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Joint equidistribution of CM points

By Ilya Khayutin

Abstract

We prove the mixing conjecture of Michel and Venkatesh for toral pack-

ets with negative fundamental discriminants and split at two fixed primes,

assuming all splitting fields have no exceptional Landau-Siegel zero. As a

consequence we establish for arbitrary products of indefinite Shimura curves

the equidistribution of Galois orbits of generic sequences of CM points all

of whose components have the same fundamental discriminant, assuming

the CM fields are split at two fixed primes and have no exceptional zero.

The joinings theorem of Einsiedler and Lindenstrauss applies to the

toral orbits arising in these results. Yet it falls short of demonstrating

equidistribution due to the possibility of intermediate algebraic measures

supported on Hecke correspondences and their translates.

The main novel contribution is a method to exclude intermediate mea-

sures for toral periods. The crux is a geometric expansion of the cross-

correlation between the periodic measure on a torus orbit and a Hecke

correspondence, expressing it as a short shifted convolution sum. The lat-

ter is bounded from above generalizing the method of Shiu and Nair to

polynomials in two variables on smooth domains.
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1. Introduction

1.1. The mixing conjecture of Michel and Venkatesh. Let Y be a complex

modular curve. Each CM point1 on Y is an element of a finite packet of CM

points, all of which have CM by the same quadratic order Λ and form a single

orbit under Pic(Λ). For each integer i, let Pi ⊂ Y be a packet of CM points

with discriminant Di < 0. Denote by µi the normalized counting measure

on Pi. By a theorem of Duke [Duk88] and Iwaniec [Iwa87] and its generaliza-

tions inter alios by [Che04], [Mic04], [Zha05] we know that if |Di| →i→∞ ∞,

then µi
weak−∗−−−−−→
i→∞

mY , where mY is the normalized Haar measure on Y .

Michel and Venkatesh [MV06] have conjectured a variant of the following.

Conjecture 1.1 (Mixing Conjecture). Let Pi ⊂ Y be a sequence of

packets of CM points as above. Each Pi is a principal homogeneous space

of Pic(Λi), where Λi is the CM order of the points in Pi. For each i ∈ N, fix

σi ∈ Pic(Λi) and define

P
joint
i := {(z, σi.z) | z ∈ Pi} ⊂ Y × Y.

Denote by µjoint
i the normalized counting measure supported on P

joint
i .

Set

Ni = min
a⊆Λi invertible ideal

a∈σi

Nr a.

If Ni →i→∞ ∞, then µjoint
i converge weak-∗ to mY ×mY .

Using the reciprocity map of class field theory this conjecture implies a

special case of the following well-known conjecture about equidistribution of

Galois orbits of special points on products of modular curves.

Conjecture 1.2. Let X be a finite product of complex modular curves.

Let {xi}i be a sequence of special points on X ; i.e., each coordinate of xi is a

1In the setting of modular curves, CM points are classically called Heegner points. We

follow the terminology of CM point to differentiate between the points on the modular curve

— which are the subject of this manuscript — and the corresponding point on a modular

elliptic curve, which we do not discuss.
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CM point. Denote by µi the normalized counting measure on the finite Galois

orbit of xi.

If the sequence {xi}i has finite intersection with any proper special sub-

variety2 of X , then {µi}i converges weak-∗ to the uniform probability measure

on X .

The latter conjecture implies the André-Oort conjecture for products of

modular curves, which has been settled by Pila [Pil11]; see also [And98],

[Edi98], [Edi05]. The André-Oort conjecture in this setting states that the

sequence {xi}i above must be Zariski dense in X. The Pila-Zannier strategy

that is behind the recent breakthroughs on the Anrdré-Oort conjecture [Pil11],

[PT13], [Tsi18] does not seem to shed light on the question of equidistribution

of Galois orbits.

1.2. Summary of results.

1.2.1. Results for torus orbits. We present a proof of the mixing conjecture

of Michel and Venkatesh, conditional on several significant assumptions. Most

importantly, we assume that all the CM fields Ei are split at two fixed primes

p1, p2 and have no exceptional Landau-Siegel zero.

Einsiedler, Lindenstrauss, Michel and Venkatesh [ELMV11] have defined

the notion of a toral packet. To each CM point or a closed geodesic on a

modular curve corresponds an order Λ in a quadratic field E/Q. A toral

packet is a generalization of the notion of a single Pic(Λ)-orbit of a CM point

or a closed geodesic.

Let G be a form of PGL2 defined over Q. Fix a compact-open subgroup

Kf < G(Af ), and consider the double quotient‹Y :=
G(Q)

\G(A)/Kf
.

The action of the real group G(R) on ‹Y induces an isomorphism between ‹Y
and a disjoint union of finitely many locally homogeneous spaces‹Y ' ⊔

δ∈G(Q)\G(Af )/Kf
Γδ
\G(R),

where Γδ := G(Q) ∩ δKfδ
−1 is a congruence lattice in G(R). In the simplest

case when G = PGL2 and Kf is a maximal compact subgroup the space ‹Y
has a single component and can be identified with PGL2(Z)\

PGL2(R)
.

2This condition implies that the size of the Galois orbit of xi tends to infinity as i → ∞
because of Brauer-Siegel and the fact that a special point is by itself a special subvariety.
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A toral packet P is a finite collection of orbits in ‹Y of a real torus H <

G(R), which is a projection of a single adelic torus orbit; see Section 2.4.1 for an

exact definition. The set of H-orbits in P has a natural structure as a principal

homogeneous space for a finite abelian group C that is a quotient of the idèle

class group of an associated quadratic field E/Q. Moreover, there is an order

Λ < E attached to P and a canonical surjective homomorphism C → Pic(Λ).

If Kf is maximal, then this homomorphism is an isomorphism. To each packet

one can attach a discriminant D ∈ R that measures the arithmetic complexity

of the packet; cf. Section 2.4.4. This discriminant is a product of disc(Λ) and

an archimedean contribution.

The following is a special case of Theorem 3.2.

Theorem 1.3. Let G be a form of PGL2 defined over Q, and let Kf <

G(Af ) be a compact-open subgroup. Fix a compact real torus K∞ < G(R),

and denote

Y :=
‹Y /K∞ = G(Q)\

G(A)
/K∞ ×Kf

'
⊔

δ∈G(Q)\G(Af )/Kf
Γδ
\G(R)

/K∞
.

Let Pi ⊂ ‹Y be a sequence of toral packets invariant under K∞ with a

fundamental discriminant Di < 0. By abuse of notation denote by Pi the

projection of the packet to a finite set of points in Y . The set Pi ⊂ Y is a

principal homogeneous space for an abelian group Ci.

Let Λi < Ei be the order in an imaginary quadratic field Ei/Q attached

to Pi, and denote by σ 7→ [σ] the homomorphism Ci → Pic(Λi). For every

i ∈ N, choose some σi ∈ Ci and let µjoint
i be the Borel probability measure on

Y × Y defined as the normalized counting measure on the set

P
joint
i := {(z, σi.z) | z ∈ Pi} ⊂ Y × Y.

Fix two primes p1, p2, and for all i ∈ N, assume

(1) the primes p1, p2 are split in Ei;

(2) the Dedekind ζ-function of Ei has no exceptional Landau-Siegel zero.

Set

Ni = min
a⊆Λi invertible ideal

a∈[σi]

Nr a,

and assume Ni →i→∞ ∞. Then any weak-∗ limit point of
¶
µjoint
i

©
i

is a convex

combination of the uniform probability measures on the connected components

of Y × Y .
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The theorem above is a special case of Theorem 3.2, which together with

Proposition 3.6 describes completely under the assumptions above the ana-

logues weak-∗ limit points in the adelic quotient

[(G×G) (A)] := (G×G) (Q)\
(G×G) (A)

.

The conclusion of Theorem 1.3 is the best possible in this setting. In par-

ticular, one cannot expect equidistribution on all of Y × Y because the joint

packets Pjoint
i can avoid completely some connected components of Y ×Y . This

phenomena can appear already for G = PGL2 whenever Kf is non-maximal.

This behavior is intimately related to the limit of the averages of the residual

spectrum over P
joint
i , and it is easy to compute exactly which limit measures

exactly occur using Proposition 3.6.

We also establish a generalization of Theorem 1.3 to n-fold products Y ×n

— Theorem 3.9. This generalization follows from the 2-fold result and an

auxiliary application of the Einsiedler-Lindenstrauss joining theorem [EL15a,

Cor. 1.5].

1.2.2. Results for Galois orbits. Theorem 1.3 and its n-fold generalization

Theorem 3.9 imply through the reciprocity map of class field theory a theorem

about equidistribution of Galois orbits of special point in products of indefinite

Shimura curves.

Theorem 1.4. Let G be a form of PGL2 defined over Q and split over R.

Let X be a finite product of indefinite Shimura curves relative to G. Assume

{xi}i is a sequence of special points on X such that all coordinates have CM

by the same maximal order. Denote by µi the normalized counting measure on

the finite Galois orbit of xi.

Fix two primes p1, p2, and denote by Ei the CM field of xi. Assume that

for all i ∈ N,

(1) the primes p1, p2 split in Ei;

(2) the Dedekind ζ-function of Ei has no exceptional Landau-Siegel zero.

If the sequence {xi}i has a finite intersection with any proper special subvariety,

then any weak-∗ limit point of {µi}i is a convex combination of the uniform

probability measures on the connected components of X .

1.3. Previous results. Conjecture 1.1 has been proved by Ellenberg, Michel

and Venkatesh [EMV13] under the assumption of a single fixed split prime p1

and if the following holds:

(1) ∃η > 0 ∀i� 1: Ni � |D|1/2−η.

The proof in [EMV13] used minor assumptions and applied verbatim only when

G was ramified at infinity and gcd (Ni, p1) = 1. The assumption on G(R) can
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be removed using [Kha17], and the condition gcd (Ni, p1) = 1 can be relaxed

by restricting the range of η in (1) depending on the best available bounds

towards the Ramanujan Conjecture for3 SL2.

Condition (1) is essential to the method of [EMV13] and fails for the

majority of possible twists [σi] ∈ Pic(Λi). The proof strategy of Ellenberg,

Michel and Venkatesh is to use (1) to find for each i a Hecke correspondence

containing the packet Pi and whose volume is small compared to the volume

of Pi. In this favorable situation they use an effective version of Linnik’s

method using an explicit spectral gap for the Hecke operator at the split prime

p1 to deduce that the counting measure on Pi is approximately equidistributed

in the ambient Hecke correspondence. The proof then concludes using the

equidistribution of Hecke correspondences in Y × Y .

The analogues questions for function fields in finite characteristic have

been studied by Shende and Tsimerman [ST17]. In the finite characteristic

setting additional tools are available. Shende and Tsimerman translate the

analogues of Duke’s theorem and the mixing conjecture to questions about

point counting on (singular) varieties. These can be addressed using the

Grothendieck-Lefschetz trace formula. They present a proof of Duke’s the-

orem in finite characteristic using this method and a partial result towards the

mixing conjecture. For the latter question they succeed in equating the perti-

nent higher cohomology groups, but the necessary bound on the dimension of

the lower cohomology groups is conjectural.

1.4. Measure rigidity. Linnik has proved Duke’s theorem about equidis-

tribution of a sequence packets of CM points on the complex modular curve

assuming that there is a fixed prime p that splits in all the CM fields in the

sequence [Lin68]. In this proof Linnik used his “ergodic method” to bootstrap

a weak bound on the self-correlation of the periodic measure on a toral packet

in intermediate scales to full equidistribution using a dynamical argument. It

is this dynamical argument where the assumption of a fixed split prime is used.

Einsiedler, Lindenstrauss, Michel and Venkatesh [ELMV09], [ELMV11],

[ELMV12] have introduced a variant of Linnik’s “ergodic method,” which fits

into the framework of homogeneous dynamics. The assumption of a fixed split

prime p implies that the adelic, or S-arithmetic, periodic measures correspond-

ing to the packets in the sequence are all invariant under a split p-adic torus.

3A. Venkatesh has described to me an alternative proof of the mixing conjecture assuming

(1) by directly deducing from an appropriate version of Linnik’s Basic Lemma that any limit

measure must have maximal entropy for the diagonal toral flow at p1 on [(G×G)(A)]. This

does not rely on a spectral gap and completely circumvents the difficulties arising when

p1 | Ni in the original argument of [EMV13].
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Moreover, the self-correlation bound in the form of Linnik’s basic lemma im-

plies that any weak-∗ limit must have maximal entropy with respect to the

action of any element in the split p-adic torus. Linnik’s theorem now follows

from the classification of measures of maximal entropy with respect to the

action of a semi-simple p-adic group element that generates an unbounded

subgroup. The latter one is straightforward if one uses the relation between

entropy and leafwise measures [MT94], [EL10].

The approach of Einsiedler, Lindenstrauss, Michel and Venkatesh has sig-

nificant ramifications when combined with the modern methods of measure

rigidity for toral actions [Lin06], [EKL06], [EL15b], [EL15a]. Although mea-

sure rigidity requires further splitting assumptions, it can imply strong equidis-

tribution results based on weaker arithmetic input compared to methods of

harmonic analysis. A main example is the analogue of Linnik’s theorem for

maximal tori in PGL3 [ELMV11] where equidistribution is deduced by veri-

fying Weyl’s equidistribution criterion only for a small part of the spectrum.

This strategy is also the starting point for our proof of Theorem 1.3 and

its generalizations. The assumption that two primes p1,p2 are split in all the

CM fields in the sequence is required for the joinings theorem of Einsiedler

and Lindenstrauss [EL15a] to apply. This measure rigidity result, concur-

rently with Linnik’s or Duke’s theorem for equidistribution of packets in rank

1, implies that any possible weak-∗ limit measure of periodic measures on joint

toral packet must be algebraic; i.e., it is a convex combination of uniform mea-

sures and some translates of Hecke correspondences. It is these translates of

Hecke correspondence that we need to discard using the genericity assumption

Ni →∞ in the conjecture of Michel and Venkatesh, Conjecture 1.1.

1.5. Cross-correlation. The main novelty is our method to demonstrate

that each limit point of the sequence of measures
¶
µjoint
i

©
in Theorem 1.3 is

singular to any convex combination of intermediate measures allowed by the

joinings theorem of Einsiedler and Lindenstrauss.

The rudiments of our approach can be described in a general setting.

Consider a locally compact G-space X where G is a second countable locally

compact topological group. Suppose µ and ν are Borel measures on X × X,

and denote by mG some fixed Haar measure on G. We are interested in the

case when ν is a periodic measure for the diagonal subgroup G∆ < G × G;

i.e., there is some x0 ∈ X ×X such that StabG∆(x0) is a lattice in G∆ and ν

is the G∆-invariant probability measure supported on the closed orbit G∆.x0.

For any compact subset C ⊂ X, if we take a small enough symmetric identity

neighborhood B ⊂ G, then ν-almost every x ∈ C × C satisfies

(2) ν ((B ×B).x) � mG(B).
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In order to show that the measures µ and ν are singular we can consider for

each compact C ⊂ X×X and for a compact symmetric identity neighborhood

B ⊂ G the cross-correlation quantityfiCorC [µ, ν](B) := µ× ν ({(x, y) ∈ C × C | y ∈ (B ×B).x}) .

We call B the test neighborhood of the cross-correlation. Assume we are able

to establish that

(3) fiCor[µ, ν](B)� mG(B)1+ρ

for some ρ > 0, for a family of compact subsets C exhausting X and for a

family of identity neighborhoods B ⊂ G with arbitrary small Haar measure.

Then the estimates (2) and (3) imply ν ⊥ µ.

The first observation when studying the cross-correlation between two

algebraic measures on an adelic quotient is that it is bounded above by a

relative trace of the automorphic kernel with test function 11B×B. In our setting

the relative trace that arises is for the double quotient

G∆\G×G/T∆,

where T < G is a maximal torus defined over Q and anisotropic over R embed-

ded diagonally T∆ < G ×G. This relative trace has a geometric expansion,

and the main difficulty is bounding the sum of the relative orbital integrals.

We require an upper bound that is optimal up to a uniform multiplicative

constant.

1.6. Invariants and integral ideals. Denote by Λ < E the order attached

to a fixed toral packet. Proposition 8.30 is a fundamental result where we show

that a relative orbital integral is bounded in terms of the number of pairs of

integral ideals in Λ whose norms satisfy an additive relation. A. Venkatesh

has pointed out that this bears a similarity to the calculation of heights in the

proof of the Gross-Zagier Theorem [GZ86, §3].

The construction of these integral ideals can be described in an elemen-

tary fashion. Assume we are in the setting of the modular curve Y0(1). Let

Λ = OE be the maximal order in an imaginary quadratic field E/Q with dis-

criminant D < 0. Fix a twist [σ] ∈ Cl(E). The joint packet in Y0(1) × Y0(1)

is the set
¶Ä
H[I], H[Iσ]

ä
| [I] ∈ Cl(E)

©
, where H[I] ∈ Y0(1) is the CM point

attached to the ideal class [I]. For simplicity, we only discuss how to show

non-accumulation on the diagonal Y0(1)∆ ↪→ Y0(1)× Y0(1).

Let Bδ ⊂ PGL2(R) be the identity neighborhood of radius δ > 0. The

cross-correlation between the joint packet and the diagonal with test neighbor-

hood Bδ is a weighted count of the number of points
Ä
H[I], H[Iσ]

ä
such that the

hyperbolic distance d(H[I], H[Iσ]) is less then 2δ. The weight is a continuous
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decreasing function of d(H[I], H[Iσ]) that vanishes when d(H[I], H[Iσ]) = 2δ.

For simplicity, consider the unweighted quantity∣∣∣¶ÄH[I], H[Iσ]

ä
| d(H[I], H[Iσ]) ≤ 2δ, [I] ∈ Cl(E)

©∣∣∣ .
For each element in the set above, we write an explicit expression for the CM

points in the standard fundamental domain in H ⊂ C \ R,

H[I] =
−b+ i

»
|D|

2N
, H[Iσ] =

−b′ + i
»
|D|

2N′
,

where I =

≠
N,
−b+i
√
|D|

2

∑
, I ′ =

≠
N′,

−b′+i
√
|D|

2

∑
⊂ E ⊂ C are the primitive

fractional ideals in the classes [I] and [Iσ] respectively. Consider the elements

x = N
−b′ + i

»
|D|

2
−N′

−b+ i
»
|D|

2
∈ I · I ′,

y = N
−b′ − i

»
|D|

2
−N′

−b− i
»
|D|

2
∈ I · Iσ ′,

and define

OE ⊃ a = y/(I · Iσ ′) ∈ [σ] mod Cl(E),

OE ⊃ b = x/(I · I ′) ∈ [I−2σ−1] mod Cl(E).

A simple calculation shows that

Nr(a) =
(Nb′ −N′b)2 + |D|(N + N′)2

4NN′
,

Nr(b) =
(Nb′ −N′b)2 + |D|(N−N′)2

4NN′

=
|D|
4

Ä
cosh(d(H[I], H[Iσ]))− 1

ä
� |D|m(B2δ),

Nr(a)−Nr(b) =
Nr(y)−Nr(x)

NN′
= |D|.

This construction demonstrates the relation between the mass of the joint

packet in a neighborhood of the diagonal and counting pairs of integral ideals.

Specifically, we need to count pairs of integral ideals that satisfy additive norm

relations and whose norms are bounded by a multiple of |D|. To establish this

relation formally we need to check how close the map inv
Ä
H[I], H[Iσ]

ä
= (a, b) is

to being injective. The most serious problem with injectivity arises if b = 0. In

our special case it is easy to see that this happens only if [I] = [Iσ]⇔ [σ] = e.

This situation is excluded by the assumption that Ni →∞ in Conjecture 1.1.

The full strength of this assumption is needed to establish non-concentration

on any translate of a Hecke correspondence.

If b 6= 0, it turns out that injectivity can fail, in a mild way, only at

the ramified primes p | D. This is the essence of Proposition 8.27. This lack
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of injectivity is compensated by the fact that b is restricted to a fixed class

in Cl(E)/Cl(E)2. The analysis of the fibers of the map inv and taking into

account the restriction modulo Cl(E)2 produces significant technical compli-

cations. These can be avoided if one assumes that |D| is prime.

The full expression for the cross-correlation is a weighted sum over ele-

ments in the joint packet that are contained in a δ-neighborhood of the diag-

onal. The weight is easily seen to be bounded by � m(B2δ).

The author has not arrived at the construction of the invariants (a, b)

through this calculation. Rather the ideals a,b arose naturally in a geometric

expansion of a relative trace. The classical interpretation above is due to the

referee.

1.7. Shifted-convolution sums. We now describe how to bound the cross-

correlation with test neighborhood Bδ ⊂ G(R) between a joint toral packet

and a fixed translate of a Hecke correspondence, e.g., the diagonal.

The final outcome of the arithmetic analysis of the relative orbital inte-

grals in term of pairs of integral invertible Λ-ideals satisfying an additive norm

relation is that the cross-correlation is bounded by an expression proportional

to a shifted convolution sum that is roughly of the form

(4) S :=
∑

0<x−|D|≤κm(B2δ)|D|
g(x)f(x− |D|),

where D = disc(Λ), f(x) is the multiplicative function that counts the number

of invertible integral Λ-ideals of norm x; and g counts the same ideals as f

but with the additional restriction that they belong to the fixed Picard class

[σ]. The class [σ] ∈ Pic(Λ) is the Picard class of a single twist in Theorem 1.3.

For the sake of simplicity, we consider for now the real number κ > 0 as a

universal constant. We have neglected the non-injectivity of the invariant map

as discussed above and the restrictions modulo Pic(Λ)2.

It is not difficult to show that if we extend the range of summation in S ,

then the asymptotic mean value is � ρ√
|D|

, where ρ is the residue at 1 of

the Dedekind ζ-function of E. In order to complete the proof we need to

show a comparable, up to a fixed constant, upper bound in the extremely

short range κm(B2δ)|D|. Unfortunately, the various methods from harmonic

analysis to estimate shifted convolution sums are of no use in this short range

of summation.

We proceed instead using a sieve. Let q(x, y) be the reduced primitive in-

tegral binary quadratic form corresponding to the class [σ]−1 ∈ Pic(Λ). Denote

by E ⊂ R2 the elliptical annulus of area 2πm(B2δ)κ
»
|D| defined by

E :=
¶

(x, y) ∈ Z2 | |D| < q(x, y) ≤ (1 + m(B2δ)κ)|D|
©
.
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The sum S is tautologically equal to∑
(x,y)∈E∩Z2

f(q(x, y)− |D|).

The latter is a sum of a multiplicative function over the values of a polynomial

in two variables. We generalize the method of Shiu [Shi80] and Nair [Nai92] to

polynomials in two variables on smooth domains in order to deduce a bound

of the form

S � A(E )(log |D|)−1
∑
a�|D|

f(a)

a
,

where A(E ) is the area of the ellipse E . In order to derive an upper bound

of the correct order of magnitude for the logarithmic sum above we need to

assume the lack of an exceptional zero.

It is important to mention that the sieve method fails when the ellipse

E is distorted too much. Fortunately, this is exactly the case when the proof

method of Ellenberg, Michel and Venkatesh [EMV13] applies.

The approach to bounding S using a sieve is inspired by the work of

Bourgain, Sarnak and Rudnick [BSR16]. Sieve methods have been fruitfully

applied to shifted convolution sums in other contexts as well. Holowinsky has

used a related argument in his work on holomorphic QUE [Hol10], [HS10].

P. Michel has pointed out to the author that in the scenario considered by

Holowinsky, the shifted convolutions arise from the L-functions of symmetric

squares of holomorphic forms that are known not to have an exceptional zero,

in contrast to the case of S above.

1.8. Further discussion.

1.8.1. Archimedean versus p-adic cross-correlation. In the exposition

above we have presented a method to show that joint packets of CM points

do not accumulate on the diagonal diagonal using a cross-correlation quantity

that uses an archimedean test neighborhood Bδ ⊂ G(R). In the actual proof

we shall use a non-archimedean neighborhood at one of the primes, say p1,

where all the tori in the sequence were assumed to be split.

This modification is necessary because the measure rigidity argument does

not imply that any weak-∗ limit of µjoint
i in Theorem 1.3 is a countable convex

combination of algebraic measures. We may not reduce to a countable col-

lection of possible ergodic components because the normalizer of a diagonally

embedded rank 1 torus T∆ < G × G contains the subgroup T × T that is

much bigger then T∆.

Assume for simplicity that Y in Theorem 1.3 is connected. If we restrict

to the archimedean setting, then the possible obstructions to equidistribution



156 I. KHAYUTIN

are all periodic orbits of the form

[δG∆(R)+ξR)] ⊂ Γ\
G(R)× Γ\

G(R)
,

where G(R)+ is the real image of the isogeny from the simply connected cover

Gsc → G, δ ∈ (G×G) (Q) and ξR ∈ (G×G) (R) is any element.

To see how this creates a problem in the argument, notice that the contra-

diction in Section 1.5 has used the fact (2) that ν ((B ×B).x) � m(B) for the

Haar measure m on G(R). While this is true if ν is a countable combination

of algebraic measures supported on translates of G∆(R)+, it can be wrong for

uncountable families. In particular, such an uncountable convex combination

can even be absolutely continuous with respect to the Haar measure m × m

(even if we fix δ above). This phenomenon is analogous to the statement that

an uncountable combination of Lebesgue measures on 1-dimensional lines in

R2 can have an arbitrary dimension in the interval [1, 2].

To overcome this difficulty we instead use the cross-correlation for a non-

archimedean neighborhood B ⊂ G(Qp1). Let S = {∞, p1}. There is a

canonical lift of the each measure µjoint
i to a probability measure on a fixed

S-arithmetic homogeneous space ΓS
\G(QS). Each lift is a finite combina-

tion of periodic measures for the diagonal embedding of the torus K∞ ×
Ap1 < G(QS), where Ap1 < G(Qp1) is a split torus independent of the

index i. The measure rigidity argument now implies that the obstruction

to equidistribution is a convex combination of algebraic measures supported

on
î
δG∆(QS)+(ξR, ξp1)

ó
with ξR ∈ (G×G) (R), ξp1 ∈ (G×G) (Qp1), and

δ is a rational element. In this setting there is an additional restriction4

on ξp1 = (ξ1
p1
, ξ2
p1

) that (ξ1
p1

)−1ξ2
p1
∈ Ap1 . This restriction appears in the

S-arithmetic setting because each periodic measure in the sequence of packets

was invariant under a fixed split torus A∆
p1

. This additional piece of information

allows us to rule out accumulation on convex combinations of an uncountable

family of algebraic measures.

Let ν be any convex combination of algebraic measures supported on closed

orbits of the form
î
δG∆(QS)+(ξR, ξp1)

ó
, which are all invariant under A∆

p1
. The

gist of the argument is that for every a ∈ A∆
p1

, the metric entropy hν(a) is a

convex combination of the metric entropies on individual periodic measures.

There is a relation between metric entropy and self-correlations that implies

for a suitable p1-adic identity neighborhood B that ν ((B ×B).x) cannot on

average decay as m(B)1+ρ for any ρ > 0 . This is enough to conclude the

necessary contradiction.

4A shadow of this condition appears in the archimedean setting as well; the element δ in

the archimedean case cannot be an arbitrary rational point and is restricted at the primes

p = p1, p2. It is not clear how to put this information to good use.
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1.8.2. The assumption on the conductor. In Theorem 1.3 we have as-

sumed the discriminants Di are all fundamental. The slightly more general

version in Theorem 3.2 allows non-trivial conductors fi but they should be

uniformly bounded. The difficulty with removing this assumption is that if

we allow a non-trivial conductor f, then the shifted convolution sum in (4)

is � κm(B2δ)ρ
»
|D|f. The extra factor of f appears because the shift |D| is

divisible by f, and at primes dividing the shift there is no decoupling between

the arithmetic functions f and g in S . The best bound we can expect for

S /|Pic(Λ)| is proportional to f and tends to ∞ if f is unbounded. Such a

bound is useless for our purposes.

In an upcoming work the author will explain how to overcome this problem

by refining the map attaching a pair of integral ideals to orbital integrals.

The new map will not be valued just in pairs of integral ideals but will carry

additional information.

1.9. Organization of the paper. In Section 2 we define the basic notions

we work with in the rest of the paper.

In Section 3 we present the main theorems in adelic terms and prove some

auxiliary propositions.

In Section 4 we apply the joinings theorem of Einsiedler and Lindenstrauss

to the problem at hand.

In Section 5 we review and prove basic facts about explicit representations

of quaternion algebras in coordinate form. We also describe representatives

“in lowest terms” for elements of the projective group of units of a quaternion

algebra over local fields.

In Section 6 we construct the double quotient G∆\G×G/T∆ using GIT

and study its properties over Q. This variety is essential for the geometric

expansion of the relative trace appearing later on.

In Section 7 we study basic properties of the intermediate measures arising

as obstructions to equidistribution.

Section 8 is a key part of this paper where we study the cross-correlation

between a periodic toral measure and a translated Hecke correspondence using

a relative trace. Most importantly, we demonstrate the relation between this

relative trace and shifted-convolution sums. This requires interpretation of the

non-archimedean relative orbital integrals as intersection numbers and explicit

parametrization of the relevant intersections using arithmetic invariants.

In Section 9 we generalizes the results of [Shi80], [Nai92] to sums of mul-

tiplicative functions along values of polynomials in two variables on smooth

domains. This section may be of independent interest.

In Section 10 we combine all of the previously developed tools to a proof

of the main theorem.
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In Appendix A we review the classical principal genus theory for qua-

dratic orders and provide complete proofs in a form useful to us. These results

are necessary in translating the shifted-convolution sums that arise from the

relative trace into sums of multiplicative functions over values of polynomials.

In Appendix B we do routine calculations of the number of points on some

singular conics over Z/NZ. These are necessary to translate the upper-bound

on the cross-correlation we have after applying the sieve method into a sum

treatable using analytic number theory.
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2. Preliminaries

2.1. Notation and conventions.

(1) We denote by the letter v a place of Q. For a non-archimedean place v,

define qv to be the size of the residue field of Qv.
(2) For a linear algebraic group M defined over Q, we denote

[M(A)] :=
M(Q)

\M(A)
.

More generally, for any subset U ⊆M(A), we denote by [U ] its projection

to [M(A)]. We also use the notation [g] for the coset of g ∈ M(A) in

[M(A)].

(3) If M is anisotropic over Q, i.e., there are no characters M → Gm defined

over Q, then the locally compact space [M(A)] carries a unique M(A)-

invariant probability measure, which we call the Haar measure on [M(A)]

and denote by mM. We use the notation mM also for the covolume 1 Haar

measure on M(A).
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(4) For S a finite set of places of Q, we denote

M(AS) :=
∏′

v 6∈S
M(Qv), M(QS) :=

∏
v∈S

M(Qv).

(5) If L < M is a closed algebraic subgroup, denote the diagonal embedding

of algebraic groups by L∆ < M ×M. We use the similar notation L∆ <

M × M for the diagonal embedding of a closed subgroup L < M in a

locally compact group M .

(6) For any algebraic group M, the morphism ctr : M×M→M is defined by

(g1, g2) 7→ g−1
1 g2.

(7) For a reductive linear algebraic group M, we denote by Msc its simply-

connected cover. We fix an isogeny Msc →M and denote for any ring R

the image of Msc(R) in M(R) by M(R)+.

(8) If L < M is a unimodular closed subgroup of a unimodular locally compact

group M with fixed Haar measures mL and mM respectively, then we

always normalize the M -invariant Haar measure on L\
M so that∫

M
f dmM =

∫
L\M

Å∫
L
f(lg) dmL(l)

ã
dmL\M (Lg)

for any f ∈ L 1(M).

(9) For F a global field or a finite product of non-archimedean local fields, we

denote by OF the ring of integers — the unique maximal order, F (1) the

multiplicative subgroup of F× of norm 1 elements and O
(1)
F the multiplica-

tive group of norm 1 integral elements.

(10) When F as above is a quadratic extension of either Q or Qv, it is equipped

with an action of the Galois group G ' Z/2Z. We define the coboundary

map

cbd: F× → F (1),

x 7→ x

xσ
.

Hilbert’s Satz 90 implies that this map surjective.

2.2. Forms of PGL2 and locally homogeneous spaces. Let B be a quater-

nion algebra defined over Q. Denote Z := ZB× — the center of B× — and

define G := Z\
B× to be the projective group of units. The linear group G is

a form of PGL2 defined over Q, and all Q-forms of PGL2 arise this way. A

central object in our discussion is the finite volume adelic locally homogeneous

space

(5) [G(A)] = G(Q)\
G(A) '

Z(A)B×(Q)
\B
×(A)

.
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2.2.1. Maximal order in B(Q). Fix a maximal Z-order O ⊂ B(Q). For

any non-archimedean place v, denote the v-adic closure of O by Ov ⊂ B(Qv).
The Zv-order Ov is maximal in the quaternion algebra B(Qv); cf. [Rei75,

(11.2)]. For non-archimedean v, define the compact subgroup O×v < B×(Qv)
and let the compact-open subgroup Kv < G(Qv) be its image under the quo-

tient map B× → G.

We define the adelic points of B× and G as a restricted product with

respect to the compact subgroups Ov and Kv respectively. Moreover, for any

finite set S of places containing ∞, we denote

O×,S :=
∏
v 6∈S

O×v , KS :=
∏
v 6∈S

Kv

and

O×f := O×,{∞} =
∏
v 6=∞

O×v , Kf := K{∞} =
∏
v 6=∞

Kv.

We need to review some elementary properties of Kv and Ov for different

places v.

Split non-archimedean places. If B is split over a non-archimedean v, i.e.,

B(Qv) 'M2(Qv). Then the maximal orders of B(Qv) are in bijection with the

vertices of the reduced Bruhat-Tits tree of B×(Qv). Explicitly, fix an isomor-

phism B×(Qv) ' EndQv(Q2
v) then vertices of the Bruhat-Tits tree correspond

to homothety classes of full-rank Zv-lattices L ⊂ Q2
v, and all the maximal or-

ders are of the form EndZv(L). In particular, O×v is a stabilizer of a vertex in

the tree and Kv is a special maximal compact-open subgroup.

Ramified non-archimedean places. If B is ramified over a non-archimedean

v, then B(Qv) is a division algebra and Ov is the unique maximal order — the

integral closure of Zv in B(Qv); cf. [Rei75, (12.8)]. Because of the uniqueness

property of Ov, it is conjugation invariant and O×v is a normal subgroup of

B×(Qv).
A quaternion division algebra over Qv has ramification index 2 (cf. [Rei75,

(14.3)]), henceKv is a normal subgroup of index 2 in the compact group G(Qv).

The archimedean analogue of a maximal order. We will also need an

archimedean analogue of a local maximal order. Fix once and for all a maximal

compact torus K∞ < G(R). We define an isomorphism between (B(R),K∞)

and (M2(R),PSO2(R)) to be an isomorphism of algebras B(R) 'M2(R) that

induces an isomorphism G(R) ' PGL2(R) mapping K∞ to PSO2(R). Due

to the Skolem-Noether theorem and the fact that the normalizer of PSO2(R)

is PGO2(R), such an isomorphism is unique up to composition with the map

AdPGO2(R).Assume B is split over R, and fix such an isomorphism.
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Inner-product norms on R2 are often used analogously to full rank lattices

in the non-archimedean settings. Two inner-product norms on R2 are said to

be homothetic if they differ by a positive multiplicative constant. The action of

GL2(R) on R2 induces a transitive action on the space of inner-product norms

on R2. This action descends to a transitive action of PGL2(R) on homothety

classes of inner-product norms. Any inner-product norm | • | : R2 → R>0

induces a sub-multiplicative operator norm on M2(R) in the standard way:

‖g‖|•| = sup
06=v∈R2

|gv|
|v|

.

This operator norm depends only on the homothety class R>0 · | • |. Let

Stab|•| < PGL2(R) be the stabilizer of the homothety class of | • |. The closed

unit-ball in M2(R) with respect to ‖ • ‖|•| is an Ad Stab|•|-invariant compact

identity neighborhood. Unlike the endomorphism ring of a full-rank lattice,

this closed unit-ball is not a ring but only a multiplicative monoid.

Let | • |∞ : R2 → R>0 be the standard Euclidean norm. This is the unique

inner-product norm on R2 stabilized by O2(R), and its homothety class R×|•|∞
is the unique homothety class of inner-product norms stabilized by PO2(R).

Denote ‖ • ‖∞ := ‖ • ‖|•|∞ — the operator norm on B(R) induced by | • |∞
and the isomorphism above. This norm does not depend on the choice of

isomorphism as it is AdPGO2(R)-invariant.

If B(R) is ramified, we fix an isomorphism of B(R) and the Hamilton

quaternions and define ‖ • ‖∞ to be the the quaternion norm. This definition

does not depend on the choice of isomorphism as the quaternion norm is multi-

plicative and conjugation invariant. Equivalently, in this case ‖ • ‖∞ =
√

Nrd.

In both the ramified and unramified cases the norm ‖ • ‖∞ satisfies the

following useful identity:

(6) ∀g ∈ B×(R) : ‖g−1‖∞ =
‖g‖∞
|Nrd g|

.

We need the following definitions:

O∞ :=
¶
g ∈ B×(R) | ‖g‖∞ ≤ 1

©
,

O×∞ :=
¶
g ∈ B×(R) | ‖g‖∞ = 1,Nrd g > 0

©
' SO2(R),‹Ω∞ :=

¶
g ∈ B×(R) | ‖g±1‖∞ ≤ 2,Nrd g > 0

©
.

The set O∞ is the closed unit-ball of ‖ • ‖∞, O×∞ is the orientation-preserving

isotropy group of the Euclidean norm | • |∞ and ‹Ω∞ is a connected, symmetric

and compact identity neighborhood. Moreover, O×∞‹Ω∞ = ‹Ω∞O×∞ = ‹Ω∞.

Elements of ‹Ω∞ satisfy the following inequalities that follow from (6) and
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submultiplicativity of the operator norm:

Nrd g =
‖g‖∞‖g−1‖∞
‖g−1‖2∞

≥ 1

‖g−1‖2∞
≥ 1/4,

Nrd g =
Ä
Nrd g−1

ä−1 ≤ 4.

(7)

2.3. Simply connected cover. Let Gsc := B(1) be the group of unit quater-

nions in B. The group Gsc is the simply connected cover of G. For an algebra

R/Q, we denote by G(R)+ the image of Gsc(R) in G(R) under the isogeny

map. The subgroup G(A)+ < G(A) is normal, and the reduced norm map

Nrd: B× → Gm induces a monomorphism of compact abelian groups

Nrd:
G(A)

/
G(A)+ → A×/A×2.

To determine the image of Nrd(B×(F )) for a field F/Q, notice that all the

elements with a fixed reduced norm form a torsor of Gsc defined over F . As

such it has an F -point only if it is the trivial torsor. This can be checked using

the Galois cohomology of Gsc. The cohomology group is trivial for each p-adic

field (cf. [Kne65]), hence each element in Q×p is a reduced norm; this can also

be simply deduced from checking the two possible quaternion algebras over Qp.
For the archimedean field R, there are two possible quaternion algebras. In

the split case every element of R× is a reduced norm, and for the Hamilton

quaternions, only the positive elements R>0 are reduced norms.

For the global field Q, this question is answered by the Hasse-Schilling-

Maass theorem; cf. [Rei75, Th. 33.15]. The following global-to-local map is

injective as Gsc is simple and simply connected:

H1(Q,Gsc) ↪→ H1(R,Gsc).

Hence if B is split at∞, then every element of Q× is a reduced norm, otherwise

only elements of Q>0 are reduced norms.

The reduced norm defines a monomorphism of double coset spaces

G(Q)
\G(A)/

G(A)+
Nrd−−→ Q×\

A×/A×2.

Following the discussion above we know that this morphism has full image if

B is split at ∞ and the image is the index-2 subgroup Q>0
\R>0 × A×f /A×2

otherwise.

2.4. Toral periods. Periodic orbits of tori on Y can be collected into nat-

ural arithmetic packets [ELMV09], [ELMV11] that generalize the packets of

CM points and closed geodesics on the modular curve.
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These are easiest to define in adelic terms. Let T < G be a maximal torus

defined and anisotropic over Q. We require the torus to be anisotropic so that

the space
T(Q)

\T(A)
has finite volume.

2.4.1. Homogeneous sets and periodic measures. Einsiedler, Lindenstrauss,

Michel and Venkatesh have defined in [ELMV11] the notion of a homogeneous

toral set. For any g = (gv)v ∈ G(A), the set

[T(A)g] ⊂ [G(A)]

is a homogeneous toral set. This set is a right translate of [T(A)] '
T(Q)

\T(A)

and hence carries a unique probability measure invariant under the locally

compact abelian group HA := g−1T(A)g. Denote this measure by µ, and call

it the periodic toral measure.

Special places. Because the measure rigidity arguments we use require an

action by a split torus at two different places, once and for all we fix two finite

rational primes p1, p2 such that G is split at p1 and p2. We fix two maximal

split tori Ap1 < G(Qp1) and Ap2 < G(Qp2) and require that the intersection

of Ap1 and Kp1 is maximal compact in Ap1 ; equivalently, the apartment of

Ap1 in the Bruhat-Tits buildings contains the vertex stabilized by Kp1 . In

Section 2.2.1 we have already fixed a maximal compact torus K∞ < G(R).

We restrict to the case when T is split at p1 and p2 and anisotropic at ∞.

Unless stated otherwise, we shall always assume that

(♠) g−1
∞ T(R)g∞ = K∞, g

−1
p1

T(Qp1)gp1 = Ap1 , g
−1
p2

T(Qp2)gp2 = Ap2 .

2.4.2. Packets. Let S be a finite set of rational places containing at least

∞, p1, p2 and such that the following class number 1 assumption holds:

(8) #
G(Q)

\G(A)/
G(QS) ·KS = 1.

The G(QS)-equivariant open embedding

Y := Γ\
G(QS) ↪→

G(Q)
\G(A)/KS ,

Γ := G(Q) ∩KS

is an isomorphism due to (8).

Denote the projection of [T(A)g] to Y by P. The set P is called a packet

of periodic torus orbits. It is a union of periodic orbits5 for the torus H =∏
v∈S Hv where Hv = g−1

v T(Qv)gv, and our choices (♠) imply H∞ = K∞,

Hp1 = Ap1 and Hp2 = Ap2 .

5Following [ELMV09] we say that an orbit of a locally compact group H is periodic if it

supports a finite H-invariant Borel measure.
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Action on torus orbits. Denote

KS
T := gKSg−1 ∩T(AS) < T(AS),

KT,f := K
{∞}
T = gKfg

−1 ∩T(Af ). < T(Af ).

These are compact-open subgroups of the ambient torus groups. The following

finite abelian group acts simply transitively on the set of H-orbits in P:

CS :=
T(Q)

\T(A)
/
T(QS) ·KS

T
.

The finiteness of CS implies that P is a finite collection of periodic H-orbits.

We can actually incorporate the pointwise action of H ' T(QS) on P and

the action of CS on the set of H-orbits into a pointwise action of the single

group
T(A)

/
KS

T
.

Periodic measure on the packet. The measure µ defines a push-forward

measure µ on Y supported on P and invariant under the action of H. The mea-

sure µ is a finite average of periodic H-measures. All the periodic H-measures

contribute to µ with the same weight as can be seen using the action of CS .

2.4.3. Homogeneous toral sets in B×. Any maximal torus T < G defined

over Q is the image of a unique maximal torus ‹T < B× defined over Q.

All maximal rational tori ‹T < B× are of the form‹T ' ResE
QGm,

where E/Q is a quadratic étale-algebra embeddable into B(Q). More specif-

ically, let ι : E ↪→ B(Q) be a ring embedding. Then the image of ι is the

Q-points of a maximal commutative algebra subvariety E with E(Q) = ι(E).

The corresponding torus ‹T is equal to E×. Notice that an étale-algebra E does

not define the subalgebra E < B uniquely as there are many inequivalent ways

to embed E in B(Q). The subalgebra E is defined by a specific embedding ι,

up to an automorphism.

Our requirement that T = Z\
‹T ' Gm

\ResE
QGm is anisotropic over Q is

equivalent to E being a quadratic field. The condition (♠) implies that E is

imaginary and split at p1 and p2.

Choose any representative of g in B×(A), and by abuse of notations denote

it by g as well. The isomorphism of adelic quotients (5) induces an identifica-

tion of homogeneous toral sets

[T(A)g] = [‹T(A)g] ⊂
Z(A)B×(Q)

\B
×(A)

.
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Class group action. Let S be a finite set of rational places as in Sec-

tion 2.4.2. As before, define

KS

T̃
:= gO×,Sg−1 ∩ ‹T(AS) < ‹T(AS),

K
T̃,f

:= K
{∞}
T̃

= gO×f g
−1 ∩T(Af ) < T(Af ).

Because of our choice of Kv to be the projection of O×v there is also an

surjective homomorphism of finite abelian groups

E×\
AE/

ES ·KS

T̃

= ‹T(Q)
\
‹T(A)

/‹T(QS) ·KS

T̃

�
T(Q)

\T(A)/
T(QS) ·KS

T
= CS ,

(9)

where KS

T̃
:= g

Ä∏
v 6∈S O×v

ä
g−1∩‹T(AS) is a compact-open subgroup in ‹T(AS).

The kernel of this map is the following quotient:

Gm(Q)\
Gm(A)

/Gm(QS) ·∏v 6∈S Z×v
,

which is trivial because Q has a trivial class group. We see that (9) is actually

an isomorphism. We have thus expressed CS in a natural way as a quotient of

the idéle class group of E. It is natural to consider CS as a generalized S-class

group of the field E.

2.4.4. Quadratic orders and discriminants.

The local order and local discriminant.

Definition 2.1.

(1) Recall that ‹T = E× where E < B is a maximal commutative algebra. For

each place v, we define

Λv := E(Qv) ∩ gvOvg−1
v .

For v non-archimedean, Λv is a commutative ring and an order in the

étale-algebra E(Qv) ' Ev.
(2) For v non-archimedean, denote the maximal order of the étale-algebra Ev

by OEv , i.e., OEv =
∏
w|v OEw .

Proposition 2.2. For almost all v non-archimedean Λv = OEv .

Proof. As Q · O = B(Q), we see that Λnaive := O ∩ E(Q) is a Z-lattice

of full rank in the 2-dimensional Q-vector space E(Q). We can extend any

Z-basis b of Λnaive to a Z-basis b ∪ c of6 O.

6This can be seen from the fact that O/Λnaive is a finitely generated torsion-free Z-module

and each such module is free.
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Fix v non-archimedean, and denote Λnaive
v ⊂ E(Qv) for the v-adic closure

of Λnaive. We can use the basis above and weak approximation to explicitly

write Ov = SpanZv b∪ c, Λnaive
v = SpanZv b and E(Qv) = SpanQv b. In particu-

lar, E(Qv) ∩Ov = Λnaive
v .

For any v such that gv ∈ Kv, we see that

Λv = E(Qv) ∩Ov = Λnaive
v .

The lattice Λnaive is an order in the number field E(Q) ' E. The p-adic

completion of Λnaive is equal to the maximal order for any p relatively prime

to the conductor of Λnaive. Hence Λv is maximal if gv ∈ Kv and qv is relatively

prime to the conductor — which happens for almost all v. �

Lemma 2.3. For any v non-archmiedean, there exists fv ∈ Zv such that

Λv = Zv + fvOEv . The conductor of Λv is fvOEv , and Λv is stable under the

Galois action of Gal(Ev/Qv).

Proof. The argument is the same as for orders in quadratic number fields.

�

Definition 2.4. We define the local discriminant Dv of the homogeneous

toral set [T(A)g] in an equivalent way to [ELMV11, §6.1].

(1) For v non-archimedean, Dv is the discriminant of the order Λv. In partic-

ular, for all places v where E is unramified and Λv is maximal, we have

Dv=1.

(2) For v archimedean, there is a natural topological ring isomorphism of E(R)

either to R × R or to C unique up to an automorphism. Consider the

standard volume form on R× R or C induced by the inner-product norm

α 7→ |α| or (α, β) 7→
»
|α|2 + |β|2, and pull it back to E(R).

Let Λ∞ ⊂ E(R) be the intersection of the closed unit ball of ‖•‖∞ with

E(R). Define D∞ to be the square of the volume of Λ∞ with respect to

the latter volume-form.

(3) Finally, the global discriminant is defined to be D :=
∏
vDv.

Remark 2.5. Conjugating by gv we have Λv ' g−1
v E(Qv)gv ∩ Ov. Thus

the local discriminant Dv for v = ∞, p1, p2 is the same for all homogeneous

toral sets for which (♠) holds.

Moreover, our choice of ‖ • ‖∞ to be K∞-invariant in Section 2.2.1 and

the requirement that g−1
∞ T(R)g∞ = K∞ in (♠) imply D∞ = 1.

The global order.

Definition 2.6. We define a global order Λ < E(Q) ' E by

Λ :=
⋂
v 6=∞

Λv,

where the intersection is taken in the 2-dimensional Q-vector space E(Q).
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Recall that by Proposition 2.2, Λv is equal to the v-adic closure of OE
for almost all v, hence the intersection Λ is a finite index Z-sublattice in OE .

Moreover, it is closed under multiplication, so it is an order in E(Q). The

discriminant of Λ is exactly
∏
v 6=∞Dv. Notice that in general Λ 6= E(Q) ∩O.

Remark 2.7. A consequence of the discussion above is that for all v 6=∞,

the compact-open subgroup K
T̃,v

:= gvOvg−1
v ∩ ‹T(Qv) < ‹T(Qv) is the unit

group of the order Λv.

In particular, if K
T̃,f

:=
∏
v 6=∞KT̃,v

< ‹T(Af ), then

C{∞} ' ‹T(Q)
\
‹T(A)

/‹T(QS) ·KS

T̃

' Pic(Λ).

Idéles and ideals.

Definition 2.8. Let [T(A)g] be a homogeneous toral set with splitting field

E/Q and global order Λ := ∩v 6=∞Λv ⊆ OE .

(1) Denote by J(Λ) the abelian group of invertible proper Λ-fractional ideals.

These are exactly the locally principle fractional ideals, and there is a

canonical group isomorphism

ĩdl :
‹T(Af )

/
K

T̃,f

=
∏
v 6=∞E

×
v /∏

v 6=∞ Λ×v
→ J(Λ)

defined by (αvΛ
×
v )v 6=∞ 7→

⋂
v 6=∞ αvΛv ⊂ E.

(2) Define J(Λ)0 := J(Λ) ∪ {0 · Λ}. This set of ideals does not carry a group

structure any more but there is a natural action of J(Λ) on it, and hence

also an action of the finite E-idèles. The map above extends naturally to

a surjective equivariant map

ĩdl :
E(Af )

/
K

T̃,f

=
∏
v 6=∞Ev/∏

v 6=∞ Λ×v
→ J(Λ)0,

which is no longer a bijection. The preimage of the zero ideal contains any

non-invertible adèle. The preimage of any invertible fractional ideal still

contains only one element.

(3) The map idl above descend to the following function:

idl :
T(Af )

/KT,f
= A×f

\
∏
v 6=∞E

×
v /∏

v 6=∞ Λ×v

= Q×\
∏
v 6=∞E

×
v /∏

v 6=∞ Λ×v

‹idl−→ Q×\
J(Λ)

.

The second equality above holds because Q has trivial class group.
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2.4.5. Volume. The volume of a homogeneous toral set has been defined

in [ELMV11]. To motivate the definition, consider a normalization in which

the measure of the group under which the homogeneous set is invariant — HA
— is kept fixed while the homogeneous toral set varies in a family. In the adelic

setting it is impossible to keep HA independent of the homogeneous set in the

family, yet we can normalize the measures in a uniform way.

To do that fix a compact identity neighborhood Ω =
∏
v Ωv ⊂ G(A).

Normalize the Haar measure mHA on HA so that mHA(Ω) = 1. The measure

mHA also induces an HA-invariant measure on [T(A)g] that differs from µ by

a constant. The volume of the homogeneous set is defined as the volume of

[T(A)g] with respect to the measure induced by mHA .

A formula for the volume can be written in terms of the covolume 1 Haar

measure mT on T(A),

vol ([T(A)g]) := mT

Ä
gΩg−1

ä−1
.

The definition of the volume depends on the choice of a compact identity

neighborhood Ω but in an inessential way. Specifically, for any compact identity

neighborhoods Ω and Ω′,

(10) volΩ ([T(A)g])�Ω,Ω′ volΩ′ ([T(A)g])�Ω,Ω′ volΩ ([T(A)g]) .

Most importantly, the constants do not depend on the homogeneous toral set.

Once and for all we fix Ωv = Kv for all non-archimedean v and Ω∞ =

Z(R)‹Ω∞, where ‹Ω∞ is as in Section 2.2.1. The set Ω∞ is a connected, com-

pact, symmetric and AdK∞-invariant identity neighborhood in G(R). In the

ramified case this neighborhood coincides with G(R). These choices simplify

computations later.

2.5. Joinings of periodic toral measures. Let [T(A)g] ⊂ [G(A)] be a ho-

mogeneous toral set with periodic measure µ as in the previous section. Denote

by T∆ < G×G the diagonal embedding.

Fix s ∈ T(A), and consider the following subset of the cartesian square of

[G(A)]:

[T∆(A)(g, sg)] ⊂ [(G×G) (A)] .

This is a homogeneous set for the non-maximal rank 1 anisotropic torus T∆

in the rank 2 group G×G.

By the same arguments as in the previous sections this set carries a prob-

ability measure µjoint invariant under the action of7 H∆
A .

7Notice that s commutes with T(A).
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The measure µjoint projects in each coordinate to the regular periodic toral

measure µ supported on [T(A)g]. It is a self-joining of µ that is non-trivial

because of the shift by s ∈ T(A).

We call s the twist of the self-joining. Notice the that whole class of s in

T(Q)
\T(A) defines exactly the same self-joining.

2.5.1. Joining of packets. Let S and Y be as in Section 2.4.2. Denote by

H∆ the diagonal embedding of H into G(QS)×G(QS). The set [T∆(A)(g, sg)]

projects to a finite collection of H∆ orbits on Y × Y denoted by Pjoint. The

measure µjoint can be pushed forward to an H∆-invariant probability measure

on Pjoint, which we denote by µjoint. The measure µjoint is a self-joining of the

H-invariant measure µ on Y .

2.5.2. Volume and discriminant. The definitions of volume and discrimi-

nant extend trivially from homogeneous set of Q-anisotropic rank 1 tori in G

to anisotropic rank 1 tori in G×G. By choosing Ω×Ω as the reference iden-

tity neighborhood on (G×G) (A) and setting O×O as the reference maximal

order in (B×B) (Q), we have

vol
Äî
T∆(A)(g, sg)

óä
= vol ([T(A)g]) .

disc
Äî
T∆(A)(g, sg)

óä
= disc ([T(A)g]) .

3. Principal results

In this section we present our main theorem and prove key corollaries, a

few reduction steps and complementary propositions. The proof of the main

theorem is presented in Section 10 and builds upon the tools developed in the

rest of the manuscript.

We will use the following shorthand to simplify our notation.

Definition 3.1. Denote Gres :=
G(Q)

\G(A)/
G(A)+, and let π+ : [G(A)]

→ Gres be the quotient map.

The topological space Gres is a compact abelian group such that the com-

position of quotient maps G(A) → [G(A)]
π+

−−→ Gres is a continuous surjective

group homomorphism; cf. Section 2.3. This implies that the push-forward of

the probability Haar measure on [G(A)] to Gres is the probability Haar measure

of Gres.

3.1. Equidistribution of toral orbits. The following is the key theorem of

this work.

Theorem 3.2. Let G be a form of PGL2 over Q. Fix a maximal compact

torus K∞ < G(R) and two finite primes p1, p2. Let {Hi}i be a sequence of joint
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homogeneous toral sets. For each i, write Hi =
î
T∆(A)(g, sg)

ó
, where T, s, g

depend on i. Recall that T < G is a maximal torus defined and anisotropic

over Q, g ∈ G(A) and s ∈ T(A).

Let Ei/Q be the quadratic field splitting T, and let Di be the discriminant

of Hi. Denote by fi the conductor of Di; i.e., f2
i | Di is the largest square

divisor of Di.

Denote by µi the algebraic probability measure on [(G×G) (A)] supported

on Hi.

Assume the following for all i ∈ N:

(1) g−1
∞ T(R)g∞ = K∞,

(2) p1, p2 split in Ei,

(3) the Dedekind ζ function of Ei has no exceptional Landau-Siegel zero,

(4) fi� 1.

If |Di| → ∞ and the following holds for any compact subset B ⊂ G(A),

∀i�B 1: g−1T(Q)sg ∩B = ∅,

then any weak-∗ limit point of {µi}i is a (G×G) (A)+-invariant probability

measure.

Corollary 3.3. Denote by

L2
00 ([(G×G) (A)] ,mG×G}) < L2 ([(G×G) (A)] ,mG×G)

the subspace orthogonal to the residual spectrum. Then in the setting of Theo-

rem 3.2, for any continuous compactly supported function

f ∈ L2
00 ([(G×G) (A)] ,mG×G) ,

we have ∫
f dµi →i→∞ 0.

Proof. Each fiber of π+ admits a transitive G(A)+ action inducing an iso-

morphism of the fiber with [G(A)+]. This isomorphism depends on the choice

of a base point. The probability Haar measure on [G(A)+] defines a probabil-

ity measure on the fiber which is independent of the choice of base point due to

the invariance property of the Haar measure. The conditional measures of mG

on the fibers of [G(A)]→ Gres are G(A)+-invariant probability measures, and

hence they can be taken to coincide with the previously described measures on

the fibers.

The residual spectrum is by definition the space of function factoring

through π+ × π+, and a function is orthogonal to the residual spectrum if its

conditional expectation with respect to the pull-back of the Borel σ-algebra

under π+×π+ vanishes. In terms of conditional measures this is equivalent to

the function having integral 0 over the conditional measure of mG × mG for
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almost each fiber. For a compactly supported continuous function f orthogonal

to the residual spectrum, we deduce that it has integral 0 over each fiber with

respect to the (G×G) (A)+-invariant measure.

Since each (G×G) (A)+-invariant probability measure on [(G×G) (A)]

is a convex combination of the measures on the fibers of π+ × π+, we deduce

that all the limit points of
∫
f dµi are 0. �

3.2. Reduction to a fixed invariance group at p1, p2. In the rest of the

manuscript we work with homogeneous toral sets satisfying the conditions of

(♠) that are more restrictive then the conditions in Theorem 3.2. In particular,

we require for all homogeneous toral sets [T(A)g] that g−1
pj T(Qpj )gpj = Apj for

j ∈ {1, 2} and some fixed split tori Apj < G(Qpj ). In this section we show

that Theorem 3.2 can be reduced to the case of joint homogeneous toral sets

satisfying these additional conditions.

Proposition 3.4. Let {Hi}i and {µi}i be as in Theorem 3.2. Then there

is a bounded sequence hi ∈ G(A) such that Hi(hi, hi) ⊆ [(G×G) (A)] satisfies

(♠) for all i ∈ N.

Proof. The main observation is that the local discriminant is a proper

continuous map on the variety of tori. Let p ∈ {p1, p2}. Because all Qp-split

tori in G(Qp) are conjugate, we identify the space of Qp-split tori with
G(Qp)/

NG(Qp)Ap
. To each split torus we can associate a discriminant in the manner of

Section 2.4.4. Specifically, let A < B(Qp) be the split quadratic étale-algebra

associated to Ap. If T = hAh−1 for some h ∈ G(Qp) then disc(T ) is the

discriminant of the order hAh−1 ∩O. This function is continuous and proper

as follows from [ELMV11, §§4.2, 6.1].

If Hi = [T(A)(gi, sigi)], then assumption (4) in Theorem 3.2 and proper-

ness of the local discriminant map imply that g−1
i,pTi(Qp)gi,p is a bounded

sequence in the space of tori
G(Qp)/

NG(Qp)Ap
for p ∈ {p1, p2}. Thus we can

choose a bounded sequence hi,p ∈ G(Qp) such that g−1
i,pTi(Qp)gi,p = hi,pAph

−1
i,p

for all i ∈ N.

Define hi ∈ G(A) to have coordinate hi,p for p ∈ {p1, p2} and have trivial

coordinates at all other places. This sequence obviously satisfies the claimed

properties. �

Corollary 3.5. Theorem 3.2 for joint homogeneous toral sets satisfying

(♠) implies the general case of Theorem 3.2.

Proof. Let {Hi}i and {µi}i be as in Theorem 3.2. Because this sequence

of measures is tight by Duke’s theorem, we can pass without loss of generality

to a convergent subsequence with limit µ. Let hi ∈ G(A) be the bounded
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sequence from Proposition 3.4 above. Without loss of generality we pass to a

further subsequence such that hi →i→∞ h ∈ G(A).

For any g ∈ G(A), denote by Rg : [G(A)]→ [G(A)] the transformation of

multiplying by g−1 on the right. For each i, the measure (Rhi ×Rhi)∗ .µi is

the algebraic measure supported on Hi(hi, hi) and we have

(Rhi ×Rhi)∗ .µi →i→∞ (Rh ×Rh)∗ .µ.

Our assumption implies the measure on the right-hand side is a (G×G) (A)+

invariant measure. The same statement then holds for µ because (G×G) (A)+

is a normal subgroup. �

3.3. Limit behavior of residual spectrum. The following, significantly eas-

ier, proposition supplements the main theorem as it can be used to understand

the asymptotic behavior for the residual spectrum.

Proposition 3.6. Let {µi}i and Ei/Q be as in Theorem 3.2, although

we do not require that conditions (1)–(4) from the theorem are satisfied.

Assume one of the following two options holds : either all the fields Ei are

distinct, or they are all equal to a fixed quadratic field E0/Q. In the former

case define H := Gres, and in the latter case set H := ker
(
χE0
◦Nrd

)
, where

χE0
: Q×\

A×/A×2 → {±1} is the real adelic character attached to E0/Q by

global class field theory.

Then any limit point of (π+ × π+)∗ .µi is an H∆-invariant probability mea-

sure supported on a single coset of H∆.

Remark 3.7. It will be evident from the proof that in general, even under

the assumptions of the proposition above {(π+ × π+)∗ .µi}i need not converge.

Proof. Recall from Section 2.3 that the reduced norm map induces a

monomorphism

Nrd: Gres → Q×\
A×/A×2.

This map is onto if B is split at ∞, and otherwise it is the index 2 subgroup

Q>0
\R>0 ×A×f /A×2.

Assume {µi}i converges weak-∗, and let
î
Ti(A)∆(gi, sigi)

ó
be the homo-

geneous toral set of µi. By restricting to a subsequence we can assume without

loss of generality that π+(gi) and π+(si) converge in Gres to some γ, σ ∈ Gres.

Fix an index i ∈ N, and let T := Ti and E := Ei. Because T(A) is abelian

and T is isotropic over Q the homogeneous set, [T(A)] is a compact abelian

group. In particular, π+ ([T(A)]) is a closed subgroup of Gres. To describe this

subgroup explicitly recall that the isomorphism T ' Gm
\ResE

QGm intertwines

the reduced norm map with the regular field norm map. Thus

Nrd ◦π+ ([T(A)]) = kerχE ,
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where χE : Q×\
A×/A×2 → {±1} is the real adelic character attached to E/Q

by global class field theory. Henceforth we shall denote this character by χi.

If χi = χE0
for all i where E0/Q is a fixed imaginary quadratic field, then

define H := ker
(
χE0
◦Nrd

)
< Gres. Otherwise, our assumption implies that

all the characters χi are mutually distinct. Because Q×\
A×/A×2 is compact,

its Pontryagin dual is discrete. Hence if the character χi are distinct, the se-

quence {χi}i diverges. If {χi}i diverges, then the sequence of subgroups {〈χi〉}i
converge in the Chabauty topology to the trivial group 1 < Gres. Pontryagin-

Chabauty duality [Cor11] then implies that kerχi converges in the Chabauty

topology to the full subgroup Q×\
A×/A×2. In this case set H := Gres.

For all i, denote νi := (π+ × π+)∗ .µi, and let ν be the limit measure. From

the discussion above it follows that Nrd∗ .νi is the kerχ∆
i -invariant probability

measure on kerχ∆
i (π+(g), π+(gsi)). The limit measure Nrd∗ .ν is invariant

under the action of the Chabauty limit of the invariance subgroups kerχ∆
i ,

which is Nrd(H)∆. We deduce that ν is invariant under H∆.

We are left only with proving that ν is supported on a single coset of H.

Using the continuous contraction map ctr : Gres×Gres → Gres define the push-

forward probability measures ctr∗ .νi on Gres. The characterization of Nrd∗ .νi
above implies that

Nrd∗ . ctr∗ .νi = δNrd(π+(si)) →i→∞ δNrd(σ),

hence ctr∗ .ν = δσ. This implies that ν is supported on G∆
res(e, σ), and the

proof is concluded in the case that H = Gres.

If H = kerχE , then νi(π
+(gi), π

+(sigi))
−1 is independent of i and is equal

to the Haar measure on H∆. The claim follows because

νi(π
+(gi), π

+(sigi))
−1 →i→∞ ν(γ, σγ)−1. �

3.4. Many-fold toral joinings. A pleasant consequence of the joining the-

orem of Einsiedler and Lindenstrauss is that we can understand n-joinings of

periodic toral measures using the theorem for 2-joinings. The main observation

is that if a reductive subgroup L < G× · · · ×G︸ ︷︷ ︸
n

projects onto G ×G in any

of the ( n2 ) pairs of coordinates, then it must be equal to the full n-product.

Definition 3.8. Fix n ∈ N. Let T < G be a maximal torus defined and

anisotropic /Q. Denote by T∆ < G×n the diagonal embedding.

Fix s1, . . . , sn−1 ∈ T(A) and g ∈ G(A). The setî
T∆(A)(g, s1g, . . . , sn−1g)

ó
⊂
î
G×n(A)

ó
is an n-joint homogeneous toral set. This set supports a unique

(
g−1T(A)g

)∆
-

invariant probability measure.
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Theorem 3.9. Let G be a form of PGL2 over Q. Fix a maximal compact

torus K∞ < G(R) and two finite primes p1, p2.

Let {Hi}i be a sequence of n-joint homogeneous toral sets. For each i, write

Hi =
î
T∆(A)(g, s1g, . . . , sn−1g)

ó
where T, {sj}1≤j<n, g depend on i. Recall

that T < G is a maximal torus defined and anisotropic over Q, g ∈ G(A) and

s1, . . . , sn−1 ∈ T(A).

Let Ei/Q be the quadratic field splitting T, and let Di be the discriminant

of Hi. Denote by fi the conductor of Di; i.e., f2
i | Di is the largest square

divisor of Di.

Denote by µi the algebraic probability measure on [G×n(A)] supported

on Hi.

Assume the following for all i ∈ N:

(1) g−1
∞ T(R)g∞ = K∞;

(2) p1, p2 split in Ei;

(3) the Dedekind ζ function of Ei has no exceptional Landau-Siegel zero;

(4) fi� 1.

If |Di| → ∞ and if the following holds for any compact subset B ⊂ G(A)

and for any pair of distinct elements s, s′ ∈ {1, s1, . . . , sn−1}

(11) ∀i�B 1: g−1T(Q)s−1s′g ∩B = ∅,

then any weak-∗ limit point of {µi}i is a G×n(A)+-invariant probability mea-

sure.

Proof. The proof follows from Theorem 9.7 and [EL15a, Cor. 1.5]. �

3.5. Galois orbits of special points.

Theorem 3.10. Let G be a form of PGL2 defined over Q and split

over R. Let X be a product of n quaternionic Shimura varieties relative to G.

Let {xi}i be a sequence of special points in X all whose coordinates have

CM by the same quadratic order Λi < Ei of discriminant Di < 0 and conduc-

tor fi. Fix two primes p1, p2, and assume the following for all i ∈ N:

(1) p1, p2 split in Ei;

(2) the Dedekind ζ-function of Ei has no exceptional Landau-Siegel zero;

(3) fi � 1.

Denote by νi the normalized counting measure on the finite Galois orbit of

xi. If the sequence {xi}i has finite intersection with any proper special subva-

riety, then any weak-∗ limit of {νi}i is a convex combination of the uniform

probability measures on the connected components of X .

Proof. We will show how this theorem follows from Theorem 3.9 above.

The definition of a Shimura variety relative to G (cf. [Mil05, §5]) implies that
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there is a surjective projection map

Π:
î
G×n(A)

ó
→ X

defined by dividing the adelic quotient by the compact group
∏n
j=1(K∞ ×Uj)

where K∞ < G(R) is a compact torus and Uj < G(Af ) is a compact-open

subgroup for all 1 ≤ j ≤ n.

In this case, the reciprocity map of class field theory supplies (cf. [Mil05,

§12]) an identification between the Galois orbit of xi and the image under Π

of a homogeneous toral set

Hi =
î
T∆(g1, . . . , gn)

ó
⊂
î
G×n(A)

ó
,

where T < G satisfies the conditions of Theorem 3.9. Moreover, the counting

measure on the Galois orbit is the push-forward of the period measure µi on Hi.

The homogeneous toral set Hi is of the form treated in Theorem 3.9 if all

the n coordinates of xi are Galois conjugate. In general, there can be more then

one Galois orbit with the same CM order Λi, yet they all differ by an element

of a maximal compact subgroup in G×n(A), i.e., by Atkin-Lehner involutions.

Specifically, let Kf,j < G(Af ) be a maximal compact subgroup containing Uj .

Then the homogeneous toral set Hi can be taken to be

Hi =
î
T∆(g, s1gk

i
1, . . . , sn−1gnk

i
n−1)

ó
⊂
î
G×n(A)

ó
,

where g ∈ G(A), s1, . . . , sn−1 ∈ T(A) and ki := (1, ki1, . . . , k
i
n−1) ∈ ×K1,f ×

· · · × Kn,f . Denote by µi the period measure supported on Hi and whose

push-forward to X is νi.

If the sequence {xi}i has a finite intersection with any proper special

subvariety, then the same property holds for any fixed pair of coordinates of

{xi}i when considered as a sequence of special points on a product of two

varieties. This implies the genericity condition (11) in Theorem 3.9 for the

homogeneous toral sets Hik
i−1

. In particular, all the condition of this theorem

hold for the sequence {Hiki
−1} and we deduce the any weak-∗ limit of {µiki

−1}i
is a G×n(A)+-invariant probability measures.

Assume without loss of generality that µik
i−1 →i→∞ µ. By passing to a

subsequence we can also assume ki →i→∞ k0 ∈ K1,f × · · · × Kn,f . Then we

have that µi →i→∞ µk0. Because G×n(A)+ is a normal subgroup we deduce

that µk0 is also G×n(A)+-invariant. The claim follows by pushing-forward µk0

to X using Π. �

4. Measure rigidity

Here we present a definition of an algebraic probability measure in the

S-arithmetic setting and the adelic one. The S-arithmetic definition we use is

from [EL15a].
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Definition 4.1. Let M be a linear algebraic group defined over Q.

(1) Fix a finite set of rational places S containing ∞, and let M < M(QS)

be a closed finite index subgroup. Let Γ < M be a lattice. A probability

measure ν on Γ\
M is algebraic if there are a closed unimodular algebraic

subgroup L < M defined and anisotropic over Q, a finite index subgroup

L < L(QS) and some gS ∈ M such that ν is the probability L-Haar

measure supported on [LgS ] ⊆ Γ\
M .

(2) A probability measure ν on [M(A)] is an algebraic measure if there are

a closed unimodular algebraic subgroup L < M defined and anisotropic

over Q, an isogeny L′ → L over Q and a closed subgroup of finite index

L < Im [L′(A)→ L(A)] such that ν is the probability L-Haar measure on

an orbit [Lg] ⊂ [M(A)] for some g ∈ G(A).

Remark 4.2. The datum defining a fixed adelic algebraic measure is the

G(Q)-orbit of a tuple (L,L′ → L, L, Lg) where γ ∈ G(Q) acts by

γ.(L,L′ → L, L, Lg) = (Adγ L,L
′ → L

Adγ−−→ Adγ L,Adγ L, (Adγ L)(γg)).

Definition 4.3. Write

A+
pi

:= Api ∩G(Qpi)
+

for i ∈ {1, 2}. The subgroup A+
pi is the image in Api of a maximal torus in

Gsc(Qpi) isogenic to Api , hence it has finite index in Api .

The essential ingredient in the proof of the following theorem is the join-

ings theorem of Einsiedler and Lindenstrauss [EL15a, Th. 1.4] and Duke’s

theorem for equidistribution in the absolute rank 1 case. Notice that because

we assume a fixed split prime, the equidistribution in the absolute rank 1 case

that we use is already covered by Linnik’s method [Lin68].

Theorem 4.4. Let µjoint
i be a sequence of self-joinings of periodic toral

measures on [(G×G) (A)] with discriminants |Di| →i→∞ ∞ and satisfy-

ing (♠). Let the probability measure µ be any limit point of µjoint
i . Then µ is a

convex combination of (A+
p1
×A+

p2
)∆-invariant algebraic measures. Specifically,

there is a Borel probability measure P on the space of probability measures

M1 ([(G×G) (A)]) supported on the subset of algebraic measures so that

µ =

∫
M1([(G×G)(A)])

λ dP(λ).

Moreover, for almost all the algebraic measures λ in the support of P, the

associated Q-group L < G ×G can be taken either to be G∆ or G ×G, and

λ is the algebraic measure supported on [L(A)+ξ] for some ξ ∈ (G×G) (A).
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Corollary 4.5. Let λ be an algebraic measure in the support of P in

Theorem 4.4 above. If λ is supported on [G∆(A)+ξ], then ctr(ξ)pi ∈ Api for

i ∈ {1, 2}.

Proof. Fix i ∈ {1, 2}. The measure λ is
Ä
A+
pi

ä∆
-invariant, and its stabilizer

subgroup in (G×G) (Qpi) is contained in (e, ctr(ξ)pi)G
∆(Qpi)(e, ctr(ξ)pi)

−1.

Thus ctr(ξ)pi centralizes A+
pi in G(Qpi). This centralizer is Api . �

We will use the following standard result.

Lemma 4.6. For every rational place v that splits B, the action of G(Qv)+

is mixing for the Haar measure on [G(A)+ω0] for any ω0 ∈ G(A).

Proof. The Haar measure on [G(A)+ω0] is invariant under ω−1
0 G(A)+ω0 =

G(A)+. Considering the G(A)+-equivariant isomorphism of measure spaces

[G(A)+ω0] = G(Q)\
G(A)+ω0 ' ZGsc(A) ·Gsc(Q)\

Gsc(A)
,

it is enough to show that the action of Gsc(Qv) on [Gsc(A)] :=
Gsc(Q)

\G
sc(A)

is mixing. This result will follow from Howe-Moore [HM79, Th. 5.2] if we show

that the only finite dimensional Gsc(Qv)-sub-representation in

L2 ([Gsc(A)],mGsc)

is the space of constant functions.

By strong approximation for simply-connected absolutely almost simple

groups, the group Gsc(Qv) acts minimally on [Gsc(A)]; i.e., all the Gsc(Qv)-
orbits are topologically dense. Let

V < L2 ([Gsc(A)],mGsc)

be a (closed) finite-dimensional sub-Gsc(Qv)-representation. The minimality of

the Gsc(Qv) action implies that the whole Gsc(A)-orbit of any Gsc(Qv)-smooth

vector in V is contained in V . The smooth vectors are dense in any closed sub-

representation V < L2 ([Gsc(A)],mGsc), hence V must be Gsc(A)-invariant.

Because Gsc is simply-connected, it has no non-trivial residual spectrum and

the only finite dimensional Gsc(A)-sub-representation is C · 1. �

To apply [EL15a, Th. 1.4] to µ we need first to decompose it to ergodic

measures on locally homogeneous spaces saturated by unipotents in the sense

of [EL15a, Def. 1.1].

The measure µ is
Ä
A+
p1
×A+

p2

ä∆
-invariant, and we write

(12) µ =

∫
M1([(G×G)(A)])

λ dP(λ)

for the ergodic decomposition of µ with respect to
Ä
A+
p1
×A+

p2

ä∆
.
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Lemma 4.7. For P-almost every λ, there is ω = (ω1, ω2) ∈ G(A)×G(A)

such that λ is an
Ä
A+
p1
×A+

p2

ä∆
-invariant measure supported on the homoge-

neous set [(G×G) (A)+ω]. Moreover, its projection to each coordinate is the

G(A)+-Haar measure on [G(A)+ωi].

Proof. The
Ä
A+
p1
×A+

p2

ä∆
-invariance of λ is built into the definition of an

ergodic decomposition. The measures λ in the support of P are conditional

measures of µ on the σ-algebra of
Ä
A+
p1
×A+

p2

ä∆
-invariant Borel sets. Denote

by B+ the σ-algebra of Borel G(A)+-invariant sets in [G(A)]. The σ-algebra

of
Ä
A+
p1
×A+

p2

ä∆
-invariant sets in [(G×G) (A)] contains B+ × B+ — the

σ-algebra of G(A)+ ×G(A)+-invariant Borel sets. Hence P-almost every λ is

supported on an atom of B+ ×B+ .

The σ-algebra B+ corresponds to the factor map

G(Q)\
G(A)→ G(Q)\

G(A)
/
G(A)+ ' Nrd(B×(Q))

\Nrd(B×(A))
/A×2,

and its atoms are the fibers of this map, which are of the form [ω0G(A)+] =

[G(A)+ω0] for some ω0 ∈ G(A). The atoms of B+ ×B+ are then of the form

[(G×G) (A)+ω] for ω = (ω1, ω2) ∈ G(A) ×G(A). This proves the first part

of the lemma.

Because of Duke’s theorem, proved by Linnik under the assumption of a

fixed split prime, µ projects in each coordinate to a G(A)+-invariant measure

on [G(A)]. We deduce that

πi∗µ =

∫
πi∗λ dP(λ)

is G(A)+-invariant for i = 1, 2. All the G(A)+-invariant and ergodic measures

on [G(A)] are G(A)+-Haar measures on B+ atoms of the form [G(A)+ω0]. By

Lemma 4.6 these G(A)+-Haar measures areA+
p1
×A+

p2
-ergodic. Hence a G(A)+-

ergodic decomposition of πi∗µ is also an A+
p1
×A+

p2
-ergodic decomposition. By

uniqueness of the ergodic decomposition it follows that for P-almost every λ,

the projections πi∗λ are G(A)+-Haar measures on a B+-atom. �

We now fix a measure λ satisfying the conclusions of Lemma 4.7 and apply

[EL15a, Th. 1.4] to it. To do that we need first to pass to an S-arithmetic

setting.

Lemma 4.8. Let λ satisfy the conclusions of Lemma 4.7. In particular, λ

is supported on [G(A)+ω1×G(A)+ω2]. Fix S as a finite set of rational places

such that

(1) ∞, p1, p2 ∈ S;

(2) G has class number 1 with respect to KS ;

(3) ω1, ω2 ∈ G(QS)×KS .
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Denote by S the canonical projection

S : [(G×G) (A)]→ YS × YS := ΓS
\G(QS)× ΓS

\G(QS)
,

where ΓS := G(Q) ∩KS .

Then the measure S∗λ is an algebraic measure on YS × YS supported on

[LSgS ] for some gS ∈ (G×G) (QS), where LS < L(QS) ∩ (G×G) (QS)+ is

a finite index subgroup and L < G a closed algebraic subgroup. The group L

is isogenous either to G or to G×G and projects onto G in both coordinates.

Proof. Write ωi,S ∈ G(QS) for the S-coordinates of ωi, i = 1, 2. Denote

ωS = (ω1,S , ω2,S). Set Γ+
S := ΓS ∩G(QS)+ (this is a lattice in G(QS)+), and

denote Y +
S :=

Γ+
S
\G(QS)+

.

Strong approximation for Gsc implies that S∗λ is supported on a sin-

gle orbit [G(QS)+ω1 ×G(QS)+ω2] and its projection to each coordinate is a

G(QS)+-Haar measure. By applying a right translation by ω−1
S , we consider

the measure S∗λ as an ω−1
S

Ä
A+
p1
×A+

p2

ä∆
ωS-invariant and ergodic measure on

Y +
S × Y

+
S whose projection to each coordinate is the Haar measure on Y +

S .

The space Y +
S is saturated by unipotents because the group

G(Qp1)+ ' PSL2(Qp1)

is generated by unipotents and acts ergodically on Y +
S by Lemma 4.6. The

group A+
p1
× A+

p2
is a compact extension of a class-A′ group in the sense of

[EL15a, Def. 1.3], so S∗λ is an ergodic invariant measure for a class-A′ group

of rank 2. Theorem 1.4 of [EL15a] now applies, and S∗λ is an algebraic measure

on [LSgS ] for some gS ∈ G(QS) and LS of finite index in L(QS) ∩G(QS)+

for some reductive group L < G projecting onto G in both coordinates. By

[EL15a, Lemma 7.4], L is either isogenous to G or to G×G. �

Lemma 4.9. In the setting of Lemma 4.8 the group L is either isomorphic

to G or to G×G.

Proof. Consider the center ZL. It projects in both coordinates to the

center of G, which is trivial as G is of adjoint type. Hence ZL projects to the

trivial group in each coordinate so it is trivial. The group L is adjoint and the

claim follows as both G and G×G are adjoint. �

If L ' G×G, then the inclusion L < G×G is an equality. The following

treats the case that L ' G.

Lemma 4.10. If L < G ×G is isomorphic to G and projects onto G in

both coordinates, then L is conjugate to G∆ over Q.
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Proof. Consider the projections π1, π2 : G ×G → G restricted to L. Be-

cause L projects onto G in both coordinates and L is simple with trivial center,

the kernel of these projections is trivial. In particular, both projections are

isomorphism of algebraic groups and π2�L ◦ π1�L
−1 is an automorphism of G.

As all automorphisms of G are inner, we see that π2�L ◦ π1�L
−1 = Adg for

some g ∈ G(Q). Thus (e, g−1)L(e, g) < G∆, and because L and G∆ have the

same dimension and G∆ is connected, we conclude (e, g−1)L(e, g) = G∆ �

Lemma 4.11. In Lemma 4.8 we can take LS = L(QS)+.

Proof. Lemmas 4.9 and 4.10 imply that the reduced norm map

Nrd: (G×G) (QS)→ Q×S /
Q×S

2

restricts to the corresponding reduced norm on L(QS). In particular, L(QS)∩
(G×G) (QS)+ = L(QS)+. The group L(Qp1)+ is a product of at most

two copies of the abstractly simple [Dic01] group PSL2(Qp1) . In particular,

L(Qp1)+ has no proper subgroups of finite index, hence LS∩L(Qp1) = L(Qp1)+.

Strong approximation implies that L(Qp1)+ acts minimally on the closed

set [L(QS)+]. Because [LS ] is contained in [L(QS)+] and it is L(Qp1)+-

invariant we see that [LS ] = [L(QS)+]. The L(QS)+-Haar measure on [L(QS)+]

is LS-invariant. Uniqueness of the Haar measure on a homogeneous space im-

plies that the L(QS)+ and LS Haar measures on [LS ] = [L(QS)+] coincide.

The conclusion of the lemma follows by translating by gS . �

Proof of Theorem 4.4. We patch the result of the previous lemmata into

an adelic statement. Fix a countable well-ordered direct system of finite sets of

rational places {S} exhausting all the places of Q and such that all S satisfy the

conditions in Lemma 4.8. By excluding a countable union of P-measure zero

sets we see that P-almost every λ in (12) projects onto an algebraic measure

satisfying the conclusions of Lemma 4.8 for each S in the direct system.

Let S ⊂ S′ be a pair of sets places in the direct system. The algebraic

measure S
′
∗ λ supported on [LS′(QS′)gS′ ] projects to the algebraic measure S∗λ

supported on [LS(QS)gS ]. The factor map from YS′ × YS′ to YS × YS is the

division by the compact subgroup
∏
v∈S′\SKv, thus

ΓS′LS(QS)+gS
∏

v∈S′\S
Kv = ΓS′LS′(QS′)+gS′

∏
v∈S′\S

Kv

and γgS′ = lgSkS for some γ ∈ ΓS′ = (G×G) (Q) ∩KS′ ×KS′ , l ∈ LS(QS)+

and kS ∈
∏
v∈S 1 × ∏v∈S′\SKv. Write gS′ = (g0

S′ , g
1
S′) where g0

S′ are the QS
coordinates of gS′ and g1

S′ are the coordinates in S′ \ S. Then γg0
S′ = lgS .

The g−1
S′ LS′(QS′)

+gS′-periodic measure supported on [LS′(QS′)+gS′ ]

projects to a finite collection of g0
S′
−1

LS′(QS)+g0
S′ periodic measures. The
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A+
p1
×A+

p2

ä∆
-ergodicity of S∗λ implies that this collection is a single periodic

measure.

The measure S∗λ is also the g−1
S LS(QS)+gS-periodic measure with support

[LS(QS)+gS ]. The groups stabilizing the measure are equal and so are their

normal subgroups of trivial reduced norm. Hence

g0
S′
−1

LS′(QS)+g0
S′ = g−1

S LS(QS)+gS .

Because γg0
S′ = lgS , this implies that Adγ LS′(QS′)+ = LS(QS)+.

Because the image of the simply connected cover is Zariski dense over

an infinite field, we see that Adγ LS′ = LS . We are free to replace the da-

tum (LS′ ,LS′(QS′)+, gS′) by the datum (Adγ LS′ ,Adγ LS′(QS′)+γgS′) with-

out changing the corresponding algebraic measure on YS′ × YS′ . Using the

new datum the algebraic measure S
′
∗ λ is supported on [LS(QS′)+γgS′ ] =

[LS(QS′)+gSkS ] with kS ∈
∏
v∈S 1×∏v∈S′\SKv.

Let S0 be the minimal set of places in the well-ordered direct system. We

make the choices of datum for the measures S∗λ consistently across the ordered

system; i.e., for all S, the measure S∗λ it the algebraic measure supported on

[LS0(QS)gS0kS ] and kS has non-trivial entries only in coordinates not contained

in sets of places preceding S. We can then extend kS trivially to an element

of K < G(Af ) and define k =
∏
S kS ∈ K.

The adelic algebraic measure supported on [L(A)+gS0k] projects under S

to the measure S∗λ for all S in the direct system. As the set of compactly

supported functions on [(G×G) (A)] that are KS ×KS-smooth for some S is

dense in the space of compactly supported continuous functions, we conclude

that λ coincides with the algebraic measure supported on [L(A)+gS0k].

Lemma 4.10 now implies that we can take L either to be G×G or G∆. �

5. Coordinates for quaternion algebras

The usual representation in coordinates of a split quaternion algebra

B(Qv) over a local field Qv is the matrix algebra M2×2(Qv). When v 6= ∞
and we have a fixed maximal order we can choose our coordinates so that this

order is M2×2(Zv). The downside of this “fixed coordinates” representation is

that it is difficult in the general case to write down the intersection of a varying

torus ‹T(Qv) with the maximal order or to describe coordinatewise the action

of the torus by conjugation.

Another commonly used coordinate representation of a quaternion alge-

bra, split or not, over Qv is a coordinate system adjusted to the varying torus‹T(Qv). In this description B(Qv) is identified with the subset of a fixed point
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of a twisted Galois action on M2×2(Ev), where Ev/Qv is a quadratic étale-

algebra splitting ‹T. In this description ‹T(Qv) corresponds simply to the diag-

onal torus. The price we pay is that the coordinatewise expression for a fixed

maximal order is varying.

In this section, we present the expression for the maximal order in a

coordinate system varying with the torus. The results of this section are well

known yet because they are of utilitarian nature, it is difficult to point to an

exhaustive reference.

Definition 5.1. Define M2×2 = SpecQ [xi,j | 1≤ i, j≤ 2] to be the 4-dimen-

sional affine space of 2 × 2 matrices. We define GL2 as a space of invertible

2× 2 matrices using to the closed immersion GL2 ↪→M2×2 × A1

Q[GL2] = Q
î
xi,j ,det−1 | 1 ≤ i, j ≤ 2

ó¿¨
(x1,1x2,2 − x1,2x2,1) det−1 = 1

∂
.

The torus ‹T ' ResE
QGm is split over E, hence BE ' M2×2,E . We now

describe the Galois action on M2×2,E corresponding to the Q-form B.

Definition 5.2.

(1) Let ‹A be the torus of diagonal matrices in GL2. We fix an isomorphism

of algebras defined over E

BE →M2×2,E ,

which sends ‹TE to ‹AE . Using this isomorphism we identity henceforth

BE = M2×2,E ,

B×E = GL2,E , ‹TE = ‹AE ,

GE = PGL2,E , TE = AE .

(2) Denote G :− Gal(E/Q) and let σ be the non-trivial element of G. We

consider two actions of G on M2×2,E that restrict to actions on GL2,E .

The naive action is the one induced by considering M2×2,E as base change

of M2×2. This action acts on the coordinates by

xi,j 7→ xσ i,j , 1 ≤ i, j ≤ 2.

(3) The twisted action corresponds to viewing M2×2,E as base change of B.

As B is an inner-form of M2×2 this actions differs from the naive one by

conjugation by some θ ∈ PGL2(E), i.e.,

xi,j 7→ θ xσ i,jθ
−1, 1 ≤ i, j ≤ 2.

The following is very well known.
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Proposition 5.3. The element θ has a representative of the form

θ =

Ç
0 ε

1 0

å
,

where ε ∈ Q×.

Moreover, in this way any ε ∈ Q× defines an inner-form of M2×2 that is

split over E. The inner-forms corresponding to ε1, ε2 are isomorphic over Q if

and only if ε2 ∈ ε1 NrdE×. This establishes a bijection between (inner-)forms

of GL2 split over E and Q
×
/NrE×.

Proof. The torus ‹AE ' ‹TE is stable under the twisted Galois action

because ‹T is defined over Q; thus θ ∈ NPGL2(‹A)(E). Because ‹T is not split,

the twisted Galois action is non-trivial on ‹AE and we can write a representative

for θ of the required form with ε ∈ E×.

Because σ is an involution, we see that θσ = θ−1, which is equivalent

to ε ∈ Q. Isomorphic forms correspond to coboundarous Galois actions. A

coboundary that stabilizes ‹AE ' ‹TE is of the form θ 7→ υσ −1θυ, where υ ∈
NPGL2(‹A)(E). This amounts to multiplying ε by a norm. �

Remark 5.4. Even for the case B = M2×2 the twisted Galois action differs

from the naive one. In this case σ acts by conjugating the matrix elements,

interchanging the two diagonal entries and interchanging the two anti-diagonal

ones. This differs from the naive one also because it identifies the diagonal

torus with ‹TE . In particular, the Galois fixed points in ‹A(E) are ‹T(Q) and

not ‹A(Q).

Proposition 5.5. The subset B(Q) ⊂M2×2(E) can be written as

B(Q) =

®Ç
a εb

bσ aσ

å ∣∣∣∣∣ a, b ∈ E´ .
Proof. By Galois descent for quasi-projective varieties over perfect fields,

the fixed points of the Galois actions are exactly the points defined over the

base field.

The proposition now follows directly by examining the fixed points of the

twisted Galois action. �

5.1. Coordinates over local fields. For any place v of Q, let Ev =
∏
w|v Ew.

The group G acts on the étale-algebra Ev either as a Galois group of a field

extension if v is not split in E or by switching the coordinates if v splits. In

both cases the fixed points are Qv where in the split case Qv is embedded

diagonally in Ev. The base change of the isomorphism B →M2×2,E to Ev is

an isomorphism

(13) BEv →M2×2,Ev .
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The twisted action of G extends by the base-change construction to an

action on M2×2,Ev . This action coincides with the action of G on M2×2,Ev

induced by the action of the Galois group Gal(Ev/Qv).

Proposition 5.6. The subset B(Qv) can be written as the following set

in M2×2(Ev):

B(Qv) =

®Ç
α εβ

βσ ασ

å ∣∣∣∣∣ α, β ∈ Ev´ .
Moreover, the elements of B(Q) ⊂ B(Qv) are exactly the matrices for

which α, β ∈ E.

Proof. The matrix θ is a Q-point of PGL2 and hence also a Qv-point and

a Ev-point. In case v splits in E, the matrix θ sits diagonally in M2×2,Ev '
M2×2,Qv ×M2×2,Qv . Because the Galois action of G on M2×2,Ev coincides

with the base-change action, it is also given by the naive action composed

with conjugation by θ.

The first part of the proposition follows once more by computing the fixed

points of a Galois action on a quasi-projective varieties.

The statement about points in B(Q) follows from Proposition 5.5 and the

universal property of base change. �

5.2. The different ideal. We review some basic properties about the dif-

ferent ideal of a quadratic order.

Definition 5.7. For v 6= ∞, define the inverse different ideal of Λv ⊂
E(Qv) = Ev by ”Λv := {a ∈ Ev | Tr(aΛv) ⊆ Zv} .

Define the different ideal by

D(Λv) :=
Ä
Λv : ”Λvä =

¶
a ∈ Λv | a”Λv ⊆ Λv

©
.

Lemma 5.8. Let v 6=∞. The different ideal D(Λv) is principal invertible,

and its generator Dv ∈ Λv satisfies

Nr Dv = Dv.

Remark 5.9. The generator Dv is well defined only up to multiplication

by a unit of Λv.

Proof. Notice that the maximal order OEv is a product of discrete valuation

rings and hence a principal ideal ring. The proof proceeds in the same manner

as for an order in a quadratic number field. �

5.3. Local maximal orders in coordinates. Fix v as a place of Q. In this

section we describe in terms of matrices the elements of the maximal order

gvOvg−1
v < B(Qv). The description depends upon whether v splits B or not.



JOINT EQUIDISTRIBUTION OF CM POINTS 185

5.3.1. Split case. If B(Qv) is split, then B(Qv) is a matrix algebra and

ε = fσ f for some f ∈ E×v .

Because B(Qv) is split, it is isomorphic to a rank-2 matrix algebra. This

statement can be strengthened so that the action of the étale-algebra E(Qv) ⊂
B(Qv) on the vector space coincides with multiplication in the étale-algebra.

Lemma 5.10. Consider Ev as a 2-dimensional Qv-vector space. If B(Qv)
is split, then there is an isomorphism of Qv-algebras B(Qv) ' EndQv(Ev) such

that elements of E(Qv) ' Ev act by multiplication on the étale-algebra Ev .

Moreover, there is an isomorphism of Qv vector space B(Qv) ' Ev ⊕ Ev so

that the action of B(Qv) on Ev satisfies

∀a ∈ Ev : (α, β).a = α · a+ β · aσ .

Proof. Using Proposition 5.6 we can write B(Qv) ' Ev ⊕ Ev in the fol-

lowing way:

(14) (α, β) 7→
Ç
α 0

0 ασ

å
+

Ç
0 ε · β/ fσ

βσ /f 0

å
=

Ç
α 0

0 ασ

å
+

Ç
0 β · f
βσ /f 0

å
.

Let B(Ev) = M2×2(Ev) act on Ev × Ev in the usual way on the left. We

embed Ev ↪→ Ev × Ev by

a 7→
Ç
f · a
aσ

å
,

and consider the action of B(Qv) ⊂M2×2(Ev) on Im (Ev ↪→ Ev × Ev).
The subspace Ev in B(Qv) corresponding to the first coordinate in (14)

acts by multiplication α.a = αa, and the subspace corresponding to the second

coordinate in (14) acts by β.a = β · aσ .

Thus B(Qv) stabilizes Im (Ev ↪→ Ev × Ev) and acts faithfully on it. By

comparing dimensions over Qv we see that this actions is an isomorphism of

algebras B(Qv) ' EndQv(Ev). Because the subalgebra E(Qv) is equal to the

first coordinate in (14), it acts by ring multiplication as required. �

Lemma 5.11. Let v 6= ∞. If B(Qv) is split, then in terms of the repre-

sentation in Proposition 5.6,

(15) EndZv(Λv) '
®Ç

α βf

βσ /f ασ

å ∣∣∣∣∣ α ∈”Λv, β − ασ ∈ Λv

´
.

Proof. Because E(Qv) acts on Ev by ring multiplication, any l ∈ Λv ⊂
E(Qv) belongs to EndZv(Λv). Thus x · l ∈ EndZv(Λv) for any x ∈ EndZv(Λv)

and l ∈ Λv ⊂ E(Qv).
Because the ring EndZv(Λv) is a maximal order in B(Qv), each element

in it is integral. Thus for any x ∈ EndZv(Λv),

(16) ∀l ∈ Λv ⊂ E(Qv) : Trd(x · l) ∈ Zv.
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Writing x above as x = (α, β) using (14), equation (16) amounts to the state-

ment that α ∈”Λv.
An element x = (α, β) belongs to EndZv(Λv) if and only if

∀l ∈ Λv : Λv 3 αl + β lσ = Tr(αl) + (β − ασ ) lσ ,

which can be seen by Lemma 2.3 to be equivalent to β− ασ ∈ Λv. This proves

that the endomorphism ring is contained in the right-hand side of (15). The

reverse inclusion follows by checking directly that each matrix in the right-hand

side of (15) preserves Λv. �

Proposition 5.12. If v 6=∞, then there is some τv ∈ E×v such that

gvOvg−1
v =

®Ç
α βτv
βσ /τv ασ

å ∣∣∣∣∣ α ∈”Λv, β − ασ ∈ Λv

´
.

Remark 5.13. The condition β− ασ ∈ Λv can be rewritten in the equivalent

more symmetric form α+ β ∈ Λv.

Proof. Maximal Zv-orders in matrix algebras are endomorphism rings of

Zv-lattices; cf. [Rei75]. Because of the isomorphism from Lemma 5.10, we know

that there is a Zv-lattice L ⊂ Ev of full rank such that gvOvg−1
v = EndZv(L)

and

Λv = {a ∈ Ev | aL ⊂ L} .
In other words, L is a proper fractional ideal of Λv.

The ring Λv is monogenic by the same argument as for orders in quadratic

number rings, so [ELMV09, proof of Prop. 2.1] applies and L = l · Λv is

an invertible principle fractional ideal with some l ∈ E×v . The element l ∈
E(Qv) ⊂ B(Qv) sends Λv to L, hence

gvOvg−1
v = EndZv(L) = l · EndZv(Λv) · l−1.

The proposition follows from Lemma 5.11 by setting τv = l
lσ f . �

Proposition 5.14. The element τv ∈ E×v from Proposition 5.12 above

belongs to Λ×v for almost all v.

Proof. The proof follows from the fact that any two Z-lattices of full rank

in a Q-vector space are equivalent at almost all v. The order O is a full rank

Z-lattice in the vector space B(Q). The following subset of B(Q),®Ç
a εb

bσ aσ

å ∣∣∣∣∣ a, b ∈ OE

´
,

is also a Z-lattice of full rank by Proposition 5.5, and so it is locally equivalent

to O for almost all v. The claim follows by observing that for almost all v, we

have gv ∈ O×v , ”Λv = Λv = OEv and ε ∈ Z×v . �
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Proposition 5.15. If v =∞, then∥∥∥∥∥g−1
∞

Ç
α βf

βσ /f ασ

å
g∞

∥∥∥∥∥
∞

= |α|+ |β|.

In particular,

g∞‹Ω∞g−1
∞ =

®Ç
α βf

βσ /f ασ

å ∣∣∣∣∣ α, β ∈ C, |α|+ |β| ≤ 2, |α| − |β| ≥ 1/2

´
,

g∞O∞g−1
∞ =

®Ç
α βf

βσ /f ασ

å ∣∣∣∣∣ α, β ∈ C, |α|+ |β| ≤ 1

´
.

Proof. From the definition of ‖•‖∞ in Section 2.2.1 we know ‖Ad g−1
∞ •‖∞

is an operator norm on B(R) induced from some inner-product norm on E∞ '
C ' R2 when we let B(R) act on E∞ by R-linear endomorphism. This action

is explicitly described in Lemma 5.10.

Fix one of the two possible isomorphism E∞ ' C, and identify the two

fields. Let | • |∞ be an inner-product norm on C corresponding to ‖ • ‖∞. The

inner-product norm corresponding to ‖Ad g−1
∞ •‖∞ is g∞.|•|∞ := v 7→ |g−1

∞ v|∞.

Because of the choices made in Section 2.2.1 and (♠), the homothety class

R>0| • |∞ is invariant under the action of K∞ = g−1
∞ T(R)g∞. Hence the

homothety class of g∞.| • |∞ is invariant under T(R).

We deduce that in the representation of Proposition 5.6 and Lemma 5.10

the homothety class of g∞.| • |∞ is invariant under the action E×(R) < B×(R),

which acts on C by multiplication. This implies that g∞.| • |∞ is in the homo-

thety class of the standard norm on C defined by |x|2 = x · xσ .

Using this explicit description of g∞.| • |∞ it is simple to compute the

associated operator norm in the coordinates of Lemma 5.10, which turns out

to be the norm

‖(α, β)‖ = |α|+ |β| =
»

(<α)2 + (=α)2 +
»

(<β)2 + (=β)2.

The description of g∞Ω∞g
−1
∞ is now a simple calculation using the definition

in Section 2.4.5. �

5.3.2. Ramified case. Assume now that B(Qv) is ramified. There is a

unique maximal order that includes all integral elements. In particular, we

have Ov = g−1
v Ovgv and Λv = OEv . Moreover, there is an easy criterion to

check whether an element is integral using its norm (cf. [Rei75, Chapter 3]):

Ov = {x ∈ B(Qv) | Nrd(x) ∈ Zv}

=

®Ç
α εβ

βσ ασ

å
, α, β ∈ Ev

∣∣∣∣∣ |Nr(α)− εNr(β)|v ≤ 1

´
,

where the second equality uses Proposition 5.6. The following is a simple

statement about p-adic numbers
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Lemma 5.16. Let π be a uniformizer of the maximal ideal in Zv . Two

numbers a, b ∈ Qv satisfy |a − b|v ≤ 1 if and only if one of the following two

options happens :

(1) a, b ∈ Zv ,
(2) |a|v = |b|v = |π|−nv for some n ∈ Z and a/b ≡ 1 mod πnZv .

Proof. The proof follows from elementary properties of p-adic fields. �

Proposition 5.17. Assume that v is inert in E and B(Qv) is ramified.

Let π be a uniformizer of the maximal ideal in Zv , and write ordv ε = 2k + 1

for k ∈ Z. Then

gvOvg−1
v =

®Ç
α πk+1β

π−k βσ ασ

å ∣∣∣∣∣ α, β ∈ Λv,

´
.

Notice that in this case ”Λv = Λv because Λv is the maximal order and

Ev/Qv is unramified.

Proof. If v is inert in E, then Ev/Qv is an unramified quadratic extension.

Hence ordv Nr(α) is even for any α ∈ E×v . Moreover, as the norm map of an

unramified extension of local fields is surjective when restricted to the unit

groups, we deduce that Nr(E×v ) = π2Z ·Z×v . Because B is ramified, ε is not an

E×v -norm in Q×v and ordv ε = 2k + 1 for k ∈ Z.

Let α, β′ ∈ Ev such that |Nr(α) − εNr(β′)|v ≤ 1. The second option in

Lemma 5.16 can never happen for a = Nr(α), b = εNr(β′) because ordv Nr(α)

is even and ordv (εNr(β′)) is odd.

We conclude that necessarily Nr(α′) ∈ Zv and εNr(β′) ∈ Zv. This implies

that α ∈ OEv = Λv and β′ ∈ π−kΛv. �

Proposition 5.18. Assume both Ev/Qv and B(Qv) are ramified. Let

Π ∈ OEv be a uniformizer. Then there exists u ∈ Z×v and k ∈ Z such that

gvOvg−1
v ⊆

®Ç
α Πkuβ

Π−k βσ ασ

å ∣∣∣∣∣ α, β ∈”Λv´ .
Proof. Let π = Nr Π be a uniformizer for Zv. Because Ev/Qv is totally

ramified, by local class field theory there exists an index 2 subgroup UEv < Z×v
such that Nr(E×v ) = πZUEv . Hence ε = πku for some k ∈ Z and u ∈ Z×v \UEv .

Let x ∈ gvOvg−1
v , and write x =

(
α εβ′

βσ ′ ασ

)
for some α, β′ ∈ Ev. Set also

β′ = Πσ −kβ where β ∈ Ev. Then εβ′ = Πkuβ.

Any element l ∈ Λv belongs to gvOvg−1
v , so x · l ∈ gvOvg−1

v and x · l is

integral. This implies

∀l ∈ Λv : Tr(α · l) = Trd(x · l) ∈ Zv,

and thus α ∈”Λv.
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If the first option in Lemma 5.16 holds, then εNr(β′) = uNr(β) ∈ Zv
and necessarily β ∈ OEv = Λv ⊆ ”Λv. The second case is relevant only when

α ∈”Λv \ Λv and then |εNr(β′)|v = |Nr(β)|v = |Nr(α)|v. As ”Λv is a principal

ideal we deduce that β must also belong to ”Λv. �

5.3.3. General case. We summarize the results of this section in a form

useful to us.

Proposition 5.19. For any finite rational place v, there is some τv ∈ E×v
such that

gvOvg−1
v ⊆

®Ç
α βυvτv
βσ /τv ασ

å ∣∣∣∣∣ α, β ∈”Λv´ .
If B is split at v, then υv = 1. If B is ramified and E is inert at v, then

υv is a uniformizer in Zv , and if both B and E are ramified at v, then υv is a

unit that is not an E×v norm. Moreover, τv ∈ Λ×v for almost all v and τv = 1

if B is ramified at v.

Proof. Propostiion 5.19 is an immediate corollary of Propositions 5.12,

5.17, 5.18 and 5.14. �

5.4. Good integral representatives. In this section we will discuss how to

find good representatives in Ov ⊂ B(Qv) of elements in G(Qv) using the

Cartan decomposition. The notion of a good representative generalizes the

idea of writing a rational number as an integer fraction in lowest terms.

Definition 5.20.

(1) For a finite rational place v where G splits, let Bv be the the Bruhat-Tits

building of G(Qv). If G is ramified at v 6=∞, let Bv the connected graph

with two vertices corresponding to
G(Qv)/Kv

. Denote by d the geodesic

distance function on the graph Bv normalized so that the length of each

edge is 1.

(2) If B(R) is split, set B∞ =
G(R)

/
NG(R)(K∞)

. This manifold is the upper

half-plane that we equip with the standard hyperbolic distance function d.

If B(R) is ramified let B∞ be a single point with the trivial metric.

(3) For each place v, let x0 be the point in Bv stabilized by Kv. Let q be the

residue characteristic for v 6=∞ and q = e for v =∞. Define a continuous

function dv : G(Qv)→ R>0 by

dv(xv) := qd(x0,xv .x0).

(4) Define the continuous function df : G(Af )→ N by

df
Ä
(xv)v 6=∞

ä
=
∏
v 6=∞

dv(xv).
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Proposition 5.21. Let v be a rational place and xv ∈ G(Qv). For any

h ∈ ΩvxvΩv ⊂ G(Qv), there is r ∈ Ov ⊂ B(Qv) such that h = Z(Qv)r and

|Nrd(r)|v dv(xv) = 1 if v 6=∞,

2−8 ≤ |Nrd(r)|∞ dv(xv) ≤ 1 if v =∞.

Moreover, for v 6=∞, this representative is optimal in the following way.

If h ∈ ΩvxvΩv , then it has no representative in Ov whose reduced norm has

smaller valuation than r above.

Proof. In the split case this follows from the Cartan decomposition, the

equality KvΩv = ΩvKv = Ωv and (7) for v = ∞. In the finite ramified case

this is a consequence of the fact that the ramification index of B(Qv) is 2; i.e.,

the value group of Qv is an index 2 subgroup of the value group of the division

algebra B(Qv). In the infinite ramified case, Ωv = G(Qv) and the statement

is trivial.

The last statement about the optimality of the representative for v 6= ∞
follows from the mutual disjointness of the Kv double cosets in the Cartan

decomposition. �

Definition 5.22. Let B ⊆ G(Qp1) be an identity neighborhood and n ∈
N ∪ {0}. Let λ : Q×p1

→ Ap1 be a cocharacter spanning X•(Ap1). Set a =

λ(p1) ∈ Ap1 . We use the following notation for the symmetric homogeneous

B-Bowen ball for the a-action:

B(−n,n) :=
n⋂

k=−n
akBa−k.

Notice that the definition of B(−n,n) does not depends on the choice of λ.

We similarly define

O(−n,n)
p1

:=
n⋂

k=−n
akOp1a

−k ⊂ B(Qp1).

Proposition 5.23. Fix ξp1 ∈ Ap1 and n ≥ 0. For any

h ∈ K(−n,n)
p1

ξp1K
(−n,n)
p1

,

there is r ∈ O(−n,n)
p1 with h = Z(Qp1)r and |Nrd(r)|p1 dp1(ξp1) = 1.

Proof. Because ξp1 centralizes Ap1 ,

h ∈ K(−n,n)
p1

ξp1K
(−n,n)
p1

⊆
n⋂

k=−n
akKp1ξp1Kp1a

−k.

Applying Lemma 5.21 for each set in the intersection above we conclude that

for every −n ≤ k ≤ n, there is a representative rk ∈ akOp1a
−k of h such that

|Nrd rk|v dp1(ξp1) = 1.
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All the representatives rk for different values of k are in the same Z(Qp1)-

orbit and their reduced norms have the same absolute value. Thus they are all

in the same orbit of Z×p1
< Q×p1

= Z(Qp1). Multiplying each rk by an appropri-

ate element of Z×p1
< akOp1a

−k, for all k, we can make all the representatives rk
equal to each other without affecting the valuation of their reduced norm and

so that they still satisfy rk ∈ akOp1a
−k. This common representative satisfies

the conditions of the claim. �

6. The double quotient G∆\G×G/T∆

When studying the relative position of a homogeneous Hecke set and

a joint homogeneous toral set we need to understand the double quotient

G∆\G×G/T∆. This can be achieved using GIT and Galois descent.

6.1. The GIT double quotient.

Definition 6.1.

(1) Denote M := G×T. The linear algebraic M group is defined over Q. We

consider an action of the group M on the affine variety G×G by letting

the G coordinate act by diagonal multiplication on the left and by letting

the T coordinate to act by diagonal multiplication by the inverse on the

right. For geometric points, the action is

(l, t).(g1, g2) = (lg1t
−1, lg2t

−1).

(2) The universal categorical quotient for the action of the linear reductive

group M on the affine variety G × G is representable by the following

affine variety defined over Q [MFK94, Th. 1.1]:

W := G∆\G×G/T∆ := Spec Q [G×G]G∆ T∆

,

where Q[G×G]G∆ T∆
is the ring of regular functions of G×G invariant

under the M action.

(3) For any γ ∈ (G×G) (Q), define Mγ to be the stabilizer of γ. It is a linear

algebraic group defined over Q.

(4) Denote by πW : G×G→W the M-equivariant projection map.

Definition 6.2. Let wT ∈ NGT(Q) be a rational representative of the non-

trivial class of the Weyl group of T, i.e., wT 6∈ T(Q). Such a representative

always exists, for example because of Proposition 5.5. Although, the element

wT is not uniquely defined, the variety wTT is a well-defined closed sub-variety

of G defined over Q.

Proposition 6.3. Let γ = (γ1, γ2) ∈ (G×G) (Q) be a rational point.

(1) The M-orbit of γ is Zariski closed.
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(2) Recall that ctr(γ)=γ−1
1 γ2. The stabilizer Mγ is trivial if ctr(γ) 6∈NGT(Q).

If ctr(γ)∈NGT(Q), then

Mγ ' ZT(ctr(γ)) =

T ctr(γ) ≡ 1 mod T(Q),

T[2] ctr(γ) 6≡ 1 mod T(Q).

The isomorphism above is t 7→ (γ1tγ
−1
1 , t). Moreover, the diagonalizable

abelian affine group T[2] is isomorphic to µ2 over Q.

(3) If ctr(γ) 6∈ wTT(Q), then the following set is a singleton :

ker
î
H1 (Q,Mγ)→ H1 (Q,M)

ó
.

(4) If ctr(γ) 6∈ wTT(Q), then π−1
W (γ)(Q) is a single M(Q)-orbit.

Proof. Part (1). Assume the orbit of γ is not Zariski closed. By [MFK94,

Cor. 1.2] the map πW separates M-invariant closed subsets. Because G×G is

Noetherian, we deduce that the fiber π−1
W (πW(γ)) contains a unique minimal

non-empty Zariski closed M-invariant subset. Let S be the closed subvariety

supported on this set. Because the map πW separates invariant closed subsets,

the support of S is contained in any non-empty invariant closed subset in the

fiber.

The orbit M.γ is open in its closure, so M.γ
Zar\M.γ is an invariant Zariski

closed subset that by our assumption is non-empty, hence S is contained in it.

In particular, γ 6∈ S(Q).

The Zariski closure of the orbit of γ contains S, and hence by [Kem78,

Cor. 4.3] there is a one-parameter subgroup λ : Gm → M = G × T defined

over Q such that δ = lims→0 λ(s).γ ∈ S(Q).

The torus T is anisotropic over Q so the image of λ lies in G and δ ∈
G.γ

Zar
(Q). But G.γ ' G.e = G∆, which is Zariski closed, so

δ ∈ (G.γ ∩ S) (Q).

As S is M-invariant, we deduce a contradiction that γ ∈ S(Q).

Part (2) Let e 6= (g, t) ∈Mγ(Q̄) < G(Q̄)×T(Q̄). Then

(gγ1t
−1, gγ2t

−1) = (γ1, γ2) =⇒ t ctr(γ)t−1 = ctr(γ)

=⇒ ctr(γ) ∈ NG(Q̄)(t) = T(Q̄).

Moreover, in this case g = γ1tγ
−1
1 . We deduce that the stabilizer is trivial

unless ctr(γ) ∈ NGT(Q) and it is isomorphic to ZT(ctr(γ)) otherwise with the

isomorphism exactly as stated in claim (2).

If ctr(γ) ∈ T(Q), then the entire torus T centralizers it. If ctr(γ) ∈
NGT(Q), then only elements of order 2 centralize it. This finishes the com-

putation of the stabilizers.

To see that T[2] ' µ2, we consider the dual group ‘T[2] ' “T/“T2, which

has two geometric points. As the Galois group Gal(E/Q) acts by inversion
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on T, its action on
“T/“T2 is trivial. Hence this dual group is the constant

Z/2Z-group scheme and its dual is µ2.

Part (3) If the stabilizer is trivial, then the statement is obvious. Oth-

erwise, we use the projection on the second coordinate M = G × T → T to

construct a sequence of maps

(17) H1(Q,Mγ)→ H1(Q,M)→ H1(Q,T).

In order to prove that ker
[
H1 (Q,Mγ)→ H1 (Q,M)

]
= 1 it is enough to show

that the kernel of the composite map of (17) is trivial.

The isomorphism Mγ ' ZT(ctr(γ)) is given by the inclusion map in

the second coordinate, hence the composite map of (17) is exactly the map

of cohomology sets H1(Q,ZT(ctr(γ))) → H1(Q,T) induced by the inclusion

ZT(ctr(γ)) ↪→ T. This map is the identity if ZT(ctr(γ)) = T and obviously

has a trivial kernel.

Part (4). Because the πW-fiber of any rational point contains a unique

Zariski closed orbit of a rational point, we conclude that πW separates M(Q̄)-

orbits of rational points. We are left with proving that for any γ 6∈ wTT(Q)

the orbit M(Q̄) contains a unique M(Q)-orbit.

The collection of M(Q)-orbits in M(Q̄).γ is in bijection with

(18) ker
î
H1 (Q,Mγ)→ H1 (Q,M)

ó
,

which is trivial by part (3) if ctr(γ) 6∈ wTT(Q). �

The proposition above implies that the set theoretic double cosets

G∆(Q)
\(G×G) (Q)

/
T∆(Q)

are almost parametrized by the associated points in W(Q). Not all the points

in W(Q) actually correspond to set theoretic double cosets of rational points

of G.

6.2. The quotient of G by the adjoint action of T. Because the left action

of G∆ and right action of T∆ on G × G commute, we have the following

commutative diagram:

G×G W

G∆\G×G

G AdT\
G,

∼
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where AdT\
G is the GIT quotient of the affine variety G by the adjoint ac-

tion of the reductive group T. The existence of the morphism W → AdT\
G

follows from the universal property of the categorical quotient W. The com-

posite G∆-invariant map G × G → G in the left column of the diagram is

exactly the contraction map ctr.

Proposition 6.4. The morphism W→ AdT\
G is an isomorphism.

Proof. The morphism G∆\G×G→ G is an isomorphism. Hence the ring

of regular functions on AdT\
G is identified with the regular functions on

G∆\G×G that are invariant under the right action of T∆. This is the same

as the ring of M-invariant regular functions on G×G because the left action

of G∆ commutes with the right action of T∆. �

Corollary 6.5. Let π0
W : G → AdT\

G 'W be the AdT-equivariant

projection map. For any γ0 ∈ G(Q), if γ0 6∈ wTT(Q), then π0
W
−1

(γ0)(Q) is a

single AdT(Q)-orbit.

Proof. The proof follows immediately from Proposition 6.4 and part (4)

of Proposition 6.3. �

Definition 6.6. Recall that Gsc is identified with the group of unit quater-

nions in B. Define T(1) to be the maximal torus defined over Q in Gsc that

maps under the isogeny Gsc → G to T. The identity Gsc = B(1) implies that

the torus T(1) is the subgroup of unit quaternions in ‹T.

Using the isogeny T(1) → T we let T(1) act on G through the adjoint

action of T. As T(1) → T is surjective, we have

AdT\
G = AdT(1)\G.

We let T(1) act on B× by the adjoint action. Because the actions of

AdT(1) and Z on B× commute, the reductive group Z acts on the affine variety

AdT(1)\B
×

and the GIT quotient for this action is canonically isomorphic to

AdT\
G. In particular, the morphism of Noetherian schemes

AdT(1)\B
×
→ AdT\

G 'W

is universally submersive.

6.3. The quotient of GL2 by the adjoint action of the diagonal torus. To

describe the ring of regular function of AdT(1)\B
×

we begin with a simpler

case when B = M2×2 is split over Q and T(1) is replaced by the torus of

diagonal matrices with determinant 1.
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Definition 6.7. Let A(1) < GL2 be the rank-1 torus of diagonal matrices

with determinant 1. Denote by A the maximal torus of split diagonal matrices

in PGL2. The map A(1) → A is surjective in terms of schemes.

Definition 6.8.

(1) We let A(1) act on M2×2×A1 by conjugating the 2×2 matrix and leaving

the det−1 coordinate invariant. We denote this action by AdA(1). This

action is clearly equivariant with respect to the map GL2 ↪→M2×2 × A1.

(2) Define ϑ1, ϑ2, ψ ∈ Q[M2×2] by

ϑ1 := x1,1, ϑ2 := x2,2, ψ := x1,2x2,1.

Lemma 6.9. There is an equality of Q-algebras

Q[M2×2 × A1]AdA(1)
= Q[ϑ1, ϑ2, ψ,det−1].

The left-hand side is the ring of regular functions of M2×2×A1 invariant under

AdA(1), and the right-hand side is a polynomial algebra over Q.

Proof. It is easy the check that ϑ1, ϑ2, ψ,det−1 are AdA(1)-invariant. We

need to show that these functions generate the ring of invariants and that there

are no non-trivial syzygies.

Because Q[M2×2 × A1] is a polynomial ring and the action of AdA(1)

preserves monomials, the invariant ring is generated by monomials. Let f ∈
Q[M2×2 × A1]AdA(1)

be a monomial, and write

f =
Ä
det−1

äd ∏
1≤i,j≤2

x
ai,j
i,j =

Ä
det−1

äd
ϑ
a1,1

1 ϑ
a2,2

2 x
a1,2

1,2 x
a2,1

2,1 .

For f to be AdA(1)-invariant, we must have a1,2 = a2,1, which implies that

f ∈ Q[ϑ1, ϑ2, ψ, det−1].

A syzygy Q is a formal polynomial in the variables ϑ1, ϑ2, ψ,det−1 with

coefficients in Q that vanishes as an element of Q[M2×2 ×A1]AdA(1)
. Because

each variable xi,j ,det−1, 1 ≤ i, j ≤ 2 appears in only one of the monomials ϑ1,

ϑ2, ψ,det−1, we conclude that if Q vanishes as an element of Q[ϑ1, ϑ2, ψ, det−1],

it also vanishes as an element of the free polynomial algebra Q[M2×2 × A1].

Thus all the relations between ϑ1, ϑ2, ψ, det−1 are trivial. �

Proposition 6.10. The ring of AdA(1)-invariant regular functions on

GL2 is

Q[GL2]AdA(1)
= Q

î
ϑ1, ϑ2, ψ,det−1

ó¿¨
(ϑ1ϑ2 − ψ) det−1 = 1

∂
.

Proof. If a linearly reductive group H acts on two affine schemes X,Y

of finite type over a field k, then a lemma of Nagata [Nag64, Lemma 5.1.A]

implies that an H-equivariant closed immersion X ↪→ Y over k descends to a

closed immersion of GIT quotients H\
X ↪→ H\

Y.
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The proposition follows by applying this result to the closed immersion

GL2 ↪→M2×2 × A1 and using Lemma 6.9. �

Definition 6.11.

(1) Define the the degree of ϑ1 and ϑ2 to be 1, the degree of ψ to be 2

and the degree of det−1 to be −2. Define the degree of a monomial in

ϑ1, ϑ2, ψ, det−1 as the sum of the degrees of the individual variables ap-

pearing in the product. The degree of a constant is 0.

(2) A polynomial in Q
î
ϑ1, ϑ2, ψ,det−1

ó
is of zero degree if it is the sum of

zero degree monomials. Denote the Q-algebra of zero-degree elements by

Q
î
ϑ1, ϑ2, ψ,det−1

ó0
.

Corollary 6.12. The ring of AdA-invariant regular functions on PGL2

is the ring

Q[PGL2]AdA = Q
î
ϑ1, ϑ2, ψ,det−1

ó0/¨
(ϑ1ϑ2 − ψ) det−1 = 1

∂
.

Moreover, this ring is generated by the functions

ψdet−1, ϑ2
1det−1, ϑ2

2det−1.

Proof. Because the actions of Z and AdA(1) on GL2 commute, there is

an isomorphism

Z\

(
AdA(1)\GL2

)
→ AdA(1)\PGL2 = AdA\

PGL2.

The equality on the right follows from the surjectivity of A(1) → A.

This implies that the ring Q[PGL2]AdA is a the subring of elements in

Q[GL2]AdA(1)
that are Z-invariant. It is a direct computation to see that these

are exactly the degree 0 elements and that the given functions generate this

ring. �

Remark 6.13. A slightly more delicate analysis shows that

Q[PGL2]AdA ' Q[x, y, z]/
¨
x2 = yz

∂
,

where x = 1+ψ det−1, y = ϑ2
1 det−1, z = ϑ2

1 det−1. Geometrically, AdA\
PGL2

is a circular conical surface. The singular point x, y, z = 0 corresponds to the

AdA orbit of ( 0 1
1 0 ).

6.4. Descent from GL2,E to B×. Recall from Section 5 that we have fixed

an isomorphism of algebraic groups over E,

B×E ' GL2,E ,

such that ‹T is identified with ‹A. As this isomorphism identifies the reduced

norm map with the determinant map, the torus T
(1)
E is identified with A

(1)
E .
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Lemma 6.14. Let g ∈ B×(Q) ⊂ GL2(E) or g ∈ B×(Qv) ⊂ GL2(Ev) for

some rational place v. Then

ϑ1(g)σ = ϑ2(g), ψ(g)σ = ψ(g), det−1(g)σ = det−1(g).

Proof. This follows from Definition 6.8 and Propositions 5.5 and 5.6. �

Proposition 6.15. The image of g ∈ G(Q) in W(Q) is determined by

the values of

ϑ2
1 det−1(g), ψ det−1(g) ∈ E.

Proof. The universality of the GIT quotients for affine schemes implies

that

(19)
(
AdT\

G
)
E

= AdTE
\GE ' AdAE

\PGL2,E =
(
AdA\

PGL
)
E
,

where we have the induced isomorphism GE ' PGL2,E sending TE to the

diagonal torus AE .

The claim follows from (19), Lemma 6.14 and Corollary 6.12. �

7. Homogeneous Hecke sets

In this section we study elementary properties of the possible counterex-

amples to equidistribution arising in Section 4.

Definition 7.1. For any ξ ∈ (G×G) (A), we define
î
G∆(A)ξ

ó
to be a

homogeneous Hecke set. This set carries a ξ−1G∆(A)ξ-invariant algebraic

probability measure.

We also define
î
G∆(A)+ξ

ó
to be a simply connected homogeneous Hecke

set. This set carries a ξG∆(A)+ξ-invariant algebraic probability measure.

Remark 7.2. Fixing the subgroup G∆ < G × G, the datum defining a

homogeneous Hecke set
î
G∆(A)ξ

ó
is [ξ] ∈

G∆(A)
\(G×G) (A). Using the

contraction map this can be identified with ctr(ξ) ∈ G(A).

The datum defining a simply connected homogeneous Hecke set
î
G∆(A)+ξ

ó
for ξ = (ξ1, ξ2) is [ξ] ∈

G∆(A)+\
(G×G) (A)

. Using the contraction map this

can be identified with [ξ1] ∈ G(A)
/
G(A)+ and ctr(ξ) ∈ G(A).

Homogeneous Hecke sets generalize the notion of a classical Hecke cor-

respondence. An obvious necessary condition for equidistribution is that the

joint homogeneous toral sets are not trapped in a sequence of homogeneous

Hecke sets with periodic measure converging to a periodic measure on some

other fixed homogeneous Hecke set. The goal of this manuscript is to show

that this condition is not only necessary but also sufficient, at least under
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the hypothesis described in the introduction. In this section we translate this

condition to a condition on the twist s ∈ T(A).

Because these sets are somewhat more general than the classical Hecke

correspondences, we need to extend some well-known results about Hecke cor-

respondences and present them in a language adapted to the applications dis-

cussed in this manuscript.

In this section we fix a joint homogeneous toral set
î
T∆(g, sg)

ó
satisfy-

ing (♠).

7.1. Homogeneous Hecke sets containing a joint homogeneous toral set.

Lemma 7.3. All the homogeneous Hecke sets containing
î
T∆(A)(g, sg)

ó
are of the form

î
G∆(A)(g, tQsg)

ó
for some tQ ∈ T(Q).

Remark 7.4. If
î
T∆(A)(g, sg)

ó
satisfies (♠) andî

T∆(A)(g, sg)
ó
⊂
î
G∆(A)ξ

ó
,

then

ctr(ξ∞) ∈ K∞, ctr(ξp1) ∈ Ap1 , ctr(ξp2) ∈ Ap2 .

Proof. Because Z(G×G)(A)

Ä
T∆(A)

ä
= (T×T) (A), we have for any tQ ∈

T(Q), î
T∆(A)(g, sg)

ó
=
î
T∆(A)(g, tQsg)

ó
⊂
î
G∆(A)(g, tQsg)

ó
.

On the other hand, if
î
T∆(A)(g, sg)

ó
⊂
î
G∆(A)(g, ξ0g)

ó
for some ξ0 ∈

G(A), then a simple calculation shows that

(20) ∀t ∈ T(A) : tξ0s
−1t−1 ∈ G(Q).

In particular, ξ0s
−1 ∈ G(Q). If ξ0s

−1 ∈ wTT(Q), that is, it belongs to the

non-trivial class of the normalizer of T, then we deduce that t2ξ0s
−1 ∈ G(Q)

for all t ∈ T(A), which is a contradiction. Otherwise, Corollary 6.5 implies

T(A) = T(Q) StabAdT(A)(ξ0s
−1).

Considering all the options for the stabilizer in Proposition 6.3 we deduce that

StabAdT(A)(ξ0s
−1) = T(A) and ξ0s

−1 ∈ T(Q). �

7.2. Volume of a homogeneous Hecke set. The volume of a homogeneous

Hecke set is defined similarly to the volume of a homogeneous toral set

vol
Äî
G∆(A)ξ

óä
:= mG∆

Ä
ξΩ× Ωξ−1

ä−1

= mG

Ä
Ω ∩ ctr(ξ)Ω ctr(ξ)−1

ä−1
,

where mG = mG∆ is a covolume 1 Haar measure. The volume of a simply

connected Hecke correspondence is defined analogously.
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The map ξ 7→ vol
Äî
G∆(A)ξ

óä
is a continuous map from (G×G) (A) to

R>0 that factors through the map ctr : (G×G) (A)→ G(A).

7.2.1. Volume computation using the Bruhat-Tits tree.

Definition 7.5. Define the proper continuous function dsf : G(Af ) → N
by

dsf (hf ) =
∏

∞6=v splits B

dv(hv).

Because 1 ≤ dv(ξv) ≤ qv for any finite v where B ramifies, we see that for

all hf ∈ G(Af ),

dsf (hf ) �G df (hf ).

Lemma 7.6. Let ξ ∈ (G×G) (A) with ctr(ξ)∞ ∈ K∞. Then

vol
Äî
G∆(A)ξ

óä
mG (Ω) = dsf (ctr(ξ)f )

∏
p|dsf (ctr(ξ)f )

Å
1 +

1

p

ã
.

Proof. By definition,

vol
Äî
G∆(A)ξ

óä
mG (Ω) =

mG (Ω)

mG (Ω ∩ ctr(ξ)Ω ctr(ξ)−1)
.

Because Ω∞ is AdK∞-invariant and ctr(ξ)∞ ∈ K∞, we can rewrite the quo-

tient of measures as

(21)
mG (Ω)

mG (Ω ∩ ctr(ξ)Ω ctr(ξ)−1)
=
∏
v 6=∞

î
Kv : Kv ∩ ξvKvξv

−1
ó
.

The group Kv is for almost all v the maximal compact subgroup in the

restricted product definition of G(A), hence ξv ∈ Kv for almost all v. If B is

ramified over Qv, then Kv < G(Qv) is a normal subgroup Section 2.2.1. Henceî
Kv : Kv ∩ ξvKvξv

−1
ó
6= 1 only if ξv 6∈ Kv and B(Qv) is split. In particular,

the product (21) is finite.

When G(Qv) is split, i.e., G(Qv) ' PGL2(Qv), the indexî
Kv : Kv ∩ ξvKvξv

−1
ó

can be calculated using the Bruhat-Tits building Bv of G(Qv).
Our conditions in Section 2.2.1 imply that Kv is actually the whole stabi-

lizer of x0; in particular, it preserves types of vertices. The subgroup ξvKvξv
−1

is the stabilizer of the vertex ξv.x0, thus Kv ∩ ξvKvξv
−1 stabilizes the whole

geodesic segment connecting x0 to ξv.x0. The cosets of Kv ∩ ξvKvξv
−1 in Kv

are in bijection with the vertices in the Kv-orbit of ξv.x0. We claim that this

orbit is exactly the vertices y such that d(x0, y) = d(x0, ξv.x0). It is clear that

the orbit is contained in this set as the action of the group on the building is

by isometries.
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Fix y such that d(x0, y) = d(x0, ξv.x0). Let z1 be the vertex adjacent to

ξv.x0 on the geodesic segment connecting x0 and ξv.x0, and set z2 to be the

vertex adjacent to y on the geodesic segment connecting x0 and y. The edges

(z1, ξv.x0) and (z2, y) define alcoves in the tree. Let A1, A2 be two apartments

containing these alcoves and x0.

Because the action of the type-preserving subgroup of G(Qv) on the build-

ing is strongly transitive,8 there is an element of G(Qv) sending A1 to A2 and

(z1, ξv.x0) to (z2, y). Such an element must stabilize x0 and send ξv.x0 to y,

hence y is in the Kv-orbit of ξv.x0 as required.

By counting vertices of distance d(x0, ξv.x0) from x0 in a qv + 1 regular

tree we see that if d(x0, ξv.x0) > 0, thenî
Kv : Kv ∩ ξvKvξv

−1
ó

= (qv + 1)qd(x0,ξv .x0)−1
v = qd(x0,ξv .x0)

v

Å
1 +

1

qv

ã
. �

7.3. Equivalence of necessary conditions for equidistribution.

Lemma 7.7. Let τ ∈ T(A). Then df (g−1
f τfgf ) is the minimal norm of an

integral fraction ideal in the homothety class idl(τ) ∈ Q×\
J(Λ).

Proof. To show the equality between these two positive integers we show

that their p-parts are equal for all primes p. The representatives of τ in B(A)

can be written in coordinates as

τ =

Ç
Q×v

Ç
αv 0

0 ασ v

åå
v

.

Fix v 6=∞. A representative rv of g−1
v τvgv is contained in Ωv if and only

if gvrvg
−1
v is contained in gvOvg−1

v . Hence by Proposition 5.21, dv(g
−1
v τvgv)

has the same valuation as the minimal reduced norm of a representative of τv
contained in gvOvg−1

v ∩ E(Qv). The latter set is by the definition of the local

order equal to

gvOvg−1
v ∩E(Qv) =

®Ç
λv 0

0 λσ v

å
| λv ∈ Λv

´
.

We deduce that ordv dv(g
−1
v τvgv) = ordv Nr(qvαv), where qv ∈ Q×v is an element

of minimal valuation satisfying qvαv ∈ Λv.

Set q ∈ Q× so that qQ =
⋂
v 6=∞ qvQv. Then by definition, qĩdl ((αv)v 6=∞)

is the minimal integral element in the homothety class idl(τ) and its norm has

the same valuation for all primes p as df (g−1
f τfgf ). �

8The action is transitive on pairs (C ,A ) of an apartment A and an alcove C ⊂ A .
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Proposition 7.8. Let
¶î
T∆
i (A)(gi, sigi)

ó©
i

be a sequence of joint homo-

geneous toral sets with associated global orders Λi. Denote si = idl(si,f ) ∈

Q×\
J(Λi), and let [si] be the class of si in Pic(Λi).

The following are equivalent :

(1) min
[T∆

i (A)(gi,sigi)]⊂[G∆(A)ξ]
vol
Äî
G∆(A)ξ

óä
→i→∞ ∞;

(2) min
a⊆Λ

[a]=[si]

Nr a→i→∞ ∞;

(3) for every compact set B ⊂ G(A), there is N ∈ N such that for all i > N ,

g−1
i Ti(Q)sigi ∩B = ∅.

Proof. The equivalence of (2) and (3) is a consequence of Lemma 7.7 above

and the fact that the function h 7→ df (hf ) is a continuous proper function from

K∞ ×G(Af ) to N.

The equivalence of (1) and (2) follows from Lemmata 7.3, 7.6, 7.7, the

remark in Definition 7.5 and the fact that for all N ∈ N,

1 ≤
∏
p|N

Å
1 +

1

p

ã
� log logN,

which follows from the prime number theorem. �

8. Geometric expansion of the pair cross-correlation

Throughout this section we fix a joint homogeneous toral set [T∆(A)(g, sg)]

with periodic measure µ, and we set a simply connected homogeneous Hecke

set [G∆(A)+ξ] with periodic measure ν. We also write ξ = (ξ1, ξ2).

8.1. Pair cross-correlation. We define the pair cross-correlation between

the periodic measure µ and the periodic measure ν.

Definition 8.1. Let V ⊆ [(G×G) (A)] be a compact identity neighbor-

hood. Define the automorphic kernel KV : [(G×G) (A)]×2 → R:

KV (x, y) =
∑

γ∈(G×G)(Q)

11V (x−1γy).

As V is compact, the sum on the right is finite for every x and y. Moreover,

the number of non-trivial summands is uniformly bounded when x and y are

restricted to fixed compact subsets. In particular, the convergence is uniform

on compact sets.

Definition 8.2. Let B =
∏
v Bv ⊆ G(A) be a compact identity neighbor-

hood with Bv = Kv for almost all v, and let Bv be a compact-open subgroup for



202 I. KHAYUTIN

all v non-archimedean. Let λ1, λ2 be probability measures on [(G×G) (A)],

and let KB×B be as in Definition 8.1.

For a fixed closed subset C ⊆ [G(A)], we define

CorC [λ1, λ2](B) :=

∫
C×C

∫
C×C

KB×B(x, y) dλ1(x) dλ2(y).

We also write Cor[λ1, λ2](B) = CorYA [λ1, λ2](B).

We say that B is injective on C if the quotient map G(A) → [G(A)] is

injective when restricted to gB for any g ∈ G(A) such that [g] ∈ C. When C

is compact there is always an identity neighborhood injective on C.

Lemma 8.3. In the setting of Definition 8.2, we always have

λ1 × λ2 (x, y ∈ C × C | y ∈ xB) ≤ CorC [λ1 × λ2](B)

with equality if B is injective on C .

Proof. The proof follows directly from the definitions. �

8.2. Main theorem about cross-correlation. The main result in this section

and the main structural result in this manuscript is Theorem 8.7 below to be

proved in Section 8.8. First we need a few definitions.

Definition 8.4. We introduce the following notation for a fixed joint ho-

mogeneous toral set
î
T∆(A)(g, sg)

ó
:

(1) The twist s ∈ T(A) defines a homothety class of invertible fractional

Λ-ideals

Q×s := idl(s) ∈ Q×\
J(Λ).

(2) Define the following invertible fractional Λ-ideal, which encapsulates the

splitting behavior of B outside of ∞:

e := ĩdl ((υvτv)v) ,

where υv, τv are as in Proposition 5.19.

(3) We also need the following integer, which is also closely related to the

splitting of B:

υ := sign(ε)
∏

B is ramified and
E is inert at p

p.

Remark 8.5. In the simplest case, when G ' PGL2 is split we can choose

ε = 1 and then υ = 1 and e = Λ.
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Definition 8.6. Define the arithmetic functions f[g], g[g] : Z → Z for any

[g] ∈ Pic(Λ) as follows:

g[g](x) = # {a ∈ J(Λ)0 | Nr(a) = x, a ⊆ Λ, [a] = [g] or a = 0} ,

f[g](x) = #
¶
b ∈ J(Λ) | Nr(b) = x, b ⊆ Λ, [b] ∈ [g] Pic(Λ)2

©
.

Define also the multiplicative function r : N→ N by requiring that for any

odd prime p | D, if B splits at p, then

r(pk) =

1 k < ordpD,

2 k ≥ ordpD.

If 2 | D, we set r(2k) = 2µwild , where µwild ∈ {0, 1, 2, 3} is defined in Corol-

lary A.7. If p | D and B ramifies at p, we define r(pk) = 2. For all primes

p 6| D, we set r(pk) = 1.

Theorem 8.7. Fix a joint homogeneous toral set
î
T∆(A)(g, sg)

ó
with

splitting field E/Q and quadratic order Λ ≤ OE of discriminant D. Assume

that (♠) is satisfied.

Let B =
∏
v Bv ⊂ G(A) with Bv = Ωv for all v 6= p1 and Bp1 = K

(−n,n)
p1 for

some n ∈ N. Fix also a simply connected homogeneous Hecke set
î
G∆(A)+ξ

ó
with ctr(ξ)p1 ∈ Ap1 , and assume

g−1T(Q)sg ∩B ctr(ξ)B = ∅.

Let µ be the algebraic probability measure supported on
î
T∆(A)(g, sg)

ó
and

let ν be the algebraic probability measure supported on
î
G∆(A)+ξ

ó
. Denote κ =

28 d∞(ctr(ξ)∞) df (ctr(ξ)f ) and ω = − sign(Nrd(ctr(ξ)∞)) df (ctr(ξ)f ). Then

Cor[µ, ν](B)� vol ([T(A)g])−1 vol
Äî
G∆(A)+ξ

óä−1
p−2n

1

·
∑

0≤x≤κ|D|
x≡ωD mod υp2n

1

g[s](x)f[pn1 se]
−1

Ç
x− ωD
υp2n

1

å
r

Ç
x− ωD
υp2n

1

å
.

Remark 8.8. Notice that υ is supported on primes that are inert in E/Q
while p1 splits; thus gcd(υ, p2n

1 ) = 1.

8.3. Geometric expansion.

Definition 8.9. Set

WQ =
G∆(Q)

\(G×G) (Q)/
T∆(Q)

.

We denote by [γ] ∈WQ) the double coset corresponding to γ ∈ (G×G) (Q).
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We have a natural map WQ → W(Q), where W is the GIT quotient

defined in Section 6. Recall from Proposition 6.3 that this map is injective

outside of {[(γ0, γ0wTtQ)] | γ0 ∈ G(Q), tQ ∈ T(Q)}.

Definition 8.10. For any closed subgroup N <M(A), denote

N † := N ∩
Ä
G(A)+ ×T(A)

ä
.

The subgroup N † is always normal in N .

The following proposition is the geometric expansion of the relative trace

corresponding to the subgroups G∆ and T∆ of G × G. The situation is

relatively simple as the stabilizers have finite volume adelic quotients.

Proposition 8.11. Let µ be the periodic measure on a joint homoge-

neous toral set [T∆(A)(g, sg)] and ν the periodic measure on a simply-connected

Hecke correspondence [G∆(A)+ξ], ξ = (ξ1, ξ2). Set B′ = ξ1Bg
−1×ξ2Bg

−1s−1.

Then

Cor[µ, ν](B) =

∫
[G(A)+]

∫
[T(A)]

KB′(l, t) dl dt

=
∑

[γ]∈WQ

∑
κ∈πG(Mγ(Q))\G(Q)/G(Q)+

vol(Mγ) · ROγ,κ(B),

ROγ,κ(B) :=

∫
Mγ(A)†\M(A)†

11B′
Ä
(κl)−1γt

ä
d(l, t),

vol(Mγ) := mMγ(A)†

Ç
Mγ(Q)†

\Mγ(A)†
å
,

where the Haar measures on
Mγ(A)†

\M(A)†
and Mγ(A)† are mutually nor-

malized.

Following the relative trace formula terminology, we call ROγ,κ(B) a rel-

ative orbital integral.

We will use the following lemma in the proof of the proposition.

Lemma 8.12. For any a ∈M(A), let Ada : M(A)† →M(A)† be the con-

jugation automorphism of the normal subgroup M(A)†. Then the map Ada
fixes any Haar measure on M(A)†.

Proof. Let mM(A)† be a Haar measure on M(A)†. Then (Ada)∗mM(A)† is

a Haar measure as well and proportional to the original one (Ada)∗mM(A)† =

α(a)mM(A)† . The map α : M(A)→ R>0 is a character that is trivial on M(A)†,

hence it factors through the 2-torsion group
M(A)†

\M(A). Because R>0 has

no non-trivial torsion elements, α is trivial. �
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Proof of Proposition 8.11. Let [γ] ∈WQ be a double coset with represen-

tative γ ∈ (G×G) (Q). Denote f := 11B′ . We unfold the definition of the

cross-correlation and exchange summation and integration using the uniform

convergence of the kernel on compact subsets

Cor[µ, ν](B) =

∫
[M(A)†]

∑
γ∈(G×G)(Q)

f(l−1γt) d(l, t)

=
∑

[γ]∈WQ

∑
γ′∈[γ]

∫
[M(A)†]

f(l−1γ′t) d(l, t)

=
∑

[γ]∈WQ

∑
γ′∈[γ]

∫
[M(A)†]

f(m−1.γ′) dm.

(22)

We now deal individually with each internal sum for [γ] fixed. Let F⊂
M(A)† be a fundamental domain for the left action of M(Q)† on M(A)†. We

write the internal sum in (22) as a sum of integrals on F. To do this we choose

some fixed representatives for each set of cosets appearing in the following:

∑
γ′∈[γ]

∫
[M(A)†]

f(m−1.γ′) dm =
∑

mQ∈Mγ(Q)\M(Q)

∫
F
f
Ä
m−1m−1

Q .γ
ä

dm

=
∑

κ̄∈Mγ(Q)\M(Q)/M(Q)†

∑
mQ∈κ̄−1Mγ(Q)†κ̄\M(Q)†

∫
F
f
Ä
(m−1m−1

Q κ̄
−1).γ

ä
dm

=
∑

κ̄∈Mγ(Q)\M(Q)/M(Q)†

∑
mQ∈κ̄−1Mγ(Q)†κ̄\M(Q)†

∫
mQF

f
Ä
(m−1κ̄−1).γ

ä
dm.

(23)

Now fix a representative

κ̄ ∈
Mγ(Q)

\M(Q)
/
M(Q)†

.

The function f
(
(m−1κ̄−1).γ

)
is a well-defined compactly supported integrable

function on κ̄−1Mγ(A)†κ̄\
M(A)†

.

Using the mutual normalization of Haar measures we can rewrite the inner

sum in (23) as ∫
κ̄−1Mγ(A)†κ̄\M(A)†

f
Ä
(m−1κ̄−1).γ

ä
dm

·
∑

mQ∈κ̄−1Mγ(Q)†κ̄\M(Q)†

mκ̄−1Mγ(A)†κ̄ (mQF) .
(24)

For a fixed Haar measure mMγ(A)† on Mγ(A)†, define a Haar measure on

κ̄−1Mγ(A)†κ̄ by (Adκ̄−1)∗mMγ(A)† . Using this normalization we have

(25) ∑
mQ∈κ̄−1Mγ(Q)†κ̄\M(Q)†

mκ̄−1Mγ(A)†κ̄ (mQF)=
∑

mQ∈Mγ(Q)†\M(Q)†

mMγ(A)† (mQF) .
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The set
⊔
mQ∈Mγ(Q)†\M(Q)†mQF is a fundamental domain for the left action of

Mγ(Q)† on M(A)†; hence the sum (25) is equal to mMγ(A)†

(
Mγ(Q)†

\Mγ(A)†)
.

Under the normalization of Haar measures as above there is an isomor-

phism of the following measure spaces equipped with their respective Haar

measures:

κ̄−1Mγ(A)†κ̄\
M(A)† '

Mγ(A)†
\M(A)†

,Ä
κ̄−1Mγ(A)†κ̄

ä
m 7→

Ä
Mγ(A)†

ä
κ̄mκ̄−1.

This implies∫
κ̄−1Mγ(A)†κ̄\M(A)†

f
Ä
(m−1κ̄−1).γ

ä
dm =

∫
Mγ(A)†\M(A)†

f
Ä
(κ̄−1m−1).γ

ä
dm

=

∫
Mγ(A)†\M(A)†

f
Ä
(m−1κ̄−1).γ

ä
dm,

where the last equality follows from Lemma 8.12.

Combining all of the above and using the following bijection induced by

the projection map πG : M = G×T→ G,

Mγ(Q)
\M(Q)

/
M(Q)†

'
πG (Mγ(Q))

\G(Q)
/
G(Q)+,

we arrive to the required final form. �

Lemma 8.13. Fix γ ∈ (G×G) (Q) with Mγ(A) compact. Then under a

suitable normalization of measures,

ROγ,κ(B) :=

∫
M(A)†

11B′
Ä
(κl)−1γt

ä
d(l, t)

and ∑
κ∈πG(Mγ(Q))\G(Q)/G(Q)+

vol(Mγ)·ROγ,κ(B)=
1

#Mγ(Q)

∑
κ∈G(Q)/G(Q)+

ROγ,κ(B).

Notice that the group Mγ(Q) is a discrete subgroup of a compact group,

hence it is finite.

This proposition shows that the case of a compact stabilizer is very similar

to that of a trivial one, the only difference being the easy to compute factor.

Proof. The group Mγ(A)† is a closed subgroup of a compact group, hence

it is compact. We normalize the Haar measure on Mγ(A)† so that it is equal

to 1. This normalization results in ROγ,κ(B) being equal to the integral above

over M(A)†. In this normalization we also have vol(Mγ) =
Ä
#Mγ(Q)†

ä−1
.

When summing over κ∈G(Q)/G(Q)+ instead of κ∈πG (Mγ(Q))\G(Q)/

G(Q)+, the same summand appear multiple times and needs to be accounted

for. The multiplicity of a summand is the size of the corresponding fiber in
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G(Q)/G(Q)+ → πG (Mγ(Q))\G(Q)/G(Q)+. As M(A)† < M(A) is normal,

all the fibers have the same size, which isî
Mγ(Q) : Mγ(Q)†

ó
.

Finally, the correct proportionality factor between the two sums in the claim is

vol(Mγ)
î
Mγ(Q) : Mγ(Q)†

ó−1
= (#Mγ(Q))−1 . �

8.4. Reduction to compact stabilizers. Recall from Proposition 7.8 that the

minimal volume of a homogeneous Hecke set containing a joint homogeneous

toral set depends on the distance of the discrete orbit g−1T(Q)sg from the

identity. In particular, for a sequence of joint homogeneous toral sets, we need

to assume that for every compact subset B0 ⊂ G(A), the orbit g−1T(Q)sg

does not intersect B0 for all joint homogeneous toral sets with discriminant

large enough.

In this section we show that for a fixed simply connected homogeneous

Hecke set, the assumption above implies that the contribution to the cross

correlation from terms with a non-compact stabilizer vanishes. This is the

fundamental application of this assumption.

Once more we will use the fact that the shift g−1T(Q)sg is large when

bounding the pertinent shifted convolution sum.

Whenever the shift has a small representative, the cross-correlation with

some Hecke correspondence will have terms with non-compact stabilizers and

these will be the dominant contribution to the cross-correlation. The simplest

bad case is the cross-correlation between a periodic joint toral measure and a

Hecke correspondence containing its support.

Lemma 8.14. Assume that

(26) g−1T(Q)sg ∩B−1 ctr(ξ)B = ∅.

Then for all γ ∈ (G×G) (Q), if Mγ(A)† is not compact, then ROγ,κ(B) = 0

for all

κ ∈
πG(Mγ(Q))

\G(Q)
/
G(Q)+.

Proof. Write ξ = (ξ1, ξ2). Assume Mγ(A)† is not compact. Then accord-

ing to Proposition 6.3, γ = (γ1, γ1tQ) for some tQ ∈ T(Q). If ROγ,κ(B) 6= 0

for some κ, then

∃l ∈ G(A)+, t ∈ T(A) : ((κl)−1γ1t, l
−1κ−1γ1tQt) ∈ B′ = ξ1Bg

−1 × ξ2Bg
−1s−1

=⇒ tQ ∈ gB−1ξ−1
1 ξ2Bg

−1s−1 =⇒ g−1tQsg ∈ B−1ξ−1
1 ξ2B,

which contradicts the assumption (26). �
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Remark 8.15. Notice that if condition (26) holds, then Cor[µ, ν](B0) will

have no contribution from terms with a non-compact stabilizer for any B0 ⊂ B.

This will be useful, as in the endgame we would like to bound the cross-

correlation between a limit measure and a simply connected Hecke correspon-

dence for an arbitrarily small identity neighborhood.

Corollary 8.16. Assume

g−1T(Q)sg ∩B−1 ctr(ξ)B = ∅.

Then

Cor[µ, ν](B) =
∑

[γ]∈WQ
ψ det−1(γ)6=0

1

#Mγ(Q)

∑
κ∈G(Q)/G(Q)+

ROγ,κ(B)

and

#Mγ(Q) =

1 ctr(γ) 6∈ NGT(Q),

2 otherwise.

Proof. Lemma 8.14 implies that the geometric expansion of Cor[µ, ν](B)

has no contributions from [γ] such that ctr(γ)∈T(Q). The condition ψ det−1(γ)

6= 0 is exactly equivalent to ctr(γ) 6∈ T(Q).

The claimed expression for Cor[µ, ν](B) now holds due to Proposition 8.11

and Lemma 8.13. To calculate Mγ(Q) in the relevant cases we use Proposi-

tion 6.3. This proposition implies that Mγ is trivial if ctr(γ) 6∈NG(T)(Q) and

Mγ 'µ2 otherwise. The final part of the claim holds because µ2(Q) ' Z/2Z.

�

8.5. Decomposition of the relative orbital integral.

Definition 8.17. Fix γ ∈ (G×G) (Q) with Mγ(A) compact, and let κ ∈
G(Q). We split the relative orbital integral into an archimedean and non-

archimedean parts

ROγ,κ(B) = RO∞γ (B) · ROf
γ(B),

RO∞γ,κ(B) :=

∫
M(R)†

11B′∞

Ä
(κl)−1γt

ä
d(l, t),

ROf
γ,κ(B) :=

∫
M(Af )†

11B′
f

Ä
(κl)−1γt

ä
d(l, t).

The complicated expression to handle is the non-archimedean part. We

will see that the archimedean part is rather simple due to the fact that we have

restricted to the case H∞ = K∞ in (♠).

In the next section we interpret the non-archimedean relative orbital inte-

gral as counting the number of intersections between the M(Af )-orbit of γ and
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B′ modulo a compact-open subgroup of M(Af ). The main result is a finite-to-

one map between intersections and pairs of integral Λ-ideals satisfying a list of

arithmetic conditions.

Unlike Linnik’s argument for the equidistribution of CM points on a mod-

ular curve, we do not calculate the relative orbital integrals at each place

separately. Instead, we match them globally with a different global object.

8.6. Archimedean relative orbital integral.

Lemma 8.18. Let γ = (γ1, γ2) ∈ (G×G) (Q) and κ ∈ G(Q). Assume

B∞ = Ω∞. Then RO∞γ,κ(B) = 0 if ctr(γ) 6∈ g∞Ω∞ ctr(ξ)∞Ω∞g
−1
∞ , and

RO∞γ,κ(B) ≤ mT(R) (T(R)) mG(R)+

Ä
ξ1,∞Ω2

∞ξ
−1
1,∞ ∩ ξ2,∞Ω2

∞ξ
−1
2,∞
ä

otherwise.

Proof. From Ω∞K∞ = Ω∞ and g−1
∞ T(R)g∞ = K∞ we deduce B′∞ ·

T(R)∆ = ξ1Ω∞g
−1
∞ × ξ2Ω∞g

−1
∞ . Hence 11B′∞

(
(κl)−1γt

)
= 1 if and only if

(κl)−1 ∈ ξ1,∞Ω∞g
−1
∞ γ−1

1 ∩ ξ2,∞Ω∞g
−1
∞ γ−1

2 .

If the intersection on the right-hand side is non-empty, then there are some

ω1, ω2 ∈ Ω∞ such that

(27) ctr(γ) = g∞ω1 ctr(ξ)∞ω2g
−1
∞ ∈ g∞Ω∞ ctr(ξ)∞Ω∞g

−1
∞ .

This proves the first claim.

Moreover, the infinite part of the relative orbital integral is

RO∞γ,κ(B) :=

∫
M(R)†

11B′∞

Ä
(κl)−1γt

ä
d(l, t)

= mT(R) (T(R))

∫
G(R)+

11ξ1,∞Ω∞g
−1
∞ γ−1

1 ∩ξ2,∞Ω∞g
−1
∞ γ−1

2

Ä
(κl)−1

ä
dl

= mT(R) (T(R)) mG(R)+

Ä
ξ1,∞Ω∞g

−1
∞ γ−1

1 κ ∩ ξ2,∞Ω∞g
−1
∞ γ−1

2 κ
ä
.

The right-hand side above is trivially zero unless Nrdκ−1γ1g∞ξ
−1
1,∞ > 0 so we

may assume it is the case. Using the right invariance of a Haar measure on

G(R)+ and (27), we have

mG(R)+

Ä
ξ1,∞Ω∞g

−1
∞ γ−1

1 κ ∩ ξ2,∞Ω∞g
−1
∞ γ−1

2 κ
ä

= mG(R)+

Ä
ξ1,∞Ω∞ξ

−1
1,∞ ∩ ξ2,∞Ω∞g

−1
∞ γ−1

2 γ1g∞ξ
−1
1,∞
ä

= mG(R)+

Ä
ξ1,∞Ω∞ω

−1
1 ξ−1

1,∞ ∩ ξ2,∞Ω∞ω
−1
2 ξ−1

2,∞
ä

≤ mG(R)+

Ä
ξ1,∞Ω2

∞ξ
−1
1,∞ ∩ ξ2,∞Ω2

∞ξ
−1
2,∞
ä

as claimed. �
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8.7. Non-archimedean relative orbital integrals.

Definition 8.19. Let Bf < G(Af ) be a compact-open subgroup and fix a

homogeneous Hecke set
î
G∆(A)+(ξ1, ξ2)

ó
and a homogeneous toral set [T(A)g].

We fix the following notation:

BG,f := ξ1,fBfξ
−1
1,f ∩ ξ2,fBfξ

−1
2,f < G(Af ),

B+
G,f := BG,f ∩G(Af )+ < G(Af )+,

BT,f := gfBfg
−1
f ∩T(Af ) < T(Af ),

BM,f := BG,f ×BT,f <M(Af ),

B†M,f := B+
G,f ×BT,f <M(Af )†.

Each of these is a compact-open subgroup of the appropriate group.

Definition 8.20. Let γ ∈ (G×G) (Q) and κ ∈ G(Q). Define the following

functions:

fγ,κ(l, t) := 11B′
f

Ä
(κl)−1γt

ä
,

fγ(l, t) := 11B′
f

Ä
l−1γt

ä
.

The former is a B†M,f -invariant function on M(Af )†, and the latter is a BM,f -

invariant function on M(Af ).

8.7.1. Intersection numbers.

Lemma 8.21. Let B = B∞ × Bf ⊂ G(A) be an identity neighborhood

such that Bf ⊆ G(Af ) is contained in the union of all compact-open sub-

groups. Then each coset from
M(Af )

/BM,f
contains at most two cosets from

G(Q)M(Af )†
/
B†M,f

, where we consider G as a subgroup of M = G×T in the

usual way.

Proof. Let κ−1 ∈ B×(Q) be an element with reduced norm −1 if it exists,

i.e., if B is split at∞; see Section 2.3. By abuse of notation we use the notation

κ−1 also for the corresponding element in G(Q).

Fix m ∈ M(Af ). Assume κim†iB
†
M,f ⊆ mBM,f , where κi ∈ G(Q),

m†i ∈ M(Af )† for i ∈ {1, 2}. We show that either κ1 ∈ κ2G(Q)+ or κ1 ∈
κ2κ−1G(Q)+ if κ−1 exists.

Our assumption implies that there is some b ∈ BM,f such that κ1m
†
1 =

κ2m
†
2b. We apply the injective map

Nrd: G(Af )→ A×f /
A×f

2.
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We deduce Nrd(κ−1
2 κ1) = Nrd(b). The condition satisfied by Bf implies that

Nrd b ∈ Ẑ× mod
Ä
A×f
ä2

. Thus the valuation of Nrd(κ−1
2 κ1) is even at each

finite place. As Nrd(κ−1
2 κ1) is rational, it must belong to ±Q×2

, i.e., it is

either trivial in A
×
f /A×f

2 or has the same class as κ−1. Because Nrd has kernel

G(Af )+, we conclude that κ−1
2 κ1 either belongs to G(Q)+ or to κ−1G(Q)+.

The claim follows immediately. �

Remark 8.22. It is not difficult to analyze for a specific B exactly how

many cosets from G(Q)M(Af )†/B†M,f
are contained in a fixed coset from

M(Af )/BM,f
. This would allow converting several of the inequalities in what

follows to equalities. As this of no practical use to us we do not pursue it here.

Proposition 8.23. Let [γ] ∈WQ. Then∑
κ∈G(Q)/G(Q)+

ROf
γ,κ(B) ≤ 2mG(Af )(BG,f )mT(Af )(BT,f )N[γ],

where N[γ] is the number of times the M(Af ) orbit of γ intersects B′f modulo

BM,f .

Proof. For any κ ∈ G(Q)
/
G(Q)+, we can write

ROf
γ,κ(B) = mG(Af )(BG,f )mT(Af )(BT,f )Nγ,κ,

where Nγ,κ is the number of times the M(Af )† orbit of κ−1.γ intersect B′f
modulo B†M,f . This follows from the B†M,f -invariance of fγ,κ. The proof is

finished by applying Lemma 8.21. �

Lemma 8.24. Consider the action of the algebraic group M = G×T on

the affine variety G where the G-coordinate acts trivially and the T-coordinate

acts by conjugation. The contraction morphism ctr : G ×G → G defined by

(g1, g2) 7→ g−1
1 g2 is an M-equivariant morphism of affine varieties.

The set

B′f = ξ1,fBfg
−1
f × ξ2,fBfg

−1
f s−1

f ⊂ (G×G) (Af )

is BM,f -invariant and the contraction map is a bijection between BM,f
\B′f and

its image AdBT,f
\ctr(B′f ). In particular, for any γ = (γ1, γ2) ∈ (G×G) (Q),

N[γ] = #

Å
AdBT,f

\AdT(Af ) ctr(γ) ∩ ctr(B′f )
ã
.

Proof. The map ctr : BM,f
\B′f → AdBT,f

\ctr(B′f ) is obviously surjective

and we need only prove injectivity. Assume

(28) th−1
1 h2t

−1 = h′−1
1 h′2
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for some (h1, h2), (h′1, h
′
2) ∈ (G×G) (Af ) and t ∈ AdBT,f . We need to prove

that there is some l ∈ BG,f so that lhit
−1 = h′i for i ∈ {1, 2}.

Set l = h′1th
−1
1 ∈ G(Af ). Then (28) implies that lhit

−1 = h′i for i ∈ {1, 2}.
To see that l ∈ BG,f , notice that for i ∈ {1, 2},

l = h′ith
−1
i ∈ ξi,fBfBT,fB

−1
f ξ−1

i,f = ξi,fBfξ
−1
i,f

and BG,f =
⋂
i∈{1,2} ξi,fBfξ

−1
i,f . �

8.7.2. Matching intersections to pairs of integral ideals. The last lemma

indicates that N[γ] can be computed by understanding intersections of AdBT,f -

orbits on AdT(Af )G(Q) ⊂ G(Af ) with ctr(B′f ). We restrict to the case

BT,f = KT,f and develop arithmetic invariants, refining results of GIT, to

detect these intersections.

Definition 8.25. Recall that KT,f := T(Af ) ∩ gfKfg
−1
f . We construct a

function

invf : AdKT,f
\G(Af )→ Q×∆\J(Λ)0 ×J(Λ)0

in the following manner.

Let [hf ] = [(hv)v 6=∞] ∈ AdKT,f
\G(Af )

. For all v 6= ∞, choose a repre-

sentative of hv in B×(Qv) and write it in coordinates using Proposition 5.19:

hv = Q×v

Ç
αv βvυvτv
βσ v/τv ασ v

å
,

where αv, βv ∈ Ev and υv, τv are as in the proposition. Now define invf ([hf ])

as

invf
Ä
[hf ]

ä
=
Ä
ĩdl(αv), ĩdl(βv)

ä
=

Ñ ⋂
v 6=∞

αvΛv,
⋂
v 6=∞

βvΛv

é
.

This pair of ideals is obviously well defined up to multiplication by a common

ideal of the form
⋂
v 6=∞ qvΛv, where qv ∈ Q×v for all v 6=∞. Because Q has class

number one, this is equivalent to multiplying the ideals by the same element

of Q×.

The map invf is also invariant under conjugation by KT,f . Recall that

cbd(x) = x/ xσ for all x ∈ E×v . Conjugating by an element of KT,f is equiva-

lent to multiplying βv by an element of cbd(Λ×v ) ⊂ Λ×v and hence defines the

same fractional ideals.

Definition 8.26.

(1) Set G(A)accessible := AdT(A)G(Q). This is an AdT(A)-invariant subset

of G(A).
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(2) Define the map

inv :
AdT(R) AdKT,f

\G(A)accessible → Q×\
J(Λ)0 ×J(Λ)0

by evaluating invf from Definition 8.25 on the finite part.

(3) For each v, we have defined a map πW :
AdT(Qv)\

G(Qv)→W(Qv). For

an element of G(A)accessible, the map πW maps each place to the same

value in W(Q). We thus have a well-defined map

πW :
AdT(A)

\G(A)accessible →W(Q),

which send an element to the common value of πW evaluated at any place.

The next proposition is a central observation relating cross-correlation to

shifted convolution sums of ideal counting functions.

Proposition 8.27. Let [T(A)g] be a homogeneous toral set. Let

[h] ∈
AdT(R) AdKT,f

\G(A)accessible

such that inv(h) ∈ Q×\
J(Λ)0 ×J(Λ)

, i.e., h 6∈ T(Q). Then there is a faithful

action of
∏
v 6=∞H

1(G,Λ×v ) on inv−1([h]), and the number of orbits is ≤ 8.

Proof. Our strategy is to show that (inv×πW)−1 ([h]) is a principal ho-

mogeneous space for
∏
v 6=∞H

1(G,Λ×v ) and to prove that πW
Ä
inv−1(inv([h]))

ä
contains at most eight elements.

Denote Q×(a, b) := inv([h]). We first show there are at most eight possible

elements in πW
Ä
inv−1 (Q×(a, b))

ä
. Proposition 6.15 implies that an element

of W(Q) is uniquely determined by the values in E of the regular functions

ϑ2
1 det−1, ϑ1ϑ2 det−1, ψ det−1. We define a map W(Q)→ P2(E) by

w 7→ [ϑ2
1 det−1(w) : ϑ1ϑ2 det−1(w) : ψ det−1(w)].

We claim that this map is injective on W(Q). A priori it defines the values of

the necessary functions only up to a common multiplicative constant. But the

value of this constant is uniquely determined by the syzygy

ϑ1ϑ2 det−1−ψ det−1 = 1.

Let tγt−1 ∈ G(A)accessible, γ ∈ G(Q), t ∈ T(A) represent an element in

inv−1 (Q×(a, b)). For any v 6=∞, the pair of fractional ideal (a, b) corresponds

to some local ideals (αvΛv, βvΛv) such thatÇ
αv βvυvτv
βσ v/τv ασ v

å
is in the AdT(Qv)-orbit of γ. We can calculate the coordinate functions of [γ] ∈
W(Q) using this matrix, but their values depend on the specific representative
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in αvΛ
×
v , βvΛ

×
v . Nevertheless, the local principle ideals (αvΛv, βvΛv) uniquely

determine, for any w | v, the w-part of

[ϑ2
1 det−1(γ) : ϑ1ϑ2 det−1(γ) : ψ det−1(γ)],

and this hold for all finite E-places w. As all the entries are in E they are

uniquely defined up to an element of O×E . Moreover, the last two entries are

in Q so they are defined up to an element in Z×. In total we are left with

4 · 2 = 8 possibilities at most for the homogeneous vector above. Hence there

are at most eight possible corresponding points in W(Q).

Next we need to study the fiber of inv×πW. LetÄ
Q×(a, b), [γ]

ä
∈ Im inv×πW,

where a ∈ J0(Λ), b ∈ J(Λ) and γ ∈ G(Q).

First assume that γ 6∈ wTT(Q). Due to Proposition 6.3, the fiber in

G(A)accessible of πW over this point is AdT(A)γ. In coordinates we can write

(29) AdT(A)γ =

®
Q×v

Ç
a εb cbd(xv)

bσ cbd(xv)
σ aσ

å
v

∣∣∣∣∣ x = (xv)v ∈
∏
v

E×v

´
,

where a ∈ E and b ∈ E×. The pertinent fiber of inv×πW in G(A)accessible is

AdT(A)γ ∩ inv−1 (Q×(a, b)).

Otherwise, if γ ∈ wTT(Q), then a = 0. For any

h′ = t′γ′t′−1 ∈ inv−1
Ä
Q×(0, b)

ä
,

we have γ′ = γtQ with tQ ∈ T(Q). Moreover, because γ and γ′ have the same

invariants, we see that tQ ∈ T(Q) ∩ KT,f = T(Z) ' Z×\
Λ×. In particular,

using Hilbert’s Satz 90 for E we see that γ′ ∈ AdT(Q)γ.

In both cases we conclude the fiber is equal to AdT(A)γ∩inv−1 (Q×(a, b)).

These are all the elements of (29) satisfying

(30)

Å
ĩdl(a), ĩdl

Å
ε

υvτv
b cbd(x)

ãã
∈ Q×(a, b).

Denote b′ := ĩdl
Ä

ε
υvτv

b
ä
∈ J(Λ). Then there is some q ∈ Q× such that

ĩdl(cbd(x)) = q
b

b′
.

The left-hand side is a fractional Λ-ideal of norm 1, hence q = ±q0 where

q0 =
»

Nr b′/Nr b. In particular, ĩdl(cbd(x)) = q0
b
b′ .

Fix cv ∈ E×v for all v 6= ∞ such that ĩdl((cv)v) = q0
b
b′ . For each v 6= ∞,

the element cv has norm 1, so by Hilbert’s Satz 90 there is some yv ∈ E×v
satisfying cv = cbd(yv). The condition (30) is equivalent to

∀v 6=∞ : cbd(xv) ∈ cbd(yv)Λ
×
v ⇔ cbd(xvy

−1
v ) ∈ Λ(1)

v .
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Thus the fiber in G(A)accessible is a principal homogeneous space for AdT(R)×∏
v 6=∞ Λ

(1)
v . Writing these in coordinates we see that the fiber in G(A)accessible

is a principal homogeneous space for AdT(R)×∏v 6=∞ Λ
(1)
v .

The quotient of the fiber by the action of AdT(R) AdKT,f is a principle

homogeneous space for
∏
v 6=∞ cbd(Λ×v )\Λ

(1)
v ' ∏

v 6=∞H
1(G,Λ×v ) as claimed.

�

Corollary 8.28. Let [h] ∈ AdT(R) AdKT,f
\G(A)accessible such that

inv(h) ∈ Q×\J(Λ)0 ×J(Λ), i.e., h 6∈ T(Q). Then

# inv−1([h])� Pic(Λ)[2].

Proof. The proof follows from Proposition 8.27 above and Corollary A.12.

�

Lemma 8.29. Let h = tγt−1 ∈ G(A)accessible, t ∈ T(A), γ ∈ G(Q). If

inv(h) = Q×(a, b), then

(1) [a] = 1 in Pic(Λ) if a 6= 0,

(2) [be] ∈ Pic(Λ)2 if b 6= 0.

Proof. Fixing representatives for γ and hv for all places v 6=∞, we haveÇ
αv βvυvτv
βσ v/τv ασ v

å
= qv

(
a εb λvλσ v

bσ λσ v
λv

aσ

)
,

where αv, βv ∈ Ev, λv ∈ E×v , qv ∈ Q×v and a, b ∈ E×. The ideals a and eb

either vanish or their classes in Pic(Λ) satisfy

[a] = (αv)v 6=∞ mod Q×
∏
v 6=∞

Λ×v = (a)v 6=∞ mod Q×
∏
v 6=∞

Λ×v = 1,

[be] = (βvυvτv)v 6=∞ mod Q×
∏
v 6=∞

Λ×v

= (εb
λv
λσ v

)v 6=∞ mod Q×
∏
v 6=∞

Λ×v ∈ Pic(Λ)2. �

Proposition 8.30. Fix (xv)v ∈ G(Af ). Let Bv = Ωv for v 6= p1 and

Bp1 = K
(−n,n)
p1 ⊂ Ωp1 for some n ∈ N. If h ∈ G(A)accessible is contained in∏

v gvB
−1
v xvBvg

−1
v s−1

v , then

inv(h) = Q×Λ̂(a · s−1, b · sσ −1)

for some a, b ∈ J0(Λ) satisfying

(1) a, b ⊆ Λ,

(2) pn1 | b,

(3) Nr(a)− υNr(b) = sign (Nrd(x∞)) df (xf )|D|,
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(4) Nr(a) ≤ 28 d∞(x∞) df (xf )|D|,
(5) [a] = [s] in Pic(Λ) if a 6= 0,

(6) [b] ∈ [se]−1 Pic(Λ)2 if b 6= 0.

Proof. For each place v, choose a representative rv ∈ B×(Qv) ∩ Ov of

g−1
v hvsvgv ∈ ΩvxvΩv satisfying the conclusion of Proposition 5.21. For v = p1,

let rv satisfy the stronger conclusions of Proposition 5.23. The element gvrvg
−1
v

belongs to gvOvg−1
v and has same reduced norm as rv, i.e., |Nrd gvrvg

−1
v |v =

dv(xv)
−1 for v 6= ∞ and |Nrd g∞r∞g

−1
∞ | ≥ 2−8d∞(x∞)−1. We can use this to

represent hv in B×(Qv) as

(31) hv = Z(Qv)
Ç

αvs
−1
v βv sσ v

−1υvτv
βσ vs
−1
v /τv ασ v sσ v

−1

å
,

where αv, βv ∈ Λ̂v due to Proposition 5.19. The definition of inv implies that

inv(h) = Q×(a0, b0), where a0 =
⋂
v 6=∞ αvs

−1
v Λv and b0 =

⋂
v 6=∞ βv sσ v

−1Λv.

Define â :=
⋂
v 6=∞ αvΛv and b̂ :=

⋂
v 6=∞ βvΛv. Then â, b̂ ⊆ Λ̂. Finally, set

a := Λ̂−1â and b := Λ̂−1b̂. Then a, b ⊆ Λ and a0 = Λ̂as−1, b0 = Λ̂b sσ −1.

We conclude that inv(h) = Q×Λ̂(as−1, b sσ −1). Obviously (1) is satisfied

and (5), (6) are simply a restatement of Lemma 8.29.

We claim that

Nr(â) = sign (Nrd(x∞)) df (xf )ϑ1ϑ2 det−1(h),

υNr(b̂) = sign (Nrd(x∞)) df (xf )ψ det−1(h).
(32)

For any prime p, the p-part of (32) follows by calculating ϑ1ϑ2 det−1 and

ψ det−1 using the representative in (31) for the corresponding non-archimedean

v. To establish (32) with the correct signs, calculate ϑ1ϑ2 det−1 and ψ det−1

using the representative in (31) for v =∞.

Recall that Nrd(a)=Nrd(Λ̂−1â) = |D|Nrd(â) and similarly for b. Claim (3)

follows from (32) and the syzygy ϑ1ϑ2 det−1−ψ det−1 = 1. The archimedean

bound |ϑ1ϑ2 det−1(h)| ≤ 28 d∞(x∞) follows from using (31) for v =∞, Propo-

sition 5.15 and the inequality |Nrd gvrvg
−1
v | ≥ 2−8 d∞(x∞)−1. Claim (4) fol-

lows from this bound and (32).

To prove (2) we use the conclusions of Proposition 5.23. Rewrite

gp1O(−n,n)
p1

g−1
p1

=
n⋂

k=−n
tkgp1O(−n,n)

p1
g−1
p1
t−k,

where t = gp1λ(p1)g−1
p1
∈ T(Qp1). Using the freedom in the choice of λ we can

assume

t ∈ Q×p1

Ç
π 0

0 πσ

å
,

where π ∈ Ep1 is a uniformizer for one of the two maximal ideals of Op1 and

πσ is a uniformizer for the second one. Because rp1 ∈ tkgp1O
(−n,n)
p1 g−1

p1
t−k for
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all −n ≤ k ≤ n, using Proposition 5.19 we conclude that

(33) Dp1βp1 ∈
n⋂

k=−n

πσ k

πk
Λp1 = pn1 Λp1 .

Because b = Λ̂−1b̂ =
⋂
v Dp1βvΛv, Claim (1) follows from (33). �

Remark 8.31. Elements h with inv(h) = Q×Λ̂(a · s−1, 0) in the Propo-

sition above corresponds to M(Af )-orbits of elements γ ∈ (G×G) (Q) with

stabilizer Mγ ' T.

We know from Lemma 8.14 and Proposition 7.8 that the contribution of

these elements to the cross-correlation should vanish if the minimal norm of

an integral ideal in the Picard class [s] is ≥ C for some constant C depending

only on ξ. If sign(Nrd(ctr(ξ)∞)) = 1, this seems to contradict the proposition

above, which states that such γ correspond to integral ideals a with Nr(a) =

sign(Nrd(ctr(ξ)∞)) df (ctr(ξ)f )|D|, which for |D| large enough is bigger then

C.

The contradiction is resolved by observing that in this case ctr(γ) ∈ T(Q),

and in the language of the proof above we know that not only â ⊆ Λ̂ but also

â ⊆ Λ. This implies that a ⊂ Λ̂−1 ( Λ, and if

Nr(a) = sign(Nrd(ctr(ξ)∞)) df (ctr(ξ)f )|D|,

then Λ̂a is an integral ideal in the class [s] of norm

sign(Nrd(ctr(ξ)∞)) df (ctr(ξ)f ),

which does not grow to infinity with |D|.
This reasoning can also be used to exclude the situation

inv(h) = Q×(0, b · sσ −1),

i.e., Mγ ' µ2. These unnecessary terms will have negligible contribution to

the shifted convolution sum, and we do not take the extra effort to write them

off. The essential part is that the contribution of a non-compact stabilizer to

the geometric expansion is eliminated in Lemma 8.14.

Proposition 8.32. Let h∈G(A)accessible and inv(h)=Q×Λ̂(as−1, b sσ −1)

be as in Proposition 8.30 above. Let p | D be an odd prime where B splits.

Denote by v the place associated to p, and recall from Proposition 8.27 that

H1(G,Λ×v ) acts faithfully on inv−1 (inv(h)).

Let −1 ∈ H1(G,Λ×v ) be the unique non-trivial element ; cf. Lemmata A.13

and A.14. If ordp Nr(b) < ordpD, then −1.hv 6∈ gvB−1
v xvBvg

−1
v s−1

v .

Proof. Assume in contradiction that both hv and −1.hv belong to

gvB
−1
v xvBvg

−1
v s−1

v .
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We write (±1.hv)sv in coordinates as in (31) in the proof of Proposition 8.30

above (notice that υv = 1 in the split case):

(±1.hv)sv = Z(Qv)
Ç

αv ±βvτv
± βσ v/τv ασ v

å
.

Above we have used the fact from Lemmata A.13 and A.14 that for odd residue

characteristic, the unique non-trivial cohomology class is represented by −1 ∈
Λ

(1)
v . The explicit form of the action of H1(G,Λ×v ) is evident from the proof

of Proposition 8.27.

Because the matrix on the right-hand side above belongs to gvOvg−1
v for

both (±1.hv)sv, Proposition 5.12 implies that

±βv − ασ v ∈ Λv =⇒ 2βv ∈ Λv =⇒ βv ∈ Λv.

In the last implication we have used once more that the residue characteristic

is odd.

Following the definition of b in the proof of Proposition 8.30 above, we see

that the completion of b at v is DvβvΛv ⊆ DvΛv. Hence ordp Nr b ≥ ordpD in

contradiction to the assumption. �

8.8. Proof of Theorem 8.7. We need one last lemma before we can proceed

to the proof the theorem.

Lemma 8.33. For any n ∈ N and any a ∈ Ap1 ,

mG(Qp1 )

(
Kp1 ∩ aKp1a

−1
)

mG(Qp1 )

(
K

(−n,n)
p1 ∩ aK(−n,n)

p1 a−1
) = p2n

1 .

Proof. Let A be the apartment in Bp1 stabilized by Ap1 . We fix an

orientation on A and enumerate all vertices in A consecutively according to

the adjacency . . . , x−1, x0, x1, . . . in such a way that x0 is the vertex stabilized

by Kp1 and a.x0 = xk for some k ≥ 0.

Because G(Qp) acts by simplicial automorphism, we have that Kp1 ∩
aKp1a

−1 is the stabilizer in G(Qp) of the finite path [x0, . . . , xk] in A and

K
(−n,n)
p1 ∩ aK(−n,n)

p1 a−1 is the stabilizer in G(Qp) of the finite path

[x−n, . . . , x0, . . . xk, . . . , xn+k].

In particular,

mG(Qp1 )

(
Kp1 ∩ aKp1a

−1
)

mG(Qp1 )

(
K

(−n,n)
p1 ∩ aK(−n,n)

p1 a−1
)

=
î
StabG(Qp) ([x0, . . . , xk]) : StabG(Qp) ([x−n, . . . , x0, . . . xk, . . . , xn+k])

ó
= #

Ä
StabG(Qp) ([x0, . . . , xk]) . ([x−n, . . . , x0] ∪ [xk, . . . , xk+n])

ä
.



JOINT EQUIDISTRIBUTION OF CM POINTS 219

Because the action is by simplicial automorphism and Bv1 is a tree for any

h ∈ StabG(Qp) ([x0, . . . , xk]), the position of h. ([x−n, . . . , x0] ∪ [xk, . . . , xk+n])

is completely determined by the position of h.x−n and h.xk+n.

Let y1 be a vertex so that d(x0, y1) = d(x0, x−n) and the geodesic con-

necting x0 and y1 does not pass through x1. Similarly, let y2 be a vertex so

that d(xk, y2) = d(xk, xk+n) and the geodesic connecting xk and y2 does not

pass through xk−1. We can use the strong transitivity of the action to show

the existence of an element h ∈ G(Qp) so that h.[x0, . . . , xk] = [x0, . . . , xk] and

h.x−n = y1 and h.xk+n = y2. Counting pairs of vertices y1, y2 as above we

deduce

#
Ä
StabG(Qp) ([x0, . . . , xk]) . ([x−n, . . . , x0] ∪ [xk, . . . , xk+n])

ä
= p2n

1 . �

Proof of Theorem 8.7. We begin with some necessary measure compu-

tations. For the torus T, we have g−1
∞ T(R)g∞ = K∞ and hence T(R) ⊂

g∞Ω∞g
−1
∞ . Denote a = λ(p1) as in Definition 5.22. Then for every m ∈ Z,

g−1
p1

T(Qp1)gp1 ∩ amKp1a
−m = Ap1 ∩ amKp1a

−m = Ap1 ∩Kp1 .

Hence T(Qp1) ∩ gp1K
(−n,n)
p1 g−1

p1
= T(Qp1) ∩ gp1Kp1g

−1
p1

. �

We conclude that

vol ([T(A)g])−1

= mT(R) (T(R)) mT(Qp1 )

Ä
gp1K

(−n,n)
p1

g−1
p1

ä ∏
v 6=∞,p1

mT(Qv)

Ä
gvKvg

−1
v

ä
.

For G∆, we use Lemma 8.33 and the condition ctr(ξ)p1 ∈ Ap1 to deduce

that

vol
Äî
G∆(A)+ξ

óä−1
p−2n

1 ≥ mG(R)+

Ä
ξ1,∞Ω2

∞ξ
−1
1,∞ ∩ ξ2,∞Ω2

∞ξ
−1
2,∞
ä

·mG(Qp1 )

Ä
K(−n,n)
p1

∩ ctr(ξ)p1K
(−n,n)
p1

ctr(ξ)−1
p1

ä
·
∏

v 6=∞,p1

mG(Qv)+

Ä
gvKvg

−1
v

ä
.

The inequality above can be replaced by �Ω∞ because of (10) from Sec-

tion 2.4.5.

Using Corollary 8.16, Lemma 8.18, Proposition 8.23 and the volume com-

putations above, we can write

Cor[µ, ν](B)� vol ([T(A)g])−1 vol
Äî
G∆(A)+ξ

óä−1
p−2n

1

·
∑

[γ]∈WQ
ψ det−1(γ)6=0

N[γ] · 11g∞Ω∞ ctr(ξ)∞Ω∞g
−1
∞

(ctr(γ)∞).

We now need to bound the bottom sum over [γ] ∈WQ. Using Lemma 8.24,

we know that the last sum is equal to the number of AdT(R) AdKT,f -orbits
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intersecting ctr(B′) in the set G(A)accessible. To each such intersection we can

associate a pair of integral ideals satisfying the conclusions of Proposition 8.30.

Due to Propositions 8.27 and 8.32 we know that the map intersection 7→
(a, b) where a, b are the integral ideals of Proposition 8.30 is at most 8r(Nr(b))

to 1.

For each pertinent pair of ideals (a, b), set b = pn1b
′, where 0 6= b′ ⊆ Λ

is an integral invertible Λ-ideal satisfying [b′] ∈ [pn1se]
−1 Pic(Λ)2. The claim

follows when we notice that g[s](x)f[pn1 se]
−1

(
x−ωD
υp2n

1

)
with x ≤ κ|D| is exactly

the number of pairs of ideals (a, pn1b
′) satisfying the conclusions of Proposition

8.30 and Nr(a) = x.

9. Sums of multiplicative functions over polynomials

in two variables

In this section we generalize the results of Shiu and Nair [Shi80], [Nai92]

to sums of the form ∑
(x,y)∈E∩Z2

f(Q(x, y)),

where f is a slowly growing non-negative multiplicative function, Q ∈ Z[x, y]

and E ( R2 is a closed smooth convex domain. Similar sums for homoge-

neous polynomials in two variables over axis-aligned boxes have been studied

in [dlBB06], [dlBT12].

Most of the proof in [Shi80], [Nai92] follows through in higher dimen-

sions even for the case of more general domains as long as good estimates are

available for the lattice counting problem.

Nevertheless, the following presentation contains two ideas that seem to

be novel even in the 1-variable case. They are essential when we need to apply

the sieved upper bound to a family of polynomials Q in a uniform manner.

Both of them have to do with the behavior of Q at primes of bad reduction.

The first one is a simple yet crucial observation that the function counting
Z/pkZ-points on XQ — the plane curve cutout by Q — can be replaced by

a function counting only the points that do not have the maximal possible

amount of lifts to XQ

(
Z/pk+1Z

)
.

The second one is directly related to the dependence of the upper bound

on the singularities of the reduction of XQ modulo p. The structure of singular-

ities for a 1-variable polynomial modulo p, i.e., 0-dimensional affine scheme of

finite type, is simple and can be summarized by the discriminant of the polyno-

mial. The possible singularities of a reduction of a curve, although rather well-

understood through resolution of singularities, are significantly more diverse.

The most general expression replacing the dependence on the discriminant for

polynomials in two variables seems to be a product of values of local Igusa zeta-

functions. We chose not to pursue this path here as it does not lends itself easily
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to applications. Instead, we observe that as long as there is an a priori bound

#XQ

Ä
Z/pkZ

ä
≤ Cpk(2−r) with C > 0 and 1 ≥ r > 0 independent of pk, our

upper bound can be shown to depend only on C and r. Such bounds seem to be

easy to establish explicitly, at least for the application at hand. Moreover, this

approach generalizes verbatim to polynomials with arbitrary many variables.

Definition 9.1.

(1) For any polynomial in two variables Q ∈ Z[x, y] and a ∈ N, denote by

ρQ(a) the number of solution in Z
2
/aZ2 to the equation

Q(x, y) ≡ 0 mod a.

(2) Let XQ be the affine plane curve cutout by Q, i.e.,

XQ := SpecZ[x, y]/ 〈Q(x, y)〉 .

By definition, ρQ(a) =
∣∣∣XQ

Ä
Z/aZ

ä∣∣∣.
(3) Fix a prime power pk. A lift of a point x ∈ XQ

Ä
Z/pkZ

ä
is a Z/pk+1Z-point

of XQ that reduces to x mod pk.

We split XQ

Ä
Z/pkZ

ä
into three types of points:

• smooth points — by Hensel’s lemma each such point has exactly p

lifts;

• singular points with a lift, by the Taylor polynomial formula each such

point has exactly p2 lifts;

• singular points without a lift.

(4) We denote by ρ̃Q(pk) the number of Z/pkZ-points on XQ that are either

smooth or have no lift. We extend ρ̃Q to a multiplicative function on N in

the regular fashion. Obviously, ρ̃Q(a) ≤ ρQ(a) for all a.

(5) Denote by ρsing
Q (pk) the number of Z/pkZ-points on XQ that are not

smooth, i.e., either having 0 or p2 lifts.

The following lemmata are elementary properties of points on curves over

congruence classes of integers.

Lemma 9.2 (DeMillo-Lipton-Schwartz-Zippel Lemma). Let 0 6=Q∈Z[x, y].

Then the inequality ρQ(p)≤deg(Q)p holds for any prime p - Q.

Proof. This has been proven in [Sch80], and a slightly weaker bound has

been shown in [DJL78], [Zip79]. See [Tao14, Lemma 1.2] for a streamlined

proof. �

Lemma 9.3. Let 0 6= Q ∈ Z[x, y]. Then

ρ̃Q(pk) = ρQ(pk)− ρsing(pk+1)

p2
.
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Proof. This follows immediately from the observation that the points in

XQ

Ä
Z/pk+1Z

ä
that reduce to smooth points modulo pn are exactly the smooth

points modulo pn+1. �

In the following two definitions we describe the objects appearing in our

main sieving theorem.

Definition 9.4.

• We say that a convex domain E ⊂ R2 is C2 if its boundary is a twice

continuously differentiable curve. We then denote by Rmax(E ) the

maximum of the radius of curvature of the boundary of E and by A(E )

the area of E . If no confusion arises, we shall use the shorthand Rmax

for Rmax(E ).

• Let Cl, θl > 0. We denote by L(Cl, θl) the collection of C2 convex

planar domains E such that for any a ∈ N and (x0, y0) ∈ Z2, if A(E ) ≥
a2, then∣∣∣# Ä

a−1(E − (x0, y0)) ∩ Z2
ä
− a−2A(E )

∣∣∣ ≤ Cl (Rmax(E )/a)θl .

Remark 9.5. The Van der Corput bound [vdC20] implies that for any

ε > 0, there is Cl > 0 depending on ε such that any C2 convex domain belongs

to L(Cl, 2/3 + ε).

The bound of Huxley [Hux03, Prop. 5 and Th. 5] for lattice points in C3

planar domains implies that for any ε > 0, there is Cl > 0 depending on ε such

that all ellipses belong to L(Cl, 131/208 + ε). A suitable generalization of the

Gauss circle problem conjecture should imply that the constant 131/208 can

be replaced by 1/2, at least for ellipses defined by integral binary quadratic

forms.

Definition 9.6. Let A ≥ 1 and B, ε > 0. We say that a multiplicative

function f : N → R is of class M(A,B, ε) if it is non-negative, and for any

integer n > 0,

f(n) ≤ min
Ä
AΩ(n), Bnε

ä
.

Theorem 9.7. Let E ⊂ R2 be planar domain of class L(Cl, θl) for Cl, θl
> 0. Denote by A(E ) the area of E , let Rmax be the maximal radius of curvature

of the boundary, and assume Rθlmax ≤ A(E )1−3η for some 1/2 > η > 0.

Let Q ∈ Z[x, y] such that there are C > 0, 1 ≥ r > 0 satisfying ρ̃Q(pk) ≤
Cpk(2−r) for all prime powers pk. Let X ≥ 1 be a constant satisfying

max
¶
|Q(x, y)| | (x, y) ∈ E ∩ Z2

©
≤ X ≤ A(E )δ

for some δ > 0.
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Let f be a non-negative multiplicative function of class M(A,B, ε) for

some A ≥ 1, B > 0 and 0 < ε < min {r, ηr/(4δ)}. Then

(34)
∑

(x,y)∈E∩Z2

f (Q(x, y))� A(E )
∏

deg(Q)<p≤X
p-Q

Ç
1− ρQ(p)

p2

å ∑
a≤X

f(a)ρ̃Q(a)

a2
,

where the implicit constant depends only on Cl, A,B, ε, deg(Q), C, r, η, δ.

9.1. Notation. We introduce several notation to be used in the section.

For an integer n > 1, denote by ω(n) the number of distinct prime factors

of n, and let Ω(n) be the number of prime factors counted with multiplicity.

Denote also by P+(n), P−(n) the largest and the smallest prime divisor of n

respectively. It shall also be useful to define P+(1) = 1, P−(1) =∞.

For any two integers a, b, we write a | b∞ if the prime support of a is

contained in the prime support of b. Lastly, we denote by gcd(a, b∞) the

product of all primes powers dividing a for primes appearing in the support of b.

9.2. Sieving. The following lemma is a straightforward generalization of

the lower bound in [GKM15, Lemma 2.1].

Lemma 9.8. Let g : N→ R be a multiplicative function such that there is

some d > 0 so that 0 ≤ g(p) ≤ d for all primes p. Then for any z > 1,

(35)
∑
n≤z

µ(n)2 g(n)

n
�d

∏
d<p≤z

Ç
1− g(p)

p

å−1

.

Proof. As the left-hand side of (35) is supported on the square-free num-

bers, we can assume without loss of generality that g is completely multiplica-

tive. Define a new completely multiplicative function h by h(p) = d−g(p). The

Dirichlet convolution g ∗ h is a multiplicative function that satisfies g ∗ h(p) =

g(1)h(p) + g(p)h(1) = d for any prime p. Hence for any square-free integer n,

we have g ∗ h(n) = dω(n). This implies

(36)
∑
n≤z

µ(n)2 g(n)

n
·
∑
n≤z

µ(n)2h(n)

n
≥
∑
n≤z

µ(n)2d
ω(n)

n
�d (log z)d.

On the other hand,

∑
n≤z

µ(n)2h(n)

n
≤
∏
p≤z

Ç
1 +

h(p)

p

å
�d

∏
d<p≤z

Ç
1− h(p)

p

å−1

.
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HenceÑ∑
n≤z

µ(n)2h(n)

n

é−1

·
∏

d<p≤z

Ç
1− g(p)

p

å
�d

∏
d<p≤z

Ç
1− d− g(p)

p

åÇ
1− g(p)

p

å
=

∏
d<p≤z

Ç
1− d

p
+
dg(p)− g(p)2

p2

å
≥

∏
d<p≤z

Å
1− d

p

ã
�d (log z)−d.

(37)

The claim now follows by multiplying inequality (36) by (37). �

The following result is where we apply a sieve. As we require only upper

bounds, we use the large sieve due to its great generality.

Lemma 9.9. Let Q ∈ Z[x, y] be a polynomial. Let E ⊂ R2 be a domain of

class L(Cl, θl). If

1 ≤ z ≤ min

{Ç
A(E )

Rθlmax

å1/5

, A(E )1/2

}
,

then

S :=
∣∣∣¶(x, y) ∈ E ∩ Z2 | P−(Q(x, y)) ≥ z

©∣∣∣
�deg(Q),Cl A(E )

∏
deg(Q)<p≤z

Ç
1− ρQ(p)

p2

å
.

Remark 9.10. The exponent 1/5 in the level of distribution is certainly

far from optimal, yet for our application any positive exponent suffices.

Proof. The inequality is trivially true if there is p | Q such that p ≤ z;

hence we assume this is not the case.

We use the large sieve in the setup of Kowalski [Kow08]. Our sieve setting

is Å
Z2, primes,Z2 → Z2

/
pZ2

ã
,

and the siftable set is EZ := E ∩ Z2 ⊂ Z2 with the counting measure.

We choose our sieve support to be the set of square-free positive integers

≤ z. The large sieve inequality as presented in [Kow08, Prop. 2.3] implies that

S ≤ ∆H−1,

H :=
∑
n≤z

µ(n)2
∏
p|n

ρQ(p)

p2 − ρQ(p)
,

(38)

where ∆ is the large sieve constant that we bound from above using the equidis-

tribution method as in [Kow08, §2.13]. For any integer n ≤ A(E )1/2 and any



JOINT EQUIDISTRIBUTION OF CM POINTS 225

y ∈ Z
2
/nZ2, define the discrepancy

rn(y) :=
∣∣∣E ∩ ÄnZ2 + y

ä∣∣∣− n−2|EZ|.

The assumption E ∈ L(Cl, θl) implies for E and n−1 (E − y), whose areas are

≥ 1, that

|rn(y)| ≤ Cl
Å
Rmax

n

ãθl
.

We use the orthonormal base of characters for finite abelian groups and

bound ∆ using [Kow08, Cor. 2.13]

∆− |EZ| ≤ max
m≤z

∑
n≤z

∑
y∈Z

2
/
[m,n]Z2

n
∣∣∣r[m,n](y)

∣∣∣

≤ Cl max
m≤z

∑
n≤z

n[m,n]2
Ç
Rmax

[m,n]

åθl
≤ ClRθlmaxz

2
∑
n≤z

n2 � ClR
θl
maxz

5 ≤ ClA(E ),

where in the last inequality we have used the upper bound assumption on z.

Applying the lattice count bound to |EZ| we deduce that ∆�Cl A(E ).

We bound H below by

H ≥
∑
n≤z

µ(n)2
∏
p|n

ρQ(p)

p2
.

Next we apply Lemma 9.8 to the multiplicative function ρQ(n)/n that is

bounded by Lemma 9.2 to deduce

H �deg(Q)

∏
deg(Q)<p≤z

Ç
1− ρQ(p)

p2

å−1

.

The claim follows by combining the bounds on H and ∆ with (38). �

9.3. Extending the level of distribution. The range of z where the lemma

above is applicable is very restricted. The following results show that we can

actually take this range to be any power of A(E ) if we are willing to pay a

price in the constant depending only on the exponent.

Lemma 9.11. Let Q ∈ Z[x, y] be a polynomial. Then for any z ≥ 1, s > 0,∏
deg(Q)<p≤z1/s

Ç
1− ρQ(p)

p2

å
�deg(Q) s

deg(Q)
∏

deg(Q)<p≤z
p-Q

Ç
1− ρQ(p)

p2

å
.

Proof. The proof of [Nai92, Lemma 2(i)] applies when combined with

Lemma 9.2. �
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Lemma 9.12. Let 5 ≥ η > 0 and ς0 > 0. In the setting of Lemma 9.9

above, if Rθlmax ≤ A(E )1−η and 1 ≤ z ≤ A(E )ς0 , then

S �deg(Q),Cl,η,ς0 A(E )
∏

deg(Q)<p≤z

Ç
1− ρQ(p)

p2

å
.

Proof. The statement is trivial ∃p ≤ z such that p | Q, hence assume the

contrary. Assume z > A(E )η/5, as otherwise Lemma 9.9 applies directly. Ap-

plying Lemma 9.9 for z0 = A(E )η/5 ≤ min

®Å
A(E )

R
θl
max

ã1/5

, A(E )1/2

´
, we deduce

that

S �deg(Q),Cl A(E )
∏

deg(Q)<p≤A(E )η/5

Ç
1− ρQ(p)

p2

å
,

and the claim follows from Lemma 9.11 with s = 5ς0/η. �

9.4. The sieve bound for values in a homogeneous arithmetic progressions.

We now generalize these results to subsets of points where the polynomial value

is divisible by a fixed integer.

Lemma 9.13. Let Q ∈ Z[x, y] be a polynomial. Let E ⊂ R2 be a domain

of class L(Cl, θl). Fix 1/2 > η > 0, ς > 0, and assume Rθlmax ≤ A(E )1−3η .

Then for any a, z ∈ N such that a ≤ A(E )η and 1 ≤ z ≤ A(E )ς ,

S :=
∣∣∣¶(x, y) ∈ E ∩ Z2 | a|Q(x, y), gcd(a,Q(x, y)/a) = 1

and P−(Q(x, y)/a) ≥ z
©∣∣∣

�deg(Q),Cl,η,ς
A(E )ρ̃Q(a)

a2

∏
deg(Q)<p≤z

p-a

Ç
1− ρQ(p)

p2

å
.

Proof. The statement is trivial if there is p ≤ z such that p - a and p | Q,

so we assume the contrary. Let (x0, y0) ∈ Z
2
/aZ2 be one of the ρQ(a) classes

where Q vanishes modulo a. Define Q0 ∈ Z[x, y] by

Q(ax+ x0, ay + y0) = a ·Q0(x, y).

Then for any p - a, we have ρQ0(p) = ρQ(p). Notice that if pk ‖ a and the

point (x0, y0) ∈ XQ

Ä
Z/pkZ

ä
has p2 lifts, then p | Q0. By the assumption

gcd(a,Q(x, y)/a) = 1 no point in the sieved set reduces to such (x0, y0). Hence

it is sufficient to consider only the ρ̃Q(a) classes of points that at all primes

are either smooth or have no lift.

We apply Lemma 9.12 to Q0 and the convex C2 domain a−1(E − (x0, y0))

with area A(E )/a2 and maximal curvature radius Rmax/a. We take ς0 =
ς

1−2η > 0.
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The first condition of Lemma 9.12 reads

(39) (Rmax/a)θl ≤ A(E )1−η/a2−2η ⇔ Rθlmax ≤ A(E )1−η/a2−2η−θl .

Using the assumption a ≤ A(E )η, we deduce that

A(E )1−η/a2−2η−θl ≥ A(E )1−η−η(2−2η−θl) = A(E )1−η(3−2η−θl) ≥ A(E )1−3η.

Thus (39) is satisfied because of the assumption Rθlmax ≤ A(E )1−3η. The second

condition of Lemma 9.12 reads

(40) 1 ≤ z ≤
Ç
A(E )

a2

åς0
.

Using the assumption a ≤ A(E )η we see thatÇ
A(E )

a2

åς0
≥ A(E )(1−2η)ς0 = A(E )ς .

Hence condition (40) is satisfied as well.

Summing the bounds we obtain from applying Lemma 9.12 to each of the

relevant ρ̃Q(a) residue class and using the fact ρQ0(p) = ρQ(p) for each p - a,

we obtain the claimed inequality. �

Corollary to Proof of 9.14. In the setting of Lemma 9.13 above the

following holds :∣∣∣¶(x, y) ∈ E ∩ Z2 | a|Q(x, y) and P−(Q(x, y)/a) ≥ z
©∣∣∣

�deg(Q),Cl,η,ς
A(E )ρQ(a)

a2

∏
deg(Q)<p≤z

p-a

Ç
1− ρQ(p)

p2

å
.

Proof. The only place where the condition gcd(a,Q(x, y)/a) = 1 was used

was to dispose of the residue classes that do not lift. Hence the proof follows

in the same manner except that ρ̃Q(a) is replaced by ρQ(a). �

Definition 9.15. For any Q ∈ Z[x, y], define the multiplicative function

θQ by

θQ(pk) =

1 + 2
ρQ(p)
p2 p - Q,

1 p | Q

for all primes p and all integers k ≥ 1.

Write θQ = 1 ∗ λQ. Then by Möbius inversion,

λQ(n) =

µ(n)2 2ω(n)ρQ(n)
n2 gcd(n,Q) = 1,

0 gcd(n,Q) 6= 1.
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Remark 9.16. If f ∈M(A,B, ε), then an easy computation shows that for

any ε′ > 0,

fθQ ∈M
(
A′, B′, ε+ ε′

)
,

with A′ �deg(Q) A and B′ �ε′,deg(Q) B.

Corollary 9.17. The next inequality holds in the setting of Lemma 9.13

above:

S �deg(Q),Cl,η,ς
A(E )ρ̃Q(a)

a2
θQ(a)

∏
deg(Q)<p≤z
p-gcd(Q,a)

Ç
1− ρQ(p)

p2

å
.

Proof. The proof follows immediately from Lemma 9.13 and the fact that

0 ≤ ρQ(p)
p2 ≤ 1

2 for any p ≥ 2 deg(Q), p - Q. �

9.5. Decoupling multiplicative functions. The following lemma is standard

— if not in form, then in function. Although it is not singled as such, this is

a main technical tool in [NT98].

Lemma 9.18. Let g and ψ be non-negative multiplicative functions, and

denote h = 1 ∗ ψ. Then for any z ≥ 1,∑
a≤z

g(a)h(a) ≤Mz(g, ψ) ·
∑
a≤z

g(a)

Mz(g, ψ) :=
∏
p≤z

1 +

log z/ log p∑
v=1

ψ(pv)
∞∑
j=v

g(pj)

 .
Remark 9.19. We can write an upper bound for Mz(g, ψ) using h:

Mz(g, ψ) ≤
∏
p≤z

∞∑
j=0

g(pj)
j∑

v=0

ψ(pv) =
∏
p≤z

∞∑
j=0

g(pj)h(pj).

Proof. First we expend h in terms of ψ:∑
a≤z

g(a)h(a) =
∑
a≤z

∑
k|a

ψ(k)g(a) =
∑
k≤z

∑
t≤z/k

ψ(k)g(kt).

We decompose each t in the sum above as t = ln, where l = gcd(t, k∞). Then

the expression above is equal to

∑
k≤z

∑
t≤z/k

ψ(k)g(kl)g(n) ≤

Ñ∑
k≤z

ψ(k)
∑
l|k∞

g(kl)

é∑
n≤z

g(n).

To complete the proof we bound the double sum in the scopes

∑
k≤z

ψ(k)
∑
l|k∞

g(kl) ≤
∏
p≤z

1 +

log z/ log p∑
v=1

ψ(pv)
∞∑
j=v

g(pj)

 . �
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We use the decoupling lemma above to prove the two key results to be used

in the proof of Theorem 9.7. The first one shows that on average the product

over primes in Lemma 9.13 can be extended to include primes dividing a.

Lemma 9.20. Let Q ∈ Z[x, y] such that there are C > 0, 1 ≥ r > 0

satisfying ρ̃Q(pk) ≤ Cpk(2−r) for all prime powers pk. Let f be a non-negative

multiplicative function such that f(n) < Bnε for some B > 0, r > ε > 0 and

all n. Then for any z ≥ 1,∑
a≤z

ρ̃Q(a)f(a)

a2
θQ(a)�deg(Q),B,C,r,ε

∑
a≤z

ρ̃Q(a)f(a)

a2
.

Proof. Apply Lemma 9.18 to g(a) := f(a)ρ̃Q(a)/a2 ≥ 0 and ψ = λQ. To

complete the proof we need bound Mz(g, λQ).

Using the assumptions we bound

f(pk)ρ̃Q(pk) ≤ BCpk(2−r+ε)

and

f(p2)ρQ(p2) ≤ f(p2)ρQ(p)p2 ≤ A2 deg(Q)p3.

Because λQ is supported on the square-free integers, we see that

M(g, λQ) ≤
∏
p≤z

1 +
∑
v≥1

λQ(pv)
∞∑
j=v

g(pj)

 ≤ ∏
p≤z
p-Q

Ñ
1 + 2

ρQ(p)

p2

∞∑
j=1

BC

pj(r−ε)

é
≤
∏
p<∞

Å
1 + 2 deg(Q)BC

1

p1+r−ε
1

1− p−(r−ε)

ã
�deg(Q),B,C,r−ε 1. �

We also use Lemma 9.18 to establish a saving for the pertinent sums over

smooth integers satisfying P+(a) ≤ z1/s for a fixed s > 0. The crux of the

following lemma is that it saves an exponent in s, and it will be applied to

control a term that grows geometrically in the parameter s.

Lemma 9.21. Let Q ∈ Z[x, y] such that there are C > 0, 1 ≥ r > 0

satisfying ρ̃Q(pk) ≤ Cpk(2−r) for all prime powers pk. Let f be a non-negative

multiplicative function of class M(A,B, ε) with 0 < ε < r. Then for any

α, s > 0, z > 1 and (r − ε) log(z)/(2s) ≥ κ > 0,

(41)
∑

zα≤a≤z
P+(a)≤z1/s

ρ̃Q(a)f(a)

a2
�κ,A,B,ε,C,r,deg(Q) exp(−sακ)

∑
a≤z

ρ̃Q(a)f(a)

a2
.

Remark 9.22. If the curve cutout by Q is smooth over Q, then by Hensel’s

lemma we have ρQ(pk) ≤ ρQ(p)pk−1 ≤ deg(Q)pk(2−1) for all primes p of good

reduction. In this case the constants C, r only depend on the number of points

on the curve modulo powers of primes of bad reduction.
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Proof. Let (r − ε)/2 ≥ β := κs
log z > 0. Then the left-hand side of (41) is

bounded above by

(42) z−αβ
∑

zα≤a≤z
P+(a)≤z1/s

ρ̃Q(a)f(a)

a2
aβ ≤ z−αβ

∑
a≤z

P+(a)≤z1/s

ρ̃Q(a)f(a)

a2
aβ.

Define the non-negative multiplicative function g by g(a) = f(a)ρ̃Q(a)/a2 if

P+(a) ≤ z1/s and g(a) = 0 otherwise. Let ψ be the Möbius inversion of the

multiplicative function a 7→ aβ. An explicit formula for ψ is

ψ(pk) = pβk − pβ(k−1)

for all primes p and all k ≥ 0.

Applying Lemma 9.18 with g and ψ as above we can bound the right-hand

side of (42) above by

z−αβ ·Mz(g, ψ)
∑
a≤z

P+(a)≤z1/s

ρ̃Q(a)f(a)

a2
.

We now wish to estimate Mz(g, ψ). Using the fact that g is supported on

integers without prime factors bigger than z1/s and Remark 9.19, we deduce

Mz(g, ψ) ≤
∏

p≤z1/s

Ñ
1 +

∞∑
j=1

g(pj)pjβ

é
.(43)

Let K0 := d4/(r − ε)e > 0. For any k ≤ K0, we estimate ρ̃Q(pk) ≤
ρQ(p)p2k−2 ≤ deg(Q)p2k−1. For k > K0, we use the assumption ρ̃Q(pk) ≤
Cpk(2−r). Combined with inequality (43) this implies

(44)

logMz(g, ψ) ≤ K0A
K0 deg(Q)

∑
p≤z1/s

pK0β

p
+BC

∑
p≤z1/s

∞∑
j=K0+1

p−j(r−β−ε).

We bound the second summand above using the inequality r−β−ε ≥ (r−ε)/
2 > 0: ∑

p≤z1/s

∞∑
j=K0+1

p−j(r−β−ε) ≤
∑

p≤z1/s

p−(K0+1)(r−ε)/2 1

1− p−(r−ε)/2

�K0

∑
p≤z1/s

p−K0(r−ε)/2 ≤
∑
p≤∞

p−2 � 1.

We bound the main term in (44) above using the prime number theorem∑
p≤z1/s

pK0β

p
= Li(zK0β/s) + zK0β/s · olog(z)/s(1)�K0 1.
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We can now conclude that

Mz(g, ψ)�κ,A,B,ε,C,r,deg(Q) 1. �

Finally, the following lemma shows that the sums over extremely smooth

integers are completely negligible.

Lemma 9.23. Let Q ∈ Z[x, y] such that there are C > 0, 1 ≥ r > 0

satisfying ρ̃Q(pk) ≤ Cpk(2−r) for all prime powers pk. Then for any β > 0 and

1 ≥ α ≥ 0,

(45)
∑

zα≤a≤z
P+(a)≤log z log log z

ρ̃Q(a)

a2
�C,α,β z

−rα+β.

Proof. The assumed upper bound on ρ̃Q implies ›ρQ(a)/a2 ≤ Cω(a)/ar for

all a ∈ N. This can be used to bound the left-hand side of (45) by

(46)
∑

zα≤a≤z
P+(a)≤log z log log z

Cω(a)

ar
.

We apply the standard bound ω(a) ≤ K log a/ log log a for some fixed

K > 0 to deduce that for any zα ≤ a ≤ z,

Cω(a) ≤ zK logC/(log log z+logα).

We split our calculation into two cases.

(1) If log log z ≥ K logC · 2/β − logα, then Cω(a) ≤ zβ/2 and we bound (46)

by

z−rα+β/2
∑
a≤z

P+(a)≤log z log log z

1 = z−rα+β/2Ψ(z, log z log log z).

This case is settled because of the inequality Ψ(z, log z log log z) �β z
β/2

which follows from [Shi80, Lemma 1].

(2) On the other hand, if log log z < K logC ·2/β− logα, then using the trivial

bound ρ̃Q(a) ≤ a2 ≤ z2 �C,α,β 1 we estimate (45) by∑
zα≤a≤z

P+(a)≤log z log log z

ρ̃Q(a)

a2
�C,α,β

∑
zα≤a≤z

1

a2
� z−α. �

9.6. Proof of Theorem 9.7. In this section only all the implicit constants in

the � notation are allowed to depend on η,A,B, ε, C, r,deg(Q), δ, Cl without

further notation. Denote EZ := E ∩Z2. We introduce notation similar to that in

[Nai92]. Let Z := A(E )η. For any fixed (x, y) ∈ EZ, we write a decomposition

into prime powers

Q(x, y) = pe11 · p
e2
2 · . . . · p

el
l ,
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where p1 < p2 < · · · < pl. Define a := pe11 ·. . . p
ej
j so that a ≤ Z but a·pej+1

j+1 > Z,

in particular a = 1 if all pe11 > Z. Let b := Q(x, y)/a, and set q := pj+1,

e := ej+1. Because f is multiplicative, we always have f (Q(x, y)) = f(a)f(b).

Following [Shi80] we split the sum on the left-hand side of (34) into four

ranges:

(1) R1 is the set of all (x, y) ∈ EZ such that q ≥ Z1/2;

(2) R2 is the set of all (x, y) ∈ EZ such that q < Z1/2, a ≤ Z1/2;

(3) R3 is the set of all (x, y) ∈ EZ such that q < logZ log logZ, a > Z1/2;

(4) R4 is the set of all (x, y) ∈ EZ such that logZ log logZ≤q<Z1/2, a>Z1/2.

Moreover, for any fixed integers a, z, we denote

S(a, z) :=
{

(x, y) ∈ EZ | a|Q(x, y), gcd(a,Q(x, y)/a) = 1

and P−(Q(x, y)/a) ≥ z
}
.

Recall that Ω(b) is the number of prime factors of b counted with multi-

plicity. For any (x, y) ∈ R1, we have

Z1/2·Ω(b) ≤ b ≤ X ≤ A(E )δ,

hence Ω(b)� 1 and f(b)� 1. This implies that we have a bound∑
(x,y)∈R1

f (Q(x, y))�
∑
a≤Z

f(a)|S(a, Z1/2)|.

We can apply Lemma 9.13 with ς = δ to bound |S(a, Z1/2)| from above.

Combining this with Corollary 9.17 and Lemma 9.20, we deduce∑
(x,y)∈R1

f (Q(x, y))� A(E )
∏

deg(Q)<p≤Z1/2

Ç
1− ρQ(p)

p2

å∑
a≤Z

f(a)ρ̃Q(a)

a2
,

which is consistent with the claimed bound due to Lemma 9.11.

Next we make an observation necessary to treat the sums over R2 and R3

and that also indicates the natural limit of the theorem. The following lower

bound for the right-hand side of (34) holds:

A(E )
∏

deg(Q)<p≤X
p-Q

Ç
1− ρQ(p)

p2

å ∑
a≤X

f(a)ρ̃Q(a)

a2

≥ A(E )
∏

deg(Q)<p≤X
p-Q

Ç
1− deg(Q)

p

å
� A(E )/(logX)deg(Q) � A(E )/(logA(E ))deg(Q).

Thus any bound of the form � A(E )1−ε0 for ε0 > 0 is consistent with the

claim.
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For any (x, y) ∈ R2,

Z < aqe ≤ Z1/2qe =⇒ Z1/2 < qe,

but q < Z1/2 hence e ≥ 2. For each prime p ≤ Z1/2, let ep ≥ 2 be the minimal

integer satisfying pep > Z1/2. Notice that pep = pep−1p ≤ Z1/2p ≤ Z = A(E )η,

so we can apply Corollary 9.14 with a = pep . This implies the following bound:∑
(x,y)∈R2

f (Q(x, y))� Xε
∑

p≤Z1/2

|{(x, y) ∈ EZ | pep |Q(x, y)}|

� XεA(E )
∑

p≤Z1/2

ρQ(pep)

p2ep
� XεA(E )

∑
p≤Z1/2

1

pep
.

(47)

The latter sum is bounded by∑
p≤Z1/2

1

pep
≤

∑
p≤Z1/4

1

Z1/2
+

∑
Z1/4<p≤Z1/2

1

p2
� Z1/4−1/2 + Z−1/4 � Z−1/4.

We conclude from (47) that∑
(x,y)∈R2

f (Q(x, y))� XεA(E )Z−1/4 � A(E )1+εδ−η/4.

Because εδ − η/4 < 0, this bound saves a power of A(E ) and is compatible

with the claim.

We proceed to estimate the sums over R3 using Lemma 9.13:∑
(x,y)∈R3

f (Q(x, y))� Xε
∑

Z1/2≤a≤Z
P+(a)≤logZ log logZ

|S(a, 1)|

� XεA(E )
∑

Z1/2≤a≤Z
P+(a)≤logZ log logZ

ρ̃Q(a)

a2
.

Next apply Lemma 9.23 with β = r/4 to deduce∑
(x,y)∈R3

f (Q(x, y))� XεA(E )Z−r/4 � A(E )1+δε−ηr/4,

which is consistent with the claim because we have assumed δε− ηr/4 < 0.

We split R4 further according to the value of q. For any integer

s0 := 2 ≤ s ≤ s1 :=
logZ

log (logZ log logZ)
,

let Rs4 be the set of (x, y) ∈ R4 such that Z1/(s+1) ≤ q ≤ Z1/s. Recalling that

q is the smallest prime divisor of b, we see that for (x, y) ∈ Rs4,

ZΩ(b)/(s+1) ≤ b ≤ X ≤ A(E )δ,
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hence Ω(b) ≤ (s+ 1)δ/η and f(b)� As0, where A0 := Aδ/η. We can now write

(48)
∑

(x,y)∈R4

f (Q(x, y)) ≤
∑

s0≤s≤s1
As0

∑
Z1/2≤a≤Z
P+(a)≤Z1/s

f(a)|S(a, Z1/(s+1))|.

Similarly to the case of R1, we apply Lemma 9.13 with ς = δ and Corollary 9.17

to bound the right-hand side of (48) from above by

A(E )
∑

s0≤s≤s1
As0

∑
Z1/2≤a≤Z
P+(a)≤Z1/s

∏
deg(Q)<p≤Z1/(s+1)

Ç
1− ρQ(p)

p2

å
f(a)θQ(a)ρ̃Q(a)

a2

� A(E )
∏

deg(Q)<p≤X
p-Q

Ç
1− ρQ(p)

p2

å
·
∑

s0≤s≤s1
As0(s+ 1)deg(Q)

∑
Z1/2≤a≤Z
P+(a)≤Z1/s

f(a)θQ(a)ρ̃Q(a)

a2
,

(49)

where we have applied Lemma 9.11.

Let κ := 4 ln(A0). If κ > 3r+ε
4 log (logZ log logZ), then Z � 1, hence

s1 � 1 and ∑
s0≤s≤s1

As0(s+ 1)deg(Q) � 1.

Otherwise, κ ≤ 3r+ε
4 log (logZ log logZ), and we can estimate each of the in-

nermost sums in (49) using Lemma 9.21 with κ as above and f replaced by

fθQ. The conditions of the lemma are satisfied due to Remark 9.16 with

ε′ = (r − ε)/2. Then

∑
s0≤s≤s1

As0(s+ 1)deg(Q)
∑

Z1/2≤a≤Z
P+(a)≤Z1/s

f(a)θQ(a)ρ̃Q(a)

a2

�
∑
a≤Z

ρ̃Q(a)f(a)θQ(a)

a2
·
∑

s0≤s≤s1
As0(s+ 1)deg(Q) exp(−sκ/2)

�
∑
a≤Z

ρ̃Q(a)f(a)θQ(a)

a2
.
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In both cases we deduce

∑
(x,y)∈R4

� A(E )
∏

deg(Q)<p≤X
p-Q

Ç
1− ρQ(p)

p2

å∑
a≤Z

ρ̃Q(a)f(a)θQ(a)

a2

� A(E )
∏

deg(Q)<p≤X
p-Q

Ç
1− ρQ(p)

p2

å∑
a≤Z

ρ̃Q(a)f(a)

a2
,

where in the last line we have applied Lemma 9.20. This is again consistent

with the claim.

9.7. Sums restricted by congruence conditions. In this section we extend

Theorem 9.7 to sums with congruence restrictions.

Definition 9.24. Let Q ∈ Z[x, y]. For any k ∈ N and 0 ≤ l < k, define

ρQ(l; k) to be the number of solutions modulo k to the equation Q(x, y) ≡ l.

In particular, ρQ(0; k) = ρQ(k) and ρQ(l; k) = ρQ−l(k).

Proposition 9.25. Fix k0 ∈ N. Consider the setting of Theorem 9.7 but

assume the stronger assumptions (Rmax/k0)θl≤A(E )/k2
0 and X≤A(E )δk1−2δ

0 .

Then

∑
(x,y)∈E∩Z2

k0|Q(x,y)

f

Ç
Q(x, y)

k0

å
� A(E )

∏
deg(Q)<p≤X/k0

p-k0, p-Q

Ç
1− ρQ(p)

p2

å ∑
a≤X/k0

f(a)ρ̃Q(k0a)

(k0a)2
.

The implicit constant is the same as in Theorem 9.7.

Proof. Let r = (r1, r2) be a representative of one of the congruence classes

modulo k0 solving the equation Q(x, y) ≡ 0 mod k0. Define Qr1, Q
r
0 ∈ Z[x, y]

by

Qr1(x, y) := Q(k0x+ r1, k0y + r2) = k0Q
r
0(x, y).

Notice that deg(Qri ) = deg(Q) for i = 0, 1. Moreover, ρQ(pk) = ρQr0(pk) for

any p - k0 and k ≥ 0, and the same holds for ρ̃. Now we can apply Theorem 9.7
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to the sum over a single congruence class as follows:∑
(x,y)∈E∩Z2

(x,y)≡r mod k0

f

Ç
Q(x, y)

k0

å
=

∑
(x,y)∈k−1

0 (E−r)∩Z2

f (Qr0(x, y))

� A(E )

k2
0

∏
deg(Q)<p≤X/k0

p-k0, p-Q

Ç
1− ρQ(p)

p2

å ∑
a≤X/k0

f(a)ρ̃Qr0(a)

a2

= A(E )
∏

deg(Q)<p≤X/k0

p-k0, p-Q

Ç
1− ρQ(p)

p2

å
·
∑

a≤X/k0

f(a)ρ̃Q
(

a
gcd(a,k∞0 )

)
ρ̃Qr0 (gcd(a, k∞0 ))

(k0a)2
.

A direct calculation shows that the conditions of Theorem 9.7 are satisfied

when applied to the sum above. Summing over all the pertinent conjugacy

classes we deduce

∑
(x,y)∈E∩Z2

k0|Q(x,y)

f

Ç
Q(x, y)

k0

å
� A(E )

∏
deg(Q)<p≤X
p-k0, p-Q

Ç
1− ρQ(p)

p2

å
·
∑
a≤X

f(a)ρ̃Q
(

a
gcd(a,k∞0 )

)
(k0a)2

Ç∑
r

ρ̃Qr0 (gcd(a, k∞0 ))

å
.

(50)

For any b | k∞0 , we can see from the definitions in 9.1 that∑
r

ρ̃Qr0(b) = ρ̃Q(k0b).

The claim follows from combining this observation with (50). �

Proposition 9.26. Consider the setting of Theorem 9.7 but assume the

stronger assumptions Rθlmax ≤ A(E )1−4η and X ≤ A(E )δ/2. Fix k0, k1, k2 ∈ N
such that all primes dividing k1 also divide k2, gcd(k0, k2) = 1 and k :=

k0k1k2 ≤ A(E )η/2. Let l ∈
(
Z/k2Z

)×
. Then

∑
(x,y)∈E∩Z2

Q(x,y)≡k0k1l mod k

f

Ç
Q(x, y)

k0

å
� A(E )

f(k1)ρQ (k1l; k1k2)

(k1k2)2

·
∏

deg(Q)<p≤X/(k0k1)
p-k0k2, p-Q

Ç
1− ρQ(p)

p2

å ∑
a≤X/(k0k1)
gcd(a,k2)=1

f(a)ρ̃Q(k0a)

(k0a)2
.

The implicit constant is the same as in Theorem 9.7.
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Proof. Let r = (r1, r2) be a representative of one of the ρQ(k1l; k1k2)

congruence classes modulo k1k2 solving the equation Q(x, y) ≡ k1l mod k1k2.

Define Q2, Q1, Q0 ∈ Z[x, y] by

Q2(x, y) := Q(kx+ r1, ky + r2) = k1Q1(x, y) = k1(l + k2Q0(x, y)).

Notice that deg(Qi) = deg(Q) for i = 0, 1, 2. Moreover, ρQ(pm) = ρQ2(pm) =

ρQ1(pm) for any p - k1k2 and m ≥ 0. The same holds for ρ̃. Because l is a unit

modulo k2, we conclude that ρQ1(pm) = 0 for p | k2, m ≥ 1. Finally, notice

that because the prime support of k1 is contained in that of k2, the condition

p | k1k2 is equivalent to p | k2.

Because gcd(k0, k2) = 1, we know that k0 | Q2(x, y) if and only if k0 |
Q1(x, y). Write the pertinent sum over the fixed congruence class represented

by r: ∑
(x,y)∈(k1k2)−1(E−r)∩Z2

k0|Q2(x,y)

f

Ç
Q2(x, y)

k0

å
= f(k1)

∑
(x,y)∈(k1k2)−1(E−r)∩Z2

k0|Q1(x,y)

f

Ç
Q1(x, y)

k0

å
.

A direct calculation shows that the conditions of Proposition 9.25 are satisfied

when applied to the sum on the right-hand side. (The restriction on X holds

because k ≤ A(E )1/4 as we have assumed η < 1/2.) The claim follows by

summing over all the relevant conjugacy classes modulo k1k2. �

10. Proof of main theorem

In this section we use the following notation for all integers n ≥ 0:

B(−n,n) :=
∏
v 6=p1

Ωv ×K(−n,n)
p1

⊂ G(A).

For the sake of brevity, we shall denote B := B(−0,0).

Moreover, for any ξ ∈ (G×G) (A), we denote by νξ the algebraic measure

supported on
î
G∆(A)+ξ

ó
.

10.1. Reduction to a bound on cross-correlation. We begin by showing that

Theorem 3.2 follows from an appropriate bound on the cross-correlation.

Lemma 10.1. Let Hi =
î
T∆(A)(g, sg)

ó
be a sequence of homogeneous

toral sets where T, g and s depend on the index i ∈ N. Assume that the split-

ting conditions (♠) are satisfied for all i. Denote by µi the algebraic measure

supported on Hi, and assume µi →i→∞ µ.
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Assume that there is some F : G(A) → R>0 continuous such that for all

n ∈ N, for all ξ ∈ (G×G) (A) and for all i�n,ξ 1,

Cor[µi, νξ]
Ä
B(−n,n)

ä
� F (ctr(ξ))p

−2(1+ρ)n
1

for some ρ > 0 fixed. Then µ is a (G×G) (A)+-invariant probability measure.

Proof. From Duke’s theorem we know that µ is a probability measure.

Theorem 4.4 and Corollary 4.5 imply that µ is a convex combination of a

(G×G) (A)+-invariant probability measure and algebraic measures supported

on homogeneous Hecke sets of the form
î
G∆(A)+ξ

ó
such that

ctr(ξ)pj ∈ Apj
for j ∈ {1, 2}.

Assume in contradiction that µ is not (G×G) (A)+-invariant. Then there

is a finite non-vanishing measure λ0 on G∆(A)+\(G×G) (A) so that

µ ≥
∫
G∆(A)+\(G×G)(A)

νξ dλ0(ξ)

and the following set has full λ0-measure:

Ξ1 :=
{
ξ ∈ G∆(A)+\(G×G) (A)

∣∣∣ ctr(ξ)p1 ∈ Ap1 , ctr(ξ)p2 ∈ Ap2

}
.

Moreover, because λ0 is a finite measure, it is regular so there is a compact

subset Ξ0 ⊂ Ξ1 of positive measure. We now have

µ ≥ λ0(Ξ0) · ν̄,

ν̄ :=
1

λ0(Ξ0)

∫
Ξ0

νξ dλ0(ξ),

and ν̄ is a probability measure on [(G×G) (A)].

Let a = λ(p1) ∈ Ap1 , where λ ∈ X•(Ap1) generates the cocharacter

group. The element a∆ ∈ A∆
p1

acts on [(G×G) (A)] on the right. For all

ξ ∈ Ξ0, the action of a∆ on the space [(G×G) (A)] keeps νξ invariant because

ctr(ξ) ∈ Ap1 . Additivity of entropy implies

ha∆(ν̄) =
1

λ0(Ξ0)

∫
Ξ0

ha∆(νξ) dλ0(ξ).

The measurable dynamical system
Ä
[(G×G) (A)] , νξ, a

∆
ä

is measure theoret-

ically isomorphic to a acting on the space

ZGsc(A)Gsc(Q)\
Gsc(A)

equipped with the probability Haar measure. This entropy can be computed

using the leaf-wise measure [EL10], [MT94] on the horospherical subgroup of a.

As the Haar measure is invariant under the full group action, the leaf-wise

measure will be the Haar measure on the horospherical subgroup and

ha∆(ν̄) = log p1.
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We will show next that the assumed cross-correlation estimate implies

that the entropy of ν̄ must be at least (1 + ρ) log p1, which contradicts the

equality above.

Weak-∗ convergence of measures implies that for any bounded open subset

C◦ ⊂ [G(A)],

CorC◦ [µ, νξ]
Ä
B(−n,n)◦

ä
≤ lim inf

i→∞
CorC◦ [µi, νξ]

Ä
B(−n,n)◦

ä
≤ lim inf

i→∞
Cor[µi, νξ]

Ä
B(−n,n)

ä
.

Fix a closed identity neighborhood Ω∞,0 ⊂ Ω◦∞, and set B
(−n,n)
0 = Ω∞,0 ×∏

v 6=p1,∞Ωv ×K(−n,n)
p1 . Taking a monotone sequence of bounded open subsets

that exhausts [G(A)], we deduce that

Cor[µ, νξ]
(
B

(−n,n)
0

)
≤ lim inf

i→∞
Cor[µi, νξ]

Ä
B(−n,n)

ä
� F (ctr(ξ))p

−2(1+ρ)n
1 .

Monotonicity of integration and Fubini imply that

Cor[ν̄, ν̄]
(
B

(−n,n)
0

)
≤ 1

λ0(Ξ0)
Cor[µ, ν̄]

(
B

(−n,n)
0

)
=

1

λ0(Ξ0)2

∫
Ξ0

Cor[µ, νξ]
(
B

(−n,n)
0

)
dλ0(ξ)

� p
−2(1+ρ)n
1

λ0(Ξ0)2

∫
Ξ0

F (ctr(ξ)) dλ0(ξ).

Notice that
∫

Ξ0
F (ctr(ξ)) dλ0(ξ) is finite because Ξ0 is compact and F is con-

tinuous.

An upper bound on the self-correlation of a measure for Bowen balls im-

plies a lower bound for the metric entropy. The self-correlation bound for the

adelic quotient implies an identical bound for any S-arithmetic quotient, as

long as we take the set of places S to include ∞, p1. On the other hand, a

lower bound for the entropy for S-arithmetic quotients for arbitrary large S

implies the same bound for the adelic quotient.

Using [ELMV09, Prop. 3.2], which generalizes, mutatis mutandis, to the

S-arithmetic setting, we deduce from the last inequality that ha∆(ν̄) ≥
(1 + ρ) log p1 as required. �

10.2. From a shifted convolution to sums over a polynomial. The first

step in producing an upper bound on the cross-correlation as required in

Lemma 10.1 is translation of the shifted-convolution sum in Theorem 8.7 to

sums of a multiplicative function over values of a polynomial in two variables.

In this section we work in the setting of Theorem 8.7, which we now

review. Fix a joint homogeneous toral set
î
T∆(A)(g, sg)

ó
satisfying (♠) with

a splitting field E/Q and quadratic order Λ ≤ OE of discriminant D.
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Fix also a simply connected homogeneous Hecke set
î
G∆(A)+ξ

ó
with

ctr(ξ)p1 ∈ Ap1 , and assume

g−1T(Q)sg ∩B ctr(ξ)B = ∅.

Notice that this condition implies the same for B(−n,n) for all n.

Let µ be the algebraic probability measure supported on
î
T∆(A)(g, sg)

ó
,

and let νξ be the algebraic probability measure supported on
î
G∆(A)+ξ

ó
. De-

note κ = 28 d∞(ctr(ξ)∞) df (ctr(ξ)f ) and ω = sign(Nrd(ctr(ξ)∞)) df (ctr(ξ)f ).

Initially, we transform the shifted-convolution sum to a sum of a non-

multiplicative function over polynomial values. Afterwards we shall use prin-

cipal genus theory to split the sum in the following lemma into sums that can

be effectively bounded by multiplicative functions.

Lemma 10.2. Fix an arbitrary Z-basis A,B ∈E× for the fractional Λ-ideal

s−1, and let q(x, y) ∈ Z[x, y] be the associated norm form

q(x, y) :=
Nr(Ax+By)

Nr(s−1)
.

This is a primitive integral binary quadratic form of discriminant D.

The shifted convolution sum of Theorem 8.7 satisfies∑
0≤x≤κ|D|

x≡ω|D| mod υp2n
1

g[s](x)f[pn1 se]
−1

Ç
x− ωD
υp2n

1

å
r

Ç
x− ωD
υp2n

1

å
=

1

#Λ×

∑
(x,y)∈Z2 : q(x,y)≤κ|D|

υp2n
1 |Q(x,y)

Ä
f[pn1 se]

−1 · r
äÇQ(x, y)

υp2n
1

å
,

where

Q(x, y) := q(x, y)− ωD.

Proof. This follows immediately from the correspondence between invert-

ible integral ideals in the class [s] ∈ Pic(Λ) and points in s−1. Explicitly, if

a ∈ [s], then there is some a ∈ E× so that a = as and as ⊆ �, i.e., a ∈ s−1.

Moreover, two different values of a corresponding to a must differ by a unit

of Λ. �

Definition 10.3. We now fix q(x, y) ∈ Z to be the unique reduced9 norm

form for s−1 and denote

E :=
¶

(x, y) ∈ R2 | q(x, y) ≤ κ|D|
©
.

9That is, it is reduced with respect to the usual fundamental domain for the SL2(Z)-action

on the upper half plain.
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In the current section we shall always denote by Rmax and A(E ) the max-

imal radius of curvature and area of E .

Lemma 10.4. The set E is an ellipse centered at the origin. Its area is

A(E ) = 2πκ
»
|D|, and the maximal radius of curvature satisfies

Rmax ≤
»
A(E )

Ñ»
|D|
N

é3/2

,

where N := min a⊆Λ
[a]=[s]

Nr a.

Proof. The domain E is an ellipse because q is positive-definite. The

formula for the area follows from the fact that disc(q) = D. To estimate Rmax

consider the ellipse E0 of area π homothetic to E and let a ≥ a−1 > 0 be the

lengths of its semi-major axes. The maximal radius of curvature satisfies

(51) Rmax =
»
A(E )Rmax(E0) =

»
A(E )

a2

a−1
=
»
A(E )a3.

The group SL2(R) acts transitively on the space of ellipses of area π and

centered at the origin. The stabilizer of the unit circle S1 is SO2(R). We iden-

tify this space of ellipses with the upper half-plane H by sending S1 to i ∈ H.

The point in H corresponding to E0 coincides with the point corresponding to

q in the fundamental domain. Denote this point by x0 ∈ H. This point can be

written down explicitly as10

x0 =
−b+ i

»
|D|

2N
,

where

≠
N,
−b+i
√
|D|

2

∑
⊂ E is the primitive integral ideal in the class [s−1]. In

particular,

=(x0) =

»
|D|

2N
.

If E0 = g.S1, then the lengths of the semi-major axes are exactly the

element of the diagonal matrix in the Cartan decomposition of g, i.e. g ∈
SO2(R)

Ä
a 0
0 a−1

ä
SO2(R). In particular, a2 + a−2 = Tr(gtg).

We would like to find the relation of between a and =(x0). Using the

Iwasawa decomposition of SL2(R) we can write

g ∈
Ç

1 t

0 1

åÑ»
=(x0) 0

0
»
=(x0)

−1

é
SO2(R)

10Notice that because an ideal class and its inverse are Galois conjugate, min a⊆Λ
[a]=[s]

Nr a =

min a⊆Λ

[a]=[s−1]

Nr a.
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for some −1/2 ≤ t ≤ 1/2. We deduce that

a2 + a−2 = Tr(gtg) = =(x0) + =(x0)−1(1 + t2).

Solving the above quadratic equation for a2 and using standard calculus with

the inequalities t2 ≤ 1/4 and =(x0) ≥
√

3/2 we deduce that

a2 ≤ 2=(x0) =

»
|D|
N

.

The claim follows by combining this inequality with (51). �

The next step is to split the sum from Lemma 10.2 according to further

congruence conditions to take into account the restrictions modulo Pic(Λ)2.

We shall do that only for small odd primes dividing DE = disc(E). Our sieve

method will not be able to take into account large prime divisor. Fortunately,

we will see later that not taking into account the genus congruence conditions

for larger primes only changes the final upper bound by an absolute constant.

Let Cθ ≥ 1 be a constant such that for all X ∈ N,

(52) C−1
θ X ≤

∑
p≤X

log p ≤ CθX.

Such a Cθ exists due to the Chebyshev bounds on the prime counting function.

We fix 1/2 > η > 0 to be determined later. Write D = DsmallDlarge, where

Dsmall :=
∏

p‖D, p-ω
2<p≤η/(4Cθ) log |D|

p.

Because of (52) we know that Dsmall ≤ |D|η/4. We are going to split the

sum in Lemma 10.2 according to congruence classes modulo υp2n
1 and p2 for

any p | Dsmall. It is exactly these congruence conditions that our sieve bound

can take into account. Because we only seek upper bounds, we can simply

ignore any restrictions that the condition modulo Pic(Λ2) implies for primes

p | Dlarge. Fortunately, ignoring the congruence conditions modulo large primes

only changes the upper-bound by a fixed constant independent of D.

Thus our goal is to replace in each congruence class the functions f[pn1 se]
−1

and r by the simpler functions f and r0 from the following definition.

Definition 10.5. Let f : N → N be the multiplicative function counting

integral invertible Λ-ideals, i.e.,

f(n) := # {a ∈ J(Λ) | a ⊆ Λ, Nr a = n} .

Define also the multiplicative function r0 : N→ Z by requiring that r0(pk) = 2

if p | Dlarge and k ≥ ordpD, and r0(pk) = 1 otherwise.
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To take into account the condition modulo Pic(Λ2), we need to add weights

to the sums over different congruence classes for p | Dsmall. We now define the

correct weights as follows from principal genus theory. Define k := υp2n
1 D2

small,

and write

Z/kZ = Z/υZ×
Z/
p2n

1 Z
×

∏
p|Dsmall

Z/
p2Z.

For each prime p | Dsmall, we partition Z/
p2Z in the following way:

Z/
p2Z = Cp

2

+0 t C
p2

−0 t C
p2

+1 t C
p2

−1 t C
p2

2 ,

Cp
2

±0 :=

®
u ∈

Å
Z/
p2Z

ã× ∣∣∣∣∣ Åupã = ±1

´
,

Cp
2

±1 :=

ß
pu

∣∣∣∣ u ∈ (Z/pZ)× , Åupã = ±1

™
,

Cp
2

2 := {0}.

We define a measure wp on Z/
p2Z. The measure wp is uniform on each atom

of the partition above and assigns the following weights for each atom:

wp(C
p2

±0) = #Cp
2

±0 =
p2

2

Å
1− 1

p

ã
,

wp(C
p2

2 ) = 2 ·#Cp
2

2 = 2,

wp(C
p2

ε ) = #Cp
2

ε ·

2 χp (Nr(pn1se)) = −ε,
0 χp (Nr(pn1se)) 6= −ε

= p

Å
1− 1

p

ã
δχp(Nr(pn1 se))=−ε,

where ε ∈ {±1} and we denote by χp both the unique primitive real Dirichlet

character of conductor p > 2 and its adelic lift. See Definition A.9 in the

appendix for details.

Each weight takes into account both the difference between r0 and r

and the information from principal genus theory about the condition mod-

ulo Pic(Λ2); cf. Proposition A.10. In particular, the factor of 2 in the weights

of all congruence classes modulo p outside of Cp
2

±0 is due to the contribution

of r. The fact that one of the two sets Cp
2

±1 has weight 0 is due to the genus

restriction.

These measures for p | Dsmall define a product measure wk on Z/kZ by

wk := δ0 mod υ × δ0 mod p2n
1
×

∏
p|Dsmall

wp.
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Lemma 10.6. The following holds :

1

#Λ×

∑
(x,y)∈E∩Z2

υp2n
1 |Q(x,y)

Ä
f[pn1 se]

−1 · r
äÇQ(x, y)

υp2n
1

å
�G

∫ ∑
(x,y)∈E∩Z2

Q(x,y)≡m mod k

(f · r0)

Ç
Q(x, y)

υp2n
1

å
dwk(m).

Remark 10.7. Unlike r, the mean value of the multiplicative function r0

is bounded above only in terms of η independently of D. This is why its

contribution is of no significant effect. The contribution of r that is not covered

by r0 is negated by the restriction to a fixed genus class whenever p | Dsmall

and p ‖ Q(x, y).

Proof. Notice that #Λ× ≥ 1 hence the factor 1
#Λ× is uniformly bounded.

Moreover, using Proposition A.10 we deduce that

1

#Λ×

∑
(x,y)∈E∩Z2

υp2n
1 |Q(x,y)

Ä
f[pn1 se]

−1 · r
äÇQ(x, y)

υp2n
1

å
≤

∑
m∈Z/kZ

m≡0 mod υp2n
1

∀p|Dsmall : m mod p2 6∈Cp
2

χp(Nr(pn
1
se))

∑
(x,y)∈E∩Z2

Q(x,y)≡m mod k

(f · r)
Ç
Q(x, y)

υp2n
1

å
.

Notice that Proposition A.10 has only been applied to primes p | Dsmall and

only in the case that p ‖ Q(x, y). If Q(x, y) is a unit modulo p, then Q(x,y)
υp2n

1
≡

q(x,y)
υp2n

1
mod p, where q(x, y) is a norm of an ideal in the class [s]. Unwinding

the definitions of υ and e, we see that the genus congruence class of Q(x,y)
υp2n

1

modulo p is equal to the genus congruence class modulo p of [se−1p−n1 ] ≡
[pn1se]

−1 mod Pic(Λ)2. This implies that principal genus theory in the form

of Proposition A.10 provides no extra information in this case. We also neglect

any information from principal genus theory if ordpQ(x, y) ≥ 2, but this will

only affects our final bound by multiplying it by a constant independent of all

parameters.
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Finally notice that if Q(x, y) ≡ m mod k, then

r

Ç
Q(x, y)

υp2n
1

å
= wk(m)r0

Ç
Q(x, y)

υp2n
1

å
2µwildδ2|D

∏
p‖Q(x,y)

G ramifies at p

2

�G wk(m)r0

Ç
Q(x, y)

υp2n
1

å
. �

10.3. The sieved upper bound. We are finally ready to apply Theorem 9.7

in the form of Proposition 9.26 to bound the cross-correlation.

Definition 10.8. We say that an exponent θl > 0 is admissible if there is

some Cl > 0 depending on θl such that all ellipses defined by definite integral

binary quadratic forms belong to L(Cl, θl).

Van Der Corput’s [vdC20] bound implies that any θl > 2/3 is admissible,

while the bound of Huxley [Hux03] implies that any θl > 131/208 > 0.6298 is

admissible.

Definition 10.9. For any m ∈ Z/kZ, define

Di(m) =
∏

p|Dsmall
ordpm=i

p

for i ∈ {0, 1, 2}. Then Dsmall = D0(m)D1(m)D2(m).

Proposition 10.10. Let m ∈ Z/kZ with wk(m) > 0. Let θl > 0 be

admissible, fix 0 < η < 1/2, and assume Rθlmax ≤ A(E )1−4η . If υp2n
1 ≤ |D|η/2,

then ∑
(x,y)∈E∩Z2

Q(x,y)≡m mod k

(f · r0)

Ç
Q(x, y)

υp2n
1

å
�f,η A(E )

ρQ
(
m; (D0(m)D1(m))2

)
(D0(m)D1(m))4

·
∏

2<p≤2κ|D|1−η
p-υp1Dsmall

Ç
1− ρQ(p)

p2

å ∑
a≤2κ|D|

gcd(a,D0(m)D1(m))=1

f(a)r0(a)ρ̃Q(υp2n
1 D2(m)2a)

(υp2n
1 D2(m)2a)2

.

Proof. Write

m ≡ D1(m)l mod D0(m)2D1(m)2,

where l ∈
Å
Z/
D0(m)2D1(m)Z

ã×
.

Notice that if p ‖ D, then f(pn) = f(n) for all n ∈ N. Using this we write∑
(x,y)∈E∩Z2

Q(x,y)≡m mod k

(f · r0)

Ç
Q(x, y)

υp2n
1

å
=

∑
(x,y)∈E∩Z2

Q(x,y)≡m mod k

(f · r0)

Ç
Q(x, y)

υp2n
1 D2(m)2

å
.

We wish to apply Proposition 9.26. We now define k0, k1, k2, X and δ and

verify that the conditions of the proposition hold.
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Set k0 = υp2n
1 D2(m)2, k1 = D1(m) and k2 = D0(m)2D1(m). Notice that

k0k1k2 = υp2n
1 D2(m)2D0(m)2D1(m)2 = υp2n

1 Dsmall = k. Because Dsmall ≤
|D|η/2 and using Lemma 10.4, we deduce that k ≤ |D|η ≤ A(E )η/2.

For any (x, y) ∈ E ∩ Z2, we know from the definition of Q(x, y) that

Q(x, y) = υNr(b), where (a, b) is a pair of integral ideals satisfying the con-

clusions of Proposition 8.30 with x = ctr(ξ). We deduce the following, using

the explicit formulae for κ and ω from Theorem 8.7:

max
¶
|Q(x, y)|

∣∣∣ (x, y) ∈ E ∩ Z2
©

= max
J0(Λ)3a⊆Λ
Nr a≤κ|D|

|Nr a− ωD|

≤ (κ+ |ω|)|D| ≤ 2κ|D| ≤ A(E ).

Hence we can take X = 2κ|D| and δ = 2 in the conditions of Proposition 9.26.

Moreover, using the standard Euler product for the Dedekind ζ-function

of E with the necessary modifications at primes dividing the conductor, we see

that for every ε > 0, there are some 1 ≤ A �f 1 and 0 < B �ε,f 1 so that

f ∈ M(A,B, ε). Finally, to apply Proposition 9.26 we need a bound of the

form ρ̃Q(pk) ≤ Cpk(2−r) for some C ≥ 1, 0 < r < 1. Such a bound holds with

C = 16 and r = 1/2 due to Corollary B.6.

Notice that f(k1) = 1 because k1 is supported on ramified primes and it is

coprime to f. After applying Proposition 9.26, we arrive at the necessary sum

with product and summation up to X/(k0k1). The final result follows because

2κ|D| = X ≥ X/(k0k1) ≥ X/k ≥ 2κ|D|1−η. �

Lemma 10.11. Let m ∈ Z/kZ with wk(m) > 0. For any a ∈ N such that

gcd(a,D0(m)D1(m)) = 1, the following inequality holds :

ρ̃Q(υp2n
1 D2(m)2a)

(υp2n
1 D2(m)2a)2

�f,G
|ω|2

p2n
1 D2(m)2a

∏
p|a

Å
1 +

1

p

ã ∏
p|D2(m)

2

Å
1− 1

p

ã r1(a),

where r1 is a multiplicative function defined by r1(pk) = 2 for any p | Dlarge

and k > ordpDlarge and r1(pk) = 1 otherwise.

Remark 10.12. Notice that by definition, r1 ≤ r0.

Proof. Recall that υ and D2(m) are square-free. To prove the lemma we

use the multiplicativity of ρ̃Q to write

ρ̃Q(υp2n
1 D2(m)2a) =

∏
p|υ
ρ̃Q
Ä
pordp a+1

ä ρ̃Q (pordp1 a+2n
1

)

·

 ∏
p|D2(m)

ρ̃Q
Ä
pordp a+2

ä ∏
p|a

p-υp1D2(m)

ρ̃Q
Ä
pordp a

ä
.

We treat each term above separately.
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Any prime dividing υ necessarily is coprime to the conductor (cf. Sec-

tion 5.3.2) and is inert in E/Q; thus according to Proposition B.3,∏
p|υ
ρ̃Q
Ä
pordp a+1

ä
=
∏
p|υ

(p+1)pordp a = υ gcd(a, υ∞)
∏
p|υ

Å
1 +

1

p

ã
�G gcd(a, υ∞).

The last inequality holds because υ is bounded above by the product of all

primes where B ramifies.

The prime p1 is split in E/Q and coprime to f, hence by Proposition B.3,

ρ̃Q
(
p

ordp1 a+2n
1

)
= (p1 − 1)p

ordp1 a+2n−1
1 < p2n

1 gcd(a, p∞1 ).

Next we consider all primes p dividing D2(m). These are ramified in E/Q
and coprime to 4fω. Hence due to Corollary B.7, we know that

∏
p|D2(m)

ρ̃Q(pordp a+2) =
∏

p|D2(m)

ρ0
Q(p)

p
pordp a+2

Å
1− 1

p

ã
≤ D2(m)2 gcd(a,D2(m)∞)

∏
p|D2(m)

2

Å
1− 1

p

ã
.

We are left dealing with primes p | a that are coprime to υp1D2(m).

Because we have assumed gcd(a,D0(m)D1(m)) = 1, we know that p - Dsmall.

If 2 < p | ω, then because of Proposition B.5,

ρ̃Q(pordp a) ≤ 2 ordp ωp
ordpfpordp ar1(pordp a).

Applying Proposition B.5 for p = 2, we deduce∏
p|gcd(4ω,a)

ρ̃Q(pordp a)�f gcd(a, ω∞)r1(gcd(a, ω∞))
∏
p|ω

2 ordp ω

≤ gcd(a, ω∞)r1(gcd(a, ω∞))|ω|2.

In the last inequality we have used the facts
∏
p|ω 2 ≤ |ω| and

∏
p|ω ordp ω ≤

|ω| ≤ d(|ω|) ≤ |ω|, where d(|ω|) is the number of divisors of ω.

For any prime p | a coprime to 4Dsmallω, we can apply Proposition B.3

and Corollary B.7 to deduce∏
p|a

p-4Dsmallω

ρ̃Q(pordp a)�f

∏
p|a

p-4Dsmallω

pordp ar1(pordp a)

Å
1 +

1

p

ã
.

The claim follows by combining all the inequalities above for the different cases

of p. �

Proposition 10.13. Let m ∈ Z/kZ with wk(m) > 0. Let θl > 0 be

admissible, fix 0 < η < 1/2 and assume Rθlmax ≤ A(E )1−4η . If υp2n
1 ≤ |D|η/2,
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then

∑
(x,y)∈E∩Z2

Q(x,y)≡m mod k

(f · r0)

Ç
Q(x, y)

υp2n
1

å
�f,η,G A(E )p−2n

1

ρQ
(
m; (D0(m)D1(m))2

)
(D0(m)D1(m))4

2ω(D2(m))

D2(m)2

· |ω|2(log log(2|ω|))8
∏

2<p≤2κ|D|1−η
p-D0(m)D1(m)

Ç
1− ρQ(p)

p2

å ∑
a≤2κ|D|

gcd(a,D0(m)D1(m))=1

f(a)

a
.

Proof. We begin by substituting the result of Lemma 10.11 into Proposi-

tion 10.10 to see that

∑
(x,y)∈E∩Z2

Q(x,y)≡m mod k

(f · r0)

Ç
Q(x, y)

υp2n
1

å
�f,η A(E )p−2n

1

ρQ
(
m; (D0(m)D1(m))2

)
(D0(m)D1(m))4

2ω(D2(m))

D2(m)2

· ω logω
∏

2<p≤2κ|D|1−η
p-υp1D0(m)D1(m)

Ç
1− ρQ(p)

p2

å
·

∑
a≤2κ|D|

gcd(a,D0(m)D1(m))=1

f(a)r0(a)r1(a)

a

∏
p|a

Å
1 +

1

p

ã .
Using Lemma 9.2 we deduce

∏
2<p≤2κ|D|1−η

p-υp1D0(m)D1(m)

Ç
1− ρQ(p)

p2

å
�G

∏
2<p≤2κ|D|1−η
p-D0(m)D1(m)

Ç
1− ρQ(p)

p2

å
.

Because r1(a) ≤ r0(a), to prove the claim we need only to show that

∑
a≤2κ|D|

gcd(a,D0(m)D1(m))=1

f(a)r0(a)2

a

∏
p|a

Å
1 +

1

p

ã
�f,η (log log(2|ω|))8

∑
a≤2κ|D|

gcd(a,D0(m)D1(m))=1

f(a)

a
.
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We prove this by applying the decoupling lemma 9.18 twice. In the first

application let g(pl) = f(pl)r0(pl)2/pl if p - D0(m)D1(m) and g(pl) = 1 oth-

erwise, and let h(pl) =
Ä
1 + 1

p

ä
for l ≥ 1. We can write h = 1 ∗ ψ, where

ψ(pl) = 0 for l ≥ 2 and ψ(p) = 1/p.

We need to estimate Mz(g, ψ) as follows:

Mz(g, ψ) ≤
∏
p≤∞

1 + ψ(p)
∞∑
j=1

f(pl)r0(pl)2

pl

�f

∏
p≤∞

1 +
1

p

∞∑
j=1

2(k + 1)

pl


=
∏
p≤∞

ñ
1 +

2

p

2p− 1

(p− 1)2

ô
≤
∏
p≤∞

ñ
1 +

4

(p− 1)2

ô
� 1,

where we have used the trivial bound f(pl) ≤ (k + 1)/2 for every p - f. We

have thus proved that

∑
a≤2κ|D|

gcd(a,D0(m)D1(m))=1

f(a)r0(a)2

a

∏
p|a

Å
1 +

1

p

ã�f

∑
a≤2κ|D|

gcd(a,D0(m)D1(m))=1

f(a)r0(a)2

a
.

We continue by applying Lemma 9.18 again, this time with g(pl) =

f(pl)/pl whenever p - D0(m)D1(m) and g(pl) = 1 otherwise, and with h(pl) =

r0(pl)2. We have h = 1 ∗ ψ, where ψ(pordpD) = 4 for p | Dhigh and ψ(pl) = 0

for all other prime powers with l ≥ 1. We estimate Mz(g, ψ) in the following

way:

Mz(g, ψ) ≤
∏

p|Dhigh

Ñ
1 + 4

∞∑
j=ordpD

f(pl)

pl

é
�f

∏
p|Dhigh

Ñ
1 + 4

∞∑
j=1

1

pl

é
=

∏
p|Dhigh

Å
1 +

4

p− 1

ã
≤

∏
p|Dhigh

Å
1 +

8

p

ã
≤

∏
p|Dhigh

Å
1 +

1

p

ã8

≤
∏
p|ω

Å
1 +

1

p

ã8 ∏
p|D

p>η/(4Cθ) log |D|

Å
1 +

1

p

ã8

.

We bound the two factors above separately. The first one can be bounded

because ∏
p|ω

Å
1 +

1

p

ã
� log log(2|ω|).

For the second factor, we have the following upper bound due to (52):∏
p|D

p>η/(4Cθ) log |D|

Å
1 +

1

p

ã
≤

∏
η/(4Cθ) log |D|<p≤Cθ log |D|

Å
1 +

1

p

ã
�η 1. �

The second inequality holds due to Mertens’ theorem.
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Proposition 10.14. Let m ∈ Z/kZ with wk(m) > 0. Fix 1/2 > η > 0.

If C > 0 satisfies
L′(1, χE)

L(1, χE)
≤ C log |DE |,

then ∏
2<p≤2κ|D|1−η
p-D0(m)D1(m)

Ç
1− ρQ(p)

p2

å ∑
a≤2κ|D|

gcd(a,D0(m)D1(m))=1

f(a)

a

�C,η L(1, χE)
∏
p|f

Å
1−

Å
DE

p

ã
1

p

ã
+ |D|−2/3+o(1).

Proof. We first estimate the product over primes appearing above. From

Propositions B.3 and B.5 we deduce that ρQ(p) ≥ p− 1 for all primes p. Thus

∏
2<p≤2κ|D|1−η
p-D0(m)D1(m)

Ç
1− ρQ(p)

p2

å
≤

∏
2<p≤2κ|D|1−η
p-D0(m)D1(m)

Å
1− 1

p
+

1

p2

ã
≤

∏
2<p≤2κ|D|1−η
p-D0(m)D1(m)

Å
1− 1

p

ã ∏
p<∞

Å
1 +

1

p2 − p

ã
≤

∏
2<p≤2κ|D|1−η
p-D0(m)D1(m)

Å
1− 1

p

ã ∏
p<∞

Å
1 +

2

p2

ã
�

∏
2<p≤2κ|D|1−η
p-D0(m)D1(m)

Å
1− 1

p

ã
� log(2κ|D|1−η)−1 ∏

p|D0(m)D1(m)

Å
1− 1

p

ã−1

.

(53)

The last inequality above follows from Mertens’ theorem.

The logarithmic mean ∑
a≤2κ|D|

gcd(a,D0(m)D1(m))=1

f(a)

a

can be estimated using standard tools from multiplicative number theory. Con-

sider the multiplicative function g defined by g(pl) = f(pl) if p - D0(m)D1(m)

and g(pl) = 1 if g | D0(m)D1(m). Then because of the decomposition ζE(s) =

ζ(s)L(s, χE) with L(s, χE) holomorphic, the Dirichlet series of g can be written

as Lg(s) = ζ(s)›Lg(s) with ›Lg(s) holomorphic.

Let ϕ : [0,∞) → [0,∞) be a compactly-supported smooth non-increasing

function satisfying 11[0,1] ≤ ϕ ≤ 11[0,2]; i.e., ϕ is a smooth approximation of

the characteristic function of [0, 1]. Notice that the Mellin transform satisfies
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sM(ϕ)(s) = M(Θϕ)(s), where Θ(ϕ)(x) = −xϕ′(x) ≥ 0 is a smooth compactly-

supported function vanishing outside of [1, 2]. Hence sM(ϕ)(s) decays faster

than any polynomial in the vertical direction. The decay is uniform in any strip

of the form σ0 ≤ <(s) ≤ σ1. The same property holds for M(ϕ)(s) outside a

small neighborhood of s = 0. Moreover, the the Laurent expansion of M(ϕ)(s)

around s = 0 is 1
s +

∫∞
1

ϕ(x)
x dx+O(|s|). Using contour integration, the Perron

formula and the decay of Dirichlet L-functions in the vertical direction, we see

that

∑
a≤2κ|D|

gcd(a,D0(m)D1(m))=1

f(a)

a
≤›Lg(1)

Ñ
log(2κ|D|) + γ +

›Lg ′(1)›Lg(1)
+

∫ ∞
1

ϕ(x)

x
dx

é
+

1

2π

∫ ∞
−∞

|Lg(1/2 + it)|
(2κ|D|)1/2

|Mϕ(−1/2 + it)| dt,

(54)

where γ is the Euler-Mascheroni constant.

Because all the primes p | D0(m)D1(m) are ramified in E/Q and coprime

to f, the following properties of ›Lg(s) are an immediate consequence of com-

paring the Euler product of Lg(s) with that of ζE(s):›Lg(1) = L(1, χE)
∏
p|f

Å
1−

Å
DE

p

ã
1

p

ã ∏
p|D0(m)D1(m)

Å
1− 1

p

ã
,

∣∣∣∣∣∣
›Lg ′(1)›Lg(1)

− C log |DE |

∣∣∣∣∣∣� 1,

|›Lg(1/2 + it)| �f |L(1/2 + it, χE)| �f |D|1/6+o(1)|1/2 + it|A.

The constant A > 0 is absolute. The last inequality for |L(1/2, χE)| is due

to Conrey and Iwaniec [CI00, Cor. 1.5] strengthening the convexity breaking

result of Burgess [Bur62] for real characters. Substituting these and (53) into

(54) and using the super-polynomial decay of |M(ϕ)(1/2 + it)|, we deduce∏
2<p≤2κ|D|1−η
p-D0(m)D1(m)

Ç
1− ρQ(p)

p2

å
≤ log(2κ|D|1−η)−1

L(1, χE)
∏
p|f

Å
1−

Å
DE

p

ã
1

p

ã
· (log(2κ|D|) + C log |D|+O(1)) +O(1) · |D|

1/6+o(1)

(2κ|D|)1/2

�η,C L(1, χE)
∏
p|f

Å
1−

Å
DE

p

ã
1

p

ã
+ |D|−2/3+o(1). �

We can now combine all the results of this section to deduce a final bound

on the shifted convolution sum.
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Proposition 10.15. Let θl > 0 be admissible, fix 0 < η < 1/2 and

assume Rθlmax ≤ A(E )1−4η . Suppose υp2n
1 ≤ |D|η/2. If C > 0 satisfies

L′(1, χE)

L(1, χE)
≤ C log |DE |,

then

∑
0≤x≤κ|D|

x≡w|D| mod υp2n
1

g[s](x)f[pn1 se]
−1

Ç
x− ωD
υp2n

1

å
r

Ç
x− ωD
υp2n

1

å
�G,f,η,C κ|ω| log(2|ω|)(log log(2|ω|))8

»
|D|

Ä
L(1, χE) + |D|−2/3+o(1)

ä
p2n

1

.

Proof. In this proof only we allow all implicit constants to depend on

C, η,f,G without specifying that further.

From Lemmata 10.2, 10.6 and Propositions 10.13 and 10.14 we deduce

that the shifted convolution sums is bounded above by

A(E )p−2n
1

Ä
L(1, χE) + |D|−2/3+o(1)

ä
|ω|2(log log(2|ω|))8

·
∫
m≡0 mod υp2n

1

ρQ
(
m; (D0(m)D1(m))2

)
(D0(m)D1(m))4

2ω(D2(m))

D2(m)2
dwk(m).

The claim would follow immediately from the formula for A(E ) in Lemma 10.4

if we prove that

∫
m≡0 mod υp2n

1

ρQ
(
m; (D0(m)D1(m))2

)
(D0(m)D1(m))4

2ω(D2(m))

D2(m)2
dwk(m)� 1.

The integrand decomposes as a product of functions on Z/
p2Z for p | Dsmall,

and the measure is a product measure. Thus we can use Fubini to write

∫
m≡0 mod υp2n

1

ρQ
(
m; (D0(m)D1(m))2

)
(D0(m)D1(m))4

2ω(D2(m))

D2(m)2
dwk(m)

=
∏

p|Dsmall

 2

p2
wp(0) +

∑
0 6=a∈Z/

p2Z

ρQ(a; p2)

p4
wp(a)

 .
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We bound the term for each p | Dsmall using the definition of wp and

Proposition B.8:

2

p2
wp(0) +

∑
06=a∈Z/

p2Z

ρQ(a; p2)

p4
wp(a) =

4

p2
+

Å
1− 1

p

ã
+

1

p

Å
1− f

p

ã
= 1 +

4− f
p2

≤ 1 +
5

p2
,

where

f = 1 + ε

Ç
−D/p
p

å
χp(Nr s−1) +

Å
ω

p

ã
χp(Nr s−1) ∈ {−1, 1, 3}.

We conclude that the integral in question is bounded above by∏
p<∞

Å
1 +

5

p2

ã
� 1. �

10.4. Conclusion of the proof. Let θl > 0 be an admissible exponent for

lattice counting in ellipses. If there is some η0 > 0 such that for all i� 1

(55) Ni ≥ |Di|(2−θ
−1
l

)/3+η0 ,

then using Lemma 10.4 we can deduce that the condition Rθlmax ≤ A(E )1−4η

holds for all Hi in the sequence where 1/2 > η > 0 depends only on η0 and θl.

Assume first that such η0 > 0 exists. The condition that all fields Ei/Q have

no exceptional zero implies that there is C > 0 independent of i such that

L′(1, χEi)

L(1, χEi)
≤ C log |DEi |.

This result has been attributed to Hecke by Landau [Lan18].

Let ξ ∈ (G×G) (A). Fix n ∈ N. Then for any i �p1,n,ε,G 1, we have

υp2n
1 ≤ |Di|η/2. Moreover, the assumptions of Theorem 3.2 imply that

g−1
i Ti(Q)sigi ∩B(−n,n) ctr(ξ)B(−n,n) = ∅

for all i�ξ 1.

Thus for i large enough, we can use Proposition 10.15 and Theorem 8.7

to deduce that for any n ∈ N,

Cor[µi, νξ](B
(−n,n))�G,ε,f vol ([T(A)g])−1 vol

Äî
G∆(A)+ξ

óä−1
p−2n

1

· κ|ω|2(log log(2|ω|))8

»
|D|

Ä
L(1, χE) + |D|−2/3+o(1)

ä
p2n

1

�f vol
Äî
G∆(A)+ξ

óä−1
κ|ω|2(log log(2|ω|))8p−4n

1 .

The last inequality follows from the computation of the volume of a homoge-

neous toral set using the analytic class number formula; cf. [ELMV11]. The
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expression κ|ω|2(log log(2|ω|))8 is a continuous function of ctr(ξ) as can be

seen from the definition of κ and ω in Theorem 8.7. Moreover, the definition

of the volume implies immediately that vol
Äî
G∆(A)+ξ

óä
is a non-vanishing

continuous function of ξ ∈
G∆(A)+\

(G×G) (A)
. Because the fiber of the

continuous map ctr :
G∆(A)+\

(G×G) (A) → G(A) is compact,11 the func-

tion ξ 7→ vol
Äî
G∆(A)+ξ

óä
is bounded below by a non-vanishing continuous

function of ctr(ξ).

We deduce that if condition (55) holds, then the proof is concluded by

Lemma 10.1. If condition (55) fails, then the theorem follows from the meth-

ods of Ellenberg, Michel and Venkatesh [EMV13, §3], which are based on

Linnik’s method for equidistribution of CM points. Although the argument of

[EMV13, §3] applies verbatim only to the case of G ramified at ∞ and func-

tions invariant under an Iwahori at the place p1, these restrictions are relaxed

using the technical improvements presented in [Kha17, §5].

The following discussion is a recap of [EMV13] with an emphasis on the

required adaptation when removing the restriction gcd(Ni, p1) = 1. Let m ∈ N
to be determined later. Because we have assumed a splitting condition for two

primes we can use the flow either at p1 or at p2. The input required by [EMV13]

and [Kha17] is a norm gap for the Hecke operator

Tpmj :
Gsc(Q)

\G
sc(A)/U → Gsc(Q)

\G
sc(A)/U,

where j ∈ {1, 2} and U =
∏
p Up < Gsc(Af ) is a compact-open subgroup such

that Upj is the intersection of two Iwahori in the apartment corresponding

to Apj . Fix Kpj < Gsc(Qpj ) as a maximal compact subgroup containing Upj .

The following norm gap for Tpmj follows for any ε > 0 from the decay of matrix

coefficients of automorphic representations of SL2 [Sar91], [BS91], [CU04],

[COU01] and the Jacquet-Langlands correspondence [JL70]:

(56) ‖Tpmj ‖0 �Upj ,pj ,ε [Kpj : Upj ]p
−m(1−θ+ε)/2
j ,

where ‖Tpmj ‖0 is the norm of Tpmj restricted to the subspace of L2 ([Gsc(A)])U

orthogonal to the constant function, Upj =
∏
p 6=pj Up and θ is the best bound

towards the Generalized Ramanujan Conjecture for SL2 in the sense of [CU04].

The dependence of the constant on the parameters Up
j
, pj and ε is effective

and can be made explicit.

In the Ellenberg-Michel-Venkatesh argument we restrict a joint homoge-

neous toral set to an ambient Hecke correspondence of volume Ni
∏
p|Ni

Ä
1 + 1

p

ä
11The fiber is isomorphic to

G(A)
/
G(A)+.
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and apply an effective equidistribution argument in conjunction with Linnik’s

Basic Lemma to show that the joint period toral measure is close to the Haar

measure on the ambient Hecke correspondence.

Let aj ∈ Apj be as in Definition 5.22. We can use the effective equidistri-

bution theorem from [Kha17], which builds upon the work of [Lin68], [EMV13],

to deduce the necessary equidistribution result for the argument of Ellenberg-

Michel-Venkatesh as long as for each i there is some m such that ‖Tpmj ‖0 < 1/2

and that Linnik’s Basic Lemma is valid for p
m(1+ε′)
1 for some ε′ > 0.

If pj | Ni, we know that [Kpj : Upj ] = p
ordpj Ni
j

(
1 + 1

pj

)
; cf. Section 7.

Because of the freedom to use either p1 or p2, we can assume without loss of

generality that

p
ordp1 Ni
1 ≤

√
Ni.

For a fixed Up1 , the bound ‖Tpm1 ‖0 < 1/2 would follow from (56) for any m ∈ N
satisfying

(57) pm1 �Up1 ,p1,ε N
1/(1−θ+ε)
i .

On the other hand, Linnik’s Basic Lemma for one-sided Bowen balls in this

setting (cf. [EMV13]) applies only for m ∈ N in the range

(58) Nip
m
1 ≤ |D|1/2+o(1),

where the o(1) is ineffective as it is derived from Siegel’s bound. There exists

an m ∈ N satisfying both (57) and (58) if

N
1+1/(1−θ+ε)
i �Up1 ,p1,ε |D|1/2+o(1).

This condition is satisfied if we know that there is ε1 > 0 such that for all

i� 1,

(59) Ni ≤ |D|
1

2+2/(1−θ)−ε1 .

In the range (59) the conclusion of the Ellenberg-Michel-Venkatesh ar-

gument is that for any limit measure µ, one has
∫
f dµ = 0 for any smooth

compactly supported f ∈ L2
00 ([(G×G) (Q)] ,mG×G) that is invariant in the

place p1 under an intersection of two Iwahori subgroups stabilizing edges in

the apartment of Ap1 .

We can now bootstrap this to deduce the conclusion of the theorem. Let

A0
p1
< Ap1 be the maximal compact subgroup of the torus. Using a decreasing

sequence of intersections of two Iwahori, we conclude that the push forward of

the limit measure µ to

(G×G) (Q)
\(G×G) (A)/

A0
p1
×A0

p1
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is a measure of maximal entropy for the action of a∆ for any element of a ∈ A+
p1

that is not contained in a compact subgroup. As this factor and the space

[(G×G) (A)] have the same maximal entropy for a∆, we deduce that any

limit measure µ has maximal entropy for a on [(G×G) (A)], which implies it

is (G×G) (A)+-invariant.

To conclude the proof we need to verify that the range of (55) overlaps

with the range of (59). Taking θl > 2/3 from Van der Corput’s bound [vdC20]

and θ = 1/2 from Gelbart-Jacquet, we see that any improvement to either

bound would imply the necessary overlap in ranges. This can be achieved

either by taking a smaller admissible value of θl such as provided by [Hux03]

or using any improvement towards Ramanujan beyond θ ≤ 1/2 as in [Sha88],

[LRS99].

Appendix A. Principal genus theory

In this appendix we collect results related to the principal genus theory

of quadratic orders. The results we discuss are classical when presented in an

elementary form, going back to Gauss in the case of maximal orders.12 Unfor-

tunately, the author is unfamiliar with a modern concise presentation treating

the case of non-maximal orders. This appendix contains all the statements

that are of use in this manuscript with complete proofs.

As is usually the case with topics in algebraic number theory the treat-

ment is significantly streamlined by the use of adéles. Noticeable features of

the presentation below are that it uses class field theory only for quadratic

extension and does not resort to the properties of ring class fields and genus

fields. The main tools are Hilbert’s Satz 90 for quadratic global and local

fields, and the Hasse norm theorem, which for quadratic fields was proven by

Hilbert and elementary Galois cohomology. Except for treatment of the wild

prime 2, I have tried to circumvent explicit computations wherever possible.

Notation. Let Λ be an order in an imaginary quadratic extension E < Q.

As usual we denote by D the discriminant of Λ and define Λv to be the closure

of Λ in Ev :=
∏
w|v Ew for any rational place v 6=∞.

A.1. Adelic form of Pic(Λ)/Pic(Λ)2. The adelic interpretation below is

used both for computing the structure of the group Pic(Λ)/
Pic(Λ)2 and in

describing the characters in the dual group ◊�Pic(Λ) vanishing on Pic(Λ)2 using

Kronecker symbols of ideal norms.

12The reader interested in the history of the development of principal genus theory can

consult the review [Lem07] by Lemmermeyer.
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Proposition A.1. The adelic norm map Nr: A×E → A× and the real

adelic character χE : Q×\A
× → {±1} attached to the quadratic extension E/Q

by global class field theory descend to a short exact sequence

1→ Pic(Λ)
/
Pic(Λ)2

Nr−→ Q×\
A×/R>0

∏
v 6=∞Nr Λ×

χE−−→ {±1} → 1.

Proof. Recall that Pic(Λ) ' E×\A
×
E/C×∏v 6=∞ Λ×v

. Because σ acts by

inversion on Pic(Λ), the group Pic(Λ)2 is equal to the group of coboundaries

cbd (Pic(Λ)). Hence Pic(Λ)2 is the image of
∏
v cbd(Ev) < A×E in E×\A

×
E/

C×∏v 6=∞ Λ×v
. Hilbert’s Satz 90 implies cbd(Ev) = E

(1)
v for each v, hence∏

v cbd(Ev) is the kernel of the norm map A×E → A×.

The norm map descends to a map

Nr: E×\
A×E → Q×\

A×.

The Hasse norm theorem implies that the kernel of this map is the projection

of
∏
v cbd(Ev). Global class field theory states that the image is the kernel

of χE . It follows that there is a norm map

Nr: Pic(Λ)→ Q×\
A×/R>0

∏
v 6=∞Nr Λ×v

with kernel Pic(Λ)2. Moreover, the conductor of the quadratic character χE
contains NrE×∞

∏
v 6=∞NrO×Ev , thus χE factors through the right-hand side

above and its kernel is the image of Nr. �

Corollary A.2. The index
[
Pic(Λ): Pic(Λ)2

]
can be computed by

2
î
Pic(Λ): Pic(Λ)2

ó
=
∏
v 6=∞

î
Z×v : Nr Λ×v

ó
.

Proof. By Proposition A.1 above, the group Q×\
A×/R>0

∏
v 6=∞Nr Λ×

is

a 2-cover of Pic(Λ)/
Pic(Λ)2. Thus we need only to compute the size of this

adelic quotient.

We use the fact that Q has class number 1 to conclude that the following

sequence is exact:

1→ Z× · R>0

∏
v 6=∞

Nr Λ×v → R×
∏
v 6=∞

Z×v → Q×\
A×/R>0

∏
v 6=∞Nr Λ×v

→ 1.

Moreover, the inclusion map descends to an isomorphism∏
v 6=∞

Z×v /
Nr Λ×v

→ Z×\
R×∏v 6=∞ Z×v /R>0

∏
v 6=∞Nr Λ×v

. �
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The following two lemmata are necessary in order to understand non-

maximal orders in terms of their reduction modulo the conductor.

Lemma A.3. Assume Λv < OEv is a non-maximal order. Let fvOEv be

the conductor of Λv . Then 1 +fvOEv ⊆ Λ×v .

Proof. Because Λv is non-maximal, ordvfv ≥ 1 for fv ∈ Zv as above. This

implies that the Taylor series for 1
1+x converges for any x ∈ fvOEv . As Λv is a

closed subset, we deduce (1 + x)−1 ∈ Λv. �

Lemma A.4. Assume Λv < OEv is a non-maximal order. Consider the

reduction map redfv : OEv →
OEv/

fvOEv
. Then

Λ×v = red−1
fv

(redfv(Z)×) = Z×v +fvOEv

Proof. Notice that Λv = red−1
fv

(redfv(Zv)) = red−1
fv

(redfv(Z)). The first

equality follows from Lemma 2.3, and the second equality holds because Z is

dense in Zv. It follows immediately that Λ×v ⊆ red−1
fv

(redfv(Z)×). The reverse

inclusion is a consequence of Lemma A.3. �

We now compute the groups Nr Λ×v appearing in Proposition A.1.

Lemma A.5. Fix v 6= ∞, and denote by p the residue characteristic of

Qv . Then

NrO×Ev =

Z×v Ev/Qv is unramified,

Z×v
2

Ev/Qv is ramified and p > 2.

If p = 2 ramifies in E/Q, then NrO×Ev is one of the three possible index 2

subgroups of Z×2 containing the index 4 subgroup Z×2
2
, i.e., one of the index 2

subgroups of

Z×v /Z×v
2 '

(
Z/8Z

)×
' Z/2Z×

Z/2Z.

Proof. Notice that Z×v < O×Ev hence Z×v
2
< NrO×Ev for all v 6= ∞. The

claim now follows immediately from the local class field correspondence be-

tween degree 2 extensions of Qv and index 2 subgroups of Q×v . �

Lemma A.6. Assume Λv � OEv is a non-maximal order. If p > 2, then

Nr Λ×v = Z×v
2
.
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If p = 2, then

Nr Λ×v =


NrO×Ev 2 ‖ fv,

1 + 4Z2
4 ‖ fv and Ev/Qv is unramified

or NrO×Ev = 1 + 4Z2,

1 + 8Z2 = Z×v
2

otherwise.

Proof. For any v 6= ∞, we have Z×v < Λ×v and Z×v
2
< Nr Λ×v . Also for

all v, we know Nr Λ×v < NrO×Ev . Hence if Ev/Qv is ramified and p > 2, then

Lemma A.5 implies that Nr Λ×v = Z×v
2
.

Assume now that Ev/Qv is unramified or p = 2. We compute NrO×Ev/

Nr Λ×v
in the following way:

NrO×Ev/
Nr Λ×v

'
O×Ev
\Λ
×
v /

O
(1)
Ev

'
redfv (OEv)

×\
redfv (Λv)

×
/
O

(1)
Ev

' Nr redfv (OEv)
×
/
Nr redfv (Λv)

×

=
redfv Nr (OEv)

×
/
redfv Nr (Λv)

×.

The first and the third equalities above hold because the kernels of the norm

maps are the corresponding norm 1 elements; the second equality follows from

Lemma A.4, and the fourth equality holds because the reduction map is equi-

variant for the Galois action. As all the isomorphisms above are canonical

their composite is exactly the reduction map redfv . We use Lemma A.4 once

more to deduce redfv Nr (Λv)
× '

Ä
Z/fvZ

ä×2
. We continue case by case.

If Ev/Qv is unramified, then we use Lemma A.5 to deduce

Z×v /
Nr Λ×v

=
NrO×Ev/

Nr Λ×v
'
(
Z/fvZ

)×/(Z/fvZ)×2

'



Z/2Z p > 2,

1 p = 2, 2 ‖ fv,
Z/2Z p = 2, 4 ‖ fv,
Z/2Z×

Z/2Z p = 2, 8 | fv.

This settles all the cases when p > 2 and the unramified case when p = 2.

Assume p = 2 and Ev/Qv is ramified. If 2 ‖ fv, then NrO×Ev = Nr Λ×v
because F×2 = 1. If 4 ‖ fv, then redfv Nr Λ×v ≡ {1}, and hence Nr Λ×v =

NrO×Ev ∩ 1 + 4Z2. If NrO×Ev = 1 + 4Z2 = {1,−3} + 8Z2, then we deduce

Nr Λ×v = NrO×Ev , otherwise Nr Λ×v = 1 + 8Z2.
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If 8 | fv, then redfv Nr Λ×v = {1} and Z×v
2
< Nr Λ×v and hence Nr Λ×v =

Z×v
2

= 1 + 8Z2. �

Corollary A.7. Let µtame be the number of odd primes dividing D. Set

µwild := ord2

î
Z×2 : Nr Λ×2

ó
∈ {0, 1, 2}.

Notice that µwild depends only on f2 and the ramification of 2 in E/Q.

The following equalities holds for any imaginary quadratic order Λ:

# Pic(Λ)[2] =
î
Pic(Λ): Pic(Λ)2

ó
= 2µtame+µwild−1 � 2ω(D).

Corollary A.8. The first equality holds because the squaring homomor-

phism fits in a short exact sequence

1→ Pic(Λ)[2]→ Pic(Λ)
x 7→x2

−−−→ Pic(Λ)2 → 1.

The second equality follows from Corollary A.2 and Lemma A.6.

A.2. Characters orthogonal to Pic(Λ)2.

Definition A.9. For any prime p > 2, define p∗ := (−1)
p−1

2 p ≡ 1 mod 4,

and for n ∈ N, set

χp(n) =

Å
p∗

n

ã
.

This is the unique non-trivial primitive real Dirichlet character of modulus p.

Also define

χ4(n) =

Å−4

n

ã
, χ8(n) =

Å
8

n

ã
.

The unique non-trivial primitive real Dirichlet character of modulus 4 is χ4,

and the non-trivial primitive real Dirichlet characters of modulus 8 are χ8 and

χ4 χ8.

We multiplicatively extend every Dirichlet character of modulus q to the

multiplicative group of rationals that are coprime to all prime divisors of q.

Moreover, we abuse the notation and denote by χq : Q×\
A× → {±1} the

adelic lift of the corresponding Dirichlet character.

Proposition A.10. Let a ∈ J(Λ). Then [a] ∈ Pic(Λ)2 if and only if

χ

Ç
Nr(a)

gcd(Nr(a),modulus(χ)∞)

å
= 1

for all the following real Dirichlet characters χ:

(1) χp for all odd primes p | D;

(2) one of 13 χ4, χ8, χ4 χ8 if
î
Z×2 : Nr Λ×2

ó
= 2;

(3) χ4 and χ8 if Nr Λ×2 = 1 + 8Z2.

13The specific character depends on the subgroup Nr Λ×2 < Z×2 .
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Proof. Our goal is to compute all the characters orthogonal to Pic(Λ)2.

Because
(
Pic(Λ)2

)⊥
= ◊�Pic(Λ)[2], all these characters are real.

Consider the short exact sequence of character groups dual to the short

exact sequence of Proposition A.1:

1←
Ä
Pic(Λ)2

ä⊥ “Nr←−
¤�Ç

Q×\
A×/R>0

∏
v 6=∞Nr Λ×

å
χ̂E←−− {±1} ← 1.

Exactness implies that every character in
(
Pic(Λ)2

)⊥
can be expressed as a

composition with the norm map of a real rational Hecke grossencharacter

Q×\
A× → {±1} that vanishes on R>0

∏
v 6=∞Nr Λ×v . Moreover, the only non-

trivial relation is that χE is trivial in
(
Pic(Λ)2

)⊥
.

The translation between finite rational Hecke grossencharacters and Dirich-

let characters implies that the relevant characters are adelic lifts of real Dirich-

let characters with conductor containing R>0
∏
v 6=∞Nr Λ×v . Using Lemma A.6

and the fact that all primitive real Dirichlet characters are the Kronecker sym-

bols described in Definition A.9, we deduce that
¤�(

Q×\A
×
/R>0

∏
v 6=∞Nr Λ×

)
is generated by the adelic lifts of the characters listed in the claim. The explicit

expressions for the evaluation of a character at the norm of an ideal follows by

unwinding the adelic lifting procedure. �

A.3. 2-torsion in the Picard group. The cohomological interpretation of

the 2-torsion in the Picard group is used in the description of the fiber of the

invariant map attaching pairs of fractional ideals to intersections.

Proposition A.11. The diagonal restriction map

H1(G,Λ×)→
∏
v 6=∞

H1(G,Λ×v )

is injective, and there is a canonical isomorphism

H1(G,Λ×)
\
∏
v 6=∞H

1(G,Λ×v ) ' Pic(Λ)[2].

Proof. We construct the necessary isomorphism in several steps. On the

way we also prove the claimed injectivity. For any order O < OF in a global

field F , denote by P(O) := O×\
F× the group of invertible principle fractional

O-ideals.

We begin by examining the following commuting diagram with exact rows:

1 Λ× E× P(Λ) 1

1
∏
v 6=∞ Λ×v

∏′
v 6=∞E

×
v J(Λ) 1.
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This diagram induces a commuting diagram of G-cohomology with exact rows:

(60)
1 Z× Q× P(Λ)G H1(G,Λ×) 1

1
∏
v 6=∞ Z×v

∏′
v 6=∞Q×v J(Λ)G

∏
v 6=∞H

1(Qv,Λ×v ) 1.

The last terms are trivial due to Hilbert’s Satz 90. We can truncate the diagram

above to the following commuting diagram with exact rows:

(61)

1 P(Z) P(Λ)G H1(G,Λ×) 1

1 J(Z) J(Λ)G
∏
v 6=∞H

1(Qv,Λ×v ) 1.

Because P(Λ)G → J(Λ)G is injective, the four-lemma implies that

ker

H1(G,Λ×)→
∏
v 6=∞

H1(Qv,Λ×v )

 'P(Z)\
J(Z)

= Pic(Z) = 1.

This proves the first claim. Next we deduce from (61) that

(62)
P(Λ)G

\J(Λ)G '
H1(G,Λ×)

\
∏
v 6=∞H

1(Qv,Λ×v )
.

We can also continue the long exact sequence in the first row of (60),

(63) H1(G,Λ×)→ 1→ H1(G,P(Λ))→ Z×/Nr Λ× →
Q×/NrE×,

where we have computed the second cohomology groups using the formula

H2(C,M) 'MC
/NrM valid for any finite cyclic group C acting on an abelian

group M . Because E is an imaginary quadratic field, Z×∩NrE× = 1, and thus

the last map in (63) is injective. By exactness we deduce H1(G,P(Λ)) = 1.

We finally consider the long exact sequence associated to the short exact

sequence

1→P(Λ)→ J(Λ)→ Pic(Λ)→ 1.

The equality H1(G,P(Λ)) = 1 implies

(64) Pic(Λ)[2] = Pic(Λ)G '
P(Λ)G

\.J(Λ)G.

The claimed isomorphism is a composition of (64) and (62). �

Corollary A.12. Recall the definition cbd(x) = x/ xσ for x ∈ E×v for

any v. The proposition above implies∏
v 6=∞

î
Λ(1)
v : cbd(Λ×v )

ó
=
∏
v 6=∞

#H1(G,Λ×v ) = 2# Pic(Λ)[2].
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Proof. The definition of H1 using cocycles and coboundaries implies that

H1(G, L) ' L(1)
/cbd(L×) for L = Λ and L = Λv for all v 6= ∞. Hence by

Proposition A.11 the factor of proportionality between
∏
v 6=∞

[
Λ

(1)
v : cbd(Λ×v )

]
and # Pic(Λ)[2] is

î
Λ(1) : cbd(Λ×)

ó
= 2. �

Lemma A.13. Let v 6=∞. The first Galois cohomology group of the unit

group of a maximal order isH1(Qv,O×Ev) = 1 if Ev/Qv is unramified,

H1(Qv,O×Ev) = Z/2Z if Ev/Qv is ramified.

If Ev/Qv is tamely totally ramified, i.e., the residue characteristic is odd, then

the non-trivial class of H1(Qv,O×Ev) is represented by the cocycle corresponding

to −1 ∈ O
(1)
Ev

.

Proof. Denote by g the number of places above v in E/Q, and let e be

the ramification index of v in E/Q. Consider the short exact sequence

1→ O×Ev → E×v → Zg → 1.

The third map is the valuation map, and if g = 2, then the Galois group acts

on the value group Zg by switching the coordinates. The associated long exact

cohomology sequence is

1→ Z×v → Q×v → Z→ H1(G,O×Ev)→ 1,

where the last group is trivial by Hilbert’s Satz 90 and the third map is the

valuation map of E×v restricted to Q×v . The image of Q×v → Z is eZ, and we

deduce that

H1(G,O×Ev) '
Z/eZ.

Assume Ev/Qv is ramified. If Π is a uniformizer of OEv , then the map

Z→ H1(G,O×Ev) can be written explicitly as n 7→ cbd(Πn). If the ramification

is tame, we can choose a uniformizer so that Πσ = −Π and H1(G,O×Ev) is

generated by −1. �

Lemma A.14. Assume Λv < OEv is a non-maximal order, and denote the

residue characteristic by p. Then

#H1(G,Λ×v ) =

2 p > 2,

2µwild p = 2.

Moreover, when p > 2, the non-trivial cocycle of H1(G,Λ×v ) is represented

by −1 ∈ Λ
(1)
v .
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Proof. The short exact sequence of abelian G-modules

1→ Λ×v → O×Ev →
O×Ev/

Λ×v
→ 1

induces a long exact sequence of cohomology

1→ Z×v → Z×v →
Ç
O×Ev/

Λ×v

åG

→ H1(Qv,Λ×v )→ H1(Qv,O×Ev)→ H1

Ç
Qv,

O×Ev/
Λ×v

å
(65)

→ Z×v /
Nr Λ×v

→ Z×v /
NrO×Ev

. �

Because G acts on
O×Ev/

Λ×v
by inversion we see thatÇ

O×Ev/
Λ×v

åG

'
Ç
O×Ev/

Λ×v

å
[2],

H1

Ç
Qv,

O×Ev/
Λ×v

å
'
Ç
O×Ev/

Λ×v

å/ÇO×Ev/
Λ×v

å2

.

The second map in (65) is simply the identity, and we can truncate the

sequence (65) to an exact sequence

1→
Ç
O×Ev/

Λ×v

å
[2]

→ H1(Qv,Λ×v )→ H1(Qv,O×Ev)→
Ç
O×Ev/

Λ×v

å/ÇO×Ev/
Λ×v

å2

→ NrO×Ev/
Nr Λ×v

→ 1.

The second and the fifth groups above are non-canonically isomorphic,

and exactness implies

#H1(Qv,Λ×v ) = #H1(Qv,O×Ev) ·#
NrO×Ev/

Nr Λ×v
=

2 p > 2,

2µwild p = 2.

The second equality above follows from Lemmata A.13, A.5 and A.6.

We need only show that the cocycle of −1 ∈ Λ
(1)
v is not a coboundary if

p > 2. Assume in the contrary the −1 = x/ xσ for some x ∈ Λ×v . Then by

Lemma A.4 we know that

−1 =
x

xσ
≡ x

x
mod fvOEv ≡ 1 mod fvOEv ,

which is a contradiction because the residue characteristic is odd.
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Appendix B. Points on conics

B.1. Notation. In this section we denote by q(x, y) a primitive binary

integral quadratic form of discriminantD < 0 and defineQ(x, y) = q(x, y)−ωD
for some ω ∈ Z. We denote by XQ := SpecZ[x, y]/ 〈Q(x, y)〉 the affine plane

curve cutout by Q.

We shall also need the homogenized polynomial Q(x, y, z) = q(x, y) −
ωDz2. Denote by XQ := ProjZ[x, y, z]/

¨
Q(x, y, z)

∂
the projective completion

of the curve XQ. The plane curve XQ is an affine conic and XQ is a projective

conic.

B.2. Local diagonlization of binary quadratic forms.

Lemma B.1. For any prime p, the form q(x, y) is equivalent over Zp to a

form q′(x, y) with Zp coefficients and satisfying the following.

If p > 2 or p = 2 and D ≡ 0 mod 4, then q′(x, y) = ux2 + Ay2 is

diagonal. Moreover, we can assume u ∈ Z×p . If pl ‖ A, then we write A = uAp
l

for uA ∈ Z×p .

For p = 2 and D ≡ 1 mod 4,

q′(x, y) =

xy D ≡ +1 mod 8⇐⇒
Ä
D
2

ä
= +1,

x2 + xy + y2 D ≡ −3 mod 8⇐⇒
Ä
D
2

ä
= −1.

Proof. This is classical; cf. [Cas78, Ch. 8]. �

Remark B.2. Assume q corresponds to the ideal class [s] ∈ Pic(Λ) where

Λ is a quadratic order of discriminant D. If p > 2 and q′(x, y) = ux2 +Ay2 as

above, then
Ä
u
p

ä
= χp(Nr[s]), where χp is the genus class group character from

Proposition A.10. In particular, the class of u in Z×p /Z×p
2 depends only on [s]

mod Pic(Λ)2. By abuse of notation, for odd p | D we shall denote

χp(q) := χp(Nr[s]) =

Å
u

p

ã
.

Moreover, because D = −4uA, for p > 2 we have
Ä
uA
p

ä
=
(
−D/pl
p

)
χp(q) where

pl ‖ D.

B.3. Regular primes.

Proposition B.3. If p - ωD, then ρ̃Q(pk) = ρQ(pk) = ρQ(p)pk−1 and

ρQ(p) = p−
Å
D

p

ã
.

Proof. If p - D, then XQ and XQ have a smooth reduction modulo p. The

first claim is an application of Hensel’s lemma.
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The reduction of XQ is a smooth conic over a finite field and it is isomor-

phic to the projective line. In particular,
∣∣∣XQ

Ä
Z/pZ

ä∣∣∣ = p+ 1.

To calculate ρQ(p) =
∣∣∣XQ

Ä
Z/pZ

ä∣∣∣ we need to subtract the points of XQ

on the line at infinity z = 0. These are exactly the points on the projective

variety cutout by q(x, y), equivalently q′(x, y) from Lemma B.1. There are

either two or zero such points depending on the Kronecker symbol
Ä
D
p

ä
. �

B.4. Singular primes.

Lemma B.4. Let q0(x, y) ∈ Zp[x, y] be a homogeneous binary quadratic

form such that either q0(x, y) = u1x
2 + u2y

2 with u1, u2 ∈ Z×p or p = 2 and

q0(x, y) = xy or q0(x, y) = x2 + xy + y2.

Fix u3 ∈ Z×p . For any integer m ≥ 0, define

Qm(x, y) := q0(x, y)− u3p
m.

If p > 2 or p = 2 and q0 is not diagonal, then

ρQm(pn)

=


⌈n

2

⌉
pn−1

(
1−

(
disc(q0)

p

))
+ pnδn≡0 mod 2 + pn−1δn≡1 mod 2 n ≤ m,(

1 +
⌊m

2

⌋)
pn−1

(
1−

(
disc(q0)

p

))
+ pn

Ä
1− 1

p

ä
δm≡0 mod 2 n > m.

Otherwise if p = 2 and q0 is diagonal, then

ρQm(2n) ≤ min

Å°
n

2

§
, 1 +

õ
m

2

ûã
2n+3 + 2n.

Proof. Denote by ρ(pn : pm) the number of solutions to

(66) Qm(x, y) ≡ 0 mod pn.

Similarly, denote by ρ0(pn : pm) the number of solutions modulo pn reducing

to (0, 0) modulo p, and let ρ1(pn : pm) be the number of solutions not reducing

to zero modulo p.

Case I: m = 0. If p > 2 or p = 2 and q0(x, y) is not diagonal, then Q0(x, y)

defines a smooth affine conic modulo p. Subtracting the points on the line at

infinity from the projective conic we deduce

ρ(p : p0) = ρ1(p : p0) = p−
Ç

disc(q0)

p

å
.

Moreover, all these solutions are smooth, and in this case

ρ(pn : p0) = ρ1(pn : p0) = pn−1

Ç
p−

Ç
disc(q0)

p

åå
= pn−1

Ç
1−

Ç
disc(q0)

p

åå
+ pn

Å
1− 1

p

ã
.
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If p = 2 and q0 is diagonal, then ρ0(2n : 20) = 0 and for n ≤ 3, we use

the trivial bound ρ(2n : 20) ≤ 22n ≤ 2n+3. Hensel’s lemma in the strong form

implies for n ≥ 3 that ρ(2n : 20) = 2n−3ρ(23 : p0) ≤ 2n+3. We deduce that for

all n ≥ 1,

ρ(2n : 20) = ρ1(2n : 20) ≤ 2n+3.

Case II: n = 1, m ≥ 1 and ρ1 for n ≥ 1. If p > 2 or p = 2 and q0 is

not diagonal, then Q ≡ q0 mod p and q0 is a non-degenerate quadratic form

modulo p. We see that

ρ0(p : pm) = 1

ρ1(p : pm) = 1−
Ç

disc(q0)

p

å
.

Moreover, in this case all the solutions except (0, 0) are smooth, thus if m ≥ 1

and p > 2 or p = 2 and q0 is not diagonal, then

ρ1(pn : pm) = pn−1

Ç
1−

Ç
disc(q0)

p

åå
.

If m ≥ 1, p = 2 and q0 is diagonal, then the same arguments as in Case I

imply that

ρ0(2 : 2m) = 1,

ρ1(2n : 2m) ≤ 2n+3.

Case III: ρ0 for n ≥ 2, m ≥ 1. We proceed to compute ρ0(pn : pm) for

n ≥ 2, m ≥ 1. We need to count solutions to (66) of the form (x, y) = (px0, py0)

for (x0, y0) ∈ Z/pn−1Z × Z/pn−1Z. The pertinent (px0, py0) solve (66) if and

only if

(67) p2q0(x0, y0)− u3p
m ≡ 0 mod pn.

The first case to consider is n = 2, m ≥ 1. Then obviously

ρ0(p2 : pm) =

0 m = 1,

p2 m > 1.

If n ≥ 3 and m = 1, then (67) implies that

ρ0(pn : p1) = 0.

If n ≥ 3 and m ≥ 2, then (67) is equivalent to

q0(x0, y0)− u3p
m−2 ≡ 0 mod pn−2

and we have a recursion formula

ρ0(pn : pm) = p2ρ(pn−2 : pm−2).
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Finally we can use the recursion formula and the all the cases computed

above to deduce the claim. �

Proposition B.5. Fix a prime p | ωD, and set l := ordpD, m :=

ordp(4ω). For p > 2, define

ρ0
Q(p) :=


p−

(
D/pl

p

)
l ≡ 0 mod 2,

2p l ≡ 1 mod 2 and
Ä
ω
p

ä
= +χp(q),

0 l ≡ 1 mod 2 and
Ä
ω
p

ä
= −χp(q).

If n ≤ l, then for all primes p,

ρQ(pn) = pn+bn/2c.

If p > 2, n > l and p - ω, then

ρQ(pl) = pn+bl/2c ρ
0
Q(p)

p
.

If p > 2, n > l and p | ω, then set m = ordp(4ω):

ρQ(pn) = pn+dl/2e

·


(⌈

n−l
2

⌉
− (l mod 2)

)
1
p

(
1−

(
D/pl

p

))
+ δn≡l mod 2 + 1

pδn 6≡l mod p n− l ≤ m,(
1 +

⌊
m
2

⌋
− (l mod 2)

)
1
p

(
1−

(
D/pl

p

))
+
Ä
1− 1

p

ä
δm≡0 mod 2 n− l > m.

If p = 2 and n > l, then

ρQ(2n) ≤ 2n+dl/2e
ï
min

Å°
n− l

2

§
, 1 +

õ
m

2

ûã
23 + 1

ò
.

Proof. Let q′(x, y) := ux2 +Ay2 as in Lemma B.1. We solve the equivalent

equation Q′(x, y) := q′(x, y)− ωD ≡ 0 mod pn.

Case I: n ≤ ordpD. Because n ≤ ordpD, the equation Q′(x, y) ≡ 0

mod pn is equivalent to

ux2 ≡ 0 mod pn ⇐⇒ x ≡ 0 mod pdn/2e.

Equivalently, (x, y) ∈
Ä
Z/pnZ

ä
is a solution to Q(x, y) = 0 if and only if x ≡ 0

mod pdn/2e. The formula for ρQ(pn), n ≤ l, follows immediately.

Case II: n > ordpD. Any solution modulo pn must reduce to a solution

modulo pl; i.e., it must satisfy x ≡ 0 mod pdl/2e. Write x = pdl/2ex0, where

x0 ∈ Z/pn−dl/2eZ, and denote $ := l mod 2 ∈ {0, 1}. Then the equation

Q′(x, y) ≡ 0 mod pn is equivalent to

upl+2$x2
0 +Ay2 − ωD ≡ 0 mod pn

⇐⇒ up2$x2
0 + uAy

2 − 4ωuuA ≡ 0 mod pn−l,
(68)

where A = uAp
l and D = −4uA.
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Denote

q0(x0, y) := up2$x2
0 + uAy

2 − 4ωuuA ∈ Zp[x, y].

We have shown that the solutions of Q′(x, y) ≡ 0 mod pn are exactly the

residue classes of the form (pdl/2ex0, y) where (x0, y) ∈ Z/
pn−dl/2eZ ×

Z/pnZ
reduces to a root of q0(x0, y) modulo pn−l. In particular,

ρQ(pn) = pl−dl/2eplρq0(pn−l) = pl+bl/2cρq0(pn−l).

If $ ≡ 0 mod 2, then we can apply Lemma B.4 directly to q0 with m =

ordp(4ω).

If $ ≡ 1 mod 2, then we have two options. If p - 4ω, then q0 defines a

smooth affine conic modulo p. Computing explicitly and using Hensel’s lemma,

then we deduce

ρq0(p) =

2p
Ä
ω
p

ä
= +χp(q),

0
Ä
ω
p

ä
= −χp(q),

ρq0(pn−l) = pn−l
ρq0(p)

p
.

Otherwise, if p | 4ω, then reducing (68) modulo p we conclude that nec-

essarily y ≡ 0 mod p. Moreover, if n − l = 1, then ρq0(p) = p. Otherwise, if

n ≥ l + 2, we write y = py0 for y0 ∈ Z/pn−l−1Z.

Equation (68) is then equivalent to

up2x2
0 + uAp

2y2
0 − 4ωuuA ≡ 0 mod pn−l.

If m = ordp(4ω) = 1, then this equation has no solutions, i.e., ρq0(p) = 0.

If m ≥ 2, then define q1 := ux2
0 + uAy

2
0 − (4ω/p2)uuA. Then ρq0(pn−l) =

p3ρq1(pn−l−2), and apply Lemma B.4 to q1. �

Corollary B.6. The following bound holds for any prime power pn:

ρQ(pn) ≤ 16pn(2−1/2).

Corollary B.7. Let p | D, and set l = ordpD. Then if n ≤ l,

ρ̃Q(pn) =

pn+bn/2c
Ä
1− 1

p

ä
n ≡ 0 mod 2,

0 n ≡ 1 mod 2.

Assume next that p - 4ω. Then

ρ̃Q(pl) = pl+bl/2c
(

1−
ρ0
Q(p)

p2

)
and for n > l,

ρ̃Q(pn) = pn+bl/2c ρ
0
Q(p)

p

Å
1− 1

p

ã
.
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Proof. Notice that if p | D, then XQ

(
Z/pZ

)
has no smooth points. The

claim follows from Proposition B.5 and Lemma 9.3. �

Proposition B.8. Fix a prime p ‖ D and k ∈ {0, 1}. Assume p - 4ω. If

ε ∈ {±1}, then

(69)
∑

a∈
(Z/

p2−kZ
)×

;
(
a
p

)
=ε

ρQ(pka; p2) =


p4
Ä
1− 1

p

ä
k = 0, χp(q) = +ε,

0 k = 0, χp(q) = −ε,
p3

2

Ä
1− f

p

ä
k = 1,

where

f := 1 + ε

Ç
−D/p
p

å
χp(q) +

Å
ω

p

ã
χp(q).

Proof. Let q′(x, y) := ux2 + Ay2 as in Lemma B.1 and write A = uAp

where uA ∈ Z×p . Let uε ∈ Z×p such that
Ä
uε
p

ä
= ε. Define

V (x, y, w) := ux2 − uApy2 − 4ωuuAp− pkuεw2 ∈ Zp[x, y, w].

Consider the equation

(70) V (x, y, w) ≡ 0 mod p2.

The left-hand side of (69) is proportional to the number of solutions to (70)

satisfying w 6= 0 mod p. The proportionality constant is exactly the number

of solutions to pkuεw
2 ≡ pkuεw

2
0 mod p2 for any fixed unit w0. The latter

equation has 2pk solutions. In conclusion,∑
a∈
(Z/

p2Z
)×

;
(
a
p

)
=ε

ρQ(a; p2)

=
1

2pk
#

®
(x, y, w) ∈ Z/

p2Z×
Z/
p2Z×

Å
Z/
p2Z

ã×
| V (x, y, w) = 0

´
.

Equation (70) reduces modulo p to

(71) ux2 − pkuεw2 ≡ 0 mod p.

Case I: k = 0. All the solutions to equation (71) with w 6= 0 mod p are

smooth. There 0 such solutions if
Ä
uuε
p

ä
= −1 and 2p(p−1) solutions otherwise.

Using Hensel’s lemma we conclude that the number of solutions to (70) with

w 6= 0 mod p is 2p4
Ä
1− 1

p

ä
if χp(q) = +ε and 0 otherwise.

Case II: k = 1. Equation (71) implies that necessarily x ≡ 0 mod p.

Hence equation (70) is equivalent to

(72) uAy
2 − uεw2 − 4ωuuA ≡ 0 mod p.
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This is an equation of a smooth conic with p+ 1 projective solutions. The

are either two or zero solutions on the line at infinity depending on the sign of

ε
Ä
uA
p

ä
=

Å
uεu
−1
A
p

ã
. Hence the number of solutions to (72) is p− ε

Ä
uA
p

ä
.

We also need to subtract from the solutions of (72) the cases where w ≡ 0

mod p. Substituting 0 for w in (72) we see that there are either two or zero

such solution depending on the sign of
Ä
ωu
p

ä
.

We conclude that the number of relevant solutions to (70) is

p4
Å

1− f

p

ã
,

where f := 1 + ε
Ä
uA
p

ä
+
Ä
ωu
p

ä
. �
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[dlBT12] R. de la Bretèche and G. Tenenbaum, Moyennes de fonc-

tions arithmétiques de formes binaires, Mathematika 58 no. 2

(2012), 290–304. MR 2965973. Zbl 1284.11126. https://doi.org/10.1112/

S0025579311002154.

[BS91] M. Burger and P. Sarnak, Ramanujan duals. II, Invent. Math. 106

no. 1 (1991), 1–11. MR 1123369. Zbl 0774.11021. https://doi.org/10.

1007/BF01243900.

[Bur62] D. A. Burgess, On character sums and L-series, Proc. London Math.

Soc. (3) 12 (1962), 193–206. MR 0132733. Zbl 0106.04004. https://doi.

org/10.1112/plms/s3-12.1.193.

[Cas78] J. W. S. Cassels, Rational Quadratic Forms, London Math. Soc.

Monogr. 13, Academic Press, Inc. [Harcourt Brace Jovanovich, Publish-

ers], London-New York, 1978. MR 0522835. Zbl 0395.10029.

[Che04] T. Chelluri, Equidistribution of Roots of Quadratic Congruences,

ProQuest LLC, Ann Arbor, MI, 2004, Thesis (Ph.D.)–Rutgers The State

University of New Jersey - New Brunswick. MR 2717231. Available at

http://gateway.proquest.com/openurl?url ver=Z39.88-2004&rft val fmt=

http://www.ams.org/mathscinet-getitem?mr=1662256
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0918.14010
https://doi.org/10.1515/crll.1998.118
https://doi.org/10.1515/crll.1998.118
http://www.ams.org/mathscinet-getitem?mr=3489563
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1394.11059
https://doi.org/10.1090/conm/661/13287
https://doi.org/10.1090/conm/661/13287
http://www.ams.org/mathscinet-getitem?mr=2276196
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1159.11035
https://doi.org/10.4064/aa125-3-6
http://www.ams.org/mathscinet-getitem?mr=2965973
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1284.11126
https://doi.org/10.1112/S0025579311002154
https://doi.org/10.1112/S0025579311002154
http://www.ams.org/mathscinet-getitem?mr=1123369
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0774.11021
https://doi.org/10.1007/BF01243900
https://doi.org/10.1007/BF01243900
http://www.ams.org/mathscinet-getitem?mr=0132733
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0106.04004
https://doi.org/10.1112/plms/s3-12.1.193
https://doi.org/10.1112/plms/s3-12.1.193
http://www.ams.org/mathscinet-getitem?mr=0522835
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0395.10029
http://www.ams.org/mathscinet-getitem?mr=2717231
http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3153552
http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3153552


272 I. KHAYUTIN

info:ofi/fmt:kev:mtx:dissertation&res dat=xri:pqdiss&rft dat=xri:pqdiss:

3153552.

[COU01] L. Clozel, H. Oh, and E. Ullmo, Hecke operators and equidistribution

of Hecke points, Invent. Math. 144 no. 2 (2001), 327–351. MR 1827734.

Zbl 1144.11301. https://doi.org/10.1007/s002220100126.
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