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The sharp threshold for making squares

By Paul Balister, Béla Bollobás, and Robert Morris

Abstract

Consider a random sequence of N integers, each chosen uniformly and

independently from the set {1, . . . , x}. Motivated by applications to factor-

ization algorithms such as Dixon’s algorithm, the quadratic sieve, and the

number field sieve, Pomerance in 1994 posed the following problem: how

large should N be so that, with high probability, this sequence contains a

subsequence, the product of whose elements is a perfect square? Pomerance

determined asymptotically the logarithm of the threshold for this event and

conjectured that it in fact exhibits a sharp threshold in N . More recently,

Croot, Granville, Pemantle and Tetali determined the threshold up to a fac-

tor of 4/π + o(1) as x→∞ and made a conjecture regarding the location

of the sharp threshold.

In this paper we prove both of these conjectures by determining the

sharp threshold for making squares. Our proof combines techniques from

combinatorics, probability and analytic number theory; in particular, we

use the so-called method of self-correcting martingales in order to control

the size of the 2-core of the random hypergraph that encodes the prime

factors of our random numbers. Our method also gives a new (and com-

pletely different) proof of the upper bound in the main theorem of Croot,

Granville, Pemantle and Tetali.
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1. Introduction

Many of the fastest known algorithms for factoring large integers rely

on finding subsequences of randomly generated sequences of integers whose

product is a perfect square. Examples include Dixon’s algorithm [15], the

quadratic sieve [28], and the number field sieve (see, e.g., [25]); an excellent

elementary introduction to the area is given by Pomerance [31]. In each of

these algorithms one generates a sequence of congruences of the form

ai ≡ b2i (mod n), i = 1, 2, . . .

and then one aims to find subsets of the ai whose product is a perfect square,

say
∏
i∈I ai = X2, so then one has X2 ≡ Y 2 (mod n) with Y =

∏
i∈I bi. If one

is lucky, then X 6≡ ±Y (mod n), in which case one can generate non-trivial

factors of n as gcd(X ± Y, n).

A useful heuristic, suggested by Schroeppel in the 1970s (see [31]), is

to imagine that the numbers ai are chosen independently and uniformly at

random from the set {1, . . . , x} for some suitably chosen integer x. Motivated

by this idea, Pomerance [29] posed in 1994 the problem of determining the

threshold for the event that such a collection of random numbers contains a

subset whose product is a square. To be precise, given x ∈ N, let us define a

probability space Ω(x) by choosing a1, a2, . . . independently and uniformly at

random from {1, . . . , x}, and a random variable T (x) by setting

T (x) := min

®
N ∈ N :

∏
i∈I

ai is a perfect square for some

I ⊆
¶

1, . . . , N
©
, I 6= ∅

´
.

Pomerance [30] proved that for all ε > 0,

(1) exp
(Ä

1− ε
ä√

2 log x log log x
)
6 T (x) 6 exp

(Ä
1 + ε

ä√
2 log x log log x

)
with high probability,1 and he conjectured that T (x) in fact exhibits a sharp

threshold, i.e., that there exists a function f(x) such that (1− ε)f(x) 6 T (x) 6

1We use the term with high probability to mean with probability tending to 1 as x→∞.
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(1 + ε)f(x) with high probability for all ε > 0. Croot, Granville, Pemantle

and Tetali [13] significantly improved these bounds (see (3), below) and stated

a conjecture as to the location of the threshold, i.e., the value of the func-

tion f(x). In this paper we shall prove these two conjectures.

In order to state the theorem and conjecture of Croot, Granville, Pemantle

and Tetali, we will need to recall some standard notation. Let π(y) denote the

number of primes less than or equal to y, let Ψ(x, y) denote the number of

y-smooth integers in {1, . . . , x}, that is, the number of integers with no prime

factor strictly greater than y, and define

(2) J(x) = min
26y6x

π(y)x

Ψ(x, y)
.

It can be shown (see Section 3) that the minimum in (2) occurs at

y0 = y0(x) = exp
(Ä

1 + o(1)
ä»

1
2 log x log log x

)
and that

J(x) = y
2+o(1)
0 = exp

(Ä
1 + o(1)

ä√
2 log x log log x

)
.

An asymptotic formula for J(x) was obtained by McNew [26]. We remark that

a relatively straightforward argument due to Schroeppel (see [30]) shows that,

for all ε > 0,

T (x) 6
Ä
1 + ε

ä
J(x)

with high probability, which implies the upper bound in (1). Indeed, if N >
(1 + ε)J(x), then with high probability at least π(y0) + 1 of the numbers

a1, . . . , aN will be y0-smooth, since each ai is y0-smooth with probability

Ψ(x, y0)/x = π(y0)/J(x). Now, by simple linear algebra, it follows that the

vectors encoding the primes that divide ai an odd number of times are linearly

dependent over F2, and hence there exists a subset whose product is a square,

as required.

Pomerance’s conjecture remained wide open for over ten years, until a

fundamental breakthrough was obtained by Croot, Granville, Pemantle and

Tetali [13], who used a combination of techniques from number theory, proba-

bility theory and combinatorics to dramatically improve both the upper bound

of Schroeppel and the lower bound of Pomerance [30], determining the location

of the threshold to within a factor of 4/π. To be precise, they proved that

(3)
π

4

Ä
e−γ − ε

ä
J(x) 6 T (x) 6

Ä
e−γ + ε

ä
J(x)

with high probability, where γ ≈ 0.5772 is the Euler–Mascheroni constant.

Recall that e−γ is (amongst other things) the limit as y → ∞ of the ratio of

the density of integers with no prime divisor smaller than y, to the proportion

of elements of {1, . . . , y} that are prime.
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Croot, Granville, Pemantle and Tetali [13] conjectured that the upper

bound in (3) is sharp. Our main theorem confirms their conjecture.

Theorem 1.1. For all ε > 0, we have with high probabilityÄ
e−γ − ε

ä
J(x) 6 T (x) 6

Ä
e−γ + ε

ä
J(x).

As a simple corollary, we also deduce the following asymptotic expression

for the expected value of T (x).

Corollary 1.2. E
î
T (x)

ó
=
Ä
e−γ + o(1)

ä
J(x) as x→∞.

Since the upper bound in Theorem 1.1 was proved in [13], we are only

required to prove the lower bound. However, we will also obtain a new proof

of the upper bound, quite different from that given in [13], as a simple conse-

quence of our method; see Section 10. We would like to thank Jonathan Lee

for pointing out to us a particularly simple and natural way of deducing this

from our proof.

Another significant advantage of our proof, which is outlined in Section 2,

is that it gives detailed structural information about the typical properties of

the set of numbers that are left over after sieving and “singleton removal” (see,

e.g., [22]). We plan to study this structure in a more general setting, and in

greater detail, in a follow-up paper together with Lee [2].

Croot, Granville, Pemantle and Tetali [13] proved their lower bound in (3)

via the first moment method, by counting the expected number of non-empty

subsets I ⊆ {1, . . . , N} such that
∏
i∈I ai is a square. Unfortunately, there

exists a constant c > 0 such that this expected number blows up when N >
(e−γ − c)J(x), which implies that a sharp lower bound cannot be obtained by

this method. (See the comments after the proof of Theorem 1.1 in Section 10.)

Instead, we shall use the method of self-correcting martingales2 to follow

a random process that removes numbers from the set3 {a1, . . . , aN} as soon

as we can guarantee that they are not contained in a subset whose product is

a square. This is in one sense very simple: a number ai can be discarded if

there exists a prime for which ai is the only remaining number that it divides

an odd number of times. However, this apparent simplicity is deceiving, and

2This technique is based on the so-called “differential equations method” (see, e.g., [23],

[35]), and it involves the use of martingales to control a collection of interacting random

variables that exhibit “self-correction” in a certain natural sense (see Sections 7 and 8). It

was introduced in [4], [7], [33] and has more recently been further developed in [5], [6], [16];

our approach is, in particular, based on that used in [16].
3This is, strictly speaking, a multi-set, since the numbers ai are chosen independently with

replacement. However, since we are very unlikely to choose the same number twice (indeed,

if we do so we immediately have a square), we shall ignore this possibility for the sake of this

discussion.
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the technical challenges involved in tracking the process are substantial. For

example, we will need to reveal the random numbers {a1, . . . , aN} gradually

(roughly speaking, prime by prime, in decreasing order), and the amount of

information we are allowed to reveal at each step is rather delicate. Moreover,

the removal of a number can trigger an avalanche, causing many other numbers

to be removed in the same step. Fortunately, however, self-correction (which

is partly a result of these avalanches) will allow us to show that the process

remains subcritical (in a certain natural sense), which will in turn allow us to

control the upper tail of the size of the avalanches; see Section 6. In order to do

so, we will need good control over the dependence between the prime factors

of the numbers {a1, . . . , aN} conditioned on the information we have observed

so far. This is achieved in Section 5, where we obtain strong bounds on the

ratio between the (conditional) probability of certain “basic” events, and the

corresponding probabilities in a simpler independent model. These bounds

require some number-theoretic estimates (stated in Section 3), most of which

follow easily from the fundamental work of Hildebrand and Tenenbaum [18]

on smooth numbers.

Using the method described above, we shall be able to show that with high

probability the number of “active” numbers (i.e., elements of {a1, . . . , aN} that

we have not yet discarded) tracks a deterministic function (see Theorem 2.2,

below) until there are very few numbers remaining (roughly e−C
√

log y0y0 for

some large constant C), at which point we can apply the first moment cal-

culation from [13]. The heuristic reason for the appearance of the formula in

Theorem 2.2 is that the number of y-smooth numbers is concentrated (e.g., by

Chernoff’s inequality) for all reasonably large values of y, since the ai are cho-

sen independently, and is equal to the number of isolated vertices in a certain

natural (random) hypergraph (see Definition 2.3). We will control the average

degree of this hypergraph (see Theorem 2.6) and show (using Theorem 5.1)

that its edges are chosen almost independently so, in particular, its degree

distribution is close to Poisson. Equating these two estimates for the number

of isolated vertices gives (7). The Euler–Mascheroni constant γ appears in our

proof at this point, since when we reveal the zth smallest prime, the (typical)

average degree of the hypergraph is close to Ein(m(z)/z), where m(z) is the

number of active numbers at this point, and Ein is the exponential integral

Ein(w) :=

∫ w

0

1− e−t

t
dt.

In order to prove the upper bound in Theorem 1.1, we observe (Lemma 10.2)

that the ratio of the number of active numbers and active primes (that is,

primes that could still appear in some square) approaches 1 when z = π(y0)

and N/J(x) approaches e−γ . Thus, by adding just a few extra y0-smooth
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numbers, we can apply the linear algebra approach of Schroeppel to obtain a

subset whose product is a square, as required.

The rest of the paper is organized as follows. In Section 2 we give a detailed

outline of the proof, state our main auxiliary results, and define precisely the

random process mentioned above. In Section 3 we deduce the number-theoretic

estimates we need from known results on smooth numbers, and in Section 4

we recall some basic results from probability theory, define some useful events,

and use the results of Section 3 to prove various useful properties of these

events. In Section 5 we shall again apply the results of Section 3, this time to

control the dependence between the prime divisors of our random numbers in

the probability space obtained by conditioning on the information revealed in

the random process so far, and then in Section 6 we apply the main theorem

of Section 5 to control the size of avalanches in the process. In Section 7 we

use these results and the method of self-correcting martingales to control the

process for large primes, and in Section 8 we do the same in the critical range

z = eO(
√

log y0)y0. Finally, in Sections 9 and 10, we will deduce the main aux-

iliary theorems stated in Section 2, as well as Theorem 1.1 and Corollary 1.2.

1.1. Notation and basic definitions. Let us conclude this introduction by

collecting together for convenience some of the basic definitions and nota-

tion that we shall use throughout the paper. We shall denote the primes by

q1, q2, . . . , so qz is the zth prime. (We use q here to avoid overusing the letter p,

which will often denote a probability.) We shall write [n] = {1, . . . , n} for the

first n positive integers and [m,n] for the set {m, . . . , n}. We shall also use the

notation a ∈ b± c to mean that

b− c 6 a 6 b+ c.

In this paper, a hypergraph H will consist of a set V (H) of vertices and a

multi-set E(H) of hyperedges (which we will usually refer to simply as edges). A

hyperedge is just a subset of V (H), and a k-edge is a hyperedge of size k. Note

that we allow multiple copies of the same edge; all edge counts are taken with

multiplicity. A hypergraph H′ = (V ′, E′) is a sub-hypergraph of H = (V,E)

if V ′ ⊆ V (H) and E′ ⊆ E(H) (so that each e ∈ E′ is a subset of V ′). The

degree of a vertex v ∈ V (H) in H is the number of hyperedges containing it,

counted with multiplicity. An isolated vertex is a vertex of degree 0. An even

hypergraph is one in which all vertices have even degree.

The 2-core of a hypergraph H is the hypergraph obtained by repeatedly

removing any vertex of degree at most 1, along with the corresponding edge

when the degree is exactly one. Clearly, the 2-core is the union of all sub-

hypergraphs of minimum vertex degree at least 2.

Finally, let us recall the standard Landau notation, which we shall use

throughout the paper. Given functions f(x) and g(x), we write f(x) = O(g(x))
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if |f(x)| 6 C|g(x)| for some constant C and all sufficiently large x; and f(x) =

Θ(g(x)) if f(x) = O(g(x)), g(x) = O(f(x)), and f(x)/g(x) is positive for all

sufficiently large x. We write f(x) = o(g(x)) if f(x)/g(x)→ 0 as x→∞, and

f(x) = ω(g(x)) if g(x) = o(f(x)). Unless stated otherwise, all limits are as

x → ∞, where {1, . . . , x} is the set from which the random numbers ai are

chosen. We shall avoid the notation Ω(f(x)), �, and �, as these may mean

different things to different mathematical communities.

2. An outline of the proof

In this section we shall precisely define the random process that we shall

use to prove Theorem 1.1, and state our key results about this process, Theo-

rems 2.2 and 2.6. Throughout the proof we fix a constant η > 0 and a suffi-

ciently large integer x.4 We set N = ηJ(x) and define an N -tuple (a1, . . . , aN )

by choosing N elements of [x] independently and uniformly at random (with

replacement), and we form an N × π(x) 0-1 matrix A by setting Aij = 1 if and

only if the jth prime qj occurs an odd number of times in the prime factoriza-

tion of ai. Thus, to find a subset I ⊆ [N ] such that
∏
i∈I ai is a square, it is

enough to find a set of rows of A such that all column sums within these rows

are even.

Note that the rows of A are chosen independently, but the columns are

not. For example, the condition ai 6 x puts a limit on the number of times a 1

can occur in row i of A. More precisely, let ‹Ψ(x, y) be the number of integers

in [x] all of whose prime factors that are strictly greater than y occur to an

even power. Thus

(4) ‹Ψ(x, y) =
∑

t∈P (y)

Ψ
Ä
x/t2, y

ä
,

where P (y) is the set of all t > 1 that have no prime factor less than or equal

to y. Define

(5) pj(x) :=
‹Ψ(x, qj)− ‹Ψ(x, qj−1)‹Ψ(x, qj)

for each j ∈ [π(x)], and observe that pj(x) is equal to the conditional prob-

ability that Aij = 1 if Aij′ = 0 for every j′ > j. Indeed, more generally we

have

(6) P
(
Aij = 1

∣∣∣ (Aij′)π(x)
j′=j+1

)
= pj

Ç
x

∏
j′>j,Aij′=1

1

qj′

å
.

4In the definitions below, we shall suppress the dependence on x and η.
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Typically, pj(x) will be only slowly varying with x, and so the entries in a row

of A will depend only mildly on one another. Nevertheless, this dependency is

a major technicality that we shall need to overcome.

We can also think of the matrix A as a hypergraph whose vertices are the

primes and whose edges correspond to the set of primes dividing ai an odd

number of times. We shall often wish to ignore small primes here, so a precise

definition is as follows.

Definition 2.1. For each z ∈ [0, π(x)], define HA(z) to be the hyper-

graph with vertex set V (HA(z)) = [z+ 1, π(x)] and hyperedge set E(HA(z)) =

{e′i : i ∈ [N ]}, where

e′i :=
¶
j ∈ [z + 1, π(x)] : Aij = 1

©
.

In particular, when z = π(x), all of the edges of HA(z) are empty.

Croot, Granville, Pemantle and Tetali [13] proved the upper bound in

Theorem 1.1 by counting the number of acyclic (also called Berge-acyclic)

even sub-hypergraphs of this hypergraph. An acyclic hypergraph is one in

which there does not exist, for any k > 2, a cycle of k distinct hyperedges

e0, e1, . . . , ek = e0 and distinct vertices v1, . . . , vk with each vi ∈ ei−1 ∩ ei,
i = 1, . . . , k. They showed that if η > e−γ then, for a suitable z, HA(z)

contains more than z edge-disjoint acyclic even sub-hypergraphs5 with high

probability. This guarantees more than z disjoint sets of rows of A, each of

which has a sum in the subspace (taken over F2) of vectors that are supported

on the first z columns. As any set of more than z vectors in this z-dimensional

subspace is linearly dependent, this guarantees a linear relation between the

rows of A. As noted in the introduction, the authors of [13] used the first

moment method to prove their lower bound, counting the expected number of

even sub-hypergraphs of HA(0) or, equivalently, the number of sets of rows of

A that sum to zero over F2. However, as mentioned in the introduction, this

method does not yield a sharp lower bound as this expected number blows up

before the threshold for the existence of a single such set given by Theorem 1.1.

2.1. The 2-core of HA(z). Instead of counting the even sub-hypergraphs

of HA(0), we shall study the 2-core CA(z) of the hypergraph HA(z) for each

z− 6 z 6 π(x), where z− = e−Θ(
√

log y0)y0 is defined below; see (12). Since all

even sub-hypergraphs (after removing isolated vertices) are sub-hypergraphs

of the 2-core, it is enough to restrict attention to CA(z). As noted in the

introduction, this is equivalent to iteratively removing any ai for which there

5Note that an empty hyperedge is an acyclic even sub-hypergraph corresponding to a

qz-smooth integer ai; however, in order to find sufficiently many relations for all η > e−γ ,

the authors of [13] needed to consider even sub-hypergraphs with an arbitrarily large (but

bounded) number of hyperedges.
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exists a prime q > qz that occurs to an odd power in ai, but to an even

power in all other remaining aj . We shall show that if η < e−γ , then the 2-core

CA(z−) of HA(z−) is (with high probability) small by tracking the size of CA(z)

throughout the range z ∈ [z−, π(x)]. In particular, we shall show that CA(z−)

has fewer than z− edges with high probability. As a consequence, any linear

relation between the rows of A must involve fewer than z− rows. This however

is ruled out by a result in [13] that shows (via a first moment calculation) that

any linear relation between the rows of A must involve many rows. We remark

that this approach was partly inspired by the work of Pittel and Sorkin [27] in

a closely related setting, where again a direct first moment calculation fails to

find the correct threshold for the appearance of linear relations in the rows of

a random matrix, but succeeds once restricted to the 2-core.

The following theorem tracks the size of the 2-core of HA(z) for all z ∈
[z−, π(x)] and is the key technical statement we will need in order to prove

Theorem 1.1. Let M(z) be the set of rows of A corresponding to the set

E(CA(z)) = {e′i : i ∈ M(z)} of hyperedges of the 2-core, and let m(z) =

|M(z)| = |E(CA(z))|.

Theorem 2.2. If η < e−γ and ε0 > 0, then with high probability,

(7)
m(z)

z
exp

(
− Ein

(m(z)

z

))
∈ (1± ε0)ηJ(x)

Ψ(x, qz)

xz

for every z ∈ [z−, π(x)], where z− is defined in (12) below.

Recall that the exponential integral Ein(w) is an entire function and is

related to the incomplete gamma function via the relation

(8) Ein(w) :=

∫ w

0

1− e−t

t
dt = Γ(0, w) + logw + γ.

Since Γ(0, w) =
∫∞
w e−t dtt decreases to 0 as w → ∞, we see that we−Ein(w) is

a strictly increasing function of w that converges to e−γ as w →∞. Thus we

can define α(η) ∈ [0,∞) uniquely by the equation

(9) α(η)e−Ein(α(η)) = η

for any η ∈ [0, e−γ). Note that d
dwwe

−Ein(w) = e−w−Ein(w) and hence

α′(η) = eα(η)+Ein(α(η))

is an increasing function of η. Thus α(η) is a convex function that strictly

increases from 0 to ∞ as η increases from 0 to e−γ .

Let us assume from now on that 0 < η < e−γ , so that α(η) ∈ (0,∞) is

well defined by (9). We shall fix sufficiently small positive constants ε0, ε1 and

δ satisfying the following inequalities:

(10) 0 < ε0 < e−γ − η, 0 < ε1 <
ε0

16
e−C0 and 0 < δ < ε1e

−3/ε1 ,
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where

(11) C0 := α
Ä
(1 + ε0)η

ä
.

Note that the upper bound on ε0 implies that (1 + ε0)η < e−γ and hence

C0 <∞. For convenience we shall also assume that 1/ε1 is an integer.

The constant ε0 appears in Theorem 2.2 and determines the accuracy with

which we track m(z), while the constant ε1 will appear (via Definition 2.5) in

Theorem 2.6 below and will determine the accuracy to which we track various

other parameters of the process. The constant δ plays a different role: it

determines the “critical” range [z−, z+], above which we shall have to use a

slightly different approach, and below which we will lose control of the process.

To be precise, set

(12) z− := min
¶
z : Λ(z) > δ

©
and z+ := max

¶
z : Λ(z) > δ

©
,

where

(13) Λ(z) = Λx(z) := J(x)
Ψ(x, qz)

xz

for each z ∈ [π(x)]. As in the introduction, let π(y)x/Ψ(x, y) be minimized at

y = y0, and define z0 = π(y0). Observe that we can take y0 to be prime, since

π(y) and Ψ(x, y) only change at prime y. It follows from (2) that Λ(z) 6 1

and that Λ(z0) = 1. Theorem 2.2 and (9) together imply that

(14) m(z) ∈ α
Ä
(1± ε0)ηΛ(z)

ä
z

so, in particular, m(z) 6 C0z for all z ∈ [z−, π(x)] (see Observation 4.7 below)

and, moreover, m(z) ≈ α(η)z when z ≈ z0. We will show later (see (37)) that

z± = e±Θ(
√

log z0)z0.

2.2. The hypergraph SA(z). As mentioned in the introduction, the equa-

tion (7) comes from counting the number of isolated vertices in a certain hy-

pergraph in two different ways. This hypergraph is not CA(z), but (in a certain

sense) its “dual,” defined as follows.

Definition 2.3. For each k > 2 and z ∈ [0, π(x)], let Sk(z) denote the

collection of vertices of degree k in CA(z),

Sk(z) :=
{
j ∈ [z + 1, π(x)] :

∣∣∣¶i ∈ M(z) : Aij = 1
©∣∣∣ = k

}
.

In other words, Sk(z) is the set of all columns of A after column z that have

column sum k when restricted to the set of rows M(z). Note that for z = π(x),

we have Sk(z) = ∅. Also, these column sums are zero for j /∈ V (CA(z)), so

Sk(z) ⊆ V (CA(z)). Set sk(z) := |Sk(z)|, and define S(z) :=
⋃
k>2 Sk(z).

We shall think of Sk(z) as labeling the k-edges ej := {i ∈M(z) : Aij = 1}
of a hypergraph SA(z) with vertex set M(z) and edge set {ej : j ∈ S(z)}. Note

that we are now thinking of the rows (corresponding to numbers ai) of A as
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being the vertices and the columns (primes) as hyperedges, where each prime

q corresponds to the set of i ∈ M(z) such that q divides ai an odd number of

times.

Later we shall show that pj(x) = (1 + o(1))/j when j is in the critical

range z− 6 j 6 z+. Thus heuristically one would expect that

P
Ä
j ∈ Sk(z)

ä
≈ P
Ä
Bin(m(z), 1/j) = k

ä
for k > 2, where Bin(n, p) denotes a binomial random variable with n trials

and success probability p. Indeed, if a column has at least two 1s in active rows

(i.e., rows in M(z)), then this column has no effect on the construction of the

2-core. Also, one would expect that the events
¶
j ∈ Sk(z) : j ∈ [z + 1, π(x)]

©
are “approximately independent.” This leads one (after a short calculation) to

predict that sk(z) tracks the following function.

Definition 2.4. For each k > 2 and every z ∈ [π(x)], set

(15) ŝk(z) :=
m(z)

k(k − 1)
e−m(z)/z

∞∑
`=k−1

1

`!

(m(z)

z

)`
.

Note that ŝk(z) is a decreasing function of k and that

(16) ŝ2(z) =
m(z)

2

Ä
1− e−m(z)/z

ä
.

We next define a function that we shall use to bound the error in sk(z).

Definition 2.5. For each z ∈ [z−, z+] and each k > 2, define

ε(k, z) :=
εk1 · k!

Λ(z)
.

The function ε(k, z) decreases exponentially fast in k while k is relatively

small, and then increases super-exponentially fast when k is large. We will

need the former property in order to obtain the self-correction (see below)

that will play a crucial role in our proof, and the latter property in order to

show that the bound (17) holds when k is reasonably large.6 We shall prove

the following theorem.

Theorem 2.6. Suppose η < e−γ . Then, with high probability,

(17) sk(z) ∈
Ä
1± ε(k, z)

ä
ŝk(z)

holds for every k > 2 and every z ∈ [z−, z+].

Note that ε(k, z) > 1 for all sufficiently large k, so to prove that (17) holds

for these values of k, it will suffice to show that sk(z) = 0. We shall in fact

6More precisely, it will be important that ε(k, z)ŝk(z) decreases only exponentially fast

in k; see Observation 4.16 and its applications in Section 8.
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show that, with high probability, sk(z) = 0 for all k > 5 log z0/ log log z0 and

for all z ∈ [z−, π(x)] (see Lemma 4.13 below).

As mentioned in the introduction, we shall prove Theorem 2.6 using the

method of self-correcting martingales (see, e.g., [16, §3]). Roughly speaking,

we shall show (see Lemmas 7.5 and 8.1) that if nothing has yet gone wrong,

then the (expected) drift in the relative error of sk(z) depends mainly on the

current error, and (unless it is already quite small) tends to push the error

towards zero. We emphasize that the function ε(k, z) was chosen with exactly

these lemmas in mind; in particular, it will be important that ε(k, z) decreases

rapidly for small values of k, since we shall use this fact to bound the influence

of the error in sk+1(z) on the drift of sk(z). Combining these lemmas with

bounds on the probability of a large jump in the relative error (see Lemmas 7.6

and 8.2), it will be relatively easy to deduce sufficiently strong bounds on the

probability that sk(z) is the first variable to “go astray.”

Theorem 2.2 will be proved simultaneously with Theorem 2.6, but we

will not show that m(z) is self-correcting; instead we shall show that m(z)

is unlikely to go off track before any of the sk(z). More precisely, we shall

use a martingale approach to show that m(z) does not drift off course too

quickly, together with an occasional application of Lemma 9.3 to put it back

on track. Since the probability of failure in Lemma 9.3 is relatively large, we

can only apply it a small number of times; however, this will be sufficient to

prove Theorem 2.2 over the “critical” interval [z−, z+], while larger values of z

are easier to deal with.

2.3. The random process. Let us finish this section by defining the random

process we shall use to reveal the 2-core CA(z). In each step we reveal just

enough information to proceed; in particular, and crucially, we shall not reveal

the exact locations of the 1s in a column until it has only a single non-zero

element in an active row, that is, a row of M(z).

Algorithm 2.7. We start with z := π(x), M(z) := [N ] and Sk(z) := ∅ for

each k > 2. Now repeat the following steps until z = 0:

1. Set M := M(z), Sk := Sk(z) for each k > 2 and S1 := ∅.
2. Reveal the (random) quantity d(z) :=

∣∣∣¶i ∈ M(z) : Aiz = 1
©∣∣∣, that is,

the number of active non-zero entries of column z.

3. If d(z) = d > 0, set Sd := Sd ∪ {z}.
4. While S1 6= ∅ do the following:

(a) Pick the smallest7 z′ ∈ S1, observe which row i is such that i ∈M ,

Aiz′ = 1.

7An arbitrary z′ ∈ S1 would do here, but we shall later wish to ensure that the order in

which rows are removed by the algorithm is uniquely specified.
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(b) Set M := M \ {i}, S1 := S1 \ {z′}.
(c) For each k > 1 and each j ∈ Sk, reveal whether column j has a 1

in row i; if it does, remove j from Sk and (if k > 1) add it to Sk−1.

5. Set M(z − 1) := M and Sk(z − 1) := Sk for each k > 2.

6. Set z := z − 1; if z > 0, then return to Step 1, otherwise stop.

It is easy to see that this algorithm tracks the 2-core CA(z) as z decreases

from π(x) to 0. Define a filtration Fπ(x) ⊆ Fπ(x)−1 ⊆ · · · by taking Fy to be

the information observed at the moment the index z is set equal to y. More

precisely, Fy reveals which rows and columns of A correspond to the edges

and vertices of the 2-core CA(y), as well as the degrees (column sums) of all

the vertices in the 2-core. The only other information revealed by Fy concerns

rows of A outside of M(y) (as a result of earlier steps of the algorithm), which

will be irrelevant for our purposes.

Define the σ-algebra F+
y to include Fy and also the information observed

at Step 2 when z = y, namely, the value of d(y). Thus F+
y specifies the col-

umn sums of A of all columns in [y, π(x)], summing only over rows in M(y).

The matrix A conditioned on F+
y and restricted to M(y) × [y, π(x)] can be

constructed with the correct probability distribution by taking a uniform dis-

tribution on all choices of the multi-set of numbers {ai : i ∈ M(y)} whose

column sums are compatible with F+
y . Indeed, any such multi-set, combined

with the original ai for all i /∈M(y), would result in the algorithm constructing

the same 2-core, and all such choices of the ai are equally likely. Understanding

this probability space will be the main aim of the next three sections and will

be key to the proof of Theorem 1.1.

3. Number-theoretic facts

In order to understand the distribution of the numbers {ai : i ∈ M(z)}
conditioned on the information observed in Fz or F+

z , we shall need some

detailed information about the smooth number counting function Ψ(x, y) and

its close relative ‹Ψ(x, y). The first result in this direction was obtained by

Dickman [14] in 1930, who proved that if u is fixed, then

lim
x→∞

Ψ(x, x1/u)

x
= ρ(u),

where ρ is the (unique) continuous solution to the delay differential equation

(18) uρ′(u) + ρ(u− 1) = 0

for u > 1, with the boundary condition ρ(u) = 1 for all 0 6 u 6 1. This func-

tion is now known as the Dickman–de Bruijn function, and it is asymptotically

of the form

(19) ρ(u) = u−(1+o(1))u
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as u→∞. Further important breakthroughs were made in 1938, by Rankin [32],

and in 1951, by de Bruijn [9], who determined Ψ(x, y) asymptotically when

y > exp
Ä
(log x)5/8+ε

ä
for some ε > 0. Upper and lower bounds in a much

wider range were later proved by de Bruijn [10] and by Canfield, Erdős and

Pomerance [11], respectively. We will use the following asymptotic result, due

to Hildebrand [17].

Theorem 3.1 (Hildebrand, 1986). Let exp
Ä
(log log x)2

ä
6 y 6 x, and

set u = log x
log y . Then

Ψ(x, y)

x
= ρ(u)

Ç
1 +O

Ç
log(u+ 1)

log y

åå
uniformly in x and y.

We remark that the main result of [17] is even more general than The-

orem 3.1, but the version above is a little simpler to state, and more than

sufficient for our purposes. Indeed, it follows from Theorem 3.1 and (19) (see,

for example, [13, §2.1]) that8

(20) J(x) = y
2+o(1)
0 = exp

(Ä
1 + o(1)

ä√
2 log x log log x

)
as x→∞, as claimed in the introduction. It also follows that

(21) Ψ(x, yβ0 ) = xy
−1/β+o(1)
0

for every β = β(x) bounded away from 0, which implies the following crude

estimate for Λ(z).

Corollary 3.2. Let β = β(x) be bounded away from 0, and set z = zβ0 ,

where z0 = π(y0). Then

Λ(z) = z
2−β−1/β+o(1)
0

as x→∞.

Note that Corollary 3.2 also follows from [13, Lemma 2.1] and implies that

(22) z± = z
1+o(1)
0 .

Let us define u0 := log x
log y0

, so that y0 = x1/u0 . For future reference, we note

here the following immediate and useful consequence of (20):

(23) log z0 = (1 + o(1))u0 log u0.

In order to obtain more detailed information about the function Λ(z), we shall

need some fundamental results of Hildebrand and Tenenbaum [18, Th. 3],

8In fact, to prove (20) one only needs the results of de Bruijn [10] and Canfield, Erdős and

Pomerance [11], which imply that Ψ(x, y) = xu−(1+o(1))u as u→∞ for all y > (log x)1+ε.
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which control the “local” dependence of Ψ(x, y) on the variable x. (We remark

that the idea of using these to understand the matrix A was one of the key

innovations of [13].) Instead of quoting these results directly, we shall prove

a form (Theorem 3.5) that will be more convenient for our purposes. We will

need the following two results on the Dickman–de Bruijn function ρ(u).

Theorem 3.3 (Hildebrand [17, proof of Lemma 1]). The function ρ(u) is

log-concave for u > 1. Equivalently, ρ(u−1)
uρ(u) is increasing in u.

Define the function ξ = ξ(u) for u > 1 to be the unique positive solution

of the equation

(24) eξ(u) = 1 + uξ(u).

Theorem 3.4 (Hildebrand and Tenenbaum [19, eq. (2.1)′]). For u > 1,

we have

ρ(u) =

Ç
1 +

O(1)

u

å 
ξ′(u)

2π
exp

Ç
γ −

∫ u

1
ξ(t) dt

å
.

We now state our key estimate on the rate of change of the function ρ(u).

This essentially follows from [19, Cor. 2.4], but since the precise version we

need is not an immediate consequence of the results stated in [19], we shall

give the proof for completeness.

Theorem 3.5. Let u > 1 and a, b > 0 satisfy a+ b 6 u. Then

(25)
ρ(u− a− b)
ρ(u− a)

6 exp

Ç
bξ(u) +

O(1)

u

å
.

If, in addition, a+ b 6 u/2, then

(26)
ρ(u− a− b)
ρ(u− a)

= exp

Ç
bξ(u) +

O(b2 + ab+ 1)

u

å
.

We shall use the following simple facts about the function ξ(u), which we

collect here for convenience:

(27) ξ(u) =
Ä
1 + o(1)

ä
log u, ξ′(u) =

Θ(1)

u
and ξ′′(u) = −Θ(1)

u2

for all u > 1. We remark that here the o(1) is as u→∞.

Proof. Suppose first that a = 0 and u− b > 1, and apply Theorem 3.4 to

u− b and u to obtain

log
ρ(u− b)
ρ(u)

=
1

2
log

ξ′(u− b)
ξ′(u)

+

∫ u

u−b
ξ(t) dt+

O(1)

u− b
.

We shall bound each of the terms on the right in turn. First, observe that

log
ξ′(u− b)
ξ′(u)

= −
∫ u

u−b

ξ′′(t)

ξ′(t)
dt = O(1)

∫ u

u−b

dt

t
= O

(
log

u

u− b

)
,
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where the first step follows by differentiating log ξ′(t), and the second follows

from (27). Next, note that integration by parts gives

bξ(u)−
∫ u

u−b
ξ(t) dt =

∫ u

u−b
ξ′(t)(t− u+ b) dt

= Θ(1)

∫ u

u−b

t− u+ b

t
dt =

Θ(b2)

u
,

where the second step follows from (27), and the last equality holds for u− b >
εu as

∫ u
u−b(t− u− b) dt = b2/2 and t = Θ(u) for t ∈ [εu, u]. On the other hand,

the last integral increases to b as u− b→ 0+, so it also holds for 1 < u− b 6 εu.

Combining the three equations above, we obtain

log
ρ(u− b)
ρ(u)

= bξ(u) +O
(

log
u

u− b

)
− Θ(b2)

u
+
O(1)

u− b
.

Now for 0 6 b 6 u/2, we have log u
u−b = O(b/u) and 1/(u− b) = O(1/u), so

(28)
ρ(u− b)
ρ(u)

= exp

Ç
bξ(u) +

O(b+ 1)−Θ(b2)

u

å
.

This clearly also holds for 0 6 u− b 6 1 as then u 6 2 is bounded. Thus (26)

holds for a = 0.

Now suppose 1 < u − b 6 u/2. Then b2/u = Θ(u), while log u
u−b 6 log u

and 1/(u− b) = O(1). Thus we obtain

(29)
ρ(u− b)
ρ(u)

6 exp

Ç
bξ(u) +

O(1)

u

å
.

However, (29) also follows from (28) when u− b > u/2 as the O(b+ 1)−Θ(b2)

term is bounded above by a constant for all b > 0. Finally, note that ξ(u) > 0

and ρ(u − b) = 1 for every 0 6 u − b 6 1, so it follows that (29) in fact holds

for all 0 6 b 6 u. In particular, (25) holds for a = 0.

In order to deduce (25) and (26) in the case when a > 0, we substitute

u− a for u in (28) and (29). In the former case, this gives

ρ(u− a− b)
ρ(u− a)

= exp

Ç
bξ(u− a) +

O(b+ 1)−Θ(b2)

u− a

å
for all a+ b 6 u/2, which implies (26) since ξ(u) = ξ(u− a) +O(a/u), by (27),

and u− a = Θ(u). Similarly, substituting u− a for u in (29) gives

ρ(u− a− b)
ρ(u− a)

6 exp

Ç
bξ(u− a) +

O(1)

u− a

å
6 exp

Ç
bξ(u) +

O(1)

u− a

å
since ξ is an increasing function. This is enough to prove (25) when u−a > εu,

so let us assume instead that u− a 6 εu. Now, observe that

−ρ
′(u)

ρ(u)
=
ρ(u− 1)

uρ(u)
6
eξ(u)+O(1/u)

u
= ξ(u) + o(1)
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as u → ∞, where the first step follows by the definition (18) of ρ, the second

step follows by (29) applied with b = 1, and the third step follows by the

definition (24) of ξ and (27). It follows that −ρ′(u)/ρ(u) 6 ξ(Cu) for some

absolute constant C > 1 (since ξ′(u) = Θ(1/u)), and hence

log
ρ(u− a− b)
ρ(u− a)

= −
∫ u−a

u−a−b

ρ′(t)

ρ(t)
dt 6 bξ

Ä
C(u− a)

ä
6 bξ(u)

if ε was chosen sufficiently small, since ξ is increasing. Thus (25) also holds in

this case, and the proof is complete. �

The probabilities in our model are given in terms of the modified smooth

number counting function ‹Ψ(x, y). We now show that there is little difference

between Ψ(x, y) and ‹Ψ(x, y).

Lemma 3.6. If y > exp
Ä
(log log x)2

ä
, then

Ψ(x, y) 6 ‹Ψ(x, y) 6
Ä
1 + y−1+o(1)

ä
Ψ(x, y)

uniformly in y as x→∞.

Proof. The lower bound holds trivially, by definition; we shall prove the

upper bound. We may assume y 6 x, as otherwise Ψ(x, y) = ‹Ψ(x, y) = x.

Recall from (4) that ‹Ψ(x, y) =
∑

t∈P (y)

Ψ(x/t2, y),

where P (y) is the set of positive integers whose prime factors are all strictly

larger than y. Applying Theorems 3.1 and 3.5 with a = 0, b = 2 log t
log y , we obtain

t2Ψ(x/t2, y)

Ψ(x, y)
6

Ç
1 +

O(log(u+ 1))

log y

å
ρ(u− b)
ρ(u)

6 exp

Ç
bξ(u) +

O(1)

u
+
O(log(u+ 1))

log y

å
for all t ∈ [y,

√
x], where u = log x

log y > u − b = log(x/t2)
log y > 0. Note that in

the case when x/t2 < y, we apply Theorem 3.1 only to Ψ(x, y), as in this

case t2Ψ(x/t2, y) 6 x and ρ(u − b) = 1. Now ξ(u) = O(log u) = o(log y) for

y > exp
Ä
(log log x)2

ä
. Hence t2Ψ(x/t2, y)/Ψ(x, y) = to(1), and so‹Ψ(x, y)−Ψ(x, y) =

∑
1<t∈P (y)

Ψ(x/t2, y)

6 Ψ(x, y)
∑
t>y

t−2+o(1) 6 y−1+o(1)Ψ(x, y),

as claimed. �
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We can now state our estimates for the rate of change of the functions

Ψ(x, y) and ‹Ψ(x, y). The form of the statement below is designed to facilitate

its application in Section 5.

Theorem 3.7. Let z ∈ [z−, π(x)], set y = qz and u = log x
log y , and assume

0 6 a 6 u and b > 1. Then

(30) log
Ψ(xy−(a+b), y)

Ψ(xy−a, y)
6 b
Ä
ξ(u)− log y

ä
+
O(1)

u
.

Moreover, if a+ b 6 u/2, then

(31) log
Ψ(xy−(a+b), y)

Ψ(xy−a, y)
= b
Ä
ξ(u)− log y

ä
+
O(b2 + ab+ 1)

u
.

Also, both statements hold with ‹Ψ in place of Ψ.

Note that we interpret log 0 = −∞ in the case when a + b > u (and so

Ψ(xy−(a+b), y) = 0).

Proof. The bound y > exp((log log x)2) follows from (20), since z > z−,

so y > y1+o(1)
0 , by (22). Thus by Theorem 3.1, we have

Ψ(xy−(a+b), y)

Ψ(xy−a, y)
= y−b · ρ(u− a− b)

ρ(u− a)

Ç
1 +O

Ç
log(u+ 1)

log y

åå
if a+ b 6 u− 1 and b > 0, since these inequalities imply that y 6 xy−(a+b) 6
xy−a. Both (30) and (31) now follow by Theorem 3.5, since log(u+ 1)/ log y =

O(1/u), by (23), and the corresponding bounds with Ψ replaced by ‹Ψ follow

using Lemma 3.6.

The case when a + b > u − 1 and a + b 6 u/2 is ruled out by the as-

sumption9 that b > 1, so it only remains to prove that (30) holds when

u − 1 6 a + b 6 u + b and b > 1. If a 6 u − 1, then we can apply (30)

with b replaced by b′ := u − 1 − a (noting that we in fact proved it for all

a+ b 6 u− 1 and b > 0) to obtain

log
Ψ(xy−(a+b′), y)

Ψ(xy−a, y)
= log

y

Ψ(xy−a, y)
6 b′

Ä
ξ(u)− log y

ä
+
O(1)

u
.

Noting that Ψ(xy−(a+b), y) 6 xy−(a+b) = y1+b′−b, it follows that

log
Ψ(xy−(a+b), y)

Ψ(xy−a, y)
6 log

y1+b′−b

Ψ(xy−a, y)
6 b′ξ(u)− b log y +

O(1)

u
,

9Note that we need some condition on the parameters in the statement of the theorem in

order to rule out the case when, say, yb ≈ 2, but 1 6 xy−(a+b) < xy−a < 2, and u→∞.
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which implies (30) since b′ 6 b. The proof with Ψ replaced by ‹Ψ is identical.

Finally, if a > u − 1 and b > 1, then xy−(a+b) < 1, and so the claimed bound

holds trivially. �

We are now ready to bound the conditional probability of Aij = 1 that is

given by (6).

Corollary 3.8. If z ∈ [z−, z+] and a = o(u0), then

pz
Ä
xq−az

ä
=

1 + o(1)

z
.

Moreover, for any z ∈ [z−, π(x)] and a > 1, we have

pz
Ä
xq−az

ä
6
Ä
1 + o(1)

ä
pz(x) 6

1 + o(1)

z
.

Furthermore, pz(x) = z−1+o(1) for every z ∈ [z−, π(x)].

We shall use the following observation in the proof of Corollary 3.8.

Observation 3.9. If z = z
1+o(1)
0 and x = quz , then eξ(u) = (1+o(1))qz/z.

Proof. Note that z = z
1+o(1)
0 implies that u = (1 + o(1))u0, and hence

eξ(u) = 1 + uξ(u) = (1 + o(1))u log u = (1 + o(1))u0 log u0

= (1 + o(1)) log z0 = (1 + o(1)) log qz = (1 + o(1))qz/z,

by (23), (24) and the prime number theorem, as claimed. �

Proof of Corollary 3.8. Set x′ = xq−az , and observe that‹Ψ(x′, qz)− ‹Ψ(x′, qz−1) = ‹Ψ(x′q−1
z , qz−1) = ‹Ψ(x′q−1

z , qz)− ‹Ψ(x′q−2
z , qz−1)

and 0 6 ‹Ψ(x′q−bz , qz−1) 6 ‹Ψ(x′q−bz , qz) for b ∈ {1, 2}. Therefore, recalling the

definition (5) of pz(x),

(32)
‹Ψ(x′q−1

z , qz)− ‹Ψ(x′q−2
z , qz)‹Ψ(x′, qz)

6 pz(x
′) 6

‹Ψ(x′q−1
z , qz)‹Ψ(x′, qz)

.

Let x = quz , and note that if z ∈ [z−, z+], then u = (1 + o(1))u0, since z± =

z
1+o(1)
0 , by (22). Thus, if a = o(u0) then, by Theorem 3.7, we have

log
‹Ψ(x′q−bz , qz)‹Ψ(x′, qz)

= b
Ä
ξ(u)− log qz

ä
+ o(1)

for b ∈ {1, 2}. Moreover, eξ(u) = (1 + o(1))qz/z by Observation 3.9, since

z± = z
1+o(1)
0 . It follows that‹Ψ(x′q−bz , qz)‹Ψ(x′, qz)

=

Ç
1 + o(1)

z

åb
,

which together with (32) implies that pz(x
′) = (1 + o(1))/z when a = o(u0),

as claimed.
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The bounds pz(x) 6 (1 + o(1))/z and pz(x) = z−1+o(1) follow by a similar

argument. Indeed, by Theorem 3.7 (applied with a = 0), we have

(33) log
‹Ψ(xq−bz , qz)‹Ψ(x, qz)

6 b
Ä
ξ(u)− log qz

ä
+
O(1)

u

for b ∈ {1, 2}, and moreover a matching lower bound holds when u > 2b. Note

also that, since 1 6 u 6 (1 + o(1))u0, we have

eξ(u)+O(1/u) 6
Ä
1 + o(1)

ä
eξ(u0) =

Ä
1 + o(1)

äqz0
z0
6
Ä
1 + o(1)

äqz
z

by (27), Observation 3.9 and the prime number theorem. Thus by (33),

(34)
‹Ψ(xq−bz , qz)‹Ψ(x, qz)

6

Ç
1 + o(1)

z

åb
,

and (32) then implies pz(x) 6 (1 +o(1))/z. Moreover, the lower bound pz(x) >
eO(1)/qz holds for u > 2 by (32), using the matching lower bound in (33) when

b = 1. For 1 6 u < 2, ‹Ψ(x/qz, qz) = bx/qzc = Θ(x/qz) and ‹Ψ(x, qz) 6 x, so

again pz(x) > c/qz for some c > 0. In particular, pz(x) > z−1+o(1).

Finally, the bound pz(xq
−a
z ) 6 (1 + o(1))pz(x) is also similar, though since

it does not always hold when a < 1, we shall need to be a little careful. Note

first that if u < a+ 1, then the claimed bounds hold trivially, since xq−az < qz,

and hence pz(xq
−a
z ) = 0. We may therefore assume that u > a + 1, which

implies that xq−1
z > qz and x′ > qz. We claim that

(35) pz(x
′) 6

‹Ψ(x′q−1
z , qz)‹Ψ(x′, qz)

6
Ä
1 + o(1)

ä‹Ψ(xq−1
z , qz)‹Ψ(x, qz)

6
Ä
1 + o(1)

ä
pz(x).

Indeed, the first inequality follows by (32), and the second follows since The-

orem 3.3 implies that ρ(u−1)
uρ(u) , and hence ρ(u−1)

ρ(u) , is an increasing function of u,

so if u > a+ 2, then‹Ψ(x′q−1
z , qz)‹Ψ(x′, qz)

6
Ä
1 + o(1)

ä
q−1
z ·

ρ(u− a− 1)

ρ(u− a)

6
Ä
1 + o(1)

ä
q−1
z ·

ρ(u− 1)

ρ(u)
=
Ä
1 + o(1)

ä‹Ψ(xq−1
z , qz)‹Ψ(x, qz)

by Theorem 3.1 and Lemma 3.6. On the other hand, if a+ 1 6 u 6 a+ 2, then

x′q−1
z < qz, so in this case we may replace the bound on ‹Ψ(x′q−1

z , qz) given by

Theorem 3.1 by the equality ‹Ψ(x′q−1
z , qz) = x′q−1

z = ρ(u − a − 1)x′q−1
z , since

by definition, ρ(u) = 1 for all 0 6 u 6 1.

To deduce (35) from (32), it therefore only remains to observe that, by (34)

and two applications of Theorem 3.7,‹Ψ(xq−2
z , qz)‹Ψ(x, qz)

6 O(1) ·
Ç‹Ψ(xq−1

z , qz)‹Ψ(x, qz)

å2

= o(1) ·
‹Ψ(xq−1

z , qz)‹Ψ(x, qz)
,
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where we again used the fact that u > a+ 1 > 2 when applying Theorem 3.7

with b = 1. This proves (35), and hence completes the proof of the corollary.

�

We next deduce some more refined estimates concerning the function Λ(z).

Lemma 3.10. If z = z
1+o(1)
0 , then

Λ(z − 1)

Λ(z)
= 1 +

o(1)

z
.

Proof. Noting that Ψ(x, qz) = Ψ(x, qz−1) + Ψ(xq−1
z , qz), and recalling the

definition (13) of Λ(z), we have

Λ(z)− Λ(z − 1)

Λ(z)
=

(z − 1)Ψ(x, qz)− zΨ(x, qz−1)

(z − 1)Ψ(x, qz)
=
zΨ(xq−1

z , qz)−Ψ(x, qz)

(z − 1)Ψ(x, qz)
.

Now, applying Theorem 3.7 with y = qz, a = 0 and b = 1, we obtain

Ψ(xq−1
z , qz)

Ψ(x, qz)
= exp

Ä
ξ(u)− log qz + o(1)

ä
,

where u = log x
log qz

= (1 + o(1))u0 →∞. Hence

(36)
Λ(z)− Λ(z − 1)

Λ(z)
=

1

z − 1

Ç
zeξ(u)

qz

Ä
1 + o(1)

ä
− 1

å
=
o(1)

z
,

by Observation 3.9. �

Lemma 3.11. Write z = z0 exp
Ä
c
√

log z0

ä
for some c = c(x). Then

Λ(z) = e−c
2

+ o(1).

Proof. We may assume without loss of generality that z = z
1+o(1)
0 , and

hence c = o(
√

log z0), as otherwise the result follows from Corollary 3.2 with

Λ(z) = o(1). Set y = qz and u = log x
log y . Since Λ(z) = J(x)Ψ(x, qz)/xz and

Λ(z0) = 1, it follows by Theorem 3.1 that

Λ(z) =
Λ(z)

Λ(z0)
=
z0

z
· Ψ(x, y)

Ψ(x, y0)
=
Ä
1 + o(1)

äz0

z
· ρ(u)

ρ(u0)
.

Set b = u0 − u, and note that b = o(u0), which by Theorem 3.5 implies that

ρ(u)

ρ(u0)
= exp

Ç
bξ(u0) +

O(b2 + 1)

u0

å
.

Thus, defining κ0 by u0ξ(u0) = (1 + κ0) log y0, we obtain

Λ(z) =
Ä
1 + o(1)

äz0

z
· yb(1+κ0)/u0+o(b2/u20)

0 ,

where we have used (23) (in particular, the fact that u0 = o(log y0)) to replace

the error factor eO(b2+1)/u0 by (1 + o(1))y
o(b2/u20)
0 .
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Now, by the prime number theorem we have

y0

y
=
Ä
1 + o(1)

äz0 log y0

z log y
=
Ä
1 + o(1)

äz0

z
,

and by the definitions of u, u0 and b, and the fact that b = o(u0), we have

y0

y
= x1/u0−1/(u0−b) = y

−b/(u0−b)
0 = y

−b/u0−(1+o(1))b2/u20
0 .

Thus, we obtain

Λ(z) =
Ä
1 + o(1)

ä
y
bκ0/u0−(1+o(1))b2/u20
0

= exp

Ç
b

u0
κ0 log y0 −

Ä
1 + o(1)

ä b2
u2

0

log y0 + o(1)

å
,

and hence, noting that

c
√

log z0 = log
z

z0
= log

y

y0
+ o(1) =

Ä
1 + o(1)

ä b
u0

log y0 + o(1),

and that κ0 = o(1), by (23) and (27), it follows that

Λ(z) = exp
(Ä

1 + o(1)
ä
κ0c
√

log y0 −
Ä
1 + o(1)

ä
c2 + o(1)

)
.

But Λ(z) is maximized at c = 0, so this implies that κ0
√

log y0 = o(1), which

in turn implies that Λ(z) = e−c
2

+ o(1), as required. �

Note that as an immediate corollary of Lemma 3.11, we have

(37) z± = z0 exp
(
±
Ä»

log(1/δ) + o(1)
ä√

log z0

)
as well as

(38) Λ(z) > δ + o(1) for all z ∈ [z−, z+]

and

(39) Λ(z±) = δ + o(1).

Finally, let us make a trivial observation.

Observation 3.12.
∑
j>z−

Aij 6 2u0 for every i ∈ [N ].

Proof. If some number ai is divisible by k distinct primes, each larger than

z−, then zk− 6 x. Since z− = z
1+o(1)
0 = y

1+o(1)
0 = x(1+o(1))/u0 , this implies that

k 6 (1 + o(1))u0. �
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4. Probabilistic facts and preliminary results

In this section we shall recall some standard probabilistic tools, define

some events that will be important in later sections, and prove some basic

facts about these events. Let us begin by defining the events that encode our

induction hypothesis. Recall that η < e−γ was fixed in Section 2 and that ε0

and ε(k, z) were defined in (10) and Definition 2.5.

Definition 4.1. For each z ∈ [z−, π(x)], let M(z) denote the event that

(40)
m(z)

z
exp

Ç
− Ein

Ç
m(z)

z

åå
∈ (1± ε0)ηΛ(z)

holds, and letM∗(z) denote the event thatM(w) holds for every w ∈ [z, π(x)].

For each z ∈ [z−, z+] and k > 2, let Tk(z) denote the event that

sk(z) ∈
Ä
1± ε(k, z)

ä
ŝk(z).

Note that Theorem 2.2 states that the event M∗(z−) holds with high

probability, and Theorem 2.6 states that with high probability the event Tk(z)
holds for every k > 2 and every z ∈ [z−, z+]. We shall also need the following

slightly more technical events.

Definition 4.2. For each z ∈ [z−, π(x)], let Q(z) denote the event that

• M(z) holds;
• S(z) =

⋃
k>2 Sk(z) contains no element w with w > z5

0 ;
• sk(z) = 0 for all k > 4u0.

Let K(z) denote the event that Q(z) holds and also

(41)
∑
k>2

2ksk(z) 6 2eC0m(z),

where C0 was defined in (11).

We shall prove the following two lemmas, which allow us to deduce the

technical events (which we shall need in the sections below) from our induction

hypothesis.

Lemma 4.3. With high probability, Q(z) ∪ M∗(z)c holds for every z ∈
[z−, π(x)].

In other words, the lemma above says that the probability that there exists

z ∈ [z−, π(x)] such that M∗(z) holds but Q(z) does not is o(1) as x→∞.

Lemma 4.4. Let z ∈ [z−, z+]. If Q(z) holds and Tk(z) holds for all k > 2,

then K(z) holds.

Before proceeding to the proofs of Lemmas 4.3 and 4.4, let us give a simple

but important application of the event K(z). Recall from Algorithm 2.7 that



72 P. BALISTER, B. BOLLOBÁS, and R. MORRIS

d(z) denotes the number of rows of M(z) that contain a 1 in column z. The

following lemma shows that the distribution of d(z) is close to that of a Poisson

random variable with mean m(z)/z.

Lemma 4.5. Let z ∈ [z−, z+]. If K(z) holds, then

(42) P
Ä
d(z) = k | Fz

ä
=

Ä
1 + o(1)

äk
k!

e−m(z)/z

Ç
m(z)

z

åk
+
O(1)

z

for every k > 0.

In the proof of Lemma 4.5 we shall use the following bound on the sum

of independent Bernoulli random variables due to Le Cam [24].

Lemma 4.6 (Le Cam, 1960). Let X1, . . . , Xn be independent Bernoulli

random variables, and let X :=
∑n
i=1Xi. Then∑

k>0

∣∣∣∣∣P(X = k)− e−µµk

k!

∣∣∣∣∣ 6 2
n∑
i=1

p2
i ,

where pi := P(Xi = 1) and µ := E[X] =
∑n
i=1 pi.

We shall also use the following fact on numerous occasions throughout the

paper.

Observation 4.7. If M(z) holds, then m(z)/z 6 C0Λ(z) 6 C0.

Proof. Recall from (8) and (9) that α(w) and we−Ein(w) are strictly in-

creasing functions, that α(w) is convex, and that α(w)e−Ein(α(w)) = w. It

follows that, if M(z) holds, then

m(z)

z
6 α
Ä
(1 + ε0)ηΛ(z)

ä
6 α
Ä
(1 + ε0)η

ä
Λ(z) = C0Λ(z) 6 C0,

as claimed, since C0 = α
Ä
(1 + ε0)η

ä
and Λ(z) 6 1. �

Proof of Lemma 4.5. Recall that

pz = pz(x) =
‹Ψ(x, qz)− ‹Ψ(x, qz−1)‹Ψ(x, qz)

denotes the probability that a uniformly chosen random number in [x] is di-

visible by qz to an odd power, conditioned on the event that all larger prime

factors occur to an even power. We shall prove that the lemma holds even

when, instead of conditioning on Fz, we in fact condition on the entire matrix

to the right of column z. In this case, d(z) is a sum of independent Bernoulli

random variables {Xi : i ∈M(z)} with P(Xi = 1) = pz(xq
−αi
z ), where

qαiz =
∏

w>z,Aiw=1

qw
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is the product of the primes qw greater than qz that divide ai an odd number

of times.

However, the event K(z) implies that∑
i∈M(z)

αi 6
∑

i∈M(z)

∑
w>z,Aiw=1

6 =
∑
k>2

6ksk(z) = O(m(z)),

where the first step follows since S(z) contains no prime qw with qw > q6
z

(since q6
z > z6

− > qz50
= z

5+o(1)
0 ), and the last follows from (41). By the

pigeonhole principle, it follows that αi = o(u0) for all but a o(1)-proportion

of the i ∈ M(z). Now by Corollary 3.8, we have P(Xi = 1) = (1 + o(1))/z

whenever αi = o(u0), and P(Xi = 1) 6 (1 + o(1))/z for every i ∈M(z). Thus∑
i∈M(z)

P(Xi = 1) =
Ä
1 + o(1)

äm(z)

z
and

∑
i∈M(z)

P(Xi = 1)2 =
Ä
1 + o(1)

äm(z)

z2

whenever K(z) holds. As m(z) = O(z) by Observation 4.7 (since K(z) implies

M(z)), it follows by Lemma 4.6 that∑
k>0

∣∣∣∣∣PÄd(z) = k | Fz
ä
− e−µµk

k!

∣∣∣∣∣ =
O(1)

z
,

where µ := E[d(z)] = (1 + o(1))m(z)/z, as required. �

For the next result, it will be useful to have the following simple estimate

on the function α(w) defined in (9).

Observation 4.8. For 0 6 w 6 0.2, we have

(43) w 6 α(w) 6 w + 2w2.

Proof. The lower bound follows from (9) as we−Ein(w) 6 w, and hence

α(w) > w. The upper bound also follows from (9) as Ein(w) 6 w, and

(w + 2w2)e−Ein(w+2w2) > (w + 2w2)e−(w+2w2) > (w + 2w2)
Ä
1− (w + 2w2)

ä
= w + w2(1− 4w − 4w2) > w,

so α(w) 6 w + 2w2 for 0 6 w 6 0.2. �

In Section 7 we shall also need the following weaker bounds on the distri-

bution of d(z) in the range [z+, π(x)].

Lemma 4.9. Let z ∈ [z+, π(x)]. If K(z) holds, then

P
Ä
d(z) > 1 | Fz

ä
6
Ä
1 + o(1)

ä
m(z)pz(x)

and, moreover,

P
Ä
d(z) = k | Fz

ä
6

(2δη)k−1

k!
P
Ä
d(z) = 1 | Fz

ä
for every k > 2.
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Proof. Let the independent Bernoulli random variables {Xi : i ∈M(z)} be

defined as in the proof of Lemma 4.5, and observe that, since αi ∈ {0} ∪ [1,∞)

for every i ∈M(z), we have

P
Ä
Xi = 1

ä
6
Ä
1 + o(1)

ä
pz(x) 6

1 + o(1)

z

for every i ∈M(z), by Corollary 3.8. The first claimed inequality now follows

by the union bound. For the second bound, we note that in general if pi :=

P(Xi = 1), then

k P
Ä∑

iXi = k
ä

P
Ä∑

iXi = 1)
=

∑
i0∈[m(z)]

∑
i0∈S⊆[m(z)], |S|=k

∏
i∈S pi

∏
i/∈S(1− pi)∑

i0∈[m(z)] pi0
∏
i 6=i0(1− pi)

6 max
i0

∑
S⊆[m(z)]\{i0}, |S|=k−1

∏
i∈S

pi
1− pi

6

Ç
m(z)− 1

k − 1

å
max
i

Ç
pi

1− pi

åk−1

6
m(z)k−1

(k − 1)!
max
i

Ç
pi

1− pi

åk−1

.

Thus
P
Ä
d(z) = k | Fz

ä
P
Ä
d(z) = 1 | Fz

ä 6 1

k!

Ç
(1 + o(1))

m(z)

z

åk−1

.

The result follows as M(z) and z ∈ [z+, π(x)] imply that

(1 + o(1))
m(z)

z
6 (1 + o(1))α

Ä
(1 + ε0)ηΛ(z)

ä
6 α(1.6δη) 6 2δη

by (43) as Λ(z) 6 δ + o(1) and ε0 < e−γ < 0.6. �

4.1. The proof of Lemma 4.3. The first step is to control m0(z), the num-

ber of isolated vertices in the hypergraph SA(z). As noted above, this simple

fact lies at the heart of our proof and will be used several times in later sections.

Lemma 4.10. For each z ∈ [z−, π(x)],

P
(
m0(z) /∈

Ä
1± ε1

ä
ηΛ(z)z

)
6

1

x2
.

In particular, with high probability, m0(z) ∈ (1 ± ε1)ηΛ(z)z for every z ∈
[z−, π(x)].

Note that since m(z) > m0(z), this implies, in particular, that with high

probability we have m(z) > (1− ε1)ηΛ(z)z for every z ∈ [z−, π(x)]. We remark

(and also note for future reference) that the event M(z) implies deterministi-

cally that

(44) m(z)> α
Ä
(1−ε0)ηΛ(z)

ä
z > (1−ε0)ηΛ(z)z > (1−ε0)ηΛ(z−)z− > z

1+o(1)
0
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for every z ∈ [z−, π(x)], by (14), (43), (22), and the fact that Λ(z)z =

J(x)Ψ(x, qz)/x is increasing in z.

Lemma 4.10 is a straightforward consequence of the following special case

of the well-known inequality of Chernoff [12].

Lemma 4.11 (Chernoff’s inequality). Let ε > 0, let X1, . . . , Xn be inde-

pendent Bernoulli random variables, and let X :=
∑n
i=1Xi. Then for any

ε > 0,

P
Ä
|X − µ| > εµ

ä
6 2e−ε

2µ/(2+ε),

where µ := E[X].

Proof of Lemma 4.10. The number of isolated vertices in SA(z) is pre-

cisely the number of rows of A with no non-zero entry to the right of column z

(all of which will lie in M(z)). This is also the same as the number of integers

ai, i ∈ [N ] such that every prime q > qz divides ai an even number of times.

Let µ denote the expected number of ai with this property, and observe that

µ = ηJ(x) ·
‹Ψ(x, qz)

x
=
Ä
1 + o(1)

ä
ηJ(x) · Ψ(x, qz)

x
=
Ä
1 + o(1)

ä
ηΛ(z)z

by Lemma 3.6 and the definition (13) of Λ(z). Since the numbers ai are

independent, it follows by Lemma 4.11 that

P
Ä
m0(z) /∈

Ä
1± ε1

ä
ηΛ(z)z

ä
6 P
Ä
m0(z) /∈

Ä
1± ε1/2

ä
µ
ä
6 2e−ε

2
1µ/(8+2ε1).

Now simply note that µ is increasing in z, so (approximating very crudely) we

have µ > (1 + o(1))ηΛ(z−)z− > ηδz−/2 > (log x)2, and hence the right-hand

side of the above inequality is at most 1/x2. The last part follows by the union

bound over z ∈ [z−, π(x)]. �

We shall next use the lower bound on m(z) given by Lemma 4.10 to prove

the following upper bounds on the random variables sk(z).

Lemma 4.12. With high probability, the following all hold :

(a) sk(z) = 0 for every k > 2 and every z > z5
0 .

(b) s2(z) + s3(z) 6 z−1/2
0 m(z) for every z > z3

0 .

(c) sk(z) = 0 for every k > 4 and every z > z3
0 .

Proof. Note that a prime q divides a uniformly chosen random element

of [x] with probability bx/qc/x 6 1/q. Recall that A has N rows, and that

N = ηJ(x) = z
2+o(1)
0 , by (20). It follows that the expected number of primes

q > w that divide at least k of the integers ai, i ∈ [N ], is at most

(45)
∑
q>w

Nk

qk
6
z

(2+o(1))k
0

wk−1
.
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Now if sk(z) > 0, then there must be a prime q > qz that divides at least k of

the ai. Hence applying (45) with k > 2 and w = qz50
> z5

0 gives part (a), and

applying it with k > 4 and w = qz30
> z3

0 gives part (c). To prove (b), observe

first that with high probability

m(z) > m0(z) > (1− ε1)ηΛ(z)z > (1− ε1)ηJ(x) ·
Ψ(x, qz30

)

x
= z

5/3+o(1)
0

for every z > z3
0 . Indeed, the first inequality is trivial, the second follows by

Lemma 4.10, the third since Ψ(x, y) is increasing in y, and the fourth by (20)

and (21). Hence, applying (45) with k = 2 and w = qz30
> z3

0 , it follows that

the expected number of primes that can contribute to the value of s2(z) + s3(z)

for any z > z3
0 is at most z

1+o(1)
0 6 z

−2/3+o(1)
0 m(z). Part (b) then follows by

Markov’s inequality. �

We similarly obtain the following bound on sk(z) for large k. Note that

u0 = (1 + o(1)) log z0/ log log z0 by (23).

Lemma 4.13. With high probability, for every z ∈ [z−, π(x)], either M∗(z)
fails to hold, or sk(z) = 0 for every k > 4u0.

Proof. Suppose that M∗(z) holds, and recall that this implies m(w) 6
C0w for all w > z, by Observation 4.7. Any element w ∈ ⋃k>4u0 Sk(z) must

have been “born” with d(w) > 4u0. But, by Lemma 4.12, with high probability

no such w exists in [z3
0 + 1, π(x)] as it would contribute to sk(w − 1) for some

k > 4u0. Thus it is enough to show that with high probability no w exists in

[z−, z
3
0 ] with d(w) > 4u0 and m(w) 6 C0w.

The probability that Aiw = 1, conditioned on all entries of A to the right of

column w, is always at most (1+o(1))/w, by Corollary 3.8, and is conditionally

independent for each i. It follows that

(46) P
Ä
d(w) > k | Fw

ä
6

Ç
m(w)

k

åÇ
1 + o(1)

w

åk
6

(2C0)k

k!

when m(w) 6 C0w. Thus the expected number of w in [z−, z
3
0 ] with d(w) > 4u0

and m(w) 6 C0w is at most

(2C0)4u0

(4u0)!
· z3

0 6 exp
Ä
− 4u0 log u0 +O(u0) + 3 log z0

ä
= o(1)

by Stirling’s formula and the fact that log z0 = (1 + o(1))u0 log u0, by (23).

Hence, with high probability, no such w exists. �

Lemma 4.3 follows immediately from Lemmas 4.12 and 4.13. Note that if

w ∈ Sk(z), then w ∈ Sk′(w − 1) for some k′ > k, so if sk(w) = 0 for all k > 2,

w > z5
0 , then Sk(z) cannot contain any element w > z5

0 .
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4.2. The proof of Lemma 4.4. We shall next prove that the event Q(z) ∩⋂
k>2 Tk(z) implies (deterministically) that the event K(z) holds. To do so, we

need to prove that
∑
k>2 2ksk(z) 6 2eC0m(z). We begin with a simple but

useful observation.

Observation 4.14. (k + 1)ŝk+1(z) 6
m(z)

z
· ŝk(z).

Proof. This follows easily from Definition 2.4. Indeed, writing λ :=m(z)/z,

we have

(k+1)ŝk+1(z) =
m(z)

k
e−λ

∞∑
`=k−1

λ`+1

(`+ 1)!
6 λ · m(z)

k(k − 1)
e−λ

∞∑
`=k−1

λ`

`!
= λ · ŝk(z),

as claimed. �

We shall first prove the following bound on the sum over k of 2kε(k, z)ŝk(z).

We shall need this bound again in Sections 9 and 10.

Lemma 4.15. Let z ∈ [z−, z+]. If M(z) holds, then

∞∑
k=2

2kε(k, z)ŝk(z) 6 ε1m(z).

Proof. Note that

(47)
∑
k>2

2kε(k, z)ŝk(z) =
∑
k>2

2kεk1
Λ(z)

k!ŝk(z) 6
∑
k>2

2kεk1
Λ(z)

Ç
m(z)

z

åk−2

2ŝ2(z)

by Definition 2.5 and Observation 4.14. Now

2ŝ2(z) = m(z)
Ä
1− e−m(z)/z

ä
6
m(z)2

z
6 C0Λ(z)m(z),

and m(z) 6 C0z, by (16) and Observation 4.7. Noting from (10) that ε1C0 <

ε1e
C0 6 1/16, it follows that the right-hand side of (47) is at most∑

k>2

2kεk1C
k−1
0 m(z) =

4ε1C0

1− 2ε1C0
ε1m(z) 6 ε1m(z)

as required. �

Proof of Lemma 4.4. Since Tk(z) holds for all k > 2, we have

∑
k>2

2ksk(z) 6
∞∑
k=2

2kŝk(z) +
∞∑
k=2

2kε(k, z)ŝk(z).

The second term is at most ε1m(z), by Lemma 4.15, and since Q(z) implies

that the event M(z) holds. To bound the first term, observe that, writing
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λ = m(z)/z, we have

∑
k>2

2kŝk(z) = m(z)e−λ
∑
k>2

2k

k(k − 1)

∞∑
`=k−1

λ`

`!
= m(z)e−λ

∞∑
`=1

λ`

`!

`+1∑
k=2

2k

k(k − 1)

(48)

6 m(z)e−λ
∞∑
`=1

λ`

`!
· 2` 6 m(z)e−λe2λ = em(z)/zm(z) 6 eC0m(z),

as required, where in the final step we used Observation 4.7. �

Finally, let us make a simple observation that will play an important role

in Section 8.

Observation 4.16. If M(z) holds, then ε(k, z)ŝk(z) = z
1+o(1)
0 uniformly

for every z ∈ [z−, z+] and 2 6 k 6 4u0.

Proof. Let z ∈ [z−, z+], and observe that, since M(z) implies m(z)/z =

Θ(1), we have

(49) ε(k, z)ŝk(z) =
εk1 · k!

Λ(z)
· m(z)

k(k − 1)
e−m(z)/z

∞∑
`=k−1

1

`!

Ç
m(z)

z

å`
= eO(k)z.

Since u0 = o(log z0), by (23), and z = z
1+o(1)
0 for every z ∈ [z−, z+], by (22), it

follows that ε(k, z)ŝk(z) = z
1+o(1)
0 uniformly for every z ∈ [z−, z+] and k 6 4u0,

as claimed. �

4.3. Martingales. We finish this section by recalling some standard results

about martingales that we shall use in later sections. Recall that a super-

martingale with respect to a filtration (Ft)t>0 of σ-algebras is a sequence of

random variables (Xt)t>0 such that the following hold for each t > 0: Xt is

Ft-measurable, E[|Xt|] <∞, and E
î
Xt+1 | Ft

ó
6 Xt.

The following inequality was proved by Azuma [1] and Hoeffding [20] (see,

e.g., [8]).

Lemma 4.17 (The Azuma–Hoeffding inequality). Let (Xt)
`
t=0 be a super-

martingale with respect to a filtration (Ft)`t=0, and assume P(|Xt−Xt−1| > ct)

= 0 for t = 1, . . . , `. Then

P
Ä
X` −X0 > a

ä
6 exp

Ç
−a2

2
∑`
t=1 c

2
t

å
for every a > 0.

Recall that a stopping time T with respect to the filtration (Ft)t>0 is a

non-negative integer valued random variable such that the event {T 6 t} is Ft-
measurable. A stopping time T is called bounded if there exists a deterministic
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C > 0 such that P(T 6 C) = 1. We shall require the following well-known

theorem (see, for example, [34]).

Lemma 4.18 (Optional Stopping Theorem). Suppose (Xt)t>0 is a super-

martingale and T is a bounded stopping time. Then E[XT ] 6 E[X0].

5. Approximation by an independent hypergraph model

In order to control the evolution of the variables m(z) and sk(z) as z de-

creases, we shall need to understand the structure of the 2-core CA(z) of HA(z),

conditioned on F+
z . More precisely, we shall need to prove good approxima-

tions for the probability that certain substructures occur in A, conditioned

on the column sums (over the rows M(z)) of the columns [z, π(x)]. We shall

show that, up to relatively small error, these probabilities are the same as they

would be if the columns were independent.

Note that without any conditioning the rows are independent, and the

entries in the rows are almost independent, meaning that we can estimate the

probability of given hypergraph structures using (6). The problem is that we

wish to condition on an event E ∈ F+
z of the form

(50) E :=

®
M(z) = M and

∑
i∈M(z)

Aij = dj , for j > z

´
,

which specifies M(z) and all the degrees of vertices in CA(z) as well as d(z).

Thus both rows and columns are now dependent. If the entries in each row of A

were independent, then we could just forget the probabilities pj(x) and model

the matrix as placing dj 1s in column j uniformly at random. Unfortunately

this is not the case, so we need to be a bit more careful.

The substructures that we shall need to consider involve a (typically small)

subset I ⊆ M(z) of rows of A, and we shall need to estimate the probability

that the entries in these rows are of a given form. The most general version

of this requirement is that the submatrix obtained by just considering the set

I of rows and a (usually larger) set C ⊆ [z, π(x)] of columns forms a specific

I ×C matrix R. This corresponds to specifying exactly which vertices of C lie

in a fixed set I of edges in CA(z).

In order to state the main result of this section (Theorem 5.1, below), we

shall need some notation. Given any matrix B and subsets I and C of the

rows and columns of B respectively, define B[I ×C] to be the submatrix of B

given by the set I of rows and the set C of columns. Given z ∈ [z−, π(x)] and

an event E ∈ F+
z of the form (50), which determines the set M(z) = M and

the sequence (dj)j>z, let ÃE denote the random M × [z, π(x)] matrix obtained

by choosing (for each j) column j uniformly among the
(|M |
dj

)
possible choices

of column with column sum dj , independently for each column. We shall



80 P. BALISTER, B. BOLLOBÁS, and R. MORRIS

write m := |M | and AM := A
î
M × [z, π(x)]

ó
for the corresponding submatrix

of A, even when E does not hold. Of course if E holds, then m(z) = m and

M(z) = M .

Assume I ⊆M and C ⊆ [z, π(x)]. If R is an I × C 0-1 matrix, define

|R|1 =
∑
i∈I

∑
j∈C

Rij and |R|2 =
∑
i∈I

Ç∑
j∈C

Rij

å2

.

We shall prove the following theorem, which allows us to control the (condi-

tional) probability of each “basic event” of the form {A[I×C] = R} in terms of

the probability of the corresponding event {ÃE [I×C] = R} in the independent

model ÃE .

Theorem 5.1. Let z ∈ [z−, π(x)], and let E ∈ F+
z be an event of the

form (50) such that K(z) holds and d(z) 6 4u0. Let I ⊆ M , C ⊆ [z, π(x)]

with |I| = eO(u0), and let R be an I × C 0-1 matrix with |R|1 = O(|M |/u0).

Then

(51) P
Ä
A[I × C] = R | E

ä
6 exp

Ç
O
Ä
|I|+ |R|1

ä
u0

å
P
Ä
ÃE [I × C] = R

ä
.

Moreover, if every row sum of R is at most u0/150, then

(52) P
Ä
A[I × C] = R | E

ä
= exp

Ç
O
Ä
|I|+ |R|2

ä
u0

å
P
Ä
ÃE [I × C] = R

ä
.

For each I ⊆ M and C ⊆ [z, π(x)], let us define RE(I, C) to be the

collection of I×C 0-1 matrices R whose jth column sum does not exceed dj for

each j ∈ C. Note that matrices that do not have this property are inconsistent

with the event E , and so the theorem holds trivially for such matrices, since

all the probabilities are then zero.

If K(z) holds, then dj = 0 for j > z5
0 , so if R ∈ RE(I, C), then the

probabilities in (51) and (52) are unaffected if we replace C by C ∩ [z, z5
0 ].

Thus we may assume without loss of generality that C ⊆ [z, z5
0 ]. Similarly, we

may assume without loss of generality that z 6 z5
0 . Thus, for convenience, let

us fix for the rest of the section an integer z ∈ [z−, z
5
0 ] and an event E ∈ F+

z

of the form (50) such that K(z) holds and d(z) 6 4u0. We note that the

conditions K(z) and d(z) 6 4u0 also imply that

(53)

π(x)∑
j=z

dj = d(z) +
∑
k>2

ksk(z) = O(m(z)),

and that m(z) > z1+o(1)
0 , by (44).

The idea of the proof is to randomly permute some of the entries of A in

M × {j} for each j ∈ C so as to obtain a random submatrix in M × C that
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is zero in I × C and to show that in most cases the expected probability of

obtaining this permuted matrix is roughly the same as obtaining the original.

This will not always be the case, but such exceptional cases occur rarely, and

the probabilities in these cases are smaller than normal, so they have little

effect on the probability of seeing a particular pattern in the entries I × C.

This allows us to reduce the general case to the case R = 0. Moreover, by

summing over R we can reduce the trivial “true” event to the case R = 0, thus

indirectly estimating the probability when R = 0. Lemmas 5.6 and 5.8 below

will prove (51) and (52) respectively, subject to the result holding for R = 0.

Lemma 5.9 will then deal with the case when R = 0. One reason for splitting

the result into three lemmas is that the proof of the lower bound in Lemma 5.8

actually relies heavily on the upper bound from Lemma 5.6, and the proof of

Lemma 5.9 also relies heavily on Lemma 5.8.

Given an M × [z, π(x)] matrix B, we say B is consistent with E if the

column sums
∑
i∈M Bij are equal to dj for all j > z. Let B be the set of all

M × [z, π(x)] 0-1 matrices that are consistent with E , and for R ∈ RE(I, C),

define

BR := {B ∈ B : B[I × C] = R} and B0 := {B ∈ B : B[I × C] = 0}.

We will use the following simple observation several times in the proof below.

Observation 5.2. P(AM = B | E) = P(AM = B | AM ∈ B) for every

B ∈ B, and hence

P
Ä
A[I × C] = R | E

ä
= P
Ä
AM ∈ BR | AM ∈ B

ä
for every R ∈ RE(I, C).

Proof. Note that the event E is equal to {M(z) = M} ∩ {AM ∈ B}.
We claim that, conditional on the event AM ∈ B, the event M(z) = M

depends only on rows outside of M and so is independent of the choice of

AM ∈ B. Indeed, since every dj (for j > z) is either zero or at least 2,

none of the rows of M will be deleted by the algorithm that constructs the

2-core CA(z). (To see this, consider the first such row to be deleted.) Thus

the event M(z) = M holds (conditional on AM ∈ B) if and only if all other

rows are removed by step z of the algorithm, which depends on the sequence

(dz+1, . . . , dπ(x)) and on the rows outside M , but not on the choice of AM ∈ B,

as claimed. This proves the first statement, and the second follows immediately

since {A[I × C] = R} ∩ B = BR. �

Given B ∈ B, define a random matrix φI,C(B) as follows. For each j ∈ C,

remove all 1s in the submatrix B[I × {j}] and place them on a uniformly

chosen random subset of the zero entries in B[(M \ I) × {j}], choosing the

random subsets independently for each j ∈ C. The result is a matrix φI,C(B)
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with the same column sums, and hence φI,C(B) is still consistent with E , but

φI,C(B)[I ×C] = 0, so φI,C(B) ∈ B0. The choices made in the construction of

φI,C(B) will always be assumed to be independent of any random choice of B,

or the matrix A. The following observation is then immediate.

Observation 5.3. For any fixed R ∈ RE(I, C), if B is chosen uniformly

at random from BR, then the distribution of φI,C(B) is uniform on B0.

Proof. Indeed, the distribution is invariant under any permutation of the

rows M \ I. �

Now, for any 0-1 matrix B and each row i of B, let

ti(B) =
∏

j∈[z,π(x)]

q
Bij
j ,

and define the weight of the ith row, wi(B), by

ti(B) = q
wi(B)
z−1 .

For completeness, define wi(B) = 0 if i is not a row of B.

Observation 5.4. If Bij = 0 for all j /∈ [z, z5
0 ], then

∑
j Bij 6 wi(B) 6

6
∑
j Bij .

Proof. All primes dividing ti(B) are in the range [qz, qz50
], and qz50

=

z
5+o(1)
0 6 z6

− 6 q
6
z−1. �

Assume B ∈ BR. Let B− be the matrix obtained from B by setting all

entries in I ×C to 0. Note that B− is not in general consistent with E . Write

δi := wi(B)− wi(B−), and δφi := wi(φI,C(B))− wi(B−).

Note that δi = wi(R) depends only on R and that δi = 0 for i /∈ I while δφi = 0

for i ∈ I. Moreover, by Observation 5.4, we have δi ∈ {0} ∪ [1,∞) for every

i ∈M , and δi (respectively δφi ) is, up to a constant factor, equal to the number

of 1s removed from (respectively added to) row i by the map φI,C . Define

∆ :=
∑
i∈I

δi =
∑

i∈M\I
δφi ,

and note that ∆ = Θ(|R|1) and ∆ depends only on R. Also observe that, by

(53) and Observation 5.4,

(54)
∑
i∈M

wi(B) = O(|M |)

for any B ∈ BR. We shall also write

(55) αR(B) :=
∑
i∈I

δiwi(B
−).
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Our first challenge will be to prove the following lemma.

Lemma 5.5. Let z ∈ [z−, z
5
0 ], and let E ∈ F+

z be an event of the form (50)

such that K(z) holds and d(z) 6 4u0. Let I ⊆M and C ⊆ [z, z5
0 ] be such that

|I| = eO(u0), and let R ∈ RE(I, C). If |R|1 = O(|M |/u0), then for all B ∈ BR,

(56) P
Ä
AM = B) 6 exp

Ç
O
Ä
|R|1
ä

u0

å
P
Ä
AM = φI,C(B)

ä
.

Moreover, if no row i ∈ I of B contains more than u/12 1s, where qz−1 = x1/u,

then

(57) P
Ä
AM = B) = exp

Ç
O
Ä
αR(B) + |R|2

ä
u0

å
P
Ä
AM = φI,C(B)).

Note that the probabilities here are unconditional and are both over the

choice of A and the (uniform and independent) choice of φI,C(B).

Proof. For any B ∈ BR, there are exactly ‹Ψ(x/ti(B), qz−1) choices of

integer ai ∈ [x] such that A
î
{i} × [z, π(x)]

ó
= B

î
{i} × [z, π(x)]

ó
. Thus, by

counting the number of choices for ai, i ∈M , we have

(58)

P(AM = B)

P(AM = B−)
=
∏
i∈M

‹ΨÄx/ti(B), qz−1

ä‹ΨÄx/ti(B−), qz−1

ä =
∏

i : δi>0

‹ΨÄxq−wi(B−)−δi
z−1 , qz−1

ä‹ΨÄxq−wi(B−)
z−1 , qz−1

ä .

Thus, by Theorem 3.7, and recalling that δi ∈ {0} ∪ [1,∞) for every i ∈ M ,

we have

log
P(AM = B)

P(AM = B−)
6

∑
i : δi>0

Ç
δi
Ä
ξ(u)− log qz−1

ä
+
O(1)

u

å
(59)

= ∆
Ä
ξ(u)− log qz−1

ä
+
O(|R|1)

u0
.

The error bound in the last line follows as there are clearly at most |R|1 rows

where B and B− differ, and since u = Θ(u0), which holds because z ∈ [z−, z
5
0 ].

Similarly, conditioned on the choice of φI,C(B),

log
P(AM = φI,C(B) | φI,C(B))

P(AM = B−)
6

∑
i : δφi >0

Ç
δφi
Ä
ξ(u)− log qz−1

ä
+
O(1)

u

å(60)

= ∆
Ä
ξ(u)− log qz−1

ä
+
O(|R|1)

u0
.

Again, the error bound follows as there are at most |R|1 rows where φI,C(B)

and B− differ.
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We now aim to deduce corresponding lower bounds from Theorem 3.7. To

do so, note first that if no row i ∈ I of B contains more than u/12 1s, then,

by Observation 5.4,

wi(B
−) + δi = wi(B) 6

u

2
.

Hence, by (58) and Theorem 3.7, we have

log
P(AM = B)

P(AM = B−)
= log

∏
i∈M

‹ΨÄx, q−wi(B−)−δi
z−1 , qz−1

ä‹ΨÄx, q−wi(B−)
z−1 , qz−1

ä(61)

=
∑

i : δi>0

Ç
δi(ξ(u)− log qz−1) +

O
Ä
δ2
i + δiwi(B

−) + 1
ä

u0

å
= ∆(ξ(u)− log qz−1) +

O(αR(B) + |R|2)

u0
.

Note that the last equality follows by Observation 5.4, since∑
i : δi>0

(δ2
i + δiwi(B

−) + 1) 6 62|R|2 + αR(B) + |R|1

and |R|1 6 |R|2.

Proving a similar bound for φI,C(B) (and without assuming that the rows

of B have few 1s) is a little more complicated, since wi(B
−) + δφi 6 u/2 does

not necessarily hold for all φI,C(B). To get around this problem, we use the

following event (which depends on the choice of φI,C(B)):

GB :=
{
wi(B

−) 6 u/3 and δφi 6 6 for each i ∈ M such that δφi > 0
}
.

The first step is to show that this event occurs for most choices of φI,C(B).

Claim 1: For every B ∈ BR, we have

P(GB) = exp

Ç
− O(|R|1)

u0

å
.

Proof of Claim 1. Let M ′ = {i ∈ M : wi(B
−) 6 u/3}, and note that if

φI,C(B) places 1s only in rows of M ′, and places no more than a single 1 in

each row, then GB holds. Indeed, only those rows i where a 1 is inserted have

δφi > 0, and if only a single 1 is inserted in row i, then by Observation 5.4 we

have δφi 6 6.

We can construct φI,C(B) with the correct distribution by processing each

one of the |R|1 1 entries of R = B[I × C] in turn, removing it from B and

then adding a 1 to a uniformly chosen non-zero entry of the same column of

B, outside of the rows I. The number of possible choices in this process is

clearly at most |M ||R|1 . If instead we consider only those choices where 1s are

placed only in the rows M ′ \ I, and no two 1s are placed in the same row, the
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number of choices will still be at least (|M ′| − |I| − 4u0 − |R|1)|R|1 . Indeed,

at each step we have |M ′ \ I| choices of row, but we must avoid the at most

4u0 original 1s of B in that column and the at most |R|1 rows where we have

already placed a 1. Since the choice of φI,C(B) is uniform, we have

P(GB) >

Ç
|M ′| − |I| − 4u0 − |R|1

|M |

å|R|1
>

Ç
1− O(1)

u0

å|R|1
= e−O(|R|1/u0),

since |I|+4u0 + |R|1 = O(|M |/u0), by our assumptions and using (23) and (44),

and since

|M \M ′| 6 3

u

∑
i∈M\M ′

wi(B
−) 6

3

u

∑
i∈M

wi(B) =
O(|M |)
u0

by (54) and since u = Θ(u0). �

We are now ready to prove our final lower bound; the lemma follows easily

from the following claim, together with (59), (60) and (61).

Claim 2: For every B ∈ BR, we have

log
P
Ä
AM = φI,C(B)

ä
P
Ä
AM = B−

ä > ∆
Ä
ξ(u)− log qz−1

ä
+
O(|R|1)

u0
.

Proof of Claim 2. Note first that

P
Ä
AM = φI,C(B)

ä
P
Ä
AM = B−

ä > P
Ä
GB
ä
E
ñPÄAM = φI,C(B) | φI,C(B)

ä
P
Ä
AM = B−

ä ∣∣∣∣ GB
ô
,

and observe that if GB holds, then wi(B
−) + δφi 6 u/3 + 6 6 u/2. Hence, by

Theorem 3.7, it follows (cf. (61)) that

log
P
Ä
AM = φI,C(B) | φI,C(B)

ä
P
Ä
AM = B−

ä
= log

∏
i∈M

‹ΨÄx, q−wi(B−)−δφi
z−1 , qz−1

ä‹ΨÄx, q−wi(B−)
z−1 , qz−1

ä
=

∑
i : δφi >0

Ç
δφi (ξ(u)− log qz−1) +

O(wi(B
−) + 1)

u0

å
= ∆

Ä
ξ(u)− log qz−1

ä
+
O(αφ + |R|1)

u0

whenever GB holds, where

αφ :=
∑
δφi >0

wi(B
−).



86 P. BALISTER, B. BOLLOBÁS, and R. MORRIS

Thus, by the convexity of the exponential function,

P
Ä
AM = φI,C(B)

ä
P
Ä
AM = B−

ä(62)

> P
Ä
GB
ä
E
ñ

exp

Ç
∆(ξ(u)− log qz−1) +

O(αφ + |R|1)

u0

å ∣∣∣∣ GBô
> P
Ä
GB
ä

exp

Ç
E
ñ
∆(ξ(u)− log qz−1) +

O(αφ + |R|1)

u0

∣∣∣∣ GB
ôå
.

We claim that

(63) E
î
αφ | GB

ó
= O(|R|1).

Indeed, as in the proof of Claim 1, the probability that a given 1 entry in R

is moved to row i is at most
Ä
|M ′| − |I| − 4u0 − |R|1

ä−1
= O(1/|M |) for each

i ∈ M . Thus the probability that δφi > 0 (i.e., that row i receives some 1) is

at most O(|R|1/|M |), and so

E
î
αφ | G

ó
=
O(|R|1)

|M |
∑
i∈M

wi(B
−) = O(|R|1),

by (54), as claimed.

Hence, combining (62) and (63), and using Claim 1, we obtain

P
Ä
AM = φI,C(B)

ä
P
Ä
AM = B−

ä > exp

Ç
∆
Ä
ξ(u)− log qz−1

ä
+
O(|R|1)

u0

å
,

as required. �

To complete the proof, simply observe that combining Claim 2 with (59)

gives (56), and that combining Claim 2 with (60) and (61) gives (57). �

We can now easily deduce the following lemma.

Lemma 5.6. Let z ∈ [z−, z
5
0 ], and let E ∈ F+

z be an event of the form (50)

such that K(z) holds and d(z) 6 4u0. Let I ⊆M and C ⊆ [z, z5
0 ] be such that

|I| = eO(u0), and let R ∈ RE(I, C). If |R|1 = O(|M |/u0), then

(64)
P
Ä
A[I × C] = R | E

ä
P
Ä
A[I × C] = 0 | E

ä 6 exp

Ç
O(|R|1)

u0

åPÄÃE [I × C] = R
ä

P
Ä
ÃE [I × C] = 0

ä .
Proof. Write EB∈BR for the expectation over a uniform random choice of

B ∈ BR, and similarly for EB∈B0 . Note that, by Observation 5.2,

P
Ä
A[I×C] = R | E

ä
= P
Ä
AM ∈ BR | AM ∈ B

ä
=
|BR|EB∈BRP

Ä
AM = B

ä
P
Ä
AM ∈ B

ä ,



THE SHARP THRESHOLD FOR MAKING SQUARES 87

and that by Lemma 5.5 and Observation 5.3,

EB∈BRP
Ä
AM = B

ä
6 exp

Ç
O
Ä
|R|1
ä

u0

å
EB∈BRP

Ä
AM = φI,C(B))

= exp

Ç
O
Ä
|R|1
ä

u0

å
EB∈B0P

Ä
AM = B).

Thus, using Observation 5.2 again, it follows that

P
Ä
A[I × C] = R | E

ä
6 exp

Ç
O
Ä
|R|1
ä

u0

å
|BR|
|B0|

P
Ä
A[I × C] = 0 | E).

Now, since AE is distributed uniformly on B, we have

P
Ä
AE [I × C] = R

ä
P
Ä
AE [I × C] = 0

ä =
|BR|
|B0|

,

and so the lemma follows. �

Our next task, which will be somewhat harder, is to prove an almost-

matching lower bound when the row sums of R are not too large. In order to

do so we will use the following simple observation, which will also be useful in

Section 6.

Observation 5.7. Let X1, . . . , Xn be independent Bernoulli random vari-

ables, and let X =
∑n
i=1Xi. Then for any λ > 0,

E
î
eλX
ó
6 exp

Ä
(eλ − 1)E[X]

ä
.

Proof. We have, for each Bernoulli random variable Xi,

E
î
eλXi

ó
= 1 + (eλ − 1)P(Xi = 1) 6 exp

Ä
(eλ − 1)E[Xi]

ä
.

Thus by independence of the Xi,

E
î
eλX
ó

=
n∏
i=1

E
î
eλXi

ó
6

n∏
i=1

exp
Ä
(eλ − 1)E[Xi]

ä
= exp

Ä
(eλ − 1)E[X]

ä
,

as required. �

The following lemma provides us with the lower bound on P
Ä
A[I × C] =

R | E
ä

that we require in order to prove the second statement in Theorem 5.1.

Lemma 5.8. Under the same assumptions as Lemma 5.6, but with the

extra condition that no row sum of R exceeds u/24, where qz−1 = x1/u, we

have

(65)
P
Ä
A[I × C] = R | E

ä
P
Ä
A[I × C] = 0 | E

ä = exp

Ç
O
Ä
|R|2
ä

u0

åPÄÃE [I × C] = R
ä

P(ÃE [I × C] = 0
ä .
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To prove Lemma 5.8 we would like to repeat the calculation in the proof

of Lemma 5.6, except using the second statement in Lemma 5.5. However,

there is a problem: we have no control over the entries of B− in the rows of I.

Indeed, if B− contains too many 1s in some row i ∈ I that is non-zero in R,

then we will be unable to find any non-trivial lower bound on P(AM = B).

Fortunately however, very few matrices B have this property, so we can simply

use the trivial lower bound (i.e., zero) for those matrices. The main challenge

is to show that we also do not have a large contribution to P(A[I ×C] = 0 | E)

in this case.

Proof of Lemma 5.8. We are only required to prove the lower bound, since

the upper bound follows from Lemma 5.6. Define

B′ :=
{
B ∈ B : B− has no more than u/24 1s in row i for all i ∈ I

}
,

and set B′R = B′ ∩ BR and B′0 = B′ ∩ B0. Note that if B ∈ B′R, then, since no

row of R contains more than u/24 1s, we have at most u/12 1s in each row

i ∈ I of B. Thus we can apply Lemma 5.5 to deduce that

(66) P
Ä
AM = B

ä
= exp

Ç
O(αR(B) + |R|2)

u0

å
P
Ä
AM = φI,C(B)

ä
for every B ∈ B′R. Note that αR(B) = αR(φI,C(B)), since δi only depends

on R, and wi(B
−) = wi(φI,C(B)−) for every i ∈ I, and observe that, as in

Observation 5.3, if B is chosen uniformly from B′R, then φI,C(B) is uniform

on B′0, since the extra condition that B ∈ B′ does not depend on the columns

C of the matrix B. Thus, taking the expectation of (66) over a uniform choice

of B ∈ B′R, we obtain

P
Ä
AM ∈ B′R

ä
|B′R|

(67)

= EB∈B′R

ñ
exp

Ç
O
Ä
αR(φI,C(B)) + |R|2

ä
u0

å
P
Ä
AM = φI,C(B)

äô
= EB∈B′0

ñ
exp

Ç
O
Ä
αR(B) + |R|2

ä
u0

å
P
Ä
AM = B

äô
=

1

|B′0|
E
ñ

exp

Ç
O
Ä
αR(AM ) + |R|2

ä
u0

å ∣∣∣∣ AM ∈ B′0ôPÄAM ∈ B′0ä.
The following claim will allow us to bound the right-hand side of (67).

Claim 1: E
î
αR(AM ) | AM ∈ B′0

ó
= O(|R|1).
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Proof of Claim 1. Since δi depends only on the fixed matrix R, the defi-

nition (55) of αR and Observation 5.4 imply that

E
î
αR(AM ) | AM ∈ B′0

ó
=
∑
i∈I

δi E
î
wi(A

−
M ) | AM ∈ B′0

ó
(68)

6 6
∑
i∈I

δi
∑

j∈[z,π(x)]\C
P
Ä
Aij = 1 | AM ∈ B′0

ä
.

We claim that

(69) P
Ä
Aij = 1 | AM ∈ B′0

ä
6 eO(1/u0) dj

|M |
for every i ∈ I and j ∈ [z, z5

0 ] \ C. Indeed, if B is chosen uniformly at random

from the set C1 := {B ∈ B′0 : Bij = 1}, then φ{i},{j}(B) is uniform on C0 :=

{B ∈ B′0 : Bij = 0}. Lemma 5.5 then implies (cf. (67)) that

P
Ä
AM ∈ C1

ä
= |C1| · EB∈C1P

Ä
AM = B

ä
6 |C1|eO(1/u0)EB∈C1P

Ä
AM = φI,C(B)

ä
= |C1|eO(1/u0)EB∈C0P

Ä
AM = B

ä
=
|C1|
|C0|

eO(1/u0)P
Ä
AM ∈ C0

ä
.

Now |C1|/|C0| = dj/(|M | − dj), so

P
Ä
Aij = 1 | AM ∈ B′0

ä
P
Ä
Aij = 0 | AM ∈ B′0

ä =
P
Ä
AM ∈ C1

ä
P
Ä
AM ∈ C0

ä 6 eO(1/u0) dj
|M | − dj

,

which implies (69), because dj 6 4u0 (since K(z) holds) and u2
0 = o(|M |),

by (44).

Now, combining (68) with (69) gives

E
î
αR(AM ) | AM ∈ B′0

ó
6 O(1)

∑
i∈I

δi

π(x)∑
j=z

dj
|M |

= O(|R|1),

where the final step follows by (53), and since
∑
i∈I δi = O(|R|1). �

By Claim 1 and the convexity of the exponential function, we obtain

E
ñ

exp

Ç
O
Ä
αR(AM )

ä
u0

å ∣∣∣AM ∈ B′0ô > exp

Ç
O(|R|1)

u0

å
.

Now, combining this with (67) and noting that |R|1 6 |R|2 gives

(70) P
Ä
AM ∈ BR

ä
> P
Ä
AM ∈ B′R

ä
> eO(|R|2/u0) |B′R|

|B′0|
P
Ä
AM ∈ B′0

ä
.

Note also that

(71)
|B′R|
|B′0|

=
|BR|
|B0|

=
P
Ä
ÃE [I × C] = R

ä
P
Ä
ÃE [I × C] = 0

ä ,
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since the condition that B ∈ B lies in B′ does not affect the columns in C. The

following claim will therefore be sufficient to complete the proof of the lemma.

Claim 2: P
Ä
AM 6∈ B′0 | AM ∈ B0

ä
= O(e−u).

Proof of Claim 2. Recall that if B ∈ B0 \ B′0, then B
î
{i} × ([z, z5

0 ] \ C)
ó

contains at least u/24 1s for some i ∈ I. Our strategy will be to use Lemma 5.6

to bound the probability that this property is satisfied by AM in terms of the

probability that it is satisfied by ÃE , and then use the independence of the

columns of ÃE to deduce the desired bound.

In order to apply Lemma 5.6, we will first have to cover the event AM ∈
B0 \ B′0 with a suitable collection of events. To do so, let C be the collection

of subsets C ′ ⊆ [z, z5
0 ] \ C of size exactly du/24e, and let R(C ′) be the set

of R′ ∈ R(I, C ′) with some row i ∈ I of R′ consisting entirely of 1s. Now if

AM ∈ B0 \ B′0, then there must exist some C ′ ∈ C and R′ ∈ R(C ′) such that

A[I × C ′] = R′. Thus, by the union bound, we have

(72)

P
Ä
AM 6∈ B′0 | AM ∈ B0

ä
6
∑
C′∈C

∑
R′∈R(C′)

P
Ä
A[I × C ′] = R′ | AM ∈ B0

ä
.

We claim that

(73) P
Ä
A[I × C ′] = R′ | AM ∈ B0

ä
=

P
Ä
A[I × C ′] = R′, A[I × C] = 0 | E

ä
P
Ä
A[I × C] = 0 | E

ä
for every C ′ ∈ C and R′ ∈ R(C ′). Indeed, by Observation 5.2 both sides are

equal to

P
Ä
A[I × C ′] = R′, A[I × C] = 0 | AM ∈ B

ä
P
Ä
A[I × C] = 0 | AM ∈ B

ä .

We are now ready to use Lemma 5.6 to show that

P
Ä
A[I × C ′] = R′, A[I × C] = 0 | E

ä
P
Ä
A[I × (C ′ ∪ C)] = 0 | E

ä(74)

6 eO(u0)
P
Ä
ÃE [I × C ′] = R′, ÃE [I × C] = 0

ä
P
Ä
ÃE [I × (C ′ ∪ C)] = 0

ä .

Indeed, this follows by applying Lemma 5.6 with R an I × (C ∪ C ′) matrix

that is R′ on I × C ′ and zero on I × C, noting that |R′|1 6 4u0|C ′| 6 u2
0.

Note that the right-hand side of (73) is at most the left-hand side of (74),

since we have added the condition that A[I × C ′] = 0 in the denominator.

Observe also that

(75)
P
Ä
ÃE [I × C ′] = R′, ÃE [I × C] = 0

ä
P
Ä
ÃE [I × (C ′ ∪ C)] = 0

ä =
P
Ä
ÃE [I × C ′] = R′

ä
P
Ä
ÃE [I × C ′] = 0

ä ,
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since the columns of ÃE are independent, and also that

P
Ä
ÃE [I × C ′] = 0

ä
=
∏
j∈C′

Ç
|M | − |I|

dj

åÇ
|M |
dj

å−1

=
∏
j∈C′

dj−1∏
t=0

|M | − |I| − t
|M | − t

(76)

=
∏
j∈C′

exp

Ç
− O(|I|dj)

|M |

å
> exp

Ç
− O(|I|u2

0)

|M |

å
= 1− o(1),

since
∑
j∈C′ dj 6 4u0|C ′| 6 u2

0, and |I| = eO(u0) = o(|M |/u2
0), by (23) and (44).

Combining (72), (73), (74), (75) and (76), we obtain

P
Ä
AM 6∈ B′0 | AM ∈ B0

ä
6 eO(u0)

∑
C′∈C

∑
R′∈R(C′)

P
Ä
ÃE [I × C ′] = R′

ä
(77)

6 eO(u0)
∑
C′∈C

∑
i∈I

P
Ä
ÃE [{i} × C ′] = 1

ä
,

where 1 indicates the all 1s vector, since the events P
Ä
ÃE [I × C ′] = R′

ä
are

disjoint.

Now, let X =
∑z50
j=zXj , where Xz, . . . , Xz50

are independent Bernoulli

random variables with P(Xj = 1) = dj/|M |. We claim that

(78)
∑
C′∈C

P
Ä
ÃE [{i} × C ′] = 1

ä
= eO(u0)P

Ä
X = du/24e

ä
for every i ∈ I. Indeed, simply note that

P
Ä
X = du/24e

ä
=
∑
C′∈C

∏
j∈C′

dj
|M |

∏
j∈[z,z50 ]\C′

Ç
1− dj
|M |

å
= eO(u0)

∑
C′∈C

∏
j∈C′

dj
|M |

= eO(u0)
∑
C′∈C

P
Ä
ÃE [{i} × C ′] = 1

ä
for each i ∈ I, since the columns of ÃE are independent, and using (53).

Recalling that |I| = eO(u0) and u = Θ(u0), it follows from (77) and (78)

that

P
Ä
AM 6∈ B′0 | AM ∈ B0

ä
6 eλu · P

Ä
X = du/24e

ä
for some constant λ > 0. Noting that

E[X] =

z50∑
j=z

dj
|M |

= O(1)
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by (53), and that e24(λ+1)X > e(λ+1)u for X = du/24e, it follows by Observa-

tion 5.7 that

P
Ä
AM 6∈ B′0 | AM ∈ B0

ä
6 E

î
e24(λ+1)X

ó
e−u

6 exp
(Ä
e24(λ+1) − 1

ä
E[X]

)
e−u = O

Ä
e−u
ä
,

as required. �

To complete the proof, we simply combine Claim 2 with (70) and (71).

This gives

P
Ä
AM ∈ BR

ä
> eO(|R|2/u0)

P
Ä
ÃE [I × C] = R

ä
P
Ä
ÃE [I × C] = 0

ä PÄAM ∈ B0

ä
.

But, by Observation 5.2, we have

P
Ä
A[I × C] = R | E

ä
P
Ä
A[I × C] = 0 | E

ä =
P
Ä
AM ∈ BR | AM ∈ B

ä
P
Ä
AM ∈ B0 | AM ∈ B

ä =
P
Ä
AM ∈ BR

ä
P
Ä
AM ∈ B0

ä ,
and so the required lower bound follows. �

To prove Theorem 5.1, it just remains to estimate P(A[I × C] = 0 | E).

To do so we prove the following lemma, which follows from |C| applications of

Lemma 5.8.

Lemma 5.9. Under the same assumptions as in Lemma 5.6,

(79) P
Ä
A[I × C] = 0 | E

ä
= exp

Ä
O(|I|/u0)

ä
P
Ä
ÃE [I × C] = 0

ä
.

Proof. Enumerate the elements of C as {j1, . . . , jt}, and write

Ci = {ji, ji+1, . . . , jt}.

Let pi := P(A[I × Ci] = 0 | E) and p̃i := P(ÃE [I × Ci] = 0), and observe that

(80) logP(A[I × C] = 0 | E) = −
t∑
i=1

log
pi+1

pi
= −

t∑
i=1

log

Ç
1 +

pi+1 − pi
pi

å
,

and similarly for ÃE and p̃i, since pt+1 = p̃t+1 = 1. We will use Lemma 5.8 to

show that

(81)
pi+1 − pi

pi
= eO(dji/u0) · p̃i+1 − p̃i

p̃i

for each i ∈ [t]. To prove this, define a family

R(i) :=
{
R ∈ RE(I, Ci) : R[I × {ji}] 6= 0 and R[I × Ci+1] = 0

}
,

and observe that we can write

pi+1 − pi =
∑

R∈R(i)

P
Ä
A[I × Ci] = R | E

ä
,
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and similarly for p̃i+1 − p̃i. Note that each row sum of each R ∈ R(i) is at

most 1, and so |R|2 = |R|1 6 dji 6 4u0 = o(|M |/u0). Hence, by applying

Lemma 5.8 (with C = Ci), we obtain

P
Ä
A[I × Ci] = R | E

ä
pi

= eO(dji/u0)
P(ÃE [I × Ci] = R

ä
p̃i

for each R ∈ R(i). It follows that

pi+1 − pi
pi

= eO(dji/u0)
∑

R∈R(i)

P(ÃE [I × Ci] = R
ä

p̃i
= eO(dji/u0) · p̃i+1 − p̃i

p̃i
,

as claimed.

Next, observe that p̃i/p̃i+1 = P(ÃE [I × {ji}] = 0
ä
, since the columns of

ÃE are independent, and so, recalling that dji |I| = eO(u0) = o(|M |), by (23)

and (44), we have

(82)
p̃i+1 − p̃i

p̃i
=

Ç
|M |
dji

åÇ
|M | − |I|

dji

å−1

− 1 =
O(dji |I|)
|M |

= o(1).

Now log(1 + eab) = log(1 + b+O(ab)) = log(1 + b) +O(ab) for all a=O(1) and

b= o(1). Applying this with b= (p̃i+1 − p̃i)/p̃i, and using (81) and (82), gives

log

Ç
1 +

pi+1 − pi
pi

å
= log

Ç
1 + eO(dji/u) · p̃i+1 − p̃i

p̃i

å
= log

Ç
1 +

p̃i+1 − p̃i
p̃i

å
+O

Ç
dji
u0
· p̃i+1 − p̃i

p̃i

å
= log

p̃i+1

p̃i
+O

Ç
d2
ji
|I|

u0|M |

å
.

Finally, recall that
∑t
i=1 d

2
ji
6 d(z)2 +

∑
k>2 k

2sk(z) = O(|M |), since K(z)

holds and d(z) 6 4u0. Thus, using (80), we obtain

logP(A[I × C] = 0 | E) = −
t∑
i=1

log
p̃i+1

p̃i
+O

Ç
|I|

u0|M |

t∑
i=1

d2
ji

å
= logP

Ä
ÃE [I × C] = 0

ä
+
O(|I|)
u0

,

as required. �

Proof of Theorem 5.1. The reduction to the case z ∈ [z−, z
5
0 ], C ⊆ [z, z5

0 ]

and R ∈ RE(I, C) was given after the statement of the theorem, so we may

assume these conditions hold. Multiplying (79) by (64) gives (51). Simi-

larly, multiplying (79) by (65), and noting that u > u0/6 for all z ∈ [z−, z
5
0 ],

gives (52). �
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6. The exploration process

When there is exactly one active non-zero entry in column z (i.e., when

d(z) = 1), a chain reaction is set off that reduces the number of active rows

and can significantly alter the hypergraph SA(z). In order to control the evo-

lution of the variables sk(z) (and hence m(z)) we shall need a very precise

understanding of this deterministic process. In this section we shall use tech-

niques from the theory of branching processes to control the expected change

of various key parameters of the hypergraph SA(z), where we average over the

possible matrices A that are consistent with the information observed so far

in the filtration; see Algorithm 2.7. Importantly, we shall also obtain strong

bounds on the probability of large deviations.

We begin by defining the various parameters that we shall need to control.

Definition 6.1. For each z ∈ [π(x)], and each k > 2, define the following

random variables:

(i) D(z) := m(z)−m(z − 1), the number of rows removed in step z.

(ii) ∆k(z) := |Sk(z) \ Sk(z − 1)|, the number of edges of size k that contain

a vertex removed in step z.

(iii) R1(z) := d(z) +
∑
k>2 k(sk(z) − sk(z − 1)), the number of 1s removed

from the matrix in step z (including those in column z) if d(z) = 1.

(iv) ∆′(z), the number of edges of size at least three that have at least two

vertices removed in step z.

The following theorem will play a key role in the proof of Theorem 2.6.

Theorem 6.2. Suppose that z ∈ [z−, π(x)], K(z) holds, and 2s2(z) 6
(1− ε1)m(z). Then

(a) E
î
D(z) | Fz, d(z) = 1

ó
=

Ç
1− 2s2(z)

m(z)
+ o(1)

å−1

;

(b) E
î
∆k(z) | Fz, d(z) = 1

ó
=

Ç
1− 2s2(z)

m(z)
+ o(1)

å−1
ksk(z)

m(z)
+O
Ä
m(z)−1/3

ä
for all k > 2;

(c) E
î
D(z)2 | Fz, d(z) = 1

ó
= O(1);

(d) E
î
∆′(z) | Fz, d(z) = 1

ó
= O

Ä
m(z)−1/3

ä
,

where the bounds implicit in the o(·) and O(·) notation are uniform in k and z.

Moreover,

(83) P
Ä
R1(z) > u2

0 | Fz, d(z) = 1
ä
6 z−20

0 .

The idea is to prove a corresponding theorem in the simpler (independent)

model ÃE and then use Theorem 5.1 to deduce the statement in SA(z). We

now recall this model and define some additional notation.
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Definition 6.3. Fix z ∈ [z−, π(x)] and an event E ∈ F+
z of the form (50)

such that K(z) holds and d(z) = 1, and define S̃E to be the random hypergraph

with vertex set M and edge set

E(S̃E) =
¶
ẽj : j ∈ [z + 1, π(x)], dj > 0

©
,

where ẽj is a random subset of M chosen uniformly over all
(|M |
dj

)
choices of

subsets of M of size dj , independently for each j. For k > 2, let

S̃k =
¶
j ∈ [z + 1, π(x)] : dj = k

©
denote the set of columns corresponding to the k-edges in S̃E , and let S̃ =⋃
k>2 S̃k. We also define ẽz = {v}, where v is chosen uniformly at random

from M , independently of ẽj , j > z.

We define a deterministic process on the random hypergraph S̃E by “in-

fecting” vertex v at time zero and then at each subsequent step infecting any

vertex that is the last non-infected vertex in an edge of S̃. To be precise, we

set D̃0 = {v} and, for each t > 1,

D̃t := D̃t−1 ∪
¶
w ∈ M : there exists j ∈ S̃ with w ∈ ẽj ⊆ D̃t−1 ∪ {w}

©
.

We remark that such processes are usually referred to as “bootstrap perco-

lation” and have been extensively studied in both deterministic and random

settings; see, e.g., [3, 21].

We now define D̃, R̃1, ∆̃k, and ∆̃′ to be the quantities corresponding to

D(z), R1(z), ∆k(z), and ∆′(z) respectively. That is,

(i) D̃ := |D̃∞|, where D̃∞ :=
⋃
t>0 D̃t.

(ii) ∆̃k :=
∣∣∣¶j ∈ S̃k : ẽj ∩ D̃∞ 6= ∅

©∣∣∣ for each k > 2.

(iii) R̃1 := 1 +
∑
j∈S̃ |ẽj ∩ D̃∞|. (Note that the extra 1 is for the single 1 in

column z.)

(iv) ∆̃′ :=
∣∣∣¶j ∈ ⋃k>3 S̃k : |ẽj ∩ D̃∞| > 2

©∣∣∣.
For k > 3, we also define ∆̃

(1)
k by

∆̃
(1)
k :=

∣∣∣¶j ∈ S̃k : |ẽj ∩ D̃∞| = 1
©∣∣∣.

Note that for k > 3, ∆̃
(1)
k 6 ∆̃k 6 ∆̃

(1)
k + ∆̃′.

The hypergraph S̃E is the hypergraph corresponding to SA(z), except

that we use the matrix ÃE from Section 5 in place of A. In particular, if E
holds, then S̃k = Sk(z) and M = M(z). We remark that, for emphasis, we

shall put tildes over all random variables that are functions of the random

hypergraph S̃E and write sk = |S̃k| and m = |M | so that if E holds, then

m = m(z) and sk = sk(z). We label the hyperedges of S̃E by the column

indices j ∈ [z + 1, π(x)]; the realizations of these edges as subsets of vertices

are then given by the random variables ẽj = {i ∈ M : (ÃE)ij = 1}. However,
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as we analyse the progress of the “avalanche” we shall reveal information about

these random subsets only when necessary. Although technically not part of

the hypergraph S̃E , we also define ẽz as the random 1-edge corresponding to

column z. We remark also that, since we will always assume that K(z) (and

hence M(z)) holds, it follows from (44) that m > z1+o(1)
0 .

Our first main task will be to prove the following bound on the probability

(in the independent random hypergraph model) of large deviations of R̃1.

Lemma 6.4. Suppose that E is such that K(z) holds, d(z) = 1, and 2s2 6
(1 − ε1)m. Then there exists a constant λ > 0, depending only on ε1, such

that

(84) P
Ä
R̃1 > t

ä
=
O(s2)

m
e−λt

and

(85) E
[
∆̃

(1)
k 1{t6R̃1<m1/2}

]
=
O(ksk)

m
e−λt

for all 2 6 t 6 m1/2, uniformly in t and k > 3.

We shall next precisely define the process via which we reveal the set of

vertices removed in the independent model. For each integer t > 0, let Ãt and

Ṽt (the active and visited vertices respectively) be subsets of M given by the

following algorithm. For technical reasons, we shall need an upper bound on

the number of vertices we visit during the process.

Algorithm 6.5. We start with t := 1, Ã0 = Ṽ0 := {v} and Ẽ0 := {z}, where

v is the vertex corresponding to the unique 1 in column z. Define ̃(v) = z and

repeat the following steps until |Ãt| = 0:

1. Pick u ∈ Ãt−1 with the smallest value of ̃(u), and list the elements of

M \ Ṽt−1 (in increasing order, say) as w1, . . . , wr. Set Ã(0) := Ãt−1,

Ṽ (0) := Ṽt−1, Ẽ(0) := Ẽt−1 and ` := 0.

2. While |Ṽ (`)| < m1/2 and ` < r, repeat the following steps:

(a) Set ` := `+ 1.

(b) Let ̃(w`) be the smallest j ∈ S̃ with {u,w`} ⊆ ẽj ⊆ Ṽt−1 ∪ {w`},
if such a j exists. Set Ṽ (`) := Ṽ (`−1) ∪ {w`}, Ã(`) := Ã(`−1) ∪ {w`},
and Ẽ(`) := Ẽ(`−1) ∪ {̃(w`)}. If no such j exists, then set Ṽ (`) :=

Ṽ (`−1), Ã(`) := Ã(`−1), and Ẽ(`) := Ẽ(`−1).

3. Set Ãt := Ã(`) \ {u}, Ṽt := Ṽ (`), and Ẽt := Ẽ(`).

4. If |Ãt| = 0, then set Ṽ∞ := Ṽt and Ẽ∞ := Ẽt; otherwise set t := t + 1

and return to Step 1.

Let us begin by making a couple of simple but key observations about this

algorithm.
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Observation 6.6. |Ãt| = |Ṽt| − t for every 0 6 t 6 |Ṽ∞|, and |Ṽ∞| =

min
¶
D̃, dm1/2e

©
.

Proof. The equation |Ãt| = |Ṽt|− t follows since we add the same elements

to Ãt and Ṽt but remove one element from Ãt at each time step. To see that

|Ṽ∞| 6 D̃, observe that in fact we have Ṽt ⊆ D̃t for all t > 0 by induction, as

we only add vertices to Ṽt that are added to D̃t. Moreover, if |Ṽt| < dm1/2e
for every t > 0, then the algorithm discovers all vertices that are included

in D̃∞, so in that case Ṽ∞ = D̃∞, and so |Ṽ∞| = D̃. On the other hand,

if |Ṽt| = dm1/2e for some t, then we visit no new vertices after that point,

and therefore Ṽt′ = Ṽt for all t < t′ 6 |Ṽ∞|, and hence |Ṽ∞| = dm1/2e, as

claimed. �

We think of (|Ãt|)t>0 as a random walk and of |Ṽ∞| as the hitting time

of 0. However, the steps of this random walk might be large and are not

independent. Therefore, in order to control the walk we shall need to break

the steps up into smaller pieces. Let us define random variables X̃t,w ∈ {0, 1}
for each 1 6 t 6 |Ṽ∞| and w ∈M \ Ṽt−1 by setting

X̃t,w = 1 ⇔ w ∈ Ṽt \ Ṽt−1.

Abusing notation slightly, let us define a filtration F+
z = F̃0 ⊆ F̃1 ⊆ · · · ⊆

F̃|Ṽ∞| = F̃∞ by defining F̃t to be the information observed (about the inde-

pendent model) at the moment Ṽt is defined.10 For each 1 6 t 6 |Ṽ∞|, let us

define a further filtration

F̃t−1 = F̃t,<w1 ⊆ F̃t,<w2 ⊆ · · · ⊆ F̃t,<wr ⊆ F̃t
by defining F̃t,<w to be the information observed just before we begin Step 2(b)

in the round of Algorithm 6.5 in which we discover whether or not w ∈ Ṽt \ Ṽt−1.

Remark 6.7. Note that in Step 2(b) of the algorithm we only need to

observe whether or not the hyperedge ẽj satisfies {u,w`} ⊆ ẽj ⊆ Ṽt−1 ∪ {w`}
in turn11 for each j until we find one that does, or we have exhausted all j ∈ S̃.

Moreover, if we do find such an edge, then we do not test this condition for

larger j. We emphasize that this is the only (new) information contained

in F̃t,<w`+1
, and therefore, for edges ẽj ∈ E(S̃E) that are not used in the

process, we only have “negative” information (i.e., information of the form

“the hyperedge ẽj does not satisfy {u,w`} ⊆ ẽj ⊆ Ṽt−1 ∪{w`}”). This fact will

play an important role in the proof; see Lemmas 6.8, 6.12 and 6.13, below.

10Note that after we have visited m1/2 vertices, the algorithm does not observe any further

new information, and so the σ-algebras of the filtration are all the same from that point on.
11Since ̃(w`) is the smallest j ∈ S̃ with this property, we consider the elements of S̃ in

increasing order.
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In order to bound R̃1 and the other variables introduced in Definition 6.3,

we shall need to consider both edges ẽj with j ∈ Ẽ∞ (i.e., edges of S̃E that are

used in the algorithm), and edges ẽj , j ∈ S̃ \ Ẽ∞, that nonetheless intersect Ṽ∞.

Before embarking on the proof of Lemma 6.4, we shall use Remark 6.7 to

control the distributions of the number of both types of edges.

We begin with the edges ẽj , j ∈ Ẽ∞. Let us define a random variable

X̃
(k)
t,w ∈ {0, 1} for each k > 2, 1 6 t 6 |Ṽ∞| and w ∈M \ Ṽt−1 by setting

X̃
(k)
t,w = 1 ⇐⇒ w ∈ Ṽt \ Ṽt−1 and ̃(w) ∈ S̃k.

Note that X̃t,w =
∑
k>2 X̃

(k)
t,w for every t and w. Define X̃t,w to be the event

that Ṽ (`) < m1/2 just before we test vertex w in time step t. Thus X̃t,w = 1 is

only possible if X̃t,w holds.

We write 1A to denote the indicator function of an event A.

Lemma 6.8. Suppose that E is such that K(z) holds, d(z) = 1, and 2s2 6
(1− ε1)m. Then

E
î
X̃

(2)
t,w | F̃t,<w

ó
=

Å
2s2

m2
+O
Ä
m−3/2

äã
1X̃t,w

and if k > 3, then

E
î
X̃

(k)
t,w | F̃t,<w

ó
6

2k2sk
m(k+2)/2

1X̃t,w

for every t > 1 and w ∈M \ Ṽt−1. As a consequence,

E
î
X̃t,w | F̃t,<w

ó
=

Ç
2s2

m2
+O
Ä
m−3/2

äå
1X̃t,w .

Moreover, the constants implicit in the O(·) notation are uniform in z, t and w.

Proof. Let Ṽ (`) be the set of visited vertices just before we ask whether or

not w ∈ Ṽt \ Ṽt−1. If |Ṽ (`)| > m1/2, then X̃t,w = 1X̃t,w = 0, so we may assume

that |Ṽ (`)| < m1/2. As K(z) holds, we may also assume k 6 4u0, as otherwise

S̃k = ∅ and hence X̃
(k)
t,w = 0. By (44), we may also assume that m > z

1+o(1)
0 ,

so u0 = o(logm). We shall prove the first two statements by bounding (for

each k > 2) the probability that w ∈ Ṽt \ Ṽt−1 and ̃(w) ∈ S̃k by the expected

number of edges j ∈ S̃k \ Ẽ(`) of size k with {u,w} ⊆ ẽj ⊆ Ṽt−1 ∪ {w}.
Indeed, by Remark 6.7, conditioned on F̃t,<w, the edges ẽj , j ∈ S̃k \ Ẽ(`),

are each chosen independently and uniformly from the collection of sets that

fail to satisfy the test in Step 2(b) in any prior time step where the edge ẽj
was actually tested. This (crucially) includes all k-subsets of M that contain

at least two vertices of M \ Ṽt−1. Since |Ṽt−1| < m1/2, the number of such sets
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is thereforeÇ
m

k

å
−O(m)

Ç
|Ṽt−1|
k − 1

å
=
Ä
1 + o(1)

äÇm
k

å
=
Ä
1 + o(1)

ämk

k!
,

where we have used the fact that 2 6 k 6 4u0 = o(m1/2), by (44), and the

general fact that
(n
r

)
= (1 − O(r2/n))nr/r!. It follows that, for each k > 2

and each j ∈ S̃k \ Ẽ(`), the edge ẽj satisfies {u,w} ⊆ ẽj ⊆ Ṽt−1 ∪ {w} with

(conditional) probability

(86)
Ä
1 + o(1)

ä k!

mk
·
Ç
|Ṽt−1|
k − 2

å
6
Ä
1 + o(1)

äk(k − 1)|Ṽt−1|k−2

mk

so, in particular, for each k > 3, we have

E
î
X̃

(k)
t,w | F̃t,<w

ó
6 (1 + o(1))

k(k − 1)|Ṽt−1|k−2

mk
· sk 6

2k2sk
m(k+2)/2

since |Ṽt−1| < m1/2, as claimed. When k = 2, on the other hand, we can

replace (86) byÇÇ
m

2

å
−O
Ä
m · |Ṽt−1|

äå−1

=
2

m2
+O
Ä
m−5/2

ä
,

since |Ṽt−1| < m1/2, and that at most |Ṽt−1| edges have already been used in

the process (since every time a new edge is used, we visit a new vertex). Hence

the probability that some 2-edge satisfies ẽj = {u,w} isÇ
2

m2
+O
Ä
m−5/2

äå(
s2 +O

Ä
m1/2

ä)
=

2s2

m2
+O
Ä
m−3/2

ä
,

as claimed, since s2 = O(m).

For the last part, we note that X̃t,w =
∑
k>2 X̃

(k)
t,w and so, assuming X̃t,w

holds,

E
î
X̃t,w − X̃(2)

t,w | F̃t,<w
ó
6
∑
k>3

2k2sk
m(k+2)/2

= O
Ä
m−3/2

ä
as K(z) holds, so

∑
k>2 sk = O(m). Uniformity in z, t and w follows as all the

o( ) terms are in fact bounded by functions of m, and since K(z) holds we have

m > z1+o(1)
0 , by (44). �

Next, define

f̃(t, w) :=


k if X̃t,w = 1 and ̃(w) ∈ S̃k,

0 if X̃t,w = 0.

Using Lemma 6.8, we can easily deduce the following bounds, which will be

needed in the proof of Lemma 6.4, below.
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Lemma 6.9. Suppose E is such that K(z) holds, d(z) = 1, and 2s2 6
(1− ε1)m. Then for any 0 < λ 6 ε1, we have

E
î
eλX̃t,w | F̃t,<w

ó
6 exp

Ç
λ− λ2/2

m

å
and

E
î
eλf̃(t,w) | F̃t,<w

ó
6 exp

Ç
2λ

m

å
for every t > 1 and w ∈M \ Ṽt−1.

Proof. Since 2s2 6 (1−ε1)m, it follows by Observation 5.7 and Lemma 6.8

that

E
î
eλX̃t,w | F̃t,<w

ó
6 exp

ÇÄ
eλ − 1

ä Å2s2

m2
+O
Ä
m−3/2

äãå
6 exp

ÇÄ
eλ − 1

ä
(1− ε1 + o(1))

m

å
6 exp

Ç
λ− λ2/2

m

å
,

since 0 < λ 6 ε1 < 1 and so (eλ − 1)(1− ε1) 6 (λ+ λ2

2 + · · · )(1− λ) < λ− λ2

2 .

Similarly, recalling that m > z
1+o(1)
0 and that

∑
k>2 2ksk = O(m), since K(z)

holds, we have

E
î
eλf̃(t,w) | F̃t,<w

ó
= 1 +

4u0∑
k=2

Ä
ekλ − 1

ä
P
Ä
X̃

(k)
t,w = 1 | F̃t,<w

ä
6 1 +

Ä
e2λ − 1

ä Å2s2

m2
+O
Ä
m−3/2

äã
+
∑
k>3

2k2(ekλ − 1)

m(k+2)/2
sk

6 1 +
Ä
e2λ − 1

ä1− ε1

m
+O
Ä
λm−3/2

ä
6 1 +

2λ

m
6 exp

Ç
2λ

m

å
,

since 0<λ6ε1<1 and so (e2λ−1)(1−ε1)6(2λ+ 4λ2

2 +8λ3

6 + · · · )(1−λ)<2λ. �

In the proof of (85) we shall use the inequality

(87) E
î
∆

(1)
k 1{t6R̃1<m1/2}

ó
6 e−λt · E

î
∆

(1)
k eλR̃11{26R̃1<m1/2}

ó
,

so it will be important that we have some control over the distributions of

∆
(1)
k and R̃1 conditioned on the “positive” information that R̃1 > 1. The next

observation provides us with this control.

Observation 6.10. The random variable |Ṽ1| − 1 is stochastically dom-

inated by the binomial random variable Bin(s2, 2/m). In particular, E
î
e|Ṽ1| |

R̃1 > 1
ó

= O(1).
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Proof. Only 2-edges can be included in Ẽ1 as j ∈ Ẽ1 implies |ẽj \ {v}| = 1.

Each 2-edge is included precisely when it contains v and is not identical to a

previously encountered 2-edge, and this occurs with probability at most 2/m.

Thus |Ṽ1| is stochastically dominated by a 1 + Bin(s2, 2/m) random variable.

The condition that R̃1 > 1 is precisely the condition that the exploration

process does not immediately die out, so it is equivalent to the condition that

|Ṽ1| > 1. Now conditioning on R̃1 > 1 is equivalent to conditioning on at least

one 2-edge containing v. But conditioned on that, |Ṽ1| − 2 is stochastically

bounded by a Bin(s2, 2/m) random variable, as there are at most s2 remaining

edges to test, and each adds 1 to |Ṽ1| with probability at most 2/m. By

Observation 5.7, E[eBin(s2,2/m)] 6 exp((e − 1)2s2/m) = O(1), so the second

result follows. �

We are ready to bound the contribution to R̃1 of the edges used in Algo-

rithm 6.5. Let

W̃∞ :=
∑
w∈Ṽ∞

|ẽ̃(w)| =
∑
j∈Ẽ∞

dj

denote the sum of the sizes of these edges; as these edges all lie inside Ṽ∞, this

is precisely their contribution to R̃1. The following lemma controls the size

of W̃∞.

Lemma 6.11. There exists some λ > 0, depending only on ε1, such that

E
î
eλW̃∞ | R̃1 > 1

ó
= O(1).

Proof. Note that the condition R̃1 > 1 is equivalent to W̃∞ > 0 and is

F̃1-measurable, as one discovers whether or not R̃1 > 1 in the first round of

Algorithm 6.5. We will first need to control the large deviations of |Ṽ∞|.

Claim 1: For every t > 1,

P
Ä
|Ṽ∞| > t | R̃1 > 1

ä
= O

Ä
e−ε

2
1t/2
ä
.

Proof of Claim 1. Since |Ṽt| = |Ãt|+ t > t for t 6 |Ṽ∞|, we have

(88)

P
Ä
|Ṽ∞| > t | R̃1 > 1

ä
= P
Ä
|Ṽt| > t | R̃1 > 1

ä
6 e−ε1t E

î
eε1|Ṽt| | R̃1 > 1

ó
.

We shall bound E
î
eε1|Ṽt| | R̃1 > 1

ó
using Lemma 6.9 and the law of iterated

expectations. Indeed, setting X̃t =
∑
w X̃t,w, so that X̃t = |Ṽt \ Ṽt−1|, we have

E
î
eε1|Ṽt| | R̃1 > 1

ó
= E

î
eε1(1+X̃1+···+X̃t) | R̃1 > 1

ó
(89)

= E
[
eε1|Ṽt−1| · E

î
eε1X̃t | F̃t−1

ó ∣∣∣ R̃1 > 1
]
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and similarly,

E
î
eε1X̃t | F̃t−1

ó
= E

î
eε1(X̃t,w1+···+X̃t,wr ) | F̃t−1

ó
(90)

= E
[
eε1(X̃t,w1+···+X̃t,wr−1 ) · E

î
eε1X̃t,wr | F̃t,<wr

ó
| F̃t−1

]
.

Now, applying Lemma 6.9 with λ = ε1, we have

(91) E
î
eε1X̃t,w | F̃t,<w

ó
6 exp

Ç
ε1 − ε2

1/2

m

å
for every t > 1 and w ∈M \ Ṽt−1. Combining this with (90), and iterating the

procedure, we obtain

E
î
eε1X̃t | F̃t−1

ó
6 exp

Ç
ε1 − ε2

1/2

m

å
E
î
eε1(X̃t,w1+···+X̃t,wr−1 ) | F̃t−1

ó
6 · · · 6 exp

Ç
(ε1 − ε2

1/2)r

m

å
6 exp

Ä
ε1 − ε2

1/2
ä
,

since r = |M \ Ṽt−1| 6 m. Hence, using (89), and iterating again, we have

E
î
eε1|Ṽt| | R̃1 > 1

ó
6 eε1−ε

2
1/2E

î
eε1|Ṽt−1| | R̃1 > 1

ó
6 · · · 6 e(ε1−ε21/2)(t−1)E

î
eε1|Ṽ1| | R̃1 > 1

ó
.

Thus by Observation 6.10,

E
î
eε1|Ṽt| | R̃1 > 1

ó
= O

Ä
e(ε1−ε21/2)t

ä
.

Finally, it follows from (88) that

P
Ä
|Ṽ∞| > t | R̃1 > 1

ä
6 e−ε1t · E

î
eε1|Ṽt| | R̃1 > 1

ó
= O

Ä
e−ε

2
1t/2
ä
,

as claimed. �

We shall next use a similar argument to control

W̃t :=
∑
w∈Ṽt

|ẽ̃(w)| =
∑
j∈Ẽt

dj ,

the sum of the sizes of the edges used in the first t iterations of Algorithm 6.5.

Claim 2: If 0 < λ 6 ε1, then

eλW̃t−2λt

is a super-martingale with respect to the filtration (Ft)t>0.

Proof of Claim 2. The proof is similar to that of Claim 1, except the

bound (91) is replaced by

E
î
eλf̃(t,w) | F̃t,<w

ó
6 exp

Ç
2λ

m

å
,
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which also follows from Lemma 6.9. Indeed,

E
î
eλ(W̃t−W̃t−1) | F̃t−1

ó
= E

[
eλ(f̃(t,w1)+···+f̃(t,wr−1))

· E
î
eλf̃(t,wr) | F̃t,<wr

ó
| F̃t−1

]
6 exp

Ç
2λ

m

å
E
[
eλ(f̃(t,w1)+···+f̃(t,wr−1)) | F̃t−1

]
6 · · · 6 exp

Ç
2λr

m

å
6 e2λ,

since r 6 m. Since W̃t−1 is F̃t−1-measurable, it follows immediately that

E
î
eλW̃t−2λt | F̃t−1

ó
6 eλW̃t−1−2λ(t−1),

as required. �

We are now ready to bound the expectation of eλW̃∞ . Observe first that

E
î
eλW̃∞/2 | R̃1 > 1

ó
6

1

2

(
E
î
eλW̃∞−2λ|Ṽ∞| | R̃1 > 1

ó
+ E
î
e2λ|Ṽ∞| | R̃1 > 1

ó)
,

by the convexity of ex. Now, if λ < ε2
1/4, then

E
î
e2λ|Ṽ∞| | R̃1 > 1] 6

∞∑
t=0

e2λtP(|Ṽ∞| > t | R̃1 > 1) = O(1)

by Claim 1. Moreover, since the event R̃1 > 1 is F̃1-measurable, it follows

from Claim 2 by the optional stopping theorem that

E
î
eλW̃∞−2λ|Ṽ∞| | R̃1 > 1

ó
6 E

î
eλW̃1 | R̃1 > 1

ó
= O(1)

for every λ < 1/2. Indeed, since W̃1 = 2(|Ṽ1| − 1) is twice the number of

2-edges used in the first round of Algorithm 6.5, the last equality follows by

Observation 6.10. Thus

E
î
eλW̃∞ | R̃1 > 1

ó
= O(1)

for every λ < ε2
1/8, as required. �

We shall next use Remark 6.7 to control the distribution of the number

of remaining edges that nonetheless intersect Ṽ∞. For each k > 2, define

R̃(k) :=
∣∣∣¶j ∈ S̃k \ Ẽ∞ : ẽj ∩ Ṽ∞ 6= ∅

©∣∣∣
to be the number of edges of S̃E of size k that have at least one vertex removed

but are not used in Algorithm 6.5. For each k > 2, define binomial random

variables

Z(k) ∼ Bin

Ç
sk,

k|Ṽ∞|
m− k

å
.
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Lemma 6.12. The random variables R̃(k) are conditionally independent

given F̃∞ and, conditioned on F̃∞, are stochastically dominated by Z(k) for

each k > 2.

Proof. Since K(z) holds, we have sk = 0 for all k > 4u0, so we may assume

that k 6 4u0. Run the algorithm to reveal Ṽ∞ and Ẽ∞. By Remark 6.7, we

have not revealed any edge of S̃k \ Ẽ∞, though we have gained some “negative”

information about the events {ẽj ∩ Ṽ∞ 6= ∅}. To be precise, conditioned on

the information we have observed during the process (i.e., F̃∞), the edges ẽj ,

j ∈ S̃k \ Ẽ∞, are each chosen independently and uniformly from the collection

of sets of size k that would not have resulted in j being picked as some ̃(w).

The crucial observation in this case is that this collection is F̃∞-measurable

and includes all k-subsets of M \ Ṽ∞; cf. the proof of Lemma 6.8. Thus, the

(conditional) probability that ẽj meets Ṽ∞ is at most the probability that a

uniformly chosen k-set of M meets Ṽ∞.

The events {ẽj ∩ Ṽ∞ 6= ∅}, j ∈ S̃k \ Ẽ∞, are therefore conditionally inde-

pendent given F̃∞, and each has (conditional) probability at most

|Ṽ∞|
( m
k−1

)(m
k

) =
k|Ṽ∞|
m− k

.

As |S̃k \ Ẽ∞| 6 sk, R̃(k) is stochastically dominated by Z(k). The R̃(k)

are conditionally independent given F̃∞ as they depend on disjoint sets S̃k \ Ẽ∞
of random edges that are themselves conditionally independent given F̃∞. �

We are finally ready to prove the key lemma of this section.

Proof of Lemma 6.4. Recall that

W̃∞ :=
∑
w∈Ṽ∞

|ẽ̃(w)| =
∑
j∈Ẽ∞

dj

is the sum of the sizes of the edges used in Algorithm 6.5. Observe that

min
¶
R̃1,m

1/2
©
6 W̃∞ +

∞∑
k=2

k · R̃(k),

since each edge counted by R̃(k) can contribute at most k to R̃1, so this holds

when |Ṽ∞| < m1/2, and W̃∞ > |Ṽ∞| > m1/2 otherwise. Recall that W̃∞ is

F̃∞-measurable and that K(z) implies R̃(k) = 0 for all k > 4u0. Given F̃∞, the

random variables R̃(k) are conditionally independent, so Lemma 6.12 implies

that

E
î
eλmin{R̃1,m1/2} | R̃1 > 1

ó
6 E

[
E
î
eλW̃∞+

∑
k>2

λkR̃(k) | F̃∞
ó ∣∣∣ R̃1 > 1

]
(92)

= E
ñ
eλW̃∞

4u0∏
k=2

E
î
eλkR̃(k) | F̃∞

ó ∣∣∣∣ R̃1 > 1

ô
.
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Moreover, it follows from Lemma 6.12 and Observation 5.7 that

E
î
eλkR̃(k) | F̃∞

ó
6 E

î
eλkZ(k) | F̃∞

ó
6 exp

ÇÄ
eλk − 1

ä k|Ṽ∞|
m− k

· sk
å
,

since Z(k) is a sum of sk independent Bernoulli random variables, each of

expectation k|Ṽ∞|/(m− k). Since ew − 1 = (1− e−w)ew 6 wew for all w > 0,

and
∑
k>2 2ksk = O(m) (since K(z) holds), it follows that

4u0∑
k=2

Ä
eλk − 1

ä k|Ṽ∞|
m− k

· sk 6
|Ṽ∞|

m− 4u0

4u0∑
k=2

λk2eλksk = O(λ|Ṽ∞|)

for λ 6 ε1 < log 2. Thus, recalling that W̃∞ > |Ṽ∞|, we have

E
î
eλmin{R̃1,m1/2} | R̃1 > 1

ó
6 E

î
eλW̃∞+O(λ|Ṽ∞|) | R̃1 > 1

ó
(93)

= E
î
eO(λ)W̃∞ | R̃1 > 1

ó
for all 0 < λ 6 ε1. Hence, by Lemma 6.11, it follows that

E
î
eλmin{R̃1,m1/2} | R̃1 > 1

ó
6 E

î
eO(λ)W̃∞ | R̃1 > 1

ó
= O(1)

for sufficiently small λ > 0. Now, by Observation 6.10, P(R̃1 > 1) =P(|Ṽ1| > 1)

6 2s2/m. Thus

P(R̃1 > t) 6 e−λt E
î
eλmin{R̃1,m1/2} | R̃1 > 1

ó
P
Ä
R̃1 > 1

ä
=
O(s2)

m
e−λt

for all sufficiently small λ > 0 and all 2 6 t 6 m1/2, as required.

For the second part, observe first that, as noted in (87), we have

E
î
∆

(1)
k 1{t6R̃1<m1/2}

ó
6 e−λt · E

î
∆

(1)
k eλR̃11{26R̃1<m1/2}

ó
6 e−λt · E

î
∆

(1)
k eλR̃11{R̃1<m1/2} | R̃1 > 1

ó
.

Recall that ∆̃
(1)
k = |{j ∈ S̃k : |ẽj ∩ D̃∞| = 1}|, and note that therefore

E
[
∆

(1)
k eλR̃11{R̃1<m1/2} | R̃1 > 1

]
6
∑
j∈S̃k

E
[
1{|ẽj∩Ṽ∞|=1}e

λmin{R̃1,m1/2}
∣∣∣ R̃1 > 1

]
,

since Ṽ∞ = D̃∞ when R̃1 < m1/2. Now, repeating the argument of (92)–(93),

we obtain

E
[
1{|ẽj∩Ṽ∞|=1}e

λmin{R̃1,m1/2}
∣∣∣ R̃1 > 1

]
6 E

[
1{|ẽj∩Ṽ∞|=1}e

λ+O(λ)W̃∞
∣∣∣ R̃1 > 1

]
for every j ∈ S̃k and 0 < λ 6 ε1, since |ẽj ∩ Ṽ∞| = 1 and k > 3 imply that

j 6∈ Ẽ∞ (and that ẽj contributes exactly one to R̃1), and the edges not used in
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the algorithm are conditionally independent given F̃∞. Combining the above

inequalities, we obtain

E
î
∆

(1)
k 1{t6R̃1<m1/2}

ó
6 e−λt

∑
j∈S̃k

E
[
1{|ẽj∩Ṽ∞|=1}e

λ+O(λ)W̃∞
∣∣∣ R̃1 > 1

]

6 e−λt
∑
j∈S̃k

E
ñ
k|Ṽ∞|
m− k

eλ+O(λ)W̃∞

∣∣∣∣ R̃1 > 1

ô
;

cf. the proof of Lemma 6.12. Since |S̃k| = sk and |Ṽ∞| 6 W̃∞ = O(eλW̃∞), it

follows by Lemma 6.11 that

E
î
∆

(1)
k 1{t6R̃1<m1/2}

ó
6
O(ksk)

m
e−λt · E

î
eO(λ)W̃∞ | R̃1 > 1

ó
=
O(ksk)

m
e−λt

for all sufficiently small λ > 0, as required. �

Having done the hard part, it is now relatively straightforward to deduce

Theorem 6.2, using Theorem 5.1. The next step is to use Lemmas 6.4, 6.8 and

6.12 to deduce the following estimates for the other quantities introduced in

Definition 6.3.

Lemma 6.13. Suppose that E is such that K(z) holds, d(z) = 1, and

2s2 6 (1− ε1)m. Then, in the independent random hypergraph model,

(a) E
î
D̃
ó

=

Ç
1− 2s2

m
+ o(1)

å−1

,

(b) E
î
∆̃k

ó
=

Ç
1− 2s2

m
+ o(1)

å−1
ksk
m

+O
Ä
m−1/2

ä
for all k > 2,

(c) E
î
D̃2
ó

= O(1),

(d) E
î
∆̃′
ó

= O(m−1/2),

where the bounds implicit in the o(·) and O(·) notation are uniform in k and z.

Proof. Parts (a) and (c) are easier: we shall prove them first. Part (c)

follows immediately from Lemma 6.4, since D̃ 6 R̃1, so

E
î
D̃2
ó
6 E

î
R̃2

1

ó
6
∞∑
t=1

t2 · P(R̃1 > t) = O(1),

as required.

To prove (a), recall that X̃t = |Ṽt \ Ṽt−1| =
∑
w X̃t,w and that X̃t,w is the

event that Ṽ (`) < m1/2 just before we test whether or not X̃t,w = 1. Also, by

Lemma 6.8, we have

(94) E
î
X̃t,w | F̃t,<w

ó
=

Ç
2s2

m2
+O
Ä
m−3/2

äå
1X̃t,w
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for every t ∈ N and w ∈ M \ Ṽt−1. Let us define, for each t > 1, an F̃t−1-

measurable event

X̃t :=

®
P
(
|Ṽt| > m1/2 | F̃t−1

)
6

1

m2

´
,

and observe that if X̃t holds, then E
î
1X̃ ct,w

| F̃t−1

ó
6 1/m2 for each w ∈

M \ Ṽt−1, which in turn implies that

E
î
X̃t | F̃t−1

ó
=

∑
w∈M\Ṽt−1

E
î
X̃t,w | F̃t−1

]
(95)

=
2s2 + o(m)

m2
· |M \ Ṽt−1| =

2s2

m
+ o(1),

by (94) and since |Ṽt−1| = o(m). Observe also that, by Lemma 6.4, we have

(96) P
Ä
X̃ ct
ä
6 m2P

Ä
|Ṽ∞| > m1/2

ä
6 m2P

Ä
R̃1 > m1/2

ä
= O

Ä
m2e−λm

1/2ä
,

since D̃ 6 R̃1 and |Ṽ∞| = min
¶
D̃, dm1/2e

©
, by Observation 6.6.

We now define sequences Ỹ +
t and Ỹ −t as follows. Let 0 < ε < ε1 be an

arbitrarily small constant, set Ỹ +
0 = 1 and Ỹ −0 = −1, and for each 1 6 t 6 |Ṽ∞|,

define

Ỹ +
t :=


|Ãt|+

Ç
1− 2s2

m
− ε
å
t if X̃t holds,

Ỹ +
t−1 otherwise.

Similarly, define Ỹ −t := −|Ãt| −
Ä
1 − 2s2

m + ε
ä
t if X̃t holds, and Ỹ −t := Ỹ −t−1

otherwise. We claim that Ỹ +
t and Ỹ −t are both super-martingales with respect

to the filtration (F̃t)t>0. Indeed, for each 1 6 t 6 |Ṽ∞|, if X̃t holds, then

E
î
Ỹ +
t − Ỹ +

t−1 | F̃t−1

ó
= E

î
|Ãt| − |Ãt−1| | F̃t−1

ó
+

Ç
1− 2s2

m
− ε
å
6 0

by (95), since |Ãt| − |Ãt−1| = X̃t − 1, and similarly for Ỹ −t . Therefore, by the

optional stopping theorem applied to Ỹ +
t , and writing Ỹ +

∞ := Ỹ +
|Ṽ∞|

, it follows

that

E
î
Ỹ +
∞
ó
6 Ỹ +

0 = 1.

Now, recalling that Ã|Ṽ∞| = 0, it follows that

Ỹ +
∞ =

Ç
1− 2s2

m
− ε
å
|Ṽ∞|

if X̃t holds for every 1 6 t 6 |Ṽ∞|, and in general |Ỹ +
∞ | 6 m1/2, by Ob-

servation 6.6. Recall also that, by Observation 6.6, we have D̃ = |Ṽ∞| if



108 P. BALISTER, B. BOLLOBÁS, and R. MORRIS

|Ṽ∞| < m1/2, and otherwise D̃ 6 m. Hence, by (96), it follows that

E
î
Ỹ +
∞
ó
>

Ç
1− 2s2

m
− 2ε

å
E
î
D̃
ó
.

Applying the same argument to Ỹ −t , we obtain 1 6
Ä
1− 2s2

m + 2ε
ä
E
î
D̃
ó
. Since

ε > 0 was arbitrary, and 2s2 6 (1− ε1)m, it follows that

E
î
D̃
ó

=

Ç
1− 2s2

m
+ o(1)

å−1

,

as required.

To prove parts (b) and (d), we shall need to separately consider edges of

S̃k ∩ Ẽ∞ (i.e., edges that are used in the process) and edges of S̃k \ Ẽ∞ that

intersect Ṽ∞. We will show that Ẽ∞ is unlikely to contain any edges of size at

least three but is expected to have the required number of edges of size 2.

The proof of part (b) in the case k = 2 is very similar to that of part (a),

so we shall be somewhat brief with the details. Let λ > 0 be a sufficiently

large constant, set Z̃+
0 = 0, and for each 1 6 t 6 |Ṽ∞|, define

Z̃+
t :=


|S̃2 ∩ Ẽt| −

Å
2s2

m
+

λ

m1/2

ã
· t if X̃t holds,

Z̃+
t−1 otherwise.

Similarly, define Z̃−t := −|S̃2 ∩ Ẽt| +
Ä

2s2
m − λm

−1/2
ä
t if X̃t holds, and Z̃−t :=

Z̃−t−1 otherwise. Recall that X̃
(k)
t,w = 1 if and only if w ∈ Ṽt \ Ṽt−1 and ̃(w) ∈ S̃k,

and that

E
î
X̃

(2)
t,w | F̃t,<w

ó
=

Å
2s2

m2
+O
Ä
m−3/2

äã
1X̃t,w

for every t ∈ N and w ∈M \ Ṽt−1, by Lemma 6.8. It follows that

E
î
Z̃+
t − Z̃+

t−1 | F̃t−1

ó
= E

î
|S̃2∩ Ẽt|− |S̃2∩ Ẽt−1| | F̃t−1

ó
−
Å

2s2

m
+

λ

m1/2

ã
6 0

if X̃t holds, since s2 = O(m). Thus Z̃+
t is a super-martingale with respect to

the filtration (F̃t)t>0, and hence, by the optional stopping theorem,

E
î
Z̃+
∞
ó
6 Z̃+

0 = 0,

where Z̃+
∞ := Z̃+

|Ṽ∞|
. Now,

(97) Z̃+
∞ = |S̃2 ∩ Ẽ∞| −

Å
2s2

m
+

λ

m1/2

ã
|Ṽ∞|

if X̃t holds for every 1 6 t 6 |Ṽ∞|, and |Z̃+
∞| 6 s2 6 m otherwise. Thus,

by (96), it follows that

(98) E
î
|S̃2 ∩ Ẽ∞|

ó
6
Å

2s2

m
+

λ

m1/2

ã
E
î
|Ṽ∞|

ó
+

1

m2
.
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Now, using part (a) and recalling that ε > 0 was arbitrary and 2 6 2s2 6
(1− ε1)m (since if s2 = 0 then we trivially have E[∆̃2] = 0), it follows that

E
î
|S̃2 ∩ Ẽ∞|

ó
6

2s2

m

Ç
1− 2s2

m
+ o(1)

å−1

+O
Ä
m−1/2

ä
.

Repeating the argument for Z̃−t , we obtain a corresponding lower bound, and

hence

(99) E
î
|S̃2 ∩ Ẽ∞|

ó
=

2s2

m

Ç
1− 2s2

m
+ o(1)

å−1

+O
Ä
m−1/2

ä
.

When k > 3, we only need a weaker bound, and as a consequence the

argument is simpler. Recall first that

E
î
X̃

(k)
t,w | F̃t,<w

ó
6

2k2sk
m(k+2)/2

1X̃t,w

for every t ∈ N, k > 3 and w ∈M \ Vt−1, by Lemma 6.8. Note also that

|S̃k ∩ Ẽt| = |S̃k ∩ Ẽt−1|+
∑

w∈M\Ṽt−1

X̃
(k)
t,w ,

and therefore Ũ
(k)
t := |S̃k ∩ Ẽt| − 2k2skm

−k/2t is a super-martingale, since

E
î
Ũ

(k)
t − Ũ (k)

t−1 | F̃t−1

ó
= E

î
|S̃k ∩ Ẽt| − |S̃k ∩ Ẽt−1| | F̃t−1

ó
− 2k2sk
mk/2

6 0

for every t > 1. Hence, by the optional stopping theorem, we have

(100) E
î
|S̃k ∩ Ẽ∞|

ó
6

2k2sk
mk/2

· E
î
|Ṽ∞|

ó
.

Since E
î
|Ṽ∞|

ó
= O(1) (by Lemma 6.4, or by part (a)), it follows, using the

event K(z), that

(101)
∞∑
k=3

E
î
|S̃k ∩ Ẽ∞|

ó
= O

Ä
m−1/2

ä
.

We shall next deal with edges that are not used in the process, but never-

theless intersect Ṽ∞ in at least two vertices. To be precise, we shall show that

the expected size of

R̃2(k) :=
∣∣∣¶j ∈ S̃k \ Ẽ∞ : |ẽj ∩ Ṽ∞| > 2

©∣∣∣
is small for each 2 6 k 6 4u0. Indeed, recall (see Remark 6.7 and the proofs of

Lemmas 6.8 and 6.12) that conditional on the information we have observed

during the process, each edge ẽj , j ∈ S̃k \ Ẽ∞, is chosen uniformly from a

collection of sets of size k that depends on j but always includes all k-subsets
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that contain at least two elements of M \ Ṽ∞. The (conditional) probability

of the event {|ẽj ∩ Ṽ∞| > 2} is therefore at most

(102)

Ç
|Ṽ∞|

2

åÇ
m

k − 2

åÇ
m− |Ṽ∞|

k

å−1

6
k2 · |Ṽ∞|2

m2

since |Ṽ∞| 6 m1/2, so k · |Ṽ∞| = o(m). Note also that if k > 3, then the

(conditional) probability of the event {|ẽj ∩ Ṽ∞| = 1} is at least

|Ṽ∞|
Ç
m− |Ṽ∞|
k − 1

åÇ
m

k

å−1

=
Ä
1 + o(1)

äk · |Ṽ∞|
m

.

Thus the expected number of edges of size k that intersect Ṽ∞ is at least

(103)
Ä
1 + o(1)

äksk
m

E
î
|Ṽ∞|

ó
,

which together with part (a) proves the lower bound of part (b) when k > 3.

Now, using part (c) and K(z) to bound E
î
|Ṽ∞|2

ó
= O(1) and sk = O(m),

respectively, it follows from (102) that

(104) E[R̃2(k)] 6
k2sk
m2
· E
î
|Ṽ∞|2

ó
= O

Ç
k2sk
m2

å
.

Note that if |Ṽ∞| < m1/2, then every edge of size 2 is (by definition) either con-

tained in or disjoint from D̃∞, and that otherwise ∆̃2 = O(m), by K(z). Hence,

combining (104) with (99), and using (96), we obtain the case k = 2 of part (b).

Moreover, combining (104) with (101), and recalling that
∑
k>2 k

2sk = O(m),

by K(z), it follows that

E
î
∆̃′
ó

= O
Ä
m−1

ä
+O
Ä
m−1/2

ä
= O

Ä
m−1/2

ä
,

which proves (d).

It only remains to prove the upper bound in part (b) when k > 3.

By (100), it is sufficient to show that the expected number of edges of S̃k \ Ẽ∞
that intersect Ṽ∞ in at least one vertex is at mostÇ

1− 2s2

m
+ o(1)

å−1
ksk
m

for each k > 3. This follows by Lemma 6.12 and part (a), since

E
î
Z(k)

ó
= E

[
E
î
Z(k) | F̃∞

ó]
=
Ä
1 + o(1)

äksk
m

E
î
|Ṽ∞|

ó
for every 3 6 k 6 4u0. This completes the proof of part (b), and therefore of

the lemma. �

We are finally ready to deduce Theorem 6.2. The key observation, which

allows us to apply Theorem 5.1, is that each of the variables D(z), R1(z), ∆k(z)

and ∆′(z) depends only on F+
z and the submatrix R(I) := A

î
I × [z, π(x)]

ó
,
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where I is the set of rows that are removed in step z. Note also that we can

deduce from F+
z and R(I) whether or not I is the set of removed rows. Indeed,

in Algorithm 2.7 we only need to look at the entries of a row once we know

we shall remove it. The event {D(z) = t} (for example) is therefore a disjoint

union of events of the form
¶
A
î
I× [z, π(x)]

ó
= R
©

withR having exactly t rows.

It follows that we would be able to deduce Theorem 6.2 from Lemmas 6.4

and 6.13 if we could restrict to events E ∈ F+
z and

¶
A
î
I × [z, π(x)]

ó
= R
©

for

which

P
Ä
A
î
I × [z, π(x)]

ó
= R | E

ä
=
Ä
1 + o(1)

ä
P
Ä
ÃE
î
I × [z, π(x)]

ó
= R

ä
.

Theorem 5.1 provides us with such a bound as long as |R|1 is not too large,

since |I| 6 |R|1 6 |R|2 6 (|R|1)2 for the matrices we shall be dealing with.

Moreover, observe that if I is the set of removed rows, then |R(I)|1 = R1(z),

so we shall be able to use Theorem 5.1 and Lemma 6.4 to bound from above

the probability that |R|1 is large.

Proof of Theorem 6.2. We partition the probability space into three pieces,

using the events

D1 =
¶
R1(z) < u

1/3
0

©
, D2 =

¶
u

1/3
0 6 R1(z) < u2

0

©
, D3 =

¶
R1(z) > u2

0

©
.

Let us fix z ∈ [z−, π(x)] and an event E ∈ F+
z of the form (50) such that K(z)

holds, 2s2(z) 6 (1− ε1)m(z) and d(z) = 1, and say that an I × [z, π(x)] matrix

R is 1-acceptable (with respect to E) if it is consistent with D1 ∩ E and if the

event
¶
A
î
I × [z, π(x)]

ó
= R

©
∩ E implies that I is the set of removed rows in

step z.12 Note that D1 is the disjoint union of the events
¶
A
î
I× [z, π(x)]

ó
= R
©

over the family U1 of all 1-acceptable matrices R. We claim that, for every

1-acceptable matrix R ∈ U1, we have

(105) P
Ä
A
î
I × [z, π(x)]

ó
= R | E

ä
=
Ä
1 + o(1)

ä
P
Ä
ÃE
î
I × [z, π(x)]

ó
= R

ä
.

Indeed, this follows by applying Theorem 5.1 since

|I|+ |R|2
u0

= o(1),

which holds because every row of R is non-empty, so |I|6 |R|26(|R|1)2 < u
2/3
0 ,

and also every row sum of R is at most |R|1 = o(u0).

We shall next prove that P(D3 | Fz, d(z) = 1) 6 z−20
0 . To do so, let

us say that an I × [z, π(x)] matrix R is 3-acceptable (with respect to E) if it

is consistent with E and if I is the set of rows removed in Algorithm 2.7 at

12To be precise, an I × [z, π(x)] matrix R with this latter property is said to be consistent

with D1 ∩ E if and only if the column sums of R satisfy
∑

i∈I Rij 6 dj for each j ∈ [z, π(x)],

and |R|1 < u
1/3
0 .
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the first point at which D3 is guaranteed to hold, i.e., the first point at which

|R|1 > u2
0. Thus D3 is the disjoint union of the events

¶
A
î
I × [z, π(x)]

ó
= R

©
over the family U3 of all 3-acceptable matrices R. Now, by Theorem 5.1, we

have

P
Ä
A
î
I × [z, π(x)]

ó
= R | E

ä
P
Ä
ÃE [I × [z, π(x)]

ó
= R

ä 6 exp

Ç
O
Ä
|I|+ |R|1

ä
u0

å
= eO(u0)

for any 3-acceptable matrix R, since |I| 6 |R|1 = O(u2
0). Indeed, we have

|I| 6 |R|1 (as before) since R has no empty rows, and |R|1 = O(u2
0) since I

is minimal, and since each row of R contains at most 2u0 non-zero entries (by

Observation 3.12), so each row can increase |R|1 by at most O(u0).

Now, by Lemma 6.4, we have∑
R∈U3

P
Ä
ÃE [I × [z, π(x)]

ó
= R

ä
= P
Ä
R̃1 > u2

0

ä
= O

Ä
e−λu

2
0

ä
,

and hence, noting that log z0 = o(u2
0), by (23), we obtain

P
Ä
D3 | Fz, d(z) = 1

ä
6 exp

Ä
O(u0)− λu2

0

ä
6 z−20

0 ,

as claimed, which proves (83). Note that this also implies that

(106) E
î
R1(z)2

1D3 | Fz, d(z) = 1
ó
6 z−9

0 ,

since the event K(z) implies that R1(z)2 6 (4u0z
5
0)2 6 z11

0 .

Finally, let U2 denote the family of (2-acceptable with respect to E) I ×
[z, π(x)] matrices R that are consistent with D2∩E and are such that the event¶
A
î
I × [z, π(x)]

ó
= R
©
∩ E implies that I is the set of removed rows in step z.

By Theorem 5.1, we have

P
Ä
A
î
I × [z, π(x)]

ó
= R | E

ä
P
Ä
ÃE [I × [z, π(x)]

ó
= R

ä 6 exp

Ç
O(|R|1)

u0

å
for any 2-acceptable matrix R, since |I| 6 |R|1, and hence

P
Ä
D2 | Fz, d(z) = 1

ä
6

∑
R∈U2

exp

Ç
O(|R|1)

u0

å
P
Ä
ÃE [I × [z, π(x)]

ó
= R

ä
6

u20∑
t=u

1/3
0

eO(t/u0)P
Ä
R̃1 > t

ä
6 exp

Ç
− λu

1/3
0

2

å
,

by Lemma 6.4. Since (by definition) R1(z) 6 u2
0 if D2 holds, it follows that

(107) E
î
R1(z)2 · 1D2 | Fz, d(z) = 1

ó
6 u4

0 exp

Ç
− λu

1/3
0

2

å
= o(1).
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Combining (107) with (105), (106) and Lemma 6.13, this completes the proof

of parts (a) and (c) of Theorem 6.2. Moreover, for part (d), we have

E
î
∆′(z)

ó
= E

î
∆′(z)1D1

ó
+ E
î
∆′(z)1D2

ó
+ E
î
∆′(z)1D3

ó
6 (1 + o(1))E

î
∆̃′
ó

+ eO(u0)E
î
∆̃′
ó

+ z−9
0 = O

Ä
m(z)−1/3

ä
,

by Lemma 6.13, since u0 = o(logm(z)) and m(z) 6 N = z
2+o(1)
0 .

For part (b), we need to take more care in the case that sk(z) is small.

For k > 3, we have

E
î
∆k(z)1D2

ó
6

u20∑
t=u

1/3
0

E
î
∆

(1)
k (z)1{R1(z)=t}

ó
+ E
î
∆′(z)

ó
,

and applying Theorem 5.1 to each 2-acceptable matrix R with |R|1 = t gives

E
î
∆

(1)
k (z)1{R1(z)=t}

ó
6 E

î
∆̃

(1)
k eO(t/u0)

1{R̃1=t}
ó
6
O(ksk(z))

m(z)
e−λt/2

for each u
1/3
0 6 t 6 u2

0, where the second inequality follows by Lemma 6.4.

The claimed bound now follows by (105), (106) and Lemma 6.13, and using

part (d) to bound E
î
∆′(z)

ó
. For k = 2, we note that ∆2(z) 6 R1(z), so by

Theorem 5.1 and Lemma 6.4,

E
î
∆2(z)1{R1(z)=t}

ó
6 E

î
R̃1e

O(t/u0)
1{R̃1=t}

ó
6
O(s2(z))

m(z)
e−λt/2.

Summing over t ∈ [u
1/3
0 , u2

0] gives E[∆2(z)1D2 ] = o(s2(z)/m(z)), so we are

done as before. �

7. Tracking the process when most columns are empty

In this section we shall track sk(z) and m(z) above the “critical” range

[z−, z+] by showing that for z > z+, there are few edges in SA(z) and as

a consequence that m(z) ≈ ηΛ(z)z. For z > z3
0 , these results follow almost

immediately from Lemma 4.12, so for most of this section we shall be interested

in the range z ∈ [z+, z
3
0 ].

Set δ̃ := (1− 2ε1)ηδ and, recalling Definition 2.5, define

(108) σk :=
ε(k, z+)

k!
· δ̃

k−1

2k
=

εk1
Λ(z+)

· δ̃
k−1

2k
.

We remark that the fact that σk decreases only exponentially fast (as a func-

tion of k) will play an important role in the proofs of Lemmas 7.5 and 7.6,

below. Note that Lemma 4.10 implies that m(z+) > m0(z+) > δ̃z+ with high

probability, since Λ(z+) > δ.
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Recall that, by Definition 4.1, M∗(z) =
⋂
w>zM(z) implies that m(w) is

well controlled for all w > z, and Tk(z) implies that sk(z) is well controlled.

Define D(z) to be the event that m(z)−m(z − 1) 6 u2
0, and set

(109) D∗(z) :=

π(x)⋂
w=z+1

D(w).

Note that D∗(z) does not include the event D(z). We shall prove the following

upper bound on sk(z) when z > z+.

Proposition 7.1. With high probability, M∗(z+) and D∗(z+) hold and,

moreover,

(110) sk(z) 6 σkm(z)

for every k > 2 and every z ∈ [z+, π(x)].

We remark that (110) is extremely weak at the beginning of the process

but becomes progressively stronger as time goes on (i.e., as z decreases). We

shall begin by showing that at z = z+ it implies the events Tk(z+).

Corollary 7.2. If sk(z+) 6 σkm(z+) and m(z+) > δ̃z+, then

sk(z+) ∈
Ç

1± ε(k, z+)

2

å
ŝk(z+).

In particular, with high probability Tk(z+) holds for every k > 2.

Note that our bound on sk(z+) is slightly stronger than necessary for

Tk(z+) here. This is because we shall require the stronger bound in Section 9.

To prove Corollary 7.2, we first note the following observation, which will also

be used later in the proof of Lemma 7.9.

Observation 7.3. For every k > 2, we have

εk+1
1 k!

3k
> Λ(z+),

and hence ε(k, z+) > 3k/ε1.

Proof. Note that the expression εk+1
1 k!/3k is minimized by taking k = 3/ε1

(which we have assumed is an integer) and that k! > 2(k/e)k for all k > 2.

Thus
εk+1

1 k!

3k
> 2ε1

Ç
3

eε1

å3/ε1Çε1

3

å3/ε1

= 2ε1e
−3/ε1 > 2δ

by (10). The first result follows since Λ(z+) = δ+ o(1), by (39). It now follows

immediately from Definition 2.5 that

ε(k, z+) =
εk1k!

Λ(z+)
>

3k

ε1
,

as required. �
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Proof of Corollary 7.2, assuming Proposition 7.1. The lower bound on

sk(z+) holds trivially as ε(k, z+) > 2 by Observation 7.3. To prove the upper

bound, observe that

(111)
sk(z+)

ε(k, z+)
6
σkm(z+)

ε(k, z+)
=
δ̃k−1m(z+)

k! · 2k
6

m(z+)

2(k − 1)k!

Ç
m(z+)

z+

åk−1

,

by (108) and the assumption that m(z+) > δ̃z+. Thus, by considering just the

first term in the sum,

sk(z+) 6
ε(k, z+)m(z+)

2k(k − 1)

∞∑
`=k−1

1

`!

Ç
m(z+)

z+

å`
=
ε(k, z+)

2
· ŝk(z+),

as required.

The last part follows as by Proposition 7.1, sk(z+) 6 σkm(z+), and by

Lemma 4.10, m(z+) > δ̃z+, with high probability. �

Note that m(z) −m(z − 1) = D(z) 6 R1(z) when d(z) = 1, and m(z) −
m(z − 1) = 0 otherwise. So by Theorem 6.2, if K(z) holds and 2s2(z) 6
(1− ε1)m(z), then

(112) P
Ä
D(z)c | Fz

ä
6 P
Ä
D(z)c | Fz, d(z) = 1

ä
6 z−20

0 .

Let

s∗k(z) :=


sk(z)

σkm(z)
if D∗(z) holds,

s∗k(z + 1) otherwise

for each k > 2 and z ∈ [z+, π(x)], and define

(113) L∗(z) := D∗(z) ∩
⋂

w∈[z,π(x)]

(
Q(w) ∩

⋂
k>2

¶
s∗k(w) 6 1

©)
for each z > z+. We shall in fact show that the event L∗(z+) holds with high

probability, which will be sufficient to prove Proposition 7.1. Let us quickly

note, for future reference, that the event L∗(z) implies that the conditions of

Theorem 6.2 are satisfied.

Lemma 7.4. Let z ∈ [z+, π(x)]. If D∗(z) holds and s∗k(z) 6 1 for every

k > 2, then

(114)
∑
k>2

2ksk(z) 6 ε1m(z).

In particular, if L∗(z) holds, then 2s2(z) 6 ε1m(z) and K(z) holds.

Proof. Note first that if D∗(z) holds and s∗k(z) 6 1 for every k > 2, then∑
k>2

2ksk(z) 6
∑
k>2

2kσkm(z) =
∑
k>2

(2ε1)kδ̃k−1

2kΛ(z+)
m(z) 6 ε1m(z),
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since δ̃ 6 δ 6 Λ(z+) 6 1 and ε1 6 1/16, which proves (114). It follows

that L∗(z) also implies (114), which in turn implies that 2s2(z) 6 ε1m(z) and

that (41) holds. Since L∗(z) also implies Q(z), this is sufficient to show that

K(z) holds, as claimed. �

In order to apply the method of self-correcting martingales, we shall need

(for each k > 2) an estimate of the expected change in s∗k(z) as well as a bound

on the largest jump in s∗k(z). To be precise, we shall prove the following two

lemmas.

Lemma 7.5. Let z ∈ [z+, z
3
0 ]. If L∗(z) holds, then

E
î
s∗k(z − 1)− s∗k(z) | Fz

ó
6 (k − 1)pz(x)

Ä
− s∗k(z) + 16ε1

ä
for every k > 2.

Lemma 7.6. Let z = zβ0 ∈ [z+, z
3
0 ]. If L∗(z) holds, then

|s∗k(z − 1)− s∗k(z)| 6 z
−2+1/β+ε1
0

for every k > 2.

We shall first deduce Lemma 7.6, which is relatively straightforward, and

then Lemma 7.5, the proof of which will require a little more work. The first

step is to recall the following simple facts about m(z).

Observation 7.7. Let z ∈ [z+, π(x)]. If M(z) holds, then z
1+o(1)
0 6

m(z) 6 z2+o(1)
0 . More precisely, if z = zβ0 , then m(z) = z

2−1/β+o(1)
0 .

Proof. Recall first that ifM(z) holds, then m(z) = Θ(Λ(z)z), by Observa-

tion 4.7 and (44). Moreover, Λ(z) = z
2−β−1/β+o(1)
0 for z = zβ0 , by Corollary 3.2,

so m(z) = z
2−1/β+o(1)
0 , as claimed. Since β > 1 for every z+ > z0, the bounds

z
1+o(1)
0 6 m(z) 6 z2+o(1)

0 follow. �

Proof of Lemma 7.6. Recall first that L∗(z) implies Q(z), which implies

that sk(z) = 0 if k > 4u0 (see Definition 4.2), so we may assume that k 6 4u0.

Also, by definition of s∗k(z), we may assume D(z) holds. Recall that u0 =

o(log z0), by (23), and note that therefore

(115) σk =
εk1

Λ(z+)
· δ̃

k−1

2k
= eO(k) = z

o(1)
0 = m(z)o(1).

By Observation 3.12, each row of A contains at most 2u0 non-zero entries to

the right of z, and hence |sk(z− 1)− sk(z)| 6 2u0|m(z− 1)−m(z)| if d(z) = 1.

On the other hand, |sk(z − 1) − sk(z)| 6 1 and m(z − 1) = m(z) if d(z) 6= 1.

Thus D(z) implies

(116) |sk(z − 1)− sk(z)| 6 2u3
0.
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Finally, note that, by the definition of s∗k(z), we have∣∣∣σkÄs∗k(z − 1)− s∗k(z)
ä∣∣∣ =

∣∣∣∣∣sk(z − 1)

m(z − 1)
− sk(z)

m(z)

∣∣∣∣∣
6
|sk(z − 1)− sk(z)|

m(z − 1)
+
sk(z)|m(z)−m(z − 1)|

m(z)m(z − 1)

6
2u3

0

m(z − 1)
+

sk(z)u
2
0

m(z)m(z − 1)

6
3u3

0

m(z)− u2
0

= m(z)−1+o(1),

since sk(z) 6 ε1m(z), by L∗(z) and Lemma 7.4, and since u0 6 log z0 and

m(z) > z
1+o(1)
0 . The lemma now follows from (115) and Observation 7.7 as

L∗(z) implies M(z). �

We shall now prove Lemma 7.5. The first step is to note the following

immediate consequence of Theorem 6.2 and Lemma 7.4. The key observation

is that since s2(z) is small, if d(z) = 1, then we are likely to only remove a

single row.

Lemma 7.8. Let z ∈ [z+, π(x)]. If L∗(z) holds, then

E
îÄ
m(z)−m(z − 1)

ä
1D(z) | Fz, d(z) = 1

ó
∈ 1± 2ε1.

Proof. By Lemma 7.4, 2s2(z) 6 ε1m(z). Thus by Theorem 6.2, and re-

calling that D(z) = m(z)−m(z − 1), it follows that

E
î
(m(z)−m(z − 1))1D(z) | Fz, d(z) = 1

ó
=

Ç
1− 2s2(z)

m(z)
+ o(1)

å−1

+O(m(z)z−20
0 ) ∈ 1± 2ε1

by (112), as claimed. �

Next, we shall calculate the expected change in sk(z).

Lemma 7.9. Let z ∈ [z+, π(x)]. If L∗(z) holds, then

(117)

E
îÄ
sk(z − 1)− sk(z)

ä
1D(z) | Fz

ó
6 kσk

Ä
− s∗k(z) + 5ε1

ä
P
Ä
d(z) = 1 | Fz

ä
for every k > 2.

Recall from Definition 6.1 that ∆k(z) = |Sk(z) \ Sk(z − 1)| denotes the

number of edges of size k that contain a vertex removed in step z, and ∆′(z)

denotes the number of edges of size at least 3 that have at least two vertices

removed in step z. We shall use the following simple observation to prove

Lemma 7.9, and again in Section 8.
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Observation 7.10. For every z ∈ [z−, π(x)] and k > 2, we have

sk(z − 1)− sk(z) ∈ 1{d(z)=k} +
Ä
−∆k(z) + ∆k+1(z)±∆′(z)

ä
1{d(z)=1}.

Proof. Recall from Algorithm 2.7 that if d(z) /∈ {1, k}, then Sk(z − 1) =

Sk(z), while if d(z) = k, then Sk(z − 1) = Sk(z) ∪ {z}. If d(z) = 1, then

exactly ∆k(z) edges are removed from Sk(z), and ∆k+1(z) ±∆′(z) edges are

added to Sk(z), as required. Note that the ∆′(z) bounds both the number of

(k + 1)-edges that lose more than one vertex, as well as edges of size at least

k + 2 that lose enough vertices to become k-edges. �

Proof of Lemma 7.9. Note first that, since L∗(z) holds, we have s∗k(z) 6 1

for each k > 2, 2s2(z) 6 ε1m(z), and K(z) holds (by Lemma 7.4), and sk(z) =

σkm(z)s∗k(z) (since L∗(z) implies D∗(z)). Thus, by Theorem 6.2,

E
î
∆k(z) | Fz, d(z) = 1

ó
=

Ç
1− 2s2(z)

m(z)
+ o(1)

å−1
ksk(z)

m(z)
+O(m(z)−1/3)

∈
Ä
1± 2ε1

ä
kσks

∗
k(z) +O(m(z)−1/3)

for each k > 2, and also

E
î
∆′(z) | Fz, d(z) = 1

ó
= O(m(z)−1/3).

Note also that (108) implies

(k + 1)σk+1 = ε1δ̃ · kσk.

By Observation 7.10, and using (112) and (115), it follows that

E
îÄ
sk(z − 1)− sk(z)

ä
1D(z) | Fz, d(z) = 1

ó
6 −(1− 2ε1)kσks

∗
k(z) + (1 + 2ε1)(k + 1)σk+1s

∗
k+1(z) +O

Ä
m(z)−1/3

ä
6 kσk

Ä
− s∗k(z) + 2ε1 + (1 + 2ε1)ε1δ̃ + o(1)

ä
6 kσk

Ä
− s∗k(z) + 3ε1

ä
.

Finally, by Lemma 4.9 and Observation 7.3, we have

P
Ä
d(z) = k | Fz

ä
P
Ä
d(z) = 1 | Fz

ä 6 (2δη)k−1

k!
6

(3δ̃)k−1

k!
6
εk+1

1 δ̃k−1

Λ(z+)
= 2ε1kσk

for every z ∈ [z+, π(x)] and every k > 2. Hence

E
î
(sk(z − 1)− sk(z))1D(z) | Fz

ó
6 kσk

Ä
− s∗k(z) + 5ε1

ä
P
Ä
d(z) = 1 | Fz

ä
,

as required. �

Lemma 7.5 will now follow as a straightforward consequence of Lemmas 7.8

and 7.9.
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Proof of Lemma 7.5. As in the proof of Lemma 7.6, we may assume that

k 6 4u0, and hence that σk = z
o(1)
0 , by (115). Observe that

σk
Ä
s∗k(z − 1)− s∗k(z)

ä
(118)

=

Ç
sk(z − 1)

m(z − 1)
− sk(z)

m(z)

å
1D(z)

=
m(z)

m(z − 1)

Ç
sk(z − 1)− sk(z)

m(z)
+
sk(z)

Ä
m(z)−m(z − 1)

ä
m(z)2

å
1D(z).

Since L∗(z) implies K(z), by Lemma 7.4, it follows from Lemmas 4.9 and 7.8

that

E
îÄ
m(z)−m(z − 1)

ä
1D(z) | Fz

ó
6 (1 + 3ε1)m(z)pz(x).

Since L∗(z) implies that sk(z) = σkm(z)s∗k(z) and s∗k(z) 6 1, it follows that

(119) E
î
sk(z)

Ä
m(z)−m(z − 1)

ä
1D(z) | Fz

ó
6
Ä
s∗k(z) + 3ε1

ä
σkm(z)2pz(x).

Similarly, by Lemmas 4.9 and 7.9, we have

(120) E
îÄ
sk(z − 1)− sk(z)

ä
1D(z) | Fz

ó
6
Ä
− ks∗k(z) + 6ε1k

ä
σkm(z)pz(x).

It remains to bound

(121)

Ç
m(z)−m(z − 1)

m(z − 1)

åÇ
sk(z − 1)− sk(z)

m(z)
+
sk(z)

Ä
m(z)−m(z − 1)

ä
m(z)2

å
under the assumption that D(z) holds. To do so, recall that sk(z) 6 ε1m(z),

by Lemma 7.4, that m(z) = z
2−1/β+o(1)
0 , by Observation 7.7, where z = zβ0 ,

and that 1 6 β 6 3, since z ∈ [z+, z
3
0 ]. It follows from (116) that (121) is at

mostÇ
u2

0

m(z − 1)

åÇ
2u3

0

m(z)
+
sk(z)u

2
0

m(z)2

å
6

3u5
0

m(z)(m(z)− u2
0)
6 z

−4+2/β+ε1
0 .

Now pz(x) = z−1+o(1) = z
−β+o(1)
0 , by Corollary 3.8, and σk = z

o(1)
0 , by (115).

Thus

z
−4+2/β+ε1
0 6 z−β−ε10 6 ε1σkpz(x),

where we have used the fact that β+ 2/β 6 11
3 < 4− 2ε1 for 1 6 β 6 3. Hence,

using (118), (119) and (120), we have

E
î
s∗k(z − 1)− s∗k(z) | Fz

ó
6
Ä
− (k − 1)s∗k(z) + 6ε1k + 4ε1

ä
pz(x)

6 (k − 1)pz(x)
Ä
− s∗k(z) + 16ε1

ä
for every k > 2, as required. �

We can now deduce the main result of the section.
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Proof of Proposition 7.1. We shall show that L∗(z+) holds with high prob-

ability, which implies both the events M∗(z+) and D∗(z+), and the inequal-

ity (110). The idea is (roughly speaking) to bound, for each a > z+, the

probability that a is maximal such that L∗(a) does not hold. The main step

is the proof of the following claim.

Claim : For each z+ 6 a 6 z3
0 and k > 2, we have

P
(
L∗(a+ 1) ∩

¶
s∗k(a) > 1

©
∩
¶
s∗k(z

3
0) 6 3/4

©)
6 z−20

0 .

Proof of claim. For each z+ 6 a < b 6 z3
0 and k > 2, let us define Uk(a, b)

to be the event that the following all occur:

(a) s∗k(a) > 1.

(b) s∗k(z) > 3/4 for every a < z < b.

(c) s∗k(b) 6 3/4.

(d) L∗(a+ 1) holds.

Note that if L∗(a + 1) holds, s∗k(a) > 1 and s∗k(z
3
0) 6 3/4, then the event

Uk(a, b) occurs for some (unique) b, a < b 6 z3
0 . By the union bound, it will

therefore suffice to prove that

P
Ä
Uk(a, b)

ä
6 z−23

0

for every z+ 6 a < b 6 z3
0 .

By Lemma 7.6 we may assume s∗k(b) > 3/4− ε1, as otherwise s∗k(b− 1) 6
3/4 and so Uk(a, b) is impossible. For each t ∈ {0, . . . , b− a}, define

Xt :=

s∗k(b− t)− s∗k(b) if Xt−1 > 0 or t = 0,

Xt−1 otherwise.

We claim that Xt is a super-martingale with respect to the filtration (Fb−t)b−at=0 .

Indeed, if Xt < 0, then Xt+1 = Xt, and if Xt > 0, then

E
î
Xt+1 −Xt | Fb−t

ó
6 (k − 1)pb−t(x)

Ä
− s∗k(b− t) + 16ε1

ä
6 0

by Lemma 7.5, since Xt > 0 and (10) imply s∗k(b− t) > s∗k(b) > 3/4−ε1 > 16ε1.

Write ct = z
−2+1/β+ε1
0 , where b− t = zβ0 . Then

|Xt+1 −Xt| 6 ct,

by Lemma 7.6. Also,

b−a−1∑
t=0

c2
t 6

z30∑
z=z+

z
−4+2/β+2ε1
0 6

z30∑
z=z+

z
−4/3+2ε1
0 z−2/3 6 z

−1/3+3ε1
0 ,

where β = β(z) is defined by z = zβ0 , and the second inequality holds as

2/β 6 (8− 2β)/3 for 1 6 β 6 3. But Uk(a, b) implies that Xb−a > 1/4, so by

the Azuma–Hoeffding inequality, we obtain

P
Ä
Uk(a, b)

ä
6 P
Ä
Xb−a > 1/4

ä
6 exp

Ä
− z1/3−4ε1

0

ä
6 z−23

0 ,

as claimed. �
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To complete the proof of the proposition, we will show that with high

probability there does not exist z ∈ [z+, π(x)] such that L∗(z + 1) holds but

L∗(z) does not hold. (Here L∗(π(x) + 1) holds vacuously.) Note first that, by

Lemma 7.4 and (112), with high probability there does not exist z ∈ [z+, π(x)]

such that L∗(z + 1) holds but D(z + 1) does not; since D∗(z + 1) and D(z + 1)

imply D∗(z), we may assume that D∗(z) holds.

Now consider the condition s∗k(z) 6 1. Lemma 4.12 implies that with high

probability we have s2(z) + s3(z) 6 z−1/2
0 m(z) for every z > z3

0 , and sk(z) = 0

for every k > 4 and every z > z3
0 . Since σk = Θ(1) for k ∈ {2, 3}, it follows that

with high probability (110) holds and, moreover, s∗k(z) 6 3/4 for all z > z3
0

and every k > 2. But if s∗k(z
3
0) 6 3/4, then the claim implies that with high

probability there does not exist z ∈ [z+, z
3
0 ] and k > 2 such that L∗(z + 1) and

s∗k(z) > 1.

We next consider the event M(z). Note first that, by Lemma 7.4, and

using the assumptions that D∗(z) holds and that s∗k(z) 6 1 for every k > 2,

we have

(122) m0(z) 6 m(z) 6 m0(z) +
∑
k>2

ksk(z) 6 m0(z) + ε1m(z),

since the number of non-isolated vertices is at most the sum of the degrees.

Recall that with high probability we have m0(z) ∈ (1 ± ε1)ηΛ(z)z for every

z ∈ [z−, π(x)], by Lemma 4.10. Assuming this holds, it follows from (122) that

(1− ε1)ηΛ(z) 6
m(z)

z
6

1 + ε1

1− ε1
ηΛ(z).

Recalling from (12) and (39) that Λ(z) 6 δ + o(1) when z > z+, and that

w(1− w) 6 we−w 6 we−Ein(w) 6 w

for 0 6 w 6 1, since 0 6 Ein(w) 6 w, by (8), we obtain

(1− 2δη)(1− ε1)ηΛ(z) 6
m(z)

z
e−Ein(m(z)/z) 6

1 + ε1

1− ε1
ηΛ(z).

This implies that

(123)
m(z)

z
e−Ein(m(z)/z) ∈

Ä
1± 3ε1

ä
ηΛ(z),

which implies that M(z) holds. As L∗(z + 1) implies M∗(z + 1), this implies

M∗(z) holds. However, by Lemma 4.3, with high probability there does not

exist z ∈ [z+, π(x)] such that M∗(z) holds but Q(z) does not. It follows that

with high probability, there does not exist z > z+ such that L∗(z + 1) but

L∗(z) fails to hold, and the proof is complete. �
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8. Tracking the process in the critical range

In the next two sections we shall track sk(z) and m(z) in the “critical”

range [z−, z+]. The main aim of this section is to prove two lemmas corre-

sponding to Lemmas 7.5 and 7.6 from the previous section. We shall need

these lemmas in Section 9 in order to track sk(z) using the method of self-

correcting martingales.

The first step is to define the event we shall use to prove our key lemmas.

Recall that D(z) denotes the event that m(z) − m(z − 1) 6 u2
0 and D∗(z)

denotes the event that D(w) holds for all w > z. Now , for each z ∈ [z−, z+]

and each k > 2, define

(124) s∗k(z) :=


sk(z)− ŝk(z)
ε(k, z)ŝk(z)

if D∗(z) holds,

s∗k(z + 1) otherwise.

Recall that Tk(z) denotes the event that sk(z) ∈ (1± ε(k, z))ŝk(z), and define

T ∗(z) := D∗(z) ∩
z+⋂
w=z

Ç
Q(w) ∩

4u0⋂
k=2

Tk(w)

å
for each z ∈ [z−, z+]. Note that Q(z) implies Tk(z) for every k > 4u0 since

for such k, we have ε(k, z) > 1 (since u0 = ω(1)), and sk(z) = 0 (see Defini-

tion 4.2).

In this section we shall prove the following two lemmas.

Lemma 8.1. Let z ∈ [z−, z+]. If T ∗(z) holds, then

E
î
s∗k(z − 1)− s∗k(z) | Fz

ó
∈ −k − 1

z

Ç
s∗k(z)±

1

2

å
for every 2 6 k 6 4u0.

Lemma 8.2. Let z ∈ [z−, z+]. If T ∗(z) holds, then

|s∗k(z − 1)− s∗k(z)| 6 z−1+ε1
0

for every 2 6 k 6 4u0.

The proofs of these two lemmas are, in outline, similar to those of Lem-

mas 7.5 and 7.6, but the calculation is more delicate in the critical range, and

as a consequence the details are somewhat more complicated. We begin by

noting that T ∗(z) implies the conditions of Theorem 6.2 are satisfied and so,

in particular, that (112) holds.

Lemma 8.3. Let z ∈ [z−, z+]. If T ∗(z) holds, then 2s2(z) 6 (1− ε1)m(z)

and K(z) holds.
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Proof. Since T ∗(z) implies that Q(z) holds and that Tk(z) holds for every

k > 2, it follows from Lemma 4.4 that K(z) holds. To prove the bound on

s2(z), note that T2(z) implies that

(125) 2s2(z) 6 2
Ä
1 + ε(2, z)

ä
ŝ2(z) =

Ç
1 +

2ε2
1

Λ(z)

å
m(z)

Ä
1− e−m(z)/z

ä
,

by (16) and Definition 2.5. Since

1− e−m(z)/z 6
m(z)

z
6 C0Λ(z),

by Observation 4.7, it follows that for Λ(z) 6 2ε1,

2s2(z) 6
Ä
C0Λ(z) + 2ε2

1C0

ä
m(z) 6 2ε1C0(1 + ε1)m(z) 6

m(z)

2

since ε1C0 6 ε1e
C0 < 1/16 by (10). On the other hand, if 2ε1 6 Λ(z) 6 1,

then

2s2(z) 6 (1 + ε1)
Ä
1− e−C0

ä
m(z) 6 (1 + ε1)(1− 2ε1)m(z) 6 (1− ε1)m(z),

as required, as e−C0 > 2ε1. �

8.1. The expected change in m(z). The next step is to use Theorem 6.2

to bound the expected number of vertices removed in each step. Recall that if

T ∗(z) holds, then the average degree in the graph S2(z) is close to 2ŝ2(z)/m(z)

= 1 − e−m(z)/z, and so the expected size of D(z) = m(z) −m(z − 1) should

be about em(z)/z · P(d(z) = 1) ≈ m(z)/z, by Lemma 4.5. The following lemma

makes this precise.

Lemma 8.4. Let z ∈ [z−, z+]. If T ∗(z) holds, then

E
î
m(z)−m(z − 1) | Fz

ó
=
Ä
1 + γ(z) + o(1)

äm(z)

z

and

E
îÄ
m(z)−m(z − 1)

ä
1D(z) | Fz

ó
=
Ä
1 + γ(z) + o(1)

äm(z)

z
,

where γ(z) is defined by

(126) γ(z) :=
ε(2, z)s∗2(z)

Ä
em(z)/z − 1

ä
1− ε(2, z)s∗2(z)

Ä
em(z)/z − 1

ä .
Observation 8.5. Let z ∈ [z−, z+]. If T ∗(z) holds, then |γ(z)| 6 ε1.

Proof. Since m(z)/z 6 C0Λ(z), by Observation 4.7, it follows that

ε(2, z)
Ä
em(z)/z − 1

ä
6

2ε2
1

Λ(z)

Ä
eC0Λ(z) − 1

ä
.
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Now (ex − 1)/x is an increasing function of x and Λ(z) 6 1, so

ε(2, z)
Ä
em(z)/z − 1

ä
6 2ε2

1(eC0 − 1) 6 ε1/8

by (10). The result follows from the definition (126) of γ(z) and the fact that

T ∗(z) implies T2(z), so |s∗2(z)| 6 1. �

In the proof below, and also several times later in the section, we will need

the fact that m(z) = Θ(z) uniformly in z ∈ [z−, z+], which follows from M(z)

(and hence from T ∗(z)) by Observation 4.7, and by (38) and (44).

Proof of Lemma 8.4. Note first that T ∗(z) implies that K(z) and M(z)

hold, by Lemma 8.3 and Definition 4.2. It follows that P(d(z) = 1 | Fz) =

(1 + o(1))m(z)
z e−m(z)/z = Θ(1), by Lemma 4.5 and since m(z) = Θ(z). Recall

also that D(z) = m(z)−m(z−1) = 0 if d(z) 6= 1. By Theorem 6.2, Lemma 8.3,

and (112), it follows that

E
î
D(z)1D(z) | Fz

ó
=
(
E
î
D(z) | Fz, d(z) = 1

ó
−O
Ä
m(z)z−20

0

ä)
P
Ä
d(z) = 1 | Fz

ä
=

Ç
1− 2s2(z)

m(z)
+ o(1)

å−1
m(z)

z
e−m(z)/z.

Now, T ∗(z) implies D∗(z), so

2s2(z)

m(z)
=
Ä
1 + ε(2, z)s∗2(z)

ä2ŝ2(z)

m(z)
=
Ä
1 + ε(2, z)s∗2(z)

äÄ
1− e−m(z)/z

ä
,

by (16) and (124). Thus we obtain

E
î
D(z)1D(z) | Fz

ó
=
(
em(z)/z −

Ä
1 + ε(2, z)s∗2(z)

äÄ
em(z)/z − 1

ä
+ o(1)

)−1m(z)

z

=
(
1− ε(2, z)s∗2(z)

Ä
em(z)/z − 1

ä
+ o(1)

)−1m(z)

z

=
Ä
1 + γ(z) + o(1)

äm(z)

z
,

and similarly for E
î
D(z) | Fz

ó
, as required. �

8.2. The expected change in ŝk(z). The next step is to bound the expected

change of ŝk(z). We shall use Lemma 8.4 to bound the first moment of D(z),

and Theorem 6.2 to bound its second moment. To simplify the statement, let

us define

(127) gk(z) :=
ŝk(z)

z
+
e−m(z)/z

k!

Ç
m(z)

z

åk



THE SHARP THRESHOLD FOR MAKING SQUARES 125

for each k > 2. Note that gk(z) = O(1) if the event T ∗(z) holds, since

ŝk(z) 6 m(z) and m(z) = O(z), by Observation 4.7. We shall prove the

following lemma.

Lemma 8.6. Let z ∈ [z−, z+]. If T ∗(z) holds, then

(128) E
îÄ
ŝk(z − 1)− ŝk(z)

ä
1D(z) | Fz

ó
= − ŝk(z)

z
−
Ä
γ(z) + o(1)

ä
gk(z)

for every 2 6 k 6 4u0.

Note that, since gk(z) = O(1), the error term is o(1). However, it will be

important in the proof of Lemma 8.1 that gk(z) is significantly smaller than

this when k → ∞. The first step in the proof of Lemma 8.6 is to obtain

deterministic bounds on ŝk(z− 1)− ŝk(z), which follow via some easy algebra.

We give the details for completeness.

Lemma 8.7. Let z ∈ [z−, z+]. If T ∗(z) and D(z) hold, then

(129) ŝk(z)− ŝk(z−1) =
ŝk(z)

z
+
zgk(z)

m(z)

Ç
D(z)−m(z)

z
+
O
Ä
k(D(z)2 + 1)

ä
z

å
for 2 6 k 6 4u0.

Proof. For each k > 2 and w > 0, set

fk(w) :=
we−w

k(k − 1)

∞∑
`=k−1

w`

`!

so that ŝk(z)/z = fk(m(z)/z). Observe that

f ′k(w) =
(1− w)e−w

k(k − 1)

∞∑
`=k−1

w`

`!
+

we−w

k(k − 1)

∞∑
`=k−2

w`

`!
=

1

w

Ç
fk(w) +

wke−w

k!

å
so that f ′k(m(z)/z) = zgk(z)/m(z). Observe also that

(130)

f ′′k (w) =
1

w

d

dw

Ä
wf ′k(w)− fk(w)

ä
=

1

w

d

dw

wke−w

k!
=
wk−2e−w

(k − 1)!
− wk−1e−w

k!
.

Thus, if w is bounded away from 0, f ′′k (w) = O(kf ′k(w)). Moreover, if |w′−w| =
O(u2

0/z) = o(1/k), then we still have f ′′k (w′′) = O(kf ′k(w)) for all w′′ ∈ [w,w′]

as neither term in (130) changes by more than a constant factor. Thus, by

Taylor’s Theorem,

(131) fk(w)− fk(w′) = f ′k(w)
(
w − w′ +O

Ä
k(w − w′)2

ä)
.

Writing w = m(z)/z and w′ = m(z − 1)/(z − 1) we have

w − w′ =
m(z)

z
− m(z)−D(z)

z − 1
=

1

z − 1

Ç
D(z)− m(z)

z

å
.
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If T ∗(z) holds, then w is indeed bounded away from zero as T ∗(z) implies Q(z),

which implies M(z). Also D(z) implies D(z) 6 u2
0, so |w′ − w| = O(u2

0/z).

Thus substituting these values of w and w′ into (131) gives

ŝk(z)

z
− ŝk(z − 1)

z − 1
=

zgk(z)

(z − 1)m(z)

Ç
D(z)− m(z)

z
+
O(k(D(z)2 + 1))

z

å
.

Multiplying by z − 1 then gives (129). �

We note here, for future reference, the following identity, which follows

immediately from the definition (15) of ŝk(z).

Observation 8.8. For each k > 2 and every z ∈ [π(x)],

(k − 1)ŝk(z)− (k + 1)ŝk+1(z) =
e−m(z)/z

k!

m(z)k

zk−1
.

Note that as an immediate corollary of this observation, it follows that

(132) gk(z)z = kŝk(z)− (k + 1)ŝk+1(z) 6 kŝk(z).

Moreover, from Lemma 8.7 and (132) it follows that if the events T ∗(z) and

D(z) hold for some z ∈ [z−, z+], then

(133)
ŝk(z − 1)

ŝk(z)
= 1 +O

Ä
z−1+o(1)

ä
,

since D(z) implies D(z) 6 u2
0 andM(z) implies m(z) = Θ(z), as noted above.

To deduce Lemma 8.6 from Lemma 8.7, we just need to take expectations

of both sides and apply Theorem 6.2 and Lemma 8.4.

Proof of Lemma 8.6. Recall that

E
î
D(z)1D(z) | Fz

ó
=
Ä
1 + γ(z) + o(1)

äm(z)

z
,

by Lemma 8.4, and that E[D(z)2 | Fz] = O(1) by Theorem 6.2 and Lemma 8.3.

It therefore follows from Lemma 8.7 and (112) that

E
îÄ
ŝk(z)− ŝk(z − 1)

ä
1D(z) | Fz

ó
=
ŝk(z)

z

+

Ç
γ(z) + o(1) +

O(k)

m(z)

å
gk(z) +O

Ä
z−20

0

ä
,

since ŝk(z)/z6gk(z)=O(1). The result follows since k64u0 =o(m(z)). �

8.3. The expected change in sk(z). We now arrive at the main calculation:

that of the expected change in the number of edges of size k.
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Lemma 8.9. Let z ∈ [z−, z+]. If T ∗(z) holds, then

E
îÄ
sk(z − 1)− sk(z)

ä
1D(z) | Fz

ó
∈ − ŝk(z)

z
− γ(z)gk(z)−

k · ε(k, z)ŝk(z)
z

Ç
s∗k(z)±

1

6

å
for every 2 6 k 6 4u0.

We shall first prove the following deterministic lemma.

Lemma 8.10. Let z ∈ [z−, z+]. If T ∗(z) holds, then

ksk(z)− (k + 1)sk+1(z) ∈ gk(z)z + k · ε(k, z)ŝk(z)
Ç
s∗k(z)±

1

8

å
for every k > 2.

Proof. Observe first that since the event T ∗(z) holds, we have

ksk(z)− (k + 1)sk+1(z)

∈ k
Ä
1 + ε(k, z)s∗k(z)

ä
ŝk(z)− (k + 1)

Ä
1± ε(k + 1, z)

ä
ŝk+1(z)

= gk(z)z + k · ε(k, z)s∗k(z)ŝk(z)± (k + 1)ε(k + 1, z)ŝk+1(z),

by (132). But by Definition 2.5 and Observations 4.7 and 4.14, we have

(134)

(k + 1)ε(k + 1, z)ŝk+1(z) 6
m(z)

z
ε(k + 1, z)ŝk(z) 6 ε1C0(k + 1) · ε(k, z)ŝk(z),

so since ε1C0(k+ 1) 6 2kε1e
C0 < k/8, by (10), the claimed bounds follow. �

We can now use Theorem 6.2 to bound the expected change in sk(z).

Proof of Lemma 8.9. Let z ∈ [z−, z+], and suppose that T ∗(z) holds. Re-

call that

(135) sk(z − 1)− sk(z) ∈ 1{d(z)=k} +
Ä
−∆k(z) + ∆k+1(z)±∆′(z)

ä
1{d(z)=1}

for each k > 2, by Observation 7.10. Also,

E
î
∆k(z)1D(z) | Fz, d(z) = 1

ó
(136)

=
ksk(z)

m(z)

(
E
î
D(z) | Fz, d(z) = 1

ó
+ o(1)

)
+O
Ä
m(z)−1/3

ä
for each k > 2, and

(137) E
î
∆′(z) | Fz, d(z) = 1

ó
= O

Ä
m(z)−1/3

ä
,

by Theorem 6.2 and Lemma 8.3, where we have used the fact that ∆k(z) 6
sk(z) deterministically and (112) to bound the error whenD(z) fails. Moreover,

(138) E
î
D(z) | Fz, d(z) = 1

ó
P
Ä
d(z) = 1 | Fz

ä
=
Ä
1 + γ(z) + o(1)

äm(z)

z
,
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by Lemma 8.4. We claim that

E
îÄ
sk(z − 1)− sk(z)

ä
1D(z) | Fz, d(z) = 1

ó
P
Ä
d(z) = 1 | Fz

ä
(139)

=
1 + γ(z)

z

Ä
(k + 1)sk+1(z)− ksk(z)

ä
+
o
Ä
kε(k, z)ŝk(z)

ä
z

.

Indeed, in order to deduce this from (135)–(138), we just need to show that

the various error terms are all o
Ä
kε(k, z)ŝk(z)/z

ä
. To see this, note first

(140) ε(k, z) > εk1k! > ε
1/ε1
1 (1/ε1)!

is bounded below by a positive constant, since Λ(z) 6 1 for every z ∈ [z−, z+],

and recall that ε(k, z)ŝk(z) = z
1+o(1)
0 , by Observation 4.16 and our assumption

that k 6 4u0, that ε(k+ 1, z)ŝk+1(z) = O(ε(k, z)ŝk(z)) by (134), that |s∗k(z)|+
|s∗k+1(z)| = O(1), by T ∗(z), and that m(z) = Θ(z). The error terms are

therefore at most

o
Ä
ksk(z) + (k + 1)sk+1(z)

ä
z

+O
Ä
m(z)−1/3

ä
=
o
Ä
kε(k, z)ŝk(z)

ä
z

,

as claimed, so we have proved (139).

To deal with the case when d(z) > 1, observe also that, by Lemmas 4.5

and 8.3, we have

P
Ä
d(z) = k | Fz

ä
=
Ä
1 + o(1)

äk e−m(z)/z

k!

Ç
m(z)

z

åk
+
O(1)

z
.

We claim that in fact

(141) P
Ä
d(z) = k | Fz

ä
=
e−m(z)/z

k!

Ç
m(z)

z

åk
+
o
Ä
ε(k, z)ŝk(z)

ä
z

.

To see this, note that if k=O(1), then (1+o(1))k = 1+o(1) and e−m(z)/z

k!

Ä
m(z)
z

äk
= O(ŝk(z)/z), by (15). On the other hand, if k = ω(1) then P(d(z) =

k | Fz) 6 (2C0)k/k! + O(1/z) decreases super-exponentially with k, while

ε(k, z)ŝk(z) = eO(k)z, by (49) and our assumption that k 6 4u0.

Now, noting that d(z) = k > 1 implies D(z), it follows from (135), (139)

and (141) that

E
îÄ
sk(z − 1)− sk(z)

ä
1D(z) | Fz

ó
=

1 + γ(z)

z

Ä
(k + 1)sk+1(z)− ksk(z)

ä
+
e−m(z)/z

k!

m(z)k

zk
+
o
Ä
kε(k, z)ŝk(z)

ä
z

.

By Lemma 8.10, this is contained in

e−m(z)/z

k!

m(z)k

zk
− 1 + γ(z)

z

Ç
gk(z)z + k · ε(k, z)ŝk(z)

Ç
s∗k(z)±

1

7

åå
,
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which is equal to

− ŝk(z)
z
− γ(z)gk(z)−

1 + γ(z)

z

Ç
k · ε(k, z)ŝk(z)

Ç
s∗k(z)±

1

7

åå
.

Since |γ(z)| 6 ε1 and |s∗k(z)| 6 1, by Observation 8.5 and T ∗(z), the lemma

follows. �

8.4. The proof of Lemmas 8.1 and 8.2. We are finally ready to prove the

two main lemmas of the section. We will prove Lemma 8.2 first, since we shall

need (a weak form of) it in the proof of Lemma 8.1.

Proof of Lemma 8.2. If D(z) fails to hold, then s∗k(z − 1) = s∗k(z) by defi-

nition, so we may assume that |m(z)−m(z − 1)| 6 u2
0, and hence |sk(z − 1)−

sk(z)| 6 2u3
0, by (116). We claim first that

s∗k(z − 1)− s∗k(z) =
sk(z − 1)− ŝk(z − 1)

ε(k, z − 1)ŝk(z − 1)
− sk(z)− ŝk(z)

ε(k, z)ŝk(z)

=
sk(z − 1)− ŝk(z − 1)− sk(z) + ŝk(z)

ε(k, z)ŝk(z)
+O

Ç
s∗k(z − 1)

z1+o(1)

å
.

Indeed, to see this simply recall that, by Definition 2.5, Lemma 3.10 and (133),

the events T ∗(z) and D(z) imply that

ε(k, z − 1)ŝk(z − 1)

ε(k, z)ŝk(z)
=

Λ(z)

Λ(z − 1)
· ŝk(z − 1)

ŝk(z)
= 1 +O

Ä
z−1+o(1)

ä
.

Now, note that ŝk(z − 1)− ŝk(z) = O(u2
0), by Lemma 8.7, since m(z) = Θ(z),

ŝk(z)/z 6 gk(z) = O(1) and u0 = z
o(1)
0 . Thus

|s∗k(z − 1)− s∗k(z)| =
O(u3

0)

ε(k, z)ŝk(z)
+O
Ä
z−1+o(1)

ä
as T ∗(z) implies |s∗k(z)| 6 1. Now z = z

1+o(1)
0 for every z ∈ [z−, z+], by

Lemma 3.11, and ε(k, z)ŝk(z) = z
1+o(1)
0 for all k 6 4u0, by Observation 4.16.

Hence

|s∗k(z − 1)− s∗k(z)| 6 z
−1+o(1)
0 ,

as required. �

To finish the section, we shall deduce Lemma 8.1 from Lemmas 8.2, 8.6

and 8.9.

Proof of Lemma 8.1. Let z ∈ [z−, z+], and suppose that T ∗(z) holds. We

shall break

s∗k(z − 1)− s∗k(z) =

Ç
sk(z − 1)− ŝk(z − 1)

ε(k, z − 1)ŝk(z − 1)
− sk(z)− ŝk(z)

ε(k, z)ŝk(z)

å
1D(z)
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into two pieces (see (142) and (143), below) and bound the expected size of

each of them in turn. We note that, by Lemmas 8.6 and 8.9, we have

E
[Ä
sk(z − 1)− ŝk(z − 1)− sk(z) + ŝk(z)

ä
1D(z)

∣∣∣Fz]
∈ −kε(k, z)ŝk(z)

z

Ç
s∗k(z)±

1

6

å
+ o(gk(z)).

But gk(z) 6 kŝk(z)/z = O(kε(k, z)ŝk(z)/z) by (132) and the fact that ε(k, z)

is bounded away from 0. Thus

(142) E
ñ
sk(z − 1)− ŝk(z − 1)− sk(z) + ŝk(z)

ε(k, z)ŝk(z)
1D(z)

∣∣∣Fzô ∈ −k
z

Ç
s∗k(z)±

1

5

å
.

We claim that

(143)

E
ñÇ

ε(k, z)ŝk(z)− ε(k, z − 1)ŝk(z − 1)

ε(k, z)ŝk(z)

å
s∗k(z − 1)1D(z)

∣∣∣Fzô ∈ s∗k(z)± 3ε1k

z
.

To prove (143), observe first that if D(z) holds, then

ε(k, z)ŝk(z)−ε(k, z−1)ŝk(z−1) = ε(k, z)
Ä
ŝk(z)− ŝk(z−1)

ä
+o

Ç
ε(k, z)ŝk(z)

z

å
,

since ε(k, z − 1)/ε(k, z) = 1 + o(1/z), by Definition 2.5 and Lemma 3.10,

and ŝk(z − 1) = Θ
Ä
ŝk(z)

ä
if T ∗(z) and D(z) hold, by (133). Therefore, by

Lemma 8.6,

E
[Ä
ε(k, z)ŝk(z)− ε(k, z − 1)ŝk(z − 1)

ä
1D(z) | Fz

]
=
ε(k, z)ŝk(z)

z

Ç
1 +

(γ(z) + o(1))gk(z)z

ŝk(z)
+ o(1)

å
∈
Ä
1± 2ε1k

äε(k, z)ŝk(z)
z

,

since gk(z) 6 kŝk(z)/z, by (132), and |γ(z)| 6 ε1, by Observation 8.5. Since

|s∗k(z − 1)− s∗k(z)| 6 ε1 by Lemma 8.2, it follows that

E
ñÇ

ε(k, z)ŝk(z)− ε(k, z − 1)ŝk(z − 1)

ε(k, z)ŝk(z)

å
s∗k(z − 1)1D(z)

∣∣∣Fzô
∈ (1± 2ε1k)(s∗k(z)± ε1)

z
∈ s∗k(z)± 3ε1k

z
,

as claimed. As noted above, adding (142) and (143) we obtain

E
î
s∗k(z − 1)− s∗k(z) | Fz

ó
∈ −k

z

Ç
s∗k(z)±

1

5

å
+
s∗k(z)± 3ε1k

z

⊆ −k − 1

z

Ç
s∗k(z)±

1

2

å
for every k > 2, which completes the proof of the lemma. �
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9. The proof of Theorems 2.2 and 2.6

In this section we shall use the method of self-correcting martingales to

deduce Theorems 2.2 and 2.6 from Lemmas 8.1 and 8.2. Recall that Theo-

rem 2.2 states that the event M∗(z−) holds with high probability, and Theo-

rem 2.6 states that with high probability the event Tk(z) holds for every k > 2

and every z ∈ [z−, z+]. Since we already know that M∗(z+) holds with high

probability, by Proposition 7.1, it will suffice to prove that the event T ∗(z−)

holds with high probability, since T ∗(z−) implies that M(z) holds for every

z ∈ [z−, z+], and that Tk(z) holds for every k > 2 and every z ∈ [z−, z+].

As in Section 7, the rough idea is to bound the probability, for each

a ∈ [z−, z+], that a is maximal such that T ∗(a) fails to hold. Let us begin by

proving the base case.

Lemma 9.1. T ∗(z+) holds with high probability.

Proof. Recall that by Lemma 4.3, Q(z+)∪M∗(z+)c holds with high prob-

ability and that by Proposition 7.1 and Corollary 7.2, D∗(z+) ∩ M∗(z+) ∩⋂4u0
k=2 Tk(z+) holds with high probability. Thus

T ∗(z+) = D∗(z+) ∩Q(z+) ∩
4u0⋂
k=2

Tk(z+)

holds with high probability, as claimed. �

By Lemma 9.1, we can assume that z− 6 a < z+ and that T ∗(a + 1)

holds. For each pair z− 6 a < b 6 z+ and each k > 2, let Wk(a, b) denote the

event that the following all occur:

(a) s∗k(a) > 1.

(b) s∗k(z) > 3/4 for every a < z < b.

(c) s∗k(b) 6 3/4.

(d) T ∗(a+ 1) holds.

Note that if T ∗(a + 1) ∩
¶
s∗k(z+) 6 3/4

©
holds and s∗k(a) > 1, then the event

Wk(a, b) holds for some a < b 6 z+. We shall prove the following lemma.

Lemma 9.2. If z− 6 a < b 6 z+, then

P
Ä
Wk(a, b)

ä
6 z−20

0

for every 2 6 k 6 4u0.

Proof. We may assume s∗k(b) > 3/4− ε1, as otherwise s∗k(b− 1) < 3/4 by

Lemma 8.2, and soWk(a, b) fails to hold. Set ` = b− a, and for each 0 6 t 6 `,
define

Xt :=

s∗k(b− t)− s∗k(b) if Xt−1 > 0 or t = 0,

Xt−1 otherwise.
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We claim that Xt is a super-martingale with respect to the filtration (Fb−t)`t=0.

Indeed, since T ∗(a+ 1) holds, we have either Xt < 0, in which case Xt+1 = Xt,

or Xt > 0, in which case

E
î
Xt+1 −Xt | Fb−t

ó
6
k − 1

b− t

Ç
− s∗k(b− t) +

1

2

å
by Lemma 8.1. But if Xt > 0, then s∗k(b − t) > s∗k(b) > 3/4 − ε1 > 1/2, so in

all cases E[Xt+1 −Xt | Fb−t] 6 0. Recalling that ` 6 z+ = z
1+o(1)
0 , it follows

by the Azuma–Hoeffding inequality that

P
Ä
Wk(a, b)

ä
6 exp

Ä
− z1−3ε1

0

ä
6 z−20

0 ,

as claimed. �

It is easy to see that one can deal with the case s∗k(a) < −1 in exactly the

same way, so we leave the details to the reader. Using the union bound over

all choices of b, it follows that

P
(¶
|s∗k(a)| > 1

©
∩ T ∗(a+ 1) ∩

¶
s∗k(z+) 6 3/4

©)
6 z−18

0

for every a ∈ [z−, z+] and 2 6 k 6 4u0. Moreover, it follows from Corollary 7.2

that, with high probability, s∗k(z+) 6 1/2 for every k > 2.

It therefore only remains to bound the probability that D(z+1)c∪Q(z)c∪
T ∗(z + 1) holds for some z ∈ [z−, z+]. By (112) and Lemmas 4.3 and 8.3, it

will therefore suffice to show that m(z) is unlikely to be the first variable to go

off track. Unfortunately, unlike with sk(z), m(z) is not self-correcting, and so

a simple martingale approach will not work. Instead we shall prove this using

a two stage approach: we shall show, using super-martingales, that m(z) can

only drift off track slowly, but every so often (and well before it drifts so far as

to causeM(z) to fail) we shall use the following lemma to put it firmly back on

track. The following lemma, which follows from Lemma 4.10 and Theorem 5.1,

ensures that m(z) is far closer to its target value than required by M(z), but

unfortunately it has a relatively large failure probability. Thus we cannot use

it for very many values of z.

Lemma 9.3. For every z ∈ [z−, z+],

P
Ç
K(z) ∩

®
m(z) exp

Ç
−
∑
k>2

ksk(z)

m(z)

å
/∈ (1± 3ε1)ηΛ(z)z

´å
=
O(1)

u0
.

Proof. Recall that, by Lemma 4.10, the number of isolated vertices m0(z)

in the hypergraph SA(z) satisfies

(144) m0(z) ∈
Ä
1± ε1

ä
ηΛ(z)z

with probability at least 1 − 1/x2. We shall use Theorem 5.1 to give another

way of approximatingm0(z), and together these estimate will imply the lemma.
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Recall that a vertex i in SA(z) is isolated if the submatrix A
î
{i} × [z + 1,

π(x)]
ó

is the all zero vector. We bound the number m0(z) of isolated vertices

using the second moment method, using Theorem 5.1 to estimate both the

mean and variance of m0(z). First, let E ∈ F+
z be an event of the form (50)

for which K(z) holds and d(z) 6 4u0, and recall from Definition 6.3 that the

random matrix ÃE is obtained by choosing each column uniformly at random

from all
(m(z)
dj

)
possible choices, independently in each column. Thus for j > z,

P
Ä
ÃE [{i} × {j}] = 0

ä
= 1− dj

m(z)
= exp

Ç
− dj
m(z)

+
O(d2

j )

m(z)2

å
.

As the columns of ÃE are independent,

P
Ä
ÃE
î
{i} × [z + 1, π(x)]

ó
= 0
ä

= exp

Ç
− 1

m(z)

∑
j>z

dj +
O(1)

m(z)2

∑
j>z

d2
j

å
.

Now
∑
j>z dj =

∑
k>2 ksk(z) and

∑
j>z d

2
j =

∑
k>2 k

2sk(z) = O(m(z)) by

condition K(z). Thus

P
Ä
ÃE
î
{i} × [z + 1, π(x)]

ó
= 0
ä

= exp

Ç
−
∑
k>2

ksk(z)

m(z)
+
O(1)

m(z)

å
.

Applying Theorem 5.1 with I = {i}, C = [z + 1, π(x)], and R = 0, gives

P
î
i is isolated in SA(z) | E

ó
= P
Ä
A
î
{i} × [z + 1, π(x)]

ó
= 0 | E

ä
= exp

Ç
−
∑
k>2

ksk(z)

m(z)
+
O(1)

u0

å
.

Thus, summing over i ∈M(z),

(145) µ := E
î
m0(z) | E

ó
= m(z) exp

Ç
−
∑
k>2

ksk(z)

m(z)
+
O(1)

u0

å
.

For the second moment of m0(z), we consider the probability that two distinct

vertices i1, i2 are both isolated. In the independent model, we have

P
Ä
ÃE [{i1, i2} × {j}] = 0

ä
=

Ç
1− dj

m(z)

åÇ
1− dj

m(z)− 1

å
= exp

Ç
− 2dj
m(z)

+
O(d2

j )

m(z)2

å
.

As the columns of ÃE are independent, a similar argument to the above yields

P
Ä
ÃE
î
{i1, i2} × [z + 1, π(x)]

ó
= 0
ä

= exp

Ç
−
∑
k>2

2ksk(z)

m(z)
+
O(1)

m(z)

å
.
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Applying Theorem 5.1 with I = {i1, i2}, C = [z + 1, π(x)], and R = 0, gives

P
Ä
A
î
{i1, i2} × [z + 1, π(x)]

ó
= 0 | E

ä
= exp

Ç
−
∑
k>2

2ksk(z)

m(z)
+
O(1)

u0

å
.

Summing over all ordered pairs (i1, i2), we obtain

E
î
m0(z)(m0(z)− 1) | E

ó
= m(z)(m(z)− 1) exp

Ç
−
∑
k>2

2ksk(z)

m(z)
+
O(1)

u0

å(146)

=

Ç
1 +

O(1)

u0

å
µ2.

Combining (145) and (146), we have

Var
Ä
m0(z) | E

ä
= E

î
m0(z)(m0(z)− 1) | E ] + µ− µ2 = µ+O(1/u0)µ2.

Now
∑
ksk(z) = O(m(z)) by K(z) and so µ = Θ(m(z)). Thus Var

Ä
m0(z) | E

ä
= O(µ2/u0) and hence, by Chebychev’s inequality,

P
Ä
m0(z) /∈ (1± ε1)µ | E

ä
6

Var
Ä
m0(z) | E

ä
ε2

1µ
2

=
O(1)

u0
.

Since the event E was chosen arbitrarily amongst those consistent with K(z)

and satisfying d(z) 6 4u0, and using (46) to bound the probability that d(z) >

4u0, it follows that

P
Ä
m0(z) /∈ (1± ε1)µ | K(z)

ä
=
O(1)

u0
.

Combining this with (144) and (145) completes the proof of the lemma. �

We shall also need the following simple identity.

Lemma 9.4. For every z ∈ [π(x)],

∑
k>2

kŝk(z) = m(z)Ein

Ç
m(z)

z

å
.

Proof. Define

f(w) :=
∑
k>2

1

k − 1

∞∑
`=k−1

e−ww`

`!
,

and note that∑
k>2

kŝk(z) =
∑
k>2

m(z)

k − 1
e−m(z)/z

∞∑
`=k−1

1

`!

Ç
m(z)

z

å`
= m(z)f

Ä
m(z)/z

ä
.
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Now, we have f(0) = 0 and

f ′(w) =
∑
k>2

e−w

k − 1

Ç ∞∑
`=k−1

w`−1

(`− 1)!
−

∞∑
`=k−1

w`

`!

å
= e−w

∑
k>2

wk−2

(k − 1)!
= e−w

Ç
ew − 1

w

å
=

1− e−w

w
.

It follows that f(w) =

∫ w

0

1− e−t

t
dt = Ein(w), as required. �

We can now complete the proof of our main auxiliary results.

Proof of Theorems 2.2 and 2.6. As noted above, it will suffice to prove

that the event T ∗(z−) holds with high probability. Recall that T ∗(z+) holds

with high probability, by Lemma 9.1, and let a ∈ [z−, z+] be maximal such

that T ∗(a) fails to hold. As T ∗(a + 1) holds, one of the events D∗(a), Q(a),

or Tk(a) for some 2 6 k 6 4u0, must fail. By Lemma 8.3 and (112), with high

probability there is no a such that T ∗(a + 1) holds but D(a + 1) fails, so we

may assume that D(a+ 1), and hence D∗(a), holds. By Lemma 9.2, with high

probability there is no a such that T ∗(a + 1) and D∗(a) hold, but Tk(a) fails

for some k > 2. By Lemma 4.3, with high probability there is no a such that

M∗(a) holds but Q(a) fails. As T ∗(a+ 1) implies M∗(a+ 1), we deduce that

with high probability there is no a such that T ∗(a + 1) and M(a) hold but

T ∗(a) fails. It will therefore suffice to bound the probability thatM(a) fails to

hold, assuming that D∗(a) holds, and that Tk(a) holds for every 2 6 k 6 4u0.

To do so, let us choose a set W =
¶
w0, w1, . . . , w`

©
, where z− = w0 <

w1 < · · · < w` = z+, such that ` = O(log(z+/z−)) and wi 6 2wi−1 for each

i ∈ [`]. Since log(z+/z−) = Θ(
√

log z0) = o(u0), by Lemma 3.11 and (23), it

follows from Lemma 9.3 that with high probability either

(147) m(w) exp

Ç
−
∑
k>2

ksk(w)

m(w)

å
∈ (1± 3ε1)ηΛ(w)w,

or K(w) fails to hold for every w ∈ W . Since by Lemma 4.4, T ∗(z) implies

K(z), it will suffice to bound the probability that (147) holds for w = wi, say,

and

(148) M(a)c ∩ D∗(a) ∩ T ∗(a+ 1) ∩
4u0⋂
k=2

Tk(a)

holds for some wi−1 6 a < wi. We shall show that this has probability at

most z−15
0 .

To bound the probability of the event (148), we shall use a martingale

approach to control m(z) in the interval a 6 z 6 w. Define X0 := 0, and for
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0 6 t := w − z < w − a,

Xt+1 := Xt +

Ç
m(w − t− 1)

w − t− 1
− m(w − t)

w − t

å
1D(w−t)∩T ∗(w−t) − 5ε1

m(w)

w2
.

We claim thatXt is a super-martingale with respect to the filtration (Fw−t)w−at=0 .

Indeed, T ∗(w − t) is Fw−t-measurable and clearly Xt+1 6 Xt when T ∗(w − t)
fails. Assuming T ∗(w − t) = T ∗(z) holds, we have

E
î
m(z)−m(z − 1) | Fz

ó
=
Ä
1 + γ(z) + o(1)

äm(z)

z

by Lemma 8.4. Recalling that T ∗(z) implies that |γ(z)| 6 ε1, by Observa-

tion 8.5, it follows (using (112)) that

E
î
Xt+1 −Xt | Fz

ó
= E

ñ
m(z − 1)−m(z)

z − 1
+

m(z)

z(z − 1)
− 5ε1m(w)

w2

∣∣∣∣ Fz
ô

+O
Ä
z−20

0

ä
= −

Ä
γ(z) + o(1)

ä m(z)

z(z − 1)
− 5ε1m(w)

w2
6 0

for every a < z 6 w, as claimed, since w 6 2a and m(z) 6 m(w).

Now, |Xt+1 − Xt| 6 z−1+ε1
0 for every a < z 6 w, since m(z) = O(z)

(by Observation 4.7) and z = z
1+o(1)
0 (by (22)), and since D(z) implies that

|m(z) −m(z − 1)| 6 u2
0 = z

o(1)
0 . Thus, noting that w − a 6 z+ = z

1+o(1)
0 , by

the Azuma–Hoeffding inequality we obtain

P
(¶
Xw−a > z−ε10

©
∩ T ∗(a+ 1)

)
6 exp

Ä
− z1−5ε1

0

ä
6 z−20

0 .

Observe that if D∗(a) ∩ T ∗(a+ 1) holds, then Xw−a 6 z
−ε1
0 implies that

(149)
m(a)

a
6
Ä
1 + 5ε1

äm(w)

w
+ z−ε10 .

Now, to finish the proof, we shall show that if T ∗(w) and (147) hold, then

(150)
m(w)

w
6 α
Ä
(1 + 5ε1)ηΛ(w)

ä
.

To prove this, observe first that if T ∗(w) holds, then∑
k>2

ksk(w) 6
∑
k>2

Ä
1 + ε(k, z)

ä
kŝk(w) 6

Ç
Ein

Ç
m(w)

w

å
+ ε1

å
m(w),

by Lemmas 4.15 and 9.4. Thus (147) implies that

m(w)

w
exp

Ç
− Ein

Ç
m(w)

w

åå
6 eε1

Ä
1 + 3ε1

ä
ηΛ(w),
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which implies (150), since α is increasing and eε1(1 + 3ε1) 6 1 + 5ε1. Combin-

ing (149) and (150), and recalling that Λ(a) = (1 + o(1))Λ(w) > δ + o(1) by

Lemma 3.10 and (38), and that α(t)/t is increasing, by (9), it follows that,

m(a)

a
6 α
Ä
(1 + 11ε1)ηΛ(a)

ä
.

By the definition of α (and again using the fact that α is increasing), this

implies that

m(a)

a
exp

Ç
− Ein

Ç
m(a)

a

åå
6
Ä
1 + 11ε1

ä
ηΛ(a).

A corresponding lower bound can be proved similarly, and thus

P
Ç
M(a)c ∩ D∗(a) ∩ T ∗(a+ 1) ∩

4u0⋂
k=2

Tk(a)

å
6 z−15

0 ,

as claimed. As explained above, this implies that T ∗(z−) holds with high

probability, and hence this completes the proof of Theorems 2.2 and 2.6. �

10. The proof of Theorem 1.1

Once we have Theorem 2.2, it is straightforward to deduce Theorem 1.1.

Indeed, the deduction of the lower bound follows from the results of [13], the

extra ingredient provided by Theorem 2.2 being that any linear relation can

only involve at most m(z−) ≈ ηΛ(z−)z− rows. We shall use the following

result, which was proved in [13].

Proposition 10.1 (Croot, Granville, Pemantle and Tetali). There exists

c > 0 such that if N 6 e−γJ(x), then with high probability there does not exist

a set I ⊆ [N ] with

0 < |I| 6 z0 exp
(
− c
√

log z0

)
such that

∏
i∈I ai is a square.

We remark that Proposition 10.1 follows from the proof of [13, Th. 1.3];

see [13, §3.5], for any constant c >
√

2− log 2. However, we shall only use the

fact that c = O(1).

As noted in the introduction, we shall also give a new proof of the upper

bound, which was originally proved in [13]. For the upper bound, we shall

need the following simple identity.

Lemma 10.2. For every z ∈ [π(x)],∑
k>2

ŝk(z) = m(z)− z
Ä
1− e−m(z)/z

ä
.
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Proof. Using the fact that 1
k(k−1) = 1

k−1 −
1
k , we have

∑
k>2

ŝk(z) = m(z)e−m(z)/z
∑
k>2

1

k(k − 1)

∞∑
`=k−1

1

`!

Ç
m(z)

z

å`
= m(z)e−m(z)/z

∞∑
`=1

1

`!

Ç
m(z)

z

å` `+1∑
k=2

Ç
1

k − 1
− 1

k

å
= m(z)e−m(z)/z

∞∑
`=1

1

`!

Ç
m(z)

z

å`Ç
1− 1

`+ 1

å
= m(z)e−m(z)/z

∞∑
`=1

1

`!

Ç
m(z)

z

å`
− ze−m(z)/z

∞∑
`=1

1

(`+ 1)!

Ç
m(z)

z

å`+1

= m(z)e−m(z)/z
Ä
em(z)/z − 1

ä
− ze−m(z)/z

Ä
em(z)/z − 1−m(z)/z

ä
= m(z)− z

Ä
1− e−m(z)/z

ä
,

as claimed. �

Proof of Theorem 1.1. To prove the lower bound, it is enough to show

that for η < e−γ , there is with high probability no linear relation between the

rows of A. Any such relation would correspond to an even sub-hypergraph

of HA(z−) without isolated vertices and so must lie in the 2-core CA(z−). In

particular, the number of rows involved is at most m(z−), which satisfies

(151) m(z−) 6 α
Ä
(1 + ε0)Λ(z−)η

ä
z− 6 α

Ä
2δe−γ

ä
z− 6 z−

with high probability, by Theorem 2.2. We may therefore assume that there is

no linear relation involving more than z− rows. However, by Lemma 3.11 we

have

z− = z0 exp
(
−
Ä
1 + o(1)

ä»
log(1/δ) log z0

)
,

and so by Proposition 10.1 there is with high probability no linear relation

involving at most z− rows if δ is taken sufficiently small. Hence there is with

high probability no linear relation between the rows of A, as required.

To prove the upper bound, assume that we have η′J(x) numbers with

η′ = e−γ + ν, ν > 0. Pick η < e−γ , and construct the 2-core CA(z0) starting

with just the first N = ηJ(x) numbers. Observe that, by Theorems 2.2 and 2.6,

and Lemmas 4.15 and 10.2, the number of columns of A that either have a non-

zero entry in one of the rows of M(z0), or are to the left of z0, is with high

probability at most

z0 +
∑
k>2

sk(z0) 6 z0 +
∑
k>2

Ä
1 + ε(k, z0)

ä
ŝk(z0)(152)

6 (1 + ε1)m(z0) + z0e
−m(z0)/z0 .



THE SHARP THRESHOLD FOR MAKING SQUARES 139

On the other hand, we have at least νJ(x) remaining unused numbers, and

among these there are, with high probability, at least

νJ(x)

2
· Ψ(x, y0)

x
=
νz0

2

y0-smooth numbers. Thus we have a total of at least m(z0) + νz0/2 rows

of A, all of whose non-zero entries lie in a set of columns of size at most

(1 + ε1)m(z0) + z0e
−m(z0)/z0 . Hence, if

ν

2
> ε1m(z0)/z0 + e−m(z0)/z0 ,

then we obtain a linear relation between the rows. Now, recall that m(z0)/z0 >
α((1 − ε0)η) with high probability, by Theorem 2.2, and that α(w) → ∞ as

w → e−γ . Hence, by choosing η sufficiently close to e−γ , and ε0 sufficiently

small, we can make m(z0)/z0 arbitrarily large. In particular we can force

e−m(z0)/z0 < ν/4. Since m(z0)/z0 6 C0 with high probability, with C0 = C0(η)

fixed, the result follows by taking ε1 sufficiently small. �

The proof of the upper bound in Theorem 1.1 can be modified to show

that the expected number of linear relations between the rows of A blows up

at some η0J(x), with η0 < e−γ , thus demonstrating that a straightforward

application of the first moment method cannot give a sharp lower bound on

T (x). To see this, let η < e−γ and consider N = ηJ(z) integers ai. The number

m0(z0) of y0-smooth numbers is binomially distributed with mean ηz0, but can

be much higher. Indeed,

P
Ä
m0(z0) = 2ηz0

ä
≈ (ηz0)2ηz0

(2ηz0)!
e−ηz0 ≈ (e/4)(1+o(1))ηz0 .

However, the remaining numbers are still uniformly distributed over non-

smooth numbers, and smooth numbers have no effect on the algorithm de-

termining the 2-core. Thus if we remove about ηz0 smooth numbers, the

distribution of the 2-core CA(z0) of the remaining numbers has approximately

the same distribution as if we had started with N − ηz0 = (1 + o(1))N num-

bers initially. Thus, with probability (e/4)(1+o(1))ηz0 , we have a submatrix of

A with m(z0) + ηz0 rows and (1 + ε1)m(z0) + z0e
−m(z0)/z0 non-zero columns.

Taking η sufficiently close to e−γ and ε0, ε1 sufficiently small, we obtain a sub-

matrix of A with (η − ε)z0 more rows than non-zero columns. This results

in at least 2(η−ε)z0 − 1 non-trivial linear relations between the rows. As this

occurs with probability (e/4)(1+o(1))ηz0 and e/4 > 1/2, the expected number

of linear relations grows exponentially with z0, even though we are below the

threshold.

Finally we give a proof of Corollary 1.2.
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Proof of Corollary 1.2. Since finding a square product among {a1, . . . , at}
is independent of finding one among {at+1, . . . , a2t} we have that P

Ä
T (x) > 2t

ä
6 P
Ä
T (x) > t

ä2
, and more generally P

Ä
T (x) > kt

ä
6 P
Ä
T (x) > t

äk
for every

k ∈ N.

Setting t =
Ä
e−γ + ε

ä
J(x) and θ = P

Ä
T (x) > t

ä
, we have

E[T (x)] 6 tP
Ä
T (x) ∈ [0, t)

ä
+ 2tP

Ä
T (x) ∈ [t, 2t)

ä
+ 3tP

Ä
T (x) ∈ [2t, 3t)

ä
+ · · ·

= t+ tP
Ä
T (x) > t

ä
+ tP

Ä
T (x) > 2t

ä
+ · · ·

6
Ä
1 + θ + θ2 + · · ·

ä
t =

e−γ + ε

1− θ
· J(x).

Now, observe that, by Theorem 1.1, θ → 0 as x → ∞ for any ε > 0. Since

ε > 0 is arbitrary, it follows that E[T (x)] 6
Ä
e−γ + o(1)

ä
J(x). On the other

hand, taking t =
Ä
e−γ − ε

ä
J(x), we have

E[T (x)] > tP
Ä
T (x) > t

ä
=
Ä
1 + o(1)

ä
t =

Ä
e−γ − ε− o(1)

ä
J(x)

as x → ∞, so, since ε > 0 was arbitrary, E[T (x)] >
Ä
e−γ + o(1)

ä
J(x), as

required. �
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