗n−1
i=0 SλnR

n
α(‹∆). By the open set condition, µn has |I|n

atoms, which are cλn-separated for some c > 0. Note that Px(µn) = µx,n (the

measures generated by the model from Lemma 8.1). In particular, the atoms

of µx,n are the projections of the atoms of µn.

Let R be a large enough integer to be chosen later. By elementary ge-

ometry, for a given pair a, b of distinct atoms of µn, the set of x ∈ S1 such

that |Pxa − Pxb| ≤ λRn has measure Oc(λ
(R−1)n). Hence, the set of x ∈ S1

such that the atoms of µn,x are all distinct and λRn-separated has measure

1 − Oc(|I|2n)λ(R−1)n. This implies that if R is taken large enough in terms

of |I|, then for almost all x ∈ S1, there is n0 = n0(x) such that the atoms

of µn,x are distinct and λRn separated for all n ≥ n0. Hence the model from

Lemma 8.1 has exponential separation.

Since the hypothesis on ∆ is trivially satisfied, we can apply Theorem 1.11

to conclude that

D(Pxµ, q) = min

(∫
log ‖Px‹∆‖qq dx
(q − 1) log λ

, 1

)
,

which gives the claim since Px is injective on ‹∆ for all but a finite set of x. �

We obtain the following corollary on linear sections of planar self-similar

sets; compare with Corollary 7.3.

Corollary 8.3. Fix λ ∈ (0, 1), α ∈ [0, 2π) such that α/π is irrational,

and a finite set (ti)i∈I of translations in R2. Assume that the IFS {λRα(x) +

ti}i∈I satisfies the open set condition, and denote its invariant set by E.

Then

dimB(E ∩ `) ≤ max(dimH(E)− 1, 0)

for all lines ` ⊂ R2.

Proof. The proof is immediate from Lemmas 1.7 and 1.8 applied to Px
and Theorem 8.2 applied to the uniform self-similar measure on E. �
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We make some remarks about this corollary.

(a) Let E be any Borel set with dimH(E) ≥ 1. It follows from Marstrand’s in-

tersection theorem (see, e.g., [34, Th. 10.10]) that, given a direction x ∈ S1,

almost all lines ` in direction x satisfy dimH(E ∩ `)≤dimH(E)−1. There

has been great interest in improving almost all-type of results for classes of

natural sets, but most of the progress achieved concerns projections rather

than the more subtle problem of intersections. For some classes of ran-

dom stochastically self-similar sets, even stronger bounds on intersections

were obtained in [47, §11]. D-J. Feng has some unpublished results for

deterministic sets, using ad-hoc constructions. To the best of our knowl-

edge, Corollary 8.3 is the first result of this kind for a natural class of

deterministic sets.

(b) It is also natural to consider the dual question of obtaining lower bounds

on the dimension of E ∩ ` for lines ` ⊂ R2 when dimH(E) > 1. Of course,

many such intersections are empty, but one would like to know that the

intersections are large (of dimension equal or close to dimH(E)−1) for many

lines ` in a given direction (measured, for example, in terms of Hausdorff

dimension). Progress on this problem was achieved recently by K. Falconer

and X. Jin [13].

(c) Using Furstenberg’s theory of CP-processes and galleries [21], it is possible

to obtain a version of Corollary 8.3 where lines are replaced by C1 or even

differentiable curves; we hope to address this in detail in a forthcoming

paper. On the other hand, no such result can hold for Lipschitz curves

since any set of upper box-counting dimension less than 1 can be embedded

in a Lipschitz curve.

(d) The hypothesis that α/π is irrational is necessary: if C is the middle-thirds

Cantor set, then the diagonal of C × C is an affine copy of C. However,

the homogeneity assumption is likely an artifact of the proof.

9. Absolute continuity and Lq densities

We turn to the problem of absolute continuity, and smoothness of the

densities, of self-similar and related measures. Compared to Sections 6–8,

our results here will be less explicit: we show that in many parametrized

families, the measures have a density in Lq for all parameters outside of some

very small set. In particular, we will establish Theorem 1.3. Unfortunately,

however, either for Bernoulli convolutions or the other parametrized families

we consider, we do not know how to find even one explicit parameter that is

not exceptional.

The main ideas in this section are borrowed from [42], [46]; the reason we

improve upon existing results is that Theorem 1.11 provides stronger informa-

tion about Lq dimensions to begin with.
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Recall that the Fourier transform of a Borel probability measure µ on R
is defined as

µ̂(ξ) =

∫
exp(2πixξ) dµ(x).

Given a model (X,T,∆, λ) and k ∈ N, let us consider the measures

µ(k)
x = ∗∞i=0Sλk∆(Tki(x)).

These are precisely the measures generated by the model (X,Tk,∆, λk), which

is pleasant whenever the original model is; however we will not need to use this.

The next theorem presents our general result on densities of µx. We will

deduce several applications afterwards.

Theorem 9.1. Let (X,T,∆, λ) be a model satisfying the assumptions of

Theorem 1.11, and assume furthermore that X is either a singleton or infinite.

Fix q ∈ (1,+∞), and assume also that∫
X log ‖∆(x)‖qq dP(x)

(q − 1) log λ
> 1.

Suppose y ∈ X is such that for infinitely many k ∈ N, there exist constants

C(k), δ(k) > 0 such that the Fourier transform of µ
(k)
y satisfies∣∣∣∣‘µ(k)

y (ξ)

∣∣∣∣ ≤ C(k) |ξ|−δ(k) for all ξ 6= 0.

Then µy is absolutely continuous and has a density in Lq .

Proof. Using the convolution structure of µy, we decompose

µy =
Ä
∗k-i∆(Tiy)

ä
∗
Ä
∗k|i∆(Tiy)

ä
=: ν(k)

y ∗ µ(k)
y .

If we can show that

(9.1) D(ν(k)
y , q) = 1

for all large enough k, then [46, Th. 4.4], together with our assumption on the

Fourier decay µ
(k)
y , will allow us to conclude that µy has a density in Lq.

For fixed k, consider the model (X ′,T′,∆′, λ), where X ′ = X × [k],

T′(x, j) = (Tx, j + 1 mod k) and

∆′(x, j) =

∆(x) if j 6= 0,

δ0 if j = 0.

The measures µ′x generated by this model are precisely ν
(k)
x , as is immediate

from the definition of ∆′. This model satisfies all the assumptions in Theo-

rem 1.11. Indeed, exponential separation is inherited from the base model,

since the atoms of µ′x,n are a subset of the atoms of µx,n. Unique ergodicity

(with invariant measure P′ = P × ( 1
k

∑
j δj)) follows from the unique ergod-

icity of (X,T). (Note that there may be no periodic points, for otherwise
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the uniform measure on the orbit would be T-invariant, contradicting unique

ergodicity.) The rest of the assumptions in Theorem 1.11 are immediate.

Applying Theorem 1.11 and recalling the form of P′, we conclude that for

any y ∈ X,

D(ν(k)
y , q) = min

(
k−1
k

∫
X log ‖∆(x)‖qq dP(x)

(q − 1) log λ
, 1

)
= 1,

provided k is large enough. This establishes (9.1) and concludes the proof. �

We remark that the theorem provides the correct range for the possibility

of having an Lq density (other than perhaps the endpoint), since measures µ

with an Lq density satisfy D(µ, q) = 1; this can be seen from the inequality

(
∫
I f)q ≤ |I|q−1

∫
I f

q for all intervals I, where f is the Lq density of µ.

As a first application, we can now conclude the proof of Theorem 1.3.

Proof of Theorem 1.3. Erdős [11] and Kahane [30] proved that there is a

set E ′ ⊂ (0, 1) of zero Hausdorff dimension, such that if λ ∈ (0, 1) \ E ′, then

|ν̂λ(ξ)| ≤ C(λ)|ξ|−δ(λ) for some C(λ), δ(λ) > 0. See also [37] for an exposition

of the argument.

Let E1 = {λ ∈ (0, 1/2) : λk ∈ E ′ for some k}, which still has zero Hausdorff

dimension. Consider the model Xλ with trivial dynamics as in the proof of

Theorem 6.2, and recall from Definition 1.4 and the discussion afterwards

that there is another zero-dimensional set E2 such that Xλ has exponential

separation for λ ∈ (1/2, 1) \ E2. The measure µ
(k)
x for the model Xλ is just νλk .

Part (i) of the theorem then follows from Theorem 9.1 with the exceptional

set E = E1 ∪ E2.

The second part follows from the first, the identity νλ = νλ2 ∗ Sλνλ2 , and

the fact that the convolution of two L2 functions is continuous. �

The method of Erdős-Kahane has been applied to many other parametrized

families of fractal measures; see [46, §3] for some examples. Using this, one

can extend Theorem 1.3 to more general families of self-similar measures. We

state one such result.

Theorem 9.2. Let u 7→ (λ(u), t1(u), . . . , tm(u)) be a real-analytic map

from an open domain U ⊂ R` to ((−1, 0) ∪ (0, 1)) × Rm. Assume that for all

ω 6= ω′ ∈ {1, . . . ,m}N, there is u ∈ U such that

(9.2)
∞∑
i=0

tωi(u)λ(u)i 6=
∞∑
i=0

tω′i(u)λ(u)i.

Given a probability vector p = (p1, . . . , pm), write ∆p
u =

∑m
j=1 pjδ(tj(u)), and

denote the associated self-similar measure by νpu = ∗∞i=0Sλ(u)i∆
p
u. Then there

exists a set E ⊂ U of Hausdorff dimension at most `− 1 such that if u ∈ U \ E
and ‖∆p

u‖qq < |λu|q−1, then νpu is absolutely continuous with a density in Lq .
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Proof. The proof is essentially identical to that of [46, Th. A]. Let X pu be

the model with trivial dynamics associated to νpu. It follows from [27, Th. 1.7]

and the non-degeneracy assumption (9.2) that there is a set E ′ ⊂ U of Hausdorff

(and even packing) dimension ≤ `−1 such that X pu has exponential separation

for all u ∈ U \ E1 and all p.

On the other hand, for each k, there is a set E ′′k of zero Hausdorff dimension

such that the measure ∗∞i=0Sλ(u)ki∆
p
u has power Fourier decay for all u /∈ U \E ′′k

and all p. The proof of this fact is contained in the proof of [46, Th. A]; in short,

one uses two variants of the Erdős-Kahane argument depending on whether

or not the function u 7→ λ(u) is constant. In light of Theorem 9.1, the claim

follows with the exceptional set E ′ ∪ (∪∞k=1E ′′k ). �

Note, however, that just as in [46], here we are limited to homogeneous

iterated function systems, as the argument to pass from full Lq dimension

to Lq density depends strongly on the structure of the measures as infinite

Bernoulli convolutions. In [44] absolute continuity was obtained for almost

every parameter for some families of non-homogeneous self-similar measures,

but no information on the densities was obtained.

As another application of Theorem 9.1, we obtain the following result on

projections of planar self-similar measures:

Corollary 9.3. Let µ be as in Lemma 8.1. Assume that the open set

condition holds. Then there is a set E ⊂ [0, 2π) of zero Hausdorff dimension

(depending only λ, α, supp(‹∆)), such that Pxµ is absolutely continuous with an

Lq density for all q such that ‖‹∆‖qq < λ(q−1).

Proof. If α/π ∈ Q, then we can assume that α = 0 by iterating the orig-

inal IFS. In this case (Pxµ)x∈S1 is a family of self-similar measures satisfying

the assumptions of [46, Th. A], so the claim holds as explained in the above

discussion.

If α/π /∈ Q, consider the model (S1,R−α,∆, λ) from Lemma 8.1. The

measures µ
(k)
x are projections of the self-similar measure ∗∞n=0SλnR

n
kα
‹∆. It

follows from [46, Prop. 3.3] that there exists a set Ek ⊂ [0, 2π) of zero Hausdorff

dimension, depending only on λ, α, k and supp(‹∆), such that the projection

µ
(k)
x has a power Fourier decay for all x ∈ [0, 2π) \ Ek. The claim then follows

from Theorem 9.1 with exceptional set E = ∪k∈NEk. �

Recall that the Fourier transform of a measure µ on R2 is

µ̂(ξ) =

∫
exp(2πi〈y, ξ〉) dµ(y),

and that if v ∈ S1, then ‘Pvµ(ξ) = µ̂(ξv). In particular, if µ has power Fourier

decay (in the sense that |µ̂(ξ)| = O(|ξ|−δ) for ξ ∈ R2 \ {0} and some δ > 0),

then so do all its projections Pvµ.
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If the planar self-similar measure µ has power Fourier decay and α/π is

irrational, then the proof of the Corollary 9.3 together with the above observa-

tions show that Pxµ has an Lq density for all x ∈ S1, whenever ‖‹∆‖qq < λ(q−1).

Although we know of no explicit example of such measure µ, in parameter

space power Fourier decay occurs outside of very small exceptional sets; see

[45, Th. D].

We obtain a further corollary for convolutions of two self-similar measures,

with the parameter coming in the scaling. A direct application of Theorem 9.1

is somewhat awkward because the corresponding measures µ
(k)
k do not have

a particularly nice structure. However, the proof of [46, Th. D], using Theo-

rem 7.2 to calculate the Lq dimensions of self-similar measures and their convo-

lutions, yields our final result; the verification of the details is left to the reader.

Corollary 9.4. Let

ηj = ηj(∆j , λj) = ∗∞n=0Sλnj ∆j

be two homogeneous self-similar measures satisfying the open set condition on

the real line. Then there is a set E ⊂ R of zero Hausdorff dimension, such that

if t ∈ R\E and q > 1 is such that D(η1, q)+D(η2, q) > 1, then the convolution

η1 ∗ Stη2 is absolutely continuous with a density in Lq .
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