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The algebraic hull of the
Kontsevich–Zorich cocycle

By Alex Eskin, Simion Filip, and Alex Wright

Abstract

We compute the algebraic hull of the Kontsevich–Zorich cocycle over

any GL+
2 (R) invariant subvariety of the Hodge bundle, and derive from

this finiteness results on such subvarieties.

1. Introduction

The space of Riemann surfaces equipped with a holomorphic 1-form car-

ries a natural action of GL+
2 (R). The group of diagonal matrices corresponds

to the Teichmüller geodesic flow and can be viewed as a renormalization pro-

cess for certain flows on surfaces. This renormalization process has applica-

tions to a class of dynamical systems including interval exchange transforma-

tions and flows on surfaces. For an introduction and survey of these topics,

see Forni–Matheus [FM14], Masur–Tabachnikov [MT02], Wright [Wri15b], and

Zorich [Zor06].

Topological and measure rigidity results for the GL+
2 (R)-action due to

McMullen [McM07] and Eskin, Mirzakhani, and Mohammadi [EM18],

[EMM15] show many similarities with locally homogeneous spaces and Rat-

ner’s Theorems. In particular, if (X,ω) is a Riemann surface with holomor-

phic 1-form, the closure in the stratum of Abelian differentials of the orbit

GL+
2 (R) · (X,ω) is an immersed orbifold given in certain local coordinates by

linear equations. Such immersed sub-orbifolds, usually called “affine invariant

submanifolds,” are subvarieties of strata of Abelian differentials [Fil16b].

Our main results analyze the Kontsevich–Zorich cocycle, which encodes

parallel translation of cohomology classes along GL+
2 (R) orbits. When trans-

lation surfaces are described by polygons in the plane, the GL+
2 (R)-action

distorts the polygons linearly. The Kontsevich–Zorich cocycle encodes the

procedure of cutting and regluing the polygons to a less distorted shape, and
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hence carries the mysterious part of the dynamics of the GL+
2 (R)-action. It

has been studied extensively; see, e.g., [For02], [FMZ14a].

The algebraic hull of a cocycle is, informally speaking, the smallest alge-

braic group into which the cocycle can be conjugated [Zim84]. We analyze the

algebraic hull of the Kontsevich–Zorich cocycle over an arbitrary affine invari-

ant submanifold M. Theorem 1.1 computes it in terms of monodromy, and

further results on monodromy determine precisely some parts of the algebraic

hull. Theorem 1.3 shows that for any sequence of affine manifolds Mi ⊂ M
that equidistribute inside M, the algebraic hulls of M and Mi eventually

agree, up to finite index and compact factors.

The main applications of these results is to finiteness of orbit closures.

Theorem 1.5 implies that in any genus, there are only finitely many orbit clo-

sures, with only two kinds of exceptions. First, there are always the square-tiled

surfaces, which generate Teichmüller curves. Second, there could be finitely

many families of orbit closures of a very special kind, and such families are

themselves contained in finitely many higher-dimensional orbit closures. Theo-

rem 1.5 is one of many results in mathematics stating that when infinitely many

“special” subvarieties of a given dimension exist it is because they are contained

in a larger dimensional special subvariety, whose existence implies the existence

of the smaller special subvarieties. Compare to the André–Oort and Zilber–

Pink Conjectures. (For us the “special” subvarieties are the GL+
2 (R) invariant

ones.)

Methods related to those in the current paper were used by Matheus–

Wright [MW15] and Lanneau–Nguyen–Wright [LNW17] to prove finiteness

results for Teichmüller curves. Very different methods, which unlike ours

are in principle effective, have been used by McMullen, Möller, Brainbridge,

and Habegger to prove finiteness results for Teichmüller curves [McM05b],

[McM05a], [M0̈8], [BM12], [BHM16]. McMullen classified all orbit closures in

genus 2 [McM07].

Detailed statements. LetM be an affine invariant submanifold, equipped

with the flat bundles of absolute cohomology H1 or relative cohomology H1
rel.

The fibers of these bundles are the cohomology groups of the Riemann surfaces

parametrized by M. The topological trivializations of the bundles lead to a

flat connection, and parallel transport along the orbits of GL+
2 (R) gives the

Kontsevich–Zorich cocycle.

Suppose now that V is a subbundle of H1 or H1
rel; for instance, V could

be the entire bundle. The algebraic hull of the Kontsevich–Zorich cocycle on

V is defined to be the smallest linear algebraic group such that there exists a

measurable choice of basis in each fiber of V such that all matrices obtained by

parallel translation along GL+
2 (R) orbits in M give matrices in that group. It
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is a nontrivial fact that the algebraic hull is well defined up to conjugacy. We

denote the algebraic hull by AV (M) or, when M is clear from context, just

AV , and similarly we denote the Zariski closure of monodromy as GV (M) or

just GV .

Let p : H1
rel → H1 denote the forgetful map from relative to absolute

cohomology. For any flat subbundle V ⊂ H1
rel, it is known that p(V ) is the

direct sum of simple subbundles [AEM17].

Consider the tautological bundle T ⊂ H1
rel, defined as the span of the real

and imaginary parts of the holomorphic 1-form. The bundle T is a fundamental

example of a bundle that is GL+
2 (R)-invariant, but not flat (unless M is a

Teichmüller curve). We call p(T ) the tautological bundle of H1.

Theorem 1.1. Let M be an affine invariant submanifold, and let V be

any flat subbundle of H1 or H1
rel. The algebraic hull AV is the stabilizer of the

tautological plane in the Zariski closure of monodromy GV .

If V does not contain the tautological plane, then the algebraic hull coin-

cides with the Zariski closure of monodromy.

Recall that any affine invariant submanifold M has a tangent bundle

TM ⊂ H1
rel, and we may also consider its image p(TM) ⊂ H1 in absolute

cohomology. If the equations defining M have entries in some number field

larger than Q, then the Galois conjugates of the above bundles give additional

flat subbundles.

The next result follows from Theorem 1.1 and additional results on Zariski

closure of monodromy. Even for strata of abelian differentials, the result gives

new, nontrivial information on the algebraic hull.

Theorem 1.2. Let M be an affine invariant submanifold.

(1) The algebraic hulls Ap(TM) and ATM are the full group of endomorphisms

that respect the symplectic form, the tautological plane and, in the case

of TM, the kernel of the map p from relative to absolute cohomology.

(2) The algebraic hull of a nontrivial Galois conjugate of p(TM) or TM is the

full group of endomorphisms that respect the symplectic form and, in the

case of TM, the kernel of the map p from relative to absolute cohomology.

An endomorphism respects ker(p) if it acts as the identity on ker(p); in

that case it respects the symplectic form if the induced map on the image in

H1 preserves the symplectic form.

The next results will be essential for proving finiteness statements on orbit

closures.

Theorem 1.3. Fix an affine invariant submanifold M, and let V ⊂ H1

or V ⊂ H1
rel be a flat subbundle over M. For any affine invariant submanifold

M′ ⊂M, we have the containment of algebraic hulls AV (M′) ⊂ AV (M).
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Furthermore, there is a finite union B of proper affine invariant subman-

ifolds of M such that if M′ is not contained in B, then AV (M′) and AV (M)

are equal up to finite index and compact factors.

The second statement implies eventual agreement (up to finite index and

compact factors) of algebraic hulls for infinite sequences of manifolds Mi

equidistributing inside M.

The locus B is contained in a locus analogous to one where the second

fundamental form of the Hodge bundle fails to have full rank. If the algebraic

hull of M is connected and has no compact factors, then the theorem gives

that the algebraic hulls ofM andM′ are exactly equal. This is the case when

M is a stratum, and it gives the following consequence, where we restrict to

square-tiled surfaces because they are abundant and much studied.

Corollary 1.4. Let Mi be a sequence of closed GL+
2 (R) orbits of genus

g square-tiled surfaces, and assume Mi equidistributes to a stratum. Then

AH1(Mi) = Sp(2)× Sp(2g − 2) for all i sufficiently large.

The key finiteness statement below involves the notions of rank and degree

of an affine invariant manifold. Recall that an affine manifold is cut out by

linear equations in period coordinates of an ambient stratum and has a tangent

space. There is a smallest field such that the coefficients of the linear equations

can be chosen in it, and it is called the field of affine definition. It is a number

field, and for brevity its degree over Q is called the degree of the manifold.

The rank of the manifold is defined as half the dimension of the projection of

its tangent space to absolute cohomology. For strata, the rank is the genus of

the parametrized Riemann surfaces, and for Teichmüller curves the rank is 1.

More details on the field of affine definition can be found in [Wri14].

Theorem 1.5. In each stratum of Abelian differentials, all but finitely

many affine invariant submanifolds have rank 1 and degree at most 2.

In each genus there is a finite union of rank 2 degree 1 affine invariant

submanifoldsM such that all but finitely many of the affine invariant subman-

ifolds of rank 1 and degree 2 are a codimension 2 subvariety of one of theseM.

A special case of of the first statement in Theorem 1.5 is the following.

Corollary 1.6. In each genus, there are only finitely many Teichmüller

curves with trace field of degree greater than 2.

Affine invariant submanifolds of rank 1 and degree 1 consist of branched

covers of tori, and these are dense in every stratum.

The strata in genus 2 and Prym loci in genus 3, 4, 5 are examples of rank

2 degree 1 affine invariant submanifolds; these are known to contain dense

sets of codimension 2 affine invariant submanifolds of rank 1 and degree 2 by

independent work of McMullen and Calta for the case of genus 2 and work
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of McMullen for the Prym loci [Cal04], [McM03], [McM06]. A new example

of a rank 2 degree 1 affine invariant submanifold was discovered and shown

to contain infinitely many rank 1 degree 2 affine invariant submanifolds in

[MMW17], and one additional example is forthcoming in [EMMW].

Theorem 1.7. Any rank 2 degree 1 affine invariant submanifold M con-

tains a dense set of codimension 2 affine invariant submanifolds of rank 1 and

degree 2.

Theorem 1.7 is a consequence of the phenomenon discovered by McMullen

in [McM03].

For some results related to ours, see [Ham14].

Remark. Mirzakhani conjectured that the only invariant subvarieties of

ΩMg of rank 2 or more, in the sense of [Wri15a], are those coming from strata

of 1-forms or quadratic differentials [ANW16, Conj. 1.3]. Some rank 2 coun-

terexamples to the conjecture were constructed in [MMW17] and [EMMW].

It follows immediately from Theorem 1.5 that there can be only finitely many

counterexamples to the conjecture in any fixed stratum.

Additional applications. Forthcoming work will use results of this paper

to study totally geodesic submanifolds of Teichmüller space [Wri] as well as

marked points and the illumination and security problems [AW].

A more general context for Theorem 1.3. Although the proof of Theo-

rem 1.3 is presented in the context of the GL2R-action on strata of abelian

differentials, the result holds more generally in the context of cocycles over

group actions and is based on the following two assumptions. First, for any

invariant measure, the measurable and continuous algebraic hulls of the co-

cycle should coincide; i.e., any measurable reduction of the structure group

of the cocycle in fact agrees a.e. with a continuous one (over the support of

the measure). Second, any sequence of ergodic invariant probability measures

should equidistribute, along a subsequence, to another such measure, and the

supports of the subsequence should be contained in the support of the limit

measure.

On the other hand, the cohomology groups that determine the cocycle also

provide coordinate systems for the underling strata and affine submanifolds.

Both Theorems 1.1 and 1.2 use this structure in an essential way.

Organization. Section 2 gives general background on algebraic hulls, and

Section 3 proves Theorem 1.1. Section 4 gives results on Zariski closure of mon-

odromy, which together with Theorem 1.1 imply Theorem 1.2. Section 5 proves

Theorem 1.3, which is applied in Section 6 to prove Theorem 1.5. Section 6
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also establishes Theorem 1.7. The two appendices extend results of [Fil16a]

and show the equivalence of two different definitions of algebraic hull.

Acknowledgements. The proof of Theorem 1.7 arose from conversations

with Ronen Mukamel. We are grateful to Brian Conrad for pointing out the

reference [GP11], to Curtis McMullen for comments on a previous draft, and

to Amir Mohammadi for helpful conversations about algebraic groups.

This research was partially conducted during the period AW and SF served

as Clay Research Fellows. The research of AE is partially supported by NSF

grants DMS-0905912 and DMS-1201422.

2. Algebraic hulls

This section introduces algebraic hulls in the form that they will be used

in this paper. Our definition is slightly different from Zimmer’s [Zim84, Ch. 4];

in Appendix B (see Section B.1) we will show it is equivalent.

Chevalley ’s Theorem. The motivation for the definition of algebraic hull

used in this paper is provided by the following result [Zim84, Prop. 3.1.4],

sometimes called Chevalley’s Theorem. Let G be an affine algebraic group,

acting faithfully on a vector space V . This gives an inclusion G ⊂ GL(V ).

Below, a standard tensor operation refers to taking direct sums, duals, or

tensor products, in any order and any finite number of times. That is, a

standard tensor operation is any finite direct sum of representations of the

form V ⊗i ⊗ (V ∨)⊗j for i, j ≥ 0. (Since exterior and symmetric products are

contained in such representations, they could also be used below.)

Theorem 2.1. For any algebraic subgroup H ⊂ G, there exist a repre-

sentation S(V ) constructed from V by standard tensor operations and a line

l ⊂ S(V ), such that H is the stabilizer of l in G.

Similarly, for any reductive algebraic subgroup H ⊂ G, there exist a repre-

sentation S(V ) constructed from V by standard tensor operations, and a vector

v ∈ S(V ), such that H is the stabilizer of v in G.

For example, the diagonal subgroup of SL2(R) stabilizes the quadratic

form dx·dy, and the upper-triangular group stabilizes the horizontal axis in R2.

Statements of Chevalley’s Theorem do not always include that V is constructed

by standard tensor operations, but this is implicit in the proof, which can be

found, for example, in [Hum75, §11.2]. To connect to the statement in [Zim84,

Prop. 3.1.4], first note that for an algebraic group G ⊂ GL(V ), the tensor

products V ⊗i⊗ (V ∨)⊗j contain all the regular (i.e., algebraic) functions on G,

and therefore any other algebraic representation G→ GL(W ) will be contained

in some direct sum of standard tensor operations on V . For the statement for

reductive groups, by definition a line invariant under a reductive group will

have an invariant complement; this determines a projector from the ambient
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representation to the line, which is now an element of another representation.

The reductive group can be defined as the one that preserves the projector.

The connected component of the identity of an algebraic group is not

always an algebraic group. For example, the connected component of the

identity of GL2(R) is the positive determinant matrices, and this is not an

algebraic subgroup of GL2(R). Non-algebraic subgroups cannot arise as a

stabilizer as in Theorem 2.1.

Cocycles. Suppose now that a groupA has an ergodic probability measure-

preserving action on a measure space (X,µ). A cocycle over this action is a

vector bundle V → X with a lift of the action of A to V by linear transfor-

mations on the fibers. Below, the fiber of V above a point x ∈ X will be

denoted Vx.

Definition 2.2 (Algebraic Hull). The algebraic hull for a cocycle V → X

over an A-action is the collection of all groups Gx ⊂ GL(Vx) such that Gx is

the largest group preserving the fibers of all the A-invariant line subbundles

of tensor power constructions on V . Similarly, the reductive algebraic hull

is the collection of the largest groups preserving, in each fiber, the fibers of

A-invariant sections of tensor power constructions on V .

The groups Gx are defined for µ-a.e. x ∈ X. The definition naturally ex-

tends to give measurable, continuous, real-analytic, etc., algebraic hulls, where

the corresponding adjective is imposed on the line subbundles or sections defin-

ing the algebraic hull.

Remark 2.3.

(i) Definition 2.2 defines the algebraic hull to be a collection of groups Gx ⊂
GL(Vx) above µ -a.e. point x. In Appendix B we show that the conjugacy

class of Gx is independent of the choice of µ-generic point x and is equal

to Zimmer’s definition of algebraic hull.

(ii) Algebraic varieties satisfy the finite chain condition (i.e., the Noetherian

property), so in the definition above only finitely many lines, resp. tensors,

are required. In fact, by Chevalley’s Theorem 2.1, a single one suffices.

(iii) From the results in [AEM17] the algebraic hull of the Kontsevich–Zorich

cocycle on H1 is automatically reductive.

3. Computing the algebraic hull

3.1. Setup. In the setting of the Kontsevich–Zorich cocycle, we have the

action of GL+
2 (R) on a stratum of translation surfaces, and an affine invariant

submanifoldM equipped with a Lebesgue class probability measure, invariant

and ergodic under SL2(R). Each bundle in the short exact sequence

0→ ker(p)→ H1
rel

p−→ H1 → 0(3.1)
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is equipped with a flat connection inducing the Kontsevich–Zorich cocycle for

the action of SL2(R). The bundles in (3.1) are taken to be real; i.e., the fibers

are given by cohomology with real coefficients. (Parts of Section 5 and the

first appendix are exceptions; when we must refer frequently to the Hodge

decomposition it is more convenient to use the complexified bundles.) By

passing to a finite cover of the ambient stratum (where zeros are labeled),

assume that the bundle ker(p) is in fact trivial. Associated to the short exact

sequence (3.1) is the sequence of groups denoted

0→ Hom
Ä
H1, ker(p)

ä
→ Aut

Ä
H1

rel

ä
→ Sp(H1)→ 0.(3.2)

Here Aut(H1
rel) is the group of automorphisms of H1

rel that preserve (i.e., act

as the identity on) ker(p) and act symplectically on H1. It can be written as a

semi-direct product of the two other groups, but only after a choice of splitting

H1 → H1
rel.

An element ξ ∈ Hom(H1, ker(p)) induces a unipotent linear automorphism

of H1
rel defined by v 7→ v + ξ(p(v)). The map ξ 7→ (v 7→ v + ξ(p(v))) identifies

Hom(H1, ker(p)) with the subgroup of automorphisms of H1
rel acting trivially

on H1.

3.2. Equivariant sections and bundles. SupposeW is some bundle overM,

such that the GL+
2 (R)-action on M lifts to W (e.g., by parallel transport, if

W is a local system). Throughout, for a point m ∈ M, the subscript •m
(e.g., Wm) will denote the fiber over this point.

A section φ of W defined overM is equivariant if for all g ∈ GL+
2 (R) and

m ∈M, we have φ(gm) = g · φ(m).

Rigidity of equivariant sections. Recall that local period coordinates on

a stratum H are given by the cohomology group H1
rel. Similarly, local period

coordinates on M are given by the sublocal system TM ⊂ H1
rel. These are

local systems with complex coefficients that have a real structure, with local

coordinates denoted by (x,y) where x and y are the real and imaginary parts.

Fix a basepoint m0 ∈ M. Monodromy refers to parallel transport along

loops based at m0. The local systems H1, H1
rel, etc., may be identified in a

neighborhood of m0 with their fibers at m0.

Let A(x,y) denote the area of the flat surface with coordinates (x,y),

which may be calculated as the symplectic pairing of p(x), p(y) ∈ H1. This

function is SL2(R)-invariant and scales quadratically under simultaneous scal-

ing of both coordinates by R×.

The next result restricts the local nature of equivariant sections of bundles

obtained from H1 by any tensor operations.

Theorem 3.3 ([Fil16a, Th. 7.7]). Let H be some tensor construction on

H1 or H1
rel, and suppose φ is a GL+

2 (R)-equivariant measurable section of H
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over M. Then in a neighborhood of m0 in M, there exist flat local sections

{sl} such that a.e. on the neighborhood,

φ(x,y) =
∑
l

sl ·
Pl(x,y)

A(x,y)kl
,(3.4)

where Pl are homogeneous polynomials of bidegree (kl, kl) in the variables

(x,y). Moreover, the polynomials Pl(x,y) are invariant under the SL2(R)-

action.

This is proven in [Fil16a, Th. 7.7] for tensor constructions on H1, and

in Appendix A we show that tensor constructions on H1
rel may be handled

following the same outline.

Extending the section. Consider the Grassmannian Gr◦(2, TMm0) of real

2-planes in the real vector space TMm0 whose projection to H1 is a symplecti-

cally non-degenerate 2-plane. Note that this Grassmannian is an open subset

of the full Grassmannian of real 2-planes in the real vector space TMm0 .

Consider the map (X,ω) 7→ span(Re(ω), Im(ω)) from a simply connected

neighborhood U of m0 inM to Gr◦(2, TMm0). The fibers of this map are con-

nected components of the intersection of GL2(R) orbits with U . Thus we may

say that the set of GL2(R) orbits near m0 is locally modeled on Gr◦(2, TMm0).

Since the polynomials defining φ are SL2(R) invariant, φ defines a function

on the image of U in Gr◦(2, TMm0). We can now see that this function can

be extended to all of Gr◦(2, TMm0).

Proposition 3.5. Let Hm0 denote the trivial bundle over Gr◦(2, TMm0).

Then the expression in (3.4) defines an algebraic section φext,m0 of Hm0 defined

on the entire Grassmannian Gr◦(2, TMm0).

Proof. The expression in equation (3.4) defines a function on the space of

points (x,y) in TMm0 ⊗C that satisfy A(x,y) 6= 0. This function is GL+
2 (R)

invariant. The Grassmannian Gr◦(2, TMm0) is the quotient of the space by

GL+
2 (R). �

The Grassmannian. Define GTM ⊂ GL(TM) to be the subgroup that

acts as the identity on (ker p) ∩ TM and by symplectic transformations on

p(TM). (Later we will show that GTM is the Zariski closure of monodromy

of TM, justifying the notation.)

The group GTM acts transitively on Gr◦(2, TMm0), so

(3.6) Gr◦(2, TMm0) = GTM/ StabT

is a homogeneous space, where T denotes a 2-plane T ⊂ TMm0 . To de-

scribe the stabilizer StabT , consider the symplectic-orthogonal decomposition
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(p(TM))m0 = p(T )⊕ p(T )⊥. Then StabT surjects onto Sp(p(T ))× Sp(p(T )⊥)

with kernel a unipotent subgroup.

Compatibility with monodromy. Because the section φext,m0 defined by

equation (3.4) is polynomial, its equivariance properties extend to Zariski

closures, as the next result shows.

To express it, first note that the Grassmannians Gr◦(2, TMm) fit into a

“local system of real algebraic varieties” over M, i.e., locally the bundle has

a product structure, and the gluing maps are locally constant and algebraic,

in fact linear. Denote by Gr◦(2, TM) the total space of this bundle. The

monodromy then acts on the fibers of the projection Gr◦(2, TM) → M via

parallel transport.

Proposition 3.7. Let φ be a GL+
2 (R)-equivariant section of H over M.

By Proposition 3.5 it gives rise to an algebraic section φext,m0 of the triv-

ial bundle Hm0 over Gr◦(2, TMm0), which can be viewed as a map φext,m0 :

Gr◦(2, TMm0)→ Hm0 .

Then φext,m0 is equivariant for the simultaneous action of the Zariski clo-

sure of the monodromy inside GL (Hm0)×GL(TMm0) (as given in (3.8) below,

with GL(TM0) acting on the Grassmannian and GL(Hm0) acting on Hm0).

Proof. The GL2R-equivariant section φ :M→ H extends, using Propo-

sition 3.5, to a section φext : Gr◦(2, TM)→ H. Note that the fiber of H only

depends on m ∈ M and not the point of the Grassmannian (hence the abuse

of notation). In a local trivialization of Gr◦(T,M) → M as a product of a

Grassmannian and an open set in M, the section φext : Gr◦(2, TM) → H is

polynomial in the Grassmannian direction and flat in the direction of M.

From the local description of an equivariant section φ in equation (3.4),

the section φext is given by the same formula, but now viewed over the entire

Grassmannian bundle. Consider its behavior under a change of chart. Both

the sections sl and the coordinates x,y will change according to the change

of coordinates map. Going around a loop γ in the affine manifold M and

comparing results, it follows that

(3.8)
∑
l

sl ·
Pl(x,y)

A(x,y)kl
=

∑
l

(ρH(γ)sl) ·
Pl(ρTM(γ)x, ρTM(γ)y)

A(ρTM(γ)x, ρTM(γ)y)kl
.

Here ρ•(γ) denotes the monodromy matrix corresponding to γ. On sl it acts

by the appropriate representation on Hm0 (denoted ρH for brevity); on (x,y)

it acts via the representation on TM.

The equality of rational functions in (3.8) holds for all γ in the monodromy,

therefore it holds for all elements of the Zariski closure of monodromy. �

We can now prove the main result, Theorem 1.1.
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Proof of Theorem 1.1. Note that, by Chevalley’s Theorem, the Zariski clo-

sure of monodromy is the largest subgroup that fixes any flat subbundle of any

tensor construction.

From the definition of algebraic hull, it is clear that it is contained in

the Zariski closure of monodromy. Indeed, any flat tensor is automatically

GL+
2 (R)-invariant. Additionally, the tautological plane (in either H1 or H1

rel) is

also invariant under the GL+
2 (R)-action, so the algebraic hull must be contained

in its stabilizer. In particular, the algebraic hull is contained in the intersection

of these two groups.

We need to show that conversely, the algebraic hull contains the intersec-

tion of the Zariski closure of monodromy and the stabilizer of the tautological

plane. Suppose therefore that φ is a global tensor in H (some tensor construc-

tion on H1 or H1
rel) and that φ is GL+

2 (R)-equivariant.

By Theorem 3.3, φ has locally on M a representation in coordinates as a

ratio of polynomials. We therefore consider the value of φ at every, and not

just almost every, point.

Fix a basepoint m0 ∈ M. By Proposition 3.5, φ extends to an algebraic

section φm0,ext of the trivial bundle Hm0 → Gr◦(2, TMm0). Note that m0 gives

a point in Gr◦(2, TMm0) corresponding to its GL+
2 (R)-orbit (i.e., the value of

the tautological plane at m0). By construction, φm0,ext(m0) = φ(m0).

By Proposition 3.7 the section φm0,ext is equivariant for the Zariski closure

of monodromy acting simultaneously on the Grassmannian and on the bundle

over it; i.e., for any such γ, we have

φm0,ext(γ · p) = γ · φm0,ext(p).

Now if γ is also in the stabilizer of the tautological plane, the above equation

becomes (for p = m0) simply φm0,ext(m0) = γ · φm0,ext(m0).

Using that φm0,ext(m0) = φ(m0), this implies φ(m0) = γ · φ(m0). This

invariance of φ implies that the algebraic hull contains the intersection of the

Zariski closure of monodromy and the stabilizer of the tautological plane. �

4. Monodromy

4.1. Setup. We keep the notation for bundles as in the beginning of Sec-

tion 3; in particular, we shall use the short exact sequence of cohomology

bundles (3.1).

Consider a fixed affine invariant manifold M in a stratum of flat sur-

faces H. Define ker(p)M to be ker(p)∩TM. We have the short exact sequences

0→ ker(p)M → TM p−→ p(TM)→ 0(4.1)

of bundles and

0→ U → GTM
p−→ Gp(TM) → 0(4.2)
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of monodromies. The groups GTM and Gp(TM) are the Zariski closures of

monodromies on the corresponding bundles, while U denotes the kernel of the

projection. Note that U is naturally a subgroup of transformations that act by

the identity when projected to p(TM). This last group is naturally identified

with Hom(p(TM), ker(p)M), which will be abbreviated UM.

In Section 4.2 we shall compute the Zariski closure of the two monodromy

groups. Namely, we will see that on absolute cohomology we have Gp(TM) =

Sp(p(TM)); i.e., we get the full symplectic group. On relative cohomology, we

will see that the group is as large as it can be; namely, the kernel U is all of UM.

Additionally, we will see that on bundles other than those coming fromM,

the monodromy is “decoupled” from that on the tangent bundle to M. A

precise statement is Proposition 4.8.

Remark 4.3 (On Zariski closures). Throughout this paper, Zariski closures

are taken with respect to R, as opposed to Q (which could be larger). Con-

cretely, the Zariski closure of a subset of GLn(R) ⊂ Rn2
is the intersection of

GLn(R) and the zero locus in Rn2
of all real polynomials vanishing on the set.

4.2. Monodromy of the Kontsevich–Zorich cocycle.

Monodromy and absolute cohomology. It follows from [AEM17] that the

Kontsevich–Zorich cocycle on H1 or any of its tensor powers is reductive, i.e.,

any invariant bundle has a complement. This gives the decomposition of H1

over M

H1 = p(TM)⊕
Ç⊕

ι

p(TM)ι

å
⊕ V.(4.4)

The bundles p(TM)ι are Galois-conjugates of p(TM), and V is the symplectic

(as well as Hodge) orthogonal to the other spaces. There is one p(TM)ι for

each non-identity embedding of the field of affine definition of M to R; see

[Wri14] for more details. The list of possible monodromy groups, up to compact

factors, is given in [Fil17, Th. 1.2]. In particular, the next result holds.

Theorem 4.5 ([Fil17, Cor. 1.7]). The Zariski closure of monodromy on

p(TM) or any of its Galois conjugates p(TM)ι is the full symplectic group

Sp(p(TM))ι.

Remark 4.6. This particular consequence of [Fil17] can also be derived

as follows, assuming familiarity with [Wri15a]. By [MW17, Lemma 4.6], M
contains a surface with an equivalence class ofM-parallel cylinders all of whose

moduli are rationally related. Let αi be the core curves of the cylinders in the

given equivalence class. The twist on this equivalence class gives a closed loop

inM, whose monodromy on H1 is a composition of powers of the Dehn twists

γ 7→ γ + αi〈αi, γ〉. On p(TM)∨, which may be viewed as a subbundle of H1,
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all the αi are colinear by the definition of M-parallel, hence the monodromy

has the form γ 7→ γ + Cα1〈α1, γ〉. A short argument of Kazhdan–Margulis

gives that any subgroup of the symplectic group that is totally irreducible

and contains such a transformation must be Zariski dense; compare to [FK88,

p. 250]. By [Wri14], the monodromy of p(TM) is totally irreducible.

Monodromy and relative cohomology. The monodromy on TM surjects

onto monodromy on p(TM), and we would like to understand the unipotent

kernel U (see (4.2)). Recall also that the kernel sits inside the linear trans-

formations that act by identity on p(TM), which is naturally identified with

UM := Hom(p(TM), ker(p)M). For the Galois-conjugate bundles, we can sim-

ilarly define UM,ι := Hom(p(TM)ι, ker(p)M).

Proposition 4.7. The Zariski closure of monodromy on TM is UM o
Sp(p(TM)). In other words, the unipotent part is as large as it can be.

The same statement holds for the Galois-conjugate bundles : the Zariski

closure of monodromy is UM,ι o Sp(p(TM)ι).

Proof. First, observe that UM has a natural action of the monodromy

Sp(p(TM)). The kernel U ⊂ UM is invariant under this action, and therefore

U = Hom(p(TM), S) for some subspace S ⊂ ker(p)M. We will now see that

S in fact equals ker(p)M, thus establishing the claim.

Suppose therefore that S is such that the unipotent part of the monodromy

is contained in Hom(p(TM), S). We will construct a flat subbundle ES ⊂ TM
as follows.

Fix a point m0 ∈ M, and consider a lift L of p(TM)m0 to TMm0 , i.e., a

subspace L ⊂ TMm0 such that p is an isomorphism from L to p(TM). Define

the fiber of ES at m0 to be (ES)m0 = span(L, S).

Now extend ES by parallel transport of the fiber at m0 to all of M. By

the assumption on monodromy that its unipotent part lies in Hom(p(TM), S),

we see that this gives a well-defined extension. Note also that ES ∩ ker(p) = S

by construction and ES is not contained in ker(p).

However, by [Wri14, Th. 7.4] there are no proper flat subbundles of TM
other than those contained in ker(p), therefore ES = TM and thus S =

ker(p) ∩ TM.

The statement for the Galois-conjugate bundles now follows by noting that

the dimension of the unipotent part does not change under Galois conjugation,

and it is maximal. �

Decoupling monodromies. Let Γ denote the (orbifold) fundamental group

of M. Monodromy representations are denoted ρV : Γ → GL(V ), where V is

an appropriate bundle (e.g., TM, p(TM), H1, etc.), and their Zariski closures

are denoted GV .
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Proposition 4.8. Suppose that W is a flat irreducible subbundle of H1

other than p(TM), and let GW be the Zariski closure of the monodromy ρW (Γ).

(i) The Zariski closure of monodromy on p(TM)⊕W is Sp(p(TM))×GW .

(ii) The Zariski closure of monodromy on TM⊕W is GTM ×GW .

(iii) Let W̃ := p−1(W ) denote the preimage of W in relative cohomology, and

assume GW̃ is the Zariski closure of monodromy on it. Then the Zariski

closure of monodromy on TM⊕ W̃ is GTM ×G‹W .

Proof. To prove (i), let H := ρp(TM)⊕W (Γ) be the Zariski closure of the

monodromy. By assumption H ⊂ Sp(p(TM)) × GW surjects when projected

to either component.

Consider the kernel K ⊂ H of the surjection H � GW . Note that pro-

jecting K to Sp(p(TM)) embeds it as a normal subgroup. Indeed, K is normal

in H, and H surjects onto Sp(p(TM)).

Since the symplectic group is simple, K is either the full group (in which

case we are done) or trivial. Suppose that K is trivial.

Then H is the graph of an isomorphism Sp(p(TM)) → GW . Therefore

GW is isomorphic to a symplectic group, and by the classification in [Fil17,

Th. 1.2] a symplectic group can only occur in the standard representation.

Thus the isomorphism of monodromy groups also gives an isomorphism of the

flat bundles p(TM) and W . It follows that p(TM) and W have the same

Lyapunov exponents. This is a contradiction, since p(TM) has top Lyapunov

exponent 1, and all other exponents in H1 are strictly smaller by a result of

Forni [For02]. (It is also possible to derive a similar contradiction by directly

using the representation theory of the symplectic group instead of invoking

[Fil17, Th. 1.2].)

To prove (ii), again let H ⊂ GTM × GW be the Zariski closure of the

monodromy. Recall the unipotent radical of GTM × GW is GuTM. Letting K

be the kernel of the map H → Sp(p(TM)) × GW , it follows that K ⊂ GuTM.

Since H surjects onto GTM by Proposition 4.7, it follows that K surjects onto

GuTM. Using part (i), it now follows that H is all of GTM ×GW .

To prove (iii), again let H ⊂ GTM × G‹W be the Zariski closure of mon-

odromy; we want to show H is the entire product. By assumption H sur-

jects onto both G‹W and GTM. Let K ⊂ H be the kernel of the surjection

to G‹W . As before, K viewed as a subgroup in GTM is normal and surjects

onto Sp(p(TM)). Such subgroups are in bijection with flat bundles E ⊂ TM
that surject onto p(TM), but from [Wri14, Th. 5.1] we must have E = TM,

i.e., K = GTM. To see the bijection between subgroups and subbundles,

note that the group is given by automorphism of the fibers that preserve the

subbundle (and act symplectically on the quotient). �
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5. Algebraic Hulls along limits

Recall that by the results of [EM18], [EMM15], given any infinite sequence

of affine invariant manifolds {Mi} in a fixed stratum, there exists an affine

manifold M and a subsequence {Mni} such that Mni ⊆ M, and Lebesgue

measure on Mni tends to Lebesgue measure on M. In particular, the Mni

become dense in M.

This section will establish that the algebraic hulls of the manifolds Mni

and the algebraic hull of M eventually agree, up to finite index and compact

factors. We give two proofs — one of a general ergodic-theoretic flavor, and

a second one, based on Hodge–Teichmüller tensors. Both proofs imply that

outside a finite collection of affine submanifolds B ⊂M, any other affine sub-

manifold M′ ⊂ M has the same algebraic hull as M, up to compact factors

(assuming B∩M′ = ∅). The proof via Hodge–Teichmüller tensors gives further

information on the locus B, whereas the ergodic-theoretic one only implies its

existence.

Finite index, compact factors, and Forni subspaces. For the purposes of

this section, two groups G1, G2 (contained in the same ambient GLn) agree up

to finite index if their connected components of identity are the same. The

two groups agree up to compact factors if there is a common normal subgroup

N such that each of the quotients Gi/N is compact.

Remark 5.1.

(1) Compact factors in the monodromy arise, in particular, when a sub-VHS

V of H1 may be written as the tensor product of a weight 1 VHS with

Zariski closure of monodromy G and a weight 0 VHS with Zariski closure

of monodromy K, which must be compact. In this case the monodromy of

V is contained in K ×G, which may act via an irreducible representation.

(Some examples can be found in [Fil16a].) In the case where the weight 1

VHS is trivial, one calls V a Forni subspace [FMZ14b], [For02]. The results

below allow for the possibility that M has Zariski closure of monodromy

G×K but Mi has monodromy contained in G×K ′ with K ′ ( K.

(2) For an algebraic group G, denote by G+◦ the minimal normal algebraic

subgroup of G such that G/G+◦ is compact. Note that, in particular, G+◦

is connected in the Zariski topology. To prove that two algebraic groups

G1, G2 agree up to finite index and compact factors, it suffices to check

that G+◦
1 and G+◦

2 agree.

The algebraic hull of any factor of the Kontsevich–Zorich cocycle is

semisimple, up to compact factors. Indeed, from [AEM17] it follows that

the hull is reductive and from the classification in [Fil17, Th. 1.2] it follows

that all non-compact factors have to be semisimple. In particular, the

algebraic hull cannot contain any non-compact abelian factors.
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It follows that for the algebraic hull G of any factor of the Kontsevich–

Zorich cocycle, the group G+◦ is semisimple.

5.1. The case of absolute cohomology.

Theorem 5.2. Suppose {Mi} is an infinite sequence of affine submani-

folds of M that equidistribute towards another affine manifold M.

Let Gi and G be the algebraic hulls of Mi and M, respectively, for the

GL+
2 (R)-action on the absolute cohomology bundle H1.
(i) We have Gi ⊆ G for all sufficiently large i.

(ii) There exists N ≥ 0 such that for all i ≥ N , the groups Gi and G agree

up to finite index and compact factors.

Remark 5.3. By Theorem 4.5, the Zariski closure of monodromy for p(TM)

and its Galois conjugates do not have compact factors, and so the algebraic

hull of any of these bundles for Mi and M are exactly equal for i sufficiently

large. (Later this will also apply to TM.)

5.2. First proof of Theorem 5.2. We begin by recalling some useful pre-

liminaries from ergodic theory.

Suppose we have a bundle PF → X over some space X, with fiber F

and structure group G. In other words, locally on X we have an isomorphism

PF |Ui ∼= Ui ×F (where Ui ⊂ X) and the gluing maps on overlaps are given by

maps Ui ∩ Uj → G.

Suppose now that X carries an action of a group A, and the action lifts to

PF by G-maps, i.e., after local trivialization of the bundle, the maps between

fibers are in G. (This is independent of the trivialization, since gluings are in

G as well.) Suppose next that s : X → PF is an A-equivariant section, i.e.,

s(a · x) = a · s(x). Then s descends to a map

(5.4) s : X → F/G,

where F/G is the space of G-orbits on F .

The next results, due to Borel–Serre in the algebraic case, and Margulis

and Zimmer for measures, give control over spaces of G-orbits (see [Zim84,

§3.2]). Throughout, we consider the real points of the corresponding algebraic

varieties.

Proposition 5.5. Let G be a real-algebraic group and V an algebraic

variety with a G-action.

Then the space of G-orbits on V , with its induced topology, is countably

separated ([Zim84, Def. 2.1.8]). Moreover, any G-orbit in V is locally closed

([Zim84, Th. 3.1.1]).

The same separability properties hold for the space of probability measures

on V with the weak topology for the induced action of G ([Zim84, Th. 3.2.6,

Cor. 3.2.12]).
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First proof of Theorem 5.2. Part (i) is immediate from [Fil16a, Th. 1.5]

— the measurable and continuous (in fact, real-analytic) algebraic hulls of M
coincide. Indeed, the cited result implies that any measurable invariant tensor

is necessarily continuous and is thus well defined on Mi ⊂M.

Part (ii) is proved by contradiction. First, by passing to a finite cover

of M, we can assume that G is Zariski-connected — in particular, an irre-

ducible representation of G is strongly irreducible; i.e., it does not contain a

proper finite collection of subspaces permuted by G. Suppose now that there

exists a subsequence of theMi such that we have the strict inclusion G+◦
i ( G+◦,

where for a group H the subgroup H+◦ was defined in Remark 5.1(2) as the

smallest normal subgroup such that H/H+◦ is compact.

Chevalley’s Theorem associates to the groups G+◦
i ⊂ G lines li inside

G-representations Vi such that G+◦
i is the stabilizer of li. There are only finitely

many isomorphism types of groups G+◦
i , since they are semisimple and con-

nected (see Remark 5.1(2)). By [GP11, Th. XXIV 7.3.1(i)] the homomorphisms

Hom(G+◦
i , G

+◦) form a variety of finite type so, in particular, Hom(G+◦
i , G

+◦) has

finitely many components. The proof of Chevalley’s Theorem shows that all

subgroups parametrized by a given component can be obtained as stabilizers

of lines in a fixed representation V . So passing to a further subsequence (still

denoted G+◦
i ), we may assume that all the li occur inside one single represen-

tation V .

To get a contradiction to G+◦
i ( G+◦ for all sufficiently large i, it suffices

to prove the following. Let V = V ′ ⊕ V ′′, where V ′ is G-irreducible and V ′′ is

G-invariant. If li is contained in V ′′ for all sufficiently large i, then we apply

the reasoning to V ′′. Therefore, suppose that li projects non-trivially to V ′

along a subsequence. We will show G acts on V ′ via a compact group. If G

acts on each irreducible V ′ ⊂ V via a compact group, then G acts on V via a

compact group, and so we will be able to conclude that G+◦
i = G+◦. (We must

also have that Gi acts on V via a compact group, since Gi ⊂ G.)

Assume that li projects non-trivially to V ′ for a subsequence, which we

take again to be li. From now on, identify all the groups with their images

in GL(V ′) and assume that li ⊂ V ′. Then the orbit Gi · li ⊂ P(V ′) is identi-

fied with Gi/G
+◦
i and carries a natural Gi-invariant probability measure ηi,mod,

since the quotient Gi/G
+◦
i is compact.

Associate to the G-representation V ′ the vector bundle E′ →M; since V

arises as a subrepresentation in tensor construction on the natural representa-

tion of G on H1, E′ is itself a subbundle of such a natural tensor construction.

Over each Mi define the measure ηi on P(E′) that is the product of Lebesgue

measure on Mi with the model measure ηi,mod in the fiber direction. By

construction, the probability measure ηi is invariant under SL2(R).



298 ALEX ESKIN, SIMION FILIP, and ALEX WRIGHT

Now let η be any weak limit of the ηi; it will still be invariant under

SL2(R) and now project to Lebesgue measure onM. Denote by P(P(E′)) the

bundle of probability measures on the fibers of P(E′). Then the measure η,

via its disintegration, gives a section s :M→P(P(E′)).

By (5.4), the section s descends to a map [s] :M→ G\P(P(V ′)) where

P(P(V ′)) is the space of probability measures on the projectivization of the

G-representation V ′. Because the space of probability measures divided by the

G-action is countably separated (Proposition 5.5), by [Zim84, Prop. 2.1.10] it

follows that s takes values in a single G-orbit, Lebesgue-a.e. onM. Therefore,

for Lebesgue a.e. x ∈M, the measure ηx given by the disintegration of η along

the fiber E′x ≈ V ′ is given by

ηx = ψ(x)∗η0,

where ψ(x) ∈ G and η0 is some fixed measure on V ′. (Here we are choos-

ing some measurable trivialization of the bundle E′). Let H ⊂ G denote the

stabilizer of η0.

If H is a proper subgroup of G, we can reduce the algebraic hull over

M to H as follows. First, by [Zim84, Cor. 3.2.23] stabilizers of measures are

algebraic subgroups, so there exist a tensor construction T (V ′) on the repre-

sentation V ′ and a line l′ ⊂ T (V ′) such that H is the stabilizer of l′. Moreover,

for a.e. x ∈M, the linear map ψ(x)−1 yields an isomorphism E′x → V ′ taking

ηx to η0; such isomorphisms are parametrized by H acting by postcomposition

on V ′. A linear isomorphism E′x → V ′ induces one on tensor constructions

T (E′x) → T (V ′), and so we can pull back the line l ⊂ T (V ′) to lx ⊂ T (E′x).

The linear isomorphism was well defined up to postcomposition with H, but

l is H-invariant so lx is well defined. The collection of lines lx gives a further

reduction of the algebraic hull overM, which is not possible. Thus G = H, so

G leaves invariant a nontrivial measure [η] on P(V ′).

According to [Zim84, Cor. 3.2.2] either the stabilizer of the measure [η] is

compact, or there is a proper subspace of positive [η]-mass that is left invari-

ant by a finite index subgroup of G. But we assumed at the start that G is

connected (by passing to a finite cover) and V ′ is G-irreducible, so it must be

the case that G acts on V ′ via a compact group. �

5.3. Second proof of Theorem 5.2. We now give the second approach to

Theorem 5.2, which is related to [MW15]. In this section we assume all bundles

are complexified.

Any tensor construction on H1, denoted H, will admit a Hodge decom-

position H = ⊕Hp,q. For establishing properties of the algebraic hull using

Hodge–Teichmüller tensors, the following concepts will be useful. Through-

out, m ∈M is some point, and Hm denotes the fiber of H at m.
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Definition 5.6 (Hodge–Teichmüller tensor). A pure Hodge–Teichmüller

tensor at m is an element of Hm of pure Hodge type (p, q) for some p, q such

that the parallel transport along any path in the GL+
2 (R) orbit remains pure

Hodge type (p, q). A Hodge–Teichmüller tensor at m is a linear combination

of pure Hodge–Teichmüller tensors.

Proposition 5.7. Let H denote some fixed tensor construction on H1.

(i) The fiber of any GL+
2 (R)equivariant line subbundle of H is the span of a

Hodge–Teichmüller tensor.

(ii) For any affine invariant submanifold M, there is a finite union B of

proper affine invariant submanifold ofM such that the Hodge–Teichmüller

tensors in H form a continuous equivariant subbundle of H over M\B.

(iii) The algebraic hull acts via isometries on any fiber of the bundle of Hodge–

Teichmüller tensors.

Proof. Part (i) is a direct consequence of [Fil16a, Th. 1.2]. For (ii), the

set of Hodge–Teichmüller tensors by definition is a GL+
2 (R) invariant subset

of H. Because the Hodge decomposition and GL+
2 (R)-action are continuous,

it is also a closed subset of H.

Let d be the minimal dimension of the space of Hodge–Teichmüller tensors

for any point m ∈ M. Define B to be the subset of M where the dimension

of the space of Hodge–Teichmüller tensors is strictly greater than d. Note

that B is automatically a closed proper subset of M. Over M\ B, the set of

Hodge–Teichmüller tensors is vector subbundle of H.

For (iii), note that the bundle of Hodge–Teichmüller tensors of pure type

(p, q) forms an equivariant subbundle. The full bundle of Hodge–Teichmüller

tensors is the direct sum of these subbundles, so it suffices to prove the result

for the bundle of pure (p, q) Hodge–Teichmüller tensors.

The symplectic form on H1 gives rise to a locally constant bilinear form

B on H. One can obtain a positive definite inner product from B called the

Hodge inner product by scaling B by different signs on the different pieces

of the Hodge decomposition. (This is part of the definition of a variation of

Hodge structure.)

The tensor defining the bilinear form B is flat and hence, in particular,

equivariant, so by definition the algebraic hull preserves B. Hence the algebraic

hull acts via isometries for the Hodge norm on a fiber of the (p, q) Hodge–

Teichmüller tensors, since on this space the Hodge inner product and B are

proportional. �

Second proof of Theorem 5.2. The proof of the inclusion in part (i) is the

same.

For part (ii), suppose that M′ ⊂ M is an affine manifold outside the

locus B defined in Proposition 5.7. By definition of the algebraic hull and
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using Chevalley’s Theorem 2.1, the identity component of the algebraic hull

of M′ is the stabilizer of an equivariant polynomial line subbundle ` of the

bundle of Hodge–Teichmüller tensors in some tensor construction H. As in

the first proof, only finitely many tensor constructions need to be considered.

By part (iii) of Proposition 5.7, the algebraic hull ofM acts by isometries

on the bundle of Hodge–Teichmüller tensors. Therefore the kernel of the action

on Hodge–Teichmüller tensors is cocompact in both connected components of

the identity of the algebraic hulls of M and M′, showing again that the hulls

agree up to finite index and compact factors. �

5.4. The relative case. We will need several preliminaries before dealing

with the algebraic hull in H1
rel.

Multiplicities. The first step in controlling the algebraic hull of H1
rel is to

reduce to the case where bundles in H1 have no multiplicity. (This is not

necessary for subbundles of H1
rel whose image in H1 have no multiplicity, such

as T (M). In particular, this is not required for our finiteness applications. The

reader willing to ignore multiplicities may proceed directly to Theorem 5.12.)

Let M be an affine invariant manifold, and suppose that E ⊂ H1 is a

bundle with multiplicities, i.e., E = Eirr ⊗ W , where Eirr is an irreducible

bundle and W is a vector space parametrizing the isotypical components. Let

Ẽ := p−1(E) denote the associated bundle in relative cohomology. So we have

a short exact sequence

0→ ker p→ Ẽ → Eirr ⊗W → 0.(5.8)

We would like to reduce to the case where there is no multiplicity in the pure

weight 1 Hodge structure on the right. For this, take a tensor with the dual

W∨ to obtain

0→ ker p⊗W∨ → Ẽ ⊗W∨ p−→ Eirr ⊗W ⊗W∨ → 0.

Identifying W ⊗W∨ = End(W ), we have the direct sum decomposition W ⊗
W∨ = Id⊕(trace 0) where Id denotes multiples of the identity and (trace 0)

denotes the trace 0 endomorphisms. The factor Eirr ⊗ Id = Eirr is present on

the right-hand side above, so we take its preimage to obtain

0→ ker p⊗W∨ →fiEirr → Eirr → 0,(5.9)

where fiEirr = p−1(Eirr ⊗ Id). The advantage is that now Eirr is irreducible.

Proposition 5.10. Suppose that for an affine manifold M′ ⊂ M, the

algebraic hull of fiEirr from (5.9) over M′ agrees up to finite index and compact

factors with that over M. Then the same holds for Ẽ from (5.8).
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Proof. It suffices to reconstruct the sequence (5.8) from (5.9) by natural

operations. For this, take a tensor with W in (5.9) to obtain

0→ ker p⊗W∨ ⊗W →fiEirr ⊗W → Eirr ⊗W → 0.

Consider the commutative diagram below, which involves the natural quo-

tient map q : fiEirr � Eirr, the inclusion i : fiEirr → ‹E ⊗W∨, and for a bundle

X the identity homomorphism 1X (to be distinguished from id viewed as a

vector in X ⊗X∨):

0 // ker p⊗W∨ ⊗W //

��

fiEirr ⊗W
q⊗1W //

i⊗1W
��

Eirr ⊗W //

1Eirr
⊗id⊗1W

��

0

0 // ker p⊗W∨ ⊗W //

��

‹E ⊗W∨ ⊗W
p⊗1W∨⊗W

//

��

Eirr ⊗W ⊗W∨ ⊗W //

��

0

0 // ker p // ‹E // Eirr ⊗W // 0.

The map from the second row to the last is simply quotienting out by

the trace 0 part of W∨ ⊗W . The commutativity of the upper-right corner

of the diagram follows from the construction on fiEirr by tensoring with W the

corresponding maps. The composition in the last column from top to bottom is

an isomorphism (as can be checked by selecting a basis of W ), and the middle

column is a surjection with kernel ker p⊗ (trace 0).

We thus obtain that (5.8) can be obtain from (5.9) by first tensoring with

Wand then quotienting the left and middle terms by ker p⊗ (trace 0). �

Remark 5.11. In the exact sequence (5.9), the term ker p ⊗W∨ is still a

trivial vector space, not a bundle. So in all arguments below, ker p can still be

treated as a trivial bundle, even if we are in the case with multiplicities.

To show containment of algebraic hulls in H1
rel when M′ ⊂ M, we will

need an analyticity result similar to the one for H1. It is established in the

appendix, in Proposition A.3.

Theorem 5.12. Suppose Mi is a sequence of affine invariant submani-

folds of M that equidistribute towards M.

Let Gi and G be the algebraic hulls of Mi and M, respectively, for the

GL+
2 (R)-action on the relative cohomology bundle H1

rel.

(i) We have Gi ⊆ G for all i.

(ii) There exists N ≥ 0 such that for all i ≥ N , the groups Gi and G agree up

to finite index and compact factors.

Proof. Part (i) follows from Proposition A.3 since any reduction of the

algebraic hull of M is necessarily real-analytic, so it descends to Mi ⊂M.
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To prove part (ii), note that by Theorem 5.2, in absolute cohomology the

algebraic hull stabilizes (up to compact factors and finite index) on Mi for

i� 0.

Assume therefore that E ⊂ H1 is an irreducible piece for the action of

the reductive part of the algebraic hull; by Proposition 5.10 we can assume

irreducibility of E. It suffices to show that in the short exact sequence of

bundles

0→ ker(p)→ p−1(E)→ E → 0(5.13)

the unipotent part of the algebraic hull stabilizes. By Lemma A.2(i) and (ii),

the unipotent part is a subbundle Si ⊂ Hom(E, ker p), which is invariant under

the algebraic hull of E.

Since E is irreducible under the action of the algebraic hull, we have

Si = Hom(E,Wi) for some subspace Wi ⊂ ker p . Passing to a subsequence

we obtain an accumulation point W∞ of Wi. Define S∞ = Hom(E,W∞) ⊂
Hom(E, ker p).

Note that the bundle of holomorphic 1-forms H1,0 ⊂ H1 lifts to a sub-

bundle denoted flH1,0 ⊂ H1
rel, where lifting means that p : flH1,0 → H1,0 is an

isomorphism.

Lemma A.2(iii) shows that the Si have the following description. Moving

the bundle of 1-forms fiE1,0 ⊕fiE0,1 ⊂ H1
rel by parallel transport along GL+

2 (R)-

orbits in Mi, it can be taken to its value at the new point by transformations

in Si.

It follows that S∞ has the same property in M, thus S∞ contains the

unipotent part of the algebraic hull of M; they must agree since the Si are

contained in the algebraic hull of M. �

Remark 5.14. The above proof gives a GL+
2 (R)-invariant closed locus

Brel ⊂ M such that as soon as an affine submanifold M′ ⊂ M is disjoint

from Brel, the unipotent parts of the algebraic hulls agree.

Indeed, above a fixed point x ∈ M we have a closed subset of the Grass-

mannian consisting of subspaces Sx ⊂ Hom(Ex, ker p) for which the defining

property in Lemma A.2(iii) holds in a neighborhood of x inside its GL+
2 (R)-

orbit. The subset of the total Grassmannian bundle is closed and GL+
2 (R)-

invariant, and M is stratified by the minimal possible dimension of an S.

Away from a proper closed subset, this subspace is unique over the entire M.

6. Finiteness and abundance results

In this section we prove Theorems 1.5 and 1.7. Recall that AV (M) and

GV (M) denote the algebraic hull, and the Zariski closure of monodromy, on a

flat bundle V in relative or absolute cohomology over M.
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6.1. Finiteness. IfM′ ⊂M, then the restriction of any flat bundle onM
is a flat bundle on M′.

Lemma 6.1. SupposeM′ (M both have the same algebraic hull for TM
and its Galois conjugates. Then either

• M′ is rank 1 degree 1, or

• M′ is rank 1 degree 2 and M is rank 2 degree 1 and ker(p) ∩ TM =

ker(p) ∩ TM′.

Proof. Theorem 1.2 implies that

(O1) the only proper subspaces of p(TM) invariant under Ap(TM)(M) are the

tautological plane and its complement,

(O2) the only proper subspace of TM invariant under ATM(M) and not con-

tained in p−1 of the tautological plane is p−1 of the complement of the

tautological plane in p(TM),

(O3) there are no proper subspaces of a nontrivial Galois conjugate p(TM)ι
invariant under Ap(TM)ι(M),

(O4) there is no proper subspace of (TM)ι that is not contained in ker(p) and

is invariant under A(TM)ι(M).

Since the algebraic hulls of M and M′ are the same, the algebraic hull of

M must preserve flat subbundles over M′. (Technically in such statements

we should refer to fibers of bundles at points of M′, but throughout this

proof we omit this specification.) In particular, p(TM′) must be stabilized by

Ap(TM)(M). By (O1), p(TM′) is either the tautological plane or p(TM).

Suppose p(TM′) is not the tautological plane. So p(TM′) = p(TM), and

M′ has rank greater than 1. Since TM′ must be stabilized by ATM(M), (O2)

implies TM′ = TM. This contradicts M′ 6=M.

Hence p(TM′) is the tautological plane. So M′ is rank 1. Note that any

Galois conjugate of p(TM′) must be contained in some Galois conjugate of

p(TM). (This is a triviality about subspaces of vector spaces.) Any Galois

conjugate of p(TM′) has dimension 2 and is stabilized by the algebraic hull of

a Galois conjugate of p(TM).

IfM has rank at least 3, (O1) and (O3) imply that p(TM) and its Galois

conjugates contain only one subspace invariant under algebraic hull of dimen-

sion 2, namely, the tautological plane. Hence M′ has degree 1.

If M has rank 2, (O1) and (O3) imply that p(TM) and its Galois conju-

gates contain only two subspaces of dimension 2 invariant under the algebraic

hull, namely, the tautological plane and its complement in p(TM). HenceM′
has degree 1 or 2. If M′ has degree 2, then the Galois conjugate of p(TM′)
must be the complement of the tautological plane in p(TM). Hence p(TM)

is the sum of p(TM′) and its Galois conjugate, and so M has degree 1. The

Galois conjugate of TM′ must be stabilized by AT (M)(M), so (O2) implies
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that it is p−1 of the complement of the tautological plane. In particular,

ker(p) ∩ TM = ker(p) ∩ TM.

IfM has rank 1 and is not degree 1, (O4) implies that a Galois conjugate

of T (M′) must be equal to a Galois conjugate of T (M). This impliesM =M′,
a contradiction. �

Proof of Theorem 1.5. Let M1,M2, . . . be an infinite sequence of affine

invariant submanifolds in some stratum that have fixed rank, degree, and di-

mension. The closure of their union is a finite union of affine invariant subman-

ifolds, so passing to a subsequence we may assume that the Mi are contained

in and equidistribute to a single affine invariant submanifold M. By Theo-

rem 1.3, removing finitely many of the Mi if necessary, we may assume that

the algebraic hull of T (M) and its Galois conjugates on M are equal to the

algebraic hull of their restrictions to Mi.

Lemma 6.1 now gives the result. �

6.2. Abundance. Let O be an order in a real quadratic field, for example

O = Z[
√
D], where D is a positive integer. Let M be an affine invariant

submanifold of rank 2 and degree 1. Say that (X,ω) is an eigenform for

real multiplication by O if there is a proper action of O on p(TM)(X,ω) by

linear transformations that are self-adjoint with respect to the symplectic form,

preserve the Hodge structure and integer lattice, and act on p(ω) via scalars.

Lemma 6.2. The locus of eigenforms inM for real multiplication by O is

a finite (possibly empty) union of codimension 2 degree 2 rank 1 affine invariant

submanifolds.

The proof is omitted and is almost identical to that of [Wri15b, Prop. 2.5],

[McM03, Th. 7.2], and [McM06, Th. 3.2]; see also [MMW17, §7].

The following proof arose from a conversation with Ronen Mukamel.

Proof of Theorem 1.7. Let U be an open subset of M, and pick m ∈ U .

Using period coordinates, we identify U with an open set in (TM)m.

Pick any order O in any real quadratic field K, and consider any action of

O of p(TM)m by self-adjoint transformations that preserve the integer lattice.

Since the transformations in O are self-adjoint, they are diagonalizable, and

since O is abelian, they preserve each others eigenspaces.

For the next argument, see also [EMMW, Prop. 7.1]. Let v be an eigen-

vector for the action of O, with v ∈ p(TM)m ⊗ C and S ⊂ p(TM)m the span

of Re v, Im v. By construction the symplectic form on S is non-degenerate.

Since M is degree 1, we may define Sp(p(TM)m,Q) to be the group of sym-

plectic transformations of p(TM)m preserving the set of rational points. Note

Sp(p(TM)m,Q) is isomorphic to Sp(4,Q), which is dense in Sp(4,R). Note

that Sp(4,R) acts transitively on the 2-dimensional subspaces S′ ⊂ R4 on
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which the symplectic form is non-degenerate, and the stabilizer of a fixed S′

takes any non-degenerate basis of S′ to any other basis, up to scaling. By

density of Q in R, there exists γ ∈ Sp(p(TM)m,Q) such that v′ := γv ∈ p(U),

after perhaps rescaling v by a rational scalar.

We can define a new action of O on p(TM)m by conjugating the original

action by γ. The resulting action is via self-adjoint transformations that act

via a scalar on v′. There exists N so that γ is in the set Sp(4, 1
NZ). The

restriction of the resulting action to O′ = NO preserves the integer lattice.

Hence if we pick (X,ω) ∈ U with p(ω) = v′, we get that (X,ω) is an

eigenform for real multiplication by O′. By Lemma 6.2, this gives the result.

�

Appendix A. Analyticity and polynomiality of

measurable bundles in relative cohomology

Throughout this appendix, we work over a fixed affine invariant subman-

ifold M. Over M we have the exact sequence of bundles

0→ ker p→ H1
rel

p−→ H1 → 0,(A.1)

and we assume that ker p is trivialized (e.g., by passing to a finite cover).

The bundles above are real, but their complexifications contain holomorphic

subbundlesH1,0 andflH1,0 of holomorphic 1-forms, inducing variations of Hodge

structures.

A.1. Analyticity. To handle the relative cohomology bundle, the first step

is to show that any measurable GL+
2 (R)-equivariant subbundle in H1

rel must in

fact be real-analytic. This extends [Fil16a, Th. 7.7] and was used in the proof

of Theorem 5.12.

Let E ⊂ H1 be an irreducible bundle over a fixed affine manifoldM, and

let ‹E := p−1(E). Recall that we have the bundles of holomorphic 1-forms

E1,0 ⊂ EC and fiE1,0 ⊂ ›EC, and the forgetful map p is an isomorphism fromfiE1,0 to E1,0.

Recall that ξ ∈ Hom(E, ker p) defines a unipotent automorphism v 7→ v+

ξ(p(v)) of ‹E, and all automorphisms of ‹E that act as the identity on ker p and E

are of this form. Hence the unipotent part of the algebraic hull of ‹E, denoted S,

is naturally contained in Hom(E, ker p). Moreover, since E carries a polarized

weight 1 variation of Hodge structures, so does Hom(E, ker p) = E∨ ⊗ ker p,

where ker p is equipped with the trivial Hodge structure.

Lemma A.2. With notation as above, we have

(i) The bundle S ⊂ Hom(E, ker p) respects the Hodge structure, i.e., has a

Hodge decomposition compatible with that of Hom(E, ker p). Moreover, S

is invariant by the algebraic hull of E.
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(ii) The bundle S can be alternatively described as the smallest bundle with the

following property. Consider the bundle
fi
E1,0
x and its complex conjugate

denoted
fi
E0,1
x , where x ∈ M. Then for any g ∈ GL+

2 (R) small, using

parallel transport for flat identifications, the bundle
fi
E1,0
x ⊕ fiE0,1

x can be

taken to
fi
E1,0
gx ⊕fiE0,1

gx using a transformation in S.

Proof. For (i), note that the algebraic hull is GL+
2 (R)-invariant (viewed as

a group above each point) so, in particular, S is an invariant bundle. There-

fore S must also respect the Hodge structure, by the semisimplicity results

established in [Fil16a], which apply to any GL+
2 (R)-invariant subbundle of a

weight 1 variation of Hodge structure over M.

To establish part (ii) let S′ denote the bundle described in it. First we

show S ⊂ S′. Indeed, at each point we may pick a basis for Ẽ that consists of

a fixed basis for ker(p)∩ Ẽ together with any basis of
fi
E1,0
x ⊕fiE0,1

x . In this basis

we may consider the “the unipotent part” of an element in End ‹E preserving

ker p, and by definition the unipotent part of the cocycle is contained in S′.

Suppose therefore that the algebraic hull could have been reduced to have

unipotent part S ⊂ S′. The reduction to the algebraic hull with unipotent

part S means the following. At every point x ∈ M, we can pick a subspace‹E′x ⊂ ‹E, projecting isomorphically to E. Moreover, ‹E′x is well defined up to

the action of S on ‹E, and these choices and ambiguities are GL+
2 (R)-invariant.

So locally on a GL+
2 (R)-orbit we have a map σhull : E → ‹E giving a section

of the projection (i.e., a map that, when composed with the projection, gives

the identity). The section σhull is well defined up to the action of S, and can

be viewed as a flat section of Hom(E, ‹E)/S.

We also have the canonical section σhol : E → ‹E, which is defined as

the inverse of p restricted to fiE1,0 plus its complex conjugate. The difference

σhull − σhol is an element of Hom(E, ker p), well-defined up to the action of S,

since σhull is. Now the image of σhull − σhol in Q := Hom(E, ker p)/S is well

defined, and moreover Q carries a weight 1 variation of Hodge structure, since

S is compatible with the Hodge structure.

To finish, note that [Fil16b, Th. 4.2] applies here (although stated only for

certain parts of H1 and H1
rel, the proof works in the present context). It implies

that σhull − σhol vanishes in Q — in particular, the subspaces we started with‹E′x can be taken to σhol(E) by elements of S; therefore we can assume that

they are, in fact, equal. By the definition of S′, this implies that S′ = S. �

Using the above result as a preliminary step, we can now establish the

analyticity of the algebraic hull in relative cohomology. Note that although

the algebraic hull of H1 and H1
rel differ in a unipotent part only, the key

difference is in the lift of the semisimple part from H1 to H1
rel.
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Proposition A.3. Let G be the (measurable) algebraic hull of the Kon-

tsevich–Zorich cocycle over an affine manifold M for the GL+
2 (R)-action on

the relative cohomology bundle H1
rel. Then the reduction to G can be made

real-analytic.

Proof. Decompose the algebraic hull G according to the short exact se-

quence A.1 into a unipotent and reductive part:

(A.4) 0→ Gu → G→ Gss → 0.

According to [Fil16a], and as discussed in the proof of Theorem 5.2 the tensors

defining Gss can be picked real-analytically. Note that Gu is a subgroup of

Hom(H1, ker(p)) and hence decomposes according to the action of Gss on H1.

Let E ⊂ H1 be an irreducible piece for the action of Gss. (By Proposi-

tion 5.10, we can reduce to this case.) It suffices to check that Gu is defined

by real-analytic bundles on the piece Hom(E, ker(p)). Indeed, G is of the form∏
E G

ss
E n GuE , where Gss

E is the algebraic hull of an irreducible piece E ⊂ H1

and GuE ⊂ Hom(E, ker(p)).

The algebraic hull GE on p−1(E) sits in the exact sequence

(A.5) 0→ GuE → GE → Gss
E → 0.

The unipotent part SE := GuE ⊂ Hom(E, ker p) respects the Hodge structure

and is invariant under Gss
E , by Lemma A.2(ii). Finally, part (iii) of the same

lemma shows how to real-analytically reduce the algebraic hull to have unipo-

tent part contained in SE . Indeed, the bundles fiE1,0 and its complex-conjugate

vary real-analytically and give a real-analytic splitting GE ' Gss
E n SE , where

Gss
E is viewed as acting via the splitting of p−1(E)→ E coming from fiE1,0. �

A.2. Polynomiality. We can now establish polynomiality of the algebraic

hull, where polynomiality is understood in the following sense. Consider

GL+
2 (R)-invariant bundles Ẽ ⊂ H1

rel, or perhaps some tensor powers thereof.

Note that because H1 is a symplectic bundle, and ker p is trivial, the bun-

dle H1
rel is equipped with a natural volume form. Any bundle ‹E obtained by

tensor constructions from subbundles in H1
rel will also be filtered by bundles

with volume forms, and so we can assume ‹E has a volume form. Therefore,

its top exterior power Λ(dim Ẽ)Ẽ carries a canonical trivializing vector, which

is GL+
2 (R)-equivariant and denoted vẼ . The coordinates of vẼ in Λdim Ẽ(H1

rel),

in local flat trivializations of the bundles, give functions onM. (These are just

the Plücker coordinates on a Grassmannian.) We will show that these functions

are polynomial, when viewed in period coordinates onM. This is meant in the

sense of (3.4), i.e., as polynomials divided by the area function to some power.

Proposition A.6. Suppose Ẽ ⊂ H1
rel is a measurable GL+

2 (R)-invariant

subbundle of the relative cohomology bundle, or some tensor power of H1
rel.

Then Ẽ is in fact polynomial.
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Proof. By Proposition A.3, the bundle Ẽ is at least real-analytic. Next,

recall that polynomiality in H1
rel or its tensor powers is understood in terms

of Plücker coordinates of the bundle. In other words, we have an invariant

section of some tensor power of H1
rel given by the top exterior power Λdim ẼẼ

(normalized by a fixed volume form).

But now, the same proof as in Proposition 7.5 and Theorem 7.7 of [Fil16a]

applies to give that the section must necessarily be polynomial in period coor-

dinates.

Let us recall a sketch of proof. Let φ be some real-analytic, GL+
2 R-

equivariant section of some tensor power of the Kontsevich–Zorich cocycle (on

H1
rel). The first part, following the proof of Proposition 7.5 in loc.cit., is to

show that φ is polynomial on each stable, or each unstable, leaf. The joint

polynomiality is then established as in Proposition 7.6 and Theorem 7.7, as

those are simply statements about polynomials.

To establish polynomiality on a stable leaf, in a local chart around a point

x ∈ M, define φ̃(x, v) := φ(x + v), where v is a (sufficiently small) tangent

vector in the unstable direction. We then have a Taylor expansion

φ̃(x, v) =
∑
α

cα(x)vα

where α denotes a multi-index and cα(x) are vectors in the same bundle as φ.

From the equivariance under the Teichmüller geodesic flow, for any large time

t such that gt(x) returns to the same chart, we have∑
α

cα(x)vα =
∑
α

g−tcα(gtx)(dgtv)α,

where to obtain the right-hand side, we have pulled back by g−t the expansion

near gtx. Note that dgt denotes the cocycle on the tangent space that, by

Forni’s spectral gap result for the Lyapunov spectrum, has a definite contrac-

tion, linear in time. Thus cα must vanish for all α sufficiently large depending

on the spectral gap and the Lyapunov exponents of the bundle in which φ

lives. �

Appendix B. Algebraic Hulls and Bundles

B.1. Algebraic Hulls following Zimmer.

Setup. Recall that Zimmer [Zim84, §4.2] works in the following setup. We

have a group action on a space Ay X.

Definition B.1. A cocycle for the action of A on X is a map α : A×X →
GLn(R) satisfying the cocycle relation

α(a1, a2x) · α(a2, x) = α(a1a2, x).
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This induces an action of A on the trivial vector bundle X × Rn by linear

transformations on the fiber.

Moreover, there is a notion of equivalence (or cohomology) of cocycles.

Namely, two cocycles α and β as above are equivalent if there exists C : X →
GLn(R) such that C(ax) ◦ α(a, x) = β(a, x) ◦ C(x).

To have a more intrinsic view, one can work with general bundles V → X,

with a lift of the action of A to V by linear transformations on the fiber. Then

a description as in Definition B.1 is obtained by trivializing the bundle so that

V ' X × Rn. Different trivializations give cohomologous cocycles.

Also recall Zimmer’s definition of the algebraic hull.

Definition B.2. The Zimmer algebraic hull of a cocycle α is the smallest

algebraic group H ⊂ GLn(R) such that α is cohomologous to a cocycle β taking

values in H.

Note that with this definition, the algebraic hull is well defined only up to

conjugacy, and it is not a priori clear why it is even well-defined. Namely, one

has to check that if the cocycle can be conjugated to take values in H1 and H2,

then there is a conjugation with values in H1 ∩ gH2g
−1, for some g ∈ GLn(R).

Proposition B.3. The algebraic hull as in Definition 2.2 of the main text

(call it the tensor algebraic hull) and Zimmer’s Definition B.2 are equivalent.

Recall that by Chevalley’s Theorem 2.1, to define an algebraic subgroup

of GLn(R) is equivalent to specifying a line in some tensor construction on Rn,

with the group being the stabilizer of the line.

Proof. First, we check that the tensor algebraic hull contains the Zimmer

algebraic hull. Suppose that we have a cocycle V → Xs algebraic hull is defined

by some line subbundle l ⊂ V in some tensor construction on V . Fix a model

line lm ⊂ T(Rn) in a corresponding tensor construction on Rn. Then we pick

a measurable trivialization of V such that under the identification of each fiber

Vx → Rn, the lines lx ⊂ V are identified with lm ⊂ T(Rn). Thus we have

reduced the cocycle in the sense of Zimmer to have algebraic hull contained in

the tensor algebraic hull.

Conversely, suppose that under some trivialization V ' X × Rn, all the

cocycle linear transformations are in some group H ⊂ GLn(R). Then H is

the stabilizer of some line lm ⊂ T(Rn) in some tensor construction. The line

lm pulls back to give a line subbundle l ⊂ V in the corresponding tensor

construction on V . By definition, the cocycle preserves the line bundle l, so

the tensor algebraic hull is contained in Zimmer’s. �

B.2. Irreducible and absolutely irreducible bundles. To end, we clarify a

point regarding absolute irreducibility of bundles. It is not used in the main
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text, but it shows that the analyticity results apply to both irreducible and

strongly irreducible bundles.

Recall that a cocycle on a vector bundle V is irreducible if it has no invari-

ant subbundle. Similarly, a cocycle is strongly irreducible if it does not admit

a finite invariant collection of subbundles Wi ⊂ V . For instance, monodromy

could permute a finite number of subspaces. Thus a cocycle can be irreducible

without being strongly irreducible.

All the results above and in [Fil16a] about analyticity and polynomiality

of bundles refer to irreducible bundles. They also apply to non-irreducible bun-

dles, by simply decomposing them into irreducible pieces. Below, we establish

the same (local) property for a collection of invariant subspaces.

Proposition B.4. Suppose that V is some irreducible piece of a ten-

sor power of H1 over M, and suppose that V is not strongly irreducible for

the GL+
2 (R)-action. By assumption, there exists a finite collection of bundles

Wi ⊂ V that are permuted by the GL+
2 (R)-action.

Then locally (after a renumbering), each of the bundles varies polynomially

in period coordinates.

Note that the numbering of the bundles can be pathological — take any

(measurable!) function fromM to permutations of the indices and relabel the

bundles. Part of the statement is that there is locally a relabeling for which

the bundles vary polynomially.

Proof. Consider the projectivizations P(Wi) ⊂ P(V ). Their union X :=

∪P(Wi) is in each fiber a collection of linear spaces, i.e., an algebraic variety.

Let I• be (fiberwise) ideal of homogeneous polynomials that vanish on X.

Note that each homogeneous component Ik of I• is a subbundle of some

tensor power of the dual V ∨. Therefore, each homogeneous component varies

polynomially in period coordinates.

Next, any sufficiently high homogeneous component of I• determines the

variety X. Therefore each of the bundles Wi must (locally) vary polynomially

in period coordinates, after an appropriate relabeling. �
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