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Semipositivity theorems for moduli
problems

By Osamu Fujino

Abstract

We prove some semipositivity theorems for singular varieties coming

from graded polarizable admissible variations of mixed Hodge structure.

As an application, we obtain that the moduli functor of stable varieties is

semipositive in the sense of Kollár. This completes Kollár’s projectivity

criterion for the moduli spaces of higher-dimensional stable varieties.
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1. Introduction

The main purpose of this paper is to give a proof of the following “folklore

statement” (see, for example, [Ale96], [Kar00], [Kov09], [AH11], [Kol13a], and

[Fn11b]) based on [FF14] (see also [FFS14]). In general, the (quasi-) projectiv-

ity of some moduli space is a subtle problem and is harder than it looks (see,

for example, [Kol06], and [Vie10]). We note that the coarse moduli space of

stable varieties was first constructed in the category of algebraic spaces.

Theorem 1.1 (Projectivity of moduli spaces of stable varieties). Every

closed complete subspace of the coarse moduli space of stable varieties is pro-

jective.
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To the best knowledge of the author, Theorem 1.1 is new for stable n-folds

with n ≥ 3. For the details, see the comments in 1.8 below. Note that a sta-

ble n-fold is an n-dimensional projective semi-log-canonical variety with am-

ple canonical divisor and is called an n-dimensional semi-log-canonical model

in [Kol13a]. For the details of semi-log-canonical varieties, see, for example,

[Fn14] and [Kol13b]. Theorem 1.1 is a direct consequence of Theorem 1.2

below by Kollár’s projectivity criterion (see [Kol90, §§2 and 3]).

Theorem 1.2 (Semipositivity ofMstable). LetMstable be the moduli func-

tor of stable varieties. Then Mstable is semipositive in the sense of Kollár.

For the reader’s convenience, let us recall the definition of the semiposi-

tivity of Mstable, which is a special case of [Kol90, 2.4. Definition].

Definition 1.3 (see [Kol90, 2.4. Definition]). The moduli functor Mstable

of stable varieties is said to be semipositive (in the sense of Kollár) if the

following condition holds:

There is a fixed positive integer m0 such that if C is a smooth projective

curve and (f : X → C) ∈ Mstable(C), then f∗ω
[mm0]
X/C is a nef locally free sheaf

on C for every positive integer m.

As the culmination of the works of several authors (see, for example,

[Ale94], [Ale96], [AM04], [HMX14], [HX13], [KM97], [Kol08], [Kol16], [KSB88]),

we have

Corollary 1.4. The moduli functor Mstable
H of stable varieties with

Hilbert function H is coarsely represented by a projective algebraic scheme.

As an easy consequence of Corollary 1.4, we obtain

Corollary 1.5 (see [Vie95, Th. 1.11]). The moduli functorMH of canon-

ically polarized smooth projective varieties with Hilbert function H is coarsely

represented by a quasi-projective algebraic scheme.

More generally, we have

Corollary 1.6. The moduli functor Mcan
H of canonically polarized nor-

mal projective varieties having only canonical singularities with Hilbert function

H is coarsely represented by a quasi-projective algebraic scheme.

Theorem 1.2 follows almost directly from the definition of the semipos-

itivity of Mstable in Definition 1.3 (see [Kol90, 2.4. Def.]) and the following

semipositivity theorem.

Theorem 1.7 (Semipositivity theorem I). Let X be an equidimensional

variety that satisfies Serre’s S2 condition and is a normal crossing in codimen-

sion one. Let f : X → C be a projective surjective morphism onto a smooth

projective curve C such that every irreducible component of X is dominant
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onto C . Assume that there exists a non-empty Zariski open set U of C such

that f−1(U) has only semi-log-canonical singularities. Then f∗ωX/C is nef.

Assume further that ω
[k]
X/C is locally free and f -generated for some positive

integer k. Then f∗ω
[m]
X/C is nef for every m ≥ 1.

1.8 (Comments). By the recent developments of the minimal model pro-

gram, Theorem 1.7 seems to be a reasonable formulation of [Kol90, 4.12. The-

orem] for higher-dimensional singular varieties. Kollár has pointed out that

the assumption that the fibers are surfaces was inadvertently omitted from its

statement. He is really claiming [Kol90, 4.12. Theorem] for f : Z → C with

dimZ = 3 (see [Kol90, 1. Introduction]). Therefore, Theorem 1.7 is new when

dimX ≥ 4. Likewise, Theorems 1.1 and 1.2 are new when the dimension of the

stable varieties are greater than or equal to three. We feel that the arguments

in [Kol90, 4.14] only work when the fibers are surfaces. In other words, we

needed some new ideas and techniques to prove Theorem 1.7. Our arguments

heavily depend on the recent advances on the semipositivity theorems of Hodge

bundles ([FF14] and [FFS14]) and some ideas in [Fn14].

For the general theory of Kollár’s projectivity criterion, see [Kol90, §§2
and 3] and [Vie95, Th. 4.34]. We do not discuss the technical details of the

construction of moduli spaces of stable varieties in this paper. We mainly treat

various semipositivity theorems. Note that the projectivity criterion discussed

here is independent of the existence problem of moduli spaces. We recommend

the reader to see [Kol90, §2] and [Kol13a, §§4 and 5] for Kollár’s program for

constructing moduli spaces of stable varieties (see also [Kol]). Our paper is

related to the topic in [Kol13a, 5.5 (Projectivity)].

In this paper, we prove Theorem 1.7 in the framework of [Fn14] and

[FF14], although we do not use the arguments in [Fn14] explicitly. Note that

[Fn14] and [FF14] heavily depend on the theory of mixed Hodge structures

on cohomology with compact support. A key ingredient of this paper is the

following semipositivity theorem, which is essentially contained in [FF14] (see

also [FFS14]). It is a generalization of Fujita’s semipositivity theorem (see

[Ft78, (0.6) Main Theorem]). We note that a Hodge theoretic approach to the

original Fujita semipositivity theorem was introduced by Zucker (see [Zuc82]).

Theorem 1.9 (Basic semipositivity theorem; see [FF14, §7]). Let (X,D)

be a simple normal crossing pair such that D is reduced. Let f : X → C be a

projective surjective morphism onto a smooth projective curve C . Assume that

every stratum of X is dominant onto C . Then f∗ωX/C(D) is nef.

Although we do not know what is the best formulation of the semiposi-

tivity theorem for moduli problems, we think Theorem 1.9 will be one of the

most fundamental results for application to Kollár’s projectivity criterion for
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moduli spaces. We can prove Theorem 1.7 by using Theorem 1.9. By the same

proof as that of Theorem 1.7, we obtain a generalization of Theorem 1.7, which

implies both Theorems 1.7 and 1.9.

Theorem 1.10 (Semipositivity theorem II). Let X be an equidimensional

variety that satisfies Serre’s S2 condition and is a normal crossing in codimen-

sion one. Let f : X → C be a projective surjective morphism onto a smooth

projective curve C such that every irreducible component of X is dominant

onto C . Let D be a reduced Weil divisor on X such that no irreducible com-

ponent of D is contained in the singular locus of X . Assume that there exists

a non-empty Zariski open set U of C such that (f−1(U), D|f−1(U)) is a semi-

log-canonical pair. Then f∗ωX/C(D) is nef.

We further assume that OX(k(KX + D)) is locally free and f -generated

for some positive integer k. Then f∗OX(m(KX/C+D)) is nef for every m ≥ 1.

By combining Theorem 1.10 with Viehweg’s covering trick, we obtain The-

orem 1.11, which is an answer to the question in [Ale96, 5.6]. Although we do

not discuss the moduli spaces of stable pairs here, Theorems 1.10 and 1.11 play

important roles in the proof of the projectivity of the moduli spaces of stable

pairs (see [Ale96], [FP97], [Has03], [KP17], and 4.3 below).

Theorem 1.11 (Semipositivity theorem III). Let X be an equidimen-

sional variety that satisfies Serre’s S2 condition and is a normal crossing in

codimension one. Let f : X → C be a projective surjective morphism onto

a smooth projective curve C such that every irreducible component of X is

dominant onto C . Let ∆ be an effective Q-Weil divisor on X such that no

irreducible component of the support of ∆ is contained in the singular locus

of X . Assume that there exists a non-empty Zariski open set U of C such

that (f−1(U),∆|f−1(U)) is a semi-log-canonical pair. We further assume that

OX(k(KX + ∆)) is locally free and f -generated for some positive integer k.

Then f∗OX(k(KX/C + ∆)) is nef. Therefore, f∗OX(kl(KX/C + ∆)) is nef for

every l ≥ 1.

Recently, Kovács and Patakfalvi generalized Theorem 1.1 for stable pairs

in [KP17]. Note that one of the main ingredients of [KP17] is Theorem 1.11.

For the details, we recommend that the reader see [KP17]. Theorem 1.11 is

also a key result for the proof of the ampleness of the CM line bundle on

the moduli space of canonically polarized varieties in [PX17]. In any case, we

expect our semipositivity theorems established in [FF14] to play an important

role in the study of higher-dimensional complex algebraic varieties.

Remark 1.12. In this paper, we do not use algebraic spaces for the proof

of the semipositivity theorems. We only treat projective varieties. Note that

Theorem 1.9 follows from the theory of variations of mixed Hodge structure.
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The variations of mixed Hodge structure discussed in [FF14] (see also [FFS14])

are graded polarizable and admissible. Therefore, we cannot directly apply the

results in [FF14] to the variations of (mixed) Hodge structure arising from

families of algebraic spaces. We need some polarization to obtain various

semipositivity theorems in our framework. We also note that the admissibility

assures us of the existence of canonical extensions of Hodge bundles, which

does not always hold for abstract graded polarizable variations of mixed Hodge

structure (see [FF14, Exam. 1.5]).

We do not use the Fujita–Zucker–Kawamata semipositivity theorem com-

ing from the theory of polarized variations of Hodge structure (see [Fn17c]).

Remarks 1.13. (1) As explained in [Kol90] and [Kol11], it is difficult to

directly check the quasi-projectivity of non-complete singular spaces. This

is because there is no good ampleness criterion for non-complete spaces. In

this paper, we adopt Kollár’s framework in [Kol90, §§2 and 3], where we use

the Nakai–Moishezon criterion to check the projectivity of complete algebraic

spaces. Note that Viehweg discusses the quasi-projectivity of non-complete

moduli spaces (see [Vie95] and [Vie10]). On the other hand, Kollár and we

prove the projectivity of complete moduli spaces (see [Kol90]).

(2) In general, we have to formulate and prove semipositivity theorems

for non-normal (reducible) varieties X even if we are mainly interested in the

moduli spaces of smooth (or normal) stable varieties. Let Mg (resp. Mg)

be the moduli functor of smooth projective curves (resp. stable curves) with

g ≥ 2. We consider (f : X → C) ∈ Mg(C) such that C is contained in

Mg \Mg, where Mg (resp. Mg) is the coarse moduli space of Mg (resp. Mg).

Then a general fiber of f : X → C may be non-normal and reducible. We can

prove the projectivity of Mg by Kollár’s projectivity criterion. However, we

cannot directly prove the quasi-projectivity of Mg.

(3) Although we repeatedly use Viehweg’s covering arguments, we do not

use the notion of weak positivity, which was introduced by Viehweg and plays

crucial roles in his works (see [Vie83], [Vie95], and [Vie10]). We just treat the

semipositivity on smooth projective curves (see [Kol90]).

(4) From the Hodge theoretic viewpoint, our approach is based on the

theory of mixed Hodge structures (see [FF14] and [FFS14]). The arguments in

[Vie95], [Kol90], and [Vie10] use only pure Hodge structures. It is one of the

main differences between our approach and the others.

(5) In this paper, we use the theory of variations of mixed Hodge structure

only in the proof of Theorem 1.9. Moreover, for the proof of Theorem 1.9, we

only need the theory of variations of mixed Hodge structure in the case where

the base space is a curve. If we assume that the base space is a curve, then

the theory described in [FF14] becomes much simpler than the general case.
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We summarize the contents of this paper. In Section 2, we collect some

basic definitions. In Section 3, we quickly review the moduli functor Mstable

of stable varieties and its coarse moduli space. Section 4 is the main part of

this paper, where we prove the theorems in Section 1. Our proofs depend on

[FF14], some ideas in [Fn14], and Viehweg’s covering arguments. In Section 5,

we prove the corollaries in Section 1.
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We will work over C, the complex number field, throughout this paper.

Note that, by the Lefschetz principle, all the results in this paper hold over

any algebraically closed field k of characteristic zero. We will freely use the

notation and terminology in [FF14] and [Fn14]. For the standard notation and

conventions of the log minimal model program, see [Fn11a] and [Fn17a].

2. Preliminaries

Let us recall the definition of nef locally free sheaves. For the details, see,

for example, [Vie95, §2].

Definition 2.1 (Nef locally free sheaves). A locally free sheaf of finite rank

E on a complete variety X is nef if the following equivalent conditions are

satisfied:

(i) E = 0 or OPX(E)(1) is nef on PX(E).

(ii) For every map from a smooth projective curve f : C → X, every quotient

line bundle of f∗E has non-negative degree.

A nef locally free sheaf was originally called a (numerically) semipositive sheaf

in the literature.

In this paper, we only discuss various semipositivity theorems for locally

free sheaves on a smooth projective curve. The following well-known lemma is

very useful. We omit the proof of Lemma 2.2 because it is an easy exercise.

Lemma 2.2. Let C be a smooth projective curve, and let Ei be a locally free

sheaf on C for i = 1, 2. Assume that E1 ⊂ E2, E1 is nef and that E1 coincides

with E2 over some non-empty Zariski open set of C . Then E2 is nef.
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The following lemma is more or less known to the experts. However, we

cannot find it explicitly in the literature. So we describe it here for the reader’s

convenience.

Lemma 2.3. Let E be a locally free sheaf of finite rank on a smooth projec-

tive irreducible curve C . Let Σ be a fixed Zariski closed set of C with Σ ( C .

Assume that there exists some positive integer µ such that, for every finite

surjective morphism π : C ′ → C from a smooth projective irreducible curve C ′

that is étale over some open neighborhood of Σ and for every ample line bundle

H′ on C ′, π∗E ⊗ (H′)µ is nef on C ′. Then E is nef.

Proof. We take an ample line bundle H on C. For any positive integer α,

we can construct a finite covering π : C ′ → C from a smooth projective

irreducible curve C ′ such that π∗H = (H′)1+2αµ for some ample line bundle H′
on C ′. We can make π étale over some open neighborhood of Σ and assume

that π is Galois (see [KMM87, Th. 1-1-1]). We note that the trace map splits

the natural inclusion OC → π∗OC′ . Since π∗E ⊗ (H′)µ is nef, there is some

positive integer β such that

S(2α)β(π∗E ⊗ (H′)µ)⊗ (H′)β = π∗(S2αβ(E)⊗Hβ)

is generated by its global sections (see [Vie95, Prop. 2.9]). Therefore, we have

a surjective morphism ⊕
finite

OC′ → π∗(S2αβ(E)⊗Hβ).

Thus the induced morphism(⊕
finite

π∗OC′
)
⊗Hβ → S2αβ(E)⊗H2β ⊗ π∗OC′ → S2αβ(E)⊗H2β

is surjective. By replacing β by some multiple, we may assume that π∗OC′⊗Hβ
is generated by its global sections. In this case, S2αβ(E)⊗H2β is generated by

its global sections. This implies that E is nef (see [Vie95, Prop. 2.9]). �

We need the notion of simple normal crossing pairs for Theorem 1.9. Note

that a simple normal crossing pair is sometimes called a semi-snc pair in the

literature (see [BVP13, Def. 1.1]).

Definition 2.4 (Simple normal crossing pairs). We say that the pair (X,D)

is a simple normal crossing at a point a ∈ X if X has a Zariski open neighbor-

hood U of a that can be embedded in a smooth variety Y , where Y has regular

system of parameters (x1, . . . , xp, y1, . . . , yr) at a = 0 in which U is defined by

a monomial equation

x1 · · ·xp = 0



646 OSAMU FUJINO

and

D =
r∑
i=1

αi(yi = 0)|U , αi ∈ R.

We say that (X,D) is a simple normal crossing pair if it is a simple normal

crossing at every point of X. We sometimes say that D is a simple normal

crossing divisor on X if (X,D) is a simple normal crossing pair and D is

reduced. If (X, 0) is a simple normal crossing pair, then we simply say that X

is a simple normal crossing variety. Let X be a simple normal crossing variety,

and let X =
∑
i∈I Xi be the irreducible decomposition. A stratum of X is an

irreducible component of Xi1 ∩ · · · ∩Xik for some {i1, . . . , ik} ⊂ I.

Definition 2.5 (Stratum). Let (X,D) be a simple normal crossing pair

such that D is reduced. Let ν : Xν → X be the normalization. We put

KXν + Θ = ν∗(KX + D); that is, Θ is the sum of the inverse images of D

and the singular locus of X. A stratum of (X,D) is an irreducible component

of X or the ν-image of a log canonical center of (Xν ,Θ). This definition is

compatible with Definition 2.4.

For the reader’s convenience, we recall the notion of semi-log-canonical

pairs.

Definition 2.6 (Semi-log-canonical pairs). Let X be an equidimensional

algebraic variety that satisfies Serre’s S2 condition and is a normal crossing in

codimension one. Let ∆ be an effective R-divisor on X such that no irreducible

component of Supp ∆ is contained in the singular locus of X. The pair (X,∆)

is called a semi-log-canonical pair (an slc pair, for short) if

(1) KX + ∆ is R-Cartier; and

(2) (Xν ,Θ) is log canonical, where ν : Xν → X is the normalization and

KXν + Θ = ν∗(KX + ∆); that is, Θ is the sum of the inverse images of ∆

and the conductor of X.

If (X, 0) is a semi-log-canonical pair, then we simply say that X is a semi-log-

canonical variety or X has only semi-log-canonical singularities.

For the details of semi-log-canonical pairs and the basic notation, see

[Fn14] and [Kol13b].

2.7 (Q-divisors). Let D be a Q-divisor on an equidimensional variety X;

that is, D is a finite formal Q-linear combination

D =
∑
i

diDi

of irreducible reduced subschemes Di of codimension one such that Di 6= Dj

for i 6= j. We define the round-up dDe =
∑
iddieDi (resp. round-down bDc =∑

ibdicDi), where for every real number x, dxe (resp. bxc) is the integer defined
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by x ≤ dxe < x + 1 (resp. x − 1 < bxc ≤ x). The fractional part {D} of D

denotes D − bDc. We set

D<0 =
∑
di<0

diDi, D>0 =
∑
di>0

diDi, and D=1 =
∑
di=1

Di.

2.8 (Demi-normal variety). Let X be an equidimensional variety that

satisfies Serre’s S2 condition and is a normal crossing in codimension one.

Then X is sometimes said to be demi-normal (see [Kol13b, Def. 5.1]).

Let π : Y → X be a finite surjective morphism between demi-normal

varieties, and let D be a Q-divisor on X such that no irreducible component of

D is contained in the singular locus of X. Then there is a Zariski open set U

of X such that codimX(X \ U) ≥ 2 and that D|U is Q-Cartier on U . Assume

that π is étale over the generic point of any irreducible component of SuppD.

Then we have a well-defined Q-Cartier Q-divisor π∗(D|U ) on π−1(U). In this

situation, π−1D denotes the Q-divisor on Y that is the closure of π∗(D|U ). By

construction, no irreducible component of π−1D is contained in the singular

locus of Y .

We recall the definition of ω
[m]
X/C .

Definition 2.9. In Theorem 1.7, ω
[m]
X/C is the m-th reflexive power of ωX/C .

It is the double dual of the m-th tensor power of ωX/C :

ω
[m]
X/C := (ω⊗mX/C)∗∗.

For the details of divisors and divisorial sheaves on demi-normal varieties,

see [Kol13b, §5.1].

2.10 (Lemmas on resolution of singularities for reducible varieties). We

prepare the following lemmas on resolution of singularities. We will use them

in Section 4.

Lemma 2.11. Let (Y,∆) be a simple normal crossing pair. Let D be a

Weil (resp. Q-Weil or R-Weil) divisor on Y such that SuppD ⊂ Supp ∆. Then

there exists a sequence of blow-ups

Y = Y0
π1←− Y1

π2←− Y2
π3←− · · · πk←− Yk

with the following properties :

(1) (Y0,∆0) = (Y,∆).

(2) Let U be the largest open subset of Y such that (U,D|U ) is a simple normal

crossing pair. Then πi is an isomorphism over U for every i ≥ 1.

(3) Di is the strict transform of D on Yi for every i ≥ 1.

(4) πi is a blow-up whose center is a stratum of (Yi−1,Supp ∆i−1) and is located

outside U for every i ≥ 1.
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(5) ∆i = (πi)
−1
∗ ∆i−1 + Ei, where Ei is the πi-exceptional divisor on Yi for

every i ≥ 1.

(6) (Yk, Dk) is a simple normal crossing pair; that is, Dk is Cartier (resp. Q-

Cartier or R-Cartier).

We note that (Yi,∆i) is a simple normal crossing pair for every i ≥ 1.

Proof. This is a direct consequence of [BVP13, 8. The non-reduced case].

�

Lemma 2.12. Let Y be an equidimensional variety that satisfies Serre’s S2

condition and is a simple normal crossing in codimension one. Let ∆Y be an

effective Q-divisor (resp. R-divisor) on Y such that no irreducible component

of ∆Y is contained in the singular locus of Y . Assume that there exists a

non-empty dense Zariski open set Y0 of Y such that (Y0,∆Y0) is semi-log-

canonical, where ∆Y0 = (∆Y )|Y0 . Then there exists a projective surjective

birational morphism π : Y ′ → Y , which is a composite of blow-ups, from a

simple normal crossing variety Y ′ with the following properties :

(1) Sing Y ′ maps birationally onto the closure of Sing Y snc by π, where Y snc

is the open subset of Y that has only smooth points and simple normal

crossing points. Note that Sing Y ′ (resp. Sing Y snc) is the singular locus of

Y ′ (resp. Y snc).

(2) ∆Y ′ is a subboundary Q-divisor (resp. R-divisor) on Y ′, that is, ∆Y ′ =

(∆Y ′)
≤1, such that (Y ′,∆Y ′) is a simple normal crossing pair with KY ′0

+

∆Y ′0
= π∗0(KY0 + ∆Y0), where Y ′0 = π−1(Y0), ∆Y ′0

= (∆Y ′)|Y ′0 , and π0 =

π|Y ′0 .

(3) ∆Y ′ is the closure of ∆Y ′0
in Y ′.

(4) π is an isomorphism over U , where U is the largest open subset of Y0 such

that (U, (∆Y )|U ) is a simple normal crossing pair.

Proof. By [BVP13, Th. 1.4], we can construct a projective surjective bira-

tional morphism π† : Y † → Y , which is a composite of blow-ups, from a simple

normal crossing variety Y † such that Sing Y † maps birationally onto the clo-

sure of Sing Y snc and that (Y †, (π†)−1
∗ ∆Y + E†) is a simple normal crossing

pair. We note that E† is a reduced Weil divisor on Y † whose support coincides

with the exceptional locus of π†. Of course, π† is an isomorphism over ‹U(⊃ U)

by construction, where ‹U is the largest open subset of Y such that (‹U, (∆Y )|
Ũ

)

is a simple normal crossing pair. We put

K
Y †0

+ ∆
Y †0

= (π†0)∗(KY0 + ∆Y0),

where Y †0 = (π†)−1(Y0) and π†0 = π†|Y0 . Note that ∆
Y †0

is a subboundary

Q-divisor (resp. R-divisor) on Y †0 since (Y0,∆Y0) is semi-log-canonical. By
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construction, we see that Supp ∆
Y †0
⊂ Supp((π†)−1

∗ ∆Y +E†). Then the closure

of ∆
Y †0

is contained in a simple normal crossing divisor Supp((π†)−1
∗ ∆Y +E†).

By Lemma 2.11, we can take some sequence of blow-ups π′ : Y ′ → Y †, which is

an isomorphism over Y †0 and is an isomorphism over the generic point of every

stratum of Y †, such that (Y ′,∆Y ′) is a simple normal crossing pair, where ∆Y ′

is the closure of ∆Y ′0
= ∆

Y †0
and is a subboundary Q-divisor (resp. R-divisor)

on Y ′. By construction, we see that this is what we wanted. �

Let us consider blow-ups of simple normal crossing varieties.

Lemma 2.13. Let Y be a projective simple normal crossing variety. Let

π : Y ′ → Y be a blow-up whose center S is a stratum of Y with codimY S ≥ 2.

We take a Weil divisor KY ′ on Y ′ such that ωY ′ ' OY ′(KY ′) and that no

irreducible component of KY ′ is contained in the singular locus of Y ′. Then

ωY ' OY (KY ) and KY ′ + E = π∗KY hold, where KY = π∗KY ′ and E =

Exc(π); that is, E is a reduced Weil divisor on Y ′ whose support coincides

with the exceptional locus of π. Let ∆ be a Cartier divisor on Y . Then the

inclusion

π∗OY ′(kKY ′ + ∆′) ⊂ OY (kKY + ∆)

holds for every positive integer k, where ∆′ = π∗∆.

Proof. Since codimY S ≥ 2, the natural inclusion OY ↪→ π∗OY ′ is an iso-

morphism. We put KY = π∗KY ′ . Then KY satisfies ωY ' OY (KY ). By

definition, KY ′ − π∗KY is contained in the exceptional locus of π. By consid-

ering the normalizations of Y ′ and Y , we see that KY ′ + E = π∗KY . Since

OY ' π∗OY ′ , we get the desired inclusion

π∗OY ′(kKY ′ + ∆′) ⊂ π∗OY ′(k(KY ′ + E) + ∆′) ' OY (kKY + ∆)

for every positive integer k since E is an effective divisor on Y ′. �

Lemma 2.14. Let Y be a projective simple normal crossing variety. Let

π : Y ′ → Y be a blow-up whose center S is a minimal stratum of Y with

codimY S = 1. We take a Weil divisor KY on Y such that ωY ' OY (KY ) and

that no irreducible component of KY is contained in the singular locus of Y .

Then ωY ′ ' OY ′(KY ′) holds, where KY ′ = π∗KY −E and E = Exc(π); that is,

E is a reduced Weil divisor on Y ′ whose support coincides with the exceptional

locus of π. Let ∆ be a Cartier divisor on Y . Then the inclusion

π∗OY ′(kKY ′ + ∆′) ⊂ OY (kKY + ∆)

holds for every positive integer k, where ∆′ = π∗∆.

Proof. By assumption, S is a minimal stratum of Y with codimY S = 1.

This means that there are two irreducible components Y1 and Y2 of Y such that
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S is an irreducible component of Y1∩Y2 and that S∩Yi = ∅ for every irreducible

component Yi other than Y1 and Y2. Therefore, π : Y ′ → Y is nothing but

the normalization in a neighborhood of S. Thus we see that KY ′ = π∗KY −E
satisfies ωY ′ ' OY ′(KY ′). By considering the dual of the natural inclusion

OY ↪→ π∗OY ′ , we get a generically isomorphic injection π∗ωY ′ ↪→ ωY . By

projection formula and π∗KY = KY ′ + E, we obtain the desired inclusion

π∗OY ′(kKY ′ + ∆′) ⊂ π∗OY ′(KY ′ + (k − 1)π∗KY + π∗∆)

' π∗OY ′(KY ′)⊗OY ((k − 1)KY + ∆)

⊂ OY (kKY + ∆)

for every positive integer k since π∗OY ′(KY ′) ⊂ OY (KY ) as mentioned above.

�

3. A quick review of Mstable

In this section, we quickly review the moduli space of stable varieties (see

[Kol13a]). First, let us recall the definition of stable varieties.

Definition 3.1 (Stable varieties). Let X be a connected projective semi-

log-canonical variety with ample canonical divisor. Then X is called a stable

variety or a semi-log-canonical model.

In order to obtain the boundedness of the moduli functor of stable vari-

eties, we have to fix some numerical invariants. So we introduce the notion of

the Hilbert function for stable varieties.

Definition 3.2 (Hilbert function of stable varieties). Let X be a stable

variety. The Hilbert function of X is

HX(m) := χ(X,ω
[m]
X ),

where ω
[m]
X = (ω⊗mX )∗∗ ' OX(mKX). By [Fn14, Cor. 1.9], we see that

HX(m) = dimCH
0(X,OX(mKX)) ≥ 0

for every m ≥ 2.

The following definition of the moduli functor of stable varieties is mainly

due to Kollár. Note that a stable variety X is not necessarily Cohen–Macaulay

when dimX ≥ 3. We think that it is one of the main difficulties when we treat

families of stable varieties.

Definition 3.3 (Moduli functor of stable varieties). Let H(m) be a

Z-valued function. The moduli functor of stable varieties with Hilbert function
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H is

Mstable
H (S) :=



Flat, proper families X → S, fibers are stable

varieties with ample canonical divisor

and Hilbert function H(m), ω
[m]
X/S is flat over S

and commutes with base change for every m,

modulo isomorphisms over S


.

Remark 3.4. We consider (f : X → S) ∈ Mstable
H (S). By the base change

theorem and [Fn14, Cor. 1.9], we obtain that f∗ω
[m]
X/S is a locally free sheaf on

S with rankf∗ω
[m]
X/S = H(m) for every m ≥ 2.

Let us quickly review the construction of the coarse moduli space of stable

varieties following [Kol13a].

3.5 (Coarse moduli space ofMstable). Let us consider the moduli functor

Mstable(S) :=



Flat, proper families X → S, fibers are stable

varieties with ample canonical divisor,

ω
[m]
X/S is flat over S

and commutes with base change for every m,

modulo isomorphisms over S


of stable varieties. It is obvious that Mstable

H is an open and closed subfunctor

of Mstable. It is known that the moduli functor Mstable is well behaved; that

is, Mstable is locally closed. For the details, see [Kol08, Cor. 25]. We already

know that the moduli functor Mstable satisfies the valuative criterion of sep-

aratedness and the valuative criterion of properness by Kollár’s gluing theory

and the existence of log canonical closures (see [Kol16, Th. 24] and [HX13, §7]).

Moreover, it is well known that the automorphism group Aut(X) of a stable

variety X is a finite group. For a more general result, see [Fn14, Cor. 6.17].

Then, by using [KM97, 1.2 Corollary], we obtain a coarse moduli space M stable

of Mstable in the category of algebraic spaces (see, for example, [Kol13a, 5.3

(Existence of coarse moduli spaces)]). Note that M stable is a separated alge-

braic space which is locally of finite type. Since Mstable satisfies the valuative

criterion of properness, M stable
H is proper if and only if it is of finite type.

4. Proof of theorems

Let us start the proof of Theorem 1.9. Theorem 1.9 is essentially contained

in [FF14, §7] (see also [FFS14]). We need no extra assumptions on D and local

monodromies since C is a curve.
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Proof of Theorem 1.9. In Step 1, we will reduce the problem to a simpler

case by using [BVP13]. In Step 2, we will prove the desired nefness by using

[FF14].

Step 1. There is a closed subset Σ of C such that every stratum of (X,D) is

smooth over C0 = C \Σ. This means that every stratum of (X0, D0) is smooth

over C0, where X0 = f−1(C0) and D0 = D|X0 . Apply [BVP13, Th. 1.4] to

(X,Supp(D+ f∗Σ)). Then we obtain a birational morphism g : X ′ → X from

a projective simple normal crossing variety X ′ such that g is an isomorphism

outside Supp f∗Σ and that g−1
∗ D+g∗f∗Σ has a simple normal crossing support

on X ′. Let D′ be the horizontal part of g−1
∗ D. By taking some more blow-ups,

we may further assume that D′ is a Cartier divisor on X ′ (see Lemma 2.11). We

note that g : X ′ → X is an isomorphism over X0 by construction. Therefore,

(X ′, D′) is a simple normal crossing pair. By construction, we have ωX′(D
′) '

g∗ωX(D) ⊗ OX′(E) such that f ◦ g(E) ⊂ Σ and that the effective part of E

is g-exceptional. Thus, we have g∗ωX′(D
′) ⊂ ωX(D). Hence we obtain an

inclusion

f∗g∗ωX′/C(D′)→ f∗ωX/C(D),

which is an isomorphism over C0. Therefore, it is sufficient to prove that

f∗g∗ωX′/C(D′) is nef by Lemma 2.2. By replacing (X,D) with (X ′, D′), we

may assume that every stratum of (X,D) is dominant onto C. Of course, by

assumption, every stratum of (X0, D0) is smooth over C0.

Step 2. By [FF14, Th. 4.15], Rdf0∗ι!QX0\D0
, where d = dimX − 1, X0 =

f−1(C0), f0 = f |X0 , D0 = D|X0 , and ι : X0 \D0 ↪→ X0, underlines a graded

polarizable admissible variation of Q-mixed Hodge structure. In particular,

every local monodromy on Rdf0∗ι!QX0\D0
around Σ is quasi-unipotent (see

[FF14, Def. 3.11]). Moreover, we can consider (upper and lower) canonical

extensions of Hodge bundles (see [FF14, Def. 3.11 and Remark 7.4]). By [FF14,

Th. 7.3(a)], Rdf∗OX(−D) is characterized as the lower canonical extension of

Gr0
F (Rdf0∗ι!QX0\D0

⊗OC0).

We note that we can freely replace C0 with its non-empty Zariski open set.

We take a unipotent reduction π : C ′ → C of Rdf0∗ι!QX0\D0
(see [Kaw81,

Th. 17 and Corollary 18]). We may assume that π is a finite Galois cover

(see [KMM87, Th. 1-1-1]). By shrinking C0, we may further assume that

π : C ′ → C is étale over C0. We note that the local system π∗0R
df0∗ι!QX0\D0

on

C ′0 = π−1(C0) underlies a graded polarizable admissible variation of Q-mixed

Hodge structure since Rdf0∗ι!QX0\D0
underlies a graded polarizable admissible

variation of Q-mixed Hodge structure, where π0 = π|C′0 : C ′0 → C0. Let G be

the canonical extension of

Gr0
F (π∗0R

df0∗ι!QX0\D0
⊗OC′0).
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Then G is locally free and G∗ is a nef locally free sheaf on C ′ (see [FF14,

Cor. 5.23], [FFS14], [FF17], [Fs17], and so on). Since Rdf∗OX(−D) ' (π∗G)G,

where G is the Galois group of π : C ′ → C, we obtain a nontrivial map

π∗Rdf∗OX(−D)→G, which is an isomorphism on C ′0. Note that Rdf∗OX(−D)

is the lower canonical extension of

Gr0
F (Rdf0∗ι!QX0\D0

⊗OC0).

Therefore, by taking the dual, we obtain an inclusion 0→ G∗ → π∗f∗ωX/C(D),

which is an isomorphism on C ′0. Thus, π∗f∗ωX/C(D) is nef by Lemma 2.2. So

we obtain that f∗ωX/C(D) is nef because π is surjective.

Anyway, we obtain the desired nefness of f∗ωX/C(D). �

For an alternative proof of Theorem 1.9 based on the Kollár–Ohsawa type

vanishing theorem for semi-log-canonical pairs, see [Fn15]. We note that [Fn15]

depends on the theory of mixed Hodge structures on cohomology with compact

support.

Remark 4.1. When X is smooth in Theorem 1.9, the semipositivity the-

orem obtained in [Fn04, Th. 3.9] is sufficient for the proof of Theorem 1.9.

Note that [Fn04, Th. 3.9] also follows from the theory of graded polarizable

admissible variations of mixed Hodge structure.

Let us prove Theorem 1.10 since it contains Theorem 1.7 as a special case.

Proof of Theorem 1.10. In Step 1, we will prove the nefness of f∗ωX/C(D).

In Step 2, we will treat f∗OX(m(KX/C +D)).

Step 1. We take a double cover π : ‹X → X due to Kollár (see [Kol13b,

5.23]). Then ωX(D) is a direct summand of π∗ωX̃(π−1D). By replacing X and

f with ‹X and f ◦ π, respectively, we may further assume that X is a simple

normal crossing in codimension one.

We note that X and D satisfy the assumptions in Lemma 2.12 and that

(f−1(U), D|f−1(U)) is semi-log-canonical by assumption. Therefore, we can

apply Lemma 2.12. Then we can construct a projective surjective birational

morphism h : Z → X, which is a composite of blow-ups, from a simple normal

crossing variety Z with the following properties:

(1) There exists a subboundary Q-divisor B on Z, that is, B≤1 = B, such that

(Z,B) is a simple normal crossing pair.

(2) SingZ maps birationally onto the closure of SingXsnc by h, where SingZ

(resp. SingXsnc) is the singular locus of Z (resp. Xsnc). Note that Xsnc

is the open subset of X that has only smooth points and simple normal

crossing points.
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(3) KV + B|V = g∗
Ä
Kf−1(U) +D|f−1(U)

ä
, where V = (f ◦ h)−1(U) and g =

h|V : V → f−1(U).

We note that the natural inclusion OX ↪→ h∗OZ is an isomorphism and that

Z \V contains no irreducible components of B by construction. Thus we have

g∗ωV ((B|V )=1) ' ωf−1(U)(D|f−1(U)) and h∗ωZ(B=1) ⊂ ωX(D).

Therefore, it is sufficient to prove that (f ◦h)∗ωZ/C(B=1) is nef by Lemma 2.2

in order to prove the nefness of f∗ωX/C(D). By shrinking U suitably, we may

assume that every stratum of Z maps to a point in C\U or is dominant onto C.

If Z \ V contains an irreducible component of B, then we take some blow-ups

outside V and replace B with the closure of B|V (see Lemma 2.11). Thus, we

can always assume that Z \ V contains no irreducible components of B.

Assume that there exists a stratum S of Z in (f◦h)−1(Σ), where Σ = C\U .

If codimZ S ≥ 2 or S is a minimal stratum of Z with codimZ S = 1, then we

take a blow-up π : Z ′ → Z of Z along S as in Lemmas 2.13 and 2.14. We note

that π∗B = π−1
∗ B and that (π∗B)=1 = π−1

∗ (B=1) = π∗(B=1). By Lemmas 2.13

and 2.14, there is a generically isomorphic inclusion

π∗ωZ′((π
∗B)=1) ⊂ ωZ(B=1),

which is an isomorphism over U . Therefore, by Lemma 2.2, it is sufficient

to prove that (f ◦ h ◦ π)∗ωZ′/C((π∗B)=1) is nef. This means that we can

replace (Z,B) with (Z ′, π∗B). By repeating this process finitely many times,

we may assume that (f ◦ h)−1(Σ) contains no strata of Z. In this case, the

nefness of (f ◦ h)∗ωZ/C(B=1) follows from Theorem 1.9. Anyway, we obtain

that f∗ωX/C(D) is a nef locally free sheaf on C.

Step 2 (see Proof of [Vie95, Cor. 2.45]). By Viehweg’s clever covering trick,

we can prove that f∗OX(m(KX/C + D)) is nef for every m ≥ 2 by using the

case where m = 1. Here, we closely follow the proof of [Vie95, Cor. 2.45].

Let H be an ample line bundle on C. We set

r = min
{
µ ∈ Z>0

∣∣∣ (f∗OX(k(KX/C +D)))⊗Hµk−1 is nef
}
.

By assumption, we have that the natural map

f∗f∗OX(k(KX/C +D))→ OX(k(KX/C +D))

is surjective. Since (f∗OX(k(KX/C + D))) ⊗Hrk−1 is a nef locally free sheaf,

(f∗OX(k(KX/C +D)))⊗Hrk is ample. Therefore, we see that

SN ((f∗OX(k(KX/C +D)))⊗Hrk)

is generated by its global sections for some positive integer N . Hence we see

that OX(KX/C+D)⊗f∗Hr is semi-ample. More precisely, OX(k(KX/C+D))⊗
f∗Hrk is locally free and semi-ample. By the usual covering argument (see
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Remark 4.2), (f∗OX(k(KX/C +D)))⊗Hr(k−1) is nef (see [Vie95, Prop. 2.43]).

This is only possible if (r − 1)k − 1 < r(k − 1). It is equivalent to r ≤ k.

Therefore, (f∗OX(k(KX/C + D))) ⊗ Hk2−1 is nef. The same holds true if we

take any base change by π : C ′ → C such that π is a finite morphism from a

smooth projective curve and ramifies only over general points of C. Therefore,

f∗OX(k(KX/C +D)) is nef (see Lemma 2.3). By the same argument as above,

we see that OX(KX/C +D)⊗ f∗H is semi-ample since f∗OX(k(KX/C +D)) is

nef. More precisely, OX(k(KX/C+D))⊗f∗Hk is locally free and semi-ample in

the usual sense. By the covering argument (see Remark 4.2), (f∗OX(m(KX/C

+D)))⊗Hm−1 is nef for every m > 0 (see [Vie95, Prop. 2.43]). The same holds

true if we take any base change by π : C ′ → C such that π is a finite morphism

from a smooth projective curve and ramifies only over general points of C.

Therefore, f∗OX(m(KX/C +D)) is nef for every m > 0 (see Lemma 2.3).

We have completed the proof of Theorem 1.10. �

Remark 4.2 (see [Kol90, 4.15. Lemma and 4.16]). Let ϕ : X ′ → X be a

cyclic cover associated to a general member A ∈ |OX(kl(KX/C +D))⊗f∗Hrkl|
(resp. |OX(kl(KX/C +D))⊗f∗Hkl|) for some positive integer l. Then f ′ := f ◦
ϕ : X ′ → C and ϕ−1D satisfy all the assumptions for f : X → C andD. There-

fore, we see that f ′∗ωX′/C(ϕ−1D) is nef by Step 1 in the proof of Theorem 1.10.

By construction, OX(k(KX/C +D))⊗ f∗Hr(k−1) (resp. OX(m(KX/C +D))⊗
f∗Hm−1) is a direct summand of ϕ∗ωX′/C(ϕ−1D). Thus, we obtain that

f∗OX(k(KX/C +D))⊗Hr(k−1) (resp. f∗OX(m(KX/C +D))⊗Hm−1) is a nef

locally free sheaf on C.

Theorem 1.2 is almost obvious by Theorem 1.7.

Proof of Theorem 1.2. We consider (f : X → C) ∈ Mstable(C), where C

is a smooth projective curve. By Kawakita’s inversion of adjunction [Kaw07,

theorem] (see also [Pat16, Lemma 2.10 and Cor. 2.11]), X itself is a semi-log-

canonical variety. By the definition of Mstable, we can find a positive integer

k such that ω
[k]
X/C is locally free and f -ample. Hence f∗ω

[m]
X/C is nef for every

m ≥ 1 by Theorem 1.7. It implies that Mstable is semipositive in the sense of

Kollár. �

By Kollár’s results (see [Kol13a, §§2 and 3]), Theorem 1.1 follows from

Theorem 1.2. For some technical details, see also [Vie95, Ths. 4.34 and 9.25].

Proof of Theorem 1.1. It is sufficient to prove this theorem for connected

subspaces. Let Z be a connected closed complete subspace of M stable. It is

obvious that M stable has an open subspace of finite type that contains Z. By

replacing Mstable with the subfunctor given by this subspace, we get a new
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functor N that is bounded. By recalling the construction of the coarse mod-

uli space, we know that there is a locally closed subscheme S of Hilb(PN ) for

some N such that Z is obtained as the geometric quotient S/Aut(PN ). Let

f : X → S be the universal family. By the proof of [Kol90, 2.6. Theorem], we

see that det(f∗ω
[k]
X/S)p descends to an ample line bundle on Z for a sufficiently

large and divisible positive integer k and a sufficiently divisible positive integer

p (see [Vie95, Lemma 9.26]). Note that [Kol90, 2.6. Theorem] needs the semi-

positivity of Mstable. For the details, see [Kol90, §§2 and 3] and [Vie95]. �

Theorem 1.10 is useful for the projectivity of the moduli space of stable

maps (see [FP97]). For some related topics, see also [Ale96] and [KP17].

4.3 (Projectivity of the space of stable maps (see [FP97])). We freely use

the notation in [FP97]. Let F = (π, C → S, {pi}, µ) be a stable family of maps

over S to Pr. For the definition, see [FP97, 1.1. Definitions]. We set

Ek(π) = π∗

(
ωkπ

(
n∑
i=1

kpi

)
⊗ µ∗(O(3k))

)
.

In [FP97, Lemma 3], it is proved that Ek(π) is a nef locally free sheaf on S

for k ≥ 2 by using the results in [Kol90, §4]. This nefness is used for the

projectivity of the moduli space of stable maps in [FP97, 4.3. Projectivity].

The nefness of Ek(π) can be checked as follows:

Since k ≥ 2, by the base change theorem, we may assume that S is a

smooth projective curve. We take a general member H of |µ∗O(3)|. Then

(C,∑n
i=1 pi + H) is a semi-log-canonical surface and KC/S +

∑n
i=1 pi + H is

π-ample. Therefore

π∗OC

(
k

(
KC/S +

n∑
i=1

pi +H

))
' Ek(π)

is nef for every k ≥ 2 by Theorem 1.10.

Let us start the proof of Theorem 1.11.

Proof of Theorem 1.11. We will use Viehweg’s covering arguments (see

[Vie83]) and a special case of Theorem 1.10.

We take a double cover π : ‹X → X due to Kollár (see [Kol13b, 5.23]).

We put ‹∆ = π−1∆. Then O
X̃

(k(K
X̃

+ ‹∆)) is locally free and f ◦ π-generated.

Moreover, OX(kl(KX/C + ∆)) is a direct summand of π∗OX̃(kl(K
X̃

+ ‹∆)) for

every l ≥ 1. Therefore, by replacing X and ∆ with ‹X and ‹∆, respectively, we

may further assume that ‹X is a simple normal crossing in codimension one.

Since X and ∆ satisfy the assumptions in Lemma 2.12, we can apply

Lemma 2.12. Then there is a projective surjective birational morphism h :



SEMIPOSITIVITY THEOREMS FOR MODULI PROBLEMS 657

Z → X, which is a composite of blow-ups, from a simple normal crossing

variety Z with the following properties:

(1) There is a subboundary Q-divisor ∆Z on Z, that is, ∆≤1
Z = ∆Z , such that

(Z,∆Z) is a simple normal crossing pair.

(2) SingZ maps birationally onto the closure of SingXsnc by h, where SingZ

(resp. SingXsnc) is the singular locus of Z (resp. Xsnc). Note that Xsnc

is the open subset of X that has only smooth points and simple normal

crossing points.

(3) KV + ∆V = (hV )∗(Kf−1(U) + ∆|f−1(U)), where V = (f ◦ h)−1(U), hV =

h|V : V → f−1(U), and ∆V = (∆Z)|V .

Note that the natural inclusion OX ↪→ h∗OZ is an isomorphism and that Z \V
contains no irreducible components of ∆Z by construction. Therefore, we have

(hV )∗OV (k(KV + ∆>0
V )) ' Of−1(U)(k(KX + ∆))

and

h∗OZ(k(KZ + ∆>0
Z )) ⊂ OX(k(KX + ∆)).

Hence it is sufficient to prove that (f ◦ h)∗OZ(k(KZ/C + ∆>0
Z )) is nef by

Lemma 2.2 for the proof of the nefness of f∗OX(k(KX/C + ∆)). By shrink-

ing U , we may assume that every stratum of (Z,Supp ∆Z) is smooth over U

or maps to a point in C \ U . If Z \ V contains an irreducible component of

∆Z , then we take some blow-ups outside V and replace ∆Z with the closure

of ∆V (see Lemma 2.11). Therefore, we can assume that Z \ V contains no

irreducible components of ∆Z . We may further assume that Z \V contains no

strata of (Z, Supp ∆Z) contained in Supp ∆Z by taking some more blow-ups.

Assume that there exists a stratum S of Z in (f◦h)−1(Σ), where Σ = C\U .

If codimZ S ≥ 2 or S is a minimal stratum of Z with codimZ S = 1, then

we take a blow-up π : Z ′ → Z of Z along S as in Lemmas 2.13 and 2.14.

We note that k∆>0
Z is Cartier and π∗∆Z = π−1

∗ ∆Z . Of course, π∗(k∆>0
Z ) =

k(π−1
∗ ∆Z)>0 is Cartier. By Lemmas 2.13 and 2.14, we have a natural inclusion

π∗OZ′(k(KZ′ + (π∗∆Z)>0)) ⊂ OZ(k(KZ + ∆>0
Z )),

which is an isomorphism over U . Therefore, we can replace (Z,∆Z) with

(Z ′, π∗∆Z) by Lemma 2.2 in order to prove the nefness of (f ◦h)∗OZ(k(KZ/C+

∆Z)). By repeating this process finitely many times, we may assume that Z\V
contains no strata of Z.

Lemma 4.4. Let π : Z ′ → Z be a projective surjective birational morphism

from a simple normal crossing variety Z ′, which is a composite of blow-ups

whose centers are outside V . Assume that (Z ′, π−1
∗ (∆>0

Z )) is a simple normal

crossing pair. Then we can write

KZ′ + π−1
∗ (∆>0

Z ) = π∗(KZ + ∆>0
Z ) + E′
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for some effective π-exceptional Q-divisor E′ on Z ′.

Proof of Lemma 4.4. This follows from the fact that Z \ V contains no

strata of Z and no strata of (Z,Supp ∆Z). �

By the above construction, we have

KV + ∆>0
V = h∗(Kf−1(U) + ∆f−1(U)) + (−∆<0

V ).

We will apply the covering argument discussed in [Cam04, §4.4] (see also

[Fn17b, §8]), which is a modification of Viehweg’s covering argument in [Vie83,

Lemma 5.1 and Cor. 5.2]. We set g = f ◦ h. By taking more blow-ups over

Z \ V (see [BVP13] and Lemmas 2.11 and 4.4), we may assume that

F := Image
Ä
g∗g∗OZ(k(KZ/C + ∆>0

Z ))→ OZ(k(KZ/C + ∆>0
Z ))
ä

is a line bundle that is g-generated and that

OZ(k(KZ/C + ∆>0
Z )) ' F ⊗OZ(E)

such that E is an effective Cartier divisor on Z and that SuppE is a simple

normal crossing divisor on Z. We note that E is equal to −k∆<0
V over U by

construction. We may further assume that SuppE ∪ Supp ∆>0
Z is a simple

normal crossing divisor on Z. Let

g : Z
ψ−→ ‹C −→ C

be the Stein factorization. Note that g∗OZ is a torsion-free sheaf on C since

every irreducible component of Z is dominant onto C. We also note that ‹C is

normal (see [Fn14, Lemma 3.6]). Then

(4.1) F = Image
Ä
ψ∗ψ∗OZ(k(KZ/C + ∆>0

Z ))→ OZ(k(KZ/C + ∆>0
Z ))
ä
.

Let H be an ample line bundle on C. We set

r = min
{
µ ∈ Z>0

∣∣∣ g∗OZ(k(KZ/C + ∆>0
Z ))⊗Hµk−1 is nef

}
.

The following lemma is essentially contained in [Vie83, Lemma 5.1 and

Cor. 5.2].

Lemma 4.5 (see [Cam04, Lemma 4.19] and [Fn17b, Lemma 8.2]). Let

g : Z → C be as above. Let A be an ample line bundle on C . Assume that

SN
Ä
g∗OZ(k(KZ/C + ∆>0

Z ))⊗Ak
ä

is generated by its global sections for some positive integer N . Then

g∗OZ(k(KZ/C + ∆>0
Z ))⊗Ak−1

is nef on C .
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Proof of Lemma 4.5. By the definition of F and (4.1), we have

ψ∗OZ(k(KZ/C + ∆>0
Z )) ' ψ∗F .

This implies that

g∗OZ(k(KZ/C + ∆>0
Z )) ' g∗F .

Therefore, SN (g∗F ⊗ Ak) is generated by its global sections by assumption.

Hence |(F ⊗ g∗Ak)N | is a free linear system on Z. Note that F is g-generated.

We set

L = OZ
Ä
KZ/C + ∆=1

Z + k{∆>0
Z }
ä
⊗ g∗A.

Then we have

Lk = OZ
Ä
E + (k − 1)k{∆>0

Z }
ä
⊗F ⊗ g∗Ak.

Let H be a general member of the free linear system |(F ⊗ g∗Ak)N |. Then we

obtain

LkN = OZ
Ä
H +NE +N(k − 1)k{∆>0

Z }
ä
.

We take a (kN)-fold cyclic cover p : ‹Z → Z associated to

LkN = OZ
Ä
H +NE +N(k − 1)k{∆>0

Z }
ä
.

Note that (‹Z, p∗∆=1
Z ) is a semi-log-canonical pair (see [Kol16, Th. 24]). More

explicitly, ‹Z can be written as follows:‹Z = SpecZ

kN−1⊕
i=0

Ä
L(i)
ä−1

,

where Ä
L(i)
ä−1

= L−i ⊗OZ
Åõ

i

k

Ä
E + (k − 1)k{∆>0

Z }
äûã

.

For the details of cyclic covers, see, for example, [EV92, §3], although [EV92,

§3] only treats the case where Z is smooth. Since

p∗ωZ̃ ' HomOZ
Ä
p∗OZ̃ , ωZ

ä
' HomOZ

(
kN−1⊕
i=0

Ä
L(i)
ä−1

, ωZ

)
'

kN−1⊕
i=0

ωZ⊗L(i),

ωZ ⊗ L(k−1) is a direct summand of p∗ωZ̃ , where

L(k−1) = Lk−1 ⊗OZ
Å
−
õ
k − 1

k

Ä
E + (k − 1)k{∆>0

Z }
äûã

.

We note that

OZ
Ä
KZ/C + ∆=1

Z

ä
⊗ L(k−1)

= OZ
Å
k
Ä
KZ/C + ∆>0

Z

ä
−
õ
k − 1

k
E

ûã
⊗ g∗Ak−1

⊂ OZ
Ä
k
Ä
KZ/C + ∆>0

Z

ää
⊗ g∗Ak−1
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and that E is the relative base locus of OZ(k(KZ/C + ∆>0
Z )). Therefore, we

have a natural isomorphism

g∗
Ä
OZ(KZ/C + ∆=1

Z )⊗ L(k−1)
ä
' g∗OZ(k(KZ/C + ∆>0

Z ))⊗Ak−1

since õ
k − 1

k
E

û
≤ E

(see the proof of [Fn17b, Lemma 8.2]). We note that OZ(KZ + ∆=1
Z )⊗L(k−1)

is a direct summand of p∗OZ̃(K
Z̃

+p∗∆=1
Z ). By a special case of Theorem 1.10,

we obtain that (g ◦ p)∗ωZ̃(p∗∆=1
Z ) is nef. Therefore, the direct summand

g∗
Ä
OZ(k(KZ/C + ∆=1

Z )⊗ L(k−1)
ä

is also a nef locally free sheaf on C. This

means that g∗OZ(k(KZ/C + ∆>0
Z ))⊗Ak−1 is a nef locally free sheaf on C. �

By the definition of r, g∗OZ(k(KZ/C + ∆>0
Z ))⊗Hrk−1 is nef. Therefore,

SN
Ä
g∗OZ(k(KZ/C + ∆>0

Z ))⊗Hrk
ä

is generated by its global sections for some positive integer N . Then, by

Lemma 4.5, we obtain that

g∗OZ(k(KZ/C + ∆>0
Z ))⊗Hr(k−1)

is nef. This is only possible if (r− 1)k− 1 < r(k− 1). It is equivalent to r ≤ k.

Therefore,

g∗OZ(k(KZ/C + ∆>0
Z ))⊗Hk2−1

is nef. The same holds true if we take any base change by π : C ′ → C such

that π is a finite morphism from a smooth projective curve and ramifies only

over general points of C. Therefore,

g∗OZ(k(KZ/C + ∆>0
Z ))

is nef (see Lemma 2.3).

Hence we obtain that f∗OX(k(KX/C + ∆)) is a nef locally free sheaf

on C. Since OX(kl(KX + ∆)) is f -generated, by replacing k with kl in the

above arguments, we obtain that f∗OX(kl(KX/C +∆)) is nef for every positive

integer l. �

We close this section with comments on Kollár’s arguments in [Kol90, §4]

for the reader’s convenience.

4.6 (Comments on Kollár’s arguments in [Kol90, §4]). In [Kol90, §4],

Kollár essentially claims Theorem 1.7 when dimX = 3. However, it is not so

obvious to follow his arguments. In the last part of [Kol90, 4.14], he says

As in the proof of 4.13 the kernel of δ is a direct summand and

thus semipositive.
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In [Kol90, 4.14], E is not always smooth. Therefore, it is not clear what kind

of variations of Hodge structure should be considered. The map

(f ◦ g)∗ωE/C
δ−→ R1(f ◦ g)∗ωX/C

in [Kol90, 4.14] is different from the map

δ′ : (f ◦ g)∗ωD′/C → R1(f ◦ g)∗ωZ′/C

in the proof of [Kol90, 4.13. Lemma] from the Hodge theoretic viewpoint. Note

that D′ and Z ′ are smooth by construction. In general, E and X are singular

in [Kol90, 4.14]. Kollár informed the author that the nefness of (f ◦g)∗ωX/C(E)

can be checked with the aid of the classification of semi-log-canonical surface

singularities. Note that his arguments only work for the case where the fibers

are surfaces. Anyway, we do not pursue them here because the nefness of

(f ◦ g)∗ωX/C(E) is a special case of Theorem 1.10 when f ◦ g is projective.

5. Proof of corollaries

In this final section, we prove the corollaries in Section 1.

Proof of Corollary 1.4. We know the moduli functor Mstable
H is bounded

by [HMX14]. Therefore, we have the coarse moduli space M stable
H of Mstable

H

that is a complete algebraic space. Note that the moduli functor Mstable
H

satisfies the valuative criterion of separatedness and the valuative criterion of

properness. Since the moduli functor Mstable
H is semipositive in the sense of

Kollár by Theorems 1.2 and 1.7, we see that M stable
H is a projective algebraic

scheme (see [Kol90]). �

Corollaries 1.5 and 1.6 are easy consequences of Corollary 1.4.

Proof of Corollary 1.5. The moduli functorMH is an open subfunctor of

Mstable
H because the smoothness is an open condition. Therefore Corollary 1.5

follows from Corollary 1.4. �

Proof of Corollary 1.6. Note that any small deformations of canonical sin-

gularities are canonical (see [Kaw99, Main Theorem]). Therefore the moduli

functor Mcan
H is an open subfunctor of Mstable

H . Hence, Corollary 1.6 follows

from Corollary 1.4. �
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