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On the Gross–Stark Conjecture

By Samit Dasgupta, Mahesh Kakde, and Kevin Ventullo

Abstract

In 1980, Gross conjectured a formula for the expected leading term at

s = 0 of the Deligne–Ribet p-adic L-function associated to a totally even

character ψ of a totally real field F . The conjecture states that after scaling

by L(ψω−1, 0), this value is equal to a p-adic regulator of units in the abelian

extension of F cut out by ψω−1. In this paper, we prove Gross’s conjecture.

Contents

1. Introduction 834

1.1. Explicit formula for the regulator 837

1.2. Cohomological study of the conjecture 838

1.3. An infinitesimal eigenform 840

1.4. Construction of a cohomology class 841

2. Orthogonality between cohomology and units 843

3. Homomorphism on the Hida Hecke algebra 846

3.1. Notation on Hida families 846

3.2. Construction of a cusp form 848

3.3. Hecke action in Case 1: (R′ 6= φ) 849

3.4. Hecke action in Case 2: R′ = φ, ν1(W) 6= 0 853

3.5. Hecke action in Case 3: R′ = φ, ν1(W) = 0 855

4. Construction of a cohomology class 856

4.1. Representations associated to Hida families 857

4.2. Construction of the cohomology class 860

4.3. Interlude on the homomorphism ϕ 862

4.4. Local behavior of the cohomology class 863

5. Computation of the regulator 865

Keywords: Stark’s conjectures, p-adic L-functions, Hida families

AMS Classification: Primary: 11R42; Secondary: 11R80, 11F41, 11F80.

S.D. was supported by NSA Mathematical Sciences Program Grant H98230-15-1-0321.

M.K was supported by EPSRC First Grant EP/L021986/1.

c© 2018 Department of Mathematics, Princeton University.

833

http://annals.math.princeton.edu/about
https://doi.org/10.4007/annals.2018.188.3.3


834 SAMIT DASGUPTA, MAHESH KAKDE, and KEVIN VENTULLO

5.1. Proof of Lan(χ) = Rp(χ) in Cases 1, 2, and 3 865

5.2. Proof of Lan(χ−1) = Rp(χ
−1) in Case 3 867

References 869

1. Introduction

In 1980, Gross stated a beautiful and precise analog of Stark’s conjecture

for the behavior of p-adic L-functions at s = 0 ([11]). Let F be a totally real

field, and let

(1) χ : GF −→ Q
∗

be a totally odd character of the absolute Galois group of F . Let H denote

the CM, cyclic extension of F cut out by χ, i.e., the subfield of F fixed by

the kernel of χ. Let p be a prime integer. We fix once and for all embeddings

Q ↪→ C and Q ↪→ Cp, so χ may be viewed as taking values in C or Cp.

Here Cp denotes the completion of an algebraic closure of Qp. Consider the

L-function associated to χ with Euler factors at primes above p removed:

(2) L∗(χ, s) = L(χ, s) ·
∏
p|p

(1− χ(p)(Np)−s).

Here and throughout, we adopt the convention that χ(p) = 0 if p is rami-

fied in H/F , whereas χ(p) = χ(Frob(p, H/F )) if p is unramifed in H/F . Let

ω : GF −→ µp−1 (or µ2, if p = 2)

denote the Teichmüller character. There is a unique meromorphic (and as long

as χ 6= ω−1, analytic) p-adic L-function

Lp(χω, s) : Zp −→ Cp

determined by the interpolation property

(3) Lp(χω, n) = L∗(χωn, n) for n ∈ Z≤0.

A classical theorem of Siegel implies that the values L∗(χωn, n) for n ∈ Z≤0

are algebraic. Hence by our fixed embedding Q ↪→ Cp, we can view these

values as p-adic numbers. The existence of the p-adic L-function satisfying

the interpolation property (3) was proved independently by Deligne–Ribet [7]

and Cassou-Noguès [3] in the 1970s, and new approaches have been considered

recently in [4], [20] and [1].

We partition the set of primes above p in F as R ∪R′, where

R = {p | p : χ(p) = 1}, R′ = {p | p : χ(p) 6= 1}.

Since χ is totally odd, we have L(χ, 0) 6= 0, as can be proven from the functional

equation for L(χ, s) and the well-known fact that L(χ−1, 1) 6= 0. It follows that

ords=0 L
∗(χ, s) = rp(χ),
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since rp(χ) = #R is precisely the number of Euler factors above p in (2) that

vanish at s = 0. Motivated by this and the fact that Lp(χω, s) and L∗(χ, s)

agree on a dense set of integers p-adically approaching 0, Gross stated the

following conjecture regarding the order of vanishing of Lp(χω, s) at s = 0.

Conjecture 1 (Gross). We have

ords=0 Lp(χω, s) = rp(χ).

The inequality

(4) ords=0 Lp(χω, s) ≥ rp(χ)

can be shown to follow from Wiles’s proof of the Main Conjecture of Iwasawa

theory, at least for p 6= 2; for example, see [22, §2.1]. Recently a more direct

analytic proof of (4) that holds for all p was given in [4, Th. 3] and [20]. Note

that both of these latter papers use Spiess’s results on cohomological p-adic

L-functions proved in [19].

Even more strikingly, Gross stated a p-adic analog of Stark’s conjecture

that gives an exact formula for the leading term of Lp(χω, s) at s = 0. To

state this conjecture, we first recall Gross’s p-adic regulator Rp(χ).

Let c denote the unique complex conjugation of H. Let

logp : Q∗p −→ Zp

denote Iwasawa’s p-adic logarithm, normalized such that logp(p) = 0. If P is a

prime ideal of OH lying above p, we consider two continuous homomorphisms

oP = ordP : H∗P −→ Z,

`P = logp ◦NormHP/Qp
: H∗P −→ Zp.

Let U = OH [1/p]∗ denote the group of p-units of H, and let X be the

free abelian group on the set Sp of prime ideals of OH lying above p. The

abelian groups U and X are naturally modules for the group G = Gal(H/F ).

We consider the minus subspaces of these modules for the action of complex

conjugation:

U− = {u ∈ U : c(u) = u−1}, X− = {x ∈ X : c(x) = −x}.

Consider the two G-module homomorphisms

op : U− −→ X− op(u) = (oP(u))P∈Sp ,

`p : U− −→ X− ⊗ Zp `p(u) = (−`P(u))P∈Sp .

One verifies that after tensoring with Q, the map op induces a Q[G]-

module isomorphism

(5) U− ⊗Q
∼ // X− ⊗Q ;



836 SAMIT DASGUPTA, MAHESH KAKDE, and KEVIN VENTULLO

see for example [21, I.4]. Denote by E the finite extension of Qp generated by

the values of the character χ. We consider the χ−1-components of U− and X−:

Uχ = {u ∈ U− ⊗ E : σ(u) = uχ
−1(σ)},

Xχ = {x ∈ X− ⊗ E : σ(x) = χ−1(σ)x}.

The E-vector space Xχ has dimension rp(χ), and by (5) the same is true

for Uχ. After tensoring with E (over Z and Zp, respectively), the maps op and

`p induce E[G]-module homomorphisms

oχp , `
χ
p : Uχ −→ Xχ,

with oχp an isomorphism. In parallel with the classical Stark regulator (see [21,

I.4.5]), Gross’s regulator is defined by1

Rp(χ) = det(`χp ◦ (oχp )−1) ∈ E.

The following is often referred to as the Gross–Stark Conjecture. For

simplicity, we write r for rp(χ).

Conjecture 2 (Gross). We have

(6)
L

(r)
p (χω, 0)

r!L(χ, 0)
= Rp(χ)

∏
p∈R′

(1− χ(p)).

The equality (6) takes place in the field E. The statement of Conjecture 2

does not rely on Conjecture 1.

Gross proved both Conjectures 1 and 2 in the case F = Q; the proof of

Conjecture 2 follows by combining the formula of Gross–Koblitz [12], which

relates Gauss sums to the special values of the p-adic Gamma function, with

the theorem of Ferrero–Greenberg [9], which relates the derivative of Kubota–

Leopoldt p-adic L-functions to special values of the p-adic Gamma function.

This special case served as the motivation for the general formulation of Con-

jecture 2.

There has been further work on Conjecture 2. Federer and Gross proved

that when the order of χ divides p − 1, the p-adic valuations of the two sides

in Conjecture 2 are equal using the Iwasawa Main Conjecture [8, Prop. 3.10];

in particular, it follows that under this restrictive condition Conjecture 1 is

equivalent to the statement Rp(χ) 6= 0.2 Further partial evidence has been

discovered recently; see, for instance, [2, Ths. 3.1 and 5.2].

1This definition of Rp(χ) differs from the regulator Rp(χ) defined in [11] by the simple

factor (−1)rp(χ)
∏

p|p fp, with notation as in loc. cit. We have chosen our conventions to

agree with [5] in order to make the statement of Theorem 1 as clean as possible.
2We thank John Coates for informing us about this paper.
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For notational simplicity, define

Lan(χ) =
L

(r)
p (χω, 0)

r!L(χ, 0)
∏

p∈R′(1− χ(p))
.

The main result of this paper is a proof of the Gross–Stark Conjecture (Con-

jecture 2):

Theorem 1. We have Lan(χ) = Rp(χ).

In view of (4) and Theorem 1, it now follows unconditionally that Con-

jecture 1 is equivalent to Rp(χ) 6= 0. This fact is known for r ≤ 1. (See [11,

Prop. 2.13]; this observation leads to the proof of Conjecture 1 when F = Q,

as mentioned above.)

Theorem 1 was proved in the case r = 1 under certain assumptions by the

first author in joint work with H. Darmon and R. Pollack [5]. These assump-

tions were later removed by the third author [22]. At the time of publication of

[5], the first author believed the higher rank case to be unapproachable using

the methods of loc. cit. In the remainder of this introduction, we present a

detailed summary of the proof of Theorem 1, highlighting the obstacles that

appear when trying to generalize from r = 1 and describing the techniques

used to overcome them.

Remark 1.1. The fact that the endomorphism `χp ◦ (oχp )−1 of Uχ is canoni-

cally defined suggests the possibility that one can study its characteristic poly-

nomial and not just its determinant. In [6], the first author and M. Spiess

state a conjectural formula for this characteristic polynomial in terms of the

Eisenstein cocycle, generalizing the Gross–Stark Conjecture. This more gen-

eral conjecture remains open.

It is a pleasure to acknowledge the encouragement and suggestions of

a number of colleagues with whom we have discussed this problem over the

last decade. We are extremely grateful to Jöel Bellaiche, David Burns, Pierre

Charollois, Henri Darmon, Matthew Emerton, Ralph Greenberg, Haruzo Hida,

Chandrashekhar Khare, Masato Kurihara, Robert Pollack, Cristian Popescu,

and Michael Spiess for their advice and support.

1.1. Explicit formula for the regulator. As noted above, we have dimE Uχ
= r. Let u1, . . . , ur be an E-basis for Uχ. Write R = {p1, . . . , pr}. For each

pi ∈ R, consider the continuous homomorphisms

oi = ordpi : F ∗pi −→ Z,

`i = logp ◦NormFpi/Qp
: F ∗pi −→ Zp.

For each pi ∈ R, choose a prime Pi of H lying above pi. Then via

(7) OH [1/p] ⊂ H ⊂ HPi
∼= Fpi ,
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we can evaluate oi and `i on elements of OH [1/p]∗ and extend by linearity to

maps

oi, `i : OH [1/p]∗ ⊗ E −→ E.

Gross’s regulator is equal to the following ratio of determinants:

(8) Rp(χ) =
det(−`i(uj))i,j=1···r
det(oi(uj))i,j=1···r

∈ E.

It is clear that this ratio is independent of the chosen basis {ui}. Furthermore,

the ratio is independent of the choice of Pi since replacing Pi by σ(Pi) has

the effect of scaling the ith row of both matrices in (8) by χ(σ). Finally, one

sees that det(oi(uj)) 6= 0 since the Dirichlet unit theorem implies that the

χ−1-component of the group of pi-units of H is 1-dimensional for each pi ∈ R,

and hence for the appropriate basis {ui}, the matrix (oi(uj)) can be made to

equal the identity.

1.2. Cohomological study of the conjecture. For each place v of F , choose

a decomposition group Gv ⊂ GF , and let Iv ⊂ Gv be the associated inertia

group. This choice corresponds to an embedding F ⊂ F v for each place v and,

in particular, specifies a prime of H ⊂ F above v. We assume in the sequel that

the specified prime above pi for pi ∈ R is equal to the prime Pi used in (7).

If V is an E-vector space, we let V (χ−1) denote the E[GF ]-module in

which σ ∈ GF acts by multiplication by χ−1(σ). Let

H1
R(GF , E(χ−1)) ⊂ H1(GF , E(χ−1))

denote the subspace of continuous Galois cohomology classes κ unramified

outside R, i.e., those classes κ such that resIv κ ∈ H1(Iv, E(χ−1)) is trivial for

all v 6∈ R. Note that for each prime pi ∈ R, we have χ(Gpi) = 1 and hence

H1(Gpi , E(χ−1)) = H1(Gpi , E) = Homcts(Gpi , E) ∼= Homcts(F̂ ∗pi , E),

where the last isomorphism invokes the reciprocity isomorphism of local class

field theory3

(9) recpi : F̂
∗
pi −→ Gab

pi .

Here F̂ ∗pi = lim←−m F
∗
pi/(F

∗
pi)

m denotes the profinite completion of F ∗pi . Since oi
and `i are continuous maps for the topology on F ∗pi defined by the subgroups

3Throughout this article, we adopt Serre’s conventions [17] for the local reciprocity map.

Therefore, if u ∈ O∗Fp
, then εcyc(rec(u)) = NormOFp/Zp u, where εcyc is the usual cyclotomic

character defined in (26), and rec($−1) is a lifting to Gab
p of the Frobenius element on the

maximal unramified extension of Fp if $ ∈ F ∗p is a uniformizer.
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(F ∗pi)
m, we obtain continuous homomorphisms.

oi : F̂ ∗pi −→ Ẑ −→ Zp,

`i : F̂ ∗pi −→ Zp.

Define the subspace of “cyclotomic classes”

H1
cyc(χ) ⊂ H1

R(GF , E(χ−1))

to be the set of κ such that for pi ∈ R, the restriction respi κ ∈ H1(Gpi , E)

lies in the E-span of oi and `i, viewing these as continuous homomorphisms

F̂ ∗pi −→ E. Then dimE H
1
cyc(χ) = r. (This is a straightforward generalization

of [5, Lemma 1.5].) Let κ1, . . . , κr be a basis, and for each pj ∈ R, write

respj κi = xijoj + yij`j ,

where xij , yij ∈ E. Inspired by R. Greenberg’s study of exceptional zeroes [10],

we define

Lalg(χ) =
det(xij)i,j=1···r
det(yij)i,j=1···r

.

Using the above mentioned generalization and the fact that κ1, . . . , κr are

linearly independent, it can be shown that det(yij)i,j=1···r 6= 0.

We now relate this algebraic L -invariant to the unit group Uχ. Let κ ∈
H1
R(GF , E(χ−1)). Extending by E-linearity, we can view respi κ as a continuous

homomorphism

respi κ : F̂ ∗pi ⊗ E −→ E.

We prove the following orthogonality result regarding H1
R(GF , E(χ−1)) and Uχ

in Section 2.

Proposition 1. Let κ ∈ H1
R(GF , E(χ−1)) and u ∈ Uχ. Viewing u as an

element of F̂ ∗pi ⊗ E via (7), we have

(10)
r∑
i=1

(respi κ)(u) = 0.

Using Proposition 1, one readily proves that

Lalg(χ) = Rp(χ).

When r = 1 (say R = {p}), Conjecture 2 is therefore equivalent to the exis-

tence of a nonzero class κ ∈ H1
cyc(χ) such that resp κ = Lan(χ)op + `p. The

construction of such a class is carried out in [5] and [22]. The natural general-

ization of this strategy for r > 1 is to construct r linearly independent classes

in H1
cyc(χ) and to use them to compute Lalg(χ). However, despite much effort,

we do not in fact know how to construct even a single cyclotomic cohomology
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class in the general case. The construction for r = 1 relies crucially on the

injectivity of the local restriction

(11) H1
R(GF , E(χ−1)) −→ H1(Gp, E)

when R = {p}, which in general fails for fixed p ∈ R if r > 1.

As described below, in the general case we are still able to construct a

class

κ ∈ H1
R(GF , B(χ−1))

for some E-vector space B with partial knowledge about the local restrictions

respi κ. Our method of proof involves abandoning the hope of constructing

cyclotomic classes and calculating Lalg(χ). Instead, we directly use the or-

thogonality (10) with κ and a basis of Uχ. We describe below how the result-

ing equations can be used to prove that Lan(χ) = Rp(χ). First we describe

the mechanism through which the analytic L -invariant Lan(χ) appears in our

work and the construction of the cohomology class κ.

1.3. An infinitesimal eigenform. Our technique for constructing a coho-

mology class related to p-adic L-functions is Ribet’s method, which first ap-

peared in [16] and was later used to great effect by Mazur and Wiles to prove

the Main Conjecture of Iwasawa theory [15], [24]. We consider the space of cus-

pidal Hida families of Hilbert modular forms for F with tame level n = cond(χ),

and we let T denote its Hecke algebra over Λ = OE [[T ]].

In [5], a certain linear combination of products of Eisenstein series was

used to construct a cuspidal Hida Family F that specializes in weight 1 to

the Eisenstein series E1(1, χS). Here χS denotes the character χ viewed with

modulus divisible by all primes in S, so the Eisenstein series E1(1, χS) is the

stabilization of the classical weight 1 form E1(1, χ) at all primes p above p with

Up-eigenvalue equal to 1. In the case r = 1 considered in loc. cit., the form F
remains an eigenform in an infinitesimal neighborhood of weight 1, yielding a

Λ-algebra homomorphism

ϕ : T −→ E[T ]/T 2,

t 7−→ a1(t ·F ) (mod T 2).
(12)

We fix a topological generator u ∈ 1 + 2pZp and normalize our conventions so

that for k ∈ Zp, setting T = uk−1 − 1 corresponds to specializing in weight k;

in particular, T = 0 corresponds to weight k = 1. The explicit nature of the

construction of F allows us to calculate

(13) ϕ(Tl) = 1 + χ(l) logp〈Nl〉π, where π :=
1

logp(u)
T,

for primes l of F such that l - np. (Here and throughout, 〈x〉 = x/ω(x) for

x ∈ Z∗p.) The p-adic L-function Lp(χω, 1 − k) occurs as the constant term of
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one of the Eisenstein series used in the construction of F , and as a result an

explicit computation shows that

(14) ϕ(Up) = 1 + Lan(χ)π.

(Equations (13) and (14) hold if R′ is nonempty; if R′ is empty, then slightly

modified equations hold.)

In the general case, it is natural to attempt to construct a Λ-algebra

homomorphism T −→ E[T ]/T r+1 analogous to (12). However, the form F
constructed in [5] is not an eigenform modulo T r+1, and it is unclear if the

construction can be modified to define such an eigenform. The key idea to

circumvent this problem, drawn from [22], is to simply study the Hecke orbit

of the form F . Modulo T r+1, this orbit is not 1-dimensional over Λ/T r+1, but

it is still finite dimensional and explicitly computable. Therefore, we obtain a

representation of T into a finite-dimensional E-algebra, namely, the endomor-

phism ring over E of the space of Fourier expansions modulo T r+1 of the forms

in the Hecke orbit of F . These arguments are explained in detail in Section 3,

culminating with the proof of the following theorem and its generalizations

needed to handle all cases.

Let ε : GF −→ Λ∗ denote the Λ-adic cyclotomic character; see (27) below.

Write

ran = ran(χ) = ords=0 Lp(χω, s),

L ∗
an(χ) =

L
(ran)
p (χ, 0)

ran!L(χ, 0)
∏

p∈R′(1− χ(p))
.

(Of course, Conjecture 1 states that ran = r and hence L ∗
an(χ) = Lan(χ), but

we are not assuming this conjecture.)

Theorem 2. Suppose R′ is nonempty, and write R = {p1, . . . , pr}. There

exists a Λ-algebra homomorphism

ϕ : T −→W = E[π, ε1, . . . , εr]/(π
ran+1, ε2

i , εiπ, ε1ε2 · · · εr+(−1)ranL ∗
an(χ)πran)

such that Tl 7→ 1 +χε(l) for l - np, Ul 7→ 1 for l | n or l ∈ R′, and Upi 7→ 1 + εi.

If R′ is empty, we construct a slightly more complicated homomorphism.

Note that W is a local ring with maximal ideal mW = (T, ε1, . . . , εr).

1.4. Construction of a cohomology class. Let m ⊂ T denote the kernel of

the composition of ϕ with the canonical projection

W −→W/mW
∼= E.

Let L = Frac(T(m)) denote the total ring of fractions of the localization of T

at the prime ideal m. Theorems of Wiles and Hida imply the existence of a
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continuous irreducible Galois representation

ρ : GF −→ GL2(L),

σ 7→
Ç
a(σ) b(σ)

c(σ) d(σ)

å
that is unramified outside np and such that for primes l - np, the characteristic

polynomial of ρ(Frobl) is

(15) char(ρ(Frobl))(x) = x2 − T lx+ χε(l),

where T l denotes the image of Tl in L.

Let B denote the T-module generated by the b(σ). Using the fact that

ϕ(Tl) = 1+χε(l) together with (15), we show that after choosing an appropriate

basis for ρ, the map

κ : GF −→ B = B/mB

given by κ(σ) = b(σ) · χ−1(σ) is a cocycle yielding a cohomology class in

H1(GF , B(χ−1)). For all q | p, the representation ρ|Gq is known to be reducible

with a certain specified semi-simplification. This can be used to show that κ

is unramified outside R.

In the case r = 1, the injectivity of the restriction map (11) can be used to

show that after rescaling by a certain element of L, we have B ⊂ m. Applying

the homomorphism ϕ to the cocycle κ yields a class κϕ ∈ H1
p (GF , E(χ−1)).

The known shape of the local representation ρ|Gp can be used to prove that κϕ
is cyclotomic. Using equation (14), one shows that resp κ = Lan(χ) · op + `p,

giving the desired result Lalg(χ) = Lan(χ).

In the case r > 1, there is an unknown constant xi ∈ L for each place pi
such that we have a formula for the restriction of the function xib(σ) to Gpi .

In particular, we can show that xib(Gpi) ⊂ m. However, the failure of the

injectivity of (11) appears to make it impossible to deduce that xiB ⊂ m. In

fact, for r ≥ 3, we believe that this is false.4 In particular, we are unable to

show that the cohomology class κ is cyclotomic.

As mentioned above, our new method is to apply the orthogonality (21)

with κ and a basis {ui} of Uχ. We obtain r equations
r∑
j=1

(respj κ)(ui) = 0

in B. This implies that

(16) det((respj κ)(ui)) = 0

4If r = 2 and Fpi
∼= Qp for i = 1, 2, then the injectivity of (11) does hold, and one can

give a proof of Theorem 1 in this special case using Theorem 2 and methods analogous to

those of [5].
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in BR/mBR since it is the determinant of a matrix whose rows all sum to 0,

where BR is the T-module generated by products b(σ1) · · · b(σr) with σi ∈ Gpi .

The fact that xib(Gpi) ⊂ m implies that (
∏r
i=1 xi)BR ⊂ mr, and scaling (16)

by
∏r
i=1 xi yields an equation in mr/mr+1. We can apply the homomorphism

ϕ to this equation to yield a formula in the 1-dimensional E-vector space

mr
W = E · T r. An explicit computation shows that when ran = r, this equality

is

(17) (−1)r+1Lan(χ) · det(oi(uj)) + det(`i(uj)) = 0.

Equation (17) is equivalent to the desired result Lan(χ) = Rp(χ). (When

ran > r, we obtain Rp(χ) = 0, which is the desired result in this conjecturally

vacuous case.)

2. Orthogonality between cohomology and units

Let V be an E-vector space. Recall that H1
R(GF , V (χ−1)) denotes the

group of cohomology classes unramified outside R. We begin by proving Propo-

sition 1 stated in the introduction.

Proposition 2.1. Let κ ∈ H1
R(GF , V (χ−1)) and u ∈ Uχ. We have

r∑
i=1

(respi κ)(u) = 0.

We will provide two proofs. The first is more conceptual and invokes

Poitou–Tate duality and the Kummer isomorphism, though we state without

proof certain identifications that are needed. The second proof is rather more

direct and relies only on class field theory.

Proof 1 of Proposition 2.1. As explained in [5, Prop. 1.4], Hilbert’s The-

orem 90 yields isomorphisms5

δ : (H∗⊗̂E)χ
−1 ∼= H1(GF , E(χ)(1)),(18)

δv : (H∗w⊗̂E)χ
−1 ∼= H1(Gv, E(χ)(1)).(19)

Define

H1
R(GF , E(χ)(1)) ⊂ H1(GF , E(χ)(1))

to be the subspace of classes κ such that resv κ ∈ H1(Gv, E(χ)(1)) lies in the

image of (O∗H,w⊗̂E)χ
−1

under δv for each v 6∈ R. It is then clear that (18)

induces an isomorphism

(20) δ : Uχ ∼= H1
R(GF , E(χ)(1)).

5In (18), H∗⊗̂E = (lim←−(H∗ ⊗OE/pn))⊗OE E, and similarly in (19).



844 SAMIT DASGUPTA, MAHESH KAKDE, and KEVIN VENTULLO

Recall that for each place pi ∈ R, there is a perfect Tate duality pairing

〈 , 〉pi : H1(Gpi , E(χ)(1))×H1(Gpi , E(χ−1)) // E.

It follows from Poitou-Tate duality that the images of H1
R(GF , V (χ−1)) and

H1
R(GF , E(χ)(1)) under the product of the restriction maps respi are orthogo-

nal under the local Tate duality map

(21)

〈 , 〉R :
∏r
i=1H

1(Gpi , V (χ−1))×∏r
i=1H

1(Gpi , E(χ)(1))

∑
〈 , 〉pi // V.

The desired result follows from this orthogonality and the fact that

�(22) 〈κ, δ(u)〉pi = (respi κ)(u).

We now present an alternate and more direct proof of (10) using only

general facts from class field theory.

Proof 2 of Proposition 2.1. Since H is the fixed field of χ, the restriction

of κ to GH yields a class

resH κ ∈ H1(GH , V (χ−1))G = Homcts(GH , V )χ
−1
,

where the group on the right is the E-vector space of continuous group homo-

morphisms f : GH → V such that

(23) f(σhσ−1) = χ−1(σ)f(h) for σ ∈ GF , h ∈ GH .

Since κ is unramified outside R, the homomorphism resH κ is trivial on the

inertia group Iw ⊂ Iv for each place v 6∈ R, where w is the place of H specified

by the choice of Gv. From (23), it follows that resH κ is trivial on the inertia

group Iw for every place w 6∈ RH , where RH denotes the set of places of H

lying above those in R. Therefore, the homomorphism resH κ factors through

the maximal abelian extension of H unramified outside RH , which we denote

by K. By class field theory, we have an isomorphism

(24) rec : A∗H/H
∗
∏

w 6∈RH

O∗H,w −→ Gal(K/H),

where AH is the ring of adeles of H and by convention O∗H,w = C∗ if w is a

complex place.

Let u ∈ O∗RH , the group of RH -units of H. The idèle

πu = (u, u, . . . , u, 1, 1, . . . )

with component 1 at each w 6∈ RH and component u at each w ∈ RH is clearly

trivial in the quotient (24). The fact that resH κ factors through Gal(K/H)
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therefore implies that

0 = (resH κ)(1) = (resH κ)(rec(πu))

=
∑
w∈RH

(resw κ)(u) =
r∑
i=1

∑
σ∈G

(resσ(Pi) κ)(u).

Equation (23) implies that

resσ(Pi)(u) = χ−1(σ) resPi(σ
−1(u)),

and noting that via (7) we have resPi = respi , we obtain

r∑
i=1

(respi κ)(uχ) = 0 where uχ =
∑
σ∈G

σ(u)⊗ χ(σ).

Since elements of the form uχ for u ∈ O∗RH generate the E-vector space Uχ,

the desired result follows. �

We conclude this section by proving a crucial injectivity result from global

to local cohomology groups.

Proposition 2.2. Let V be an E-vector space. The restriction map

r∏
i=1

resIpi : H1
R(GF , V (χ−1)) −→

r∏
i=1

H1(Ipi , V )

is injective.

As mentioned in the introduction, the fact that in the general case this

injectivity fails to hold when
∏r
i=1 resIpi is replaced by a single resIpi (or even

a single respi) represents an important distinction from the rank 1 setting.

Proof. The proposition states that there are no nonzero classes in the

cohomology group H1(GF , V (χ−1)) that are unramified everywhere. To see

this, first note that the restriction map

resH : H1(GF , V (χ−1)) −→ H1(GH , V )χ
−1

is an isomorphism, since the preceding and following terms in the inflation-

restriction exact sequence are the groups H i(G,V (χ−1)) for i = 1, 2. These

groups vanish sinceG = Gal(H/F ) is finite and the E-vector space V is torsion-

free.

If κ is unramified everywhere, then as in the second proof of Proposi-

tion 2.1 we see that resH κ factors through the maximal abelian unramified

extension of H. Since this extension (the Hilbert class field of H) is a finite

extension of H, it follows that resH κ = 0 once again using the fact that V is

torsion-free. The fact that resH is an isomorphism then implies that κ = 0 as

desired. �
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3. Homomorphism on the Hida Hecke algebra

Our goal in this section is to prove Theorem 2 from the introduction and

its various generalizations that are needed to handle all cases. This involves

rather technical computations involving the Hecke action on certain explicitly

defined Hida families. The reader who is willing to take Theorem 2 as a black

box and is interested in the deduction of the equality Lan(χ) = Rp(χ) from

this theorem can skip ahead to Section 4 without any loss of continuity.

We first recall the notation and conventions of [5, §§2 and 3] and [22] for

Hida families of Hilbert modular forms for F .

3.1. Notation on Hida families. Let Λ = OE [[T ]] where, as in the intro-

duction, E is a finite extension of Qp containing the values of the character χ.

For each k ∈ Zp, we have a “specialization to weight k” OE-algebra homomor-

phism

(25) νk : Λ −→ OE given by T 7→ uk−1 − 1,

where u is a topological generator of 1 + 2pZp. (For instance, we may choose

u = 1+p if p is odd and u = 5 if p = 2.) Under this convention, specialization to

weight 1 corresponds to the augmentation map T 7→ 0. Let Λ(1) = OE [[T ]](T )

denote the localization of Λ in weight 1, i.e., the localization of Λ with respect to

the prime ideal (T ) = ker ν1. Note that p is invertible in Λ(1) so, in particular,

Λ(1) is an E-algebra. Furthermore, Λ(1) is a DVR and we choose the uniformizer

π =
1

logp u
T.

This uniformizer is normalized to have the following property making trans-

lation between the k-variable and the π-variable straightforward. Suppose

h ∈ Λ(1) can be written h = πnh′ where h′ ∈ Λ∗(1), and let f : U → E be defined

for a sufficiently small neighborhood U ⊂ Zp containing 1 by f(k) = νk(h).

Then f has a zero of order n at k = 1 and

f (n)(1)/n! = ν1(h′).

Next we recall the Λ-adic cyclotomic character. This is the character

ε : GF → Λ∗ satisfying νk(ε(σ)) = 〈εcyc(σ)〉k−1 for any k ∈ Zp. Here

(26) εcyc : GF −→ Z∗p

is the usual cyclotomic character defined by σ(ζ) = ζεcyc(σ) for any p-power

root of unity ζ. The character ε is given explicitly by the formula

(27) ε(σ) = (1 + T )logp〈εcyc(σ)〉/ logp u.

Recall that n denotes the conductor of the character χ. We denote by

M(n, χ) the Λ-module of Λ-adic Hilbert modular forms for F with tame level
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n and character χ. For each F ∈ M(n, χ) and integer k ≥ 2, the special-

ization νk(F ) lies in the space Mk(np, χω
1−k) of Hilbert modular forms for

F of weight k, level np, and character χω1−k. The subspace of cusp forms in

M(n, χ) is denoted S(n, χ). The Λ-moduleM(n, χ) is equipped with an action

of Hecke operators Tl for primes l - np and Ul for l | p. Following Hida, we let

e = lim
n→∞

Ñ∏
p|p
Up

én!

be the ordinary projector and denote by

Mo(n, χ) = eM(n, χ), So(n, χ) = eS(n, χ)

the spaces of Hida families and cuspidal Hida families, respectively. We denote

by T̃ and T the Λ-algebras of Hecke operators acting onMo(n, χ) and So(n, χ),

respectively.

Of particular interest to us will be the Eisenstein series. Let k ≥ 1 be an

integer, and let η be a narrow ray class character of F such that η is totally

odd or totally even, with parity agreeing with k. Let b denote the modulus

of η, which we do not assume to equal the conductor of η; i.e., η need not be a

primitive character. Excluding the exceptional case where F = Q, k = 2, and

b = 1, there is an Eisenstein series Ek(1, η) with normalized Fourier coefficients

given by

c(a, Ek(1, η)) =
∑

r|a,(r,b)=1

η(r)Nrk−1

for integral ideals a ⊂ OF and constant coefficients (assuming b 6= 1 or k 6= 1)6

cλ(0, Ek(1, η)) = 2−[F :Q]Lb(η, 1− k), λ ∈ Cl+(F ),

where the subscript b emphasizes that the Euler factors at primes dividing

b are removed. (For details regarding our conventions on Hilbert modular

forms and their Fourier coefficients, see [5, §2].) These classical Hilbert mod-

ular forms interpolate p-adically in the sense that there is an Eisenstein series

E (1, χ) ∈ Mo(n, χ) such that νk(E (1, χ)) = Ek(1, χω
1−k) for all k ≥ 1, where

the character χω1−k is understood to always have modulus divisible by all

primes above p (even if k ≡ 1 (mod p − 1)). The constant coefficients of

νk(E (1, χ)) can be expressed as 2−[F :Q]Lp(χω, 1− k).

6If b = 1 and k = 1, the constant coefficients are given by

cλ(0, E1(1, η)) = 2−[F :Q](L(χ, 0) + χ−1(λ)L(χ−1, 0)).
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3.2. Construction of a cusp form. We now recall the construction of a

certain Hida family of cusp forms from [5] and [22]. For any integer k, we let

Λ(k) = Λ(T−uk−1+1) denote the localization of Λ in weight k, i.e., the localization

at the prime ideal (T−uk−1+1) = ker νk. Similarly we letMo(1, ω−1)(k) denote

the localization of the space of Hida families of modular forms with respect to

weight k, i.e.,

Mo(1, ω−1)(k) =Mo(1, ω−1)⊗Λ Λ(k).

Lemma 3.1 ([22, Th. 2]). There exists a Hida family G ∈ Mo(1, ω−1)(0)

with the property that ν0(G ) = 1 and cλ(0,G ) = 1 for all λ ∈ Cl+(F ).

Lemma 3.1 was proved in [5] under the assumption of Leopoldt’s conjec-

ture using Eisenstein series, but it was demonstrated unconditionally in [22].

We write

Gk = νk(G ) ∈Mk(p, ω
−k).

Now, for each integer k ≥ 1, we define a modular form Fk ∈ Mk(np, χω
1−k).

If R′ is not empty (we call this Case 1), let

(28) Fk = Ek(1, χω
1−k)− E1(1, χR′) ·Gk−1 ·

Lp(χω, 1− k)

L(χR′ , 0)
.

Here χR′ denotes the character χ viewed with modulus divisible by all primes

in R′, so

L(χR′ , 0) = L(χ, 0)
∏
p∈R′

(1− χ(p))

is equal (up to the constant 2−[F :Q]) to the value of the constant terms of

E1(1, χR′). By construction, Fk has constant terms equal to 0. If R′ is empty

(this setting will be subdivided further into two cases, Case 2 and Case 3), we

let

Fk = Ek(1, χω
1−k)− E1(1, χ) ·Gk−1 ·

Lp(χω, 1− k)

L(χ, 0)

+ Ek(χ, ω
1−k) · Lp(χω, 1− k)

L(χ, 0)
· L(χ−1, 0)

Lp(χ−1ω, 1− k)
.

(29)

Again Fk has constant terms equal to 0.

The forms Fk interpolate to Hida families. Note that

νk(G ((1 + T )u−1 − 1)) = νk−1(G (T )).

Therefore, in Case 1 the Λ-adic family

F̃ = E (1, χ)− E1(1, χR′)G ((1 + T )u−1 − 1)) · L(χω)

L(χR′ , 0)
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satisfies νk(F̃ ) = Fk for all positive integers k in a neighborhood of 1 in Zp,

where L(χω) ∈ Λ(1) is the element such that νk(L(χω)) = Lp(χω, 1 − k).

Similarly, if R′ = φ, we define

(30) F̃ = E (1, χ)− E1(1, χ) · G ((1 + T )u−1 − 1)) · L(χω)

L(χ, 0)
+ E (χ, 1) · W,

where

W =
L(χω)

L(χ−1ω)
· L(χ−1, 0)

L(χ, 0)
∈ Frac(Λ)

satisfies

(31) νk(W) =
Lp(χω, 1− k)

L(χ, 0)
· L(χ−1, 0)

Lp(χ−1ω, 1− k)

for all k ∈ Zp with Lp(χ
−1ω, 1 − k) 6= 0. In our calculations, we will require

that the Λ-adic form F̃ is regular in weight 1, i.e., F̃ ∈Mo(n, χ)(1). This will

be the case unless W has a pole in weight 1, i.e., if

ordπW = ran(χ)− ran(χ−1) < 0.

(Of course, Conjecture 1 implies that ran(χ) = r(χ) = rχ−1 = ran(χ), so

it should be the case that ordπW = 0; however we are proving Conjec-

ture 2 without assuming Conjecture 1, so we need to consider the possibility

ordπW < 0.) Now, swapping χ and χ−1 has the effect of inverting W. There-

fore, in the case that W has a pole at k = 1, it suffices instead to assume that

W has a zero at k = 1 and to prove Conjecture 2 for χ−1 (i.e., to prove that

Lan(χ−1) = Rp(χ
−1)). Therefore, we assume that ordπW ≥ 0 and subdivide

the setting R′ = φ into two cases:

• Case 2: ν1(W) 6= 0; we must prove Rp(χ) = Lan(χ).

• Case 3: ν1(W) = 0; we must prove Rp(χ) = Lan(χ) = 0 and Rp(χ
−1) =

Lan(χ−1).

Now, the Λ-adic family of modular forms F̃ has been constructed such

that its constant coefficients at ∞ vanish—in the terminology of [16], F̃ is

a “semi-cusp form.” The following result was proved in [5, Cor. 2.10 and

Prop. 3.4].

Theorem 3.2. There exists a Hecke operator t in the Hecke algebra T̃(1)

such that F = t · e · F̃ is a cuspidal Hida family, i.e., F ∈ So(n, χ)(1).

3.3. Hecke action in Case 1: (R′ 6= φ). We now study the action of the

Hecke operators on the form F . The action of the Hecke operators above p is

more complicated than the setting r = 1 considered in [5], and our methods

here draw from those introduced in [22].
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Any Hida family is determined by its Fourier expansion; there is a canon-

ical Λ-algebra embedding

c : So(n, χ)(1) −→
∏

a⊂OF

Λ(1), H 7→ (c(a,H ))a⊂OF .

Recall the definition of ran and L ∗
an(χ) given in (2).

We define H to be the image of the Hecke orbit of F under the reduction

of c modulo πran+1. This is a finitely-generated module over Λ(1)/π
ran+1 =

E[π]/πran+1, and we obtain a canonical Λ-algebra homomorphism

(32) ϕ : T −→ EndE[π]/πran+1 H.

By identifying the image of (32), we can now prove Theorem 2 from the intro-

duction.

Theorem 3.3. Suppose R′ is nonempty. There exists a Λ-algebra homo-

morphism

ϕ : T −→W1 =E[π, ε1, . . . , εr]/(π
ran+1, ε2

i , εiπ, ε1ε2 · · · εr+(−1)ranL ∗
an(χ)πran)

such that

Tl 7→ 1 + χε(l) for l - np,
Ul 7→ 1 for l | n or l ∈ R′, and

Upi 7→ 1 + εi, R = {p1, . . . , pr}.

Proof. By definition, πran fully divides L(χω) in Λ(1). Since ν0(G ) = 1,

it follows that modulo πran+1 we can write the second term appearing in the

definition of F̃ more simply; namely,

F ′ = E1(1, χR′)G ((1 + T )u−1 − 1)) · L(χω)

L(χR′ , 0)

≡ (−1)ranE1(1, χR′)L
∗
an(χ)πran (mod πran+1).

(33)

To be clear, this congruence means that the two sides have Fourier coefficients

that are congruent modulo πran+1. In particular, modulo πran+1 the Hecke

action on F ′ depends only on the action on the form E1(1, χR′). More precisely,

if τ ∈ T̃, then we have

(34) τF ′ ≡ (−1)ranν1(τ)(E1(1, χR′)) ·L ∗
an(χ)πran (mod πran+1).

Let us therefore study the action of the Hecke operators on E1(1, χR′). We

have

TlE1(1, χR′) = (1 + χ(l))E1(1, χR′), l - np,
UlE1(1, χR′) = E1(1, χR′), l | n or l ∈ R′.
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The action of the operators Up for p ∈ R is more subtle and leads to an

interesting phenomenon. A direct calculation shows that for p ∈ R, we have

UpE1(1, χR′) = E1(1, χR′) + E1(1, χR′∪{p}).

More generally, for R′ ⊂ J ⊂ Sp and p ∈ Sp, we have

(35) (Up − 1)E1(1, χJ) =

E1(1, χJ∪{p}) if p 6∈ J,
0 if p ∈ J.

Note that for l - np, we have Tl(E (1, χ)) = (1 + χε(l))E (1, χ). Since

1 + χε(l) ≡ 1 + χ(l) (mod π),

it follows from (34) and the definition of F̃ that modulo πran+1, the Hecke

operator Tl acts as multiplication by the scalar 1 + χε(l) on F̃ . By the com-

mutativity of the Hecke algebra, the same is clearly true for F and its entire

Hecke orbit H. The same argument shows that Ul for l | n or l ∈ R′ acts as

the identity on H. Therefore, the homomorphism (32) satisfies

ϕ(Tl) = 1 + χε(l) for l - np,(36)

ϕ(Ul) = 1 for l | n or l ∈ R′.(37)

Recall that R = {p1, . . . , pr}. For pi ∈ R, the operator Upi − 1 annihilates

E (1, χ). It follows from this along with (33) that π annihilates the image of

(Upi − 1)F in H. Similarly using (34) and (35), it follows that the image of

(Upi − 1)2F is 0 in H. If we let εi denote the image of Upi − 1 under the

homomorphism ϕ given in (32), it is therefore clear that

(38) ε2
i = 0 and εi · π = 0 for all i.

Finally, we consider the action of
∏r
i=1(Upi − 1). We have

r∏
i=1

(Upi − 1)F ≡ t · e((−1)ran+1E1(1, χS)L ∗
an(χ)πran) (mod πran+1)

≡ t · e((−1)ran+1L ∗
an(χ)πranE (1, χ)) (mod πran+1)

≡ (−1)ran+1L ∗
an(χ)πranF (mod πran+1).

Therefore, we have

(39) ε1 · · · εr + (−1)ranL ∗
an(χ)πran = 0 in EndE[π]/πran+1 H.

Combining (36)–(39), we have therefore proved that there is a surjective

Λ(1)-algebra homomorphism

W1 −→ ϕ(T)⊗OE E

such that εi 7→ εi. To conclude the proof, we must show that this homomor-

phism is injective. This can be achieved by counting dimensions. The algebra

W1 has dimension 2r +ran−1 over E, and it is generated as an E-vector space
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by 1, π, π2, . . . , πran−1 and the products
∏
j∈J εj for all subsets J ⊂ R, J 6= φ.

We must therefore show that the elements 1, π, π2, . . . , πran−1 and the prod-

ucts
∏
j∈J εj are E-linearly independent in EndE[π]/πran+1 H, and for this it

suffices to show that their images on F are E-linearly independent. It is clear

that the coefficients of F , πF , . . . , πran−1F in any putative linear combination

must be zero, since these forms all vanish to distinct orders less than ran at

k = 1. We have already calculated that up to a nonzero constant multiple, the

forms
∏
j∈J εjF for J 6= φ are congruent to E1(1, χR′∪J)πran modulo πran+1.

These forms are easily seen to be linearly independent over E, and the result

follows. �

Remark 3.4. Consider the Λ-subalgebra T′ ⊂ T generated by the opera-

tors Tl for l - np, Ul for l | n or l ∈ R′, and

UJ = T r−#J
∏
p∈J

(Up − 1)

for nonempty subsets J ⊂ R. One checks that the images of these Hecke

operators under ϕ lie in the E-subalgebra of W1 generated by π. Therefore,

restricting the homomorphism ϕ to T′ and reducing modulo πr+1 (this reduc-

tion is only relevant if ran > r) yields a Λ-algebra homomorphism

ϕ′ : T′ −→ E[π]/πr+1

satisfying

Tl 7→ 1 + χε(l) for l - np,
Ul 7→ 1 for l | n or l ∈ R′,
UJ 7→ 0 for φ 6= J ( R,

UR 7→ (−1)r+1Lan(χ)πr.

This holds even if ran > r, in which case Lan(χ) = 0. The homomorphism ϕ′

can be constructed directly and more simply than ϕ by considering the mod

πr+1-eigenvalues of the form F , i.e., for all τ ∈ T′, we have

τF ≡ ϕ′(τ)F (mod πr+1).

A careful study of the arguments of Section 5 reveals that the homomorphism

ϕ′ is sufficient for our applications; to be precise, only the images of the op-

erators in T′ under ϕ are needed to expand the determinant in (85) and to

obtain (87). Nevertheless, we have included the construction of the homomor-

phism ϕ on the full Hecke algebra T for completeness.

Remark 3.5. If r = 1, there is a natural Λ(1)-algebra homomorphism

W1 −→ E[π]/π2 sending ε1 7→ Lan(χ)π. (Note that this holds even if ran >

r = 1, in which case Lan(χ) = 0.) The composition of ϕ with this homomor-

phism is precisely the homomorphism constructed in Case 1 in [5].
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3.4. Hecke action in Case 2: R′ = φ, ν1(W) 6= 0. In this section, we

handle the more complicated setting where R′ = φ. Recall that we are assum-

ing that W ∈ Λ(1) so that the family F is regular in weight 1. Define the

Λ(1)-algebra

W2 = E[π, ε1, . . . , εr, y]/IW2 ,

where

IW2 =(πran+1, yran+1, y(π − y), πranW − yran(W + 1),

ε2
i , εiπ, εiy, ε1ε2 · · · εr + (−1)ranL ∗

an(χ)(πran − yran)).

Theorem 3.6. Suppose R′ is empty. If ν1(W) 6= 0, then there exists a

Λ-algebra homomorphism

ϕ : T −→W2

such that

Tl 7→ 1 + χε(l) + (χ(l)− 1)
1− ε(l)

π
y for l - np,

Ul 7→ 1 +
ε(l)− 1

π
y for l | n, and

Upi 7→ 1 + εi.

Proof. The proof follows that of Theorem 3.3. We again let H denote

the image of the Hecke span of F in the space of Fourier coefficients modulo

πran+1, and we consider the canonical Λ-algebra homomorphism

(40) ϕ : T −→ EndE[π]/πran+1 H.

Fix a prime q - np such that χ(q) 6= 1. Define

Y =
Tq − 1− χε(q)

(χ(q)− 1)(1− ε(q))/π
∈ T̃(1).

An explicit computation shows that

Y F̃ ≡ πE (χ, 1)W (mod πran+1).

It therefore follows that

TlF ≡
Ç

1 + χε(l) + (χ(l)− 1)
1− ε(l)

π
Y

å
F (mod πran + 1), l - np,(41)

UlF ≡
Ç

1 +
ε(l)− 1

π
Y

å
F (mod πran + 1), l | n.(42)

One also computes Y E (χ, 1) = πE (χ, 1), and hence

(πY − Y 2)F ≡ 0 (mod πran+1),(43)

Y ran+1F ≡ 0 (mod πran+1),(44)

(πranW − Y ran(W + 1))F ≡ 0 (mod πran+1).(45)
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In computing (45), one uses E (1, χ) ≡ E (χ, 1) ≡ E1(1, χS) (mod π). Now we

consider the action of the Hecke operators above p on F modulo πran+1. As

in Theorem 3.3, we have

(46) (Up − 1)2F ≡ π(Up − 1)F ≡ 0 (mod πran+1),

and clearly also

(47) (Up − 1)YF ≡ 0 (mod πran+1).

We furthermore compute
r∏
i=1

(Up − 1)F̃ ≡ (−1)ran+1E1(1, χS)L ∗
an(χ)πran (mod πran+1)

≡ (−1)ran+1L ∗
an(χ)(πran − Y ran)F̃ (mod πran+1),

hence

(48)
r∏
i=1

(Up − 1)F ≡ (−1)ran+1L ∗
an(χ)(πran − Y ran)F (mod πran+1).

Combining (41)–(48), we see that there is a surjective Λ(1)-algebra homo-

morphism

(49) W2 −→ ϕ(T)⊗OE E

such that y maps to the image of Y in EndE[π]/πran+1 H and εi maps to the

image of Upi − 1. For future reference, we note that we have not yet used the

condition ν1(W) 6= 0 in this proof.

To conclude the proof, we must demonstrate that the homomorphism

(49) is an injection, which we again accomplish by counting dimensions. The

algebra W2 has dimension 2ran +2ran−2 as an E-vector space and is generated

by the images of

1, π, π2, . . . , πran−1, y, y2, . . . , yran

and the products εJ =
∏
j∈J εi for all subsets J ⊂ R, J 6= φ,R.

First suppose ν1(W) 6= −1 (in addition to the assumption ν1(W) 6= 0 of

the theorem), and suppose we have an E-linear combination of the forms

{πiF}ran−1
i=0 ∪ {Y iF}rani=1 ∪

∏
j∈J

(Upj − 1)F


J 6=φ,R

⊂ H

that vanishes. We must show that each of the coefficients in this linear

combination is zero. Now F does not vanish at k = 1, that is, ν1(F ) =

(1 + ν1(W))E1(1, χS) 6= 0, and it is the only form in our list with this prop-

erty; therefore, its coefficient in our linear combination must be zero. Next we

consider the two order 1 terms in our list, namely πF and Y F . Suppose the

coefficients of these two terms in our linear combination are α and β. Then by

considering leading terms, we must have α(1+ν1(W))+βν1(W) = 0. However
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by applying Y and then considering leading terms, we also find α + β = 0.

These two equations imply that α = β = 0. Continuing in this fashion, we see

that all the coefficients of the terms in our linear combination with order less

than ran must vanish. It remains to prove that the image of the forms Y ranF
and

¶∏
j∈J(Upj − 1)F

©
J 6=φ,R in H are linearly independent over E. However,

modulo πran+1, these forms are congruent up to non-zero scalars to the forms

πranE1(1, χJ) for J ⊂ R, J 6= φ. As noted earlier, these forms are linearly

independent.

If ν1(W) = −1, a similar argument goes through. The minimal order forms

in our list are F and YF ; these each have order 1, and their leading terms

(i.e., their images in H modulo π2) are linearly independent. This implies that

their coefficients in our linear combination are zero. The next minimal order

forms are πF and Y 2F , which each have order 2 and have leading terms that

are linearly independent. Continuing in this way, we are reduced to proving

that the order ran forms πran−1F , Y ranF , and
¶∏

j∈J(Upj − 1)F
©
J 6=φ,R are

linearly independent modulo πran+1. The linear independence of all but the

first of these forms follows exactly as in the previous case. We must therefore

prove that πran−1F cannot be written as a linear combination of Y ranF and¶∏
j∈J(Upj − 1)F

©
J 6=φ,R modulo πran+1. However, applying Y to such a puta-

tive linear combination, we would find that πran−1YF ≡ 0 (mod πran+1) since

Y annihilates all of the forms Y ranF and
¶∏

j∈J(Upj − 1)F
©
J 6=φ,R modulo

πran+1. But

πran−1YF ≡ πranE1(1, χS)ν1(W) 6≡ 0 (mod πran+1).

This concludes the proof. �

Remark 3.7. Note that when r = 1 and w = ν1(W ) 6= 0,−1, there is a

natural Λ(1)-algebra homomorphism W2 −→ E[π]/π2 given by

y 7→ π · w/(w + 1), ε 7→ Lan(χ)π/(w + 1).

We therefore obtain a Λ-algebra homomorphism T→ E[π]/π2 such that

Tl 7→ 1 + χ(l) +
χ(l) + w

1 + w
(log〈Nl〉)T, l - np,

Ul 7→ 1, l | n,

Up 7→ 1 +
Lan

1 + w
T, R = Sp = {p}.

This is exactly the homomorphism constructed in Case 2 in [5].

3.5. Hecke action in Case 3: R′ = φ, ν1(W) = 0. Suppose that W has

a zero at k = 1, i.e., ran(χ) > ran(χ−1). For notational simplicity, we write

s = ran(χ) and t = ran(χ−1). Define the Λ(1)-algebra

W3 = E[π, ε1, . . . , εr, y]/IW3 ,
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where

IW3 =
Ä
πs+1, yt+1, y(π − y), πtW − yt,

ε2
i , εiπ, εiy, ε1ε2 · · · εr + (−1)sL ∗

an(χ)πs
ä
.

Theorem 3.8. Suppose that R′ is empty and that W has a zero of order

s− t ≥ 1. There exists a Λ-algebra homomorphism

ϕ : T −→W3

such that

Tl 7→ 1 + χε(l) + (χ(l)− 1)
1− ε(l)

π
y for l - np,

Ul 7→ 1 +
ε(l)− 1

π
y for l | n, and

Upi 7→ 1 + εi.

Proof. As noted earlier, the proof of Theorem 3.6 carries through without

the use of the assumption ν1(W) 6= 0 up through the construction of the

homomorphism (49). It is the injectivity of this homomorphism that used the

condition ν1(W) 6= 0. Indeed, if ν1(W) = 0 as we are currently assuming, then

(49) is not injective. We have

Y t+1F̃ ≡ πt+1E (χ, 1)W ≡ 0 (mod πs+1)

since πs−t | W, hence Y t+1F ≡ 0 (mod πs+1). Furthermore,

Y tF̃ ≡ πtE (χ, 1)W ≡ πtWF̃ (mod πs+1).

It follows that the homomorphism (49) factors through the quotient W3 of W2,

and to conclude the proof it remains to show that the induced map W3 −→
ϕ(T)⊗OE E is injective. For this it suffices to show that the forms

{πiF}si=0 ∪ {Y iF}t−1
i=1 ∪

∏
j∈J

(Upj − 1)F


J⊂R,J 6=φ,R

are E-linearly independent modulo πs+1. The demonstration of this fact is

similar to the previous cases and left to the reader. �

4. Construction of a cohomology class

We write
ϕ : T −→W,

where W = W1,W2, or W3 in Cases 1, 2, and 3, respectively, for the homomor-

phism ϕ given in Theorems 3.3, 3.6, and 3.8. We write mW for the maximal

ideal of W and m ⊂ T for the kernel of the composition

T
ϕ // W // W/mW

∼= E.
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The height 1 prime ideal m is generated by T ∈ Λ, Tl − (1 + χε(l)) for l - np
and Ul − 1 for l | np.

Let T(m) denote the localization of T at the prime ideal m. Let L =

Frac(T(m)) denote the total ring of fractions of the local ring T(m). Since the

tame character χ in our space of Hida families has conductor equal to the

tame level n of our families, there are no n-old forms and therefore T(m) is

reduced. This simple yet crucial observation was not mentioned in [5]; we

thank H. Hida for pointing it out to us and refer the reader to [13, Proof of

Th. 3.6 and Cor. 3.7, pp. 381–382] for further details. As a result, we have a

canonical injection T(m) → L, where L is isomorphic to a product of fields

(50) L =
t∏
i=1

LHi
.

Each LHi
is a finite extension of Frac(Λ) and corresponds to a cuspidal Hida

eigenfamily Hi. For an integral ideal a ⊂ OF , the normalized Fourier coeffi-

cient c(a,Hi) is equal to the image in LHi
of the Hecke operator Ta. These

coefficients generate a finite local Λ-subalgebra of LHi
that we denote ΛHi

and

call the Hecke algebra of Hi. The image of T(m) in LHi
is the localization of

ΛHi
at a height 1 prime ideal mHi

lying above (T ) ⊂ Λ, and the explicit de-

scription of the homomorphism ϕ implies that for prime ideals l ⊂ OF , we have

(51)
c(l,Hi) ≡ 1 + χ(l) (mod mHi

) for l - np,
c(l,Hi) ≡ 1 (mod mHi

) for l | np.

These congruences simply state that the specialization of Hi at the prime ideal

mHi
is the weight 1 form E1(1, χS).

4.1. Representations associated to Hida families. As above, let H denote

a cuspidal Hida eigenfamily specializing at a weight 1 prime ideal mH ⊂ ΛH

to the form E1(1, χS) (i.e., satisfying (51)). Let LH = Frac(ΛH ) denote the

fraction field of ΛH . The following theorem ([23, Ths. 2 and 4]) of Hida and

Wiles is crucial for the construction of our cohomology class.

Theorem 4.1 (Hida, Wiles). There exists a continuous irreducible Galois

representation

ρH : GF −→ GL2(LH ),

where LH is endowed with the Λ-adic topology (i.e., the topology induced by

the maximal ideal (πE , T ) of Λ, where πE is a uniformizer for E), such that

(1) ρH is unramified outside np;

(2) for primes l - np, the characteristic polynomial of ρH (Frobl) is

(52) char(ρH (Frobl))(x) = x2 − c(l,H )x+ χε(l);
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(3) for all p | p, we have

(53) ρH |Gp ∼
Ç
χεη−1

p,H ∗
0 ηp,H

å
,

where ηp,H : Gp −→ Λ∗H is unramified and ηp,H (rec($−1)) = c(p,H ).

Here $ ∈ F ∗p is a uniformizer and rec : F ∗p −→ Gab
p is the local Artin

reciprocity map.

Note that by (52) we have char(ρH (Frobλ))(x) ∈ ΛH [x], and hence by

Cebotarev we have

(54) char(ρH (σ))(x) ∈ ΛH [x]

for all σ ∈ GF . Moreover by (51), (52), and another application of Cebotarev,

we have

(55) char(ρH (σ))(x) ≡ (x− 1)(x− χ(σ)) (mod mH )

for all σ ∈ GF . Note that in applying Cebotarev and the continuity of ρH

to deduce (54) and (55), we are using the fact that ΛH and mH are finitely

generated Λ-modules and hence are closed in the Λ-adic topology on LH .

In order to rigidify the representation ρH , we choose an element τ ∈
GF such that χ(τ) 6= 1. Let ΛmH denote the completion of the localization

of ΛH at mH with respect to its maximal ideal. We denote the maximal

ideal of ΛmH by m̂H = mH ΛmH . By (55) and Hensel’s Lemma, ρH (τ) has

distinct eigenvalues λ1, λ2 ∈ ΛmH such that λ1 ≡ 1 (mod m̂H ) and λ2 ≡ χ(τ)

(mod m̂H ). After extending scalars to LmH = Frac(ΛmH ), we can choose a

basis for our representation consisting of eigenvectors for ρH (τ), i.e., such that

(56) ρH (τ) =

Ç
λ1 0

0 λ2

å
.

In the next section, we will demonstrate how to define a cohomology

class using the upper right entries of the representation ρH in this basis as

H ranges over the Hi. Ribet showed how to gain local information about

this cohomology class by comparing the “global” basis satisfying (56) to the

“local” basis indicated in (53). This argument, which Mazur [14] has called

“Ribet’s Wrench,” does not succeed in our context if the global basis and local

basis are the same. We must show, therefore, that τ can be chosen so that

its eigenvectors do not agree with the eigenvectors of ρH (Gp) for any p | p.
Furthermore, we must do this simultaneously for all the finitely many H that

occur.

Lemma 4.2. Let v ∈ L2
mH

be a nonzero vector in the representation space

of ρH , and let Gv ⊂ GF denote the subgroup of elements σ such that v is an

eigenvector for ρH (σ). If χ(Gv) 6= 1, then Gv has infinite index in GF .
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Proof. Fix a τ ∈ Gv such that χ(τ) 6= 1. As above, let λ1, λ2 ∈ ΛmH

be the eigenvalues of ρH (τ) such that λ1 ≡ 1 (mod m̂H ) and λ2 ≡ χ(τ)

(mod m̂H ). Choose a basis for ρH (σ) =
(
aH (σ) bH (σ)
cH (σ) dH (σ)

)
whose first vector is v

and such that ρH (τ) is diagonal; hence

(57) ρH (τ) =

Ç
λ1 0

0 λ2

å
or ρH (τ) =

Ç
λ2 0

0 λ1

å
.

Let us for the moment assume that the first of these cases holds, as the second

case is similar and proceeds in the same fashion.

By (54) we have

aH (σ) + dH (σ) = tr ρH (σ) ∈ ΛH ⊂ ΛmH

for any σ ∈ GF , and moreover by (55), we have

(58) aH (σ) + dH (σ) ≡ 1 + χ(σ) (mod m̂H ).

Now by (57),

(59)
aH (τ) = λ1 ≡ 1 (mod m̂H ),

dH (τ) = λ2 ≡ χ(τ) (mod m̂H ).

We have

1 + χ(σ)χ(τ) ≡ aH (στ) + dH (στ) (mod m̂H )(60)

≡ aH (σ) + dH (σ)χ(τ) (mod m̂H ),(61)

where (60) follows from (58) with σ replaced by στ , and (61) follows from (59).

Now (58) and (61) imply that

(62) aH (σ) ≡ 1 (mod m̂H ), dH (σ) ≡ χ(σ) (mod m̂H ).

(In particular, aH (σ), dH (σ) ∈ ΛmH .)

Let C0 denote the ΛH -module generated by the elements cH (σ) for σ ∈
GF , and let C denote the ΛmH -module generated by the cH (σ). The continu-

ity of ρH and the compactness of GF imply that C0 is compact. It follows that

C0 is a finitely-generated ΛH -module, and hence that C is a finitely generated

ΛmH -module.

The equation

cH (στ) = cH (σ)aH (τ) + dH (σ)cH (τ)

together with (62) implies that cH (σ) ∈ C/m̂H C is a 1-cocycle representing a

cohomology class κ ∈ H1(GF , C/m̂H C(χ)).

The restriction of κ to Gv clearly vanishes, since c(Gv) = 0. If Gv has

finite index in GF , then the inflation-restriction sequence shows that κ itself

is a trivial cohomology class, i.e., we have cH (σ) = (χ(σ) − 1)x for some

x ∈ C/m̂H C. Evaluating at σ = τ we see that in fact x = 0, i.e., the image

of cH in C/m̂H C is zero. However, the cH (σ) generate the module C/m̂H C
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by definition. Therefore, C/m̂H C = 0 and hence by Nakayama’s Lemma, we

must have C = 0; hence cH is zero as a function on GF . This contradicts the

irreducibility of ρH , and hence Gv must have infinite index in GF .

If the second case in (57) holds, then cH (σ) ∈ C/m̂H C represents a

cohomology class κ ∈ H1(GF , C/m̂H C(χ−1)) and the same argument goes

through. �

For each prime p ∈ R and each Hida family H as above, let vp,H ∈ L2
mH

be the eigenvector for ρH (Gp).

Lemma 4.3. There exists a τ ∈ GF such that χ(τ) 6= 1 and such that

vp,H is not an eigenvector for ρH (τ) for all H and p.

Proof. In the notation of Lemma 4.2, we must show that there exists a

τ ∈ GF such that χ(τ) 6= 1 and τ 6∈ Gvp,H for all p and H . Label the vp,H
such that χ(Gvp,H ) 6= 1 as v1, . . . , vn and the remaining vp,H as vn+1, . . . , vm.

We construct τ inductively. Let τ0 ∈ Gal(H/F ) be nontrivial, so χ(τ0)

6= 1. Let H0 = H. We define τi for i = 1, . . . , n recursively as follows. Since

Gvi has infinite index in GF by Lemma 4.2, there exists an αi 6∈ Hi−1 in the

fixed field of Gvi acting on F . Let Hi be the Galois closure of H(αi) over F ,

and let τi be an element of Gal(Hi/F ) such that τi|Hi−1 = τi−1 and τi(αi) 6= αi.

Then any τ ∈ GF restricting to τi will satisfy χ(τ) 6= 1 and τ 6∈ Gvi , since τ

acts nontrivially on the fixed field of Gvi .

After defining τ1, . . . , τn in this way, let τ ∈ GF be any element restricting

to τn on Hn. Then by construction, χ(τ) 6= 1 and τ 6∈ Gvi for i = 1, . . . , n.

Clearly τ 6∈ Gvi for i = n+ 1, . . . ,m, since χ(τ) 6= 1 and χ(Gvi) = 1 for these

i. This concludes the proof. �

4.2. Construction of the cohomology class. Recall that T(m) denotes the

localization of T at the prime ideal m and that

L =
t∏
i=1

LHi

denotes its total ring of fractions. Let T denote the image of T in T(m). The

product of the Galois representations ρHi
for i = 1, . . . , t yields a continuous

Galois representation

ρ : GF −→ GL2(L),

where L is endowed with the Λ-adic topology, satisfying

(1) ρ is unramified outside np;

(2) for primes l - np, the characteristic polynomial of ρ(Frobl) is

(63) char(ρH (Frobl))(x) = x2 − T lx+ χε(l),

where T l denotes the image of Tl in T;
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(3) for all p | p, we have

(64) ρ|Gp ∼
Ç
χη−1

p ε ∗
0 ηp

å
,

where η : Gp −→ T
∗

is unramified and ηp(rec($−1)) = Up. Here $ ∈ F ∗p
is a uniformizer.

Let Tm denote the completion of T(m) with respect to its maximal ideal

mT(m). We write m̂ = mTm for the maximal ideal of Tm. Let τ ∈ GF
satisfy the conditions of Lemma 4.3. By Hensel’s Lemma, there exist unique

roots λ1, λ2 ∈ Tm of the characteristic polynomial of ρ(τ) such that λ1 ≡ 1

(mod m), λ2 ≡ χ(τ) (mod m). We extend scalars for the representation ρ to

Lm = Frac(Tm) and choose a basis for the representation consisting of the

associated eigenvectors for ρ(τ), i.e., such that

(65) ρ(τ) =

Ç
λ1 0

0 λ2

å
.

We can now construct our desired cohomology class following the method

introduced in the proof of Lemma 4.2. Write ρ(σ) =
(
a(σ) b(σ)
c(σ) d(σ)

)
. Using (63)

and the fact that T l ≡ 1 + χ(λ) (mod m), it follows from Cebotarev that

(66) a(σ) + d(σ) ∈ T ⊂ Tm

and

(67) a(σ) + d(σ) ≡ 1 + χ(σ) (mod mT).

Our applications of Cebotarev and the continuity of ρ to deduce (66) and (67)

rely on the fact that T and m ⊂ T (and hence their images in T(m)) are finitely

generated Λ-modules and are therefore closed in the Λ-adic topology.

Following the argument from (58)–(62) and using (65), we deduce that

a(σ), d(σ) ∈ Tm and

(68) a(σ) ≡ 1 (mod m̂), d(σ) ≡ χ(σ) (mod m̂).

Now let B denote the Tm-module generated by the b(σ) for σ ∈ GF . Repeating

the compactness argument from the proof of Lemma 4.2 shows that B is a

finitely generated Tm-module. Define the E-vector space B = B/m̂B, and let

b(σ) denote the image of b(σ) in B. The equation

b(σσ′) = a(σ)b(σ′) + b(σ)d(σ′), σ, σ′ ∈ GF

together with (68) implies that the function

(69) κ(σ) = b(σ)χ−1(σ)

is a 1-cocycle representing a cohomology class [κ] ∈ H1(GF , B(χ−1)).
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4.3. Interlude on the homomorphism ϕ. The local Artin ring W is com-

plete with respect to its maximal ideal mW , since mran+1
W = 0. As a result,

the homomorphism ϕ : T −→W extends canonically to a surjective homomor-

phism

ϕm : Tm −→W.

The arguments used to deduce the congruences (68) can be refined to

calculate the images of a(σ) and d(σ) under the homomorphism ϕm. The

key observation that allows this is the following. While it is clear that ϕm

(mod mW ) decomposes as the sum of two characters (namely, 1 and χ), the

same is in fact true for the full homomorphism ϕm. In Cases 2 and 3, define

the “Λ-adic cyclotomic character in the variable y,”

εy : GF −→W ∗,

to be the character ε with the variable π replaced by y; i.e., if ε(σ) =
∑∞
i=1 aiπ

i,

then

εy(σ) =
∞∑
i=0

aiy
i(70)

= 1 +
ε(σ)− 1

π
y.(71)

Note that (70) is a finite sum since y is nilpotent, and (71) holds from the

relation πy = y2 in the ring W . Define επ−y(σ) similarly, with y replaced by

π − y. Define two homomorphisms

ψ1, ψ2 : GF −→W ∗

as follows:

ψ1(σ) =

1 Case 1,

εy(σ) Cases 2 and 3,

ψ2(σ) =

χε(σ) Case 1,

χεπ−y(σ) Cases 2 and 3.

Lemma 4.4. We have

(72)
ϕm(a(σ)) = ψ1(σ),

ϕm(d(σ)) = ψ2(σ).

Proof. A direct computation shows that for l - np, we have

(73) ϕm(Tl) = ψ1(Frobl) + ψ2(Frobl).

Furthermore, it is easy to see that εyεπ−y = ε using the relation πy = y2, and

hence

(74) ψ1ψ2 = χε.
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Now, (73) implies that

(75) ϕm(a(σ) + d(σ)) = ψ1(σ) + ψ2(σ)

for all σ ∈ GF . The fact that ψ1 ≡ 1 (mod mW ) and ψ2 ≡ χ (mod mW ) along

with

ϕm(char(ρ(σ))(x)) = (x− ψ1(σ))(x− ψ2(σ)),

which follows from (74) and (75), implies that

ϕm(λ1) = ψ1(τ),(76)

ϕm(λ2) = ψ2(τ).(77)

Now (75) applied with στ implies that

(78) ϕm(a(σ))ψ1(τ) + ϕm(d(σ))ψ2(τ) = ψ1(στ) + ψ2(στ).

Solving (75) and (78) yields (72) as desired. �

Remark 4.5. Let I be the kernel of ϕ′ : Tm −→ E[π]/(πran+1). As in

Section 4.2, Lemma 4.4 can be used to construct a cohomology class [κ̃] in

H1(GF , (B/IB)(ψ1ψ
−1
2 )). Applying the arguments of [15] (see also [18]) one

can deduce a lower bound for the E-dimension of B/IB as follows. Let J

(the “Eisenstein ideal”) denote the kernel of the structure map Λ(1) −→ Tm/I.

Then there are isomorphisms Λ(1)/J ∼= Tm/I ∼= E[π]/(πran+1). Hence J =

(πran+1) ⊂ Λ(1). Let FittAM denote the initial Fitting ideal of a finitely

presented A-module M . Then

FittΛ(1)
(B/IB) (mod J) = FittΛ(1)/J(B/IB)

= FittTm/I(B/IB) = FittTmB (mod I) = 0.

The last equality holds becauseB is a faithful Tm-module. Thus FittΛ(1)
(B/IB)

⊂ J and

dimE B/IB ≥ dimE Λ(1)/J = ran + 1.

However, it is unclear if [κ̃] can be used to construct r cyclotomic cohomology

classes in H1
R(GF , E(χ−1)).

4.4. Local behavior of the cohomology class. We now study in detail the

cohomology class κ constructed in Section 4.2.

For each place p | p, there is a basis for which the representation ρ|Gp

takes the shape given in (64). Let
Ä
Ap Bp

Cp Dp

ä
∈ GL2(Lm) denote the change of

basis matrix taking this local basis to our fixed global basis satisfying (65),

i.e., such that

(79)

Ç
a(σ) b(σ)

c(σ) d(σ)

åÇ
Ap Bp

Cp Dp

å
=

Ç
Ap Bp

Cp Dp

åÇ
χη−1

p ε(σ) ∗
0 ηp(σ)

å
for σ ∈ Gp.
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Lemma 4.6. The elements Ap and Cp are invertible in Lm.

Proof. First note that Tm ⊂
∏t
i=1 ΛmHi

and hence

Lm ⊂
t∏
i=1

LmHi
, where LmHi

= Frac(ΛmHi
).

We must show that the projections of Ap and Cp onto each factor LmHi
are

nonzero for i = 1, . . . , t. But if the image of Ap or Cp is zero in LmHi
, then it is

easy to see that the eigenvector for ρHi
(Gp) acting on L2

mHi
is an eigenvector for

ρHi
(τ). But we chose τ in Section 4.2 to satisfy the conditions of Lemma 4.3,

so this is not the case. This proves the result. �

Comparing top left entries of the matrix equation (79) and using Lemma 4.6,

we find

(80) b(σ) =
Ap

Cp

Ä
χη−1

p ε(σ)− a(σ)
ä
, σ ∈ Gp.

Lemma 4.7. The cohomology class [κ] ∈ H1(GF , B(χ−1)) defined in (69)

is unramified outside R.

Proof. It is elementary to see that any class [κ] ∈ H1(GF , B(χ−1)) is

unramified outside p. Indeed, let v be a place of F not lying above p, and let w

be the place of H lying above v according to the choice of decomposition group

Gv ⊂ GF . By inflation-restriction, it suffices to prove that the restriction of

[κ] to Gw ⊂ GH is unramified. However, since χ|GH = 1, this restriction is an

element

resw[κ] ∈ H1(Gw, B) = Homcts(G
ab
w , B).

Now, the image of Iw in Gab
w is a pro-` group where ` is the prime of Q

below w (or trivial, if w is a complex place) and B is a pro-p group, being a

finite-dimensional E-vector space. Therefore there are no non-zero continuous

homomorphisms between these groups, and hence resIw([κ]) = 0.

Next we show that [κ] is unramified (in fact locally trivial) at primes

p ∈ R′. By definition of R′, there exists σ̃ ∈ Gp such that χ(σ̃) 6= 1. Since

ηp(σ̃) ≡ ε(σ̃) ≡ a(σ̃) ≡ 1 (mod m̂), it follows that χη−1
p ε(σ̃) − a(σ̃) ∈ T∗m and

hence by (80) we have Ap/Cp ∈ B. Reducing (80) modulo m̂B we see that

resp κ is a coboundary:

κ(σ) = (1− χ−1(σ))Ap/Cp, σ ∈ Gp.

Therefore, resp[κ] = 0 as desired. �

Lemma 4.8. The Tm-module B is generated by b(σ) for all σ ∈ Ip, p ∈ R.

Proof. Let BI be the Tm-module generated by b(σ) for all σ ∈ Ip, p ∈ R.

Let BI = B/BI . We want to show that BI = 0. Let [κI ] denote the image
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of the cohomology class [κ] in H1(GF , (BI/m̂BI)(χ
−1)). By Lemma 4.7, the

class [κI ] is unramified outside R. But by the definition of BI , the image of

κ(σ) in BI/m̂BI is trivial for σ ∈ Ip, p ∈ R, and therefore [κI ] is unramified

everywhere. By Proposition 2.2, it follows that [κI ] = 0. Repeating the ar-

gument at the end of Lemma 4.2 shows that BI = 0. Indeed, writing κI as

a coboundary and evaluating at τ shows that κI = 0 as a function. Yet the

values of κI generate BI/m̂BI and hence BI/m̂BI = 0. Since BI is a finitely

generated Tm-module, Nakayama’s Lemma implies that BI = 0 as desired. �

Lemma 4.9. Let R = {p1, . . . , pr}. We have B ⊂ Ap1
Cp1

m̂ + · · ·+ Apr
Cpr

m̂.

Proof. This follows from Lemma 4.8 and equation (80), together with the

observation that for p ∈ R, we have χ(Ip) = 1 and

ηp(σ) ≡ ε(σ) ≡ a(σ) ≡ 1 (mod m̂), σ ∈ Ip. �

5. Computation of the regulator

We now assemble the constructions of the previous sections and complete

the proof of Theorem 1, which states that Lan(χ) = Rp(χ). Let I denote the

kernel of the homomorphism ϕm : Tm −→W .

5.1. Proof of Lan(χ) = Rp(χ) in Cases 1, 2, and 3. Denote by [κ] ∈
H1
R(GF , B(χ−1)) the cohomology class constructed in Section 4.2. Denote by

u1, . . . , ur an E-basis of Uχ. By Proposition 2.1 and Lemma 4.7, we have

(81)
r∑
i=1

respi κ(uj) = 0 in B for j = 1, . . . , r.

For each fixed j, we can write uj =
∑
k yjk ⊗ ejk, where yjk ∈ OH [1/p]∗ and

ejk ∈ E. For each i = 1, . . . , r, let

σij =
∑
k

ejky
(i)
jk ∈ E[Gpi ],

where y
(i)
jk ∈ Gpi is any element whose image in Gab

pi is equal to the image of

yjk under the local Artin reciprocity map (9). (As usual, we use (7) to embed

OH [1/p]∗ ⊂ F ∗pi .) Then noting that χ(Gpi) = 1, by definition we have

respi κ(uj) = b(σij) in B where b(σij) =
∑
k

ejkb(y
(i)
jk ) ∈ B.

Therefore, (81) can be written as

(82)
r∑
i=1

b(σij) ∈ m̂B for each j = 1, . . . , r.
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Now by (80), we have

(83) b(σij) =
∑
k

ejk ·
Ai
Ci

(
η−1
i ε(y

(i)
jk )− a(y

(i)
jk )
)
,

where for simplicity we have written Ai, Ci, and ηi for Api , Cpi , and ηpi . As we

have noted, the term in parenthesis on the right lies in m̂ since ηi, ε, a all lie in

Tm and are congruent to 1 modulo m. Furthermore, we have

(84)

η−1
i (y

(i)
jk ) = U

oi(yjk)
pi ≡ 1 + oi(yjk)(Upi − 1) (mod I),

ε(y
(i)
jk ) ≡ 1 + `i(yjk)π (mod π2),

a(y
(i)
jk ) ≡ 1 + a′i(yjk) (mod (m̂2, I)),

where a′i(yjk) ∈ m̂ is any element such that

ϕm(a′i(yjk)) =

0 Case 1,

`i(yjk)y Cases 2 and 3.

The congruence (84) follows from Lemma 4.4. Of course π2 ∈ m̂2. Therefore,

η−1
i ε(y

(i)
jk )− a(y

(i)
jk ) ≡ `i(yjk)π + oi(yjk)(Upi − 1)− a′i(yjk) (mod (m̂2, I)).

Hence (83) can be written more simply as

b(σij) =
Ai
Ci

(
`i(uj)π + oi(uj)(Upi − 1)− a′i(uj) +mij

)
for some mij ∈ (m̂2, I). Now in view of Lemma 4.9, which implies that m̂B ⊂∑r
i=1

Ai
Ci
m̂2, (82) can be written

r∑
i=1

Ai
Ci

(
`i(uj)π + oi(uj)(Upi − 1)− a′i(uj) +mij

)
= 0 for each j = 1, . . . , r,

after altering the mij by elements of m̂2. It follows that

det

Å
Ai
Ci

(
`i(uj)π + oi(uj)(Upi − 1)− a′i(uj) +mij

)ã
i,j=1,...,r

= 0

since it is the determinant of a matrix whose rows all sum to 0. Cancelling

the constants Ai
Ci

(which are invertible by Lemma 4.6) from the rows of this

matrix, we obtain

det
(
`i(uj)π + oi(uj)(Upi − 1)− a′i(uj) +mij

)
= 0.

This determinant now takes place in the ring Tm, and in fact all of its entries

lie in the maximal ideal m̂. We apply the homomorphism ϕm to this equation

to obtain an equation in the ring W :

det((`i(uj)π + oi(uj)εi + nij) = 0 Case 1,(85)

det((`i(uj)(π − y) + oi(uj)εi + nij) = 0 Cases 2 and 3,(86)
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where nij ∈ m2
W . Since each entry of this matrix lies in mW , it is clear that

the nij do not effect the value of the determinant modulo mr+1
W . Finally, using

the relations in the ring W (in particular, that εiπ = 0 and εiy = 0) it is easy

to calculate these determinants. In Case 1 we find

(87)

0 ≡ det(`i(uj)π + oi(uj)εi) (mod mr+1
W )

≡ det(`i(uj))π
r + det(oi(uj))ε1 · · · εr (mod mr+1

W )

≡ det(`i(uj))π
r + det(oi(uj))(−1)ran+1L ∗

an(χ)πran (mod mr+1
W ).

If ran = r, then L ∗
an(χ) = Lan(χ), and since πr 6∈ mr+1

W , it follows that

Lan(χ) = (−1)r det(`i(uj))/ det(oi(uj)) = Rp(χ)

as desired. If ran > r, then πran ≡ 0 (mod mr+1
W ), so (87) implies that

det(`i(uj)) = 0, hence Rp(χ) = 0. Since Lan(χ) = 0 in this case as well,

we again find Lan(χ) = Rp(χ).

Cases 2 and 3 are nearly identical, once one uses the relations in the ring

W to observe that (π − y)r = πr − yr 6∈ mr+1
W .

5.2. Proof of Lan(χ−1) = Rp(χ
−1) in Case 3. As noted in Section 3.2, to

complete the proof we must show that Lan(χ−1) = Rp(χ
−1) in Case 3. For

this, we repeat the arguments from Section 4.4 onward using the “c-cocycle”

coming from our representation rather than the “b-cocycle.” To be precise, we

let C denote the Tm-module generated by the elements c(σ) for all σ ∈ GF
and write C = C/m̂C. Then the equation

c(σσ′) = c(σ)a(σ) + d(σ)c(σ′), σσ′ ∈ GF

together with (68) implies that the function c : GF → C is a 1-cocycle defining

a cohomology class

[c] ∈ H1(GF , C(χ)).

The elementary argument at the beginning of the proof of Lemma 4.7

shows that [c] is unramified outside p, and hence outside R since R′ is empty

in Case 3. The analogue of (80), which is seen by equating lower left entries

in (79), is the following:

c(σ) =
Cp

Ap

Ä
χη−1

p ε(σ)− d(σ)
ä
, σ ∈ Gp.

Lemma 5.1. For p ∈ R and σ ∈ Ip, we have that

ϕm(ε(σ)− d(σ)) ∈ yW.

Proof. Lemma 4.4 implies that ϕm(d(σ)) = επ−y(σ). Using the relation

πy = y2, it is easy to see that ε(σ) − επ−y(σ) = εy(σ) − 1 in W . The result

follows. �
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From Lemma 5.1, the arguments of Lemmas 4.8 and 4.9 apply without

change to show that

C ⊂ Cp1

Ap1

y + · · ·+ Cpr

Apr

y,

where y = ϕ−1
m (yW ) is an ideal of Tm.

We can next repeat the argument of Section 5.1 without change, where

now u1, . . . , ur denotes an E-basis of Uχ−1 . Noting that ϕm(d(σ)) = χεπ−y(σ)

by Lemma 4.4 and hence that

ϕm(χη−1
pi ε(σ)− d(σ)) = εy(σ)− 1 + oi(σ)εi, σ ∈ Gpi

(where σ ∈ F̂ ∗pi is such that rec(σ) is the image of σ in Gab
p ), the analogue of

(86) is the equation

det((`i(uj)y + oi(uj)εi + nij) = 0

with nij ∈ mW y. We obtain

(88) det(`i(uj))y
r + det(oi(uj))(−1)s+1L ∗

an(χ)πs ≡ 0 (mod mW yr).

Note that in the ring W = W3, we have

yt =Wπt = (−1)s−t
L ∗

an(χ)

L ∗
an(χ−1)

πs,

hence (88) can be written

(89) det(`i(uj))y
r + det(oi(uj))(−1)t+1L ∗

an(χ−1)yt ≡ 0 (mod mW yr).

This congruence yields an equality in yr/mW yr, the 1-dimensional E-vector

space generated by the image of yr.If t = r, then L ∗
an(χ) = Lan(χ) and we

obtain

det(`i(uj)) + det(oi(uj))(−1)r+1Lan(χ−1) = 0,

hence Lan(χ−1) = Rp(χ
−1) as desired. If t > r, then yt ∈ mW yr so (89) yields

det(`i(uj)) = 0 and hence Rp(χ
−1) = 0. Since Lan(χ−1) = 0 in this case as

well, we again find Lan(χ−1) = Rp(χ
−1). This completes the proof.

Remark 5.2. We note that this argument fills in a hole at the end of the

proof of Theorem 4.4 in [5]. There it was simply suggested without elaboration

that switching the roles of b and c yields a cohomology class giving the desired

result for χ−1. This is indeed the case if ran(χ) = r = 1, but in the case

ran(χ) > ran(χ−1) one needs a version of the argument presented here and, in

particular, the whole homomorphism ϕm; the homomorphism φ1+ε constructed

in [5] does not suffice in Case 3.
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