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Blocks of symmetric groups,
semicuspidal KLR algebras
and zigzag Schur-Weyl duality

By ANTON EVSEEV and ALEXANDER KLESHCHEV

We record with deep sadness the passing of Anton Evseev on February 21, 2017.

Abstract

We prove Turner’s conjecture, which describes the blocks of the Hecke
algebras of the symmetric groups up to derived equivalence as certain ex-
plicit Turner double algebras. Turner doubles are Schur-algebra-like ‘local’
objects, which replace wreath products of Brauer tree algebras in the con-
text of the Broué abelian defect group conjecture for blocks of symmetric
groups with non-abelian defect groups. The main tools used in the proof
are generalized Schur algebras corresponding to wreath products of zigzag
algebras and imaginary semicuspidal quotients of affine KLR algebras.

1. Introduction

Let Hy,(q) be the Hecke algebra of the symmetric groups &,, over a field
F with parameter ¢ € F*. An important special case is ¢ = 1, when H,,(q) =
F&,,. Let e be the quantum characteristic of ¢q. In this paper we assume that
e > 0; i.e., there exists k € Zq such that 1+ ¢+ ---+¢*"1 =0, and e is the
smallest such k.

Representations of H,(q) for all n > 0 categorify the basic module V' (Ag)
with highest weight Ag of the affine Kac-Moody Lie algebra g = ;[e((C); see,
for example, [Ari96], [Ari02], [Gro99], [Kle05]. In particular, each weight space
V(Ao)Ag—a for a in the positive part of the root lattice is identified with the
complexified Grothendieck group of the corresponding block H,(q) of some

Hy(q).
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The Weyl group W of g acts on the weights of V(Ag), and the orbits
are precisely Oq := W(Ag — dd) = WAy — dé for all d € Z>g, where 0 is the
null-root. Chuang and Rouquier [CRO8] lift this action of W on the weights to
derived equivalences between the corresponding blocks. Therefore, all blocks
H,(q) with Ag — a € Oy for a fixed d are derived equivalent.

Moreover, for every d € Z>(, Rouquier [Rou98] and Chuang and Kessar
[CKO02] identify special representatives Ag—a € Oy for which the corresponding
blocks H,(q) have a particularly nice structure. These blocks are known as
RoCK blocks. Thus for any n, every block of H,(q) is derived equivalent to a
RoCK block.

Let H,(q) be a RoCK block. Turner [Tur09], [Tur08b], [Tur08a] developed
a theory of double algebras and conjectured that H,(q) is Morita equivalent
to an appropriate double [Tur09, Conj. 165]. The aim of this paper is to prove
Turner’s Conjecture. In fact, we prove a slightly more general result stated in
terms of cyclotomic KLR algebras over Z.

To state the result precisely, we now recap Turner’s theory as developed
in [EK17]. Let @ be a type Ac_1 quiver, and let Py be the quotient of the
path algebra Z(Q by all paths of length 2. As a Z-module, Py has an obvious
basis whose elements are identified with the vertices and the edges of Q). We
view Pg as a Z-superalgebra with Pjj being the span of the vertices and
Py 1 being the span of the edges. We denote by z € {0,1} the degree of a
homogeneous element x of any superalgebra. Let n € Z~(, and consider the
matrix superalgebra X := M, (Pp).

For every d € Zsg, we have a superalgebra structure on X®¢ induced by
that on X. So @g>0 X ®d is a superalgebra, with the product on each summand
X® being as above, and zy = 0 for z € X®? and y € X®f with d # f. In
fact, @a>o0 X®d {5 even a superbialgebra with the coproduct

A x5 P X g xOdD)
0<f<d

R Q& Y, (L8 0 ®(En® - ©&).
0<f<d

The symmetric group &4 acts on X®¢ by signed place permutations with
superalgebra automorphisms, so the set of fixed points Inv? X := (X ®d)6d is
a subsuperalgebra of X®? and InvX := Da>o0 Inv? X is a subsuperbialgebra
of @a>o X @,

There is a superbialgebra structure on (Inv X)* := @y0(Inv? X)* that is
dual to that on Inv X. We also have an Inv X-bimodule structure on (Inv X)*

defined by

(z-&)(n) = z(En), (§-x)(n) =z(®E) (&€ InvX, z € (InvX)").
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The Turner double is the superalgebra DX := InvX ® (Inv X)*, with the
product defined, using Sweedler’s notation for the coproduct A, by

E@r)(ney) = (10T, n ) @ (- 19) (Eq - )

for all homogeneous &, € Inv X and z,y € (Inv X)*. We have a decomposi-
tion DX = Pg>0 D?X as a direct sum of superalgebras, where

DiX = @ Inv/ X @ (Inv?/ X)*
0<f<d

is a direct sum of Z-supermodules. Each superalgebra DX is symmetric.

The superalgebra Py is Z-graded with all vertices of ) being in degree 0
and all edges in degree 1. This induces gradings on M, (Pg) and InvX =
Inv M,(Pg) in the natural way. We view each (Inv? X)* as a graded Z-module,
with the grading induced from Inv? X shifted by 2d; i.e., for z € (Inv? X)*,
we have degz = m if and only if z is zero on all graded components of Inv? X
other than the (2d — m)th component. Then D?X is a Z-graded superalgebra
concentrated in degrees 0, 1,...,2d. In fact, this grading is a refinement of the
superstructure on D?X, in the sense that (D?X)g is the sum of even graded
components of DYX and (D?X)j is the sum of odd graded components. From
now on, we forget the superstructure on D?X and view

Dg(n,d) := DX
simply as a graded Z-algebra.
As before, let H,(q) be a RoCK block, with Ag — o € Q4. The precise
conditions that o must satisfy in order for this to be the case are stated in

Section 5.4. Let RQO be the corresponding cyclotomic KLR algebra, which has
a natural grading; see Section 4.2.

THEOREM A. Ifn > d, then the Z-algebras RA° and Dg(n,d) are graded
Morita equivalent.

For any graded Z-algebra A, define Ap := A ®7 F. The F-algebra RQ%F is
isomorphic to the RoCK block H,(q) of a Hecke algebra; see [BK09a], [Rou08].
Applying this result and the aforementioned theorem of Chuang-Rouquier, one
deduces the following from Theorem A:

COROLLARY B. Ifn > d, then
(i) the RoCK block Hn(q) is Morita equivalent to Dg(n, d)r;

1) for every B with Ag — B € Oy, the algebra q) is derived equivalent to
i) f 15} h A B € Oy, the algebra Hg d d l
Dg(n,d)y.

Alperin’s Weight Conjecture [Alp87] predicts an equality between the
number of simple modules of an arbitrary block of a finite group and the
number of ‘weights’ defined in terms of normalisers of local p-subgroups. In
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the case of blocks with abelian defect group, the conjecture of Broué [Bro90]
lifts Alperin’s Weight Conjecture to the categorical level, but no such categor-
ical conjecture is known for blocks of arbitrary finite groups with non-abelian
defect groups.

An important step in the proof of Broué’s conjecture for symmetric groups
is the theorem [CKO02] asserting that, if ¢ = 1 and d < char[F, then there is
a Morita equivalence between the RoCK block H, (1) and the wreath product
algebra Hs(1)®? x F&,4. Corollary B shows that, for an arbitrary block of a
symmetric group, the corresponding double Dg(n,d)r is a ‘local’ object that
can replace Hs(1)®? x F&, in the context of Broué’s conjecture.

In fact, the wreath product Hs(q)®? x FS, has a Z-form (R3*)® x Z&,
that is closely related to Dg(n, d). Denote by Z the zigzag algebra of type A._;
over Z, and consider the wreath product Wy := Z%¢ x ZG&4; see Section 3.1.
Then Z is Morita equivalent to Rg\o, and more generally Wy is (graded) Morita
equivalent to (Rg\o)@d X F&4; see the proof of Proposition 8.29. On the other
hand, the double Dg(n,d) can be identified with a subalgebra of a generalized
Schur algebra S*(n,d), and there is a Schur-Weyl duality between S%(n,d)
and Wy; see Section 3.2. In particular, for a certain explicit idempotent &, €
Dg(n,d), we have

£.Dg(n, d)éy = £,5%(n, d)E, = Wy,

Thus, the idempotent truncation &,Dg(n,d)E, is Morita equivalent to Rfs\o X
F&q.
If d < charF or char[F = 0, the double Dg(n,d)r is Morita equivalent to

€uDq(n, d)réw = (Ryp)®? x FSy 2 Hs(q)®" x F&Sy;

see Proposition 8.29. When d > charF > 0, the algebra Dg(n,d)r has more
isomorphism classes of simple modules than &,Dg(n, d)r,. As was predicted
in [Tur09, Conj. 82] and proved in [Evsl7], a certain explicit idempotent trun-
cation of the RoCK block H,(q) is Morita equivalent to Hs(q)®? x F& in all
cases. Corollary B(i) strengthens this result, replacing the idempotent trunca-
tion by the whole RoCK block H(q).

We now outline the proof of Theorem A and the contents of the paper.
Section 2 contains some general definitions and notation. In Section 3, we re-
view necessary definitions and results from [EK17]. In particular, we introduce
the zigzag algebra Z and the wreath product Wy. An important role is played
by the (right) colored permutation Wq-modules M) ., which are parametrized
by colored compositions (A, c). Here, A is a composition of d and ¢ is a tuple
consisting of elements of {1,...,e — 1} that assigns a ‘color’ to each part of .
In fact, the proof of Theorem A uses only colored compositions with n(e — 1)
parts of the form (A, ¢”), where c° is given by (3.13), but it is more natural to
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work with more general colored compositions. We define the generalized Schur

algebra S%(n,d) as the endomorphism algebra of the direct sum of the ap-

propriate Wy-modules My oo and review results identifying the Turner double

Dg(n,d) as an explicit Z-subalgebra of S%(n, d).

Section 4 begins with the definition and standard properties of the KLR
algebras Ry and their cyclotomic quotients Ré\o. In Section 4.5 we define the
semicuspidal algebra Cys as an explicit quotient of Rgs. In Section 4.6, we
consider parabolic subalgebras of C’d(;.

In Section 5.4, we recall the definition of a RoCK block R20 and construct
a natural homomorphism : C’d5 — RQO. The quotient C) 4 := édg / ker Q
is isomorphic to an idempotent truncation of R0, which is later shown to
be Morita equivalent to RQO. We note that C, 4 is finitely generated as a
Z-module, but Cys is not. The arguments of Section 5.4 rely on results con-
necting cyclotomic KLR algebras with the combinatorics of standard tableaux
and abaci, which are reviewed and developed Sections 5.1-5.3.

In Section 6.1 we define the Gelfand-Graev idempotent Y€ € Rgys for every
colored composition (\, ¢) of d and an ‘uncolored’ idempotent 7* € Rgs. The
latter may be viewed as a KLR counterpart of &, € S%(n,d). The following
two results are key to the proof of Theorem A:

(i) There is an explicit algebra isomorphism Wy — *C, 47 (see Theo-
rem 8.9).

(ii) If vC,qv* is identified with Wy via the isomorphism in (i), then there
is an explicit isomorphism M) = 7A7°Cp,d7w of right Wy-modules (see
Theorem 8.15).

The isomorphism (i) is a slight generalization of the main result of [Evsl7]

and is constructed in Sections 7.1 and 8.1 using a homomorphism [KM17a]

from Wy to v“Cysv*. In order to prove (i), we first show that yMeC, 4% and

M) . have the same rank as free Z-modules; see Corollary 6.31. This relies on

combinatorial results about RoCK blocks proved Sections 6.2—6.4. Secondly,

in Sections 7.3 and 7.4, we prove several results on the structure of ’y’\’cCA'd(;fy“’.

In particular, we find an explicit element that generates VA’CCA'd(;'y“’ as a right

ywé’dng—module; see Corollary 7.32. We use this element to construct a ho-

momorphism from M) . to 7>‘7CCA'd5*y"J and ultimately to prove (ii).

In Section 8.3, we define the algebra E(n,d) as the endomorphism algebra
of the direct sum of (graded shifts of) certain projective left C,4-modules
Cp,d’y)"c. Using the right Wgi-modules 7)"°Cp7d’y°’ and the isomorphism (ii),
we construct a natural homomorphism ®: E(n,d) — S%(n,d). Finally, using
the identification of the Turner double Dg(n,d) as a subalgebra of S%(n,d)
stated in Section 3 as well as results about the semicuspidal algebra proved
in Section 7, we show that ® is injective with image exactly Dg(n,d), so that
E(n,d) = Dg(n,d) (see Theorem 8.23).
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A priori, it follows from our constructions that E(n, d) is Morita equivalent
to an idempotent truncation of the RoCK block RQO. In Section 8.4, we prove
that E(n,d) = Dg(n,d) is (graded) Morita equivalent to R20 by showing that
the scalar extensions of Dg(n,d) and RA to any algebraically closed field have
the same number of simple modules.

2. Preliminaries
For any m,n € Z, we define the (possibly empty) segment
[m,n| :={l€eZ|m<I1l<n}
Let I,m,n € Z>¢ and I be a set. For any ¢ € I and tuples ¢ = (i1,...,4) €
I' 5 = (1, .., jm) € I™, we set

. . . .. . .. . 1 . . . 1
i" =iy ,0) €1, 45 = (i1, ..oy 00,015y Jm) €I M= 4 € I
n n
We write i1 . .. 4 instead of (i1, ...,4;) when there is no possibility of confusion.

2.1. Partitions and compositions. Fix n € Z~o and d € Z>9. We denote
by A(n) the set of compositions A = (A1,...,A,) with Aq,..., A\, € Z>¢. For
A € A(n), we write |A| := A1 4+ -+ Ay, and we set

Aln,d) == {x € An) | |\ = d}.

If m € Z>p, we define mA := (mAy,...,mA\,) € A(n).

Let S be an arbitrary finite set. We define A°(n, d) to be the set of tuples
X = (\D);eg of compositions in A(n) such that Scq AP = d.

We denote by & the set of all partitions. For A = (A1,..., \y) € &, we
write £(A) := max{k | A\ > 0} and |A| := Ay + - + A\, We set

P(d) = {\e 2 ||\ =d.

We do not assume that the parts A\p of the partition A are positive, and we
identify a partition (A1,...,\y) with any partition (A1,..., Ay, 0,...,0).

We define the set of S-multipartitions 25 as the set of tuples A = ()\(i))ies
of partitions. For A € 225, we set |A| := S;eg AP ] and 29(d) := {X € 229 |
|A| = d}. The only multipartition in 425(0) is denoted by @.

We set N¥ := Z+gxZ<ox S and refer to the elements of N° as nodes. When
S has one element, we identify N with N := Zsg x Zsq. If A = (A(i))ies e PS
is an S-multipartition, its Young diagram, which we often identify with X\, is

IA] = {(r,s,i) e N® | s < A0}

If (r,s,i) € N, we say that (r, s+ 1,4) is the right neighbor of (r,s,i) and
(r 4 1,s,1) is the bottom neighbor of (r,s,i). Define a partial order < on N°
as follows: (r,s,i) < (', ',4') if and only if i =4/, r <7’ and s < §'. Given a
multipartition A € 92°, a function T: [A] — Zsg is said to be weakly increasing
if whenever v < v are in [A] we have T(u) < T(v). If u,v € N and neither
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uw < v nor v < u, then we say that u and v are independent. Two subsets
U,V C N¥ are said to be independent if every element of U is independent
from every element of V. We say that a subset U C N is conver if whenever
u<wv <warein N® and u,w € U, we have v € U.

A skew partition is a pair (A, u) of partitions such that [u] C [A]. We
denote it by A\ p and set |A\ u| := |A| — |p|. We identify A \ @ with A.

2.2. Symmetric groups and parabolic subgroups. Let d € Z>o. We denote
by &4 the symmetric group on {1,...,d} and set s, := (r,r + 1) € &, for
r=1,...,d —1 to be the elementary transpositions. For every n € Z~o and
A= (A1,..., ) € A(n,d), we have the standard parabolic subgroup

6,\ ::6)\1 X"'XG)\TLSGd-

Moreover, for an ordered set S = {1,...,1} and A = (A, ... AD) € A%(n,d),
we define the parabolic subgroup

G =6,0) X x G, <Gy

If g € 645 and g = s, -5y, is a reduced decomposition of g, i.e., a de-
composition as a product of elementary transpositions with [ smallest possible,
then we define £(g) := [ and refer to [ as the length of g. For any A\, u € A(n,d),
we denote by 2* the set of the minimal length coset representatives for G;/Sy,
by #Z the set of the minimal length coset representatives for 6,\&4 and by
£ the set of the minimal length coset representatives for &,\&4/S ).

2.3. Algebras and modules. In this paper we mostly work over the ground
ring Z. Occasionally, we use the prime fields F,, and their algebraic closures I_Fp.

All gradings in this paper are Z-gradings. Let ¢ be an indeterminate.
Given a graded free Z-module V = @F_, Zuv;, with homogeneous generators
v, we write dimg V' for the graded rank of V, i.e., dim, V' := 22:1 qdes(vn) ¢
Z[q,q~ '] and dim V := k. Throughout, V" denotes the nth graded component
of V for any n € Z. Given m € Z, let ¢™V denote the module obtained by
shifting the grading on V up by m, i.e. (¢™V)" := V"™ We use the notation
V>M = @pem V" For any m € Z, we set [m] := (¢ —q¢ ™) /(¢ —q7') €
Z[g,q7']). If m € Z>g, we define [m]' := [, [k].

Let A be a (Z-)graded algebra. All A-modules are assumed to be graded.
Let A-mod denote the category of all finitely generated (graded) A-modules,
with morphisms being degree-preserving module homomorphisms. Given
A-modules V' and W, we denote by hom(V, W) the space of morphisms in
A-mod. For any m € Z, define Hom 4 (V, W)™ := homg (¢"V, W). This is the
space of homomorphisms that are homogeneous of degree m. Set

Hom(V, W) := €D Homu(V, W)™,
meZ
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In particular, End4 (V) := Homu(V,V) is a graded algebra. All homomor-
phisms between graded algebras are assumed to be degree-preserving. We
have the grading shift functor q: A-mod — A-mod, V — ¢V.

Given an A-module V' and a commutative ring k, we denote by Ay :=
A®zk the (graded) algebra obtained by scalar extension, and by Vi := V ®zk
the corresponding Ag-module. If B = A/K is the quotient of A by an ideal B
and ¢ € A, we denote an element x + K of B simply by x when there is no
possibility of confusion.

If k is a field and A is a finite-dimensional graded k-algebra, we denote
by £(A) the number of irreducible graded A-modules up to isomorphism and
degree shift.

3. Zigzag algebras, wreath products and Turner doubles
Throughout the paper, we fix e € Z>s.

3.1. Zigzag algebras and wreath products. Let (Q be a type Ae_1 quiver
with vertex set

(3.1) J:={1,...,e—1}.

We will use the zigzag algebra Z of type Ae_1, defined in [HKO1] as follows.
First assume that e > 2. Let ) be the quiver with vertex set J and an arrow
akJ from j to k for all ordered pairs (k, j) € J? such that |k — j| = 1:

2,1

a< 3673,872 ae—l,e—Z

) ./3\3‘/3_\ . /\

1@ @®@c—2 @c—1

U Y .

21,2 22,3 234 e—3,e—2 je—2e—1

Then Z is the path algebra ZQ, generated by length 0 paths e; for j € J and
length 1 paths a*7, subject to the following relations:

(i) All paths of length three or greater are zero.

(ii) All paths of length two that are not cycles are zero.

(iii) All cycles of length 2 based at the same vertex are equal.
The algebra Z inherits the path length grading from 7Q. If e = 2, we define
Z := 7Z]c]/(c?), where c is an indeterminate in degree 2.

If k,j € J, we say that k and j are neighbors if |k — j| = 1. If e > 2, for
every vertex j € J pick its neighbor k and denote c\) := a?¥akJ. The relations
in Z imply that c) is independent of choice of k. Define ¢ := djed c). Then
in all cases Z has a basis

(3.2) Bz:={a"l |k J, jisaneighbor of k} U{c™e; | j € J, m <€ {0,1}}
and

(3.3) dim, Z = (e — 1)(1 + ¢*) + 2(e — 2)q.
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Moreover, using (3.2), we see that for any j € J,
4 ifl<j<e-—1,
(3.4) dime;Z =43 ifje{l,e—1} and e > 2,
2 ifj=1ande=2.
We will also consider the graded wreath products
(3.5) Wy = 2% % 768,

with Z&, concentrated in degree 0. (Note that, unlike [EK17], we do not
consider any superstructures here.) As usual, we identify Z®¢ and Z&, with the
subalgebras Z%? ® 1g , and 1%” ® 2G4 of Wy, respectively. The multiplication
in Wy is then uniquely determined by the additional requirement that

(3.6) G @@ ®r)g =20 @ @ Tyq
forg e &4 and z1,...,xq4 € Z. Given x € Z and 1 < a < d, we denote
zla] =19 ®10r01---®1c 2%,
with x in the ath position. We have the idempotents
eji=e, @ -®e, €W, (jeJ.
Fix n € Z~o. We define the set of colored compositions
(3.7) A n, d) == A(n,d) x J".
Let (\,¢) € A®(n,d) with A = (A\1,...,\,) and ¢ = (c1,...,c,). We define
the idempotent
(3.8) erc = eg)‘l R e?ﬁ" c 7%
and the parabolic subalgebra
Wie=exrec®ZG) CeycWaere.

Note that e) . is the identity element of W) ., so W) . is a (usually non-unital)
subalgebra of W, isomorphic to the group algebra ZG&).
We assign signs (; to the elements j € J according to the following rule:
+1 if 5 is odd,
(3.9) G = {

—1 if j is even.
Consider the function e : &y — {£1} C Z defined by

(3.10) Exelgrs s gn) = GOV - (llon)

for all (g1,...,0n) € Gy, X -+ x &), = 6. We define the c-alternating right
module alty . = Z - 1) . over W) . with the action on the basis element 1) .
given by

1>\,c : (e)\,c ® g) = 5)\,0(9)1)\,0 (g € GA)'
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We have identified Z®¢ and Z&, as subalgebras of Wy, so we can also view
exc as an element of Wy. Then W) . = ey o(Z&))ey . and ey W; is naturally
a left Wy .-module. We now define the colored permutation module

(3.11) M)\’C =alty¢ ®W>\,c e)\,ch'
This is a right Wg-module with generator my ¢ 1= 1) ® ey c.

LEMMA 3.12. For each j € J, set dj := Y 1<p<n, ¢,=j Ar- Then the module
M) is Z-free, with

LSy (31 g2 0
dimM)\’C: |6d.6,\’3 4245 Zf€>27
|6d:6,\|2d1 if e =2.
Proof. This follows from (3.4) and [EK17, Lemma 5.21]. O

3.2. Turner doubles and generalized Schur algebras. Let n € Z-y and
de ZZO' Set
(3.13)
=01, e—1)"=(1,...,e—1,1,...,e—1,...,1,...,e—1) € J*eD,

We have a bijection
A (n,d) =5 Aln(e —1),d),
A=O Ay WA Am Ay,
In this subsection, we use this bijection to translate the results of [EK17, §7.2]

into the present notation.
For any A € A(n(e —1),d), we define

M == M, .
Let
(3.14) Mn,d) = p M

AEA(n(e—1),d)
Following [EK17], we consider the generalized Schur algebra
S%(n,d) := Endy, (M (n,d)).

Since the algebra Wy is non-negatively graded, so are the modules M*. Since
M? has the degree zero generator

m* = M o

as a Wy-module, it follows that the algebra S%(n,d) is non-negatively graded.

For A € A(n(e — 1),d), let &, € S#(n,d) be the projection onto the direct
summand M?* of M (n,d) along the decomposition (3.14). We always identify
€,5%(n, d)¢\ with Homyy,(M?*, M*) in the obvious way.
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Let A€ A((n—1)(e—1),d —1). For j € J, we define
M i=(0,...,0,1,0,...,0, M, ..., An_1)(e1)) € A(n(e — 1),d),

e—1 entries

where 1 is in the jth position. Let z € e;Zej for some j, k € J. By [EK17,
Lemma 7.5], there exists a unique endomorphism i*(z) € S%(n,d) with

N1 i = A
i)‘(z):m“»—>{m )it p ’

0 otherwise.
Moreover, by [EK17, Lemma 7.6], we have a (non-unital) injective algebra
homomorphism

(3.15) i*: Z = S%(n,d), z — Z i*(ejzep).
j,keJ
Define T4(n, d) to be the subalgebra of S%(n,d) generated by the set
S%(n,d)° U U iMN2).

AEA((n—1)(e—1),d—1)
THEOREM 3.16 ([EK17, Th. 7.7]). Suppose that n > d. There is a graded
algebra isomorphism Dg(n,d) — T%(n,d).
THEOREM 3.17 ([EK17, Th. 6.6]). Suppose that n > d. If A is a subal-
gebra of S%(n,d) such that T*(n,d) € A C 5%(n,d) and Ag, is a symmetric
[Fy-algebra for every prime p, then A = T%(n,d).

4. KLR algebras
4.1. Lie-theoretic notation. Let

I:=7/eZ=A0,...,e—1}.

(1)

We consider the quiver of type A, with vertex set I and a directed edge i — j

whenever j = ¢ + 1. The corresponding Cartan matriz (c;j); jer is defined by
2 ifi=y,
0 ifj#£d,itl,
Cij = op . . . .
—1 if i — jori<« j,
-2 ifi= .
Following [Kac90], we fix a realization of the Cartan matrix (c;;); jer with
the simple roots {c; | i € I}, the fundamental dominant weights {A; | i € 1},
the normalized invariant form (-,-) such that
(i, ) = cijy  (Njya) =635 (4,5 € 1),
the root system &, the set of positive roots ¢, and the null-root

(4.1) di=apt+a1+ -+ a1 €3y
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Let Q+ =

roots «;.
the set I'"™ by place permutations. If ¢ = i7..
2| ==y +
I ={iel™||i|=6}

parametrized by all § € Q4 of height m.
We always identify J = {1,...,
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@Dicr Z>oc;. For 0 € Q, let ht(0) be the height of 6; i.e.,
ht(#) is the sum of the coefficients when 6 is expanded in terms of the simple
For any m € Z>q, the symmetric group &,, acts from the left on
iy € 1™, then its weight is
-+, € Q4. Then the G,,-orbits on I are the sets

e—1} with the subset I\ {0} of I; cf. (3.1).
Let C" be the type A._; Cartan matrix corresponding to J, and let &, C &,

be the corresponding positive part of the finite root system. We define

éi‘s ={-B+nd|B e, nels}and <I>i‘S

Set #5° := 3% U {0} and #%°
M = {nd | n € Z=o} and &7 = &3° LI &7°.

4.2. Basics on KLR algebras. Let 6 € Q4 be of height m. Following [KL09],
[Rou08], the KLR algebra (of type Agl_)l) is the unital Z-algebra Ry generated

by the elements {1; |4 € I U{y1,...,ym} U{¥1,...,¥m_1}, subject only to
the following relations:
(4.2) 1;15 = 05 414, Yiereli =1
(4.3) yrli = Liyy, Yrly = 1s,50r;
(4.4) YrYs = YsYrs
(4.5) VrYs = YsPr if s£r,r+1;
(4.6) Urihs = Pty if |r —s| > 1;
(4.7) Uryr1ls = (Yrthr + iy ipr ) Lis
(4.8) Yrp1¥r Ly = (Vryr + iy i) s
0 if i = iy,
1; if ipy1 # g, i £ 1,
(4.9) il = (Y41 — v L if 4 = drg1,
(Yr — Yr+1) 1 if iy <= i1,
Yr+1 = Ur)(Yr — Yr41) i i dr 2 4
(Vr1¥rthri1 + 1)1, if iy = tp = drg1,
(Vr19rhri1 — 1)1, if tryo =iy < trq1,
(4.10) Urrp1¥rl; = <¢r+1¢r”¢r+1 = 2yr+1
+yr + yr+2> ;  ifipgo =dp gy,
Ur1rPri1l; otherwise.

::{,B+TL(5‘B€‘I>/+, HEZZO}.

;= #7911 {0}. Note that &, = &' L &'°, where
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The cyclotomic KLR algebra RQO is the quotient of Ry by the two-sided ideal

di . . .
Ié\o generated by the elements y,"°1; for all é = (i1,...,i4) € I?. We have the
natural projection map

(4.11) E Rg—»RgO :Rg/Ié\O.

The algebras Ry and Rgo have Z-gradings determined by setting 1; to be of

degree 0, y, of degree 2, and 1,.1; of degree —c;, ;. ,, for all admissible r and 2.
For k € [=7Z/eZ and i = (i1, ...,i,) € I", weset 77 := (i1 +K,...,in+K)

€ I™. Then for any d € Z~, there is an automorphism

(4.12) rot,: Rags — Ras, 1i — Liwn, Yr = Ypr, Vs — s

for all admissible %, r, s.

Fixing a preferred reduced decomposition w = s, ---s,, for each element
w € G,,, we define the elements v, := ¥, ---1¢,, € Ry. In general, 1, depends
on the choice of a preferred reduced decomposition of w.

THEOREM 4.13 ([KL09, Th. 2.5], [Rou08, Th. 3.7]). Let § € Q4 and
m = ht(0). Then

(Vo yFm 1 | w e Gy K,k € Zso, 1€ 17}
is a Z-basis of Ry.
As a special case of [KK12, Rem. 4.20], we have
THEOREM 4.14. Let 0€ Q4. Then the Z-module R{;O is free of finite rank.
By [SVV17, Prop. 3.10] (see also [Web17, Rem. 3.19]), we have

THEOREM 4.15. Let 8 € Q4. Then for any field k, the algebra Ré\ﬁ{ s
symmetric. More precisely, Ré'\,(ﬂ)« admits a symmetrizing form of degree (Ag—0,
Ao —0).

4.3. Parabolic subalgebras. For 01,...,0, € Q4 and 6 =601 + --- + 0,, we
have the idempotent

lo,,..0, = Z Liw ;0
iMeror, . i(eror

and an algebra embedding
(4.16) Lg,..0,° Roy @~ ® Ry, — 1o, . 0, Roly, . 0,
whose image is the parabolic subalgebra
Ry, .. 6, C1lo,, . 6. Rele,, 6, C Ro.
Denoting by 1y the identity element in Ry, we have
(4.17) Loy,..0, == tor,..0.(1lg, @---®1p,).
Note that we always identify Ry, ® --- ® Ry, with Ry, o, via g, . 0,
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We have the corresponding induction and restriction functors

Indg, .0, : Ro,,....9,-mod — Ro-mod, W = Rglp, . 9, @Ry, w,

,,,,, 0

ReSQLWﬁT: Rg—mod — R@h_“’gr—mod, U+— 191’.__79TU.
Let Wi € Rg,-mod, ..., W, € Rp,-mod. We define
Wio---oW, = Indgl,_”’grwl X - X W,

We refer to the elements of I? as words. Given W € Rp-mod and 4 € I?,
we say that ¢ is a word of W if 1;W # 0. If every 1;W is free of finite rank as a
Z-module, we define the formal character of W as

chy W = > (dimg 1;W)i € Z[q,q '] - I°.
icl?

Given a composition A € A(r,m) and words i e i) e Mg
word i € I is called a shuffle of V... i) if ¢ = g- (3 ... 4(") for some
g € 2. By [KL09, Lemma 2.20], an element 4 € I™ is a word of Wi o---oW,
if and only if 7 is a shuffle of words i ,i(r), where i is a word of W, for
s=1,...,r.

We will need the following weak version of the Mackey Theorem for KLR
algebras (see [Evsl7, Prop. 3.7] or the proof of [KL09, Prop. 2.18]):

LEMMA 4.18. Let 01,...,0,,01,...,0;, € Q4 satisfy 01 +---+ 0, = 6] +
-+ + 60, =1 0. Define m := ht(0), X\ := (ht(61),...,ht(6,)) € A(r,m), and
N o= (ht(6)),...,ht(6})) € A(t,m). Then

lo,..0.Roly, oy = D Roy. 0, wRe g

t
wergN

With the notation as in the beginning of the subsection, we have the
parabolic subalgebra

Rgloyyer = 7T0(R017"'707‘) g Rgo

Let 0,17 € Q4. We have a natural embedding (g ,: Rg — Ry, © — tgn(z®1y).
The map gy, 0y, factors through the quotient ng\o to give the natural unital
algebra homomorphism

A A
(4.19) Com: Ry — RYY.

4.4. Divided power idempotents. Fix i € I. Let m € Z>o, and denote by
wo the longest element of G,,. The algebra R,,,, is known to be the nil-Hecke
algebra and has an idempotent 1,um) := 1y, [[72; 5% cf. [KL09]. The fact
that 1,(n) is an idempotent follows immediately from the equality

(4.20) Lim) Yo = Yuyg
noted in [KLO09, §2.2].
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LEMMA 4.21. For any x € Rya,, there exists y € Z[yi, ..., Ym] such that
1i(m)x = wwoy'

Proof. By Theorem 4.13, we can write ([[7; y5 Nz = Yues,, Yuy(w)

S

for some y(w) € Z[y1, ..., ym]. So

m
11‘("1)1: = 1/}1110 (H y§1> T = Z ¢w0¢wy(w) = ¢woy<1)‘ g
s=1 wES,
Let 8 € Q4. We define [, giv to be the set of all expressions of the form
(igml), .. ,Zq(nmr)) with mq,...,m, € ZZQ, i1,...,0 € I and mioy, + -+ +

mya;, = 6. We refer to such expressions as divided power words. Analogously
to the words, for k € I = Z/eZ and a divided power word ¢ = (igml), - ,iﬁmr)),

we define the divided power word
= (4 R) ™ G 4 R) ),

We identify IY with the subset of I giv that consists of all expressions as above
with all my = 1. We use the same notation for concatenation of divided power
words as for concatenation of words.

Fix 1 = (i(ml), . ,i(mr)) € Igiv. We have the divided power idempotent

]"l: = Lmlai17"'7m7°air <1Z(m1) Q- 1l(mr)) € RG
1 T

Define ! := [m4]'-- - [m,]' and
(4.22) (@) == mg(my, —1)/2.
k=1
Set
(4.23) Ti= (i1, ity iy i) €10,

with i repeated my times. Note that 1.1; = 1;1. = 1..

LEMMA 4.24 ([KL09, §2.5]). Let U (resp. W) be a left (resp. right)
Rg-module, free of finite rank as a Z-module. For i € Igiv, we have

dimg (1;U) = i!q<i>dimq (1;U) and dimg (W1;) = i!q_<i>dimq (W1;).

4.5. Semicuspidal modules. Let d, f € Zso. A word i € I? is called
separated if whenever 4 = jk for j € I? and k € I7, it follows that 6 is a sum
of positive roots in <I>f§ and n is a sum of positive roots in <I>$6. We denote
by Igei, the set of all separated words in I%. An Rgs-module is (imaginary)
semicuspidal if all of its words are separated. Note that a shuffle of separated

words is separated, so

LEMMA 4.25. If U € Rgs-mod and W € Rys-mod are semicuspidal mod-
ules, then U oW € R4, )s-mod is semicuspidal.
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Set lusep i= Yiegas\ras 1i- The (imaginary) semicuspidal algebra is de-
fined as
(426) édé = Rdé/RdélnsedeJ-

The category of finitely generated semicuspidal Rg4s-modules is equivalent to
the category Cys-mod. A word ¢ € I is called semicuspidal if the idempotent
1; is non-zero in Cd(g. Denote by Igf the set of all semicuspidal words. Then,

setting lygc 1= > ierds\ a5 1i, we have C’dg > Rys/Raslnsc Rgs- By definition, we

Id6

always have 19 C sep’

but this containment may be strict; see Example 4.30
below.

Everything in this subsection so far makes sense over any ground ring.
In particular, the notion of a semicuspidal module over Rgsr is defined for
any field F. We now explain the classification of the semicuspidal irreducible
R4sr-modules for an arbitrary field [F.

We begin with the case d = 1, in which case the semicuspidal irreducible
Rgsr-modules are parametrized by the elements of J = {1,...,e—1} = I'\ {0}.
More precisely, let j € J. We denote by I%7 the set of all words in I of the
form Okj, where k is an arbitrary shuffle of the words (1,2,...,5 — 1) and
(e—1,e—2,...,j+1). Let L;; be the graded Z-module with basis {v; | 7 € 1%}
where all basis elements have degree 0. By [KR10, Th. 3.4], there is a unique
structure of a graded Rs-module on Ls ; such that

Vs,s if 5,2 € 107,

(427) 1_7'7)2' = 5i,jviv Yrv; = 0, Vpv; = { 0 if 5,4 ¢ 753

for all admissible , j, 7. All the words in I%7 are separated, so the module Ls ;
is semicuspidal, which implies that 1% C Igc.
For example,

' ={(0,e—1,e—2,...,1)} and I°*'={(0,1,...,e—1)},
so Lsy and Ls._1 have Z-rank 1. On the other hand, for e > 3, the module
Lse—o has Z-rank e — 2, since
%72 = {(0,1,...,re—1,r+1,r+2,....e—2) | 0<r <e—2}.
For a composition d = (dl, ceoyde—1) € A(e — 1,d), consider the semicus-
pidal Rgs-module V¢ := Lgdf -0 L;iﬁ g

THEOREM 4.28. Let IF be an arbitrary field. There is an assignment X —

L(\) that maps every element XA € 27 (d) to a semicuspidal irreducible R -
module L(X) such that

(i) {LA\) | A € 27(d)} is a complete and irredundant set of irreducible
semicuspidal Rgsp-modules;
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(ii) d=(dy,...,de—1) € AM(e — 1,d) and
21 d)={x=0W, ... Ay e 27 () | |1AD| = d; for all j € J}.
Then {L(X) | A € 27(d)} is the set of composition factors of V2.

Proof. This is essentially contained in [Klel4] and [KM17b], but we pro-
vide some details for the reader’s convenience. In this proof, we drop the
subscript F from our notation. Fix n € Z>4. Let j € J, m € Z>¢, and
v € A(n,m). In [KM17b, §1.4], certain submodules Z} C L§"" are constructed.
Let Z; = @yEA(n,m) Z}j and S, = Rd(;/Anané(Zj). In [KM17b, Ths. 4
and 6] a complete and irredundant family {L;(\) | A € &?(m)} of irreducible
Y m,j-modules is constructed and it is proved that Z; is a projective generator
for .7, ;, hence every L;(\) appears as a composition factor of Z;. But Z; is
a direct sum of submodules of L§"! and one of the summands is Lg"" itself. So
every L;()\) appears as a composition factor of Ly,

Now, for A € 27(d), we consider the Rgs-module L(X) := Li(A(M)o--.0
Le_1(A\¢=D). By [Klel4, Th. 5.10], this module is semicuspidal and irreducible,
and {L(A) | A € 227(d)} is a complete and irredundant set of irreducible
semicuspidal Rgs5p-modules, proving (i). Now (ii) follows from the description

of the composition factors of each Lg?j in the previous paragraph. (|

COROLLARY 4.29. The set Igg 1s exactly the set of all shuffles of words
i, i 9D such that each i@ e Ljes I%7.

Proof. If ¢ is a shuffle of words i(l),...,i(d) such that @ e I%Ja for
a=1,...,d, then 7 is a word of the semicuspidal module Ls;, o---0o Ls,, so
1€ Isdc‘s. Conversely, let 72 € Igj. By definition, 1; is non-zero in C’dg. Since 1;
is an idempotent, it follows that 1;r := 1; ® 1f is non-zero in CA’d(;’]F for some
field F. Hence there is an irreducible semicuspidal Rgsr-module L such that
1; 7L # 0. By Theorem 4.28, the word % is a shuffle of words i(l), cee i such
that each (*) e e 1% O

Ezample 4.30. Let e =5 and d = 2. Then the word 0012342341 is in Ige‘;,
but is not in Igc‘s by Corollary 4.29.

4.6. Induction and restriction of semicuspidal modules. Throughout this
subsection we fix d € Z>q, n € Zsp and A = (A\1,...,\,) € A(n,d). Denote

Rys := Rx5,... 06 C Ras-

Let 1,5 denote the identity element of R)5. Define the semicuspidal parabolic
subalgebra

Chs € 105Cas12s
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to be the image of R)s under the natural projection Rd(gwéd(g. Whereas the
parabolic subalgebra R); has been identified with R,\15 R ® RA .5 Vvia the
embedding ¢y,5,..x,s, it is not clear a priori that Crs CA15® ®C)\ 5. This
will be proved in Lemma 4.33.

We call an Ry s®- - -® Ry, s-module W semicuspidal if (1,01)®- - -®@1,))W
= 0 whenever iV, .. .,i(”) are not all separated. This is equivalent to the
property that W factors through the natural quotient CA',\I(; X ® C’A7L5 of
Rys® -+ ® Ry,5.

LEMMA 4.31. We have

(i) if W is a semicuspidal Rgs-module, then Resy 5 . x,sW is a semicuspidal
R)\l(s XX Rxn(g-module;

(i) if iM e M9 i) e MO gnd 4D i) e 19 then we have that
i e 9 i) ¢ [And

Proof. This is known and can be proved combinatorially using Corol-
lary 4.29. We sketch a representation-theoretic proof for the reader’s con-
venience. Clearly (i) and (ii) are equivalent, and hence it suffices to prove (i)
with scalars extended to C in the case where W is irreducible. This follows,
for example, from [McN17, Th. 14.6]. O

LEMMA 4.32. If’i( eI, ..., i e I)n° then there is an isomorphism
of Rys-modules

Casloy g — COxslzy 00 Oyl

Lo ;o= Ixs. A @ L) @@ 1.

Proof. Since Cy 51;1) 0+ 0 C), s, is semicuspidal, we can consider it
as a Cgs-module. So there exists a homomorphism as in the lemma. To con-

struct the inverse homomorphism, use adjointness of induction and restriction
together with Lemma 4.31(3). O

LEMMA 4.33. The natural map Ry ® -+ ® RAn(;C—)Rd(;—»Cdg factors
through C’,\15® ®C’>\ s and induces an zsomorphzsm C’,\15® ®C,\ 5 — C’,\5
Moreover, Cdgl,\(; is a free right Cs-module with basis {tpp |w € .@ek}.

Proof. That the map factors through CA',\u; X ® CA'AM; follows from
Lemma 4.31. For the remaining claims, let us consider the Rg45-module W :=
CA*)\U; 0---0 CA’AR(;. By Lemma 4.25, the module W factors through éd5. On
the other hand by the Basis Theorem 4.13 for Rg5, we can decompose W =
Buwecger Ywlrs @ C’)\lg Q- ® éAng as a Z-module, with each summand be-
ing naturally isomorphic to OAlg R ® CA’,\M; as a Z-module. The lemma
follows. O
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In view of the lemma we identify CA',\I(; R ® C:’,\n(; with é)\(;. Then

COROLLARY 4.34. Suppose that for each r = 1,...,n, we have a C’,\T(;—
module W,.. Then there is a natural isomorphism of semicuspidal Rgs-modules

Wio---oW, %é@l)«;@@m (W1 K- KW,),
ulys QW1 @+ Q@ wy > Ulyg QW1 R+ + @ W,
where @ € Cys is the image of u € Rys under the natural projection Ras—Cys.

From now on we identify the induced modules as in the corollary.

5. Abaci, tableaux and RoCK blocks

5.1. Abaci. We will use the abacus notation for partitions; see [JK81,
§2.7]. Recall that we have fixed a number e € Z>9 and I = Z/eZ. When
convenient we identify I with the subset {0,1,...,e — 1} C Z. We define the
abacus A® := Z>o x I. For i € I, the subset R; := Z>o x {i} C A® is referred
to as the (ith) runner of A°.

Let A be a partition, and fix an integer N > ¢(\), so that we can write
A= (A1,...,An). Let
(5.1) AN()\)Z:{)\k+N—k‘|k‘Zl,...,N}CZZo.

The abacus display of X is

AG(N) :={(t,7) e A° | et +ie An(N)}.
The elements of A% (\) are called the beads of A% ()), and the elements of
A\ A% (N) are called the non-beads of A% ().

We have the total order < on A® defined by the condition that (¢,7) < (g, )
if and only if et +1 < eq+ j. If (t,i) < (q,j), we say that (t,i) precedes (q,7)
and (q, j) succeeds (t,i). For any r € Z~(, we say that a bead (t,4) of A% (\) is
the bead with number r in A% () if exactly r — 1 beads of A%;(X) succeed (t,1),
and we say that a non-bead (¢,7) of A% () is the non-bead with number r in
A (M) if exactly 7 — 1 non-beads of A§(A) precede (t,17).

It is easy to see that the bead (t,7) with number r of A% (\) satisfies
et +1i= N + A\, —r. Moreover, if (A}, \5,...) is the conjugate partition to A,
then the non-bead (¢,4) with number s of A% (\) satisfies et+i = N -\, +s—1.
Using these observations, it is easy to prove the following well-known fact:

LEMMA 5.2. Let A € & and (r,s) € N. Then (r,s) € [A] if and only if
the bead with number r succeeds the non-bead with number s in A% (N).

For A € &, we write b;(\) := |AY(A\) NR;| for i € I. The e-core of X is
the partition core(\) defined by

A (core(N)) = {(t, i) € A® |i e I, 0 <t < b(M\)}.
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Recall the notation (5.1). The e-quotient of X is defined as the multipartition
quoty(A) = (AD)ier € P! such that for every i € I, the partition A9 is
determined from Abi(,\)()\(i)) = A%V (M) N R;, where we have identified R; with
Z>p. The e-quotient of A depends on the residue of N modulo e and changes
by a ‘cyclic permutation’ of the components AY) when this residue changes. So
the e-weight of A, defined as wt(\) := | quot(A)|, does not depend on N.

Note that A = core()) if and only quoty(\) = &, in which case A is said
to be an e-core. For any e-core p and d € Zx>q, we set

Py={re P |core(A) =p}, Ppa:={re€ P, |wt(\) =d}.
The following is easy to check and well known:
LEMMA 5.3. The map A — quot()) is a bijection from 2,4 to 21(d).
The (e-)residue of a node (r,s) € Nisres(r,s) :=s—r+eZ €I =17Z/eL.

For i € I, we say that (7, s) is an i-node if its residue is i. For A € &2, we define
cont(A) := Z Olres(u) € Q+-
u€A]
LEMMA 5.4 ([JK81, Th. 2.7.41]). Let p be an e-core, d € Z>q, and A € 2.
Then cont(X) = cont(p) + dd if and only if X € P, 4.

5.2. Tableaux. Let v be a partition. A node u € N is called an addable
node for v if u ¢ [v] and [v] U {u} is the Young diagram of a partition, and u
is called a removable node of v if u € [[v] and [v] \ {u} is the Young diagram
of a partition. For i € I, we denote by Add(v,i) (resp. Rem(v, 1)) the set of all
addable (resp. removable) i-nodes for v. We say that a node (r,s) is above a
node (', ") if r < r’. Given a node v € N and a finite subset U C N, denote
by a(v,U) the number of elements of U that are above v.

Let « € I and U be a set of removable i-nodes of v. Define

dy(v) = Z a(v,U) — Z a(v,U).

veAdd(v,i) vERem(v,i)\U

Let A\ u be a skew partition, and let 6 = cont(A\ 11) 1= Y ueA]\[u] Qres(u)
€Q.. Fixi= (z'gml), o ,igm'“)) € IY,,. An i-standard tableau of shape A\ p is
amap t: [A\]\ [p] — {1,...,r} such that

(i) t(u) < t(u') whenever u,u’ € [A]\ [©] and u < /;

(i) for all k =1,...,7 and u € t~!(k), we have resu = iy;
(iii) for all k =1,...,r, we have [t 71 (k)| = my.
We denote the set of all ¢-standard tableaux of shape A\ p by Std(A\ p,%). If
t € Std(A\ p, %), we define

deg(t) = D dy-1y (67 ([1,K]) U [u])-
k=1
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Note that deg(t) depends on A and p, not just on the set [\] \ [x]. If ¢ € I?
and p = &, then the notion of an ¢-standard tableau is the same as the usual
notion of a standard tableau with residue sequence ¢ as in [BKW11, §3.2], and
the notion of the degree agrees with the one from [BKW11, §3.5]. If ¢ € I,
for some 7 # 6, then we set Std(\ \ u, ) := &. We denote

Std(A\p):= || Std(A\ ).
geJcont(A\p)
Let & = (i™,...,i™)) € 19, and i € I be as in (4.23). Given t €
Std(A \ u, %), a tableau s € Std(\ \ u, ) is called a refinement of t if

t 7 (k) = s ([ma 4+ mp+ Lma )
forall k =1,...,7. Let £ C Std(A\ ) denote the set of all refinements of t.
LEMMA 5.5. For any t € Std(\\ ), we have S 4cq q2°8) = qlgdes(®),

Proof. The lemma is easily reduced to the case r = 1. In that case, let
s € t be the tableau such that for u,v € [A] \ [¢], the node u is above v if and
only if s(u) < s(v); in other words, we assign the numbers 1,...,m := m; to
the nodes of A\ p from top to bottom. Then deg(s) = deg(t) +m(m — 1)/2.
We have £ = {ws | w € &,,}, where ws is the tableau defined by (ws)(u) =
w(s(u)). In view of [BKW11, Prop. 3.13], we have deg(ws) = deg(s) — 2¢(w),
where ¢(w) is the length of w € &4. So

queg deg (t)+m(m—1)/2 Z q—% w) _ [m]!qdeg(t)’

Set weS,

where the last equality comes from the well-known formula for the Poincaré
polynomial of the symmetric group [Hum90, §3.15]. O

5.3. Dimensions and core algebras. Recall the notation (4.22). The follow-
ing is a variation of a known result:

THEOREM 5.6. For any 0 € Q4 and 3,5 € I, the Z-module liRé\U 15 is

free of graded rank

dimy (1;R}01;) = g =@ 37 ges(e)+des(r),
neP
seStd(u,t)
teStd(u.5)
In particular, the idempotent 1; is non-zero in Ré\o if and only if Std(u, 1) # @
for some € 2.

Proof. The freeness statement follows from Theorem 4.14. Extending
scalars to C and using [BK09b, Th. 4.20] yields the graded rank formula in
the case when 4,5 € I?, and the general case then follows from Lemmas 4.24
and 5.5. U
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Recall the notation ¢(A) for an algebra A from Section 2.3.

THEOREM 5.7. Let k be a field, p be an e-core and d € Z>¢. Then

E(Ré\oont( yrase) = |27 (d)].

Proof. By [KK12, Th. 6.2] or [LV11, Th. 7.5], the number E(Rcont( )rdo) 18
equal to the dimension of the weight space V' (Ag) A o—cont(p)—as for the integrable
highest weight module V' (Ag) over the Kac-Moody algebra g of type Agi)l. It is
well known that this dimension is equal to | 227 (d)|; see, e.g., [Kac90, (13.11.5)]
or [LLT96, §§4,5]. O

,i0r) € 1°7(P) for

Cont(p); see [Klel4, §2.8]. In particular, iy # iy for

1<k<r. Leti= (Zgal)’ o sflr)) Igf\flt(p)‘

Let p be an e-core. We pick an extremal word (i{*, ...
the left regular module RA

Cont( ) be chosen as above. Then

= Endy (Rcont(p) 1,,;) R

LEMMA 5.8. Let p be an e-core and © € 1

there is an isomorphism of graded Z-algebras Rcont(p)

where T € Rccfnt(p) gets mapped to the left multiplication by x.

cont(p) — EndZ(Rcont(p) 1"')

as in the statement. In view of Theorem 4.14, to prove that ¢ is an isomor-

Proof. We clearly have a homomorphism ¢: Rho

phism, it suffices to prove its scalar extension gy is an isomorphism for any
algebraically closed field k. By Theorem 5.7, the algebra Rcont(p) K
one irreducible module L up to isomorphism and degree shift. Considering the

has only

composition series of the left regular module over R0 we see that 2 is an

cont(p),k’
extremal weight for L, hence by [Klel4, Lemma 2.8], the space 1;L is 1-dimen-

sional. It follows that Hom (R?O()nt( )k wli, L) = 1;L is 1-dimensional, so
RAO cont(p),k

cont(p) k i Li is the projective cover of L. We claim that in fact R0 cont(p) Kk Wi & L.
This is known for k = C since R nt(p),C is a simple algebra; indeed, by [BK09a]
it is a defect zero block of an Iwahorl Hecke algebra at an eth root of unity.
Hence

AO A() AO .
Hom ::\()Ont(p) c (Rcont( ),C Li, Rcont(p) 'L) Rcont(p) 2

is 1-dimensional. This proves that 1; RAo 1; has rank 1 as a Z-module,

cont(p) ~?

Ao Ao . .
whence 1; Rcont(p) i li & Hom Ri\oont(p) k(Rcont( )k 1; Rcont( )k 1;) has dimension 1.
Hence, Rcont(p) 1; =2 L. We deduce that Rcom(p) i 18 a simple algebra and ¢y
is an isomorphism. O

Recall the map (p,, from (4.19).
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LEMMA 5.9. If p is an e-core and d € Z>q, then the map
. pA A
Ccont(p),dé- Rcoont(p) - 1C0nt(P):d5Rcc?nt(p)+d61cont(P):d5
18 injective.
Proof. By Theorem 4.14, it suffices to prove that the scalar extension of

Ao . , :
cont(p),c 18 & simple algebra, so it

is enough to show that lcont(p)’d(;Ré\(fm(p) +asLeont(p),as 7 0. The last fact follows

easily from Theorem 5.6. (]

the map to C is injective. By Lemma 5.8, R

5.4. RoCK blocks. Let p be an e-core and d € Z>;. Following [Tur09,
Def. 52|, we say that p is a d-Rouquier core if there exists an integer N > ¢(p)
such that for all i = 0,...,e — 2, the abacus display A% (p) has at least d — 1
more beads on runner ¢ + 1 than on runner ¢. In this case,

k:=—N+eZ € Z/eZ

is well defined and is called the residue of p.
If p is a d-Rouquier core, we refer to the cyclotomic KLR algebra R,
as a RoCK block.

Ao
cont(p)+dd

Remark 5.10. The term RoCK comes from the names of Rouquier [Rou98],
Chuang and Kessar [CK02]. We refer to the algebra Ré\(fm(p) +qs 8s a block since,

with notation as in Section 1, the block Hone(p)+as(q) of an Iwahori-Hecke
algebra is isomorphic to the F-algebra Ré\oont(p) Lasri see [BKO09al, [Rou08].
Note, however, that the analogous isomorphism in general does not make sense
over Z. Moreover, if k is a field such that e = m char k for some m € Z~1, the

algebra Ré\% is not in general isomorphic to a block of a Hecke algebra.

We now review and develop some results from [Evs17, §4]. Throughout
this subsection, we fix d € Z~¢ and a d-Rouquier core p of residue k. We then
set

a:=cont(p) +dé € Q4.
Let
Q: Rys — R?fnt(p)7d5, T = Ty (Lcont(p),sz(lcont(p) ® rOtn(x)))§
cf. (4.11), (4.12) and (4.16). Note that €2 is an algebra homomorphism.

LEMMA 5.11. Let i € I%, and let j € IP be such that Std(p,j) # @. If

1j(i+~) 18 MON-2€ero in R(/}Oont(pHd&, then i € Igj. In particular, Q factors through

Proof. This follows from [Evsl7, Lemma 4.6] thanks to Theorem 5.6 and
Corollary 4.29. O
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In view of the lemma, from now on, we will consider 2 as a homomorphism

(5.12) Q:Cys — ngnt(p),dd.

LEMMA 5.13. Let o be a partition such that [o] C [p]. Then the number
of nodes of residue r in [p] \ [o] is less than (|p| — |o|)/e.

Proof. In this proof we use abacus displays with N beads, where N is
greater than the number of parts in all the partitions involved and N+eZ = —k.
Recall from Section 5.1 that for 7 € &2, we denote b;(7) := | Ay (7) N R;|. For
0 <1 < e, we denote bs(7) := Y67} bi(7). Recall also the fundamental
dominant weights A; from Section 4.1. Let 0 < m < e be the integer such that
m+ el = —k.

For any 7 € &, we claim that

(e—1)N —
2

e—1
(5.14) e(An, cont(r)) — |r| = Cmmm 5~y ).
=1
Indeed, it is straightforward to check that both sides are 0 when 7 = &, since
bo(D) =+ =bp-1(8) =bp(@)+1="--- =be—1(¥)+ 1. Furthermore, adding
a box of residue ¢ € I to 7 changes both sides by e — 1 if i = k and by —1
if i # k (for the right-hand side, consult [Evsl7, Lemma 4.2]). The claim is
proved.
Let I € {0,...,e — 1} and b = b;(p). Suppose for a contradiction that
b>i(0) > b>i(p). As pis a Rouquier core, A§;(p) contains the rectangle [0,b—1]
X [l,e — 1], whence

[ AN (0) N (Zzp < [l,e = 1)) > [ AN (p) N (Zzp x [l e = 1])],

and it follows that |An (o) N Zspe| > |An(p) N Z>pe|. This is a contradiction
to the hypothesis [o] C [p]. Hence, b>;(0) < b>;(p) for all I € {0,...,e —1}.
Moreover, the inequality must be strict for at least one [ € {1,...,e — 1}, for
otherwise we have b;(0) = b;(p) for all i € I, and so p = core(o), contradicting
the hypothesis [¢] € [p]. Hence, using (5.14), we deduce that e(A,, cont(o)) —
|o| > e(Ax, cont(p)) — |p|, which implies the lemma. O

Recall that throughout the subsection o = cont(p) 4 dé is such that RA0
is a RoCK block.

A
LEMMA 5.15. We have Leon(p),dsRa° Leont(p),ds = Reghi(p).ds-

Ao
cont(p),dd

together with the elements v, for w € (P14€) @Url.deD\ {11 Thus, it will suffice
to show that leong(p),as¥wleont(p),as = 0 in R2o for each such w. If not, then
Ly wljginy # 0 for some j,3" € 1°"() such that Std(p, 5),Std(p, 5")

are non-empty, and some %, € Igj; see Theorem 5.6 and Lemma 5.11. In this

Proof. By Lemma 4.18, 1cont(p),daR(/1\°1cont(p),d5 is generated by R
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case w(j (i) = 3'((¥")**). Moreover, w = [T (|p| — m +t,|p| +t) for some
m > 0, and therefore the last m entries of j are i1 + &, ..., 4, + k. Since 4 is
semicuspidal, the number of entries  in the tuple (i1 +k, ..., im+ k) is at least
m/e. But by Lemma 5.13, this means that Std(p, ') = @, a contradiction. [J

By Lemmas 5.9 and 5.15, there is a natural unital algebra embedding
Ceont(p).ds* Rty = Boni(p)ds = Leont(p).ds B Leont(p).d-

We always identify RAO nt(p) with a subalgebra of Ré\fnt(p) 45 Via this embedding.

We consider the centralizer of Rcc?nt(p) n R(/:\(?nt(p) a5
o Ao
vad =2 j:\oont(p),d(s (Rcont(p))

LEMMA 5.16. We have an algebra isomorphism

RMo

cont(

p) ® ZP d — Rcont(p) dé

given by a ® b +— ab.
Proof. This follows from Lemma 5.8 using [Evs17, Prop. 4.10] (whose

proof goes through over Z). O
Recalling (5.12), we denote

(5.17) C,a = Cas/ ker Q.

We have the induced embedding Q: Cra — Rcont( )do" By Theorem 4.14,

R?Om( )+ds is Z-free, so

LEMMA 5.18. The Z-module C, 4 is free of finite rank.
LEMMA 5.19. We have 2,4 = Q(C, 4).

Proof. Tt is clear from the definitions that Q(Cp’d) = Q(C’d(s) pd- Con-
versely, let x € Z, 3. We can write x = Y1 a;b; for some ay, ..., an € Rcont(p)
and by,...,b, € Q(C’d(;) = Q(C,4), and we may assume that ai,...,a, are

linearly independent with a; = 1. By Lemma 5.16, = by, so z € Q(C, 4). O
In view of Lemma 5.16, we deduce

COROLLARY 5.20. We have that

1 e map O — 1s an algebra isomorphism;
(i) th p Q:Cpqg— 254 lgeb h

(ii) there is an algebra isomorphism R

a® b aQ(b).

cont(p) ® de — Rcont(p) dé gwen by

Remark 5.21. By Lemma 5.8, the algebra Rcont( )

graded matrix algebra. Consider the homogeneous matrix unit £y ; in Rho

is isomorphic to a

cont(p)



478 ANTON EVSEEV and ALEXANDER KLESHCHEV

- Ré\(?nt(p)w. By Corollary 5.20, we have C,4 = El,lRﬁé’m(p)’déEl,l. So
by Lemma 5.15, we have Cpq = E11leont(p)dsRA°E11 Leont(p),ds- Note that
€ := E111cont(p),ds 18 an idempotent in R0 50 Cha = eRAoe is an idempotent
truncation of RA0.

The definition of C), 4, Lemma 5.8 and Corollary 5.20 make sense and can
be proved over an arbitrary unital commutative ring k, so the algebra C, 4

defined over k is isomorphic to the idempotent truncation
(e® )RA(e® 1) = (eR)’e) ©k = Cp .

COROLLARY 5.22. For any field k, the algebra C), 4\ is symmetric. More
precisely, it admits a symmetrizing form of degree —2d.

Proof. By Remark 5.21, C, 4 is an idempotent truncation of RAo. By
[SY11, Th. IV.4.1], an idempotent truncation of a symmetric algebra is sym-
metric, with a symmetrizing form obtained by restriction. So it suffices to
prove that Riok is symmetric with a symmetrizing form of degree —2d. But
this follows from Theorem 4.15 and an easy Lie-theoretic computation; see
[Kle05, Lemma 11.1.4]. O

6. Dimensions

Throughout this section we fix d € Z~¢, a d-Rouquier core p of residue &,
and n € Zso. We also fix an integer N > |p| + de such that N + eZ = —x and
assume in this section that all abaci have N beads; cf. Section 5.1.

The main goal of this section is to compute dimensions of certain idem-
potent truncations of the algebras C, 4. The idempotents we use here are the
so-called Gelfand-Graev idempotents first considered in [KM17b].

6.1. Gelfand-Graev idempotents. Recall from Section 4.5 that for all j € J,
we have defined special Rs-modules Ls; with chy Ls; = ;<765 ¢. From now
on, for every j € J, we fix an arbitrary word

(6.1) VU= (lj1,. .. L) € I°.
Consider the divided power words
(6.2) V(d) =09, eI (e

Recall the notation (3.7), and let (), ¢) € A (n,d). We set
I\ e) =10\ ... (M) € IE .
Now, we define the Gelfand-Graev idempotent v and the integer ay as follows:

(6.3) YN =1y e) € Ras,
n

(6.4) ay :=—((\c) = —eZAt(At —1)/2;

t=1
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cf. Section 4.4. In the special case n = 1, A = (d), ¢ = (j), we also use the

notation
(6‘5) ’Yd’j = 1lj(d)'
We set
(6.6) w:=(1,...,1) € A(d,d),
(6.7) =3 9P € LusRaslus.
beJjd

LEMMA 6.8. For any (\,c),(N,c') € A(n,d), we have

(6.9) dimq(’}/)\’ccp,d’}/)‘/’cl) _ qu_aA/ Z qdeg(t)-i-deg(t’).

HEPp,d
teStd(p\p, L(A,€) )
t/eStd(u\p, LN ,¢/) )

Proof. 1t follows from Lemma 5.4, Theorem 5.6 and Corollary 5.20 that
. A . r
dlmq(Rc(?nt(p)) dimy (YMCpar™ )
ax—ays Z qdeg(t)+deg(t’)
HEP 4,5, €107(P)

teStd(u, j(I(Ne) 7))
t/eStd(u, FA(N ') TF))

(6.10) =4

For each € &2, 4 and j € I¢o%(P) in view of Lemma 5.4, we have a bijection
Std(p, 3 (L, €)7%)) <5 Std(p, §) x Std(\ p, LA, €)F), £ (£, 1),

where to = t[f,) and ti(u) = t(u) — [p| for all u € [u] \ [p]. Moreover, by
definition, deg(t) = deg(to) + deg(t1). Hence, the right-hand side of (6.10) is
equal to the right-hand side of (6.9) multiplied by

3 ) — i, (Bl )
to,tpE€Std(p)

and the result follows after dividing both sides of (6.10) by dim, (Ré\oont(p)

). O

The main aim of the rest of this section is to determine the rank of the free
Z-module Y¢C, 4% for any (A, ¢) € A (n,d); see Corollaries 6.30 and 6.31.

6.2. Colored tableaux. A horizontal strip is a convex subset U of N such
that whenever (r, s) # (k,1) are in U, we have s # [. A vertical strip is a convex
subset U of N such that whenever (r,s) # (k,[) are in U, we have r # k.

Recalling the notation of Section 2.1, for any i € I, we set N/ = Z- x
Zo x {i} < NI. Identifying N with N, we have a notion of what it means
for a subset of N’ to be a horizontal or vertical strip. Given j € J, we say
that a subset U of N! is a j-bend if the following conditions are satisfied:

(i) U ¢ NI-1 U NTY;
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(ii) U N N3=1 is a horizontal strip in N/¥=1 and U NN/ is a vertical strip
in N7J.

Now let pu € 221(d). Given (\,¢) € A (n,d), we denote by CT(u; ), c)
the set of all weakly increasing maps T: [u] — {1,...,n} such that for all
r =1,...,n, the set T"1(r) is a ¢,-bend and |T~1(r)| = \.. We refer to the
elements of CT(u; A, ¢) as the colored tableauz of shape p and type (), c).

Colored tableaux will play the role of a combinatorial intermediary con-
necting the standard tableaux appearing in Lemma 6.8 and the explicit ex-
pression for dim WA’CCp,dfy‘” appearing on the right-hand side of the formula in
Corollary 6.30.

6.3. Counting standard tableaux in terms of colored tableauzr. Given 0 <
i < eand u € Zx Z, we call the image of [[(i+1,1¢7*1)] under the translation
of Z x Z sending (1,1) to u the e-hook with vertex u and arm length i, or
simply an e-hook. Recall the abacus notation from Section 5.1. For any ¢ € I,
let bi = bi(p), bsi = Y5211 bj and be; = Y5_bj. Since p is d-Rouquier, we
have bj41 > b;+d—1fori=0,...,e —2, and hence, for all ¢ < j in I,
(6.11) bsi —bsj > (bi+d—1)(j — 1),
(6.12) bej —bei < (b — d+1)(j — i),

Given (r,s,i) € N!, define the integers
x(r,s,i):=r—(e—i—1)(b; =7+ 8) + b>y,
y(r,s,i) :=s+i(bi —r+ ) — bey.

Let

H(r,s,i) CZ X Z

be the e-hook with arm length ¢ and vertex (z(r, s, ), y(r, s,i)). The following
lemma is a refinement of [CK02, Lemma 4] and [Evs17, Lemma 4.3]:

LEMMA 6.13. Let p € &, 4 and p = quot(p). Then

[kl =lplU || Hw).

u€u]

Moreover, every H(u) with u € [u] has vertex of residue k.

Proof. Tt is easy to check that y(r,s,i) — x(r,s,7) = —N (mod e), so the
second statement holds.

For the first statement, there is nothing to prove when |u| = 0, so we
assume that |p| > 1 and choose (r,s,i) € [p] such that [u] \ {(r,s,i)} = [v]
for some v € 221(d —1). Arguing by induction on d, we may assume that the
lemma holds for the partition v € &2, 41 determined from quot(v) = v, so it
is enough to show that [u] \ [v] = H(r, s, ).
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Let p= (p©, ..., ple=Dyand v = (0@ ... v(¢=D), Then [u®]\ [»?] =
{(r,s)} and [u9)] = [v9)] for all j € I\ {i}. We have

(6.14) A% (1) = (AY (1) \ {(a = 1,9)}) U {(a,0)}

for some a € Zsg. In view of Lemma 5.2, A% (n) has b; — r beads and s
non-beads belonging to the runner R; and preceding (a,i), so a = b; — r + s.
By [CK02, Lemma 4(1)], we have

(6.15) AN (n) D 10,0 — 1] x [i +1,e — 1],
(6.16) AN (1) N (Zsq x 0,1 —1]) = @.

In particular, each of (a — 1,i+1),...,(a — 1,e — 1) is a bead of A% (u), and
each of (a,0),...,(a,i—1) is a non-bead of A% (x). By (6.14) and Lemma 5.2,
it follows that [u] \ [] is an e-hook with arm length ¢ and vertex (z,y), where
x is the number of the bead (a,?) and y is the number of the non-bead (a—1,1)
of A% (p); cf. the proof of [CK02, Lemma 4(2)]. Using (6.15), (6.16) and the
fact that there are r — 1 beads of A% (1) on R; succeeding (a, i), we obtain

r=r+bs;—ale—i—1)=ux(rs,i).
Similarly, y = s + ia — b<; = y(r, s,1). O
COROLLARY 6.17. Let 0 < f < d, and p € P,q, v € P, be partitions
with the e-quotients w, v respectively. Then [v] C [u] if and only if [v] C [u].

Proof. The if-part follows from Lemma 6.13. For the only-if-part, we apply
induction on d — f, the case d = f being obvious. Let d — f > 0. If [v] Z [u],
then there is a node (r,s,i) € [u] \ [v] such that [v] U {(r,s,i)} = [quot(A)]
for some A € &, y11. Then [A] = [v] UH(r,s,i) C [u] by Lemma 6.13. By
induction, [quot(A)] C [u], which is a contradiction. O

LEMMA 6.18. For any j € J, the set of standard U -tableaux whose shape
s a partition consists of exactly two elements, t and s, where
(a) t has shape (j,177), with t(e — j + 1,1) = e, and deg(t) = 0;
(b) s has shape (j +1,1¢7771) with s(1,7 + 1) = e, and deg(s) = 1.

Proof. By Lemma 5.4, the shape of any standard tableau in question must
be an element of &5 1, and the rest is easy to see. O

The graded dimension of C), 4 for d = 1 can be easily computed:
LEMMA 6.19. For any k,j € J, we have
1+q¢* ifk=j,
dimg (1,+Cp11) = < q if k and j are neighbors,

0 otherwise.
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Proof. By Lemma 6.8, we have

dimg (16Cp11y5) = Z gles(t)+deg(t)
Megzp,l
teStd(u\p,(1F) ")
t'eStd(u\p, (1) %)

Let p € &,1. By Lemma 6.13, the set [u] \ [p] is an e-hook with a vertex v
of residue . Let i be the arm length of this e-hook and v = (i 4 1,1¢7¢"1),
Denoting by 7 the translation of Z x Z that maps (1, 1) to v, we have a bijection

Std(p \ p, (1F)%) = Std(v, IF)

given by t ~ s, where s(u) = t(r(u)) for all u € [v] (and similarly for 17).
Moreover, we have deg(s) = deg(t) by [Evsl7, (4.10)]. Hence,

dimq (llk Cp71 1lj) = Z qdeg(s)+deg(s’),

where the sum is over all u € P 1 and all pairs (s, s’) € Std(y, I¥) x Std(u, 1%).
The result now follows by Lemma 6.18. (]

Let H be an e-hook with arm length 7 and vertex (x,y) € Z x Z, and let
G be another e-hook. We refer to the node (z,y + i) as the hand of H and to
(r+e—1i—1,y) as the foot of H. We call G a right extension of H if the foot
of G is the right neighbor of the hand of H. We call G a bottom extension of
H if the hand of G is the bottom neighbor of the foot of H. The following is
deduced from the definition of H(r, s,i) by an easy calculation:

LEMMA 6.20. Let (r,s,i) € NI
(i) The hook H(r,s + 1,1) is a right extension of H(r,s,1).
(ii) The hook H(r 4+ 1,s,1) is a bottom extension of H(r,s,1).
LEMMA 6.21. Let u € 21(d). If nodes (r,s,i),(k,1,j) € [u] are inde-
pendent, then H(r, s,i) and H(k,l, j) are independent.

Proof. First, suppose that i # j. Without loss of generality, i < j. Since
|| = d, we have k 4+ s < d. Also, bj; —b; > d — 1 as p is d-Rouquier. We have

y(k, 1) —y(r,s,i) =l —s)+i(bj—k+1—b+r—35)+ (G —9)(bj —k+1)
— (bej — b<i)
>1—s+ibj—bi+2—k—s)+(G—i)(-k+1+d—1)
>14+i+d—Fk—s
> 141,
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where we have used (6.12) for the second step. Hence, the vertex of H(k, 1, j)
has a greater second coordinate than the hand of H(r,s,4). A similar calcula-
tion using (6.11) shows that

ZL’(T’,S,i) - x(k7l>]) >e _jv
hence the vertex of H(r, s,7) has first coordinate greater than that of the foot

of H(k,l, 7). Thus, H(r, s,i) and H(k,, j) are independent.
Now let ¢ = j. Without loss of generality, £ < r and [ > s. We have

y(k,Li) —y(rys,i) =(l—s)+il—k+r—s)>142i > 141,
x(rys,i) —x(k,l,i)=(r—k)+(e—i—1)(r—s+1—k)>e—1,

and it follows again that H(r, s, i) and H(k,, j) are independent. O

Recall from (6.1) that for every j € J, we have fixed a word I/ =
(Lig,---,lje) € I%. Define the map q: J x I — {1,...,e} by the condition
that I, =i forall j € Jandi € I. Let p € &4 and 0 < f < d. Suppose
that v € &, q_ is a partition with [v] C [u]. Note that cont(u\v) = fd. For

any j € J, define the function
IS [u] \ [v] = {1,...,e}, ur q(j,res(u) — k).

For the notation I/ (f) = (l](~f1), . l(»f)) € Iﬁ, in the following lemma, see (6.2).

b ) j7e
LEMMA 6.22. Let j € J and p € &, q with e-quotient p. Let 0 < f < d
and v € P, 4t with e-quotient v satisfy [v] C [u]. Then

2 if [B]\ [V] is not a j-bend,
{tu\v,j} if [e] \ [v] is a j-bend.
Proof. Aslj1,...,lj. € I are all distinct, any element of Std(p\v, lj(f)+n)

must assign ¢(j, 7 — k) to every node of residue ; i.e., such an element must be
So it suffices to prove the following:

€ Std(p\ v, 1 (f)**) if and only if [u] \ [v] is a j-bend.

Std(p\ v, U (f)™) = {

Tr\w,j-

Claim. We have t,,,;

For the claim, by Lemma 6.13 and Corollary 6.17, we have v C p and
[1] \ [¥] = Uunegup\ g H(w). Suppose that t,,; € Std(p\ v, 1 (f)™*). Then,
for every u € [u] \ [v], the restriction t,\, ;lH(w) is (I)TF-standard. By
Lemmas 6.18 and 6.13, we deduce that [u] \ [v] ¢ N&=1 U NI, Sup-
pose for contradiction that ([u] \ [¥]) N N7 is not a vertical strip. Then
(r,s,7),(r,s+1,7) € [p] \ [v] for some r,s. Let u be the hand of H(r, s, j)
and v be the foot of H(r,s + 1, ). By Lemma 6.20(i), the node v is the right
neighbor of u. By Lemma 6.18(b), we have t,\, j(u) = e > t,, ;(v), which
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contradicts the standardness of t,, ;. Hence, ([u] \ [v]) N N/ is a verti-
cal strip. A similar argument, using Lemmas 6.20(ii) and 6.18(a), shows that
([e] \ [v]) " NEI=1 is a horizontal strip.

Conversely, suppose that [u]\ [v] is a j-bend. By Lemmas 6.21 and 6.20,
[x] \ [¢] is a disjoint union of independent sets of two types:

(1) consecutive right extensions of hooks with arm length j — 1;
(2) consecutive bottom extensions of hooks with arm length j.

In fact, we may assume that either [u] \ [v] is of type (1) or [u] \ [~] is of type
(2). If [u] \ [¥] is of type (1); i.e., [u] \ [v] is & union H; LI --- U H,, of hooks
with arm length j — 1, then by Lemma 6.18(a), t,\,,;(v) = e for any v that is

a foot of H, for a = 1,...,m. So t,,,; is standard if t,\, j|n, is standard for

all a. Hence we may assume that m = 1. But in this case t is easily seen

p\v,j
to be standard using Lemma 6.18(a) one more time. The case where [u] \ [v]

is of type (2) is similar. O
Recall the set A%!(n,d) of colored compositions defined by (3.7) and the
set CT(p; A, ) of colored tableaux of shape p and type (A, ¢) from Section 6.2.

COROLLARY 6.23. Let p € P,4, p = quot(p) and (A, c) € A®(n,d).
Then

Std(\ p, (A €)= [CT (s A, )]
Proof. Recall that I(A\,¢) =1 (A1) -+ - 1 (A1)l (A\n). We have
I (Ap) -1 (\mr) = LN, )
for = (A\1,...,\p—1) and ¢ = (¢1,...,¢n—1). Then
Std(p\ p k(X)) = Y St p, LN, €)T)][Std(p\ v 1 (M) -
[PICVIC]p]

If |Std(v \ p,L(N,c)T*)| # 0, then cont(r) = cont(p) + (d — \,,)d, whence by
Lemma 5.4, we have v € &, ;_»,. Arguing by induction on n, for such v we
have

[Std(v\ p, LN, ) ™) = [CT(; X, )],

where v = quot(v). Moreover, by Lemma 6.22, we have

1 if [u] \ [v] is a cp-bend,

0 otherwise.

[Std(p \ v, 1% (An))| = {

The result follows. O
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6.4. Counting colored tableauz. In view of Lemma 6.8 and Corollary 6.23,
we can understand the dimensions of Y¢C, 4y for (), ¢), (X, ¢/) € A®(n, d)
by counting appropriate colored tableaux. The first main goal of this subsec-
tion is a formula for |CT(u; A, ¢)|.

Recall that J = {1,...,e — 1} =1\ {0}. For j € J, we define

Inc(j) := {j,j — 1} C L.

Remark 6.24. The notation Inc(j) is motivated by the following consider-
ations: The irreducible semicuspidal Rsp-modules are exactly the irreducible
R;p-modules that factor through Rﬁ%; see [Klel4, Lemma 5.1]. The algebra
Rf;l% is a Brauer tree algebra of type A, with vertices I and edges in natural
bijection with J, so that Inc(j) is just the set of vertices incident to the edge j.

Let Char := Pz, , ZIrr(&;) be the Z-module of all formal Z-linear com-
binations of irreducible characters of &; for ¢ = 0,1,... . We have the inner
product (-,-) on Char such that on each summand it is the standard inner
product on (generalized) characters and ZIrr(S&y) is orthogonal to ZIrr(&,,)
for t # u. Let

Char! := ®Char,
i€l
with the induced inner product. For every p = (@, ... ple=0) € 2! we
define
XM= X“(O) ®-® X“(e_l) € Char!,

where x* denotes the irreducible character of &, corresponding to the partition

pwe 2(t).
Let S,T be finite sets and m,l € Z-g. We denote by M(S,T) the set
of all matrices A = (ast)sester with non-negative integer entries. Given

A e M(S,T), we set
as(A) = Zas,t (s €9),

teT

Bi(A) == asy  (teT).

s€S
We write M(m,T) := M([1,m],T), M(S,m) = M(S,[1,m]), etc. Given
we A(m) and A € A(l), we define

7M(m,T) :={A e M(m,T) | a,(A) = p, for all r € [1,m]},
M(S,m), ={A e M(S,m) | B,(A) = p, for all r € [1,m]},
AM(m, ), == aM(m, 1) A M(m,1),.
Let (A, ¢) € A (n,d). We define
(6.25) neoM(n, 1) :=={A = (ar;) € \M(n,I) | ar; = 0if i € Inc(c,)}.
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Let A = (ar;i) € (»,c)M(n,I). For each i € I, define the parabolic subgroup

GA,Z':ZGGMX--'XG <6/3()

An g

and the induced character
A - 1684 Oy i Sepy i
X' i=indg" (sgnal’i X 5 sgnien, )

where, for a € Z>o and j € J, we interpret sgngj’i as the trivial character of
S, when j # i and as the sign character of &, when j = i. Then set

="M@yt € Charl,

X()\,c) — Z XA-
A€(x,cyM(n,I)

LEMMA 6.26. Let p € 21(d) and (A, c) € A (n,d). Then
CT (ks A e)| = (XM, xH).

Proof. We apply induction on n = 1,2,..., the induction base being im-
mediate from the definitions. Let n > 1. Set X = (A1,..., \p—1) € A(n — 1)
and ¢ = (c1,...,¢p-1). We denote (), (ca))M(1, 1) by (r,.¢.)M(1,1). For
a matrix A" € (v oy M(n —1,I) and a one-row matrix B € (5, ., )M(1,I) we
denote by (%l ) € (neyM(n, I) the vertical concatenation of A" and B. Then

A/
M= 10) % 1, ML) = (MO D), (4 5) 5 ()

is a bijection. Denoting the entries of B € (), ,)M(1,1) by b; we have, by
transitivity of induction,

Ne) 65, (4) A K Ocn i
X = Z ® 1nde A X sgn,, .
A’ €, /)./\/l(n 1,I) i€l
BE(n,, cn)M(l 1)

The proof is concluded by the following computation:

r (e u“) RN ( Al 6(:",1')>
W=y TG imdgl ) (™ ) sgm,
A G(A/&/)M(nfl,l) ’LGI
BE()\nycn)M(l,I)

_ D A Ocni
= Z Héﬁz(A \u(>|<r6866 (4%),b; XX M sgmy )
AIG(AIVCI)M(TL—l,I) i€l
BE()\n’Cn)M(l,I)

_ v A
= > > [IO X
A€\ nyM(n—1,I) vCp el
BE(n, onyM(LI) 11D |=[vD|=b;, Viel
p\v is a cn- bend
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_ v N
= > > (x”, xe)y
BE()\nﬁcn)M(l,I) ] V_gll'
| = v |=b;, Viel
p\v is a cp-bend

= > > ICT (v X, )|

BE(AnaCn)M(l’I) ] V.g;l,
|| =D |=b;, Viel
p\v is a cp-bend

= Z ICT(v; N, )

vCp
p\v is a ¢p-bend

= |CT(m; A, ¢,

where the second equality holds by Frobenius reciprocity, the third equality
comes from the Littlewood-Richardson rule, the fifth equality holds by the
inductive assumption and the remaining equalities are clear. O

Let b € J¢ so that (w,b) € A®!(d,d); cf. (6.6). Recalling (6.25), we set
M(I,d)p) :={B € M(I,d) | B € (, hy M(d, 1)}
Define the set
neyM(n, 1, d)(p)
={(4,B) € \gM(n,I) x M(I,d)up) | Bi(A) = ai(B) Vi € I}.

LEMMA 6.27. For any (A, ¢) € A®(n,d), we have
(A,B)E(r,eyM(n,1,d) (o by 1€
Proof. Denoting by regg, the regular character of &, we have

PG T D DI A DI S

AG(,\&)M(TL,I) BG(wﬂb)M(d,I)

— Y [IeMiress, )

AE(A’@M(’H,I) el
B€ (,pyM(d,I)

which implies the lemma since

rege. )= X1 = 165,a) - Saul if Bi(A) = Bi(B),

7786, (m) 0 otherwise

for any i € I. O
For (), c) € A (n,d) and (w,b) € A®!(d,d) as above, we define the set

neyM(n,d) () of tuples (T°,...,7¢ 1) such that

(1) T" = (t.,) € M(n,d) for all i € I;

(2) TO+ - -+ T € \M(n,d)y;

(3) t&, =0 unless i € Inc(c,) N Inc(bs).

(x*



488 ANTON EVSEEV and ALEXANDER KLESHCHEV

LEMMA 6.28. For any (A, ¢) € A®(n,d) and (w,b) € A®!(d,d), we have

oM (1, d) ()| = > 111854 : Sasil-
(A,B)E()\,C)M(n,l,d)(wyb) iEI

Proof. Consider the map
0: (A,C)M(na d) (w,b) M(TL, I) X M(I7 d)

defined as follows. Given T = (T9,..., T !) € (\ oM(n,d)p), we set
9(T) = (A, B), where A = (a,;) € M(n,I) and B = (b;s) € M(I,d) are
given by a,; := o, (T*) and b; 5 := Bs(T"?). Clearly, the image of 6 is contained
in (/\7C)M(7”L, I, d)(w,b)'

Let (A,B) € (\M(n,I,d),p). Then the preimage 6~'(A, B) consists
of all tuples (77, ...,T°!) of matrices in M(n, d) such that o, (T%) = a,; and
Bs(T") = b; s for all i € I, r € [1,n] and s € [1,d]. So, denoting

Si={T € M(n,d) | ar(T) = ar;, Bs(T) =b;s for all r € [1,n], s € [1,d]}

for any i € I, we have |07Y(A, B)| = [icr |Si-

To compute |S;| for a fixed i € I, let X = {s € [1,d] | bjs = 1}, so that
|X| = ai(B) = Bi(A). Then the set of partitions of X into a disjoint union
of subsets X, r € [1,n], with |X,| = a,; for each r, is in bijection with the
set S;: a bijection is given by assigning to each such partition X = | |'_; X,
the matrix T' = (¢,.5) given by

1 ifse X,
tr,s = .
0 otherwise.
Therefore, |S;| = |&g,(4) : .4,|, proving the lemma. O

THEOREM 6.29. For any (\,¢) € A®(n,d) and b € J?, we have
dim(7MC,a7) =[x .0 M (1, d) (b -

Proof. We have

dim(Cp =) = 3 [Std(\ LA, €)*)| [t p, 1w, b))

HEP ) 4

= > [CT(mi X )| |CT(p;w,b)]
neZ21(d)

= Y (W By (@)
preZ1(d)

= (x*), x ()

= ’()\,C)M(n7 d) (w,b) ‘ )
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where the first equality comes from Lemma 6.8, the second equality uses Corol-
lary 6.23 and Lemma 5.3, the third equality uses Lemma 6.26, the fourth equal-
ity holds since the elements y* form an orthonormal basis of Char!, and the
final equality comes from Lemmas 6.27 and 6.28. (]

COROLLARY 6.30. Let (\,¢) € AY(n,d). For all j € J, set

di= 3 A
1<r<n
Cr:j

Then

e—2
Gy Gy 3htde—1 422524 ife > 9,

dim(yeC, %) =
G Py ) {‘Gdie)\|2d1 ife=2.

Proof. In this paragraph we fix b € J% Let Y, be the set of all maps
v: [1,d] = [1,n] x I such that
(1) [~ ({r} x I)| = A\, for all r € [1,n);

(2) for all s € [1,d], if p(s) = (r,i), then i € Inc(c,) N Inc(bs).

Observe that there is a bijection f: (y o) M(n, d) . p) —+ Yy such that f(T)(s)
is the unique (r,i) € [1,n] x I such that t. , = 1if we write T = (T°,...,T1)
with 7% = (¢, ,).

Now, let Y := {(p,b) | b € J¢, ¢ € Yp}. By Theorem 6.29 and (6.7),
we have dim(yM¢C, 4v%) = |Y|. Let W be the set of all set partitions [1,d] =
Llre[1,n) - such that [Q,] = A, for all r. Note that [W| =[G4 : &,].

We define the map £: Y — W by setting (¢, b) to be the partition
| = Urepn ¢ '({r} x I). To complete the proof, we fix a set partition
Ld] = [re[1,n & in W and compute 1€7H(Q)]. Given j € J, set

Inc2(5) :={(3,1) € I x J | i € Inc(j) Nnc(l)}.

1,d
Q:

Note that
{G.0),0,0+1),0-14),0-17-1} ifl<j<e—1,
{(1,1),(1,2),(0,1)} if j =1and e > 2,
Inc2(j) = {(e—1,e—1),(e—2,e—1),(e—2,e—2)} ifj=e—1
and e > 2,
{(0,1), (1,1)} if j=1ande=2.

Note that £71(Q) consists of all pairs (o, b) where ¢: [1,d] — [1,n] x I
and b € J?% are such that for any r € J x [1,n] and any s € Q,, we have
©(s) = (r,4) with (i,bs) € Inc*(c,). So

@)= I] I IInc(cr)l = I Iinc®()|%

re[l,n] s€Qr jeJ
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_ gdi+de—1 42?3 4G ife > 2,
9d1 if e=2,

and the corollary follows. O

Recall the algebra W, and the right Ws-modules M) . defined in Sec-
tion 3.1. Combining Lemma 3.12 and Corollary 6.30, we obtain

COROLLARY 6.31. For all (A, ¢) € A (n,d), we have dim(y»¢C, 47*) =
dinlﬂpr.

COROLLARY 6.32. We have dim(y*C, 4v*) = d!(4e — 6)¢ = dim W.

Proof. This can be derived from the algebra isomorphism in [Evs17, Th. 3.4].
We give a more direct proof for the reader’s convenience. By (3.3), we have
dim Z = 4e — 6, and the second equality follows. For any ¢ € J% and j € J, set
dij(c) :==|{r € [1,d] | ¢, = j}|. For e > 2, we compute

dim(y“Cpa7?) = Y dim(v°Cpa7*)
ceJd
={! Z gd1(e)+de—1(c) gd2(€)+--+de—2(c)
ceJjd
= d!(3 +4(e — 3) + 3)% = d!(4e — 6)¢,
where the second equality is due to Corollary 6.30. For e = 2, the same
computation yields dim(y*C,, 4v*) = d!2¢ = d!(4e — 6)<. O

7. The semicuspidal algebra

As usual, d € Z~q is fixed. Recall the semicuspidal algebra Cys from
Section 4.5. In this section we prove some results on the structure of éd5.
These results are used in Section 8 to study the quotient C, 4 of Cys in the
context of a RoCK block; cf. (5.17).

7.1. Preliminary results on the semicuspidal algebra. We have the para-
bolic subalgebra
Cus 2C5® -+ ®Cs5 C Cas
with the identity element 14; cf. Lemma 4.33.
LEMMA 7.1. We have
(i) the glgebm 1@@@1@ 18 non-negativelg{ graded;
(i) 1wsCi5lws = LwsCasCf = 1usCasluwsCy.

Proof. (i) follows from [Evs17, Lemma 6.9(iii)]. The second equality in (ii)
is obvious, and the first one follows from [Evsl7, Lemma 6.9(i)(ii)]. O
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For j = (j1,...,jq) € J¢, we define
(72) €5 ‘= 1lj1...ljd € Rys.
In particular, for j € J, we interpret e; as 1,;. In fact, the idempotent e; is
also known as y*9; cf. (6.6), (6.7). So we have 7% =3¢ ja €;.

Following [KM17a], we consider the Rs-modules Aj; := C’gej for every
7 € J. Note that Rs, and hence Cs is non-negatively graded. Recalling the

modules Ls ; with basis {v; | ¢ € I%7} from Section 4.5, the following is imme-
diate from [KM17a, Prop. 5.13]:

LEMMA 7.3. Let j € J. Then As; is non-negatively graded and there is
an isomorphism of Rs-modules

Nsj/A5) = Lyj, ej+ A0 — vy
LEMMA 7.4. For any j € J%, we have an isomorphism of Rqs-modules
C’dgej = Asjo--0ls55,, e 1l,sQe), @---Rej,.
Proof. This follows from Lemma 4.32. O

) Let j € J% We consider the following submodule of the Cs-module
Case;:
(7.5) Nj = Cas(CZ5)e;.
LEMMA 7.6. For any j € J, we have an isomorphism of Rgs-modules
C’dgej/Nj 3 Lsjy0-0Lsj, ej+Njrs Ly Quyy @+ @ vy,

Proof. By Lemmas 4.25, 7.3 and 7.4, there is a surjective Rg5-module
homomorphism as in the statement of the lemma. That the homomorphism is
injective again follows from Lemmas 4.33 and 7.3. O

LEMMA 7.7. If j € J%, then ejé’géej = Zej.

Proof. Clearly, it suffices to prove the lemma in the case d = 1. For any
word in 4 € I, the entries i1,. .., 4. are distinct. Hence, by Theorem 4.13, we
have ejRsej = Z[y1, .. ., yelej, and the lemma follows. O

7.2. Some explicit elements of ’y”CA'd(g’y“’. Let As := @jes Asj- In view of
Lemma 7.4, we have an isomorphism

(7.8) A= Cysy®

of left Cys-modules. More precisely, we can explicitly identity Agd with C’dng
so that the element 1,5®e;, ®- - -®e;, of the natural direct summand A ;, 0-- -0
qud of Agd corresponds to ej = e € Csy® for all j = (j1s- .-, ja) € J% So
Y Cysy” is naturally identified with Endéd6 (Agd)C’p. The algebra Endéd6 (Agd)
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is described in [KM17a] as an affine zigzag algebra of rank d, so we can reinter-
pret this as a description of ’}/wéd(s’}/w. We now define some explicit elements
of ywédmw that correspond (up to an antiautomorphism and signs) to the
elements of Endédé(Agd) with the same names introduced in [KM17a, §6.1].

For neighbors k, j € J, we define wy, ; € &, to be the unique permutation
such that wy ;17 = 1¥. Set

k7‘ Pp— A
a™ = ¢wk‘j6j e Cs.

Further, define
(7.9) ey = Zej S C’g,
jeJ
and set
c:=(y1 —ye)ey € Cs, z:=yiey € Cs.
Recall that, in view of Lemma 4.33, we have identified the parabolic subalgebra
Cos CCyswith Cs®---®Cs. Fort=1,...,d and = € Cs, we define

Ty 1= 6?15_1 Rr& e?d_t € Cus € Cys.

In particular, we have the elements ¢, 2z, a{’k € v Aww‘“.
Recall the algebra W, and the signs (1, ..., (.—1 defined by (3.5) and (3.9).
Let 1 <t < d. Consider the product of transpositions

te
(7.10) wy = H (a,a+€) € Sge,
a=(t—1)e+1

and let w := wq € G9.. We set
(T11)  Fp= Y 57 @ (—thw — 01 iCk) (er ® ) ® 5 € 4 Cusy.
jked

Note that the sign here is opposite to the one in [KM17a], which is technically
more convenient for us, but does not affect the result below.

THEOREM 7.12. We have

(i) There is an injective algebra homomorphism ©: Wy — 7 Casy” with
ej > ej, sy, D[] H(cey), At — +al

foralljeJ 1<u<d, 1<t<d, and all admissible k,j € J, where
the signs depend on k and j.
(ii) For each a € {0,1}, the map O restricts to a Z-module isomorphism of
w

graded components W§ — 'y“égéfy .
(iii) The algebra v Cysy” is generated by O(Wy) together with y1v*.
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Proof. Part (i) follows from [KM17a, Th. 6.16] together with the fact that
a’kakJ = Lce; for all neighbors k,j € J, as observed in [KM17a, Th. 5.24].
Parts (ii) and (iii) follow from [KM17a, Th. 6.16] and the easy facts that the
affine zigzag algebra is non-negatively graded and is generated by the finite

zigzag algebra isomorphic to Wy and a homogeneous element z; of degree 2;
see [KM17a, §4.2]. O

Considering scalar extensions to a field k, we also have the following result.
Here and in the sequel, we denote 7* := 7Y ® 1 € Cys.

LEMMA 7.13. Let k be a field with chark = 0 or chark > d. The left
Cas-module Cysy” is a projective generator for the algebra Cysj.

Proof. By [KM17c, Lemma 6.22], the CA’d&k—module A§d®zk >~ (As®zk)?
is a projective generator. By (7.8), we have A§d®zk = C’d&kv“’, and the lemma
follows. O

7.3. Imaginary tensor spaces. Let j € J. Following [KM17b], we refer to
Ty = Lg%

as the imaginary tensor space of color j. In [KM17b, (4.2.9)], an action of the
symmetric group &4 on Ty ; with Rgjs-endomorphisms is defined as follows:

(lus @ V5T - 50 = (Gtbw, + las)lws @057 (1<t < d).
Comparing with (7.11), we see that
(7.14) (Lus ® v51) - 50 = — (e @ 057,
As in [KM17b, §5.2], we define
Zyj ={vely|lv-g= (=) 9y for all g € S4}.
Recall the Gelfand-Graev idempotent v%/ from (6.5).
LEMMA 7.15 ([KM17b, Lemma 6.4.1(ii)]). We have Zqj = Rasv* Ty ;.

More generally, fix (X, ¢) € A®!(n,d) for some n € Z~q. Define the semi-

cuspidal Rgs-module
T)\,C = T)\l,cl ©:+-0 T)\n,cn-
By the n = 1 case considered above, we have the right action of G, x --- x
Sy, =6 onTy, X---KT), . with Rys-endomorphisms. By functoriality of
induction, this induces a right action of &, on T) . with Rgs-endomorphisms.
Define
Zye ={veEThe|v-g=(—1) 9y for all g € &,}.

Recall the idempotent ¢ from (6.3), and note that yM¢ = 4M¢1ys.

LEMMA 7.16. We have Zy ¢ = Ris(7M¢ @ (T ¢ X+ KTy, o))
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Proof. By Lemma 7.15, we have
{veTyoR---RT, o |v-g=(—1)"9 for all g € G}
= Roy sV Ty oy B+ B Ry 67" T -
Moreover, for each w € 2°*, we have an isomorphism of Z-modules
Troy @ BT, e — Y @ Ty oy B BTN, ey 0 Py @,
which is equivariant with respect to the right action of &y. Therefore,

Ar, An,
Zne= D Puw® Ry g7 Dy o BB Ry 57T, e,
wePer

= Ris7 @ (Ta 0 R --- BT, ),
as required. O
Define the idempotent

(7.17) €rec=€x 1, € éd5
et

and the C’dg—module

(7.18) Tre := Cysexc.
Recalling the notation (7.5), define the left Cs-module
(7.19) N)\,c = Nci‘l...c)‘" = C’d(;é;;oe)\’c - T)\7c.

By Lemma 7.6, we have an isomorphism of left Rgs-modules
(7'20) T/\,C — T/\,C/N)\,C7 los ® 'U?éf\l K- Q ’Uigc)i\n = exe T N)\7C.

Let ©: Wy — ’y‘“CA’d(gfy‘” be the algebra homomorphism of Theorem 7.12.
Recalling the element ey . € W defined by (3.8), note that by Theorem 7.12(i)
we have

(7.21) O(ere) = €xe.
Recall the function ey . from (3.10). Define the left Cas-submodule
(7.22) Z,\yc ={ve T)\,c | vO(g) —erec(g)v € Ny for all g € G} C T)\,C.
LEMMA 7.23. For every g € Gy, we have ey O(g) = O(g)erc.
Proof. Since we have ey .g=ge) ¢ in Wy, the lemma follows from (7.21). O
LEMMA 7.24. We have Z)\,c = CA'd(;’y)"CCA'Me,\p + Ny

Proof. Throughout the proof, we identify T} . with T)\,c /Ny ¢ via the iso-
morphism (7.20), so

Iys @ Thyoy Koo BTy, o = (Crsere + Nae)/Nae
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and we have a right action of &, on T)\,C/N)\,c- The space Z) . of signed
invariants under this action becomes a C’dg—submodule of TA,C/N A, and by
Lemma 7.16, we have

Zre = (Casy™Crserc + Nae)/Nae-

Let 1 <t < d satisfy s; € &) and, moreover, let g € [1,n] be defined by
the condition that s; lies in the &) -component of &,. By (7.14), we have

(e/\,c + N)\,c) c St = _chfte)\,c + N)\,c-
Let v = vey . € TA,\yc. Then

(U + N)\,C) © St = _chvfte)\,c + N)\,C = _chve(st)e)\,c + NA,c
= _gcqve/\,ce(st) + N)\,c = _chU@(3t> + N/\,C7

using Lemma 7.23 for the third equality. So for any g € &), we have
(D)@ + Nye) - 9 = ex.e(9)vO(9) + Nae.

In particular, Ny 0(g) € Ny, for all g € &,. It follows that Z,\7C is the
preimage of Z) . under the canonical projection T)\,c —» T;HC /Nxc. So

Zre = Casy™Chrsere + Nae
by the first paragraph of the proof. O

7.4. The structure of Y ¢Cysy*. Tn view of (4.23), to 4 € I8, we associate
1 € I’. Throughout this subsection we drop the hats and usually write ¢ for 4.

For example, I/(d) is written simply as 7 (d).

Let hg € G¢q be defined by hq((t—1)e+q) = (¢—1)d+tforallt =1,....d
and ¢ = 1,...,e. In other words, hg is the shortest element of G4, such that
ha((V)4) = 1 (d) for all j € J. Let wo 4 € Gcq be the longest element of S(gey,
ie,wyq((¢g—1)d+t)=(¢g—1)d+d+1—tforallg=1,...,eandt=1,...,d.
Let j € J, and note that ;o = 1(lj)d. We set

Ud,j = Vw4 Phy€ja € Cas.
More generally, fix n € Z~g and (), ¢) € A®!(n,d). Recalling (7.17), we define
Ry = (hxyy.--yha,) € Geny X -+ X Gy, = Gex < Geq,
wox = (Wo s .-, Won,) € Gery X -+ X Gey, = Gex < Gy,
Uc = Yuwg \UhyEre
= U @ - U, e, € éxla ® é)\nS = Chs C Cus,

where we have used the identification from Lemma 4.33.
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Ezample 7.25. If e = 3, then J = {1,2} and the only choice of the
words (6.1) is I* = 021 € I° and I*> = 012 € I°. In this case, if d = 4,
n=>5 A= (3,0,1,0,0) € A(5,4) and ¢ = (2,1,1,1,2) € J°, then in terms of
Khovanov-Lauda diagrams [KL09, §2.1], we have

o o o0 1 1 1 2 2 2 0 2 1

UNec =

In view of (4.20) we get
LEMMA 7.26. We have uy . € 7A7C0d56A7c.

Recall the integer ay defined by (6.4). The following is easily deduced
from the definitions:

LEMMA 7.27. The element uy . € C’dg is homogeneous of degree ay.

LEMMA 7.28. Let j € J and i = iV .. 4D for some iV, ... i@ e 19,
Ifg € @) () is such that gi =U(d), then g = hq and iD= =@ =

Proof. If 4 € I°, the letters of 4 are distinct. The result follows from this
observation together with the definition of () g(e?), O

Given A € A(n,d), define the composition
AMeb = (XS, ,08) € A(ne, de).

rn

Define the block permutation group By = &4 as the subgroup of &4, generated
by the involutions wi, ..., ws—1 defined by (7.10).

Lemma 7.29. Let i, ... i@ € 1% and i =iV .. 5@, 1f g € X gl
is such that gi = l(\, ¢) for some ¢ € J", then g = hyb for some b € By such
that £(g) = €(hy) + £(b).

Proof. We apply the induction on n, the case n = 1 being Lemma 7.28. Let
n > 1. By the inductive hypothesis, we may assume that A, > 0. Note that
I\ e) = 1IN, )l (\,), where X = (A\,..., Ap—1) and & = (c1,...,¢n-1).
Let I° = (Iy, ..., 1) so that 1" (\,) = (I}",...,12"). We know that I; = 0 and
igt) =0fort=1,...,d;see Corollary 4.29. Note that the positions (d—\,)e+¢
for g =1,..., A, in l(\, €) correspond to the first A, positions in I“*(\,), and
so they are occupied with 0s. So there exist 1 < aq,...,ay, < d such that
g sends the first position of the word (*) to the gth position of I (An), ie.,
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g((ag—1)e+1)=(d—A)e+qforg=1,...,\,. Since g € M7 9. we have

a; < ---<ay,. Since g € @(ed), it sends the remaining positions in the words
i@ @) to the remaining positions of [°*(\,), i.e., to the last A\, (e — 1)
positions of I(A, ¢). It follows that i(®) = ... = §(@) =y

Let b’ € B, be the block permutation that moves the blocks ¢(®1), ..., §(xn)
to the end in the same order and preserves the order of the remaining blocks.
Let ¢’ = g(b')~!. We claim that £(g') = £(g) — £(V'). To prove this, it suffices
to show that g(r) > g(s) for all 1 <r < s < ed such that b/(r) > V/(s), which is
clear since for any such r, s, the element 7 is in one of the blocks corresponding
to 3(@) ... §(@wn) whereas s is not.

We have ¢’ € M 2(¢). Indeed, it is obvious that ¢ € 2", and ¢ €
MY 9 because g = gV € Mg and (g) = €(g) + €(V). Moreover, ¢ €
S (d-rn)e nes SO the result follows by the inductive assumption. O

LEMMA 7.30. For any y € Z[y1,- .., Yde|, there exists y' € Zlyi, ..., Yde
such that 1y oy y¥n, = Line)¥n,y'-
Proof. This follows from the observation that the Khovanov-Lauda dia-

gram [KL09, §2.1] of 1y ¢¥n, does not have any crossings of two strings with
the same label and the relations (4.7), (4.8). O

LEMMA 7.31. For any (A, ¢) € A®(n,d), we have
(i) ’YA’CC?d(slm = uA,chélwé = uxe1“Caslus:
(11) VA’CC)\éle = u)\,ccw6-
Proof. By Lemma 7.26,
ux. e Caslis = uneCasluws C vV Caslus,

so for (i) it only remains to prove the inclusion AMeCuslus C U)\7c’ywé'd51w5.
Moreover, for (i) we may assume that n = 1 and prove only that %7 Cislus C
udJC'w(;.

The word I(\,¢) € I% is the concatenation of ne words of the form
(¢°) € I°% for various ¢ € I and s € Z>o. We denote the corresponding
integer multiples sa; € Q4 of simple roots by 61,...,0,, listed in the order
of concatenation, i.e., Oc;_1)14 = My, , forallt =1,....;.nand g =1,...,¢
cf. (6.1). By Lemma 4.18, we have

19,00 Casluws = Z Ro,....0,.0VgCu0s
gek{e}@<ed>

as (Rg,... 0., Cws)-bimodules, so

AeA _ A, A
WCapslus = ) YRy, . 0o VgCus-
gek{e}g(e(h
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Consider an element g € M9 such that the summand

U =7 Ry,....0,.%gClus
on the right-hand side is non-zero. Then there exists ¢ € such that gz =
(), ¢)and 1;1,5 # 01in Cy5, whence ¢ = i @D for some iV, ..., i@ € 2.
Hence, by Lemma 7.29, we have g = h)b for some b € B;. Moreover, in the

Id(5

case when n = 1, needed for part (i), we have b = 1 by Lemma 7.28. We
may assume that preferred reduced decompositions for the elements of &4, are
chosen in such a way that ¢, = ¥y, 9y, so U = ’}/)\’CRQI’M’@nEwhAd}bCL}b‘.

Let P C Rys be the subalgebra generated by y1,...,y4.. Then

U =~ Ry,....0,. 00, VsCus
= 7P, Py ¥Cls
= 7Y \Vhy PYyClus
= ux.7” PyCls,
where we have used Lemma 4.21 for the second equality, Lemma 7.30 for the
third equality, the definition of u) . and Lemma 7.26 for the fourth equality.

Part (i) now follows since uy ¢ waCw(g C UneY Cd(;lw(;, whereas part (ii)
follows since 1, = 1 in the case n = 1 and PC’M; =Cs. O

Multiplying the equality in Lemma 7. 31(i) by +* on the right, we obtain
AMeCusy® = = uy, 7“Casv*. In particular,

COROLLARY 7.32. As a right v Cusy”-module, v»¢Cysv* is generated
by U c.

Note that by Lemmas 7.1, 7.27 and Corollary 7.32, we have *y)"CCA’dm/”
- C’d%“. Recall the left Cys-modules Nj defined by (7.5).

LEMMA 7.33. For any (A, ¢) € A(n,d) and j € J¢, we have yM¢N; C
C>a>\'

Proof. Recall that uy . = uy y”. We have
A,CN, _ )\,cé Cf>0 - C« C«>O . é é>0 .
YVEN; = 7VCa5(Co5 )ej = ureCas(Cly)es = unceneCas(Cls e ,

W w
where the second equality comes from Lemma 7.31(i) since 1,5 is the 1dent1ty
element of Cw(s, and the last equality holds by Lemma 7.26. Now e} ch51 5 is
non-negatively graded by Lemma 7.1(i), and deg(uy) = a) by Lemma 7.27, so

the lemma follows. O

Recalling (7.18) and the homomorphism © from Theorem 7.12, define the
Cys-submodule

Z,\,c ={ve T;Hc | vO(g) = erc(g)v for all g € &5} C T,\,c.
Clearly, Zyc C Zyc; cf. (7.22).
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LEMMA 7.34. We have uy . € ZA)HC.

Proof. By Lemma 7.26 and the definition of u) ., we have uy . € 7’\’CCA',\5€,\7C.
Hence, by Lemma 7.24, we get uy. € Zy.. So for any g € &), we have
uxeO(9) — exec(g)ure € VA’CNAVC. By Lemma 7.27, uy cO(g) — exc(g)urec is
homogeneous of degree ay. But 'y’\7CNf\Lfc = 0 by Lemma 7.33, so u) O(g) —
5>\,c(g)u)\,c =0. U

LEMMA 7.35. Let (A, ¢), (1, b) € A (n,d). Ifv € y*1Z) . is a homoge-
neous element of degree a,, then v = zuy . for some x € AHBCgsyNe.

Proof. By Lemma 7.24, we have v € 'y“’b(f'dgfy)"cé)\geA,c + 'y“’bNA7c. By
Lemma 7.33, fy“’bNi‘::: 0,s0v e'y“’bCA’d(;'y)"CCA’Agexc. Thus, by Lemma 7.31(ii),
we have v € 'y“’bCA'd(;uAchA'w(;e Ac- We know that C’wg is non-negatively graded,
so we have v = v1 + w9 for some homogeneous elements v, € fy“’bCA’d(gu,\chA'&se}VC
and vy € ’y“’bCA'dguAycéjfeA,c, with deg(vi) = deg(v2) = deg(v) = a,. By
definition (7.19) of N) ., we have vy € 'y“’bNA7c, whence vy = 0 by Lemma 7.33.
On the other hand, by Lemma 7.7, we have u,\ycé’géeA7c = Zuxe, SOV =1 €
’y“’bé’dguA,c, and the result follows by Lemma 7.26. ]

8. RoCK blocks and generalized Schur algebras
As in Section 5.4, we fix d € Z~¢ and a d-Rouquier core p of residue k.

8.1. Identifying Wy with v*C, 4. Recall from (5.17) that we have the
natural surjection
1I: épd — Cd(;/kerﬂ = Cp,d'
This yields the surjections
(8.1) I, : ywé'dgyw = CaY”, Iye: ’y/\’cédyy“ — 'y)"CCp,d'y‘“

for (A, ¢) € A®(n,d). For any = € Cys, we often denote by z its image II(x)
in C, 4.
We define the algebra homomorphism

(8.2) E=10,00: Wy —=C,a7",

where ©: W; — % ) »,dY” is as in Theorem 7.12. Our aim is to prove that
= is an isomorphism by generalizing the arguments of [Evsl7, §7], where a
similar statement is proved over a field containing an element of quantum
characteristic e. (This means that the field contains an element ¢ with 1+ ¢+
-4+ ¢*' = 0 and e is minimal such.) We begin with the case where d = 1,
when W, = Z.

LEMMA 8.3. For d = 1 and each a € {0,1}, the map E restricts to a

Z-module isomorphism of graded components Z¢ — YO
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Proof. By Theorem 7.12(ii), © restricts to an isomorphism Z° %7“@3717“’,
whence = restricts to a surjection Z* — *C7 9. Moreover, by (3.3) and
Lemmas 5.18 and 6.19, we have that Z* and v*C7 7* are free Z-modules of
the same rank, which completes the proof. ([

LEMMA 8.4. Let d =1 and j € J. Then C} e = Z(y1 — ye)e;.

Proof. By Lemmas 5.18 and 6.19, the Z-module C’g}lej = eng,lej is free
of rank 1. It suffices to prove that y := (y1 — ye)e; ® 1 generates C§717kej
over any field k, i.e., that y # 0 for any field k; cf. Remark 5.21. This is
proved in [Evs17, Prop. 7.2] for any field k containing an element of quantum
characteristic e, in particular, for e = 2. So we may assume that e > 2.
By Corollary 5.22, the algebra C, 1 has a symmetrizing form F of degree
—2. Since e > 2, the element j has a neighbor £ € J. In the rest of the
proof, we write z ;= x ® 1 € C, 1k for x € C,1. Recalling the elements
of C5 introduced in Section 7.2, note that a®4 # 0 in C;,L]k by Lemma 8.3.
So there must exist an element z € C},, such that F (za*7) # 0. Using
Theorem 7.12 and Lemma 8.3 again, we may assume that z = Z(a/*), and
hence (y; — ye)e; = £=(cej) = £E(al*aky) = £al*ak7 # 0. O

Now we return to the case when d € Z~q is arbitrary. By Lemma 4.33,
we have an embedding
(8.5) 1:Cs = Cuysy x5 2@ La-1)s € Cs ® C‘(d,l)g = (3'57(61,1)5 C Cys.
In view of Theorem 7.12(i), for any j € J, we have
(8.6) O(es[1)) = t(ey).
COROLLARY 8.7. The element y1v* € C, g belongs to the image of =.

Proof. We have the (non-unital) algebra homomorphisms

LA A e A
Q: Cs — Rcoont(p)Jr(S and  Qg: Cgs — chnt(p)+d6

defined as in (5.12). Recall the algebra homomorphism

A A A
¢ = CCOHt(P)JF‘Sv (d-1)5* Rcoont(p)-I—(S — Rcoont(p)+5, (d—1)d < Rcoont(p)—I—d(S

defined by (4.19). It follows easily from the definitions that o)y = Qgor: Cs —

R?g’nt(p)+d5, whence ¢(ker 1) C ker Q.

Let j € J. Identifying Cs ®C‘(d,1)5 with CA’(;’(d,l)(; C (s as usual, we have
in éd(;,
y1e; ® Lg_1)5 = t(yrej) € U(Z(y1 — ye)ej + ker Q)
(yl - ye)ej ® 1(d71)5 + L(ker Ql)
(

=7
CZ(y1 — ye)ej ® La—1s + ker g4,
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where we have used Lemma 8.4 for the first inclusion. Multiplying by v, we
get

(8:8) y17 =D _(1€6; @ Lig_1)s)7” € D _(Z(y1 — ye)ej ® 1(4_1)5)7" + ker Qg
jeJ et
= Z +0(c[1]e;[1]) + ker Qg,
jer

where the last equality holds by Theorem 7.12(i) and (8.6). Now the lemma
follows on applying II. O

THEOREM 8.9. The map Z: Wy — v“C), gv* is an isomorphism of graded
algebras.

Proof. By Theorem 7.12(iii), the algebra v~C, 47 is generated by Z(Wy)
together with the element y17v“. But y179* € Z(Wy) by Corollary 8.7, so = is
surjective. By Corollary 6.32, the algebras Wy and v*C), 47 are Z-free of the
same rank, and the result follows. O

LEMMA 8.10. Let k be a field with chark = 0 or chark > d. The left
module C, 47y is a projective generator for the algebra C,, 4.

Proof. As C, 41" is projective, it is enough to show that for every simple
Cpax-module L, we have L = Homg, , . (Cpaxy”, L) # 0. But L may also
be viewed as a simple Cgs-module via the natural surjection Cysy — C), gk
By Lemma, 7.13, the module Cys vy is a projective generator for Cys ., whence
YL = Homédé’k(éd(;,k’yw, L) #0. ([

COROLLARY 8.11. The C, 4-module C, 4v“ is faithful.

Proof. By Lemma 5.18, the algebra C, 4 is Z-free, so it is enough to show
that the C), g g-module C,, 407 is faithful. By Lemma 8.10, this module is a
projective generator for C), 4, and the result follows. O

8.2. Identifying YVCasy” with My . Let n € Zsg and (A, ¢) € A(n,d).
By Theorem 7.12, the right vwé'd(;’yw—module 'y’\’céd(;'yw becomes a right Wy-
module via the map ©. Moreover, by Theorem 8.9, the right 4v“C,, 34“-module
’y’\’cCp’dfy“’ becomes a right Wy;-module via the map =. In other words,

(8.12) vz :=v0(z) (ve APeCusy, z € Wa),
(8.13) vz = vE(2) (v € YMC,aV”, 2 € Wy).

It is clear from the definitions that IT) : ’y’\’cCA'd(;'yw — 7’\7°Cp,d'y“ is a surjective
homomorphism of Wi-modules.
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Recall the colored permutation Wy-module M) . with generator my . =
I)c ® ey defined by (3.11) and the element uy . € MeCys7* introduced in
Section 7.4.

LEMMA 8.14. There is a degree-preserving Wa-module homomorphism
Ore: Mye — ¢y CasV™, mae = Un e

Proof. By (7.21) and Lemma 7.26, we have uy cO(e) ¢) = Upc€xrc = U e
By Lemma 7.34, for any g € &), we have uy.O(9) = exc(g)ure. Using
Lemma 7.27, we deduce that there is a degree-preserving W) .-module ho-
momorphism alty. — q‘“*v)“cCA’dww, Iye + upre. This map induces a
Wg-module homomorphism 6y . as in the statement of the lemma. O

From now on, we write ) ¢ := Iy c(urc) € Cpq.

THEOREM 8.15. For any (A, ¢) € A®(n,d), there is an isomorphism of
graded Wa-modules:

. ~ o —an _
e M)\,c —q aA'V cCp,d7w> Mi,c F7 U)e-

Proof. Let 0 . be as in Lemma 8.14. We have a homomorphism of Wj-
modules

— ) —ay A, _
Me =y colyc: Mye— ¢y C, 07", mye — Uye.

By Corollary 7.32, the right v“C,, ;4“-module q*akfy)"CCp,dfy“’ is generated by
Ux,c. Using Theorem 8.9, we conclude that 7, . is surjective. By Corollary 6.31,
the Z-modules M) . and q_‘“fy)"cC’p,dfyw are free of the same (ungraded) rank,
and the theorem follows. (]

8.3. The algebra E(n,d) and the double Dg(n,d). Fix n € Zsq. Recall
the tuple ¢® € J¢~1 the modules M* = M), co and the algebra S%(n,d) from
Section 3.2. Let A € A(n(e — 1),d). Define the idempotent

fA — ,_y)\,co‘
Recall the integer
n(e—1)
a) = —e Z AM(Ae—1)/2 = deg(UA,CU);
t=1

see (6.4) and Lemma 7.27. In the sequel, we abbreviate
UN = Uy 0, U\ 1= Uy 0, €\ 1= €30, ©€)I=E€)a0, E)I=E)D,
o . A - AA — . A~ - A
Or =0y co: M™ = q " f*Cysv, nai=mpe0: M — ¢ f2Cp a0",

where 0y o is the homomorphism of Lemma 8.14 and 7, o is the isomorphism
of Theorem 8.15.
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Define the left C), s-module
I(n,d) = @ qa*def’\
AeA(n(e—1),d)
and the algebra
(8.16) E(n,d) := Endc, ,(I'(n, d))°P.

Let A\, 1 € A(n(e —1),d). We identify the (graded) Z-module g® =% frC, 4 f
with the Z-submodule of E(n,d) consisting of the endomorphisms that send
the summand ¢**C, 4f* to ¢*C\ 4 f* and send the other summands to zero.
Specifically, an element x € ¢~ fHC), 4 f A corresponds to the homomorphism
given by the right multiplication:

qChaft — quCp,df/\, V= VT
Thus,

(8.17) E(n,d) = P ¢ mrCuf
A pueA(n(e—1))
Let x € qak—aﬂf"C’p’df’\. Recalling the right Wy-module structure (8.13),
we have a Wi-module homomorphism

A, = g fPC g, v 2.

Identifying g—** fACp,dfyw with M* and ¢~ frC, qy” with MH via the isomor-
phisms of Theorem 8.15, we obtain an element ®(z) € Homy, (M*, M*). In
other words,

®(z): M — M*, angl(mnA(v)) (v e M™).

Recall from Section 3.2 that Homyy, (M*, M*) is identified with £,S%(n, d)é,.
The assignments z — ®(x) for all \, u € A(n(e—1)) and allz € ¢~ frC,, 4 f
extend uniquely to a Z-linear map

®: E(n,d) — S%(n,d).
LEMMA 8.18. The map ®: E(n,d) — S%(n,d) is a homomorphism of
graded algebras.

Proof. That ® is a homomorphism of ungraded algebras follows easily
from the definitions. Let x € ¢\ frC, 4 f* be a homogeneous element for
some \, 1 € A(n(e —1),d). Then, by definitions, ®(z): m* — m*z for some
homogeneous z € Wy such that zuy = u,Z(z) in ¢~ f*C, 4v*. Hence, ®(x)
is homogeneous of degree

deg(z) = deg(E(z)) = deg(x) — (ax — ay) + deg(tir) — deg(t,) = deg(),
where the last equality is due to Lemma 7.27. U
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COROLLARY 8.19. The algebra homomorphism ®: E(n,d) — S%(n,d) is
mjective.
Proof. If not, then there exist A\, u € A(n(e —1),d) and 0 # z € f”Cp,df)‘

such that a:f’\Cp,d'y“ = 0, whence xC, 4v* = 0. But this is impossible by
Corollary 8.11. O

LEMMA 8.20. We have ®(E(n,d)) 2 S%(n,d)°.

Proof. Suppose that A\, € A(n(e — 1),d) and h € Homyy, (M?*, MH)°.
Then there exists z € W9 such that h(m*) = m*z. Hence, m#ze) = m*z and
mtzg = ex(g)m#z for all g € &). By Lemma 8.14, (8.12) and (7.21), it follows
that the element

v = Oy(mhz) = u,0(2) € ¢ % fFCy57”

has degree zero and satisfies v = vey and vO(g) = ex(g)v for all g € &,.
By Lemma 7.35, there exists z € f#Cysf> such that v = zuy. Applying the
surjection II to this equality and writing 7 := II(z) € ¢®*~% f*C, 4, we have
u,=(z) = Fuy; of. (8.2). But @y = ny(m?) and 4,Z(z) = nu(m*z), so the
map ®(Z) sends m* to m#z. Thus, ®(Z) = h, so h € ®(E(n,d)). The lemma
follows. O

Recall the algebra homomorphisms i*: Z — S%(n,d) from (3.15).

LEMMA 8.21. For any A € A((n — 1)(e — 1),d — 1), we have i*(Z) C
O(E(n,d)).

Proof. Let z € e;Zey, for some k,j € J. Recall the embedding ¢: C’5 — C’dg
from (8.5). It follows from Theorem 7.12(i) and (8.6) that there exists = €
e;Csey such that ©(z[1]) = «(x). Note that

Use = €p Q U\ € Cs® CA’(CH)J = éa,(dq)a C Cus,

and uy; is described §imilarly. HenAc‘e, L(az)y;\k = us,u(x) = us,;0(2[1]). Writing
z=T(u(2) A = FN1(u(2)) € f’\JCp,df/\k, we have

TUs, = U3, T = U5, 2(2[1)),

whence
_ Nk _ _ \k _ _ _ I Vi
@(:E)(m)‘ ) = ﬁ;jl(wn;k(mA ) = U;\jl(xuj\k) = U;\jl(uj\j:(z[l])) = m)\JZ[l]
. Lk
— 2.
So ®(Z) = i*(2), and the lemma follows. O

LEMMA 8.22. For every field k, the k-algebra E(n,d)y is symmetric.
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Proof. By Corollary 5.22, the algebra C, g is symmetric. It follows
from (8.16) that E(n,d)x = Endc, ,, (I'(n,d)x)°P. Since I'(n, d) is a projective
C,.4x-module, the lemma follows by [SY11, Prop. IV.4.4]. O

Recall the subalgebra T4(n,d) C S%(n,d) from Section 3.2.

THEOREM 8.23. Suppose that n > d. Then we have an isomorphism of
graded algebras ®: E(n,d) — T%(n,d).

Proof. By Lemma 8.18 and Corollary 8.19, the map ®: E(n,d) — S%(n, d)
is an injective homomorphism of graded algebras, so E(n,d) = ®(E(n,d)). By
Lemmas 8.20 and 8.21, we have T%(n,d) C ®(F(n,d)). By Lemma 8.22, for
every prime p, the algebra ®(E(n,d)) ®z F, is symmetric. An application of
Theorem 3.17 completes the proof. O

COROLLARY 8.24. Let n > d. Then E(n,d) = Dg(n,d).
Proof. This follows from Theorems 3.16 and 8.23. O

Ezample 8.25. Recall the idempotents £y € S%(n, d) defined in Section 3.2
for any A € A(n(e —1),d). It follows from the definitions that for all A, u €
A(n(e —1),d), the homomorphism ¢ maps the component ¢%*~% f”Cp,de of
the decomposition (8.17) of E(n,d) into the component &,5%(n(e — 1),d)é) =
Homyy,(M*, M*) of S%(n,d). In this example, we consider the case when
e=2,d=2,n=2and A =(2,0), and we identify (I>(f)‘Cp7df’\) as an explicit
subalgebra of Endyy, (M?).

Let z1,z9 € Endy, (M A) be the endomorphisms defined by the properties
that z1(m?*) = m*(c[1] +c[2]) and z2(m?) = m c[1]c[2]. Then {1 := &y, x1, 22}
is a Z-basis of the commutative algebra Endyy, (M?), and x? = 2x5, x129 = 0.
Moreover, it is easy to see as in [EK17, Ex. 4.28] that £,7%(n, d)&,, is the Z-span
of {1,z1,2x5}, so §>\Tz(n, d)&, is isomorphic to the truncated polynomial al-
gebra Z[z]/(23), with x1 corresponding to z. Thus, Theorem 8.23 asserts, in
particular, that @(fAvadf’\) = Z1 @ Zxy1 ® 2Zx5. This assertion can also be
verified by direct calculations using

(1) the defining relations of the affine zigzag algebra 1101 Casloton (see [KM17a,
Def. 4.4]); and

(2) the fact that y17* = yiloior = a(yr — y2)loio1 in Cpo for some a € Z
(see (8.8)).

8.4. Morita equivalences. Let A and B be graded Z-algebras. A graded
functor A-mod — B-mod is a functor F equipped with an isomorphism be-
tween g o F and F o q. A graded functor F is a graded equivalence if it is an
equivalence of categories (in the usual sense). The graded algebras A and B are
graded Morita equivalent if there is a graded equivalence between A-mod and
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B-mod. As noted, for example, in [LBVdABVOSS, §I1.5.3] the graded analogue
of Morita theory holds. In particular, A is graded Morita equivalent to B if
and only if there exists a graded projective left A-module P that is a projective
generator and such that B = End4(P)°P.

For a graded algebra A, recall the notation ¢(A) from Section 2.3.

LEMMA 8.26. Let A be a graded Z-algebra that is finitely generated as a

Z-module, and let ¢ € A° be an idempotent. Suppose that for every prime p,
we have £(Ag)) = (((e®1)Ag, (e®1)). Then the algebras A and e Ae are graded
Morita equivalent.

Proof. We write e := e® 1 € Apr for each prime p. It suffices to show
that the left A-module Ae is a projective generator for A or, equivalently, that
AcA = A. Assume that AcA # A. Then there exists a prime p such that
Ag, A, # Ag,. If L is a composition factor of Af /Af eAg , then eL = 0,
which contradicts the assumption that E(A]pp) = f(eAFpe), for example, by
[Gre07, Th. 6.2(g)]. O

Let A € A(n(e — 1),d). It follows from the definitions in Section 6.1
that I(\, ) is obtained from i()\, c®) by replacing each subword of the form
i"™ that is not preceded by or followed by i with (™. Therefore, for any
M\ i € A(n(e—1),d), we either have f* = f* or fAf# = f#f* = 0. We have an
equivalence relation on A(n(e —1),d), with A being equivalent to p if and only
if fA = f*. Let X C A(n(e — 1),d) be a set of representatives of equivalence
classes. Define

f=> feCu

AEX

Then f? = f is a homogeneous idempotent.
LEMMA 8.27. The algebra E(n,d) is graded Morita equivalent to fC, qf.

Proof. Consider the left fC, ;f-module
ffn,d)= B ¢ fCoaf
AeA(n(e—1),d)

There is a surjective fC, 4f-module homomorphism fI'(n,d) — fC,qf that
is the identity on the summands fC, 4 f* for A € X and zero on the other
summands. Hence, fT'(n,d) is a projective generator for fC,qf. It is easy to
see that E(n,d) = Endyc, ,7(fT'(n,d))°P, since for all A, u € A(n(e —1),d), we
have

Homjc, (6% fCpaf™, ¢ fCpaf*) = ¢~ [ fCpaf* = ¢~ f1Clpa f.

The lemma follows by graded Morita theory. O
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Write o = cont(p) + dé, so that RA0 is the RoCK block of Section 5.4.
For any m, h € Z>(, we denote by S(m, h) the usual Schur algebra over Z, as
in [Gre07].

THEOREM 8.28. Suppose that n > d. Then the Z-algebras R0 and
Dq(n,d) are graded Morita equivalent.

Proof. By Remark 5.21, there is a homogeneous idempotent e € RQO
such that C, 4 = eRQOe. Hence, by Lemma 8.27, there exists a homogeneous
idempotent ¢ € R0 such that F(n,d) is graded Morita equivalent to e RAo¢.
By Corollary 8.24, we have E(n,d) = Dg(n,d), so eRA%¢ is graded Morita
equivalent to Dg(n,d). So it suffices to show that eRMo¢ is graded Morita
equivalent to RA0.

Let p be a prime, and write e := e®1 € RQ?]FP‘ By the first paragraph, the

algebras 5R2°I—F e and Dg(n, d)I—Fp are graded Morita equivalent. In particular,
=P
E(eRS%ps) = {(Dg(n,d)g,). By Lemma 8.26, it remains to show only that
A
UR,%,) = tDq(n,d)g,)-
Since the algebra Dg(n,d)f, is non-negatively graded, we have £(Dg(n,d)g,)
= {(Dg(n, d)% ). By [EK17, (7.2) and Lemma 7.3] together with Theorem 3.16,
p

Dg(n,d)? = &y Sn,d1) ®---®8(n,de—1).
(d1y.mmrde—1)EN(e—1,d)

By [Gre07, Th. 3.5(a)], for all b < n, we have {(S(n, h)g,) = [Z?(h)]. 1t follows

that £(Dg(n,d)g,) = |227(d)|. On the other hand, by Theorem 5.7, we have

E(Rg% ) = |227(d)|, and the proof is complete. O
=P

Thus, we have proved Theorem A. In conclusion, we consider the case
where we work over a field of sufficiently large characteristic; cf. the discussion
in Section 1.

PROPOSITION 8.29. Suppose that n > d and k is a field with chark = 0
or chark > d. Then the RoCK block R;\f’k, the Turner double Dg(n,d)x and
the wreath products Wy and (Ré\f{)@)d x kS, are all graded Morita equivalent
to each other. ’

Proof. We write x :== x ® 1 € Ay for any algebra A and any x € A.
By (the proof of) Theorem 8.28, the algebras Rggk, Cy.ax and Dg(n,d)y are
graded Morita equivalent. By Lemma 8.10, the module C), 47 is a projective
generator for C, 41, so C, 4 is graded Morita equivalent to

Endg, ;. (Cpary”) =77 Corary” = Wik,
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where the second isomorphism comes from Theorem 8.9. Recall the idempotent
ey from (7.9). By the d = 1 case of Lemma 8.10, the module RgxﬂieJ is a

projective generator for ng\’ﬂ?{. Hence, setting £ := e?d, we have that ((Rfs\,ﬂi)@d X
kG4)€ is a projective generator for (R52)®? xk&y. So (R30)®4 x kG, is graded
Morita equivalent to

E((RD)® ) kBg)€ = (esRypes)® ) kSy = (Zy) 1 kS g = Wy,

where for the second isomorphism we use the fact that e JRQJ?(e J = Zy; see
[KM17a, Th. 5.24]. O

Index of notation

1; standard idempotent if 4 € I¢ §4.2
1; divided power idempotent if 4 € I§;, §4.4
Cuas (imaginary) semicuspidal algebra (4.26)
Owg parabolic subalgebra of Cys 87.1
Cha algebra Morita equivalent to RoCK block Ré\ﬁnt(p)yd (5.17)
CT(u; A, ¢) colored tableaux of shape p and type (A, ¢). §6.2
) null-root (4.1)
e fixed element of Z>5; quantum characteristic

exe indempotent in Wy; identity of the parabolic Wy . C Wy  (3.8)
exe idempotent in Cys (7.17)
€; idempotent in Rgs (7.2)
Exe sign function on &y (3.10)
F (arbitrary) ground field

$ root system of type Agl_)l 84.1
e Gelfand-Graev idempotent (6.3)
1 Z/eZ =A0,...,e — 1}; vertices of Dynkin diagram A£131 84.1
I%: 1 giv words of weight #; divided power words of weight 6 84.4
I semicuspidal words §4.5
i non-unital algebra homomorphism Z — S%(n, d) (3.15)
J {1,...,e— 1} identified with a subset of I §3.1
K residue of Rouquier core p 85.4
Ls,; special cuspidal Rs-modules 84.5
[A] Young diagram of a (multi)partition A §2.1
A(n,d) compositions of d with n parts §2.1
A (n,d)  colored compositions (3.7)
A®(n,d) S-multicompositions of d with n parts §2.1
4 fixed word appearing in the character of Ls ; (6.1)
I\ c) special words used to define Gelfand-Graev idempotents 86.1
My.c colored permutation module over Wy (3.11)

P P(n) partitions; partitions of n §2.1
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Std(A\ u,1)
TA,C
T%(n,d)
UN,c

Wa

G
Z
Z/\ c

)

[Alp87]

[Ari96)

[Ari02]

[Bro90]

[BK09a]

[BKO9b]

[BKW11]

partitions with core p; partitions with core p and weight d  §5.1

S-multipartitions §2.1
S-multipartitions of d §2.1
non-negative part of the root lattice 84.1
KLR algebra; cyclotomic KLR algebra §4.2
generalized Schur algebra §3.2
symmetric group on n letters

i-standard tableaux of shape A\ u §5.2
imaginary tensor space T, ¢, 0--- 0T\, c. §7.3
algebra isomorphic to Turner double Dg(n, d) §3.2
special element of édé §7.4
wreath product algebra Z®¢ x Z&, (3.5)
signs corresponding to j € J (3.9)
zigzag algebra with standard elements a/* (), €j 83.1
sign invariants in T . §7.3
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