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Universal hierarchical structure of
quasiperiodic eigenfunctions

By Svetlana Jitomirskaya and Wencai Liu

Abstract

We determine exact exponential asymptotics of eigenfunctions and of

corresponding transfer matrices of the almost Mathieu operators for all

frequencies in the localization regime. This uncovers a universal struc-

ture in their behavior, governed by the continued fraction expansion of

the frequency, explaining some predictions in physics literature. In addi-

tion it proves the arithmetic version of the frequency transition conjecture.

Finally, it leads to an explicit description of several non-regularity phenom-

ena in the corresponding non-uniformly hyperbolic cocycles, which is also

of interest as both the first natural example of some of those phenomena

and, more generally, the first non-artificial model where non-regularity can

be explicitly studied.

1. Introduction

A very captivating question and a longstanding theoretical challenge in

solid state physics is to determine/understand the hierarchical structure of

spectral features of operators describing 2D Bloch electrons in perpendicular

magnetic fields, as related to the continued fraction expansion of the magnetic

flux. Such structure was first predicted in the work of Azbel in 1964 [Azb64].

It was numerically confirmed through the famous butterfly plot and further

argued for by Hofstadter in [Hof76] for the spectrum of the almost Mathieu op-

erator. This was even before this model was linked to the integer quantum Hall

effect [Tho84] and other important phenomena. Mathematically, it is known

that the spectrum is a Cantor set for all irrational fluxes [AJ09] and, more-

over, even all gaps predicted by the gap labeling are open in the non-critical

case [AJ10], [AYZ]. Both were very important challenges in themselves, even

though these results, while strongly indicated, do not describe or explain the

hierarchical structure, and the problem of its description/explanation remains
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open, even in physics. As for the understanding the hierarchical behavior of

the eigenfunctions, despite significant numerical studies and even a discovery

of Bethe Ansatz solutions [WZ94], [ATW98] it has also remained an impor-

tant open challenge even at the physics level. Certain results indicating the

hierarchical structure in the corresponding semi-classical/perturbative regimes

were previously obtained in the works of Sinai, Helffer-Sjöstrand, and Buslaev-

Fedotov. (See [HS89], [Fed13], [Sin87], and also [Zhi91] for a different model.)

In this paper we address the latter problem by describing the universal

self-similar exponential structure of eigenfunctions throughout the entire lo-

calization regime. We determine explicit universal functions f(k) and g(k),

depending only on the Lyapunov exponent and the position of k in the hierar-

chy defined by the denominators qn of the continued fraction approximants of

the flux α, that completely define the exponential behavior of, correspondingly,

eigenfunctions and norms of the transfer matrices of the almost Mathieu opera-

tors for all eigenvalues corresponding to almost every phase; see Theorem 2.1.1

Our result holds for all frequency and coupling pairs in the localization regime.

Since the behavior is fully determined by the frequency and does not depend

on the phase, it is the same, eventually, around any starting point, so it is

also seen unfolding at different scales when magnified around local eigenfunc-

tion maxima, thus describing the exponential universality in the hierarchical

structure; see, for example, Theorems 2.2 and 2.4.

While the almost Mathieu family is precisely the one of main interest in

physics literature, it also presents the simplest case of an analytic quasiperi-

odic operator, so a natural question is which features discovered for the almost

Mathieu would hold for this more general class. Not all do; in particular,

the ones that exploit the self-dual nature of the family Hλ,α,θ often cannot

be expected to hold in general. In case of Theorems 2.1 and 2.2, we conjec-

ture that they should in fact hold for general analytic (or even more general)

potentials, for almost every phase and with ln |λ| replaced by the Lyapunov

exponent L(E) (see footnote 4), but with otherwise the same or very similar

statements. The hierarchical structure theorems 2.2 and 2.4 are also expected

to hold universally for most (albeit not all, as in the present paper) appropri-

ate local maxima. Some of our qualitative corollaries may hold in even higher

generality. Establishing this fully would require certain new ideas since so far

even an arithmetic version of localization for the Diophantine case has not been

established for the general analytic family, the current state-of-the-art result

by Bourgain-Goldstein [BG00] being measure theoretic in α. However, some

1This paper supplants our earlier preprint entitled “Asymptotics of quasiperiodic eigen-

functions.” The latter preprint is not intended for publication.
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ideas of our method can already be transferred to general trigonometric poly-

nomials [JL]. Moreover, our method was used recently in [HJY] to show that

the same f and g govern the asymptotics of eigenfunctions and universality

around the local maxima throughout the a.e. localization regime in another

popular object, the Maryland model.

Since we are interested in exponential growth/decay, the behavior of f

and g becomes most interesting in the case of frequencies with exponential

rate of approximation by the rationals. In general, localization for quasiperi-

odic operators is a classical case of a small denominator problem and has been

traditionally approached in a perturbative way: through KAM-type schemes

for large couplings [Sin87], [FSW90], [Eli97] (which, being KAM-type schemes,

all required Diophantine conditions on frequencies) or through perturbation

of periodic operators (Liouville frequency). Unlike the random case, where,

in dimension one, localization holds for all couplings, a distinctive feature of

quasiperiodic operators is the presence of metal-insulator transitions as cou-

plings increase. Even when non-perturbative methods, for the almost Mathieu

and then for general analytic potentials, were developed in the 1990s [Jit99],

[BG00], allowing to obtain localization for almost every frequency throughout

the regime of positive Lyapunov exponents, they still required Diophantine

conditions, and exponentially approximated frequencies that are neither far

from nor close enough to rationals remained a challenge, as for them there

was nothing left to perturb about or to remove. Moreover, it has become clear

that for all frequencies, the true localization threshold should be arithmetically

determined and happen precisely where the exponential growth provided by

the Lyapunov exponent beats the exponential strength of the small denomina-

tors. Thus the most interesting regime — the neighborhood of the transition

— required dealing with the exponential frequencies not amenable to pertur-

bations/parameter removals, adding a strong number theoretic flavor to the

problem. The precise second transition conjecture was stated for the almost

Mathieu operator [Jit95]. Our analysis provides also a (constructive) solution

to the full arithmetic version of the transition in frequency and explains the

role of frequency resonances in the phenomenon of localization in a sharp way.

The almost Mathieu operator (AMO) is the quasiperiodic Schrödinger

operator on `2(Z):

(Hλ,α,θu)(n) = u(n+ 1) + u(n− 1) + 2λ cos 2π(θ + nα)u(n),

where λ is the coupling, α is the frequency, and θ is the phase.

It is the central quasiperiodic model due to coming from physics and

attracting continued interest there. First appearing in Peierls [Pei33], it arises

as related, in two different ways, to a two-dimensional electron subject to a

perpendicular magnetic field and plays a central role in the Thouless et al.
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theory of the integer quantum Hall effect. For further background, history,

and surveys of results, see [MJ17], [Dam17], [Jit07], [Las05] and references

therein.

The Almost Mathieu operator has a transition from zero to positive Lya-

punov exponents on the spectrum at |λ| = 1 (the critical coupling) leading

to the conjecture, dating back to [AA80], that it induces a transition from

absolutely continuous to pure point spectrum. For Diophantine α, this was

proved in [Jit99]. The result was extended to all α, θ for |λ| < 1 (the sub-

critical regime) in [Avi08], solving one of the Simon’s problems [Sim00]. For

the supercritical regime (|λ| > 1), it is known however that the nature of the

spectrum should depend on the arithmetic properties of α [Gor76], [AS82].

Set

(1) β = β(α) = lim sup
n→∞

ln qn+1

qn
,

where pn
qn

are the continued fraction approximants of α.

For any irrational number α, we say that the phase θ ∈ (0, 1) is Diophan-

tine with respect to α if there exist κ > 0 and ν > 0 such that

(2) ||2θ + kα||R/Z >
κ

|k|ν

for any k ∈ Z\{0}, where ||x||R/Z = dist(x,Z). Clearly, for any irrational

number α, the set of phases that are Diophantine with respect to α is of full

Lebesgue measure. The conjecture in [Jit95] states that for α-Diophantine

(thus almost every) θ, Hλ,α,θ satisfies Anderson localization (i.e., has only

pure point spectrum with exponentially decaying eigenfunctions) if |λ| > eβ

and has, for all θ, purely singular continuous spectrum for 1 < |λ| < eβ.2

For β = 0, this follows from [Jit99]. A progress towards the localization

side of the above conjecture was made in [AJ09] (localization for |λ| > e
16
9
β, as

a step in solving the Ten Martini problem) and in [YZ13] (in a limited sense

for |λ| > Ceβ). The method developed in [AJ09] that allowed one to approach

exponentially small denominators on the localization side was brought to its

technical limits in [LY15a], where the result for |λ| > e
3
2
β was obtained.

Lately, with the development of Avila’s global theory and the proof of

the almost reducibility conjecture [Avi10], it has become possible to obtain

non-perturbative reducibility directly ([AFK11], [HY12], [YZ13]), allowing one

to potentially argue localization for the dual model by duality, as was first

done in a perturbative regime in [BLT83], avoiding the localization method

2 The original conjecture is slightly stronger in that it allows for not just polynomial, but

any subexponential approximation of 2θ by kα. The same goes for our proof, with obvious

modifications. We choose to present the result, and thus also present the conjecture, for a

slightly stronger Diophantine case in order to slightly simplify the argument.



UNIVERSAL HIERARCHY OF QUASIPERIODIC EIGENFUNCTIONS 725

completely. This was done recently by Avila-You-Zhou [AYZ17] who proved

the full singular continuous part of the conjecture and a measure-theoretic (i.e.,

almost all θ) version of the pure point part. (See also [JK16], where a simple

alternative way to argue completeness in the duality argument was presented.)

The measure-theoretic (in phase) nature of the pure point result of [AYZ17]

is, in fact, inherent in the duality argument. In contrast, our analysis provides

a direct constructive proof for an arithmetically defined set of α-Diophantine

θ, thus proving the full arithmetic version of the conjecture.

Our method can be used to also obtain precise asymptotics of arbitrary

solutions of Hλ,α,θϕ = Eϕ, where E is an eigenvalue. Combined with the

arguments of Last-Simon [LS99], this allows us to find precise asymptotics of

the norms of the transfer-matrices, providing the first example of this sort

for non-uniformly hyperbolic dynamics. Since those norms sometimes differ

significantly from the reciprocals of the eigenfunctions, this leads to further

interesting and unusual consequences; for example, exponential tangencies be-

tween contracted and expanded directions at the resonant sites.

From this point of view, our analysis also provides, as far as we know,

the first study of the dynamics of Lyapunov-Perron non-regular points, in a

natural setting. An artificial example of irregular dynamics can be found in

[BP07, p. 23], however it is not even a cocycle over an ergodic transformation,

and we are not aware of other such, even artificial, ergodic examples where the

dynamics has been studied. Loosely, for a cocycle A over a transformation f

acting on a space X (Lyapunov-Perron), non-regular points x ∈ X are the ones

at which Oseledets multiplicative ergodic theorem does not hold coherently in

both directions. They therefore form a measure zero set with respect to any

invariant measure on X.3 Yet, it is precisely the non-regular points that are of

interest in the study of Schrödinger cocycles in the non-uniformly hyperbolic

(positive Lyapunov exponent) regime, since spectral measures, for every fixed

phase, are always supported on energies where there exists a solution poly-

nomially bounded in both directions, so the (hyperbolic) cocycle defined at

such energies is always non-regular at precisely the relevant phases. Thus the

non-regular points capture the entire action from the point of view of spectral

theory and so become the most important ones to study. One can also dis-

cuss stronger non-regularity notions: absence of forward regularity and, even

stronger, non-exactness of the Lyapunov exponent [BP07]. While it is not

difficult to see that energies in the support of singular continuous spectral

measure in the non-uniformly hyperbolic regime always provide examples of

non-exactness, our analysis gives the first non-trivial example of non-exactness

3Although in the uniformly hyperbolic situations this set can be of full Hausdorff dimension

[BS00].
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with a non-zero upper limit (Corollary 2.13). Finally, as we understand, this

work also provides the first natural example of an even stronger manifestation

of the lack of regularity, the exponential tangencies (Corollary 2.14). Tangen-

cies between contracted and expanded directions are a characteristic feature of

non-uniform hyperbolicity (and, in particular, always happen at the maxima

of the eigenfunctions). They complicate proofs of positivity of the Lyapunov

exponents and are viewed as a difficulty to avoid through, e.g., the parameter

exclusion [BC91], [You97], [Bje15]. However, when the tangencies are only

subexponentially deep, they do not in themselves lead to non-exactness. Here

we observe the first natural example of exponentially strong tangencies (with

the rate determined by the arithmetics of α and the positions precisely along

the sequence of resonances).

The localization-for-the-exponential-regime method of [AJ09] consists of

different arguments for non-resonant (meaning sufficiently far from jqn on the

corresponding scale) sites and for the resonant ones (the rest). It is the resonant

sites that lead to dealing with the smallest denominators and that necessitate

the |λ| > e
16
9
β requirement in [AJ09]. Here we start with the same basic setup

and only technically modify the non-resonant statement of [AJ09]. However

we develop a completely new bootstrap technique to handle the resonant sites,

allowing us to get to the transition and obtain the fine estimates. The es-

timates from below (which coincide with our estimates from above) are also

new. In general, the statements that are technically similar to the ones in the

existing literature are collected in the appendices, while all the results/proofs

in the body of the paper are, in their pivotal parts, not like anything that has

appeared before.

The key elements of the technique developed in this paper are robust and

have made it possible to approach other scenarios. As such, in the upcoming

work we prove the sharp phase transition for Diophantine α and all θ and

establish sharp exponential asymptotics of eigenfunctions and transfer matrices

in the corresponding pure point regime [JL18]. Moreover, our analysis reveals

there a universal reflective-hierarchical structure in the entire regime of phase-

induced resonances, a phenomenon not even previously discovered in physics

literature. Thus while in this paper we develop a complete understanding of

frequency induced resonances, in [JL18] we develop new methods motivated

by the ideas of this manuscript to obtain a complete understanding of phase

induced resonances. In other follow-up works we determine the exact exponent

of the exponential decay rate in expectation for the Diophantine case [JKL] and

study delicate properties of the singular continuous regime, obtaining upper

bounds on fractal dimensions of the spectral measure and quantum dynamics

for the almost Mathieu operator [JLT], as well as potentials defined by general

trigonometric polynomials [JL].
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Except for a few standard, general (e.g., uniform upper semicontinuity)

or very simple to verify statements, this paper is entirely self contained. The

only technically involved fact that we use without proving it in the paper is

Lemma 3.1 [BJ02], but this is not even necessary if we replace ln |λ| by the

Lyapunov exponent L(E) throughout the manuscript.4

2. Main results

Let

(3) Ak(θ) =
0∏

j=k−1

A(θ + jα) = A(θ + (k − 1)α)A(θ + (k − 2)α) · · ·A(θ)

and

(4) A−k(θ) = A−1
k (θ − kα)

for k ≥ 1, where A(θ) =
Ä
E−2λ cos 2πθ −1

1 0

ä
. The (k-step) transfer matrix is

called Ak. As is clear from the definition, it also depends on θ and E, but

since those parameters will be usually fixed, we omit this from the notation.

Given α ∈ R\Q, we define functions f, g : Z+ → R+ in the following way.

Let pn
qn

be the continued fraction approximants to α. For any qn
2 ≤ k < qn+1

2 ,

define f(k), g(k) as follows.

Case 1: q
8
9
n+1 ≥

qn
2 or k ≥ qn. If `qn ≤ k < (`+ 1)qn with ` ≥ 1, set

(5) f(k) = e−|k−`qn| ln |λ|r̄n` + e−|k−(`+1)qn| ln |λ|r̄n`+1

and

(6) g(k) = e−|k−`qn| ln |λ|
qn+1

r̄n`
+ e−|k−(`+1)qn| ln |λ| qn+1

r̄n`+1

,

where for ` ≥ 1,

r̄n` = e
−(ln |λ|− ln qn+1

qn
+ ln `
qn

)`qn .

Also set r̄n0 = 1 for convenience.

If qn
2 ≤ k < qn, set

(7) f(k) = e−k ln |λ| + e−|k−qn| ln |λ|r̄n1

and

(8) g(k) = ek ln |λ|.

4 In fact, ln |λ| is being used in this paper as a shortcut for L(E).
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Case 2: q
8
9
n+1 <

qn
2 and qn

2 ≤ k ≤ min{qn, qn+1

2 }. Set

(9) f(k) = e−k ln |λ|

and

(10) g(k) = ek ln |λ|.

Notice that f, g only depend on α and λ but not on θ or E. Here f(k)

decays and g(k) grows exponentially, globally, at varying rates that depend on

the position of k in the hierarchy defined by the continued fraction expansion

of α; see Figures 1 and 2.

r̄n`

r̄n`+2

r̄n`+4

`qn (`+ 1)qn(`+ 2)qn(`+ 3)qn(`+ 4)qn kqn+1

2
qn
2

f(k)

Figure 1.

qn+1

r̄n
`

qn+1

r̄n
`+2

qn+1

r̄n
`+4

`qn (`+ 1)qn(`+ 2)qn(`+ 3)qn(`+ 4)qn kqn+1

2
qn
2

g(k)

Figure 2.
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We say that φ is a generalized eigenfunction of H with generalized eigen-

value E if

(11) Hφ = Eφ and |φ(k)| ≤ Ĉ(1 + |k|).

Our first main result is that in the entire regime |λ| > eβ, the exponential

asymptotics of the generalized eigenfunctions and norms of transfer matrices

at the generalized eigenvalues are completely determined by f(k), g(k).

Theorem 2.1. Let α ∈ R\Q be such that |λ| > eβ(α). Suppose θ is

Diophantine with respect to α, E is a generalized eigenvalue of Hλ,α,θ and φ

is the generalized eigenfunction. Let U(k) =
(

φ(k)
φ(k−1)

)
. Then for any ε > 0,

there exists K (depending on λ, α, Ĉ, ε and Diophantine constants κ, ν) such

that for any |k| ≥ K , U(k) and Ak satisfy

(12) f(|k|)e−ε|k| ≤ ||U(k)|| ≤ f(|k|)eε|k|

and

(13) g(|k|)e−ε|k| ≤ ||Ak|| ≤ g(|k|)eε|k|.

Certainly, there is nothing special about k = 0, so the behavior described

in Theorem 2.1 happens around an arbitrary point k = k0. This implies the

self-similar nature of the eigenfunctions: U(k) behave as described at scale qn
but when looked at in windows of size qk, qk < qn−1 will demonstrate the same

universal behavior around appropriate local maxima/minima.

To make the above precise, let φ be an eigenfunction, and let U(k) =(
φ(k)
φ(k−1)

)
. Let Ijς1,ς2 = [−ς1qj , ς2qj ] for some 0 < ς1, ς2 ≤ 1. We will say k0 is a

local j-maximum of φ if ||U(k0)|| ≥ ||U(k)|| for k − k0 ∈ Ijς1,ς2 . Occasionally,

we will also use the terminology (j, ς)-maximum for a local j-maximum on an

interval Ijς,ς .

We will say a local j-maximum k0 is non-resonant if

||2θ + (2k0 + k)α||R/Z >
κ

qj−1
ν

for all |k| ≤ 2qj−1 and

(14) ||2θ + (2k0 + k)α||R/Z >
κ

|k|ν

for all 2qj−1 < |k| ≤ 2qj .

We will say a local j-maximum is strongly non-resonant if

(15) ||2θ + (2k0 + k)α||R/Z >
κ

|k|ν

for all 0 < |k| ≤ 2qj .

An immediate corollary of Theorem 2.1 is the universality of behavior at

all (strongly) non-resonant local maxima.
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Theorem 2.2. Given ε > 0, there exists j(ε) < ∞ such that if k0 is a

local j-maximum for j > j(ε), then the following two statements hold :

If k0 is non-resonant, then

(16) f(|s|)e−ε|s| ≤ ||U(k0 + s)||
||U(k0)||

≤ f(|s|)eε|s|

for all 2s ∈ Ijς1,ς2 , |s| >
qj−1

2 .

If k0 is strongly non-resonant, then

(17) f(|s|)e−ε|s| ≤ ||U(k0 + s)||
||U(k0)||

≤ f(|s|)eε|s|

for all 2s ∈ Ijς1,ς2 .

Remark 2.3.

(1) For the neighborhood of a local j-maximum described in Theorem 2.2, only

the behavior of f(s) for qj−1/2 < |s| ≤ qj/2 is relevant. Thus f implicitly

depends on j but through the scale-independent mechanism described in

(5), (7) and (9).

(2) Actually, a modification in our proof us allows to formulate (16) in The-

orem 2.2 with the non-resonant condition (14) only required for 2qj−1 <

|k| ≤ qj rather than for 2qj−1 < |k| ≤ 2qj .

In case β(α) > 0, Theorem 2.1 also guarantees an abundance (and a

hierarchical structure) of local maxima of each eigenfunction. Let k0 be a

global maximum.5

We first describe the hierarchical structure of local maxima informally.

We will say that a scale nj0 is exponential if ln qnj0+1 > cqnj0 . Then there

is a constant scale n̂0 and thus a constant C := qn̂0+1 such that for any ex-

ponential scale nj and any eigenfunction, there are local nj-maxima within

distance C of k0 + sqnj0 for each 0 < |s| < e
cqnj0 . Moreover, these are all

the local nj0-maxima in [k0 − e
cqnj0 , k0 + e

cqnj0 ]. The exponential behavior of

the eigenfunction in the local neighborhood (of size ˜qnj0 ) of each such local

maximum, normalized by the value at the local maximum is given by f . Note

that only exponential behavior at the corresponding scale is determined by

f and fluctuations of much smaller size are invisible. Now, let nj1 < nj0 be

another exponential scale. Denoting “depth 1” local maximum located near

k0 + anj0 qnj0 by banj0
, we then have a similar picture around banj0

; there are

local nj1-maxima in the vicinity of banj0
+ sqnj1 for each 0 < |s| < e

cqnj1 .

Again, this describes all the local qnj1 -maxima within an exponentially large

interval. And again, the exponential (for the nj1 scale) behavior in the local

5If there are several, what follows is true for each.
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b1 b2b−1b−2 k0

Local maximum of depth 1Local maximum of depth 1

Global maximum

b2,2b2,1

b1,−1
b1,1

b1,2

Window I

Figure 3. Hierarchical structure of an eigenfunction.

neighborhood (of size ˜qnj1 ) of each such local maximum, normalized by the

value at the local maximum, is given by f . Denoting those “depth 2” local

maxima located near banj0
+ anj1 qnj1 by banj0 ,anj1

, we then get the same pic-

ture taking the magnifying glass another level deeper and so on. At the end we

obtain a complete hierarchical structure of local maxima, which we denote by

banj0 ,anj1 ,...,anjs
with each “depth s+ 1” local maximum banj0 ,anj1 ,...,anjs

being

in the corresponding vicinity of the “depth s” local maximum banj0 ,anj1 ,...,anjs−1

and with universal behavior at the corresponding scale around each. The qual-

ity of the approximation of the position of the next maximum gets lower with

each level of depth, yet the depth of the hierarchy that can be so achieved

is at least j/2 − C; see Corollary 2.7. Figure 3 schematically illustrates the

structure of local maxima of depth one and two, and Figure 4 illustrates that

the the neighborhood of a local maximum appropriately magnified looks like

a picture of the global maximum.

We now describe the hierarchical structure precisely. Suppose

(18) ||2(θ + k0α) + kα||R/Z >
κ

|k|ν

for any k ∈ Z\{0}. Fix 0 < ς, ε with ς + 2ε < 1. Let nj → ∞ be such that

ln qnj+1 ≥ (ς+ 2ε) ln |λ|qnj . Let cj = (ln qnj+1− ln |anj |)/ ln |λ|qnj − ε. We have

cj > ε for 0 < anj < eς ln |λ|qnj . Then we have
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b1,1 b1,2b1,−1b1,−2 b1
Local maximum of depth 2Local maximum of depth 2

Local maximum of depth 1

b1,2,2b1,2,1

b1,1,−1
b1,1,1

b1,1,2

Figure 4. Window I.

Theorem 2.4. There exists n̂0(α, λ, κ, ν, ε) < ∞ such that for any j0 >

j1 > · · · > jk, njk ≥ n̂0 + k, and 0 < anji < e
ς ln |λ|qnji , i = 0, 1, . . . , k, for all

0 ≤ s ≤ k, there exists a local njs-maximum banj0 ,anj1 ,...,anjs
on the interval

banj0 ,anj1 ,...,anjs
+ I

njs
cjs ,1

for all 0 ≤ s ≤ k such that the following hold :

(I) |banj0 − (k0 + anj0 qnj0 )| ≤ qn̂0+1;

(II) for any 1 ≤ s ≤ k, |banj0 ,anj1 ,...,anjs − (banj0 ,anj1 ,...,anjs−1
+ anjs qnjs )| ≤

qn̂0+s+1;

(III) if 2(x− banj0 ,anj1 ,...,anjk ) ∈ Injkcjk ,1
and |x− banj0 ,anj1 ,...,anjk | ≥ qn̂0+k, then

for each s = 0, 1, . . . , k,

(19) f(xs)e
−ε|xs| ≤ ||U(x)||

||U(banj0 ,anj1 ,...,anjs
)||
≤ f(xs)e

ε|xs|,

where xs = |x− banj0 ,anj1 ,...,anjs | is large enough.

Moreover, every local njs-maximum on the interval

banj ,anj1 ,...,anjs−1
+ [−eε lnλqnjs , eε lnλqnjs ]

is of the form banj0 ,anj1 ,...,anjs
for some anjs .

Remark 2.5. By (I) of Theorem 2.4, the local maximum can be determined

up to a constant K0 = qn̂0+1. Actually, if k0 is only a local nj + 1-maximum,

we can still make sure that (I), (II) and (III) of Theorem 2.4 hold. This is the

local version of Theorem 2.4; see Theorem 7.3.
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Remark 2.6. Here qn̂0+1 is the last scale at which phase resonances of

θ + k0α still can appear. Notably, it determines the precision of pinpointing

local nj0-maxima in a (exponentially large in qnj0 ) neighborhood of k0 for any

j0. When we go down the hierarchy, the precision decreases, but note that

except for the very last scale, it stays at least iterated logarithmically6 small

in the corresponding scale qnjs

Thus for x ∈ banj0 ,anj1 ,...,anjs
+ [− cjs

2 qnjs ,
1
2qnjs ], the behavior of φ(x) is

described by the same universal f in each qnjs -window around the correspond-

ing local maximum banj0 ,anj1 ,...,anjs
,s = 0, 1, . . . , k. We call such a structure

hierarchical, and we will say that a local j-maximum is k-hierarchical if the

complete hierarchy goes down at least k levels; for a precise definition, see

Section 7. We then have an immediate corollary.

Corollary 2.7. There exists C = C(α, λ, κ, ν, ε) such that every local

nj-maximum in [k0−eς ln |λ|qnj , k0 +eς ln |λ|qnj ] is at least (j/2−C)-hierarchical.

Remark 2.8. The estimate on the depth of the hierarchy in the corol-

lary assumes the worst case scenario when all scales after n̂0 are Liouville.

Otherwise the hierarchical structure will go much deeper. Note that a local

nj-maximum that is not an nj+1-maximum cannot be k-hierarchical for k > j.

Another interesting corollary of Theorem 2.1 is

Theorem 2.9. Let α ∈ R\Q be such that |λ| > eβ(α) and θ is Diophantine

with respect to α. Then Hλ,α,θ has Anderson localization, with eigenfunctions

decaying at the rate ln |λ| − β.

This solves the arithmetic version of the second transition conjecture in

that it establishes localization throughout the entire regime of (α, λ) where

localization may hold for any θ (see the discussion in the introduction) for an

arithmetically defined full measure set of θ.

We note that Theorem 2.9 cannot be upgraded to all θ in the regime

|λ| > eβ [JS94], so exclusion of a certain arithmetically defined set where the

spectrum must be singular continuous is necessary. There is a conjecture about

where in this regime the transition in θ happens [Jit95], but we do not explore

it in this work. The sharp transition in θ for Diophantine α will be established

in the follow-up work [JL18]. Also, it could be added that, for all θ, Hλ,α,θ has

no localization (i.e., no exponentially decaying eigenfunctions) if |λ| = eβ; see

Appendix A.1.

6for most scales even much less
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Remark 2.10. Theorems 2.1 and 2.9 cover the optimal range of (α, λ) for

almost every θ. For Theorem 2.9, even though some θ have to be excluded

[JS94], we do not claim the Diophantine condition on θ is optimal. At the

same time, exponentially strong θ-resonances (exponentially small lower bound

in (2) instead of a polynomial) will make Theorem 2.1 false as stated, no

matter how small the exponent, and they would require differently defined f

and g. In [JL18] we obtain f ′ and g′ that govern the exponential behavior of

eigenfunctions and transfermatrices for all θ throughout the entire pure point

regime corresponding to Diophantine α.

Let ψ(k) denote any solution to Hλ,α,θψ = Eψ that is linearly independent

with respect to φ(k). Let Ũ(k) =
(

ψ(k)
ψ(k−1)

)
. An immediate counterpart of (13)

is the following

Corollary 2.11. Under the conditions of Theorem 2.1 for large k, vec-

tors Ũ(k) satisfy

(20) g(|k|)e−ε|k| ≤ ||Ũ(k)|| ≤ g(|k|)eε|k|.

Thus every solution is expanding at the rate g(k) except for one that is

exponentially decaying at the rate f(k).

It is well known that for E in the spectrum, the dynamics of the transfer-

matrix cocycle Ak is non-uniformly hyperbolic. Moreover, E being a general-

ized eigenvalue of Hλ,α,θ already implies that the behavior of Ak is non-regular.

Theorem 2.1 provides precise information on how the non-regular behavior

unfolds in this case. Previously, a study of some features of the non-regular

behavior for the almost Mathieu operator was made in [FK08]. We are not

aware though of other non-artificially constructed examples of non-uniformly

hyperbolic systems where non-regular behavior can be described with such

precision as in the present work.

The information provided by Theorem 2.1 leads to many interesting corol-

laries, which will be explored elsewhere. Here we only want to list a few im-

mediate sharp consequences.

Corollary 2.12. Under the condition of Theorem 2.1, we have

(i) lim supk→∞
ln ||Ak||

k = lim supk→∞
ln ||Ũ(k)||

k = ln |λ|;
(ii) lim infk→∞

ln ||Ak||
k = lim infk→∞

ln ||Ũ(k)||
k = ln |λ| − β;

(iii) outside an explicit sequence of lower density zero,7

lim
k→∞

ln ||Ak||
k

= lim
k→∞

ln ||Ũ(k)||
k

= ln |λ|.

7It will be clear from the proof that the sequence with convergence to the Lyapunov

exponent contains qn, n = 1, . . . .
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Therefore the Lyapunov behavior for the norm fails to hold only along

a sequence of density zero. It is interesting that the situation is different for

the eigenfunctions. While, just like the overall growth of ‖Ak‖ is ln |λ| − β,

the overall rate of decay of the eigenfunctions is also ln |λ| − β, they however

decay at the Lyapunov rate only outside a sequence of positive upper density.

That is,

Corollary 2.13. Under the condition of Theorem 2.1, we have

(i) lim supk→∞
− ln ||U(k)||

k = ln |λ|;
(ii) lim infk→∞

− ln ||U(k)||
k = ln |λ| − β;

(iii) there is an explicit sequence of upper density 1− 1
2

β
ln |λ| ,

8 along which

lim
k→∞

− ln ||U(k)||
k

= ln |λ|;

(iv) there is an explicit sequence of upper density 1
2

β
ln |λ| ,

9 along which

lim sup
k→∞

− ln ||U(k)||
k

< ln |λ|.

The fact that g is not always the reciprocal of f also leads to another

interesting phenomenon.

Let 0 ≤ δk ≤ π
2 be the angle between vectors U(k) and Ũ(k).

Corollary 2.14. We have

(21) lim sup
k→∞

ln δk
k

= 0

and

(22) lim inf
k→∞

ln δk
k

= −β.

As becomes clear from the proof, neighborhoods of resonances qn are the

places of exponential tangencies between contracted and expanded directions,

with the rate approaching −β along a subsequence.10 Exponential tangencies

also happen around points of the form jqn but at lower strength. This means,

in particular, that Ak with k ∼ qn is exponentially close to a matrix with the

trace e(ln |λ|−β)k.

The rest of this paper is organized in the following way. We list the def-

initions and standard preliminaries in Section 3. We also include there the

8It will be clear from the proof that the sequence contains b qn
2
c, n = 1, . . . .

9As will be clear from the proof, this sequence can have lower density ranging from 0 to
1
2

β
ln |λ| depending on finer continued fraction properties of α.
10In fact the rate is close to − ln qn+1

qn
for any large n.
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non-resonant regularity statement. While similar to the corresponding state-

ments in [AJ09], [LY15a], [LY15b], it differs in enough technical details that

a proof is needed for completeness. We present this proof in Appendix B.

Section 4 is devoted to the bootstrap localization argument, establishing sharp

upper bounds for the resonant case. Section 5 is devoted to the lower bounds.

In Section 6 we prove the statements about eigenfunctions: (12) of Theo-

rem 2.1, and Theorems 2.2 and 2.9. In Section 7, we will prove the hierarchical

structure, Theorem 2.4 and Corollary 2.7. In Section 8, we study the growth

of transfer matrices and prove (13) of Theorem 2.1. The remaining corollaries

are proved in Section 9.

3. Preliminaries

Fix α ∈ R\Q such that β(α) < ∞. Unless stated otherwise, we always

assume λ > eβ (for λ < −eβ, notice that Hλ,α,θ = H−λ,α,θ+ 1
2
), θ is Diophantine

with respect to α and E is a generalized eigenvalue. We also assume φ is the

corresponding generalized eigenfunction of Hλ,α,θ. Without loss of generality

assume |φ(0)|2 + |φ(−1)|2 = 1. Let ψ be any solution to Hλ,α,θψ = Eψ linear

independent with respect to φ, i.e., |ψ(0)|2 + |ψ(−1)|2 = 1 and

(23) φ(−1)ψ(0)− φ(0)ψ(−1) = c,

where c 6= 0.

Then by the constancy of the Wronskian, one has

(24) φ(k + 1)ψ(k)− φ(k)ψ(k + 1) = c.

We also will denote by ϕ an arbitrary solution, so either ψ or φ. Thus for any

k,m, one has

(25)

Ç
ϕ(k +m)

ϕ(k +m− 1)

å
= Ak(θ +mα)

Ç
ϕ(m)

ϕ(m− 1)

å
.

The Lyapunov exponent is given by

(26) L(E) = lim
k→∞

1

k

∫
R/Z

ln ‖Ak(θ)‖dθ.

The Lyapunov exponent can be computed precisely for E in the spectrum of

Hλ,α,θ. We denote the spectrum by Σλ,α. (It does not depend on θ.)

Lemma 3.1. [BJ02] For E ∈ Σλ,α and λ > 1, we have L(E) = lnλ.

Recall that we always assume E ∈ Σλ,α so by upper semicontinuity and

unique ergodicity (e.g., [Fur97]), one has

(27) lnλ = lim
k→∞

sup
θ∈R/Z

1

k
ln ‖Ak(θ)‖;
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that is, the convergence in (27) is uniform with respect to θ ∈ R. Precisely, for

all ε > 0,

(28) ‖Ak(θ)‖ ≤ e(lnλ+ε)k for k large enough.

We start with the basic setup going back to [Jit99]. Let us denote

Pk(θ) = det(R[0,k−1](Hλ,α,θ − E)R[0,k−1]).

It is easy to check that

(29) Ak(θ) =

Ç
Pk(θ) −Pk−1(θ + α)

Pk−1(θ) −Pk−2(θ + α)

å
.

By Cramer’s rule for given x1 and x2 =x1+k−1, with y∈I = [x1, x2] ⊂ Z,

one has

|GI(x1, y)|=
∣∣∣∣∣Px2−y(θ + (y + 1)α)

Pk(θ + x1α)

∣∣∣∣∣ ,(30)

|GI(y, x2)|=
∣∣∣∣∣Py−x1(θ + x1α)

Pk(θ + x1α)

∣∣∣∣∣ .(31)

By (28) and (29), the numerators in (30) and (31) can be bounded uniformly

with respect to θ. Namely, for any ε > 0,

(32) |Pk(θ)| ≤ e(lnλ+ε)k

for k large enough.

Definition 3.2. Fix τ > 0, 0 < δ < 1/2. A point y ∈ Z will be called

(τ, k) regular with δ if there exists an interval [x1, x2] containing y, where

x2 = x1 + k − 1, such that

|G[x1,x2](y, xi)| < e−τ |y−xi| and |y − xi| ≥ δk for i = 1, 2.

It is easy to check that

(33) ϕ(x) = −G[x1,x2](x1, x)ϕ(x1 − 1)−G[x1,x2](x, x2)ϕ(x2 + 1),

where x ∈ I = [x1, x2] ⊂ Z.

Definition 3.3. We say that the set {θ1, · · · , θk+1} is ε-uniform if

(34) max
x∈[−1,1]

max
i=1,...,k+1

k+1∏
j=1,j 6=i

|x− cos 2πθj |
| cos 2πθi − cos 2πθj |

< ekε.

Let Ak,r = {θ ∈ R | Pk(cos 2π(θ− 1
2(k − 1)α))| ≤ e(k+1)r} with k ∈ N and

r > 0. We have the following lemma.

Lemma 3.4 ([AJ09, Lemma 9.3]). Suppose {θ1, · · · , θk+1} is ε1-uniform.

Then there exists some θi in the set {θ1, · · · , θk+1} such that θi /∈ Ak,lnλ−ε if

ε > ε1 and k is sufficiently large.
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Proof. Straightforward calculation. �

We say θ is n-Diophantine with respect to α if, for some κ > 0, ν > 1, the

following hold:

(35) ||2θ + kα||R/Z >
κ

qnν

for all |k| ≤ 2qn and

(36) ||2θ + kα||R/Z >
κ

|k|ν

for all 2qn < |k| ≤ 2qn+1.

Define bn = qtn with 8
9 ≤ t < 1; t will be defined later. For any k > 0, we

will distinguish two cases with respect to n:

(i) |k − `qn| ≤ bn for some ` ≥ 1, called n-resonance;

(ii) |k − `qn| > bn for all ` ≥ 0, called n-non-resonance.

For the n-non-resonant y, let n0 be the least positive integer such that

4qn−n0 ≤ dist(y, qnZ). Let s be the largest positive integer such that 4sqn−n0 ≤
dist(y, qnZ). Notice that n0 ≤ C(α).

The following theorem is similar to a statement appearing in[AJ09] with

modifications in [LY15a], [LY15b]. We present a proof in Appendix B.

Theorem 3.5. Assume λ > eβ(α). Suppose either

(i) bn ≤ |y| < Cbn+1, where C > 1 is a fixed constant and θ is n-Diophantine

with respect to α; or

(ii) 0 ≤ |y| < qn, and θ satisfies (35).

Then for any ε > 0 and n large enough, if y is n-non-resonant, we have

y is (lnλ+ 8 ln(sqn−n0/qn−n0+1)/qn−n0 − ε, 4sqn−n0 − 1) regular with δ = 1
4 .

Remark 3.6. If θ is n− 1-Diophantine with respect to α, then (35) holds.

Remark 3.7. In the non-resonant case, for any ε > 0, 8
9 ≤ t < 1, one has

lnλ+ 8 ln(sqn−n0/qn−n0+1)/qn−n0 ≥ lnλ− 8(1− t)β − ε > 0. In addition, we

have lnλ+ 8 ln(sqn−n0/qn−n0+1)/qn−n0 ≥ lnλ− 2ε if t is close to 1.

Remark 3.8. In the present paper, we only use Theorem 3.5 with C =

50C?, where C? is given by (37); see the next section.

4. Bootstrap resonant localization

In this section we assume θ is n-Diophantine with respect to α. Clearly,

it is enough to consider k > 0. In this section we study the resonant case.

Suppose there exists some k ∈ [bn, bn+1] such that k is n-resonant. Then we

have bn+1 ≥ qn
2 . For any ε > 0, choose η = ε

C , where C is a large constant

(depending on λ, α).
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Let

(37) C∗ = 2

Å
1 +

⌊ lnλ

lnλ− β

⌋ã
,

where bmc denotes the smallest integer not exceeding m.

For an arbitrary solution ϕ satisfying Hϕ = Eϕ, let

rn,ϕj = sup
|r|≤10η

|ϕ(jqn + rqn)|,

where |j| ≤ 50C∗
bn+1

qn
.

Fix ψ satisfying (23), and write

Rnj = rn,ψj

and

rnj = rn,φj .

Since we keep n fixed in this section, we omit the dependence on n from the

notation and write rϕj , Rj , and rj .

Note that below we always assume n is large enough.11 In the next lemma

and its variant, Lemma 4.2, we establish exponential decay of the eigenfunc-

tions at non-resonant points, at the nearly Lyapunov rate, with respect to the

distance to the resonances.

Lemma 4.1. Let k ∈ [jqn, (j + 1)qn] with dist(k, qnZ) ≥ 10ηqn. Suppose

either

(i) |j| ≤ 48C∗
bn+1

qn
and bn+1 ≥ qn

2 , or

(ii) j = 0;

then for sufficiently large n,

|ϕ(k)| ≤ max
{
rϕj exp{−(lnλ− 2η)(dj − 3ηqn)},

rϕj+1 exp{−(lnλ− 2η)(dj+1 − 3ηqn)}
}
,

(38)

where dj = |k − jqn| and dj+1 = |k − jqn − qn|.

Proof. The proof builds on the ideas used in the proof of Lemma 9.11 in

[AJ09] and Lemma 3.2 in [LY15a]. However it requires a more careful approach.

We first prove case (i). For any y ∈ [jqn + ηqn, (j + 1)qn − ηqn], apply (i)

of Theorem 3.5 with C = 50C?. Note that in this case, we have

lnλ+ 8 ln(sqn−n0/qn−n0+1)/qn−n0 − η ≥ lnλ− 2η.

11 The required largeness of n will depend on α, θ, Ĉ in (11) and ε whenever ε is (implicitly)

present in the statement.
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Thus y is regular with τ = lnλ− 2η. Therefore there exists an interval I(y) =

[x1, x2] ⊂ [jqn, (j + 1)qn] such that y ∈ I(y) and

(39) dist(y, ∂I(y)) ≥ 1

4
|I(y)| ≥ qn−n0

and

(40) |GI(y)(y, xi)| ≤ e−(lnλ−2η)|y−xi|, i = 1, 2,

where ∂I(y) is the boundary of the interval I(y), i.e., {x1, x2}, and |I(y)| is

the size of I(y) ∩ Z, i.e., |I(y)| = x2 − x1 + 1. For z ∈ ∂I(y), let z′ be the

neighbor of z, (i.e., |z − z′| = 1) not belonging to I(y).

If x2 + 1 ≤ (j+ 1)qn− ηqn or x1− 1 ≥ jqn + ηqn, we can expand ϕ(x2 + 1)

or ϕ(x1− 1) using (33). We can continue this process until we arrive to z such

that z + 1 > (j + 1)qn − ηqn or z − 1 < jqn + ηqn, or the iterating number

reaches b 2qn
qn−n0

c. Thus, by (33),

(41) ϕ(k) =
∑

s;zi+1∈∂I(z′i)
GI(k)(k, z1)GI(z′1)(z

′
1, z2) · · ·GI(z′s)(z

′
s, zs+1)ϕ(z′s+1),

where in each term of the summation one has jqn + ηqn + 1 ≤ zi ≤ (j+ 1)qn−
ηqn−1, i = 1, . . . , s, and either zs+1 /∈ [jqn+ηqn+1, (j+1)qn−ηqn−1], s+1 <

b 2qn
qn−n0

c, or s+ 1 = b 2qn
qn−n0

c. We should mention that zs+1 ∈ [jqn, (j + 1)qn].

If zs+1 ∈ [jqn, jqn + ηqn], s+ 1 < b 2qn
qn−n0

c, this implies

|ϕ(z′s+1)| ≤ rϕj .

By (40), we have

|GI(k)(k, z1)GI(z′1)(z
′
1, z2) · · ·GI(z′s)(z

′
s, zs+1)ϕ(z′s+1)|

≤ rϕj e
−(lnλ−2η)(|k−z1|+

∑s
i=1
|z′i−zi+1|)

≤ rϕj e
−(lnλ−2η)(|k−zs+1|−(s+1))

≤ rϕj e
−(lnλ−2η)(dj−2ηqn−4− 2qn

qn−n0
)
.

(42)

If zs+1 ∈ [(j + 1)qn − ηqn, (j + 1)qn], s+ 1 < b 2qn
qn−n0

c, by the same arguments,

we have

|GI(k)(k, z1)GI(z′1)(z
′
1, z2) · · ·GI(z′s)(z

′
s, zs+1)ϕ(z′s+1)|

≤ rϕj+1e
−(lnλ−2η)(dj+1−2ηqn−4− 2qn

qn−n0
)
.

(43)

If s+ 1 = b 2qn
qn−n0

c, using (39) and (40), we obtain

|GI(k)(k, z1)GI(z′1)(z
′
1, z2) · · ·GI(z′s)(z

′
s, zs+1)ϕ(z′s+1)|

≤ e
−(lnλ−2η)qn−n0b

2qn
qn−n0

c
|ϕ(z′s+1)|.

(44)
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Notice that the total number of terms in (41) is at most 2
b 2qn
qn−n0

c
and dj , dj+1 ≥

10ηqn. By (42), (43) and (44), we have

|ϕ(k)| ≤ max
{
rϕj e
−(lnλ−2η)(dj−3ηqn), rϕj+1e

−(lnλ−2η)(dj+1−3ηqn),

max
p∈[jqn,(j+1)qn]

{e−(lnλ−2η)qn |ϕ(p)|}
}
.

(45)

Now we will show that for any p ∈ [jqn, (j + 1)qn], one has |ϕ(p)| ≤
max{rϕj , r

ϕ
j+1}. Then (45) implies case (i) of Lemma 4.1. Otherwise, by the

definition of rϕj , if |ϕ(p′)| is the largest one of |ϕ(z)|, z ∈ [jqn + 10ηqn + 1,

(j + 1)qn − 10ηqn − 1], then |ϕ(p′)| > max{rϕj , r
ϕ
j+1}. Applying (45) to ϕ(p′)

and noticing that dist(p′, qnZ) ≥ 10ηqn, we get

|ϕ(p′)| ≤ e−7(lnλ−2η)ηqn max{rϕj , r
ϕ
j+1, |ϕ(p′)|}.

This is impossible because |ϕ(p′)| > max{rϕj , r
ϕ
j+1}.

Now we turn to the proof of case (ii). Notice that in proving case (i) of

Lemma 4.1, we only used case (i) of Theorem 3.5. Using case (ii) of Theorem 3.5

instead, we can prove case (ii) of Lemma 4.1 by the same reasoning. In order

to avoid repetition, we omit the details. �

Lemma 4.1 is sufficient for our current purposes, but for the purposes of

Section 7 we will need a similar statement that allows for shifts and reflections.

For B ∈ Z, let rn,ϕj,± (B) = sup|r|≤10η |ϕ(B ± (jqn + rqn))|. For y ∈ [B ± jqn ±
ηqn, B±(j+1)qn∓ηqn], let n0 be the least positive integer such that 4qn−n0 ≤
dist(y −B, qnZ), and let s be the largest positive integer such that 4sqn−n0 ≤
dist(y − B, qnZ). Since we only used the appropriate regularity of the non-

resonant y, the proof of Lemma 4.1 also establishes the following lemma.

Lemma 4.2. Suppose that for any y ∈ [B±jqn±ηqn, B± (j+1)qn∓ηqn],

y is (lnλ + 8 ln(sqn−n0/qn−n0+1)/qn−n0 − ε, 4sqn−n0 − 1) regular with δ = 1
4 .

Let k −B ∈ ±[jqn, (j + 1)qn] with dist(k −B, qnZ) ≥ 10ηqn. Suppose either

(i) |j| ≤ 48C∗
bn+1

qn
and bn+1 ≥ qn

2 , or

(ii) j = 0.

Then for sufficiently large n, we have

|ϕ(k)| ≤ max
{
rϕj,±(B) exp{−(lnλ− 2η)(dj − 3ηqn)},

rϕj+1,±(B) exp{−(lnλ− 2η)(dj+1 − 3ηqn)}
}
,

(46)

where dj = |k −B ∓ jqn| and dj+1 = |k −B ∓ (j + 1)qn|.

By Theorem 3.5 , Lemma 4.1 is a particular case of Lemma 4.2, when

B = 0 and the sign is a +. Going back to this case, we will prove
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Lemma 4.3. For 1 ≤ j ≤ 46C?
bn+1

qn
with bn+1 ≥ qn

2 , the following holds :

(47) rϕj ≤ max{rϕj±1

qn+1

j
exp{−(lnλ− Cη)qn}}.

Proof. Fix j with 1 ≤ j ≤ 46C∗
bn+1

qn
and |r| ≤ 10ηqn. Set I1, I2 ⊂ Z as

follows:

I1 = [−b1
2
qnc, qn − b

1

2
qnc − 1],

I2 = [jqn − b
1

2
qnc, (j + 1)qn − b

1

2
qnc − 1].

Let θm = θ + mα for m ∈ I1 ∪ I2. The set {θm}m∈I1∪I2 consists of 2qn
elements.

By arguments similar to those in Lemma 9.13 in [AJ09] or Theorem 3.1

in [LY15a], one has {θm} is ln qn+1−ln j
2qn

+ ε uniform for any ε > 0. Since our

case is slightly different, we prove it as Theorem B.5 in Appendix B. Com-

bining with Lemma 3.4, there exists some j0 with j0 ∈ I1 ∪ I2 such that

θj0 /∈ A2qn−1,lnλ− ln qn+1−ln j

2qn
−η

.

First, we assume j0 ∈ I2. Set I = [j0 − qn + 1, j0 + qn − 1] = [x1, x2].

In (32), let ε = η. Combining with (30) and (31), it is easy to verify

|GI(jqn + r, xi)| ≤ e(lnλ+η)(2qn−1−|jqn+r−xi|)−(2qn−1)(lnλ− ln qn+1−ln j

2qn
−η)

.

Using (33), we obtain

(48) |ϕ(jqn + r)| ≤
∑
i=1,2

qn+1

j
e5ηqn |ϕ(x′i)|e−|jqn+r−xi| lnλ,

where x′1 = x1 − 1 and x′2 = x2 + 1.

Let dij = |xi − jqn|, i = 1, 2. It is easy to check that

(49) |jqn + r − xi|+ dij , |jqn + r − xi|+ dij±1 ≥ qn − |r|

and

(50) |jqn + r − xi|+ dij±2 ≥ 2qn − |r|.

If dist(xi, qnZ) ≥ 10ηqn, then we bound ϕ(xi) in (48) using (38). If dist(xi, qnZ)

≤ 10ηqn, then we bound ϕ(xi) in (48) by some proper rj . Combining with (49)

and (50), we have

rϕj ≤ max
{
rϕj±1

qn+1

j
exp{−(lnλ− Cη)qn},

rϕj
qn+1

j
exp{−(lnλ− Cη)qn}, rϕj±2

qn+1

j
exp{−2(lnλ− Cη)qn}

}
.
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However,

rϕj ≤ r
ϕ
j

qn+1

j
exp{−(lnλ− Cη)qn}

≤ rϕj exp{−(lnλ− β − Cη)qn}

cannot happen, so we must have

(51)

rϕj ≤ max{rϕj±1

qn+1

j
exp{−(lnλ− Cη)qn}, rϕj±2

qn+1

j
exp{−2(lnλ− Cη)qn}}.

In particular,

(52) rϕj ≤ exp{−(lnλ− β − Cη)qn}max{rϕj±1 r
ϕ
j±2}.

If j0 ∈ I1, then (52) holds for j = 0. Let ϕ = φ in (52). We get

|φ(0)|, |φ(−1)| ≤ exp{−(lnλ− β − Cη)qn};

this is in contradiction to |φ(0)|2 + |φ(−1)|2 = 1. Therefore j0 ∈ I2, so (51)

holds for any ϕ.

By (25) and (28), we have

(53)

∥∥∥∥∥
Ç

ϕ(k1)

ϕ(k1 − 1)

å
|| ≥ Ce−(lnλ+ε)|k1−k2|||

Ç
ϕ(k2)

ϕ(k2 − 1)

å∥∥∥∥∥ .
This implies

rϕj±2 ≤ r
ϕ
j±1 exp{(lnλ+ Cη)qn},

and thus (51) becomes

(54) rϕj ≤ max{rϕj±1

qn+1

j
exp{−(lnλ− Cη)qn}}

for any 1 ≤ j ≤ 46C∗
bn+1

qn
. �

For solutions φ and ψ, we can also get a more subtle estimate.

Theorem 4.4. For 1 ≤ j ≤ 10 bn+1

qn
with bn+1 ≥ qn

2 , the following holds :

(55) rj ≤ rj−1 exp{−(lnλ− Cη)qn}
qn+1

j
.

Proof. Let ϕ = φ in Lemma 4.3. We must have

(56) rj ≤ max{rj±1
qn+1

j
exp{−(lnλ− Cη)qn}}

for any 1 ≤ j ≤ 46C∗
bn+1

qn
.

Suppose that for some 1 ≤ j ≤ 10 bn+1

qn
, the following holds:

(57) rj ≤ rj+1
qn+1

j
exp{−(lnλ− Cη)qn} ≤ rj+1 exp{−(lnλ− β − Cη)qn}.
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Applying (56) to j + 1, we obtain

(58) rj+1 ≤ max{rj , rj+2}
qn+1

j + 1
exp{−(lnλ− Cη)qn}.

Combining with (57), we must have

(59) rj+1 ≤ rj+2 exp{−(lnλ− β − Cη)qn}.

Generally, for any 0 < p ≤ (C∗ + 1)j − 1, we obtain

(60) rj+p ≤ rj+p+1 exp{−(lnλ− β − Cη)qn}.

Thus

(61) r(C∗+1)j ≥ rj exp{(lnλ− β − Cη)C∗jqn}.

Clearly, by (53), one has

rj ≥ exp{−(lnλ+ Cη)jqn}.

Then

(62) r(C∗+1)j ≥ exp{((C∗ − 1) lnλ− C∗β − Cη)jqn}.

By the definition of C∗, one has

(C∗ − 1) lnλ− C∗β > 0.

Thus (62) is in contradiction to the fact that |φ(k)| ≤ 1 + |k|.
Now that (57) cannot happen, from (56), we must have

�(63) rj ≤ rj−1
qn+1

j
exp{−(lnλ− Cη)qn}.

Theorem 4.5. For 0 ≤ j ≤ 8 bn+1

qn
with bn+1 ≥ qn

2 , the following holds :

(64) Rj ≤ Rj+1 exp{−(lnλ− Cη)qn}
qn+1

j + 1
.

Proof. If j = 0, then (64) holds directly by (55) (applying it with j = 1)

and (24). Now we consider j ≥ 1. Let ϕ = ψ in Lemma 4.3. Then (54) also

holds for Rj with j ≥ 1; that is,

(65) Rj ≤ max{Rj±1
qn+1

j + 1
exp{−(lnλ− Cη)qn}}.

Suppose that for some j ≥ 1,

(66) Rj ≤ Rj−1
qn+1

j + 1
exp{−(lnλ− Cη)qn}.

Applying (65) to j − 1 and taking into account (66), one has

(67) Rj−1 ≤ Rj−2
qn+1

j
exp{−(lnλ− Cη)qn}.
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Iterating j times, we must have

(68) Rj ≤ R0
qjn+1

(j + 1)!
exp{−(lnλ−Cη)jqn} ≤ R0 exp{−(lnλ− β −Cη)jqn}.

Similarly, iterating (55) j times, we have

(69) rj ≤ r0 exp{−(lnλ− β − Cη)jqn}.

Equations (68) and (69) contradict (24). This implies (66) cannot happen.

Thus we must have (64). �

5. Lower bounds on decaying solution in the resonant case

In this section we assume θ is n-Diophantine with respect to α. We will

study the lower bound on φ for the resonant sites. Recall that bn+1 ≥ qn
2 in

this case.

Theorem 5.1. Let r̃j =
∥∥∥ ( φ(jqn)

φ(jqn−1)

) ∥∥∥. Suppose 1 ≤ j ≤ 8 bn+1

qn
with

bn+1 ≥ qn
2 . Then we must have

(70) r̃j ≥
qn+1

j
e−(lnλ+ε)qn r̃j−1.

We first list two standard facts.

Lemma 5.2 ([Sim85]). Let A1, A2, . . . , An and B1, B2, . . . , Bn be 2 × 2

matrices with ||∏`−1
m=0A

j+m|| ≤ Ced` for some constant C and d. Then

||(An +Bn) · · · (A1 +B1)−An · · ·A1|| ≤ Cedn
Ñ

n∏
j=1

(1 + Ce−d||Bj ||)− 1

é
.

Lemma 5.3. For any ε > 0 and large n, the following hold :

(71) ||Aqn(θ + qnα)−Aqn(θ)|| ≤ 1

qn+1
e(lnλ+ε)qn

and

(72) ||A−1
qn (θ + qnα)−A−1

qn (θ)|| ≤ 1

qn+1
e(lnλ+ε)qn .

Proof. We only prove (71) for simplicity. By the DC approximation (see

(150) in Appendix B), we have

||qnα||R/Z ≤
1

qn+1
.

This implies

||A(θ + qnα)−A(θ)|| ≤ C

qn+1
.
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Applying Lemma 5.2 and (28), one has

(73) ||Aqn(θ + qnα)−Aqn(θ)|| ≤ e(lnλ+ε)qn

ÇÇ
1 +

C

qn+1

åqn
− 1

å
.

Using the fact |ey − 1| ≤ yey for y > 0, we obtainÇ
1 +

C

qn+1

åqn
− 1≤ qn

Ç
1 +

C

qn+1

åqn
ln

Ç
1 +

C

qn+1

å
≤C qn

qn+1
.

Combining this with (73) completes the proof. �

Lemma 5.4. For any 0 ≤ j ≤ 8 bn+1

qn
−1, one of the following two estimates

must hold :

(74) r̃j+1 ≥
qn+1

j + 1
e−(lnλ+ε)qn r̃j

or

(75) r̃j+1r̃j−1 ≥ (1− 1

10(j + 1)
)2(1− 1

10(j + 1)2
)r̃2
j .

Proof. Suppose

(76) r̃j+1 ≤
qn+1

j + 1
e−(lnλ+ε)qn r̃j .

Let Uj =
(

φ(jqn)
φ(jqn−1)

)
. Then for n > 0, one has

Uj = Aqn(θ + (j − 1)qnα)Uj−1.

Denote B = Aqn(θ + jqnα). Notice that detB = 1. We have

(77) B2 + (TrB)B + I = 0.

Case 1: TrB ≤ r̃j
γr̃j+1

, where

1− 1

γ
=

1

10(j + 1)
.

Applying (77) to Uj , one has

(78) B2Uj + (TrB)BUj + Uj = 0.

Notice that Uj+1 = BUj ; thus

||(TrB)BUj || ≤
1

γ
r̃j .

Therefore we have

(79) ||B2Uj || ≥
Å

1− 1

γ

ã
r̃j =

1

10(j + 1)
r̃j .
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This is impossible. Indeed, from the following estimate,

||Uj+2 −B2Uj || ≤ ||Aqn(θ + (j + 1)qnα)−Aqn(θ + jqnα)|| ||Uj+1||

≤ e(lnλ+ 1
2
ε)qn 1

qn+1
r̃j+1

≤ 1

100(j + 1)
r̃j ,

where the second inequality holds by (71) and the third inequality holds by

assumption (76), combining with (79), one has

(80) ||Uj+2|| = r̃j+2 ≥
9

100(j + 1)
r̃j .

However, by (55) and (53),

r̃j+2 ≤
q2
n+1

(j + 1)(j + 2)
e−2(lnλ−Cη)qn r̃j .

This is in contradiction to (80).

Case 2: It remains to consider

(81) TrB ≥ r̃j
γr̃j+1

.

From (77),

(82) BUj + (TrB)Uj +B−1Uj = 0.

First by assumption (76), one has

r̃j+1 ≤
1

10(j + 1)
r̃j .

Then

||BUj || = r̃j+1≤
r̃j

γr̃j+1

r̃j
10(j + 1)2

≤ ||(TrB)Uj ||
1

10(j + 1)2
.

Thus by (82), we have

||B−1Uj || ≥ (1− 1

10(j + 1)2
)||(TrB)Uj ||

≥ (1− 1

10(j + 1)2
)
r̃2
j

γr̃j+1
(83)

≥ (1− 1

10(j + 1)2
)
1

γ

j + 1

qn+1
e(lnλ+ε)qn r̃j ,(84)

where the second inequality holds by (81) and the third inequality holds

by (76).
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By (72), the following holds:

||Uj−1 −B−1Uj || ≤ ||A−1
qn (θ + (j − 1)qnα)−A−1

qn (θ + jqnα)|| ||Uj ||

≤ e(lnλ+ 1
2
ε)qn 1

qn+1
r̃j

≤ 1

10(j + 1)
||B−1Uj ||,(85)

where the third inequality holds by (84).

Putting (83) and (85) together, we have

r̃j−1 = ||Uj−1|| ≥ (1− 1

10(j + 1)
)||B−1Uj ||

≥ (1− 1

10(j + 1)
)2(1− 1

10(j + 1)2
)
r̃2
j

r̃j+1
.

This implies (75). �

Proof of Theorem 5.1. We can proceed by induction.

Set j = 0 in Lemma 5.4. By (55), the second case (75) cannot happen;

thus Theorem 5.1 holds for j = 1.

Suppose (70) holds for p = j − 1; that is,

(86) r̃j−1 ≥
qn+1

j − 1
e−(lnλ+ε)qn r̃j−2.

We will show that (70) holds for p = j. Let us apply Lemma 5.4 to p = j − 1.

If (74) holds for p = j − 1, the result follows. Otherwise by (75), we have

r̃j ≥ (1− 1

10j
)2(1− 1

10j2
)r̃j−1

r̃j−1

r̃j−2

≥ (1− 1

10j
)2(1− 1

10j2
)r̃j−1

qn+1

j − 1
e−(lnλ+ε)qn

≥ r̃j−1
qn+1

j
e−(lnλ+ε)qn ,

where the second inequality holds by (86). �

6. Decaying solutions. Proof of (12), Theorems 22, 24 and 29

In this section the dependence on n will play a role, so we go back to the

rnj , r̃
n
j notation. We first give a series of auxiliary facts. Recall footnote 11.

Theorem 6.1. Assume θ is n-Diophantine with respect to α. For any

1 ≤ j ≤ 10 bn+1

qn
with bn+1 ≥ qn

2 , we have

r̄nj e
−εjqn ≤ rnj ≤ r̄nj eεjqn

and

r̄nj e
−εjqn ≤ r̃nj ≤ r̄nj eεjqn .
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Proof. For any ε > 0, we choose η small enough. Using (55) j times, we

have

rnj ≤
qjn+1

j!
exp{−(lnλ− ε)jqn}.

Similarly, using (70) j times, we have

r̃nj ≥
qjn+1

j!
exp{−(lnλ+ ε)jqn}.

By the Stirling formula and (53), we obtain the theorem. �

Theorem 6.2. Assume θ is n-Diophantine with respect to α. Assume

jqn ≤ k < (j + 1)qn with 0 ≤ j ≤ 8 bn+1

qn
, bn+1 ≥ qn

2 and k ≥ qn
4 . We have

(87) ||U(k)|| ≤ max{e−|k−jqn| lnλr̃nj , e−|k−(j+1)qn| lnλr̃nj+1}eεqn ,

(88) ||U(k)|| ≥ max{e−|k−jqn| lnλr̃nj , e−|k−(j+1)qn| lnλr̃nj+1}e−εqn .

In particular, we have

(89) ||U(k)|| ≤ max{e−|k−jqn| lnλr̄nj , e−|k−(j+1)qn| lnλr̄nj+1}eε|k|,

(90) ||U(k)|| ≥ max{e−|k−jqn| lnλr̄nj , e−|k−(j+1)qn| lnλr̄nj+1}e−ε|k|.

Proof. (89) and (90) just follows from (87), (88) and Theorem 6.1. Thus

it suffices to prove (87) and (88). Clearly, by (53), one has

||U(k)|| ≥ max{e−|k−jqn| lnλr̃nj , e−|k−(j+1)qn| lnλr̃nj+1}e−εqn .

This implies (90) by Theorem 6.1.

We now turn to (89). If |k − jqn| ≤ 10ηqn or |k − (j + 1)qn| ≤ 10ηqn,

the result follows from Theorem 6.1 and (53). If |k − jqn| ≥ 10ηqn and

|k− (j+ 1)qn| ≥ 10ηqn, it follows from Lemma 4.1, Theorem 6.1 and (53). �

Theorem 6.3. For q
8
9
n ≤ k ≤ qn

2 , let n0 be the smallest positive integer

such that qn−n0 ≤ k < qn−n0+1. Suppose jqn−n0 ≤ k < (j+1)qn−n0 with j ≥ 1.

If θ is k-Diophantine with respect to α for k = n− n0 and k = n− 1, then

(91) ||U(k)|| ≤ max{e−|k−jqn−n0 | lnλr̄n−n0
j , e−|k−(j+1)qn−n0 | lnλr̄n−n0

j+1 }e
εk

and

(92) ||U(k)|| ≥ max{e−|k−jqn−n0 | lnλr̄n−n0
j , e−|k−(j+1)qn−n0 | lnλr̄n−n0

j+1 }e
−εk.

Proof. Set t0 = 1 − ε
8β . Let t = t0 in the definition of resonance, i.e.,

bn = qt0n .
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Case 1: k ≤ qt0n−n0+1. In this case, one has

qn−n0 ≤ k ≤ q
t0
n−n0+1.

The result holds by Theorem 6.2.

Case 2: k ≥ qt0n−n0+1. Then

r̄n−n0
j ≤ exp{−(lnλ− ln qn−n0+1

qn−n0

+
ln qt0n−n0+1

qn−n0

− ε)jqn−n0}

≤ exp{−(lnλ− (1− t0)β − ε)jqn−n0}
≤ exp{−(lnλ− 2ε)jqn−n0},

where the third inequality holds by the definition of t0. Noting that k ≤
qn−n0+1, one has

r̄n−n0
j ≥ exp{−jqn−n0(lnλ+ ε)}.

Similarly,

exp{−(j + 1)qn−n0(lnλ+ ε)} ≤ r̄n−n0
j+1 ≤ exp{−(j + 1)qn−n0(lnλ− ε)}.

Thus in order to prove Case 2, it suffices to show

(93) e−(lnλ+ε)k ≤ ||U(k)|| ≤ e−(lnλ−ε)k.

The left inequality holds by (53).

We start to prove the right inequality. For any y ∈ [εk, k] or y ∈ [qn − k,
qn − εk], let n′0 be the least positive integer such that 4qn−n′0 ≤ dist(y, qnZ),

and thus n′0 ≥ n0. Let s be the largest positive integer such that 4sqn−n′0 ≤
dist(y, qnZ).

Set I1, I2 ⊂ Z as follows:

I1 = [−sqn−n′0 , sqn−n′0 − 1],

I2 = [y − sqn−n′0 , y + sqn−n′0 − 1],

and let θj = θ + jα for j ∈ I1 ∪ I2. The set {θj}j∈I1∪I2 consists of 4sqn−n′0
elements. By case (ii) of Theorem 3.5, y is (lnλ+ 8 ln(sqn−n′0/qn−n′0+1)/qn−n′0
− ε, 4sqn−n′0 − 1) regular with δ = 1

4 . Notice that

(s+ 1)qn−n′0 ≥ εq
t0
n−n0+1 ≥ εq

t0
n−n′0+1.

Thus we have

lnλ+ 8 ln(sqn−n′0/qn−n′0+1)/qn−n′0 ≥ lnλ− 8(1− t0)β − ε
≥ lnλ− 2ε.

This implies that for any y ∈ [εk, k] or y ∈ [qn − k, qn − εk], there exists an

interval I(y) = [x1, x2] ⊂ [0, qn] with y ∈ I(y) such that

dist(y, ∂I(y)) ≥ 1

2
qn−n′0(94)

and

|GI(y)(y, xi)| ≤ e−(lnλ−ε)|y−xi|, i = 1, 2.(95)



UNIVERSAL HIERARCHY OF QUASIPERIODIC EIGENFUNCTIONS 751

For any y ∈ (k, qn− k), let s be the largest positive integer such that sqn−n0 ≤
dist(y, qnZ), and set I1, I2 ⊂ Z as follows:

I1 =

ï
−
⌊sqn−n0

2

⌋
, sqn−n0 −

⌊sqn−n0

2

⌋
− 1

ò
,

I2 =

ï
y −

⌊sqn−n0

2

⌋
, y + sqn−n0 −

⌊sqn−n0

2

⌋
− 1

ò
.

By the same reason, (94) and (95) also hold for n′0 = n0.

Arguing exactly as in the proof of Lemma 4.1, with (39) replaced with

(94) and (40) with (95), we obtain

(96)

||U(k)|| ≤ max{r̂0 exp{−(lnλ−2ε)(k−3εk)}, r̂n1 exp{−(lnλ−2ε)(qn−k−3εk)}},

where r̂j = max|r|≤10ε ||U(jqn+ rk)|| with j = 0, 1. Using that k ≤ qn
2 , one has

||U(k)|| ≤ e−(lnλ−ε)k.

This implies (93) and thus the theorem. �

Remark 6.4. The assumption that θ is n−n0 Diophantine with respect to

α is sufficient for the proof of Case 1. The assumption that θ satisfies (35) is

sufficient for the proof of case (ii) of Theorem 3.5, and therefore for the proof

of Case 2. Then by Remark 3.6, the assumption that θ is n − 1 Diophantine

with respect to α is sufficient for the proof of Case 2.

Remark 6.5. Suppose we only consider q
8
9
n ≤ k ≤ cqn with c ≤ 1

2 in

Theorem 6.3. Then Theorem 6.3 still holds if we only have (11) for function

φ(k) on [−cqn, 2cqn] for some c > 0.

In order to prove (12), it suffices to prove the following theorem, which is

a stronger local version of (12).

Theorem 6.6. Let α ∈ R\Q be such that |λ| > eβ(α). Suppose E is a

generalized eigenvalue of Hλ,α,θ and φ is the generalized eigenfunction. Let

U(k) =
(

φ(k)
φ(k−1)

)
. Then for any ε > 0, κ > 0, ν > 1, there exists n̂0 (depend-

ing on α,E, κ, ν, ε12 )such that, if θ is n-Diophantine with respect to α with

Diophantine constants κ, ν for some n ≥ n̂0, we have that U(k) satisfies

(97) f(|k|)e−ε|k| ≤ ||U(k)|| ≤ f(|k|)eε|k|

for qn
2 ≤ |k| ≤

qn+1

2 .

Proof. It remains to collect several already proved statements that cover

different scenarios.

12The dependence on E is through the constant Ĉ in (11).
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Case (i): qn
2 ≤ q

8
9
n+1. For qn

2 ≤ k ≤ 4q
8
9
n+1 the result follows from Theo-

rem 6.2. For 4q
8
9
n+1 ≤ k ≤ qn+1

2 , (97) follows from Theorem 6.3. (Notice that

now k ≥ 2qn, so n0 = 1.)

Case (ii): q
8
9
n+1 ≤

qn
2 .

Case (ii.1): qn
2 ≤ k ≤ min{qn, qn+1

2 }. If qn = qn−1 + qn−2, then qn−1 ≥ qn
2 .

By the proof of Case 2 in Theorem 6.3 (by Remark 6.4, the assumption that

θ is n-Diophantine is enough), for any qn−1 ≤ k ≤ min{qn, qn+1

2 }, one has

|φ(k)| ≤ e−(lnλ−ε)k.

This leads to

|φ(k)| ≤ e−(lnλ−ε)k

for qn
2 ≤ k ≤ min{qn, qn+1

2 } This also implies (12).

If qn = jqn−1 + qn−2 with j ≥ 2, we have qn
2 ≥ qn−1. By Case 2 in The-

orem 6.3 (by Remark 6.4, the assumption that θ is n-Diophantine is enough)

again (with n+ 1− n0 = n− 1), we obtain (97).

Case (ii.2): qn ≤ k ≤ qn+1

2 . In this case (97) follows directly from Theo-

rem 6.3 (with n + 1 − n0 = n), because n0 = 1, so that the fact that θ is n

Diophantine can guarantee both Cases 1 and 2 of Theorem 6.3. �

Proof of Theorem 2.2. The proof follows that of (97) by shifting by k0

units and Remark 6.5. �

Proof of Theorem 2.9. Assume θ is Diophantine with respect to α. First

by the definition of β(α), for any large n and any `, one has

r̄n` ≤ e−(lnλ−β−ε)`qn .

Combining with the definition of f(k) and (12), we have

(98) |φ(k)| ≤ e−(lnλ−β−ε)k.

We therefore established that every generalized eigenfunction decays exponen-

tially, which by Schnol’s Theorem [Ber68] implies the localization statement.

By the definition of β(α) again, there exists a subsequence qnk of qn such

that

(99) qnk+1 ≥ e(β−ε)qnk .

By Theorem 2.1 (or Theorem 6.1) and the definition of r̄nj , for any k > 0,

we have

(100) ||U(qnk)|| ≥ e−(lnλ−β+ε)qnk .

Thus (98) and (100) imply that the decay rate is just lnλ− β. �
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7. Hierarchical structure

As we have already established Theorem 2.9 we know that each general-

ized eigenfunction decays exponentially so has a global maximum. Assume its

global maximum (see footnote 2) is at 0 and φ is normalized by ‖φ‖∞ = 1.

Note that then Ĉ in (11) is equal to 1 and so all dependence of the largeness

of n on E (see footnote 12) disappears. Theorem 2.1 provides, for sufficiently

large n, plenty of local n-maxima in the vicinity of aqn, but determined only

with εqn precision. In the next theorem we show that this precision can be

improved all the way to an n-independent constant. We have

Theorem 7.1. Fix κ, ν, ε. Then for sufficiently small ε, there exists

n̂0(κ, ν, λ, α, ε, ε) such that if θ is k-Diophantine for all n̂0 ≤ k ≤ n with

Diophantine constants κ, ν and ln qn+1−ln j
qn

> ε lnλ with ε > 0. Then

(101) sup
k∈[jqn−εqn+εqn,jqn]

||U(k)|| = sup
k∈[jqn−K0,jqn]

||U(k)||

and

(102) sup
k∈[jqn,jqn+εqn−εqn]

||U(k)|| = sup
k∈[jqn,jqn+K0]

||U(k)||,

where K0 = qn̂0+1.

Proof. We first give the proof of (101). Let k0 ∈ [jqn − εqn, jqn] be such

that

||U(k0)|| = sup
k∈[jqn−εqn,jqn]

||U(k)||.

By (55), (70), (87) and (88), one has

||U(k0)|| = sup
k∈[jqn−εqn+εqn,jqn]

||U(k)||.

Suppose (101) does not hold, i.e., k0 ∈ [jqn − εqn, jqn −K0].

Now we will reflect the elements in [jqn − εqn, jqn] at j
2qn. That is, for

any element k ∈ [jqn − εqn, jqn], let k′ = jqn − k. Then k′ ∈ [0, εqn].

Choose n′ such that bn′ ≤ k′0 < bn′+1 (where k′0 = jqn−k0). Then n′ ≥ n̂0.

Case 1: k′0 is n′-non-resonant, i.e., dist(k′0, qn′Z) ≥ bn′ . Let n′0 be the least

positive integer such that 4qn′−n′0 ≤ dist(k′0, qn′Z). Let s be the largest positive

integer such that 4sqn′−n′0 ≤ dist(k′0, qn′Z). Set I1, I2, I
′
2 ⊂ Z as follows:

I1 = [−sqn′−n′0 , sqn′−n′0 − 1],

I2 = [k0 − sqn′−n′0 + 1, k0 + sqn′−n′0 ],

I ′2 = [k′0 − sqn′−n′0 , k
′
0 + sqn′−n′0 − 1].

Notice that I ′2 and I2 are reflections of each other about j
2qn.
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By the Diophantine condition on θ with respect to α, for any k2 ∈
I2(k′2 ∈ I ′2) and k1 ∈ I1, we have

||2θ + (k1 + k2)α||R/Z = ||2θ − k′2α+ jqnα+ k1α||R/Z
≥ ||2θ + (k1 − k′2)α||R/Z − ||jqnα||R/Z

≥ ||2θ + (k1 − k′2)α||R/Z −
j

qn+1

≥ ||2θ + (k1 − k′2)α||R/Z − e−ε lnλqn

≥ 1

2
||2θ + (k1 − k′2)α||R/Z ≥

C

qCn′
,

(103)

where the last inequality holds by the fact |k1|, |k′2| ≤ C?bn′+1 so that we can

apply Lemma B.2.

For any k2 ∈ I2 and k1 ∈ I1 (k1 + k′2 6= 0 by the construction of I1, I2), we

also have

||(k2 − k1)α||R/Z = || − k′2α+ jqnα− k1||R/Z
≥ ||(−k1 − k′2)α||R/Z − ||jqnα||R/Z
≥ ||(k1 + k′2)α||R/Z − e−ε lnλqn

≥ 1

2
||(k1 + k′2)α||R/Z ≥

C

qCn′
,

(104)

where the last inequality holds by the fact |k1|, |k′2| ≤ C?bn′+1 and k1 − k′2 6=
qn′Z so that we can apply Lemma B.3.

By Theorem B.4, (103) and (104), we have that k0 is (k̂0, lnλ − β − ε)
regular, where k̂0 = 4sqn′−n′0 − 1. Let I2 = [x1, x2] ⊂ [jqn − 2εqn, jqn].

By (33), we have

|φ(k0)| ≤ e−(lnλ−β−ε) k̂0
10 (|φ(x1)|+ |φ(x0)|) ≤ e−(lnλ−β−ε) k̂0

10 ||U(k0)||.

Similarly,

|φ(k0 − 1)| ≤ e−(lnλ−β−ε) k̂0
10 ||U(k0)||.

The last two inequalities imply that

||U(k0)|| ≤ e−(lnλ−β−ε) k̂0
10 ||U(k0)||.

This is impossible.

Case 2: k′0 is n-resonant, i.e., |k′0 − `qn′ | ≤ bn′ for some `. From (103)

and (104), we know that the small divisor condition does not change under

reflection at j
2qn. Following the proof of (54) and replacing Lemma 4.1 with a

combination of Lemma 4.2 and Theorem B.4, we have

r
n′,φ
` ≤ exp{−(lnλ− β − ε)qn′}max{rn

′,φ
`±1},
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where

r
n′,φ
` = sup

|r|≤10ε
|φ(jqn − (`qn′ + rqn′))|.

This contradicts the fact that k0 is the maximal point because |k′0−`qn′ | ≤ bn′ .
This completes the proof of (101).

Now we turn to the proof of (102). Let kr0 ∈ [jqn, jqn + εqn] be such that

||U(kr0)|| = sup
k∈[jqn,jqn+εqn]

||U(k)||.

Suppose the theorem does not hold, i.e., kr0 ∈ [jqn+K0, jqn+εqn]. In this

case we shift the elements in [jqn, jqn + εqn] by −jqn. That is for any element

k ∈ [jqn, jqn + εqn], let kr,′ = k − jqn. Then kr,′ ∈ [0, εqn]. Then (102) holds

by the same proof, only replacing all k′ with kr,′. �

We restate the result of Theorem 7.1 as a more convenient

Theorem 7.2. Fix κ, ν, ε. Then for sufficiently small ε, there exists

n̂0(κ, ν, λ, α, ε, ε) such that if k0 is a local (n+1)-maximum, θ is k-Diophantine

for all n̂0 ≤ k ≤ n with Diophantine constants κ, ν, and

ln qn+1 − ln j

qn
> ε lnλ.

Then

(105) sup
k∈[k0+jqn−εqn+εqn,k0+(j+1)qn]

||U(k)|| = sup
k∈[k0+jqn−K0,k0+jqn+K0]

||U(k)||,

where K0 = qn̂0+1.

Proof. By shifting the operator by k0 units, we can assume k0 = 0. The-

orem 7.1 still holds if 0 is a local (n+ 1)-maximum by Remark 6.5. �

We will now formulate a local version of the hierarchical structure The-

orem 2.4. Fix 0 < ς, ε with ς + 2ε < 1. Let nj → ∞ be such that ln qnj+1 ≥
(ς+2ε) ln |λ|qnj . Let cj = (ln qnj+1− ln |anj |)/ ln |λ|qnj − ε. cj > ε for 0 < anj <

eς ln |λ|qnj .

Theorem 7.3. Suppose k0 is a local (nj0 +1)-maximum. Suppose θ+k0α

is Diophantine with respect to α (with Diophantine constants κ, ν). Then there

exists n̂0(α, λ, κ, ν, ε) <∞ such that for any j0 > j1 > · · · > jk, njk ≥ n̂0 + k,

and 0 < anji < e
ς ln |λ|qnji , i = 0, 1, . . . , k for all 0 ≤ s ≤ k, there exists a

local njs-maximum banj0 ,anj1 ,...,anjs
on the interval banj0 ,anj1 ,...,anjs

+ I
njs
cjs ,1

for

all 0 ≤ s ≤ k such that the following holds :

(I) |banj0 − (k0 + anj0 qnj0 )| ≤ qn̂0+1;

(II) for any 1 ≤ s ≤ k,

|banj0 ,anj1 ,...,anjs − (banj0 ,anj1 ,...,anjs−1
+ anjs qnjs )| ≤ qn̂0+s+1;



756 SVETLANA JITOMIRSKAYA and WENCAI LIU

(III) if 2(x− banj0 ,anj1 ,...,anjk ) ∈ Injkcjk ,1
, then for each s = 0, 1, . . . , k,

(106) f(xs)e
−ε|xs| ≤ ||U(x)||

||U(banj0 ,anj1 ,...,anjs
)||
≤ f(xs)e

ε|xs|,

where xs = |x− banj0 ,anj1 ,...,anjs | is large enough.

Moreover, every local njs-maximum on the interval

banj0 ,anj1 ,...,anjs−1
+ [−eε lnλqnjs , eε lnλqnjs ]

is of the form banj0 ,anj1 ,...,anjs
for some anjs .

Proof. Let n̂0 = n̂0(κ, 3ν, λ, α, ε, ε/10) be given by Theorem 7.2.13 As long

as

(107) (ln qn+1 − ln |an|)/qn ≥ 2ε ln |λ|

with 0 < ς, ε < 1, where 0 < |an| ≤ qn+1

2qn
, Theorem 7.2 (upon shifting by k0

units) implies that there exists a local n-maximum ban on the interval ban +Inε,1
such that

(108) |ban − (anqn + k0)| ≤ K0 = qn̂0+1.

Now let ni be such that ln qni+1 ≥ (ς + 2ε) ln |λ|qni , i = t0, t0 + 1, . . . , j for

some 0 < ς, ε < 1. By (108), one has that there exists a local nj0 maximum

banj0
= anj0 qnj0 + k0 + K̂nj0

with |K̂nj0
| ≤ K0.

Now we will prove that for 0 ≤ s ≤ k, there exists

|banj0 ,anj1 ,...,anjs − anjs qnjs − banj0 ,anj1 ,...,anjs−1
| ≤ Ks = qn̂0+s+1.

Notice that
∑k
i=0Ki ≤ 4Kk. We will now prove Theorem 2.4 by induction

on s. By the assumption, one has

(109) ||2θ + 2k0 + kα||R/Z >
κ

|k|ν

for any k ∈ Z\{0}.

13Here 3ν can be easily relaxed to (1 + ε)ν.
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First we prove the case s = 1. By the Diophantine condition on θ (109),

we have that for |`| ≤ qnj1+1, the following holds:

||2θ + (2banj0
+ `)α||R/Z ≥ ||2θ + (2k0 + `+ 2Knj0

)α||R/Z − ||2anj0 qnj0α||R/Z

≥ κ

(2K0 + |`|)ν
−

2anj0
qnj0+1

≥ κ

|max{K0, `}|2ν
− e−ε lnλqnj0

≥ κ

|max{K0, `}|3ν
.

(110)

Therefore θ+ banj0
α is n̂0 + 1-Diophantine with respect to α with parameters

3ν, κ, and by Theorem 7.2 again, there exists a local nj1-maximum such that

banj0 ,anj1
= anj1 qnj1 + banj0

+ K̂nj1
with |K̂nj1

| ≤ K1 = qn̂0+2. This completes

the first step.

Assume the theorem holds for s = k−1. It suffices to show that it holds for

s = k. By the Diophantine condition on θ (109) again, we have for |`| ≤ qnjk+1,

the following holds:

||2θ + (2banj0 ,anj1 ,...,anjk−1

+ `)α||R/Z ≥ ||2θ + (2k0 + `+ 2
k−1∑
s=0

Ks)α||R/Z

−
k−1∑
s=0

||2anjs qnjsα||R/Z

≥ κ

(8Kk−1 + |`|)ν
−
k−1∑
s=0

||2anjs qnjsα||R/Z

≥ κ

|max{Kk−1, `}2ν
−
k−1∑
s=0

e−εqnjs

≥ κ

|max{Kk−1, `}|3ν
.

Thus θ + banj0 ,anj1 ,...,anjk−1

α is n̂0 + k-Diophantine with respect to α with pa-

rameters 3ν, κ, and by Theorem 7.2 again, there exists a local nj−k-maximum

such that banj0 ,anj1 ,...,anjk
= anjk qnjk + banj0 ,anj1 ,...,anjk−1

+ K̂njk
with |K̂njk

| ≤
Kk = qn̂0+k+1. This implies (II) holds for s = k. Thus we complete the proof

of (I) and (II).

(III), as well as the moreover part, follows from Theorem 2.2 directly. �

Proof of Theorem 2.4. Since k0 is a local nj0 + 1-maximum for every j,

Theorem 2.4 follows from Theorem 7.3 directly. �
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Theorem 7.3 describes a hierarchical structure around every local (nj0+1)-

maximum.

We will say that a local nj0-maximum is k-hierarchical if there exists ε > 0,

j0 > j1 > · · · > jk with nji+1 > eεnji and, for each s = 0, 1, . . . , k, a collection

of local njs-maxima, {banj0 ,anj1 ,...,anjs } such that

(I) all local (njs , ε)-maxima in

[banj0 ,anj1 ,...,anjs −e
εqnjs ,banj0

,anj1
,...,anjs−1

+e
εqnjs ]

are given by {banj0 ,anj1 ,...,anjs−1
,anjs
} with all possible choices of anjs ;

(II) if 2(x− banj0 ,anj1 ,...,anjk ) ∈ Injkε,ε , then for each s = 0, 1, . . . , k,

(111) f(xs)e
−ε|xs| ≤ ||U(x)||

||U(banj0 ,anj1 ,...,anjs
)||
≤ f(xs)e

ε|xs|,

where xs = |x− banj0 ,anj1 ,...,anjs | is large enough.

Proof of Corollary 2.7. Clearly, ban1 ,...,ans of Theorem 7.3 form the col-

lection required for the definition of k-hierarchy, so it remains to estimate the

number of levels of the hierarchy; that is, find k such that njk ≥ n̂0+k. Clearly,

k = j/2− bn̂0/2c works. �

8. Growth of transfer matrices. Proof of (13)

Assume that θ is Diophantine with respect to α in this and the following

section.

Theorem 8.1. Let A(j) = ||Ajqn ||. Assume jqn ≤ k < (j + 1)qn with

0 ≤ j ≤ 48C?
bn+1

qn
, bn+1 ≥ qn

2 and k ≥ qn
4 . We have

(112) ||Ak|| ≤ max{e−|k−jqn| lnλA(j), e−|k−(j+1)qn| lnλA(j + 1)}eεk,

(113) ||Ak|| ≥ max{e−|k−jqn| lnλA(j), e−|k−(j+1)qn| lnλA(j + 1)}e−εk.

Proof. Let Ũ(k)=
(

ψ(k)
ψ(k−1)

)
. By Last-Simon’s arguments ((8.6) in [LS99]),

one has

(114) ||Ak|| ≥ ||AkŨ(0)|| ≥ c||Ak||.

Then (112) holds by (114), (53) and (38). Equation (113) holds directly by (28).

�

Theorem 8.2. Assume 1 ≤ j ≤ 8 bn+1

qn
and bn+1 ≥ qn

2 . Then

(115)
qn+1

r̄nj
e−εjqn ≤ A(j) ≤ qn+1

r̄nj
eεjqn .
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Proof. We first show the left inequality. Clearly

(116) ||Ak|| ≥ ||U(k)||−1.

Thus by (89) and (112), for any jqn ≤ k < (j + 1)qn with j ≥ 0 and k ≥ qn
4 ,

we must have

max{e−|k−jqn| lnλA(j), e−|k−(j+1)qn| lnλA(j + 1)}eεk

≥ (max{e−|k−jqn| lnλr̄nj , e−|k−(j+1)qn| lnλr̄nj+1})−1e−εk.
(117)

Let

k0 = (j + 1)qn −
ln qn+1 − ln(j + 1)

2 lnλ
.

One has k0 ≥ qn
4 . Thus

max{e−|k0−jqn| lnλr̄nj , e−|k0−(j+1)qn| lnλr̄nj+1} ≤ r̄nj+1

Ç
j + 1

qn+1

å 1
2

eεk0 .

Combining with (117), we have

(118)

max{e−|k0−jqn| lnλA(j), e−|k0−(j+1)qn| lnλA(j + 1)} ≥
q

1
2
n+1

(j + 1)
1
2

(r̄nj+1)−1e−εk0 .

This implies that either

(119) A(j) ≥ elnλqn(r̄nj+1)−1e−εk0 ,

or

(120) A(j + 1) ≥ qn+1

j + 1
(r̄nj+1)−1e−εk0 .

Notice that by (64) and (114), we have

(121) A(j + 1) ≥ A(j)e(lnλ−ε)qn j + 1

qn+1
.

By (119), (120) and (121), we obtain the left inequality of (115).

Now we turn to the proof of the right inequality of (115). By (8.5) and

(8.7) in [LS99], we have

(122) ||AkU(0)||2 ≤ ||Ak||2m(k)2 + ||Ak||−2,

where

(123) m(k) ≤ C
∞∑
p=k

1

||Ap||2
.

If k ≥ C?jqn with j ≥ 1, by (98) we have

||Ak|| ≥ ||U(k)||−1

≥ e(lnλ−β−ε)k
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and by (28) we have

A(j) ≤ e(lnλ+ε)jqn .

This implies

(124) ||Ak|| ≥ A(j)e
lnλ−β

2
k.

If jqn ≤ k ≤ C?jqn with j ≥ 1, let j0qn ≤ k < (j0+1)qn with j ≤ j0 ≤ C?j.
By (113) and (121), we have

||Ak|| ≥ A(j0) max

®
e−|k−j0qn| lnλ, e−|k−(j0+1)qn| lnλeqn lnλ j0 + 1

qn+1

´
e−εj0qn

≥
Ç
j0 + 1

qn+1

å 1
2

A(j0)e−εj0qn

≥
Ç
j + 1

qn+1

å 1
2

A(j)e−εjqn .

(125)

Thus by (124) and (125), we have

(126) m(jqn) ≤ qn+1

jA(j)2
eεjqn .

Let k = jqn in (122). One has

r̃2
j ≤

q2
n+1

j2A(j)2
eεjqn .

Thus by (6.1), we obtain

(127) A(j) ≤ qn+1

jr̄nj
eεjqn .

This implies the right inequality of (115). �

Theorems 8.1 and 8.2 imply the following theorem directly.

Theorem 8.3. Assume jqn≤k < (j + 1)qn with 0≤j≤6 bn+1

qn
, bn+1≥ qn

2 .

For k ≥ qn, we have

(128) ||Ak|| ≤ max

®
e−|k−jqn| lnλ

qn+1

r̄nj
, e−|k−(j+1)qn| lnλ qn+1

r̄nj+1

´
eε|k|

and

(129) ||Ak|| ≥ max

®
e−|k−jqn| lnλ

qn+1

jr̄nj
, e−|k−(j+1)qn| lnλ qn+1

(j + 1)r̄nj+1

´
e−ε|k|.

and for qn
4 ≤ k < qn, we have

(130) ||Ak|| ≤ max

®
e−|k| lnλ, e−|k−qn| lnλ

qn+1

r̄n1

´
eε|k|
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and

(131) ||Ak|| ≥ max

®
e−|k| lnλ, e−|k−qn| lnλ

qn+1

r̄n1

´
e−ε|k|.

Theorem 8.4. For any q
8
9
n ≤ k ≤ qn

2 , let n0 be the smallest positive

integer such that qn−n0 ≤ k < qn−n0+1. Suppose jqn−n0 ≤ k < (j + 1)qn−n0+1

with j ≥ 1. Then the following hold :

(132)

||Ak|| ≤ max

{
e−|k−jqn−n0 | lnλ

qn−n0+1

r̄n−n0
j

, e−|k−(j+1)qn−n0 | lnλ
qn−n0+1

r̄n−n0
j+1

}
eε|k|

and

(133)

||Ak|| ≥ max

{
e−|k−jqn−n0 | lnλ

qn−n0+1

r̄n−n0
j

, e−|k−(j+1)qn−n0 | lnλ
qn−n0+1

r̄n−n0
j+1

}
e−ε|k|.

Proof. As in the proof of Theorem 6.3, we split into the same two cases:

Cases 1 and 2. Case 1 can be done directly by Theorem 8.3. For Case 2, as in

the proof of Case 2 of Theorem 6.3, it suffices to show that

(134) e(lnλ−ε)k ≤ ||Ak|| ≤ e(lnλ+ε)k,

which follows directly from (93), (116) and (28). �

Proof of (13). The arguments are similar to the proof of (12) and consist

of collecting the already proved facts, with the same cases.

Case (i): qn
2 ≤ q

8
9
n+1. For qn

2 ≤ k ≤ 4q
8
9
n+1, the result follows from Theo-

rem 8.3. For 4q
8
9
n+1 ≤ k ≤ qn+1

2 , (13) follows from Theorem 8.4. (Notice that

now k ≥ 2qn, and thus n0 = 1.)

Case (ii): q
8
9
n+1 ≤

qn
2 .

Case (ii.1): qn
2 ≤ k ≤ min{qn, qn+1

2 }. If qn = qn−1 + qn−2, then qn−1 ≥ qn
2 .

This is Case 2 of Theorem 8.4. By (134), for any qn−1 ≤ k ≤ min{qn, qn+1

2 },
one has

||Ak|| ≥ e(lnλ−ε)k.

This leads to

||Ak|| ≥ e(lnλ−ε)k

for qn
2 ≤ k ≤ min{qn, qn+1

2 }. This also implies (13).

If qn = jqn−1 + qn−2 with j ≥ 2, then qn
2 ≥ qn−1. (13) follows directly

from Theorem 8.4. (Notice that now n+ 1− n0 = n− 1.)

Case (ii.2): qn ≤ k ≤ qn+1

2 . In this case (13) follows directly from Theo-

rem 8.4. (Notice that now n+ 1− n0 = n.) �
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9. Proof of the corollaries

Proof of Corollary 2.12. Due to (28), (i) follows from (iii). By Theo-

rem 2.1, to prove (iii) it is enough to show that for any ε > 0, sufficiently

large n and εqn < k < qn, we have

(135) e(lnλ−Cε)k ≤ g(k) ≤ e(lnλ+Cε)k.

Let m ≤ n+ 1 be such that qm/2 ≤ k < qm+1/2. If qm ≤ k, we are in Case 1

of the definition of g with m ≤ n − 1. Notice that `qm ≥ εqn ≥ εqm+1, which

leads to
ln
qm+1
`

qm
being small. Then (135) follows from (6). If qm/2 < k < qm,

then (135) is automatic by the definition of g.

It remains to establish (ii). First by (98), we must have

(136) lim inf
k→∞

ln ||Ak||
k

≥ lnλ− β.

Let jk = bqεnk+1c, where sequence qnk is given by (99). Then

g(jkqnk) =
qnk+1

r̄nkjk

= e
(lnλ−

ln qnk+1

qnk
+

ln jk
qnk

)jkqnk qnk+1

≤ e(lnλ−β+Cε)jkqnk .

Combining with Theorem 2.1, we must have

(137) lim inf
k→∞

ln ||Ak||
k

≤ lnλ− β.

(ii) holds by (136) and (137). �

Proof of Corollary 2.13. (i) follows from (iii), and (ii) follows from (98)

and (100). To establish (iii), we only need to show that for any εqn ≤ k ≤
qn − β

2 lnλqn − εqn,

e−(lnλ+Cε)k ≤ ||U(k)|| ≤ e−(lnλ−Cε)k.

Let m ≤ n+ 1 be such that qm/2 ≤ k < qm+1/2.

Case 1: m ≤ n−1. Then by Theorem 2.1, the statement is not immediate

only in Case 1, but then it follows from (5) and (7) since in that case, r̄m` ≤
e−(lnλ−ε)`qm .

Case 2: m = n or m = n + 1. In this case we have qm
2 ≤ k ≤ qm −

β
2 lnλqm − εqm and qm

2 ≤ k <
qm+1

2 . Then the statement holds by Theorem 2.1

and, in Case 1, (7).

To prove (iv) it suffices to show that for any qnj −
β

2 lnλqnj + εqnj ≤ k ≤
qnj − εqnj , we have

||U(k)|| ≥ e−(lnλ−cε)k
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where qnj is a subsequence satisfying (99). Indeed, under this assumption we

are in Case 1 of the definition of f and the second addend dominates in (7)

leading to the statement. �

Remarks.

• If we take for qnk a subsequence with any bounded away from zero expo-

nential growth, we still get non-Lyapunov behavior on intervals of the form

[qnk − cqnk + εqnk , qnk − εqnk ] for some c < β
2 lnλ .

• In fact, in all the arguments β can be replaced with ln qn+1/qn.

Proof of Corollary 2.14. First by (24), one has

(138) ‖U(k)‖ ‖Ũ(k)‖ sin δk =
1

2
.

Combining with (114), we have

(139)
1

2||U(k)‖ ‖Ak||
≤ sin δk ≤

1

||U(k)‖ ‖Ak||
.

We first prove (21). Clearly, it suffices to show

(140) lim sup
k→∞

ln δk
k
≥ 0.

Let kj = b1
4qnj+1c, where the sequence qnj is given by (99). By Theorem 2.1,

we must have
||U(kj)|| ≤ e−(lnλ−ε)kj

and
||Akj || ≤ e

(lnλ+ε)kj .

Combining with (139), we must have

(141) δkn ≥ e−εkn .
This implies (140) and also (21).

Now we verify (22). By the definition of f(k), g(k), for any large k, we

have

(142) f(k)g(k) ≤ e(β+ε)k.

Then by (139) and Theorem 2.1 again, one has

(143) lim inf
k→∞

ln δk
k
≥ −β.

Let kj = qnj . One has

(144) f(kj)g(kj) = qnj+1.

Combining with (139) and Theorem 2.1 again, we get

(145) lim
j→∞

ln δkj
kj

= −β.

Equation (22) follows directly from (143) and (145). �

Proof of Corollary 2.11. This follows directly from (13) and (114). �
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Appendix A. Gordon arguments for λ ≤ eβ

Proposition A.1. The almost Mathieu operator

(Hλ,α,θu)(n) = u(n+ 1) + u(n− 1) + 2λ cos 2π(θ + nα)u(n)

has no localized eigenfunctions if |λ| ≤ eβ .14

Proof. Otherwise, there exists a solution {u(n)}n∈Z of Hλ,α,θu = Eu such

that

(146) |u(n)| ≤ Ce−5c|n|,

where c > 0. Without loss of generality, assume that the vector
(
u(0)
u(−1)

)
is

unit.

Let ϕ(n) =
(

u(n)
u(n−1)

)
. For simplicity, denote ϕ = ϕ(0). By the definition

of β(α), there exists a subsequence q̃k of qn such that

(147) ||q̃kα||R/Z ≤ e−(β− c
4

)q̃k .

Denote B = Aq̃k(θ). Then we have

(148) B2 + (TrB)B + I = 0.

Case 1: If TrB ≤ e2cq̃k , then one has either ||B2ϕ|| ≥ 1
2 or ||Bϕ|| ≥

1
2e
−2cq̃k . By (146), we must have ||B2ϕ|| ≥ 1

2 . This is impossible. Indeed, from

the following estimate:

||ϕ(2q̃k)−B2ϕ||= ||Aq̃k(θ + q̃kα)−Aq̃k(θ)|| ||ϕ(q̃k)||

≤Ce
3
2
cq̃ke−5cq̃k

≤ e−3cq̃k ,

where the first inequality holds by (71). Then

||ϕ(2q̃k)|| ≥
1

4
,

contradicting ||ϕ(2q̃k)|| ≤ Ce−10cq̃k .

Case 2: If TrB ≥ e2cq̃k , then from (148), it is easy to see that either

||Bϕ|| ≥ 1
2e

2cq̃k or ||B−1ϕ|| ≥ 1
2e

2cq̃k holds. By (146) again, we must have

||B−1ϕ|| ≥ 1
2e

2cq̃k . By (72), the following holds:

||ϕ(−q̃k)−B−1ϕ||= ||A−1
q̃k

(θ − q̃kα)−A−1
q̃k

(θ)|| ||ϕ||

≤ e
3
2
cq̃k .

14Localized here means exponentially decaying. One can exclude any decaying solutions

for |λ| < eβ [AYZ17] but not for |λ| = eβ [AJZ18].
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Thus

||ϕ(−q̃k)|| ≥
1

4
e2cq̃k .

This is also impossible. �

Appendix B. Uniformity

We start with some basic facts. Let pn
qn

be the continued fraction approx-

imants to α. Then

(149) ∀1 ≤ k < qn+1, dist(kα,Z) ≥ |qnα− pn|

and

(150)
1

2qn+1
≤ ∆n := |qnα− pn| ≤

1

qn+1
.

Lemma B.1 ([AJ09, Lemma 9.7]). Let α ∈ R\Q, x ∈ R and 0 ≤ `0 ≤
qn − 1 be such that | sinπ(x + `0α)| = inf0≤`≤qn−1 | sinπ(x + `α)|. Then for

some absolute constant C > 0,

(151) − C ln qn ≤
qn−1∑

`=0,` 6=`0
ln | sinπ(x+ `α)|+ (qn − 1) ln 2 ≤ C ln qn.

We now prove

Lemma B.2. For any |i|, |j| ≤ 50C∗bn+1, if θ is n-Diophantine with re-

spect to α, then the following estimate holds :

(152) ln | sinπ(2θ + (j + i)α)| ≥ −C ln qn.

Proof. By the Diophantine condition on θ, (2), one has that there exist

κ > 0 and ν > 0 such that

(153) min
j,i∈[−qn,qn]

| sinπ(2θ + (j + i)α)| ≥ κ

qνn
.

Let `i, `j ∈ Z be such that dist(i, qnZ) = |i− `iqn| and dist(j, qnZ) = |j− `jqn|.
Then |`i|, |`j | ≤ 50C∗

bn+1

qn
+ 1. Let i′ = i − `iqn and j′ = j − `jqn. Then

i′, j′ ∈ [−qn, qn].

If q1−t
n+1 >

100C∗
κ qν+2

n , it is easy to verify that |`k∆n| < κ
qν+1
n

. Combining

with (153), for any |i|, |j| ≤ 50C∗bn+1, we have

| sinπ(2θ + (j + i)α)| =
∣∣∣∣ sinπ(2θ + (j′ + i′)α) cosπ(`i + `j)∆n

± cosπ(2θ + (j′ + i′)α) sinπ(`i + `j)∆n

∣∣∣∣
≥ κ

100qνn
.

(The choice of ± depends on the sign of qnα− pn.)
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If q1−t
n+1 ≤ 100C∗

κ qν+2
n , we also have, for any |i|, |j| ≤ 50C∗bn+1,

| sinπ(2θ + (j + i)α)| ≥ κ1+ tν
1−t

(100C∗)
ν

1−t q
νt(ν+2)

1−t
n

.

Thus in both cases, we have

�(154) min
|i|,|j|≤50C∗bn+1

ln | sinπ(2θ + (j + i)α)| ≥ −C ln qn.

Lemma B.3. Assume |i|, |j| ≤ 50C∗bn+1, and i− j 6= qnZ. Then

(155) ln | sinπ(j − i)α| ≥ −C ln qn.

Proof. By assumption, |j − i| = `qn + r with 0 ≤ ` ≤ 100C∗
bn+1

qn
and

0 < r < qn. Then by (149) and (150) again, we also have

||(j − i)α||R/Z≥ ||rα||R/Z − |`|||qnα||R/Z

≥ 1

2qn
− |`|
qn+1

≥ 1

2qn
− 100C∗

q1−t
n+1

1

qn

≥ 1

4qn
.

This implies (155). �

We are now ready to study the behavior at non-resonant points. For

an n-non-resonant y, as before let n0 be the least positive integer such that

4qn−n0 ≤ dist(y, qnZ). Let s be the largest positive integer such that 4sqn−n0 ≤
dist(y, qnZ). Recall that, automatically, n0 ≤ C(α). Set I1, I2 ⊂ Z as follows:

I1 = [−sqn−n0 , sqn−n0 − 1],

I2 = [y − sqn−n0 , y + sqn−n0 − 1].

We have

Theorem B.4. For an n-non-resonant y, assume that

(156) min
j,i∈I1∪I2

ln | sinπ(2θ + (j + i)α)| ≥ −C ln qn

and

(157) min
i 6=j;i,j∈I1∪I2

ln | sinπ(j − i)α)| ≥ −C ln qn.

Then for any ε > 0 and n large enough, we have

y is (lnλ+ 8 ln(sqn−n0/qn−n0+1)/qn−n0 − ε, 4sqn−n0 − 1) regular with δ = 1
4 .
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Proof. Without loss of generality, assume y > 0. By the definition of s

and n0, we have 4sqn−n0 ≤ dist(y, qnZ) and 4qn−n0+1 > dist(y, qnZ). This

leads to sqn−n0 ≤ qn−n0+1. Let θj = θ+ jα for j ∈ I1 ∪ I2. The set {θj}j∈I1∪I2
consists of 4sqn−n0 elements.

In (34), let x = cos 2πa, k = 4sqn−n0 − 1 and take the logarithm. Then

ln
∏

j∈I1∪I2,j 6=i

| cos 2πa− cos 2πθj |
| cos 2πθi − cos 2πθj |

=
∑

j∈I1∪I2,j 6=i
ln | cos 2πa− cos 2πθj |

−
∑

j∈I1∪I2,j 6=i
ln | cos 2πθi − cos 2πθj |.

First, we estimate
∑
j∈I1∪I2,j 6=i ln | cos 2πa− cos 2πθj |. Obviously,∑

j∈I1∪I2,j 6=i
ln | cos 2πa− cos 2πθj |

=
∑

j∈I1∪I2,j 6=i
ln | sinπ(a+ θj)|

+
∑

j∈I1∪I2,j 6=i
ln | sinπ(a− θj)|+ (4sqn−n0 − 1) ln 2

= Σ+ + Σ− + (4sqn−n0 − 1) ln 2.

Both Σ+ and Σ− consist of 4s terms of the form of (151), plus 4s terms of the

form
ln min
j=0,1,...,qn−n0

| sinπ(x+ jα)|,

minus ln | sinπ(a±θi)|. Thus, using (151) 4s times for Σ+ and Σ− respectively,

one has

(158)
∑

j∈I1∪I2,j 6=i
ln | cos 2πa− cos 2πθj | ≤ −4sqn−n0 ln 2 + Cs ln qn−n0 .

If a = θi, we obtain∑
j∈I1∪I2,j 6=i

ln | cos 2πθi − cos 2πθj |

=
∑

j∈I1∪I2,j 6=i
ln | sinπ(θi + θj)|

+
∑

j∈I1∪I2,j 6=i
ln | sinπ(θi − θj)|+ (4sqn−n0 − 1) ln 2

= Σ+ + Σ− + (4sqn−n0 − 1) ln 2,

(159)

where
Σ+ =

∑
j∈I1∪I2,j 6=i

ln | sinπ(2θ + (i+ j)α)|

and
Σ− =

∑
j∈I1∪I2,j 6=i

ln | sinπ(i− j)α|.
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We will estimate Σ+. Set J1 = [−s, s− 1] and J2 = [s, 3s− 1], which are two

adjacent disjoint intervals of length 2s. Then I1 ∪ I2 can be represented as a

disjoint union of segments Bj , j ∈ J1 ∪ J2, each of length qn−n0 . Applying

(151) to each Bj , we obtain

(160)

Σ+ ≥ −4sqn−n0 ln 2 +
∑

j∈J1∪J2
ln | sinπθ̂j | − Cs ln qn−n0 − ln | sin 2π(θ + iα)|,

where

(161) | sinπθ̂j | = min
`∈Bj
| sinπ(2θ + (`+ i)α)|.

Next we estimate
∑
j∈J1 ln | sinπθ̂j |. Assume that θ̂j+1 = θ̂j + qn−n0α for

every j, j + 1 ∈ J1. In this case, for any i, j ∈ J1 and i 6= j, we have

(162) ||θ̂i − θ̂j ||R/Z ≥ ||qn−n0α||R/Z.

Applying the Stirling formula, (156) and (162), one has

∑
j∈J1

ln | sin 2πθ̂j | > 2
s∑
j=1

ln(j∆n−n0)− C ln qn

> 2s ln
s

qn−n0+1
− C ln qn − Cs.

(163)

In the other cases, decompose J1 in maximal intervals Tκ such that for

j, j + 1 ∈ Tκ, we have θ̂j+1 = θ̂j + qn−n0α. Notice that the boundary points of

an interval Tκ are either boundary points of J1 or satisfy ‖θ̂j‖R/Z + ∆n−n0 ≥
∆n−n0−1

2 . This follows from the fact that if 0 < |z| < qn−n0 , then

‖θ̂j + qn−n0α‖R/Z ≤ ‖θ̂j‖R/Z + ∆n−n0

and

‖θ̂j + (z + qn−n0)α‖R/Z ≥ ‖zα‖R/Z − ‖θ̂j + qn−n0α‖R/Z
≥ ∆n−n0−1 − ‖θ̂j‖R/Z −∆n−n0 .

Assuming Tκ 6= J1, then there exists j ∈ Tκ such that ‖θ̂j‖R/Z ≥
∆n−n0−1

2 −
∆n−n0 .

If Tκ contains some j with ‖θ̂j‖R/Z <
∆n−n0−1

10 , then

|Tκ| ≥
∆n−n0−1

2 −∆n−n0 −
∆n−n0−1

10

∆n−n0

≥ 1

4

∆n−n0−1

∆n−n0

− 1 ≥ s

8
− 1,

(164)
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since sqn−n0 ≤ qn−n0+1, where |Tκ| = b − a + 1 if Tκ = [a, b]. For such Tκ, a

similar estimate to (163) gives∑
j∈Tκ

ln | sinπθ̂j | ≥ |Tκ| ln
|Tκ|

qn−n0+1
− Cs− C ln qn

≥ |Tκ| ln
s

qn−n0+1
− Cs− C ln qn.

(165)

If Tκ does not contain any j with ‖θ̂j‖R/Z <
∆n−n0−1

10 , then by (150),∑
j∈Tκ

ln | sinπθ̂j | ≥ −|Tκ| ln qn−n0 − C|Tκ|

≥ |Tκ| ln
s

qn−n0+1
− C|Tκ|.

(166)

By (165) and (166), one has

(167)
∑
j∈J1

ln | sinπθ̂j | ≥ 2s ln
s

qn−n0+1
− Cs− C ln qn.

Similarly,

(168)
∑
j∈J2

ln | sinπθ̂j | ≥ 2s ln
s

qn−n0+1
− Cs− C ln qn.

Putting (160), (167) and (168) together, we have

(169) Σ+ > −4sqn−n0 ln 2 + 4s ln
s

qn−n0+1
− Cs ln qn−n0 − C ln qn.

Now we start to estimate Σ−. Replacing (156) with (157), and following the

proof of (169), we obtain,

(170) Σ− > −4sqn−n0 ln 2 + 4s ln
s

qn−n0+1
− Cs ln qn−n0 − C ln qn.

From (159), (169) and (170), one has

∑
j∈I1∪I2,j 6=i

ln | cos 2πθi − cos 2πθj | ≥ −4sqn−n0 ln 2

+ 8s ln
s

qn−n0+1
− Cs ln qn−n0 − C ln qn.

(171)

By (158) and (171), we have

max
i∈I1∪I2

∏
j∈I1∪I2,j 6=i

|x− cos 2πθj |
| cos 2πθi − cos 2πθj |

< e4sqn−n0 (−2 ln(s/qn−n0+1)/qn−n0+ε).

Combining with Lemma 3.4, there exists some j0 with j0 ∈ I1 ∪ I2 such that

θj0 /∈ A4sqn−n0−1,lnλ+2 ln(s/qn−n0+1)/qn−n0−ε.
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First, we assume j0 ∈ I2. Set I = [j0 − 2sqn−n0 + 1, j0 + 2sqn−n0 − 1] =

[x1, x2]. By (30), (31) and (32), it is easy to verify that

|GI(y, xi)| ≤ exp
{

(lnλ+ ε)(4sqn−n0 − 1− |y − xi|)

− 4sqn−n0(lnλ+ 2 ln(s/qn−n0+1)/qn−n0 − ε)
}
.

Notice that |y − xi| ≥ sqn−n0 , so we obtain

(172) |GI(y, xi)| ≤ exp{−(lnλ+ 8 ln(s/qn−n0+1)/qn−n0 − 2ε)|y − xi|}.

If j0 ∈ I1, we may let y = 0 or y = 1 in (172). Combining with (33), we get

|φ(0)|, |φ(−1)| ≤ 6sqn−n0 exp{−(lnλ+ 8 ln(s/qn−n0+1)/qn−n0 − 2ε)sqn−n0}.

This is in contradiction to |φ(0)|2 + |φ(−1)|2 = 1. Thus j0 ∈ I2, and the

theorem follows from (172). �

Proof of Theorem 3.5. In Case (i), (156) and (157) are obtained corre-

spondingly from Lemmas B.2 and B.3. Thus Theorem 3.5 follows from The-

orem B.4. In Case (ii), it is easy to see that (156) and (157) also hold, so

Theorem B.4 applies as well. �

Assume bn+1 ≥ qn
2 . For any 1 ≤ j ≤ 48C∗

bn+1

qn
, we construct I1, I2 ⊂ Z as

follows:

I1 =

ï
−
⌊1

2
qn
⌋
, qn −

⌊1

2
qn
⌋
− 1

ò
,

I2 =

ï
jqn −

⌊1

2
qn
⌋
, (j + 1)qn −

⌊1

2
qn
⌋
− 1

ò
.

Let θm = θ +mα for m ∈ I1 ∪ I2. Then

Theorem B.5. Suppose θ is n-Diophantine with respect to α. Then for

any ε > 0, the set {θm}m∈I1∪I2 is ln qn+1−ln j
2qn

+ε-uniform for sufficiently large n.

Proof. In (34), let x = cos 2πa, k = 2qn− 1 and take the logarithm. Thus

in order to prove the theorem, it suffices to show that

ln
∏

m∈I1∪I2,m6=i

| cos 2πa− cos 2πθm|
| cos 2πθi − cos 2πθm|

=
∑

m∈I1∪I2,m 6=i
ln | cos 2πa− cos 2πθm|

−
∑

m∈I1∪I2,m 6=i
ln | cos 2πθi − cos 2πθm|

≤ (2qn − 1)

Å
ln qn+1 − ln j

2qn
+ ε

ã
.
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First, we estimate
∑
m∈I1∪I2,m 6=i ln | cos 2πa− cos 2πθm|. Obviously,∑

m∈I1∪I2,m 6=i
ln | cos 2πa− cos 2πθm|

=
∑

m∈I1∪I2,m 6=i
ln | sinπ(a+ θm)|

+
∑

m∈I1∪I2,m 6=i
ln | sinπ(a− θm)|+ (2qn − 1) ln 2

= Σ+ + Σ− + (2qn − 1) ln 2.

Both Σ+ and Σ− consist of two terms of the form of (151), plus two terms of

the form

min
k=1,...,qn

ln | sinπ(x+ kα)|,

minus ln | sinπ(a± θi). Thus one has∑
m∈I1∪I2,m 6=i

ln | cos 2πa− cos 2πθm| ≤ −2qn ln 2 + C ln qn.

Setting a = θi and using the first inequality of (151) two times, we obtain∑
m∈I1∪I2,m 6=i

ln | cos 2πθi − cos 2πθm|

≥ −2qn ln 2− C ln qn + 2 min
m,i∈I1∪I2

ln | sinπ(2θ + (m+ i)α)|

+ min
m∈I1∪I2,m 6=i

ln | sinπ(m− i)α|.

(173)

By Lemma B.2, we also have

(174) min
m,i∈I1∪I2

ln | sinπ(2θ + (m+ i)α)| ≥ −C ln qn.

By (149) and (150), the corresponding minimum term of

min
m∈I1∪I2,m 6=i

ln | sinπ((m− i)α)|

is achieved at jqn. It is easy to check that

(175) min{ln | sinπjqnα|} > − ln
qn+1

j
− C,

since ∆n ≥ 1
2qn+1

.

Putting (173), (174) and (175) together, we obtain

max
x∈[−1,1]

max
i=1,...,k+1

k+1∏
m=1,m 6=i

|x− cos 2πθm|
| cos 2πθi − cos 2πθm|

≤ e(2qn−1)
Ä

ln qn+1−ln j

2qn
+ε
ä
. �
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[Ber68] J. M. Berezans′kĭı, Expansions in Eigenfunctions of Selfadjoint Oper-

ators, Transl. Math. Monogr. 17, American Mathematical Society, Provi-

dence, R.I., 1968, translated from the Russian by R. Bolstein, J. M. Danskin,

J. Rovnyak and L. Shulman. MR 0222718.
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