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Geometric properties of the
Markov and Lagrange spectra

By Carlos Gustavo Moreira

Dedicated to Jean-Christophe Yoccoz and Welington de Melo

Abstract

We prove several results on (fractal) geometric properties of the classical

Markov and Lagrange spectra. In particular, we prove that the Hausdorff

dimensions of intersections of both spectra with half-lines always coincide,

and we may assume any real value in the interval [0, 1].

1. Introduction and statement of the results

Let α be an irrational number. According to Dirichlet’s theorem, the

inequality |α − p
q | <

1
q2

has infinitely many rational solutions p
q . Hurwitz

improved this result by proving that |α − p
q | <

1√
5q2

also has infinitely many

rational solutions p
q for any irrational α and that

√
5 is the largest constant

that works for any irrational α. However, for particular values of α, we can

improve this constant.

More precisely, if we define k(α) := sup{k > 0 | |α− p
q | <

1
kq2

has infinitely

many rational solutions p
q} = lim supq→+∞ ((q|qα−p|)−1), we have k(α) ≥

√
5

for all α ∈ R \Q and k
(

1+
√

5
2

)
=
√

5.

Definition 1. The Lagrange spectrum is the set L = {k(α) | α ∈ R \ Q,

k(α) < +∞}.
The Hurwitz-Markov theorem determines the first element of L, which is√

5. This set L encodes many diophantine properties of real numbers. The

study of the geometric structure of L is a classical subject, which began with

Markov, proving in 1879 ([Mar80]) that

L ∩ (−∞, 3) =

®
k1 =

√
5 < k2 = 2

√
2 < k3 =

√
221

5
< · · ·

´
,
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where kn is a sequence (of irrational numbers whose squares are rational)

converging to 3; more precisely, the elements kn of L∩(−∞, 3) are the numbers

the form
»

9− 4
z2

, where z is a positive integer such that there are other

positive integers x, y with x ≤ y ≤ z and x2 + y2 + z2 = 3xyz. This means

that the “beginning” of the set L is discrete.

This is not true for the whole set L. Indeed, M. Hall proved in 1947

([Hal47]) a result on sums of continued fractions with coefficients bounded

by 4: if C4 = {α = [0; a1, a2, . . .] ∈ [0, 1]|an ≤ 4∀n ≥ 1}, then C4 + C4 =

{x+y|x, y ∈ C4} = [
√

2−1, 4(
√

2−1)]. This implies that L contains the whole

half line [6,+∞). In 1975, G. Freiman ([Fre75]) determined the biggest half

line [c,+∞) that is contained in L: he proved that

c =
2221564096 + 283748

√
462

491993569
∼= 4, 52782956616 . . . .

This half-line is known as Hall ’s ray.

These last two results are based on the study of arithmetic sums of regular

Cantor sets, whose relationship with the Lagrange spectrum will be explained

below.

Since the best rational approximations of an irrational number are its

convergents (from its continued fraction representation), it is not surprising

that k(α) is related to the continued fraction of α. In fact, if the continued

fraction of α is

α = [a0; a1, a2, . . . ] = a0 +
1

a1 +
1

a2 + ...
,

then we have the following formula:

k(α) = lim sup
n→∞

(αn + βn),

where αn = [an; an+1, an+2, . . . ] and βn = [0; an−1, an−2, . . . , a1]. This follows

from the equality∣∣∣∣α− pn
qn

∣∣∣∣ =
1

qn(αn+1qn + qn−1)
=

1

(αn+1 + βn+1)q2
n

∀n ∈ N.

This formula for k(α) implies the following alternative definition of the

Lagrange spectrum L, due to Perron ([Per21]): let Σ = (N∗)Z be the set of

all bi-infinite sequences of positive integers. If θ = (an)n∈Z ∈ Σ, let αn =

[an; an+1, an+2, . . . ] and βn = [0; an−1, an−2, . . . ] for all n ∈ Z. We define

f(θ) = α0 + β0 = [a0; a1, a2, . . . ] + [0; a−1, a−2, . . . ].

Then, if σ : Σ → Σ is the shift map defined by σ((an)n∈Z) = (an+1)n∈Z, the

Lagrange spectrum is equal to L = {lim supn→∞ f(σnθ), θ ∈ Σ}.
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In this context we can also define the Markov spectrum.

Definition 2. The Markov spectrum is the set

M = {sup
n∈Z

f(σnθ), θ ∈ Σ}.

It also has an arithmetical interpretation (see [Per21]), namely,

M = {( inf
(x,y)∈Z2\(0,0)

|f(x, y)|)−1, f(x, y) = ax2 + bxy + cy2, b2 − 4ac = 1}.

It is well known (see [CF89]) that M and L are closed sets of the real line and

L ⊂ M . In particular, M also contains the Hall’s ray [c,+∞). Freiman also

proved in [Fre75] that this is the biggest half-line contained in M .

In this paper, we study the geometrical behaviour of L and M between 3

and c. Consider the function d : R→ [0, 1] defined by d(t) = HD(L∩ (−∞, t)),
where HD denotes Hausdorff dimension. (See [Fal86] for the definitions and

basic properties of the notions of dimension used in this paper.) We will prove

the following results about the Markov and Lagrange spectra:

Theorem 1. Given t ∈ R, we have

d(t) = HD(L ∩ (−∞, t)) = HD(M ∩ (−∞, t))

= dim(L ∩ (−∞, t)) = dim(M ∩ (−∞, t)),

where dim denotes upper box dimension. Moreover, d(t) is a continuous non-

decreasing surjective function from R to [0, 1], and we have

(i) d(t) = min{1, 2D(t)}, where D(t) := HD(k−1(−∞, t)) = HD(k−1(−∞, t])
is a continuous function from R to [0, 1);

(ii) max{t ∈ R | d(t) = 0} = 3;

(iii) there is δ > 0 such that d(
√

12− δ) = 1.

This theorem affirmatively solves Problem 3 of [Bug08]. It also gives

some answers to Problem 5 of the same paper: The continuous function d(t) =

HD(L ∩ (−∞, t)), which coincides (for t > 0) with σ(1/t), in the notation of

[Bug08], is a Cantor stair function; it is constant in the connected components

of the complement of L ∩ (−∞, t1], where t1 := min{t ∈ R | d(t) = 1} ≤√
12− δ <

√
12. Notice that L∩ (−∞, t1] is a compact set with zero Lebesgue

measure, and so with empty interior. On the other hand, we have the following

Corollary. d(t) is not a Hölder continuous function.

Proof. Suppose by contradiction that d(t) is Hölder continuous with expo-

nent α > 0. By the previous theorem, there is ε > 0 such that 0 < d(3+ε) < α.

Since d(t) is constant in connected components of the open set R\L, the func-

tion d maps the set L∩(−∞, 3+ε], whose Hausdorff dimension is d(3+ε) < α,

to the nontrivial interval [0, d(3+ε)]. This is a contradiction, since the image of
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any set of Hausdorff dimension smaller than α by a Hölder continuous function

with exponent α has zero Lebesgue measure (and indeed Hausdorff dimension

smaller than one). �

Remark 1. The proof of Theorem 1 does not give any estimate on the

modulus of continuity of d(t). However it is possible to give such an estimate

by modifying the proof. See the discussion at the end of Section 6.

The proof of Theorem 1 is based on the idea of approximating parts of the

spectra from inside and from outside by sums of regular Cantor sets. Theorem 1

uses techniques developed in a joint work with J. C. Yoccoz about sums of

Cantor sets that implies that the sum of two non-essentially affine regular

Cantor sets have Hausdorff dimension equal to the minimum between one and

the sum of their Hausdorff dimensions. This result will be discussed in the

next section. The other results are Theorems 2 and 3 below.

In [Bug08] Bugeaud defines, for c > 0, the sets

Exact(c) =
{
α ∈ R|

∣∣∣α− p
q

∣∣∣ < c
q2

for infinitely many (p, q) ∈ Z× N∗ but,

for every ε > 0,
∣∣∣α− p

q

∣∣∣ < c−ε
q2

has only a finite number of

solutions (p, q) ∈ Z× N∗
}

and

Exact′(c) =
{
α ∈ R| for every ε > 0,

∣∣∣α− p
q

∣∣∣ < c+ε
q2

for infinitely many

(p, q) ∈ Z× N∗ but
∣∣∣α− p

q

∣∣∣ < c
q2

has only a finite number

of solutions (p, q) ∈ Z× N∗
}
.

Clearly Exact(c)∪Exact′(c) = k−1(c−1).

Theorem 2. We have

lim
c→0

HD(Exact(c)) = lim
c→0

HD(Exact′(c)) = 1.

Consequently,

lim
t→∞

HD(k−1(t)) = 1

and

lim
t→∞

HD(k−1(−∞, t)) = lim
t→∞

D(t) = 1.

This solves affirmatively Problem 4 of [Bug08].

We also prove a result on the topological structure of the Lagrange spec-

trum L.

Theorem 3. L′ is a perfect set, i.e., L′′ = L′.
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The proof of this theorem uses the fact that an element of the Lagrange

spectrum associated to an infinite sequence θ is accumulated by infinitely many

sums of the type αn + βn, which is not necessarily true for elements of the

Markov spectrum. The question of whether M ′′ = M ′ is still open.

There are still some important questions left on the structure of the

Markov and Lagrange spectra. For instance,

(1) Consider the function dloc : L′ → R given by

dloc(t) = lim
ε→0

HD(L ∩ (t− ε, t+ ε)).

Is dloc a non-decreasing function?

(2) Describe the geometric structure of the difference set M \ L.

(3) As before, let t1 = min{t ∈ R | d(t) = 1} <
√

12. Is it true that

t1 = inf int L? This would imply that int(L ∩ (−∞,
√

12]) 6= ∅, which in

its turn implies that int(C2 + C2) 6= ∅, where

C2 = {α = [0; a1, a2, . . .] ∈ [0, 1]|an ≤ 2 ∀n ≥ 1}.
We should mention that, in relation to question (2), there are some pro-

gresses in recent preprints by the author and C. Matheus: in [MM18a] and

[MM17], the authors describe the intersections of M\L with the maximal inter-

vals not intersecting L containing the first examples γ = 3.11812017815993 . . .

and α∞ = 3.293044265 · · · by Freiman of elements in M \ L. These intersec-

tions have positive Hausdorff dimensions (which coincide with the Hausdorff

dimensions of certain regular Cantor sets we describe in these works). In

[MM18b], the authors exhibit a regular Cantor set diffeomorphic to C2 (and

so with Hausdorff dimensions larger than 0.53128) near 3.7096998597502 con-

tained in M \ L. And, in [MM18a], they prove that the Hausdorff dimension

of M \L is smaller than 0.986927 and indicate, using heuristic estimates, that

this Hausdorff dimension is smaller than 0.888.

In relation to question (3), the question whether int(C2 + C2) 6= ∅ was

posed in page 71 of [CF89].

Acknowledgements. I would like to thank Yann Bugeaud, Aline Gomes

Cerqueira, Carlos Matheus, Túlio Carvalho and Yuri Lima for helpful com-

ments and suggestions that substantially improved this work.

2. A dimension formula for arithmetic sums of regular Cantor sets

We say that K ⊂ R is a regular Cantor set of class Ck, k ≥ 1 if

(i) there are disjoint compact intervals I1, I2, . . . , Ir such that K ⊂ I1∪· · ·∪Ir
and the boundary of each Ij is contained in K;

(ii) there is a Ck expanding map ψ defined in a neighbourhood of I1∪I2∪· · ·∪Ir
such that ψ(Ij) is the convex hull of a finite union of some intervals Is
satisfying
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(ii.1) for each j, 1 ≤ j ≤ r, and n sufficiently big, ψn(K ∩ Ij) = K;

(ii.2) K =
⋂
n∈N

ψ−n(I1 ∪ I2 ∪ · · · ∪ Ir).

We say that {I1, I2, . . . , Ir} is a Markov partition for K and that K is defined

by ψ.

Let K be regular Cantor sets of class C2 defined by the expansive func-

tion ψ. It is a general fact, due originally to Poincaré that, given a periodic

point p of period r of ψ, there is a C2 diffeomorphism h of the support in-

terval I of K such that ψ̃ = h−1 ◦ ψr ◦ h is affine in h−1(J), where J is the

connected component of the domain of ψr that contains p. We say that K is

non-essentially affine if ψ̃
′′
(x) 6= 0 for some x ∈ h−1(K).

In [Mor16], we use the Scale Recurrence Lemma of [MY01] in order to

prove the following:

Theorem. If K and K ′ are regular Cantor sets of class C2 and K is

non-essentially affine, then HD(K +K ′) = min{HD(K) + HD(K ′), 1}.

This result will be a central tool in the proof of Theorem 1.

3. Regular Cantor sets defined by the Gauss map

The Gauss map is the map g : (0, 1]→ [0, 1] given by

g(x) = {1

x
} =

1

x
− b1

x
c ∀x ∈ (0, 1].

It acts as a shift on continued fractions: if an ∈ N∗ for all n ≥ 1, then

g([0; a1, a2, a3, . . . ] = [0; a2, a3, a4, . . . ].

Regular Cantor sets defined by the Gauss map (or iterates of it) restricted

to some finite union of intervals are closely related to continued fractions with

bounded partial quotients. We will often consider such regular Cantor sets

associated to complete shifts. A complete shift is associated to finite sets of

finite sequences of positive integers in the following way: given a finite set

B = {β1, β2, . . . , βm}, m ≥ 2, where βj ∈ (N∗)rj , rj ∈ N∗, 1 ≤ j ≤ m and βi
does not begin by βj for i 6= j, the complete shift associated to B is the set

Σ(B) ⊂ (N∗)N of the infinite sequences obtained by concatenations of elements

of B:

Σ(B) = {(α0, α1, α2, . . . ) | αj ∈ B ∀ j ∈ N}.

Here (and in the rest of the paper), we use the following notation for concate-

nations of finite sequences: if αj = (a
(1)
j , a

(2)
j , . . . , α

(mj)
j ), then (α0, α1, α2, . . . )

means the sequence

(a
(1)
0 , a

(2)
0 , . . . , α

(m0)
0 , a

(1)
1 , a

(2)
1 , . . . , α

(m1)
1 , a

(1)
2 , a

(2)
2 , . . . , α

(m2)
2 , . . . ).



GEOMETRIC PROPERTIES OF THE MARKOV AND LAGRANGE SPECTRA 151

In some cases, when there is no ambiguity, we will write α0α1α2 · · · and also

αN0 to represent the concatenation of N copies of α0. In some cases some of the

αj are finite sequences and some cases are single numbers, which are viewed as

one-element sequences. Associated to Σ(B) is the Cantor set K(B) ⊂ [0, 1] of

the real numbers whose continued fractions are of the form [0; γ1, γ2, γ3, . . . ],

where γj ∈ B for all j ≥ 1. This is a regular Cantor set. Indeed, if aj and

bj are respectively the smallest and largest elements of K(B) whose continued

fractions begin by [0;βj ], for 1 ≤ j ≤ m, and Ij = [aj , bj ], then K(B) is the

regular Cantor set defined by the map ψ with domain
m⋃
j=1

Ij given by ψ|Ij = grj ,

1 ≤ j ≤ m.

We have the following:

Proposition 1. The Cantor sets K(B) defined by the Gauss map asso-

ciated to complete shifts are non-essentially affine.

Proof. Let B = {β1, β2, . . . , βm}, βj = (b
(j)
1 , b

(j)
2 , . . . , b

(j)
rj ) ∈ (N∗)rj , 1 ≤

j ≤ m. For each j ≤ m, let xj = [0;βj , βj , βj , . . . ] ∈ Ij be the fixed point of

ψ|Ij = grj . Notice that, since βi does not begin by βj for i 6= j, the xj , 1 ≤
j ≤ m are all distinct. Moreover, according to the classical theory of continued

fractions, if p
(j)
k /q

(j)
k := [0; b

(j)
1 , b

(j)
2 , . . . , b

(j)
k ] for 1 ≤ j ≤ m, 1 ≤ k ≤ rj , we

have Ij ⊂ {[0;βj , α], α ≥ 1} and ψ|Ij (x) is given by

ψ|Ij (x) =
q

(j)
rj x− p

(j)
rj

−q(j)
rj−1x+ p

(j)
rj−1

(see the appendix); so xj is the positive root of q
(j)
rj−1x

2 + (q
(j)
rj − p

(j)
rj−1)x− p(j)

rj

(since xj is the fixed point of ψ|Ij ).
For each j ≤ m, since ψ|Ij is a Möbius function with a hyperbolic fixed

point xj , there is a Möbius function αj(x) =
ajx+bj
cjx+dj

with αj(xj) =xj , α
′
j(xj) = 1

such that αj◦(ψ|Ij )◦α
−1
j is an affine map. If we show that the Möbius functions

α1 ◦ (ψ|I2) ◦ α−1
1 is not affine, then we are done, since the second derivative of

a non-affine Möbius function never vanishes.

Suppose by contradiction that α1 ◦ (ψ|I2)◦α−1
1 is affine. Since α1 ◦ (ψ|I1)◦

α−1
1 is also affine, these two functions have a common fixed point at ∞, so

α−1
1 (∞) = −d1/c1 is a common fixed point of ψ|I2 and ψ|I1 , which implies

that α−1
1 (∞) is a common root of q

(1)
r1−1x

2 +(q
(1)
r1 −p

(1)
r1−1)x−p(1)

r1 and q
(2)
r2−1x

2 +

(q
(2)
r2 − p

(2)
r2−1)x− p(2)

r2 . Since these polynomials of Q[x] are irreducible (indeed

their roots x1 and x2 are irrational because their continued fractions expansions

are infinite), they must be associates in Q[x], and so their remaining roots x1

and x2 must coincide, which is a contradiction. �



152 CARLOS GUSTAVO MOREIRA

Corollary 1. For every pair of sets B, B′ of finite sequences of positive

integers,

HD(K(B) +K(B′)) = min{1,HD(K(B)) + HD(K(B′))}.

Definition 3. If β = (b1, b2, . . . , bn−1, bn), then βt := (bn, bn−1, . . . , b2, b1).

Given a set of finite sequences B, we define Bt := {βt, β ∈ B}.

Proposition 2. For any finite set B of finite sequences, HD(K(B)) =

HD(K(Bt)).

Proof. This follows from qn(β) = qn(βt) for all β (see the appendix of

[CF89] on properties of continuants) and from the fact that, if ψ|Ij(x) =

q
(j)
n x−p(j)n

−q(j)n−1x+p
(j)
n−1

, then

ψ′|Ij(x) =
−(p

(j)
n q

(j)
n−1 − p

(j)
n−1q

(j)
n )

(−q(j)
n−1x+ p

(j)
n−1)2

=
(−1)n

(−q(j)
n−1x+ p

(j)
n−1)2

satisfies (q
(j)
n )2 ≤ |ψ′|Ij(x)| ≤ 4(q

(j)
n )2, since

1

2q
(j)
n

≤ 1

q
(j)
n + q

(j)
n−1

≤ |q(j)
n−1x− p

(j)
n−1| ≤

1

q
(j)
n

. �

Corollary 2. For every set B of finite sequences of positive integers,

HD(K(B) +K(Bt)) = min{1, 2 ·HD(K(B))}.

4. Fractal dimensions of the spectra

We recall that the Lagrange spectrum is given by L = {`(θ), θ ∈ Σ},
where Σ = (N∗)Z and, for θ = (an)n∈Z ∈ Σ, `(θ) := lim supn→+∞(αn + βn),

where αn and βn are defined as the continued fractions αn :=[an; an+1, an+2, . . . ]

and βn := [0; an−1, an−2, . . . ], while the Markov spectrum is given by M =

{m(θ), θ ∈ Σ}, where m(θ) = sup{αn + βn, n ∈ Z}.
Given a finite sequence α = (a1, a2, . . . , an) ∈ (N∗)n, we define its size by

s(α) := |I(α)|, where I(α) is the interval

{x ∈ [0, 1] | x = [0; a1, a2, . . . , an, αn+1], αn+1 ≥ 1}.

If we take p0 = 0, q0 = 1, p1 = 1, q1 = a1 and, for k ≥ 0, pk+2 =

ak+2pk+1 + pk and qk+2 = ak+2qk+1 + qk, then I(α) is the interval with ex-

tremities [0; a1, a2, . . . , an] = pn/qn and [0; a1, a2, . . . , an−1, an + 1] = pn+pn−1

qn+qn−1

and so

s(α) =

∣∣∣∣pnqn − pn + pn−1

qn + qn−1

∣∣∣∣ =
1

qn(qn + qn−1)
,
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since pnqn−1−pn−1qn = (−1)n−1. We define r(α) = blog s(α)−1c which controls

the order of magnitude of the size of I(α). We also define, for r ∈ N, Pr =

{α = (a1, a2, . . . , an) | r(α) ≥ r and r((a1, a2, . . . , an−1)) < r}.
Write Σ = Σ− × Σ+, where Σ− = (N∗)Z− and Σ+ = (N∗)N, and let

σ : Σ→ Σ be the shift given by σ((an)n∈Z) = (an+1)n∈Z. We will work with a

one-parameter family of subshifts of Σ given by Σt = {θ ∈ Σ | m(θ) ≤ t} for

t ∈ R. (In fact we will take t ≥ 3.) Note that Σt is invariant by transposition

and by σ.

Note that if θ = (an)n∈Z ∈ Σ, then αn + βn > αn ≥ an for every n,

and so m(θ) > sup{an, n ∈ Z}. So, if m(θ) ≤ t, we have an ≤ btc for all

n ∈ N. Given t ∈ [3,+∞) and r ∈ N, let T := btc and C(t, r) be the set {α =

(a1, a2, . . . , an) ∈ Pr | Kt ∩ I(α) 6= ∅}. Here Kt := {[0; γ]|γ ∈ π+(Σt)}, where

π+ : Σ→ Σ+ is the projection associated to the decomposition Σ = Σ− × Σ+.

Since Σt is invariant by transposition and by σ, Kt is invariant by the Gauss

map g and M∩(−∞, t) ⊂ (N∗∩[1, T ])+Kt+Kt. We define N(t, r) := |C(t, r)|,
where | · | denotes cardinality. Notice that if r ≤ s, then N(t, r) ≤ N(t, s) and,

if t ≤ t̃, then N(t, r) ≤ N(t̃, r).

For any finite sequences α, β and any positive integers k1, k2 ≤ T , we have

r(αβk1k2) ≥ r(α)+r(β) (see the appendix), so if C(t, r) = {α1, α2, . . . , αu} and

C(t, s) = {β1, β2, . . . , βv}, we may cover Kt by the T 2uv = T 2N(t, r)N(t, s)

intervals I(αiβjk1k2), 1 ≤ i ≤ u, 1 ≤ j ≤ v, 1 ≤ k1, k2 ≤ T , which satisfy

r(αiβjk1k2) ≥ r+s for all i, j, k. Replacing, if necessary, some of these intervals

by larger intervals I(γ) in Pr+s, we conclude that N(t, r+s) ≤ T 2N(t, r)N(t, s)

and so

log(T 2N(t, r + s)) ≤ log(T 2N(t, r)) + log(T 2N(t, s)) ∀ r, s.

This implies that

lim
m→∞

1

m
log(T 2N(t,m)) = inf

m∈N∗
1

m
log(T 2N(t,m)) = lim

m→∞
1

m
log(N(t,m))

exists. We will call this limit D(t) (which coincides with the (upper) box

dimension of Kt, as follows easily from its definition). Notice that D(t) is a

non-decreasing function. We will see in the proof of Theorem 1 that D(t) is

continuous and that HD(k−1(−∞, t)) = D(t).

Lemma 1. D(t) is right-continuous : given t0 ∈ [3,+∞) and η > 0, there

is δ > 0 such that for t0 ≤ t ≤ t + δ, we have D(t0) ≤ D(t) ≤ D(t + δ) <

D(t0) + η.

Proof. If for every t > t0, r large, logN(t,r)
r ≥ D(t0) + η, then we would

have D(t0) ≥ D(t0) +η, contradiction. (Indeed C(t, r) ⊂ C(s, r) for t ≤ s and,

by compacity, C(t0, r) =
⋂
t>t0 C(t, r).) �
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Lemma 2. Given t ∈ (3,+∞) and η ∈ (0, 1), there are δ > 0 and a Cantor

set K(B) defined by the Gauss map associated to a complete shift Σ(B) ⊂ Σ

such that Σ(B) ⊂ Σt−δ and HD(K(B)) > (1− η)D(t).

Since the proof of this lemma is somewhat technical, we will postpone it

to Section 6.

Lemma 3. Given a complete shift Σ(X) ⊂ Σ (where X is a finite set of

finite sequences of positive integers), we have

HD(`(Σ(X))) = HD(m(Σ(X))) = dim(`(Σ(X)))

= dim(m(Σ(X))) = min{2 ·HD(K(X)), 1}.

Proof. Let T be the largest element of a sequence in X. First of all we

clearly have

`(Σ(X)) ⊂ m(Σ(X))

⊂
⋃

1≤a≤T
1≤i,j≤R

(a+ gi(K(X)) + gj(K(X))),

where R is the length of the largest word of X, so

HD(`(Σ(X)) ≤ HD(m(Σ(X)) ≤ min{2 ·HD(K(X)), 1}.

Let ε > 0 be given. We will show that there are regular Cantor sets K,K ′

defined by iterates of the Gauss map with HD(K),HD(K ′) > HD(K(X))− ε
such that K + K ′ ⊂ `(Σ(X)) ⊂ m(Σ(X)). Since, by the dimension formula

stated in Section 2, HD(K + K ′) = min{HD(K) + HD(K ′), 1} > min{2 ·
HD(K(X)), 1} − 2ε and ε > 0 is arbitrary, the result will follow.

Given a positive integer n, let Xn = {(γ1, γ2, . . . , γn)|γj ∈ X∀j ≤ n}. We

have Σ(Xn) = Σ(X) and K(Xn) = K(X). Replacing X by Xn for some n

large, we may assume without loss of generality that for any A ⊂ X (resp. At ⊂
Xt) with |A| ≤ 2 (resp. |At| ≤ 2), we have HD(K(X \ A)) > HD(K(X)) − ε
(resp. HD(K(Xt \At)) > HD(K(Xt))− ε = HD(K(X))− ε).

Order X and Xt in the following way: given γ, γ̃ ∈ X (resp. γ, γ̃ ∈ Xt),

we say that γ < γ̃ if and only if [0; γ] < [0; γ̃].

Suppose that the maximum of m(Σ(X)) is attained at

θ̃ = (. . . , γ̃−1, γ̃0, γ̃1, . . . ), γ̃i ∈ X ∀ i ∈ Z,

in a position belonging to the sequence γ̃0. Let X∗ = X\{minX,maxX},
(Xt)∗ = Xt\{minXt,maxXt}. Essentially, K(X∗) and K((Xt)∗) will be the

required Cantor sets, but first we have to control the positions where the lim sup

is attained (the idea is somewhat similar to the proof that Hall’s theorem

([Hal47]) on sums of continued fractions with coefficients bounded by 4 implies
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that the Lagrange spectrum contains [6,+∞)) and which words can appear in

the beginning of the elements.

For each positive integer m, let Cm be the set of sequences

(. . . , γ−m−2, γ−m−1, γ̃−m, γ̃−m+1, . . . ,

γ̃−1, γ̃0, γ̃1, . . . , γ̃m−1, γ̃m, γm+1, γm+2, . . . ),

where γk ∈ X∗ for k ≥ m + 1 and γtk ∈ (Xt)∗ for k ≤ −m − 1. Then, for m

large enough, there is η>0 such that for each θ∈Cm, sup(αn + βn) = m(θ) is

attained only for values of n corresponding to the piece

τ = (γ̃−m, γ̃−m+1, . . . , γ̃−1, γ̃0, γ̃1, . . . , γ̃m−1, γ̃m)

of θ and, if n does not correspond to the piece τ , then αn + βn < m(θ) − η.

Indeed, if it is not the case, we may assume without loss of generality that

there is a sequence (mk) tending to +∞ and, for each k, θ(k) ∈ Cmk and nk
corresponding to a piece γr(k), with r(k) > mk such that αnk(θ(k))+βnk(θ(k)) >

m(θ(k)) − 1/k. Since θ(k) converges to θ̃, m(θ(k)) converges to m(θ̃) and, by

compacity, if Nk denotes the size of the sequence

γ̃0, γ̃1, . . . , γ̃mk−1, γ̃mk , γmk+1, γmk+2, . . . , γr(k)−1,

then (σNk(θ(k))) has a subsequence that converges to some

θ̂ = (. . . , γ̂−1, γ̂0, γ̂1, . . . ) ∈ Σ(X),

with γ̂i ∈ X∗ for all i ≥ 0, such that sup(αn + βn) = m(θ̂) = m(θ̃) is attained

for some n corresponding to the piece γ̂0. This is a contradiction, since m(θ̃)

is the maximum of m(Σ(X)) and, changing γ̂1 by minX or maxX, we strictly

increase the value of m(θ̂). Notice that the same argument shows that for any

θ ∈ Cm and θ∗ ∈ Σ(X∗), we have m(θ∗) < m(θ)− η (for m large enough).

Now, fixing m with the above properties and γ(0) ∈ X such that (γ(0))t ∈
(Xt)∗, we may associate to each x = [0; γ1(x), γ2(x), γ3(x), . . . ] ∈ K(X∗) an
element Θ(x) ∈ Cm given by

Θ(x) = (. . . , γ(0), γ(0), γ̃−m, γ̃−m+1, . . . , γ̃−1, γ̃0, γ̃1, . . . , γ̃m−1, γ̃m, γ1(x), γ2(x), . . . )

= (. . . , γ(0), γ(0), τ, γ1(x), γ2(x), . . . ).

For each position n corresponding to the piece τ of Θ(x), we write gn(x) =

αn(Θ(x)) + βn(Θ(x)); in fact βn(Θ(x)) does not depend on x so, for distinct

values of n, the functions gn are distinct rational maps of x. This implies that,

except for finitely many values of x, the values of gn(x) for these values of

n are all distinct. Let x# = [0; γ#
1 , γ

#
2 , γ

#
3 , . . . ] be one of these values. Since

sup(αn+βn) = m(Θ(x#)) is attained for values of n corresponding to the piece

τ of Θ(x#), let n0 be the position in τ for which m(Θ(x#)) = αn0(Θ(x#)) +

βn0(Θ(x#)). For N large enough, taking τ# = ((γ(0))N , τ, γ#
1 , γ

#
2 , . . . , γ

#
N ), the

following holds: if θ = (. . . , γ−2, γ−1, τ
#, γ1, γ2, . . . ), with γk ∈ X∗, (γ−k)

t ∈
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(Xt)∗ for all k ≥ 1, writing τ# = (a−N1 , . . . , a−2, a−1, a0, a1, a2, . . . , aN2),

where a0 is in the position n0 of τ , we have

m(θ) = [a0; a1, a2, . . . , aN2 , γ1, γ2, γ3, . . . ]

+ [0; a−1, a−2, . . . , a−N1 , γ−1
t, γ−2

t, γ−3
t, . . . ].

It follows that, defining

K := {[a0; a1, a2, . . . , aN2 , γ1, γ2, γ3, . . . ]|γj ∈ X∗ ∀j ≥ 1}
and

K ′ := {[0; a−1, a−2, . . . , a−N1 , γ
′
1
t
, γ′2

t
, γ′3

t
, . . . ]|γ′j

t ∈ (Xt)∗ ∀j ≥ 1},

we have K +K ′ ⊂ `(Σ(X)). In order to show this, given

x = [a0; a1, a2, . . . , aN2 , γ1, γ2, γ3, . . . ] ∈ K

and

y = [0; a−1, a−2, . . . , a−N1 , γ
′
1
t
, γ′2

t
, γ′3

t
, . . . ] ∈ K ′,

and defining, for each positive integer m,

τ (m) = (γ′m, γ
′
m−1, . . . , γ

′
1, τ

#, γ1, γ2, . . . , γm),

we have

`(Θ∗(x, y)) = m(Θ̂(x, y)) = x+ y

for

Θ∗(x, y) = (. . . , γ(0), γ(0), τ (1), τ (2), τ (3), . . . )

and

Θ̂(x, y) = (. . . , γ′3, γ
′
2, γ
′
1, τ

#, γ1, γ2, γ3, . . . ).

Indeed, there is a sequence of positions (sk) with sk corresponding to the

piece τ (k) of Θ∗(x, y) such that σsk(Θ∗(x, y)) converges to σn0(Θ̂(x, y)), so

αsk(Θ∗(x, y)) + βsk(Θ∗(x, y)) converges to

αn0(Θ̂(x, y)) + βn0(Θ̂(x, y)) = m(Θ̂(x, y)) = x+ y

and, in particular, `(Θ∗(x, y)) ≥ m(Θ̂(x, y)) = x+y. On the other hand, there

are increasing sequences (mk) and (rk) such that the position mk corresponds

to the piece τ (rk) in Θ∗(x, y) and αmk(Θ∗(x, y)) + βmk(Θ∗(x, y)) converges to

`(Θ∗(x, y)). Now, if |mk− srk | has a bounded subsequence, then there is b ∈ Z
such that σmk(Θ∗(x, y)) has a subsequence converging to σb(Θ̂(x, y)), so

`(Θ∗(x, y)) = lim(αmk(Θ∗(x, y)) + βmk(Θ∗(x, y))) ≤ m(Θ̂(x, y)) = x+ y.

On the other hand, if |mk−srk | is unbounded, there is c ∈ Z and a subsequence

of σmk(Θ∗(x, y)) that converges to σc(θ∗), where θ∗ is an element of Σ(X∗),

but in this case we would have `(Θ∗(x, y)) ≤ m(θ∗) < m(Θ̂(x, y)) − η, which

is a contradiction.
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Finally, notice that K and K ′ are diffeomorphic respectively to K(X∗)

and K((Xt)∗), so

HD(K) = HD(K(X∗)) > HD(K(X))− ε

and

HD(K ′) = HD(K((Xt)∗)) > HD(K(Xt))− ε = HD(K(X))− ε. �

5. Proofs of the main results

Proof of Theorem 1. Applying Lemma 3 to the complete shift Σ(B) ob-

tained in Lemma 2, we get that, for any η > 0, there is δ > 0 such that

min{2(1− η)D(t), 1} ≤ min{2HD(K(B)), 1} ≤ HD(L ∩ (−∞, t− δ])
≤ HD(L ∩ (−∞, t)) ≤ HD(M ∩ (−∞, t))

≤ dim(M ∩ (−∞, t))
≤ min{2 ·HD(Kt), 1} ≤ min{2 ·D(t), 1}

(since

`(Σ(B)) ⊂ L∩(−∞, t−δ], L∩(−∞, t) ⊂M∩(−∞, t) ⊂ (N∗∩[1, T ])+Kt+Kt

and D(t) is the upper box dimension of Kt), and so, if d(t) := HD(L∩(−∞, t)),
we have

d(t) = HD(M ∩ (−∞, t)) = dim(L ∩ (−∞, t))

= dim(M ∩ (−∞, t)) = min{2 ·D(t), 1}.

In order to conclude the proof of the first assertion of (i), it is enough

to show that HD(k−1(−∞, t)) = D(t). In the notation of Lemma 3, let x ∈
K, y ∈ K ′. For each z = [0;α1, α2, . . . ] ∈ K(X∗), define

λ(z) = λx,y(z) =
Ä
α1!, τ

(1), α2!, τ
(2), α3, α4, α5, α3!, τ

(3), α7, . . . , α4!, τ
(4),

α25, α26, . . . , α5!, τ
(5), . . . , αr!, τ

(r), αr!+1, . . .
ä

and h(z) = [0;λ(z)]. As before, we have k(h(z)) = x+ y. On the other hand,

given any ρ > 0, we have |z − z′| = O(|h(z) − h(z′)|1−ρ) for |z − z′| small, so

HD(k−1(x+ y)) ≥ HD(K(B∗)) > HD(K(B))− ε. As before, we get

HD(k−1(−∞, t)) ≥ HD(k−1(−∞, t− δ])

≥ HD(k−1(x+ y)) > HD(K(B))− ε > (1− η)D(t)− ε.

Since η and ε are arbitrary, HD(k−1(−∞, t)) ≥ D(t). For the reverse inequal-

ity, let w ∈ k−1(−∞, t). We have lim supn→∞(αn(w) + βn(w)) = k(w) < t,

so there is n0 ∈ N such that n ≥ n0 =⇒ αn(w) + βn(w) < t. This

implies that k−1(−∞, t) ⊂ ⋃
n∈N(g−n(Kt)), where g is the Gauss map, so

HD(k−1(−∞, t)) ≤ D(t). Thus we have HD(k−1(−∞, t)) = D(t).
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Recall that, by Lemma 1, D(t) is a right-continuous function. Thus we

have

D(t) = HD(k−1(−∞, t))≤HD(k−1(−∞, t]) ≤ lim
s→t+

HD(k−1(−∞, s))

= lim
s→t+

D(s) = D(t).

Then HD(k−1(−∞, t]) = HD(k−1(−∞, t)) = D(t), and we conclude that

d(t) = min{2HD(k−1(−∞, t)), 1} = min{2HD(k−1(−∞, t]), 1}.
Finally, D(t) is left-continuous (and so is continuous) since, by Lemma 2,

given t ∈ [3,+∞) and η ∈ (0, 1), there is δ > 0 such that D(t − δ) ≥
HD(K(B)) > (1− η)D(t), so lim

s→t−
D(s) = D(t).

In order to conclude, notice that for each positive integer m,

Σ({212m2, 212m+22}) ⊂ Σ3+2−m

(notice that [2; 1, 1, 1, . . .] + [0; 2, 1, 1, 1, . . .] = 3), so D(3 + ε) > 0 for every

ε > 0 and, since Σ√12 = {1, 2}Z,

D(
√

12) = HD(K√12) = HD(K({1, 2})) = HD(C2) = 0, 53128 . . . > 1/2

so, since D(t) is continuous, there is δ > 0 such that D(
√

12 − δ) > 1/2, and

thus we have

d(
√

12− δ) = min{2 ·D(
√

12− δ), 1} = 1. �

Remark. It follows from the above proof and from the general estimates

of fractal dimensions of regular Cantor sets of Chapter 4 of [PT93] that there

is a constant C > 0 such that, for each positive integer m, D(3 + 2−m) ≥
HD(K({212m2, 212m+22})) > C/m. This gives another proof of the fact that

the functions D(t) and d(t) are not Hölder continuous.

Proof of Theorem 2. Given m ≥ 2, let

Cm = {α = [0; a1, a2, a3, . . .] ∈ [0, 1]|ak ≤ m∀k ≥ 1}.

M. Hall proved in [Hal47] that C4+C4 = {α+β|α, β ∈ C4} = [
√

2−1, 4(
√

2−1)].

On the other hand, we have limm→∞HD(Cm) = 1. In fact, Jarńık proved in

[Jar29] that

HD(Cm) > 1− 1

m · log 2
∀m > 8.

Now let t ≥ 7 be given. Let m = btc − 3. There are n ∈ {m + 2,m + 3}
and α = [0; a1, a2, a3, . . .], β = [0; b1, b2, b3, . . .] ∈ C4 such that t = n + α + β.

For each r ≥ 1, let τ̃ (r) and τ̂ (r) respectively be the sequences

(m+ 1, b2r−1, b2r−2, . . . , b2, b1, n, a1, a2, . . . , a2r−2, a2r−1,m+ 1)

and

(m+ 1, b2r, b2r−1, . . . , b2, b1, n, a1, a2, . . . , a2r−1, a2r,m+ 1).
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Now consider the maps h̃, ĥ : Cm → [0, 1] given by

h̃(z) = h̃([0; c1, c2, c3, . . .])

= [0; c1!, τ̃
(1), c2!, τ̃

(2), c3, c4, c5, c3!, τ̃
(3),

c7, c8, . . . , c4!, τ̃
(4), c25, . . . , c5!, τ̃

(5), . . . , cr!, τ̃
(r), cr!+1, . . . ]

and

ĥ(z) = ĥ([0; c1, c2, c3, . . .])

= [0; c1!, τ̂
(1), c2!, τ̂

(2), c3, c4, c5, c3!, τ̂
(3),

c7, c8, . . . , c4!, τ̂
(4), c25, . . . , c5!, τ̂

(5), . . . , cr!, τ̂
(r), cr!+1, . . . ].

It is easy to see that k(h̃(z)) = t for every z ∈ Cm. Moreover, since [x0;

x1, x2, x3, x4, . . . ] is increasing in x0, x2, x4, . . . and decreasing in x1, x3, x5, . . .,

we have

h̃(z) ∈ Exact(t−1) and ĥ(z) ∈ Exact′(t−1).

On the other hand, given any ρ > 0, we have |z − z′| = O(|h̃(z) − h̃(z′)|1−ρ)
and |z − z′| = O(|ĥ(z) − ĥ(z′)|1−ρ) for |z − z′| small, so HD(Exact(t−1)) ≥
HD(Cm) and HD(Exact′(t−1)) ≥ HD(Cm). Since limm→∞HD(Cm) = 1, we

are done. �

Proof of Theorem 3. Let x ∈ L′. Consider a sequence xn converging to x,

xn ∈ L, xn 6= x. Choose θ(n) ∈ Σ such that xn = `(θ(n)). Let θ(n) = (b
(n)
j )j∈Z,

and assume b
(n)
j ≤ 4 for all j for all n (which is possible since me may assume

that the xn are not in Hall’s ray). We have xn = lim supj→∞(α
(n)
j + β

(n)
j ).

Given δ > 0, there exists n0 ∈ N large such that n ≥ n0 ⇒ |`(θ(n)) − x| < δ,

and there are infinitely many j ∈ N such that |α(n)
j + β

(n)
j − x| < δ. Let N =

dδ−1e. Given such a pair (j, n), consider the finite sequence with 2N + 1 terms

(b
(n)
j−N , b

(n)
j−N+1, . . . , b

(n)
j , . . . , b

(n)
j+N ) =: S(j, n). There is a sequence S such that

for infinitely many values of n, S appears infinitely many times as S(j, n), j ∈
N; i.e., there are j1(n) < j2(n) < · · · with limi→∞(ji+1(n) − ji(n)) = ∞ and

S(ji(n), n) = S for all i ≥ 1 for all n in some infinite set A ⊂ N.

Consider the sequences β(i, n) for i ≥ 1, n ∈ A given by

β(i, n) = (b
(n)
ji(n)+N+1, b

(n)
ji(n)+N+2, . . . , b

(n)
ji+1(n)+N ).

There are (i1, n1) and (i2, n2) for which there is no sequence γ such that

β(i1, n1) and β(i2, n2) are concatenations of copies of γ, otherwise xn would

be constant for n ∈ A. This implies that, taking

B = {β(i1, n1)β(i2, n2), β(i2, n2)β(i1, n1)},

K(B) is a regular Cantor set so, as in Lemma 3, `(K(B)) contains a regular

Cantor set K̂ with d(x, K̂) ≤ 2δ. �
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6. Proof of Lemma 2

Let τ = η/40. Since t > 3, we have D(t) > 0, and so we may choose r0 ∈ N
large such that, for r ≥ r0, | logN(t,r)

r −D(t)| < τ
2D(t). Let B0 := C(t, r0) and

N0 := N(t, r0) = |B0|. Let k = 8N2
0 d2/τe. Take B̃ = {β = β1β2 · · ·βk | βj ∈

B0, 1 ≤ j ≤ k and Kt ∩ I(β) 6= ∅}.
Given β = β1β2 · · ·βk ∈ B̃ (with βi ∈ B0, 1 ≤ i ≤ k), we say that

j, 1 ≤ j ≤ k, is a right-good position of β if there are elements β(s) =

β1β2 · · ·βj−1β
(s)
j β

(s)
j+1 · · ·β

(s)
k , s = 1, 2, of B̃ such that we have the following in-

equality of continued fractions: [0;β
(1)
j ] < [0;βj ] < [0;β

(2)
j ]. We say that j is a

left-good position if there are elements β(s) =β
(s)
1 β

(s)
2 · · ·β

(s)
j−1β

(s)
j βj+1βj+2 · · ·βk,

s = 3, 4, of B̃ such that [0; (β
(3)
j )t] < [0;βtj ] < [0; (β

(4)
j )t]. Finally, we say that

j is a good position if it is both right-good and left-good.

We will show that most positions of most words of B̃ are good. Let us

first estimate |B̃|. It follows from Lemma A.2 of the appendix that, for β ∈ B̃,

s(β) < (2e−r0)k < e−k(r0−1). Moreover, since N(t, k(r0 − 1)) ≥ 1
T 2 e

k(r0−1)D(t),

{I(β);β ∈ B̃} is a covering of Kt by intervals of size smaller than e−k(r0−1)

and the function h : B̃ → C(t, k(r0 − 1)) defined by h(β) = h((β1β2 . . . βk)) =

(β1β2 . . . βj), where j = min{i ; i ≤ k and r((β1β2 . . . βi)) ≥ k(r0 − 1) } is

onto, we have

|B̃| ≥ 1

T 2
ek(r0−1)D(t) > 2 ek(r0−2)D(t), since k is large

≥ 2 e(1−τ/2)r0kD(t), since r0 is large

> 2 e(1−τ)(1+τ/2)r0kD(t)

> 2N
(1−τ)k
0 , sinceN(t, r0) < e(1+ τ

2 )D(t)r0 .

Now, let us estimate the number of words β ∈ B̃ such that at least k/20

positions of β are not right-good: we have at most 2k choices for the set of

the m ≥ k/20 positions which are not right-good. Once we choose this set of

positions, if j is such a position and β1, β2, . . . , βj−1 ∈ B0 are already chosen,

there are at most two (the largest and the smallest) choices for βj ∈ B0 such

that for some β = β1β2 · · ·βj−1βjβj+1 · · ·βk ∈ B̃, the position j is not right-

good. If j is any other position, we have of course at most N0 = |B0| possible

choices for βj , so we have at most 2m ·Nk−m
0 ≤ 2k/20N

19k/20
0 words in B̃ with

this chosen set of m positions that are not right-good. Therefore, the number

of words β ∈ B̃ for which the number of positions that are not right-good is at

least k/20 is bounded by 2k · 2k/20 ·N19k/20
0 = 221k/20 ·N19k/20

0 . Analogously,

the number of words β ∈ B̃ for which there are at least k/20 positions that

are not left-good is also bounded by 221k/20 ·N19k/20
0 .
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This implies that for at least

|B̃| − 2 · 221k/20 ·N19k/20
0 > 2N

(1−τ)k
0 − 21+21k/20 ·N19k/20

0 > N
(1−τ)k
0

words of B̃, the number of good positions is at least 9k/10. Let us call such

an element of B̃ an excellent word.

If β = β1β2 · · ·βk ∈ B̃ (with βj ∈ B0, 1 ≤ j ≤ k) is an excellent word,

we may find d2k/5e positions i1, i2, . . . , id2k/5e ≤ k with is+1 ≥ is + 2 for all

s < d2k/5e, such that the positions i1, i1 + 1, i2, i2 + 1, . . . , id2k/5e, id2k/5e + 1

are good. Since k = 8N2
0 d2/τe, we may takejs := isd2/τe for 1 ≤ s ≤ 3N2

0

(notice that 3N2
0 d2/τe < 16

5 N
2
0 d2/τe = 2k/5), so we have js+1 − js ≥ 2d2/τe

for all s < 3N2
0 , and the positions js, js + 1 are good for 1 ≤ s ≤ 3N2

0 .

Now, the number of possible choices of (j1, j2, . . . , j3N2
0
) is bounded by( k

3N2
0

)
< 2k and, given (j1, j2, . . . , j3N2

0
), the number of choices of

(βj1 , βj1+1, . . . , βj
3N2

0

, βj
3N2

0
+1)

is bounded by N
6N2

0
0 . So, we may choose ̂1, ̂2, . . . , ̂3N2

0
with ̂s+1− ̂s ≥ 2d2/τe

for all s < 3N2
0 , and words β̂̂1 , β̂̂1+1, β̂̂2 , β̂̂2+1, . . . , β̂̂

3N2
0

, β̂̂
3N2

0
+1 ∈ B0 such

that the set X := {β = β1β2 · · ·βk ∈ B̃ excellent | ̂s, ̂s + 1 are good posi-

tions and β̂s = β̂̂s , β̂s+1 = β̂̂s+1∀ s ≤ 3N2
0 } has at least

N
(1−τ)k
0

2k·N
6N2

0
0

> N
(1−2τ)k
0

elements, as N0 and k are large.

Since N0 = |B0|, there are N2
0 possible choices for the pairs (β̂̂s , β̂̂s+1).

We will consider, for 1 ≤ s < t ≤ 3N2
0 , the projections πs,t : X → B ̂t−̂s

0 given

by πs,t(β1β2 · · ·βk) = (β̂s+1, β̂s+2, . . . , β̂t). We will show that the images of

many of these projections are large.

For each pair (s, t) with 1 ≤ s < t ≤ 3N2
0 such that

|πs,t(X)| < N
(1−10τ)(̂t−̂s)
0 ,

we will exclude from {1, 2, . . . , 3N2
0 } the indices s, s + 1, . . . , t − 1. Let us

estimate the total number of indices excluded: the set of excluded indices is

the union of the intervals [s, t) (intersected with Z) over the pairs (s, t) as

above. Now we use the elementary fact that, given a finite family of intervals,

there is a subfamily of disjoint intervals whose sum of lengths is at least half

of the measure of the union of the intervals of the original family. We apply

this fact to the above intervals [s, t). Suppose that the total number of indices

excluded is at least 2N2
0 . By the above fact, we may find a disjoint collection

of intervals [s, t) as above whose sum of lengths is at least N2
0 . Let us call P

the set of these pairs (s, t). Since ̂t − ̂s ≥ 2(t − s)d2/τe∀t > s, the sum of

(̂t − ̂s) for (s, t) ∈ P is at least 2N2
0 d2/τe. Since for each pair (s, t) ∈ P we
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have |πs,t(X)| < N
(1−10τ)(̂t−̂s)
0 , we get

N
(1−2τ)k
0 < |X| < N

(1−10τ)
∑

(s,t)∈P
(̂t−̂s)

0 ·N#{i;i /∈[̂s ,̂t)∀(s,t)∈P}
0

< N
(1−10τ)·2N2

0 d2/τe
0 ·Nk−2N2

0 d2/τe
0 ,

since we have at most N0 choices for βi for each index i that does not belong to

the union of the intervals [̂s, ̂t) associated to these pairs (s, t). However, this

is a contradiction, since this inequality is equivalent to N
20τN2

0 d2/τe
0 < N2τk

0 ,

which cannot hold, because 2τk = 16τN2
0 d2/τe < 20τN2

0 d2/τe. So, the total

number of excluded indices is smaller than 2N2
0 .

Now, there are at least N2
0 + 1 indices that are not excluded. We will

have two non-excluded indices s < t such that β̂̂s = β̂̂t and β̂̂s+1 = β̂̂t+1.

We claim that, for B := πs,t(X), the shift Σ(B) satisfies the conclusions of the

statement.

Indeed, since s and t are not excluded, we have |B| ≥ N
(1−10τ)(̂t−̂s)
0 .

Moreover, by Proposition A.1 of the appendix, for every α ∈ B, we have

|I(α)| = s(α) > (2(T + 1)2er0)−(̂t−̂s) > e−(̂t−̂s)(r0+dlog(2(T+1)2)e).

So, the Hausdorff dimension of K(B) is at least

(1− 10τ) logN0

r0 + dlog(2(T + 1)2)e
>

(1− 10τ)r0

r0 + dlog(2(T + 1)2)e
· (1− τ

2
)D(t)

> (1− 12τ)D(t) > (1− η)D(t).

On the other hand, if k̃ := ̂t − ̂s, γ1 := β̂̂s+1 = β̂̂t+1 and γ2 := β̂̂t = β̂̂s ,

all elements of B are of the form γ1β2β3 · · ·βk̃−1γ2, where γ1, β2, β3, . . . , βk̃−1,

γ2 ∈ B0 and there are γ′1, γ
′′
1 , γ′2, γ

′′
2 ∈ B0 with [0; γ′2] < [0; γ2] < [0; γ′′2 ] and

[0; (γ′1)t] < [0; γt1] < [0; (γ′′1 )t] such that

I(γ′1β2β3 · · ·βk̃−1γ2γ1) ∩Kt 6= ∅, I(γ′′1β2β3 · · ·βk̃−1γ2γ1) ∩Kt 6= ∅,
I(γ2γ1β2β3 · · ·βk̃−1γ

′
2) ∩Kt 6= ∅, I(γ2γ1β2β3 · · ·βk̃−1γ

′′
2 ) ∩Kt 6= ∅.

We will show that this implies the existence of δ > 0 such that Σ(B) ⊂ Σt−δ.

Let γt1 = (c1, c2, . . . , cm1), with cj ∈N∗ for all j≤m1, and γ2 = (d1, d2, . . . , dm2)

with dj ∈ N∗ for all j ≤ m2. Let γ1β2β3 · · ·βk̃−1γ2 ∈ B, where β2β3 · · ·βk̃−1 =

a1a2 · · · am̃ with aj ∈ N∗ for all j ≤ m̃. We want to estimate three kinds

of sums of continued fractions. The first one are sums of continued fractions

beginning by [aj ; aj+1, . . . , am̃, γ2, γ1, . . . ] + [0; aj−1, . . . , a1, γ
t
1, γ

t
2, . . . ]. Let us

assume, without loss of generality, that

qm2+m̃−j(aj+1, . . . , am̃, γ2) ≤ qm1+j−1(aj−1, . . . , a1, γ
t
1);

the other case, when the reverse inequality

qm1+j−1(aj−1, . . . , a1, γ
t
1) ≤ qm2+m̃−j(aj+1, . . . , am̃, γ2)
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holds, is symmetric. Assume also that

[aj ; aj+1, . . . , am̃, γ2] < [aj ; aj+1, . . . , am̃, γ
′
2];

otherwise we change γ′2 by γ′′2 . This allows us to exhibit δ > 0 such that, for

any θ(i) ∈ {1, 2, . . . , T}N, 1 ≤ i ≤ 4,

[aj ; aj+1, . . . , am̃, γ2, θ
(1)] + [0; aj−1, . . . , a1, γ

t
1, γ

t
2, θ

(2)]

< [aj ; aj+1, . . . , am̃, γ
′
2, θ

(3)] + [0; aj−1, . . . , a1, γ
t
1, γ

t
2, θ

(4)]− δ.

Indeed, by Lemma A.1 of the appendix,

[aj ; aj+1, . . . , am̃, γ
′
2, θ

(3)]− [aj ; aj+1, . . . , am̃, γ2, θ
(1)]

>
1

(T + 1)(T + 2)qm2+m̃−j(aj+1, . . . , am̃, γ2)2

and ∣∣∣[0; aj−1, . . . , a1, γ
t
1,γ

t
2, θ

(4)]− [0; aj−1, . . . , a1, γ
t
1, γ

t
2, θ

(2)]
∣∣∣

<
1

qm1+m2+j−1(aj−1, . . . , a1, γt1, γ
t
2)2

<
1

(Fm2+1qm1+j−1(aj−1, . . . , a1, γt1))2

≤ 1

(Fm2+1qm2+m̃−j(aj+1, . . . , am̃, γ2))2

≤ 1

2(T + 1)(T + 2)qm2+m̃−j(aj+1, . . . , am̃, γ2)2
.

(Here we use that m2 is large; (Fn) denotes Fibonacci’s sequence, given by

F0 = 0, F1 = 1, Fn+2 = Fn+1 + Fn for all n ≥ 0.)

So, the inequality holds with

δ :=
1

(T + 1)2(m1+m2+m̃)
<

1

2(T + 1)(T + 2)qm2+m̃−j(aj+1, . . . , am̃, γ2)2
.

On the other hand, I(γ2γ1β2β3 · · ·βk̃−1γ
′
2) ∩Kt 6= ∅, so there are θ(3) and θ(4)

such that (θ(4))tγ2γ1β2β3 · · ·βk̃−1γ
′
2θ

(3) ∈ Σt, and thus

[aj ; aj+1, . . . , am̃, γ
′
2, θ

(3)] + [0; aj−1, . . . , a1, γ
t
1, γ

t
2, θ

(4)] ≤ t,

which implies that, for any θ(i) ∈ {1, 2, . . . , T}N, i = 1, 2,

[aj ; aj+1, . . . , am̃, γ2, θ
(1)] + [0; aj−1, . . . , a1, γ

t
1, γ

t
2, θ

(2)] < t− δ.

The other two kinds of sums of continued fractions we want to estimate

are sums of continued fractions beginning by

[dj ; dj+1, . . . , dm2 , γ1, . . .] + [0; dj−1, . . . , d1, am̃, . . . , a1, γ
t
1, . . .]
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and, symmetrically, sums of continued fractions beginning by

[0; cj+1, . . . , cm1 , γ
t
2, . . .] + [cj ; cj−1, . . . , c1, a1, . . . , am̃, γ2, . . .].

We have

qm2−j+m1(dj+1, . . . , dm2 , γ1) ≤ qj−1+m̃+m1(dj−1, . . . , d1, am̃, . . . , a1, γ
t
1).

(Indeed, m̃/(m1 + m2) is large when η and τ are small, depending on T .)

Assume that [dj ; dj+1, . . . , dm2 , γ1] < [dj ; dj+1, . . . , dm2 , γ
′
1]. (Otherwise we

change γ′1 by γ′′1 .) Since I(γ2γ1β2β3 · · ·βk̃−1γ2γ
′
1) ∩ Kt 6= ∅, estimates anal-

ogous to the previous ones imply that, for any θ(i) ∈ {1, 2, . . . , T}N, i = 1, 2,

we have

[dj ; dj+1, . . . , dm2 , γ1, θ
(1)] + [0; dj−1, . . . , d1, am̃, . . . , a1, γ

t
1, γ

t
2, θ

(2)] < t− δ.

This implies that the complete shift Σ(B) satisfies the conditions of the

statement, which concludes the proof of the lemma. �

As we said before, this proof does not give any estimate on the modulus

of continuity of d(t). Indeed, in the beginning of the proof of Lemma 2, we

used the fact that u(r) = log(T 2N(t, r)) is subadditive in order to guarantee

the existence of r0 ∈ N large such that, for r ≥ r0, | logN(t,r)
r −D(t)| < τ

2D(t).

(Recall that D(t) = limm→∞
1
m log(T 2N(t,m)) = limm→∞

1
m log(N(t,m)).)

However, this gives no estimate on r0. Consider, for instance, the function

v(n) given by v(n) = 2n for n ≤M0 and v(n) = n+M0 for n > M0, where M0

is a large positive integer. It is subadditive, increasing, limn→∞ v(n)/n = 1 but

v(M0)/M0 = 2, and M0 can be taken arbitrarily large. However it is possible

to adapt the proof in order to give an estimate on the modulus of continuity

of d(t), using an idea of [FMM18].

Given ε > 0 (which we may assume to be smaller than 1
7 <

1
10 log 2), we

want to obtain δ ∈ (0, 1) as an explicit function of ε such that D(t − δ) >
D(t) − ε. Of course there is no loss of generality in assuming D(t) ≥ ε. We

may also assume that T = btc < 4 + ε−1/ log 2 (and thus t < T + 1 < 3ε−1)

since, by the proof of Theorem 2, if btc ≥ 4+ε−1/ log 2 ≥ 14, for m = btc−4 ≥
max{9, ε−1/ log 2}, we have D(t− 1) ≥ HD(Cm) > 1− 1

m log 2 > 1− ε (and so

D(t− 1) > D(t)− ε).
Under these hypothesis, we will apply the conclusions of Lemma 2 for

η = ε. In its proof, in this case, it is enough to assume r0 ≥ 1/τ2 and that, for

k = 8N(t, r0)2d2/τe, logN(t,r0)
r0

< (1+ τ/2) logN(t,k(r0−1))
k(r0−1) (indeed, assuming the

above bounds for t, it is not difficult to check that, except for this inequality

relating N(t, r0) and N(t, k(r0 − 1)), the claims in other parts of the proof

of the lemma that use the assumptions that r0 and k are large are satisfied

provided r0 ≥ 1/τ2).
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We define a sequence (cn)n≥0 recursively by c0 =d 1
τ2
e and, for every n≥0,

cn+1 = 8N(t, cn)2
°

2

τ

§
(cn − 1).

We claim that for some integer s0 < (1 + 2
τ ) log(4/ε), we will have

logN(t, cs0)

cs0
<

Å
1 +

τ

2

ã
logN(t, cs0+1)

cs0+1
=

Å
1 +

τ

2

ã
logN(t, k(cs0 − 1))

k(cs0 − 1)
,

with k = 8N(t, cs0)2d 2
τ e. Indeed, if it is not the case, then

logN(t, cn+1)

cn+1
≤
Å

1 +
τ

2

ã−1 logN(t, cn)

cn

for 0 ≤ n < (1+ 2
τ ) log(4/ε), and so, for M = d(1+ 2

τ ) log(4/ε)e, we would have

logN(t, cM )

cM
≤
Å

1 +
τ

2

ã−M
· logN(t, c0)

c0
< (ε/4) · logN(t, c0)

c0

since (1+ τ
2 )−(1+ 2

τ
) < e−1. On the other hand, it follows by Lemma A.3 that, for

every m ≥ c0, N(t,m) < (T + 1)2em < e2m (recall that c0 = d 1
τ2
e = d1600

ε2
e),

and so logN(t,cM )
cM

≤ (ε/4) · logN(t,c0)
c0

< ε/2. This leads to a contradiction

since, for every positive integer m, ε ≤ D(t) ≤ log(T 2N(t,m))
m and, in particular,

logN(t,cM )
cM

> ε− 2 log T
cM

≥ ε/2, since cM ≥ c0 ≥ 1600
ε2

and T < 3/ε.

Now let r0 = cs0 . By the previous discussion, the proof of Lemma 2 works

for this r0 (and k = 8N(t, r0)2d2/τe) so, for

δ =
1

(T + 1)2(m1+m2+m̃)
≥ 1

(T + 1)2k·max{|β|,β∈C(t,r0)} ≥
1

(T + 1)2k·r0/ log 2
,

we have D(t−δ) > (1−ε)D(t) > D(t)−ε. We will now give an explicit positive

lower bound for δ in terms of ε. In order to do this we define recursively, for

each integer n ≥ 0 and x ∈ R, the functions T (x, n) and T (n) by T (x, 0) = x,

T (x, n+ 1) = eT (x,n) and T (n) = T (1, n). We have, for every n ≥ 0,

cn+1 = 8N(t, cn)2d2
τ
e(cn − 1) ≤ 8e4cn · 3

τ
· cn < ee

cn

since, for every n ≥ 0, cn ≥ c0 ≥ 1
τ2

= 1600
ε2

and N(t, cn) ≤ e2cn , therefore

r0 = cs0 < T (c0, 2s0) = T (d 1
τ2
e, 2s0) and

2 log(T + 1) · k · r0

log 2
= 16 log(T + 1) ·N(t, r0)2d2

τ
e · r0

log 2

≤ 16 log(3/ε) · e4r0 · 3

τ
· r0

log 2
< ee

r0
,

so

δ ≥ 1

(T + 1)2k·r0/ log 2
= e−2 log(T+1)·k·r0/ log 2 > e−e

er0

>
1

T (c0, 2s0 + 3)
.
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Finally, since 2k ≥ k2 for every k ≥ 4, it follows by induction that, for every

n ≥ 4, T (n) ≥ (n+1)6 for every n ≥ 0. Indeed, T (4) > 216 > 56 and, for n ≥ 4,

T (n+ 1) > 2T (n) ≥ T (n)2 ≥ (n+ 1)12 > (n+ 2)6.

This implies that T (b1/εc) ≥ (1/ε)6 > 1601/ε2 > d1600
ε2
e = d 1

τ2
e = c0 (recall

that 0 < ε < 1/7), so T (c0, 2s0+3) < T (T (b1/εc), 2s0+3) = T (b1/εc+2s0+3),

and, since s0 < (1 + 2
τ ) log(4/ε), we have

b1/εc+ 2s0 + 3 < 3 + b1/εc+ 2

Å
1 +

2

τ

ã
log(4/ε)

≤ 3 + 1/ε+ 2

Å
1 +

2

τ

ã
log(4/ε)

= 3 + 1/ε+ 2

Å
1 +

80

ε

ã
log(4/ε) <

161

ε
log(4/ε),

and therefore

δ >
1

T (c0, 2s0 + 3)
>

1

T (b1/εc+ 2s0 + 3)
≥ 1

T (b161
ε log(4/ε)c)

.

Appendix A. Basic facts and estimates on continued fractions

We will prove here some elementary facts on continued fractions used in

the previous sections. We refer to [CF89] for the facts used but not proved

here.

Let x = [a0; a1, a2, a3, . . . ] be a real number, and letÅ
pn
qn

ã
n∈N

,
pn
qn

= [a0; a1, a2, . . . , an]

be its sequence of convergents.

We have, for every n ∈ N, pn+1qn − pnqn+1 = (−1)n,

x = [a0; a1, a2, . . . , an, αn+1] =
αn+1pn + pn−1

αn+1qn + qn−1
,

and so

αn+1 =
pn−1 − qn−1x

qnx− pn
and

x− pn
qn

=
(−1)n

(αn+1 + βn+1)q2
n

,

where

βn+1 =
qn−1

qn
= [0; an, an−1, an−2, . . . , a1].

In particular, ∣∣∣∣x− pn
qn

∣∣∣∣ =
1

(αn+1 + βn+1)q2
n

.
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Recall that, given a finite sequence α = (a1, a2, . . . , an) ∈ (N∗)n, we define

its size by s(α) := |I(α)|, where I(α) is the interval

{x ∈ [0, 1] | x = [0; a1, a2, . . . , an, αn+1], αn+1 ≥ 1},

whose endpoints are pn/qn and pn+pn−1

qn+qn−1
, r(α) = blog s(α)−1c and, for r ∈ N,

Pr = {α = (a1, a2, . . . , an) | r(α) ≥ r and r((a1, a2, . . . , an−1)) < r}.
Since αn+1 = pn−1−qn−1x

qnx−pn , the n-th iterate of the Gauss map restricted to

the interval I(α) is given by

gn|I(α)(x) = gn(α−1
1 ) = α−1

n+1 =
qnx− pn

pn−1 − qn−1x
.

Lemma A.1. If a0, a1, a2, . . ., bn, bn+1, . . . are positive integers with

an−1, an, an+1, bn, bn+1 ≤ T and an 6= bn,

then

|[a0; a1, a2, . . . , an, an+1, an+2, . . .]− [a0; a1, a2, . . . , bn, bn+1, bn+2, . . .]|

>
1

(T + 1)(T + 2)q2
n

,

where qn = qn(a1, a2, . . . , an).

Proof. Let

x = [a0; a1, a2, . . . , an, an+1, an+2, . . .]

and

y = [a0; a1, a2, . . . , an−1, bn, bn+1, bn+2, . . .].

We have

x =
αn(x)pn−1 + pn−2

αn(x)qn−1 + qn−2
, y =

αn(y)pn−1 + pn−2

αn(y)qn−1 + qn−2
,

and so

|x− y| =
∣∣∣∣∣αn(x)pn−1 + pn−2

αn(x)qn−1 + qn−2
− αn(y)pn−1 + pn−2

αn(y)qn−1 + qn−2

∣∣∣∣∣
=

∣∣∣∣∣(αn(x)− αn(y))(pn−1qn−2 − pn−2qn−1)

(αn(x)qn−1 + qn−2)(αn(y)qn−1 + qn−2)

∣∣∣∣∣
=

∣∣∣∣∣ (αn(x)− αn(y))(−1)n−2

(αn(x)qn−1 + qn−2)(αn(y)qn−1 + qn−2)

∣∣∣∣∣
=

|αn(x)− αn(y)|
(αn(x)qn−1 + qn−2)(αn(y)qn−1 + qn−2)

.

We have bαn(x)c = an, bαn(y)c = bn and an 6= bn, so

|αn(x)− αn(y)| > [1;T + 1]− [0; 1, T + 1] =
1

T + 1
+

1

T + 2
>

2

T + 2
.
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Moreover,

αn(x)qn−1 + qn−2 < (1 + an)qn−1 + qn−2 = qn + qn−1 < 2qn

and

αn(y)qn−1 + qn−2 < αn(y)(qn−1 + qn−2) ≤ αn(y)qn < (T + 1)qn,

and so

|x− y| > 2

T + 2
· 1

2qn · (T + 1)qn
=

1

(T + 1)(T + 2)q2
n

. �

Lemma A.2. If α = a1a2 · · · am and β = b1b2 · · · bn are finite words, then

1

2
s(α)s(β) < s(αβ) < 2s(α)s(β).

Proof. By Euler’s property of continuants (cf. Appendix 2 of [CF89]), we

have

qm+n(αβ) = qm(α)qn(β) + qm−1(a1a2 · · · am−1)qn−1(b2b3 · · · bn)

and then

qm(α)qn(β) < qm+n(αβ) < 2qm(α)qn(β).

From the left inequality, we have

s(αβ) =
1

qm+n(αβ) [qm+n(αβ) + qm+n−1(αβ)]

<
1

qm(α)qn(β) [qm(α)qn(β) + qm(α)qn−1(β)]

<
2

qm(α)qn(β) [qm(α) + qm−1(α)] [qn(β) + qn−1(β)]

= 2 · 1

qm(α) [qm(α) + qm−1(α)]
· 1

qn(β) [qn(β) + qn−1(β)]

= 2s(α)s(β),

where in the second inequality we used that

2qm(α)qn(β) + 2qm(α)qn−1(β) > qm(α)qn(β) + qm(α)qn−1(β)

+ qm−1(α)qn(β) + qm−1(α)qn−1(β)

⇐⇒ qm(α)qn(β) + qm(α)qn−1(β) > qm−1(α)qn(β) + qm−1(α)qn−1(β),

which is obviously true. For the other inequality, proceed analogously:

s(αβ) =
1

qm+n(αβ) [qm+n(αβ) + qm+n−1(αβ)]

>
1

2
· 1

qm(α)qn(β) [qm+n(αβ) + qm+n−1(αβ)]

>
1

2
· 1

qm(α)qn(β) [qm(α) + qm−1(α)] [qn(β) + qn−1(β)]
,
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as

qm+n(αβ)+qm+n−1(αβ) < [qm(α) + qm−1(α)][qn(β)+qn−1(β)]

⇐⇒ qm−1(α)q̃n−1(β) + qm−1(α)q̃n−2(β) < qm−1(α)qn(β) + qm−1(α)qn−1(β)

⇐⇒ q̃n−1(β) + q̃n−2(β) < qn(β) + qn−1(β),

where q̃n−1(β) = qn−1(b2b3 · · · bn) and q̃n−2(β) = qn−2(b2b3 · · · bn−1), and the

last inequality is true, since we have q̃n−1(β) < qn(β) and q̃n−2(β) < qn−1(β).

This concludes the proof. �

Lemma A.3. If α = (a1, a2, . . . , an) ∈ (N∗)n belongs to Pr and 1 ≤ aj ≤ T
for 1 ≤ j ≤ n, then s(α) > ((T + 1)2er)−1.

Proof. We have r(a1, a2, . . . , an−1) < r, so

s(a1, a2, . . . , an−1) = (qn−1(qn−1 + qn−2))−1 > e−r,

and thus

s(α)−1 = qn(qn + qn−1) ≤ (Tqn−1 + qn−2)((T + 1)qn−1 + qn−2)

< (T + 1)qn−1 · (T + 1)(qn−1 + qn−2)

= (T + 1)2qn−1(qn−1 + qn−2) < (T + 1)2er,

so s(α) > ((T + 1)2er)−1. �

Propostion A.1. Let r, k be positive integers and αi, 1 ≤ i ≤ k finite

sequences that belong to Pr and whose elements are bounded by T . Then, if

α = α1α2 · · ·αk, we have s(α) > (2(T + 1)2er)−k.

Proof. For 1 ≤ i ≤ k we have, by Lemma A.3, s(αi) > ((T + 1)2er)−1. So,

using Lemma A.2, we get

s(α) = s(α1α2 · · ·αk) >
Å

1

2

ãk−1

s(α1)s(α2) · · · s(αk)

>

Å
1

2

ãk−1

(((T + 1)2er)−1)k > (2(T + 1)2er)−k. �
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