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Convergence of Ricci flows with bounded
scalar curvature

By Richard H. Bamler

Abstract

In this paper we prove convergence and compactness results for Ricci

flows with bounded scalar curvature and entropy. More specifically, we

show that Ricci flows with bounded scalar curvature converge smoothly

away from a singular set of codimension ≥ 4. We also establish a general

form of the Hamilton-Tian Conjecture, which is even true in the Riemann-

ian case.

These results are based on a compactness theorem for Ricci flows with

bounded scalar curvature, which states that any sequence of such Ricci

flows converges, after passing to a subsequence, to a metric space that is

smooth away from a set of codimension ≥ 4. In the course of the proof, we

will also establish Lp<2-curvature bounds on time-slices of such flows.
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1. Introduction and statement of the main results

1.1. Introduction. There has lately been a lot of progress in the study

of compactness and degeneration behaviors of solutions to geometric equa-

tions, such as Einstein metrics, minimal surfaces or mean curvature flow (see,

for example, [And89], [And90], [CC96], [CCT02], [CN13a], [CN15], [Alm83],

[Whi97], [CN13b], [CHN13]). These studies usually follow a common approach,

which can be summarized as follows: One first specifies a topology, in which

such solutions converge to a possibly singular space, after passing to a subse-

quence. Secondly, one devises a partial regularity and structure theory for the

limiting space. This theory usually implies that the limiting space is smooth

away from a singular set of small codimension and provides a characteriza-

tion of the tangent cones at the singular points. Unfortunately, a theory of

this kind has not been available for the Ricci flows, despite several interesting

attempts or partial results (see [HM11], [HM15], [MT10], [Top09], [Stu16]).

The goal of this paper is to carry out such a partial regularity and structure

theory for Ricci flows that satisfy an additional scalar curvature bound. Using

this theory, we will characterize the formation of finite-time singularities of

such flows. As a corollary, we will obtain a general, Riemannian form of the

Hamilton-Tian Conjecture.

Understanding the formation of finite-time singularities is an important

goal in Ricci flow. In dimensions 2 and 3, finite-time singularities are reason-

ably well understood. In these dimensions, the maximum of the scalar cur-

vature diverges at a singular time (see [Ham82], [Ham95b]) and the geometry
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of the singularity can be analyzed by a blow-up procedure. More specifically,

after normalizing the scalar curvature at a sequence of basepoints via parabolic

rescaling, the flow subsequentially converges to a smooth singularity model. In

dimension 2, Hamilton and Chow showed (see [Ham88], [Cho91]) that the only

such singularity models are the round sphere and projective space, which is

equivalent to saying that the flow becomes asymptotically round at a finite-time

singularity. In dimension 3, Perelman proved (see [Per02]) that the singularity

models are κ-solutions, which he then classified in a qualitative way. This clas-

sification was the basis of the construction of Ricci flows with surgery, which

led to the resolution of the Poincaré and Geometrization Conjectures (see also

[Per03]). In higher dimensions, similar characterizations have only been ob-

tained in relatively restrictive settings. For example, it was shown by Sesum

and Enders, Müller, Topping (see [Ses06], [EMT11]) that under a Type I bound

on the entire Riemannian curvature tensor—of the form |Rmt| < C(T − t)−1—

singularity models exist and are gradient shrinking solitons. Apart from these

results, the characterization and classification of finite-time singularities in

Ricci flows has been largely open.

A main difficulty in the analysis of finite-time singularities of higher di-

mensional Ricci flows comes from the fact that—at least a priori—we may

observe different types of singularity formation at different scales, leading to

a bubble-tree-like structure. At the smallest scale, such singularities can be

described by smooth singularity models. These models arise as blow-up lim-

its due to a compactness theorem of Hamilton (see [Ham95a]), which requires

uniform bounds on the Riemannian curvature. By contrast, singularity models

describing the flow at larger scales are expected to be singular, as they may

arise as limits of flows with unbounded curvature. The analysis of the flow

at such larger scales requires a reasonable compactness, partial regularity and

structure theory, which has been missing so far. The theory developed in this

paper will partially fill this void and therefore allow the analysis of singulari-

ties at any scale below the scalar curvature scale (i.e., the scale that results in

blow-up sequences with bounded scalar curvature).

The main result of this paper is a compactness and partial regularity

theorem, which states that every non-collapsed sequence of Ricci flows with

uniformly bounded scalar curvature converges, after passing to a subsequence,

to a space that is smooth away from a singular set of codimension at least 4. We

refer to Section 1.3 for a precise statement. We will also derive various other

structural properties of this limiting space, which, combined with earlier results

(see [Bam17]), imply that all tangent cones of the limiting space are metric

cones. As such, our characterizations of the limiting space are comparable to

the partial regularity and structure theorems obtained for non-collapsed lim-

its of Einstein manifolds or spaces with bounded Ricci curvature (see [CC96],
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[CCT02], [CN15]). In fact, as Einstein metrics can be trivially evolved into a

Ricci flow with bounded scalar curvature, our theorem in some way general-

izes these results; however, it does not provide an alternative proof, since our

methods rely on generalizations of these results to the singular setting.

Let us now discuss in some more detail the structural results on the forma-

tion of finite-time singularities that follow from our main theorem. Consider a

Ricci flow (gt)t∈[0,T )

∂tgt = −2 Ricgt

on a manifold M , which possibly develops a singularity at some finite T <∞.

We will answer the following questions:

Question 1. Suppose that the scalar curvature satisfies the bound R < C

on M × [0, T ) for some constant C <∞. What can be said about the behavior

of the metric gt as t↗ T ?

Question 2. Suppose that there is some constant C < ∞ such that the

scalar curvature satisfies R(·, t) < C(T − t)−1 for all t ∈ [0, T ). What can be

said about the behavior of the rescaled metric (T − t)−1gt as t↗ T ?

We will show that in the settings of both questions, the (rescaled) met-

ric converges (subsequentially) to a singular space that possesses the partial

regularity and structural properties as explained earlier. More specifically, we

obtain that this space is smooth away from a singular set of codimension at

least 4 and that all its tangent cones are metric cones. In the setting of Ques-

tion 2, we moreover obtain that the limit is a gradient shrinking soliton on its

regular part. We refer to Section 1.2 for the precise statements of these results.

Question 1 is related to a famous conjecture that the scalar curvature

near any finite-time singularity in Ricci flow must blow up. This conjecture

is equivalent to the conjecture that in the setting of Question 1 the metric gt
converges to a smooth metric gT as t ↗ T and hence that the flow (gt)t∈[0,T )

can be extended past time T . The conjecture is true in dimensions n = 2, 3,

as pointed out earlier, and in the case in which (gt)t∈[0,T ) is a Kähler-Ricci

flow (see [Zha10]). Moreover, if we replace the assumption that R < C on

M× [0, T ) by the stronger assumption that |Ric| < C <∞ on M× [0, T ), then

the conjecture holds (see [Š05]). Even in dimension 4, a complete answer to

Question 1 is still unknown. In this dimension, it has, however, been proven

recently that the L2-norm of the Riemannian curvature tensor,
´
M |Rm|2dgt,

remains uniformly bounded as t ↗ T and that the metric gt converges to a

C0-orbifold (see [BZ17], [Sim15b], [Sim15a]). The techniques used to obtain

these results are very specific to dimension 4 and cannot be generalized to

higher dimensions. It was moreover shown in [Sim15a] that in dimension 4,

despite possible singularities, the flow (gt)t∈[0,T ) can still be extended past

time T by a Ricci flow on the limiting orbifold. In other words, the flow can
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be continued if we allow the underlying manifold to change its topology. This

insight raises the question of whether a similar extension can be constructed

in higher dimensions. So one may wonder whether in the context of Ques-

tion 1, the singular time-T -slice is “regular enough” such that the flow can be

continued past time T , possibly via a singular flow.

The setting of Question 2 is a generalization of the Type I condition,

and it occurs naturally in the study of Kähler-Ricci flows on Fano manifolds

(see [ST08]). By the recent resolution of the Yau-Tian-Donaldson Conjecture

(see [CDS15a], [CDS15b], [CDS15c], [Tia15]), Fano manifolds admit Kähler-

Einstein metrics under certain algebro-geometric conditions. If these condi-

tions are fulfilled, then the rescaled metric (T − t)−1gt smoothly converges to

one of the predicted Kähler-Einstein metrics as t ↗ T (see [TZ13]). If these

conditions are not assumed, then we have the following conjecture:

Hamilton-Tian Conjecture. If (gt)t∈[0,T ) is a Kähler-Ricci flow on a

Fano manifold M , then (T − t)−1gt subsequentially converges to a compact

Kähler-Ricci soliton, possibly away from a singular set of codimension ≥ 4 as

t↗ T .

For complex dimensions ≤ 3, the Hamilton-Tian Conjecture was shown

by Tian and Zhang in [TZ13], [TZ16]. A proof for all dimensions was given

in [CW17a], [CW17b]. The approach in [CW17a], [CW17b] uses the Bergman

kernel in a crucial way, which is only available in the Kähler setting. This

technique is non-standard in proving compactness of geometric equations and

very different from the techniques used in this paper.

Our answer to Question 2, restricted to the Kähler case, implies the

Hamilton-Tian Conjecture. Our proof is purely Riemannian and does not

require any tools from Kähler geometry.

Our structure theorem will follow by analyzing Ricci flows with bounded

scalar curvature at different scales, using a blow-up argument. Due to an

earlier estimate of Zhang (see [Zha12]) on the volumes of geodesic balls in

such flows, it is known that such blow-up sequences converge to a possibly

singular metric space in the Gromov-Hausdorff topology. Our goal in this

paper will be to derive several analytic and geometric properties of these blow-

up limits, which will imply that the blow-up limits are Ricci flat away from

a well-behaved singular set. These properties will then allow us to obtain

further structural information, using a generalization of the theory of Cheeger,

Colding and Naber to the singular setting, which was developed by the author

in [Bam17]. The application of this theory is quite subtle, because we do not

obtain a (synthetic) Ricci curvature bound on the singular set. The proofs of

the following two properties of the blow-up limit will occupy the greater part

of this paper:
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• A type of weak convexity property of the set of regular points (called mildness

of the singular set), stating that almost every pair of regular points can be

connected by a minimizing geodesic consisting only of regular points. This

property will be a consequence of a new regularity result for Ricci flows with

bounded scalar curvature, which states that, under certain assumptions,

almost every pair of points in a time-slice can be connected by an almost

geodesic that avoids high curvature regions. This regularity result will follow

from a combination of heat kernel estimates and integral estimates along

families L-geodesics. For more details, see Section 4.

• An ε-regularity theorem, asserting a curvature bound at centers of balls in

the same time-slice whose volume is sufficiently close to the corresponding

Euclidean volume. This theorem will follow from an analogous and new

ε-regularity theorem for Ricci flows with bounded scalar curvature. We

remark that similar ε-regularity theorems for Ricci flows have been deduced

in [HN14], [Ni07]. However, these results are not applicable here, as they

impose other geometric assumptions and they do not hold in a single time-

slice. The proof of our ε-regularity theorem relies, among other things, on

a segment inequality in the context of Ricci flows. We refer to Section 5 for

more details.

Throughout the entire paper, we will moreover use a number of analytic and

geometric estimates for Ricci flows with bounded scalar curvature that were

developed by the author and Zhang in [BZ17], [BZ15]. For further details on

the proof, see Section 1.4

The main results of this paper motivate a number of interesting questions.

First, it seems desirable to obtain a more detailed characterization of the limit-

ing flows of sequences of Ricci flows with bounded scalar curvature (not only of

limits of time-slices). By an earlier result by Zhang and the author in [BZ15],

such limiting flows evolve continuously with respect to the Gromov-Hausdorff

distance. However, the set of singular points may, a priori, vary in time, and

even change its topology. Due to the availability of heat kernel and distance

distortion estimates, it is likely that such flows offer a useful model case for a

synthetic definition of Ricci flows—perhaps via optimal transport, generalizing

the approach of Sturm (see [Stu16]).

Second, our results can be seen as a first step towards a general partial

regularity and structure theory for non-collapsed Ricci flows. Hence, it is an

interesting question whether our theory can be generalized to a broader class

of Ricci flows. Even though our proof seems to rely on the scalar curvature

bound at a number of steps, it is likely that this bound is crucial in only two

steps: in the proofs of a lower (Gaussian) heat kernel bound and an upper

bound on the distance distortion. So one may wonder whether a similar struc-

ture theory can be developed under weaker assumptions that still guarantee
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these two bounds, or similar estimates. In addition, our arguments seem to

offer a certain amount of flexibility. For example, several steps in our proof

produce stronger estimates than what is needed in subsequent steps. It is also

interesting to observe that the generalization of the theory of Cheeger, Cold-

ing and Naber (see [Bam17]), which is used in our proof, does not require a

(synthetic) curvature characterization on the singular set. Therefore, it may

be possible that, in a more general setting, our arguments are robust towards

the loss of certain geometric or analytic control, as long as this loss occurs in

an almost singular region of the flow.

1.2. Statement of the main results : Structure of singularities. We will

now state in detail the main results of this paper that describe the structure

of finite-time singularities of Ricci flows with bounded scalar curvature. That

is, we will answer Questions 1 and 2 from the previous subsection.

Let us first consider Question 1. In the setting of this question, the author

showed previously in collaboration with Zhang (see [BZ15]) that the induced

length metric dt : M ×M → [0,∞) converges uniformly to a pseudometric

dT : M ×M → [0,∞) as t ↗ T , which is a metric with the exception that

the distance between some distinct points is allowed to be zero. In dimension

n = 4, the limiting metric is a C0-orbifold. Away from the singular points, the

metric and the convergence to this metric are smooth (see [BZ17], [Sim15a]).

The first main result of this paper generalizes this fact to higher dimensions.

More specifically, it states that the convergence to the limiting metric is smooth

away from a small set of Minkowski dimension ≤ n− 4:

Theorem 1.1 (Evolution of the flow under a uniform scalar curvature

bound). Suppose that R < C on M × [0, T ) for some C < ∞, and let dT :

M ×M → [0,∞) be the limiting pseudometric on M .

Then there is an open subset R ⊂ M on which the metric gt smoothly

converges to a smooth Riemannian metric gT . The complement of this subset,

M \ R, has Minkowski dimension ≤ n − 4 with respect to dT . Moreover, the

induced metric space (M/ ∼, dT ) is isometric to the completion of the length

metric of the (incomplete) Riemannian manifold (R, gT ).

Similarly, in the setting of Question 2, we obtain smooth subconvergence

of the rescaled flow to a singular gradient shrinking Ricci soliton:

Theorem 1.2 (Degeneration towards a singular gradient shrinking soli-

ton). Assume that for some constant C <∞, we have

R(·, t) < C(T − t)−1 for all t ∈ [0, T ).

Then for any point q ∈ M and any sequence of times ti ↗ T , we can choose

a subsequence such that (M, (T − ti)−1gti , q) converges to a pointed, singular

space (X , q∞) = (X, d,R, g, q∞) that has singularities of codimension 4 in the
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sense of Definition 2.2 (this implies that the singular set X \R has Minkowski

dimension ≤ n − 4) and that is Y -regular at scale 1 in the sense of Defini-

tion 2.4 for some Y <∞ that only depends on g0 and C .

Moreover, X is a shrinking gradient soliton in the following sense: There

is a smooth and bounded function f∞ ∈ C∞(R) that satisfies the shrinking

soliton equation

Ricg +∇2f∞ = 1
2g on R.

A precise definition of a singular space X can be found in Section 2.1 (see

Definition 2.1). In a nutshell, a singular space is a metric space whose geometry

is given by a smooth Riemannian metric on a generic subset. The notion of

“convergence to a singular space” is also made more concrete in Section 2.1

(see Definition 2.5).

In the Kähler-Fano case, Theorem 1.2 implies the Hamilton-Tian Conjec-

ture:

Corollary 1.3. Let (M2n, (gt)t∈[0,T )) be a Kähler-Ricci flow on a Fano

manifold M2n. Then for any sequence of times ti ↗ T , we can find a sub-

sequence such that (M, (T − ti)
−1gti) converges to a compact singular space

X = (X, d,R, g) that has singularities of codimension 4, that is Y -regular at

scale 1 for some Y < ∞ and that is a shrinking soliton in the sense of Theo-

rem 1.2.

1.3. Statement of the main results : Compactness theorem and further re-

sults. Theorems 1.1, 1.2, and by proxy Corollary 1.3, will follow from a uni-

fying compactness and partial regularity result for sequences of Ricci flows

with bounded scalar curvature. This compactness result states that for any

sequence of Ricci flows with bounded scalar curvature and uniformly bounded

entropy, the final time-slices subconverge to a singular space, which is smooth

away from a set of Minkowski dimension ≤ n− 4.

Theorem 1.4 (Compactness of Ricci flows with bounded scalar curva-

ture). Let (Mi, (g
i
t)t∈[−2,0]) be a sequence of Ricci flows on compact, n-dimen-

sional manifolds Mi, and assume that there is a uniform constant C <∞ such

that the following holds :

(i) The scalar curvature satisfies the uniform bound

|R| < ρi < C on Mi × [−2, 0]

for some sequence ρi.

(ii) Perelman’s entropy satisfies the uniform lower bound

ν[gi−2, 4] := inf
0<τ<4

µ[gi−2, τ ] > −C.

(For a definition of µ[gi−2, τ ], see Section 2.1.)
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Let qi ∈Mi be a sequence of basepoints. Then, after passing to a subsequence,

there is an n-dimensional, pointed singular space (X , q∞) (in the sense of Defi-

nition 2.1) such that the sequence of pointed Riemannian manifolds (Mi, g
i
0, qi)

converges to (X , q∞) (in the sense of Definition 2.5). Moreover, the singular

space X has singularities of codimension 4 (in the sense of Definition 2.2) and

X is Y -regular at scale 1 for some Y = Y (n,C) < ∞, which only depends on

n and C . Lastly, if ρi → 0, then X is Ricci flat (in the sense of Definition 2.1)

and has mild singularities (in the sense of Definition 2.3).

We remark that Theorem 1.4 shows that in the case ρi → 0, the limiting

space X is regular enough to apply the generalization of the theory of Cheeger,

Colding and Naber from [Bam17]. This theory gives us further structural

characterizations on X and its blow-up limits, and it also holds in the settings

of Theorems 1.1 and 1.2. For example, Theorem 1.4 combined with [Bam17,

Th. 1.5, Prop. 4.1] implies

Corollary 1.5. In the settings of Theorems 1.4, 1.1 and 1.2, all tangent

cones of the limiting space X are metric cones.

In the setting of Theorem 1.4, we also obtain further characterizations of

the behavior of the flow as ρi → 0, which will be discussed in a subsequent

paper.

Theorem 1.4 and its proof imply an important geometric bound for Ricci

flows with bounded scalar curvature. Before introducing this bound, we need

to recall the following terminology:

Definition 1.6 (Curvature radius). Let (M, g) be a (not necessarily com-

plete) Riemannian manifold, and let x ∈ M be a point. Then we define the

curvature radius rRm(x) at x to be the supremum over all r > 0 such that the

ball B(x, r) is relatively compact in M and such that |Rm| < r−2 on B(x, r).

If (gt)t∈I is a Ricci flow on M , then we denote by rRm(x, t) the curvature

radius rRm(x) with respect to the metric gt.

We will often denote by {a < rRm < b} (in the static case) or {a <

rRm(·, t) < b} (in the dynamic case) the set of all points x ∈ M such that

a < rRm(x) < b or a < rRm(x, t) < b, respectively.

In the following result, we control the inverse of the curvature radius,

(rRm(·, t))−1, in the local Lp<4 sense on each time-slice of a Ricci flow, in terms

of a constant that only depends on an upper bound on the scalar curvature

and a lower bound on the entropy. We furthermore obtain Lp<2-bounds on the

Riemannian curvature tensor.

Theorem 1.7 (Bounds on the curvature radius). For any A <∞, ε > 0

and n, there is an C = C(A, ε, n) <∞ such that the following holds :
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Let (M, (gt)t∈[−2,0]) be a Ricci flow on a compact n-dimensional manifold

such that the following holds :

(i) The scalar curvature satisfies the uniform upper bound

R < A on M × [−2, 0].

(ii) Perelman’s entropy satisfies the uniform lower bound

ν[g−2, 4] = inf
0<τ≤4

µ[g−2, τ ] > −A.

Then for any 0 < r < 1, t ∈ [−1, 0] and x ∈M , we haveˆ
B(x,t,r)

|Rm(·, t)|2−εdgt ≤
ˆ
B(x,t,r)

Ä
rRm(·, t)

ä−4+2ε
dgt < Crn−4+2ε.

Note that Theorem 1.7 can be seen as a generalization of the main result

of [CN15].

Lastly, we mention that the size of the time-interval [−2, 0] in Theorem 1.7

was chosen for technical reasons and can be adjusted to any other size via

parabolic rescaling. (See Section 2.1 for more details.) Likewise, the interval

[−1, 0] in the assertion of Theorem 1.7 can be chosen to be larger than half of

the time-interval [−2, 0].

1.4. Outline of the proof. In the following, we give a brief outline of the

proofs of our main results. As mentioned before, Theorems 1.1, 1.2 and Corol-

lary 1.3 are deduced as a consequence of the compactness result, Theorem 1.4.

This compactness result and the curvature bound, Theorem 1.7, will be proven

virtually simultaneously.

Before explaining the strategy of proofs of Theorems 1.4 and 1.7, we first

make the following observation: In order to obtain the (strong) Lp<4-bound in

Theorem 1.7, it suffices to establish a similar weak Lp
∗
-bound for some p∗ > p.

For technical convenience, we will often work with this weak Lp
∗
-bound in

this paper, and for brevity, we will refer to a weak Lp-bound simply as an

“Lp-bound” in this outline.

The strategy of our proof is the following. Let us fix some constants

E, p, p′, p′′ such that 3 < p < p′ < p′′ < 4. We first introduce an a priori

assumption, which states that the inverse of the curvature radius, r−1
Rm, is

locally bounded by E in a certain Lp-sense (similar as in the statement of

Theorem 1.7). Assuming this a priori assumption, we show that r−1
Rm is bounded

in an Lp
′
-sense, at sufficiently small scales, by a constant C, whose value is

independent of E. It is therefore possible to choose E � C in our a priori

assumption. Using this conclusion, we carry out an induction argument over

scales, which will imply that the Lp
′
-bound from above holds even if we do not

impose the a priori assumption. More specifically, we can arrange things in

such a way that the Lp-bound in the a priori assumption (involving E) follows
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from the Lp
′
-bound (involving C) at smaller scales. Therefore, if the Lp-bound

holds at scales below some r < 1, then the a priori assumption and thus also

the Lp-bound hold at scales < 10r. Iterating this conclusion, will then allow

us to derive an Lp-bound at all scales.

In order to derive the Lp-bound on r−1
Rm under the a priori assumption,

we prove a compactness and blow-up result, which is similar to Theorem 1.4.

More specifically, we show that sequences of Ricci flows that satisfy the a priori

assumption and whose scalar curvature is bounded by a constant that goes to

0 converge, after passing to a subsequence, to a singular space X that is Ricci

flat away from a singular set of codimension > 3. It will turn out that these

limit spaces can be analyzed using the results of [Bam17], which generalize the

theory of Cheeger, Colding and Naber (see [Col97], [CC96], [CN13a], [CN15])

to the singular setting. As a result, we obtain an Lp
′′
-bound on r−1

Rm on X .

From this bound we can deduce an Lp
′
-bound on Ricci flows with sufficiently

small scalar curvature via a covering argument.

It is important to note that the limiting space X can only be shown to

be Ricci flat on its regular part. Unfortunately, a (synthetic) characterization

of the curvature on the singular points seems to be unavailable. Therefore,

the generalization of the theory of Cheeger, Colding and Naber to the singular

setting becomes quite subtle. In lieu of a curvature condition on the singular

points of X , we have to show that X possesses a number of geometric and

analytic properties, which allow us to carry out this theory whatsoever. A

sufficient set of such properties has been worked out in [Bam17]. Luckily,

several of these properties follow more or less naturally from earlier work of the

author and Zhang (see [BZ17], [BZ15]). However, as discussed in Section 1.1,

there are two properties—the weak convexity property of the regular set (also

known as “mildness of the singular set”) and an ε-regularity property—that

require new regularity results for Ricci flows with bounded scalar curvature.

The proofs of these regularity results occupy most of this paper.

The general inductive multi-scale approach of our proof is quite common in

the analysis of geometric PDEs and Ricci flows in particular. The effectiveness

of this approach in Ricci flows was first demonstrated by Perelman (cf. [Per02],

[Per03]). In the setting of Ricci flows with bounded scalar curvature, the

approach was also used in [BZ17]. In the Kähler case, it was furthermore used

by Chen and Wang (cf. [CW12]). However, in their work, the authors needed

to impose several strong additional a priori assumptions that they had to verify

subsequently. In our proof, these additional properties will be derived directly,

making the structure of our argument more linear and transparent.

The paper is structured as follows. Section 2 contains the most important

definitions and conventions used throughout this paper.
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In Section 3, we review the results from [BZ17] and [BZ15] that will be

needed subsequently.

In Section 4, we prove a result similar to the compactness statement of

Theorem 1.4 under the a priori Lp-bound on r−1
Rm. The main part of this

section is devoted to the proof of the mildness of the singularities in the limit

(see Definition 2.3), which is needed in order to apply [Bam17].

In Section 5 we show that the limiting space from the previous section is

Y -regular (in the sense of Definition 2.4), meaning that any ball with Y −1-

almost maximal volume has bounded curvature at its center.

In Section 6, we combine the compactness statement under the a priori as-

sumption (from Section 4) with the Y -regularity of the limit X (from Section 5)

and the Lp bound on r−1
Rm (from [Bam17]) to deduce the main Theorems 1.4

and 1.7. Theorems 1.1, 1.2 and Corollary 1.3 will follow immediately.

2. Important terminology and conventions

2.1. Terminology. We now give a precise definition of the terminology

that was used in the theorems of corollaries of the previous subsection and

that will be used throughout this paper. Let us first introduce the following

notion: Given a measurable subset S ⊂ M of a Riemannian manifold (M, g),

we will denote by |S| = |S|g the Riemannian measure of S with respect to the

metric g. If (gt)t∈M is a Ricci flow, then we often write |S|t := |S|gt .
Next, we review Perelman’s entropy formulas (cf. [Per02]). For any com-

pact, n-dimensional Riemannian manifold (M, g), any function C1(M) and any

τ > 0, we define

W[g, f, τ ] :=

ˆ
M

Ä
τ(|∇f |2 +R) + f − n

ä
(4πτ)−n/2e−fdg.

We can then derive the following functionals: For τ > 0, we define

µ[g, τ ] := inf
f∈C1(M)´

M (4πτ)−n/2e−fdg=1

W[g, f, τ ]

and

ν[g, τ ] := inf
0<τ ′<τ

µ[g, τ ′].

Note that ν[g, τ ] ≤ 0. If (gt)t∈[0,τ) is a Ricci flow, then the functions t 7→
µ[gt, τ − t], t 7→ ν[gt, τ − t] and t 7→ ν[gt] are non-decreasing. Moreover, by

replacing f ← f − n
2 log τ1 + n

2 log τ2, we can deduce the following estimate for

any 0 < τ1 ≤ τ2:

µ[g, τ2] ≥ µ[g, τ1] +
n

2
log τ1 −

n

2
log τ2,

and similarly

ν[g, τ1] ≥ ν[g, τ2] ≥ ν[g, τ1] +
n

2
log τ1 −

n

2
log τ2.
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Lastly, note that the choice τ = 4 in the conditions on the entropy in the

theorems and corollaries of Section 1.1 only serves our convenience and can be

modified to any other constant.

We now define what we mean by the singular spaces that appeared in

Theorem 1.4. The following definition comprises the most basic notions of a

metric space that is smooth on a generic subset.

Definition 2.1 (Singular space). A tuple X = (X, d,R, g) is called an

(n-dimensional) singular space if the following holds:

(1) (X, d) is a locally compact, complete metric length space.

(2) R ⊂ X is an open and dense subset that is equipped with the structure of a

differentiable n-manifold whose topology is equal to the topology induced

by X.

(3) g is a smooth Riemannian metric on R.

(4) The length metric of (R, g) is equal to the restriction of d to R. In other

words, (X, d) is the completion of the length metric on (R, g).

(5) There are constants 0 < κ1 < κ2 <∞ such that for all 0 < r < 1,

κ1r
n < |B(x, r) ∩R| < κ2r

n.

Here | · | denotes the Riemannian volume with respect to the metric g and

distance balls B(x, r) are measured with respect to the metric d.

If, moreover, Ricg = 0 everywhere on R, then X is said to be Ricci flat. Also,

if q ∈ X is a point, then the tuple (X , q) or (X, d,R, g, q) is called pointed

singular space.

The subset R is called the regular part of X and its complement X \ R
the singular part of X .

We remark that this definition is similar to the corresponding definition

in [Bam17] with the only difference that g is assumed to be smooth in this

paper. We furthermore emphasize that the metric d on X is induced by the

length metric of the Riemannian metric g on R (see item (4)). So the distance

between any two points inR can be approximated arbitrarily well by the length

of a smooth connecting curve in R. This is an important property, which will

take us some effort to establish.

We can generalize the concept of curvature radius from Definition 1.6 to

singular spaces X = (X, d,R, g) by defining the function rRm : X → [0,∞]

as follows: We define rRm|X\R ≡ 0, and for any x ∈ R, we let rRm(x) be the

supremum over all r > 0 such that B(x, r) ⊂ R and |Rm| < r−2 on B(x, r).

We will now define the following properties of singular spaces:

Definition 2.2 (Singularities of codimension p0). A singular space X =

(X, d,R, g) is said to have singularities of codimension p0, for some p0 > 0, if
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for any 0 < p < p0, x ∈ X and r0 > 0, there is an Ep,x,r0 < ∞ (which may

depend on X ) such that the following holds: For any 0 < r < r0 and 0 < s < 1,

we have

|{rRm < sr} ∩B(x, r) ∩R| ≤ Ep,x,rs
prn.

It can be seen easily that if an n-dimensional singular space X has singu-

larities of codimension p0 in the sense of Definition 2.2, then its singular set

X \ R has Minkowski dimension ≤ n− p0.

Definition 2.3 (Mild singularities). A singular space X = (X, d,R, g) is

said to have mild singularities if for any p ∈ X, there is a closed subset Qp ⊂ R
of measure zero such that for any x ∈ R \ Qp, there is a minimizing geodesic

between p and x that lies in R.

The idea behind the notion of mild singularities also occurs in the work

of Cheeger and Colding (see [CC00, Th. 3.9] and Chen and Wang (see [CW12,

Def. 2.1]).

Definition 2.4 (Y -regularity). A singular space X is called Y -regular at

scales less than a, for some a, Y > 0, if for any p ∈ X and 0 < r < a, the

following holds: If

|B(p, r) ∩R| > (ωn − Y −1)rn,

then p ∈ R and rRm(y) > Y −1r. Here ωn denotes the volume of the standard

n-dimensional ball in Euclidean space. The space X is said to be Y -regular at

all scales if it is Y -regular at scale a for all a > 0.

The notion of Y -regularity is standard in the study of Einstein metrics. A

similar notion has been used in [CC00] and [And89] and, in the setting of Ricci

flows with bounded scalar curvature, in [CW12, Def. 3.3] and [TZ16, Th. 2.35].

We also remark that Definitions 2.2 and 2.4 are similar to the corresponding

definitions in [Bam17] with the only difference being that the curvature radius,

as defined in Definition 1.6, that is used in these definitions here does not

involve higher derivatives of the curvature tensor. Due to parabolic regularity

and backwards pseudolocality (see Proposition 3.2), this difference will turn

out to be inessential.

It can be shown that in a Y -regular space with singularities of codimension

p0 (for some p0 > 0), any point p ∈ X whose tangent cone is isometric to Rn
is actually contained in R. Therefore, the regular set R and the metric g in

such a space is uniquely characterized by the metric d.

Next, we define what we understand by convergence towards a singular

space.

Definition 2.5 (Convergence and convergence scheme). Consider a sequence

(Mi, gi, qi) of pointed n-dimensional Riemannian manifolds and a pointed,
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n-dimensional singular space (X , q∞) = (X, d,R, g, q∞). Let Ui ⊂ R and

Vi ⊂Mi be open subsets and Φi : Ui → Vi be (bijective) diffeomorphisms such

that the following holds:

(1) U1 ⊂ U2 ⊂ · · ·
(2)

⋃∞
i=1 Ui = R.

(3) For any open and relatively compact W ⊂ R and any m ≥ 1, we have

Φ∗i gi → g on W in the Cm-sense.

(4) There exists a sequence q∗i ∈ Ui such that

dMi(Φi(q
∗
i ), qi)→ 0.

(5) For any R < ∞ and ε > 0, there is an iR,ε < ∞ such that for all i > iR,ε
and x, y ∈ BX(q∞, R) ∩ Ui, we have∣∣∣dMi(Φi(x),Φi(y))− dX(x, y)

∣∣∣ < ε

and such that for any i > iR,ε and x ∈ BMi(qi, R), there is a y ∈ Vi such

that dMi(x, y) < ε.

Then the sequence {(Ui, Vi,Φi)}∞i=1 is called a convergence scheme for the se-

quence of pointed Riemannian manifolds (Mi, gi, qi) and the pointed singular

space (X , q∞). We say that (Mi, gi, qi) converges to (X , q∞) if such a conver-

gence scheme exists.

2.2. Conventions. In the following we will fix a dimension n ≥ 3 and we

will omit the dependence of our constants on n. Note that all the theorems

above trivially hold in dimension 2.

3. Preliminaries on Ricci flows

3.1. Ricci flows with bounded scalar curvature. In this subsection we re-

view some of the previous results on Ricci flows with bounded scalar curvature

that we will need in the following.

We first recall the following volume bounds for distance balls.

Proposition 3.1 (volume bound). For any A < ∞, there is a constant

C = C(A) <∞ such that the following holds :

Let (M, (gt)t∈[−2,0]) be a Ricci flow on a compact, n-dimensional manifold

that satisfies

(i) ν[g−2, 4] ≥ −A;

(ii) |R| ≤ A on M × [−2, 0].

Then for any (x, t) ∈M × [−1, 0] and r > 0, we have

C−1
Ä

min{1, r}
än ≤ |B(x, t, r)|t ≤ CrneCr.
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The lower volume bound is due to Perelman’s No Local Collapsing The-

orem (cf. [Per02]), and the upper bound is a consequence of the non-inflating

property from [Zha12] or [CW13]; see also [BZ15, Lemma 2.1].

Before we move on to the next result, we recall the definition of the cur-

vature radius from Definition 1.6 in a Ricci flow:

rRm(x, t) = sup
¶
r > 0 : |Rm| < r−2 on B(x, t, r)

©
.

Note that by definition, rRm(·, t) is 1-Lipschitz, which can be seen easily by con-

tradiction: If rRm(x, t)− rRm(y, t) > dt(x, y) for two points x, y, then for r :=

rRm(x, t)−dt(x, y), we would have B(y, t, r) ⊂ B(x, t, rRm(x, t)), and therefore

|Rm| ≤ r−2
Rm(x, t) ≤ r−2 on B(y, t, r), in contradiction to r > rRm(y, t).

We now recall the Backwards and Forward Pseudolocality Theorems for

Ricci flows with bounded scalar curvature.

Proposition 3.2 (Pseudolocality; cf. [Per02], [BZ17, Th. 1.5]). For any

A <∞, there is a constant ε = ε(A) > 0 such that the following holds :

Let (M, (gt)t∈[−2,0]) be a Ricci flow on a compact, n-dimensional manifold

that satisfies

(i) ν[g−2, 4] ≥ −A;

(ii) |R| ≤ A on M × [−2, 0].

Then for any (x, t) ∈M × [−1, 0] and r := min{1, rRm(x, t)}, we have

(3.1) rRm > εr on P (x, t, εr,−(εr)2) ∪ P (x, t, εr,min{(εr)2,−t}).

Here, P (x, t, r, a) denotes the parabolic neighborhood B(x, t, r)× [t, t+ a]

or B(x, t, r)× [t+ a, t], depending on whether a is positive or negative.

Note that the minimum in (3.1) is placed in the second parabolic neigh-

borhood to ensure that the parabolic neighborhood does not reach past time 0,

where the flow is not defined.

Next, we recall the distance distortion bound from [BZ15].

Proposition 3.3 (Distance distortion; cf. [BZ15, Th. 1.1]). For any

A,D < ∞, there is a constant C = C(A,D) < ∞ such that the following

holds :

Let (M, (gt)t∈[−2,0]) be a Ricci flow on a compact, n-dimensional manifold

that satisfies

(i) ν[g−2, 4] ≥ −A;

(ii) |R| ≤ A on M × [−2, 0].

Let t1, t2 ∈ [−2, 0] and x, y ∈M such that dt1(x, y) ≤ D. Then∣∣∣dt1(x, y)− dt2(x, y)
∣∣∣ ≤ C»|t1 − t2|.

We will also need the Gaussian heat kernel bounds from [BZ17].
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Proposition 3.4 (Gaussian heat kernel bounds; cf. [BZ17, Th. 1.4]). For

any A <∞, there is a constant C = C(A) <∞ such that the following holds :

Let (M, (gt)t∈[−2,0]) be a Ricci flow on a compact, n-dimensional manifold

that satisfies

(i) ν[g−2, 4] ≥ −A;

(ii) |R| ≤ A on M × [−2, 0].

Let K(x, t; y, s) be the fundamental solution of the heat equation coupled with

the Ricci flow, and let −2 +A−1 ≤ s < t ≤ 0. Then

1

C(t− s)n/2
exp

(
−Cd

2
s(x, y)

t− s

)
< K(x, t; y, s) <

C

(t− s)n/2
exp

(
− d

2
s(x, y)

C(t− s)

)
.

With the help of Proposition 3.3, the time-s distance ds(x, y) can also be re-

placed by the time-t distance dt(x, y) in the formula above.

We will sometimes use the following corollary from Propositions 3.1 and 3.4.

Corollary 3.5. For any a > 0 and A < ∞, there is a constant C =

C(a,A) <∞ such that the following holds :

Let (M, (gt)t∈[−2,0]) be a Ricci flow on a compact, n-dimensional manifold

that satisfies

(i) ν[g−2, 4] ≥ −A;

(ii) |R| ≤ A on M × [−2, 0].

Let K(x, t; y, s) be the fundamental solution of the heat equation coupled with

the Ricci flow, and let −1 ≤ s < t ≤ 0. Then for all r ≥ 0 and x0 ∈M ,

(3.2)

ˆ
M\B(x0,t,r)

K(x0, t; y, s)dgt(y) < C exp
(
− r2

C(t− s)

)
.

Moreover,

(3.3)

ˆ
M
K(x0, t; y, s)

Ä
dt(x0, y)

äa
dgt(y) < C(t− s)a/2

and

(3.4)

ˆ
M
K(x0, t; y, s)

Ä
ds(x0, y)

äa
dgs(y) < C(t− s)a/2.

Similarly as in Proposition 3.4, the time-t balls B(x0, t, r) can be replaced by

the time-s balls B(x0, s, r), and the time-t measure dgt can be replaced by the

time-s measure dgs and vice versa.

Proof. Set τ := t − s ≤ 1. Let us first check (3.2). This inequality holds

trivially for r2 ≤ τ if C is large enough, as its left-hand side is bounded by 1.

So assume that r2 > τ . Then, using Propositions 3.1 and 3.4, for some generic
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constant C = C(A) <∞, we have
ˆ
M\B(x0,t,r)

K(x0, t; y, s)dgt(y) ≤
ˆ
M

C

τn/2
exp

(
−d

2
t (x, y)

Cτ

)
dgt(y)

=
C

τn/2

∞∑
k=0

ˆ
B(x0,t,2k+1r)\B(x0,t,2kr)

exp
(
−d

2
t (x, y)

Cτ

)
dgt(y)

≤ C

τn/2

∞∑
k=0

|B(x0, t, 2
k+1r)|t · exp

(
−(2kr)2

Cτ

)
≤ C

τn/2

∞∑
k=0

(2k+1r)n exp
(
C2k+1r

)
· exp

(
−(2kr)2

Cτ

)
≤ Crn

τn/2

∞∑
k=0

2n(k+1) exp
(
C322(k+1)τ +

r2

4Cτ

)
· exp

(
− r2

2Cτ
− 22k

2C

)
≤ Crn

τn/2
exp

(
− r2

4Cτ

) ∞∑
k=0

2n(k+1) exp
(
C322(k+1) · 1− 22k

2C

)
≤ Crn

τn/2
exp

(
− r2

4Cτ

)
≤ C exp

(
n · r

τ1/2

)
· exp

(
− r2

4Cτ

)
= C exp

(
n · r

τ1/2
− r2

4Cτ

)
≤ C exp

(
− r2

8Cτ

)
.

(Note that in the fourth inequality we have used
√
ab ≤ 1

2(a + b) for a =

2C322(k+1)τ and b = r2

2Cτ . In the fifth inequality, we have used (2kr)2 ≥
1
222kr2 + 1

222kr2 ≥ 1
2r

2 + 1
222kτ .) This shows (3.2). The bounds (3.3) and (3.4)

follow using (3.2) and Fubini’s Theorem for some generic C = C(a,A) < ∞.

To see (3.3), we argue as follows:ˆ
M
K(x0, t; y, s)

Ä
dt(x0, y)

äa
dgt(y)

=

ˆ
M

ˆ dt(x0,y)

0
K(x0, t; y, s) · ara−1drdgt(y)

=

ˆ
M

ˆ ∞
0

χr≤d(y,x0)K(x0, t; y, s)ar
a−1drdgt(y)

=

ˆ ∞
0

ara−1

ˆ
M\B(x0,t,r)

K(x0, t; y, s)dgt(y)dr

≤
ˆ ∞

0
C exp

(
− r2

Cτ

)
ra−1dr

=
√
τ

ˆ ∞
0

C exp
(
−u

2

C

)
(u
√
τ)a−1dr ≤ Cτa/2.

The bound (3.4) can be derived similarly. This finishes the proof. �
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Proposition 3.6. There are constants C0, C1, . . . <∞ that only depend

on the dimension n such that the following holds : Let (M, (gt)t∈[−2,0]) be a Ricci

flow on an n-dimensional manifold . Let (x, t) ∈ M × [−1, 0] and 0 < r < 1,

and assume that the ball B(x, t, r) is relatively compact in M . Assume that

|Rm| < r−2 and |R| ≤ ρ on the parabolic neighborhood P (x, t, r,−r2) for some

0 < ρ < 1. Then for all m ≥ 0,

(3.5) |∇m Ric|(x, t) < Cmρ
1/2r−m−1

and

(3.6) |∇R|(x, t) < C0ρ
3/4r−1.5 and |∂t Rm|(x, t) < C0ρ

1/2r−3.

Proof. For (3.5), see [BZ17, Lemma 6.1] or [Wan12]. The second bound

in (3.6) can also be found in [BZ17, Lemma 6.1]. To see the first bound in

(3.6), use that |∇2R| ≤ |∇2 Ric| < 2C2ρ
1/2r−3 and |R| ≤ ρ in a parabolic

neighborhood of (x, t) and the interpolation inequality at scale ρ1/4r1.5. �

3.2. L-geometry. We now recall some of the basic definitions and facts of

L-geometry, as introduced in [Per02]. For more detailed proofs and explana-

tions, we also refer to [KL08, §§17–23].

Let (M, (gt)[a,b]) be a Ricci flow, t0 ∈ (a, b] and 0 ≤ τ1 < τ2 ≤ t0 − a.

Consider a smooth curve γ : (τ1, τ2]→M . We define its L-length Lt0(γ) based

at time t0 as follows:

Lt0(γ) :=

ˆ τ2

τ1

√
τ
Ä
|γ′(τ)|2t0−τ +R(γ(τ), t0 − τ)

ä
dτ.

In the following, we will often consider the case τ1 = 0. We will also frequently

omit the index t0 if the base time is clear.

The L-length functional can be viewed as a Ricci flow analogue of the Rie-

mannian energy functional for curves. However, while the Riemannian energy

functional is applied to curves in a static Riemannian manifold, the L-length

should be seen as a functional for spacetime curves, whose endpoints lie in

different time-slices. Nevertheless, many of the notions in Riemannian geome-

try that are related to the energy functional—such as (minimizing) geodesics,

distances, the exponential map and the cut locus—can be translated to equiv-

alent notions related to the L-length functional. In the following we will briefly

recall these notions and compare them with their Riemannian counterparts.

Curves that minimize the L-length for fixed endpoints are called minimiz-

ing L-geodesics. Note that, unlike in the Riemannian case, such minimizing

curves may not necessarily be parametrized by constant speed. The Euler-

Lagrange equation for the L-functional (i.e., the equation satisfied by curves

that are critical points of the L-functional) is the L-geodesic equation:

(3.7) ∇gt0−τγ′(τ) γ
′(τ)− 1

2
∇R(γ(τ), t0 − τ) +

1

2τ
γ′(τ) + 2 Ricgt0−τ (γ′(τ)) = 0.
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Solutions of the L-geodesic equation are called L-geodesics. It follows that

minimizing L-geodesics are L-geodesics, and it can be shown that, as in the

Riemannian case, any L-geodesic is locally minimizing. Moreover, it is known

that if the underlying manifold M is compact, then any two points (x1, t1) and

(x2, t2) with a ≤ t2 < t1 ≤ t0, x1, x2 ∈ M can be connected by a minimizing

L-geodesic γ : [τ1, τ2]→M with τ1 = t0− t1 and τ2 = t0− t2. This L-geodesic

is continuous for all τ and smooth whenever τ > 0.

From now on we will only consider L-geodesics based at time t0 and we will

omit the index t0. For any basepoint (x0, t0) ∈M×[a, b] and (x, t) ∈M×[a, t0),

we define

L(x, t) = L(x0,t0)(x, t)

:= inf
¶
L(γ) : γ : [0, t0 − t]→M,γ(0) = x0, γ(t0 − t) = x

©
to be the L-distance between (x, t) and (x0, t0). Note that if M is compact,

then the infimum in the definition above is attained. We also set

L(x, t) = L(x0,t0)(x, t) := 2
√
t0 − tL(x0,t0)(x, t)

and

l(x, t) = l(x0,t0)(x, t) :=
1

2
√
t0 − t

L(x0,t0)(x, t).

It was shown by Perelman that if M is compact, then

(3.8) ∂tL ≥ 4L− 2n

in the barrier sense (meaning that for any (x, t) ∈ M × (a, t0) and ε > 0

there is an open neighborhood U ⊂ M of x, δ > 0 and a smooth function

φ : U×(t−δ, t]→ R satisfying ∂tφ ≥ 4φ−2n−ε such that L ≤ φ with equality

at (x, t)). This bound can be seen as a parabolic analogue of the Laplacian com-

parison theorem for Riemannian manifolds with lower Ricci curvature bounds.

Next, recall the L-geodesic equation (3.7). Given some x ∈M and τ > 0,

this equation admits a unique solution γ : (0, t0 − a] → M . Moreover, it can

be seen that x0 := limτ↘0 γ(τ) and limτ↘0
√
τγ′(τ) ∈ Tx0M exist. Vice versa,

for any point x0 ∈M and vector v ∈ Tx0M , there is a unique L-geodesic with

these properties. We can therefore define for any τ > 0 the L-exponential map

L expτ = L exp(x0,t0),τ : Tx0M →M

such that γ(τ) = L expτ (v) is an L-geodesic with limτ↘0
√
τγ(τ) = x0 and

limτ↘0
√
τγ′(τ) = v. The L-exponential map can be viewed as a Ricci flow

version of the Riemannian exponential map. The Jacobian of the L-exponential

map, with respect to the measures induced by gt0 |x0 on Tx0M and dgt0−τ on

M , is denoted by

JL(·, τ) = JL(x0,t0)(·, τ) : Tx0M → R.
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Observe that if M is compact, then L expτ is surjective and, more specifi-

cally, for every x ∈M and τ > 0, there is a v ∈ Tx0M such that L expτ (v) = x

and such that τ ′ 7→ L expτ ′(v) is minimizing on [0, τ ]. This observation mo-

tivates the definition of an analogue of the segment domain in Riemannian

geometry:

DLτ = DL(x0,t0),τ :=
¶
v ∈ Tx0M : τ ′ 7→ L expτ ′(v) is minimizing on

[0, (1 + λ)τ ] for some λ > 0
©

and

GLτ = GL(x0,t0),τ := L exp(x0,t0),τ

Ä
DL(x0,t0),τ

ä
.

It is known that DLτ and GLτ are open, that

L expτ : DLτ → GLτ
is a diffeomorphism, and that the complement M \ GLτ has measure zero. This

complement can be viewed as an analogue of the Riemannian cut locus.

Finally, we mention an important result due to Perelman’s, which states

that along any minimizing geodesic γ : [0, τ ] → M , γ(τ ′) = L expτ ′(v), the

quantity τ−n/2e−l(γ(v),t0−τ)JL(v, τ) is non-increasing in τ . Therefore, if M is

compact, then the reduced volume‹V (τ) = ‹V(x0,t0)(τ) :=

ˆ
M

(4πτ)−n/2e−l(·,t0−τ)dgt0−τ

=

ˆ
DLτ

(4πτ)−n/2e−l(L expτ (v),t0−τ)JL(v, τ)dv

is non-increasing in τ as well. This monotonicity and (3.8) were used by

Perelman to give an alternative proof of the no local collapsing Theorem.

4. Compactness of Ricci flows under a priori assumptions

4.1. Statement of the main result. The goal of this section is to prove a

compactness result for sequences of Ricci flows with bounded scalar curvature

that satisfy an additional a priori uniform Lp-curvature bound. We will show

that such a sequence subconverges towards a singular space. Moreover, if the

sequence is obtained via a blow-up process, then the limiting singular space

is Ricci flat and has certain regularity properties. For example, it has mild

singularities and is Y -tame at all scales, where Y does not depend on the

a priori Lp-curvature bound. This fact will become important in the proof

of Theorem 1.7. The regularity conditions and the Y -tameness property will

enable us later to carry out some of the steps in the theory of Cheeger, Colding

and Naber (cf. [Col97], [CC96], [CN13a], [CN15]) on the limiting singular space

in such a way that the constants involved in this theory do not depend on the

a priori Lp-curvature bound.
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The theory of Cheeger, Colding and Naber adapted to the singular setting

is described in [Bam17]. Note that in the following result, we only obtain Ricci

flatness of the limiting singular space on their regular part and we will not

characterize the curvature on the singular part. This will not create any issues

for us, as the results in [Bam17] surprisingly do not depend on such a curvature

characterization.

Lastly, we mention that there is a further regularity property of singular

spaces—namely, Y -regularity—whose proof we will postpone to Section 5, as it

relies on the compactness result from this section. This Y -regularity property

will then allow us to carry out all the necessary steps in the theory of Cheeger,

Colding and Naber (as described in [Bam17]) in Section 6 and deduce Lp-

curvature bounds that are independent of the a priori Lp-curvature bounds.

The main compactness result of this section is the following:

Proposition 4.1 (Compactness assuming a priori curvature bounds). Let

(Mi, (g
i
t)t∈[−Ti,0]), Ti ≥ 2, be a sequence of Ricci flows on compact, n-dimen-

sional manifolds Mi such that

(i) ν[gi−Ti , 2Ti] ≥ −A for some uniform A <∞.

(ii) |R| ≤ ρi on Mi × [−Ti, 0] for some sequence 0 < ρi < 1.

(iii) There is a constant p0 > 2 such that for any 0 < p < p0, there is a

constant Ep <∞ such that for all (x, t) ∈Mi× [−Ti, 0] and 0 < r, s < 1,

we have ∣∣∣{rRm(·, t) < s} ∩BMi(x, t, r)
∣∣∣
t
≤ Eps

prn.

Let qi ∈Mi be a sequence of basepoints. Then, after passing to a subsequence,

the pointed Riemannian manifolds (Mi, g
i
0, qi) converge (in the sense of Defi-

nition 2.5) to a pointed singular space (X , q∞) = (X, d,R, g, q∞) (in the sense

of Definition 2.1) with singularities of codimension p0 (in the sense of Defini-

tion 2.2). Moreover,

(a) For all 0 < p < p0 and all x ∈ X and 0 < r, s < 1, we have∣∣∣{r∞Rm < s} ∩BX(x, r) ∩R
∣∣∣ ≤ Eps

prn.

Here r∞Rm denotes the curvature radius on X .

(b) If ρi → 0, then Ric ≡ 0 on R and X has mild singularities (in the sense

of Definition 2.3). If furthermore p0 > 1, then X is Y (A)-tame at scales

c(A)
√
T∞, where T∞ := lim supi→∞ Ti and Y (A,p0) < ∞ can be chosen

only depending on A and p0 and c(A) > 0 can be chosen only depending

on A. (In particular, both of these constants are independent of Ep.)

The convergence (Mi, g
i
0, qi) to (X , q∞) can be understood as follows : there is

a convergence scheme {(Ui, Vi,Φi)}∞i=1 such that
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(c) For any x ∈ R and r > 0, we have∣∣∣BX(x, r) ∩R
∣∣∣ ≤ lim inf

i→∞

∣∣∣BMi(Φi(x), 0, r)
∣∣∣
0

≤ lim sup
i→∞

∣∣∣BMi(Φi(x), 0, r)
∣∣∣
0
≤
∣∣∣BX(x, r) ∩R

∣∣∣.
(d) For any x ∈ R, we have

r∞Rm(x) = lim
i→∞

rRm(Φi(x), 0).

(e) For any D <∞ and σ > 0 and sufficiently large i (depending on D and σ),

we have

rRm(·, 0) < σ on BMi(qi, 0, D) \ Vi
and

r∞Rm < σ on BX(q∞, D) \ Ui.

A more effective version of Proposition 4.1 is the following:

Proposition 4.2. For any A,E < ∞, η > 0 and p0 > 2, there is a

ρ = ρ(A,E, η,p0) > 0 such that the following holds : Let (M, (gt)t∈[−2,0]) be

a Ricci flow on a compact, n-dimensional manifold M , x0 ∈ M a point and

0 < r0 < 1 a scale, and assume that

(i) ν[g−2, 4] ≥ −A;

(ii) |R| ≤ ρ on M × [−2, 0];

(iii) for all (x, t) ∈M × [−1, 0] and 0 < r, s < 1, we have

|{rRm(·, t) < sr} ∩B(x, t, r)|t ≤ Esp0rn.

Then for any (q, t) ∈M× [−1/2, 0], there is a pointed singular space (X , q∞) =

(X, d,R, g, q∞) with Ric ≡ 0 on R and mild singularities (in the sense of

Definition 2.3), subsets U ⊂ R and V ⊂M and a diffeomorphism Φ : U → V

such that the following holds :

(a) q∞ ∈ U and dt(Φ(q∞), q) < η.

(b) ‖Φ∗gt − g‖C[µ−1](U)
< η.

(c) r∞Rm < η on BX(q∞, η
−1) \ U , where r∞Rm denotes the curvature radius on

X .

(d) rRm(·, t) < η on BM (q, t, η−1) \ V and

|BX(q, t, η−1) \ V |t < η.

(e) For any y1, y2 ∈ U , we have

|d(y1, y2)− dt(Φ(y1),Φ(y2))| < η.

(f) For any 0 < r < η−1, we have

(1− η)
∣∣∣BX(q, r) ∩R

∣∣∣− η < ∣∣∣BM (q, t, r)
∣∣∣
t
< (1 + η)

∣∣∣BX(q∞, r) ∩R
∣∣∣+ η.
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(g) For all x ∈ X and 0 < r, s < 1, we have∣∣∣{r∞Rm < sr} ∩BX(x, r) ∩R
∣∣∣ ≤ Esp0rn.

The major difficulty in the proof of Proposition 4.1 lies in verifying prop-

erties (C) and (E) of [Bam17, §1.2] for the sequence of pointed Riemannian

manifolds (Mi, g
i
0, qi). These properties will imply that the length metric on

the smooth part R of the limiting space X is equal to the restriction of its

metric to R, as well as the mildness of singularities of X . This will be achieved

by constructing minimal time-0 geodesics as limits of certain L-geodesics, as

explained in Section 4.2. The other statements will follow more or less using

standard techniques and the results of [Bam17].

4.2. Existence of short L-geodesics. In this subsection we will show that,

in a Ricci flow with bounded scalar curvature, between almost any two points

we can find an L-geodesic on a short time-interval that approximates a mini-

mizing geodesic at time 0.

We first show that the L-length is bounded from below in terms of the

distance. This proof is similar to one direction of the distance distortion bound

of [BZ15].

Lemma 4.3 (L-length is almost bounded from below by distance). For

any A,D <∞, there is a C = C(A,D) <∞ such that the following holds :

Let (M, (gt)t∈[−2,0]) be a Ricci flow on a compact, n-dimensional manifold

M and x0 ∈M with the property that

(i) ν[g−2, 4] ≥ −A;

(ii) |R| ≤ 1 on M × [−2, 0].

Let 0 < θ ≤ 1
8 , let γ : [0, θ] → M be a smooth curve, and denote by L(γ)

its L-length based at time 0. Assume that d0(γ(0), γ(θ)) ≤ D. Then

2
√
θL(γ) > d2

0(γ(0), γ(θ))− Cθ1/3.

Proof. Let x0 := γ(0), y0 := γ(θ) and η := θ2/3 ≥ 2θ. Observe first that

by Proposition 3.3, we have

(4.1) |dt1(x0, y0)− dt2(x0, y0)| < C1
√
η for all t1, t2 ∈ [−η, 0],

where C1 = C1(A,D) <∞.

Next consider the solution u ∈ C0(M × [−η, 0])∩C∞(M × (−η, 0]) to the

heat equation coupled with the Ricci flow

∂tu = 4tu, u(·,−η) = min{d−η(x0, ·), D}.
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Then by Corollary 3.5, for some constant C2 = C2(A) <∞, we have

u(x0, 0) =

ˆ
M
K(x0, 0; z,−η) min{d−η(x0, z), D}dg−η(z)

≤
ˆ
M
K(x0, 0; z,−η)d−η(x0, z)dg−η(z) ≤ C2

√
η.

Next, by (4.1) we have

D ≥ d0(x0, y0) ≥ d−η(x0, y0)− C1
√
η.

So by the triangle inequality, for all z ∈M , we have

d−η(x0, y0)−min
¶
d−η(x0, z), D

©
≤ d−η(x0, y0)−min

¶
d−η(x0, z), d−η(x0, y0)− C1

√
η
©
≤ d−η(y0, z) + C1

√
η.

We now estimate u(y0,−θ). Recall that θ ≤ 1
2θ

2/3 = 1
2η. So we obtain,

similarly as before,

u(y0,−θ) = d−η(x0, y0)−
ˆ
M
K(y0,−θ; z,−η)

·
Ä
d−η(x0, y0)−min{d−η(x0, z), D}

ä
dg−η(z)

≥ d0(x0, y0)− C1
√
η −

ˆ
M
K(y0,−θ; z,−η)d−η(y0, z)dg−η(z)

≥ d0(x0, y0)− C3
√
η,

where C3 = C3(A) <∞. So, in conclusion,

(4.2) u(y0,−θ)− u(x0, 0) ≥ d0(x0, y0)− C4
√
η,

where C4 = C4(A) <∞.

Now consider the quantity |∇u| on M × [−η, 0]. We claim that in the

barrier sense,

∂t|∇u| ≤ 4|∇u|.
Recall that this means the following: For any (x, t) ∈ M × (−η, 0] and ε > 0,

there is an open neighborhood U ⊂ M of x, δ > 0 and a smooth function

φ : U × (t− δ, t]→ R satisfying ∂tφ ≤ 4φ+ ε such that φ ≤ |∇u| with equality

at (x, t). In fact, whenever |∇u| > 0, by Kato’s inequality we have

∂t|∇u| =
∂t|∇u|2

2|∇u|
=

2〈∇4u,∇u〉+ 2 Ric(∇u,∇u)

2|∇u|
=
4〈∇u,∇u〉 − 2|∇2u|2

2|∇u|

=
24|∇u| · |∇u|+ 2|∇|∇u||2 − 2|∇2u|

2|∇u|
≤ 4|∇u|.

So if |∇u|(x, t) > 0, then |∇u| is smooth in a neighborhood of (x, t) and we

can set φ = |∇u|. On the other hand, if |∇u|(x, t) = 0, then we can set φ ≡ 0.
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Since |∇u|(·,−η) ≤ 1, we have by the maximum principle that

(4.3) |∇u| ≤ 1 on M × [−η, 0].

We can control the time-derivative of u using [BZ17, Lemma 3.1(a)]. We obtain

that there is a constant C5 = C5(D) <∞ such that for all t ∈ (−η, 0],

|∂tu| = |4u| ≤
C5

η + t
on M.

So, since θ ≤ 1
2η, we get

(4.4) |∂tu| ≤
2C5

η
on M × [−θ, 0].

Using (4.3) and (4.4), it follows that for any τ ∈ [0, θ],

d

dτ
u(γ(τ),−τ) =

¨
∇u(γ(τ),−τ), γ′(τ)

∂
−τ − ∂tu(γ(τ),−τ) ≤ |γ′(τ)|−τ +

2C5

η
.

So, using (4.2),

d0(x0, y0)− C4
√
η − 2C5

η
θ ≤ u(y0,−θ)− u(x0, 0)− 2C5

η
θ

≤
ˆ θ

0
|γ′(τ)|−τdτ ≤

Çˆ θ

0
2
√
τ |γ′(τ)|2−τdτ

å1/2Çˆ θ

0

1

2
√
τ
dτ

å1/2

=

Ç
2
√
θ

ˆ θ

0

√
τ |γ′(τ)|2−τdτ

å1/2

.

It follows that for some C6 = C6(A,D) <∞,

2
√
θL(γ) = 2

√
θ

ˆ θ

0

√
τ
Ä
|γ′(τ)|2 +R(γ(τ),−τ)

ä
dτ

≥ 2
√
θ

ˆ θ

0

√
τ |γ′(τ)|2dτ − 2

√
θ

ˆ θ

0

√
τ ≥ 2

√
θ

ˆ θ

0

√
τ |γ′(τ)|2dτ − 4

3
θ2

≥
Ç
d0(x0, y0)− C6

√
η − 2C7

θ

η

å2

− 4

3
θ2 ≥ d2

0(x0, y0)− C6θ
1/3.

This finishes the proof. �

Next we show that between almost every pair of points we can find a min-

imizing L-geodesic whose L-length is bounded from above by the distance at

time 0 and that satisfies the further condition that the inverse of the curvature

radius along this L-geodesic is bounded from above in the L1.5-norm.

Lemma 4.4 (Short L-geodesics along which curvature is bounded in L1.5).

For any A,E,D <∞ and σ0, θ0, δ > 0, there are constants θ = θ(A,D, θ0, δ) ∈
(0, θ0) and C = C(A,E,D, θ0, σ0, δ) <∞ such that the following holds :
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Let (M, (gt)t∈[−2,0]) be a Ricci flow on a compact, n-dimensional manifold

M and x0 ∈M with the property that

(i) ν[g−2, 4] ≥ −A;

(ii) |R| ≤ 1 on M × [−2, 0];

(iii) for all (x, t) ∈M × [−1, 0] and 0 < r, s < 1, we have

|{rRm(·, t) < sr} ∩B(x, t, r)|t ≤ Es2rn;

(iv) rRm(x0, 0) > σ0.

Then there is an open subset S ⊂ B(x0, 0, D) such that

(a) |B(x0, 0, D) \ S|0 < δ;

(b) for any y ∈ S, there is a minimizing L-geodesic γ : [0, θ]→M between x0

and y, γ(0) = x0, γ(θ) = y, such that

(b1) its L-length can be estimated as

|2
√
θL(γ)− d2

0(x0, y)| < δ;

(b2) we have

γ(τ) ∈ B(x0, 0, D + δ) for all τ ∈ [0, θ];

(b3) we have the integral curvature bound
ˆ θ

0
r−1.5

Rm (γ(τ),−τ)dτ < C.

Proof. We will use the notation from Section 3.2. Note that for any (x, t) ∈
M × [−2, 0],

(4.5) L(x, t) ≥ −2
√
−t

ˆ −t
0

√
−t′dt′ = −4

3
t2 ≥ −2t2.

Claim. There is a constant θ1 = θ1(A,D, θ0, δ) ∈ (0, θ0) such that when-

ever 0 < θ ≤ θ1, there is an open subset S′θ ⊂ B(x0, 0, D) such that

|B(x0, 0, D) \ S′θ|0 < δ/2

and such that for all y ∈ S′θ,

|L(y,−θ)− d2
0(x0, y)| < δ.

Here L = L(x0,0) denotes the L-distance with respect to (x0, 0).

Proof. Assume that 0 < θ ≤ θ1, where θ1 will be determined in the course

of the proof of this claim. Due to Lemma 4.3, it suffices to verify the bound

L(y,−θ) < d2
0(x0, y) + δ. The idea behind the following proof is to utilize the

following inequality from [Per02, eq. (7.15)], which holds in the barrier sense:

∂tL ≥ 4L− 2n.
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Since limt→0 L(z, t) = d2
0(x0, z) for all z ∈ M , we find that for all z ∈

B(x0, 0, D + 1),

(4.6)

ˆ
M
K(z, 0; y,−θ)L(y,−θ)dg−θ(y) ≤ d2

0(x0, z) + 2nθ.

It follows that
ˆ
M
K(z, 0; y,−θ)

Ä
L(y,−θ)− d2

0(x0, z)
ä
dg−θ(y) ≤ 2nθ.

So, using (4.5), Lemma 4.3 and Corollary 3.5, we get that for some C1 =

C1(A,D), C2 = C2(A,D) <∞ and for all z ∈ B(x0, 0, D + 1),

ˆ
B(z,0,

√
θ)
K(z, 0; y,−θ)

Ä
L(y,−θ)− d2

0(x0, z)
ä

+
dg−θ(y)

≤ 2nθ +

ˆ
M
K(z, 0; y,−θ)

Ä
L(y,−θ)− d2

0(x0, z)
ä
−dg−θ(y)

≤ 2nθ +

ˆ
B(x0,0,D+2)

K(z, 0; y,−θ)
ÄÄ
L(y,−θ)− d2

0(x0, y)
ä
−

+
∣∣∣d2

0(x0, z)− d2
0(x0, y)

∣∣∣ädg−θ(y)

+

ˆ
M\B(z,0,1)

K(z, 0; y,−θ)
Ä
2θ2 + (D + 1)2

ä
dg−θ(y)

≤ 2nθ +

ˆ
B(x0,0,D+2)

K(z, 0; y,−θ)
Ä
C1θ

1/3 + 2(D + 2)d0(z, y)
ä
dg−θ(y)

+
Ä
2θ2 + (D + 1)2) · C1 exp

(
− 1

C1θ

)
≤ 2nθ + C1θ

1/3 + C1(D + 2)
√
θ + C1((D + 1)2 + 2) exp

(
− 1

C1θ

)
≤ C2θ

1/3.

Using the lower heat kernel bound from Proposition 3.4, it follows that for

some C3 = C3(A,D) <∞,

θ−n/2
ˆ
B(z,0,

√
θ)

Ä
L(y,−θ)− d2

0(x0, z)
ä

+
dg0(y) ≤ C3θ

1/3.

By the triangle inequality we have for all y ∈ B(z, 0,
√
θ),

|d2
0(x0, y)− d2

0(x0, z)| ≤ (d0(x0, y) + d0(x0, z)) · |d0(x0, y)− d0(x0, z)|

≤ 2(D + 1)
√
θ.
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So

θ−n/2
ˆ
B(z,0,

√
θ)

Ä
L(y,−θ)− d2

0(x0, y)
ä

+
dg0(y)

≤ θ−n/2
ˆ
B(z,0,

√
θ)

ÄÄ
L(y,−θ)− d2

0(x0, z)
ä

+
+ 2(D + 1)

√
θ
ä
dg0(y)

≤ C3θ
1/3 + 2(D + 1)

√
θ ≤ C4θ

1/3.

Letting z vary over B(x0, 0, D + 1) and using Fubini’s Theorem and Proposi-

tion 3.1 yields, for some constants C5 = C5(A,D), C6 = C6(A,D) <∞,
ˆ
B(x0,0,D)

Ä
L(y,−θ)− d2

0(x0, y)
ä

+
dg0(y)

≤ C5θ
−n/2

ˆ
B(x0,0,D)

ˆ
B(y,0

√
θ)

Ä
L(y,−θ)− d2

0(x0, y)
ä

+
dg0(z)dg0(y)

≤ C5θ
−n/2

ˆ
B(x0,0,D+1)

ˆ
B(z,0,

√
θ)

Ä
L(y,−θ)− d2

0(x0, y)
ä

+
dg0(y)dg0(z)

≤ C5C4θ
1/3|B(x0, 0, D + 1)|0 ≤ C6θ

1/3.

We can now choose θ1 = θ1(A,D, θ0, δ) ∈ (0, θ0) uniformly in such a way

that ˆ
B(x0,0,D)

Ä
L(y,−θ)− d2

0(x0, y)
ä

+
dg0(y) < δ2/2.

Let S′θ ⊂ B(x0, 0, D) be the set of points z ∈ B(x0, 0, D) such that

L(z,−θ)− d2
0(x0, z) < δ.

Then

|B(x0, 0, D) \ S′θ|0 · δ ≤
ˆ
B(x0,0,D)

Ä
L(y,−θ)− d2

0(x0, y)
ä

+
dg0(y) < δ2/2.

It follows that

|B(x0, 0, D) \ S′θ|0 < δ/2.

This finishes the proof of the claim. �

The set S will arise as a subset of S′θ for sufficiently small θ ≤ θ1. By the

claim, any subset of S′θ already satisfies assertion (b1) of the lemma. We will

now show that for sufficiently small θ, depending only on A,D, θ0, δ, the set S′θ
also satisfies assertion (b2) in the sense that for any y ∈ S′θ and any minimizing

L-geodesic γ : [0, θ]→M between x0 and y, γ(0) = x0, γ(θ) = y, we have the

bound from assertion (b2). Consider such a minimizing L-geodesic γ. Then
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for any τ1 ∈ [0, θ], we have

(4.7) 2
√
τ1L(γ|[0,τ1]) ≤ 2

√
τ1

ˆ τ1

0

√
τ
Ä
|γ′(τ)|2−τ + (R(γ(τ),−τ) + 1)

ä
dτ

≤ 2
√
τ1

ˆ θ

0

√
τ
Ä
|γ′(τ)|2−τ + (R(γ(τ),−τ) + 1)

ä
dτ

= 2
√
τ1

Ç
L(γ) +

2

3
θ3/2

å
≤ 2
√
θL(γ) + 4θ2.

So, again by Lemma 4.3, we obtain for small enough θ, depending on δ, that

(4.8) d2
0(x0, γ(τ1)) < 2

√
τ1L(γ|[0,τ1]) + Cτ

1/3
1

< 2
√
θL(γ) + 4θ2 + Cθ1/3 < d2(x0, y) + 2δ < D2 + 2δ.

Note that in the third inequality we have applied assertion (b1), which holds

due to the claim, assuming y ∈ S ⊂ S′θ. The bound (4.8) shows assertion (b2),

sinceD > 1. We will fix θ from now on, set S′ := S′θ and focus on assertion (b3).

For the rest of the proof let C = C(A,D,E, θ0, σ0, δ) < ∞ be a generic

constant. Using the estimates (4.7) and (4.8), we also obtain that for any such

L-geodesic γ : [0, θ]→M , we have

d2
0(x0, γ(τ1)) < 2

√
τ1L(γ|[0,τ1]) + Cτ

1/3
1 < 2

√
τ1

Ç
L(γ) +

2

3
θ3/2

å
+ Cτ

1/3
1

< 2
√
τ1

Ç
D2 + 1

2
√
θ

+ 1

å
+ Cτ

1/3
1 .

Since θ was determined in terms of A, D, θ0, δ, this shows that we can choose

a constant 0 < τ0 = τ0(A,D,E, θ0, σ0, δ) < min{(εσ0)2, θ0} such that

(4.9) d0(x0, γ(τ)) < εσ0 for all τ ∈ [0, τ0].

Here ε = ε(A) is the constant from Proposition 3.2. Note that this bound can

also be derived using [KL08, eq. (26.8)] and the upper bound on L(γ). See

also Lemma 4.6 below for a more precise result.

Now consider the L-exponential map at x0,

L expτ = L expx0,τ : Tx0M →M,

and the subsets DLτ ⊂ Tx0M and GLτ ⊂M as defined in Section 3.2. Moreover,

set

U := L exp−1
θ (S′) ∩ DLθ .

Then

L expθ(U) = S′ ∩ GLθ .
Define the function f : M × [0, θ]→ [0,∞) by

f(x, τ) :=
Ä
rRm(x,−τ)

ä−1.5
.
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Using assumption (iii), Propositions 3.1, 3.3 and a covering argument, we de-

duce that there is a constant E∗ = E∗(A,D,E) <∞ such that for all t ∈ [−1, 0]

and 0 < s < 1,

|{rRm(·, t) < s} ∩B(x0, 0, D + 1)|t ≤ E∗s2.

Using Fubini’s Theorem and Proposition 3.1, this implies that

ˆ
B(x0,0,D+1)

f(x, τ)dg−τ (x)

=

ˆ
B(x0,0,D+1)

ˆ ∞
0

χs<f(x,τ)dsdg−τ (x)

≤
ˆ
B(x0,0,D+1)

ˆ ∞
1

χs<f(x,τ)dsdg−τ (x) + |B(x0, 0, D + 1)|−τ

≤
ˆ ∞

1
|{s < r−1.5

Rm (·,−τ)} ∩B(x0, 0, D + 1)|−τds+ |B(x0, 0, D + 1)|−τ

≤ E∗
ˆ ∞

1
(s−

1
1.5 )2ds+ |B(x0, 0, D + 1)|−τ < E∗∗ = E∗∗(A,D,E) <∞.

(4.10)

Note that for any v ∈ U , the map τ 7→ L exp−τ (v) describes a minimizing

L-geodesic between (x0, 0) and (L expθ(v),−θ). Since L expθ(v) ∈ S′, we know

by claim 1 that L expτ (v) ∈ B(x0, 0, D + 1) for all τ ∈ (0, θ]. In other words,

L expτ (U) ⊂ B(x0, 0, D + 1) for all τ ∈ (0, θ]. So for any τ ∈ (0, θ], we have

(4.11)

ˆ
U
f(L expτ (v), τ)JL(v, τ)dv ≤

ˆ
B(x0,0,D+1)

f(x, τ)dg−τ (x) < E∗∗.

By the monotonicity of the quantity τ−n/2e−l(L expτ (v),−τ)JL(v, τ), we find that

for all τ ∈ [τ0, θ],

(4.12) JL(v, θ) ≤
Ç
θ

τ

ån/2
el(L expτ (v),−θ)−l(L expτ (v),−τ)JL(v, τ)

≤
Ç
θ

τ0

ån/2
exp

Ç
D + 1

2
√
θ

+ 1

å
JL(v, τ).

Here we have used the lower bound

l(L expτ (v), τ) > − 1

2
√
τ

ˆ τ

0

√
τ ′dτ ′ > −1.
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Plugging (4.12) back into (4.11) and integrating from τ0 to θ gives us

ˆ θ

τ0

ˆ
U
f(L expτ (v), τ)JL(v, θ)dvdτ

≤
Ç
θ

τ0

ån/2
exp

Ç
D + 1

2
√
θ

+ 1

åˆ θ

τ0

ˆ
U
f(L expτ (v), τ)JL(v, τ)dvdτ ≤ CE∗∗.

(4.13)

On the other hand, recall from (4.9) that for any τ ∈ (0, τ0] and v ∈ U we have

L expτ (v) ∈ B(x0, 0, εσ0).

Therefore, using Proposition 3.2, for any such τ and v,

f(L expτ (v), τ) ≤ (εσ0)−1.5.

It follows, using Proposition 3.1, that

(4.14)

ˆ τ0

0

ˆ
U
f(L expτ (v), τ)J(v, θ)dvdτ ≤ (εσ0)−1.5

ˆ τ0

0

ˆ
U
JL(v, θ)dvdτ

= (εσ0)−1.5τ0|B(x0, 0, D)|−θ ≤ C.

Combining (4.13) and (4.14) yields

(4.15)

ˆ θ

0

ˆ
U
f(L expτ (v), τ)JL(v, θ)dvdτ ≤ C∗

for some C∗ = C∗(A,D,E, θ0, σ0, δ) <∞.

Define h : U → [0,∞) by

h(v) :=

ˆ θ

0
f(L expτ (v), τ)dτ.

Then, by Fubini’s Theorem and (4.15),ˆ
U
h(v)JL(v, θ)dvdτ ≤ C∗.

Let

W :=
¶
v ∈ U : h(v) < 4δ−1C∗

©
and

S := L expθ(W ).

Then S is open and S ⊂ S′.
Let us first check that S satisfies assertion (a). To do this, observe that

|S′ \ S|0 = |(S′ ∩ GLθ ) \ S|0
≤ 2|(S′ ∩ GLθ ) \ S|−θ = 2|L expθ(U) \ L expθ(W )|−θ

≤ 2 · δ/4
C∗

ˆ
U\W

h(v)JL(v, θ)dv ≤ δ/2.
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So

|B(x0, 0, D) \ S|0 = |B(x0, 0, D) \ S′|0 + |S \ S′|0 < δ/2 + δ/2 = δ.

Next, we will check that S satisfies assertion (b). Let y ∈ S, and let

γ : [0, θ] → M be a minimizing L-geodesic between x0 and y. Since y ∈
S ⊂ GLθ , this L-geodesic is unique and there is a vector v ∈ U \W such that

γ(τ) = L expτ (v). As discussed earlier, assertions (b1) and (b2) hold. For

assertion (b3), observe that
ˆ θ

0
r−1.5

Rm (γ(τ),−τ)dτ =

ˆ θ

0
f(L expτ (v), τ)dτ = h(v) < 4δ−1C∗ =: C.

Note that the right-hand side only depends on A,E,D, θ0, σ0, δ. �

We will now use the integral curvature bound in Lemma 4.4(b3) to inte-

grate the L-geodesic equation, under the assumption that the scalar curvature

is small. This will then enable us to bound the speed γ′(τ) of any L-geodesic

γ : [0, θ]→M whose endpoint lies in S.

Lemma 4.5 (Existence of L-geodesics with controlled speed). For any

A,E,D < ∞ and σ0, θ0, δ > 0, there are constants θ = θ(A,D, θ0, δ) ∈ (0, θ0)

and ρ = ρ(A,E,D, θ0, σ0, δ) > 0 such that the following holds :

Let (M, (gt)t∈[−2,0]) be a Ricci flow on a compact, n-dimensional manifold

M and x0 ∈M with the property that

(i) ν[g−2, 4] ≥ −A;

(ii) |R| ≤ ρ on M × [−2, 0];

(iii) for all (x, t) ∈M × [−1, 0] and 0 < r, s < 1, we have

|{rRm(·, t) < sr} ∩B(x, t, r)|t ≤ Es2rn;

(iv) rRm(x0, 0) > σ0.

Then there is an open subset S ⊂ B(x0, 0, D) such that

(a) |B(x0, 0, D) \ S|0 < δ;

(b) for any y ∈ S, there is a minimizing L-geodesic γ : [0, θ]→M between x0

and y, γ(0) = x0, γ(θ) = y, such that the following is true:

(b1) the L-length satisfies the bound

2
√
θL(γ) < d2

0(x0, y) + δ;

(b2) we have

γ(τ) ∈ B(x0, 0, D + δ) for all τ ∈ [0, θ];

(b3) for any θ′ ∈ (0, θ], we have

1

2
√
θ′
L(γ|[0,θ′]) >

1

2
√
θ
L(γ)− δ;
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(b4) for all τ ∈ (0, θ], we have

τ |γ′(τ)|2−τ <
d2

0(x0, y) + δ

4θ
.

Proof. Without loss of generality, we may assume that 0 < δ, θ0 < 1 and

D ≥ 1. Use Lemma 4.4 to choose and fix θ = θ(A,D, θ0, δ/4) ∈ (0, θ0) and C =

C(A,E,D, θ0, σ0, δ/4) < ∞. We now claim that the subset S ⊂ B(x0, 0, D)

from Lemma 4.4 satisfies the assertions of this lemma if we assume that ρ

is chosen sufficiently small, depending only on A,E,D, θ0, σ0, δ and on θ, C.

Obviously, S satisfies assertion (a).

In order to verify assertion (b), choose y ∈ S and pick a minimizing L-

geodesic γ : [0, θ]→M between x0 and y such that

(4.16) |2
√
θL(γ)− d2

0(x0, y)| < δ/4

and ˆ θ

0
r−1.5

Rm (γ(τ),−τ)dτ < C.

Assuming ρ < δ/4, it follows that

(4.17)∣∣∣∣∣
ˆ θ

0

√
τ |γ′(τ)|2−τdτ − L(γ)

∣∣∣∣∣ ≤
ˆ θ

0

√
τ |R(γ(τ),−τ)|dτ ≤ 2

3
ρθ3/2 < δθ/4.

We will now bound the oscillation of
√
τ times the integrand on the left-

hand side. Set rRm,1(x, t) := min{rRm(x, t), 1}. Using the L-geodesic equation

for γ (see [Per02, (7.2)]) and Proposition 3.6, we get that there is a constant

C∗ = C∗(A) <∞, which only depends on A, such that for all τ ∈ (0, θ],∣∣∣∣∣∇g−τγ′(τ)γ
′(τ) +

1

2τ
γ′(τ) + Ric−τ (γ′(τ))

∣∣∣∣∣
−τ

=

∣∣∣∣∣12∇R(γ(τ),−τ)− Ric−τ (γ′(τ))

∣∣∣∣∣
−τ

≤ C∗
Ä
ρ1/2r−1.5

Rm,1(γ(τ),−τ) + ρ1/2r−1
Rm,1(γ(τ),−τ)|γ′(τ)|−τ

ä
≤ C∗ρ1/2r−1.5

Rm,1(γ(τ),−τ)
Ä
1 + |γ′(τ)|−τ

ä
.

So

d

dτ

Ä
τ |γ′(τ)|2−τ

ä
= 2τ

¨
∇g−τγ′(τ)γ

′(τ), γ′(τ)
∂
−τ + |γ′(τ)|2−τ + 2τ Ric−τ (γ′(τ), γ′(τ))

≤ 2τ · C∗ρ1/2r−1.5
Rm,1(γ(τ),−τ)

Ä
1 + |γ′(τ)|−τ

ä
· |γ′(τ)|−τ

≤ 4C∗ρ
1/2r−1.5

Rm,1(γ(τ),−τ)
Ä
1 + τ |γ′(τ)|2−τ

ä
.

This implies that

d

dτ
log
Ä
1 + τ |γ′(τ)|2−τ

ä
≤ 4C∗ρ

1/2r−1.5
Rm,1(γ(τ),−τ).
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Integrating this inequality yields that for any τ1, τ2 ∈ (0, θ],∣∣∣∣∣ log

Ç
1 + τ1|γ′(τ1)|2−τ1
1 + τ2|γ′(τ2)|2−τ2

å∣∣∣∣∣ ≤ 4C∗ρ
1/2

ˆ θ

0

Ä
r−1.5

Rm (γ(τ),−τ) + 1
ä
dτ

≤ 4C∗ρ
1/2(C + θ).

(4.18)

By combining (4.16), (4.17) and (4.18), we find that there is a τ∗∈ (0, θ] such

that

τ∗|γ′(τ∗)|2−τ∗ ≤
√
θ ·
√
τ∗|γ′(τ∗)|2−τ∗ < C∗∗(D,A,C).

So by (4.18) a similar upper bound holds for all τ ∈ (0, θ]. Thus, again by

(4.18), we can find a constant ρ > 0 whose value only depends on D,A,C, and

therefore only on A,E,D, θ0, ρ0, δ, such that for any τ1, τ2 ∈ (0, θ],∣∣∣τ1|γ′(τ1)|2−τ1 − τ2|γ′(τ2)|2−τ2
∣∣∣ < δ/4.

Then, by (4.17) and (4.16), we have for any τ0 ∈ (0, θ],

τ0|γ′(τ0)|2−τ0 =
1

2
√
θ

ˆ θ

0

τ0|γ′(τ0)|2−τ0√
τ

dτ

<
1

2
√
θ

ˆ θ

0

τ |γ′(τ)|2−τ + δ/4√
τ

dτ

<
1

2
√
θ

Ä
L(γ) + δθ/4

ä
+ δ/4 <

1

2
√
θ
L(γ) + δ/2

<
d2

0(x0, y) + δ/4

4θ
+ δ/4 <

d2
0(x0, y) + δ

4θ
.

(4.19)

This proves assertion (b4). For assertion (b1) observe that, similarly as in

(4.19), for any τ0 ∈ (0, θ],

τ0|γ′(τ0)|2−τ0 =
1

2
√
θ

ˆ θ

0

τ0|γ′(τ0)|2−τ0√
τ

dτ >
1

2
√
θ

ˆ θ

0

τ |γ′(τ)|2−τ − δ/4√
τ

dτ

≥ 1

2
√
θ
L(γ)− 1

2
√
θ

ˆ θ

0

√
τρdτ − δθ/4

2
√
θ
>

1√
θ
L(γ)− θρ− δ/2.

So

1

2
√
θ′
L(γ|[0,θ′]) =

1

2
√
θ′

ˆ θ′

0

Ç
τ |γ′(τ)|2−τ√

τ
+
√
τR(γ(τ),−τ)

å
dτ

>
1

2
√
θ′

ˆ θ′

0

1√
τ

Ç
1

2
√
θ
L(γ)− θρ− δ/2

å
dτ − θ′ρ

=
1

2
√
θ
L(γ)− δ/2− 2θρ.

This establishes assertion (b3) for ρ < δ/4. �
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Before we continue with our analysis of L-geodesics, we establish the fol-

lowing technical lemma, which we will later apply to L-geodesics of controlled

speed. This lemma can be seen as a generalization of (4.9) in the proof of

Lemma 4.4 or of [KL08, eq. (26.8)].

Lemma 4.6 (Curve of controlled speed cannot leave parabolic neigh-

borhood too soon). For any A,D < ∞ and σ0 > 0, there is a constant

0 < α0(A,D, σ0) < 1/2 such that the following holds :

Let (M, (gt)t∈[−2,0]) be a Ricci flow on a compact, n-dimensional manifold

M and x0 ∈M with the property that

(i) ν[g−2, 4] ≥ −A;

(ii) |R| ≤ 1 on M × [−2, 0];

(iii) rRm(x0, 0) > σ0.

Assume that 0 < θ < 1 and that γ : (0, θ] → M , limτ→0 γ(τ) = x0 is a

smooth curve such that

τ |γ′(τ)|2−τ <
D2 + 1

4θ
for all τ ∈ (0, θ].

Then

γ(τ) ∈ B(x0, 0, σ0/10) for all τ ∈ [0, α0θ].

Proof. By Proposition 3.2 there is a constant 0 < ε = ε(A) < 1/10 such

that

|Rm| < (εσ0)−2 on P := P (x0, 0, εσ0,−(εσ0)2).

By a simple distance distortion estimate this implies that for all τ ∈ (0, (εσ0)2],

|γ′(τ)|0 ≤ 10|γ′(τ)|−τ if γ(τ) ∈ B(x0, 0, εσ0).

Choose τ∗0 = α∗0θ ∈ (0,min{(εσ0)2, θ}] maximal with the property that

γ(τ) ∈ B(x0, 0, εσ0) for all τ ∈ [0, τ∗0 ). It suffices to derive a lower bound on

α∗0 in terms of A,D, σ0. For any τ ′ ∈ [0, τ∗0 ),

d0(x0, γ(τ ′)) ≤ length0(γ|[0,τ ′]) ≤
ˆ τ ′

0
|γ′(τ)|0dτ ≤ 10

ˆ τ ′

0
|γ′(τ)|−τdτ

≤ 10

ˆ τ ′

0

Ç
τ |γ′(τ)|2−τ

τ

å1/2

dτ < 10

ˆ τ ′

0

Ç
D2 + 1

4θτ

å1/2

dτ

< 10

ˆ τ∗0

0

(D2 + 1)1/2

√
θτ

dτ < 20
»
α∗0θ

Ç
D2 + 1

θ

å1/2

< 20
»
α∗0
Ä
D2 + 1

ä1/2
.

It follows that τ∗0 = min{(εσ0)2, θ} or

εσ0 < 40
»
α∗0
Ä
D2 + 1

ä1/2
.
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In the second case we obtain a lower bound on α∗0 in terms of A,D, σ0 imme-

diately. In the first case we have τ∗0 = (εσ0)2 or τ∗0 = θ. This implies that

α∗0 = (εσ0)2θ−1 > (εσ0)2 or α∗0 = 1. So we still have a lower bound on α∗0 in

terms of A,D, σ0. �

Next, we improve the results of Lemmas 4.4 and 4.5 to find even more

regular L-geodesics. The main innovation of the following lemma is that the

integral curvature bound along short L-geodesics does not depend on the size of

the time-interval [0, θ] on which these L-geodesics are defined or the size of the

constant η that governs the preciseness by which we can control the derivative

of η. So we will later be able to choose θ arbitrarily small, without deteriorating

the integral curvature bound. In order to achieve this independence, however,

we have to assume that the scalar curvature is sufficiently small.

Lemma 4.7 (Existence of L-geodesics with controlled speed along which

the curvature is bounded). For any A,E,D <∞ and θ0, σ0, δ, η > 0, there are

constants C = C(A,E,D, σ0, δ) < ∞, θ = θ(A,E,D, θ0, σ0, δ, η) ∈ (0, θ0) and

ρ = ρ(A,E,D, θ0, σ0, δ, η) > 0 such that the following holds :

Let (M, (gt)t∈[−2,0]) be a Ricci flow on a compact, n-dimensional manifold

M and x0 ∈M such that

(i) ν[g−2, 4] ≥ −A;

(ii) |R| ≤ ρ on M × [−2, 0];

(iii) for all (x, t) ∈M × [−1, 0] and 0 < r, s < 1, we have

(4.20) |{rRm(·, t) < sr} ∩B(x, t, r)|t ≤ Es2rn;

(iv) rRm(x0, 0) > σ0.

Then there is a subset S ⊂ B(x0, 0, D) such that

(a) |B(x0, 0, D) \ S|0 < δ;

(b) for any y ∈ S, there is a minimizing L-geodesic γ : [0, θ] → M between

x0 and y, γ(0) = x0, γ(θ) = y such that

(b1) its L-length satisfies

2
√
θL(γ) < d2

0(x0, y) + η;

(b2) we have

γ(τ) ∈ B(x0, 0, D + η) for all τ ∈ [0, θ];

(b3) for all τ ∈ (0, θ], we have

τ |γ′(τ)|2−τ <
d2

0(x0, y) + η

4θ
;

(b4) we have ˆ θ

0

Ä
rRm(γ(τ), 0)

ä−1.5
dτ < Cθ;

note that here we take rRm at time 0 and not at time −τ as in

Lemma 4.4(b3).
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Note that in this lemma the constant C does not depend on η or θ0.

Proof. We use a similar argument as in the proof of Lemma 4.4. The

difference is that this time we have a better estimate on the Jacobian of the

L-exponential map, due to assertion (b2) in Lemma 4.5. This fact will allow

us to choose C independently of θ.

Assume without loss of generality that 0 < θ0, σ0, δ, η < 1. Let us first

establish the following two bounds:

Claim. There is a constant E∗ = E∗(A,E,D) <∞ such that

(4.21)

ˆ
B(x0,0,D+1)

r−1.5
Rm (x, 0)dg(x) < E∗

and

|B(x0, 0, D)|0 < E∗.

Proof. The second bound is a direct consequence of Proposition 3.1. For

the first bound, note that a ball packing argument combined with Proposi-

tion 3.1 implies that B(x0, 0, D + 1) can be covered by a bounded number of

1-balls (depending only on A, D). So (4.20) in assumption (iii) also holds for

x = p and r = D+ 1 if we replace E by a constant depending only on A,E,D.

The bound (4.21) now follows similarly as in (4.10). �

We can now choose the constants C, θ and ρ. Let α0 = α0(A,D, σ0) be

the constant from Lemma 4.6. Next, choose

E∗∗ = E∗∗(A,E,D, σ0) := 2eα
−n/2
0 E∗ + 2(σ0/2)−1.5E∗

and

C = C(A,E,D, σ0, δ) := 4E∗∗δ−1.

Note that C does not depend on the choice of θ0 or η. Next, we choose

δ∗ := min{δ/2, η},

and we assume that ρ < min{ρ4.5(A,E,D, θ0, σ0, δ
∗), 1/10}, where ρ4.5 is the

constant from Lemma 4.5.

We now apply Lemma 4.5 with A ← A, E ← E, D ← D, θ0 ← θ0,

σ0 ← σ0 and δ ← δ∗, assuming ρ to be sufficiently small. We obtain the

constant θ = θ(A,E,D, θ0, σ0, δ
∗) ∈ (0, θ0) and a subset S ⊂ B(x0, 0, D),

which we will denote henceforth by S′, that satisfies assertions (a) and (b) of

that lemma. The subset S ⊂ B(x0, 0, D), whose existence is claimed in this

lemma, will arise as a subset of S′.

Our proof again uses L-geometry and the terminology recalled in Sec-

tion 3.2. Define

U := L exp−1
θ (S′) ∩ DLθ .
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Then

L expθ(U) = S′ ∩ GLθ .

For simplicity, we set

f(x) := (rRm(x, 0))−1.5χB(x0,0,D+1)(x),

where χB(x0,0,D+1) is the characteristic function of B(x0, 0, D + 1). Note that

by the claim, we have for all τ ∈ [0, θ] (assuming ρ < 1/10),ˆ
M
f(x)dg−τ (x) ≤ e0.1τ

ˆ
M
f(x)dg0(x) < 2E∗.

So by the transformation formula, we have for all τ ∈ (0, θ],ˆ
U
f
Ä
L expτ (v)

ä
JL(v, τ)dv =

ˆ
L expx0,τ (U)

f(x)dg−τ (x) < 2E∗.

Using assertion (b3) of Lemma 4.5 and the estimate δ∗ < 1, we have for

all v ∈ U and τ ∈ (0, θ],

(4.22) l(L expτ (v),−τ) > l(L expτ (v),−θ)− 1.

Moreover, by the monotonicity of τ−n/2e−l(v,−τ)J(v, τ), we have

(4.23) θ−n/2e−l(L expτ (v),−θ)JL(v, θ) ≤ τ−n/2e−l(L expτ (v),−τ)JL(v, τ).

Combining (4.22) with (4.23) yields that for all τ ∈ [α0θ, θ],

JL(v, θ) ≤ e
( θ

α0θ

)n/2
JL(v, τ) ≤ eα−n/20 JL(v, τ).

So for all τ ∈ [α0θ, θ], we haveˆ
U
f
Ä
L expτ (v)

ä
JL(v, θ)dv ≤ eα−n/20

ˆ
U
f
Ä
L expτ (v)

ä
JL(v, τ)dv

≤ 2eα
−n/2
0 E∗.

(4.24)

We now estimate the left-hand side of (4.24) for all τ ∈ (0, α0θ]. Ob-

serve that by Lemma 4.6, we have L expτ (v) ∈ B(x0, 0, σ0/10) for all τ ∈
(0, α0θ]. Since rRm(·, 0) is 1-Lipschitz with respect to g0, we have the bound

f < (σ0/2)−1.5 on B(x0, 0, σ0/10). So for all τ ∈ (0, τ0],

ˆ
U
f
Ä
L expτ (v)

ä
JL(v, θ)dv ≤ (σ0/2)−1.5

ˆ
U
JL(v, τ)dv

≤ (σ0/2)−1.5|B(x0, 0, D)|−θ
≤ 2(σ0/2)−1.5|B(x0, 0, D)| ≤ 2(σ0/2)−1.5E∗.

(4.25)
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Integrating (4.25) from 0 to α0θ and (4.24) from α0θ to θ yields

(4.26)ˆ θ

0

ˆ
U
f
Ä
L expτ (v)

ä
JL(v, θ)dvdτ ≤

Ä
2eα

−n/2
0 E∗ + 2(σ0/2)−1.5E∗

ä
θ = E∗∗θ.

Define h : U → [0,∞) by

h(v) :=

ˆ θ

0
f
Ä
L expτ (v)

ä
dτ.

Then, by Fubini’s Theorem and (4.26),ˆ
U
h(v)J(v, θ)dvdτ ≤ E∗∗θ.

Let
W := {v ∈ U : h(v) < Cθ} and S := L expθ(W ).

Then S ⊂ L expθ(U) ⊂ S′. We claim that S satisfies assertion (b). For any

y = L expθ(v), v ∈W , we choose the minimizing L-geodesic γ(τ) := L expτ (v).

As y = γ(θ) ∈ GLθ , this L-geodesic is the only minimizing L-geodesic between

x0 and y. So assertions (b1)–(b3) follow immediately from assertions (b1),

(b2) and (b4) of Lemma 4.5. For assertion (b4), observe thatˆ θ

0

Ä
rRm(γ(τ), 0)

ä−1.5
dτ =

ˆ θ

0
f(L expτ (v))dτ = h(v) < Cθ.

To see assertion (a), observe that

|S′ \ S|0 = |(S′ ∩ GLθ ) \ S|0 ≤ 2|L expθ(U) \ L expθ(W )|−θ

= 2

ˆ
U\W

J(v, θ)dv ≤ 2

ˆ
U\W

(Cθ)−1h(v)J(v, θ)dv

≤ 2(Cθ)−1E∗∗θ = 2C−1E∗∗ = δ/2.

So

|B(x0, 0, D) \ S|0 ≤ |B(x0, 0, D) \ S′|0 + |S′ \ S|0 < δ∗ + δ/2 < δ.

This finishes the proof. �

Finally, we can improve the curvature bound in Lemma 4.7(b4) from an

integral bound to a pointwise bound. This bound will also enable us to show

that the L-geodesics are almost minimizing with respect to the time-0 metric.

Proposition 4.8. For any A,E,D <∞ and σ0, δ, η > 0, there are con-

stants σ = σ(A,E,D, σ0, δ) and ρ = ρ(A,E,D, σ0, δ, η) > 0 such that the

following holds :

Let (M, (gt)t∈[−2,0]) be a Ricci flow on a compact, n-dimensional manifold

M and x0 ∈M such that

(i) ν[g−2, 4] ≥ −A;

(ii) |R| ≤ ρ on M × [−2, 0];
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(iii) for all (x, t) ∈M × [−1, 0] and 0 < r, s < 1, we have

|{rRm(·, t) < sr} ∩B(x, t, r)|t ≤ Es2rn;

(iv) rRm(x0, 0) ≥ σ0.

Then there is an open subset S ⊂ B(x0, 0, D) such that the following holds :

(a) |B(x0, 0, D) \ S|0 < δ.

(b) For any y ∈ S, there is a curve γ : [0, 1]→M between x0 and y, γ(0) = x0,

γ(1) = y such that the following holds :

(b1) its time-0 length satisfies

length0(γ) < d0(x0, y) + η;

(b2) we have

rRm(γ(s), 0) > σ for all s ∈ [0, 1].

Note that the constant σ does not depend on the choice of η.

Proof. The idea of the proof will be to use the subset S and the L-geodesics

γ from Lemma 4.7. We will show that the function rRm(γ(τ), 0) does not

oscillate too much and use assertion (b4) in Lemma 4.7 to establish a lower

bound for rRm(γ(τ), 0). Using this bound and assertion (b3) of Lemma 4.7,

we can then derive an upper bound on the time-0 length of γ.

We will first choose the relevant constants. Let ε = ε(A) > 0 be the

constant from Proposition 3.2. Let α0 = α0(A,D, σ0) < 1/2 be the constant

from Lemma 4.6, and set

(4.27) a := min

®
α

1/2
0

Ä
2(D2 + 1)

ä−1/2
,

1

10

´
.

Note that a depends only on A,E,D, σ0, δ. Next, let C = C(A,E,D, σ0, δ) be

the constant from Lemma 4.7, and choose σ > 0 small enough such that

(4.28) 1
2a(2σ)−0.5 > C, aσ < α0/2, σ < σ0/2 and σ < 1/10.

Note that all constants occurring in (4.28) only depend on A,E,D, σ0, δ. So σ

can be chosen depending only on these constants as well.

Next, choose and fix a constant 0 < η∗ < 1, depending only on D, η, such

that

(1 + η∗)
Ä
d2 + η∗

ä1/2
< d+ η for all d ∈ [0, D).

Claim. There is a constant ρ1 = ρ1(A,E,D, σ0, δ, η) > 0 such that if

ρ < ρ1, then for all x ∈ M with rRm(x, 0) ≥ σ, all v ∈ TxM and all

t ∈ [−(εσ)2, 0], we have the distortion estimate

|v|0 ≤ (1 + η∗)|v|t.
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Proof. This fact follows from Propositions 3.2 and 3.6. The constant ρ1

can be chosen depending only on ε, σ, which in turn only depend on A, E, D,

σ0, δ, η. �

Assume in the following that ρ < ρ1 and ρ < ρ4.7(A,E,D, θ0, (εσ)2, δ, η∗),

where ρ4.7 is the constant from Lemma 4.7. Furthermore, let

0 < θ = θ4.7(A,E,D, (εσ)2, σ0, δ, η
∗) < (εσ)2

be the constant from Lemma 4.7.

We now apply Lemma 4.7 for A ← A, E ← E, D ← D, θ0 ← (εσ)2,

σ0 ← σ0, δ ← δ and η ← η∗. We obtain a subset S ⊂ B(x0, 0, D) that satisfies

assertions (a) and (b) of Lemma 4.7. We claim that S satisfies assertions (a)

and (b) of this proposition as well. Obviously, assertion (a) holds.

It remains to check assertion (b). Let y ∈ S, and let γ : [0, θ] → M

be the L-geodesic from Lemma 4.7(b). In the following, we will show that γ

satisfies properties (b1) and (b2), after reparametrization. By this we mean

that length0(γ) < d0(x0, y) + η and

(4.29) rRm

Ä
γ(τ), 0

ä
≥ σ for all τ ∈ [0, θ].

An important tool in our analysis will be Lemma 4.7(b4), which states that

(4.30)

ˆ θ

0

Ä
rRm(γ(τ), 0)

ä−1.5
dτ < Cθ.

We first show that the bound (4.29) holds whenever τ ∈ [0, α0θ]. Indeed,

for all such τ , we have d0(x0, γ(τ)) < σ0/10 by Lemma 4.6 and thus, by the fact

that rRm is 1-Lipschitz with respect to g0, we have rRm(γ(τ), 0) > σ0/2 > σ.

Next, we choose τ1 = α1θ maximal such that

rRm(γ(τ), 0) ≥ σ for all τ ∈ [0, τ1].

Then α1 = 1 or α1 < 1, and we have

(4.31) rRm(γ(α1θ), 0) = σ.

Moreover, by our previous discussion we have

(4.32) α1 > α0.

We will find later that we indeed have α1 = 1, hence establishing assertion (b2).

Using the claim, we find that

|γ′(τ)|0 ≤ (1 + η∗)|γ′(τ)|−τ for all τ ∈ [0, τ1].
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It follows that for any 0 ≤ τ ′ ≤ α1θ we have, using Lemma 4.7(b3),

d0(γ(τ ′), γ(α1θ)) ≤ length0(γ|[τ ′,α1θ]) ≤ (1 + η∗)

ˆ α1θ

τ ′
|γ′(τ)|−τdτ

= (1 + η∗)

ˆ α1θ

τ ′

Ç
τ |γ′(τ)|2−τ

τ

å1/2

dτ

≤ (1 + η∗)

Ç
d2

0(x0, y) + η∗

4θ

å1/2 ˆ α1θ

τ ′
τ−1/2dτ.

(4.33)

Assume that α1 < 1. We now apply (4.33) for τ ′ ∈ [(α1 − aσ)θ, τ1] and note

that by (4.32) and (4.27),

(α1 − aσ)θ > (α0 − aσ)θ > 1
2α0θ.

We then obtain (using (4.27), (4.33) and the crude estimates η∗ < 1, θ ≤ 1)

d0(γ(τ ′), γ(τ1)) ≤ 2

Ç
D2 + 1

4θ

å1/2 ˆ α1θ

τ ′
τ−1/2dτ

≤ 2

Ç
D2 + 1

4θ

å1/2

· aσθ ·
Ä

1
2α0θ

ä−1/2

≤ α−1/2
0

Ä
2(D2 + 1)

ä1/2
a · σ ≤ σ.

So by the 1-Lipschitz continuity of rRm(·, 0) and (4.31), we get that

(4.34) rRm(γ(τ), 0) < σ + σ = 2σ for all τ ∈ [(α1 − aσ)θ, α1θ].

Using (4.30) and (4.34), it follows that

1
2a(2σ)−0.5θ = aσθ · (2σ)−1.5 <

ˆ θ

0

Ä
rRm(γ(τ), 0)

ä−1.5
dτ < Cθ.

This inequality contradicts (4.28). So we indeed have α1 = 1 and τ1 = θ, which

proves assertion (b2).

To see assertion (b1), we apply (4.33) again for τ ′ = 0 and obtain (using

θ < 1 and D > 1)

length0(γ|[0,θ]) ≤ (1 + η∗)

Ç
d2

0(x0, y) + η∗

4θ

å1/2

· 2θ1/2

≤ (1 + η∗)
Ä
d2

0(x0, y) + η∗
ä1/2

< d0(x0, y) + η.

This shows assertion (b1). �

If we do not assume that the scalar curvature is small, we obtain a similar

result as Proposition 4.8, but this time σ depends on δ.
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Corollary 4.9. For any A,E,D <∞ and σ0, δ > 0, there is a constant

σ = σ(A,E,D, σ0, δ) > 0 such that the following holds :

Let (M, (gt)t∈[−2,0]) be a Ricci flow on a compact, n-dimensional manifold

M such that

(i) ν[g−2, 4] ≥ −A;

(ii) |R| ≤ 1 on M × [−2, 0];

(iii) For all (x, t) ∈M × [−1, 0] and 0 < r, s < 1, we have

|{rRm(·, t) < sr} ∩B(x, t, r)|t ≤ Es2rn.

Then for any x, y ∈M with d0(x, y) < D and

rRm(x, 0), rRm(y, 0) ≥ σ0,

there is a smooth curve γ : [0, 1] → M between x and y, γ(0) = x, γ(1) = y

whose time-0 length satisfies

length0(γ) < d0(x0, y) + δ

and such that

rRm(γ(s), 0) > σ for all s ∈ [0, 1].

Proof. The idea of the proof is to apply Proposition 4.8 several times at

small scales. We therefore first derive the following claim.

Claim. For any δ∗, σ∗0 > 0, we can find constants σ∗ = σ∗(A,E, σ∗0, δ
∗), r∗0

= r∗0(A,E, σ∗0, δ
∗) > 0 such that the following holds :

For any 0 < r ≤ r∗0 and any z0 ∈ M with rRm(z0, 0) > σ∗0r, there is an

open subset Sz0,r ⊂ B(z0, 0, r) such that

|B(z0, 0, r) \ Sz0,r|0 < δ∗rn

and such that for any z1 ∈ Sz0,r, there is a smooth curve γ∗ : [0, 1] → M

between z0 and z1, γ(0) = z0, γ(1) = z1 such that

length0(γ) < d0(z0, z1) + δ∗r

and such that

rRm(γ(s), 0) > σ∗r for all s ∈ [0, 1].

Proof. Using the constants σ and ρ from Proposition 4.8, we define

σ∗(A,E, σ∗0, δ
∗) := σ(A,E, 1, σ∗0, δ

∗)

and

r∗0(A,E, σ∗0, δ
∗) = ρ1/2(A,E, 1, σ∗0, δ

∗, δ∗).

The claim then follows from Proposition 4.8 for D ← 1 after rescaling by r−1.

�
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Before we continue with the proof, let us first choose all the constants.

Let

ν := min

®
δ

8D
,

1

10

´
.

Next, use Proposition 3.1 to find a κ = κ(A) > 0 such that |B(z, 0, r)|0 ≥ κrn
for all z ∈M and 0 ≤ r < 1. Choose σ∗0 > 0 such that

(4.35) E
(σ∗0
ν

)2
<

1

2
κ and σ∗0 < σ0,

and choose

(4.36) δ∗ := min
{1

2
κνn, ν

}
.

Choose σ∗ := σ∗(A,E, σ∗0) and r∗0 := r∗0(A,E, σ∗0, δ
∗) according to the claim.

Lastly choose N ∈ N large enough such that

(4.37)
2D

N
< r∗0 and

4D

N
ν < σ0.

Let γ : [0, 1]→M be a time-0 minimizing geodesic between x and y, and

choose

zj := γ
( j
N

)
for j = 0, . . . , N.

Note that then

d0(zj−1, zj) =
d0(x, y)

N
=:

1

2
r for all j = 1, . . . , N,

where r < 2D
N < r∗0. We will now inductively choose points z′0, . . . , z

′
N ∈M and

smooth curves γ1, . . . , γN : [0, 1] → M such that γj(0) = z′j−1 and γj(1) = z′j
with the following properties:

z′0 = z0 = x(4.38a)

d0(z′j , zj) < νr for all j = 0, . . . , N,(4.38b)

γj(0) = z′j−1 and γj(1) = z′j for all j = 1, . . . , N,(4.38c)

length0(γj) ≤ d0(z′j−1, z
′
j) + δ∗r for all j = 1, . . . N,(4.38d)

rRm(z′j) > σ∗0r for all j = 0, . . . , N,(4.38e)

rRm(γj(s), 0) > σ∗r for all s ∈ [0, 1](4.38f)
and j = 1 . . . , N.

Let us first choose z′0 = x. Then (4.38a), (4.38b) obviously hold for j = 0.

Next, assume that j ∈ {1, . . . , N − 1} and that z′0, . . . , z
′
j−1 and γ1, . . . , γj−1

have already been constructed such that (4.38a)–(4.38f) hold. We will now

construct z′j .
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For this apply the claim with our choices of δ∗, σ∗0 for z0 ← z′j−1 and r ← r.

This is possible due to (4.38e). We obtain a subset Sz′j−1,r
⊂ B(z′j−1, r) such

that

|B(z′j−1, 0, r) \ Sz′j−1,r
|0 < δrn.

We now claim that

(4.39) Sz′j−1,r
∩B(zj , 0, νr) ∩ {rRm(·, 0) ≥ σ∗0r} 6= ∅.

To see this, note that B(zj , 0, νr) ⊂ B(z′j−1, 0, r), because by (4.38b),

d0(z′j−1, zj) ≤ d0(z′j−1, zj−1) + d0(zj−1, zj) < νr +
1

2
r ≤ (1− ν)r.

So, if (4.39) was false, then

{rRm(·, 0) ≥ σ∗0r} ∩B(zj , 0, νr) ⊂ B(z′j−1, 0, r) \ Sz′j−1,r
.

This would imply ∣∣∣{rRm(·, 0) ≥ σ∗0r} ∩B(zj , 0, νr)
∣∣∣
0
< δ∗rn.

So ∣∣∣B(zj , 0, νr)
∣∣∣
0
−
∣∣∣{rRm(·, 0) < σ∗0r} ∩B(zj , 0, νr)

∣∣∣
0
< δ∗rn.

Using assumption (iii), this implies

κ(νr)n − E
(σ∗0
ν

)2
(νr)n < δ∗rn.

So

κνn − E
(σ∗0
ν

)2
νn < δ∗,

which contradicts (4.35) and (4.36). So (4.39) is indeed true and we can pick

a z′j ∈ Sz′j−1,r
∩ B(zj , 0, νr) such that rRm(z′j , 0) ≥ σ∗0r as well as a curve γj :

[0, 1] → M such that (4.38b)–(4.38f) are satisfied. This finishes the induction

and shows that we can choose z′0, . . . , z
′
N and γ1, . . . , γN such that (4.38a)–

(4.38f) hold.

Lastly, we choose a minimizing geodesic γN+1 : [0, 1] → M between z′N
and y. Note that since rRm(y, 0) > σ0 ≥ 2νr and since rRm(·, 0) is 1-Lipschitz

with respect to g0, we have, using (4.37),

γN+1(s) > σ0 − νr = σ0 −
2D

N
ν ≥ 1

2
σ0 for all s ∈ [0, 1].

Joining the curves γ1, . . . , γN+1, and smoothing yields a smooth curve γ :

[0, 1]→M between x and y such that

rRm(γ(s), 0) > min
{
σ∗0r,

1

2
σ0

}
for all s ∈ [0, 1]

and such that
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length0(γ) <
Ä
d0(z′0, z

′
1) + δ∗r

ä
+ · · ·+

Ä
d0(z′N−1, z

′
N ) + δ∗r

ä
+ νr

≤
Ä
d0(z0, z1) + 2νr + δ∗r

ä
+
Ä
d0(z1 + z2) + 2νr + δ∗r) + · · ·

+
Ä
d0(zN−1, zN ) + 2νr + δ∗r

ä
+ νr

≤ d0(x, y) + (3N + 1)νr

= d0(x, y) + (3N + 1)ν
2D

N
≤ d0(x, y) + 8Dν ≤ d0(x, y) + δ.

This finishes the proof. �

4.3. Proof of the compactness result. Using Proposition 4.8 and Corol-

lary 4.9, we are now able to prove the main results of this section, Proposi-

tions 4.1 and 4.2.

Proof of Proposition 4.1. The proposition will essentially follow from

[Bam17, Th. 1.2]. In order to apply this theorem, we have to verify that

the sequence (Mi, g
i
0, qi) of pointed Riemannian manifolds satisfies properties

(A)–(F), which are mentioned in [Bam17, §1.2]. Before doing so, we mention

that in this paper we use a slightly different definition of the curvature radius

rRm than in [Bam17]. The definition of the curvature radius in this paper (see

Definition 1.6) does not involve curvature derivatives, while the definition of

rRm or r̃Rm in [Bam17] does. However, this difference does not create any

issues, since in our setting these three radii are comparable to one another:

By definition, the curvature radius rRm in our paper is bounded from below

by rRm ≥ r̃Rm from [Bam17], and by Proposition 3.2 and Shi’s estimates, it is

bounded from above by Cr̃Rm ≤ CrRm from [Bam17], where C = C(A) < ∞
only depends on A.

Let us now verify the properties from [Bam17, §1.2]: Property (A) is a

direct consequence of Proposition 3.1. Note that the constant A appearing in

property (A) can be chosen depending only on the constant A from assump-

tion (i) of this proposition. Also the constant T appearing in this property can

be chosen to be any T < lim supi→∞ Ti = T∞. Next, property (B) is a direct

consequence of assumption (iii). Here, the constant p0 appearing in this prop-

erty has to be chosen slightly smaller than the constant p0 in assumption (iii).

Property (C) is a direct consequence of Corollary 4.9. Property (D) follows

from assumptions (i) and (ii) of this proposition, where the constant A of this

property depends on the constant A of our proposition. Property (E) follows

from Proposition 4.8 in the case in which ρi → 0. Finally, property (F) follows

from [BZ17, Th. 1.3]. The constants A and T appearing in this property can be

chosen depending on the constants A and T∞ of this proposition, respectively.
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Now [Bam17, Th. 1.2] implies that the pointed Riemannian manifolds

(Mi, g
i
0, qi) converge to a pointed singular space (X , q∞) with singularities of

codimension p0. Note here that in the context of [Bam17], the Riemannian

metric g on the regular part R of the singular space X = (X, d,R, g) as well

as the convergence of the metric were allowed to have regularity C3, and in

the present paper, we require the regularity to be C∞. This extra regularity

follows easily from Proposition 3.2 and Shi’s estimates.

The first part of assertion (b) of this proposition, namely, the fact that

Ric = 0, follows from Propositions 3.2, 3.6 and the fact that ρi → 0. The

statement about the mildness in assertion (b) follows from assertion (a) of

[Bam17, Th. 1.2] and the fact that property (E) of [Bam17] holds if ρi → 0.

The statement about the tameness in assertion (b) follows from assertion (b)

of [Bam17, Th. 1.2].

Assertions (c) and (e) of this proposition follow from assertions (a) and

(c) of [Bam17, Th. 3.1], which is the more detailed version of [Bam17, Th. 1.2].

Assertion (b) of [Bam17, Th. 3.1] and our discussion of the different definitions

of the curvature radius implies that there is a C = C(A) <∞ such that for all

x ∈ R,

(4.40) C−1 lim sup
i→∞

rMi
Rm(Φi(x), 0) ≤ r∞Rm(x) ≤ C lim inf

i→∞
rMi

Rm(Φi(x), 0).

We will now deduce assertion (d) of this proposition from this inequality. For

this let x ∈ R and fix some 0 < r < r∞Rm(x). Then BX(x, r) ⊂ R is rel-

atively compact in R and |Rm| < r−2 on BX(x, r). By compactness, we

have BX(x, r) ⊂ Ui for large i. By lifting curves of length 0 < r′ < r that

start in Φi(x), we can conclude that for any 0 < r′ < r and large i, we have

BMi(Φi(x), r′) ⊂ Φi(B
X(x, r)). So, by the smooth convergence on R we have

(4.41) lim inf
i→∞

rMi
Rm(Φi(x), 0) ≥ r∞Rm(x).

We now show the reverse inequality. So let x ∈ R and assume that 0 <

r ≤ lim supi→∞ r
Mi
Rm(Φi(x), 0). We want to show that then r∞Rm(x) ≥ r.

To see this, observe that for any 0 < r′ < r and y ∈ BX(x, r′) ∩ R, we

have limi→∞ d
Mi
0 (Φi(x),Φi(y)) = dX(x, y) < r′. So, since the rMi

Rm(x, ·) are

1-Lipschitz with respect to gi0, we get

lim sup
i→∞

rMi
Rm(Φi(y), 0) ≥ lim sup

i→∞
rMi

Rm(Φi(x), 0)− r′ ≥ r − r′.

Using (4.40), we find that for all y ∈ BX(x, r′),

r∞Rm(y) ≥ C−1(r − r′).

It follows that BX(x, r′) ⊂ R for all r′ < r, and hence BX(x, r′) is relatively

compact in R for all r′ < r. By smooth convergence we have |Rm| < r−2 on
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BX(x, r), which shows that r ≤ r∞Rm(x). So

(4.42) lim sup
i→∞

rMi
Rm(Φi(x), 0) ≤ r∞Rm(x).

Combining (4.41) and (4.42) yields assertion (d).

Finally, assertion (a) is a consequence of assertion (d) and assumption (iii).

�

As a consequence, we obtain Proposition 4.2.

Proof of Proposition 4.2. First observe that by parabolic rescaling and re-

choosing the constants A,E it suffices to prove the proposition for t = 0. Now

fix A,E, η and p0, and assume that the statement was wrong. Choose a se-

quence ρi → 0, and consider counterexamples (Mi, (g
i
t)t∈[−2,0]) of Ricci flows

that satisfy assumptions (i)–(iii) for ρ replaced by ρi and points qi ∈ M such

that the conclusion does not hold. Then we can use Proposition 4.1 to con-

clude that the (Mi, g
i
0, qi) converge to a pointed singular space (X, d,R, g, q∞)

with Ric ≡ 0 on R and mild singularities. Let (Ui, Vi,Φi) be a convergence

scheme for this convergence. We claim that for sufficiently large i, the subsets

U = U ′i := Ui∩B(xi, η
−1−η/2), V = V ′i := Φi(U

′
i) and Φ = Φ′i := Φi|U ′i satisfy

assertions (a)–(g).

To see this, observe that by definition of a convergence scheme asser-

tions (a), (b) and (e) hold automatically for large i. Assertions (c) and (d) are

a direct consequence of Proposition 4.1(e). Assertion (f) follows from Propo-

sition 4.1(c) and the fact that due to volume comparison on X (see [Bam17,

Prop. 4.1]), the map r 7→ |BX(x, r)∩R| is continuous. Assertion (g) is a direct

consequence of Proposition 4.1(a). �

5. The ε-regularity theorem

5.1. Statement of the results. The main result of this section will be an

ε-regularity theorem for Ricci flows with small scalar curvature that satisfy

an additional a priori Lp-curvature bound. More specifically, we will prove

that any ball with almost Euclidean volume has bounded curvature at its

center if the scalar curvature bound is small enough. An important property

of this ε-regularity theorem is that the constants quantifying the curvature

bound at the center of this ball and the degree to which the volume of the

ball is almost Euclidean (namely ε) are independent of the imposed a priori

Lp-curvature bound. Only the scalar curvature bound will depend on this

a priori Lp-curvature bound.

Based on the ε-regularity theorem and by passing to the limit, we will

furthermore show that the limiting singular space in Proposition 4.1 from Sec-

tion 4 is Y -tame. Here Y only depends on a lower bound A on Perelman’s

ν-functional and not on the integral curvature bound Ep.
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Let us now state the main results more precisely:

Proposition 5.1 (The ε-regularity theorem). For any A,E < ∞ and

p > 3, there are constants ε0 = ε0(A), σ0 = σ0(A), ρ = ρ(A,E,p) > 0 such

that the following holds :

Let (M, (gt)t∈[−2,0]) be a Ricci flow on a compact, n-dimensional and ori-

entable manifold M , and assume that

(i) ν[g−2, 4] ≥ −A;

(ii) |R| ≤ ρ on M × [−2, 0];

(iii) for all (x, t) ∈M × [−1, 0] and 0 < r, s < 1, we have

|{rRm(·, t) < sr} ∩B(x, t, r)|t ≤ Esprn.

Then for any x0 ∈M and 0 < r0 < 1 for which

|B(x0, 0, r0)|0 > (ωn − ε0)rn0 ,

we have rRm(x0, 0) > σ0r0.

Note that ε0 and σ0 do not depend on E or p; only ρ does. This fact

will be important for us in Section 6, where a value for E = E(A) will be

determined based on σ0 such that assumption (iii) always holds.

We also remark that a similar result was considered in [CW12, Prop. 4.16].

Using Proposition 5.1, we can refine the compactness results of Section 4.

Corollary 5.2 (Regularity of the limit). For any A < ∞, there is a

Y = Y (A) <∞ such that the following holds :

Assume that we are in the setting of Proposition 4.1, and assume that

ρi → 0, p0 > 3 and that all Mi are orientable. Let X be the limiting singular

space, and set T∞ := lim supi→∞ Ti.

Then X is Y -regular at scale
√
T∞ (in the sense of Definition 2.4).

5.2. Existence of almost geodesics that stay away from high curvature re-

gions. The main result of this subsection, Proposition 5.4, states that, as long

as the scalar curvature bound ρ is chosen small enough, we can find an al-

most geodesic between almost every pair of points with the following property:

All points on this almost geodesic have bounded curvature and small Ricci

curvature at all times of the time-interval [−1/2, 0].

In order to show Proposition 5.4, we will first show that we can find such

almost geodesics on which the curvature is bounded at a single time.

Lemma 5.3. For any A,E,D < ∞, p > 2 and δ > 0, there are con-

stants 0 < σ∗ = σ∗(A,E,D,p, δ) < 1, C∗ = C∗(A,E,D) < ∞ and ρ =

ρ(A,E,D,p, δ) > 0 such that the following holds :

Let (M, (gt)t∈[−2,0]) be a Ricci flow on a compact, n-dimensional manifold

M with the property that
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(i) ν[g−2, 4] ≥ −A;

(ii) |R| ≤ ρ on M × [−2, 0];

(iii) For all (x, t) ∈M × [−1, 0] and 0 < r, s < 1, we have

|{rRm(·, t) < sr} ∩B(x, t, r)|t ≤ Esprn.

Let x0 ∈M and t0 ∈ [−1
2 , 0]. Then there is a closed subset

S′ ⊂ B(x0, t0, D)×B(x0, t0, D),

a smooth function

l :
Ä
(B(x0, t0, D)×B(x0, t0, D)) \ S′, (y1, y2) 7−→ ly1,y2

and a smooth family of curves

γy1,y2 : [0, ly1,y2 ] −→M, (y1, y2) ∈
Ä
(B(x0, t0, D)×B(x0, t0, D)

ä
\ S′,

with the following properties :

(a) |S′|t0 < δ/2 with respect to the product measure dgt0 ⊗ dgt0 .

(b) For any (y1, y2) ∈ (B(x0, t0, D)×B(x0, t0, D))\S′, we have γy1,y2(0) = y1,

γy1,y2(ly1,y2) = y2 and

1− δ < |γ′y1,y2(s)|t0 < 1 + δ for all s ∈ [0, ly1,y2 ].

(c) For any such pair (y1, y2), we have rRm(γy1,y2(s), t0) > σ∗ for all s ∈
[0, ly1,y2 ].

(d) For any such pair (y1, y2), we have

| lengtht0(γy1,y2)− dt0(y1, y2)| < δ.

(e) For any such pair (y1, y2), we have

ly1,y2 > σ∗.

(f) We have the segment inequality

ˆ
(B(x0,t0,D)×B(x0,t0,D))\S′

ˆ ly1,y2

0
f(γy1,y2(s))dsdgt0(y1)dgt0(y2)

≤ C∗
ˆ
B(x0,t0,10D)

fdgt0

for any non-negative, bounded and Borel measurable function f : M →
[0,∞).

Proof. Without loss of generality, we may assume in the following that

D > 1. Let 0 < η < min{(10D)−1,
»
δ/4} be a constant whose value we will

determine in the course of this proof, depending only on A,E,D, δ, and choose

ρ = ρ(A,E, η) > 0 according to Proposition 4.2. Then, by Proposition 4.2 for

(q, t)← (x0, t0), we can find a pointed singular space (X , q∞) = (X, d,R, g, q∞)

with Ric = 0 on R and mild singularities, subsets U ⊂ R, V ⊂ M and a
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diffeomorphism Φ : U → V such that assertions (a)–(g) of Proposition 4.2

hold. Moreover, by assertion (g) of Proposition 4.2 and a covering argument

involving volume comparison on X (see [Bam17, Prop. 4.1]), we find a constant

E∗ = E∗(D,E) <∞ such that for all 0 < s < 1,

(5.1)
∣∣∣{r∞Rm < s} ∩BX(q∞, 10D) ∩R

∣∣∣ ≤ E∗sp.
Here r∞Rm denotes the curvature radius on X .

By [Bam17, Prop. 7.4] we have a segment inequality on X . More specif-

ically, we can find an open subset G∗ ⊂ R × R such that (R × R) \ G∗ has

measure zero and such that for any (z1, z2) ∈ G∗, there is a unique minimizing

arclength geodesic

γ∗z1,z2 : [0, dX(z1, z2)]→ R,

and dX(z1, z2) as well as γ∗ depend smoothly on z1, z2. Then the segment

inequality on X can be expressed as

(5.2)ˆ
(BX(q∞,2D)×BX(q∞,2D))∩G∗

ˆ dX(z1,z2)

0
f(γ∗z1,z2(s))dsdg(z1)dg(z2) ≤ C

ˆ
R
fdg

for any non-negative, bounded and Borel measurable function f : R → [0,∞).

Here C = C(D) < ∞ denotes a uniform constant. (The constant C depends

only on D due to volume comparison on X ; see [Bam17, Prop. 4.1].) Pick

0 < σ∗ = σ∗(D, δ) < 1 such that

(5.3) CE∗4pσp−1
∗ < δ/32 and ωnσ

n
∗ , ω

2
n(2D)nσn∗ < δ/32.

Here ωn denotes the volume of the unit ball in Euclidean space.

We will now construct a subset S∗⊂R×R that will be used to construct S′.

First, define

S∗1 :=
ÄÄ
BX(q∞, 2D) ∩R

ä
×
Ä
BX(q∞, 2D) ∩R

ää
\ G∗.

Note that S∗1 is closed in (BX(q∞, 2D) ∩ R) × (BX(q∞, 2D) ∩ R) and has

measure zero. Next, define

S∗2 :=
¶

(z1, z2) ∈
Ä
BX(q∞, 2D) ∩R

ä
×
Ä
BX(q∞, 2D) ∩R

ä
: dX(z1, z2) ≤ σ∗

©
=

⋃
z1∈BX(q∞,2D)∩R

{z1} ×
ÄÄ
BX(q∞, 2D) ∩R

ä
∩BX(z1, σ∗)

ä
.

Then S∗2 is closed in (BX(q∞, 2D) ∩ R) × (BX(q∞, 2D) ∩ R). By volume

comparison (see [Bam17, Prop. 4.1]) and Fubini’s Theorem, we have

|S∗2 | ≤
∣∣∣BX(q∞, 2D) ∩R

∣∣∣ · ωnσn∗ ≤ ω2
n(2D)nσn∗ < δ/32.
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Lastly, set

S∗3 :=
¶

(z1, z2) ∈
Ä
BX(q∞, 2D) ∩R

ä
×
Ä
BX(q∞, 2D) ∩R

ä
∩ G∗ :

r∞Rm(γ∗z1,z2(s)) ≤ 2σ∗ for some s ∈ [0, dX(z1, z2)]
©
.

Then S∗3 is closed in ((BX(q∞, 2D) ∩ R) × (BX(q∞, 2D) ∩ R)) ∩ G∗. We will

now bound its measure. For this, let

W := {r∞Rm < 4σ∗} ∩B(q∞, 4D) ∩R.

Note that since r∞Rm is 1-Lipschitz, we have for any (z1, z2) ∈ S∗3 \ S∗2 ,

|{s ∈ [0, d(z1, z2)] : γ∗z1,z2(s) ∈W}| ≥ σ∗.

So setting f := χW in (5.2) yields, in view of (5.1) and (5.3),

|S∗3 \ S∗2 | · σ∗ ≤ CE∗(4σ∗)p < (δ/32)σ∗,

which implies ∣∣∣S∗3 \ S∗2 ∣∣∣ < δ/32.

Now set

S∗ := S∗1 ∪ S∗2 ∪ S∗3 .
Then

|S∗| = |S∗1 ∪ S∗2 ∪ (S∗3 \ S∗2)| < δ/16.

We will now construct S′ ⊂M . For this, note thatÄ
BX(q∞, 2D)×BX(q∞, 2D)

ä
\ S∗ ⊂ {r∞Rm > σ∗} × {r∞Rm > σ∗},

because any pair of points that belongs to the set on the left-hand side can

be connected by a unique minimizing geodesic inside {r∞Rm > 2σ∗} (since

S∗3 ⊂ S∗). Therefore, we also have r∞Rm > 2σ∗ > σ∗ at its endpoints of such a

geodesic. So, assuming η < σ∗ and using Proposition 4.2(c), we haveÄ
BX(q∞, 2D)×BX(q∞, 2D)

ä
\ S∗ ⊂ U × U.

Now let S′ be defined as follows:

S′ := B(x0, t0, D)×B(x0, t,D) \ (Φ×Φ)
(Ä
BX(q∞, 2D)×BX(q∞, 2D)

ä
\S∗

)
.

Then S′ is closed in B(x0, t0, D) × B(x0, t,D) and can be expressed as the

union of

S′1 := (Φ× Φ)(S∗)

with

S′2 := (B(x0, t0, D) \ V )× (B(x0, t,D) \ V ).

For sufficiently small η (in a uniform way), we may assume that the Jacobian

of Φ is bounded from above by 2 (see Proposition 4.2(b)) and hence

|S′1|t0 ≤ 4|S∗| < δ/4.
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Furthermore, by Proposition 4.2(d),

|S′2|t0 ≤ |B(x0, t0, D) \ V |2t0 < η2 < δ/4.

So

|S′|t0 ≤ |S′1|t0 + |S′2|t0 < δ/2,

which implies assertion (a).

Before we verify the remaining assertions, let us summarize our construc-

tion: For any (y1, y2) ∈ (B(x0, t0, D)×B(x0, t0, D)) \ S′ ⊂ V × V , we have

(Φ−1(y1),Φ−1(y2)) ∈
Ä
BX(q∞, 2D)×BX(q∞, 2D)

ä
\ S∗.

As S∗3 ⊂ S∗, this implies that for all s ∈ [0, dX(Φ−1(y1),Φ−1(y2))], we have

r∞Rm(γ∗Φ−1(y1),Φ−1(y2)(s)) > 2σ∗.

So, since we assumed η < σ∗, we conclude

γ∗Φ−1(y1),Φ−1(y2)(s) ∈ U

for all such s. Hence it is possible to make the following definition: for any

(y1, y2) ∈ (B(x0, t0, D)×B(x0, t0, D)) \ S′ ⊂ V × V , let

ly1,y2 := dX(Φ−1(y1),Φ−1(y2))

and

γy1,y2(s) := Φ
Ä
γ∗Φ−1(y1),Φ−1(y2)(s)

ä
, s ∈ [0, ly1,y2 ].

Assertions (b), (d), (e) now follow immediately for small enough η, depending

on δ. For assertion (c), observe that for small enough η, we have

rRm(γy1,y2(s), t0) > 1
2r
∞
Rm(Φ−1(γy1,y2(s))) = 1

2r
∞
Rm(γ∗Φ−1(y1),Φ−1(y2)(s))) > σ∗.

Assertion (f) follows from (5.2) by replacing f : M → [0,∞) by (f ◦ Φ)χU :

R → [0,∞). �

We can now prove the main result of this subsection. Similarly to the

previous lemma, Lemma 5.3, the following proposition asserts the existence of

almost geodesic curves between almost every pair of points at a given time t0.

However, in contrast to Lemma 5.3, Proposition 5.4 asserts additionally that

along any such curve we have a lower bound on rRm and a small upper bound

on |Ric| at all times t ∈ [−1, 0]—not only at time t0.

In a vague sense, Proposition 5.4 follows by analyzing the set of points

x ∈M where rRm(x, t) ≤ 2σ for some t ∈ [−1, 0], where σ is a small constant.

We will find that the volume of this set is roughly bounded by Cσp−2. On

the other hand, we will show that any almost geodesic on which rRm(·, t) ≤ σ
for some t ∈ [−1, 0] must intersect this set of points in a curve of length & σ.

Using the segment inequality from assertion (f) of Lemma 5.3 and a length

distortion bound, it will follow that this set of almost geodesics has measure

< Cσp−3. So, since we assumed that p > 3, this measure can be made
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arbitrarily small. Therefore, the set of almost geodesics on which rRm(x, t) ≤ σ
for some t ∈ [−1, 0] can be discarded.

Proposition 5.4. For any A,E,D <∞, p > 3 and δ > 0, there are con-

stants ρ = ρ(A,E,D,p, δ), σ(A,E,D,p, δ) > 0 such that the following holds :

Let (M, (gt)t∈[−2,0]) be a Ricci flow on a compact, n-dimensional manifold

M with the property that

(i) ν[g−2, 4] ≥ −A;

(ii) |R| ≤ ρ on M × [−2, 0];

(iii) for all (x, t) ∈M × [−1, 0] and 0 < r, s < 1, we have

|{rRm(·, t) < sr} ∩B(x, t, r)|t ≤ Esprn.

Let x0 ∈M and t0 ∈ [−1
2 , 0]. Then there is a subset

S ⊂ B(x0, t0, D)×B(x0, t0, D)

such that the following holds :

(a) We have

|S|t0 < δ

with respect to the product measure dgt0 ⊗ dgt0 .

(b) For any

(y1, y2) ∈
Ä
B(x0, t0, D)×B(x0, t0, D)

ä
\ S,

there is a smooth curve γy1,y2 : [0, 1] → M with γy1,y2(0) = y1, γy1,y2(1)

= y2 such that

| lengtht0(γy1,y2)− dt0(y1, y2)| < δ

and such that

rRm(γy1,y2(s), t) > σ for all s ∈ [0, 1] and t ∈ [−1, 0]

and

|Ric|(γy1,y2(s), t) < δ for all s ∈ [0, 1] and t ∈ [−1, 0].

Proof. Fix A,E,D < ∞, p > 3 and δ > 0. Assume without loss of

generality that δ < 0.1. Assume that ρ is chosen small enough such that we

can apply Lemma 5.3 at (x0, t0), and let 0 < σ∗ = σ∗(A,E,D,p, δ) < 1 and

C∗(A,E,D) < ∞ be the constants from this lemma. Next, using Proposi-

tion 3.3, we may choose a constant D∗ = D∗(A,D) <∞ such that

B(x0, t0, D) ⊂ B(x0, t,D
∗) for all t ∈ [−1, 0].

Using assumption (iii), a covering argument and Proposition 3.1, we can find

a constant E∗ = E∗(A,D,E) <∞ such that for all 0 < s < 1 and t ∈ [−1, 0],

(5.4) |{rRm(·, t) < s} ∩B(x0, t0, D)|t < E∗sp.
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Let ε = ε(A) > 0 be the constant from the Backwards and Forward Pseudolo-

cality Theorem, Proposition 3.2, and assume without loss of generality that

ε < 0.1. Moreover, choose an integer N = N(A,E,D,p, δ) <∞ such that

8δ−1NC∗E
∗
Ç

2

N1/2ε

åp−1

< 1 and
10

N1/2ε
< εσ∗ < 1

(this is possible since p > 3), and determine σ0 = σ0(A,E,D,p, δ) > 0 by

σ0 :=
2

N1/2ε
.

Then

(5.5)

σ0 < εσ∗, 8δ−1NC∗E
∗σp−1

0 < 1,
100

N
< (εσ∗)

2 and (εσ0/2)2 =
1

N
.

Define σ = σ(A,E,D,p, δ) > 0 by

σ := εσ0/2 =
1√
N
.

We will assume in the following that ρ = ρ(A,E,D,p, δ) > 0 is chosen small

enough such that, using Proposition 3.6, we can conclude that |Ric|(y, t) < δ

at any (y, t) ∈M × [−1, 0] at which rRm(y, t) > σ.

For i = 0, . . . , N − 1, set

Wi :=

®
rRm

(
·,− i

N

)
< σ0

´
⊂M,

and define

f(x) :=
N−1∑
i=0

χWi ,

where χWi denotes the characteristic function of Wi. Then, by (5.4),

(5.6)

ˆ
B(x0,t0,D∗)

fdgt0 < NE∗σp0 .

Consider now the subset S′ ⊂ B(x0, t0, D)×B(x0, t0, D) from Lemma 5.3 and

the family of curves

γy1,y2 : [0, ly1,y2 ] −→M, (y1, y2) ∈
Ä
(B(x0, t0, D)×B(x0, t0, D)

ä
\ S′.

Set

S′′ :=

®
(y1, y2) ∈

Ä
B(x0, t0, D)×B(x0, t0, D)

ä
\ S′ :

ˆ ly1,y2

0
f(γy1,y2(s))ds ≥ 2δ−1NC∗E

∗σp0

´
.
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Then, using the segment inequality in assertion (e) of Lemma 5.3 combined

with (5.6), we find

|S′′|t0 · 2δ−1NC∗E
∗σp0 < C∗NE

∗σp0 .

This implies |S′′|t0 < δ/2, so if we set S := S′ ∪ S′′, then assertion (a) holds.

We will now verify assertion (b). To do this, observe that, by (5.5), for

any (y1, y2) ∈ (B(x0, t0, D)×B(x0, t0, D))\S we have for any i = 0, . . . , N−1,

(5.7)

ˆ ly1,y2

0
χWi(γy1,y2(s))ds < 2δ−1NC∗E

∗σp0 < σ0/4.

We will use this bound to show that for all i = 0, . . . , N − 1, we have

(5.8) rRm

(
γy1,y2(s),− i

N

)
> σ0/2 for all s ∈ [0, ly1,y2 ].

To see that (5.8) holds for all i = 0, . . . , N − 1, recall first that by asser-

tion (c) of Lemma 5.3 we have rRm(γy1,y2(s), t0) > σ∗ for all s ∈ [0, ly1,y2 ]. It

follows by Proposition 3.2 and (5.5) that for all t ∈ [−1, 0] with |t−t0| ≤ (εσ∗)
2,

we have

rRm(γy1,y2(s), t) > εσ∗ > σ0/2 for all s ∈ [0, ly1,y2 ].

So since (εσ∗)
2 > 100

N (see (5.5)), there is at least one i for which (5.8) holds.

More specifically, there are i1, i2 ∈ {0, . . . , N − 1} such that − i2
N < t0 < − i1

N

and such that (5.8) holds for all i = i1, . . . , i2. Assume now that (5.8) does

not hold for all i = 0, . . . , N − 1, and pick i0 such that (5.8) does not hold for

i = i0 and such that |t0 + i0
N | is minimal with this property. In other words,

(5.8) holds for all i = 0, . . . , N − 1 for which |t0 + i
N | < |t0 + i0

N | but not for

i = i0. We will now derive a contradiction to this assumption. Recall from

(5.5) that (εσ0/2)2 = 1
N . So, by Proposition 3.2, we have

(5.9) rRm(γy1,y2(s), t) > εσ0/2 = σ for all s ∈ [0, ly1,y2 ]

for all t ∈ [− i0
N , t0] or t ∈ [t0,− i0

N ], depending on whether i0 > i2 or i0 < i1.

As discussed before, by our small choice of ρ, this implies that for all such t,

we have

(5.10) |Ric|(γy1,y2(s), t) < δ for all s ∈ [0, ly1,y2 ].

So, since |γ′y1,y2(s)|t0 < 1 + δ and δ < 0.1, a distance distortion estimate yields

that |γ′y1,y2(s)|t < 2 for all t ∈ [− i0
N , t0] or t ∈ [t0,− i0

N ]. So the function s 7→
rRm(γy1,y2(s),− i0

N ) is 2-Lipschitz. By the choice of i0, there is an s0 ∈ [0, ly1,y2 ]

such that

rRm

(
γy1,y2(s0),− i0

N

)
≤ σ0/2.
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Using the 2-Lipschitz property, we conclude that for all s ∈ [0, ly1,y2 ] with

|s− s0| < σ0/4, we have

rRm

(
γy1,y2(s),− i0

N

)
< σ0.

In other words, γy1,y2(s) ∈Wi0 for all s ∈ [0, ly1,y2 ] with |s− s0| < σ0/4. Since,

by Lemma 5.3(e), ly1,y2 > σ∗ > σ0/4, this contradicts (5.7).

So (5.8) holds for all i = 0, . . . , N − 1. As before, it follows that (5.9) and

(5.10) hold for all t ∈ [−1, 0]. This finishes the proof of assertion (b). �

5.3. Existence of almost optimal L-geodesics and a reduced volume bound.

In this subsection, we will use the existence of almost geodesics that avoid

regions of high curvature to construct short L-geodesics between a given base-

point and a set of points of large measure. Based on this construction we will

eventually derive a good lower bound on the reduced volume at that basepoint.

Lemma 5.5. For any A,E,D <∞, p > 3, 0 < τ0 ≤ 1/2 and δ > 0, there

is a constant ρ = ρ(A,E,D,p, τ0, δ) > 0 such that the following holds :

Let (M, (gt)t∈[−2,0]) be a Ricci flow on a compact, n-dimensional and ori-

entable manifold M with the property that

(i) ν[g−2, 4] ≥ −A;

(ii) |R| ≤ ρ on M × [−2, 0];

(iii) for all (x, t) ∈M × [−1, 0] and 0 < r, s < 1, we have

|{rRm(·, t) < sr} ∩B(x, t, r)|t ≤ Esprn.

Consider a point x0 ∈M . Then there is a subset

S ⊂ B(x0, t0, D)

such that the following holds :

(a) We have

|S|0 < δ.

(b) For any

z ∈ B(x0, 0, D) \ S,

we have

L(x0,0)(z,−τ0) = 2
√
τ0L(x0,0)(z,−τ0) < d2

0(x0, z) + δ.

Here L(x0,0) denotes the L-distance based at (x0, 0).

Moreover, the reduced volume at (x0, 0) satisfies

(5.11) ‹V(x0,0)(τ0) >

ˆ
B(x0,0,D)

(4πτ0)−n/2 exp
(
−d

2
0(x0, z)

4τ0

)
dg0(z)− δ.
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Proof. Let us first construct S such that assertions (a) and (b) hold. The

bound (5.11) will then follow easily.

In order to construct S, we first introduce a constant 0 < θ ≤ τ0 that will

be chosen small enough in the course of the proof depending only on A,E,D, τ0

and δ. The constant ρ will be chosen small enough depending on A,E,D, τ0, δ

and θ in the course of this proof. In the following we will construct curves with

bounded L-length between (x0, 0) and a large set of points (z,−τ0). These

curves will arise as a concatenation of a short L-geodesic between (x0, 0) and

some point (y,−θ) and a reparametrization of the curves from Proposition 5.4

to the interval [θ, τ0].

Let us first construct sufficiently many short L-geodesics based at (x0, 0).

For this, we will argue similarly as in the claim of Lemma 4.4. As explained in

the proof of this claim we obtain the following special case of (4.6) for z ← x0:ˆ
M
K(x0, 0; y,−θ)L(x0,0)(y,−θ)dg−θ(y) ≤ 2nθ.

Next, assuming ρ < 1,

L(x0,0)(y,−θ) > −2
√
θ

ˆ θ

0

√
τdτ = −4

3
θ2 > −2θ2.

Now consider the integralˆ
M
K(x0, 0; y,−θ)

Ä
L(x0,0)(y,−θ) + 2θ2

ä
dg−θ(y) ≤ 2nθ + 2θ2.

The integrand of this integral is positive everywhere. So, by volume distortion

estimates, the lower bound on the heat kernel (see Proposition 3.4) and the

fact that |B(x0, 0,
√
θ)|0 > cθn/2 for some uniform c = c(A) > 0 (see Proposi-

tion 3.1), we can find a constant C = C(A) <∞ such that 
B(x0,0,

√
θ)
L(x0,0)(y,−θ)dg0(y) ≤

 
B(x0,0,

√
θ)

Ä
L(x0,0)(y,−θ)+2θ2

ä
dg0(y) ≤ Cθ.

It follows that if we set

U :=
¶
y ∈ B(x0, 0,

√
θ) : L(x0,0)(y,−θ) < 2Cθ

©
,

then

|U |0 >
1

2

∣∣∣B(x0, 0,
√
θ)
∣∣∣
0
>
c

2
θn/2.

We now fix the constant θ = θ(A,E,D,p, τ0, δ) > 0 small enough such

that 0 < θ < τ0 and such that the following holds:

(5.12) 2C
√
θ+eθ

√
τ0

√
τ0 −

√
θ

Ä
d+2

√
θ
ä2

+θ < d2 +δ for all 0 ≤ d < D.

Based on this choice, we pick δ′ = δ′(A,E,D,p, θ, δ) > 0 such that

δ′ < θ and δ′
( c

2
θn/2

)−1
< δ.
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Now apply Proposition 5.4 with A ← A, E ← E, D ← D, p ← p, δ ← δ′,

(x0, t0)← (x0, 0) for sufficiently small ρ (depending on A,E,D, τ0, δ), and let

S′ ⊂ B(x0, 0, D) × B(x0, 0, D) be the subset that is denoted by S in that

proposition. For any z ∈ B(x0, 0, D), let m(z) := |S′ ∩ ({z} × B(x0, 0, D))|0
be the time-0 measure of the section through z. By Fubini’s Theorem,ˆ

B(x0,0,D)
m(y)dg0(y) = |S′|0 < δ′.

It follows that there is a point y ∈ U such that

m(y) < δ′
( c

2
θn/2

)−1
< δ.

Now let S ⊂ B(x0, 0, D) be the subset for which

{y} × S = S′ ∩
Ä
{y} ×B(x0, 0, D)

ä
.

Then S satisfies assertion (a).

Next, we show assertion (b). Choose an L-geodesic γ∗ : [0, θ] → M with

γ(0) = x0, γ(θ) = y and

(5.13) L0(γ∗) = L(x0,0)(y,−θ) =
1

2
√
θ
L(x0,0)(y,−θ) < C

√
θ.

Let z ∈ S, and recall that (y, z) ∈ S′. Let γ : [
√
θ,
√
τ0] → M be a con-

stant speed parametrization of the curve γz,y : [0, 1]→M obtained in Proposi-

tion 5.4(b) and define γ : [θ, τ0]→M by γ(τ) := γ(
√
τ). So γ′(τ) = 1

2
√
τ
γ′(
√
τ).

Thus, since by Proposition 5.4, we have |Ric|(γ(s), t) < δ′ < θ for all s ∈ [θ, τ0]

and t ∈ [−1, 0], we have

2
√
τ0

ˆ τ0

θ

√
τ |γ′(τ)|2−τdτ ≤ 2

√
τ0 · eδ

′
ˆ τ0

θ

√
τ |γ′(τ)|20dτ

≤ 2
√
τ0 · eθ

ˆ τ0

θ

1

4
√
τ
|γ′(
√
τ)|20dτ

= eθ
√
τ0

ˆ √τ0
√
θ
|γ′(s)|20ds

= eθ
√
τ0

Ä√
τ0 −

√
θ
äÇ length0(γ)
√
τ0 −

√
θ

å2

≤ eθ
√
τ0

√
τ0 −

√
θ

Ä
d0(y, z) + δ′

ä2
≤ eθ

√
τ0

√
τ0 −

√
θ

Ä
d0(x0, z) +

√
θ + δ′

ä2
< eθ

√
τ0

√
τ0 −

√
θ

Ä
d0(x0, z) + 2

√
θ
ä2
.

(5.14)
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Moreover, for sufficiently small ρ (depending on θ),

(5.15)

ˆ τ0

θ

√
τR(γ(τ),−τ)dτ ≤ 2

3
ρτ

3/2
0 < ρ < θ/2.

Now let γ∗∗ be the concatenation of γ∗ and γ. Then by (5.13), (5.14), (5.15)

and (5.12),

L(x0,0)(z,−τ0) ≤ 2
√
τ0L0(γ∗∗)

< 2C
√
θ + eθ

√
τ0

√
τ0 −

√
θ

Ä
d0(x0, z) + 2

√
θ
ä2

+ θ < d2
0(x0, z) + δ.

This proves assertion (b).

We will now show how the first part of the lemma implies (5.11). For this,

observe that‹V(x0,0)(τ0) =

ˆ
M

(4πτ0)−n/2e−l(z,−τ)dg−τ0(z)

> e−ρ
ˆ
B(x0,t0,D)\S

(4πτ0)−n/2 exp

Ç
−
L(x0,0)(z,−τ0)

4τ0

å
dg0(z)

> e−ρ
ˆ
B(x0,t0,D)\S

(4πτ0)−n/2 exp

Ç
−d

2
0(x0, z) + δ

4τ0

å
dg0(z)

> e−ρ
ˆ
B(x0,t0,D)

(4πτ0)−n/2 exp

Ç
−d

2
0(x0, z) + δ

4τ0

å
dg0(z)

− e−ρ+δ/4τ0(4πτ0)−n/2|S|0.

Note that |B(x0, t0, D)|0 is bounded from above by a constant that only de-

pends on A and D (see Proposition 3.1). So choosing ρ and δ small enough

implies (5.11). �

Lemma 5.6. For any A,E < ∞, p > 3 and δ > 0, there are constants

0 < ν = ν(δ), ρ = ρ(A,E,p, δ) < 1 such that the following holds :

Let (M, (gt)t∈[−2,0]) be a Ricci flow on a compact, n-dimensional and ori-

entable manifold M and x0 ∈M , and assume that

(i) ν[g−2, 4] ≥ −A;

(ii) |R| ≤ ρ on M × [−2, 0];

(iii) for all (x, t) ∈M × [−1, 0] and 0 < r, s < 1, we have

|{rRm(·, t) < sr} ∩B(x, t, r)|t ≤ Es3.9rn;

(iv) we have

|B(x0, 0, ν
−1)|0 > (ωn − ν)(ν−1)n.

Then for all x ∈ B(x0, 0, 1), the reduced volume satisfies.‹V(x,0)(1/2) > 1− δ.

Note that ν does not depend on A, E or p.
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Proof. Let us first fix the constants. Choose ν = ν(δ) > 0 small enough

such thatˆ
Rn\B(0n,ν−1)

(2π)−n/2e−|z|
2/2dz < δ/3, ν < 0.01, 4ν < δ/3,

and (ωn − 2ν)(ν−1)n > (ωn − 3ν)(ν−1 + 1)n.

Next, choose η = η(δ) > 0 small such that

η < ν/2,
1

1 + η
(ωn − ν)(ν−1)n − η

1 + η
> (ωn − 2ν)(ν−1)n,

(1− η)(ωn − 3ν) > ωn − 4ν and (2π)−n/2(ν−2 + 1)η + η < δ/3.

We will now use Proposition 4.2 with (q, t) ← (x, 0), assuming ρ to be

sufficiently small, depending on A,E, η. Proposition 4.2 yields a pointed sin-

gular space (X , q∞) = (X, d,R, g, q∞) with mild singularities for which Ric ≡ 0

on R, subsets U ⊂ R and V ⊂M and a diffeomorphism Φ : U → V such that

assertions (a)–(g) of this proposition hold. Note that assertion (a) states that

q∞ ∈ U and d0(Φ(q∞), x) < η. Then, by assertion (f),∣∣∣BX(q∞, ν
−1 + 1) ∩R

∣∣∣ > 1

1 + η

∣∣∣BM (x, 0, ν−1 + 1)
∣∣∣
0
− η

1 + η

>
1

1 + η

∣∣∣BM (x0, 0, ν
−1)
∣∣∣
0
− η

1 + η

>
1

1 + η
(ωn − ν)(ν−1)n − η

1 + η

> (ωn − 2ν)(ν−1)n > (ωn − 3ν)(ν−1 + 1)n.

Since X has mild singularities and satisfies Ric = 0 on R, we can apply the

Bishop-Gromov volume comparison on X (see [Bam17, Prop. 4.1]) and obtain

that ∣∣∣BX(q∞, r) ∩R
∣∣∣ > (ωn − 3ν)rn for all 0 < r ≤ ν−1 + 1.

Using assertion (f) of Proposition 4.2 again, we get∣∣∣BM (x, 0, r)
∣∣∣
0
> (1− η)(ωn − 3ν)rn − η > (ωn − 4ν)rn − η

for all 0 < r < ν−1 + 1.

So by Lemma 5.5, for δ ← η, τ0 ← 1/2, x0 ← x and sufficiently small ρ,‹V(x,0)(1/2) >

ˆ
BM (x,0,ν−1)

Ä
4π · 1

2

ä−n/2
exp

(
−d

2
0(x, y)

4 · 1
2

)
dg0(y)− η

=

ˆ
BM (x,0,ν−1)

Ç
−
ˆ ν−1

d0(x,y)

Ç
− (2π)−n/2r exp

(
−r

2

2

)å
dr

+ (2π)−n/2 exp
(
−(ν−1)2

2

)å
dg0(y)− η
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=

ˆ ν−1

0
(2π)−n/2re−r

2/2
∣∣∣BM (x, 0, r)

∣∣∣
0
dr

+ (2π)−n/2e−(ν−1)2/2
∣∣∣BM (x, 0, ν−1)

∣∣∣
0
− η

> (ωn − 4ν)

ˆ ν−1

0
(2π)−n/2rn+1e−r

2/2dr + (2π)−n/2(ν−1)ne−(ν−1)2/2

− η
ˆ ν−1

0
(2π)−n/2re−r

2/2dr − (2π)−n/2e−(ν−1)2/2η − η

> (ωn − 4ν)

ˆ
B(0n,ν−1)⊂Rn

(2π)−n/2e−|z|
2/2dz − (2π)−n/2(ν−2 + 1)η − η

> 1−
ˆ
Rn\B(0n,ν−1)

(2π)−n/2e−|z|
2/2dz

− 4ν

ˆ
B(0n,ν−1)⊂Rn

(2π)−n/2e−|z|
2/2dz − (2π)−n/2(ν−2 + 1)η − η

> 1− δ/3− 4ν − δ/3
> 1− δ.

This finishes the proof. �

5.4. Proof of the regularity theorems. We first need to establish the fol-

lowing gap theorem for the reduced volume:

Lemma 5.7. For any A <∞, there are constants δ = δ(A), σ = σ(A) > 0

such that the following holds :

Let (M, (gt)t∈[−2,0]) be a Ricci flow on a compact, n-dimensional and ori-

entable manifold M and x0 ∈M , and assume that

(i) ν[g−2, 4] ≥ −A;

(ii) |R| ≤ 1 on M × [−2, 0];

(iii) for all x ∈ B(x0, 0, 1), the reduced volume satisfies‹V(x,0)(1/2) > 1− δ.

Then rRm(x0, 0) > σ.

Proof. Note that by the monotonicity of the reduced volume, we have

1 ≥ ‹V(x,0)(τ) > 1− δ for all τ ∈ (0, 1/2].

Assume now that the statement of the lemma was false, and pick arbitrary

sequences δi, σi → 0. Then we can find a sequence of flows (Mi, (g
i
t)t∈[−2,0])

and basepoints xi0 ∈ Mi such that conditions (i)–(iii) of the lemma hold, but

for which rMi
Rm(xi0, 0) ≤ σi. Choose yi ∈ BMi(xi0, 0, 1/2) such that

ai := |Rm|(yi, 0)
Ä

1
2 − d

Mi
0 (yi, x

i
0)
ä2
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is maximal, and set Qi := |Rm|(yi, 0). Then ai, Qi →∞ and |Rm|(·, 0) ≤ 4Qi
on BMi(yi, 0,

1
2(1

2 −d
Mi
0 (yi, x

i
0)). Let (Mi, (g

′i
t )t∈[−2Qi,0]) be the flows that arise

from parabolic rescaling of (Mi, (g
i
t)t∈[−2,0]) by Qi. Then, in these rescaled

flows we have |Rm′|(yi, 0) = 1 and |Rm′|(·, 0) ≤ 4 on B′(yi, 0,
1
2

√
ai) and‹VM∞,(g′it )

(x,0) (τ) > 1 − δ for all x ∈ B′(yi, 0,
1
2

√
ai) and 0 < τ ≤ Qi/2. More-

over, by Proposition 3.2, we have

(5.16) |Rm′| ≤ 4ε−2 on P ′i := P ′
Ä
yi, 0,

1
2

√
ai,−ε2/4

ä
for some uniform ε = ε(A) > 0. Lastly, due to Proposition 3.1, we have

|B′(x, 0, 1)|0 > κ for all x ∈ B′(yi, 0,
1
4

√
ai), where κ = κ(A) > 0 is some

uniform constant. So by passing to a subsequence, we may assume that the

pointed flows (Mi, (g
′i
t )t∈(−ε2/4,0], (yi, 0)) smoothly converge to some Ricci flow

(M∞, (g
∞
t )t∈(−ε2/4,0], (y∞, 0)) that has complete time-slices and bounded cur-

vature on compact time-intervals. Note that |Rm|(y∞, 0) = 1. Since we took

a blow-up sequence, we have R ≡ 0 and hence Ric ≡ 0 on M∞ × (−ε2/4, 0].

We now claim that for any x∞ ∈M∞ and 0 < τ < ε2/4, we have

(5.17) ‹VM∞
(x∞,0)(τ) = 1.

To see this, fix x∞ ∈M∞ and 0 < τ < ε2/4, and consider a sequence xi ∈Mi

that converges to x∞ under the smooth convergence of Ricci flows. Note that

xi ∈ BMi(x0, 0, 1) for large i.

Consider the L-exponential maps on (Mi, (g
′i
t )t∈[−2Qi,0]) based at (xi, 0)

for the parameter τ ,

L exp(xi,0),τ : TxiMi −→Mi,

their Jacobians JL(xi,0)(·, τ) : TxiMi → R and the subsets DL(xi,0),τ ⊂ TxiMi,

GL(xi,0),τ ⊂Mi as defined in Section 3.2. Fix some constant D <∞, and define

the subsets

SD,i := L exp(xi,0),τ

Ä
TxiMi \B(0xi , D)

ä
⊂Mi.

Due to the curvature bound (5.16), we find that for sufficiently large i (de-

pending on D), the following is true: for all v ∈ B(0xi , D) ⊂ TxiMi, the image

of the L-geodesic

γv : [0, τ ]→Mi, τ ′ 7→ L exp(xi,0),τ ′(v)

lies in B′(yi, 0,
1
2

√
ai). Therefore the maps L exp(xi,0),τ smoothly converge to

L exp(x∞,0),τ on B(0xi , D) ⊂ TxiMi. Moreover, there is some constant D∗ <∞,

which does not depend on i, such that Mi \SD,i ⊂ B′(xi, 0, D∗) for all i. Note

that if i is large, then for all z ∈Mi\SD,i, the L-distance L(xi,0)(z,−τ) is given

by the L-length of an L-geodesic γv for some v ∈ B(0zi , D) ⊂ TxiMi. So for
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any z ∈ M∞ and zi ∈ Mi with zi → z∞ for which zi ∈ Mi \ SD,i for infinitely

many i, we have

l(x∞,0)(z,−τ) ≤ lim inf
i→∞

l(xi,0)(zi,−τ).

It follows that‹VM∞
(x∞,0)(τ) =

ˆ
M

(4πτ)−n/2e−l(x∞,0)(z,−τ)dg∞−τ (z)

≥ lim inf
i→∞

ˆ
Mi\SD,i

(4πτ)−n/2e−l(xi,0)(z,−τ)dg∞−τ (z)

= lim inf
i→∞

Ç‹VMi,(g
′i
t )(τ)−

ˆ
Mi\SD,i

(4πτ)−n/2e−l(xi,0)(z,−τ)dg∞−τ (z)

å
≥ lim inf

i→∞

Ç
1− δi −

ˆ
DL

(xi,0),τ
\B(0xi ,D)

(4πτ)−n/2

· exp
Ä
−l(xi,0)(L exp(xi,0),τ (v),−τ)

ä
dv

å
≥ 1− lim sup

i→∞

ˆ
TxiM\B(0xi ,D)

(4πτ)−n/2

· exp
Ä
−l(xi,0)(L exp(xi,0),τ (v),−τ)

ä
dv

≥ 1−
ˆ
Rn\B(0n,D)

(4π)−n/2e|v|
2/4dv.

Letting D →∞ yields that the left-hand side of (5.17) is not smaller than the

right-hand side. The reverse inequality is always true by default.

Since (M∞, (g
∞
t )t∈(−ε2/4,0]) is Ricci flat, we have

L(x∞,0)(x,−τ) =

Ä
dM∞0 (x0, x)

ä2
2
√
τ

.

So (5.17) implies that for all x ∈M∞ and 0 < τ ≤ ε2/4,ˆ
M∞

(4πτ)−n/2 exp
(
−d

2
0(x, z)

4τ

)
dg∞0 (z) = ‹V(x,0)(τ) = 1.

So, by volume comparison,

1 =

ˆ ∞
0

(4πτ)−n/2
r

2τ
e−r

2/4τ
∣∣∣BM∞(x, 0, r)

∣∣∣
0
dr

≤
ˆ ∞

0
(4πτ)−n/2

r

2τ
e−r

2/4τ · ωnrndr = 1.

It follows that |BM∞(x, 0, r)|0 = ωnr
n for all r > 0 and hence that (M∞, g

∞
0 ) is

isometric to Euclidean space. This, however, contradicts |Rm|(y∞, 0) = 1. �

We can finally prove Proposition 5.1 and Corollary 5.2.



818 RICHARD H. BAMLER

Proof of Proposition 5.1. Let δ = δ(A), σ = σ(A) > 0 be the constants

from Lemma 5.7, and determine ν = ν(δ) from Lemma 5.6. Set ε0 = ε0(A) :=

ν. By combining those lemmas we conclude that whenever ρ is sufficiently

small, depending on A,E,p, and

|B(x0, 0, ν
−1)|0 > (ωn − ν)(ν−1)n,

then rRm(x0, 0) > σ. The proposition now follows via parabolic rescaling by

(r0ν)2. �

Proof of Corollary 5.2. The Y -regularity of the limit follows immediately

from Proposition 5.1 and assertions (c) and (d) of Proposition 4.1. The con-

stant Y can be chosen only depending on ε0 and σ0 of Proposition 5.1, which

in turn only depend on A.

Alternatively, observe that Proposition 5.1 implies property (G) from

[Bam17, §1.2] for an A that only depends on the A from Proposition 4.1.

The corollary follows now using [Bam17, Th. 1.2(c)]. �

6. Proof of the main theorems

6.1. Proof of the integral curvature bound. We first prove the following

covering lemma, whose result we will iterate later:

Lemma 6.1. For any A < ∞ and 0 < p < 4, there is a constant H =

H(A,p) <∞ such that

For any E′ <∞ and 0 < λ < 1, there is a constant 0 < r = r(A,p, E′, λ) <

1 such that the following holds :

Let (M, (gt)t∈[−2,0]) be a Ricci flow on a compact, n-dimensional and ori-

entable manifold M and 0 < r0 ≤ r a scale with the property that

(i) ν[g−2, 4] ≥ −A;

(ii) |R| ≤ 1 on M × [−2, 0];

(iii) for all (x, t) ∈M × [−1, 0] and 0 < r < r0 and 0 < s < 1, we have

|{rRm(·, t) < sr} ∩B(x, t, r)|t ≤ E′s3.1rn.

Then for any x ∈ M and 0 < r ≤ 10r0, we can find at most Hλp−n many

points y1, . . . , ym ∈M , m < Hλp−n such that

(6.1) {rRm(·, 0) < λr} ∩B(x, 0, r) ⊂
m⋃
j=1

B(yj , 0, λr).

Proof. Fix the constants A and p for the rest of the proof, and deter-

mine Y = Y (A) as the maximum of the corresponding constants from Propo-

sition 4.1(b) and Corollary 5.2. So every blow-up limit X of Ricci flows
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(Mi, (g
i
t)t∈[−2,0]) that satisfy assumptions (i)–(iii), as obtained via Proposi-

tion 4.1, is a singular space X = (X, d,R, g) with mild singularities of codi-

mension 3.1 that satisfies Ric ≡ 0 on R that is Y -tame and Y -regular at all

scales. Consider such a blow-up limit X for a moment. We can now apply

[Bam17, Th. 1.6] to X , and we obtain a constant E = E(p, Y (A)) <∞, which

only depends on p and Y and hence on A, such that X satisfies the bound

(6.2) |{rXRm < sr} ∩BX(x∞, r) ∩R| ≤ Esprn

for all x∞ ∈ X, r > 0 and 0 < s < 1. Fix this constant E = E(p, Y (A)) for

the rest of the proof, and remember that E only depends on A and p.

Next, we show that for any E′ < ∞ and 0 < λ < 1, there is a constant

r = r(A,p, E′, λ) > 0 such that for any x ∈M and 0 < r ≤ r,

(6.3) |{rRm(·, 0) < 2λr} ∩B(x, 0, 2r)|0 < 2E(2λ)p(2r)n.

Assume that there was no such r for some fixed E′, λ. Then we can find a

sequence of Ricci flows (Mi, (g
i
t)t∈[−2,0]) that satisfy assumptions (i)–(iii) and

points xi ∈Mi, 0 < ri < 10r0,i with r0,i, ri → 0 such that for all i,∣∣∣¶rMi
Rm(·, 0) < 2λri

©
∩BMi(xi, 0, 2ri)

∣∣∣
0
≥ 2E(2λ)p(2ri)

n.

Let (M ′i = Mi, (g
′i
t )t∈[−2(ri/10)−2,0]) be the flows that arise from (Mi, (g

i
t)t∈[−2,0])

by parabolic rescaling by (ri/10)−2. After this rescaling, the previous bound

becomes

(6.4)
∣∣∣¶rM ′iRm(·, 0) < 20λ

©
∩BM ′i (xi, 0, 20)

∣∣∣
0
≥ 2E(2λ)p20n.

Note that |R| ≤ r2
i → 0 on M ′i × [−(ri/10)−2, 0]. So we can apply Proposi-

tion 4.1(b) to conclude that, after passing to a subsequence, we have conver-

gence of the pointed Riemannian manifolds (M ′i , g
′i
0 , xi) to some singular space

(X , x∞) with mild singularities of codimension 3.1 that satisfies Ric ≡ 0 on

R and that is Y -tame and Y -regular at all scales. The convergence can be

described by a convergence scheme {(Ui, Vi,Φi)}∞i=1. Moreover, the limit space

X satisfies (6.2).

We will now derive a contradiction by passing (6.4) to the limit. Fix some

ε > 0 for the moment, and observe that by Proposition 4.1(e), for large i we

have

(6.5) BM ′i (xi, 0, 20) \ Φi

Ä
Ui ∩BX(x∞, 20 + ε)

ä
⊂ BM ′i (xi, 0, 20) \ Vi

⊂
¶
r
M ′i
Rm(·, 0) < ε

©
∩BM ′i (xi, 0, 20).

Next note, that by a standard ball-packing argument there is a uniform con-

stant C <∞ such that every 20-ball in (Mi, g
′i
0 ) can be covered by at most C



820 RICHARD H. BAMLER

many 1-balls. Combining this with (6.5) and the parabolically rescaled as-

sumption (iii), for large i, we get∣∣∣BM ′i (x0, 0, 20) \ Φi

Ä
Ui ∩BX(x∞, 20 + ε)

ä∣∣∣
0
< CE′ε3.120n.

Combining this with (6.4) and Proposition 4.1(d), we find∣∣∣{rXRm(·, 0) < 20λ+ ε} ∩BX(x∞, 20 + ε) ∩R
∣∣∣ > 2Eλp − CE′ε3.120n.

For sufficiently small ε, this contradicts (6.2) and hence shows (6.3).

We will now use (6.3) to show (6.1). To do this, choose m ∈ N maximal

such that we can find points y1, . . . , ym ∈ {rRm(·, 0) < λr}∩B(x, 0, r) with the

property that the balls B(y1, 0, λr/2), . . . , B(ym, 0, λr/2) are pairwise disjoint.

Then

B(y1, 0, λr/2), . . . , B(ym, 0, λr/2) ⊂ {rRm(·, 0) < 2λr} ∩B(x, 0, 2r).

By Proposition 3.1 there is a constant c = c(A) > 0, which only depends on

A, such that

|B(yj , 0, λr/2)|0 > c(λr/2)n.

It follows using (6.3) that

m <
2E(2λ)p(2r)n

c(λr/2)n
=

2E · 2p+n

c(λ/2)n
λp−n =: Hλp−n.

Note that H = H(A,p) only depends on A and p. By the maximal choice of

m we conclude (6.1), which finishes the proof. �

Applying Lemma 6.1 successively for sufficiently small λ yields

Lemma 6.2. For any A<∞ and 0<p< 4, there is a constant Ep(A)<∞
such that for any E′ < ∞, there is a constant 0 < r = r(A,p, E′) < 1 such

that the following holds :

Let (M, (gt)t∈[−2,0]) be a Ricci flow on a compact, n-dimensional and ori-

entable manifold M and 0 < r0 ≤ r a scale with the property that

(i) ν[g−2, 4] ≥ −A;

(ii) |R| ≤ 1 on M × [−2, 0];

(iii) for all (x, t) ∈M × [−1, 0] and 0 < r < r0 and 0 < s < 1, we have

|{rRm(·, t) < sr} ∩B(x, t, r)|t ≤ E′s3.1rn.

Then for any x ∈M and 0 < r ≤ 10r0 and 0 < s < 1, we have

(6.6) |{rRm(·, 0) < sr} ∩B(x, 0, r)|0 < Eps
prn.

Proof. Fix A < ∞ and 0 < p < 4 for the rest of the proof, and choose

some p′ = p(p′) such that p < p′ < 4. Let H = H(A,p′) be the constant
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from Lemma 6.1. Based on this constant choose 0 < λ = λ(A,p,p′) < 1 small

enough such that

Hλp
′−p < 1.

Now consider the constant E′, and choose r = r(A,p′, E′, λ) according to

Lemma 6.1. Applying Lemma 6.1 multiple times yields that for any integer

k ≥ 1, there are at most (Hλp
′−n)k many points y1, . . . , ym ∈M such that

{rRm(·, 0) < λkr} ∩B(x, 0, r) ⊂
m⋃
j=1

B(yj , 0, λ
kr).

By Proposition 3.1 there is a constant C = C(A) < ∞, which only depends

on A, such that the time-0 volume of the balls B(yj , 0, λ
kr) is bounded from

above by C(λkr)n. Thus

|{rRm(·, 0) < λkr} ∩B(x, 0, r)|0 < C(λkr)n(Hλp
′−n)k

= Cλpk(Hλp
′−p)krn < Cλpkrn.

As λ and C only depended on A and p, this bound implies (6.6) for some

suitable Ep = Ep(A) <∞. �

Next, we show that assumption (iii) in Lemma 6.2 always holds for a

suitable E′ = E′(A).

Lemma 6.3. For any A < ∞, there are constants E′ = E′(A) < ∞ and

r = r(A) such that the following holds :

Let (M, (gt)t∈[−2,0]) be a Ricci flow on a compact, n-dimensional and ori-

entable manifold M with the property that

(i) ν[g−2, 4] ≥ −A;

(ii) |R| ≤ 1 on M × [−2, 0].

Then for any (x, t) ∈M × [−1, 0] and 0 < r < r and 0 < s < 1, we have

(6.7) |{rRm(·, t) < sr} ∩B(x, t, r)|t < E′s3.1rn.

Proof. Fix A, and choose E′ := E3.1(A) < ∞ according to Lemma 6.2.

Next choose 0 < r = r(A, 3.1, E′) < 1 according to Lemma 6.2. It follows that

whenever for all (x, t) ∈ M × [−1, 0] and 0 < r < r and 0 < s < 1 the bound

(6.7) holds, then it also holds for all (x, t) ∈ M × {0} and 0 < r ≤ 10r and

0 < s < 1.

Let us now apply this conclusions to parabolic rescalings of (gt)t∈[−2,0].

Let 0 < r0 ≤ 1 and t0 ∈ [−2 + 2r2
0, 0], and consider the parabolic rescaling

g′t := r−2
0 gr20(t+t0), which is defined for at least all times t ∈ [−2, 0]. The time-

interval [−2, 0] for (g′t)t∈[−2,0] corresponds to the time-interval [t0 − 2r2
0, t0] for
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(gt)t∈[−2,0]. By the monotonicity of the ν-functional, we have

ν[g′−2, 4] = ν
î
gt0−2r20

, 4a2
ó
≥ ν[g−2, 4r

2
0 + (t0 − 2r2

0 + 2)]

= ν[g−2, 2r
2
0 + t0 + 2] ≥ ν[g−2, 4] ≥ −A.

So the rescaled flow (g′)t∈[−2,0] still satisfies assumptions (i) and (ii). Hence,

applying our previous conclusion to (g′)t∈[−2,0] and rescaling back shows the

following:

Whenever 0 < r0 ≤ 1 and t0 ∈ [−2 + 2r2
0, 0] and whenever the bound (6.7)

holds for all (x, t) ∈ M × [t0 − r2
0, t0] and 0 < r < rr0 and 0 < s < 1, then it

also holds for all x ∈M and 0 < r ≤ 10rr0 and 0 < s < 1.

Assume now that the conclusion of the lemma was wrong with our choice

of E′. Then we can find some (x1, t1) ∈ M × [−1, 0], 0 < r1 < r and 0 <

s1 < 1 such that (6.7) fails for x ← x1, t ← t1, r ← r1 and s ← s1. By

the contrapositive of our previous conclusion for t0 ← t1, r0 ← 1
10r
−1r1, this

implies that we can find some x2 ∈M , t2 ∈ [t1−2( 1
10r
−1r1)2, t1], 0 < r2 <

1
10r1

and 0 < s2 < 1 such that (6.7) fails for x ← x2, t ← t2, r ← r2 and s ← s2.

Repeating this argument yields a sequence (x1, t1, r1, s1), (x2, t2, r2, s2), . . . such

that rk+1 ≤ 1
10rk and |tk+1 − tk| ≤ 2( 1

10r
−1rk)

2 and such that (6.7) fails for

x← xk, t← tk, r ← rk and s← sk for all k = 1, 2, . . . . As rk < ( 1
10)k−1r, we

find that tk stays within [−1.5, 0]. So the process can be continued indefinitely.

However, by the smoothness of (gt)t∈[−2,0] there is some large k for which the

left-hand sided of (6.7) is zero for x ← xk, t ← tk, r ← rk and s ← sk. This

gives us the necessary contradiction. �

We can finally state our most general bound on the sublevel sets of rRm.

Proposition 6.4. For any A < ∞ and 0 < p < 4, there is a constant

E = Ep(A) <∞ such that the following holds :

Let (M, (gt)t∈[−2,0]) be a Ricci flow on a compact, n-dimensional manifold

M with the property that

(i) ν[g−2, 4] ≥ −A;

(ii) |R| ≤ 1 on M × [−2, 0].

Then for any (x, t) ∈M × [−1, 0] and 0 < r, s < 1, we have

|{rRm(·, t) < sr} ∩B(x, t, r)|t < Eps
prn.

Proof. This follows from Lemmas 6.2, 6.3 and a covering argument using

Proposition 3.1. In the non-orientable case, we need to pass to the orientable

double cover. �

As a consequence, we obtain Theorem 1.7.
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Proof of Theorem 1.7. The theorem is a consequence of Proposition 6.4.

More specifically, note that by the maximum principle applied to the evolution

equation for the scalar curvature

∂tR = 4R+ 2|Ric|2 ≥ 4R+
2

n
R2,

we have R ≥ − n
2(2+t) on M × (−2, 0]. So by assumption (i) we have −n

2 ≤
R < A on M × [−1, 0]. By parabolic rescaling and with the help of a covering

argument we may therefore reduce our proof to the case |R| ≤ 1 on M×[−2, 0].

See also the discussion in Section 2.1 on how parabolic rescaling affects the

bound of the ν-functional in assumption (ii).

We can now use Proposition 6.4 for p = 4− ε to concludeˆ
B(x,t,r)

Ä
rRm(·, t)

ä−4+2ε
dgt

=

ˆ
B(x,t,r)

ˆ ∞
r−4+2ε

χs<r−4+2ε
Rm (·,t)dsdgt + r−4+2ε|B(x, t, r)|t

=

ˆ ∞
r−4+2ε

∣∣∣¶rRm(·, t) < s−
1

4−2ε

©
∩B(x, t, r)

∣∣∣
t
ds+ C(A)rn−4+2ε

≤
ˆ ∞
r−4+2ε

Eps
− 4−ε

4−2ε rn−4+εds+ C(A)rn−4+2ε ≤ C(A,Ep, ε)r
n−4+2ε.

This finishes the proof. �

6.2. Convergence of the flow away from a subset of codimension 4. Theo-

rem 1.4, except for the assertion involving the uniform convergence in the case

ρi → 0, now follows immediately:

Proof of Theorem 1.4. The theorem follows from Propositions 4.1 and 6.4

�

Next we present the proof of Theorems 1.1 and 1.2.

Proof of Theorem 1.1. By [BZ15, Cor. 1.2], we have uniform convergence

dt → dT for t ↗ T . The function dT : M ×M → [0,∞) is a pseudometric.

Write x ∼ y if d(x, y) = 0. Then (M,dT ) descends to a metric space (M∗ :=

M/ ∼, d∗T ).

Let q ∈ M . By the first part of Theorem 1.4 (or Propositions 4.1 and

6.4), we obtain that there is a sequence ti ↗ T such that (M, gti , q) converges

to a pointed singular space (X, d,R∗, g, q∞) with codimension 4 singularities,

according to some convergence scheme {(Ui, Vi,Φi)}∞i=1. It follows that (X, d)

is isometric to (M∗, d∗T ). So identify in the following (X, d) with (M∗, d∗T )

and view R∗ ⊂ M∗. Let R ⊂ M be the preimage of R∗ under the canonical

projection π : M →M∗ = M/ ∼.
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By looking at the construction of the convergence scheme {(Ui, Vi,Φi)}∞i=1,

we may assume that for all x ∈ R∗, we have Φi(π(x)) → x as i → ∞. Thus,

by Proposition 4.1(d) we have limi→∞ rRm(x, ti) = r∞Rm(x), where r∞Rm denotes

the curvature radius on X . Using forward pseudolocality, Proposition 3.2, we

obtain that the metric gt smoothly converges to some metric gT on R as t↗ T

and rRm(x, T ) := limt↗T rRm(x, t) exists for all x ∈M .

Assume now that x ∈ R and y ∈M such that x ∼ y. Then x = y, because

for t sufficiently close to T , we have dt(x, y) < rRm(x)/2 and the convergence

gt → gT is smooth on B(x, T, rRm(x, T )/2). So π|R : R → R∗ is a bijective

map and π∗g = gT . This finishes the proof of the theorem. �

Proof of Theorem 1.2. Recall the basepoint q ∈ M , choose a sequence

t∗j ↗ T and consider the kernels

Kj(x, t) := K(q, t∗j ;x, t)

to the conjugate heat operator ∂t +4 − R. So for every fixed t ∈ [0, t∗j ), we

have

(6.8)

ˆ
M
Kj(x, t)dgt(x) = 1 and − ∂tKj = 4Kj −RKj .

By Perelman’s Harnack inequality for the conjugate heat equation (cf.

[Per02, 9.5]), we have

(6.9) Kj(x, t) ≥
1

(4π(t∗j − t))n/2
exp
Ä
−l(q,t∗j )(x, t)

ä
.

By comparison with the constant curve, we obtain the bound

l(q,t∗j )(q, t) ≤
1

2
»
t∗j − t

ˆ t∗j−t

0

√
τR(q, t∗j − τ)dτ

≤ 1

2
»
t∗j − t

ˆ t∗j−t

0

√
τ · C

T − (t∗j − τ)
dτ

≤ 1

2
»
t∗j − t

ˆ t∗j−t

0

C√
τ
dτ ≤ C.

Combining this with (6.9) yields the following bound at q for some c0 > 0:

(6.10) Kj(q, t) ≥
1

(4π(t∗j − t))n/2
e−C ≥ c0

(t∗j − t)n/2
.

Next, we use the reproduction formula

(6.11) Kj(x, t) =

ˆ
M
Kj(y,

1
2(T + t))K(y, 1

2(T + t);x, t)dg 1
2

(T+t)(y)
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to derive further bounds on Kj(x, t) for large j. To see why (6.11) holds, recall

that both Kj(x, t) and

K̃(x, t′) :=

ˆ
M
Kj(y,

1
2(T + t))K(y, 1

2(T + t);x, t′)dg 1
2

(T+t)(y)

satisfy the conjugate heat equation and agree for t = t′ = 1
2(T + t).

We first note that we have the scalar curvature bound R ≤ 2C(T − t)−1

on M × [0, 1
2(T + t)]. So by Proposition 3.4 we have an upper bound of the

form

(6.12) K(y, 1
2(T + t);x, t) ≤ C ′

(T − t)n/2
exp

Ç
−
d2

1
2

(T+t)
(x, y)

C ′(T − t)

å
≤ C ′

(T − t)n/2

for some uniform C ′ <∞. Combining this with (6.8) applied at time 1
2(T + t)

yields that for large j,

(6.13) Kj(x, t) ≤
C ′

(T − t)n/2
.

In order to deduce a lower bound on Kj(·, t), we observe that by (6.12)

there is some uniform D <∞ such that for

B 1
2

(T+t) := B
Ä
q, 1

2(T + t), D
√
T − t

ä
,

we have

K(·, 1
2(T + t); q, t) ≤ c0/2

(T − t)n/2
on M \B 1

2
(T+t),

where c0 > 0 denotes the constant from (6.10). So by (6.10), (6.12) and (6.8)

we obtain that for large j,

c0

(T − t)n/2
≤ c0

(t∗j − t)n/2
≤ Kj(q, t)

≤
ˆ
B 1

2 (T+t)

Kj(y,
1
2(T + t)) · C ′

(T − t)n/2
dg 1

2
(T+t)(y)

+

ˆ
M\B 1

2 (T+t)

Kj(y,
1
2(T + t)) · c0/2

(t∗j − t)n/2
dg 1

2
(T+t)(y)

≤ C ′

(T − t)n/2

ˆ
B 1

2 (T+t)

Kj(y,
1
2(T + t))dg 1

2
(T+t)(y) +

c0/2

(T − t)n/2
.

Thus ˆ
B 1

2 (T+t)

Kj(y,
1
2(T + t))dg 1

2
(T+t)(y) ≥ c0

2C ′
.
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So if we restrict the domain of the integral in (6.11) toB 1
2

(T+t) and use the lower

Gaussian bound on K(y, 1
2(T + t);x, t) from Proposition 3.4 and the distance

distortion bound from Proposition 3.3, then we obtain that for large j,

Kj(x, t) ≥
c1

(T − t)n/2
exp

Ç
− d2

t (q, x)

c1(T − t)

å
for some uniform c1 > 0.

By (6.13) and local parabolic regularity, we obtain local bounds on higher

covariant derivatives of Kj , which may depend on space and time, but which

are independent of j. So after passing to a subsequence, we have smooth

convergence Kj → u ∈ C∞(M × [0, T )) on compact time-intervals. The limit

u is a positive solution to the conjugate heat equation −∂tu = 4u− Ru, and

for all t ∈ [0, T ), we have ˆ
M
u(x, t)dgt(x) = 1

and

(6.14)
c1

(T − t)n/2
exp

Ç
− d2

t (q, x)

c1(T − t)

å
≤ u(x, t) ≤ C ′

(T − t)n/2
.

Now write

Kj(x, t) = (4π(t∗j − t))−n/2e−fj(x,t) and u(x, t) = (4π(T − t))−n/2e−f(x,t).

Then fj → f smoothly on compact time-intervals. For any t ∈ [0, T ), we have

w(t) :=W[gt, f(·, t), T − t] = lim
j→∞

W[gt, fj(·, t), t∗j − t] ≤ 0.

Recall also that w(t) is non-decreasing in t. More specifically,

w′(t) =

ˆ
M

2(T − t)
∣∣∣∣Ric(·, t) +∇2f(·, t)− 1

2(T − t)
gt

∣∣∣∣2u(·, t)dgt.

So, given any sequence ti ↗ T , for any θ > 0, we have

(6.15)

lim
i→∞

ˆ ti

ti−θ(T−ti)

ˆ
M

2(T − t)
∣∣∣∣Ric(·, t) +∇2f(·, t)− 1

2(T − t)
gt

∣∣∣∣2u(·, t)dgtdt = 0.

We now use Theorem 1.4 (or Propositions 4.1 and 6.4) to conclude that

(M, (T − ti)−1gti , q) converges to a pointed singular space

(X , q∞) = (X, d,R, g, q∞)

whose singularities have codimension 4. Let {(Ui, Vi,Φi)}∞i=1 be a scheme for

this convergence. Now consider the functions f∗i (x) := f(Φi(x), ti), f
∗
i ∈

C∞(Ui). We will show that, after passing to a subsequence, these functions
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limit to a smooth function f∞ ∈ C∞(R) that satisfies the gradient Ricci soliton

equation.

(6.16) Ricg +∇2f∞ − 1
2g = 0.

This question can be analyzed locally. So let x0 ∈ R, and choose 0 < 2σ <

r∞Rm(x). Then for large i, we have rRm(Φi(x0), ti) > σ(T − ti)
1/2. Using

backward and forward pseudolocality, we find that rRm(Φi(x0), ti) > εσ(T −
ti)

1/2 on P (Φi(x0), ti, εσ(T − ti)1/2,±ε2σ2(T − ti)) for some uniform ε > 0.

Using local parabolic derivative estimates and (6.14), we obtain that

(6.17) |∇mf | < Cm(T − ti)−m/2 for m = 0, 1, . . .

on P (Φi(x0), ti,
1
2εσ(T − ti)

1/2,±1
2ε

2σ2(T − ti)) for some uniform constants

Cm < ∞. Thus, after passing to a subsequence, these functions f∗∞ smoothly

converge to a smooth function f∞ on BX(x0,
1
4εσ). If f∞ did not satisfy the

gradient Ricci soliton equation (6.16) at x0, then by the smooth convergence,

for large i, we would have

(T − t)2
∣∣∣∣Ric(·, t) +∇2f(·, t)− 1

2(T − t)
gt

∣∣∣∣2 > c′′

at Φi(x0) and t = ti for some uniform c′′ > 0. Due to the local derivative

estimates (6.17) and Shi’s derivative estimates on the curvature, this would

imply that the same bound, possibly for a smaller c′′, holds on P (Φi(x0), ti,

ε′(T − ti)1/2,−ε′(T − ti)) for some uniform ε′ > 0. This would however con-

tradict (6.15). So f∞ satisfies indeed (6.16). �

The Hamilton-Tian Conjecture now follows immediately.

Proof of Corollary 1.3. The Hamilton-Tian Conjecture follows from The-

orem 1.2 and the upper bounds on the scalar curvature and the diameter as

derived in [ST08]. �
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