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Spectral gaps without
the pressure condition

By Jean Bourgain and Semyon Dyatlov

Abstract

For all convex co-compact hyperbolic surfaces, we prove the existence

of an essential spectral gap, that is, a strip beyond the unitarity axis in

which the Selberg zeta function has only finitely many zeroes. We make

no assumption on the dimension δ of the limit set; in particular, we do not

require the pressure condition δ ≤ 1
2
. This is the first result of this kind

for quantum Hamiltonians.

Our proof follows the strategy developed by Dyatlov and Zahl. The

main new ingredient is the fractal uncertainty principle for δ-regular sets

with δ < 1, which may be of independent interest.

1. Introduction

Let M = Γ\H2 be a (noncompact) convex co-compact hyperbolic surface.

The Selberg zeta function ZM (s) is a product over the set LM of all primitive

closed geodesics

ZM (s) =
∏
`∈LM

∞∏
k=0

Ä
1− e−(s+k)`

ä
, Re s� 1,

and it extends meromorphically to s ∈ C. From the spectral description of

ZM it is known that ZM (s) has only finitely many zeroes in {Re s > 1
2}, which

correspond to small eigenvalues of the Laplacian. The situation in {Re s ≤ 1
2}

is more complicated since the zeroes of ZM are no longer given by a self-adjoint

spectral problem on L2(M); they instead correspond to scattering resonances

of M and are related to decay of waves.

A natural question is whether M has an essential spectral gap; that is, does

there exist β > 0 such that ZM (s) has only finitely many zeroes in {Re s >
1
2 − β}? The known answers so far depend on the exponent of convergence
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of the Poincaré series of the group, denoted δ ∈ [0, 1). Patterson [Pat76] and

Sullivan [Sul79] proved that there is a gap of size β = 1
2 − δ when δ < 1

2 , and

Naud [Nau05] showed there is a gap of size β > 1
2 − δ when 0 < δ ≤ 1

2 . The

present paper removes the restrictions on δ:

Theorem 1. Every convex co-compact hyperbolic surface has an essential

spectral gap.

Spectral gaps for hyperbolic surfaces have many important applications,

such as diophantine problems (see Bourgain–Gamburd–Sarnak [BGS11], Oh–

Winter [OW16], Magee–Oh–Winter [MOW], and the lecture notes by Sarnak

[Sar14]) and remainders in the prime geodesic theorem (see, for instance, the

book of Borthwick [Bor16, §14.6]). Moreover, hyperbolic surfaces are a stan-

dard model for more general open quantum chaotic systems, where spectral

gaps have been studied since the work of Lax–Phillips [LP67], Ikawa [Ika88]

and Gaspard–Rice [GR89]; see Section 1.1 below.

Theorem 1 can also be viewed in terms of the scattering resolvent

R(λ) =

Å
−∆M −

1

4
− λ2

ã−1

:

L2(M)→ H2(M), Imλ > 0,

L2
comp(M)→ H2

loc(M), λ ∈ C,

where ∆M ≤ 0 is the Laplace–Beltrami operator of M . The family R(λ) is

meromorphic, as proved by Mazzeo–Melrose [MM87], Guillopé–Zworski [GZ95],

and Guillarmou [Gui05]. Its poles, called resonances, correspond to the zeroes

of ZM (s), s := 1
2 − iλ; see, for instance, [Bor16, Ch. 10]. Therefore, Theorem 1

says that there are only finitely many resonances with Imλ > −β. Since our

proof uses [DZ16] and a fractal uncertainty principle (Theorem 3), we obtain

a polynomial resolvent bound:

Theorem 2. Let M be as in Theorem 1, and take β = β(M) > 0 given

by Theorem 3 below. Then for each ε > 0, there exists C0 > 0 such that for all

ϕ ∈ C∞0 (M),

(1.1) ‖ϕR(λ)ϕ‖L2→L2 ≤ C|λ|−1−2 min(0,Imλ)+ε, |λ| > C0, Imλ ∈ [−β+ε, 1],

where the constant C depends on ε, ϕ, but not on λ.

Remarks. 1. We see from Theorem 2 that there is an essential spectral

gap of size β for all β < β(M), where β(M) is given by Theorem 3, but not

necessarily for β = β(M). However, this is irrelevant since Theorem 3 does

not specify the value of β(M).

2. Spectral gaps for convex co-compact hyperbolic surfaces were stud-

ied numerically by Borthwick [Bor14] and Borthwick–Weich [BW16]; see also

[Bor16, §16.3.2] and Figure 1.
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Figure 1. Numerically computed essential spectral gaps β for

symmetric 3-funneled and 4-funneled surfaces from [BW16,

Fig. 14] (specifically, GI1100 in the notation of [BW16]; data used

with permission of authors). Each point corresponds to one sur-

face and has coordinates (δ, β). The solid line is the standard

gap β = max(0, 1
2 − δ).

1.1. Systems with hyperbolic trapping. The case of convex co-compact hy-

perbolic surfaces studied here belongs to the more general class of open sys-

tems with uniformly hyperbolic trapped sets which have fractal structure; see

the reviews of Nonnenmacher [Non11] and Zworski [Zwo17] for the definition

of these systems and an overview of the history of the spectral gap problem.

Another example of such systems is given by scattering in the exterior of sev-

eral convex obstacles under the no-eclipse condition, where spectral gaps were

studied by Ikawa [Ika88], Gaspard–Rice [GR89], and Petkov–Stoyanov [PS10]

and observed experimentally by Barkhofen et al. [BWP+13].

For general hyperbolic systems, resolvent bounds of type (1.1) have im-

portant applications to dispersive partial differential equations, including (the

list of references below is by no means extensive)

• exponential local energy decay O(e−βt) of linear waves modulo a finite di-

mensional space corresponding to resonances with Imλ > −β (see Chris-

tianson [Chr09] and Guillarmou–Naud [GN09]);

• exponential stability for nonlinear wave equations (see Hintz–Vasy [HV18]);

• local smoothing estimates (see Datchev [Dat09]);

• Strichartz estimates (see Burq–Guillarmou–Hassell [BGH10] and Wang

[Wan17]).

Theorem 2 is the first unconditional spectral gap result for quantum chaotic

Hamiltonians with fractal hyperbolic trapped sets. It is a step towards the

following general spectral gap conjecture:
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Conjecture ([Zwo17, §3.2, Conj. 3]). Suppose that P is an operator

for which the scattering resolvent admits a meromorphic continuation (e.g.,

P = −∆M , where (M, g) is a complete Riemannian manifold with Euclidean or

asymptotically hyperbolic infinite ends). Assume that the underlying classical

flow (e.g., the geodesic flow on (M, g)) has a compact hyperbolic trapped set.

Then there exists β > 0 such that (M, g) has an essential spectral gap

of size β; that is, the scattering resolvent has only finitely many poles with

Imλ > −β.

We give a brief overview of some of the previous works related to this

conjecture, as well as some recent results. We remark that the question of

which scattering systems have exponential wave decay has been studied since

the work of Lax–Phillips [LP67]; see [LP89, epilogue] for an overview of the

history of this question.

• A spectral gap of size β = −P (1
2) under the pressure condition P (1

2) < 0 was

proved for obstacle scattering by Ikawa [Ika88], computed in the physics lit-

erature by Gaspard–Rice [GR89], and proved for general hyperbolic trapped

sets by Nonnenmacher–Zworski [NZ09a], [NZ09b]. Here P (σ) is the topologi-

cal pressure of the system; see, for instance, [Non11, (14)] or [Zwo17, (3.28)].

For the case of hyperbolic surfaces considered here, we have P (σ) = δ − σ,

so the pressure condition is δ < 1
2 and the pressure gap is the Patterson–

Sullivan gap.

• An improved spectral gap β > −P (1
2) under the relaxed pressure condition

P (1
2) ≤ 0 was proved by Naud [Nau05] for convex co-compact hyperbolic

surfaces, Stoyanov [Sto11] for more general cases of Ruelle zeta functions

including higher-dimensional convex co-compact hyperbolic manifolds, and

Petkov–Stoyanov [PS10] for obstacle scattering. The above papers rely on

the method originally developed by Dolgopyat [Dol98].

• Jakobson–Naud [JN12] conjectured a gap of size −1
2P (1) = 1−δ

2 for hyper-

bolic surfaces and obtained upper bounds on the size of the gap.

• Dyatlov–Zahl [DZ16] reduced the spectral gap question for convex co-com-

pact hyperbolic manifolds to a fractal uncertainty principle (see Section 1.2

below) and showed an improved gap β > 1
2 − δ for surfaces with δ = 1

2 and

for nearby surfaces using methods from additive combinatorics. The size of

the gap in [DZ16] decays superpolynomially as a function of the regularity

constant CR (defined in Section 1.3 below). Dyatlov–Jin [DJ18] adapted

the methods of [Dol98], [Nau05] to obtain an improved gap for 0 < δ ≤ 1
2

which depends polynomially on CR. Later Bourgain–Dyatlov [BD17] gave

an improved gap β > 1
2 − δ which depends only on δ > 0 and not on CR.

The present paper is in some sense orthogonal to [DJ18], [BD17] since it
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gives a gap β > 0. Thus the result of the present paper is interesting when

δ ≥ 1
2 , and the results of [DJ18] and [BD17] are interesting when δ ≤ 1

2 .

• In a related setting of open quantum baker’s maps, Dyatlov–Jin [DJ17] used

a fractal uncertainty principle to show that every such system has a gap,

and they obtained quantitative bounds on the size of the gap.

• We finally discuss the case of scattering on finite area hyperbolic surfaces

with cusps. An example is the modular surface PSL(2,Z)\H2, where the

zeroes of the Selberg zeta function fall into two categories:

(1) infinitely many embedded eigenvalues on the line {Re s = 1
2};

(2) the rest, corresponding to the zeroes of the Riemann zeta function.

In particular, the modular surface has no essential spectral gap. The same is

true for any finite area surface; that is, there are infinitely many resonances

in the half-plane {Re s > 1
2 − β} for all β > 0. This follows from the fact

that the number of resonances in a ball of radius T grows like T 2, together

with the following bound proved by Selberg [Sel90, Th. 1]:∑
s resonance
| Im s|≤T

Å
1

2
− Re s

ã
= O(T log T ) as T →∞.

However, the question of how close resonances can lie to the critical line

Re s = 1
2 for a generic finite area surface is more complicated, in particular,

embedded eigenvalues are destroyed by generic conformal perturbations of

the metric (see Colin de Verdière [CdV82, CdV83]) and by generic pertur-

bations within the class of hyperbolic surfaces (see Phillips–Sarnak [PS85]).

Note that the present paper does not apply to the finite area case for two

reasons: (1) the methods of [DZ16] do not apply to manifolds with cusps,

in particular, because the trapped set is not compact, and (2) finite area

surfaces have ΛΓ = S1 and thus δ = 1.

1.2. Uncertainty principle for hyperbolic limit sets. The proof of Theo-

rem 1 uses the strategy of [DZ16], which reduced the spectral gap question to

a fractal uncertainty principle. To state it, define the operator Bχ = Bχ(h) on

L2(S1) by

(1.2) Bχf(y) = (2πh)−1/2
∫
S1
|y − y′|2i/hχ(y, y′)f(y′) dy′,

where |y−y′| denotes the Euclidean distance on R2 restricted to the unit circle

S1 and

χ ∈ C∞0 (S1
∆), S1

∆ := {(y, y′) ∈ S1 × S1 | y 6= y′}.

The semiclassical parameter h > 0 corresponds to the inverse of the frequency

and also to the inverse of the spectral parameter: h ∼ |λ|−1. We will be



830 JEAN BOURGAIN and SEMYON DYATLOV

interested in the limit h → 0. The operator Bχ is bounded on L2(S1) uni-

formly in h; see [DZ16, §5.1]. We can view Bχ as a hyperbolic analogue of the

(semiclassically rescaled) Fourier transform.

A key object associated to the surface M is the limit set ΛΓ ⊂ S1; see, for

instance, [Bor16, §2.2.1] or [DZ16, (4.11)] for the definition. Theorems 1 and 2

follow by combining [DZ16, Th. 3] with the following uncertainty principle

for ΛΓ:

Theorem 3. Let M = Γ\H2 be a convex co-compact hyperbolic surface,

and denote by ΛΓ(hρ) ⊂ S1 the hρ-neighborhood of the limit set. Then there

exist β > 0 and ρ ∈ (0, 1) depending only on M such that for all χ ∈ C∞0 (S1
∆)

and h ∈ (0, 1),

(1.3) ‖ 1lΛΓ(hρ) Bχ(h) 1lΛΓ(hρ) ‖L2(S1)→L2(S1) ≤ Chβ,

where the constant C depends on M,χ, but not on h.

Remarks. 1. We call (1.3) an uncertainty principle because it implies

that no quantum state can be microlocalized hρ close to Γ± ⊂ S∗M , where

S∗M denotes the co-sphere bundle of M and Γ± are the incoming/outgoing

tails, consisting of geodesics trapped in the future (Γ−) or in the past (Γ+).

The lifts of Γ± to S∗H2 can be expressed in terms of ΛΓ. See [DZ16, §§1.1,

4.1.2] for details — in particular, for how to define microlocalization to an

hρ-neighborhood of Γ±.

2. Recent work of Dyatlov–Zworski [DZ18] provides an alternative to

[DZ16] for showing that Theorem 3 implies Theorem 1, using transfer operator

techniques.

3. The value of β depends only on δ and the regularity constant CR of the

set ΛΓ; see Sections 1.3 and 4.3. Recently Jin–Zhang [JZ17, Th. 1.3] obtained

an estimate on β in terms of δ, CR which has the form (here K is a large

universal constant)

β = exp
[
−K(CRδ

−1(1− δ)−1)K(1−δ)−3
]
.

The parameter ρ will be taken very close to 1 depending on δ, CR; see (4.19).

4. If we vary M within the moduli space M of convex co-compact hyper-

bolic surfaces, then δ changes continuously (in fact, real analytically). More-

over, as shown in [BD17, Lemma 2.12], the regularity constant CR can be

estimated explicitly in terms of the disks and group elements in a Schottky

representation of M and thus is bounded locally uniformly on M . Therefore,

the value of β is bounded away from 0 as long as M varies in a compact subset

of M .
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1.3. Uncertainty principle for regular fractal sets. In order to prove The-

orem 3 we exploit the fractal structure of the limit set ΛΓ. For simplicity, we

make the illegal choice of ρ := 1 in the informal explanations below.

The (Hausdorff and Minkowski) dimension of ΛΓ is equal to δ ∈ [0, 1),

so the volume of ΛΓ(h) decays like h1−δ as h → 0. For δ < 1
2 , this implies

(using the L1 → L∞ estimate on Bχ(h) together with Hölder’s inequality) the

uncertainty principle (1.3) with β = 1
2 − δ and thus recovers the Patterson–

Sullivan gap; see [DZ16, §5.1].

However, for δ ≥ 1
2 , one cannot obtain (1.3) by using only the volume of

the set ΛΓ(h). Indeed, if we replace ΛΓ(h) by an interval of size h1/2, then

a counterexample to (1.3) is given by a Gaussian wavepacket of width h1/2.

Therefore, one needs to exploit finer fractal structure of the limit set. For us

such structure is given by Ahlfors–David regularity, which roughly speaking

states that ΛΓ has dimension δ at each point on each scale:

Definition 1.1. LetX ⊂ R be a nonempty closed set and δ ∈ [0, 1], CR ≥ 1,

0 ≤ α0 ≤ α1 ≤ ∞. We say that X is δ-regular with constant CR on scales α0

to α1 if there exists a Borel measure µX on R such that

• µX is supported on X, that is µX(R \X) = 0;

• for each interval I of size |I| ∈ [α0, α1], we have µX(I) ≤ CR|I|δ;
• if additionally I is centered at a point in X, then µX(I) ≥ C−1

R |I|δ.

Remarks. 1. The condition that µX is supported on X is never used in

this paper (and the measure µX is referred to explicitly only in Section 2.2),

however we keep it to make the definition compatible with [DJ18].

2. In estimates regarding regular sets, it will be important that the con-

stants involved may depend on δ, CR, but not on α0, α1. Thus it is useful to

think of δ, CR as fixed and α1/α0 as large.

3. As indicated above, the limit set ΛΓ is δ-regular on scales 0 to 1 where

δ ∈ [0, 1) is the exponent of convergence of the Poincaré series of the group Γ;

see Section 4.3.

The key component of the proof of Theorem 3 is the following fractal

uncertainty principle for the Fourier transform and general δ-regular sets; it is

a result of independent interest. In Section 4 we show that Theorem 4 implies

Theorem 3 by linearizing the phase of the operator (1.2). (This makes the

value of the exponent β smaller; see the remark following Proposition 4.3.)

Theorem 4. Let 0 ≤ δ < 1, CR ≥ 1, N ≥ 1, and assume that

• X ⊂ [−1, 1] is δ-regular with constant CR on scales N−1 to 1; and

• Y ⊂ [−N,N ] is δ-regular with constant CR on scales 1 to N .
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Then there exist β > 0, C depending only on δ, CR such that for all f ∈ L2(R),

(1.4) supp f̂ ⊂ Y =⇒ ‖f‖L2(X) ≤ CN−β‖f‖L2(R).

Here L2(X) is defined using the Lebesgue measure.

Remark. Since X is only required to be δ-regular down to scale N−1,

rather than 0, it may contain intervals of size N−1 and thus have positive

Lebesgue measure. In fact it is useful to picture X as a union of intervals of

size N−1 distributed in a fractal way, and similarly picture Y as a union of

intervals of size 1. See also Lemma 2.3.

The proof of Theorem 4 is given in Section 3. We give here a brief outline.

The key component is the following nonstandard quantitative unique contin-

uation result, Proposition 3.3: for each c1 > 0, there exists c3 > 0 depending

only on δ, CR, c1 such that

(1.5) f ∈ L2(R), supp f̂ ⊂ Y =⇒ ‖f‖L2(U ′) ≥ c3‖f‖L2(R),

where Y is as in Theorem 4 and U ′ =
⋃
j∈Z I

′
j , where each I ′j ⊂ [j, j + 1] is an

(arbitrarily chosen) subinterval of size c1. It is important that c3, as well as

other constants in the argument, does not depend on the large parameter N .

Theorem 4 follows from (1.5) by iteration on scale. Here δ-regularity of X

with δ < 1 is used to obtain the missing subinterval property (see Lemmas 2.6

and 2.10): there exists c1 = c1(δ, CR) > 0 such that for all j ∈ Z, the set

[j, j + 1] \X contains some interval I ′j of size c1, and same is true for dilates

αX when 1 ≤ α � N . The lower bound (1.5) gives an upper bound on the

L2 norm of f on R \ U ′ ⊃ X, which iterated ∼ logN times gives the power

improvement in (1.4). See Section 3.4 for details.

To prove (1.5), we first show a similar bound where the support condition

on f̂ is replaced by a decay condition: for θ(ξ) := log(10 + |ξ|)−
1+δ

2 and all

f ∈ L2(R),

(1.6)∥∥∥ exp
Ä
θ(ξ)|ξ|

ä
f̂(ξ)

∥∥∥
L2(R)

≤ C1‖f‖L2(R) =⇒ ‖f‖L2(U ′) ≥ c3‖f‖L2(R),

where c3 depends only on δ, c1, C1. The proof uses estimates on harmonic

measures for domains of the form {| Im z| < r} \ I ′j ⊂ C. See the remark

following the statement of Lemma 3.2.

Coming back to (1.5), we construct a function ψ 6≡ 0 which is compactly

supported, more precisely suppψ ⊂ [− c1
10 ,

c1
10 ], and satisfies the Fourier decay

bound

(1.7) |ψ̂(ξ)| ≤ exp
Ä
− c2θ(ξ)|ξ|

ä
for all ξ ∈ Y,
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where c2 > 0 depends only on δ, CR, c1. To do that, we use δ-regularity of Y

with δ < 1 to construct a weight ω : R→ (0, 1] such that

sup |∂ξ logω| ≤ C0,

∫
R

| logω(ξ)|
1 + ξ2

dξ ≤ C0,

ω(ξ) ≤ exp
Ä
− θ(ξ)|ξ|

ä
for all ξ ∈ Y,

where C0 depends only on δ, CR. By a quantitative version of the Beurling–

Malliavin Multiplier Theorem (see Lemma 2.11), there exists ψ 6≡ 0 with the

required support property and |ψ̂(ξ)| ≤ ω(ξ)c2 for all ξ ∈ R, thus (1.7) holds.

See Section 3.1 for details.

Finally, we put

g := f ∗ ψ ∈ L2(R), ĝ(ξ) = f̂(ξ)ψ̂(ξ).

If supp f̂ ⊂ Y , then by (1.7) we have

(1.8)
∥∥∥ exp

Ä
c2θ(ξ)|ξ|

ä
ĝ(ξ)

∥∥∥
L2
≤ ‖f‖L2 .

On the other hand, if U ′′ :=
⋃
j∈Z I

′′
j , where I ′′j ⊂ I ′j is the interval with the

same center as I ′j and size c1/2, then the support condition on ψ implies that

g = (1lU ′ f) ∗ ψ on U ′′ and thus ‖g‖L2(U ′′) ≤ ‖f‖L2(U ′). We revise the proof of

(1.6) with f replaced by g, U ′ by U ′′, and the Fourier decay bound replaced

by (1.8), to obtain (1.5) and thus finish the proof of Theorem 4. In the process

we apply the argument with Y replaced by its translates Y + `, ` ∈ Z, |`| ≤ N ;

to each translate corresponds its own multiplier ψ. See Section 3.3 for details.

2. Preliminaries

2.1. Notation. We first introduce the notation used in the paper. For two

sets X,Y ⊂ R, define X + Y := {x + y | x ∈ X, y ∈ Y }. For λ ≥ 0, denote

λX := {λx | x ∈ X}. For an interval I = x0 + [−r, r] ⊂ R with r ≥ 0, denote

by |I| := 2r the size of I and say that x0 is the center of I. For X ⊂ R and

α ≥ 0, define the α-neighborhood of X by

(2.1) X(α) := X + [−α, α] ⊂ R.

For X ⊂ R, denote by 1X ∈ L∞(R) the indicator function of X and by

1lX : L2(R) → L2(R) the corresponding multiplication operator. For each

ξ ∈ R, denote

〈ξ〉 :=
»

1 + |ξ|2.

We use the following convention for the Fourier transform of f ∈ L1(R):

(2.2) f̂(ξ) = Ff(ξ) =

∫
R
e−2πixξf(x) dx.
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One advantage of this convention is that F extends to a unitary operator on

L2(R). Recall the Fourier inversion formula

(2.3) f(x) = F∗f̂(x) =

∫
R
e2πixξ f̂(ξ) dξ

and the convolution formula

(2.4) ’f ∗ g(ξ) = f̂(ξ) · ĝ(ξ).

For s ∈ R, define the Sobolev space Hs(R) with the norm

(2.5) ‖f‖Hs := ‖〈ξ〉sf̂(ξ)‖L2 .

We also use the unitary semiclassical Fourier transform Fh on L2(R) defined

by

(2.6) Fhf(ξ) = h−1/2
∫
R
e−2πixξ/hf(x) dx = h−1/2f̂

( ξ
h

)
, h > 0.

The following identity holds for all X,Y ⊂ R, x0, y0 ∈ R, and h, and follows

directly from the fact that F∗h conjugates shifts to multiplication operators:

(2.7) ‖ 1lX+x0 F∗h 1lY+y0 ‖L2→L2 = ‖ 1lX F∗h 1lY ‖L2→L2 .

We also note the following corollary of the triangle inequality:

(2.8)

X ⊂
⋃
j

Xj , Y ⊂
⋃
k

Yk =⇒ ‖ 1lX F∗h 1lY ‖L2→L2 ≤
∑
j,k

‖ 1lXj F∗h 1lYk ‖L2→L2 .

Finally, we record the following version of Hölder’s inequality:

(2.9)
∑
j

aκj · b1−κj ≤
(∑

j

aj
)κ
·
(∑

j

bj
)1−κ

, aj , bj ≥ 0, κ ∈ (0, 1).

2.2. Regular sets. We now establish properties of δ-regular sets (see Defi-

nition 1.1), some of which have previously appeared in [DZ16]. For the reader’s

convenience, we first give a few examples:

• {0} is 0-regular on scales 0 to ∞ with constant CR = 1;

• [0, 1] is 1-regular on scales 0 to 1 with constant 2;

• the mid-third Cantor set C ⊂ [0, 1] is log2 3-regular on scales 0 to 1 with

constant 100 (see [DJ18, §5.2] for examples of more general Cantor sets);

• the set [0, 1] t {2} cannot be δ-regular on scales 0 to 1 with any constant

for any δ;

• the set [0, h1/2] cannot be δ-regular on scales h to 1 with any h-independent

constant for any δ (here 0 < h� 1).

We next show that certain operations preserve the class of δ-regular sets

if we allow to increase the regularity constant and shrink the scales on which

regularity is imposed. The precise dependence of the new regularity constant
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on the original one, though specified in the lemmas below, is not important for

our later proofs.

Lemma 2.1 (Affine transformations). Let X be a δ-regular set with con-

stant CR on scales α0 to α1. Fix λ > 0 and y ∈ R. Then the set ‹X := y+ λX

is δ-regular with constant CR on scales λα0 to λα1.

Proof. This is straightforward to verify, taking the measure

µ
X̃

(A) := λδµX
Ä
λ−1(A− y)

ä
. �

Lemma 2.2 (Increasing the upper scale). Let X be a δ-regular set with

constant CR on scales α0 to α1. Fix T ≥ 1. Then X is δ-regular with constant‹CR := 2TCR on scales α0 to Tα1.

Proof. Let I be an interval such that α0 ≤ |I| ≤ Tα1. We first show the

upper bound µX(I) ≤ ‹CR|I|δ. For α0 ≤ |I| ≤ α1, this is immediate, so we may

assume that α1 < |I| ≤ Tα1. Then I can be covered by dT e ≤ 2T intervals of

size α1 each, and therefore

µX(I) ≤ 2T · CRαδ1 ≤ ‹CR|I|δ.
Now, assume that I is centered at a point in X. We show the lower bound

µX(I) ≥ ‹C−1
R |I|δ. As before, we may assume that α1 < |I| ≤ Tα1. Let I ′ ⊂ I

be the interval with the same center and |I ′| = α1. Then

µX(I) ≥ µX(I ′) ≥ C−1
R αδ1 ≥ ‹C−1

R |I|
δ. �

Lemma 2.3 (Neighborhoods). Let X be a δ-regular set with constant CR
on scales α0 to α1 ≥ 2α0. Fix T ≥ 1. Then the neighborhood X(Tα0) =

X + [−Tα0, Tα0] is δ-regular with constant ‹CR := 4TCR on scales 2α0 to α1.

Proof. Put ‹X := X(Tα0), and define the measure µ
X̃

supported on ‹X by

convolution:

µ
X̃

(A) :=
1

Tα0

∫ Tα0

−Tα0

µX(A+ y) dy.

Let I be an interval such that 2α0 ≤ |I| ≤ α1. Then

µ
X̃

(I) ≤ 2CR|I|δ ≤ ‹CR|I|δ.
Now, assume additionally that I is centered at a point x1 ∈ ‹X. Take x0 ∈ X
such that |x0 − x1| ≤ Tα0, and let I ′ be the interval of size 1

2 |I| centered

at x0. Then µX(I ′) ≥ (2CR)−1|I|δ. Let J = x0 − x1 + [−1
2α0,

1
2α0], then

J ∩ [−Tα0, Tα0] is an interval of size at least 1
2α0, and for each y ∈ J , we have

I ′ ⊂ I + y. It follows that

µ
X̃

(I) ≥ 1

2T
µX(I ′) ≥ ‹C−1

R |I|
δ. �
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Lemma 2.4 (Nonlinear transformations). Assume that F : R → R is a

C1 diffeomorphism such that for some constant CF ≥ 1,

C−1
F ≤ |∂xF | ≤ CF .

Let X be a δ-regular set with constant CR on scales α0 to α1 ≥ C2
Fα0. Then

F (X) is a δ-regular set with constant ‹CR := CFCR on scales CFα0 to C−1
F α1.

Proof. Put ‹X := F (X), and define the measure µ
X̃

supported on ‹X as a

pullback:

µ
X̃

(A) := µX(F−1(A)).

Let Ĩ be an interval with CFα0 ≤ |Ĩ| ≤ C−1
F α1. Take the interval I := F−1(Ĩ).

Then

C−1
F |Ĩ| ≤ |I| ≤ CF |Ĩ|.

In particular, α0 ≤ |I| ≤ α1. Therefore,

µ
X̃

(Ĩ) = µX(I) ≤ CR|I|δ ≤ ‹CR|Ĩ|δ.
If additionally Ĩ is centered at a point x̃ ∈ ‹X, then I contains the interval I ′

of size C−1
F |Ĩ| centered at F−1(x̃) ∈ X. Therefore,

µ
X̃

(Ĩ) ≥ µX(I ′) ≥ C−1
R |I

′|δ ≥ ‹C−1
R |Ĩ|

δ. �

Lemma 2.5 (Intersections with intervals). Let X be a δ-regular set with

constant CR on scales α0 to α1. Fix two different intervals J ⊂ J ′ with

the same center and |J ′| − |J | ≥ α0. Assume that X ∩ J is nonempty and

X ∩ J ′ ⊂ J . Then X ∩ J is δ-regular with constant CR on scales α0 to

α̃1 := min(α1, |J ′| − |J |).

Proof. Put ‹X := X ∩ J = X ∩ J ′, and consider the measure µ
X̃

(A) :=

µX(A ∩ J ′) supported on ‹X. Let I be an interval with α0 ≤ |I| ≤ α̃1. Then

µ
X̃

(I) ≤ µX(I) ≤ CR|I|δ.

Now, assume that I is centered at some x ∈ ‹X. Then x ∈ J and thus I ⊂ J ′,

giving

µ
X̃

(I) = µX(I) ≥ C−1
R |I|

δ. �

We now establish further properties of δ-regular sets, starting with a quan-

titative version of the fact that every δ-regular set with δ < 1 is nowhere dense:

Lemma 2.6 (The missing subinterval property). Let X be a δ-regular set

with constant CR on scales α0 to α1, and 0 ≤ δ < 1. Fix an integer

(2.10) L ≥ (3CR)
2

1−δ .
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Assume that I is an interval with α0 ≤ |I|/L < |I| ≤ α1 and I1, . . . , IL is

the partition of I into intervals of size |I|/L. Then there exists ` such that

X ∩ I` = ∅.

Proof. Using Lemma 2.1, we reduce to the case I=[0, L], α0≤1<L≤α1.

Then I` = [` − 1, `]. We argue by contradiction, assuming that each I` inter-

sects X. Then I ′` := [` − 3/2, ` + 1/2] contains a size 1 interval centered at a

point in X and thus

µX(I ′`) ≥ C−1
R for all ` = 1, . . . , L.

On the other hand,
⋃L
`=1 I

′
` = [−1/2, L+ 1/2] can be covered by two intervals

of size L and each point lies in at most three of the intervals I ′`. Therefore,

C−1
R L ≤

L∑
`=1

µX(I ′`) ≤ 3µX
( L⋃
`=1

I ′`

)
≤ 6CRL

δ,

which contradicts (2.10). �

We next obtain the following fact used in Section 4.1:

Lemma 2.7 (Splitting into smaller regular sets). Let X be a δ-regular

set with constant CR on scales α0 to α1, and assume that 0 ≤ δ < 1 and

(4CR)
2

1−δα0 ≤ ρ ≤ α1. Then there exists a collection of disjoint intervals J
such that

(2.11) X =
⊔
J∈J

(X ∩ J); (4CR)−
2

1−δ ρ ≤ |J | ≤ ρ for all J ∈ J ,

and each X ∩ J is δ-regular with constant ‹CR := (4CR)
2

1−δCR on scales α0

to ρ.

Proof. Fix an integer L satisfying (2.10) and L ≤ (4CR)
2

1−δ . Consider the

intervals

I` :=
ρ

L
[`, `+ 1], ` ∈ Z.

By Lemma 2.6, for each `, at least one of the intervals I`, I`+1, . . . , I`+L−1 does

not intersect X. Define the collection J as follows: J ∈ J if and only if

J = I` ∪ · · · ∪ Ir for some ` ≤ r, each of the intervals I`, . . . , Ir intersects X,

but I`−1, Ir+1 do not intersect X. Then (2.11) holds.

For each J = I`∪· · ·∪Ir ∈ J , take J ′ := I`−1∪· · ·∪Ir+1. Then X∩J ′ ⊂ J
and |J ′| − |J | = 2ρ/L. By Lemma 2.5, X ∩ J is δ-regular with constant CR on

scales α0 to 2ρ/L. Then by Lemma 2.2, X ∩ J is δ-regular with constant ‹CR
on scales α0 to ρ. �

The following covering statement is used in the proof of Lemma 3.1:
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Lemma 2.8 (The small cover property). Let X be a δ-regular set with

constant CR on scales α0 to α1. Let I be an interval, and let ρ > 0 satisfy

α0 ≤ ρ ≤ |I| ≤ α1. Then there exists a nonoverlapping collection1 J of NJ
intervals of size ρ each such that

X ∩ I ⊂
⋃
J∈J

J, NJ ≤ 12C2
R

Ç
|I|
ρ

åδ
.

Proof. Let J consist of all intervals of the form ρ[j, j + 1], j ∈ Z which

intersect X ∩ I. Then X ∩ I ⊂ ⋃J∈J J . It remains to prove the upper bound

on NJ . For this we use an argument similar to the one in Lemma 2.6.

For each J ∈ J , let J ′ ⊃ J be the interval with the same center and

|J ′| = 2ρ. Since J intersects X, J ′ contains an interval of size ρ centered at a

point in X. Therefore,

µX(J ′) ≥ C−1
R ρδ.

On the other hand,
⋃
J∈J J

′ ⊂ I(3
2ρ) can be covered by four intervals of size

|I| and each point lies in at most three of the intervals J ′. Therefore,

NJ · C−1
R ρδ ≤

∑
J∈J

µX(J ′) ≤ 3µX
( ⋃
J∈J

J ′
)
≤ 12CR|I|δ,

which implies the upper bound on NJ . �

Lemma 2.9 (The Lebesgue measure of a regular set). Let X ⊂ [−α1, α1]

be a δ-regular set with constant CR on scales α0 > 0 to α1. Then the Lebesgue

measure of X satisfies

(2.12) µL(X) ≤ 24C2
Rα

δ
1α

1−δ
0 .

Proof. Applying Lemma 2.8 with I := [0, α1], ρ := α0, we cover X ∩ I
with at most 12C2

R(α1/α0)δ intervals of size α0 each. It follows that

µL(X ∩ I) ≤ 12C2
R

Å
α1

α0

ãδ
· α0 = 12C2

Rα
δ
1α

1−δ
0 .

Repeating the argument with I := [−α1, 0] and combining the resulting two

bounds, we get (2.12). �

We finally describe a tree discretizing a δ-regular set. (This tree is simpler

than the one used in [DZ16] and [DJ18] because we do not merge consecutive

intervals.) Let X ⊂ R be a set, and fix an integer L ≥ 2, the base of the

discretization. Put

(2.13) Vn(X) :=
{
I =

[ j
Ln

,
j + 1

Ln

] ∣∣∣∣ j ∈ Z, I ∩X 6= ∅
}
, n ∈ Z.

1A collection of intervals is nonoverlapping if the intersection of each two different intervals

is either empty or consists of one point.
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Note that X ⊂ ⋃I∈Vn(x) I for all n. Moreover, each I ′ ∈ Vn(X) is contained

in exactly one I ∈ Vn−1(X); we say that I is the parent of I ′ and I ′ is a child

of I. Each interval has at most L children.

The next lemma, used in Section 3.4, follows immediately from Lemma 2.6:

Lemma 2.10 (Each parent is missing a child). Let X be a δ-regular set

with constant CR on scales α0 to α1, and 0 ≤ δ < 1. Let L satisfy (2.10) and

take n ∈ Z such that α0 ≤ L−n−1 ≤ L−n ≤ α1. Then each I ∈ Vn(X) has at

most L− 1 children.

2.3. The multiplier theorem. We next present the multiplier theorem orig-

inally due to Beurling–Malliavin [BM62], which is the key harmonic analysis

tool in the proof of Theorem 4. It will be used in the proof of Lemma 3.1

below, with a weight ω tailored to the fractal set Y . We refer the reader

to Mashreghi–Nazarov–Havin [MNK05] for a discussion of the history of this

theorem and recent results.

Theorem 5 ([MNK05, Th. BM1]). Let ω ∈ C1(R; (0, 1]) satisfy the con-

ditions ∫
R

| logω(ξ)|
1 + ξ2

dξ <∞,(2.14)

sup |∂ξ logω| <∞.(2.15)

Then for each c0 > 0, there exists a function ψ ∈ L2(R) such that

(2.16) suppψ ⊂ [−c0, c0], |ψ̂| ≤ ω, ψ 6≡ 0.

Remark. Condition (2.14) states that ω(ξ) does not come too close to 0 too

often as |ξ| → ∞. This condition is necessary to have a compactly supported

ψ 6≡ 0 with |ψ̂| ≤ ω, see (3.6).

In Section 3.1 we will use the following quantitative refinement of Theo-

rem 5:

Lemma 2.11. For all C0, c0 > 0, there exists c = c(C0, c0) > 0 such that

the following holds : Let ω ∈ C1(R; (0, 1]) be a weight function satisfying∫
R

| logω(ξ)|
1 + ξ2

dξ ≤ C0,(2.17)

sup |∂ξ logω| ≤ C0.(2.18)

Then there exists a function ψ ∈ L2(R) such that

(2.19) suppψ ⊂ [−c0, c0], |ψ̂| ≤ ωc, ‖ψ̂‖L2(−1,1) ≥ c.
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Proof. We argue by contradiction. Fix C0, c0 > 0 such that Lemma 2.11

does not hold. Then there exists a sequence of weights ω1, ω2, . . . each satis-

fying (2.17), (2.18) and such that for each ψ ∈ L2(R),

(2.20) suppψ ⊂ [−c0, c0], |ψ̂| ≤ (ωn)2−n =⇒ ‖ψ̂‖L2(−1,1) ≤ 2−n.

Define the weight ω by

ω :=
∞∏
n=1

(ωn)2−n .

Then ω satisfies (2.14) and (2.15). By Theorem 5 there exists ψ ∈ L2(R)

satisfying (2.16). For each n, we have |ψ̂| ≤ ω ≤ (ωn)2−n . Then (2.20) im-

plies that ‖ψ̂‖L2(−1,1) ≤ 2−n for all n and thus ψ̂ = 0 on (−1, 1). However,

since ψ is compactly supported, ψ̂ is real analytic and thus ψ ≡ 0, which

contradicts (2.16). �

2.4. Harmonic measures on slit domains. We finally review the facts we

need from the theory of harmonic measures, referring the reader to Conway

[Con95, Ch. 21], Aleman–Feldman–Ross [AFR09], and Itô–McKean [IM74, §7]

for more details. These facts are used in Section 3.2 below.

Let Ω ⊂ C be a bounded open domain with smooth boundary ∂Ω, and

take t ∈ Ω. The harmonic measure of Ω centered at t, denoted µΩ
t , is defined

as follows. Let f ∈ C(∂Ω), and let u be the harmonic extension of f , namely,

the unique function such that u ∈ C(Ω), u|∂Ω = f , and u is harmonic in Ω.

Then for all f , we have

u(t) =

∫
∂Ω
f dµΩ

t .

Such µΩ
t is a (nonnegative) probability measure; indeed, nonnegativity follows

from the maximum principle and µΩ
t (∂Ω) = 1 since 1 is a harmonic function.

Moreover, since ∂Ω is smooth, µΩ
t is absolutely continuous with respect to the

arclength measure µL on ∂Ω. We denote by
dµΩ
t

dµL
the corresponding Radon–

Nikodym derivative.

Since harmonic functions are invariant under conformal transformations,

we have the following fact: if Ω′ is another bounded domain with smooth

boundary and κ : Ω→ Ω′ is a conformal transformation extending to a home-

omorphism Ω→ Ω
′
, then

(2.21) µΩ
t (A) = µΩ′

κ(t)(κ(A)) for all t ∈ Ω, A ⊂ ∂Ω.

Another interpretation of harmonic measure is as follows (see, for instance,

[IM74, §7.12]): let (Wτ )τ≥0 be the Brownian motion starting at W0 = t. Then

µΩ
t is the probability distribution of the point on ∂Ω through which Wτ exits

Ω first.
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∂+Σ

∂−Σ

I+

I−
−→

∂+Σ

∂−Σ

I+

I−

Σ

−→

I−

I+

∂−Σ

∂+Σ

Ω

Figure 2. A conformal transformation κ from the domain Σ de-

fined in (2.22) onto an annulus shaped domain Ω with smooth

boundary, depicted here as a composition of two transforma-

tions. We mark the images of the components of ∂Σ. If, for

simplicity, we put r := π/2, I0 := [0, log 2], then the first trans-

formation is ζ = ez−1
2−ez and the second one is w = 1

1−i
√
ζ
, where

we take the branch of the square root which sends C \ [0,∞) to

the upper half-plane.

We henceforth consider the following domain in C:

(2.22) Σ := {x+ iy | x ∈ R, |y| < r} \ I0,

where I0 ⊂ R is an interval with 0 < |I0| ≤ 1 and r ∈ (0, 1). The domain

Σ is unbounded, and it does not have a smooth boundary because of the slit

I0, however one can still define the harmonic measure µΣ
t for each t ∈ Σ.

One way to see this is by taking a conformal transformation κ which maps

Σ onto an annulus shaped domain Ω with smooth boundary (see Figure 2

and [AFR09, §2.3]), and define µΣ
t by (2.21). However κ does not extend to

a homeomorphism ∂Σ → ∂Ω since the images of sequences approaching the

same point of I0 from the top and from the bottom have different limits. To

fix this issue, we redefine ∂Σ as consisting of two lines

(2.23) ∂±Σ := {x± ir | x ∈ R}

and two copies I± of the interval I0 corresponding to limits as Im z → ±0.

This is in agreement with the Brownian motion interpretation as it encodes in

which direction Wτ crosses I0.

The importance of harmonic measures in this paper is due to the following

Lemma 2.12. Assume that the function F is holomorphic and bounded

on Σ and extends continuously to ∂Σ. Then for each t ∈ Σ, we have

(2.24) log |F (t)| ≤
∫
∂Σ

log |F | dµΣ
t .
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Proof. The function log |F | is subharmonic and bounded above on Σ.

Then (2.24) follows from Perron’s construction of solutions to the Dirichlet

problem via subharmonic functions; see, for instance, [Con95, §19.7]. �

We now show several estimates on the harmonic measure µΣ
t for the do-

main (2.22). Denote by d(t, I0) the distance from t ∈ R to the interval I0.

In Lemmas 2.13–2.15 below, the precise dependence of the bounds on I0 is

irrelevant. However, the dependence on r is important.

Lemma 2.13. Assume that t ∈ Σ ∩ R satisfies d(t, I0) ≥ 1
10 |I0|. Then

(2.25)

∥∥∥∥dµΣ
t

dµL

∥∥∥∥
Lp(I±)

≤ Cp for all p ∈ [1, 2),

where Cp > 0 depends only on |I0| and p.

Proof. Without loss of generality, we may assume that I0 = [0, `], where

0 < ` ≤ 1. We have Σ ⊂ ‹Σ, where‹Σ := C \ I0.

Then (see, for instance, [Con95, Cor. 21.1.14])

(2.26) µΣ
t |I± ≤ µΣ̃

t |I± .

We can also interpret (2.26) in stochastic terms: every trajectory of the Brow-

nian motion starting at t which hits some A ⊂ I± before hitting ∂Σ \ A also

has the property that it hits A before ∂‹Σ \A.

To compute µΣ̃
t we use the conformal transformation

z 7→ w =

 
t− `
t
· z

`− z
,

which maps ‹Σ to the upper half-plane, I± to ±[0,∞), and t to i. Using the

well-known formula for the harmonic measure of the upper half-plane, we get

µΣ̃
t |I± =

|dw|
π(1 + w2)

=

√
t(t− `)
z(`− z)

· |dz|
2π|t− z|

.

Since |t− z| ≥ `
10 for all z ∈ [0, `], it follows that

dµΣ
t

dµL
(z) ≤ 1»

z(`− z)
for all z ∈ I±,

which implies (2.25). �

Lemma 2.14. Assume that t ∈ Σ ∩ R satisfies d(t, I0) ≤ 1. Then

dµΣ
t

dµL
(x± ir) ≤ 2

r
e−d(x,I0), x ∈ R.
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Proof. We have Σ ⊂ ‹Σ, where‹Σ := {(x+ iy) | x ∈ R, |y| < r}.

Therefore, similarly to (2.26) we have µΣ
t |∂±Σ ≤ µΣ̃

t |∂±Σ. The conformal trans-

formation

z 7→ w = i exp

Ç
π(z − t)

2r

å
maps ‹Σ to the upper half-plane, ∂±Σ to ∓[0,∞), and t to i. Therefore,

µΣ̃
t |∂±Σ =

|dw|
π(1 + w2)

=
|dz|

4r cosh
(
πRe z−t

2r

) .
It follows that∣∣∣∣dµΣ

t

dµL
(x± ir)

∣∣∣∣ ≤ 1

2r
e−

π|x−t|
2r ≤ 1

2r
e−|x−t| ≤ 2

r
e−d(x,I0). �

Lemma 2.15. Assume that t ∈ Σ ∩ R satisfies d(t, I0) ≤ 1. Then

µΣ
t (I±) ≥ |I0|

8
e−2/r.

Proof. Without loss of generality, we may assume that I0 = [−`, 0], where

0 < ` ≤ 1 and 0 < t ≤ 1. We have Σ ⊃ ‹Σ, where‹Σ = {x+ iy | x ∈ R, |y| < r} \ (−∞, 0].

Similarly to (2.26), we have µΣ
t (I±) ≥ µΣ̃

t (I±). The conformal transformation

z 7→ w =

√
1− eπz/r
eπt/r − 1

maps ‹Σ to the upper half-plane, t to i, and

I± 7→ ∓
ñ
0,

√
1− e−π`/r
eπt/r − 1

ô
⊃ ∓

[
0,

√
`

2
e−

π
2r

]
.

It follows that

µΣ
t (I±) ≥ µΣ̃

t (I±) ≥ 1

π
arctan

(√`
2
e−

π
2r

)
≥ `

8
e−2/r. �

3. The general fractal uncertainty principle

In this section, we prove Theorem 4. We establish the components of the

argument in Sections 3.1 and 3.2 and combine them in Section 3.3 to obtain

a unique continuation estimate for functions with Fourier supports in regular

sets. In Section 3.4, we iterate this estimate to finish the proof.
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3.1. An adapted multiplier. We first construct a compactly supported

function whose Fourier transform decays much faster than exp(−|ξ|/ log |ξ|)
as |ξ| → ∞ on a δ-regular set. We henceforth denote

(3.1) θ(ξ) := log(10 + |ξ|)−
1+δ

2 .

The function ψ constructed in the lemma below is used as a convolution kernel

in the proof of Lemma 3.4. We remark that α1 is a finite but large parameter,

and it is important that the constants in the estimates do not depend on α1.

Lemma 3.1. Assume that Y ⊂ [−α1, α1] is a δ-regular set with constant

CR on scales 2 to α1, and δ ∈ (0, 1). Fix c1 > 0. Then there exist a constant

c2 > 0 depending only on δ, CR, c1 and a function ψ ∈ L2(R) such that

suppψ ⊂
[
− c1

10
,
c1

10

]
,(3.2)

‖ψ̂‖L2([−1,1]) ≥ c2,(3.3)

|ψ̂(ξ)| ≤ exp(−c2〈ξ〉1/2) for all ξ ∈ R,(3.4)

|ψ̂(ξ)| ≤ exp
Ä
− c2θ(ξ)|ξ|

ä
for all ξ ∈ Y.(3.5)

Remarks. 1. It is essential that condition (3.5) be imposed only on Y .

Indeed, it is a standard fact in harmonic analysis (see, for instance, [HJ94,

§1.5.4]) that every compactly supported ψ ∈ L2(R) with ψ 6≡ 0 satisfies

(3.6)

∫
R

log |ψ̂(ξ)|
1 + |ξ|2

dξ > −∞,

which would contradict (3.5) if Y were replaced by R.

2. In (3.4) one could replace exp(−〈ξ〉1/2) by any weight satisfying (2.14),

(2.15) and decaying as |ξ| → ∞ faster than any negative power of |ξ|. Also,

the proof below works with 1+δ
2 replaced by 1, though in that case (3.5) would

not suffice for our application.

3. Recently Jin–Zhang [JZ17] have shown that the Hilbert transform of

the logarithm of the weight ω constructed in the proof below has uniformly

bounded Lipschitz constant. Then Lemma 3.1 can be proved using a weaker

(and considerably easier to prove) version of the Beurling–Malliavin Theorem

[MNK05, Th. 1].

Proof. We will use Lemma 2.11. For this we construct a weight adapted

to the set Y . Define n1 ∈ N by the inequality 2n1 ≤ α1 < 2n1+1. For every

n ∈ N, n ≤ n1, put

An := [−2n+1,−2n] t [2n, 2n+1], ρn := n−
1+δ

2 · 2n ≥ 2.
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Figure 3. The functions χJ featured in (3.7), where the intervals

J are shaded. The dots mark powers of 2.

Using Lemma 2.8, construct a nonoverlapping collection Jn of Nn intervals of

size ρn each such that all elements of Jn intersect An and

Y ∩An ⊂
⋃
J∈Jn

J, Nn ≤ 24C2
R ·
Å

2n

ρn

ãδ
.

Fix a cutoff function

χ(ξ) ∈ C1(R; [0, 1]), sup |∂ξχ| ≤ 10, suppχ ⊂ [−1, 1], χ = 1 on
[
− 1

2
,
1

2

]
.

For an interval J with center ξJ , define the function χJ ∈ C1(R) by

χJ(ξ) = |J | · χ
Ç
ξ − ξJ
|J |

å
,

so that
0 ≤ χJ ≤ |J |, sup |∂ξχJ | ≤ 10,

suppχJ ⊂ J̃ := ξJ +
î
− |J |, |J |

ó
, χJ = |J | on J.

Now, define the weight ω ∈ C1(R; (0, 1]) by (see Figure 3)

(3.7) ω(ξ) := exp(−2〈ξ〉1/2) ·
n1∏
n=1

∏
J∈Jn

exp(−10χJ).

For each ξ ∈ Y , |ξ| ≥ 2, there exist n ∈ [1, n1] and J ∈ Jn such that ξ ∈ J .

Also, exp(−2〈ξ〉1/2) ≤ exp(−θ(ξ)|ξ|) for |ξ| ≤ 2. Therefore,

ω(ξ) ≤ exp(−〈ξ〉1/2) for all ξ ∈ R,(3.8)

ω(ξ) ≤ exp
Ä
− θ(ξ)|ξ|

ä
for all ξ ∈ Y.(3.9)

Since each ξ lies in at most 500 intervals in
⋃n1
n=1

⋃
J∈Jn J̃ , we have

sup |∂ξ logω| ≤ 105.

Next, ∫
R

| logω(ξ)|
1 + ξ2

dξ ≤ 100 + 105
n1∑
n=1

Nn · 2−2nρ2
n

≤ 105 + 107C2
R

∞∑
n=1

(2n

ρn

)δ−2
=: C0,

where C0 depends only on δ, CR. Here we use the formula for ρn and the

inequality (1 + δ)(1− δ/2) > 1 valid for all δ ∈ (0, 1).
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We have verified that the weight ω satisfies (2.17) and (2.18). Applying

Lemma 2.11 with c0 := c1/10, we construct ψ ∈ L2(R) satisfying (3.2) and

|ψ̂| ≤ ωc2 , ‖ψ̂‖L2(−1,1) ≥ c2,

where the constant c2 depends only on δ, CR, c1. By (3.8) and (3.9), ψ satisfies

(3.4) and (3.5). �

3.2. A bound on functions with compact Fourier support. We next use the

harmonic measure estimates from Section 2.4 to obtain the following quanti-

tative unique continuation estimate which is used in the proof of Lemma 3.4

below.

Lemma 3.2. Assume that I is a nonoverlapping collection of intervals

of size 1 each, and for each I ∈ I , we choose a subinterval I ′′ ⊂ I with

|I ′′| = c0 > 0 independent of I . Then there exists a constant C depending

only on c0 such that for all r ∈ (0, 1), 0 < κ ≤ e−C/r, and f ∈ L2(R) with f̂

compactly supported, we have

(3.10)
∑
I∈I
‖f‖2L2(I) ≤

C

r

Ç∑
I∈I
‖f‖2L2(I′′)

åκ
· ‖e2πr|ξ|f̂(ξ)‖2(1−κ)

L2(R) .

Remark. The bound (1.6) in the introduction follows from (3.10). To

see this, take large K to be chosen later and decompose f = f1 + f2, where

supp f̂1 ⊂ [−K,K], supp f̂2 ⊂ R\ (−K,K). Put r := 1
10θ(K), and apply (3.10)

to f1 (with I ′ taking the role of I ′′):

(3.11) ‖f1‖2L2(R) ≤
C

θ(K)
‖f1‖2κL2(U ′) · ‖f‖

2(1−κ)
L2(R) ,

where we use that ‖e2πr|ξ|f̂1(ξ)‖L2 ≤ ‖ exp(θ(ξ)|ξ|)f̂(ξ)‖L2 ≤ C1‖f‖L2 . More-

over,

(3.12) ‖f2‖L2 ≤ e−θ(K)K‖ exp(θ(ξ)|ξ|)f̂(ξ)‖L2 ≤ C1e
−θ(K)K‖f‖L2 .

We have ‖f1‖2κL2(U ′) ≤ C(‖f‖2κL2(U ′) +‖f2‖2κL2(R)). Combining (3.11) with (3.12),

we get

(3.13)

‖f‖2L2 = ‖f1‖2L2 + ‖f2‖2L2 ≤
C

θ(K)

(
‖f‖2κL2(U ′) · ‖f‖

2(1−κ)
L2 + e−2θ(K)κK‖f‖2L2

)
,

where the constant C depends only on c1, C1. Since δ < 1, we have

e−2θ(K)κK/θ(K)→ 0

as K → ∞. We then fix K large enough depending on δ, c1, C1 to remove

the last term on the right-hand side of (3.13), giving (1.6). The proof of the

unique continuation bound in Section 3.3 is inspired by the above argument.
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I0
2r

∂+ΣI

∂−ΣI

ΣIt                             

I ′′

 I

Figure 4. The slit domain ΣI with the intervals I0 ⊂ I ′′ ⊂ I.

Proof of Lemma 3.2. Since f̂ is compactly supported, f has a holomorphic

continuation F given by (2.3):

F (z) =

∫
R
e2πizξ f̂(ξ) dξ, z ∈ C; f = F |R.

The function F (z) is bounded on {| Im z| ≤ r} and

(3.14)

∫
R
|F (x± ir)|2 dx =

∫
R
|e∓2πrξ f̂(ξ)|2 dξ ≤ ‖e2πr|ξ|f̂(ξ)‖2L2 .

For each I ∈ I, let I0 b I ′′ be the interval with the same center as I ′′ and

|I0| = 1
2c0. Define the slit domain (see Figure 4)

ΣI := {x+ iy | x ∈ R, |y| < r} \ I0.

For each t ∈ I \ I ′′ ⊂ ΣI , let µt = µΣI
t be the harmonic measure of ΣI on

∂ΣI = I0 t ∂−ΣI t ∂+ΣI , ∂±ΣI = {x± ir | x ∈ R}

centered at t. Here we put together the top and bottom copies I± of I0 (see

the paragraph following (2.23)); that is, for A ⊂ I0, we have

µt(A) = µt(A ∩ I+) + µt(A ∩ I−).

By Lemma 2.15, we have

κI := µt(I0) ≥ c0

8
e−2/r ≥ e−C/r ≥ κ,

where C denotes a constant depending only on c0 (whose value might differ in

different parts of the proof). By Lemma 2.12 we estimate

2 log |f(t)| ≤
∫
∂ΣI

2 log |F (z)| dµt(z) = 4κI ·
1

κI

∫
I0

log |f(x)|
2

dµt(x)

+ (1− κI) ·
1

1− κI

∫
∂−ΣIt∂+ΣI

2 log |F (z)| dµt(z).
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Since the exponential function is convex and 1
κI
µt|I0 , 1

1−κI µt|∂−ΣIt∂+ΣI are

probability measures, we obtain

|f(t)|2 ≤
Ç

1

κI

∫
I0

|f(x)|1/2 dµt(x)

å4κI

·
Ç

1

1− κI

∫
∂−ΣIt∂+ΣI

|F (z)|2 dµt(z)
å1−κI

.

Since κ ≤ κI < 1 and λ−λ ≤ exp(1/e) for all λ > 0, it follows that

(3.15)

|f(t)|2 ≤ 10

Ç ∫
I0

|f(x)|1/2 dµt(x)

å4κ

·
ÇÇ ∫

I0

|f(x)|1/2 dµt(x)

å4

+

∫
∂−ΣIt∂+ΣI

|F (z)|2 dµt(z)
å1−κ

.

Recall that t ∈ I \ I ′′. By Lemma 2.13 with p = 4/3 and Hölder’s inequality,

we have

(3.16)

Ç ∫
I0

|f(x)|1/2 dµt(x)

å4

≤ C‖f‖2L2(I0),

and by Lemma 2.14,

(3.17)

∫
∂−ΣIt∂+ΣI

|F (z)|2 dµt(z) ≤
C

r

∫
Im z∈{±r}

e−d(Re z,I)|F (z)|2dz.

Combining (3.15)–(3.17), we get

|f(t)|2 ≤ C

r
‖f‖2κL2(I0) ·

Ç ∫
Im z∈{0,±r}

e−d(Re z,I)|F (z)|2 dz
å1−κ

.

Integrating in t ∈ I \ I ′′ and using Hölder’s inequality (2.9), we estimate∑
I∈I
‖f‖2L2(I\I′′) ≤

C

r

Ç∑
I∈I
‖f‖2L2(I0)

åκ
·
Ç∑
I∈I

∫
Im z∈{0,±r}

e−d(Re z,I)|F (z)|2 dz
å1−κ

≤ C

r

Ç∑
I∈I
‖f‖2L2(I′′)

åκ
·
Ç ∫

Im z∈{0,±r}
|F (z)|2 dz

å1−κ
.

Combining this with (3.14) and the bound∑
I∈I
‖f‖2L2(I′′) ≤

Ç∑
I∈I
‖f‖2L2(I′′)

åκ
· ‖e2πr|ξ|f̂(ξ)‖2(1−κ)

L2 ,

we obtain (3.10). �
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 I

 I ′

{

I ′′

Figure 5. The sets U ′ (light shaded) and U ′′ (dark shaded) used

in Proposition 3.3 and Lemma 3.4, with endpoints of the inter-

vals I ∈ I denoted by dots.

3.3. The iterative step. The key component of the proof of Theorem 4 is

the following unique continuation property for functions with Fourier support

in a δ-regular set:

Proposition 3.3. Assume that Y ⊂ [−α1, α1] is δ-regular with constant

CR on scales 1 to α1, and δ ∈ (0, 1). Take

(3.18) I :=
¶

[j, j + 1] | j ∈ Z
©
,

and assume that for each I ∈ I , we are given a subinterval I ′ ⊂ I with |I ′| =
c1 > 0 independent of I ; see Figure 5. Define

U ′ :=
⋃
I∈I

I ′.

Then there exists c3 > 0 depending only on δ, CR, c1 such that for all f ∈ L2(R)

with supp f̂ ⊂ Y , we have

(3.19) ‖f‖L2(U ′) ≥ c3‖f‖L2(R).

Remark. It is important that U ′ be the union of infinitely many intervals,

rather than a single interval. Indeed, the following estimate is false:

f ∈ L2(R), supp f̂ ⊂ [−1, 1] =⇒ ‖f‖L2(−1,1) ≥ c‖f‖L2(−2,2)

as can be seen by taking f(x) = xNχ(x), where χ is a Schwartz function with

supp χ̂ ⊂ [−1, 1], and letting N →∞.

Henceforth in this section C denotes a constant which only depends on

δ, CR, c1 (whose value may differ in different places). Recall the definition (3.1)

of θ(ξ). For f ∈ L2, denote by ‖f‖H−10 its Sobolev norm defined in (2.5); it

will be useful for summing over different phase shifts of f in (3.30) below.

The main ingredient of the proof of Proposition 3.3 is the following lemma,

which combines the results of Sections 3.1 and 3.2. It is proved by splitting f

into two pieces, one which lives on frequencies ≤ K and the other, on frequen-

cies ≥ K.
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Lemma 3.4. Assume that Z ⊂ [−α1, α1] is δ-regular with constant CR on

scales 1 to α1 ≥ 2, and δ ∈ (0, 1). Let {I ′}I∈I be as in Proposition 3.3. Then we

have for all f ∈ L2(R) with supp f̂ ⊂ Z , all K > 10, and κ := exp(−C/θ(K)),

‖f̂‖2L2(−1,1) ≤ CK
21
Ä
‖ 1lU ′ f‖2H−10 + exp

Ä
−C−1θ(K)K

ä
‖f‖2H−10

äκ · ‖f‖2(1−κ)
H−10 .

Proof. For each I ∈ I, let I ′′ b I ′ be the interval with the same center as

I ′ and |I ′′| = 1
2c1. Denote

U ′′ :=
⋃
I∈I

I ′′.

Let ψ be the function constructed in Lemma 3.1 for Y replaced by

Z(2) := Z + [−2, 2].

Here Z(2) ⊂ [−(α1 + 2), α1 + 2] is a δ-regular set with constant 100CR on

scales 2 to α1 + 2 by Lemmas 2.3 and 2.2. By (3.3)–(3.5) we have, for some

c2 ∈ (0, 1) depending only on δ, CR, c1,

‖ψ̂‖L2(−1,1) ≥ c2,(3.20)

|ψ̂(ξ)| ≤ exp(−c2〈ξ〉1/2) for all ξ ∈ R,(3.21)

|ψ̂(ξ)| ≤ exp
Ä
− c2θ(ξ)|ξ|

ä
for all ξ ∈ Z(2).(3.22)

Take arbitrary η ∈ [−2, 2], and let fη(x) := e2πiηxf(x), so that f̂η(ξ) = f̂(ξ−η).

The freedom of choice in η will be useful in (3.29) below; for simplicity, the

reader can consider the case η = 0. Put

gη := fη ∗ ψ ∈ L2(R).

By the support condition (3.2),

(3.23) gη = (1lU ′ fη) ∗ ψ on U ′′.

By (2.4), (3.22), and since supp f̂η ⊂ Z + η ⊂ Z(2), we have

(3.24) |ĝη(ξ)| ≤ exp
Ä
− c2θ(ξ)|ξ|

ä
· |f̂η(ξ)| for all ξ ∈ R.

Put

r :=
c2

10
θ(K) ∈ (0, 1).

Since θ(ξ) is decreasing for ξ ≥ 0, we have

(3.25) sup
|ξ|≤K

e2πr|ξ| exp
Ä
− c2θ(ξ)|ξ|

ä
≤ 1.

We now decompose gη into low and high frequencies:

gη = g1 + g2, g1, g2 ∈ L2, supp ĝ1 ⊂ {|ξ| ≤ K}, supp ĝ2 ⊂ {|ξ| ≥ K}.
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Then by (3.24) and (3.25),

‖e2πr|ξ|ĝ1(ξ)‖L2 ≤ CK10‖f‖H−10 ,(3.26)

‖g2‖L2 ≤ C exp
Ä
− C−1θ(K)K

ä
‖f‖H−10 .(3.27)

Applying Lemma 3.2 to the function g1 and using (3.26), we get

(3.28) ‖g1‖2L2 ≤
CK20

r
‖g1‖2κL2(U ′′) · ‖f‖

2(1−κ)
H−10 , κ := e−C/r.

By (3.23), (2.4), and (3.21),

‖g1‖L2(U ′′) ≤ ‖gη‖L2(U ′′) + ‖g2‖L2 ≤ ‖(1lU ′ fη) ∗ ψ‖L2 + ‖g2‖L2

≤ C‖ 1lU ′ f‖H−10 + ‖g2‖L2 .

Then by (3.27) and (3.28) and since r−1 ≤ CK, we have for all η ∈ [−2, 2],

‖gη‖2L2 = ‖g1‖2L2 + ‖g2‖2L2

≤ CK21
Ä
‖ 1lU ′ f‖2H−10 + exp

Ä
− C−1θ(K)K

ä
‖f‖2H−10

äκ · ‖f‖2(1−κ)
H−10 .

It remains to use the following corollary of (3.20):

(3.29)

‖f̂‖2L2(−1,1) ≤ c
−2
2

∫
[−1,1]2

|f̂(ζ)ψ̂(ξ)|2 dξdζ

≤ c−2
2

∫ 2

−2

∫
R
|f̂(ξ − η)ψ̂(ξ)|2 dξdη

= c−2
2

∫ 2

−2
‖gη‖2L2 dη,

where ĝη(ξ) = f̂(ξ − η)ψ̂(ξ) by (2.4). �

Armed with Lemma 3.4, we now give

Proof of Proposition 3.3. Take ` ∈ Z such that |`| ≤ α1. By Lemmas 2.1

and 2.2 the set Y + ` ⊂ [−2α1, 2α1] is δ-regular with constant 4CR on scales 1

to 2α1. Put

f`(x) := e2πi`xf(x).

Then f̂`(ξ) = f̂(ξ − `), and thus supp f̂` ⊂ Y + `. By Lemma 3.4 applied to f`
and Z := Y + `, for all K > 10 and κ := exp(−C/θ(K)), we have

‖f̂`‖2L2(−1,1) ≤ CK
21
Ä
‖ 1lU ′ f`‖2H−10 +exp

Ä
−C−1θ(K)K

ä
‖f`‖2H−10

äκ·‖f`‖2(1−κ)
H−10 .
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Since supp f̂ ⊂ Y ⊂ [−α1, α1], using Hölder’s inequality (2.9) we obtain

‖f‖2L2 ≤
∑

`∈Z : |`|≤α1

‖f̂`‖2L2(−1,1)

≤ CK21
(∑

`

‖ 1lU ′ f`‖2H−10 + exp
Ä
− C−1θ(K)K

ä∑
`

‖f`‖2H−10

)κ
·
(∑

`

‖f`‖2H−10

)1−κ
.

Since

(3.30)
∑
`

‖f`‖2H−10 ≤ C‖f‖2L2 ,
∑
`

‖ 1lU ′ f`‖2H−10 ≤ C‖f‖2L2(U ′)

and by the Minkowski inequality (a+ b)κ ≤ aκ + bκ, a, b ≥ 0, we have

‖f‖2L2 ≤ CK21‖f‖2κL2(U ′) · ‖f‖
2(1−κ)
L2 + CK21 exp

Ä
− C−1θ(K)κK

ä
‖f‖2L2 .

Recalling that κ = exp(−C/θ(K)), δ < 1, and the definition (3.1) of θ(K), we

have κK ≥ C−1
√
K and thus

lim
K→∞

K21 exp
Ä
− C−1θ(K)κK

ä
= 0.

Therefore, fixing K large enough depending only on δ, CR, c1, we have

‖f‖2L2 ≤ CK21‖f‖2κL2(U ′) · ‖f‖
2(1−κ)
L2 ,

which implies (3.19) with c3 = (CK21)−
1

2κ . �

3.4. The iteration argument. We now finish the proof of Theorem 4 by

iterating Proposition 3.3. Let δ, CR, N,X, Y satisfy the assumptions of Theo-

rem 4.

First of all, Lemma 2.9 gives the Lebesgue measure bounds

µL(X) ≤ 24C2
RN

δ−1, µL(Y ) ≤ 24C2
RN

δ.

Applying Hölder’s inequality twice and using (2.3), we see that for each f ∈
L2(R) with supp f̂ ⊂ Y ,

(3.31)
‖f‖L2(X) ≤

»
µL(X)‖f‖L∞ ≤

»
µL(X)‖f̂‖L1

≤
»
µL(X)µL(Y )‖f̂‖L2 ≤ 24C2

RN
δ− 1

2 ‖f‖L2 ,

where we used the Lebesgue measure to define ‖f‖L2(X). This implies (1.4) for

δ < 1/2 with β = 1/2− δ. Therefore, we henceforth assume that 1/2 ≤ δ < 1

(though we will only use that 0 < δ < 1).

Put

L :=
†
(3CR)

2
1−δ
£
∈ N

so that (2.10) holds. Let Vn(X), n ∈ Z, be the elements of the tree of intervals

covering X constructed in (2.13). Because of our choice of L, the tree Vn(X)
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satisfies the missing child property, Lemma 2.10, which will be used in the

proof of Lemma 3.6 below. Define the coarse-graining of X on the scale L−n:

(3.32) Un :=
⋃

I∈Vn(X)

I
( 1

10Ln

)
⊃ X

( 1

10Ln

)
.

Here we use the notation (2.1) for neighborhoods of sets.

We use the sets Un to construct a family of weights. Let ϕ be a nonnegative

Schwartz function such that

supp ϕ̂ ⊂ [−1, 1],

∫
R
ϕ(x) dx = 1,

and for n ∈ Z, define

ϕn(x) := Ln · ϕ(Lnx), ϕ̂n(ξ) = ϕ̂(L−nξ).

Take T ∈ N, and for n ∈ Z, define the following weight (see Figure 6):

Ψn := 1Un+1 ∗ ϕn+T .

We will later fix T independently of N (see (3.38)) and take 0 ≤ n . logN .

Note that Ψn is a Schwartz function and 0 ≤ Ψn ≤ 1.

The fattening of the intervals in the definition of Un and the need for the

parameter T are explained by the following lemma, which is used at the end

of the proof:

Lemma 3.5. There exists a constant Cϕ depending only on ϕ such that

for all n,

(3.33) Ψn ≥ 1− Cϕ
LT−1

on X.

Proof. Let x ∈ X. Then by (3.32),[
x− 1

10Ln+1
, x+

1

10Ln+1

]
⊂ Un+1.

We have

Ψn(x) =

∫
R
1Un+1(x− L−n−T y)ϕ(y) dy ≥

∫ LT−1/10

−LT−1/10
ϕ(y) dy,

and (3.33) follows since ϕ is a Schwartz function of integral 1. �

Next, Proposition 3.3 implies that when supp f̂ ⊂ Y (2Ln), a positive

proportion of the L2 mass of f is removed when multiplying by the weight Ψn.

(This is similar to restricting f to Un+1, which is the coarse-graining of X on

the scale L−n−1.)

Lemma 3.6. There exists τ > 0 depending only on δ, CR such that for all

T ∈ N, n ∈ N such that Ln+1 ≤ N and

f ∈ L2(R), supp f̂ ⊂ Y (2Ln),

we have supp ‘Ψnf ⊂ Y (2Ln+T ) and

(3.34) ‖Ψnf‖L2 ≤ (1− τ)‖f‖L2 .
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L−nI

L−nI ′

Ψn

Figure 6. The weight Ψn for large T and the interval L−nI ′ used

in the proof of Lemma 3.6. The dashed line corresponds to the

constant function 1 and the dots mark L−n−1Z; the shaded

region is Un+1.

Proof. By (2.4), we have supp“Ψn ⊂ supp ϕ̂n+T ⊂ [−Ln+T , Ln+T ]. Since‘Ψnf = “Ψn ∗ f̂ ,

supp ‘Ψnf ⊂ supp f̂ + [−Ln+T , Ln+T ],

which gives the Fourier support condition on Ψnf .

It remains to show (3.34). Define the following rescaling of f :

f̃(x) := L−n/2 · f(L−nx).

Then ‖f̃‖L2(A) = ‖f‖L2(L−n·A) for any set A and, with F denoting the Fourier

transform,

suppF f̃ ⊂ ‹Y :=
1

Ln
Y + [−2, 2] ⊂ [−α1, α1], α1 :=

10N

Ln
.

By Lemmas 2.1–2.3 the set ‹Y is δ-regular with constant 1000CR on scales 1

to α1.

Let I be the partition of R into size 1 intervals defined in (3.18). For each

I ∈ I, choose an interval I ′ ⊂ I of size c1 := (2L)−1 as follows. There exists

j ∈ Z such that Ij := L−1[j, j + 1] is contained in I and satisfies L−nIj /∈
Vn+1(X). Indeed, for L−nI /∈ Vn(X), this is obvious (as one can take any Ij
contained in I) and for L−nI ∈ Vn(X), it follows by Lemma 2.10. We then let

I ′ ⊂ Ij have the same center as Ij and size |I ′| = c1 = 1
2 |Ij |. Note that the

intervals L−nI ′ are relatively far from X; more precisely, (see Figure 6),

(3.35) L−nI ′ ∩ Un+1

( 1

10Ln+T

)
= ∅.

Applying Proposition 3.3 to the function f̃ , the set ‹Y , and the subintervals

I ′ described in the previous paragraph, for some c3 > 0 depending only on

δ, CR, we obtain

‖f̃‖L2(U ′) ≥ c3‖f̃‖L2 , U ′ :=
⋃
I∈I

I ′,
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and therefore

(3.36) ‖f‖L2(L−n·U ′) ≥ c3‖f‖L2 .

By (3.35) we have

Ψn ≤ cϕ on L−nU ′, cϕ :=

∫
R\[− 1

10
, 1
10 ]
ϕ(x) dx < 1.

Since 0 ≤ Ψn ≤ 1, together with (3.36) this implies

‖Ψnf‖2L2 ≤ c2
ϕ‖f‖2L2(L−n·U ′) + ‖f‖2L2(R\(L−n·U ′))

= ‖f‖2L2 − (1− c2
ϕ)‖f‖2L2(L−n·U ′)

≤ ‖f‖2L2 − (1− c2
ϕ)c2

3‖f‖2L2 .

This gives (3.34), where τ is defined by (1− τ)2 = 1− (1− c2
ϕ)c2

3. �

We are now ready to finish the proof of Theorem 4. To do this we iterate

Lemma 3.6 ∼ logN times. At each next step we use coarser information on

frequency (that is, the Fourier support supp f̂m is contained in larger neigh-

borhoods of Y ) and finer information on position (that is, fm involves cutoffs

to smaller neighborhoods of X).

Proof of Theorem 4. Assume that f ∈ L2(R) and supp f̂ ⊂ Y . Fix large

T ∈ N to be chosen below. For m ∈ N, define

fm :=

Çm−1∏
`=1

Ψ`T

å
f.

Iterating Lemma 3.6, we see that for each m ∈ N such that L(m−1)T+1 ≤ N ,

we have
‖fm‖L2 ≤ (1− τ)m−1‖f‖L2 , supp f̂m ⊂ Y (2LmT ).

Then by Lemma 3.5, for all m ∈ N such that L(m−1)T+1 ≤ N ,

(3.37)

‖f‖L2(X) ≤
Å

1− Cϕ
LT−1

ã1−m
‖fm‖L2 ≤

Å
1− Cϕ

LT−1

ã1−m
(1− τ)m−1‖f‖L2 .

Fix T large enough depending only on δ, CR so that

(3.38)

Å
1− Cϕ

LT−1

ã−1

(1− τ) ≤ 1− τ

2
.

Then (3.37) gives

‖f‖L2(X) ≤
Å

1− τ

2

ãm−1

‖f‖L2 .

Taking m such that L(m−1)T+1 ≤ N ≤ LmT+1, we get (1.4) with

β = −
log
Ä
1− τ

2

ä
T logL

,

finishing the proof. �
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4. The hyperbolic fractal uncertainty principle

In this section, we generalize Theorem 4 first by allowing a variable am-

plitude (Section 4.1) and then by taking a general phase (Section 4.2). Both

generalizations are stated using the semiclassical parameter h > 0 correspond-

ing to the inverse of the frequency. In Section 4.3, we apply the result of

Section 4.2 to prove Theorem 3.

4.1. The uncertainty principle with variable amplitude. We first prove the

following semiclassical rescaling of Theorem 4 which also relaxes the assump-

tions on the sets X,Y . In particular, it allows for unbounded X,Y but takes

their intersections with bounded intervals, which is a more convenient assump-

tion for applications. Recall the notation (2.1) for neighborhoods of sets and

the semiclassical Fourier transform (2.6).

Proposition 4.1. Let 0 ≤ δ < 1, CR, CI ≥ 1, and assume that X,Y ⊂ R
are δ-regular with constant CR on scales 0 to 1. Let IX , IY ⊂ R be intervals

with |IX |, |IY | ≤ CI . Then there exists β > 0 depending only on δ, CR and

C > 0 depending only on δ, CR, CI such that for all h ∈ (0, 1),

(4.1) ‖ 1lX(h)∩IX F
∗
h 1lY (h)∩IY ‖L2(R)→L2(R) ≤ Chβ.

Proof. Without loss of generality, we may assume that h is small depend-

ing on δ, CR. By Lemma 2.3, the sets X(h), Y (h) are δ-regular with constant

8CR on scales h to 1. By Lemma 2.7 there exist collections of disjoint intervals

JX ,JY such that

X(h) =
⊔

J∈JX

XJ , XJ := X(h) ∩ J,

Y (h) =
⊔

J ′∈JY

YJ ′ , YJ ′ := Y (h) ∩ J ′,

(32CR)−
2

1−δ ≤ |J | ≤ 1 for all J ∈ JX ∪ JY ,

and the sets XJ , YJ ′ are δ-regular with constant ‹CR := (100CR)
2

1−δCR on scales

h to 1.

We have the following estimate for each J ∈ JX , J ′ ∈ JY , where β,C > 0

depend only on δ, CR:

(4.2) ‖ 1lXJ F
∗
h 1lYJ′ ‖L2→L2 ≤ Chβ.

Indeed, since XJ , YJ ′ have diameter no more than 1, we may shift XJ , YJ ′

to make them lie inside [−1, 1]. By (2.7) this does not change the left-hand

side of (4.2); by Lemma 2.1 it does not change δ-regularity. Take arbitrary

g ∈ L2(R) and put f := F∗h 1lYJ′ g and N := h−1. Then supp f̂ lies in N · YJ ′ ,
which by Lemma 2.1 is δ-regular with constant ‹CR on scales 1 to N . Applying
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Theorem 4, we obtain

‖ 1lXJ F
∗
h 1lYJ′ g‖L2 = ‖ 1lXJ f‖L2 ≤ Chβ‖f‖L2 ≤ Chβ‖g‖L2 ,

implying (4.2).

Next, the number of intervals in JX intersecting IX is bounded as follows:

#{J ∈ JX | J ∩ IX 6= ∅} ≤ (32CR)
2

1−δCI + 2

and a similar estimate holds for the number of intervals in JY intersecting IY .

Combining these estimates with (4.2) and using the triangle inequality (2.8),

we obtain (4.1), finishing the proof. �

We now prove a fractal uncertainty principle for operators A = A(h) :

L2(R)→ L2(R) of the form

(4.3) Af(x) = h−1/2
∫
R
e2πixξ/ha(x, ξ)f(ξ) dξ,

where a(x, ξ) ∈ C∞0 (R2) satisfies

(4.4) sup |∂kxa| ≤ Ck, diam supp a ≤ Ca

for each k and some constants Ck, Ca. In the statement below it is convenient

to replace neighborhoods of size h by those of size hρ, where ρ ∈ (0, 1). In

practice we will take ρ very close to 1 so that the resulting losses do not negate

the gain hβ. The proof of Proposition 4.2 relies on Proposition 4.1 and the

fact that for ρ < 1, functions in the range of A(h) 1lY (hρ) are concentrated on

Y (2hρ) in the semiclassical Fourier space.

Proposition 4.2. Let 0 ≤ δ < 1, CR ≥ 1 and assume that X,Y ⊂ R are

δ-regular with constant CR on scales 0 to 1 and (4.4) holds. Then there exists

β > 0 depending only on δ, CR such that for all ρ ∈ (0, 1) and h ∈ (0, 1),

(4.5) ‖ 1lX(hρ)A(h) 1lY (hρ) ‖L2(R)→L2(R) ≤ Chβ−2(1−ρ),

where the constant C depends only on δ, CR, {Ck}, Ca, ρ.

Proof. Denote by C constants which depend only on δ, CR, {Ck}, Ca, ρ.

(The value of C may differ in different parts of the proof.) We note that2

(4.6) ‖A‖L2→L2 ≤ C.

To see this, we compute the integral kernel of A∗A:

KA∗A(ξ, η) = h−1
∫
R
e2πix(η−ξ)/ha(x, ξ)a(x, η) dx.

2If all (x, ξ)-derivatives of a are bounded, then FhA is a pseudodifferential operator and

(4.6) follows from the Calderón–Vaillancourt Theorem.



858 JEAN BOURGAIN and SEMYON DYATLOV

Using (4.4) and repeated integration by parts in x, we obtain

|KA∗A(ξ, η)| ≤ Ch−1
〈ξ − η

h

〉−10
,

which by Schur’s inequality (see, e.g., [Zwo12, Th. 4.21]) gives ‖A∗A‖L2→L2≤C,

and thus (4.6) holds.

Take intervals IX , IY such that supp a ⊂ IX × IY and |IX |, |IY | ≤ Ca. We

write

1lX(hρ)A 1lY (hρ) = 1lX(hρ)∩IX A 1lY (hρ)∩IY = 1lX(hρ)∩IX F
∗
hA1

+A2FhA 1lY (hρ)∩IY ,

A1 : = 1lR\(Y (2hρ)∩IY (1))FhA 1lY (hρ)∩IY ,

A2 := 1lX(hρ)∩IX F
∗
h 1lY (2hρ)∩IY (1),

so that by (4.6)

(4.7) ‖ 1lX(hρ)A 1lY (hρ) ‖L2→L2 ≤ ‖A1‖L2→L2 + C‖A2‖L2→L2 .

The operator FhA is pseudodifferential, thus its integral kernel is rapidly decay-

ing once we step hρ away from the diagonal. Since the sets R\(Y (2hρ)∩IY (1))

and Y (hρ) ∩ IY are distance hρ away from each other, this implies

(4.8) ‖A1‖L2→L2 ≤ Ch10.

More precisely, to show (4.8) we compute the integral kernel of A1:

KA1(ξ, η) = 1R\(Y (2hρ)∩IY (1))(ξ)1Y (hρ)∩IY (η) · h−1
∫
R
e2πix(η−ξ)/ha(x, η) dx.

Note that |ξ − η| ≥ hρ on suppKA1 . Using (4.4) and repeated integration by

parts in x, for each M ∈ N0 we obtain

|KA1(ξ, η)| ≤ CMh−1
〈ξ − η

h

〉−M−1
,

which implies (4.8) by another application of Schur’s inequality as soon as

M ≥ 10
1−ρ .

We now estimate ‖A2‖. By Proposition 4.1 there exists β > 0 depending

only on δ, CR such that

‖ 1lX(h)∩IX(1)F∗h 1lY (h)∩IY (2) ‖L2→L2 ≤ Chβ.

We cover X(hρ) ∩ IX , Y (2hρ) ∩ IY (1) as follows:

X(hρ) ∩ IX ⊂
⋃
p∈hZ
|p|≤hρ

Ä
X(h) ∩ IX(1)

ä
+ p,

Y (2hρ) ∩ IY (1) ⊂
⋃
q∈hZ
|q|≤2hρ

Ä
Y (h) ∩ IY (2)

ä
+ q.
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Each of the above unions has at most 10hρ−1 elements, therefore by (2.7) and

the triangle inequality (2.8) we get

(4.9) ‖A2‖L2→L2 ≤ Chβ−2(1−ρ).

Combining (4.7)–(4.9), we obtain (4.5). �

4.2. Uncertainty principle with general phase. We next prove a fractal

uncertainty principle for operators B = B(h) : L2(R)→ L2(R) of the form

(4.10) Bf(x) = h−1/2
∫
R
eiΦ(x,y)/hb(x, y) f(y) dy,

where for some open set U ⊂ R2,

(4.11) Φ ∈ C∞(U ;R), b ∈ C∞0 (U), ∂2
xyΦ 6= 0 on U.

The condition ∂2
xyΦ 6= 0 ensures that locally we can write the graph of the

twisted gradient of Φ in terms of some symplectomorphism κ of open subsets

of T ∗R:

(4.12) (x, ξ) = κ(y, η) ⇐⇒ ξ = ∂xΦ(x, y), η = −∂yΦ(x, y).

Then B is a Fourier integral operator associated to κ; see, for instance, [DZ16,

§2.2]. Note that symplectomorphisms of the form (4.12) satisfy the following

transversality condition: each vertical leaf {y = const} ⊂ T ∗R2 is mapped by

κ to a curve which is transversal to all vertical leaves {x = const}. Propo-

sition 4.3 below can be interpreted in terms of the theory of Fourier integral

operators, however we give a proof which is self-contained and does not explic-

itly rely on this theory.

Proposition 4.3. Let 0 ≤ δ < 1, CR ≥ 1, and assume that X,Y ⊂ R
are δ-regular with constant CR on scales 0 to 1 and (4.11) holds. Then there

exist β > 0, ρ ∈ (0, 1) depending only on δ, CR and C > 0 depending only on

δ, CR,Φ, b such that for all h ∈ (0, 1),

(4.13) ‖ 1lX(hρ)B(h) 1lY (hρ) ‖L2(R)→L2(R) ≤ Chβ.

Remark. The value of β in Proposition 4.3 (and in Theorem 3) is smaller

than the one in Theorem 4 and Propositions 4.1–4.2. Denoting the latter

by β̃, our argument gives (4.13) with β = β̃/4; see (4.19) below. By taking

ρ sufficiently close to 1, one can get any β < β̃/2. However, since we do not

specify the value of β, this difference is irrelevant to the final result.

We first note that it is enough to prove Proposition 4.3 under the assump-

tion

(4.14) 1 < |∂2
xyΦ| < 2 on U.
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Indeed, assume that Proposition 4.3 is established for all Φ satisfying (4.14).

Then it also holds for all λΦ > 0 and Φ satisfying

(4.15) λΦ < |∂2
xyΦ| < 2λΦ on U,

where β, ρ do not depend on λΦ but C does. Indeed, put ‹Φ := λ−1
Φ Φ; then‹Φ satisfies (4.14). If ‹B(h) is given by (4.10) with Φ replaced by ‹Φ, then

B(h) = ‹B(λ−1
Φ h), and thus by slightly increasing ρ we see that Proposition 4.3

for ‹Φ implies it for Φ. Finally, for the case of general Φ, we use a partition of

unity for b and shrink U accordingly to split B into the sum of finitely many

operators of the form (4.10), each of which has a phase function satisfying

(4.15) for some λΦ.

The proof of Proposition 4.3 relies on the following statement which fattens

the set X by hρ/2, intersects Y (hρ) with a size h1/2 interval, and is proved by

making a change of variables and taking the semiclassical parameter h̃ := h1/2

in Proposition 4.2:

Lemma 4.4. Assume (4.14) holds. Then there exist β > 0, ρ ∈ (0, 1)

depending only on δ, CR and C > 0 depending only on δ, CR,Φ, b such that for

all h ∈ (0, 1) and all intervals J of size h1/2,

(4.16) ‖ 1lX(hρ/2)B(h) 1lY (hρ)∩J ‖L2→L2 ≤ Chβ.

Proof. Fix ρ ∈ (1
2 , 1) to be chosen later. Breaking the symbol b into pieces

using a partition of unity, we may assume that

supp b ⊂ IX × I ′Y ⊂ IX × IY ⊂ U,

where IX , IY , I
′
Y are some intervals with I ′Y b IY . We may assume that

J ⊂ IY ; indeed, otherwise the operator in (4.16) is equal to 0 for h small

enough. Let y0 be the center of J and define the function

ϕ : IX → R, ϕ(x) =
1

2π
∂yΦ(x, y0).

By (4.14) we have

(4.17)
1

2π
< |∂xϕ| <

1

π
on IX .

In particular, ϕ : IX → ϕ(IX) is a diffeomorphism. We extend ϕ to a diffeo-

morphism of R such that (4.17) holds on the entire R. Let Ψ ∈ C∞(IX × IY )

be the remainder in Taylor’s formula for Φ, defined by

Φ(x, y) = Φ(x, y0) + 2π(y − y0)ϕ(x) + (y − y0)2Ψ(x, y), x ∈ IX , y ∈ IY .
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Consider the isometries WX ,WY : L2(R)→ L2(R) defined by

WXf(x) = e−iΦ(ϕ−1(x),y0)/h
∣∣∣∂x(ϕ−1)(x)

∣∣∣1/2f(ϕ−1(x)),

WY f(y) = h−1/4f
(y − y0

h1/2

)
.

Here we extend Φ(ϕ−1(x), y0) from ϕ(IX) to a real-valued function on R. We

also fix a function χ ∈ C∞0 ((−1, 1); [0, 1]) such that χ = 1 near [−1
2 ,

1
2 ], and

define the cutoff χJ by

χJ(y) = χ
(y − y0

h1/2

)
, χJ = 1 on J.

Put A = A(h) := WXB(h)χJWY , and then we write A in the form (4.3):

Af(x) = h̃−1/2
∫
R
e2πixξ/h̃a(x, ξ; h̃)f(ξ) dξ,

where h̃ := h1/2 and

a(x, ξ; h̃) = eiξ
2Ψ(ϕ−1(x),y0+h̃ξ)

∣∣∣∂x(ϕ−1)(x)
∣∣∣1/2b(ϕ−1(x), y0 + h̃ξ)χ(ξ).

The amplitude a satisfies (4.4) with the constants Ck, Ca depending only on

Φ, b. We now have

(4.18)
‖ 1lX(hρ/2)B 1lY (hρ)∩J ‖L2→L2 ≤ ‖WX 1lX(hρ/2)BχJ 1lY (hρ)WY ‖L2→L2

≤ ‖ 1l
X̃(CΦh̃ρ)

A 1l
Ỹ (h̃2ρ−1)

‖L2→L2 ,

where ‹X := ϕ(X), ‹Y := h−1/2(Y − y0). By Lemmas 2.4 and 2.2 the set ‹X is

δ-regular with constant ‹CR := 8π2CR on scales 0 to 1. By Lemma 2.1 the set‹Y has the same property. Applying Proposition 4.2 we obtain

‖ 1l
X̃(h̃2ρ−1)

A 1l
Ỹ (h̃2ρ−1)

‖L2→L2 ≤ Ch̃β̃−4(1−ρ) = Ch
β̃
2
−2(1−ρ),

where β̃ > 0 depends only on δ, CR and C depends only on δ, CR,Φ, b, ρ. Fixing

(4.19) ρ := 1− 1

8
β̃, β :=

β̃

4
,

taking h small enough so that CΦh̃
ρ ≤ h̃2ρ−1, and using (4.18), we obtain

(4.16). �

We now finish the proof of Proposition 4.3 using almost orthogonality

similarly to [DZ16, §5.2]:

Proof of Proposition 4.3. Denote by C constants which depend only on

δ, CR,Φ, b. Since ∂2
xyΦ 6= 0 on U , after using a partition of unity for b and

shrinking U we may assume that

(4.20) |∂xΦ(x, y)− ∂xΦ(x, y′)| ≥ C−1|y − y′| for all (x, y), (x, y′) ∈ U.
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Take β > 0, ρ ∈ (0, 1) defined in Lemma 4.4. By [DZ16, Lemma 3.3], there

exists ψ = ψ(x;h) ∈ C∞(R; [0, 1]) such that for some global constants Ck,ψ,

ψ = 1 on X(hρ), suppψ ⊂ X(hρ/2),(4.21)

sup |∂kxψ| ≤ Ck,ψh−ρk/2.(4.22)

Take the smallest interval IY such that supp b ⊂ R× IY . Take a maximal set

of 1
2h

1/2-separated points

y1, . . . , yN ∈ Y (hρ) ∩ IY , N ≤ Ch−1/2,

and let Jn be the interval of size h1/2 centered at yn. Define the operators

Bn :=
√
ψB 1lY (hρ)∩Jn , n = 1, . . . , N.

Then by Lemma 4.4 we have, uniformly in n,

(4.23) ‖Bn‖L2→L2 ≤ ‖ 1lX(hρ/2)B 1lY (hρ)∩Jn ‖L2→L2 ≤ Chβ.

On the other hand, Y (hρ) ∩ IY ⊂
⋃
n(Y (hρ) ∩ Jn), and thus

(4.24)

‖ 1lX(hρ)B 1lY (hρ) ‖L2→L2 ≤
∥∥∥√ψB 1lY (hρ)∩IY

∥∥∥
L2→L2

≤
∥∥∥∥∥ N∑
n=1

Bn

∥∥∥∥∥
L2→L2

.

We will estimate the right-hand side of (4.24) by the Cotlar–Stein Theorem

[Zwo12, Th. C.5]. We say that two points yn, ym are close if |yn−ym| ≤ 10h1/2

and are far otherwise. Each point is close to at most 100 other points. The

following estimates hold when yn, ym are far:

BnB
∗
m = 0,(4.25)

‖B∗nBm‖L2→L2 ≤ Ch10.(4.26)

Indeed, (4.25) follows immediately since Jn ∩ Jm = ∅. To show (4.26), we

compute the integral kernel of B∗nBm:

KB∗nBm(y, y′)

= 1lY (hρ)∩Jn(y) 1lY (hρ)∩Jm(y′) · h−1
∫
R
e
i
h

(Φ(x,y′)−Φ(x,y))b(x, y)b(x, y′)ψ(x) dx.

Since yn, ym are far, we have |y−y′| ≥ h1/2 on suppKB∗nBm . We now repeatedly

integrate by parts in x. Each integration produces a gain of h1/2 due to (4.20)

and a loss of h−ρ/2 due to (4.22). Since ρ < 1, after finitely many steps we

obtain (4.26). See the proof of [DZ16, Lemma 5.2] for details.

Now (4.23), (4.25), and (4.26) imply by the Cotlar–Stein Theorem that∥∥∥∥∥ N∑
n=1

Bn

∥∥∥∥∥
L2→L2

≤ Chβ,

which gives (4.13) because of (4.24). �
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4.3. Proof of Theorem 3. We parametrize the circle by θ ∈ S1 := R/(2πZ).

Let ΛΓ ⊂ S1 be the limit set of Γ; we lift it to a 2π-periodic subset of R, denoted

by X.

The set X ⊂ R is δ-regular with some constant CR on scales 0 to 1, where

we can take as µX the Hausdorff measure of dimension δ or equivalently the lift

of the Patterson–Sullivan measure; see, for example, [Sul79, Th. 7] and [Bor16,

Lemma 14.13 and Th. 14.14]. Here δ ∈ [0, 1] is the exponent of convergence of

Poincaré series of the group and δ < 1 when M = Γ\H2 is convex co-compact

but not compact; see, for instance, [Bor16, §2.5.2] and [Bea71, Th. 2].

Let Bχ(h) be the operator defined in (1.2). By partition of unity, we

may assume that suppχ lies in the product of two half-circles. Then for all

h ∈ (0, 1), ρ ∈ (0, 1),

‖ 1lΛΓ(hρ) Bχ(h) 1lΛΓ(hρ) ‖L2(S1)→L2(S1) = ‖ 1lX(hρ)B(h) 1lX(hρ) ‖L2(R)→L2(R),

where B = B(h) has the form (4.10):

Bf(θ) = h−1/2
∫
R
eiΦ(θ,θ′)/hb(θ, θ′)f(θ′) dθ′.

Here, denoting U := {(θ, θ′) | θ − θ′ /∈ 2πZ}, the function b ∈ C∞0 (U) is a

compactly supported lift of (2π)−1/2χ and Φ ∈ C∞(U ;R) is given by

Φ(θ, θ′) = log 4 + 2 log

∣∣∣∣ sin (θ − θ′2

)∣∣∣∣, θ, θ′ ∈ R.

We have

∂2
θθ′Φ =

1

2 sin2
Ä
θ−θ′

2

ä 6= 0 on U.

By Proposition 4.3 there exist β > 0 and ρ ∈ (0, 1) depending only on δ, CR
and C > 0 depending on δ, CR, χ such that for all h ∈ (0, 1),

‖ 1lX(hρ)B(h) 1lX(hρ) ‖L2→L2 ≤ Chβ,
which implies (1.3) and finishes the proof of Theorem 3.
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