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The André-Oort conjecture for Ag

By Jacob Tsimerman

Abstract

We give a proof of the André-Oort conjecture for Ag — the moduli

space of principally polarized abelian varieties. In particular, we show that

a recently proven “averaged” version of the Colmez conjecture yields lower

bounds for Galois orbits of CM points. The André-Oort conjecture then

follows from previous work of Pila and the author.

1. Introduction

Recall the statement of the André-Oort conjecture:

Conjecture 1.1. Let S be a Shimura variety, and let V be an irreducible

closed algebraic subvariety of S. Then V contains only finitely many maximal

special subvarieties.

For the definition of the terms “Shimura variety” and “special subvariety,”

as well as a brief history of the origins of the conjecture, see [21]. In the past

few decades, there has been an enormous amount of work on the André-Oort

conjecture. Notably, a full proof of the conjecture under the assumption of

the Generalized Riemann Hypothesis (GRH) for CM fields has been given by

Klingler, Ullmo, and Yafaev [11], [21].

Following a strategy introduced by Pila and Zannier, in previous work [16]

it was shown that the André-Oort conjecture for the coarse moduli space of

principally polarized abelian varieties Ag follows once one establishes that the

sizes of the Galois orbits of special points are “large.” This is what we prove

in this paper. More specifically, we prove the following:

Theorem 1.2. There exists δg > 0 such that if Φ is a primitive CM type

for a CM field E, and if A is any g-dimensional polarized abelian variety over

Q with endomorphism ring equal to the full ring of integers OE and CM type Φ,
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then the field of moduli1 Q(A) of A satisfies

[Q(A) : Q]� |Disc(E)|δg .

In [16, Th. 7.1] it is proved that Theorem 1.22 implies the André-Oort

conjecture for Ag. Thus, we obtain the following:

Theorem 1.3. The André-Oort Conjecture holds for Ag for any g ≥ 1.

Additionally, we point out that Ziyang Gao has recently shown [9] that

the André-Oort conjecture for any mixed Shimura variety whose pure part is

a Shimura subvariety of Ag follows from Theorem 4.2.

Though it is explained in detail in [16] and other wonderful survey papers

how the general strategy for André-Oort works, in an effort to be as self-

contained a possible we give a short sketch of the main story in Section 6. The

reader who is already familiar with this story or is interested only in the proof

of Theorem 1.2 may safely skip this section.

As the argument for Theorem 1.2 is relatively short, let us first give a

quick sketch of it.

1.1. Proof sketch of Theorem 1.2. Let E be a CM field with totally real

subfield E0, and let Φ be a CM type for E. Now let S(E,Φ) denote a complete

set of representatives up to isomorphism for the complex abelian varieties A

with complex multiplication by (OE ,Φ); that is, OE acts on A in such a way

that the induced representation of E on T0A(C) is given by Φ. The abelian

varieties in S(E,Φ) are pairwise isogenous, and the field of moduli K of all

these abelian varieties is the same. Moreover, it is elementary that there are

at least |Disc(E)|1/4−o(1) elements in S(E,Φ) — we note that the exponent of

1/4 is irrelevant for us; we only care that it is some positive constant.

Next, Colmez [5] has proven that the Faltings heights of all the elements

in S(E, φ) are the same. Moreover, he has conjectured a precise formula for

the Faltings height. All that matters for our purposes is that his conjectural

formula is subpolynomial in |Disc(E)|. Now, while Colmez’s conjecture is not

yet proved, an averaged version has been announced by Andreatta, Goren,

Howard, and Madapusi Pera and more recently by Yuan and Zhang, and this

is sufficient to establish our desired upper bound for the Faltings height.

Finally, a theorem of Masser and Wüstholz now says that all the elements

of S(E, φ) have isogenies between them of degree at most max(hFal, [K : Q])cg ,

1By “field of moduli” here we mean the intersection of all number fields over which the

polarized abelian variety A has a model, or alternatively the field over which the point A is

defined in the moduli space.
2Actually it is shown that a related statement, Theorem 5.2 of Section 5, implies the

conjecture.
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where hFal denotes their common Faltings height, and cg is some positive con-

stant depending only on the degree 2g of E. Since there are at most polyno-

mially many isogenies of a given degree N , it follows that [K : Q] must grow

at least polynomially in |Disc(E)|.

1.2. Paper outline. In Section 2 we gather the basic facts we need about

Faltings heights, CM varieties, and the theorem of Masser-Wüstholz. In Sec-

tion 3 we show how the average version of the Colmez conjecture yields upper

bounds for Faltings heights of CM abelian varieties. In Section 4 we use these

upper bounds together with the theorem of Masser and Wüstholz to prove our

desired lower bounds on Galois orbits. In Section 5 we recall how these lower

bounds imply the André-Oort conjecture for Ag. In Section 6, we give a brief

sketch for the interested reader of the complete proof of André-Oort, putting

together the ingredients in the literature to explain the complete argument for

the interested reader.

1.3. Acknowledgements. It is a great pleasure to thank Jonathan Pila for

asking the key question to inspire this work, and for pointing the author in

the direction of Colmez’s conjecture, as well as several helpful discussions.

I am also grateful to Shou-Wu Zhang, Ben Howard and Stephen Kudla for

helpful conversations. Thanks also to Peter Sarnak for a careful reading of

an earlier version of this paper and making useful suggestions, and thanks

to Bjorn Poonen, Arul Shankar and Ila Varma for carefully going through the

paper and pointing out several errors and inconsistencies. Thanks to the referee

for carefully reading the manuscript and making many suggestions which have

greatly improved the readability of the paper, as well as suggesting Lemma 4.1,

which greatly simplified Section 4.

2. Background

2.1. Faltings height. Let A be an abelian variety over Q. Let K be any

subfield of Q such that A is definable over K with everywhere semistable

reduction. Now let π : A → SpecOK be the Néron model of A, and take ω

to be any nonzero global section of L := π∗Ω
g
A/ SpecOK

. The (stable) Faltings

height of A is defined as follows [8]:

hFal(A) :=
1

[K : Q]

Å
log |H0(SpecOK ,L) : (OK · ω)|

− 1

2

∑
σ:K→C

log

∣∣∣∣∣
∫
A(C)

σ(ω ∧ ω)

∣∣∣∣∣
)
.

This turns out to be a well-defined quantity independent of the choice of

K and ω. It can be thought of as a measure of the arithmetic complexity of A.

We shall need the following theorem of Bost [3]:
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Theorem 2.1. There exists a constant cg depending on g alone such that

for A an abelian variety over Q of dimension g, hFal(A) ≥ cg . In fact, one can

take cg to be linear in g.

2.2. Complex multiplication. Let E be a CM field with totally real sub-

field E0, set g = [E0 : Q], and let Φ be a CM type of E. That is, Φ is a

set of embeddings E ↪→ C such that the set of all embeddings is given by

the disjoint union of Φ and Φ. Next, define S(E,Φ) to be the set of isomor-

phism classes of g-dimensional complex abelian varieties A together with an

embedding OE → EndC(A) such that the induced action of E on the tangent

space T0A(C) ∼= Cg is given by Φ. It is known that the number of elements in

S(E,Φ) is given by [17, Prop. 7.17]

|S(E,Φ)| = |Cl(E)|,

where Cl(F ) denotes the class number of a field F .

In general, class numbers of algebraic number fields can be very small, but

this is not so for CM fields. The Brauer-Siegel theorem [4], the fact that the

regulators of E and E0 are the same, and the fact that |Disc(E)| ≥ |Disc(E0)|2
imply that

|S(E,Φ)| �g
|Cl(E)|
|Cl(E0)|

�g |Disc(E)|1/4−og(1).

Now, suppose that Φ is a primitive CM type, which means that it is not

induced from a CM type of a strict CM subfield of E. Then EndC(A) ∼= OE for

any A ∈ S(E,Φ), so isogenies between abelian varieties in S(E,Φ) necessarily

respect the OE action. Finally, all the elements in S(E,Φ) are isogenous, and

isogenies correspond to ideals in OE in the following way [17, §7.6, Prop. 22]:

Fix A ∈ S(E,Φ), and for a nonzero integral ideal I, let TI be the kernel of

I acting on A. Then the map sending I to the isogeny A→ A/TI is a bijection

between the set of nonzero integral ideals and the set of isomorphism classes of

pairs (B,ψ), where B ∈ S(E,Φ) and ψ is an isogeny from A to B. Moreover,

the norm of I equals the degree of the isogeny arising from I. Since there are

nog(1) ideals of norm n, we have proven

Proposition 2.2. For a primitive CM type Φ, there are two elements in

S(E,Φ) such that the lowest degree isogeny between them has degree at least

|Disc(E)|1/4−og(1).

2.3. Masser-Wüstholz isogeny theorem. We shall make heavy use of the

following theorem of Masser-Wüstholz [12]:

Theorem 2.3. Let A,B be abelian varieties of dimension g over a number

field k, and suppose that there exists an isogeny between them over C. Then

if we let N be the minimal degree of an isogeny between them over C, we have
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the bound

N �g max(hFal(A), [k : Q])cg ,

where cg is a positive constant depending only on g.

This theorem is proved in [12], even though it is stated a little differently;

see Theorem II and the last paragraph on page 23 there.

3. Colmez’s conjecture

It is a theorem of Colmez [5, Th. II.2.10,(ii)] that all the elements in

S(E,Φ) have the same Faltings height denoted by hFal(E,Φ). Moreover, he

conjectured a precise formula [5, Conj. II.2.11] for this height as follows:

Conjecture 3.1. We have the identity

hFal(E,Φ) =
∑
ρ

cρ,Φ

Ç
L′(0, ρ)

L(0, ρ)
+

log fρ
2

å
,

where ρ ranges over irreducible complex representations of the Galois group of

the normal closure of E for which L(0, ρ) does not vanish, cρ,Φ are rational

numbers depending only on the finite combinatorial data given by Φ and the

Galois group of the normal closure of E, and fρ is the Artin conductor of ρ.

While this conjecture is still open, the following “averaged” version has

been proven by Andreatta, Goren, Howard and Madapusi-Pera [2] (for their

analogue in the orthogonal case, see [1]), and independently by Yuan and

Zhang [22].

Theorem 3.2. Colmez ’s conjecture holds if one averages over all CM

types, up to a small error. Precisely,∑
Φ

hFal(E,Φ) =
∑
Φ

(∑
ρ

cρ,Φ

Ç
L′(0, ρ)

L(0, ρ)
+

log fρ
2

å)
,

where the outer sum is over all 2g CM types of E.

We shall use the above theorem only to prove the following corollary:

Corollary 3.3. Let E be a CM field with [E : Q] = 2g, Φ be a primitive

CM type, and A ∈ S(E,Φ). We have the bound

hFal(A) ≤ |Disc(E)|og(1).

Proof. Applying Theorem 2.1 to every term in
∑

Φ h(E,Φ) except the one

corresponding to the CM type of A shows that

hFal(A) ≤ −(2g − 1)cg +
∑
Φ

hFal(E,Φ),
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where cg is a positive constant depending only on g. Thus it suffices to show

that ∑
Φ

hFal(E,Φ) ≤ |Disc(E)|og(1).

We shall do this by showing that every term on the right-hand side of Theo-

rem 3.2 is bounded above by |Disc(E)|og(1).

Firstly, for any irreducible Artin representation ρ, we have fρ ≤ |Disc(E)|,
and so

log fρ ≤ |Disc(E)|og(1).

Next, if we logarithmically differentiate the functional equation for the Artin

L-function, we obtain that L′(1,ρ)
L(1,ρ) + L′(0,ρ)

L(0,ρ) = Og(log fρ), and thus it suffices to

bound
∣∣∣L′(1,ρ)
L(1,ρ)

∣∣∣.
By Brauer’s theorem on induced characters, every Artin L-function is a

product of quotients of Hecke L-functions, and so by the Brauer-Siegel theorem

we have the estimate

L(1, ρ) = |Disc(E)|og(1).

Finally, by Cauchy’s theorem we can express L′(1, ρ) as an average of

L(s, ρ) over an arbitrary small circle centered around 1 in the complex plane.

Taking the circle to have radius ε > 0 and using the standard convexity esti-

mate for L(s, ρ) [10, (5.2)] now yields

L′(1, ρ)�ε |Disc(E)|ε+og(1).

Since ε > 0 is arbitrary, this completes the proof. �

4. Lower bounds for Galois orbits

We are now ready to prove Theorem 1.2 (restated as Theorem 4.2 here

for the reader’s convenience). We begin with the following lemma, which we

are grateful to the referee for suggesting:

Lemma 4.1. Let A be an abelian variety, and let Q(A) be the field of

moduli of A. Then there exists a field Q(A)′ such that all the endomorphisms

and polarizations of A are defined over Q(A)′ and [Q(A)′ : Q(A)] ≤ 2 · 34g2 .

Proof. Let Q(A)′ be the compositum of Q(e2πi/3) and the field of moduli

of A equipped with a basis for A[3]. Since A equipped with a basis of A[3]

is rigid, A is definable over Q(A)′. Then if B is the dual abelian variety to

A, since B[3] ∼= Hom(A[3], µ3), the points of B[3] are also defined over Q(A)′.

The lemma now follows from [19, Prop 2.3].

�
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Theorem 4.2. There exists δg > 0 such that if E is a CM field of de-

gree 2g, Φ is a primitive CM type for E, and A is an abelian variety in S(E,Φ),

then the field of moduli Q(A) of A satisfies

[Q(A) : Q]� |Disc(E)|δg .

Proof. Note that by Proposition 2.2, there are two elements A and B

in S(E,Φ) such that the minimal isogeny between them is of degree at least

|Disc(E)|1/4−og(1). Let Q(A)′,Q(B)′ be as in Lemma 4.1. Now we can write B

as A/TI for some ideal I ⊂ OE , where TI is the kernel of I acting on A. Since A

with its endomorphisms is defined over Q(A)′, it follows that B can be defined

over Q(A)′ as well, so Q(B) ⊂ Q(A)′. Thus KA,B := Q(A)′Q(B)′ is a field over

which A,B together with a basis for their 3-torsion can be defined, and so by

[19, Prop 2.3] all elements of Hom(A,B) are defined over KA,B. Thus applying

Theorem 2.3 and Corollary 3.3 we learn that [KA,B : Q]cg ≥ |Disc(E)|1/4−o(1).

Since [KA,B : Q(A)] ≤ 4 · 38g2 , this proves the result for any δg <
1

4cg
. �

5. The André-Oort Conjecture

Recall the statement of the André-Oort conjecture for Ag:

Conjecture 5.1. Let V be an irreducible closed algebraic subvariety

of Ag . Then V contains only finitely many maximal special subvarieties.

For a point x ∈ Ag(Q), let Ax denote the corresponding g-dimensional

principally polarized abelian variety, Rx = Z(End(Ax)) the centre of the en-

domorphism ring of Ax, and Disc(Rx) the discriminant of Rx. In general we

have the following lower bound conjectured by Edixhoven in [7]:

Theorem 5.2. Let g ≥ 1. There exists a constant bg > 0 such that, for

a special point x ∈ Ag ,

|Disc(Rx)| �g |Gal(Q/Q) · x|bg

(with the implied constants depending on g).

Proof. Let K be a CM field of degree 2g with a CM type φ, and let L be

the normal closure of K over Q. Let (K∗, φ∗) denote the dual CM field and

dual CM type of (K,φ). Then there is a reciprocity homomorphism between

ideal groups tK,φ : IK∗ → IK defined as follows: let φL denote the set of

embeddings L→ K extending all the embeddings in φ. Then the Galois group

Gal(L/K∗) is the right-stabilizer in Gal(L/Q) of φL. Then if I is a fractional

ideal of K∗, let tK,φ(I) be the unique fractional ideal in K satisfying

tK,φ(I)OL =
∏

σ∈φL/Gal(L/K∗)

σ(IOL).
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That such an ideal exists can be seen as follows: the map

t′K,φ(α) =
∏

σ∈φL/Gal(L/K∗)

σ(α)

is a map from (K∗)× to K× , and tK,φ is the induced map on ideals.

Then tK,φ descends to give a map rK,φ on class groups. Let ›rK denote the

composition rK,φ ◦NmL/K∗ , where NmL/K∗ is the norm map on class groups.

In [20, Th. 7.1] it is shown that Theorem 5.2 follows from the following purely

field-theoretic statement: there exists a positive constant δ(g) depending only

on g such that for any pair (K,φ) with φ a primitive CM-type,

(1) |im(›rK)| �g,ε Disc(K)δ(g)−ε.

Moreover, for A ∈ S(K,φ), by [17, §15, Main Theorem 1], [Q(A) : Q]

and |im(rK,φ)| are almost the same size. Since we cannot find an adequate

reference, we explain this point in some detail:

First, by class field theory the homomorphism NmL/K∗ has index in

Cl(K∗) bounded by [L : K∗] which is Og(1), so we focus on the homomor-

phism rK,φ.

Define the subgroup H of ideal classes [I] in Cl(K∗) such that there exists

an element a ∈ K× with tK,φ(I) = (a) and NormK/Q(I) = aa for some a ∈ K×.

Note that the condition is independent of which ideal representative for [I] one

chooses. Then [Q(A) : Q] = |Cl(K∗)|/|H| by [17, §15, Main Theorem 1].

Now, clearly H is contained in the kernel of rK,φ. Moreover, for [I] in the

kernel of rK,φ, we can find a ∈ K× such that tK,φ(I) = (a). This implies that

NormK/Q(I) = rK,φ(I)rK,φ(I) = aaOK , so that aa
|OK/I| is a totally positive unit

of K. Moreover, a is well defined up to an element of the unit group UK , and

so aa
NormK/Q(I) is well defined up to an element of U+

K/N(UK), where U+
K denote

the totally positive units and N(z) = zz. Therefore, H is the kernel of the

homomorphism from ker rK,φ to U+
K/N(UK). This latter group is a quotient

of U+
K/(U

+
K)2, which is of size at most 2g. Thus, we learn that the index of H

in the kernel of rK,φ is Og(1), and so

[Q(A) : Q] = |Cl(K∗)|/|H| �g |Cl(K∗)|/| ker rK,φ| = |im(rK,φ)|.

The theorem now follows from Theorem 1.2 combined with the fact that

S(K,φ) is not empty. �

In [16, Th. 7.1] it is proved that Theorem 5.2 implies the André-Oort

conjecture for Ag. Thus, we obtain the following:

Theorem 5.3. The André-Oort Conjecture holds for Ag for any g ≥ 1.
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6. Sketch of the complete proof of André-Oort

In this section, for the reader’s convenience we outline the proof of The-

orem 1.3 from “first principles,” quoting all the big results we need from the

literature, pointing out the use of the main ingredients [16], [14] and Theo-

rem 1.2, which, as we have seen, relies on the Masser-Wüstholz theorem and

on the averaged Colmez conjecture proved in [2] and in [22].

6.1. Setup. Let V be an irreducible subvariety of Ag, and suppose for the

sake of contradiction that V violates Conjecture 5.1. Since CM points are

defined over Q, by replacing V with the irreducible components of the Zariski

closure of its CM points we may assume that V is defined over Q as well. Let

L be a number field over which V is defined. We adopt the following notation:

if F and G are positive functions depending on various variables, we write

F ≺S G if there exist constants A,B > 0 depending only on the set S, such

that it is identically true that F ≤ A ·GB.

We begin with the observation that Ag has a uniformization by the Siegel

upper half plane Hg of symmetric g × g matrices whose imaginary part is

positive definite. Namely, there is a covering map π : Hg → Ag, and an action

of Γ := Sp2g(Z) on Hg such that π is invariant under the action of Γ and

induces an isomorphism π : Γ\Hg → Ag. Now Hg is a symmetric space and

there is a well-known fundamental domain [18, §VI] F ⊂ Hg for the action of

Γ with nice properties, so that π induces a homeomorphism from F to an open

dense subset (in the complex analytic topology) of Ag.

6.2. Getting polynomially many points of small height in π−1(V ) ∩ F .

Denote by F the closure of F in Hg. Now, even though the map π is highly

transcendental, the pullback under π |F of a CM point x of Ag is an algebraic

point y of degree bounded by 2g (or perhaps O(g) such points if the preimage

lies on the boundary of F ). Moreover, this pullback is not “too big” — in

the sense that the naive height H(y) is polynomially bounded in |DiscRx| (see

Theorem 3.1 in [15]). Now take a CM point x ∈ V , and set X = H(y). Then

the orbit of x under the Galois group Gal(Q/L) is also in V . Now, we have

H(y) ≺ |DiscRx| ≺ Gal(Q/Q) · x�L Gal(Q/L) · x,

where the second inequality follows from Theorem 5.2. Finally, note that if x′

and x are in the same Gal(Q/L)-orbit, then Rx′ ∼= Rx. So if Y := {y′ ∈ F |
π(y) ∈ Gal(Q/L) · x}, then H(y′) ≺L Y for every y′ ∈ Y .

For any set S, let N(S,X) be the number of degree 2g algebraic points of S

whose height is at most X. If x and Y are as above, and X := maxy′∈Y H(y′),

then N(π−1(V ) ∩ F,X) ≥ |Y |, which is at least a fixed positive power of

X by the inequality above. Since V contains infinitely many CM points x

by assumption, the heights of the bounded-degree points y ∈ F mapping to
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them must tend to infinity by Northcott’s theorem, so X can be taken to be

arbitrarily large. Thus we have shown that there are arbitrarily large X such

that N(π−1(V ) ∩ F,X) is bounded below by a fixed power of X.

6.3. Getting an algebraic subvariety in π−1(V )∩F . Now, while π−1(V )∩F
is not an algebraic or even semialgebraic set, it turns out that it can be defined

using subanalytic functions, together with the exponential function. That is

to say, it is definable in the structure Ran,exp [13]. This is in some sense a very

weak property of a set, but it turns out to be surprisingly useful. The key

is that Ran,exp is an o-minimal structure. We will not say more on this topic

here, and the interested reader should see [6]. We shall only need the following

extremely powerful theorem of Pila and Wilkie [14]:

Theorem 6.1. For any set T definable in Ran,exp, let T alg denote the

union of all connected, positive dimensional semialgebraic sets in T . Then

N(T\T alg, X) grows subpolynomially in X .

Combining the above theorem with the result of the previous section, it

follows that π−1(V ) ∩ F contains a semialgebraic set W .

6.4. Getting a special subvariety in V . We are now in the strange situation

that the pullback of an algebraic set π−1(V ) contains a semialgebraic set W ,

even though π is transcendental. It turns out that this can happen only if

a special subvariety is involved. Formally, V contains a special subvariety S

such that π−1(S) contains W . This is known as the hyperbolic Ax-Lindemann

theorem, and is the main result of [16, Th. 6.1].

6.5. Finishing up. By applying the above arguments to only those special

points not lying on positive-dimensional special subvarieties we have proved

that all but a finite number of the CM points on V lie on a positive-dimensional

special subvariety of V . To handle the positive dimensional special subvarieties,

we reduce to the case of special points as follows.

Since special subvarieties in V are images of group orbits in Hg, an o-

minimality argument quickly shows that such orbits occur in finitely many

algebraic families. This implies that all the maximal special subvarieties of

V occur in finitely many algebraic families. More precisely, one has finitely

many finite maps V0×S → V , where S is a Shimura variety, V0 is a subvariety

of another Shimura variety S′ such that V0 contains no special subvarieties

of S′, and the maximal special subvarieties of V occur as {x} × S, where {x}
is a special point of V0. Theorem 1.3 thus follows by applying what we have

proven so far to the subvariety V0 of the Shimura variety S′. See [16, §7] for

this argument done in full.
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