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Palindromic subshifts and simple periodic
groups of intermediate growth

By Volodymyr Nekrashevych

Abstract

We describe a new class of groups of Burnside type, by giving a pro-

cedure transforming an arbitrary non-free minimal action of the dihedral

group on a Cantor set into an orbit-equivalent action of an infinite finitely

generated periodic group. We show that if the associated Schreier graphs

are linearly repetitive, then the group is of intermediate growth. In partic-

ular, this gives first examples of simple groups of intermediate growth.

1. Introduction

Let a be a homeomorphism of period two (an involution) of a Cantor

set X . Choose a finite group A of homeomorphisms of X such that for all

h ∈ A, ζ ∈ X , we have h(ζ) = ζ or h(ζ) = a(ζ), and for every ζ ∈ X , there

exists h ∈ A such that h(ζ) = a(ζ). We say that A is a fragmentation of a.

Suppose that we have a minimal action on the Cantor set of the infinite

dihedral group D∞ generated by two involutions a, b. (An action is said to be

minimal if all its orbits are dense.) Let A and B be fragmentations of a and b.

We are interested in the group 〈A ∪B〉 generated by A and B.

Examples of such groups are the first Grigorchuk group [Gri80] and every

group from the family of Grigorchuk groups defined in [Gri85]. They are all

obtained by fragmenting one particular minimal action of the dihedral group

(associated with the binary Gray code; see Example 3.3 below).

We show that under rather general conditions on the fragmentation, the

group G = 〈A∪B〉 possesses interesting properties, pertinent to three classical

problems of group theory (Burnside’s problem on periodic groups, Day’s prob-

lem on amenable groups, and Milnor’s problem on intermediate growth). For

example, every non-free minimal action of D∞ can be fragmented to produce
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a finitely generated infinite periodic group. Moreover, if the action of D∞
is expansive, then one can fragment it (in uncountably many different ways)

to get a simple group. Actions of low complexity (for example, coming from

palindromic minimal substitutional subshifts) can be fragmented to produce

groups of intermediate growth, including simple ones.

Namely, we prove the following (see Theorem 4.1).

Theorem 1.1. Suppose that ξ is a fixed point of a and that for every

h ∈ A such that h(ξ) = ξ, the interior of the set of fixed points of h accumulates

on ξ. Then the group 〈A ∪B〉 is periodic and infinite.

If the action of D∞ = 〈a, b〉 is expansive, then the topological full group of

G = 〈A ∪ B〉 contains an infinite finitely generated simple subgroup A(G,X ),

see [Nek15]. The group A(G,X ) is a subgroup of a (possibly bigger than G)

fragmentation 〈A1 ∪ B1〉 to which Theorem 1.1 is also applicable, so that the

group A(G,X ) is periodic. For a definition of the topological full group and

the group A(G,X ), see Section 2.2.

Here a group G is said to be periodic (or torsion) if for every g ∈ G,

there exists n such that gn is the identity. The question of existence of finitely

generated infinite periodic groups (groups of Burnside type) is the classical

Burnside problem [Bur02]. A harder version (bounded Burnside problem) asks

for a group with bounded order n of elements. The general problem (without

a bound on the order of elements) was solved by E. Golod and I. Shafarevich

[Gol64] in 1964. The bounded Burnside problem was solved by S. Adyan and

P. Novikov [NA68] in 1968. The restricted Burnside problem (the bounded

Burnside problem in the class of residually finite groups) was solved (in the

negative) in 1989 by E. Zelmanov [Zel90]. For a survey of the Burnside problem

and related topics, see [GL02].

Previously known examples of infinite periodic finitely generated groups

can be split into three classes. One class consists of solutions of the bounded

Burnside problem. They are constructed using some versions of the small

cancellation theory: combinatorial as in the original Adyan-Novikov proof

(see [Adi79]), geometrical due to A. Ol′shanskii (see [Ol′91], [Iva94], [Lys96])

and E. Rips [Rip82], and via M. Gromov’s theory of hyperbolic groups (see

[Gro87], [Ol′93]).

The second class is the Golod-Shafarevich groups. The third class is

groups generated by automata and groups defined by their action on rooted

trees. The first examples in this class were constructed by S. Aleshin [Ale72],

V. Sushchanskii [Suš79], R. Grigorchuk [Gri80], and N. Gupta and S. Sidki

[GS83]. Related constructions (self-similar groups, branch groups, etc.) be-

came a very active area of research; see [BGŠ03], [Gri05], [Nek05]. But periodic

groups in this class remain to be more or less isolated examples.
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Note that the groups in the latter two classes are necessarily residually

finite. In fact, most methods of study of these groups heavily rely on their

residual finiteness (e.g., on their action on a rooted tree). The groups in the

first class may be simple, e.g., the Ol′shanskii-Tarski monsters [Ol′82].

Theorem 1.1 produces a new large class of groups of Burnside type. It

includes the Grigorchuk group, so it intersects with the above mentioned third

class of periodic groups, but it also contains many new groups. For instance,

we produce the first example of a group of Burnside type generated by piece-

wise isometries of a polygon (with a finite number of pieces) and examples of

simple groups.

Any non-free (i.e., such that some non-trivial elements have fixed points)

action of D∞ can be fragmented so that it satisfies the conditions of Theo-

rem 1.1. For example, if S ⊂ XZ is a minimal palindromic subshift (such that

the elements of S contain arbitrarily long palindromes), then the transforma-

tions

a(w)(n) = w(−n), b(w)(n) = w(1− n)

for w ∈ S generate a minimal action of D∞ such that a or b (depending on the

parity of the lengths of arbitrarily long palindromes) has a fixed point. Then

it is easy to fragment the corresponding generators so that the conditions of

Theorem 1.1 are satisfied. Then, after passing to the group A(G,S), we get a

finitely generated simple periodic group.

Minimal palindromic shifts are classical objects in Dynamics; see, for ex-

ample, [BG13, §§4.3–4.4] and references therein. See also [GLN17], where

spectral properties of a substitutional system associated with the Grigorchuk

group are studied.

Answers to the Burnside problem were important examples for the the-

ory of amenable groups. Amenability was defined by J. von Neumann [vN29]

in his analysis of the Banach-Tarski paradox. He noted that a group con-

taining a non-commutative free group is non-amenable, and he showed that

amenability is preserved under some group-theoretic operations (extensions,

direct limits, passing to a subgroup and to a quotient). So, there are “ob-

viously non-amenable” groups (groups containing a free subgroup) and “ob-

viously amenable” groups (groups that can be constructed from finite and

commutative groups using the above operations). The “obviously amenable”

groups are called elementary amenable. For more on amenability, see [Wag93],

[Pat88], [Gre69].

Groups of Burnside type are never obviously non-amenable, since they

do not contain free subgroups. They are also never elementary amenable; see

[Cho80, Th. 2.3]. The fact that the class of groups without free subgroups

and the class of elementary amenable groups are distinct is proved in [Cho80]

precisely using the existence of groups of Burnside type.
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Groups of Burnside type were the first examples to show that neither class

(groups without free subgroups and elementary amenable groups) coincides

with the class of amenable groups.

They were the first examples of non-amenable groups without free sub-

groups (free Burnside groups and Tarski monsters; see [Ol′80], [Ady82]). All

known examples of finitely generated infinite groups of bounded exponent are

non-amenable.

The groups in the second class (the Golod-Shafarevich groups) are all

non-amenable by a result of M. Ershov [Ers11].

Groups of Burnside type (the Grigorchuk groups [Gri83], [Gri85]) were

also the first examples of non-elementary amenable groups. In fact, for a long

time the only known examples of non-elementary amenable groups were based

on the Grigorchuk groups. Later, other examples were constructed [BV05],

[BKN10], [AAV13], but all of them where defined by their actions on rooted

trees, so, in particular, they were residually finite. For a long time the question

if there exist infinite finitely generated simple amenable groups was open. It

was answered by K. Juschenko and N. Monod in [JM13]. They showed that

the topological full group of a minimal homeomorphism of the Cantor set is

amenable (confirming a conjecture of R. Grigorchuk and K. Medynets). Here

the topological full group of a (cyclic in this case) group G acting on a Cantor

set X is the group of all homeomorphisms h : X −→ X such that for every

ζ ∈ X , there exists a neighborhood U of ζ and an element g ∈ G such that

g|U = h|U . In other words, it is obtained by “fragmenting” a minimal action of

Z in a way similar to our definition of a fragmentation of D∞. Our definition is

different, however, as we do not require the sets where the action of an element

h ∈ A coincides with the action of a to be open.

It was proved earlier in [Mat06] and [BM08] that if τ is a minimal home-

omorphism of the Cantor set, then the topological full group of 〈τ〉 has simple

derived subgroup, and if the homeomorphism is expansive (i.e., is conjugate to

a subshift), then the derived subgroup is finitely generated. See also [CJN16],

where a similar result is proved for Zn-actions. H. Matui proved in [Mat13] that

the derived subgroups of the full groups of minimal subshifts are of exponential

growth.

The methods of [JM13] were generalized in [JNdlS16] to cover a wide (in-

cluding almost all known examples) class of non-elementary amenable groups.

For arbitrary fragmentations A,B of the generators a, b of a minimal ac-

tion of the dihedral group, the group 〈A∪B〉 can be embedded into the topologi-

cal full group of a minimal subshift. This was observed for the first time (for the

Grigorchuk group) by N. Matte Bon in [MB15]. It follows that all groups gener-

ated by fragmenting a minimal dihedral group are amenable. Theorem 1.1 pro-

duces, therefore, the first examples of simple amenable groups of Burnside type.
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The only previously known simple groups of Burnside type were of bounded

exponent and non-amenable (e.g., Ol′shanskii-Tarski monsters [Ol′82]).

If G is a group generated by a finite set S, then its growth function γ(n)

is the number of elements of G that can be written as products of at most n

elements of S ∪ S−1. J. Milnor asked in [Mil68] whether there exists a group

with growth function eventually bigger than any polynomial and eventually

smaller than any exponential function. Such groups are called groups of inter-

mediate growth, and the first example of such a group is the Grigorchuk group

from [Gri80], [Gri83]. Amenability of the Grigorchuk group follows from its

intermediate growth.

Recently, L. Bartholdi and A. Erschler developed a technique of inverted

orbits and used it to construct a great variety of groups with a prescribed

intermediate growth; see [BE12], [BE14a], [BE14b] and [Bar17].

Until now all constructions of groups of intermediate growth used as a

starting point the groups from the family of Grigorchuk groups defined in

[Gri85], or groups close to them (see [BŠ01], [BP06], [Ers06], [KP13], [Bri14]).

This imposes some restrictions on the type of groups that can be obtained this

way. In particular, the following problem, asked by R. Grigorchuk in 1984 (see

Problem 9.8 in the “Kourovka notebook” [MK14]) remained to be open.

Problem. Does there exist a finitely generated simple group of intermedi-

ate growth?

See also [Man12, p. 132], [MK14, Prob. 15.17], [Gri14, Prob. 2], and

[BM07], [BE14b]. In fact, it was even an open question for a long time whether

all groups of intermediate growth are residually finite (see [Gri91, 8.4]). Note

that it follows from M. Gromov’s Theorem [Gro81] that groups of polyno-

mial growth are residually finite. The first examples of groups of intermediate

growth that are not residually finite were constructed by A. Erschler in [Ers04].

L. Bartholdi and A. Erschler showed in [BE14b] that every countable group

not containing a group of exponential growth can be embedded into a group

of intermediate growth. In particular, one can embed, using their result, any

locally finite simple group into a group of intermediate growth.

Let G = 〈A ∪ B〉 be a group satisfying the conditions of Theorem 1.1.

Let ζ ∈ X be a generic point of the Cantor set. Denote by Γζ its orbital

graph. Its set of vertices is the G-orbit of ζ. For every vertex η and every

generator s ∈ A ∪ B, we have an edge connecting η with s(η), labeled by s.

Since the generators s ∈ A ∪ B act on each point either trivially or as one of

the homeomorphisms a, b, the graph Γζ is just a “decorated” version of the

orbital graph of ζ for the dihedral group D∞ = 〈a, b〉. The latter is a bi-

infinite chain, whose edges are alternatively labeled by a and b. The orbital

graph Γζ is obtained from it by replacing every edge labeled by a or b by



672 VOLODYMYR NEKRASHEVYCH

a collection of edges labeled by some elements of A or B, respectively, and

adding loops labeled by elements of A ∪ B. Therefore, the graphs Γζ are

naturally represented by bi-infinite sequences wζ = · · ·x−1x0x1 · · · over some

finite alphabet.

Minimality of the action implies that the graphs Γζ (equivalently, the se-

quences wζ) are repetitive for a generic ζ: for every finite subgraph Σ of Γζ ,

there exists RΣ ∈ N such that for every vertex η of Γζ , there exists an isomor-

phic copy (as a labeled graph) of Σ at distance not more than RΣ from η in Γζ .

We say that G has linearly repetitive orbits if there exists a constant C

such that RΣ is bounded from above by C times the diameter of Σ. We prove

the following (see Theorem 6.6).

Theorem 1.2. Let 〈A ∪ B〉 be a group satisfying the conditions of The-

orem 1.1. If it has linearly repetitive orbits of generic points, then it is of

intermediate growth. If the action of the dihedral group D∞ is expansive, then

the corresponding group A(〈A ∪ B〉,X ) is finitely generated, simple, periodic,

and has intermediate growth.

Thus the answer to Problem 1 is positive. For properties of linearly repet-

itive (also called linearly recurrent) dynamical systems and quasi-crystals, and

applications to spectral theory of Schrödinger operators, see [KLS15, Ch.s 6

and 9] and [DL06]. Linear repetitiveness is closely related to the so-called

Boshernitzan condition; see [Bos92].

Linear repetitivity is a stronger condition than linear complexity. An

infinite sequence w has linear complexity if the number of different subwords

of length n of the sequence w is bounded from above by Cn for some n. If a

groupG generated by a fragmentation of a minimal action of the dihedral group

has orbital graphs of linear complexity, then G is Liouville, by a theorem of

N. Matte Bon [MB14] (which is applicable to a more general type of groups and

with a weaker condition on the sequences). The Liouville condition (absence of

non-constant bounded harmonic functions) is stronger than amenability, but

weaker than subexponential growth.

Our method of proving periodicity and intermediate growth is substan-

tially different from the original proofs of periodicity and intermediate growth

of the Grigorchuk group, since we cannot use an action on a rooted tree. All

previous proofs of intermediate growth of a group used “length reduction” of

automorphisms of rooted trees, as in the original paper of R. Grigorchuk, or

used intermediate growth of the Grigorchuk groups.

We study how points travel inside the orbital graphs Γζ under the action

of positive powers of one element (to prove periodicity) or under the action

of a long product of generators (to prove intermediate growth). In both cases

we use one-dimensional structure of the orbit, i.e., the fact that a trajectory
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starting in one vertex and ending in another has to pass through all the vertices

between them. Small neighborhoods of the special point ξ from Theorem 1.1

act as “reflectors”: trajectories approaching them often “bounce” and change

their direction. This is used in Theorem 1.1 to prove that a sequence gk(ζ),

k ≥ 1, must eventually come back to ζ, thus getting periodicity of g. A

similar idea shows that in the case when Γζ is linearly repetitive, the trajectory

ζ, g1(ζ), g2g1(ζ), . . . , gn · · · g2g1(ζ) of a vertex ζ under a long product gn · · · g2g1

of generators of G tends to change its direction often, so that it rarely goes

far away. This gives, using the techniques of inverted orbits of [BE12], a

subexponential estimate of the form C1 exp
Ä

n

exp(C2

√
logn)

ä
on the total number

of elements gn · · · g2g1 ∈ G, thus proving Theorem 1.2.

It is interesting to note that the proof of the main result of [JM13], as

analyzed in [JNdlS16] and [JMMdlS18], is also using a similar idea: trajec-

tories of a random walk on the orbital graph Γζ eventually return back to ζ

with probability one. This, together with the one-dimensional structure of the

graph, implies amenability of the group. Here we do not need the “reflectors”

produced by a special point of X , since we need only a probabilistic result to

prove amenability.

Orbital graphs of the Grigorchuk groups were studied in great detail by

Y. Vorobets in [Vor12]; an important part of our construction is based on his

results.

Section 2 contains preliminary general facts on groups acting on topo-

logical spaces, orbital graphs, graphs of germs, and minimal actions of the

dihedral group. In Section 3 we define fragmentations of dihedral groups and

study their orbital graphs and graphs of germs. Section 4 contains the proof

of Theorem 1.1. Theorem 1.2 is proved in Section 6. Finally, Section 8 de-

scribes in detail one particular example: a fragmentation of the substitutional

Fibonacci shift. We include it here to give an explicit example of a finitely

generated simple periodic group of intermediate growth, without relying on

the somewhat indirect proof of finite generation of A(G,X ) in [Nek15].
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Justin Cantu, Yves de Cornulier, Rostislav Grigorchuk, Mikhail Hlushchanka,
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Sidki, and the referees for remarks and suggestions.
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2. Preliminaries on group actions

We use left actions, so in a product a1a2 the transformation a2 is per-

formed before a1. We denote the identity transformation and the identity
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element of a group by ε (except for Z/2Z, where the trivial element is natu-

rally denoted 0). The symmetric and the alternating group acting on a set A

are denoted S(A) and A(A), respectively.

For a finite alphabet X, we denote by Xω the space of infinite one-sided se-

quences x1x2 · · · of elements of X, and by XZ the space of two-sided sequences

· · ·x−2x−1 . x0x1 · · · . Both spaces are endowed with the direct product topol-

ogy, where X is discrete. We denote by X∗ the set of all finite words over the

alphabet X, i.e., the free monoid generated by X.

2.1. Graphs of actions. All graphs in this section are oriented, and loops

and multiple edges are allowed. Their edges are labeled. Distances between

vertices in such graphs are measured ignoring the orientation. Similarly, con-

nectedness and connected components are also defined ignoring the orientation.

Isomorphisms must preserve orientation and labeling. A graph is called rooted

if one vertex, called the root, is marked. Every morphism of rooted graphs

must map the root to the root.

We denote a ball of radius r with center in a vertex v of a graph Γ by

Bv(r). It is considered to be a rooted graph (with the root v). Its set of edges

is the set of all edges of Γ connecting the vertices of Bv(r). The orientation

and labeling are inherited from Γ.

Let G be a group generated by a finite set S and acting by homeomor-

phisms on a compact metrizable space X . For ζ ∈ X , the orbital graph Γζ is

the graph with the set of vertices equal to the orbit Gζ of ζ, in which for every

η ∈ Gζ and every s ∈ S, there is an arrow from η to s(η) labeled by s.

The graph Γζ is naturally isomorphic to the Schreier graph of the group

G modulo the stabilizer Gζ . The Schreier graph of G modulo a subgroup H

is, by definition, the graph with the set of vertices equal to the set of cosets

gH, g ∈ G, in which for every coset gH and every generator s ∈ S, there is an

arrow from gH to sgH labeled by s.

Denote by G(ζ) the subgroup of elements of G acting trivially on a neigh-

borhood of ζ, i.e., the subgroup of all elements g ∈ G such that ζ is an interior

point of the set of fixed points of g. The graph of germs Γ̃ζ is the Schreier

graph of G modulo G(ζ). Note that G(ζ) is a normal subgroup of Gζ , hence

the map hG(ζ) 7→ hGζ induces a Galois covering of graphs Γ̃ζ −→ Γζ with the

group of deck transformations Gζ/G(ζ). We call Gζ/G(ζ) the group of germs

of the point ζ.

The vertices of Γ̃ζ are identified with germs of elements of G at ζ. Here a

germ is an equivalence class of a pair (g, ζ), where two pairs (g1, ζ) and (g2, ζ)

are equivalent if there exists a neighborhood U of ζ such that g1|U = g2|U .

If g2(ζ2) = ζ1, then the composition (g1, ζ1)(g2, ζ2) is well defined and is

equal to (g1g2, ζ2). The inverse of the germ (g, ζ) is the germ (g−1, g(ζ)). The

set of all germs of an action is a groupoid with respect to these operations,
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i.e., a small category of isomorphisms. It has a natural topology with the basis

consisting of the sets of the form Ug,U = {(g, ζ) : ζ ∈ U}, where g ∈ G and U

is an open subset of X .

Definition 2.1. A point ζ ∈ X is said to be G-regular if its group of germs

is trivial, i.e., if every element g ∈ G fixing ζ acts identically on a neighborhood

of ζ. If ζ is not G-regular, then we say that it is singular.

Note that for every g ∈ G, the set of points ζ ∈ X such that g(ζ) = ζ

but g /∈ G(ζ) is equal to the boundary of the set of fixed points of g. It follows

that this set is closed and nowhere dense. Consequently, if G is countable

(in particular, if G is finitely generated), then the set of G-regular points is

co-meager (residual).

Note also that gGζg
−1 = Gg(ζ) and gG(ζ)g

−1 = G(g(ζ)) for all ζ ∈ X and

g ∈ G, which implies that the set of G-regular points is G-invariant.

Depending on the separation conditions for the elements of the group of

germs Gζ/G(ζ) with respect to the natural topology on the groupoid of germs,

singular points can be classified in the following way.

Definition 2.2. Suppose that ζ ∈ X is a singular point. We say that ζ

is a Hausdorff singularity if for every g ∈ Gζ \ G(ζ), the interior of the set of

fixed points of g does not accumulate on ζ. Otherwise, ζ is a non-Hausdorff

singularity.

We say that ζ is a purely non-Hausdorff singularity if for every g ∈ Gζ ,
the interior of the set of fixed points of g accumulates on ζ.

Let (Γ1, v1), (Γ2, v2) be connected rooted labeled graphs, where vi are the

roots. Define the distance d((Γ1, v1), (Γ2, v2)) between them as 2−(R+1), where

R is the maximal integer such that the balls Bv1(R) ⊂ Γ1 and Bv2(R) ⊂ Γ2 of

radius R with centers in v1 and v2 are isomorphic as rooted graphs. Fix a finite

set of labels S and a positive integer k. Let GS,k be the set of all isomorphism

classes of connected oriented rooted graphs edge-labeled by elements of S and

such that every vertex is adjacent to at most k edges. Then the metric d defines

a compact topology on GS,k.
Proposition 2.3. The set of points of continuity of the map ζ 7→ (Γζ , ζ)

from X to the space of labeled rooted graphs is equal to the set of regular points.

The set of points of continuity of the map ζ 7→ (Γ̃ζ , ζ) is equal to the union

of the set of regular points and the set of Hausdorff singularities.

The statement about the regular points was proved in [Vor12].

Proof. The ball Bζ(r) in Γζ can be described by a finite system of equa-

tions and inequalities of the form g1(ζ) = g2(ζ) or g1(ζ) 6= g2(ζ) for pairs of

elements g1, g2 ∈ G of length at most r. If the point ζ is regular, then every such

equality or inequality holds for all points of some neighborhood of ζ. It follows
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that there exists a neighborhood N of ζ such that for every η ∈ N , the balls

Bζ(r) and Bη(r) of the corresponding orbital graphs are isomorphic as rooted

labeled graphs. This implies that the map η 7→ (Γη, η) is continuous at η.

Conversely, suppose that η 7→ (Γη, η) is continuous at ζ, and let g be an

element of Gζ . Write it as a product of generators and their inverses. This

product will correspond to a path in (Γζ , ζ) starting and ending in ζ. By conti-

nuity of the map η 7→ (Γη, η), and the definition of the topology on the space of

rooted graphs, there exists a neighborhood N of ζ such that for every η ∈ N ,

an isomorphic path starting and ending in η appears in Γη. This implies that

g(η) = η for all η ∈ N , and hence ζ is regular.

The proof of the statement about the map ζ 7→ (Γ̃ζ , ζ) is similar. One

has just to use the fact that ζ belongs to the union of the set of regular points

and the set of Hausdorff singularities if and only if for every g ∈ G such that

(g, ζ) = (ε, ζ) and every h ∈ G, there exists a neighborhood U of ζ such that

either h|U = g|U or (h, η) 6= (g, η) for all η ∈ U . �

Definition 2.4. The action of G on X is said to be minimal if all G-orbits

are dense in X .

Proposition 2.5. Suppose that the action of G on X is minimal. Then

for every r > 0, there exists R(r) > 0 such that for every G-regular point ζ ∈ X
and for every η ∈ X , there exists a vertex η′ of Γη such that d(η, η′) ≤ R(r)

and the rooted balls Bζ(r) ⊂ Γζ and Bη′(r) ⊂ Γη are isomorphic.

Proof. By Proposition 2.3, if ζ is G-regular, then for every r > 0, there

exists a neighborhood N of ζ such that for every η′ ∈ N , the balls Bζ(r) and

Bη′(r) of the corresponding orbital graphs are isomorphic as rooted labeled

graphs.

For every point η ∈ X , there exists an element g ∈ G such that g(η) ∈ N .

The set of sets of the form g−1(N) covers X and, by compactness, there exists

a finite subcover g−1
1 (N), g−1

2 (N), . . . , g−1
n (N). Let R be the maximal length

of the elements gi with respect to the generating set S. Then for every η ∈ X ,

there exists gi such that gi(η) ∈ N , and hence the balls Bζ(r) and Bη′(r) are

isomorphic for η′ = gi(η). Distance from η to η′ is not more than R. Since the

number of isomorphism classes of balls of radius r in the orbital graphs of G

is finite, we can find an estimate R(r) independent of ζ. �

Definition 2.6. We say that the action of G on X is linearly repetitive if

there exists K > 1 such that the function R(r) from Proposition 2.5 satisfies

R(r) < Kr for all r ≥ 1.

2.2. Topological full groups. Let G be a group acting on a Cantor set X .

The topological full group F(G,X ) of the action is the group of all homeomor-

phisms h : X −→ X such that for every ζ ∈ X , there exist a neighborhood U
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of ζ and an element g ∈ G such that h|U = g|U . Topological full groups were

introduced in [GPS99]. (See also [Kri80], where an earlier particular example

has appeared.) See the papers [Mat06], [Mat13], [Mat15], [Mat12] and the

survey [dC14] for various properties of topological full groups of group actions

and étale groupoids.

Let U ⊂ X be a non-empty clopen set, and let g1, g2, . . . , gn ∈ G be such

that the sets U1 = g1(U), U2 = g2(U), . . . , Un = gn(U) are pairwise disjoint.

Then for every permutation α ∈ Sn = S({1, 2, . . . , n}), we get the correspond-

ing element hα of the topological full group acting by the rule

hα(ζ) =

gjg−1
i (ζ) if ζ ∈ Ui and α(i) = j,

ζ if ζ /∈ ⋃ni=1 Ui.

The map α −→ hα is a monomorphism from Sn to F(G). Denote by A(G,X )

the subgroup generated by the images of the alternating subgroups An < Sn
for all such monomorphisms.

The following is proved in [Nek15].

Theorem 2.7. If the action of G on X is minimal, then A(G,X ) is simple

and is contained in every non-trivial normal subgroup of F(G,X ). If the action

of G on X is expansive and every G-orbit has cardinality at least 5, then

A(G,X ) is finitely generated.

Definition 2.8. An action of G on X is said to be expansive if there exists

δ > 0 such that d(g(ζ1), g(ζ2)) < δ for all g ∈ G implies ζ1 = ζ2 (where d is a

metric on X compatible with the topology).

An action (G,X ) on a Cantor set is expansive if and only if there exists

a G-equivariant homeomorphism from X to a closed G-invariant subset of AG

for some finite alphabet A.

2.3. Minimal actions of the dihedral group. When a set of generators S of

a group G consists of elements of order two, then we will consider the orbital

graphs and graphs of germs as non-oriented, so that an edge connecting two

vertices v1 and v2 labeled by s ∈ S replaces two arrows labeled by s: one from

v1 to v2, and one from v2 to v1 (if the edge is not a loop).

Let a, b be homeomorphisms of period two of a Cantor set X such that

the dihedral group 〈a, b〉 acts minimally on X .

Lemma 2.9. The orbital graphs of 〈a, b〉 are either one-ended or two-ended

infinite chains. The graphs of germs are two-ended infinite chains.

Proof. The Schreier graphs of the infinite dihedral group D∞ are either

infinite chains (one-ended or two-ended), or finite chains, or finite cycles. The
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latter two cases are impossible, since then we have a finite orbit, which con-

tradicts the minimality.

Suppose that a graph of germs is a one-ended infinite chain. Then the

endpoint of the chain is a fixed point of one of the generators, and there are

no other fixed points of the generators in this orbit. Since this is a graph of

germs, it follows that the generator fixes this point together with every point

of a neighborhood. But then, by minimality, there are other points of the orbit

where the germ of the generator is trivial, which is a contradiction. �

Corollary 2.10. If the stabilizer 〈a, b〉ξ is non-trivial, then there exists a

unique point ξ′ in the orbit of ξ such that 〈a, b〉ξ′ is equal either to 〈a〉 or to 〈b〉.

Let us show how minimality and expansivity conditions for D∞- and

Z-actions are related.

Proposition 2.11. Let a and b be homeomorphisms of period two of a

Cantor set X . If the action the dihedral group 〈a, b〉 is minimal, then either

the action of 〈ab〉 is minimal, or X is split into a disjoint union of two clopen

〈ab〉-invariant sets S1, S2 such that the action of 〈ab〉 on each of these sets is

minimal, and a(S1) = b(S1) = S2, a(S2) = b(S2) = S1.

In particular, if the action of D∞ is non-free (has non-trivial stabilizers of

some points), then the D∞-minimality is equivalent to the Z-minimality.

Proof. Suppose that the 〈a, b〉-action is minimal. If A ⊂ X is a closed non-

empty 〈ab〉-invariant set, then a(A) is also a closed 〈ab〉-invariant set (since

(ab)a(A) = a(ba)A = a(ab)−1(A) = a(A)). It follows that a(A) ∩ A and

a(A) ∪ A are closed and 〈a, b〉-invariant. Consequently, a(A) ∪ A = X , and

either a(A) ∩A = X , or a(A) ∩A = ∅, which finishes the proof. �

Proposition 2.12. Let a and b be homeomorphisms of period two of a

Cantor set X . Suppose that they generate an expansive action of D∞. Then

there exists a finite alphabet A, a permutation ι : A −→ A such that ι2 = ε,

and a Z-subshift S ⊂ AZ such that there exists a homeomorphism X −→ S
conjugating the action of the generators a and b with the homeomorphisms of

S given by the formulas

a(w)(n) = ι(w(−n)), b(w)(n) = ι(w(1− n))

for every w ∈ S and n ∈ Z.

Recall that a subshift is a closed Z-invariant subset of AZ.

Proof. There exists a partition U = {U1, U2, . . . , Un} of X into clopen sets

such that every point ζ ∈ X is uniquely determined by its itinerary, which is

defined as the map Iζ : D∞ −→ U given by the condition Iζ(g) 3 g(ζ). We

may assume that U is a-invariant, i.e., that for every U ∈ U , the set a(U)

belongs to U . Otherwise, we can replace U by the partition induced by U and
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a(U): two points ζ1, ζ2 belong to one piece of the induced partition if and only

if they belong to one piece of U and to one piece of a(U).

Then for every ζ ∈ X and g ∈ D∞, we have Iζ(g) = a(Iζ(ag)), so that Iζ ,

and hence ζ, are uniquely determined by the sequence Iζ((ab)
n), n ∈ Z. Let

us denote Jζ(n) = Iζ((ab)
n).

The set of sequences of the form Jζ(n) is obviously a closed shift-invariant

subset of the full shift UZ.

Let us describe the action of a and b on the sequences Jζ(n). We have

Ja(ζ)(n) = Iζ((ab)
na) = Iζ(a(ba)n) = a(Iζ((ba)n)) = a(Jζ(−n)) and Jb(ζ)(n) =

Iζ((ab)
nb) = Iζ(a(ba)n−1) = a(Iζ((ba)n−1) = a(Jζ(1 − n)). We can therefore

define the permutation ι of U equal to the action of a on U . �

If the permutation ι in Proposition 2.12 is identical, then the transfor-

mations a and b are “central symmetries” of the infinite sequences from the

subshift A. The transformation a flips the sequences around the zeroth letter,

while b flips them around the space between the zeroth and first letters. The

subshift S has to be invariant under a (and then it will be invariant under b).

Such subshifts are called palindromic. A minimal subshift is palindromic if and

only if a sequence w ∈ S contains arbitrarily long palindromes as subwords.

So, every palindromic minimal subshift is associated with a natural minimal

expansive action of D∞.

Example 2.13. Let τ be the substitution (i.e., an endomorphism of the

free monoid {0, 1}∗) given by

τ : 0 7→ 01, 1 7→ 10.

The words τn(0) converge to an infinite sequence 0110100110010110 · · · called

the Thue-Morse sequence. Let S be the set of all bi-infinite sequences w =

· · ·x−1x0x1 · · · such that every subword of w is a subword of limn→∞ τ
n(0). It

is known that S is a minimal subshift (see [AS03, Example 10.9.3]).

Note that the words τ2(0) and τ2(1) are palindromes:

τ2(0) = 0110, τ2(1) = 1001.

It follows by induction that τ2n(0) and τ2n(1) are palindromes for all n ≥ 1.

Consequently, the shift S is palindromic, and the central symmetries a and b

around the position number 0 and the space between positions number 0 and

1 generate a minimal expansive action of D∞.

Example 2.14. Consider the alphabet X = {1, 1∗, 2, 2∗}, the involution

ι : x↔ x∗, x ∈ {1, 2}, and the substitution

τ : 1 7→ 2, 1∗ 7→ 2∗, 2 7→ 1∗2∗, 2∗ 7→ 21.

We have ι ◦ τ = τ ◦ ι on X∗, where ι(x1x2 · · ·xn) = ι(xn)ι(xn−1) · · · ι(x1).
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Let S ⊂ XZ be the subshift generated by τ , similarly to the previous

example. Since ι commutes with τ , all words τn(2∗2) are ι-invariant:

2∗|2, 21|1∗2∗, 1∗2∗2|2∗21, . . . .

It follows that the shift S is invariant under the transformations a and b

defined as in Proposition 2.12.

2.4. Odometer actions. In some sense the opposite condition to expan-

siveness is residual finiteness of the action. We say that an action of a group

G on a Cantor set X is residually finite if the G-orbit of every clopen subset of

X is finite. An action is residually finite if and only if there exists a homeomor-

phism Φ : X −→ ∂T of X with the boundary of a locally finite rooted tree T

and an action of G on T by automorphisms such that Φ is G-equivariant (with

respect to the action of G on ∂T induced by the action on T ); see [GNS00,

Prop. 6.4].

Every minimal residually finite action of Z on a Cantor set is topologically

conjugate to an odometer, i.e., the transformation α : x 7→ x + 1 on the

projective limit Z of a sequence Z/(d1d2 · · · dn)Z of finite cyclic groups.

Proposition 2.15. Consider a non-free minimal residually finite action

of the dihedral group D∞ on a Cantor set X . Then there exists a homeomor-

phism of X with a projective limit Z of finite cyclic groups conjugating the

action of D∞ with the action generated by the homeomorphisms

a(x) = 1− x, b(x) = −x.

Proof. Let a and b be the generators of D∞ of order 2. By Corollary 2.10,

one of the generators a, b has a fixed point, and by Proposition 2.11 the action

of ab is minimal. Then the homeomorphism α = ab is an odometer, i.e., is

conjugate to the action of x 7→ x+ 1 on some projective limit Z of finite cyclic

groups.

We have bαb = α−1. If b1, b2 are order two homeomorphisms of the Cantor

set such that biαbi = α−1, then b1b2 commutes with α. By continuity and

minimality of the action of α on Z, the homeomorphism b1b2 commutes with

every transformation of the form x 7→ x+h for h ∈ Z. It follows that b1b2(h) =

b1b2(h+0) = h+b1b2(0) for every h ∈ Z, i.e., that b1b2 is of the form x 7→ x+g

for some g ∈ Z.

The transformation b0(x) = −x satisfies b0αb0 = α−1. It follows that

b is of the form b(x) = −x + g for some g ∈ Z. Then a = αb is given by

a(x) = −x+ g + 1.

If all cyclic groups d1d2 · · · dnZ in the projective limit have odd order, then

the equation 2x = g has a solution in Z for every g ∈ Z. Otherwise, either the

equation 2x = g, or the equation 2x = g + 1, has a solution. It follows that
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in the odd case both involutions a, b have a fixed point, while in the even case

exactly one of them has a fixed point.

Let us assume that b has a fixed point ξ ∈ Z. Then, conjugating everything

by the shift x 7→ x− ξ, we may assume that ξ = 0. Then a : x 7→ −x+ 1 and

b : x 7→ −x. �

For example, if X is the ring of dyadic integers, i.e., the projective limit

of the cyclic groups Z/2nZ, then the corresponding action of a : x 7→ 1 − x
and b : x 7→ −x is conjugate to the following action on the space {0, 1}ω of

right-infinite binary sequences:

a(0w) = 1w, a(1w) = 0w,

b(0w) = 0a(w), b(1w) = 1b(w).

Figure 1 shows the corresponding action on the binary rooted tree.

Figure 1. The Gray code action of D∞.

This particular realization corresponds to the Gray code (see [Wil89,

Ch. 1]). It is also the standard self-similar action of the iterated monodromy

group of the Chebyshev polynomial T2 = 2x2 − 1. The iterated monodromy

group of the degree d Chebyshev polynomial is conjugate to the natural ac-

tion of D∞ on the ring lim← Z/dnZ of d-adic integers. For their standard

self-similar actions, see [Nek05, Prop. 6.12.6].

3. Fragmentations of dihedral groups

Definition 3.1. Let a be a homeomorphism of period two of a Cantor

set X . A fragmentation of a is a finite group A of homeomorphisms of X such

that for every h ∈ A and ζ ∈ X , we have h(ζ) = ζ or h(ζ) = a(ζ), and for

every ζ ∈ X , there exists h ∈ A such that h(ζ) = a(ζ).

Note that if h is an element of a fragmentation A, then the sets Eh,ε =

{ζ ∈ X : h(ζ) = ζ} and Eh,a = {ζ ∈ X : h(ζ) = a(ζ)} are closed, a-invariant,

their intersection is the set of fixed point of a, and we have Eh,ε ∪ Eh,a = X .

If the set of fixed points of a has empty interior (e.g., if it is an element of a

generating set of a minimal action of D∞), then the interiors of Eh,ε and Eh,a
are disjoint.
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Suppose that the set of fixed points of a has empty interior. Choose for

every h ∈ A a set Qh either equal to the interior of Eh,ε or to the interior

of Eh,a, and consider the intersection of the chosen sets. Let P be the set of

all intersections that can be obtained this way. The set P has the following

properties:

(1) P is finite;

(2) the elements of P are a-invariant, open, and pairwise disjoint;

(3)
⋃
P∈P P = X ;

(4) for all P1, P2 ∈ P such that P1 6= P2, the set P1∩P2 consists of fixed points

of a.

We call the elements of P the pieces of the fragmentation A. Every piece

P ∈ P defines an epimorphism πP : A −→ Z/2Z by the rule

πP (h) =

0 if P ⊂ Eh,ε,
1 if P ⊂ Eh,a.

In other words, πP (h) = 1 if h acts on P as a, and πP (h) = 0 if h acts on P

as the identity. The map (πP )P∈P defines an embedding of A into (Z/2Z)P .

Conversely, suppose that a collection P satisfies conditions (1)–(4). Then

for any π ∈ (Z/2Z)P , the map aπ defined by

aπ(ζ) =

a(ζ) if ζ ∈ P , P ∈ P and π(P ) = 1,

ζ if ζ ∈ P , P ∈ P and π(P ) = 0

is a homeomorphism, and the map π 7→ aπ is an isomorphism of (Z/2Z)P with

a fragmentation of a.

The group (Z/2Z)P is, therefore, the maximal fragmentation of a with

the set of pieces P. Any subgroup A ≤ (Z/2Z)P such that all homomorphisms

πP : A −→ Z/2Z are surjective is a fragmentation with the set of pieces P.

Our main subject is fragmentations with purely non-Hausdorff singular-

ities; see Definition 2.2. Every non-free minimal action of D∞ can be frag-

mented so that we get a purely non-Hausdorff singularity in the following way.

Lemma 3.2. Suppose that a has a fixed point ξ. Then for every n ≥ 1

there exists a partition of X \ {ξ} into a disjoint union of open a-invariant

subsets P1, P2, . . . , Pn such that each set Pi accumulates on ξ.

Proof. Let Uk, k ≥ 0, be a descending sequence of clopen neighborhoods of

ξ such that U0 = X and
⋂
k≥0 Uk = {ξ}. Then Vk = Uk ∩a(Uk) is a descending

sequence of clopen a-invariant neighborhoods of ξ such that
⋂
k≥1 Vk = {ξ}.

Remove all repetitions, so that Vk 6= Vk+1 for every k.

Choose an arbitrary partition of the set of non-negative integers into n

disjoint infinite subsets I1, I2, . . . , In, and define Pi =
⋃
k∈Ii Vk \ Vk+1. �
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Suppose that P = {P1, P2, . . . , Pn} is as in Lemma 3.2, and suppose that

the set of fixed points of a has empty interior. Choose a subgroup A ≤ (Z/2Z)P

such that each homomorphism πPi : A −→ Z/2Z is surjective, but there is no

element h ∈ A such that πPi(h) = 1 for all Pi. Then A is a fragmentation of

a such that ξ is a purely non-Hausdorff singularity. It is always possible to

choose such an A if n ≥ 3. For example, for n = 3, such a subgroup of (Z/2Z)3

is {(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)}.

Example 3.3. Consider the space {0, 1}ω of right-infinite sequences x1x2 · · ·
over the binary alphabet {0, 1}. Consider the Gray code transformations a

and b, as defined in 2.4.

The homeomorphism b has a unique fixed point ξ = 111 · · · . The sets

Wn = 11 · · · 1︸ ︷︷ ︸
n times

0{0, 1}ω of sequences starting with exactly n ones form a parti-

tion of {0, 1}ω \ {ξ} into open b-invariant subsets.

Consider the partition

P0 =
∞⋃
k=0

W3k, P1 =
∞⋃
k=0

W3k+1, P2 =
∞⋃
k=0

W3k+2

of {0, 1}ω \ {ξ}, and the subgroup B = {b1, b2, b3, ε}, where b1 acts as b on

P0∪P1, b2 acts as b on P0∪P2, and b3 acts as b on P1∪P2. The group generated

by a and B is the first Grigorchuk group, introduced in [Gri80]. Its generators

a, b1, b2, b3 are usually denoted a, b, c, d. See Figure 2 for a description of their

action on the binary tree, where the boundary is naturally identified with the

space {0, 1}ω.

Figure 2. The Grigorchuk group.

Choosing different sets P0, P1, P2 equal to unions of the sets Wk, we get

all groups from the family of Grigorchuk groups Gw studied in [Gri85]. If we

choose other number of pieces in a partition P, then we get groups defined and

studied by Z. Šunić in [Šun07].
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3.1. Orbital graphs of fragmented dihedral groups.

Definition 3.4. Let a and b be homeomorphisms of period two of a Cantor

set X . A fragmentation of the dihedral group 〈a, b〉 is the group generated by

A ∪ B, where A and B are fragmentations of the homeomorphisms a and b,

respectively.

Let G = 〈A ∪ B〉 be a fragmentation of a minimal action of a dihedral

group 〈a, b〉. Denote by PA and PB the sets of pieces of the fragmentations A

and B.

For every ζ ∈ X and a′ ∈ A, we have a′(ζ) = a(ζ) or a′(ζ) = ζ. For every

ζ ∈ X , there exists a′ ∈ A such that a′(ζ) = a(ζ). The same is true for B

and b. It follows that the orbital graphs of G are just “decorated” versions of

the orbital graphs of D∞ = 〈a, b〉.
Namely, if ζ1, ζ2 are two different vertices of an orbital graph of 〈a, b〉

connected by an edge labeled by a, then ζ1, ζ2 belong to one piece P ∈ PA.

These vertices are connected in the orbital graph of G by edges labeled by all

elements h ∈ A such that πP (h) = 1. We will sometimes represent such a

multiple edge by
P

. The analogous statement is true for the edges labeled

by b. Thus, we replace the labels a and b of the orbital graph of the dihedral

group by pieces of the respective fragmentation. Note that all loops of an

orbital graph can be reconstructed from the edges that are not loops.

See Figure 3, where an orbital graph of the Grigorchuk group and the

corresponding orbital graph of the dihedral group are shown. Note that the

edges labeled by b are replaced by multiple edges labeled by {b1, b2}, {b3, b1},
or {b2, b3} (completed by the necessary loops). These sets of labels correspond

to the pieces P0, P1, and P2, respectively; see Example 3.3.

A segment Σ is a finite connected subgraph of an orbital graph Γζ such

that if v1, v2 are adjacent vertices of Σ, then all edges of Γζ connecting v1 and

v2 belong to Σ. We do not, however, include the loops of the endpoints of Σ

into the segment, for a technical reason.

We will sometimes arbitrarily choose a direction (left/right) on a graph Γζ .

Orientation of subsegments of Γζ will be induced from the orientation of Γζ .

Figure 3. The orbital graphs of the Grigorchuk group and the

dihedral group.
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If Σ is an oriented segment, then we denote by Σ−1 the segment with the

opposite orientation. We denote by |Σ| the length of Σ, i.e., the number of its

vertices minus one.

By Corollary 2.10, every non-trivial stabilizer 〈a, b〉ζ of a point ζ ∈ X is

conjugate to a stabilizer equal to 〈a〉 or 〈b〉. It follows that every stabilizer Gζ
of a singular point is conjugate to the stabilizer of a fixed point of a or b.

Lemma 3.5. Suppose that ξ ∈ X is a fixed point of a. The group of germs

Gξ/G(ξ) is naturally isomorphic to the quotient Hξ = A/A(ξ) of A by the

subgroup of elements acting trivially on a neighborhood of ξ. In other words,

the epimorphism Gξ −→ Gξ/G(ξ) restricts to an epimorphism A −→ Gξ/G(ξ).

Proof. Consider a germ (g, ξ). We can write g as a product b1a1b2a2

· · · bnan, where ai ∈ A, bi ∈ B, and ai, bi are all non-trivial except maybe

for b1 or an. There are no fixed points of b in the orbit of ξ, and the only

fixed point of a in the orbit of ξ is the point ξ itself. It follows that the

germs (bn, an(ξ)), (an−1, bnan(ξ)), . . . , (b1, a1b2a2 · · · bnan(ξ)) are equal either

to germs of the identity, or to the germs of the respective elements a or b. (We

use the fact that points on the boundary of the pieces of A or B are fixed

points of a or b, respectively.) Consequently, the germ (g, ξ) is equal to a germ

of the form (han, ξ), where h ∈ 〈a, b〉. In particular, the germ of an element of

the stabilizer of ξ is equal to the germ of an element of A. This finishes the

proof of the lemma. �

For the rest of the section, ξ is a fixed point of a. Consider the graph Ξ

with the set of vertices equal to the direct product of Hξ with the set of vertices

of Γξ. Two vertices (h1, v1) and (h2, v2) of Ξ are connected by an edge labeled

by h ∈ A∪B if h1 = h2 and v1 and v2 are vertices of Γξ connected by an edge

labeled by h, or if v1 = v2 = ξ and the image of h under the epimorphism

A −→ Hξ is equal to h1h2. Informally speaking, we take |Hξ| copies of Γξ and

connect their roots ξ by the Cayley graph of Hξ.

Proposition 3.6. The graph of germs Γ̃ξ is naturally isomorphic to Ξ.

The action of the group of deck transformations Gξ/G(ξ)
∼= Hξ of the covering

Γ̃ξ −→ Γξ coincides with the natural action of Hξ on Ξ.

Proof. We know (see the proof of Lemma 3.5) that every germ (g, ξ) is

equal to a germ of the form (g′h, ξ), where g′ ∈ {b, ab, bab, abab, . . .} and h ∈ A.

Identify the germ (g′h, ξ) with the vertex (h̃, v) ∈ Ξ, where v = g′(ξ) = g(ξ)

and h̃ is the image of h in Hξ. It is easy to check that this identification is an

isomorphism of graphs. The statement about the action by deck transforma-

tions also follows directly from the description of the germs (g, ξ). �

Let P1, P2, . . . , Pn ∈ PA be all pieces of the fragmentation A that accu-

mulate on ξ. Then the maps πPi : A −→ Z/2Z are naturally factored into the
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composition of epimorphisms A −→ Hξ and Hξ −→ Z/2Z. We will denote

the latter epimorphism also by πPi . Then (πPi)
n
i=1 : Hξ −→ (Z/2Z)n is an

isomorphic embedding, since an element h ∈ A is trivial in Hξ if and only if

πPi(h) = 0 for all i = 1, 2, . . . , n.

Denote by Λi the quotient of Γ̃ξ by the action of kerπPi . It follows from

Proposition 3.6 that Λi is the graph obtained by taking two copies {0} × Γξ

and {1} × Γξ of Γξ and connecting the endpoints (0, ξ) and (1, ξ) by
Pi .

Denote by λi : Γ̃ξ −→ Λi the natural covering map. In terms of Ξ and Λi,

it is given by the rule λi(h, v) = (πPi(h), v).

See Figure 4, where the graphs Γ̃ξ, Λi, and Γξ for the Grigorchuk group are

shown. The corresponding covering maps λi : Γ̃ξ −→ Λi and Λi −→ Γξ map

a vertex on one graph to the vertex of the graph below on the same vertical

line. The graph Λi corresponds to the piece Pi on which b3 acts identically,

and b1, b2 as the corresponding generator of the dihedral group (in this case b).

Figure 4. The graphs Γ̃ξ, Λi, and Γξ.

Proposition 3.7. If ζn ∈ Pi, n ≥ 1, is a sequence converging to ξ, then

the rooted orbital graphs Γζn converge to Λi in the space of rooted labeled graphs.

For the definition of the space of rooted graphs, see Section 2.1.

Proof. For a given positive integer r, consider the ball B(ε,ξ)(r) of radius

r in the graph of germs Γ̃ξ. It is given by a set of equalities and inequalities of

germs of the form (g1, ξ) = (g2, ξ) or (g1, ξ) 6= (g2, ξ) for elements g1, g2 ∈ G of

length at most r. If (g1, ξ) = (g2, ξ), then g1(ζ) = g2(ζ) for all ζ belonging to

a neighborhood of ξ. If g1(ξ) 6= g2(ξ), then we also have g1(ζ) 6= g2(ζ) for all ζ

in a neighborhood of ξ. Suppose that (g1, ξ) 6= (g2, ξ) but g1(ξ) = g2(ξ). Then
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(g1, ξ) = (gh1, ξ) and (g2, ξ) = (gh2, ξ) for some g ∈ 〈a, b〉 and h1, h2 ∈ A. If

πPi(h1h2) = 0, then h1|Pi = h2|Pi , hence g1(ζ) = g2(ζ) for all ζ ∈ N ∩ Pi for

some neighborhood N of ξ. If πPi(h1h2) = 1, then g1(ζ) 6= g2(ζ) for all points

ζ ∈ N ∩ Pi for some neighborhood N of ξ, since h1h2|Pi = a|Pi .

We see that for all points ζ ∈ N ∩ Pi, where N is a sufficiently small

neighborhood of ξ, the ball Bζ(r) of the orbital graph Γζ is equal to the quotient

of the ball B(ε,ξ)(r) ⊂ Γ̃ξ by the action of the kernel of the projection πPi . �

Corollary 3.8. Every segment of an orbital graph of G is isomorphic

to a segment of the orbital graph of a regular point. In particular, for every

segment Σ of an orbital graph of G, an isomorphic copy of Σ is contained in

every orbital graph of G at some bounded distance R(Σ) from every vertex of

the orbital graph.

Proof. Take an arbitrary limit Λi = limn→∞ Γζn of orbital graphs of reg-

ular points, where ζn converges to ξ. We have shown that Λi is obtained by

taking two copies of Γξ and joining the copies of ξ by an edge. (Note that

this will change the set of loops at ξ.) It follows that every segment of Γξ is

isomorphic to a segment of Λi. (Recall that segments do not contain the loops

at the endpoints, by the definition of segments.) Consequently, it is isomorphic

to a segment of the orbital graph Γζn for all sufficiently big n. �

Corollary 3.9. For every oriented segment Σ of an orbital graph of G,

there exist isomorphic copies of Σ and Σ−1 in every oriented orbital graph.

Proof. A copy φ(Σ) of the segment Σ is contained in Γξ. It follows that

every Λi contains the copies {0} × φ(Σ) and {1} × φ(Σ) of Σ. They have

opposite orientation and are contained in a segment Σ′ of Λi. A copy of the

segment Σ′ is contained in every orbital graph, and inside it we have two copies

of Σ in opposite orientations. �

4. Periodicity

Theorem 4.1. Let G be a fragmentation of a minimal dihedral group

action on a Cantor set X . If there exists a purely non-Hausdorff singularity

ξ ∈ X , then G is periodic.

Proof. We may assume that ξ is a fixed point of a. Let g ∈ G. Let m be

the length of g as a product of elements of A ∪ B. Then for every ζ ∈ X , the

image g(ζ) belongs to the ball Bζ(m) in the orbital graph Γζ and is uniquely

determined by the labels of the edges of Bζ(m).

Lemma 4.2. Let ∆ and Σ be subsegments of an orbital graph of G such

that ∆ has length m and Σ contains the (m+ 1)-neighborhood of ∆. Then for

every vertex v of ∆, there exists an embedding ϕ of Σ into an orbital graph of

a regular point and an integer k ≥ 1 such that gk(ϕ(v)) ∈ ϕ(∆).
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Proof. Suppose that it is not true for some Σ, ∆, v ∈ ∆, i.e., that for

every orbital graph Γ of a regular point and every embedding ϕ : Σ −→ Γ, the

sequence gk(ϕ(v)), k ≥ 1, does not come back to ϕ(∆). Since for every vertex

u the distance from u to g(u) is not more than m, the sequence gk(ϕ(v)), k ≥ 1,

always stays in one of the two connected components of Γ \ ϕ(∆). It follows

that gk(ϕ(v)) converges to one of the two ends of the graph Γ. This end is on

the same side of ϕ(∆) as g(ϕ(v)).

There exist embeddings Σ −→ Γξ in both orientations. In particular,

there exists an embedding ϕ : Σ −→ Γξ such that ϕ(g(v)) is on the same side

of ϕ(∆) as ξ. Consider the corresponding copy ϕ0 : Σ −→ {ε}×Γξ of Σ in the

ray {ε} × Γξ of the graph of germs Γ̃ξ = Ξ.

Consider the image λi ◦ ϕ0(Σ) of ϕ0(Σ) in any Λi. It belongs to the ray

{0} × Γξ of Λi. Since ϕ0(g(v)) is closer to (ε, ξ) than ϕ0(∆), the sequence

gk(λi ◦ ϕ0(v)) will converge to the infinite end of the ray {1} × Γξ of Λi.

It follows that the sequence gk(ϕ0(v)) will converge in Γ̃ξ to an end {h}×Γξ
different from {ε} × Γξ.

Since ξ is a purely non-Hausdorff singularity, there exists a projection λj :

Γ̃ξ −→ Λj such that λj({h}×Γξ) = λj({ε}×Γξ) = {0}×Γξ. Then the sequence

λj(g
k(ϕ0(w))) will move from one connected component of Λj \ λj(ϕ0(∆) to

another, which is a contradiction, as Λj is a limit of orbital graphs of regular

points. See Figure 5, where projections of Γ̃ξ onto Λi and Λj are shown. �

Figure 5. Coming back.

Let Σ and ∆ be as in Lemma 4.2, and let v0, v1, . . . , vm be the list of the

vertices of ∆. According to the lemma, there exists a copy of ∆ in an orbital

graph Γ of a regular point such that gk0(v0) ∈ ∆ for some k0 ≥ 1. Let Σ0 be a

sufficiently big segment of Γ containing ∆ such that the (m+ 1)-neighborhood

of the sequence gk(v0) for k = 0, 1, . . . , k0 belongs to Σ0. Then gk0(v0) ∈ ∆ in

every copy of Σ0 in every orbital graph.

Now apply Lemma 4.2 for Σ = Σ0 and for the vertex v1 of ∆. We will find

an orbital graph with a copy of Σ0 in which both sequences gk(v0) and gk(v1)
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eventually return back to ∆. Therefore there exists a segment Σ1 containing ∆

such that gk(v0) and gk(v1) return to ∆ in every orbital graph containing Σ1.

Continuing this way we will find a segment Σm such that every vertex of ∆

returns inside Σm back to ∆ under some positive power of g. It follows that

the orbit of every vertex of ∆ ⊂ Σm is finite and contained in Σm.

Let Γ be an orbital graph of a regular point. By Proposition 2.5, there

exists R > 0 such that for every vertex u of Γ, there exists a copy of Σm

on both sides of u at distances at most R. Let M be the number of vertices

of Σm. Then for every vertex u of Γ, either the sequence gk(u) includes a point

of one of the neighboring copies of ∆, or it always stays between them. In the

first case the length of the orbit is not more than M , in the second case it is

less than 2R + 2M . It follows that the lengths of all g-orbits of vertices of

Γ are uniformly bounded, hence there exists n such that gn acts trivially on

the vertices of Γ. But the set of vertices of Γ is dense in X , so gn = ε, which

finishes the proof of the theorem. �

5. Amenability and simplicity

Proposition 5.1. Let G be a fragmentation of a minimal action of the

dihedral group. Then G can be embedded into the topological full group of a

minimal action of Z on a Cantor set, and hence it is amenable.

Proof. We repeat the argument of [MB15]. Let Γζ be the orbital graph of

a regular point ζ ∈ X . It is a bi-infinite chain. Choose an arbitrary bijective

identification of the edges of the chain with integers such that adjacent edges

are identified with integers n,m such that |n −m| = 1. Let wζ = (an)n∈Z be

the corresponding sequence of elements of PA ∪PB describing the connections

between the adjacent vertices; see 3.1.

Let W be the set of all sequences w such that every finite subword of w

is a subword of wζ . The set W is obviously a closed shift-invariant set. Note

that for every finite subword u of wζ , there exists R > 0 such that for every

i ∈ Z, there exists j ∈ Z such that |i− j| ≤ R and ajaj+1 · · · aj+|u|−1 = u; see

Corollary 3.9. This in turn implies that the action of the shift onW is minimal.

Denote by σ :W −→W the shift, which is given by σ(w)(n) = w(n+ 1).

The action of every element s ∈ A ∪ B on a vertex η of Γζ is uniquely

determined by the labels of the two edges adjacent to η. This defines a natural

action of s on W given by the rule

s(w) =


σ(w) if πw(0)(s) = 1,

σ−1(w) if πw(−1)(s) = 1,

w otherwise.

If w describes the orbital graph Γζ , then s(w) represents the orbital graph

of Γs(ζ).
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It is easy to see that the action of s onW is by an element of the full group

F(〈σ〉,W), so that we get an isomorphic embedding of G into F(〈σ〉,W). The

result of K. Juschenko and N. Monod from [JM13] implies now amenability

of G. �

Proposition 5.2. Suppose that the action of 〈a, b〉 on X is expansive.

Let G be a fragmentation of the dihedral group. Then the action of G on X is

also expansive, and the group A(G,X ) is simple and finitely generated.

Note that if A(G,X ) is finitely generated, then it is a subgroup of a frag-

mentation of the dihedral group with the same groups of germs of points as

for G. In particular, if there is a purely non-Hausdorff singularity ξ ∈ X , then

A(G,X ) is periodic by Theorem 4.1 and amenable by Proposition 5.1.

Proof. Let δ > 0 be such that d(g(ζ), g(η)) < δ for all g ∈ 〈a, b〉 implies

ζ = η. Consider an arbitrary pair P1, P2 of pieces of the fragmentation A.

There exist ai ∈ A such that ai|Pi = a|Pi . Either a1|P2 = a|P2 , or a1|P2 = ε|P2 .

We also have that either a2|P1 = a|P1 , or a2|P1 = ε|P1 . It follows that for

some a′ ∈ {a1, a2, a1a2}, we have a′|P1∪P2 = a|P1∪P2 . We then have a′|P1∪P2
=

a|P1∪P2
.

It follows that for every two points ζ, η ∈ X , there exists a′ ∈ A such

that a′(ζ) = a(ζ) and a′(η) = a(η). Similarly, there exists b′ ∈ B such that

b′(ζ) = b(ζ) and b′(η) = b(η). Consequently, for every g ∈ 〈a, b〉 there exists

g′ ∈ G such that g′(ζ) = g(ζ) and g′(η) = g(η).

Suppose that d(g(ζ), g(η)) < δ for all g ∈ G. Then, by the above, we have

d(g(ζ), g(η)) < δ for all g ∈ 〈a, b〉, which implies, by expansivity of (〈a, b〉,X ),

that ζ = η. Thus, (G,X ) is also expansive. Properties of A(G,X ) follow now

from Theorem 2.7. �

6. Intermediate growth

6.1. Inverted orbits. Let S be a finite symmetric generating set of a group

G acting on a set X . Choose a point ξ ∈ X .

Let g = g1g2 · · · gn, gi ∈ S, be a word over S (i.e., an element of the free

monoid S∗). Following [BE12], we define the inverted orbit Oξ(g) as the set

Oξ(g) = {g1(ξ), g1g2(ξ), g1g2g3(ξ), . . . , g1g2 · · · gn(ξ)},

where the corresponding products of gi are considered to be elements of G.

Definition 6.1. Let g = g1g2 · · · gn be an element of S∗. We say that a

pair (i, j) of indices 1 ≤ i < j ≤ n is a first return of ξ in the word g if

gi+1gi+2 · · · gj(ξ) = ξ and gk+1 · · · gj(ξ) 6= ξ for all i < k < j. The number j− i
is called the length of the first return.
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For example, if gi(ξ) = ξ, then (i− 1, i) is a first return of length 1. Note

that we do not include the cases g1g2 · · · gj(ξ) = ξ as first returns.

Lemma 6.2. The number of first returns of ξ in g = g1g2 · · · gn is equal

to n− |Oξ(g)|.

Proof. Denote

ξ1 = g1(ξ), ξ2 = g1g2(ξ), . . . , ξn = g1g2 · · · gn(ξ).

A pair (i, j) is a first return if and only if ξi = ξj and ξk 6= ξj for i < k < j.

It follows that if ξi1 = ξi2 = · · · = ξim is the list of all instances of a given

element of Oξ(g), and i1 < i2 < · · · im, then (i1, i2), (i2, i3), . . . , (im−1, im) are

first returns, and that every first return appears in this way exactly once. Note

that the number of the first returns in this list is equal to m − 1. It follows

that the total number of first the returns is equal to n− |Oξ(g)|. �

Denote

νξ(n) = max
g=g1g2···gn∈S∗

|Oξ(g)|.

The function νξ(n) is obviously non-decreasing.

Lemma 6.3. For all m,n ≥ 0, we have

νξ(m+ n) ≤ νξ(m) + νξ(n).

Proof. Consider a word g1g2 · · · gn+m ∈ S∗ of length n+m. Then

Oξ(g1g2 · · · gn+m) = {g1(ξ), g1g2(ξ), . . . , g1g2 · · · gm(ξ)}
∪ g1g2 · · · gm ({gm+1(ξ), gm+2gm+1(ξ), . . . , gm+1gm+2 · · · gm+n(ξ)})
= Oξ(g1g2 · · · gm) ∪ g1g2 · · · gm(Oξ(gm+1gm+2 · · · gm+n)).

It follows that

(1) |Oξ(g1 · · · gn+m)| ≤ |Oξ(g1 · · · gm)|+ |Oξ(gm+1 · · · gm+n)| ≤ νξ(n) + νξ(m)

for every word g1g2 · · · gm+n, hence νξ(m+ n) ≤ νξ(m) + νξ(n). �

We will also need the following general fact.

Lemma 6.4. Suppose that a function f : N −→ N is non-decreasing and

satisfies f(n + m) ≤ f(n) + f(m) for all m,n ∈ N. Then for all n ≥ m, we

have f(n)
n ≤ 2f(m)

m .

Proof. There exist q ∈ [0, n/m] ∩ N and r ∈ 0, 1, . . . ,m − 1 such that

n = qm+ r. Then

f(n) = f(qm+ r) ≤ qf(m) + f(r),
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hence

f(n)

n
≤ qf(m) + f(r)

n

≤ nf(m)/m+ f(m)

n
=
f(m)

m
+
f(m)

n

=
f(m)

m

Å
1 +

m

n

ã
≤ 2f(m)

m
. �

6.2. Inverted orbits of linearly repetitive actions. Let G = 〈A ∪ B〉 be a

fragmentation of a minimal action of the dihedral group 〈a, b〉.

Proposition 6.5. If the action of G is linearly repetitive and there exists

a purely non-Hausdorff singularity ξ ∈ X , then there exist positive constants

C1, C2 such that

νζ(n) ≤ C1ne
−C2

√
logn

for all ζ ∈ X and n ≥ 1.

Proof. We may assume that the purely non-Hausdorff singularity ξ is a

fixed point of one of the generators a, b (see Corollary 2.10). Let it be a. We

orient Γξ so that the vertex ξ is on the left, and Γξ is infinite to the right. If

Σ is a segment or a ray infinite to the right, then a left subsegment of Σ is a

subsegment Σ′ such that the left end of Σ′ coincides with the left end of Σ. In

a similar way the notion of a right subsegment is defined.

Let {P0, P1, . . . , Pd−1} be the set of all pieces of the fragmentation A that

accumulate on ξ. Let Λi be the limit of the orbital graphs Γζn for regular

points ζn converging to ξ inside Pi. Then Λi is isomorphic to Γ−1
ξ

Pi Γξ;

see Proposition 3.7. For a natural number n, we denote by Pn the label Pi for

i ≡ n (mod d).

Take an arbitrary left subsegment Z0 of Γξ, and define inductively seg-

ments Zn in the following way. Suppose that we have defined Zn, and let N be

the length of Zn. Then there exists a copy Ln of Z−1
n

Pn Zn in Γξ such that

the right end of Ln is at distance at most KN from ξ for some fixed constant

K (coming from the estimate of linear repetitivity of orbital graphs). Define

Zn+1 to be the smallest segment of Γξ containing ξ and Ln; see Figure 6.

Figure 6. Definition of segments Zn.
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The length of Zn+1 is between 2N and KN . It follows that the length of

Zn is between 2n|Z0| and Kn|Z0|.
For every n, there exists a regular point ζn such that Zn is isomorphic to

a segment I of Γζn such that the right end of I is equal to ζn. Passing to a

convergent subsequence of ζn as n→∞, and using the fact that Zn is a right

subsegment of Zn+1, we will find a point ξ′ ∈ X such that for every n, there is

an isomorphic copy of Z−1
n

Pn Zn in Γξ′ with the right end equal to ξ′.

Take an arbitrary n > 1, and let k0 > 0 be such that |Zk0−1| ≤ n < |Zk0 |.
Then 2k0−1|Z0| < n ≤ Kk0 |Z0|, hence there exists positive constants c1, c2 not

depending on n such that c1 log n ≤ k0 ≤ c2 log n for all n ≥ 1.

Denote by S the generating set A ∪ B, and let S∗ be the free monoid

generated by S.

Let M,n > 1, and consider an arbitrary word g1g2 · · · gMn ∈ S∗. Let

rξ and rξ′ be the numbers of first returns of length at most n of ξ and ξ′,

respectively, in the word g1g2 · · · gMn, and let Rξ, Rξ′ be the respective numbers

of first returns of length more than n. By Lemma 6.2, we have

|Oξ(g1g2 · · · gMn)| = Mn− rξ −Rξ, |Oξ′(g1g2 · · · gMn)| = Mn− rξ′ −Rξ′ .

We also have, for every s = 0, 1, . . . ,M − 1, that the number

|Oξ(gsn+1 · · · g(s+1)n)|

is equal to n minus the number of first returns of ξ in the word

gsn+1gsn+2 · · · g(s+1)n.

Every such first return is a first return of ξ in the word g1g2 · · · gMn and its

length is not more than n. Since the words gsn+1gsn+2 · · · g(s+1)n do not over-

lap, we get

Mn− rξ ≤ |Oξ(g1 · · · gn)|
+ |Oξ(gn+1 · · · g2n)|+ · · ·+ |Oξ(g(M−1)n+1 · · · gMn)|,

hence

|Oξ(g1g2 · · · gMn)| ≤ |Oξ(g1 · · · gn)|
+ |Oξ(gn+1 · · · g2n)|+ · · ·+ |Oξ(g(M−1)n+1 · · · gMn)| −Rξ,

and the same inequality holds for ξ′.

Denote by ν(n) the maximum of |Oξ(h1 · · ·hn)| + |Oξ′(h1 · · ·hn)| for all

words h1 · · ·hn ∈ S∗ of length n. We then have

(2) |Oξ(g1g2 · · · gMn)|+ |Oξ′(g1g2 · · · gMn)| ≤Mν(n)− (Rξ +Rξ′).

Note also that it follows from the inequality (1) in the proof of Lemma 6.3 that

the function ν is subadditive.
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There exist isomorphic copies of Z−1
k0+d

Pk0 Zk0+d in Γξ (resp., in Γξ′)

that are contained in the K1n-neighborhood of ξ (resp., ξ′), where K1 is a

fixed constant.

Note that if Γξ′ is bi-infinite, we can find two copies of Z−1
k0+d

Pk0 Zk0+d

on both sides of ξ′ and both inside the K1n-neighborhood of ξ′. Let us denote

the copy of Z−1
k0+d

Pk0 Zk0+d in Γξ by ∆.

The inverted orbit Oξ(g1g2 · · · gMn) contains at least

|Oξ(g1g2 · · · gMn)| −K1n

elements outside the K1n-neighborhood of ξ.

Suppose that ζ = g1g2 · · · gt(ξ) is one of them. We will show now how ζ

“produces” a long first return of either ξ or ξ′, and we will use it to prove that

there are many long first returns. Consider the path

γ = (ξ, gt(ξ), gt−1gt(ξ), . . . , g1g2 · · · gt(ξ))

in Γξ. It starts in ξ and traverses ∆. Let s1 be the smallest index (i.e., the

last moment) such that gs1gs1+1 · · · gt(ξ) is the left end of ∆. Let s2 be the

largest index (i.e., the first moment) such that s2 < s1 and gs2gs2+1 · · · gt(ξ) is

the right end of ∆. Then

γ1 = (gs1 · · · gt(ξ), gs1−1gs1 · · · gt(ξ), . . . , gs2gs2+1 · · · gt(ξ))

is a path starting in the left end of ∆, ending in the right end of ∆, staying

all the time inside ∆, and touching its endpoints only in the first and the last

moments.

Recall that the graph of germs Γ̃ξ is isomorphic to the graph Ξ with the

set of vertices Hξ × Γξ, as it is described in Proposition 3.6.

Consider the covering λi : Ξ −→ Λi, where i ∈ {0, 1, . . . , d − 1} is the

residue of k0 modulo d, and let ‹∆ be the lift the central part Z−1
k0+d

Pk0

Zk0+d
∼= ∆ of Λi to Ξ. (Recall that Zk0+d is a left subsegment of Γξ.) Let γ̃

be the lift of γ1 to ‹∆ starting in the branch {ε} × Γξ of Ξ.

The end of γ̃ belongs to a branch {h} × Γξ of Ξ for some h ∈ Hξ \ {ε}.
There exists i′ ∈ {0, 1, . . . , d − 1} such that πPi′ (h) = 0, since ξ is a purely

non-Hausdorff singularity. Let k′ ∈ {k0 + 1, k0 + 2, . . . , k0 + d} be such that

k′ ≡ i′ (mod d).

Denote by ∆′ the central part of ∆ isomorphic to Z−1
k′

Pk0 Zk′ . (It exists,

since Zk′ is a left subsegment of Zk0+d.) Denote the full preimage of ∆′ in Ξ

by ‹∆′.
The path γ̃ must enter and exit ‹∆′. It enters ‹∆′ in the branch {ε} × Γξ.

Consider the segment γ̃′ of γ̃ from the last entering of ‹∆′ in the branch {ε}×Γξ
to the first touching the exit from ‹∆′ after that. The exit must be in a different
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branch, since otherwise γ̃ must touch the entrance of ‹∆′ one more time (again

inside the branch {ε} × Γξ). The path γ̃′ always stays inside ‹∆′ and touches

the entrance and the exit of ‹∆′ precisely once each. The image of γ̃′ in ∆ is of

the form

(gl1 · · · gt(ξ), gl1−1gl1 · · · gt(ξ), . . . , gl2 · · · gt(ξ)),

for some s2 ≤ l2 < l1 ≤ s1, where the only point in the path equal to the

left end of ∆′ is gl1 · · · gt(ξi) and the only point equal to the right end of ∆′ is

gl2 · · · gt(ξi).
We have the covering map ‹∆′ −→ (Z−1

k′
Pk′ Zk′) equal to the restriction

of λi′ : Ξ −→ Λi′ . Note that the segment of Γξ′ of the form Z−1
k′

Pk′ Zk′ with

the right end equal to ξ′ is isomorphic as a labeled graph to the corresponding

central part of Λi′ . Let ψ be this isomorphism (from the central part of Λi′ to

the segment of Γξ′). There are two such isomorphisms, and we choose the one

mapping the segment {0} ×Zk′ of Λi′ to the right half (the one containing ξ′)

of the subsegment Z−1
k′

Pk′ Zk′ of Γξ′ .

If the path γ̃′ exits ‹∆′ for the first time in the branch {h} × Γξ, then its

image under ψ ◦ λi′ is a path starting in ξ′, touching a vertex of the middle

edge Pk′ , and then coming back to ξ′ always staying inside Z−1
k′

Pk′ Zk′ . The

path ψ ◦ λi′(γ̃′) is equal to

(ξ′, gl1−1(ξ′), . . . , gl2 · · · gl1−1(ξ′) = ξ′),

where ξ′ is equal only to the first and to the last vertex in the path; see Figure 7.

We get a first return (l2−1, l1−1) of length at least 2|Zk′ | > n. We know

that gl2 · · · gt(ξ) is equal to the right end of ∆′, hence the right end of ∆′ and

the value of l2 uniquely determines ζ. We see that one such return is produced

by at most d points of the inverted orbit O(g1g2 · · · gMn).

If the path γ̃′ exits ‹∆′ for the first time in a branch {h′} × Γξ labeled by

h′ 6= h, then it has to traverse ‹∆′ at least one more time. It follows that γ̃ has

a subpath γ̃′ starting at (h′, ξ) ∈ Ξ, reaching a preimage of the right end of ∆′,

and some time after that coming back to (h′, ξ). Take the shortest subpath of

this form. Its length is at least 2|Zk′ | > n. Then the image of this subpath

under λi in Γξ produces a first return (l2−1, l1−1) of ξ of length at least n; see

Figure 8. In the same way as in the first case, the image under g1g2 · · · gl2−1 of

one of the endpoints of the central edge of ∆′ = (Z−1
k′

Pk0 Zk′) is equal to ζ.

It follows that at most two points of Oξi(g1g2 · · · gMn) can produce the same

first return this way.

We see that each ζ ∈ Oξ(g1g2 · · · gMn) outside the K1n-neighborhood of

ξ produces either a long first return of ξ′ or a long first return of ξ, and each

such return is produced by at most d points ζ.
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Figure 7. Finding a first return of ξ′.

Figure 8. Finding a first return of ξ.

The same argument shows that each point of Oξ′(g1g2 · · · gMn) outside of

the K1n neighborhood of ξ′ produces a long first return of ξ′ or ξ, and each

such first return is produced by at most 2d points of the inverted orbit. (We

have to multiply by 2, since we have to consider both sides of ξ′.)

It follows that the number Rξ +Rξ′ of long first returns satisfies

Rξ +Rξ′ ≥
1

3d

(
|Oξ(g1g2 · · · gMn)| −K1n+ |Oξ′(g1g2 · · · gMn)| − 2K1n

)
.
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Consequently, by (2),

|Oξ(g1g2 · · · gMn)|+ |Oξ′(g1g2 · · · gMn)| ≤Mν(n)− (Rξ +Rξ′)

≤Mν(n)− 1

3d

(
|Oξ(g1g2 · · · gMn)|+ |Oξ′(g1g2 · · · gMn)| − 3K1n

)
,

hence

3d+ 1

3d

(
|Oξ(g1g2 · · · gMn)|+ |Oξ′(g1g2 · · · gMn)|

)
≤Mν(n) +

K1

d
n.

Since g1g2 · · · gMn was arbitrary, we have

3d+ 1

3d
ν(Mn) ≤Mν(n) +

K1

d
n.

Let us denote δ(n) = ν(n)
n . Multiplying the last inequality by 3d

(3d+1)Mn ,

we get

δ(Mn) ≤ 3d

3d+ 1
δ(n) +

K2

M

for K2 = 3K1/(3d+ 1).

Let M =
⌈
K3
δ(n)

⌉
for K3 = 2(3d+ 1)K2. Then

δ(Mn) ≤ 3d

3d+ 1
δ(n) +

1

2(3d+ 1)
δ(n) =

6d+ 1

6d+ 2
δ(n).

Denote ρ = 6d+1
6d+2 . It is only important that 0 < ρ < 1.

Fix n0, and define inductively a sequence nk by the rule

nk+1 =
†
K3δ(nk)

−1
£
nk.

Then δ(nk+1) ≤ ρδ(nk) for every k. Choosing a bigger K3 in advance, if

necessary, we may assume that nk is strictly increasing.

We may assume that K3 > 1, and then

nk+1 =
†
K3δ(nk)

−1
£
nk ≤ K4δ(nk)

−1 · nk,

for K4 = K3 + 1, since δ(n) ≤ 1 for all n. Then

nk ≤ n0K
k
4 δ(n0)−1δ(n1)−1 · · · δ(nk−1)−1

≤ Kk
4ρ

kδ(nk)
−1ρk−1δ(nk)

−1 · · · ρδ(nk)−1 = Kk
4ρ

k(k+1)/2δ(nk)
−k.

Raising the inequality to the power 1/k, we get

n
1/k
k ≤ K4ρ

k+1
2 δ(nk)

−1,

hence

δ(nk) ≤ K4ρ
k+1
2 n
−1/k
k ≤ K5ρ

k
1n
−1/k
k

for ρ1 =
√
ρ and K5 = K4ρ1.
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Take an arbitrary n. Let k be such that nk ≤ n < nk+1. We have

δ(nk) ≤ K5ρ
k
1n
−1/k
k ≤ K5n

−1/k
k ≤ K5

Ä
K−1

4 δ(nk)nk+1

ä−1/k

≤ K5K4 (δ(nk)nk+1)−1/k ,

hence

δ(nk)
1+1/k ≤ K6n

−1/k
k+1 < K6n

−1/k

for K6 = K4K5, so

δ(nk) ≤ (K6n
−1/k)

k
k+1 ≤ K6n

−1/(k+1).

Therefore, using Lemma 6.4, we get

δ(n) ≤ 2δ(nk) ≤ 2K6n
−1/(k+1)

and

δ(n) ≤ 2δ(nk) ≤ 2δ(n0)ρk.

Suppose that k ≤
√

log n. Then

δ(n) ≤ 2K6n
−1/(k+1) ≤ 2K6n

−1/(
√

logn+1) = 2K6e
− logn

1+
√

logn ≤ K7e
−K8

√
logn

for some positive constants K7 and K8.

Suppose that k >
√

log n. Then

δ(n) ≤ 2δ(n0)ρk ≤ 2δ(n0)ρ
√

logn = 2δ(n0)elog ρ
√

logn.

We see that in both cases we have

δ(n) ≤ C1e
−C2

√
logn

for C1 = max{K7, 2δ(n0)} and C2 = min{K8,− log ρ}.
We have νξ(n) ≤ ν(n), hence

νξ(n)

n
≤ δ(n) ≤ C1e

−C2

√
logn

for all n.

Now let ζ0 ∈ X be arbitrary. Let n ≥ 1 be a natural number, and let

k be such that |Zk−1| ≤ n < |Zk|. Then for every k, the vertex ζ0 of Γζ0 is

contained in a segment Σ isomorphic to a segment of the form Z−1
k IZk, where

|I| ≤ K1n for some fixed K1. (Recall that |Zk|/|Zk−1| is bounded.)

We may assume that the distance from ζ0 to the copies of Zk and Z−1
k

in Σ is more than n. Consider a word g = g1g2 · · · gMn for some M > 1.

Split g into subwords h1 = g1g2 · · · gn, h2 = gn+1gn+2 · · · g2n, . . . , hM =

g(M−1)n+1g(M−1)n+2 · · · gMn.

Suppose that ζ1 ∈ Oζ0(g1g2 · · · gMn) \ Σ. Then for some t, we have ζ1 =

g1g2 · · · gt(ζ0). Without loss of generality, let us assume that ζ1 is to the right

of ζ0.
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Figure 9. A uniform estimate on ν(n).

Represent t = qn+ r, where r ∈ {0, 1, . . . , n− 1}. Then

ζ1 = h1h2 · · ·hqgqn+1 · · · gqn+r(ζ0).

Denote ζ ′0 = gqn+1 · · · gqn+r(ζ0). We have the sequence

(ζ0, ζ ′0, hq(ζ
′
0), hq−1hq(ζ

′
0), . . . , h1h2 · · ·hq(ζ ′0) = ζ1)

such that the distance between consecutive terms in the sequence is not more

than n. It follows that one of the elements of the sequence belongs to the right

subsegment Zk of Σ; see Figure 9. Let

ζ2 = hlhl+1 · · ·hq(ζ ′0) = g(l−1)n+1g(l−1)n+2 · · · gt(ζ0)

be the first such point. Then ζ ′2 = hl+1 · · ·hq(ζ ′0) is to the left of Zk. Consider

the path

(ζ ′2, gln(ζ ′2), gln−1gln(ζ ′2), . . . , g(l+1)n+1 · · · gln(ζ ′2) = ζ2)

It passes through the left end η of the subsegment Zk of Σ. Let

gsgs+1 · · · g(l+1)n(ζ ′2)

be the last entry of the sequence equal to η. Note that (l − 1)n+ 1 ≤ s ≤ ln.

Then the path

(ξ, gs−1(ξ), . . . , g(l−1)n+1g(l−1)n+2 · · · gs−1(ξ))

stays inside Zk. It follows that if we map the copy of Zk ⊂ Σ to the original

place of Zk (the left end of Γξ), then ζ2 will be moved to a point belonging

to Oξ(g(l−1)n+1g(l−1)n+2 · · · gln) = Oξ(hl). It follows that for every value of l,

there are not more than νξ(n) possible values of ζ2.

We have ζ1 = h1h2 · · ·hl−1(ζ2). Consequently, for each l, there are not

more than νξ(n) possible values of ζ1. It follows that the total number of

possible values of ζ1 is not more than Mνξ(n).

We proved that

νζ0(Mn) ≤ (K1n+ 2|Zk|) + 2Mνξ(n) ≤ K2n+ 2Mνξ(n)

for arbitrary n and M , where K2 > 0 is fixed. Take n = M . Then

νζ0(n2) ≤ K2n+ 2C1n
2e−C2

√
logn ≤ C ′1n2e−C

′
2

√
logn2

for some C ′1, C
′
2 > 0.

For every n ≥ 1, there exists k such that k2/4 ≤ n ≤ k2. Then

νζ0(n) ≤ νζ0(k2) ≤ C ′1k2e−C
′
2

√
log(k2) ≤ C ′′1ne−C

′′
2

√
logn
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for some positive constants C ′′1 and C ′′2 , which finishes the proof. �

6.3. Intermediate growth.

Theorem 6.6. Let G be a fragmentation of a minimal action of a dihe-

dral group on a Cantor set. Suppose that there exists a purely non-Hausdorff

singularity ξ ∈ X and that the orbital graphs of the action of G on orbits of

generic points are linearly repetitive. Then the growth of G is intermediate. It

is eventually larger than any polynomial function and is bounded from above

by exp
(
C1ne

−C2

√
logn

)
for some positive constants C1 and C2.

Proof. Choose a point ξ0 ∈ X . Denote by Ik the segment of Γξ0 of length

k such that ξ0 is its left end. Let K be a big number that we will choose later.

Choose α such that 1 < α < K+1
K . Define Σk = Ibαkc for k ≥ 1, and

denote by ζk the right end of Σk. Then

αk+1 − 1

αk
= α− α−k < |Σk+1|

|Σk|
<

αk+1

αk − 1
=

α

1− α−k
.

Let g = g1g2 · · · gn ∈ S∗ be a word of length n in generators S = A ∪ B.

For an arbitrary regular point ζ ∈ X , consider the set

Wζ = {ζ, gn(ζ), gn−1gn(ζ), . . . , g1g2 · · · gn(ζ)}.

It is a segment of Γζ since it is the range of a path in Γζ . Denote by lζ its

length. Let W ′ζ be the subsegment of Γζ consisting of Wζ and the two adjacent

edges. There exists an isomorphic copy φζ(W
′
ζ) of W ′ζ in the right half of Γξ0

such that its left end is at distance at most Klζ from ξ0 (if K is big enough).

Let k be the smallest positive integer such that bαkc is larger than the

distance from ξ0 to the left end of φζ(Wζ). Then ζk is to the right of the left

end of φζ(Wζ). Suppose that ζk is to the right of the right end of φζ(Wζ).

Let m be the distance from ξ0 to the left end of φζ(Wζ). Then bαkc ≥ m+ l,

bαk−1c ≤ m, and m ≤ Kl. It follows that

α

1− α−k+1
>
bαkc
bαk−1c

≥ m+ l

m
= 1 +

l

m
≥ 1 +

1

K
=
K + 1

K
,

which is a contradiction for all k bigger than some fixed k0.

It follows that if k is big enough, then the right end ζk of Σk belongs to

φζ(Wζ). It follows that there exists s such that gs · · · gn(φζ(ζ)) = ζk, or

φζ(ζ) = gngn−1 · · · gs(ζk).

It follows that φζ(ζ) ∈ Oζk(gngn−1 · · · g1).

Consider the set Lg of all triples (φζ(W
′
ζ), φζ(ζ), φζ(g(ζ))) for all regular

ζ ∈ X . If we know Lg, then we know g, since for every ζ ∈ X , an isomorphic

copy φζ(W
′
ζ) of W ′ζ will appear as the first component of an element of Lg, and
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then the second and the third components φζ(ζ) and φζ(g(ζ)) of that element

will determine g(ζ).

Note that since the length of Wζ is not more than n, the left end of

φ(Wζ) is at the distance at most Kn from ξ0, hence k is bounded above by

log(Kn)/ logα � log n.

It follows that the cardinality of Lg is not greater than C1n log ne−C2

√
logn

for some positive constants C1 and C2, by Proposition 6.5.

Let us estimate now the number of possible sets Lg for all words g ∈ S∗
of length n. Each element of Lg consists of a point of I(K+1)n, a segment of

length at most n containing this point, and a point in this segment. It follows

that the number of possibilities for each element of Lg is bounded above by

Cn4 for some constant C. Consequently, the number of possible sets Lg is less

than

(Cn4)C1n logne−C2
√

logn

= exp

Å
C1n log ne−C2

√
logn(4 log n+ logC)

ã
≤ exp

Å
C ′1n(log n)2e−C2

√
logn
ã

= exp

Å
C ′1n(e2 log logn−C2

√
logn)

ã
≤ exp

Å
C ′1ne

−C′2
√

logn
ã

for some C ′1, C
′
2 > 0 and all n big enough, since log logn√

logn
→ 0 as n → ∞. As

the element g is uniquely determined by Lg, this gives the necessary subex-

ponential estimate of the growth of G. The group G cannot be of polynomial

growth, since it is finitely generated, infinite, and periodic, which excludes the

possibility of a polynomial growth, by M. Gromov’s Theorem [Gro81]. �

7. Examples

7.1. Substitutional systems. Let X be a finite alphabet. Let τ : X∗ −→ X∗

be an endomorphism of the free monoid X∗. It is uniquely determined by the

restriction τ : X −→ X∗, which is usually called a substitution. The associated

subshift Xτ ⊂ XZ is the set of all bi-infinite sequences w such that for every

finite subword v of w, there exists n ≥ 0 and x ∈ X such that v is a subword

of τn(x). It is non-empty if and only if there exists x ∈ X such that the length

of τn(x) goes to infinity as n→∞.

D. Damanik and D. Lenz in [DL06] proved that a substitutional shift is

linearly repetitive if and only if it is minimal and gave a criterion of minimality

in terms of the substitution.

Let us illustrate how substitutional dynamical systems can be used to

construct periodic simple groups of intermediate growth on the example of the

Thue-Morse substitution.
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Consider the action of the dihedral group from Example 2.13. It acts on

the shift S generated by the substitution

τ(0) = 01, τ(1) = 10.

Let us introduce new symbols t, B,C,D and modify the substitution τ2:

τ ′(0) = 0t1D1t0, τ ′(1) = 1t0D0t1,

τ ′(D) = C, τ ′(C) = B, τ ′(B) = D, τ ′(t) = t.

Let S ′ be the set of sequences in the shift generated by τ ′ that have the letters

1, 2 on the even positions, and letters B,C,D, t on the odd positions. We have

a natural map κ : S ′ −→ S erasing the letters B,C,D. One can show that for

every w ∈ S, the set κ−1(w) consists of a single element, except for w equal to

a shift of one of the two infinite palindromes

· · · 10010110 . 01101001 · · ·

and

· · · 01101001 . 10010110 · · · ,
when κ−1(w) has three elements that differ from each other only by the central

letter B,C, or D.

Let a be the transformation of S ′ flipping a sequence around the letter on

the zeroth position, and let b, c, d, and t, respectively, be the transformations

flipping a sequence around the letter on the first position if it is C or D, B or

D, B or C, and t, respectively, and acting trivially otherwise. Then the action

of a, b, c, d, t on S ′ lifts by κ to an action on S in a unique way. The sequences

from S ′ are naturally interpreted as the orbital graphs of regular points, and

the limits Λi of regular orbital graphs in the case of a singular point of the

action of G = 〈a, b, c, d, t〉 on S. The group A(G,S) is a finitely generated

simple periodic group of intermediate growth.

7.2. Groups of polygon rearrangements. A nice class of examples illustrat-

ing Theorem 4.1 was suggested to the author by Yves de Cornulier. Consider

the torus R2/Z2 and two central symmetries a : x 7→ −x+v and b : x 7→ −x for

some v ∈ R2/Z2. Suppose that v is represented by (x, y) ∈ R2, such that 1, x, y

are linearly independent over Q. Then, by the classical Kronecker’s theorem

[Kro84], the action of Z generated by the composition x 7→ x + v of the two

symmetries is minimal on the torus.

Let us split the torus into three b-invariant parts P1, P2, P3 (e.g., each

equal to a union of some polygons) such that the fixed point 0 of b belongs to

the boundary of each of the parts. Consider then the transformations b1, b2, b3
(defined up to a set of measure zero) of the torus acting trivially on P1, P2,

P3, respectively, and acting as b on their complements. We may also cut the

torus open and represent it as a polygon, so that then a, b1, b2, b3 act on
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Figure 10. A periodic group acting on a hexagon.

the polygon by piecewise isometries. We can lift this action to an action by

homeomorphisms of the Cantor set satisfying the conditions of Theorem 4.1:

one has to double all points lying on the sides of the polygons (except for 0,

which has to remain common to all three pieces Pi) and then propagate this

doubling by the action of the group.

For example, we can consider the group generated by piecewise isometries

of the regular hexagon, shown on Figure 10. The first transformation a ro-

tates each of the four shown polygons by 180 degrees. The remaining three

transformations rotate the shaded areas by 180 degrees around the center of

the hexagon and fix the white areas. Theorem 4.1 implies that this group is

periodic, provided the first generator is sufficiently generic (i.e., such that its

composition with the 180 degree rotation around the center of the hexagon

acts minimally on the torus).

8. Fragmenting the golden mean dihedral group

8.1. The construction. Let us describe an explicit example of a finitely

generated simple periodic group of intermediate growth.

Denote by ϕ the golden mean 1+
√

5
2 . Let T1 and T2 be the transformations

T1(x) = ϕ−1x, T2(x) = 1− ϕ−2x

of [0, 1]. The ranges of T1 and T2 are the intervals [0, ϕ − 1] and [ϕ − 1, 1],

respectively. They do not overlap and cover the circle R/Z.

For every infinite sequence w = x1x2 · · · ∈ Xω over the alphabet X =

{1, 2}, the intersection of the ranges of Tx1 ◦ Tx2 ◦ · · · ◦ Txn is a single point.

Denote by a and b the transformations of the circle R/Z given by

a(x) = ϕ− x, b(x) = 1− x.

Then ba is the rotation x 7→ x + ϕ of the circle. We get a minimal action of

the dihedral group 〈a, b〉 on the circle.

Direct computations show that

a ◦ T1(x) = T1 ◦ b(x),

a ◦ T2(x) = T2 ◦ b(x)
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and

b ◦ T1 ◦ T1(x) = T2(x),

b ◦ T2(x) = T1 ◦ T1(x),

b ◦ T1 ◦ T2(x) = T1 ◦ T2 ◦ b(x)

for all x ∈ [0, 1], where a acts on [0, ϕ− 1] by x 7→ ϕ− x− 1 and on [ϕ− 1, 1]

by x 7→ ϕ− x.

We get the following associated action on the sequences x1x2 · · · ∈ Xω:

a(1w) = 1b(w), a(2w) = 2b(w),

b(11w) = 2w, b(2w) = 11w, b(12w) = 12b(w).

More formally, we have the natural map κ : Xω −→ R/Z mapping a

sequence x1x2 · · · to the unique intersection point of the ranges of Tx1 ◦ Tx2 ◦
· · ·◦Txn . Then the map κ is a semiconjugacy of the transformations a, b acting

on Xω with the transformations a, b acting on R/Z.

As usual, we will identify Xω with the boundary of the rooted tree X∗.

However, it is more natural to change the metric on the tree in the following

way. The weight of the letter 1 is equal to 1, the weight of the letter 2 is equal

to 2. The weight of a word v ∈ X∗ is equal to the sum of the weights of its

letters.

Denote by Ln the set of words of weight n. We denote by Lnv for v ∈ X∗

the set of words of the form uv for u ∈ Ln. Similarly, if A is a subset of X∗,

then we denote by AXω the set of all sequences w ∈ Xω such that a beginning

of w belongs to A.

We obviously have

(3) Ln = Ln−11 t Ln−22,

and L0 = {∅}, L1 = {1}, so that |Ln|, for n = 0, 1, 2, . . . , is the Fibonacci

sequence 1, 1, 2, 3, 5, . . . .

The transformation b has one fixed point (12)ω (encoding the point 1/2;

the point 0 has two encodings, which are interchanged by b). The transforma-

tion a has two fixed points 1(12)ω and 2(12)ω (encoding the points ϕ/2 and

(ϕ+ 1)/2 of the circle). Let Wn, for n ≥ 0, be the set of sequences starting by

(12)n2 or by (12)n11. Define Pi =
⋃∞
k=0W3k+i for i = 0, 1, 2. The sets Pi form

an open partition of Xω \ {(12)ω}.
Define, similarly to the Grigorchuk group, the homeomorphisms b0, c0, d0

of Xω acting trivially on P2, P1, P0, respectively, and as b on their complements.

Let a0 be the homeomorphism interchanging 11Xω with 2Xω. More explicitly,
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Figure 11. The generators of F .

the homeomorphisms a0, b0, c0, d0 are given by

a0(11w) = 2w, a0(2w) = 11w, a0(12w) = 12w,

b0(11w) = 2w, b0(2w) = 11w, b0(12w) = 12c0(w),

c0(11w) = 2w, c0(2w) = 11w, c0(12w) = 12d0(w),

d0(11w) = 11w, d0(2w) = 2w, d0(12w) = 12b0(w).

Note that a0 belongs to the full topological group of 〈b0〉.
Let us also fragment the homeomorphism a around its fixed points 1(12)ω

and 2(12)ω, in the same way as we fragmented the transformation b around

(12)ω. Namely, for every letter x ∈ {a, b, c, d}, define

x1(1w) = 1x0(w), x1(2w) = 2w,

x2(1w) = 1w, x2(2w) = 2g0(w).

See Figure 11 for a description of the action of the generators on the boundary

of the tree X∗.

The homeomorphisms bi, ci, di are examples of homeomorphisms defined

by finite asynchronous automata; see [GN00], [GNS00].

Let F be the group generated by ai, bi, ci, di, i = 0, 1, 2. The goal of this

section is to prove the following.

Theorem 8.1. The group F coincides with its topological full group. It is

periodic and of intermediate growth. Its derived subgroup [F, F ] is simple and

has finite index in F .
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Periodicity follows from Theorem 4.1. Note that the set {b0, c0, d0, ε} is a

group isomorphic to (Z/2Z)2. The element a0 commutes with this subgroup,

hence the elements a0, b0, c0, d0 generate a group isomorphic to (Z/2Z)3. The

elements a1, b1, c1, d1, a2, b2, c2, d2 pairwise commute and generate a subgroup

isomorphic to (Z/2Z)6. In particular, F is a quotient of the free product

(Z/2Z)3 ∗ (Z/2Z)6. It follows that F/[F, F ] is a quotient of (Z/2Z)9, hence

is finite. In fact, one can show that the abelianization epimorphism F −→
F/[F, F ] is induced by the epimorphism (Z/2Z)3 ∗ (Z/2Z)6 −→ (Z/2Z)9, so

that F/[F, F ] ∼= (Z/2Z)9, but we do not need it here.

Consequently, it is enough to prove subexponential growth, the equality

F = F(F,Xω), and that [F, F ] = A(F,Xω).

8.2. Locally finite groups Sω and Aω .

Lemma 8.2. For every n ≥ 1, we have

Xω = LnX
ω t Ln−12Xω.

Proof. It is true for n = 1: we have L1 = {1} and L0 = {∅} and Xω =

1Xω t 2Xω. Suppose it is true for n. Then we have

Xω = LnX
ω t Ln−12Xω = Ln1Xω t Ln2Xω t Ln−12Xω

= (Ln1 ∪ Ln−12)Xω ∪ Ln2Xω = Ln+1X
ω ∪ Ln2Xω. �

We say that two finite words v1, v2 are incomparable if neither of them

is a beginning of the other. For a set A of pairwise incomparable words,

we denote by S(A) (resp. A(A)) the group of all (resp. even) permutations

of A seen as homeomorphisms of Xω. If α is a permutation of A, then the

corresponding homeomorphism of Xω acts by the rule α(vw) = α(v)w for

v ∈ A, and α(w) = w for w /∈ AXω.

The groups S(Lnt), t ∈ {1, 2}, are naturally isomorphic to S(Ln), where

the isomorphism is induced by the bijection v 7→ vt.

By Lemma 8.2, the groups S(Ln) and S(Ln−12) act on disjoint subsets

of X∗, hence they commute. Denote S(Ln)⊕ S(Ln−12) = 〈S(Ln) ∪ S(Ln−12)〉.
The group A(Ln)⊕ A(Ln−12) is defined the same way.

Note that

S(Ln)⊕ S(Ln−12) < S(Ln+1)⊕ S(Ln2),

where S(Ln) is embedded diagonally into the direct sum by the homomorphism

induced by the natural maps

v 7→ v1 : Ln −→ Ln1 ⊂ Ln+1

and

v 7→ v2 : Ln −→ Ln2,
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and S(Ln−12) is embedded isomorphically to the factor S(Ln+1) by the natural

inclusion Ln−12 ⊂ Ln+1. The same is true for the embedding

A(Ln)⊕ A(Ln−12) < A(Ln+1)⊕ A(Ln2).

Denote by Sω and Aω the unions of the groups S(Ln) ⊕ S(Ln−12) and

A(Ln) ⊕ A(Ln−12), respectively, i.e., the direct limit of the described embed-

dings.

Proposition 8.3. The quotient Sω/Aω is isomorphic to (Z/2Z)2 and is

equal to the set of images of a0, a1, a2, 1.

Proof. The quotient (S(Ln)⊕ S(Ln−12))/(A(Ln)⊕ A(Ln−12) is naturally

isomorphic to Z/2Z ⊕ Z/2Z. It follows from the description of the embed-

ding S(Ln) ⊕ S(Ln−12) ↪→ S(Ln+1) ⊕ S(Ln2) that if (x, y) is the image of an

element g ∈ S(Ln) ⊕ S(Ln−12) in the quotient (S(Ln) ⊕ S(Ln−12))/(A(Ln) ⊕
A(Ln−12), then the image of the same element in the quotient (S(Ln+1) ⊕
S(Ln2))/(A(Ln+1)⊕ A(Ln2)) is (x+ y, x).

Note that the map (x, y) 7→ (x + y, x) is an automorphism of (Z/2Z)2

and that the orbit of any non-zero element of (Z/2Z)2 belongs to the cycle

(1, 0) 7→ (1, 1) 7→ (0, 1) 7→ (1, 0).

Let g ∈ Sω and n be such that g ∈ S(Ln)⊕S(Ln−12). Consider then the se-

quence ξg = (ti)i≥n of the images of g in the quotients (S(Li)⊕S(Li−12))/(A(Li)

⊕ A(Li−12). Note that the sequence ξg is defined only starting from some co-

ordinate. We identify two sequences if they are equal in all coordinates where

both of them are defined.

Then for every g ∈ Sω, the sequence ξg is either equivalent to the constant

zero sequence, or to one of the three shifts of the sequence

(1, 0), (1, 1), (0, 1), (1, 0), (1, 1), (0, 1), . . . .

The sequence ξg is equivalent to the constant zero sequence if and only if

g ∈ Aω. It follows that Sω/Aω is isomorphic to group of equivalence classes of

the sequences

((0, 0), (0, 0), (0, 0), . . .),

((1, 0), (1, 1), (0, 1), . . .),

((1, 1), (0, 1), (1, 0), . . .),

((0, 1), (1, 0), (1, 1), . . .),

which is isomorphic to (Z/2Z)2.

The elements a0, a1, a2 are equal to the permutations (11, 2) ∈ S(L2),

(111, 12) ∈ S(L3), (211, 22) ∈ S(L4), and hence the corresponding sequences
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ξa0 , ξa1 , ξa2 are

∗, (1, 0), (1, 1), (0, 1), (1, 0), (1, 1), . . .

∗, ∗, (1, 0), (1, 1), (0, 1), (1, 0), . . .

∗, ∗, ∗, (1, 0), (1, 1), (0, 1), . . . ,

where asterisk marks the places where the sequence is not defined. We see that

the images of a0, a1, a2 are all non-trivial elements of Sω/Aω. �

8.3. The action of the elements of F . Let x be one of the letters a, b, c, d,

and let v ∈ X∗. We then denote by xv the homeomorphism of Xω defined by

the rule

xv(w) =

vx0(u) if w = vu,

w if w /∈ vXω.

Denote also, for every non-negative integer k,

x3k = x(12)k , x3k+1 = x1(12)k , x3k+2 = x2(12)k .

Note that this definition agrees with the original definitions of x0, x1, x2.

We have an ∈ S(Ln+2) < S(Ln+2)⊕ S(Ln+12) and

bn = ancn+3, cn = andn+3, dn = bn+3.

It follows that we have the following equalities:

(4) bi = aici+3 = aiai+3di+6 = aiai+3bi+9 = aiai+3ai+9ci+12 = · · · ,

(5) ci = aidi+3 = aibi+6 = aiai+6ci+9 = aiai+6ai+9di+12 = · · · ,

(6) di = bi+3 = ai+3ci+6 = ai+3ai+6di+9 = ai+3ai+6bi+12 = · · · ,

We will need the following direct corollary of equations (4)–(6).

Lemma 8.4. Let n be a positive integer, and let i ∈ {0, 1, 2} be such that

n ≡ i (mod 3). Let y = b if n − i ≡ 6 (mod 9), y = c if n − i ≡ 3 (mod 9),

and y = d if n− i ≡ 0 (mod 9).

Then yi = han−3dn, where h ∈ S(Ln−4)⊕ S(Ln−52).

We say that two sequences w1, w2 ∈ Xω are cofinal if there exist finite

words v1, v2 ∈ X∗ of equal weight and an infinite word w ∈ Xω such that

w1 = v1w and w2 = v1w.

Note that no two sequences from the set R = {(12)ω, 1(12)ω, 2(12)ω} are

cofinal, but every sequence of the form v(12)ω, where v ∈ X∗, is cofinal to one

of the sequences from the set R.

It follows directly from the definition of the generators of F that elements

of F preserve cofinality classes of sequences. The next description of local

action of elements of F on Xω is easy to prove by induction on the length of g.
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Proposition 8.5. Let g ∈ F be an arbitrary element. If u ∈ Xω is not

cofinal to any of the elements of R = {(12)ω, 1(12)ω, 2(12)ω}, then there exists

a finite beginning v1 ∈ X∗ of u and a word v2 ∈ X∗ of weight equal to the weight

of v1 such that

g(v1w) = v2w

for all w ∈ Xω .

If u ∈ Xω is cofinal to an element of R, then there exists a finite beginning

v1 ∈ X∗ of u, a word v2 ∈ X∗ of weight equal to the weight of v1, and an element

h ∈ {ε, b0, c0, d0} such that

g(v1w) = v2h(w)

for all w ∈ Xω .

Corollary 8.6. Let g ∈ F . Then there exist finite sequences

v1, v2, . . . , vn, u1, u2, . . . , un ∈ X∗,

h1, h2, . . . , hn ∈ {ε, b0, c0, d0},
such that {v1, v2, . . . , vn} and {u1, u2, . . . , un} are maximal sets of pairwise

incomparable words, weight of vi is equal to the weight of ui, and for every

w ∈ Xω , we have

g(viw) = uihi(w).

The sequences v1, v2, . . . , vn, u1, u2, . . . , un, and h1, h2, . . . , hn uniquely de-

scribe the element g.

8.4. The recursive structure of the orbital graphs of F . The edges of the

orbital graphs of F belong to one of the following types:

(12)k11w
e3k (12)k2w,

1(12)k11w
e3k+1 1(12)k2w,

2(12)k11w
e3k+2 2(12)k2w,

where w ∈ Xω.

The labels ek stand for the following labelings by the generators

(7) e3k+i =


ai, bi, ci if k = 0,

bi, ci if k ≡ 0 (mod 3) and k > 0,

bi, di if k ≡ 1 (mod 3),

ci, di if k ≡ 2 (mod 3),

where i = 0, 1, 2. Thus, for k ≥ 3, the label ek is determined by the residue of

k modulo 9.

We will now define graphs Ik with the vertex set Lk. Each of the graphs

Ik will be a chain with a fixed choice of the left/right direction.
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For a finite or infinite word v, we denote by Ikv the graph obtained from

Ik by appending v to the name of each vertex of Ik.

The graphs I0 and I1 are single vertices ∅ and 1, respectively. Inductively

define Ik by the rule

Ik = I−1
k−22

ek−2 I−1
k−11.

Proposition 8.7. For every infinite word w, an orbital graph of F con-

tains Inw, and every finite segment of every orbital graph of F is contained in

Inw for some n and w. Denote by Pn and Qn the left and the right endpoints

of the chain In, respectively. Then

Pn = (12)n/3, 1(12)(n−1)/3, or 2(12)(n−2)/3,

and

Qn = (21)n/3, 1(21)(n−1)/3, or 11(21)(n−2)/3,

depending on the residue i = 0, 1, 2 of n modulo 3.

Proof. Induction on n. �

Proposition 8.8. The orbital graphs of F are linearly repetitive, hence

the group F has subexponential growth.

Proof. Consider the substitution τ given in Example 2.14, add new letters

ek, k ≥ 0, to the alphabet, and modify τ as follows:

τ̃ : 1 7→ 2, 1∗ 7→ 2∗, 2 7→ 1∗e02∗, 2∗ 7→ 2e01, ek 7→ ek+1.

Compare it to the Thue-Morse example in 7.1. We extend the involution ∗

to the new alphabet by setting e∗i = ei, and to the set of all finite words by

(x1x2 · · ·xn)∗ = x∗n · · ·x∗2x∗1. Note that the actions of τ̃ and ∗ on the set of

finite words commute.

Let us prove by induction that the sequence obtained from τ̃k(1) by delet-

ing all the letters 1, 1∗, 2, 2∗ coincides with the sequence of the edge labels in

the segment Ik.

The segments I0, I1 have no edges, and the words 1, τ̃(1) = 2 also have no

letters ei. The segment I2 is 2
e0 11, and the word τ̃2(1) is 1∗e02∗. Suppose

that the statement is true for all segments Ii for i < k. We have

τ̃k(1) = τ̃k−2(1∗e02∗) = (τ̃k−2(1))∗ek−2(τ̃k−2(2))∗

= (τ̃k−2(1))∗ek−2(τ̃k−1(1))∗,

which agrees with the recursive definition of the segments Ik and finishes the

proof by induction.

Recall that the labels of the orbital graphs of F corresponding to the

symbol ek depend only on the residue of k modulo 9, if k ≥ 3. It follows that

the sequences describing the labels of bi-infinite orbital graphs of F belong
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to a substitutional shift. It is minimal by Proposition 2.5. Minimality of

substitutional shifts is equivalent to their linear repetitivity (see [DL06]), hence

the orbital graphs of regular points for the action of F are linearly repetitive.

Theorem 6.6 then shows that F has intermediate growth. �

8.5. The proof of Theorem 8.1. It follows from Corollary 8.6 that the topo-

logical full group F(F,Xω) is the group of all transformations g that are defined

by the rules of the form g(viw) = uihi(w), where v1, . . . , vn, u1, . . . , un ∈ X∗,

and h1, h2, . . . , hn ∈ {b0, c0, d0, ε}, as in Corollary 8.6.

Proposition 8.9. The group F coincides with its topological full group.

Proof. Let us prove at first that F contains Aω, i.e., that F contains

A(Ln)⊕ A(Ln−12) for every n ≥ 1.

The groups A(Ln) and A(Ln2) are trivial for n = 0, 1, 2. Let us prove by

induction that A(Lk) ⊕ A(Lk−12) < F . Suppose that it is true for all k < n,

and let us prove it for n.

Recall that we have

Xω = LnX
ω t Ln−12Xω

and

LnX
ω = Ln−11Xω t Ln−22Xω.

By Lemma 8.4, for one of the letters y ∈ {b, c, d} and i′ ∈ {0, 1, 2} such

that i′ ≡ i + 1 (mod 3), we will have yi′ = han−2dn+1, where h ∈ S(Ln−3) ⊕
S(Ln−42) < S(Ln−1)⊕ S(Ln−22Xω).

The element an−2 interchanges the sets Pn−22Xω and Qn−11Xω and acts

trivially on the complement of their union (where Pn and Qn are as in Propo-

sition 8.7), since

Pn−22 = 1(12)(n−3)/32, Qn−11 = 11(21)(n−3)/31 = 1(12)(n−3)/311

if i = 0,

Pn−22 = 2(12)(n−4)/32, Qn−11 = (21)(n−1)/31 = 2(12)(n−4)/311

if i = 1, and

Pn−22 = (12)(n−2)/32, Qn−11 = 1(21)(n−2)/31 = (12)(n−2)/311

if i = 2.

The element dn+1 preserves each set of the form vXω for v ∈ Ln−11 ∪
Ln−22 ∪ Ln−12, and it acts identically on each of them, except for the set

Qn−22Xω, since Qn−22 is one of the sequences (21)(n−2)/32 = 2(12)(n−2)/3,

1(21)(n−3)/32 = (12)n/3, 11(21)(n−4)/32 = 1(12)(n−1)/3.

It follows that yi′A(Ln−22)yi′ = A
(
(Ln−22 \ {Pn−22}) ∪ {Qn−11}

)
; see

Figure 12.
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Figure 12. Generation of A(Ln)⊕ A(Ln−12).

Consequently, the group generated by [A(Ln−1), yi′A(Ln−22)yi′ ] is equal

to A(Ln).

The elements of A(Ln−1) < F act on Ln−11Xω t Ln−12Xω. We have

Ln−11 ⊂ Ln, hence A(Ln−12) is contained in the group generated by A(Ln−1)

and A(Ln), hence it is also contained in F .

This finishes the proof of the inclusion Aω < F .

Lemma 8.10. The group F contains Sω and all elements of the form xv
for x ∈ {b, c, d} and v ∈ X∗.

Proof. It was shown in Proposition 8.3 that Sω/Aω is equal to the set of

images of a0, a1, a2, ε. Since ai ∈ F , and Aω < F , this implies that Sω < F . In

particular, all homeomorphisms an belong to F .

The relations bn+3 = dn, cn+3 = anbn, dn+3 = ancn imply by induction

that all the homeomorphisms bn, cn, dn belong to F .

Let v ∈ X∗, and let n be the weight of v. Let σ ∈ S(Ln) be the transposi-

tion (v, u), where u ∈ Ln is the unique sequence of the form (12)k, 1(12)k, or

2(12)k of weight n. Then xv = σxnσ. It follows that xv ∈ F . �

Lemma 8.10 finishes the proof of Proposition 8.9. �

The next proposition finishes the proof of Theorem 8.1.

Proposition 8.11. The derived subgroup [F, F ] coincides with A(F,Xω).

Proof. By Theorem 2.7 the group A(F,Xω) is simple and is contained in

every non-trivial normal subgroup of F . In particular, A(F,Xω) ≤ [F, F ].
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Therefore, it is enough to prove that F/A(F,Xω) is commutative, i.e., that the

generators of F commute modulo A(F,Xω).

Note that A(F,Xω) obviously contains Aω. Note that an = an+3 mod-

ulo Aω for all n ≥ 0. We have bn = anan+3bn+9, cn = anan+6cn+9, dn =

an+3an+6dn+9. It follows that bn = bn+9, cn = cn+9, and dn = dn+9 modulo

A(F,Xω). We have shown that for every x ∈ {a, b, c, d}, we have xn = xn+9

modulo A(F,Xω).

If n > 2, and v1, v2 ∈ Ln, then there exists an element σ ∈ A(Ln) such

that σ(v1) = v2. Then, for every letter x ∈ {a, b, c, d}, we have σxv1σ
−1 = xv2 .

It follows that xv1 = xv2 modulo A(Ln).

For arbitrary words v1, v2 of sufficiently big weight, there exist incompa-

rable words u1, u2 of the same weights as v1, v2, respectively. Then, for every

x, y ∈ {a, b, c, d}, we have xv1 = xu1 and yv2 = yu2 modulo A(F,Xω), and

[xu1 , yu2 ] = 1, hence [xv1 , yv2 ] ∈ A(F,Xω).

Let xi, yj be generators of F , where x, y ∈ {b, c, d}, i, j ∈ {0, 1, 2}. Then

xi = xi+9k, yj = yj+9k modulo A(F,Xω) for all non-negative integers k and

hence, by the above, xi and yj commute in F/A(F,Xω). �
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