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Density of minimal hypersurfaces
for generic metrics

By Kei Irie, Fernando C. Marques, and André Neves

Abstract

For almost all Riemannian metrics (in the C∞ Baire sense) on a closed

manifold Mn+1, 3 ≤ (n + 1) ≤ 7, we prove that the union of all closed,

smooth, embedded minimal hypersurfaces is dense. This implies there are

infinitely many minimal hypersurfaces, thus proving a conjecture of Yau

(1982) for generic metrics.

1. Introduction

Minimal surfaces are among the most extensively studied objects in Dif-

ferential Geometry. There is a wealth of examples for many particular ambi-

ent spaces, but their general existence theory in Riemannian manifolds is still

rather mysterious. A motivating conjecture has been

Conjecture (Yau [19], 1982). Every closed Riemannian three-manifold

contains infinitely many smooth, closed, immersed minimal surfaces.

In this paper we settle the generic case, and in fact prove that a much

stronger property holds true: there are infinitely many closed embedded min-

imal hypersurfaces intersecting any given ball in M .

Main Theorem. Let Mn+1 be a closed manifold of dimension (n + 1),

with 3 ≤ (n+ 1) ≤ 7. Then for a C∞-generic Riemannian metric g on M , the

union of all closed, smooth, embedded minimal hypersurfaces is dense.

Besides some specific metrics (e.g., [9]), the existence of infinitely many

closed, smooth, embedded minimal hypersurfaces was only known for manifolds

of positive Ricci curvature Mn+1, 3 ≤ (n + 1) ≤ 7, as proven by the last two
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authors in [13]. Before that the best result was due to Pitts (1981, [14]), who

built on earlier work of Almgren ([2]) to prove there is at least one closed

embedded minimal hypersurface. In [13] the existence of at least (n+ 1) such

hypersurfaces was shown.

The main ingredient in the proof of our Main Theorem is the Weyl law for

the Volume Spectrum conjectured by Gromov ([6]) and recently proven by the

last two authors jointly with Liokumovich in [10]. We need the Morse index

estimates proven by the last two authors in [11], for minimal hypersurfaces

constructed by min-max methods. And we use the Structure Theory of White

([17], [18]), who proved that a generic metric is “bumpy,” meaning that every

closed minimal hypersurface is nondegenerate. Finally, we use an idea of the

first author ([8]) who proved an analogous density result for closed geodesics

(not necessarily embedded) in surfaces. The argument of [8] is based on a

different kind of asymptotic law, involving spectral invariants in Embedded

Contact Homology ([4]).

The volume spectrum of a compact Riemannian manifold (Mn+1, g) is a

nondecreasing sequence of numbers {ωk(M, g) : k ∈ N} defined variationally by

performing a min-max procedure for the area (or n-dimensional volume) func-

tional over multiparameter sweepouts. The first estimates for these numbers

were proven by Gromov in the late 1980s [5] (see also Guth [7]).

The main result of [10] used in this paper is

Weyl Law for the Volume Spectrum (Liokumovich, Marques, Neves,

2016). There exists a universal constant a(n) > 0 such that for any compact

Riemannian manifold (Mn+1, g), we have

lim
k→∞

ωk(M, g)k−
1

n+1 = a(n)vol(M, g)
n

n+1 .

In [5], Gromov worked with a definition of ωk(M, g) that was slightly dif-

ferent from ours (see Section 2 of this paper). He considered a parametrization

of the space of hypersurfaces in M by the space of real functions on M , or

more precisely by its projectivization. Namely, to a function f : M → R (or to

its equivalence class [f ]) he associated the zero set f−1(0) ⊂ M . In our case,

the space of hypersurfaces is the space Zn(M ;Z2) of n-dimensional modulo

two flat boundaries endowed with the flat topology. This allows us to use the

machinery of Geometric Measure Theory. The projectivization of the space

of real functions can be identified immediately with RP∞, while the fact that

Zn(M ;Z2) is weakly homotopically equivalent to RP∞ follows from work of

Almgren [1] (as explained in [12]). In Gromov’s work ([6]), ωk is defined to be

the smallest number such that the set of hypersurfaces with volume less than

or equal to ωk has “essential dimension” (Section 0.3.A of [6]) greater than or

equal to k.
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Flat chains modulo two of any codimension were crucially used by Guth

[7] in his study of min-max volumes associated with cohomology classes. In

our case we restrict to codimension one (in which case the cohomology classes

are cup products) and add the no concentration of mass condition for technical

reasons related to Almgren-Pitts min-max theory.

The dimensional restriction in the Main Theorem is due to the fact that

in higher dimensions min-max (even area-minimizing) minimal hypersurfaces

can have singular sets. We use Almgren-Pitts theory ([2], [14]), which together

with Schoen-Simon regularity ([15]) produces smooth minimal hypersurfaces

when 3 ≤ (n + 1) ≤ 7. We expect that the methods of this paper can be

generalized to handle the higher-dimensional singular case.

We finish the introduction with some idea of the proof. First we prove that

for each k ∈ N, the number ωk(M, g) is the volume of some smooth, embedded,

closed minimal hypersurface, perhaps with integer multiplicities. The possible

presence of integer multiplicities is one of the reasons why constructing distinct

minimal hypersurfaces is a difficult problem.

The main observation is that the Weyl Law for the Volume Spectrum

implies a mechanism to create new minimal hypersurfaces by perturbation

of the metric. Suppose g is a bumpy metric (a generic property by White)

such that no minimal hypersurface for g intersects some nonempty open set

U ⊂M . The fact that g is bumpy implies there can be at most countably many

minimal hypersurfaces for g. We consider a family of conformal deformations

g(t) = (1+th)g for small t ≥ 0, where h is a nonzero nonnegative function with

support contained in U . Because the volume of M goes up strictly with t, the

Weyl Law for the Volume Spectrum tells us that for any t > 0 some k-width

ωk will satisfy ωk(g(t)) > ωk(g), and therefore ωk assumes uncountably many

values. Because g(t) = g outside U , for some g(t′), t′ > 0, there must be a

minimal hypersurface that intersects U . Hence by perturbing g to g(t′) we

have kept all the minimal hypersurfaces for g intact but gained a new one that

intersects U .

2. Preliminaries

We denote by Zn(M ;Z2) the space of modulo two n-dimensional flat

chains T in M with T = ∂U for some (n + 1)-dimensional modulo two flat

chain U in M , endowed with the flat topology. This space is weakly homotopi-

cally equivalent to RP∞ (see Section 4 of [12]). We denote by λ the generator

of H1(Zn(M ;Z2),Z2) = Z2. The mass (n-dimensional volume) of T is denoted

by M(T ).

Let X be a finite-dimensional simplicial complex. A continuous map Φ :

X → Zn(M ;Z2) is called a k-sweepout if

Φ∗(λ̄k) 6= 0 ∈ Hk(X;Z2).
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We say X is k-admissible if there exists a k-sweepout Φ : X → Zn(M ;Z2) that

has no concentration of mass, meaning

lim
r→0

sup{M(Φ(x) ∩Br(p)) : x ∈ X, p ∈M} = 0.

The set of all k-sweepouts Φ that have no concentration of mass is denoted

by Pk. Note that two maps in Pk can have different domains.

In [13], the last two authors defined

Definition. The k-width of (M, g) is the number

ωk(M, g) = inf
Φ∈Pk

sup{M(Φ(x)) : x ∈ dmn(Φ)},

where dmn(Φ) is the domain of Φ.

As remarked in the introduction, this is a variation of a definition of

Gromov (Section 4.2.B, p. 179 of [5]).

Lemma 2.1. The k-width ωk(M, g) depends continuously on the metric g

(in the C0 topology).

Proof. Suppose gi is a sequence of smooth Riemannian metrics that con-

verges to g in the C0 topology. Given ε > 0, let Φ : X → Zn(M ;Z2) be a

k-sweepout of M that has no concentration of mass (this condition does not

depend on the metric) and such that

sup{Mg(Φ(x)) : x ∈ X} ≤ ωk(M, g) + ε,

where Mg(T ) is the mass of T with respect to g.

Since

ωk(M, gi)≤ sup{Mgi(Φ(x)) : x ∈ X}

≤ (sup
v 6=0

gi(v, v)

g(v, v)
)
n
2 sup{Mg(Φ(x)) : x ∈ X}

≤ (sup
v 6=0

gi(v, v)

g(v, v)
)
n
2 (ωk(M, g) + ε),

and ε > 0 is arbitrary, we get lim supi→∞ ωk(M, gi) ≤ ωk(M, g). Similarly, one

can prove lim infi→∞ ωk(M, gi) ≥ ωk(M, g). �

The proof of the next proposition is essentially contained in Section 1.5

of [11], but we prove it here for the sake of completeness. It follows from the

index estimates of the last two authors ([11]) and a compactness theorem of

Sharp ([16]).

Proposition 2.2. Suppose 3 ≤ (n + 1) ≤ 7. Then for each k ∈ N,

there exist a finite disjoint collection {Σ1, . . . ,ΣN} of closed, smooth, embedded
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minimal hypersurfaces in M , and integers {m1, . . . ,mN} ⊂ N, such that

ωk(M, g) =
N∑
j=1

mjvolg(Σj)

and
N∑
j=1

index(Σj) ≤ k.

Proof. Choose a sequence {Φi}i∈N ⊂ Pk such that

lim
i→∞

sup{M(Φi(x)) : x ∈ Xi = dmn(Φi)} = ωk(M, g).

Denote by X
(k)
i the k-dimensional skeleton of Xi. Then Hk(Xi, X

(k)
i ;Z2) = 0

and hence the long exact cohomology sequence gives that the natural pullback

map from Hk(Xi;Z2) into Hk(X
(k)
i ;Z2) is injective. This implies (Φi)|X(k)

i

∈
Pk. The definition of ωk then implies

lim
i→∞

sup{M(Φi(x)) : x ∈ X(k)
i } = ωk(M, g).

The interpolation machinery developed by the last two authors ([13, Cor. 3.12,

item (ii)]) implies that we can suppose Φi : X
(k)
i → Zn(M,Z2) is continuous

in the F-metric (see Section 2.1 of [13]) for every i.

We denote by Πi the homotopy class of Φi as defined in [11]. This is the

class of all maps Φ′i : X
(k)
i → Zn(M,Z2), continuous in the F-metric, that

are homotopic to Φi in the flat topology. In particular, (Φ′i)
∗(λ

k
) = Φ∗i (λ

k
).

Continuity in the F-metric implies no concentration of mass, hence every such

Φ′i is also a k-sweepout.

Therefore the min-max number (defined in Section 1 of [11])

L(Πi) = inf
Φ′

i∈Πi

sup
x∈X(k)

i

{M(Φ′i(x))}

satisfies

ωk(M, g) ≤ L(Πi) ≤ sup{M(Φi(x)) : x ∈ X(k)
i }

and, in particular,
lim
i→∞

L(Πi) = ωk(M, g).

Theorem 1.2 of [11] now implies the existence of a finite disjoint collection

{Σi,1, . . . ,Σi,Ni} of closed, smooth, embedded minimal hypersurfaces in M ,

and integers {mi,1, . . . ,mi,Ni} ⊂ N, such that

L(Πi) =
Ni∑
j=1

mi,jvolg(Σi,j)

and
Ni∑
j=1

index(Σi,j) ≤ k.
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The monotonicity formula for minimal hypersurfaces in Riemannian man-

ifolds implies that there exists δ > 0, depending only on M , such that the vol-

ume of any closed minimal hypersurface is greater than or equal to δ. Hence the

number of components Ni and the multiplicities mi,j are uniformly bounded.

The Compactness Theorem of Sharp (Theorem 2.3 of [16]) implies that there

exists a finite disjoint collection {Σ1, . . . ,ΣN} of closed, smooth, embedded

minimal hypersurfaces in M , satisfying

N∑
j=1

index(Σj) ≤ k,

and integers {m1, . . . ,mN} ⊂ N such that, after passing to a subsequence,

Ni∑
j=1

mi,j · Σi,j →
N∑
j=1

mj · Σj

as varifolds. Hence ωk(M, g) =
∑N
j=1mjvolg(Σj), and the proof of the propo-

sition is finished. �

Proposition 2.3. Let Σ be a closed, smooth, embedded minimal hyper-

surface in (Mn+1, g). Then there exists a sequence of metrics gi on M , i ∈ N,

converging to g in the smooth topology such that Σ is a nondegenerate minimal

hypersurface in (Mn+1, gi) for every i.

Proof. If g̃ = exp(2φ)g, then the second fundamental form of Σ with

respect to g̃ is given by (Besse [3, §1.163])

AΣ,g̃ = AΣ,g − g · (∇φ)⊥,

where (∇φ)⊥(x) is the component of ∇φ normal to TxΣ. The Ricci curvatures

are related by (see Besse [3, Th. 1.159]):

Ricg̃ = Ricg − (n− 1)(Hessgφ− dφ⊗ dφ)− (∆gφ+ (n− 1)|∇φ|2) · g.

Suppose both φ and ∇φ vanish on Σ. Then g̃|Σ = g|Σ and AΣ,g̃ = AΣ,g.

In particular, Σ is also minimal with respect to g̃ and |AΣ,g̃|2g̃ = |AΣ,g|2g. A

unit normal N to Σ with respect to g is also a unit normal to Σ with respect

to g̃ and

Ricg̃(N,N) = Ricg(N,N)− (n− 1)Hessgφ(N,N)−∆gφ.

Since ∇φ = 0 on Σ, we have ∆gφ = Hessgφ(N,N) on Σ, and therefore

Ricg̃(N,N) = Ricg(N,N)− nHessgφ(N,N).

Let η : M → R be a smooth function that is equal to 1 in Vδ(Σ) and equal

to zero in M \V2δ(Σ), where Vr(Σ) = {x ∈M : dg(x,Σ) ≤ r}. We choose δ > 0

sufficiently small so that the function x 7→ dg(x,Σ)2 is smooth in V3δ(Σ). We

define h(x) = η(x)dg(x,Σ)2 for x ∈ V3δ(Σ) and h(x) = 0 for x ∈ M \ V3δ(Σ),
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so h : M → R is a smooth function that coincides with x 7→ dg(x,Σ)2 in some

small neighborhood of Σ.

Let gi = exp(2φi)g, where φi = 1
ih. Since h(x) = dg(x,Σ)2 in a neighbor-

hood of Σ, we have that, on Σ, φi = 0, ∇φi = 0 and Hessgφi(N,N) = 2
i , and

Σ is minimal with respect to gi.

Therefore

Ricgi(N,N) + |AΣ,gi |2gi = Ricg(N,N) + |AΣ,g|2g −
2n

i
.

The Jacobi operator acting on normal vector fields is given by the expres-

sion

LΣ,g(X) = ∆⊥Σ,gX + (Ricg(N,N) + |AΣ,g|2g)X.

Since gi|Σ = g|Σ, we have ∆⊥Σ,giX = ∆⊥Σ,gX and hence

LΣ,gi(X) = LΣ,g(X)− 2n

i
X.

We conclude that

spec (LΣ,gi) = spec (LΣ,g) +
2n

i
.

Hence Σ is nondegenerate with respect to gi for every sufficiently large i. �

3. Proof of the Main Theorem

We denote by M the space of all smooth Riemannian metrics on M ,

endowed with the C∞ topology.

Proposition 3.1. Suppose 3 ≤ (n+1) ≤ 7, and let U ⊂M be a nonempty

open set. Then the set MU of all smooth Riemannian metrics on M such that

there exists a nondegenerate, closed, smooth, embedded, minimal hypersurface

Σ that intersects U is open and dense in the C∞ topology.

Proof. Let g ∈ MU and Σ be like in the statement of the proposition.

Because Σ is nondegenerate, an application of the Inverse Function Theorem

implies that for every Riemannian metric g′ sufficiently close to g, there exists

a unique nondegenerate closed, smooth, embedded minimal hypersurface Σ′

close to Σ. This follows, for instance, from the Structure Theorem of White

(Theorem 2.1 in [17]) since the nondegeneracy of Σ is equivalent to the invert-

ibility of DΠ(g,Σ). (Here Π is as in [17].) In particular, Σ′ ∩ U 6= ∅ if g′ is

sufficiently close to g. This implies MU is open.

It remains to show the set MU is dense. Let g be an arbitrary smooth

Riemannian metric on M and V be an arbitrary neighborhood of g in the

C∞ topology. By the Bumpy Metrics Theorem of White (Theorem 2.1 in

[18]), there exists g′ ∈ V such that every closed, smooth immersed minimal
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hypersurface with respect to g′ is nondegenerate. If one of these minimal

hypersurfaces is embedded and intersects U , then g′ ∈MU , and we are done.

Hence we can suppose that every closed, smooth, embedded minimal hy-

persurface with respect to g′ is contained in the complement of U . Since g′ is

bumpy, it follows from Sharp (Theorem 2.3 and Remark 2.4 of [16]) that the

set of connected, closed, smooth, embedded minimal hypersurfaces in (M, g′)

with both area and index bounded from above by q is finite for every q > 0.

Therefore the set

C =

® N∑
j=1

mjvolg′(Σj) : N ∈ N, {mj}Nj=1 ⊂ N, {Σj}Nj=1 disjoint collection

of closed, smooth, embedded minimal hypersurfaces in (M, g′)

´
is countable.

Choose h : M → R a smooth nonnegative function such that supp (h) ⊂ U
and h(x) > 0 for some x ∈ U . Define g′(t) = (1+ th)g′ for t ≥ 0, and let t0 > 0

be sufficiently small so that g′(t) ∈ V for every t ∈ [0, t0]. Notice that g′(t) = g′

outside some compact set K ⊂ U for every t > 0.

We have vol(M, g′(t0)) > vol(M, g′). It follows from the Weyl Law for

the Volume Spectrum (see the introduction) that there exists k ∈ N such that

ωk(M, g′(t0)) > ωk(M, g′). Assume by contradiction that for every t ∈ [0, t0],

every closed, smooth, embedded minimal hypersurface in (M, g′(t)) is con-

tained in M \ U . Since g′(t) = g′ outside K ⊂ U we conclude from Propo-

sition 2.2 that ωk(M, g′(t)) ∈ C for all t ∈ [0, t0]. But C is countable and we

know from Proposition 2.1 that the function t 7→ ωk(M, g′(t)) is continuous.

Hence t 7→ ωk(M, g′(t)) is constant in the interval [0, t0]. This contradicts the

fact that ωk(M, g′(t0)) > ωk(M, g′).

Therefore we can find t ∈ [0, t0] such that there exists a closed, smooth,

embedded minimal hypersurface Σ with respect to g′(t) that intersects U .

Since g′(t) ∈ V, Proposition 2.3 implies there exists a Riemannian metric

g′′ ∈ V such that Σ is minimal and nondegenerate with respect to g′′. Therefore

g′′ ∈ V ∩MU , and we have finished the proof of the proposition. �

Proof of the Main Theorem. Let {Ui} be a countable basis of M . Since,

by Proposition 3.1, each MUi is open and dense in M, the set ∩iMUi is C∞

Baire-generic in M. This finishes the proof. �
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