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The logarithmic Sarnak conjecture
for ergodic weights

By Nikos Frantzikinakis and Bernard Host

Abstract

The Möbius disjointness conjecture of Sarnak states that the Möbius
function does not correlate with any bounded sequence of complex num-
bers arising from a topological dynamical system with zero topological en-
tropy. We verify the logarithmically averaged variant of this conjecture for
a large class of systems, which includes all uniquely ergodic systems with
zero entropy. One consequence of our results is that the Liouville function
has super-linear block growth. Our proof uses a disjointness argument,
and the key ingredient is a structural result for measure preserving systems
naturally associated with the Möbius and the Liouville function. We prove
that such systems have no irrational spectrum and their building blocks
are infinite-step nilsystems and Bernoulli systems. To establish this struc-
tural result we make a connection with a problem of purely ergodic nature
via some identities recently obtained by Tao. In addition to an ergodic
structural result of Host and Kra, our analysis is guided by the notion of
strong stationarity that was introduced by Furstenberg and Katznelson in
the early 90’s and naturally plays a central role in the structural analysis
of measure preserving systems associated with multiplicative functions.

1. Introduction and main results

1.1. Main results related to the Sarnak conjecture. Let λ : N → {−1, 1}
be the Liouville function, which is defined to be 1 on positive integers with an
even number of prime factors, counted with multiplicity, and −1 elsewhere. We
extend λ to the integers in an arbitrary way, for example by letting λ(−n) =

λ(n) for negative n ∈ Z and λ(0) = 0. The Möbius function µ is equal to λ

on integers that are not divisible by any square number and is 0 otherwise.
It is widely believed that the values of the Liouville function and the

non-zero values of the Möbius function fluctuate between −1 and 1 in such
a random way that forces non-correlation with any “reasonable” sequence of
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complex numbers. This rather vague principle is referred to as the “Möbius
randomness law” (see [41, §13.1]) and is often used to give heuristic asymptotics
for various sums over primes (see [61] for examples). The class of “reasonable”
sequences is expected to include all bounded “low complexity” sequences, and in
this direction a precise conjecture that uses the language of dynamical systems
was formulated by Sarnak in [60], [59]:

Conjecture (Sarnak). Let (Y,R) be a topological dynamical system1 with
zero topological entropy. Then for every g ∈ C(Y ) and y ∈ Y , we have

lim
N→∞

1

N

N∑
n=1

g(Rny)µ(n) = 0.

This is a fundamental and difficult problem, and there is a long list of
partial results that cover a variety of dynamical systems (see Section 1.3). The
goal of this article is to verify the conjecture of Sarnak for a large class of
dynamical systems (Y,R), by exploiting mostly the structure of measure pre-
serving dynamical systems generated by the Möbius and the Liouville function
rather than the structure of the topological dynamical system (Y,R) for which
we have limited information. The price to pay is that we have to restrict to
logarithmic averages rather than the more standard Cesàro averages.

We give two variants of our main result; the first imposes a global condition
on the topological dynamical system:

Theorem 1.1. Let (Y,R) be a topological dynamical system with zero
topological entropy and at most countably many ergodic invariant measures.
Then for every y ∈ Y and every g ∈ C(Y ), we have

(1) lim
N→∞

1

logN

N∑
n=1

g(Rny)µ(n)

n
= 0.

Moreover, a similar statement holds with the Liouville function λ in place of µ.

Remark. In particular, our result applies if the system (Y,R) has zero
topological entropy and is uniquely ergodic.

A rather surprising consequence of the previous result is a seemingly un-
related statement about the block complexity Pλ(n) of the Liouville func-
tion, which is defined to be the number of sign patterns of size n that are
taken by consecutive values of the Liouville function. (See Section 1.2 for a
more formal definition.) Since the Liouville function is not periodic (because
λ(2n) = −λ(n)), it follows from [53] that Pλ(n) ≥ n + 1 for every n ∈ N.
Moreover, in [51, Prop. 2.9] it was shown that Pλ(n) ≥ n + 5 for every n ≥ 3

1Meaning that Y is a compact metric space and R : Y → Y is a homeomorphism.
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and that these n+ 5 sign patterns are taken on a set of positive upper density
of starting points. The Chowla conjecture predicts that Pλ(n) = 2n for every
n ∈ N; equivalently, all possible sign patterns of size n are taken by the Liouville
function. But we are far from being able to verify this. In fact, it was not even
known that Pλ(n) has super-linear growth, meaning, limn→∞ Pλ(n)/n = ∞.
We verify this property:

Theorem 1.2. The Liouville function has super-linear block growth.

Remark. In fact, we prove something stronger. If a : N→ C takes finitely
many values and has linear block growth, then the logarithmic averages of
a(n)λ(n) are 0. It follows that even if we modify the values of λ on a set of
logarithmic density 0, using values taken from a finite set of real numbers, then
the new sequence still has super-linear block growth.

Theorem 1.2 is deduced from Theorem 1.1 in Section 7.

Another variant of our main result assumes genericity of the point defining
the weight sequence for a zero entropy system that has at most countably many
ergodic components:

Theorem 1.3. Let (Y,R) be a topological dynamical system and y ∈ Y

be generic for a measure with zero entropy and at most countably many ergodic
components. Then for every g ∈ C(Y ), we have

(2) lim
N→∞

1

logN

N∑
n=1

g(Rny)µ(n)

n
= 0.

Moreover, a similar statement holds with the Liouville function λ in place of µ.

Genericity of y ∈ Y for a Borel probability measure ν on Y means that for
every f ∈ C(Y ), we have limN→∞

1
N

∑N
n=1 f(Rny) =

∫
f dν. Our assumption

is that the induced system (Y, ν,R) has zero entropy and at most countably
many ergodic components.

Remarks. • A straightforward adaptation of our argument shows that the
conclusion of Theorem 1.3 holds for those y ∈ Y that satisfy the following prop-
erty: for any sequence (Nk)k∈N with Nk →∞ along which y is quasi-generic for
logarithmic averages for some measure ν (meaning, limk→∞

1
logNk

∑Nk
n=1

f(Rny)
n

=
∫
f dν for every f ∈ C(Y )), the system (Y, ν,R) has zero entropy and count-

ably many ergodic components.
• See Section 1.4 for an example of a topological system and a point that is

generic for a zero entropy system with uncountably many ergodic components;
in this case our result does not apply.

If the ergodic components of the measure in the statement of Theorem 1.3
are assumed to be totally ergodic, then we get a much stronger conclusion:
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Theorem 1.4. Let (Y,R) be a topological dynamical system and y ∈ Y be
generic for a measure ν with zero entropy and at most countably many ergodic
components, all of which are totally ergodic. Then for every g ∈ C(Y ) with∫
g dν = 0, we have

(3) lim
N→∞

1

logN

N∑
n=1

g(Rny)
∏`
j=1 µ(n+ hj)

n
= 0

for all ` ∈ N and h1, . . . , h` ∈ Z. Moreover, a similar statement holds with the
Liouville function λ in place of µ.

Remarks. • For ` = 2 and all odd values of `, the conclusion holds even if
we omit the hypothesis

∫
g dν = 0 assuming that h1 6= h2 when ` = 2. Indeed,

if g is constant, then (3) holds for ` = 2 by [62] and for odd values of ` by [64].
By adding and subtracting a constant we can thus reduce to the zero integral
case.

• A variant similar to Theorem 1.1 can be proved in the same way: the
conclusion of Theorem 1.4 holds for every y ∈ Y if (Y,R) has zero entropy and
at most countably many ergodic invariant measures assuming in addition that
they are all totally ergodic.

• The remark following Theorem 1.3 is also valid in this case if we assume
in addition that the ergodic components of (Y, ν,R) are totally ergodic.

Theorem 1.4 is new even in the case where R is given by an irrational
rotation on T and g(t) := e2πit, t ∈ T. In this case we have g(Rn0) = e2πinα,
n ∈ N, for some irrational α, and we get the following result as a consequence:

Corollary 1.5. Let α ∈ R be irrational. Then

(4) lim
N→∞

1

logN

N∑
n=1

e2πinα ∏`
j=1 µ(n+ hj)

n
= 0

for all ` ∈ N and h1, . . . , h` ∈ Z. Moreover, a similar statement holds with the
Liouville function λ in place of µ.

Remarks. • For ` = 1, the result is well known and follows from classical
methods of Vinogradov. But even for ` = 2, the result is new.

• More generally, if we apply Theorem 1.4 for R given by appropriate to-
tally ergodic affine transformations on a torus with the Haar measure (as in [25,
§3.3]), we get that (4) holds with (e2πinα)n∈N replaced by any sequence of the
form (e2πiP (n))n∈N, where P ∈ R[t] has an irrational non-constant coefficient.

It is straightforward to adapt our arguments in order to strengthen the
conclusion in Theorems 1.1, 1.3, and 1.4 replacing limN→∞

1
logN

∑N
n=1 by

lim
N/M→∞

1

log(N/M)

N∑
n=M

.
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1.2. Proof strategy and a key structural result. A brief description of the
proof strategy of Theorem 1.4 is as follows (Theorems 1.1 and 1.3 are proved
similarly): In the case where the system (Y, ν,R) is totally ergodic (the more
general case can be treated similarly), we first reinterpret the result as a state-
ment in ergodic theory about the disjointness of two measure preserving sys-
tems. The first is what we call a Furstenberg system of the Möbius (or the
Liouville) function. Roughly speaking, it is defined on the sequence space
X := {−1, 0, 1}Z with the shift transformation, by a measure that assigns to
each cylinder set {x ∈ X : x(j) = εj , j = −m, . . . ,m} value equal to the log-
arithmic density of the set {n ∈ N : µ(n + j) = εj , j = −m. . . ,m}, where
ε−m, . . . , εm ∈ {−1, 0, 1} and m ∈ N. (We restrict to sequences of intervals
along which all these densities exist.) The precise definition is given in Sec-
tion 3.2 and is motivated by analogous constructions made by Furstenberg
in [26]. The second system is an arbitrary totally ergodic system with zero
entropy. In order to prove that these two systems are disjoint, we have to un-
derstand in some fine detail the structure of all possible Furstenberg systems
of the Möbius and the Liouville function. Our main structural result is the
following (see Sections 2 and 3.2 and Appendix A.3 for the definition of the
notions involved):

Theorem 1.6 (Structural result). A Furstenberg system of the Möbius or
the Liouville function is a factor of a system that
(i) has no irrational spectrum;
(ii) has ergodic components isomorphic to direct products of infinite-step nil-

systems and Bernoulli systems.

Remarks. •We allow the Bernoulli systems and the infinite-step nilsystems
to be trivial; in other words, a direct product of a Bernoulli system and an
infinite-step nilsystem is either a Bernoulli system, an infinite-step nilsystem,
or a direct product of both.

• The product decomposition depends on the ergodic component; in par-
ticular, the infinite-step nilsystem depends on the ergodic component. On the
other hand, our argument allows us to take the Bernoulli system to be the same
on every ergodic component; we are not going to use this property though.

• A related result in a complementary direction was recently obtained
in [22]; it states that if a Furstenberg system of the Möbius or the Liouville
function is ergodic, then it is isomorphic to a Bernoulli system. The tools and
the underlying ideas used in the proof of this result are very different and apply
to a larger class of multiplicative functions.

• It is not clear to us how to adapt our argument in order to deal with more
general bounded multiplicative functions. One would have to find a suitable
variant of Proposition 3.9 below and to also modify significantly the subsequent
analysis.
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Using ergodic theory machinery we prove (see part (ii) of Proposition 3.12)
that any system satisfying properties (i) and (ii) of Theorem 1.6 is necessarily
disjoint from every totally ergodic system with zero entropy, leading to a proof
of Theorem 1.4. The argument used in the proof of Theorems 1.1 and 1.3
depends on a different disjointness result (see part (i) of Proposition 3.12), and
this necessitates the use of some additional input from number theory that is
contained in [62] in order to verify its hypothesis.

To prove properties (i) and (ii) of Theorem 1.6, we combine tools from
analytic number theory and ergodic theory. Our starting point is an identity
of Tao (Theorem 3.6) that is implicit in [62] and enables us to express the self-
correlations of the Möbius and the Liouville function as an average of its dilated
self-correlations with prime dilates. (This step necessitates the use of logarith-
mic averages.) We use this identity in order to reduce our problem to a result
of purely ergodic context. Roughly speaking, it asserts that if we average the
correlations of an arbitrary measure preserving system (X,µ, T ) over all prime
dilates of its iterates, then the resulting system (‹X, µ̃, ‹T ) (see Definition 3.8),
which we call the “system of arithmetic progressions with prime steps,” neces-
sarily possesses properties (i) and(ii) (see Theorem 3.10). Our motivation for
establishing this property comes from the case where the ergodic components of
the system (X,µ, T ) are totally ergodic. It can then be shown that the resulting
system (‹X, µ̃, ‹T ) has additional structure; namely, it is strongly stationary (see
Definition 5.1). The structure of strongly stationary systems was completely
determined in [42] and [21], where it was shown that they satisfy properties (i)
and (ii) of Theorem 1.6. Unfortunately, we do not know how to establish total
ergodicity of the ergodic components of Furstenberg systems of the Liouville
function. (For the Möbius function this property is not even true.) In order
to overcome this obstacle we use a more complicated line of arguing, which we
briefly describe next.

To prove that the system (‹X, µ̃, ‹T ) enjoys property (ii) we initially use
a structural result of Host and Kra (see Theorem 4.1 and Corollary A.6)
and an ergodic theorem (see Theorem 4.3) in order to reduce the problem
to the case where the system (X,µ, T ) is an ergodic infinite-step nilsystem (see
Lemma 4.11). In this case, we show (see Proposition 4.8) that the ergodic
components of the system (‹X, µ̃, ‹T ) are infinite-step nilsystems. The essential
role in this part of the argument plays the theory of arithmetic progressions on
nilmanifolds, which we briefly review in Appendix B. The details are given in
Section 4.

The key ingredient in the proof of property (i) is to establish that the
system (‹X, µ̃, ‹T ) satisfies a somewhat weaker property than strong stationarity;
roughly speaking, it is an inverse limit of partially strongly stationary systems
(a notion defined in Definition 5.1). We then adjust an argument of Jenvey
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[42] in order to show that such systems do not have irrational spectrum. The
details are given in Section 5.

Finally, we briefly record the input from analytic number theory needed
to carry out our analysis: The structural result of Theorem 1.6 uses some
identities of Tao for the Möbius and the Liouville function that are implicit in
[62] and were obtained from first principles using techniques from probabilistic
number theory. It also uses indirectly (via the use of Theorems 4.3 and 4.4 in
various places) the Gowers uniformity of the W -tricked von Mangoldt function
that was established in [31], [32], [34]. Theorem 1.4 does not use any other
tools from number theory. Theorems 1.1, 1.2, and 1.3 use, in addition to
the previous number theoretic tools, a recent result of Tao [62] on the two-
point correlations of the Liouville function, which in turn depends upon a
recent result of Matomäki and Radziwiłł [50] on averages of the Möbius and the
Liouville function on short intervals. This additional input from number theory
is used in order to verify that on any Furstenberg system of the Möbius (resp.
Liouville) function, a function naturally associated to µ (or λ) is orthogonal
to the rational Kronecker factor of the system; this is needed in order to verify
the hypothesis of the disjointness result stated in part (i) of Proposition 3.12.

1.3. Comparison with existing results. We say that a topological dynamical
system (Y,R) satisfies the Sarnak conjecture if for every continuous function g
on Y and every y ∈ Y , the Cesàro averages

1

N

N∑
n=1

g(Rny)µ(n)

tend to 0 as N → ∞. We say that (Y,R) satisfies the logarithmic Sarnak
conjecture if the same property holds with the logarithmic averages

1

logN

N∑
n=1

g(Rny)µ(n)

n

in place of the Cesàro averages. Note that the Sarnak conjecture for a system
implies the logarithmic Sarnak conjecture for the same system.

The Sarnak conjecture has been proved for a variety of systems, for ex-
ample nilsystems [32], some horocycle flows [6] and more general zero entropy
systems arising from homogeneous dynamics [56], certain distal systems, in
particular, some extensions of a rotation by a torus [45], [49], [67], a large class
of rank one transformations [16], [5], [19], systems generated by various substi-
tutions [14], [11], [18], [52], all automatic sequences [54], some interval exchange
transformations [5], [9], [19], some systems of number theoretic origin [4], [29],
and more. The survey article [17] contains an up-to-date list of relevant refer-
ences. In most cases the systems under consideration are uniquely ergodic. The
proof techniques vary a lot since they make essential use of special properties of
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the system at hand. However, in many cases, the proof is based upon a lemma
of Kátai [43], in a way introduced in [6], and our method is completely different.

Theorems 1.1 and 1.3 in this article allow one to deal with the vastly more
general class of zero entropy topological dynamical systems that are uniquely
ergodic or have at most countably many ergodic invariant measures. The price
to pay is that we cover only the logarithmic variant of Sarnak’s conjecture.
Modulo this shortcoming, Theorems 1.1 and 1.3 cover most of the systems
cited above and can be used to handle a wide variety of new systems. We
briefly give a non-exhaustive list of examples covered by our main results:

Systems with countable support. If Y is a countable set, then the system
(Y,R) has at most countably many ergodic invariant measures, all of them
giving rise to periodic systems. Hence, Theorem 1.1 applies and shows that the
system (Y,R) satisfies the logarithmic Sarnak conjecture. (The same conclusion
can also be obtained using [40, Th. 1.4], which deals with Cesàro averages.)
In particular, this implies that the support of the subshift generated by the
Liouville function is an uncountable set, and this is true even if we change the
values of the Liouville function on a set of logarithmic density 0.

Homogeneous dynamics. Nilsystems and several horocycle flows have zero
entropy and every point is generic for an ergodic measure; hence Theorem 1.3
applies. The same holds for more general unipotent actions on homogeneous
spaces of connected Lie groups.

Some distal systems. Our result applies for a wide family of topological
distal systems. For example, suppose that (W,T ) is a uniquely ergodic system
and (Y,R) is built from (W,T ) by a sequence of compact group extensions in
the topological sense. Then the transformation R admits a “natural” invari-
ant measure ν, and if (Y, ν,R) is ergodic, then (Y,R) is uniquely ergodic [26,
Prop. 3.10], and Theorem 1.1 applies.

Rank one transformations. Strictly speaking, rank one systems are de-
fined in a pure measure theoretical setting, but they have a natural topological
model. Most of these models (including those considered in the bibliography
cited above) are uniquely ergodic and have zero topological entropy; hence
Theorem 1.1 applies.

Subshifts with linear block growth. Let (Y,R) be a transitive subshift with
linear block growth (see Section 7). Then (Y,R) has zero topological entropy,
and by Proposition 7.1 it admits only finitely many ergodic invariant measures
(for minimal subshifts this result was already known [3]). Hence, Theorem 1.1
applies and shows that it satisfies the logarithmic Sarnak conjecture. We use
this fact in the proof of Theorem 1.2.
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Substitution dynamical systems. Theorem 1.1 applies to all systems of
primitive substitutions [58] with not necessarily constant length, because they
have zero topological entropy and are uniquely ergodic.

Interval exchange transformations. All interval exchange transformations
have zero entropy, and minimality of the interval exchange (which is equiv-
alent to the non-existence of a point with a finite orbit) implies that it has
a finite number of ergodic invariant measures [44], [65]. Hence, Theorem 1.1
applies and shows that all minimal interval exchange transformations satisfy
the logarithmic Sarnak conjecture.

Finite rank Bratteli-Vershik dynamical systems. Theorem 1.1 applies to
all finite rank Bratteli-Vershik dynamical systems [7] (minimality is part of
their defining properties) because they have zero entropy and finitely many
ergodic invariant measures. This class contains all the examples mentioned in
the previous two classes.

Although the class of topological dynamical systems to which Theorem 1.4
applies is more restrictive (due to our total ergodicity assumption), it is still
large. For instance, totally ergodic nilsystems, several horocycle flows, several
distal systems as the ones described above, some classical rank one transforma-
tions (for example, the Chacon system), and typical interval exchange trans-
formations, have zero topological entropy and are uniquely ergodic and totally
ergodic; hence Theorem 1.4 applies.

1.4. Further comments and some conjectures. Theorems 1.1, 1.3, and 1.4
deal with logarithmic averages rather than the more standard Cesàro averages.
This is necessary for our proof since on the first step of our argument we use
the identities of Tao stated in Theorem 3.6, and these are only known in a form
useful to us for logarithmic averages.

If one shows that Furstenberg systems of the Liouville function have no
rational spectrum except 1, then Theorem 1.4 can be proved for the Liouville
function for any y ∈ Y that is generic for a measure ν such that the system
(Y, ν, S) has zero entropy and at most countably many ergodic components and
all g ∈ C(Y ) with

∫
g dν = 0.

Theorem 1.3 handles the case where a point y ∈ Y is generic (or quasi-
generic) for a measure ν such that the system (Y, ν, S) has zero entropy and
at most countably many ergodic components. But if (Y, ν, S) has uncountably
many ergodic components, our argument falls apart. A particular instance is
the following one: Let (αk)k∈N be a sequence that is equidistributed in T, and
suppose that the finite sequences (nαk)n∈[k2,(k+1)2), k ∈ N, are asymptotically
equidistributed in T as k →∞, meaning, limk→∞

1
2k+1

∑
k2≤n<(k+1)2 f(nαk) =
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∫
f dmT for every f ∈ C(T). We let

y0(n) :=
∞∑
k=1

e2πinαk 1[k2,(k+1)2)(n), n ∈ N,

and y0(n) := 1 for n ≤ 0. Let S be the unit circle, Y = SZ, R : Y → Y be the
shift transformation, and let g ∈ C(Y ) be defined by g(y) := y(0) for y ∈ Y .
Note that y0(n) = g(Rny0) for every n ∈ Z. We claim that the point y0 ∈ Y
is generic for some invariant measure ν on Y and that the system (Y, ν,R) is
measure-theoretically isomorphic to the system (T2,mT2 , T ), where mT2 is the
Haar measure of T2 and T : T2 → T2 is defined by

T (s, t) := (s, t+ s), s, t ∈ T.

Assuming the claim for the moment, we easily conclude that the system (Y, ν,R)

has zero entropy, no eigenvalue other than 1, uncountably many ergodic com-
ponents, and is disjoint from every ergodic system. Our methods do not al-
low us to prove that this system is disjoint from Furstenberg systems of the
Möbius or the Liouville function or that the logarithmic averages of y0(n)µ(n)

or y0(n)λ(n) are 0.
To prove the claim, define the map φ : T2 → S by φ(s, t) := e2πit, for

s, t ∈ T, and the map Φ: T2 → Y by (Φ(s, t))(n) = φ(Tn(s, t)) := e2πi(t+ns)

for n ∈ Z, s, t ∈ T. We have Φ ◦ T = R ◦ Φ, and the image ν of the measure
mT2 under Φ is invariant under R. Moreover, φ(T (s, t))φ(s, t) = e2πis, and it
follows that Φ is one-to-one and thus is an isomorphism from (T2,mT2 , T ) to
(Y, ν,R). It remains to show that the point y0 is generic for the measure ν.
For m ∈ N, let `−m, . . . , `m ∈ Z, and define

F (y) :=
m∏

j=−m
y(j)`j for y = (y(n))n∈Z ∈ Y.

Then by a direct computation it is not hard to verify that

lim
N→∞

1

N

N∑
n=1

F (Rny0) = lim
N→∞

1

N

N∑
n=1

m∏
j=−m

y0(n+ j)`j

=

∫
T2

m∏
j=−m

e2πi(t+js)`j ds dt =

∫
T2
F ◦ Φ dmT2 =

∫
Y
F dν.

By linearity and density, the same formula holds for every continuous function
F on Y , and the claim follows.

We would also like to remark that it is consistent with existing knowledge
(though highly unlikely) that some Furstenberg system of the Liouville function
is isomorphic to the low complexity system (T2,mT2 , T ) described above. Here
is a related problem:
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Problem. Let φ : T→ {−1, 1} be the function defined by φ(t) := 1[0,1/2)(t)

− 1[1/2,1)(t). Show that the following identity cannot hold:

lim
N→∞

1

N

N∑
n=1

∏̀
j=1

λ(n+ hj) =

∫
T2

∏̀
j=1

φ(t+ hjs) dt ds

for all ` ∈ N and h1, . . . , h` ∈ Z.

In the initial step of our argument (Proposition 3.9) we make essential use
of the fact that µ and λ are equal to −1 on the primes. But we expect the
conclusion of Theorem 1.6 to remain valid even when one uses an arbitrary
multiplicative function f : N→ [−1, 1] in place of µ and λ. In fact, we expect
ergodicity in all cases, and we conjecture the following:

Conjecture 1. Every multiplicative function f : N→ [−1, 1] has a unique
Furstenberg system.2 This system is ergodic and isomorphic to the direct prod-
uct of a Bernoulli system and an ergodic odometer.3

Note that all three possibilities can occur; for example, it is known that the
Furstenberg system of µ2 (called the square-free system) is an ergodic odome-
ter [8], and conditional to the Chowla conjecture it is known that the Fursten-
berg system of the Liouville function λ is isomorphic to a Bernoulli system
and the Furstenberg system of the Möbius function µ is a relatively Bernoulli
extension over the procyclic factor induced by µ2 (see [15, Lemma 4.6]).

How do we then distinguish (at least conjecturally) between the possi-
ble structures of the Furstenberg system of a multiplicative function f : N →
[−1, 1]? It seems easier to do this when f takes values in {−1, 1}, in which case
we expect the following dichotomy:

Conjecture 2. The Furstenberg system of a multiplicative function f : N
→ {−1, 1} is either a Bernoulli system or an ergodic odometer. Moreover, it is
a Bernoulli system if and only if f is aperiodic.

Aperiodicity, which is also often referred to as non-pretentiousness, means
that the averages 1

N

∑N
n=1 f(an + b) converge to 0 as N → ∞ for all a, b ∈ N.

It can be shown that the Furstenberg system of a zero mean multiplicative
function f : N → {−1, 1} is Bernoulli if and only if all multiple correlations of
distinct shifts of f vanish. When one works with logarithmic averages, Tao
showed in [63] (when f = λ, but his argument applies with some modifications

2Equivalently, the point (f(n))n∈N is generic for some measure on the sequence space
[−1, 1]N.

3An ergodic odometer is an ergodic inverse limit of periodic systems, or equivalently, an
ergodic system (X,µ, T ) for which the rational eigenfunctions span a dense subspace of L2(µ).
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for general multiplicative f : N→ {−1, 1}; see [22, Th. 1.8]) that this is equiv-
alent to asserting that f satisfies the Sarnak conjecture. So for multiplicative
functions f : N→ {−1, 1},
• aperiodicity,
• Bernoullicity of the corresponding Furstenberg system,
• f satisfies the logarithmic Chowla conjecture, and
• f satisfies the logarithmic Sarnak conjecture
are expected to be equivalent properties. Of course, none of the last three
properties is known unconditionally even for the Liouville function. (Only
aperiodicity is known.)

1.5. Notation and conventions. For the reader’s convenience, we gather
here some notation used throughout the article.

We write T = R/Z and S for the unit circle. For t ∈ R or T, we write
e(t) := e2πit.

We denote by N the set of positive integers and by P the set of prime
numbers. For N ∈ N, we denote by [N ] the set {1, . . . , N}. Whenever we write
N we mean a sequence of intervals of integer ([Nk])k∈N with Nk →∞.

Unless otherwise specified, with `∞(Z) we denote the space of all bounded,
real valued, doubly infinite sequences.

If A is a finite non-empty set, we let En∈A := 1
|A|
∑
n∈A.

With (Y,R) we denote the topological dynamical system used to define the
weight in the formulation of Theorems 1.1, 1.3, and 1.4; it sometimes comes
equipped with an R-invariant measure ν.

With (X,µ, T ) we denote a Furstenberg system of the Möbius or the Li-
ouville function, and we also use the same notation when we study properties
of abstract measure preserving systems.

With (XZ, µ̃, S) we denote the system of arithmetic progressions with
prime steps associated with a system (X,µ, T ).

1.6. Acknowledgement. We would like to thank F. Durand, B. Kra,
M. Lemańczyk, and P. Sarnak for useful remarks. The second author thanks
the CMM – Universidad de Chile for its hospitality and support.

2. Background in ergodic theory

We gather here some basic background in ergodic theory and related no-
tation used throughout the article.

Topological dynamical systems. A topological dynamical system (X,T ) is
a compact metric space endowed with a homeomorphism T : X → X. It is
topologically transitive if it has at least one dense orbit under T , and it is
minimal if each orbit is dense.



THE LOGARITHMIC SARNAK CONJECTURE FOR ERGODIC WEIGHTS 881

If (X,T ) and (Y, S) are two topological dynamical systems, then the second
system is a factor of the first if there exists a map π : X → Y , continuous and
onto, such that S ◦ π(x) = π ◦ T (x) for every x ∈ X. If the factor map π is
injective, then the two systems are isomorphic.

Measure preserving systems. Throughout the article, we make the stan-
dard assumption that all probability spaces (X,X , µ) considered are Lebesgue,
meaning, X can be given the structure of a compact metric space and X is its
Borel σ-algebra. A measure preserving system, or simply a system, is a quadru-
ple (X,X , µ, T ), where (X,X , µ) is a probability space and T : X → X is an
invertible, measurable, measure preserving transformation. We often omit the
σ-algebra X and write (X,µ, T ). Throughout, for n ∈ N, we denote with Tn

the composition T ◦ · · · ◦ T (n times), and let T−n := (Tn)−1 and T 0 := idX .
Also, for f ∈ L1(µ) and n ∈ Z, we denote by Tnf the function f ◦ Tn.

Factors and isomorphisms. A homomorphism, also called a factor map,
from a system (X,X , µ, T ) onto a system (Y,Y, ν, S) is a measurable map
π : X → Y , such that µ ◦ π−1 = ν and with S ◦ π = π ◦ T valid µ-almost
everywhere. When we have such a homomorphism we say that the system
(Y,Y, ν, S) is a factor of the system (X,X , µ, T ). If the factor map π : X → Y

is invertible,4 we say that π is an isomorphism and that the systems (X,X , µ, T )

and (Y,Y, ν, S) are isomorphic.
If π : (X,X , µ, T ) → (Y,Y, ν, S) is a factor map and φ ∈ L1(µ), the func-

tion Eµ(φ | Y ) in L1(ν) is determined by the property
∫
A Eµ(φ | Y ) dν =∫

π−1(A) φdµ for every A ∈ Y.
If π : (X,X , µ, T )→(Y,Y, ν, S) is a factor map, then π−1(Y) is a T -invariant

sub-σ-algebra of X . Conversely, for any T -invariant sub-σ-algebra Y ′ of X ,
there exists a factor map π : (X,X , µ, T ) → (Y,Y, ν, S) with Y ′ = π−1(Y) up
to µ-null sets. This factor is unique up to isomorphism, and we call it the
factor associated with (or induced by) Y ′. See [66, §2.3] or [13, §6.2] for details.
When there is no danger of confusion, we may abuse notation and denote the
transformation S on Y by T . We pass constantly from invariant sub-σ-algebras
to factors, the convention being that the factors associated to the σ-algebras
Y,Z, . . . , are written Y,Z, . . . .

We will sometimes abuse notation and use the sub-σ-algebra Y in place of
the subspace L2(X,Y, µ). For example, if we write that a function is orthogonal
to Y, we mean that it is orthogonal to the subspace L2(X,Y, µ).

Spectrum. Let (X,µ, T ) be a system. For t ∈ T, we say that e(t) is an
eigenvalue of the system if there exists a non-identically zero function f ∈

4Meaning that there exists a factor map Y → X, written π−1, with π−1 ◦ π = idX valid
µ-almost everywhere. (This implies that π ◦ π−1 = idY holds ν-almost everywhere.)
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L2(µ) such that Tf = e(t)f , in which case we say that f is an eigenfunction
associated to the eigenvalue e(t). We call the eigenvalue e(t) rational if t is
rational and irrational otherwise. The spectrum of the system is the subset of
T consisting of all eigenvalues, and we define the rational and the irrational
spectrum to be the subset of the spectrum consisting of all rational (resp.
irrational) eigenvalues. With Krat(T ) we denote the rational Kronecker factor
of (X,X , µ, T ); it is the smallest T -invariant sub-σ-algebra of X with respect to
which all eigenfunctions with rational eigenvalues are measurable. The linear
span of these eigenfunctions is dense in L2(X,Krat(T ), µ).

Ergodicity and ergodic decomposition. A system (X,µ, T ) is ergodic if all
functions f ∈ L1(µ) that satisfy Tf = f are constant. It is totally ergodic if
(X,µ, T d) is ergodic for every d ∈ N, equivalently, if it is ergodic and has no
rational spectrum except 1.

Let (X,X , µ, T ) be a system, and let π : (X,X , µ, T ) → (Ω,O, P, T ) be
the factor map associated to the σ-algebra of T -invariant sets of X. Then the
disintegration of µ over P ,

(5) µ =

∫
Ω
µω dP (ω),

is called the ergodic decomposition of µ under T (see [28, Th. 3.22]). The
following properties hold:
• T acts as the identity on Ω;
• the map ω 7→ µω is a measurable map from Ω to the set of ergodic T -invariant
measures on X;
• the decomposition (5) is unique in the following sense: if (Y,Y, ν) is a prob-
ability space and y 7→ µ′y is a measurable map from Y into the set of ergodic
measures on X such that µ =

∫
Y µ
′
y dν(y), then there exists a measur-

able map φ : Y → Ω, mapping the measure ν to the measure P , such that
µφ(y) = µ′y for ν-almost every y ∈ Y .
We call the systems (X,X , µω, T ), ω ∈ Ω, the ergodic components of

(X,X , µ, T ).

Unique ergodicity. A topological dynamical system (X,T ) is uniquely er-
godic if there is a unique T -invariant Borel probability measure on X.

Bernoulli systems. For the purposes of this article, a Bernoulli system has
the form (XZ,BXZ , ν, S), where (X,X , ρ) is a probability space, S is the shift
transformation onXZ, BXZ is the product σ-algebra ofXZ, and ν is the product
measure ρZ.

Nilsystems. Let s ∈ N, G be an s-step nilpotent Lie group and Γ be a
discrete cocompact subgroup of G. Then the quotient space X = G/Γ is called
an s-step nilmanifold. We denote the elements of X as points x, y, . . . , not as
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cosets. The point eX is the image in X of the unit element of G. The natural
action of G on X is written (g, x) 7→ g · x, and the unique Borel measure on
X that is invariant under this action is called the Haar measure of X and is
denoted by µX . If a ∈ G, then the transformation T : X → X defined by
Tx = ax, x ∈ X, is called a nilrotation of X, and the system (X,X , µX , T ),
where X is the Borel-σ-algebra of X, is called an s-step nilsystem. When we
do not care about the degree of nilpotency s, we simply call it a nilsystem. It
is well known that if T is a nilrotation on X, then the statements (X,T ) is
topologically transitive, (X,T ) is minimal, (X,µX , T ) is ergodic, and (X,T ) is
uniquely ergodic, are equivalent. Moreover, an ergodic nilsystem (X,µX , T ) is
totally ergodic if and only if the nilmanifold X is connected.

Joinings and disjoint systems. Let (X,X , µ, T ) and (Y,Y, ν, S) be two sys-
tems. We call a measure ρ on (X × Y,X × Y) a joining of the two systems
if it is T × S invariant and its projection onto the X and Y coordinates are
the measures µ and ν respectively. We say that the systems on X and on Y
are disjoint if the only joining of the systems is the product measure µ× ν. If
two systems are disjoint, then they have no non-trivial common factor, but the
converse is not true. It is well known that every Bernoulli system is disjoint
from every zero-entropy system; we will use the zero entropy assumption in the
proofs of our main results only via this property.

3. Overview of the proof and reduction to an ergodic statement

In this section we give an overview of the proof of our main results and
eventually reduce to some statements of purely ergodic context, which we es-
tablish in Sections 4–6. In Section 3.2 we define the notion of a Furstenberg
system of an arbitrary bounded sequence. In Section 3.4 we reproduce some
striking identities of Tao that are implicit in [62] and we use them in Section 3.5
in order to show that a Furstenberg system of the Liouville function is a factor
of a measure preserving system of purely ergodic origin; we call it the “system
of arithmetic progressions with prime steps.” In Section 3.6 we state our main
structural results for such systems, and we use them in Section 3.7 in order to
get similar structural results for Furstenberg systems of the Möbius and the
Liouville function, thus proving Theorem 1.6. In Section 3.8 we state a dis-
jointness result that we use in Section 3.9 in order to prove Theorems 1.1, 1.3,
and 1.4.

3.1. Notation regarding averages. For N ∈ N, we let [N ] = {1, . . . , N}.
For an arbitrary bounded sequence a = (a(n))n∈N, we write

En∈[N ] a(n) :=
1

N

N∑
n=1

a(n) and En∈N a(n) := lim
N→∞

En∈[N ] a(n)
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if this limit exists. Let N = ([Nk])k∈N be a sequence of intervals with Nk →∞.
For an arbitrary bounded sequence a = (a(n))n∈N, we write

En∈N a(n) := lim
k→∞

En∈[Nk] a(n)

if this limit exists and

Elog
n∈[Nk] :=

1

logNk

Nk∑
n=1

a(n)

n
, Elog

n∈N a(n) := lim
k→∞

Elog
n∈[Nk] a(n)

if this limit exists. If (a(p))p∈P is a sequence indexed by the primes, we write

Ep∈P a(p) := lim
N→∞

1

π(N)

∑
p≤N

a(p),

where π(N) denotes the number of prime numbers less than N , if this limit
exists.

Using partial summation one easily verifies that for a bounded sequence
(a(n))n∈N, convergence of the Cesàro averages En∈[N ] a(n) implies convergence
of the logarithmic averages Elog

n∈[N ] a(n) as N → ∞, but the converse does
not hold. Moreover, the direct implication does not hold if we average over
subsequences of intervals.

3.2. Furstenberg systems of bounded sequences. To each bounded sequence
that is distributed “regularly” along a sequence of intervals with lengths increas-
ing to infinity, we associate a measure preserving system. For the purposes of
this article, all averages in the definition of Furstenberg systems of bounded
sequences are taken to be logarithmic and we restrict to real valued bounded
sequences.

Definition 3.1. Let N :=([Nk])k∈N be a sequence of intervals with Nk→∞.
We say that the real valued sequence a ∈ `∞(Z) admits log-correlations on N

if the following limits exist:

lim
k→∞

Elog
n∈[Nk] a(n+ h1) · · · a(n+ h`)

for every ` ∈ N and h1, . . . , h` ∈ Z (not necessarily distinct).

Remarks. • If a ∈ `∞(Z), then using a diagonal argument we get that
every sequence of intervals N = ([Nk])k∈N has a subsequence N′ = ([N ′k])k∈N,
such that the sequence a ∈ `∞(Z) admits log-correlations on N′.

• If a(n) is only defined for n ∈ N, we extend it in an arbitrary way to Z
and define the analogous notion. Then all the limits above do not depend on
the choice of the extension.

The correspondence principle of Furstenberg was originally used in [25]
in order to restate Szemerédi’s theorem on arithmetic progressions in ergodic
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terms. We will use the following variant of this principle, which applies to
general real valued bounded sequences:

Proposition 3.2. Let a ∈ `∞(Z) be a real valued sequence that admits log-
correlations on N := ([Nk])k∈N . Then there exist a topological system (X,T ), a
T -invariant Borel probability measure µ, and a real valued T -generating function
F0 ∈ C(X),5 such that

(6) Elog
n∈N

∏̀
j=1

a(n+ hj) =

∫ ∏̀
j=1

T hjF0 dµ

for every ` ∈ N and h1, . . . , h` ∈ Z.

Definition 3.3. Let a ∈ `∞(N) be a real valued sequence that admits log-
correlations on N := (Nk)k∈N. We call the system (or the measure µ) defined in
Proposition 3.2 the Furstenberg system (or measure) associated with a and N.

Remarks. • Given a ∈ `∞(Z) andN, the measure µ is uniquely determined
by (6) since this identity determines the values of

∫
f dµ for all real valued

f ∈ C(X).
• A priori a sequence a ∈ `∞(Z) may have several, perhaps uncountably

many, non-isomorphic Furstenberg systems depending on which sequence of
intervals N we use in the evaluation of the log-correlations of the sequence
a ∈ `∞(Z). When we write that a Furstenberg measure or system of a sequence
has a certain property, we mean that any of these measures or systems has the
asserted property.

In the construction of the Furstenberg system (X,X , µ, T ) we can take X
to be the compact metric space IZ (with the product topology), where I is
any closed and bounded interval containing the range of (a(n))n∈Z, X to be
the Borel-σ-algebra of IZ, and T to be the shift transformation on IZ. Points
of X are written as x = (x(n))n∈Z, and we let F0(x) := x(0), x ∈ X. Then
F0 ∈ C(X) and F0 is T -generating. We consider the sequence a = (a(n))n∈Z
as a point of X. Our hypothesis implies that the measures

(7) Elog
n∈[Nk]δTna, k ∈ N,

converge weak-star as k →∞ to a measure µ on X, and this measure is clearly
T -invariant and satisfies (6). Indeed, if F =

∏`
j=1 T

hjF0, then F ∈ C(X)

5A real valued function F0 ∈ C(X) is T -generating if the functions TnF0, n ∈ Z, separate
points of X. By the Stone-Weierstrass theorem, this holds if and only if the T -invariant
subalgebra generated by F0 is dense in C(X) (we restrict to real valued functions) with the
uniform topology.
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and F (Tna) =
∏`
j=1 a(n + hj), n ∈ N, and the weak-star convergence of the

measures in (7) to µ gives identity (6).
In this article we are mostly interested in applying the previous result

when a = µ, in which case we take X := {−1, 0, 1}Z. For every h ∈ Z, we
write Fh : X → {−1, 0, 1} for the function given by

Fh(x) := x(h), x ∈ X.

Then for every h ∈ Z, we have Fh = T hF0. If (X,X , µ, T ) is the Furstenberg
system associated with the Möbius function and the sequence N, by Proposi-
tion 3.2 we have∫ ∏̀

j=1

Fhj (x) dµ(x) =

∫ ∏̀
j=1

T hjF0 dµ = Elog
n∈N

∏̀
j=1

µ(n+ hj)

for every ` ∈ N and h1, . . . , h` ∈ Z.

3.3. A convergence result for multiple correlation sequences. We will make
use of the following consequence of Theorem 4.3 below:

Proposition 3.4. Suppose that the sequence a ∈ `∞(Z) admits log-cor-
relations on the sequence of intervals N. Then the limit

Ep∈P
(
Elog
n∈N

∏̀
j=1

a(n+ phj)
)

exists for all ` ∈ N and h1, . . . , h` ∈ Z.

Proof. Let (X,X , µ, T ) be the Furstenberg system associated with a ∈
`∞(Z) and N, and also let F0 ∈ L∞(µ) be as in Proposition 3.2. Using The-
orem 4.3 in Section 4.1.2 we get that for every ` ∈ N and h1, . . . , h` ∈ Z, the
limit

Ep∈P
∫ ∏̀

j=1

T phjF0 dµ

exists. By (6) we can replace
∫ ∏`

j=1 T
phjF0 dµ by Elog

n∈N
∏`
j=1 a(n+ phj), and

we arrive to the asserted conclusion. �

3.4. Tao’s identities. A key tool in our argument is the following rather
amazing identity, which is implicit in [62]:

Theorem 3.5 (Tao’s identity for general sequences). Let N = ([Nk])k∈N
be a sequence of intervals with Nk → ∞, a ∈ `∞(Z) be a sequence (perhaps
complex valued), and ` ∈ N, h1, . . . , h` ∈ Z. If we assume that on the left- and
right-hand sides below the limits Elog

n∈N exist for every p ∈ P and the limit Ep∈P
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exists, then we have the identity

Ep∈P
(
Elog
n∈N

∏̀
j=1

a(pn+ phj)
)

= Ep∈P
(
Elog
n∈N

∏̀
j=1

a(n+ phj)
)
.

We give a sketch of the proof of a more general identity in Appendix C;
the argument is almost entirely based on the argument given by Tao in [62].

Using the previous result we verify the following identities for the Möbius
and the Liouville function:

Theorem 3.6 (Tao’s identity for µ and λ). Suppose that the Möbius func-
tion µ admits log-correlations on the sequence of intervals N. Then we have

Elog
n∈N

∏̀
j=1

µ(n+ hj) = (−1)` Ep∈P
(
Elog
n∈N

∏̀
j=1

µ(n+ phj)
)

for all ` ∈ N and h1, . . . , h` ∈ Z; in particular, the limit Ep∈P on the right-hand
side exists. A similar statement holds for the Liouville function λ.

Proof. We first check the identity for the Liouville function. We verify that
the hypothesis of Theorem 3.5 applies for a := λ. The limit Elog

n∈N on the left-
and right-hand sides exists for every p ∈ P since λ admits log-correlations on N

and it is completely multiplicative. Moreover, using complete multiplicativity,
the left-hand side becomes (−1)` Elog

n∈N
∏`
j=1 λ(n+ hj). The right-hand side is

Ep∈P
(
Elog
n∈N

∏`
j=1 λ(n+phj)

)
; note that the existence of the limit Ep∈P follows

from Proposition 3.4. So Theorem 3.5 applies for a := λ and gives the asserted
identity.

The argument is slightly more complicated for the Möbius function be-
cause in this case we lose complete multiplicativity. Arguing by contradic-
tion, suppose that the asserted estimate fails. Then there exist a subsequence
N′ := ([N ′k])k∈N of N := ([Nk])k∈N and ` ∈ N, h1, . . . , h` ∈ Z, such that the
limit Elog

n∈N′
∏`
j=1 µ(pn+ phj) exists for every p ∈ P, and we have

(8) Elog
n∈N′

∏̀
j=1

µ(n+ hj) 6= (−1)` Ep∈P
(
Elog
n∈N′

∏̀
j=1

µ(n+ phj)
)
.

Note that the existence of the limit Ep∈P on the right-hand side follows again
from Proposition 3.4. For j = 1, . . . , ` and p ∈ P, we have µ(pn + phj) =

−µ(n+ hj) unless n+ hj ≡ 0 (mod p). For p ∈ P, this leads to the identity

Elog
n∈N′

∏̀
j=1

µ(pn+ phj) = (−1)` Elog
n∈N′

∏̀
j=1

µ(n+ hj) +O(1/p),
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where the implicit constant depends only on `. Averaging over p ∈ P we get

(9) Ep∈P
(
Elog
n∈N′

∏̀
j=1

µ(pn+ phj)
)

= (−1)` Elog
n∈N′

∏̀
j=1

µ(n+ hj);

in particular, the limit Ep∈P on the left-hand side exists. So Theorem 3.5 applies
for a := µ and the sequence of intervals I′, and it gives that

Ep∈P
(
Elog
n∈N′

∏̀
j=1

µ(pn+ phj)
)

= Ep∈P
(
Elog
n∈N′

∏̀
j=1

µ(n+ phj)
)
.

Combining this identity with (9) we get an identity that contradicts (8). This
completes the proof. �

Using Theorem 3.6 we immediately deduce the following identities for
Furstenberg systems of the Möbius and the Liouville function:

Theorem 3.7 (Ergodic form of Tao’s identities for µ and λ). Suppose that
(X,X , µ, T ) is a Furstenberg system of the Möbius or the Liouville function, and
let F0 be as in Proposition 3.2. Then the limit in the right-hand side below exists
and we have

(10)
∫ ∏̀

j=1

T hjF0 dµ = (−1)` Ep∈P
∫ ∏̀

j=1

T phjF0 dµ

for all ` ∈ N and h1, . . . , h` ∈ Z.

Henceforth, our goal is to describe the structure of measure preserving
systems that satisfy the identities in (10) for some T -generating function F0 ∈
C(X). For technical reasons, it is essential for us to work with suitable exten-
sions of such systems, which we describe in the next subsection. Our main task
will then be to get structural results for these extended systems.

3.5. The system of arithmetic progressions with prime steps. Motivated by
Theorem 3.7, given a system (X,µ, T ), we are going to construct a new system
on the space XZ by averaging the prime dilates of correlations of the system
on the space X. Since in some cases X is itself a sequence space with elements
denoted by x = (x(n))n∈Z, we denote elements of XZ by x = (xn)n∈Z.

Definition 3.8. Let (X,X , µ, T ) be a system, and let XZ be endowed with
the product σ-algebra. We write µ̃ for the measure on XZ characterized as
follows: For every m ∈ N and all f−m, . . . , fm ∈ L∞(µ), we define

(11)
∫
XZ

m∏
j=−m

fj(xj) dµ̃(x) := Ep∈P
∫
X

m∏
j=−m

T pjfj dµ.

Note that the limit above exists by Theorem 4.3 in Section 4.1.2. Using the
identity

∫
X

∏m
j=−m T

p(j+1)fj dµ =
∫
X

∏m
j=−m T

pjfj dµ, we get that the measure
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µ̃ is invariant under the shift transformation S on XZ. We say that (XZ, µ̃, S)

is the system of arithmetic progressions with prime steps associated with the
system (X,µ, T ).

We return now to the case where (X,µ, T ) is a Furstenberg system of the
Liouville function and make the following key observation:

Proposition 3.9. A Furstenberg system (X,µ, T ) of the Möbius or the
Liouville function is a factor of the associated system (XZ, µ̃, S) of arithmetic
progressions with prime steps.

Remark. The fact that the Möbius and the Liouville function is −1 on
primes is crucial for the proof of this result and is used via the identity (10).
In fact, our argument also works for all bounded multiplicative functions that
take the value −1 on a subset of the primes with relative density 1.

Proof. We can take X = {−1, 0, 1}Z. We define the map π : XZ → X as
follows: For x = (xn)n∈Z ∈ XZ, let

(π(x))(n) := −xn(0) = −F0(xn), n ∈ Z,

where, as usual, Fh(x) = x(h), x ∈ X, h ∈ Z. For n ∈ Z, we then have

(π(Sx))(n) = −F0((Sx)n) = −F0(xn+1) = (π(x))(n+ 1) = (Tπ(x))(n).

Thus
π ◦ S = T ◦ π.

Next, we claim that µ̃ ◦ π−1 = µ. Indeed, for every ` ∈ N and h1, . . . , h`
∈ Z, by identity (10) in Theorem 3.5 and the definition (11) of µ̃, we have

∫
X

∏̀
j=1

Fhj (x) dµ(x) =

∫
X

∏̀
j=1

F0(T hjx) dµ(x)

= (−1)` Ep∈P
∫
X

∏̀
j=1

F0(T phjx) dµ(x)

= (−1)`
∫
XZ

∏̀
j=1

F0(xhj ) dµ̃(x)

=

∫
XZ

∏̀
j=1

Ä
−F0(xhj )

ä
dµ̃(x) =

∫
XZ

∏̀
j=1

(Fhj ◦ π)(x) dµ̃(x).

Since the algebra generated by the functions Fh, h ∈ Z, is dense in C(X) with
the uniform topology, the claim follows.

Therefore, π : (XZ, µ̃, S) → (X,µ, T ) is a factor map and the proof is
complete. �
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From this point on we work with abstract systems of arithmetic progres-
sions with prime steps and use Proposition 3.9 in order to transfer any struc-
tural result we get to a structural result for Furstenberg systems of the Möbius
and the Liouville function.

3.6. Structure of systems of arithmetic progressions with prime steps. We
state our main structural results for abstract systems of arithmetic progressions
with prime steps. In Section 4 we show

Theorem 3.10. Let (X,µ, T ) be a system. Then almost every ergodic
component of the system (XZ, µ̃, S), of arithmetic progressions with prime steps,
is isomorphic to a direct product of an infinite-step nilsystem and a Bernoulli
system.

In Section 5 we show

Theorem 3.11. Let (X,µ, T ) be a system. Then the system (XZ, µ̃, S),
of arithmetic progressions with prime steps, has no irrational spectrum.

We also establish similar results for systems of arithmetic progressions with
integer steps (see Definition 4.2).

3.7. Proof of Theorem 1.6 assuming the preceding material. Combining
Proposition 3.9 and Theorem 3.11, we get that any Furstenberg system of the
Möbius or the Liouville function is a factor of a system with no irrational spec-
trum (and hence has no irrational spectrum), thus establishing property (i)
of Theorem 1.6. Combining Proposition 3.9 and Theorem 3.10, we get prop-
erty (ii) of Theorem 1.6. �

3.8. Disjointness. As we previously remarked, our proof strategy for The-
orems 1.1, 1.3, and 1.4 is to study the structure of Furstenberg systems of the
Möbius and the Liouville function in enough detail to enable us to prove a
useful disjointness result. The relevant disjointness result is the following one
and is proved in Section 6:

Proposition 3.12. Let (X,µ, T ) be a system with ergodic components
isomorphic to direct products of infinite-step nilsystems and Bernoulli systems.
Let (Y, ν,R) be an ergodic system of zero entropy.

(i) If the two systems have disjoint irrational spectrum, then for every joining
σ of the two systems and function f ∈ L∞(µ) orthogonal to Krat(T ), we
have ∫

f(x) g(y) dσ(x, y) = 0

for every g ∈ L∞(ν).



THE LOGARITHMIC SARNAK CONJECTURE FOR ERGODIC WEIGHTS 891

(ii) If the two systems have no common eigenvalue except 1, then they are dis-
joint.

We will use the following direct consequence:

Corollary 3.13. Proposition 3.12 holds under the weaker assumption
that (Y, ν,R) is a zero entropy system with at most countably many ergodic
components.

Proof. Let ν =
∑
j∈J cjνj be the ergodic decomposition of ν under R,

where J is a finite or an infinite countable set, cj > 0,
∑
j∈J cj = 1, and νj ,

j ∈ J , are ergodic R-invariant measures. Let Y = ∪j∈JYj be a partition of Y
into R-invariant subsets such that for every j ∈ J , we have νj(Yj) = 1.

Let σ be a joining of the systems (X,µ, T ) and (Y, ν,R). For j ∈ J , we
let σj := 1

cj
1X×Yj · σ and µj be the image of σj under the projection of X × Y

on X. Then for j ∈ J , we have that µj is a T -invariant probability measure
on X, the image of σj under the projection of X × Y onto Y is νj , and σj is a
joining of the systems (X,µj , T ) and (Y, νj , R).

For j ∈ J , the measure νj is absolutely continuous with respect to ν

and thus the spectrum of (Y, νj , R) is contained in the spectrum of (Y, ν,R).
Similarly, for j ∈ J , the measure µj is absolutely continuous with respect to µ
and thus the spectrum of (X,µj , T ) is contained in the spectrum of (X,µ, T ).
Moreover, every ergodic component of µj is an ergodic component of µ and
thus is isomorphic to the direct product of an infinite-step nilsystem and a
Bernoulli system.

In case (i), suppose that f ∈ L∞(µ) is orthogonal to Krat(X,µ, T ). This
means that f is orthogonal in L2(µ) to every eigenfunction of (X,µ, T ) cor-
responding to a rational eigenvalue. It follows that for every j ∈ J , the
function f is orthogonal in L2(µj) to every eigenfunction of (X,µj , T ) cor-
responding to a rational eigenvalue, and by part (i) of Proposition 3.12 we
have

∫
f(x) g(y) dσj(x, y) = 0 for every g ∈ L∞(νj). Summing up, we obtain∫

f(x) g(y) dσ(x, y) = 0 for every g ∈ L∞(ν).
In case (ii), for every j ∈ J the systems (X,µj , T ) and (Y, νj , R) have

no common eigenvalue except 1, and thus they are disjoint by part (ii) of
Proposition 3.12. Therefore, for every j ∈ J , the measure σj defined above
is equal to µj × νj . Summing up, we obtain σ = µ × ν. This completes the
proof. �

3.9. Proof of Theorem 1.3 assuming the preceding material. We consider
only the case of the Möbius function; the proof for the Liouville function is
identical.

Arguing by contradiction, suppose that the conclusion of Theorem 1.3 fails.
Then there exist a topological dynamical system (Y,R), a point y0 ∈ Y generic
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for a measure ν such that the system (Y, ν,R) has zero entropy and at most
countably many ergodic components, and a function g0 ∈ C(Y ) such that the
averages

(12) Elog
n∈[N ]g0(Rny0)µ(n)

do not converge to 0 as N →∞. Hence, there exists a sequence N = (Nk)k∈N
of intervals with Nk →∞ such that the limit

(13) Elog
n∈N g0(Rny0)µ(n) = lim

k→∞
Elog
n∈[Nk] g0(Rny0)µ(n)

exists and is non-zero. After passing to a subsequence, which we also denote
by N, we can further assume that the limit

(14) Elog
n∈N g(Rny0)

∏̀
j=1

µ(n+ hj)

exists for every ` ∈ N, h1, . . . , h` ∈ Z, and g ∈ C(Y ).
Let X := {−1, 0, 1}Z, T : X → X be the shift transformation, and let

x0 ∈ X be defined by x0(n) = µ(n), n ∈ Z. Then the convergence (14) implies
that for every ` ∈ N, h1, . . . , h` ∈ Z, and every g ∈ C(Y ), the limit

Elog
n∈N g(Rny0)

Ä∏̀
j=1

Fhj
ä
(Tnx0)

exists. (Recall that Fh(x) = x(h), x ∈ X, h ∈ Z.) Since the algebra generated
by the functions Fh, h ∈ Z, is dense in C(X) with the uniform topology, we
deduce that the sequence of measures

Elog
n∈[Nk]δ(Tnx0,Rny0), k ∈ N,

converges weak-star to some probability measure σ on X × Y that satisfies

(15) Elog
n∈N g(Rny0)

∏̀
j=1

µ(n+ hj) =

∫ ∏̀
j=1

Fhj (x) g(y) dσ(x, y)

for every ` ∈ N, h1, . . . , h` ∈ Z, and g ∈ C(Y ). By construction, σ is invariant
under T ×R.

The projection of σ on Y is the weak-star limit of the sequence of measures
Elog
n∈[Nk]δRny0 , k ∈ N, and since the point y0 is generic for ν, this measure is

equal to ν, and thus the corresponding measure preserving system has zero
entropy and at most countably many ergodic components.

The projection of σ on X is the weak-star limit of the sequence of measures
Elog
n∈[Nk]δTnx0 , k ∈ N. It is thus a T -invariant measure µ that is the Furstenberg

measure associated with µ and N by Proposition 3.2, and σ is a joining of the
systems (X,µ, T ) and (Y, ν,R).
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By Proposition 3.9 and its proof, the system (X,µ, T ) is a factor of the
system (XZ, µ̃, S), with factor map π : XZ → X given by

(π(x))(n) = −xn(0), x ∈ XZ, n ∈ Z.

We define the joining σ̃ of the systems (XZ, µ̃, S) and (Y, ν,R) by

(16)
∫
XZ×Y

f(x) · g(y) dσ̃(x, y) =

∫
X×Y

Eµ̃(f | X)(x) · g(y) dσ(x, y)

for every f ∈ L∞(µ̃) and g ∈ L∞(ν).
By Theorems 3.10 and 3.11, the system (XZ, µ̃, S) has no irrational spec-

trum and its ergodic components are isomorphic to direct products of infinite-
step nilsystems and Bernoulli systems.

We now verify that the function ‹F0 := F0 ◦ π is orthogonal to the rational
Kronecker factor of the system (XZ, µ̃, S). In fact we will show that ‹F0 is
orthogonal to the Kronecker factor of this system. By a well-known consequence
of the spectral theorem for unitary operators, this property is equivalent to
establishing that

(17) En∈N
∣∣∣∣ ∫ ‹F0 · Sn‹F0 dµ̃

∣∣∣∣ = 0.

By the definition of the measure µ̃ (see (11)) and since for h ∈ N we have‹F0(x) ‹F0(Shx) = (−F0(x0)) (−F0(xh)), we get for every n ∈ N that∫ ‹F0 · Sn‹F0 dµ̃ = Ep∈P
∫
F0 · T pnF0 dµ.

By (6), for every h ∈ N we have∫
F0 · T hF0 dµ = Elog

n∈Nµ(n)µ(n+ h) = 0,

where the vanishing of the average follows from the main result of Tao in [62].
Combining the above identities we get (17).

By Corollary 3.13, we have

0 =

∫ ‹F0(x) · g0(y) dσ̃(x, y) =

∫
F0(x) · g0(y) dσ(x, y) = Elog

n∈N g0(Rny0)µ(n)

by (15), contradicting our assumption that the limit in (13) is non-zero. This
completes the proof. �

3.10. Proof of Theorem 1.1 assuming the preceding material. We proceed
exactly as in the proof of Theorem 1.3 in Section 3.9. Arguing by contra-
diction, we assume that there exist a topological dynamical system (Y,R),
a point y0 ∈ Y , and a continuous function g0 on Y such that the logarith-
mic averages (12) do not converge to 0. We construct a sequence of intervals
N = (Nk)k∈N, a system (X,T ), and a measure σ on X × Y , as in the proof of
Theorem 1.3 in Section 3.9. The projection ν of σ on Y is an R-invariant mea-
sure, and since (Y,R) has at most countably many ergodic invariant measures,
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ν has at most countably many ergodic components. Since the system (Y,R)

has zero topological entropy, all these components have zero entropy and the
system (Y, ν,R) has zero entropy. We conclude as in the proof of Theorem 1.3
in Section 3.9. �

3.11. Proof of Theorem 1.4 assuming the preceding material. We consider
only the case of the Möbius function; the proof for the Liouville function is
identical.

Arguing by contradiction, suppose that the conclusion of Theorem 1.4 fails.
Then there exist a topological dynamical system (Y,R), a point y0 ∈ Y that is
generic for a measure ν such that the system (Y, ν,R) has zero entropy and at
most countably many ergodic components, all of which are totally ergodic, and
a function g0 ∈ C(Y ) such that for some `0 ∈ N and some h0,1, . . . , h0,`0 ∈ Z,
the identity (3) fails; namely, the averages

Elog
n∈[N ] g0(Rny0)

`0∏
j=1

µ(n+ h0,j)

do not converge to 0 as N →∞.
As in the proof of Theorem 1.3 in Section 3.9, we define a sequence of

intervals N = (Nk)k∈N such that the above averages converge to some non-zero
number, a system (X,T ), and a measure σ on X × Y such that (15) holds. By
construction, σ is invariant under T × R. By assumption and the definition
of genericity, the projection of σ on Y is the measure ν, and thus the system
(Y, ν,R) has zero entropy, at most countably many ergodic components, and
no rational eigenvalue except 1.

The projection of σ on X is a T -invariant measure µ that by (15) is the
Furstenberg measure associated with µ and N by Proposition 3.2. Hence,
by Proposition 3.9, the system (X,µ, T ) is a factor of the system (XZ, µ̃, S).
By Theorems 3.10 and 3.11, the system (XZ, µ̃, S) has no irrational spectrum
and its ergodic components are isomorphic to direct products of infinite-step
nilsystems and Bernoulli systems.

From the previous discussion it follows that the systems (XZ, µ̃, S) and
(Y, ν,R) satisfy the hypothesis of part (ii) of Corollary 3.13, hence, they are dis-
joint. Since the system (X,µ, T ) is a factor of (XZ, µ̃, S), the systems (X,µ, T )

and (Y, ν,R) are also disjoint. Since σ is a joining of the systems (X,µ, T ) and
(Y, ν,R), it is the product measure µ× ν. It follows that

Elog
n∈N g0(Rny0)

`0∏
j=1

µ(n+ h0,j) =

∫
X×Y

`0∏
j=1

Fh0,j (x) · g0(y) dσ(x, y)

=

∫ `0∏
j=1

Fh0,j (x) dµ ·
∫
g(y) dν = Elog

n∈N
Ä `0∏
j=1

Fh0,j
ä
(Tnx0) · Elog

n∈N g(Rny0).
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The last limit is zero since Elog
n∈N g(Rny0) =

∫
g dν = 0. This contradicts our

assumption that Elog
n∈N g0(Rny0)

∏`0
j=1 µ(n+ h0,j) 6= 0 and completes the proof

of Theorem 1.4. �

4. The structure of systems of arithmetic progressions

The goal of this section is to prove Theorem 3.10, which gives information
about the structure of systems of arithmetic progressions with prime steps
associated with a system (X,µ, T ). We will work progressively with systems
of increasing complexity starting from the case where (X,µ, T ) is a nilsystem.
This important case will be dealt using the theory of arithmetic progressions
on nilmanifolds, which is summarized in Appendix B.

4.1. Systems of arithmetic progressions. We start with the definition of
systems of arithmetic progressions with integer steps. These systems are a
stepping stone towards understanding the structure of the systems of arithmetic
progressions with prime steps.

4.1.1. The system of arithmetic progressions with integer steps. We will
use the following result from [36] (convergence was also established in [70]):

Theorem 4.1. Let (X,µ, T ) be a system. Then for every ` ∈ N and
f1, . . . , f` ∈ L∞(µ), the following limit exists in L2(µ):

(18) En∈N
∏̀
j=1

Tnjfj .

Furthermore, if the system is ergodic, then Z∞ is the infinite-step nilfactor of
the system (see Appendix A.4), and if Eµ(fj | Z∞) = 0 for some j ∈ {1, . . . , `},
then the limit (18) is 0.

In accordance to the system of arithmetic progressions with prime steps
(see Definition 3.8) we define systems of arithmetic progressions with integer
steps as follows:

Definition 4.2. Let (X,µ, T ) be a system. We write µ for the measure on
XZ characterized as follows: For every m ∈ N and all f−m, . . . , fm ∈ L∞(µ),
we define

(19)
∫
XZ

m∏
j=−m

fj(xj) dµ(x) := En∈N
∫
X

m∏
j=−m

Tnjfj dµ.

Note that the limit above exists by Theorem 4.1 and the measure µ is invariant
under the shift S of XZ. We say that (XZ, µ, S) is the system of arithmetic
progressions with integer steps associated with the system (X,µ, T ).
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4.1.2. The system of arithmetic progressions with prime steps. The sys-
tem of arithmetic progressions with prime steps (XZ, µ̃, S) was defined in Sec-
tion 3.5. We recall here the defining property of the measure µ̃: For every
m ∈ N and f−m, . . . , fm ∈ L∞(µ), we have

∫
XZ

m∏
j=−m

fj(xj) dµ̃(x) = Ep∈P
∫
X

m∏
j=−m

T pjfj dµ.

Note that convergence of the averages on the right-hand side follows from the
next result, which was proved in [23] conditional to some conjectures obtained
later in [32], [34], and the convergence part was also proved in [68]:

Theorem 4.3. Let (X,µ, T ) be a system. Then for every ` ∈ N and
f1, . . . , f` ∈ L∞(µ), the following limit exists in L2(µ):

(20) Ep∈P
∏̀
j=1

T pjfj .

Furthermore, if the system is ergodic, Z∞ is the infinite-step nilfactor of the
system (see Appendix A.4), and if Eµ(fj | Z∞) = 0 for some j ∈ {1, . . . , `},
then the limit (20) is 0.

Remark. This result is not stated explicitly in [23], but follows from the
argument in [23, §5], using Theorem 4.1 and U`+1-uniformity of the W -tricked
von Mangoldt function (established in [31], [32], [34]) in place of U3-uniformity.

In order to determine the support of the measure µ̃ we will use the following
multiple ergodic theorem:

Theorem 4.4. Let (X,µ, T ) be a system, and suppose that for some d ∈
N, the ergodic components of the system (X,µ, T d) are totally ergodic. Then

(21) Ep∈P
∏̀
j=1

T pjfj = E(k,d)=1En∈N
∏̀
j=1

T (nd+k)jfj

for all ` ∈ N and f1, . . . , f` ∈ L∞(µ), where convergence takes place in L2(µ)

and the average E(k,d)=1 is taken over those k∈{1, . . . , d−1} such that (k, d)=1.

Remark. The existence of the limits on the left- and right-hand sides fol-
lows from Theorems 4.3 and 4.1 respectively.

Proof. For w ∈ N, let W denote the product of the first w primes that are
relatively prime to d. Following the proof of [24, Th. 1.3] we get that the limit
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on the left-hand side of (21) is equal to the following limit:6

lim
W→∞

E(k,dW )=1 En∈N
∏̀
j=1

T (ndW+k)jfj ,

where the average E(k,dW )=1 is taken over those k ∈ {1, . . . , dW − 1} such that
(k, dW ) = 1. Since the ergodic components of T d are totally ergodic, we get
by [21, Th. 6.4] (see also Theorem 5.4 below) that

En∈N
∏̀
j=1

T (ndW+k)jfj = En∈N
∏̀
j=1

T (nd+k)jfj

holds for every W ∈ N. Hence, the limit we want to compute is

(22) lim
W→∞

E(k,dW )=1En∈N
∏̀
j=1

T (nd+k)jfj .

We claim that for general d-periodic sequences (a(k))k∈N, for everyW ∈ N
with (d,W ) = 1, we have

(23) E(k,dW )=1a(k) = E(k,d)=1a(k).

To see this, for j ∈ {0, . . . , d− 1} consider the set

Aj := {k ∈ {1, . . . dW} : k ≡ j (mod d) and (k,Wd) = 1}.

If (j, d) > 1, then Aj = ∅. If (j, d) = 1, then (k, d) = 1 and

Aj = {k ∈ {1, . . . dW} : k ≡ j (mod d) and (k,W ) = 1}.

Since (W,d) = 1, we have |Aj | = φ(W ) if (j, d) = 1. It follows from these
simple facts and our assumption of d-periodicity of (a(k))k∈N that (23) holds.

Applying (23) for a(k) :=En∈N
∏`
j=1 T

(nd+k)jfj , k∈N, which is d-periodic,
we see that the limit in (22) is equal to the expression on the right-hand side
of (21). This completes the proof. �

4.2. The case of a nilsystem. We start with the following intermediate
result, which establishes Theorem 3.10 in the case where (X,µ, T ) is a (finite-
step) nilsystem:

Proposition 4.5. If (X,µ, T ) is an ergodic nilsystem, then the ergodic
components of the systems (XZ, µ, S) and (XZ, µ̃, S) are isomorphic to nilsys-
tems.

The proof is given in Section 4.2.3. We start with some preliminaries.

6This is established in [24] only for d = 1, but the same argument works for every d ∈ N
using the Gowers uniformity (as N →∞ and then W →∞) of the W -tricked von Mangoldt
function (φ(dW )

dW
Λ(dWn+ k)− 1)n∈[N ] for k ∈ N relatively prime to dW .
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Notation. If T is a transformation on X, we write T and
−→
T for the trans-

formations of XZ given by

(Tx)j = Txj and (
−→
T x)j = T jxj , j ∈ Z,

where x = (xk)k∈Z ∈ XZ. We call T the diagonal transformation. As usual,
with S we denote the shift transformation on XZ.

We remark that T commutes with
−→
T and with S, and that [S,

−→
T ] = T .

4.2.1. Integer steps. We use the same hypothesis and notation as in the
preceding sections, and now we assume in addition that X = G/Γ is a nil-
manifold, µ = µX is the Haar measure on X, and T is an ergodic translation
by some τ ∈ G. Arguing as in [48, §2.1] we can and will assume that G is
spanned by the connected component G0 of eG and τ . This condition implies
that the groups Gs are connected for every s ≥ 2 (see [2, Th. 4.1]). The trans-
formations T and

−→
T of XZ are the translations by τ = (. . . , τ, τ, τ . . . ) and

−→τ = (. . . , τ−2, τ−1, eG, τ, τ
2, . . . ), respectively.

The Hall-Petresco group G and the nilmanifold of arithmetic progressions
X are defined in the Appendices B.1 and B.2. It is immediate from the defini-
tion of G that τ ,−→τ ∈ G. Therefore, T and

−→
T are nilrotations of X. The next

result was established in [2, Lemma 5.2]:

Lemma 4.6. If (X,T ) is a minimal nilsystem, then

X =
¶−→
T nT

m
eX : m,n ∈ Z

©
.

The next result was established in the form stated in [2, Th. 5.4] and
previously in a slightly different form in [69]:

Proposition 4.7. Let (X,T, µ) be an ergodic nilsystem. Then for every
m ∈ N and all f−m, . . . , fm ∈ L∞(µ), we have∫

X

m∏
j=−m

fj(xj) dµX(x) = En∈N
∫
X

m∏
j=−m

Tnjfj dµ.

In other words, the Haar measure µX of X coincides with the measure µ on X
defined in Definition 4.2.

4.2.2. Prime steps. Let (X,µ, T ) be an ergodic nilsystem. It is a known
and easy to prove fact that this system is totally ergodic if and only if X
is connected. In general, let X0 be the connected component of eX and µ0

be its Haar measure. Then there exists d ∈ N such that the sets T lX0, l ∈
{0, . . . , d− 1}, form a partition of X and we have

(24) µ = E0≤l≤d−1T
lµ0.
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Moreover, the system (X0, µ0, T
d) and the other ergodic components of the

system (X,µ, T d) are totally ergodic. We call d the index of X0.
Let X0 ⊂ XZ

0 and the measure µ
0
on X0 be defined as X and µ are

defined in Definition 4.2, with the system (X0, µ0, T
d) in place of (X,µ, T ).

Then X0 and µ
0
are invariant under T d,

−→
T d, and S. Applying Theorem 4.4

for the nilsystem (X,µ, T ) that has index d, we get that for every m ∈ N and
f−m, . . . , fm ∈ L∞(µ), we have

(25) Ep∈P
∫
X

m∏
j=−m

T pjfj dµ = E(k,d)=1En∈N
∫
X

m∏
j=−m

T (nd+k)jfj dµ,

where the average E(k,d)=1 is taken over those k ∈ {1, . . . , d − 1} such that
(k, d) = 1. Combining (11), (24), and (25), we get for every m ∈ N and
f−m, . . . , fm ∈ L∞(µ) that∫

X

m∏
j=−m

fj(xj) dµ̃(x) = E0≤l≤d−1E(k,d)=1En∈N
∫
X

m∏
j=−m

T (nd+k)j+lfj dµ0.

Moreover, applying (19) for the system (X0, µ0, T
d) we get∫

X

m∏
j=−m

fj(xj) dµ0
(x) = En∈N

∫
X

m∏
j=−m

Tndjfj dµ0.

Combining the last two identities we deduce that

(26) µ̃ = E0≤l≤d−1E(k,d)=1T
l−→
T kµ

0
.

Since the support of µ
0
is X0, it follows that the measure µ̃ is supported on

the set ‹X :=
d−1⋃
l=0

⋃
k : (k,d)=1

T
l−→
T kX0.

The precise form of ‹X is not important; the crucial point is that ‹X ⊂ X. To
see this, note that Lemma 4.6 implies that the set X is T and

−→
T invariant and

X0 =
¶−→
T dnT

dm
eX0

: m,n ∈ Z
©
⊂ X.

4.2.3. Proof of Proposition 4.5. Let µ̃ =
∫
µ̃ω dP (ω) be the ergodic decom-

position of the measure µ̃ with respect to the transformation S acting on XZ.
Since, as established above, µ̃ is supported on the S-invariant set X, almost
every ergodic component µ̃ω admits a generic point in X. For these ω, we have
that µ̃ω is supported on a closed S-orbit in X, which we denote by ‹Xω. By
Proposition B.4, the system (‹Xω, S) is topologically isomorphic to a uniquely
ergodic nilsystem. Thus, µ̃ω is the unique invariant measure for the action of
S on ‹Xω and the system (‹Xω, µ̃ω, S) is (measure theoretically) isomorphic to
an ergodic nilsystem.

A similar argument applies to the system (X,µ, S). �
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4.3. The case of an infinite-step nilsystem. Our next goal is to treat the
case where (X,µ, T ) is an ergodic infinite-step nilsystem and prove the following
intermediate result:

Proposition 4.8. If (X,µ, T ) is an ergodic infinite-step nilsystem, then
the ergodic components of the systems (XZ, µ, S) and (XZ, µ̃, S) are isomorphic
to infinite-step nilsystems.

The proof is given in Section 4.3.3. We start with some preliminaries.
Our setup is as follows (see Appendix A for definitions and properties of

inverse limits): We have (X,µ, T ) = lim←−(Xj , µj , T ) where for j ∈ N, the system
(Xj , µj , T ) is an ergodic nilsystem with base point eXj . For j ∈ N, the factor
maps are written πj,j+1 : Xj+1 → Xj and πj : X → Xj and, as explained in
Appendix A.3, πj,j+1 and πj are also topological factor maps. Thus, we also
have (X,T ) = lim←−(Xj , T ) in the topological sense (see Appendix A.3).

The sequence (XZ
j , T ,

−→
T ), j ∈ N, with factor maps πZj,j+1 : XZ

j+1 → XZ
j ,

j ∈ N, is an inverse system. By the characterization of inverse limits stated
in (i) and (ii) of Appendix A.2, we get that (XZ, T ,

−→
T ), endowed with the factor

maps πZj : XZ → XZ
j , j ∈ N, is the inverse limit of the sequence (XZ

j , T ,
−→
T ),

j ∈ N.

4.3.1. Integer steps. Let X be the orbit closure in XZ of

eX := (. . . , eX , eX , eX , . . . )

under the transformations T and
−→
T . Since πZj (eX) = eXj

for every j ∈ N, it fol-
lows from Lemma 4.6 and part (i) of Lemma A.2 that πZj (X) = Xj , j ∈ N, and
(X,T ,

−→
T ) is the inverse limit of the systems (Xj , T ,

−→
T ), j ∈ N. In particular,

we have

(27) X =
¶
x ∈ XZ : πZj (x) ∈ Xj for every j ∈ N

©
.

Note that for j ∈ N, the maps πZj,j+1 : Xj+1 → Xj and πZj : X → Xj com-
mute with the shift transformation S, and thus are factor maps from (Xj+1, S)

and (X,S) to (Xj , S), respectively. It follows from the characterization of
topological inverse limits stated in (i) and (ii) of Appendix A.2 that

(X,S) = lim←−(Xj , S)

with factor maps πZj,j+1 : Xj+1 → Xj and πZj : X → Xj , j ∈ N. By Proposi-
tion B.4, for every j ∈ N we have that (Xj , S) is topologically isomorphic to a
nilsystem. Hence the action of S on each closed orbit under S in Xj induces a
uniquely ergodic nilsystem. From Lemma A.2 we deduce the following:
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Proposition 4.9. Let X be as above. For x ∈ X , let X ′ := {Snx : n ∈ Z}
be the closed orbit of x under S . Then the system (X ′, S) is topologically iso-
morphic to a uniquely ergodic infinite-step nilsystem.

4.3.2. Prime steps. From Definition 3.8 it follows that for every j ∈ N, the
image of the measure µ̃ under the maps πZj is equal to µ̃j and that the image of
µ̃j+1 under πZj,j+1 is equal to µ̃j . These maps commute with S. Hence it follows
from the characterization of inverse limits (i) and (ii) given in Appendix A.1
that

(28) (XZ, µ̃, S) = lim←−(XZ
j , µ̃j , S).

Furthermore, we saw in Section 4.2.2 that for every j ∈ N, the measure µ̃j is
supported inside Xj and thus

µ̃
Ä¶
x ∈ XZ : πZj (x) /∈ Xj

©ä
= 0.

It follows from this and (27) that µ̃ is supported inside the subset X of XZ.

4.3.3. Proof of Proposition 4.8. In the previous subsection we established
that the measure µ̃ is supported inside the S-invariant set X. Using this and
Proposition 4.9 we deduce that almost every ergodic component of the system
(XZ, µ̃, S) is isomorphic to an infinite-step nilsystem; the argument is identical
to the one used in the last step of the proof of Proposition 4.5 (see Section 4.2.3).

A similar argument applies to the system (XZ, µ, S). �

4.4. General ergodic systems. Our next goal is to prove the following re-
sult, which comes very close to establishing Theorem 3.10:

Proposition 4.10. If (X,µ, T ) is an ergodic system, then almost every
ergodic component of the systems (XZ, µ, S) and (XZ, µ̃, S) is isomorphic to a
direct product of an infinite-step nilsystem and a Bernoulli system.

This result is proved in Section 4.4.1. First we make some preparatory
work.

Let (X,µ, T ) be an ergodic system. The infinite-step nilfactor of the sys-
tem is defined in Section A.4 and is denoted by (Z∞, µ∞, T ); in Corollary A.6
we show that it is isomorphic to an infinite-step nilsystem. Let p∞ : X → Z∞
be the corresponding factor map, and let the measures µ∞ and µ̃∞ on ZZ

∞ be as-
sociated with the system (Z∞, µ∞, T ) as in Definitions 3.8 and 4.2 respectively.
Then µ∞ and µ̃∞ are respectively the images of µ and µ̃ under pZ∞ : XZ → ZZ

∞.
Combining the second part of Theorems 4.1 and 4.3 with the definitions of the
measures µ and µ̃, we get for every m ∈ N and f−m, . . . , fm ∈ L∞(µ) that∫

XZ

m∏
j=−m

fj(xj) dµ(x) =

∫
ZZ
∞

m∏
j=−m

Eµ(fj | Z∞)(zj) dµ∞(z)
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and

(29)
∫
XZ

m∏
j=−m

fj(xj) dµ̃(x) =

∫
ZZ
∞

m∏
j=−m

Eµ(fj | Z∞)(zj) dµ̃∞(z).

Lemma 4.11. Let (X,µ, T ) be an ergodic system and (Z∞, µ∞, T ) be its
infinite-step nilfactor. Then the system (XZ, µ̃, S) is isomorphic to the direct
product of the system (ZZ

∞, µ̃∞, S) and a Bernoulli system (that can be trivial).
A similar statement also holds for the system (XZ, µ, S).

Proof of Lemma 4.11. We give the argument for the system (XZ, µ̃, S); an
analogous argument works for the system (XZ, µ, S).

Since the system (X,µ, T ) is ergodic (and it is our working assumption
that it is Lebesgue), it is a classical result of Rohlin (see, for example, [28,
Th. 3.18]) that there exists a (Lebesgue) probability space (U, ρ) such that the
(Lebesgue) probability spaces (X,µ) and (Z∞, µ∞) × (U, ρ) are isomorphic,
the factor map p∞ : X → Z∞ corresponds to the first coordinate projection
Z∞×U → Z∞, and the conditional expectation f 7→ E(f | Z∞) corresponds to
the map f 7→

∫
f(·, u) dρ(u) from L1(µ∞ × ρ) to L1(µ∞). We identify x with

(z, u) and x with (z, u); then identity (29) becomes

∫
XZ

m∏
j=−m

fj(xj) dµ̃(x) =

∫
ZZ
∞

m∏
j=−m

(∫
U
fj(zj , uj) dρ(uj)

)
dµ̃∞(z)

=

∫
ZZ
∞×UZ

m∏
j=−m

fj(zj , uj) d(µ̃∞ × ρZ)(z, u),

where ρZ is the measure · · · × ρ× ρ× ρ× · · · on UZ.
Since the algebra generated by functions of the form x 7→ f(xj), j ∈ Z,

f ∈ C(X), is dense in C(XZ) with the uniform topology, we deduce that
µ̃ = µ̃∞ × ρZ. Let S1, S2 denote the shift transformations on the spaces ZZ

∞
and UZ respectively. Then the system (XZ, µ̃, S) is the direct product of the
system (ZZ

∞, µ̃∞, S1) and the Bernoulli system (UZ, ρZ, S2). This completes the
proof. �

4.4.1. Proof of Proposition 4.10. We give the argument for the system
(XZ, µ̃, S); an analogous argument works for the system (XZ, µ, S).

By Lemma 4.11, the system (XZ, µ̃, S) is isomorphic to the direct product
of the system (ZZ

∞, µ̃∞, S) and a Bernoulli system. Since Bernoulli systems
are weakly mixing, almost every ergodic component of (XZ, µ̃, S) is a direct
product of an ergodic component of the system (ZZ

∞, µ̃∞, S) and the Bernoulli
system given by Lemma 4.11. (We used the uniqueness property of the ergodic
decomposition here.) As explained in Section A.4, the system (Z∞, µ∞, T ) is
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isomorphic to an ergodic infinite-step nilsystem. Hence Proposition 4.8 ap-
plies and gives that the ergodic components of the system (ZZ

∞, µ̃∞, S) are
isomorphic to infinite-step nilsystems. This completes the proof of Proposi-
tion 4.10. �

4.5. General systems — Proof of Theorem 3.10. Let (X,µ, T ) be a system,
and let µ =

∫
µω dP (ω) be the ergodic decomposition of µ under T . It follows

from Definition 3.8 that

µ̃ =

∫
µ̃ω dP (ω).

As a consequence, by the uniqueness property of the ergodic decomposition,
almost every ergodic component of the system (XZ, µ̃, S) is an ergodic compo-
nent of the system (XZ, µ̃ω, S) for some ω ∈ Ω. We can therefore restrict to
the case where the system (X,µ, T ) is ergodic. In this case the result follows
from Proposition 4.10. This completes the proof of Theorem 3.10.

A similar argument applies for the system (XZ, µ, S). �

5. Strong stationarity and systems of arithmetic progressions

The goal of this section is to introduce the notion of strong stationarity
and variants of it that turn out to be linked to structural properties of sys-
tems of arithmetic progressions. We then use this connection in order to prove
that systems of arithmetic progressions have no irrational spectrum, thus es-
tablishing Theorem 3.11, which in turn gives the first part of Theorem 1.6 (via
Proposition 3.9).

5.1. Strong stationarity. Throughout this section we continue to denote
by X a compact metric space, and we equip the sequence space XZ with the
product topology and the Borel σ-algebra. With S we denote the shift trans-
formation on XZ. With B0 we denote all Borel subsets of XZ that depend only
on the 0-th coordinate of elements of XZ. Equivalently, B0 consists of sets of
the form {x ∈ XZ : x(0) ∈ A}, where A is a Borel subset of X. We also denote
by F0 the algebra of B0-measurable functions.

For r ∈ N, we define the map τr : XZ → XZ by

(τr(x))(j) := x(rj) for x ∈ XZ and j ∈ Z.

We remark that the maps S and τr satisfy the following commutation relation

(30) S ◦ τr = τr ◦ Sr.

The notion of strong stationarity was introduced in a rather abstract setting
by Furstenberg and Katznelson in [27]; here we use a variant adapted to our
purposes:
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Definition 5.1. If X is as above, we say that an S-invariant Borel measure
ν on XZ is strongly stationary if it is invariant under τr for every r ∈ N, and
partially strongly stationary if for some d ∈ N, it is invariant under τr for
every r ∈ dN + 1. Respectively, we say that the system (XZ, ν, S) is strongly
stationary and partially strongly stationary.

Remark. Equivalently, we have strong stationarity if and only if

∫ m∏
j=−m

Sjfj dν =

∫ m∏
j=−m

Srjfj dν

for all m, r ∈ N and f−m, . . . , fm ∈ C(XZ)∩F0. A similar equivalent condition
holds for partial strong stationarity.

In the next subsection we explain why the notion of partial strong station-
arity is linked to structural properties of systems of arithmetic progressions.

5.2. Systems of arithmetic progressions and partial strong stationarity. If
a system is totally ergodic, then it can be shown that the associated system
of arithmetic progressions with prime and integer steps is strongly stationary.
The notion of total ergodicity turns out to be too restrictive, so we introduce
a somewhat weaker notion that is better adapted to our purposes.

Definition 5.2. We say that a system (X,µ, T ) has finite rational spectrum
if the set of eigenvalues of the system of the form e(t) with t ∈ Q is finite.

Remark. Equivalently, (X,µ, T ) has finite rational spectrum if there exists
d ∈ N such that the ergodic components of the system (X,µ, T d) are totally
ergodic.

The link between strong stationarity and systems of arithmetic progres-
sions is given by the next result, which is proved in Section 5.2.2 and forms an
essential part of the proof of Theorem 3.11:

Proposition 5.3. Let (X,µ, T ) be a system with finite rational spectrum.
Then the systems (XZ, µ̃, S) and (XZ, µ, S) are partially strongly stationary.

Remark. Our argument shows that we get full strong stationarity if the
ergodic components of the system (X,µ, T ) are totally ergodic. We do not use
this fact though because we are not able to verify this hypothesis for Fursten-
berg systems of the Liouville function.

5.2.1. Some multiple ergodic theorems. The proof of Proposition 5.3 is
rather simple but is based on some highly non-trivial known identities involving
multiple ergodic averages that we use as a black box. Note that we implicitly
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assume convergence in L2(µ) for all the multiple ergodic averages in this sub-
section; this is guaranteed to be the case by Theorems 4.1 and 4.3.

The first identity we use was proved in [21, Th. 6.4]:

Theorem 5.4. Suppose that the ergodic components of the system (X,µ, T )

are totally ergodic. Then for every r ∈ N, we have

En∈N
∏̀
j=1

Tnjfj = En∈N
∏̀
j=1

T rnjfj

for all ` ∈ N and f1, . . . , f` ∈ L∞(µ), where convergence takes place in L2(µ).

Combining this result with Theorem 4.4 we get the following ergodic the-
orem that is better adapted to our purposes:

Corollary 5.5. Let d ∈ N and (X,µ, T ) be a system such that the ergodic
components of the system (X,µ, T d) are totally ergodic. Then for every r ∈ N
with (r, d) = 1, we have

En∈N
∏̀
j=1

Tnjfj = En∈N
∏̀
j=1

T rnjfj and Ep∈P
∏̀
j=1

T pjfj = Ep∈P
∏̀
j=1

T rpjfj

for all ` ∈ N and f1, . . . , f` ∈ L∞(µ), where convergence takes place in L2(µ).

Proof. We prove the second identity; the proof of the first is similar. (Sim-
ply replace below p ∈ P with n ∈ N and E(k,d)=1 with Ek∈[d].) Our assumption
gives that the ergodic components of (T r)d are also totally ergodic. By Theo-
rem 4.4 (applied for T r in place of T ), we get the identity

Ep∈P
∏̀
j=1

T rpjfj = E(k,d)=1En∈N
∏̀
j=1

T (dn+k)rjfj ,

where the average E(k,d)=1 is taken over those k ∈ {1, . . . , d − 1} such that
(k, d) = 1. Using Theorem 5.4, we get that the average on the right-hand side
is equal to

E(k,d)=1En∈N
∏̀
j=1

T (dn+kr)jfj = E(k,d)=1En∈N
∏̀
j=1

T (dn+k)jfj = Ep∈P
∏̀
j=1

T pjfj ,

where the first identity follows since (r, d) = 1 and the second from Theorem 4.4.
Combining the above we get the asserted identity. �

5.2.2. Proof of Proposition 5.3. Our assumption gives that there exists
d ∈ N such that the ergodic components of the system (X,µ, T d) are totally
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ergodic. Let m ∈ N and f−m, . . . , fm ∈ C(XZ) ∩ F0. We have∫
XZ

m∏
j=−m

S(dn+1)jfj dµ̃ = Ep∈P
∫
X

m∏
j=−m

T (dn+1)pjfj dµ

= Ep∈P
∫
X

m∏
j=−m

T pjfj dµ =

∫
XZ

m∏
j=−m

Sjfj dµ̃,

where we used the defining property of the measure µ̃ (see Definition 3.8) to
get the first and third identity and the second identity of Corollary 5.5 (for
r := dn+ 1) to get the middle identity. This proves that the system (XZ, µ̃, S)

is partially strongly stationary.
A similar argument shows that the system (XZ, µ, S) is partially strongly

stationary; the only difference is that one uses the first identity of Corollary 5.5
instead of the second.

5.3. Spectrum of partially strongly stationary systems. The next result was
obtained in [42, §3] for ergodic strongly stationary systems, but the same ar-
gument also works with minor modifications for partially strongly stationary
systems that are not necessarily ergodic. We will summarize its proof for com-
pleteness. Note also that a somewhat more complicated argument can be used
to show that a strongly stationary system can only have 1 in its spectrum (see
[42, §4]); but unfortunately a similar result fails for partially strongly stationary
systems that can have a rational spectrum different than 1.

Proposition 5.6. Let (XZ, ν, S) be a partially strongly stationary system.
Then the system has no irrational spectrum.

In the proof of Proposition 5.6 we will use the following key property of
the maps τr:

Lemma 5.7 (Lemma 2.3 in [42]). Let χ be an eigenfunction of the system
(XZ, ν, S) with eigenvalue e(t), and suppose that for some r ∈ N, the measure ν
is invariant under τr . Then χ◦τr is a finite linear combination of eigenfunctions
for eigenvalues of the form e((j + t)/r) for j = 0, . . . , r − 1.

Proof. For j = 0, . . . , r−1, let gj :=
∑r−1
k=0 e(−k(j+ t)/r) χ◦τr ◦Sk. Then

direct computation shows that gj ◦ S = e((j + t)/r) gj , j = 0, . . . , r − 1 and
that χ =

∑r−1
j=0 gj . �

We will also use the following classical variant of van der Corput’s funda-
mental lemma (the stated version is from [1]):

Lemma 5.8 (Van der Corput). Let (vn)n∈N be a bounded sequence of vec-
tors in a Hilbert space. Suppose that for each h ∈ N, we have

En∈N 〈vn+h, vn〉 = 0.
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Then
En∈N vn = 0,

where convergence takes place in norm.

We are now ready to prove Proposition 5.6.

Proof of Proposition 5.6. By our assumption, there exists d ∈ N such that
the measure ν is τr-invariant for every r ∈ dN + 1.

Let χ ∈ L∞(µ) be such that Sχ = λ ·χ, where λ = e(α) with α irrational.
We will show that χ = 0. To do this we follow closely the argument of Jenvey
in [42, §3].

Since for r ∈ dN + 1 the maps τr leave the 0-th coordinate of x ∈ XZ

unchanged, we have f = f ◦ τr for every f ∈ F0. Since linear combinations of
functions of the form

∏m
j=−m S

jfj with f−m, . . . , fm ∈ C(XZ)∩F0, m ∈ N, are
dense in the space C(XZ) with the uniform topology, it suffices to show that∫

χ ·
m∏

j=−m
Sjfj dν = 0

for allm ∈ N and f−m, . . . , fm ∈ C(XZ)∩F0. Composing with the ν-preserving
maps Sm for m ∈ N, we see that it suffices to show that

(31)
∫
χ ·

m∏
j=0

Sjfj dν = 0

for all m ∈ N and f0, . . . , fm ∈ C(XZ) ∩ F0.
For r ∈ dN + 1, we compose the integrand with the ν-preserving maps τr

and then use the commutation relations (30) and the fact that f ◦ τr = f for
f ∈ F0. We deduce that the integral in (31) is equal to∫

χ ◦ τr ·
m∏
j=0

Srjfj dν

for every r ∈ dN + 1. Averaging over r ∈ dN + 1 gives the identity∫
χ ·

m∏
j=0

Sjfj dν = En∈N
∫
χ ◦ τdn+1 ·

m∏
j=0

S(dn+1)jfj dν.

Hence, it suffices to show that for every m ∈ N and f1, . . . , fm ∈ L∞(ν), we
have

(32) En∈N χ ◦ τdn+1 ·
m∏
j=1

Sdnjfj = 0,

where the limit is taken in L2(ν). Note that from this point on we work with
general functions fj ∈ L∞(ν), j = 1, . . . ,m, not just those in C(XZ) ∩ F0.
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Our first goal is to successively apply van der Corput’s lemma and the
Cauchy-Schwarz inequality in order to reduce our problem to establishing con-
vergence to zero for an expression that does not depend on the functions
f1, . . . , fm. In our first iteration, we apply Lemma 5.8, compose the integrand
with S−dn, and use the Cauchy-Schwarz inequality; we see that in order to
establish (32) it suffices to show that for every h1 ∈ N, we have

En∈N S−dn(χ ◦ τd(n+h1)+1 · χ ◦ τdn+1)
m−1∏
j=1

Sdnjfj = 0

for all f1, . . . , fm−1 ∈ L∞(ν). Note that the number of functions fj has de-
creased by one. Note also that by Lemma 5.7 the function

(33) Fh1,n := S−dn(χ ◦ τd(n+h1)+1 · χ ◦ τdn+1)

is a finite linear combination of eigenfunctions for S with eigenvalue some root
of unity times

e
Ä
α · (φ(n+ h1)− φ(n)

ä
,

where

φ(n) :=
1

dn+ 1
, n ∈ N.

We define inductively the functions Fh1,...,hk,n, h1, . . . , hk, n ∈ N as follows:
For k = 1 and h1, n ∈ N, we let Fh1,n be as in (33), and for k ≥ 2 and
h1, . . . , hk, n ∈ N, we let

Fh1,...,hk,n := S−dn
Ä
Fh1,...,hk−1,n+hk · Fh1,...,hk−1,n

ä
.

After successively applying Lemma 5.8 (m + 1 times) and using the Cauchy-
Schwarz inequality (m times) we are left with showing that we have, for every
h1, . . . , hm+1 ∈ N,

(34) En∈N
∫
Fh1,...,hm+1,n dν = 0.

Using Lemma 5.7 and the inductive definition of the functions Fh1,...,hm+1,n,
we get that for every h1, . . . , hm+1, n ∈ N, the function Fh1,...,hm+1,n is a finite
linear combination of eigenfunctions with eigenvalue equal to some root of unity
times the number

e

Ç
α ·

∑
ε∈{0,1}m+1

(−1)|ε|φ(n+ ε · h)

å
,

where h := (h1, . . . , hm+1), |ε| := ε1 + · · · + εm+1, and ε · h := ε1h1 + · · · +
εm+1hm+1. Hence,

(35)
∫
Fh1,...,hm+1,n dν = 0
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unless some of the eigenvalues of the eigenfunctions composing the function
Fh1,...,hm+1,n is 1. Since α is irrational and φ takes rational values, this can only
happen if

(36)
∑

ε∈{0,1}m+1

(−1)|ε|φ(n+ ε · h) = 0.

Note that for fixed h = (h1, . . . , hm+1) ∈ Nm+1, the left-hand side in (36)
is a rational function in the variable n and has a pole at n = 0; hence it is
not identically zero. After clearing denominators, (36) becomes a non-trivial
polynomial identity in n; hence it can only have finitely many solutions in n.
We deduce that (35) holds for all large enough n ∈ N. As a consequence, (34)
holds for all h1, . . . , hm+1 ∈ N. As remarked above, this proves that χ = 0 and
completes the proof. �

5.4. Proof of Theorem 3.11. Let (X,µ, T ) be a system with ergodic de-
composition µ =

∫
µω dP (ω). It follows from (11) that

µ̃ =

∫
µ̃ω dP (ω).

If α ∈ T is irrational and e(α) is an eigenvalue of (XZ, µ̃, S), then for ω in a
set of positive P -measure, the number e(α) is an eigenvalue of (XZ, µ̃ω, S). It
thus suffices to prove the theorem in the case where (X,µ, T ) is ergodic, and
we restrict to this case.

Let (Z∞, µ∞, T ) be the infinite-step nilfactor of (X,µ, T ). By Lemma 4.11,
the system (XZ, µ̃, S) is isomorphic to the direct product of a Bernoulli system
and the system (ZZ

∞, µ̃∞, S). Since Bernoulli systems are weakly mixing, the
system (XZ, µ̃, S) has the same eigenvalues as the system (ZZ

∞, µ̃∞, S). We
can therefore restrict to the case where (X,µ, T ) is an ergodic infinite-step
nilsystem.

If (X,µ, T ) = lim←−(Xj , µj , T ) where for j ∈ N each system (Xj , µj , T ) is an
ergodic nilsystem, then we get by (28) that

(XZ, µ̃, S) = lim←−(XZ
j , µ̃j , S).

Suppose that α is irrational and e(α) is an eigenvalue of (XZ, µ̃, S) with eigen-
function f . Then for every large enough j ∈ N, the conditional expectation
of f with respect to XZ

j is non-zero, and this function is an eigenfunction of
(XZ

j , µ̃j , S) with eigenvalue e(α) as well. Therefore, we can and will restrict to
the case where (X,µ, T ) is an ergodic nilsystem.

If (X,µ, T ) is an ergodic nilsystem, then it has finite rational spectrum.
Hence, Proposition 5.3 applies and gives that the system (XZ, µ̃, S) is partially
strongly stationary. Proposition 5.6 then shows that the system (XZ, µ̃, S)

has no irrational spectrum. This finishes the proof of the absence of irrational
spectrum for the system (XZ, µ̃, S). �
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We remark that a similar argument also shows that the system (XZ, µ, S)

has no irrational spectrum.

5.5. An alternate approach to Theorem 3.10. In [21] it is shown that al-
most every ergodic component of a strongly stationary system is isomorphic
to a direct product of an infinite-step nilsystem and a Bernoulli system. A
similar statement with exactly the same proof is valid under the weaker as-
sumption of partial strong stationarity. If (X,µ, T ) is an ergodic nilsystem,
then it has finite rational spectrum and Proposition 5.3 shows that the system
(XZ, µ̃, S) is partially strongly stationary. By combining these results we get
a different proof for a weaker version of Proposition 4.5, which states that in
the case where (X,µ, T ) is an ergodic nilsystem, the ergodic components of the
system (XZ, µ̃, S) are direct products of infinite-step nilsystems and Bernoulli
systems. (Note that Proposition 4.5 shows that the Bernoulli systems are su-
perfluous.) One could use this result as a starting point for an alternate proof
of Theorems 3.10 and 3.11. The disadvantage of this approach is that we get
an unwanted Bernoulli component at a very early stage in the argument, which
causes some delicate technical problems in the subsequent analysis.

6. Disjointness result

The goal of this section is to prove the disjointness result of Proposi-
tion 3.12. We start with the following simpler result:

Lemma 6.1. Let (X,µ, T ) be an ergodic infinite-step nilsystem, and let
(Y, ν,R) be an ergodic system.

(i) If the two systems have disjoint irrational spectrum, then for every
joining σ of the two systems and function f ∈ L∞(µ) orthogonal to
Krat(T ), we have ∫

f(x) g(y) dσ(x, y) = 0

for every g ∈ L∞(ν).
(ii) If the two systems have disjoint spectrum different than 1, then they

are disjoint.

Proof. We prove part (i). We write (X,µ, T ) = lim←−(Xj , µj , T ), where
(Xj , µj , T ), j ∈ N, are ergodic (finite-step) nilsystems, and we let πj : X → Xj ,
j ∈ N, be the factor maps. Then for every j ∈ N, the image σj of σ under
πj × id : X × Y → Xj × Y is a joining of Xj and Y , and for every f ∈ L∞(µ)

and g ∈ L∞(ν), we have∫
f(x) g(y) dσ(x, y) = lim

j→∞

∫
(f ◦ πj)(x) g(y) dσj(x, y).



THE LOGARITHMIC SARNAK CONJECTURE FOR ERGODIC WEIGHTS 911

Since the function f is orthogonal toKrat(X,T ), the function f◦πj is orthogonal
to Krat(Xj , T ) for every j ∈ N. We can therefore restrict to the case where
(X,µ, T ) is an ergodic nilsystem.

Suppose that (X,µ, T ) is an ergodic s-step nilsystem for some s ∈ N.
The eigenfunctions of X associated to rational eigenvalues are constant on
the connected components of X. Therefore, we can approximate in L2(µ)

the function f that is orthogonal to Krat(X,T ) by a function in C∞(X), still
orthogonal to Krat(X,T ), thus reducing to the case where f ∈ C∞(X). Let
g ∈ L∞(ν). Since σ is (T ×R)-invariant, we have∫

f(x) g(y) dσ(x, y) =

∫
f(Tnx) g(Rny) dσ(x, y)

for every n ∈ N. We average over n ∈ N and reduce to showing that

(37) lim
N→∞

En∈[N ]

∫
f(Tnx) · g(Rny) dσ(x, y) = 0.

Since (X,T ) is an s-step nilsystem and f ∈ C∞(X), it follows from [37,
Th. 2.13] and the property characterizing the factors Zs given in (44) of Ap-
pendix A.4 that if g is orthogonal to the factor Zs(R), then there exists a set
Y0 with ν(Y0) = 1 such that for every y ∈ Y0, we have

lim
N→∞

En∈[N ]f(Tnx) · g(Rny) = 0

for every x ∈ X. This implies that the last identity holds for σ-almost every
(x, y) ∈ X × Y , and the bounded convergence theorem gives (37).

Hence, we have reduced the problem to verifying (37) when g ∈ Zs(R). By
Theorem A.5, the factor (Zs,Zs, νs, R) associated with Zs is an inverse limit
of ergodic s-step nilsystems. Thus, by L2(ν)-approximation, in order to verify
(37), we can assume that the system on Y is an ergodic s-step nilsystem and
g ∈ C(Y ).

Let X0 be the connected components of eX in X and let µ0 be the Haar
measure of this nilmanifold. Then µ0 is the normalized restriction of µ to X0.
It is a general fact about nilsystems that there exists k ∈ N such that the
sets T jY0, 0 ≤ j < k, form a partition of X and that (X0, µ0, T

k) is totally
ergodic. The rational eigenvalues of (X,µ, T ) are e(i/k) for i = 0, . . . , k − 1.
Let Y0, ν0 and ` be defined in the same way as X0, µ0, k was defined with Y
substituted for X, and let d be the least common multiple of k and `. Then
(X0, µ0, T

d) and (Y0, ν0, R
d) are totally ergodic and thus have no rational spec-

trum except 1. Moreover, if for some irrational t we have that e(t) is a common
eigenvalue for (X0, µ0, T

d) and (Y0, ν0, S
d), then e(t) is a common eigenvalue

for the systems (X,µ, T d) and (Y, ν, Sd). It is then an easy consequence that
the systems (X,µ, T ) and (Y, ν, S) have a common eigenvalue of the form e(s)

with s irrational (which can be chosen to satisfy ds = t mod 1), contradicting
our assumption that these systems have disjoint irrational spectrum.
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We conclude from the previous analysis that the systems (X0, µ0, T
d) and

(Y0, ν0, S
d) have disjoint spectrum different than 1. As a consequence, the

product system (X0×Y0, µ0×ν0, T
d×Rd) is ergodic, and since it is a nilsystem,

it is uniquely ergodic. Let x ∈ X, y ∈ Y . There exist i, j ∈ {0, . . . , d− 1} such
that x′ := T−ix ∈ X0 and y′ := R−jy ∈ Y0. Since the action of T d × Rd on
X0 × Y0 is uniquely ergodic, we have

En∈[N ]f(T dnx) · g(Rdny) = En∈[N ]f(T dn+ix′) · g(Rdn+jy′)

→
∫
T if dµ0 ·

∫
T jg dν0 = 0,

where the last identity follows since our assumption that f is orthogonal to
Krat(T ) implies that

∫
T if dµ0 = 0 for every i ∈ N. Applying the last identity

for T qx,Rry where q, r ∈ {0, . . . , d− 1}, in place of x, y, we deduce that

lim
N→∞

En∈[N ]f(Tnx) · g(Rny) = 0

holds for every x ∈ X, y ∈ Y , and the bounded convergence theorem gives (37).
This completes the proof of part (i).

We prove part (ii). In order to show that the systems are disjoint, it suffices
to show that for all f ∈ C∞(X) and g ∈ L∞(ν), with

∫
g dν = 0, we have

(38)
∫
f(x) · g(y) dσ(x, y) = 0.

As in the proof of part (i) we reduce to the case where the system (X,µ, T )

is a nilsystem. Composing with (T × R)n and averaging over n ∈ N, it thus
suffices to show that

(39) lim
N→∞

En∈[N ]

∫
f(Tnx) · g(Rny) dσ(x, y) = 0.

As in the proof of part (i) we reduce to the case where the system (Y, ν,R) is
also a nilsystem, so now the systems on X and on Y are ergodic nilsystems with
disjoint spectrum other than 1. Then the product system (X×Y, µ×ν, T ×R)

is ergodic, and since it is a nilsystem, it is uniquely ergodic. Hence, for every
x ∈ X and y ∈ Y , we have

(40) lim
N→∞

En∈[N ]f(Tnx) · g(Rny) =

∫
f dµ ·

∫
g dν = 0,

where the second identity follows since by assumption,
∫
g dν = 0. Finally,

using (40) and the bounded convergence theorem we get (39). This completes
the proof of part (ii). �

Lemma 6.2. Proposition 3.12 holds under the additional assumption that
the system (X,µ, T ) is ergodic.

Proof. By assumption, (X,µ, T ) is the direct product of an ergodic infinite-
step nilsystem (X ′, µ′, T ′) and a Bernoulli system (W,λ, S).



THE LOGARITHMIC SARNAK CONJECTURE FOR ERGODIC WEIGHTS 913

We prove part (i). After identifying X with X ′×W , we have to show that

(41)
∫
f(x′, w) g(y) dσ(x′, w, y) = 0

for every g ∈ L∞(ν).
Using L2(µ′ × λ)-approximation on the orthocomplement of Krat(T

′ × S),
we get that it suffices to verify (41) when f(x′, w) = f1(x′) f2(w) for some
f1 ∈ L∞(µ′) and f2 ∈ L∞(λ). Since Bernoulli systems are weakly mixing, we
get that Krat(T

′×S) = Krat(T
′). Hence, our assumption on f translates to the

fact that either
∫
f2 dλ = 0, or f1 is orthogonal to Krat(T

′).
Suppose that

∫
f2 dλ = 0. Let τ be the image of σ under the projection of

X ′×W × Y onto X ′× Y . Then σ defines a joining of the zero entropy system
(X ′×Y, τ, T ′×R) and the Bernoulli system (W,λ, S). Since these systems are
disjoint, we have σ = τ × λ. Hence,∫

f1(x′) f2(w) g(y) dσ(x′, w, y) =

∫
f1(x′) g(y) dτ(x′, y)

∫
f2(w) dλ(w) = 0,

establishing that (41) holds in this case.
Suppose now that f1 is orthogonal to Krat(T

′). Let ρ be the image of σ
under the projection of X ′ ×W × Y onto W × Y . Then ρ defines a joining of
the Bernoulli system (W,λ, S) and the zero entropy system (Y, ν,R). Since the
systems are disjoint, we have ρ = λ× ν. Hence, we can consider σ as a joining
of the system (X ′, µ′, T ′) and the system (W ×Y, λ×ν, S×R). Since Bernoulli
systems are weakly mixing, the system on W × Y is ergodic and has the same
eigenvalues as the system (Y, ν,R) and hence no common irrational eigenvalue
with the system (X ′, µ′, T ′). It follows that the assumptions of part (i) of
Lemma 6.1 are satisfied, and we conclude that (41) holds in this case as well,
completing the proof.

We prove part (ii). Let σ be a joining of the systems on X ′ × W and
on Y . As in the proof of part (i) we get that σ is a joining of the ergodic
infinite-step nilsystem (X ′, µ′, T ′) and the ergodic system (W ×Y, λ×ν, S×R)

and that these systems have disjoint spectrum other than 1. It follows that
the assumptions of part (ii) of Lemma 6.1 are satisfied, and we conclude that
σ = µ′ × λ × ν. Hence, the systems on X and on Y are disjoint, completing
the proof. �

We are now ready to complete the proof of Proposition 3.12.

Proof of Proposition 3.12. We write

(42) σ =

∫
σω dP (ω)

for the ergodic decomposition of the joining σ under T × R. Since the system
on Y is ergodic, for almost every ω ∈ Ω, the projection of σω onto Y is equal
to ν. We write µω for the projection of σω on X. Then by the uniqueness
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property of the ergodic decomposition, we get that for almost every ω ∈ Ω, the
measure µω is T -invariant and ergodic, the measure σω is an ergodic joining of
the systems (X,µω, T ) and (Y, ν,R), and the following identity holds:

(43) µ =

∫
µω dP (ω).

We prove part (i). Let λ be an irrational eigenvalue of (Y, ν,R). By
assumption, λ is not an eigenvalue of (X,µ, T ), hence

P
Ä¶
ω : λ is an eigenvalue of (X,µω, T )

©ä
= 0.

Since (Y, ν,R) has at most countably many eigenvalues, it follows that there
exists a subset Ω1 of Ω with P (Ω1) = 1 and such that for every ω ∈ Ω1,
the systems (Y, ν, T ) and (X,µω, T ) do not have any irrational eigenvalue in
common. Moreover, since f is orthogonal to Krat(µ, T ), there exists X1 ⊂ X

with µ(X1) = 1 and such that

En∈N e(nα) f(Tnx)→ 0 for every α ∈ Q and every x ∈ X1.

By (43), there exists a subset Ω2 of Ω1 with P (Ω2) = 1 and such that for every
ω ∈ Ω2, we have µω(X1) = 1, and the convergence above holds for µω almost
every x ∈ X. We conclude that for every ω ∈ Ω2, the function f is orthogonal
to Krat(µω, T ).

From the above discussion we have that for every ω ∈ Ω2, the hypothesis
of part (i) of Lemma 6.2 is satisfied for the function f and the joining σω of the
systems (X,µω, T ) and (Y, ν, S). We deduce that for every ω ∈ Ω2, we have∫

f(x) g(y) dσω(x, y) = 0

for every g ∈ L∞(ν). Since P (Ω2) = 1, it follows from (43) that∫
f(x) g(y) dσ(x, y) = 0

for every g ∈ L∞(ν). This completes the proof of part (i).
We prove part (ii). As in the first part we show that for P -almost every

ω ∈ Ω, the systems (Y, ν, T ) and (X,µω, T ) have disjoint spectrum other than 1.
Hence, part (ii) of Lemma 6.2 applies and gives that these two systems are
disjoint and thus σω = µω × ν for almost every ω ∈ Ω. Therefore, by (42) and
(43) we get σ = µ× ν. This completes the proof of part (ii). �

7. Subshifts with linear block growth and proof of Theorem 1.2

The goal of this section is to deduce Theorem 1.2 from Theorem 1.1 and
some facts about invariant measures of subshifts with linear block growth.
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7.1. Measures on a subshift with linear block growth. We start with some
definitions. Let A be a non-empty finite set whose elements are called letters.
A is endowed with the discrete topology and AZ with the product topology
and with the shift T . For n ∈ N, a word of length n is a sequence u = u1 · · ·un
of n letters (we omit the commas), and we write [u] = {x ∈ AZ : x1 · · ·xn =

u1 · · ·un}.
A subshift, also called a symbolic system, is a closed non-empty T -invariant

subset X of AZ. Recall that X is transitive if it has at least one dense orbit
under T .

Let (X,T ) be a transitive subshift, equal to the closed orbit of some point
ω ∈ AZ. For every n ∈ N, we let Ln(X) denote the set of words u of length n
such that [u] ∩ X 6= ∅. Then Ln(X) is also the set of words of length n that
occur (as consecutive values) in ω. Note that the set L(X) :=

⋃
n∈N Ln(X)

determines X. The block complexity of X or of ω is defined by pX(n) = |Ln(X)|
for n ∈ N. We say that the subshift (X,T ) (or the sequence ω) has linear block
growth if lim infn→∞ pX(n)/n <∞.

Proposition 7.1. Let (X,T ) be a transitive subshift with linear block
growth. Then (X,T ) admits only finitely many ergodic invariant measures.

This result was proved in [3] under the stronger hypothesis that (X,T )

is minimal. In order to replace this hypothesis with transitivity we will use a
result from [10] (alternatively we could use [20, Th. 7.3.7]) that treats the case
of non-atomic invariant measures.

Proof of Proposition 7.1. LetX be the closed orbit under T of some ω∈AZ,
and suppose that the subshift (X,T ) has linear block growth. If ω is periodic,
then X is a finite orbit and the shift transformation on X admits only one
invariant measure; hence, we can restrict to the case where ω is not periodic.
Let K be an integer such that lim infn→∞ pX(n)/n ≤ K. Then for infinitely
many n ∈ N, we have pX(n+ 1)− pX(n) ≤ K.

We say that a word u ∈ Ln(X) is right special if there exist two different
letters a, b ∈ A such that ua and ub belong to Ln+1(X). The number of right
special words of length n is clearly bounded by pX(n + 1) − pX(n). The left
special words of length n are defined in a similar way, and their number is also
bounded by pX(n+ 1)− pX(n). By a special word of length n we mean a left
or right special word. Then for infinitely many values of n ∈ N, there are at
most 2K special words of length n.

We claim that for every finite orbit Y in X and every n ∈ N, the set Ln(Y )

contains a special word. Suppose that this is not the case. Let x ∈ Y . Since the
orbit of ω is dense in X, there exists k ∈ Z such that the words ωk+1 · · ·ωk+n

and x1 · · ·xn are equal. We show that T kω = x. We claim first that for ` ≥ 1

we have ωk+` = x`. For 1 ≤ ` ≤ n there is nothing to prove. Suppose that
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this property holds until some ` ≥ n. Then the words ωk+`−n+1 · · ·ωk+` and
x`−n+1 . . . x` are equal, and since x ∈ Y , this word belongs to Ln(Y ) and thus is
not right special. Since ωk+`−n+1 · · ·ωk+`ωk+`+1 and x`−n+1 . . . x`x`+1 belong
to Ln+1(X), we have ωk+`+1 = x`+1, and the claim is proved. In the same way,
using now the fact that Ln(Y ) does not contain any left special word, we obtain
that ωk+` = x` for ` ≤ 0, and we conclude that T kω = x. Since the orbit of ω
is dense, we deduce that X = Y and thus ω is periodic. This contradicts our
assumption and proves the claim.

We claim now that X contains at most 2K distinct finite orbits. Suppose
that this is not the case and that Y1, . . . , Y2K+1 are distinct finite orbits. Then
the sets Yj , j = 1, . . . , 2K + 1, are closed, invariant, pairwise disjoint, and it
follows that for every sufficiently large n ∈ N, the sets Ln(Y1), . . . , Ln(Y2K+1)

are pairwise disjoint. Let n ∈ N be chosen so that there are at most 2K special
words of length n. By the preceding step, each set Ln(Yj) contains a special
word, and since these words are distinct, we have a contradiction and the claim
is proved.

By [10], the subshift (X,T ) has only finitely many non-atomic ergodic
measures. Each atomic ergodic invariant measure is the uniform measure of a
finite orbit, and we previously showed that there are at most 2K such orbits;
hence there are at most 2K such measures. This completes the proof. �

7.2. Proof of Theorem 1.2. Suppose that λ has linear block growth. We
extend λ to a two-sided sequence, written also λ ∈ {−1, 1}Z, by letting λ(n) =

1 for non-positive n ∈ Z; then the extended sequence still has linear block
growth. Let Y be the closed orbit of λ in {−1, 1}Z, and let R be the shift on
Y . Then (Y,R) is a transitive subshift, and since it has linear block growth, it
has zero topological entropy. Moreover, by Proposition 7.1 this system admits
only finitely many ergodic invariant measures. Note that for every n ∈ N,
we have λ(n) = F0(Rnλ), where F0 : {−1, 1}Z → R is the map x 7→ x0. By
Theorem 1.1 we get

0 = lim
N→∞

1

logN

N∑
n=1

F0(Rnλ)λ(n)

n
= lim

N→∞

1

logN

N∑
n=1

λ(n)2

n
= 1,

a contradiction. �

Appendix A. Inverse limits and infinite-step nilsystems

A.1. Inverse limits in ergodic theory. Let (Xj ,Xj , µj , Tj), j ∈ N, be mea-
sure preserving systems, and let πj,j+1 : Xj+1 → Xj , j ∈ N, be factor maps.
We say that (Xj , πj,j+1 : j ∈ N) is an inverse sequence of systems. An inverse
limit of this inverse sequence is defined to be a system (X,X , µ, T ) endowed
with factor maps πj : X → Xj , j ∈ N, satisfying the following two properties:



THE LOGARITHMIC SARNAK CONJECTURE FOR ERGODIC WEIGHTS 917

(i) πj = πj,j+1 ◦ πj+1 for every j ∈ N;
(ii) X = ∨j∈Nπ−1

j (Xj).
For a given inverse sequence of systems, the existence of an inverse limit can
be shown by an explicit construction. Properties (i) and (ii) characterize the
system (X,µ, T ) up to isomorphism. Thus we can say that (X,µ, T ), endowed
with the factor maps πj , j ∈ N, is the inverse limit instead of an inverse limit,
and write

(X,µ, T ) = lim←−(Xj , µj , Tj)

when the factor maps are clear from the context.
A typical example is when a system (X,X , µ, T ) is given and for j ∈ N

the systems on Xj are the ones associated to an increasing sequence Xj of
T -invariant sub-σ-algebras of X . Then the inverse limit of this inverse sequence
can be defined as the factor of X associated with the T -invariant sub-σ-algebra
X ′ := ∨j∈Nπ−1

j (Xj).
We record some easy but important properties of inverse limits:

Lemma A.1. Suppose that (X,µ, T ) = lim←−(Xj , µj , Tj). Then
(i) (X,µ, T ) is ergodic if and only if (Xj , µj , Tj) is ergodic for every j ∈ N;
(ii) a complex number of modulus 1 is an eigenvalue of (X,µ, T ) if and only if

it is an eigenvalue of (Xj , µj , Tj) for every sufficiently large j ∈ N.

A.2. Inverse limits of topological dynamical systems. Let (Xj , Tj), j ∈ N,
be topological dynamical systems and πj,j+1 : Xj+1 → Xj , j ∈ N, be factor
maps. We say that (Xj , πj,j+1 : j ∈ N) is an inverse sequence of topological
dynamical systems. An inverse limit of this inverse sequence is defined to be a
topological dynamical system (X,T ) endowed with factor maps πj : X → Xj ,
j ∈ N, satisfying
(i) πj = πj,j+1 ◦ πj+1 for every j ∈ N;
(ii) if x, x′ ∈ X are distinct, then πj(x) 6= πj(x

′) for some j ∈ N.
Again, for a given inverse sequence of topological systems the existence of an in-
verse limit can be established by an explicit construction. Properties (i) and (ii)
characterize the system (X,T ) up to isomorphism. We state the following easy
but important properties:

Lemma A.2. Suppose (X,T )=lim←−(Xj , Tj) with factor maps πj : X→Xj ,
j ∈ N. Then
(i) Let x ∈ X and Y be the orbit closure of x under T . Then for every j ∈ N,

πj(Y ) is the orbit closure of πj(x) under T and (Y, T ) = lim←−(πj(Y ), Tj).
(ii) If (Xj , Tj) is minimal for every j ∈ N, then (X,T ) is minimal.
(iii) If (Xj , Tj) is uniquely ergodic for every j ∈ N, then (X,T ) is uniquely

ergodic.
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We verify the third property only. Let µ, µ′ be two T -invariant measures
on X. For every j ∈ N, the system (Xj , Tj) is uniquely ergodic with invariant
measure µj . Hence, for every j ∈ N, the images of µ and µ′ under πj are equal
to µj , and

∫
f ◦ πj dµ =

∫
f ◦ πj dµ′ for every f ∈ C(Xj). It follows from

property (ii) of topological inverse limits and the Stone-Weierstrass theorem
that the collection of functions f ◦ πj , where f ∈ C(Xj) and j ∈ N, is dense
in C(X) with the uniform norm. We conclude that µ = µ′. Hence, the system
(X,T ) is uniquely ergodic.

Up to notational changes, all definitions and results of Sections A.1 and
A.2 remain valid for systems with several commuting transformations.

A.3. Infinite step nilsystems. Let (Xj , µj , Tj), j ∈ N, be ergodic nilsys-
tems and πj,j+1 : Xj+1 → Xj , j ∈ N, be factor maps. By [55, Th. 3.3],7 for
every j ∈ N, the measure theoretic factor map πj,j+1 : Xj+1 → Xj agrees al-
most everywhere with a topological factor map, which we also denote by πj,j+1.
Therefore, the topological dynamical systems (Xj , Tj), with factor maps πj,j+1,
j ∈ N, form an inverse system. Let (X,T ) be the inverse limit of this se-
quence, and let πj : X → Xj be the associated factor maps. By part (iii) of
Lemma (A.2), the system (X,T ) is uniquely ergodic. Let µ be the unique
invariant measure of (X,T ). Then properties (i) and (ii) of Section A.1 are
satisfied and (X,µ, T ) = lim←−(Xj , µj , Tj).

We use the following terminology from [12]:

Definition A.3. We say that a measure preserving system (X,µ, T ) is an
ergodic infinite-step nilsystem if it is the inverse limit of a sequence (Xj , µj , Tj),
j ∈ N, of ergodic nilsystems. By the preceding discussion, the topological
dynamical system (X,T ) is then the inverse limit of the minimal nilsystems
(Xj , Tj), j ∈ N, and we say that (X,T ) is a minimal infinite-step nilsystem.
We often abuse notation and denote the transformation Tj on Xj by T .

We caution the reader that if sj is the degree of nilpotency of the nilman-
ifolds Xj , j ∈ N, then the sequence (sj)j∈N may be unbounded.

From property (iii) of Lemma A.2 and the well-known fact that minimal
(finite-step) nilsystems are uniquely ergodic, it follows that minimal infinite-
step nilsystems are uniquely ergodic.

Lemma A.4. An ergodic joining of two ergodic finite or infinite-step nil-
systems is a finite or an infinite-step nilsystem respectively.

7In [55] the result is given only when the groups defining the nilmanifolds are connected,
but the proof extends to the general case. Another proof is implicit in [39, §6]; see also [38,
Ch. XII].



THE LOGARITHMIC SARNAK CONJECTURE FOR ERGODIC WEIGHTS 919

Proof. We give the argument for infinite-step nilsystems only; the other
case is similar. Let σ be an ergodic joining of the ergodic infinite-step nil-
systems (X,µ, T ) and (X ′, µ′, T ′). We write (X,µ, T ) = lim←−j(Xj , µj , Tj) and
(X ′, µ′, T ′) = lim←−j(X

′
j , µ
′
j , T

′
j) where the systems on Xj and X ′j are ergodic

nilsystems for every j ∈ N. For j ∈ N, let σj be the projection of σ on Xj×X ′j ;
then σj is an ergodic joining of the systems onXj andX ′j . By [48, Ths. 2.19 and
2.21], for j ∈ N, the measure σj is the Haar measure on some sub-nilmanifold
of the product nilmanifold Xj ×X ′j . Hence (Xj ×X ′j , σj , Tj ×T ′j) is an ergodic
nilsystem. Since (X × X ′, σ, T × T ′) = lim←−j(Xj × X ′j , σj , Tj × T ′j), the result
follows. �

A.4. The infinite-step nilfactor of a system. Let (X,µ, T ) be an ergodic
system, and for k ∈ N, let (Zk,Zk, µk, T ) be the factor of order k of X as
defined in [36]. In [36] it is shown that Zk is characterized by the following
property:

(44) for f ∈ L∞(µ), E(f |Zk) = 0 if and only if |||f |||k+1 = 0,

where the seminorms ||| · |||k are defined inductively as follows: for f ∈ L∞(µ),
we let |||f |||1 :=

∣∣∣ ∫ f dµ∣∣∣ and |||f |||2k+1

k+1 := En∈N|||f̄ · Tnf |||2
k

k for k ∈ N, where all
limits can be shown to exist.

The following result was proved in [36]:

Theorem A.5. If (X,µ, T ) is an ergodic system, the system (Zk,Zk, µk, T )

is an inverse limit of ergodic k-step nilsystems.

The factors Zk, k ∈ N, form an increasing sequence of T -invariant sub-σ-
algebras of X , and we let Z∞ := ∨k∈NZk and (Z∞,Z∞, µ∞, T ) be the factor
system associated with the Z∞. Then, this system is the inverse limit of the
systems (Zk,Zk, µk, T ), k ∈ N.

Corollary A.6. If (X,µ, T ) is an ergodic system, then (Z∞, µ∞, T ) is
an ergodic infinite-step nilsystem.

Proof. For k ∈ N, we write (Zk, µk, T ) = lim←−j(Zk,j , µk,j , Tj), where the
systems on Zk,j are ergodic k-step ergodic nilsystems for every j ∈ N. For
` ∈ N, let (Y`, ν`, T ) be the factor of X associated with the σ-algebra

Y` :=
∨

k,j∈N, k+j≤`
Zk,j .

Then the system on Y` is an ergodic joining of the nilsystems on Zk,j with
k + j ≤ `. Hence, Lemma A.4 gives that (Y`, ν`, T ) is an ergodic nilsystem.
Moreover, for every ` ∈ N and for all k, j ∈ N with k + j ≤ `, we have
Zk,j ⊂ Z` and thus Y` ⊂ Z` and ∨`Y` ⊂ Z∞. Conversely, for every k ∈ N, we
have Yk+j ⊃ Zk,j for every j ∈ N, and hence ∨`Y` = ∨jYk+j ⊃ ∨jZk,j = Zk.
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Therefore, ∨`Y` ⊃ Z∞, and we have equality ∨`Y` = Z∞. By characterizations
(i) and (ii) of inverse limits, we deduce that (Z∞, µ∞, T ) = lim←−`(Y`, ν`, T ) and
thus (Z∞, µ∞, T ) is an infinite-step nilsystem. �

Appendix B. The nilmanifold and nilsystem
of arithmetic progressions

A key step in the proof of Theorem 1.6 is to determine the structure of
the system of arithmetic progressions with integer steps (see Definition 4.2) in
the case where the base system is a nilsystem. We are thus naturally led to
study configurations defined by arithmetic progressions on GZ, where G is some
nilpotent group, of the form (. . . , h−2g, h−1g, g, hg, h2g, . . .), where g, h ∈ G. It
turns out that such configurations are not closed under pointwise multiplication
and the smallest closed subgroup of GZ that contains these “arithmetic progres-
sions” is the Hall-Petresco group that we define next. An extensive study of
arithmetic progressions in a nilpotent group and in a nilmanifold can be found
in [38, Ch. XIV] and in [38].

B.1. The group of arithmetic progressions. Let s ∈ N, and let X = G/Γ

be an s-step nilmanifold. We write

G = G0 = G1 ⊃ G2 ⊃ · · · ⊃ Gs ⊃ Gs+1 = {eG}

for the lower central series of G. We denote by µX the Haar measure of X and
by eX the image of eG in X. The action of G on X is written (g, x) 7→ g · x.

We use the following convention for binomial coefficients with negative
entries: Ç

n

m

å
=
n(n− 1) · · · (n−m+ 1)

m!
, n ∈ Z, m ≥ 0,

where the empty product is equal to 1 by convention.
We write G for the set of sequences g = (gj)j∈Z given by

(45) gj = a0a
(j1)
1 a

(j2)
2 · · · a(js)

s , j ∈ Z,
where am ∈ Gm for m = 0, 1, . . . , s.

It is known since the work of Hall [35] and Petresco [57] that G forms a
group with respect to pointwise multiplication. This group is called the Hall-
Petresco group of G and was extensively studied by Leibman [47] and later by
Green and Tao [30], [33].

Elements of G have the following useful equivalent characterization: For
g = (gj)j∈Z in GZ, let ∂g ∈ GZ be defined by

(∂g)j := gj+1g
−1
j , j ∈ Z.

In other words, ∂g = σg · g−1, where σ : GZ → GZ is the shift defined by

(σ(g))j := gj+1, g ∈ GZ, j ∈ Z.
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For m ∈ N, we let ∂◦m := ∂ ◦ · · · ◦ ∂ (m times). The next result was proved in
[47, Prop. 3.1] and also in [46]:

Lemma B.1. An element g ∈ GZ belongs to G if and only if for every
m ∈ N, we have ∂◦mg ∈ GZ

m .

We immediately deduce from Lemma B.1 the following basic properties:

• G is invariant under the shift σ : GZ → GZ;
• ∂◦(s+1)g = eG for every g ∈ G; that is, σ is a unipotent automorphism of G;
• G is a closed subgroup of GZ.

B.2. The nilmanifold of arithmetic progressions. Let XZ be endowed with
the action of G given by (g · x)j = gj · xj for g ∈ G, x ∈ XZ, and j ∈ Z. If
eX = (. . . , eX , eX , eX , . . . ), we define

X := G · eX =
¶

(gj · eX)j∈Z : (gj)j∈Z ∈ G
©
.

The stabilizer of eX in G is the subgroup Γ := G ∩ ΓZ, and thus we have

X = G/Γ.

A priori, X is an infinite dimensional object, but it will be convenient for
us to represent it as a nilmanifold, in order to be able to apply the machinery
of nilmanifolds. To this end, we show that G can be represented as a subgroup
of Gs+1 and X as a sub-nilmanifold of Xs+1. We make use of the next lemma,
which follows from Lemma B.1 and was established by Green and Tao in the
course of proving Lemma 14.2 in [30].

Lemma B.2. The projection homomorphism

p : G→ Gs+1 given by p(g) := (g0, g1, . . . , gs)

is one-to-one and satisfies p−1(Γs+1) = Γ. Furthermore, the projection

q : X → Xs+1 given by q(x) := (x0, x1, . . . , xs)

is one-to-one.

We let

G′ := p(G), Γ′ := p(Γ) = G ∩ Γs+1, X ′ := q(X).

Writing e′X := (eX , eX , . . . , eX) ∈ Xs+1, we have X ′ = G′ · e′X by construction,
and we can identify X ′ with G′/Γ′.

By [2, §5] (see also [69]), G′ is a closed subgroup of Gs+1, hence a nilpotent
Lie group, and the discrete subgroup Γ′ of G′ is cocompact. Therefore, X ′ is
compact and can be identified with the nilmanifold G′/Γ′.

Since G and G′ are Polish groups and p : G→ G′ is a continuous bijective
homomorphism, the inverse homomorphism is also continuous. Since Γ′ is
cocompact in G′, it follows that Γ is cocompact in G, hence X is compact, and
thus q : X → X ′ is a homeomorphism.
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Convention. In the sequel, we use the isomorphism p to identify G with
G′ and Γ with Γ′. We use the homeomorphism q to identify X = G/Γ with the
nilmanifold X ′ = G′/Γ′. We write µX for the Haar measure of X.

Definition B.3. X = G/Γ is called the nilmanifold of arithmetic progres-
sions in X.

B.3. The nilsystem of arithmetic progressions. Since G is invariant under
the shift σ of GZ, we get that X is invariant under the shift S of XZ. We have

(46) S(g · x) = σ(g) · Sx, x ∈ X, g ∈ G.

By (46) the image of the measure µX under S is invariant under translation
by elements of G, and hence it is equal to µX . We have thus established that
(X,µX , S) is a measure preserving system and our next goal is to give (X,S)

the structure of a nilsystem, called the nilsystem of arithmetic progressions
in X.

We define the group Ĝ to be the semidirect product Ĝ = G oφ Z, where
φ : Z → Aut(G) is the homomorphism n 7→ −→σ ◦n, where σ◦n = σ ◦ · · · ◦ σ
(n times). More explicitly, as a set we have Ĝ = G×Z, and the multiplication
is given by

(g,m) · (h, n) = (g · σ◦m(h),m+ n), g, h ∈ G, m, n ∈ Z.

Then G × {0} is a normal subgroup of Ĝ that we identify with G. Since G
is nilpotent and the automorphism σ of G is unipotent, it follows that Ĝ is
nilpotent [48, Prop. 3.9]. We give Ĝ the structure of a Lie group by letting G
be an open subgroup of Ĝ.

The group Ĝ acts on X by (g,m)·x = g ·Smx, and this action preserves the
Haar measure of X. Moreover, the stabilizer of eX is the discrete cocompact
subgroup Γ̂ := Γ oφ Z of Ĝ, and we can identify X with the nilmanifold Ĝ/Γ̂.
Since the measure µ is invariant under S and the action of G, it is invariant
under the action of Ĝ and thus coincides with the Haar measure of X when
identified with Ĝ/Γ̂. Finally, with the above identifications, the transformation
S is the translation by the element (eG, 1) of Ĝ, and thus (X,µX , S) is a
nilsystem. The previous discussion leads to the following basic result:

Proposition B.4. If X is a nilmanifold, then the system (X,S) is topo-
logically isomorphic to a nilsystem. As a consequence, if Y = {Snx : n ∈ Z} for
some x ∈ X , then the system (Y, S) is topologically isomorphic to a uniquely
ergodic nilsystem.

The first claim was established in the previous discussion. The consequence
follows, for example, from [48, Ths. 2.19 and 2.21].
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Appendix C. Sketch of proof of Tao’s identity

We recall the statement of Theorem 3.5 and briefly sketch its proof al-
most entirely following [62]. The only difference in our presentation is that our
assumption of existence of certain limits allows us to perform a partial sum-
mation at the beginning of the argument in order to connect the averages we
are interested in to the averages treated in [62].

Proposition C.1. Let N = ([Nk])k∈N be a sequence of intervals, ` ∈ N,
a1, . . . , a` be bounded sequences of complex numbers, and h1, . . . , h` ∈ Z. Also
let (cp)p∈P be a bounded sequence of complex numbers. Then, assuming that on
the left- and right-hand sides below the limits Elog

n∈N exist for every p ∈ P and
the limit Ep∈P exists, we have the identity

(47) Ep∈P cp
(
Elog
n∈N

∏̀
j=1

aj(pn+ phj)
)

= Ep∈P cp
(
Elog
n∈N

∏̀
j=1

aj(n+ phj)
)
.

Sketch of Proof. For H ∈ N, let8

PH := {p ∈ P : H/2 ≤ p < H}, WH :=
∑
p∈PH

1

p
∼ 1

logH
,

where the last asymptotic means that the quotient of the two quantities involved
converges to a non-zero constant as H →∞ and follows from the prime number
theorem using partial summation.

We first claim that the limits on the left- and right-hand sides of (47) are
equal to

(48) lim
H→∞

1

WH

∑
p∈PH

cp
p
Elog
n∈N

∏̀
j=1

aj(pn+ phj)

and

lim
H→∞

1

WH

∑
p∈PH

cp
p
Elog
n∈N

∏̀
j=1

aj(n+ phj)

respectively. To see this, let

A(p) := cp Elog
n∈N

∏̀
j=1

aj(pn+ phj).

Our assumptions give that the limit L := Ep∈PA(p) exists and we want to show
that

B(H) :=
1

WH

∑
p∈PH

A(p)

p
→ L as H →∞.

8In [62] the respective set PH consists of primes on the interval [δH/2, δH) for a sufficiently
small δ, but for our purposes we can take δ = 1.
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(In a similar manner we treat the second average.) Let ε > 0. If S(x) :=∑
p≤x(A(p)− L), where x ∈ N, our hypothesis gives that |S(x)| ≤ ε x

log x for all
sufficiently large x. Since S(x)− S(x− 1) is equal to A(x)− L if x is a prime
and is 0 otherwise, we get that for every H ∈ N, we have

B(H)− L =
1

WH

∑
H/2≤n<H

S(n)− S(n− 1)

n
.

Using partial summation we get that |B(H)−L| is bounded by a sum of terms of
the form S(H)/(HWH) and 1

WH

∑
H/2≤n<H

S(n)
n2 . For sufficiently large H ∈ N,

the first term is bounded by ε and the second by εH
∑
H/2≤n<H

1
n2 ≤ 2ε. This

completes the proof of the claim.
Next note the simple but important fact that if b ∈ `∞(Z), then for every

r ∈ N, we have9

Elog
n∈N(b(rn)− b(n) r 1rZ(n)) = 0.

Using this for r = p and for the sequence bp, p ∈ P, defined by

bp(n) := cp
∏̀
j=1

aj(n+ phj), n ∈ N,

we can rewrite the limit in (48) as

lim
H→∞

1

WH

∑
p∈PH

cp Elog
n∈N

∏̀
j=1

aj(n+ phj) · 1pZ(n).

Hence, in order to establish (47) and because all relevant limits exist, it
suffices to show that

(49) lim inf
H→∞

∣∣∣∣Elog
n∈N

1

WH

∑
p∈PH

cp
∏̀
j=1

aj(n+ phj) ·
Ä
1pZ(n)− p−1

ä∣∣∣∣ = 0.

We argue by contradiction. Suppose (49) fails for some h1, . . . , h` ∈ Z. Since
WH ∼ 1

logH , there exists ε > 0 such that for δ := ε2 (we can choose it any
function of ε we like), we have (the argument is similar if ≤ −ε 1

logH )

(50) Elog
n∈N

∑
p∈PH

cp
∏̀
j=1

aj(n+ phj) ·
Ä
1pZ(n)− p−1

ä
≥ ε 1

logH

for all large enough H ∈ N. Using the translation invariance of the average
Elog
n∈N we shift n by h and sum over h ∈ [H]. We get that

9This identity holds for logarithmic averages and fails in general for Cesàro averages, which
is the main reason why we cannot treat Cesàro averages in this article.
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(51) Elog
n∈[Nk]

∑
p∈PH

∑
h∈[H]

cp
∏̀
j=1

aj(n+ h+ phj) ·
Ä
1pZ(n+ h)− p−1

ä
≥ ε H

logH

for all large enough H ∈ N depending on ε and all large enough k depending on
ε and H. Furthermore, after approximating the sequences aj , j = 1, . . . , `, to
the nearest element of the lattice ε2Z[i], we can assume that they take values
on a finite set A = Aε and (51) continues to hold (with ε/2 in place of ε). For
details, see [62, §2].

For k ∈ N, on the space N we define the (non-shift invariant) probability
measure Pk on all subsets of N by letting

Pk(E) := Elog
n∈[Nk]1E(n), E ⊂ N.

We also define the vector valued random variablesXH : N→ C`H andYH : N→∏
p≤H Z/pZ as follows:

XH(n) := (aj,h(n))j∈[`],h∈[H], n ∈ N, where aj,h(n) := aj(n+ h),

YH(n) :=
Ä
n (p)

ä
p≤H , n ∈ N,

where
Ä
n (p)

ä
p≤H denotes the reductions of n modulo the primes p that are

less than H. Furthermore, for H ∈ N, we let FH : A`H ×∏p≤H Z/pZ → R be
defined by
(52)

FH((xj,h)j∈[`],h∈[LH], (rp)p≤H) :=
∑
p∈PH

∑
h∈[H]

cp
∏̀
j=1

xj,h+phj (1pZ(rp +h)− p−1),

where L := maxj=1,...,`(hj) + 1. Also let EkF denote the expectation of a
function F : N → C with respect to the probability measure Pk. Then (51)
gives that

(53) |EkFH(XH(n),YH(n))| ≥ ε H

logH

for all large enough H depending on ε and all large enough k depending on ε
and H.

Using the entropy decrement argument as in [62, Lemma 3.2], we get that
there exist a positive integer H− = H−(ε) (which can be chosen suitably large
depending on ε), a larger positive integer H+ = H+(ε), and for k ∈ N, there
exist Hk ∈ [H−, H+] such that

Ik(XHk ,YHk) ≤ Hk

logHk log logHk

for every k ∈ N where Ik is the mutual information function (defined in [62,
§3]) with respect to the probability measure Pk. Since the integers Hk belong
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to the finite interval [H−, H+] for every k ∈ N, there exists a fixed integer
H0 ∈ [H−, H+] such that

(54) Ik(XH0 ,YH0) ≤ H0

logH0 log logH0

for infinitely many k ∈ N. We deduce that for H := H0, (53) and (54) hold
simultaneously for infinitely many k ∈ N.

Using (54) one gets, as in [62] (using the Pinsker type inequality [62,
Lemma 3.3] and then the Hoeffding inequality as in [62, Lemma 3.5]), the
following estimate (it corresponds to [62, eq. (3.16)]):

(55) E(rp)p≤H∈
∏
p≤H0

Z/pZ EkFH0(XH0(n), (rp)p≤H0) ≥ Cε H0

logH0

for some C > 0 and for infinitely many k ∈ N. But by (52), we have

E(rp)p≤H∈
∏
p≤H Z/pZ FH(XH(n), (rp)p≤H) = 0

for every n,H ∈ N. This contradicts (55) and completes the proof. �
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