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The Gopakumar-Vafa formula for
symplectic manifolds

By ELENY-NICOLETA IONEL and THOMAS H. PARKER

Abstract

The Gopakumar-Vafa conjecture predicts that the Gromov-Witten in-
variants of a Calabi-Yau 3-fold can be canonically expressed in terms of
integer invariants called BPS numbers. Using the methods of symplec-
tic Gromov-Witten theory, we prove that the Gopakumar-Vafa conjecture
holds for any symplectic Calabi-Yau 6-manifold, and hence for Calabi-Yau
3-folds. The results extend to all symplectic 6-manifolds and to the genus
zero GW invariants of semipositive manifolds.

The Gopakumar-Vafa conjecture [GVa], [GVb] predicts that the Gromov-
Witten invariants GW 4 4 of a Calabi-Yau 3-fold can be expressed in terms of
some other invariants n 4 j, called BPS numbers, by a transform between their
generating functions:
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The content of the conjecture is that, while the GW 4 4 are rational numbers,
the BPS numbers ny4 y, are integers. (Gopakumar and Vafa also conjectured
that for each A € Hy(X,Z), the coefficients of (0.1) satisfy n4 , = 0 for large h;
we do not address this finiteness statement here.) It is natural to enlarge the
context by regarding this as a conjecture about the Gromov-Witten invariants
of any closed symplectic 6-manifold X that satisfies the topological Calabi-Yau
condition ¢1(X) = 0.

Formula (0.1) can be viewed as a statement about the structure of the
space of solutions to the J-holomorphic map equation. For a generic almost
complex structure J, each J-holomorphic map is the composition f = pop of a
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multiple-cover p and an embedding ¢. The embeddings are well behaved: they
have no nontrivial automorphisms, and the moduli space of J-holomorphic
embeddings is a manifold. But multiply-covered maps cause severe analytical
problems with transversality. In the symplectic construction of the GW invari-
ants, these problems are avoided by lifting to a cover of the moduli space and
turning on a lift-dependent perturbation v of the equation; this destroys the
multiple-cover structure and only shows that the numbers GW 4 4 are rational.
But it also suggests an interpretation of the GV formula: the right-hand side
of (0.1) might be a sum over embeddings, with the sum over k counting the
contributions of the multiple covers of each embedding.

This viewpoint is very similar to Taubes’ work [Tau96] relating Gromov
invariants to the Seiberg-Witten invariants of 4-manifolds, and our approach
has been fundamentally influenced by Taubes. It is also similar to the 4-dimen-
sional situation described by Lee and Parker in [LP07] and [LP12]. In both
cases, the set of J-holomorphic embeddings in each homology class is discrete
and compact for generic J — a simplifying circumstance that does not appear
to be true in the context of formula (0.1). Rather, for generic J and with a
fixed bound E on area and genus, the moduli space Memp(X) of embeddings
is a countable set, possibly with accumulation points. With this picture in
mind, our proof is based on three main ideas.

The first is the observation that, again for fixed J and E, the full mod-
uli space M(X) can be decomposed (in many ways) into finitely many “clus-
ters” O;. Each cluster consists of all of the J-holomorphic maps, including mul-
tiple covers, whose image lies in the e-tubular neighborhood of some smooth,
embedded J-holomorphic “core curve” C' C X. A cluster is an open and closed
subset of the moduli space; it may have complicated internal structure, but
there is a well-defined total contribution GW(O) of all the maps in the cluster
to the series (0.1). These contributions GW(Q) are local, depending only on
¢ and J in the neighborhood, and it suffices to show that the GV conjecture
holds for the contribution of each cluster.

The second observation is that there exist certain standard “elementary
clusters” whose local invariants are explicitly computable. Results of Junho
Lee [Lee09] show that, for each embedded genus g curve C, there exists an
almost complex structure J in an ¢ neighborhood U of C' in X that makes C
“super-rigid,” implying that all J-holomorphic maps into U are in fact maps
into C. For g = 0, one can take J to be the standard structure of the bundle
O(—1) ® O(—1), but for higher genus J is a non-integrable almost complex
structure. In Section 3 we compute the GW series GW(O) of elementary
clusters based on a calculation of Bryan and Pandharipande [BP08]. The
resulting formula shows that the local version of the GV conjecture holds for
elementary clusters.
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The proof is completed by an isotopy argument in the spirit of Taubes’
work and by extending arguments in [IP97]. For a fixed cluster, we deform
J in a neighborhood of the core curve to make it the J of an elementary
cluster. During the isotopy, the cluster series GW(O;) can change according
to several types of wall-crossing formulas. For a generic isotopy, the core curve
could disappear in a “creation-annihilation” singularity. To avoid this, we
use a generic isotopy in which the restriction of J to the core curve is fixed;
singularities then occur only when two core curves pass through one another
momentarily. In Sections 6 and 7, we use Kuranishi models to show that the
cluster series is invariant modulo contributions of finitely many clusters whose
core curves have higher degree or genus. The Gopakumar-Vafa conjecture
follows by induction.

core curve C

e-nbd of (C,Jo) (=~ - (C,.J1) elementary

\ —

Figure 1. As J; changes, embedded curves of higher genus or
degree can emerge from, or sink into, an e-tubular neighborhood
of C, and the core curve C' can pass through another embedded
curve with the same genus and degree.

Our main results, Theorems 8.1 and 8.4, can be stated as a structure
theorem.

STRUCTURE THEOREM. For any closed symplectic Calabi- Yau 6-manifold
X, there exist unique integer invariants ea 4(X), indexed by non-zero classes
A € Hy(X,Z) and genera g > 0, such that the series (0.1) has the form

(0.2) GW(X) =D eay(X) - GWem(gh 1),
A#0g>0

where GWZIem(q,t) is the universal power series (3.4), which depends on g,
but not on X. Furthermore, all coefficients na g in (0.1) are integers.

There is an extensive literature revolving around this GV conjecture.
J. Bryan and R. Pandharipande have a series of papers about it, including
two ([BP01] and [BP08]) relevant to our approach. For algebraic 3-folds, sev-
eral BPS-type integer invariants have been defined using holomorphic bundles,
including the Pandharipande-Thomas [PT09] and Donaldson-Thomas invari-
ants, with conjectural GV-type correspondences GW/DT/PT between them.
For toric 3-folds, Maulik, Oblomkov, Okounkov and Pandharipande proved the
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GW /DT correspondence by calculating both sides explicitly in a computational
tour de force [MOOP11]. Pandharipande and Pixton [PP17] established the
GW/PT correspondence for CY complete intersections in products of projec-
tive spaces. Other instances have been observed when a change of variables in
the GW series produces integer invariants, including a formula for Fano classes
(A € Ha(X) with ¢;(X)A > 0) in symplectic 6-manifolds proved by A. Zinger
[Zin11], and the computation of Klemm and Pandharipande for Calabi-Yau
4-folds [KPO08]. In Section 9 we combine our result on the Calabi-Yau classes
first with Zinger’s to obtain a GV-type formula for all symplectic 6-manifolds,
and then with Klemm and Pandharipande’s to obtain a GV-type formula for
genus zero invariants of semipositive symplectic manifolds.

We thank the referees for their meticulous reviews and numerous insightful
suggestions.

1. Curves in symplectic Calabi-Yau 6-manifolds

The Gromov-Witten invariants of a closed symplectic manifold (X,w) are
constructed in two steps. One first forms the universal moduli space and its
stabilization-evaluation map (denoted se)

(1.1) MX) == yn Mgn x X"
J

over a space J of w-tame almost complex structures on X. This moduli space
consists of equivalence classes (up to reparametrizations of the domain) of
pairs (f,J), where f: C — (X, J) is a stable pseudo-holomorphic map whose
domain C is a nodal marked Riemann surface; it has components M4 g, (X)
labelled by the genus g of C', the number n of marked points, and the homology
class A = f,[C] € Ha(X;Z) with w(A) > 0.

As is standard in the subject, we take J to be a space J' of C! almost
complex structures with [ large (and sometimes J = J°°), take f in a corre-
sponding space of maps (described in Section 4), and give M(X) the Gromov
topology. The results in Sections 1-3 depend on the specifics of these spaces
only through Lemma 1.2, whose rather technical proof is deferred until Sec-
tion 5 and Appendix A.

It is frequently convenient to define the energy of a triple (A, g,n) by

E(A,g,n) = max{w(A),g,n} >0

and to restrict attention to the subset ME(X ) “below energy F,” meaning
the union of all components with E(A, g,n) < E, and the corresponding fibers
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ﬂJ’E(X) of (1.1). The restriction of 7 to each My 4, (X) is proper, and the
fibers carry a d-dimensional virtual fundamental class

(12) [MA,g n( )]VH € Hd(MA,g n( ) Q)v7
where
(1.3) d=2c1(X)A+ (dim X — 6)(1 — g) + 2n,

and H*(-)V denotes the dual of Cech cohomology with rational coefficients
(cf. [Parl6, Def. 9.3.1]). Moreover, (1.2) is deformation invariant in the sense
that for every path v in J from Jy to Ji,

(14) MYy = Mg n (O™ in - HYAM (X))

(cf. the proof [Parl6, Lemma 9.3.2]). Here M’ denotes the parametrized
moduli space

M= {111, 7)) € 0,1] x M(X) | () = T }

obtained by pulling back M along .

Gromov-Witten invariants are especially simple if ¢ (X) =0 and dim X =6;
such spaces are often called symplectic Calabi- Yau 6-manifolds. In this case
all terms in (1.3) vanish when n = 0; the virtual fundamental class then has
dimension d = 0 for all g and A, and we drop n from the notation. In this
case, the Gromov-Witten invariants

(1.5) CW.1,4(X) = { [M,(X)]"", 1) € Q

are obtained by pairing the virtual fundamental class with 1 in H° (M). These
are assembled in a formal power series

(1.6) = Y Z GWa,(X) t272 ¢4

w(A)>09=0

in the “rational Novikov ring” A generated by ¢t and {¢} with tqg? = ¢t
and ¢t8 = ¢4¢®, and whose elements have finitely many non-zero terms
below each energy level. Note that the first sum in (1.6), over all positive A €
Hy(X;Z), omits any contributions from the class A = 0. For consistency, the
term “J-holomorphic map” will always mean a non-trivial map (i.e., A # 0),
and a “J-holomorphic curve” in X is the image of such a map. When f is an

embedding, we identify C' with its image f(C) in X.

Remark 1.1. The use of virtual fundamental cycles here and in Section 2
makes the presentation clear and succinct, but is not essential for understand-
ing the arguments in this paper. In fact, all of the symplectic manifolds X
that we consider are semipositive, and one might alternatively regard the GW
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invariants, and the local contributions to the GW invariants introduced in
Section 2, as counts of perturbed J-holomorphic maps.

Using the terminology of [MS12, §2.5], a point = € C'is called an injective
point for amap f : C — X if df (z) # 0 and f~(f(z)) = {x} when C is smooth;
if C' is nodal, we also require that x is not a node. A pseudo-holomorphic map
f:C — X from a nodal (not necessarily connected) curve is simple if it has
an injective point on each irreducible component. The open subset of simple
maps in a moduli space will be denoted by the subscript simple; for example,

-—J.E
(X)simple

(1.7) M

denotes the set of simple maps in MJ’E(X ), while M(X)gimple denotes the
open subset of M(X) consisting of simple maps with smooth domain. The
Micallef-White Theorem, [MW95] or [MS12, Prop. 2.5.1], implies that the set
of injective points of a simple J-holomorphic map is open and dense in C, and
hence the image under f of this set is a submanifold of X.

A pair p = (f,J) representing a point in HJ’E(X ) with smooth domain
is regular if the linearization D, given by (4.13) and completed in Sobolev
norms as in (4.26), is onto. It is a regular embedding if it is both regular and
f is an embedding. Since the index of D, is 0 by (1.3), each regular pair has
a well-defined sign (f, J) = %1, given by the mod 2 spectral flow from D, to
any invertible complex operator. Finally, by a Baire subset of the parameter
space we mean a countable intersection of open and dense sets.

LEMMA 1.2. Let (X,w) be a symplectic Calabi-Yau 6-manifold. Then for
each E > 0, there is a Baire subset Jp of J such that for each J € Jp,

(a) all simple J-holomorphic maps below energy E are reqular embeddings with
disjoint images;

(b) the projection 7 in (1.1) is a local diffeomorphism around each regular
embedding.

Part (a) of Lemma 1.2 is proved as Corollary A.5, and part (b) is proved
as Proposition 5.3(a); these proofs use standard techniques. For our purposes,

it is best to enlarge [J; to a set le

<1 that emphasizes slightly weaker properties.

Definition 1.3. Denote by \ZsEol the set of all J € J such that the moduli
space (1.7), with the Gromov topology, consists of isolated points that are

embeddings (not necessarily regular) with disjoint images.

COROLLARY 1.4. JE. is dense in J.

isol

Proof. For each J € Jp;, each simple J-holomorphic map f is an embed-
ding and is regular by part (a) of Lemma 1.2. By part (b), each such point
(f,J) is an isolated point of the fiber M”F(X)gmple of 7. O
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Unfortunately, the images in X of the pseudo-holomorphic maps that
appear in Lemma 1.2 may accumulate. To focus on the images, consider the
space Subsets(X) of all non-empty compact subsets of X. Fix a background
Riemannian metric on X with distance function d. Then Subsets(X) is a
metric space with the Hausdorff distance, defined by

dp (A, B) = inf d(a,b inf d(a,b
(A, B) sup inf (a,)+§gg;gA (a,b)

for A, B C X. Let ¢ be the “underlying curve” map
(1.8) c: M(X)— Subsets(X) x J

that associates to each (f,J) the pair (f(C),J) with f(C) regarded as subset
of X. This map c is continuous, and Gromov compactness implies that its
restriction to ME(X ) is proper. Let C(X), C¥ and C’*F denote, respectively,
the images of M(X), ME(X) and mJ’E(X) under ¢. With this notation,
there is a commutative diagram

(1.9) J ~

Viewed differently, convergence in C¥ defines a topology on ME(X ) that we
will call the “rough topology.”

In general, non-trivial J-holomorphic maps f : C — X from nodal curves
can be multiple covers, and simple maps can converge to multiply covered
maps. Definition 1.3 constrains how limits are multiply covered, as the follow-
ing lemma shows.

LEMMA 1.5. For J e JE

isol?

(a) Ewvery J-holomorphic map f : C — X below energy E is a composition
wop of a holomorphic map p : C — Creq of complex curves and a J-holo-
morphic embedding ¢ : Crea — X. This decomposition is unique up to
reparametrizations of Creq. When f is simple, ¢ = f.

(b) If f : C — X is a limit in the rough topology of a sequence {f,} in
ﬂJ’E(X) with dgg (fn, f) # 0 for all n, then the factorization f = @op has
either degp > 1 or genus(C) > genus(Creq)-

Proof. The disjoint union of the irreducible components of C' is a smooth
closed curve C called the normalization of C. Let f: C — X be the composi-
tion of the canonical map C — C with f. The arguments of [MS12, §2.5] show
that f factors as f = @ o p, where ¢ : Coq — X is a simple J-holomorphic
map from a smooth, possibly disconnected domain Cieq, and p : C — Chred
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is a map of complex curves; p may take some components of C to points.
But the assumption J € ~71£)1 implies that Cieq is connected and ¢ is an em-
bedding; p then descends to a holomorphic map p : C — Cleq, unique up to
reparametrization, with f = ¢ o p.

Part (b) immediately follows from Gromov compactness and the fact that
simple maps are isolated for J € jig)l, and therefore the limit map f = pop
is not simple. O

To each class A € Hy(X,Z) in the positive cone w(A) > 0 we associate a
positive integer

d(A) = fcm{ ke Ny ‘ A = kB where B € Hy(X,Z) }

called the degree of A, where fem denotes the lowest common multiple. Let
Q(d) be the number of prime factors of d, counted with multiplicity. For any
map f from a genus g curve representing a degree d class, we define its level
to be

(1.10) 0f) = Qd) + g.

The components of the moduli space are filtered by the degree and genus,
and therefore by their level; the level filtration will be used frequently in later
sections. For each E, the sets

—F —F
(1.11) My (X) = {(f,7) € M"(X) | (f) < m}
filter ME(X), and their images under (1.9)
—F
Ch = c(Mpu(X))
filter the image C¥ = C(HE(X))

For each J € jisb;l, the map ¢, when applied to multiply-covered maps,
decreases the level but respects the filtration; for such J the fiber C4¥ of
CE — 7 is the collection of embedded .J-holomorphic curves with level at
most m. In this notation, m = 0 corresponds to genus zero curves representing
primitive classes, and Cg is the collection of embedded pseudo-holomorphic
curves in X with g 4+ Q(d) < m and energy at most E.

LEMMA 1.6. For any fized J € JZ

isol?

(a) CHE C C;{;fl is a filtration of C*F with CL¥ = CMF for m large;

(b) CLE and CHF = JCLE are compact countable subsets of the metric space
C(X);

(¢c) for any neighborhood U of anfl , the set CLE\ U is a finite collection of
embedded J-holomorphic curves.

In particular, there are finitely many genus zero J-holomorphic curves with

energy less than E representing primitive classes.
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Proof. The inclusion in (a) is true by definition, and the second part of (a)
holds because, by Gromov compactness, only finitely many homology classes
are represented by J-holomorphic maps below energy FE.

Next, each set C2F is compact because it is the image of a compact set,

namely, the fiber M;]nE(X ) of (1.11), under the continuous map (1.9). Then
CLE\ U is a closed subset of the compact metric space C:¥

m
sequence {C;} has an accumulation point Cy. Because only finitely many

so any infinite

homology classes are represented by J-holomorphic maps below energy E, we
may assume, after passing to a subsequence, that they all have the same genus
and same homology class [C;] = k[ for the same primitive class 5 and the same
k with Q(k) + g < m. By Lemma 1.5 the limit is a multiple cover of a curve of
a strictly lower level, but that is impossible because U is open. Thus C1¥ \ U

is finite. Finally, taking Uy to be the 1/k tubular neighborhood of Cr‘{fl, we

conclude that CP\ €27 = Uy (C#lE \ Uk) is countable, and hence C:;¥ and

C/E are countable. O

2. Clusters in symplectic manifolds

Now suppose that X is a symplectic Calabi-Yau 6-manifold. (We retain
this assumption until Section 4.) For each subset S C J, we can consider the
moduli space MS(X) = m1(9) over S or, with an energy bound,

5. F
(

M0 = {11, 9) | 1 € P (x), T €5},

A decomposition of the moduli space MS’E(X ) is a way of writing it as a finite
disjoint union | |; O; of subsets O; that are both open and closed in the Gromov
topology. Given such a decomposition and a compact subset V' of S, the sets
{0;N7=1(V)} are a decomposition of MV’E(X ), giving a natural isomorphism

(2.1) i (M7 (x))" = @ N (V).

Note that for every J € S and every A, g with energy at most F, the inclusion
mihg (X) — MJ’E(X) induces a map

Ry — v S— v
0 (Myy(X)) = 1 (M(X))
whose image is the left-hand side of (2.1) with V' = {J}. The image of virtual

fundamental class [ﬂig(X )]V' then decomposes under (2.1) into a sum of
components

pry (M, (X)) € H*(0; n 7 Y(J)).
As in (1.5), we set
(22) GWag(0i N7 () = (pr[My 4 (X)]™,1) € Q
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and define the contribution of O; N w=1(J) to the GW series to be the sum of
the form (1.6) whose coefficients are given by (2.2) for all A, g with energy at
most F, and are 0 otherwise. Then

(2.3) GWF(X) =Y GWF(O;nr"!(J))

where, on both sides, GWZ denotes the GW series truncated at energy E.

Equation (1.4) implies that the coefficients (2.2) are deformation invariant,
as follows. For any path v in S from Jy to Ji, and any A, g with energy at
most F, we can take V' to be the image of v, and consider the map

My (X) = MP(X)
induced by (¢,[f],J) — ([f],J). The equality (1.4) pushes forward by this
map to give an equality in the group on the left-hand side of (2.1). Applying

the isomorphism (2.1) and projecting onto the ith component then shows that
the coefficients (2.2) for J = Jy and J = J; are equal.

LEMMA 2.1. Each open subset U of C(X) with OU NC*¥ = () has a well-
defined contribution GWE (U, J) to GW¥(X). The collection of J for which
oUNCTE = is open in J, and the contribution GWE (U, J) is locally constant
as a function of J.

Proof. The assumption implies that the intersections of both U and its
complement U¢ with C”F are open subsets of the image C/F of ¢. Since ¢ is
continuous, O = ¢~ (U NC*HE) and O° = ¢~ (U N C/F) are open and closed
subsets of WJ’E(X). Define GWE(U, J) to be the contribution GW¥(0O N
771(J)) of O to the sum (2.3) associated to the decomposition O U O°.

Next note that the condition U NC”’*¥ = ) is an open condition on J. To
see why, fix U and E. If this condition held for some .J, but failed to hold for a
sequence Jr — J in J, there would be a sequence of Ji-holomorphic curves Cj
in OU with energy E(A, g,n) bounded by E. Applying Gromov compactness,
one could find a subsequence converging to a J-holomorphic curve C. But U
and C’F are both closed in the Gromov topology, so the limit curve C' would
lie in OU N C7¥, contradicting the hypothesis.

Therefore there exists a ball V around J in J such that U N CEV = (.
This gives rise to the same decomposition O U O¢ but now of the moduli space
MV’E(X ) over the entire ball V', therefore the contribution of U is defined for
each J € V and it is constant on V. ([l

The geometric content of the contribution GW¥ (U, .J) is most clearly seen
by choosing U of the form B(C,¢e) x J for a ball B(C,¢) of small radius € in
the Hausdorff distance centered at a .J-holomorphic curve C. The subset of
HJ(X ) that lies in ¢! (U) is then a collection of .J-holomorphic maps whose
images are uniformly e-close to C in X. We will call such a collection a cluster
if the following properties hold.
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Definition 2.2. A cluster O=(C,e,J) in X below energy F (an “E-cluster”)
consists of an almost complex structure J € J, an embedded J-holomorphic
curve C and a radius € > 0 with the following properties:

(a) all non-constant J-holomorphic maps in the ball B(C,¢) with energy < E
represent k[C] for some k > 1, and have genus g > ¢g(C);

(b) C'is the only J-holomorphic map in its degree and genus in the ball B(C, ¢);

(c) there are no J-holomorphic curves with energy < F at precisely € Hausdorff
distance from C.

The curve C is called the core of the cluster. Note that, by the definition
of Hausdorff distance, curves in B(C,¢) lie in the e-tubular neighborhood of
Cin X.

The next lemma shows that small balls in the Hausdorff metric are often
clusters. In fact, conditions (a) and (b) of Definition 2.2 are automatic for
small £ when C' is regular. Condition (c) is the important one: it implies that
O = (C,e,J) has a well-defined contribution

(2.4) CWE(0) € A.

LEMMA 2.3 (Cluster existence). For each J € JE (X) and each simple
J-holomorphic curve C, the set S of € > 0 for which the ball B(C,¢) is an E-
cluster is open and dense in a non-empty interval [0,e¢], and the contribution

(2.4) is locally constant on S.

Proof. By definition, for any J € J.Z,(X), all simple J-holomorphic curves
are embedded and isolated in their degree and genus. Since C/F is compact,
and an embedded curve C can appear as an accumulation point only of curves
representing k[C] and having genus at least that of C, Lemma 1.5 implies that
there is an ec > 0 such that conditions (a) and (b) of Definition 2.2 hold for
all e < ec.

C’E under the distance function

Finally, by Lemma 1.6, the image of
B(C,ec) — [0,e¢] is countable and compact, so its complement — which is
the set of ¢ that satisfy condition (c) of Definition 2.2 — is open and dense.

O

PROPOSITION 2.4 (Cluster decompositions). Given E and J € JE,, each

open subset U of C(X) such that OU N CHF = 0 has a finite E-cluster decom-
position {O; = (C;, J, &)}, and hence

(2.5) GWH(U) =Y GWF(0;).

Proof. We will inductively construct cluster decompositions of the sets
Un = UNCLE, beginning with the trivial case U_; = (. This induction is
finite because C;,¥ = C*F for m sufficiently large by Lemma 1.6(a).
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Suppose that {B; = B(Cj,e;)} is a cluster decomposition of U,,. This
means that the balls B; are disjoint, that the compact set Uy, liesin V = | | B,
and there are no J-holomorphic curves on 0V = | |0B;. Lemma 1.6 shows
that Uy,+1 \ V is a finite collection of curves {C;}. None of these C; lie on 9V,
so we can choose radii £; > 0 such that the balls B} = B(Cj,¢;) are clusters
(by Lemma 2.3) and are disjoint from each other and from the balls B;. These
clusters B}, together with the original B; are a cluster decomposition of Uy, 1,
completing the induction step. O

COROLLARY 2.5 (Cluster refinement). Fiz any cluster O = (C, J,e) with
J e JE,. For any e € (0,¢) for which O’ = (C, J,€') is a cluster, there exists

finitely many higher level clusters {O; = (C, J,&;)} such that
(2.6) GWF(0) = GWP(0') + > GWF(0y).

Proof. Consider U = B(C,¢) \ B(C,¢’). Because both O, O are clusters,
(a) there are no curves in C*¥ on OU and (b) all the curves in C*¥ N U have
strictly higher level compared to that of C' (as C' is the only bottom level curve
in both clusters). By Proposition 2.4, there exists a cluster decomposition (2.5)
of U, where the O; are strictly higher level. But condition (a) also implies that
U and O’ give a decomposition of O so GW(O) = GW(O’) + GW(U), which
implies (2.6). O

3. Elementary clusters and their contributions

The GW series can be explicitly calculated for one very special type of em-
bedded curve. In this section we describe how this can be done by combining
ideas already in the literature. We first construct such “elementary curves” us-
ing a remarkable non-integrable almost complex structure discovered by Junho
Lee [Lee09], and we then point out that the GW series for these curves has
been calculated by J. Bryan and R. Pandharipande [BP0S].

Definition 3.1. In a symplectic Calabi-Yau 6-manifold X, a cluster O =
(C,e,J) is called elementary if

(a) the core curve C is balanced, meaning that its normal bundle splits as
N¢ = L@ L in such a way that the normal operator DV, given by (4.15)
below, splits as D' @ D’;

(b) the only non-trivial J-holomorphic maps into B(C,¢) are multiple covers
of the embedding C' — X

(c) for each such cover p, the pullback operator p*D’ is injective (C' is super-
rigid).

Property (c) implies that the core C' of an elementary cluster is a regular
J-holomorphic map, and one can show it also implies (b) for sufficiently small
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e > 0 by the rescaling argument of [IP03]. Property (a) allows us to actually
calculate the GW contribution.

When C is a rational curve, the unit disk bundle in O(—1) & O(-1) is
an elementary cluster. The following proposition uses non-integrable almost
complex structures to construct similar examples for any curve. The proof
begins with the choice of a spin structure on C)| i.e., a holomorphic line bundle
L — C together with a (holomorphic) identification of L? with the canonical
bundle K¢ of C.

PRrROPOSITION 3.2. For every smooth complex curve C, there exists an
elementary cluster whose core is C.

Proof. Fix a curve C of genus g, a spin structure L, and a Kahler structure
(J,g,w) on the total space Y of L & L — C' compatible with its holomorphic
structure. The canonical bundle Ky = 7*(L~2 ® K¢) of Y is then trivial, so
Y is a Calabi-Yau 6-manifold. We will perturb J to obtain an almost complex
structure on the unit disk bundle U C Y that makes U an elementary cluster.

First consider the total space Z of p : L — C. Its canonical bundle K, =
T%07 is the pullback p*(L~! ® K¢) = p*(L), which has a canonical section
that vanishes transversally along the zero section. Pullback §, regarded as a
2-form, by the bundle projections py,p2 : Y — Z onto the first and second copy
of L and set a = pif + p55. Then a is a closed (2,0)-form on Y that vanishes
to first order along the zero section of L ¢ L, which is the core curve C' of the
disk bundle U C Y. Following Junho Lee, define a bundle map K, : TY — TY
by g(u, Kov) = (o + @)(u,v) for all u,v € TY and set

Jo=1d+ JK,) J(Id + JK,).

Then J, is an w-tame almost complex structure on U after replacing a by ta
for small ¢ > 0 (cf. Section 2 of [Lee09]). In this context, Lee proved that the
image of every non-trivial Jo-holomorphic map into D is everywhere tangent
to ker K, (cf. [Lee09, (2.4)]). It is straightforward to check that at each point
p € Y not on the zero section, ker K, is vertical. Consequently, any map whose
image is tangent to ker K, lies in a fiber of Y — C' or in the zero section. We
conclude that every J,-holomorphic map into U that represents k[C] for some
k # 0 is a map into the core curve C of the disk bundle U.

Along the zero section of Y and for v € TC, V,K, decomposes under
the splitting TC © L ® L as 0 ® V,Kg ® V,Kg. Correspondingly, the normal
operator DV, given by (4.15), splits as Dév S Dév, as can be seen from [LPO07,
(8.4)]. As in Section 4 of [LP07], the normal projection of Dpg is the sum 9+ R
of the d-operator on L and a bundle map Rg: L — TY9'C ® L that satisfies
JRg = —RgJ. The injectivity condition (c) of Definition 3.1 is then exactly
the statement of Proposition 8.6 of [LP07]. O
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By Lemma 2.1 an elementary cluster has a well-defined A-valued series
GW(0O), independent of . As usual, there is an associated disconnected in-
variant

Z(0) = exp(GW(O))

obtained by exponentiating in the Novikov ring. It turns out that Z(O) is
more easily calculated.

PRrROPOSITION 3.3. The disconnected GW invariant of an elementary clus-
ter O whose core C' has genus g is given by

(3.1) 2(0) = 1+ 11 (28mh(2[])t> 9= e

d>1pFd Oep

where the second sum is over all partitions p of d, the product is over the boxes
in the Ferrers diagram of p, and h(O) is the hooklength of O € p.

Proof. Because the linearization on covers of the core curve C' is injective,
the contribution to the GW invariant of its multiple covers can be calculated
using the Euler class of Taubes obstruction bundle. (This is the 6-dimensional
version of the setup in [LP12] and a special case of Theorem 1.2 in [Zinl1].)

Consider the moduli space ﬂ;X(C) of degree d holomorphic maps p to
C whose domain is possibly disconnected and has Euler characteristic y, and
where p is non-trivial on each connected component. This carries a virtual
fundamental cycle [H;X(C)]Vir of even complex dimension b = d(2 — 2¢g) — x.
The operators DV and D’ of Definition 3.1 induce families of real operators DV
and D’ over M;X(C) whose fibers at p are the pullback operators p* DV and
p*D’'. By Definition 3.1(a), the corresponding index bundles satisfy Ind D =
Ind D' & Ind D'. A priori, these are real virtual bundles, but Definition 3.1(c)
insures that the Taubes obstruction bundle Ob = —Indg DY is an actual vector
bundle of rank b, equal to the direct sum of two copies of Ob’ = —Indgr D'.
The bundles Ob and Ob’ each come with a canonical orientation determined,
on each connected component of the space of covers, by the spectral flow to
an injective complex operator over one fixed cover p. Computing this spectral
flow along a path of operators that respect the direct sum decomposition, one
sees that Ob = Ob’ @ Ob’ as oriented real bundles.

With this notation, the elementary contribution is equal to the integral of
the Euler class

ZuxO)= [ (D)
(Mg, ()]

where

e(Ob) = (O’ & Ob') = e(Ob') U e(Ob') = (—1)2¢, (OB @p C).
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This Chern class factors through K-theory. (In general Euler classes do not.)
Because D' = 91, + R is a 0" order deformation of the complex operator 9z,
the complexification of the index bundles of D' and d;, are equal in K-theory,
SO

Cb(Ob/ KRR C) = Cb(—Ind gL Rr C) = Cb(—Ind gL D (—Ind 5L)*)

Combining the last three displayed equations gives

(32)  Zgn(0)=(-1)"? /70 ' ep(—Ind 3 ® (~Ind 3)").
(M (O
The right-hand side of (3.2) can be evaluated using equivariant techniques.
The torus T' = C* x C* acts on the total space Y of the holomorphic bundle
N¢ = L@ L. With the antidiagonal C*-action, Y is an equivariant local Calabi-
Yau 3-fold. Bryan and Pandharipande defined a ‘residue’ generating function
ZT(Y) whose coefficients

A= el
[Ma, (O™

are equivariant integrals (defined by localization). They proceeded to express
them in terms of ordinary integrals:

(3.3)

2= 3 / (t1/t2)®=0D/2(¢)y (~Ind D1 )cp, (~Ind Dy),
bi+by=b dx(c)]‘”r

where t1,t2 are the weights of the action (cf. page 105 of [BP08]). For the
antidiagonal action t; = —tg, (3.3) reduces to (3.2) after noting that ¢, (E*) =
(—1)*cy(E) for E = —Ind d;,. On the other hand, for the antidiagonal action,
Bryan and Pandharipande also explicitly calculated (3.3) to be the coefficient
of the series appearing on the right-hand side of (3.1) (Corollary 7.3 of [BP0S]).
This completes the proof. O

The series (3.1) is a universal power series that depends only on the genus
g of C. Thus we set

(3.4) GWSlem(q, t) = log Z;lem(q, t),
where
29—2
(3.5) Zelem _ 1+ZZ H ( )t) 9 J
. 9 q,t) = q°.
d>1pu-d Oep

In fact, taking log of (3.5) and separating the d = 1 term of the series,

A _
(36)  GWS (g =q(2smy) o+ D0 Y GWanle) o'
d>2h>g
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for some coefficients GW4,(g) € Q. Since the coefficient of the leading term
qt?972 is +1, the core curve C of any elementary cluster has sign C' > 0.

Now apply the “BPS transform,” which takes an arbitrary element of the
Novikov ring to another by

A KEN22
ZNA,thQ*Qq = Z nA,gZ <2sm—) 4.
A,g Aag
This transform is well defined and invertible (Proposition 2.1 of [BP01]). Thus
for an elementary cluster O whose core C has genus g, we can write

37) GW(0) = GWHen(g n ! (2sinkt>2h " gic
(37) GW(0) = 0=323 nasts kz C(2smy) o

for uniquely determined coefficients ng ,(g) that are, a priori, rational numbers.
These coefficients have been explicitly calculated for low degree (d < 2) and
for low genus (¢ < 1). A combinatorics argument now handles the case g > 2,
yielding a basic fact:

PROPOSITION 3.4. The local Gopakumar-Vafa conjecture is true for ele-
mentary clusters. More specifically, the coefficients of the series (3.7) associ-
ated with a genus g elementary cluster O satisfy
(a) (Integrality) nas(g) € Z;

(b) (Finiteness) for each d fized, ngp(g) =0 for h < g or h large;
(c) for g =0, all ngn(g) vanish except nyo(g) = 1;
(d) for g =1, all ngx(g) vanish except ng1(g) =1 for each d > 1.

Proof. When the core curve has genus zero and normal bundle O(—1) &
O(—1), O is an elementary cluster and its contribution to the GW invariant
was first calculated by Faber and Pandharipande. Specifically, letting c(h, d)
denote the coefficient of ¢?t?"=2 in (3.6) with g = 0, equations (34), (35) and
the middle displayed equation on page 192 of [FP00] imply the formulas

c(h,d) = d*"3 ¢(h, 1), 3 e(h, 1) 22 = (2sin()) 2.

(These are equations (1) and (2) in [Pan99].) Consequently, the genus 0 ele-
mentary GW series is

GWeen (g, 1) = 37(c) (hy k) 202 ¢ = Z% <2sm %) o
Rk k
Comparing with (3.7) gives (c).
For genus g = 1, (3.5) reduces to the generating function for the number
p(d) of unordered partitions of d:
)
g/

00
Zelem q, _1+Zp d:H<1

d>1 d=1
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Hence

[e.9]

GWS™ (¢,t) = log Z§™ (g, t) = — Y log(1 — ¢%)

Comparing with (3.7) gives (d).

In the higher genus case, both (a) and (b) are consequences of an algebraic
fact about power series with integral coefficients that follows by combining
several results in the paper [PT09] of Pandharipande and Thomas. Making
the change of variable Q = €', (3.7) becomes

_1\h—1
log 28 = 3 Y nan(g) 30— 1,3, (@ + Q7" —2)" g™

d>1 h k>1

On the other hand, for g > 1, (3.5) becomes

(3.8) Z;‘lem =1+ Z Z H (—1)9~1 (Qh(D) L QMO _ 2)9—1 4

d>1 p-d Dep

[e.e]
=> > Ana Q"
d=0 n
where, for each d, the inner sum is a Laurent polynomial in ) with integer
coefficients A,, 4. These coefficients A,, ; uniquely determine the numbers ngj,.
But by Theorem 3.20 of [PT09], the integrality of the A,, 4 implies that all of
the ng, are also integers. Thus statement (a) holds.

For g > 2, the coefficient of ¢¢ in (3.5) is a Taylor series in t2, Z =
1+t2972¢g + O(t%9), so log Z = t2972¢ + O(t?9). Comparing with (3.7) one sees
that ngx(g) =0 for all h < g, as in (b).

Finally, for genus g > 2, the inner sum in (3.8) is a Laurent polynomial
in Q, symmetric in Q@ — @', and with degree bounded by (g — 1) S h(0) <
d?(g — 1) (since for a partition of d, the hooklength h(CJ) of each box is at
most d). This property is preserved under taking the log:

log Zglem = log Z Z ad,nQ”qd
d n

(="t —k h—1 kd
=2 nan(e) Y (@ + Q7 —2) g,

d>1h>g k>1

where |n| < (g — 1)d?. As in the proof of Lemma 3.12 of [PT09], this implies
the vanishing of ng(g) for large h. In fact, a proof by induction on d using
the above bound implies that ngp(g) =0 for h —1 > d*(g — 1). O
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4. Analytic preliminaries

This section is a review of the analytic setup for the moduli space for
a general closed symplectic manifold (X,w). Consider the universal moduli
space of simple maps (with smooth, connected domains and smooth .J)

Msimple
(4.1) lﬂ
J=J>

with the projection 7 ([f],J) = J. Note that Mgimple is an open subset of the
universal moduli space M(X) of (1.1), and simple maps have trivial automor-
phism groups (cf. [MS12, Prop. 2.5.1]). It contains the open subset Moy, of
maps that are embeddings.

To set up the analysis, we first work locally around a pair p = (f,J)
that represents a point in the moduli space (4.1). Thus p consists of a simple
J-holomorphic map f : C — X whose domain is a smooth, connected marked
complex curve C' = (3, x1,...,2n,j), J is a smooth almost complex structure,
and j is in the space J(X) of complex structures on .

4.1. Slices and linearizations. The moduli space M, ,,(X) is naturally a
subset of the quotient of Map(X, X) x J(X) x J by the action of the group
Diff (X, x) of diffeomorphisms of ¥ that preserve each point in the set x =
{x1,...,2,} of marked points. In practice, one chooses a local slice for the
diffeomorphism action and regards the moduli space locally as a subset of the
slice. For now, we assume that the domain C = Cj has no automorphisms;
this assumption will be removed at the end of this subsection. To define
a slice, choose local holomorphic coordinates on a ball B C Mg, centered
at [Co] € My,. Then there is a local universal deformation v : Up — B
of Cy with sections x1,...,x,. This means, in particular, that the central
fiber y~1(0) is identified with Cy as a marked complex curve, and every small
deformation C of Cp is equivalent under Diff (¥, x) to one and only one fiber
Cy, b € B, of 7. Fix a smooth trivialization 7 of g — B in which the universal
deformation is B x (X,x) — B,

(4.2) Up

B x (¥,x)
Ty

DN
B.

This trivialization, regarded as a family of complex structures j, on (%, x),
defines an embedding

(4.3) o:B— J(¥), given by b+ jp,
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whose image S is a local slice for the action of the diffeomorphism group on
J(X). The linearization of this embedding at C' = C}, gives isomorphisms

(4.4) TeMgn = TyB — T;,S;.

Furthermore, the tangent space to the orbit O; of Diff(¥,x) on J(X) is the
image of
Orc : QUTC) — Q¥Y(TC),
where Q) (T'C) denotes the space of smooth sections of T'C' that vanish at the
marked points.
The slice S; is transverse to this orbit at j, giving an isomorphism

(4.5) T;S: = T;J(%)/0; = Q¥YTC) /im Orc = H*(TO),

where the last equality defines the vector space H*1(T'C). Consequently, the
map

(4.6) D¢ : QUTC) e T;S, — Q¥Y(TC)

defined by D¢ (¢, k) = drcC + jk is a complex-linear isomorphism.

Given local trivializations 71 and 73 as in (4.2) over two overlapping charts
By, By in Mg, containing [Cp], after restricting them to the overlap Bip =
B1 N By, they determine a smooth transition function

(4.7) @=mp07 ' :Bjax ¥ — Bya x X.

The restriction ¢y to the fiber over b € Bjs is a diffeomorphism of ¥ preserving
the marked points x. The corresponding maps (4.3) restrict to embeddings
01,09 : Biog — J(¥), and

(4.8) 012202001_1181—>SQ
is a diffeomorphism between &1 = 01(Bi2) and S = 09(Bj2) with

o12(jv) = ()" (jb)  for all (b) € Bio.

To include maps, fix (fo,Jo), where fy is a Jp-holomorphic map whose
domain Cy has Aut(Cp) = 1. Then

(4.9) Slice; = [Map(X, X) x S| x J

is a local slice for the action of Diff (X, x) on Map(X, X) x J(X) x J. Elements
of (4.9) have the form (f,j,J) where f : ¥ — X and j € S;, making C =
(%,4,21,...,2,) a marked curve with complex structure j. For notational
simplicity, we will frequently combine the first two factors, writing elements of
(4.9) as pairs (f, J), where the letter f denotes a map f : C'— X and therefore

implicitly includes its domain C, regarded as a marked complex curve.
The slice (4.9) comes with a projection

7 Slice, - J
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defined by 7 (f,J) = J, and a complex vector bundle F — Slice; whose fiber
over p = (f,J) is QUY(f*TX). Near (fy, Jo), the moduli space, considered as
a subset of Slice., is the zero set of the section ® of F defined by

(4.10) O(f,J)=0,f.

Under the isomorphism (4.4), the tangent bundle to the slice can be writ-
ten as

(4.11) T Slice, =E @ TJ,

where & — Slice; is the complex bundle whose fiber at p = (f,J) is &, =
QU TX) @ T;S:.

The linearization of the J-holomorphic map equation (4.10) at a solution
p on the slice is the real operator £, : £, ®T;J — F, given by

(4.12) Ly(&,K) =Dy + 1K odf o3j,

where D, : £, — Fp is the linearization under variations that fix J. Explicitly,
D, applied to & = ((, k) € QU(f*TX) © T;S; is

(4.13)  Dp(&)(w) = 5[Vl + TVl + (V) (df (jw)) + Jdf (k(w))],

where V is any torsion-free connection on 7'X; at a solution p, D,, is indepen-
dent of the connection (Lemma 2.1.2 [IS98] or Lemma 1.2.1 of [IS99]). Both
L, and D, depend on the J only through the 1-jet of J along the image of f,
and the spaces &, and F, depend only on the 0-jet of J along the image of f.
Furthermore, when the variation ¢ = f.¢7 is tangent to C, (4.13) reduces to

(4.14) Dy(f:¢" k) = fuDc((T k),

where D¢ is the isomorphism (4.6). Consequently, when f : C'— X is a J-holo-
morphic immersion with normal bundle No = f*TX/TC, the linearization
(4.13) uniquely descends to a normal operator

(4.15) DY :T'(N¢) — Q% (Ng).

Now consider a simple map fo : Cop — X whose automorphism group
Aut(Cp) is non-trivial. As noted after (1.7), the injective points of fj are dense
on each component. Hence we can choose ¢ additional injective points on Cj
so that the marked curve Cy = (Co, 21, ..., 2ni¢) has Aut(Co) = 1. We can
then fix a trivialized local universal deformation of the (n + ¢)-marked curve
Co over a ball B C Mgy Set Y = (3,21,...,Tnte), and for each image
point y; = fo(x;), n < i < n+ ¢, choose a codimension 2 ball V; through y;
transverse to fo(Cp). Standard results (cf. Section 3.4 of [MS12]) show that
the space Mapg(i7 X) of maps satisfying f(z;) € V; for n <i < n+/{is locally
a manifold near fj, and hence

Slice, = Map,(3, X) x B x J
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is a local slice for the action of Diff(¥) on Map,(3, X) x J(£) x J. Thus
defined, each point in the slice is a pair p = (f,J) where f : C' — X is a map
whose domain has no non-trivial automorphisms. The linearization

(4.16) D,:& — F,

is still given by (4.13), but where £ is now the bundle over the slice whose fiber
over p = (f,J) is
(4.17)

&g = {C e V(fF*TX)|¢(x;) €TV foralln+1<i<n +f} O TMgnie

For notational simplicity, we will henceforth write C as C, and always
restrict to sections ¢ with ((x;) € T'V;. All the variations we construct in this
and subsequent sections will be supported away from all marked points of C.

4.2. Sobolev completions. Throughout this paper, we work with the fol-
lowing set of Banach space completions (cf. [MS12, §3.1]). For numbers

(4.18) 1>6, r>2  1<m<lI,

let J' denote the space of tame C! almost complex structures on X, let
Map™" (%, X) be the completion of the space of smooth maps ¥ — X in
the Sobolev (m,r) norm (i.e., the m-jet is in L"), and let

(4.19) Slice™™! = [Map™" (2, X) x S;] x J.

These are smooth separable Banach manifolds.

Similarly, for each m in the range (4.18), the vector bundles £ and F
extend to vector bundles £™" and F™ 1" over the slice (4.19), whose fibers
at p= (f,J) are, respectively,

(4.20) EM" = W™ (f*TX) & T;S, and Fp'~ " = WL (AS ®c fTX),

where W™ (E) denotes the space of Sobolev (m,r) sections of a vector bun-
dle E, and where A%l is the bundle (T2C)%! over the domain C. The bundle
E™T is smooth (it is the tangent bundle of Map™" (¥, X) x S;) and F™~ 17 is
of class C'=™ (cf. [MS12, p. 50]).

In this context, (4.10) defines a C!~™ section of F™ 1" over the slice
(4.19) whose zero locus is a local model of the moduli space. We will focus on
the subset

(4.21) Mimple C Slice™"

of pairs p = (f,J) where f is a simple J-holomorphic map. By elliptic regu-
larity, all such maps f are of class W hr [MS12, Prop. 3.1.10], and hence the
set Mgmple is independent of m in the range (4.18), and its elements are pairs
(f,J) where both f and .J are of class C'.



22 ELENY-NICOLETA IONEL and THOMAS H. PARKER

For two local trivializations 71, 72 as in (4.2) over the same B = Bja, there
is a transition map ¢ as in (4.7). This induces a map @ between two slices
(4.9) given by

(4.22)  @(f g J) = (f 00w, (w6)"(b), ) = (f © @b, 012(Jb), J)

for the map ¢ defined after (4.7) and 012 as in (4.8). In this formula, oj9 is
smooth, and {¢|b € B} is a smooth family of diffeomorphisms of the closed
surface ¥. As a result, the regularity of ¢ is determined by the regularity of
the map T defined by T'(f,¢) = fop. Formally computing its differential, one
finds that

dT,,(&,v) = @€+ df (v) for all ¢ e I'(f*TX) and v € I(TC).
More generally, one finds that the & derivative of 7' depends on the k-jet of f.
It follows that (4.22) induces a k-times differentiable, hence C*~1, map
(4.23) @ Slice;’?’"’l — Sliceg_k’r’l .
Thus a change of trivializations induces a map of slices that loses regularity.

We will return to this technical issue in Proposition 5.1.

4.3. Estensions and adjoints. The linearizations (4.13) extend (non-
canonically) to a family of operators parametrized by points p = (f,J) in
the slice (4.19) as follows. Fix a Riemannian metric gy on X, and let V°
denote its Levi-Civita connection. Using the notation of (4.13), define D, by

(4.24) Dy(¢, k) = D¢ + S(Jdf + df j)k,
where
(4.25)  (DSO)(w) = 3 (VOC+ IVI,C) + L(V2I)(dfj + Jdf ) (w).

Then D) agrees with [MS12, (3.1.4)], and (4.24) agrees with (4.13) if f is
J-holomorphic because (4.13) is independent of the connection and Jdf = dfj.
Similarly, extend (4.12) by the formula

Ly(C, k) = Dp& + TK(df j + Jdf).
As in Section 3.1 of [MS12], D, and L, extend to bounded linear operators
(426) Dp: &M — ]—";n_lv’“ and  L,: EM @ 7" = f;n—l,r,

and D, is a compact perturbation of Dg, and hence is Fredholm. Moreover, if
p = (f,J) is a J-holomorphic pair, then ker D), and coker D), are independent
of m in the range (4.18).

Next fix a Riemannian metric gg compatible with the complex structure
on the local universal family of curves parametrized by S;. By restriction, gg
induces a Riemannian metric on each curve in the local family which, under
the trivialization associated with the slice, gives rise to a family of metrics on X
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parametrized by the S;. These metrics, together with their associated volume
forms and the fixed metric gy on X determine L? inner products ( , )2 on
T;S7, &, and F, for each p = (f, J) € Slice;.

Let D? denote the formal L? adjoint of the operator D, of (4.24), which
is uniquely defined by

(427) <Dp§7 77>L2 = <€7 D;n>L2

forall ¢ € T(f*TX)®T;S; and n € Q1 (f*TX). The adjoint operator depends
on the choice of metrics.

Assume p = (f,J) is in a slice (4.19), where f : C — X is simple and
J-holomorphic, and C' is a smooth connected complex curve. For an element
§ = (¢, k) of & and an injective point x of f, we define ¢N(x) to be the
component ¢V (x) of ¢(x) normal to f.(T,C) with respect to the metric g on X.

We will repeatedly use the following simple consequence of elliptic theory.

LEMMA 4.1. Fiz p = (f,J) in the set Mgmple of (4.21). Suppose that
K € SS’S and c € .7-"8’3, % + % = 1, are nonzero weak solutions of Dk = 0 and
Djc=0. Then k € 5};” and c € ]:Il;r, and there is an injective point x € C

such that c(x) # 0 and k™ (z) # 0.

Proof. The equation Djc=0 means that the L? inner product (D, (¢, k),¢) 12
is zero for all (¢, k) and therefore, taking k = 0, (D9)*c = 0. Lemma 3.4.4 of
[MS12] then shows that ¢ is in the Sobolev (I,r) space, hence is continuous,
and also shows that ¢ cannot vanish identically on any open set in C.

Similarly, k = ({, k) is a weak solution of Dg{ = —%dek: with k& smooth
and f, J of class C', and hence Jdfk € F'=1". Elliptic regularity as in [MS12,
Prop. C.2.3] implies that ¢ is in the Sobolev (I,r) space, so x is in £/ and is
continuous. If kK were everywhere tangent to C, it would satisfy Dok = 0 for
the operator in (4.6). But then x would be smooth and would contradict the
fact that (4.6) is an isomorphism. Thus " # 0 on some non-empty open set.

The lemma follows because f is at least C? so, by Micallef-White Theorem
[MW95], the injective points are open and dense in C'. O

5. The structure of the moduli space

We now consider the completion of the universal moduli space (4.1) in the
Sobolev norms introduced in Section 4.2. For simplicity, we will specify the
Sobolev norm only when needed. Thus we fix (/,r) as in (4.18) and, without
changing notation, let

Msimple
(5.1) lﬁ
J=J
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be the universal moduli space of equivalence classes [p] (up to reparametriza-
tions of the domain) of pairs p = (f,J), where J € J' and f: C — X is
a simple J-holomorphic map of class W'" whose domain C' is a smooth, con-
nected complex curve. This section and the next provide a series of facts about
the structure of the moduli space (5.1). These results are proven locally by
regarding the moduli space as a subset of a slice (4.19). Proposition 5.1 and
Lemma 5.2 hold for any closed symplectic manifold X; after that we specialize
to Calabi-Yau 6-manifolds, for which the index of 7, given by (1.3), is zero.

5.1. The structure of Mgmple- It is well known that the moduli space
(5.1) of simple maps is a manifold. We give a precise statement and proof for
later use.

PROPOSITION 5.1. The universal moduli space in (5.1) has the following
structure:

(a) the set Mgmple C Slice™"! in (4.21) is a C'=™ separable Banach subman-
ifold whose tangent space at p is the kernel of the operator L, in (4.26);

(b) for 2k < 1 — 2, Mgimple 15 a C* separable Banach manifold, locally C*
diffeomorphic to the subset Mgmple of the slice in (a) for each m in the
range 1 <m <[ —k.

In particular, Mgmple 5 at least C? using Sobolev norms in the range (4.18).

Proof. (a) As in (4.21), the set Mgmple is the zero set of the C'~™ section
® of F~L" defined by (4.10). By the Implicit Function Theorem, Mgmple
is a C'~™ submanifold of the slice at those points p where D®,, which is
the operator £, in (4.26), is onto. By Lemma 4.1, the surjectivity of £, is
independent of m in the range (4.18), so it suffices to consider the case m = 1.
Surjectivity fails at p = (f,J) only if there is a non-zero ¢ in the dual space
(FYr)s = F)*, s = 5 > 1, that is L? orthogonal to £,(¢, K) for all (£, K) €
Y@ TyJ' By (4.12) and (4.27), this implies that D}c = 0 weakly, and

(5.2) 0= [t K1.0)

for every variation K in J. By Lemma 4.1, ¢ € F"" and there is an injective
point # € C where c¢(z) # 0. One can then find a variation Ko € T;J' in
J that satisfies Ko f.j = ¢ at the point = (cf. [MS12, Lemma 3.2.2]). Choose
local coordinates y = (y1,¥2,...) on X centered at f(z). Fix a non-negative
bump function S(y) supported in this coordinate chart, and for each € > 0, set
Be(y) = c(e)B(y/¢e), where ¢(e) is the constant determined by the normalization
condition [ f*B: = 1. Then for each continuous function ¢ on C, we have

e—0

(5.3) ti, [ 7B = pla).
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Substituting K = B Ky in (5.2) and taking the limit as ¢ — 0 gives a contra-
diction. Thus

(5:4) Mgimple C SliceT’r’l

is a C'~™ submanifold. This can be improved: for any [ > m > m/ > 1, the
inclusions

(5.5) Miimple C Slice™™ ¢ Slice;”/””l

show that the C'~™ atlas obtained from (5.4) can be refined to an C*~™" atlas
inherited from the enlarged slice (5.5). It follows that for each k, the inclusion
(5.4) induces a C* atlas on Mgimple, which is independent of m in the range
1<m<Il—k.

(b) The moduli space is covered by images of slices of the form (4.19) un-
der the maps (f,J) — ([f],J), and any two slices with overlapping image are
related by a transition map (4.23). Although (4.23) appears to lose regularity,
its restriction to the moduli space does not. Specifically, for any k& > 0 with
[ —2k —1 > 1, the transition map

I~k
T1

1—2k—1,r
T2

@ : Slice — Slice

is C* (cf. (4.23)) and maps the C* submanifold Mgmpple C Slz'cel{k’r’l into the

corresponding subset M/ of Slz’ceg%_l’r’l (because reparametrizations of

simple
simple maps are simple). The latter inherits a C2**! structure from the slice
Sliceg%_l’r’l, and hence a C* structure. Moreover, by the last sentence of
part (a), this is the same C* structure that M

simple inherits from its embed-

ding into the slice Slicegk’r’l. Thus @ restricts to a C* bijection from Mgimple to

S'imple; reversing the roles of 71 and 7 shows that this is a C* diffeomorphism.
This gives a C* atlas on the moduli space. In particular, this applies with

k = [1/2] — 1, and hence the moduli space has a CZ%-atlas provided [ > 6. [

5.2. The wall W. The moduli space Mgimple has a distinguished subset:
the “wall” W C Mgimple defined as the stratified set

(56) W = U Ws, W?e = {[p] S Msimple

s>1

dim ker D), = s}.

Lemma 4.1 implies that ker D), and ker D, and hence index D), are indepen-
dent of the choice of Sobolev norm in the range (4.18). Furthermore, the dimen-
sion of ker D, and of coker D), are preserved under smooth reparametrizations
of the domain, so (5.6) is well defined.

Observe that each C! embedded complex curve v : C' < X determines a
set JoCc I =T t consisting of all J € J for which ¢ is J-holomorphic. The
restriction of (5.1) over J¢ has a canonical section J — (¢, J) whose image

is Mc = {wc} x Je.
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LEMMA 5.2. For each C' embedded complex curve C, Jo is a smooth
submanifold of J = J*.

Proof. Let j denote the complex structure on C. Identify C with its image
in X, and let £ — C be the vector bundle E = End(TX|c). At each z € C,
the fiber E, of E contains nested submanifolds E!, = {J € E,|J? = —1d} and
E" ={J € E.|J|1,c = j}. As x varies, these define C! fiber bundles E’ and
E"” over C. Let J' and J” denote the spaces of C! sections of E' and E”
respectively. By standard theory, J’ is a smooth Banach manifold and J” is
a submanifold of J’. Restricting an almost complex structure J on X to C
defines a smooth map

pc: T —J

with Jo = pal(j ). The lemma follows if we prove that pc is a submersion.

At each J € J¢, the differential of pc is simply the restriction (dpc) s (K)
— K|, and the tangent bundle to J’ is the set of all C! sections Y of E that
satisfy JY +YJ = 0. But every such Y extends to a section K of T';7: extend
Y to a tubular neighborhood of C' in X, multiply by a smooth cuttoff function
to obtain an Y, and take K = %(}Af + JY'J). Thus pc is a submersion. O

Henceforth (until the end of Section 8) assume that X is a symplectic
Calabi-Yau 6-manifold. The results below then show that W' is a codimen-
sion 1 submanifold of Mgjmple With a distinguished submanifold A C W1, that
the other strata W™ have higher codimension, and that the same is true for
the subsets W™ N Mg and AN Mg of Mg.

PROPOSITION 5.3. Let X be a symplectic Calabi- Yau 6-manifold. Then,
as a subset of the universal moduli space in (5.1), the wall has the following
structure:

(a) W is the set of critical points of the projection (5.1), and 7 is a local
diffeomorphism on Mgimple \ W;

(b) W' is a codimension 1 submanifold of Mimple;

(c) for each embedded curve C, M¢c = {1c} x Jo is transverse to W1,

Proof. (a) In a slice (5.4), the projection dm,(¢§, K) = K of a non-zero
element in ker £, is zero if and only if £ = (¢, k) is a non-zero element of
ker D,. On the other hand, D, has index 0, so is onto at each p ¢ W. At
such p, for each K we can use (4.12) to obtain £ with £,(§, K') = 0; then (¢, K)
is tangent to M and dmp,(§, K) = K. Thus dr is an isomorphism at each point
not in W, and W is the collection of critical points of .

(b) Fix a representative pg of a point in the wall W' and fix a slice Slice =
Slicei’r’l containing pg. Let Fred — Slice be the fiber bundle whose fiber over
p = (f,J) is the space of index 0 Fredholm operators from &, = Ez}” to
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Jp = ]—"g”". By choosing a smooth local trivialization of £ and a C'*~1 local
trivialization of F, we can identify Fred with the space of Fredholm operators
between two fixed Banach spaces. Then Fred is the union of strata Fred® =
{D € Fred | dimker D = s}, where each Fred® is a submanifold of codimension
52 whose normal bundle at D is naturally identified with Hom(ker D, coker D)
(cf. [Kos70, §1.1b, c]). Associating to p the operator (4.26) with m = 1 defines
a section

(5.7) Y(p) = Dy

of the C*~! bundle Fred. In fact, ¥ is the vertical derivative of the section
® described before (4.21), and hence is of class C!~2. On the other hand,
Mimple 18 C* locally diffeomorphic to the submanifold Mgimpie of the slice for
k as in Proposition 5.1(b). Noting that k <1 — 2, it suffices to show that the
restriction of ¥ to Mgimple is transverse to Fred!.

For this purpose, we consider a deformation p; = (f, J¢) of po in Mgimple,
where both the map and the complex structure on the domain is fixed, while
Jy is a path in J = J! whose restriction to f(C) is fixed and that changes only
in a small neighborhood U of the image f(x) of an injective point x. Along
the path p¢, &,, is fixed, since it is independent of J, as is F},, which depends
on J only through its restriction along f(C). Thus we have a l-parameter
family of Fredholm maps D), : £, — F, with fixed domain and target. The
initial derivative py has the form v = (0,0, K) € ker £, = T, Mgimple, Where
K vanishes along f(C) and is supported in U. Hence the variation (6,D), =
%’t:O D,, in the direction v is obtained by replacing J by J; in (4.13) and
taking the t-derivative at ¢ = 0. Because the formula (4.13) is independent
of the connection, we can take the variation with the connection fixed; the
formula then shows that (6,D),, is 3(VK)f.j. Moreover, when applied to an
element & = ((, k) of &y, this variation depends only on the normal component
&N = (¢, 0) of ¢ because K =0 on f(C):

(5.8) (0uD)p§ = 5(Ven K) fsj

This formula is tensorial in &, does not depend on the connection, and is
tensorial in K € T;J as long as K = 0 along f(C).

Now fix generators x of ker D), and c of ker D}; these are continuous by
Lemma 4.1. Since the normal space to Fred! at p is 1 dimensional, it is enough
to construct a variation in p of the form (0, 0, K) such that the L? inner product
(¢, (0yD)pk) 2 is non-zero.

To find such a v, choose an injective point « € C of f with both £V (z) # 0
and c(x) # 0 as in Lemma 4.1. As in the proof of Proposition 5.1(b), there is a
Ko € T;J" supported near f(x) such that Kodfj = c at the point . Because f
is C!, there is a neighborhood of z in C' whose image under f is an embedded



28 ELENY-NICOLETA IONEL and THOMAS H. PARKER

C' submanifold of X. Hence we can choose a local C' coordinate system
{z,y1,y2, ...} centered at f(x) with z a local complex coordinate on f(C'), and

{y;} real coordinates vanishing along f(C'), and such that 8671 N(

Then K = y; Kq lies in 777!, vanishes along f(C), and satisfies

= K

f() z)

(5.9) (V.nK)f«j =c at the single point z.

Finally, set v. = (0,0,28.K) with 5. as in (5.3). Replacing K by 25. K
in (5.8) and using (5.9), one sees that

: _ 2
(5.10) lim ) {e: GuD)pr) = le(z)[ # 0.
In particular, there is a variation with (¢, (§,D)pk) 2 # 0, which proves state-
ment (c).
Statement (c) holds because the transversality above was obtained using
a variation v, = (0,25.K) tangent to Mc. O

5.3. The structure of W\ W?'. The proof of Proposition 5.3(b) extends to
show that the part of YW not in W! has codimension 3 in the following sense.

Definition 5.4. We say that a subset S of a manifold M has codimension
k if it is contained in a countable union |J p¢(S*), where each py : S* — M is a
Fredholm map of separable Banach manifolds with index py < —k.

LEMMA 5.5. W\ W' has codimension 3 in Memp, and W\ W' N Mc
has codimension 3 in Mcg.

Taubes obtained a similar result in dimension 4 using analytic perturba-
tion theory (Step 5 of the proof of Lemma 5.1 in [Tau96]). A proof in the spirit
of the above arguments is given in the second appendix as Proposition B.1;
Lemma 5.5 is a special case.

5.4. The structure of W'. We next examine the portion of the top stratum
W? of the wall (5.6) that lies in the open subset My of Mimple consisting
of embedded maps. Our goal is to show that the projection

(5.11) w W= T

obtained by restricting (5.1) to W! is an immersion off a set of codimension 1.
For this purpose, we first introduce locally defined functions ¢ that vanish
transversally along W1,

Fix a slice Slice containing a representative py of a point in W!', regard
W! locally as a subset of this slice, and consider the vector bundles & = &7
and F = FO7 on the slice. At every p € W!, the operators D, : £, — F,
and Dy : )" — E)" defined by (4.24) and (4.27) have 1-dimensional kernels.
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These kernels determine subbundles
(5.12) e ce, FcF

along W', and the projection 7eoy : FO — F/im D onto the cokernel bundle
along W! is an isomorphism. By choosing sections of £% and F° along the
submanifold W' and extending, we can find non-vanishing C? local sections x
of £ and ¢ of F, defined in a neighborhood U of pg in the slice, such that the
restrictions to W' are local sections of £° and F° respectively. Let ¢ : U — R
be the function defined by

(5.13) 0la) = [ (c0 Dy

using the same metrics and volume forms as in (4.27).

Clearly, ¢ vanishes along W' N U, where Dk, = 0. Differentiating 1(q:)
for any path ¢; in U with go = p € W' N U and initial velocity gy = u yields
several terms, including the variation in the inner product and volume form.
All except one vanish at ¢o = p because Dyk), = 0 and Djc, = 0, showing that

(@0)y(w) = [ (e (D).

The proof of Proposition 5.3(b) produces variations showing that (dv), # 0 for
all p € WINU. Thus the restriction of 1 to Mimple NU vanishes transversally
along W' NU. In particular, we have

(5.14) TV = (kerdyp), VpeW'NU.

LEMMA 5.6. Inside Meny, the subset A of W' where the projection (5.11)
fails to be a immersion is a codimension 1 submanifold of W', and Mc is
transverse to A.

Proof. Fix a point in A and a slice containing it, and work locally in a
neighborhood U on which ¢ is defined by (5.13). Consider the vector field
v = (k,0) on U, where x is the non-vanishing local section chosen above
(5.13). The proof of Proposition 5.3(a) shows that at every p € W1, ker(dn),
is spanned by v, so my fails to be an immersion at p if and only if v, € prl.
Together with (5.14), this gives two local descriptions of A:

(515 A={peW'|(x,0), e W'} = {pe W'| (@), =0}

By the second description, it suffices to show that the restriction of the function
diy(v) : U — R to W! vanishes transversally at each p € A.

Consider variations in p = (f,J) of the form w = (0, K), where K is an
element of 777! such that both K = 0 and VK = 0 along the image f(C).
We will show that for every such variation,

(5.16) w = (0,K) € T,W'
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and

(517) Valdb@)], = § [ (e (Vs K)1)

The argument used to obtain (5.9) and (5.10) then produces a K = 143K,
in T;J! with K = 0 and VK = 0 along f(C) that makes the integral (5.17)
non-zero, which shows transversality at p. Furthermore, if p € M, these
variations w = (0, K) are tangent to M. Thus both parts of the lemma
follow from (5.16) and (5.17).

We will prove (5.16) and (5.17) by constructing a 2-parameter family of
deformations of p in U that is tangent to v and w at p. For clarity, write p
as po = (fo,Jo). Start by choosing a path J; through Jy with initial velocity
K eTpJ !'such that the restrictions of J; and V%.J; to fo(C) are independent
of t. Along the path ¢; = (fo,J¢) in U, &,, F,, and the operators D, defined
by (4.24) are constant, because all three depend only on the 1-jet of J; along
fo(C), which is fixed. Thus the path (fo,J;) is in W' for all ¢, so its initial
tangent w satisfies (5.16). We can assume that the local sections k of £ and ¢
of F used to define v were chosen so that k = kg and ¢ = ¢y along the path
(fo, Jt).

Next, choose a smooth family of maps fs : (C, js) — X with initial tangent
vector kg. Then

(5.18) pst = (fs, Jt)

is a 2-parameter family in the slice with p.0s = (k0,0) = v along po; and
0 = (0, K) = w at s =t = 0. Write the restrictions of the sections k, ¢ and
the operators (4.24) as kg4, ¢s¢ and D, respectively, and set

(5.19) Nst = Dsthist-

For s =0, not = Dy, j,Ko0 is 0 by construction; we also have co; = cg, Ko+ = Ko,
and therefore

(5.20)  mo,0 =0, (9in)oo =0, (O¢c)oo =0, (O¢r)oo = 0.

With this notation, the restriction of (5.13) to the family (5.18) is the
function

(521) 1/1(8775) = w(ps,t) = /C<Cs,ta Ds,t/'fs,t>s = /C<Cs,t7 773,t>s»

where the pointwise inner product and the area form depend on s but not on ¢.
Along the path po¢, we have diy)(v) = di(p.0s) = 0s1. Differentiating in the
w direction and noting that w = p.d; at the origin then gives

Vau (d(v))p, = (019s)0,0 = (0s01)o.0-

To complete the proof, we will calculate (050;1)0,0 by differentiating (5.21).
For fixed s, ks is a path of sections of the fixed bundle f;7'X, while both c;;



THE GV CONJECTURE 31

and 7+ are paths of 1-forms on C' with values in the fixed bundle f}TX. (They
are (0,1) forms with respect to the pair (js, J;).) Hence we have

(5.22) (0 a0 = /C (81020, Ts0)s + /C (cs0r (Bm)s0)s.

Now differentiate (5.22) with respect to s and evaluate at s = 0 using (5.20).
The contribution of the first integral vanishes because (0:¢)p o = 0 and 799 = 0,
leaving

(5.23) (050¢)0,0 = Os szO/(J(CS,o, (Oem)s,0)s-

By (5.19), ns¢ is given by the operator (4.24) with ¢ = (fs,J;), applied to
kst = (Cs,ts kst). In the resulting formula, fix s and differentiate with respect
to t. Because fs and js are independent of ¢ and (09;J;)g = K, one sees that
(0¢n)s,0 has the general form

(5.24) (9m)s0 = Ds,0((0ek)s0) + 1(VELE)(dfsjs + Jodfs) + Tss(K),

where T'(K) is a sum of terms, each linear and tensorial in K. The contribution
of the first term of (5.24) to (5.23) is

[ (e, Daal(@m)e)s = 01| _ [ (Diofe)eos (@)io)e

as in (4.27). Taking the s-derivative at s = 0 yields three terms, all of which
vanish because D o(c)o,0 = 0 and (9;x)o,0 = 0. Similarly inserting the remain-
ing terms of (5.24) into (5.23) and differentiating yields many terms; all but
one vanish because K and V'K vanish along fo(C). After noting that fy is
Jo-holomorphic, one is left with

@000 = 4 [ (co, V&,V Kdfajoho

s

s=0

Because K and VK vanish along fo(C'), this expression is independent of the
connection, and its dependence on (y involves only the normal component
¢V = kY. Thus

Valdb(©)], = @000 = § [ (eo, VoV Koo,

0

This verifies (5.17) and completes the proof. O

6. Local models for wall crossings

We next study the local geometry of the moduli space around a point
p on the wall W'\ A. We assume that p corresponds to a J-holomorphic
embedding f : C' — X of a smooth curve C, which we can regard as the
inclusion tc : C' — X of its image. The goal is to show that the restriction
7yt MJ - — v of (5.1) over a generic path v C J is a Morse function at p,
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and hence is locally described by a quadratic equation. Two types of smooth
paths in J = J* passing through J are relevant for our purposes:

Type A. v4 is a path in J such that the projection 7 is transverse to y4
at p.

Type B. vp is a path in Jo whose lift 75 = {tc} X v to M is transverse
to W! at p.

The lemmas at the end of this section show that both types of paths are
generic. But first, we will use Kuranishi’s method to construct a local model
for the moduli space over these paths. It is convenient to study both types
simultaneously by considering embedded parametrized disks

(6.1) S={ts)cT

whose t-axis is a path vp of Type B and whose s-axis is a path v4 of Type A.
We then restrict (5.1) over S to obtain

(6.2) r5: M7 =S,

where M® = 771(9) is the moduli space over S. As in Section 5, we regard p
as a point in a slice Slice of the form (4.19) with m = 1 and, without changing
notation, locally identify Mgy, with the corresponding submanifold of the
slice.

Definition 6.1. A 3-ball B C Slice with coordinates (z,y, z) centered at

p=(f,J) € W\ Ais adapted to S at p if

(a) m: B — Sis given by 7(x,y, z) = (v, 2);

(b) vB(t) = (¢,0) is a Type B path whose lift is y5(¢) = (0,,0);

(c) va(s) = (0,s) is a Type A path;

(d) in terms of the splitting (4.11), T,,B is spanned by 0,|, = (k,0), 0y|, =
(0, Kp), and 0,|, = (0, K4), where x generates ker D, = R, K4 = §4(0)
and Kp = 4p(0).

With these assumptions, the transversality conditions in Types A and B
are equivalent to
(6.3) (a) Ka¢imdr, and  (b) (0,Kp) & T,W?

respectively. The requirement that vg C Jo also implies that Kp vanishes
along f(C), so (0,Kp) € ker L, = T, Memb; because dmy,(0, K) = K, this also
means that Kp € im dmp, and hence K4 and Kp are linearly independent.

THEOREM 6.2 (Kuranishi model). For eachp = (f,J) in MempN(W\ A)
and each S C J as in (6.1) centered at J, there is a 3-ball B adapted to S at
p such that M® is locally the 2-manifold

(6.4) V= {(m,y,z) GB‘sz(aas+by+r(az,y))}



THE GV CONJECTURE 33
with a,b # 0, where r(x,y) = O(z% +4?) near the origin. Moreover, W' N M3
is locally modeled on the zero locus of the function w : M — R given by

w(z,y) = z2(2,y) = 20z + by + (2r(2,y))a-

The tangent space Tp(WlﬂMs) is the intersection of the kernels of the 1-forms
dz and

dw =2adxr+bdy

at the origin.

Figure 2. In the local model, M?® is a saddle and 7 : MS — §
is the projection onto the yz-plane (at the back). At the origin,
Tp./\/lS is spanned by 0, C ker D, and 9, = (0,Kp), while
9, = (0, K 4) is normal to M*.

Theorem 6.2 shows that M* is locally a saddle surface in B C R? given
as the graph of a function z = z(x, y) that has a non-degenerate critical point
at the origin. Before giving the proof, we record the two cases that will be
used in later sections.

COROLLARY 6.3. Suppose that p = (f,J) € Memp N (W \ A) and v is a
path in J through v(0) = J.

(a) If v is of Type A, then M7 is locally modeled at p by
(6.5) {(@,1) \ t = az?},

with a # 0 and 7 (x,t) = t.
(b) If~ is of Type B, then there is a disk S C J centered at p locally containing
v such that MS is locally modeled at p by

(6.6) {(m,t, s) € B‘s:x(ax—i-bt—l—r(a:,t))},



34 ELENY-NICOLETA IONEL and THOMAS H. PARKER

with a,b # 0, r(x,t) = O(z? +t2), and 7s(x,t,s) = (t, ), and such that
the restriction to M7 is the restriction to the plane s = 0, namely

(6.7) {(x,t) ‘O = x(ax+bt+r(x,t))}.

Proof. In the first case, take y4 = <, choose vg C Jo a path whose
tangent vector K p satisfies (6.3(b)), and choose a local embedded disk S C J
containing both v4 and yp locally near p. Then apply Theorem 6.2 and restrict
to the plane {y = 0} to get the local model for M? of the form

{(:C,t) ‘t = z(az + 7"(:5))} with a # 0, 7, (z,t) =t,

and with r(z) = O(2?) for small 2. This becomes (6.5) after reparametrizing .

Similarly, in the second case, take vy = 7y, fix a direction K4 € T;7
satisfying (6.3(a)), choose S with 775 = span(K 4, Kp) containing 7, and
again apply Theorem 6.2. O

The distinction between the local models (6.5) and (6.7) is crucial. By
Lemma 6.5 below, Model (6.5) applies where a generic path in J crosses a
wall. This is precisely the local model for the creation (if @ > 0) or annihilation
(if @ < 0) of a pair of curves in the moduli space. Similarly, Lemma 6.7 shows
that Model (6.7) applies where a generic path in the subspace Jo C J crosses
a wall. But the model (6.7) is not a manifold: it is the union of two curves
crossing transversely at the origin. It can be smoothed using the parameter s
in (6.6), as will be done in Lemma 7.4.

Proof of Theorem 6.2. Specializing (4.19) and (4.11), one sees that the
slice over S is Map!" (2, X) x S; x S and that we can identify the first two
factors with their tangent space at p, which is &, = EI}*. We can also trivialize
the bundle F = FO" over a neighborhood of p. With these identifications, M*°
is the subset of &, x S that is the zero set of the F,~valued C'~! function F
defined by (4.10). This has an expansion

(6.8) F(&) = L£p(§) + Q(6),

where QQ(£) vanishes to first order at £ = 0. Next, fix a generator « of ker D), =
£Y and choose a decomposition & = E0® £, Then £ can be written as
¢ = (z,y, z,a) for coordinates (,y,z) in a 3-ball B € £ x S around 0 and
a € ET. Using (4.12), the linear term is

L,(&) = xDpk + %(yKB + 2K 4)fej + Dpa
= z¢p + Dya,

where we have set ¢, = %KAf*j and noted that Kp = 4p5(0) is tangent to
a Type B path, so Kp|¢) = 0. Furthermore, the transversality assumption
(6.3(a)) ensures that ¢, ¢ im D, as follows: if ¢, = Dpp, then (—p, K4) is an
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element of ker £, = T, Mgimple With dm(—p, K4) = K4, contradicting (6.3(a)).
Thus F, decomposes as
Fp=F o FT,

where F0 is the real span of ¢, and Ft = D,E*. Using this decomposition,
write @ as (Qo - ¢p, Q1).

By Proposition A.4.1 of [MS12] there is a bounded linear map T': F+— &
that is a pseudo-inverse of D,, which implies that D,T is the identity on F*.
Define a map

n:E9%x SxET 50 xS xET
by
n(x,y, 2z, ) = (T,Y, 2, e y,-()), where 0,4 .(a) = a+TQi(x,y, 2, a) € Et.

By the Inverse Function Theorem, 7 is a local diffeomorphism near 0.
Using the above notation, (6.8) can be rewritten as the equation

F(z,y,z,a) = ((z + Qo)cp, Dp(nx,yz(a))) e FPpFt.
This shows that F(z,y, z,a) = 0 if and only if both 7, , .(&) = T Dp(1zy,2(a))
=0 and z = ¢, where
q(:c, Y, Z) =—Qoo 7771(957 Y, 2, O)
Thus there is a local diffeomorphism
M® = {(w,y,2) € B| 2= qla,y,2)}-

The real-valued function ¢ is smooth and vanishes to first order at the origin,
so we can solve for z as a function of z and y to obtain

(6.9) z=z(x,y) = az? + bxy + cy® + ro(x,y),

where the remainder ro vanishes to second order. In particular, locally near p,
M? is a 2-manifold with coordinates (x,y), in which the projection (6.2) is

7TS($,y) = (y7 z(w,y)),

so drg = (dy, zpdx + z,dy).

Next observe that, since g is a Type B path, (6.3(b)) implies that W! is
transverse to M? at p. Thus W!N.M? is a 1-dimensional manifold near p. On
the other hand, 7g : M® — S is a map between 2-manifolds, and the above
formula shows that rank dmg > 1. The proof of Proposition 5.3(a) then shows
that the set of critical points of 7g is contained in W' N M.

In coordinates, the intersection W' N M? is locally the zero locus of the
function

w(z,y) = z(2,y),
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while T,(W! N M) = T,W' N T, M? is the kernel of the 1-form on S
dw = zgedz + 2ypdy = 2adx + bdy

at the origin. Consequently, since (x,0) = 9, and (0,7g(0)) = 9,, we have

e 2a = dw(k,0) # 0 by (5.15) because p ¢ A so (k,0) & T,W;

e b=dw(0,Kg) # 0 by (6.3(b)) because yp is transverse to W?;

e ¢ = 0 because, for small ¢, the path 5(t) = (0,t,0) lies in M?®, so (6.9)
becomes 0 = ct? + O(t3) for all small t.

In fact, the expansion in the third bullet point shows that r4(0,¢) = 0 for all
small ¢, which implies that (6.9) has the form

z(z,y) = z(az + by + r(z,y)),
where r vanishes to first order. O

To apply Theorem 6.2 and its corollary, we will need several statements
about generic paths in J. These are consequences of the Sard-Smale Theorem
([Sma65], [MS12, Th. A.5.1]) applied in the following manner. Suppose that
7: M — Jand p: N — M are Fredholm maps of separable C* Banach
manifolds of index ¢, and ¢, respectively, and with ¢ > 2 + max(0, tr, tr + ¢p).
Fix points Jy,JJ; € J, and let P = PJ be the space of C¥, k > 1, paths
[0,1] = J from Jy to Jq, which is a separable Banach manifold.

In this context, we have the following lemma.

LEMMA 6.4. Assume Jy, J1 are reqular values of w and Jo, JJ1 &€ (mop)(N).
Then there exists a Baire set P* of P so that for each v € P*, MY = n71(y)
is an (tr + 1)-dimensional submanifold of M transverse to p. In particular,
when 1y, + 1r < =2, M7 is disjoint from p(N'). Consequently, for each subset
S C M of codimension > 2, there is a Baire set P so that for each v € Pg,
M7 is a manifold disjoint from S.

Proof. The evaluation map ev : P x I — 7 is a submersion of separable
Banach manifolds away from the boundary P x 01, while the image ev(P x 0I)
= {Jo, J1} of the boundary consists of regular values of 7. It follows that the
map

p=evXT:PXIXM—=TxJ

is transverse to the diagonal A 7, so the fiber product

M=o Ag) = {(r.t. )| f e MO}

is a separable Banach manifold whose boundary is the fiber product of ev|pygr
and 7. Furthermore, the projection 7 : M — P is a Fredholm map of index
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Lz + 1, while the projection ps : M — M onto the third factor is a submersion
away from the boundary:

(6.10) N oM pxI——p

T

NLoMmM T

But by assumption, 7o p(N) is disjoint from the image (wop3)(OM) = {Jo, J1}
of the boundary. Therefore the fiber product N of p and p3 is a manifold and
the index of p is the index of p.

By the Sard-Smale Theorem applied to 7 : M = P, there is a Baire
subset P; of P such that each point v € P; is a regular value of 7. It is
straightforward to check that v € P is a regular value of 7 if and only if the
path ~ is transverse to 7 : M — J. When ~ is a submanifold of 7, this latter
transversality means that M? = 771() is a submanifold of M.

Similarly, again by the Sard-Smale Theorem, there is a Baire subset Ps of
‘P such that each point v € Py is a regular point of the composition NP
in the top row of (6.10), and again this occurs if and only if v is transverse to
mop. (Note that Jy, J; are regular values of 7 o p because they are not in the
image of 7o p.) When + is a submanifold, this last transversality implies that
N7Y = (rop)~t(y) = p~1(M?) is a submanifold.

Finally, the collection P3 of embedded paths is open and dense in P.
Thus P* = P NP2 N Ps is a Baire set. For each v € P*, M7 is an (1, + 1)-
dimensional manifold, N7 is an (¢r +14¢,)-dimensional manifold and is empty
if 1tz +1+41, <0. The last statement of the lemma follows from Definition 5.4
and the fact that every countable intersection of Baire sets is a Baire set. [

We will apply this reasoning twice: first for paths in J = J!, then for
paths in Jo. Recall the notation J and JE

1S0.
we omit the X from the notation M(X) of the moduli spaces in Lemmas 6.5

and 6.7.

| from Section 1. For simplicity,

LEMMA 6.5. Any path in J with endpoints in Jj can be deformed, keep-
ing its endpoints, to a path v such that M;’prle is a 1-dimensional manifold,
consisting of embeddings, and intersecting the wall W transversely in isolated

points, all in W'\ A. Moreover, any path v with these properties is in »715)1

Proof. By Proposition 5.1, Mgimple is a separable Banach manifold of
class at least C2, and by Corollary A.5 the set A€ of all non-embedded simple
maps is a codimension 2 subset. Next, restrict to Memp, noting that W'
is a submanifold of Mgy by Proposition 5.3(b), and that A C My, is a



38 ELENY-NICOLETA IONEL and THOMAS H. PARKER

codimension 2 submanifold by Lemma 5.6. Together with Lemma 5.5, this
shows that AUNE U (W \ W1) is a set of codimension 2 in Mgimple-

Now apply Lemma 6.4 with M = Mgmpie and N equal to the disjoint
union A LINE U (W \ W1), noting that the index tr = 0 and ¢, < —2 in this
case. This gives a Baire subset P; of P over which 7~!(v) is a manifold of
dimension 1 that does not intersect A/. Again apply Lemma 6.4, now with
M = Memp, and N equal to the codimension 1 submanifold W!. This gives a
second Baire subset Py of P over which 771(y) is a manifold of dimension 1
that is transverse to NV.

Consequently, for each - in the Baire set P; NP, MLE

simple 15 @ 1-manifold

(with boundary) transverse to W', intersecting the wall W only along W'\ A,
and consisting only of embedded curves. Note that the only critical points of
Ty /\/lzi’fple — [0,1] are these wall-crossing points. The proof is completed
by observing that the local model (6.5) shows that the wall-crossing points are
non-degenerate critical points of 7 and therefore (a) they are isolated points

of M%E  and (b) all points of the fiber MIDE a6 isolated for each t. O

simple’ simple

COROLLARY 6.6. JF

ol 8 a dense and path-connected subspace of J .

Proof. Density was shown in Corollary 1.4. Path-connectedness follows
from Lemma 6.5 and the fact that J is path-connected. |

We conclude this section by proving a version of Lemma 6.5 for paths in
the subspace J¢ of J.

LEMMA 6.7. Any path in Jo with endpoints in Jg, can be deformed, keep-
ing its endpoints, to a path vy in jcﬂjif;l whose lift 7 intersects W transversally
at finitely many points, all in W'\ A.

Proof. First consider the subset M = {tc'} xJc. This is a submanifold of
Memp that is transverse to W' by Proposition 5.3(c), and to A by Lemma 5.6.
Furthermore, Lemma 5.5 shows that (W\ W?!)N M is a codimension 2 subset
of M¢c. By Lemma 6.4, there is a Baire subset of paths v in J¢o for which
the lift ¥ = (10, 7) to Mgimple intersects the wall only along W1\ A, and this
intersection is a finite set of transverse points. For each intersection point
F(t) € W\ A, the local model (6.7) implies that the core curve J(t) is an
isolated point of MY® (and is clearly embedded). The same conclusion is true
for those ¢t with 5(t) € W by Proposition 5.3(a).

It remains to find another Baire subset of paths v for which the points of
MI®) \ M¢ are embedded and isolated for each ¢. Denote by Mimple = Jo
the moduli space of simple J-holomorphic maps f that have at least one point
x; on each component of their domain with f(z;) € X \ C. The results of
Propositions 5.1 and 5.3, Lemmas 5.5 and 5.6, and Corollary A.5 all extend
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to the moduli space M:imple — Jc by using variations supported around
the points f(z;), but vanishing along C; such variations are tangent to Jc.
As in the proof of [MS12, Lemma 3.4.3] a further variation, supported in
the complement of C, can be used to ensure that all curves in Mg, .
transverse to C. Again, such variations are tangent to J¢.

With this understood, the proof of Lemma 6.5 extends to give a Baire
subset P* of the space PJ¢ of paths in J¢ so that for each v € P*, the points
of M'Y(t)’E are embedded and isolated for all ¢. O

simple

are

7. The cluster isotopy theorem

For notational simplicity, given two clusters O = (C,e,J) and O’ =
(C",€',J") whose core curves C' and C’ have the same genus and homology
class, write

GWE(0) ~ GWE(0")
to mean that the difference is a finite sum of terms of the form + GWE(CZ-, iy Ji)
of strictly higher level (1.10) compared to that of C. With this notation, for
example, the conclusion of the cluster refinement Corollary 2.5 simply says
that for generic 0 < &’ < ¢,

(7.1) GWE(C,e,J) ~GWE(C, ¢, ).

We now use the results of Sections 5 and 6 and an isotopy argument to
prove that the GW series of every cluster is equivalent, in the above sense,
to the series of an elementary cluster. Recall that, for an elementary cluster
Oclems; GW(Oglem) is the universal series

elem/ C
(7.2) GWelem (4. 1

given by (3.4) and (3.5) with ¢ = ¢©. In general, we call a cluster (C,.J,¢)
reqular if the embedding C' — X is a regular J-holomorphic map.

THEOREM 7.1 (Cluster Isotopy). For a regular cluster O = (C, Jy,¢eq)
centered at an embedded genus g Jo-holomorphic curve C,

(7.3) GWE(0) ~ sign(C,Jo) GWE™F (¢ 1),
where GWf}lem’E is the truncation of (7.2) below energy E.

Proof. The proof of Proposition 3.2 shows that there exist J; € Jo and €1
so that Oglern = (C, €1, J1) is an elementary cluster. In fact, we can assume that
J1 € JoNJ} after a perturbation supported outside the €1 /2-neighborhood of
C of the type constructed in the proof of [MS12, Lemma 3.4.3]. Choose a path
v(t) = J¢ in Je from Jy to Ji. (The proof of Theorem A.2 of [IP03] shows that
Jc is connected.) By Lemma 6.7 we can assume, after a deformation, that ~
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is a path in Jo N le and there is a finite set Sing = {¢;}, not containing 0

sol

or 1, such that ¥ = (fo,v(t))

e lies in M7\ W for all ¢ ¢ Sing, and
e lies in a 2-dimensional surface V; given by (6.6) for ¢t € [t; — d,t; + ¢].

Choose ¢ > 0 small enough so that the intervals [t; — d,t; + 0] do not overlap,
and let their endpoints be 0 < 71 < --- < 1 < 1. For each i, fix a cluster
O; = (C,¢e4,J,). Then 4 can be regarded as the composition of paths 7; :
[Tiy Ti+1] = M of two types:

(i) Paths in Megp \W. For these, Lemma 7.2 below shows that CGW(0;) ~
GWE(O41).

(ii) Paths in Mgy, N'V;, crossing the wall transversally at a single point of
W'\ A. For these, Lemma 7.4 below shows GW¥(0;) ~ — GWE (0, 1).

Altogether, we conclude that
GWE(O) ~ (_1)0 GWE(Oelem)7

where o is the number of transverse wall crossings, which is exactly the spectral
flow of the operator D, along the path 7. The path ends at an elementary
cluster, which has positive sign by (3.6). Thus (—1)7 is exactly the sign of the
initial curve (C, Jy). O

In the above proof, the assertion in Step (i) is a fact about isotopies with
no wall crossings. It can be stated as follows.

LEMMA 7.2 (Simple Isotopy). Fiz E > 0. Then for any path (Cy, J;) in
Memp \ W with J; in .715)1 and any €g, 1 such that (Co, €9, Jo) and (C1,e1,J1)
are clusters,

(7.4) GWE(C(),e’io,Jo) ~ GWE(CLEth).

Proof. 1t follows from Proposition 5.3(a) and the compactness of [0, 1] that
there is a § > 0 such that, for each ¢ € [0,1], C; is the only Ji-holomorphic
curve in its degree and genus in the ball B(C},d) (in Hausdorff distance). By
Lemma 2.3 we can choose, for each 0 < ¢t < 1, an 0 < g < J such that
(Ct,et, Jy) is a cluster. Then, by Lemma 2.1, (Cs, &, Js) has a well-defined
contribution GW¥ (Cs, e, Js) for all s in an open interval around ¢. These
open intervals cover [0, 1]; take a finite subcover {I}. Then GW¥(Cy, ey, Ji)
is constant for s in each I and Cs is the only Js-holomorphic curve in its genus
and homology class in that ball. Corollary 2.5 shows that on the intersection
of two consecutive intervals the corresponding GW¥ invariants differ by the
contributions of higher-level clusters. The lemma follows. O
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By Lemma 6.5, each path in J with endpoints in Jz can be deformed,
keeping its endpoints, to a path v in .715)1 such that the projection

(7.5) Tyt M=y

has only non-degenerate critical points, none an endpoint, each locally modeled
by (6.5). If a > 0 in the local model, then v can be parametrized so that
y(t) =t and 77 1(t) = {z|t = az?} is empty for t < 0 and is two distinct
curves Ci for 0 < ¢t < § (and vice versa if a < 0). A second isotopy lemma
relates the GW invariants of clusters centered on these curves CiF.

LEMMA 7.3 (Wall-crossing in 7). Fiz E > 0, a path v in JE, and a
non-degenerate critical point (Cy, Jo) of (7.5) for Jo = v(0). Then there exists
a § > 0 and a neighborhood U of (Cy, Joy) in M such that if 0 # |t| < § and the
sign of t is such that MYONU = {C}, then the two clusters OF = (C;F, ¢, Jy),
O~ = (C;, ¢, Jy) satisfy

CWE(OT) ~ —GWF(0).

Proof. The local model (6.5) at (Cy, Jo) implies that there is an €; > 0 and
a ball U = B(Cp,e;) in C(X) that contains C; and no other .J; holomorphic
curves in the degree and genus of Cy for all |[t| < ;. Because J; € Jig)l,
Lemma 2.3 ensures that £; can be chosen so that (Cy,e1, Jp) is a cluster. As
J varies, the associated invariant GW¥ (U, Js) is, by Lemma 2.1, well defined

and independent of s for small s.

The local model (6.5) shows that U N C7*F is {C} for s = ¢, and is
empty for s = —t. Taking s = ¢ and applying Proposition 2.4, one sees that U
decomposes into two clusters OF with GWF(O1)+GWF(0O~) ~ GWF (U, J,).
Applying the same theorem with s = —t shows that GWE (U, J,) ~ 0. The
proof is completed by noting that the invariants GWZ(O%) satisfy (7.1) as ¢
and €’ vary. O

The core curve of a cluster does not persist through the wall crossing
described by Lemma 7.3. But the core curve remains if we fix the complex
structure on the core curve C' and cross the wall along a path v in J¢, as was
done in the proof of Theorem 7.1. After a perturbation as in Lemma 6.7, the



42 ELENY-NICOLETA IONEL and THOMAS H. PARKER

wall crossing is locally modeled by (6.7). In this picture, for each 0 < ¢t < ¢,
there are four curves to consider: the incoming core curve (C, J_;), the outgoing
core curve (C, Jy), and a second pair of curves (C”,, J_;) and (C}, J;).

LEMMA 7.4 (Wall-crossing in J¢). Fiz E > 0 and a path v in Jo N JE,
s0 that (t) crosses the wall transversally att = 0 at a point (C, Jo) in W'\ A.
Then there exists a 6 > 0 so that each incoming cluster O_s5 = (C, e, JJ_5) and

each outgoing cluster O5 = (C, €', Js) satisfy
GWE(O_s) =~ —GWE(0y).
Proof. Consider the local model M — S given by (6.6). Its restriction

over v, given by (6.7), is two curves crossing at the origin. We will perturb
this level set {z = 0} in two opposite directions.

Figure 4. These figures show the curve C' (horizontal line) and
curves C] (diagonal line) as t (the horizontal coordinate) varies.
The circled labels refer to clusters at the ends of the dotted
paths, with s > 0 in the first figure, s < 0 in the second, and
a,b > 0 in both.

In the chart (6.6), with 6 > 0 fixed and small, (C,J_s5) has coordi-
nates (0,—4,0) and so can be perturbed to (C_;s,J_55) with coordinates
(z(s),—0,s), where x &~ —s/bd is the unique solution of s = z(ax—bd+r(z, —9))
with 2 = O(s). The curves (C’ 4, J_5) and (C, Js) can be similarly perturbed.
By Lemma 2.3, the GW invariants of the corresponding clusters

As = (C—(S,Sa g, ']—(578)7 BS = (05,87 g, J5,s)a DS = (C/—&s’ g, J5,s)

are locally constant in s: for sufficiently small s (and § > 0), we have

(7.6)

GWE(4,) = GWE(0_s), GWE(B,) = GWE(05), GWF(D,) = GWF(D_,).
Assume a > 0 (else change s — —s) and that b > 0 (else change t — —t).

The moduli space M? over S is locally near (C,.Jy) the level set

{(x, t,s) ‘ s = z(ax + bt + r(z, t))}
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For each fixed s,t¢ small, this quadratic equation in x has either no solution or
two solutions, except at a single point x &~ —bt/2a, where the tangent is in the
kernel of the projection to 7, which means that this point lies on the wall and
is a non-degenerate critical point of (7.5).

For a small positive s, the moduli space over v5(t) = (t,s), =9 <t < §
therefore contains a path in Mg, from the core of cluster Dy to the core of
B; that does not cross the wall. After a small perturbation using Lemma 6.5,
Lemma 7.2 applies to give

(7.7) GWE(D,) ~ GWE(B,).

For a small negative s the moduli space over v5(t) = (¢,s), —0 <t < 0 is a
path in Mgy, from the core of cluster A; to the core of Dy, crossing now the
wall transversally (at a point in W'\ A). Perturbing s by Lemma 6.5 gives a
path in Jiso so Lemma 7.3 applies in this case to give

(7.8) CWE(A,) =~ —GWE(D,).
The proof is completed by combining (7.6), (7.7) and (7.8). O

8. Structure theorems and the proof of the GV conjecture

The isotopy results of the previous section lead quickly to a formula (8.1)
that shows that the GW invariants have a remarkably simple structure. This
formula is compatible with a simple geometric picture: if one could find a
J € J so that all simple J-holomorphic maps in X were elementary, then
GW(X) would have exactly the form (8.1), with e4,4(X) equal to the count
of J-holomorphic curves with homology class A and genus g. However, it is
far from clear whether any such J exists. Thus the coeflicients e4 4(X) can be
regarded as virtual counts of elementary clusters in X.

THEOREM 8.1. For any closed symplectic Calabi- Yau 6-manifold X, there
exist unique integer invariants e 4(X) such that

(8.1) GWX) = 303 eag(X)- GWEem (g4, ).
A#0 g>0
Proof. The uniqueness of the coefficients in (8.1) is easily shown because
the collection of series

(8.2) Gngem(qA, t) = 297244 (1 + higher order in ¢ and qA>

for g > 0 and A € Ho(X,Z) is linearly independent. To prove existence, fix F,
choose any parameter J € J5, and use Proposition 2.4 to write GW¥F (X) as
a sum of finitely many cluster contributions. Formula (8.1) follows from the
corresponding formula for each cluster, which is proved in Lemma 8.2 below,
by taking F — oo. O
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LEMMA 8.2. For any reqular E-cluster O centered at a genus g curve C,
there exist unique integers eqp(O), beginning with ey 4(0) = sign (C), such
that

(8.3) GWE(0) =33 ean(0) GWH™F(¢%, 1),

d>1h>g
where both sides are truncated below energy level E.

Proof. Because all J-holomorphic maps in O represent k[C]| and have
genus at least g, GW(0) has the form

(8.4) GWE(0) =3 Y GWE,(0) ¢" 12

k>1h>g

with kw(C) < E and h < E. Define the (C, g)-relative level of the monomial
t?h=24kC to be Q(k) +h — g, and note that all terms in (8.4) have non-negative
relative level.

Using this series (8.4), we define the truncation [GWE ()], of the left-
hand side of (8.3) to be the sum of the terms in (8.4) with (C, g)-relative level
Q(k)+ h — g < m. The right-hand side of (8.3) can be similarly truncated. In
fact, by (8.2) the truncation of (8.3) involves only those eq,(O) with Q(d) +
h —g < m. We will prove the lemma using complete induction on m.

The induction begins with m = —1; in this case, the truncations of both
sides of (8.3) vanish. For the induction step, we assume that for every regular
cluster O, whose core curve corresponds to any (A, g), there are coefficients
eqn(O) € Z such that (8.3) holds when truncated at (A, g)-relative level m—1.
Now by Theorem 7.1 we have

GWH(0) = £GWE™F (g% 1) + Y +GWF(0),
el
where the O; are clusters, indexed by a finite set I, whose core curves C; have
[C;] = k;|C], genus g; > g and (C, g)-relative level m; = Q(k;) + g;i — g > 0.
When GWF(0) is truncated at relative level m, each GWE(©;) is truncated
at (Cj, gi)-relative level m —m; < m so by induction,

GWE(0) = £GWE™E(gC 1) + S (Y ean(0:) GWR™F (¢™C 1))
iel d,h

holds when truncated at (C, g)-relative level m. This completes the induction
step. U

In fact, we get the following result for any closed symplectic 6-dimensional
manifold X as long as we restrict to the GW invariants coming only from classes
A € Hy(X,Z) with vanishing Chern number ¢;(A) = ¢1(X)A.
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THEOREM 8.3. Assume X is a closed symplectic 6-manifold. Then there
exist unique integer invariants e 4(X), defined for homology classes A with
c1(A) =0, such that the GW invariant of X satisfies

85) 3 STGWa,(X) 2972 = 3 Y eay(X) GWm (A ¢),

A#0  g>0 A£0 >0
Cl(A):O Cl(A):O
Proof. The dimension (1.3) is 2¢1(A), independent of the genus. It suffices
to check that all the results in Sections 1-6 continue to hold as long as we
replace everywhere M(X) by the union of its 0-dimensional pieces

(8.6) || Mag(X).
A0
c1(A)=0
A dimension count shows that for generic J, the limit points of (8.6) in the
rough topology (after restricting below fixed energy level E) can only be mul-
tiple covers of points of (8.6), and not of points with ¢;(A) # 0. The rest is
straightforward, and the details are left to the reader. O

8.1. Proof of the GV conjecture. The GV conjecture follows easily from
Theorem 8.1 and the explicit form of the GW invariant of an elementary cluster.
For simplicity, set

> 1 kit 2h—2

Enlg,t) = <2 i 7) k.
o =3¢ ()

With this notation, the GW invariant (3.7) of an elementary cluster whose
core curve has genus g is
(8.7) GW™ (q,1) = > nanlg) Enld™ 1),

d#0 h>g
where the ng5(g) are integers by Proposition 3.4(a) that vanish unless o > g
by Proposition 3.4(b). The GV Conjecture then takes the following form.

THEOREM 8.4. Let X be a closed symplectic Calabi- Yau 6-manifold. Then
there are unique integers ea n(X) such that
(8.8) GW(X) =YY ean(X) &nla™ ).
AZ0 h

In fact, these BPS numbers nap(X) are obtained from the virtual counts
ean(X) of Theorem 8.1 by the universal formula involving the coefficients

nan(g) in (8.7):

h
(8.9) nan(X)= > > epy(X)-nanlg) € Z,

d,B g=0
dB=A

where the first sum is over all integers d > 1 and B € Hyo(X,Z) such that
dB = A in Hy(X,Z).
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Proof. This follows immediately by combining (8.1) and (8.7) and rear-
ranging the sums:

=3 eag(X) DD nanlg) En(g™ 1)

A#0 g>0 d>1h>g

=3 33 (X ean(X) nanle)) Enla™.t)

A#£0d>1 h  g<h

=3 3 S (S ena(0nanlo) a0

A#0 d,B g<h
dB—A
The rearrangements are justified by first working below an energy level E(A, g)
< F, where all sums are finite. U

9. Extensions of the GV structure theorem

This section extends Theorem 8.4 in two different directions: to general
symplectic 6-manifolds, and to the genus zero GW invariants of closed sym-
plectic n-manifolds, n > 6, that are semipositive (as defined in [MS12]), a
class that includes symplectic Calabi-Yau manifolds. In fact, all transversality
results were proved for simple maps in index zero moduli spaces. A version
of the Cluster Decomposition Proposition 2.4 holds provided the underlying
curve map (1.9) does not increase the dimension of such moduli spaces in the
sense described below.

We restrict to the primary GW invariants of X, which are defined using
the evaluation map (but not the stabilization map) in (1.1). For each collection
{7i} € H*(X,Z) consider the generating function

(00) GWY (91, ceim) = 30 37 (M s O™ ev (7 ¢ -x) g2,
A#0g>0

The pairing is defined to be zero unless the formal dimension is zero, that is,
unless ¢ = 0, where

k
(9.2) v =2c1(A) + (dim X — 6)(1 — g) + 2k — > _ dim ;.

i=1
As usual, the pairing vanishes unless dim~; > 2 for each ¢, so we henceforth
assume this inequality. Throughout this section, we assume that dim X > 6.

The coefficients in (9.1) are obtained by fixing pseudo-cycles 3; : B; — X

representing the Poincaré duals of v; (cf. [MS12, §6.5]) and restricting to the
index ¢ = 0 constrained moduli space

(9.3) Mg 5(X) = My g1 (X) % xk (By x - x By)
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(the fiber product of the evaluation map ev : Mjuq,k(X) — X* and the map
By x -+ x By, — X¥). This gives rise in the usual way to the primary GW
invariant that appears as the coefficients in (9.1) (cf. page 197 of [MS12]).

Lemma 1.2 remains true for these index 0 constrained moduli spaces in
the following form. Let D be the (countable) set consisting of the indexing
data (A, g,v) appearing in (9.1). For each v = (v1,...,7%), choose a set of
pseudo-cycle representatives (31, ..., 8; that are in general position. Standard
transversality results show that, for each element of D, each open stratum of
the constrained universal moduli space

(94) mA,g,B(AX)simple — j

is a manifold. The Sard-Smale Theorem gives a Baire set of regular points
in J for the map (9.4) for each D; after intersecting over the elements of D
we can assume these are regular for all D. Parts (a) and (b) of Lemma A.1,
together with the Sard-Smale Theorem, give two similar Baire sets. Another
intersection produces a single Baire set J* of J such that for each J € J*, all
index 0 moduli spaces (9.3) satisfy

(a) all simple J-holomorphic maps are regular, and are embeddings with pair-
wise disjoint images that are B-regular, meaning that for each ¢ =1,... k,
f(zi) is a regular value of f; and (8;)«(Tp,Bi) N f«(Ty,C) = 0 for each
b; € B; with 3;(b;) = f(xi);

(b) the projection (9.4) is a local diffeomorphism around each map that is
regular, B-regular, and an embedding.

Moreover, for each J € J*, there are no simple J-holomorphic maps in the
spaces (9.3) with ¢ < 0. The universal moduli space constrained by B is

(9.5) Mp(X) =| | Magn(X),
Ayg

where the disjoint union is only over those (A, g) for which ¢ in (9.2) is zero.

As in the proof of Lemma 1.5, any nontrivial J-holomorphic map f :
C — X has an associated “reduced map” ¢ : Cieq — X, which is a simple
J-holomorphic map with the same image as f. In this context, the underlying
curve map (1.8) extends to a map

(9.6) c: Mp(X)— Subsets(X) x J x By X --+ X By,

defined by (f,z1,...,zx, J,b1,...,b) — (f(C),J,b1,...,b;). The examples
below give structure theorems in cases where ¢ does not increase the formal
dimension (9.2), that is, where () < ¢(f).

Under this assumption, we can replace M(X) everywhere by (9.5), and

all proofs in Sections 1-7, except those in Section 3, hold without change. In

E

particular, there is a dense, path-connected set J.£,(B) corresponding to J.Z
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in Definition 1.3 but involving only maps in Mp(X). Lemma 1.6 holds under
the assumption above with C(X) replaced by the image of (9.6).

To finish, we must expand the definitions of “cluster” and “elementary
cluster.” Define a B-constrained cluster exactly as in Definition 2.2, but using
only elements (f,x,J,b) in Mp(X). Thus the core C is a smooth embedded
J-holomorphic curve ¢ : C — X that we now assume is marked, B-regular as
defined in (a) above, and decorated by a choice of b; € B; *(tc(x;)) for each i.
The contribution of a B-constrained cluster (C, J, ) to GW(v) depends only on
the restriction of J to the € neighborhood of the core curve and the restriction of
each (; to the e-ball in B; centered at b; for i = 1,..., k. By a diffeomorphism,
when ¢ is small, we can identify the € tubular neighborhood of C' with an e-disk
bundle of the normal bundle No — C', with C mapping to the zero section and
each e-ball around b; in B; mapping into a linear subspace of the fiber N; over
the points p; = tc(x;). One can then declare certain B-constrained clusters to
be “elementary.” In both of the examples below there is a simple, natural way
of doing this.

9.1. The GV-formula for general symplectic 6-manifolds. For any closed
symplectic 6-manifold X, the dimension (9.2) is

k

L=2c1(A)+ > (2—dim~),
=1

independent of the genus. For the “Calabi-Yau classes” A with ¢1(A) = 0,
consider the GV-transform

_ X1, kt\*?
(9.7) Z GW,, ¢?972 = Z NAg Z % (2 sin 5) 4.
A#0,g A#0,g k=1
c1(A)=0 c1(A)=0

For “Fano classes” A with ¢1(A) > 0 consider the following variation of the
GV transform:

(9:8) > GWagly,.-m) ¢'t%972
A,g
c1(A)>0
t\c1(A)+29-2
= Z nAg('Yl,-n,’Yk) (QSinf) t*CI(A)qA
’ 2
A,g
c1(A)>0

for each collection {v;} C H*(X,Z). The invariants GW 4, are zero for all
classes A with ¢1(A4) < 0. (The moduli space without constraints is empty for

JeJ*)
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THEOREM 9.1. For a closed symplectic 6-dimensional manifold X, the
coefficients of the primary GW series (9.7) and (9.8) have the following inte-
grality properties:

nag€Z ifci(A)=0 and nag(Y1,--s) €Z ifci(A) >0
for all y1,...,vr € H*(X,Z).

Proof. Fix v = {v;}, corresponding constraints B = {B;}, and a class

A # 0 so that

t=2c1(A)+ 2(2 — dim ;)
is zero. For each J € J%, the resolution of each J-holomorphic map f, factors
as @ o p as described above, where ¢ : Cioq — X is a simple J-holomorphic
map. For each component ¥; of Cieq, let A; = pi[X;] € Hao(X,Z), and let
d; > 1 denote the degree of p over ¥;, that is, the number of points in p~!(z)
for a generic point x € ;. Then A =3 d;A;.

Because ¢ : Cieq — X is a simple J-holomorphic map, it cannot have any
components with ¢;(A4;) < 0. (Such moduli spaces are empty for J € J*.)
Moreover, the image of ¢ passes through all the constraints and represents
S~ A;. Hence

c1(px[Crea)) = D c1(Ag) <Y dicr(Ai) = e1(A);
in fact this must be an equality because otherwise the formal dimension of
the constrained moduli space containing ¢ would be negative, a contradiction.
Thus for J € J*, a multiple cover map represents a Calabi-Yau class if and
only if its reduced curve also does, and it represents a Fano class if and only if
its reduction also does and degp = 1.

Consequently, the GW series separates into two independent contribu-
tions: a sum over the Calabi-Yau classes, where Theorem 8.3 applies, and a
sum over the Fano classes that was studied by A. Zinger [Zin11]. Theorem 8.3
combines with the proof of Theorem 8.4 to give the integrality of n4 4 in (9.7).
The Fano case is much simpler: there is no need to consider clusters because
for J € J*, every embedded J-holomorphic curve C' with ¢;(A) > 0 is iso-
lated and super-rigid for the constrained moduli space, and the contribution
of degree 1 maps from nodal curves to C is precisely

£\ c1(A)+29—2
GW(C) = <2 sin 5) () C
(see (1.13) and (1.14) in [Zin11]). This completes the proof. O

9.2. Genus zero invariants of semipositive manifolds. There is a similar
structure theorem for the rational (genus zero) GW invariants of closed semi-
positive symplectic manifolds of dimension > 6. In this context, the appropri-
ate GV transform has two parts:
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(1) for ¢;(A) = 0, it is the Aspinwall-Morrison formula in the form given in
equation (2) in [KPOS]:

9.9 Y GWXo(m, - at = D ndo(r.w) D dF 3,

A70 420 d>1
c1(A)=0 c1(A)=0

(2) for ¢1(A) > 0, it is (9.8) specialized to genus zero:
(910) GW1)4(,0(717""’Y]€) = ni(,(](’)/l?"‘a’yk)‘

As before, the invariants GW 4 4 are zero for all classes A with ¢;(A4) < 0.
(Since X is semipositive, there are no simple J-holomorphic spheres with
c1(A) <0 for J e J*)

THEOREM 9.2. For a closed semipositive symplectic manifold X of di-
mension at least 6, the coefficients (9.9) and (9.10) of the primary genus zero
GW series have the following integrality property:

n§,0(717 e 77’6) € Z
for all yi,...,v € HY(X,Z).

Proof. Again fix v, B, and A so that
v =2c1(A) + (dim X — 6) + Y (2 — dim~;)

is zero. As before, assume f is a multiple cover with reduced map ¢, and A;,
d; are degrees of its components. If the domain of ¢ has r > 1 components,
then its image has at least  — 1 self-intersection points (since the domain of f
was connected). For J € J*, these impose (r — 1)(dim X —4) transversely cut
conditions on simple maps, so the dimension of the moduli space containing ¢ is

r k

3 [2e1(4) + (dim X —6)] — (r—1)(dimX —4) + Y (2 — dim~;).

i=1 Jj=1
Since A = 3" d;A; and ¢1(A;) > 0, this is less than or equal to ¢ — 2(r — 1) <.
= 0. But the moduli space is empty unless this is an equality, so we con-
clude that » = 1 and d; = 1 whenever ¢;(A) # 0. Thus the GW series again
separates into a sum of ¢;(A) = 0 classes and a sum over ¢;(A) > 0 classes.

The Fano case (9.10) is classical: dimension counts imply that for generic J
the constrained moduli space consists only of simple maps, without any mul-
tiple cover. Thus the GW invariant is an integer.

For Calabi-Yau classes A in X?™, we declare a B-constrained cluster to
be elementary if its core C' is an embedded marked rational curve with normal
bundle N biholomorphic to O(—1) & O(—1)® (m —3)O, and the constraints B;
are linear subspaces of fibers Ny(,,) of N in general position in the sense that
the only holomorphic section of N that intersects B; for every i = 1,...,k is
the zero section. (Note that because ¢ = 0, the sum of the codimensions of B;
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in Ny(z,) is 2(m —3) = dimg X —6.) The core curve C is then super-rigid (the
constraints kill the kernel in the O directions) and, as proved in [KP0S§], the

contribution of its multiple covers to the primary GW(v1,...,7;) invariant is
(9.11) signpC - Z d"=34q¢,
d>1

where sign gC = =1 is the sign of the core curve C' as an element of the cutdown
moduli space M 40 p. This sign can be explicitly calculated as the sign of the
(transverse) intersection between the oriented linear subspace B; X --- X By
and the image of the evaluation map evy : H(C, f*N) — Ny X X N
on the space of holomorphic sections of f*N.

Now, with v, B and FE fixed, restrict attention to the cutdown moduli
spaces M4 o p(X) for Calabi-Yau classes A with energy at most E. For J in
the set J* constructed after (9.4), we can decompose the fiber Mio’ p into
B-constrained clusters as in Proposition 2.4. For each such cluster, the proof
of Theorem 7.1 shows that there is a path joining J to a elementary cluster of
the above type; the resulting formula (7.3) then becomes

GWH(0) ~ signgC - GWelemE (40,

where the right-hand side is the contribution (9.11) expressed in terms of the
formal power series
Gwelem(q) — Z dk_qu.
a>1

Since the collection of series GW®°™(¢4), for Calabi-Yau classes A, are lin-
early independent as in (8.2), Theorem 8.1 also extends to the context of
B-constrained clusters to express the left-hand side of (9.9) as a linear combi-
nation, with integer coefficients, of the series GW*™ (¢4). Thus the coefficients
on the right-hand side of (9.9) are integers. O

Appendix A

The proofs of Lemma 1.2(a) and Lemma 5.5 were deferred; we give the de-
tails here and in the second appendix. The proofs are applications of transver-
sality and the Sard-Smale Theorem. While we are primarily interested in
Calabi-Yau 6-manifolds, Propositions A.4 and B.1 below apply to symplectic
manifolds (X,w) with dim X > 6. Lemmas 1.2(a) and 5.5 are special cases of
Corollary A.5 and Proposition B.1 respectively.

As in the proof of Lemma 1.5, every J-holomorphic map f : C' — X lifts
to a map f : C' — X from the normalization of C. This lift is J-holomorphic
and has a smooth (but not necessarily connected) domain, so it suffices to work
with such maps. For every integer ¢ > 0, let

(A]-) Mf,simple — ja
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denote the universal moduli space generalizing (5.1), consisting of equivalence
classes of pairs p = (f,J), where J € J = J' and f is a W'" simple J-holo-
morphic map whose domain C' = (%, j,z1,...,2¢) is a smooth and compact
(but not necessarily connected) complex curve with ¢ marked points. Write
MO,simple as Msimplea and let

Ng - Msimple

be the subset of the universal moduli space consisting of simple maps that

are not embedded. Maps in N'E either (a) are not one-to-one, or (b) are not

immersions. Correspondingly, consider two types of subsets of the moduli

spaces (A.1):

(a) for a pair of marked points, the inverse image of the diagonal under the
evaluation map

(A.2) ev : Magimple — X X X

is the subset
eV_l(A) C MZ,Simple

consisting of simple J-holomorphic maps f with smooth marked domain
but whose image has a double point f(x1) = f(z2);

(b) for a single marked point z1, there is a subset NI of M gimple consisting
of simple J-holomorphic maps f that are not immersions at xy.

As in Section 5, we will analyze these two subsets by regarding the moduli
space M simple locally as a subspace of a slice as in (5.4). To describe NI, let
L be the complex line bundle over the slice whose fiber at p = (f,J) is the
cotangent line T C' to the complex curve C' at the marked point z1, and let
ev : M1 gimple — X be evaluation at x1. The bundle

Dy
(A3) L Qc ev’lX —— Ml,simple

has a section ®; defined by ®(f,J) = (df)z,; note that this lies in (£ ®¢

ev'TX), = T;,C ®c Ty X because (df)y, : Ty C — Ty, X is complex

linear for J-holomorphic maps f. The zero set of ®;(0) is the set N7 in (b).
LEMMA A.1. For each £ > 0, the moduli space (A.1) is a C* separable

Banach manifold for k as in Proposition 5.1. Furthermore,

(a) the evaluation map (A.2) is C* and is transverse to the diagonal;

(b) the section (A.3) is C* and is transverse to the zero section.

Proof. Proposition 5.1 extends to show that My gmple is a separable Ba-
nach manifold, locally C* diffeomorphic to a C*~™ submanifold My gimple of a
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slice SliceT’T’l forl >6,r>2,2k<1-—2,and 1 <m <[ — k. Note that the
section (A.3) extends over the slice by the formula

(A4) O1(f,J) = 5(df — Jdf j)(x1),

which is equal to df (x1) if f is (j, J)-holomorphic. The Sobolev embedding
theorem implies that, on the slice, the evaluation map defined by ev(f,J) =
(f(x1), f(x2)) is smooth for m > 1 and that the extension (A.4) is C'~™ for
m > 2. Consequently, the map (A.2) and the section ®; in (A.3) are CF for k
in the above range provided that m > 2.

Statement (a) is true by Proposition 3.4.2 of [MS12]. To prove (b), we
modify the proof of Lemma 3.4.3 in [MS12]. This involves three steps: (i)
computing d®; in certain directions, (ii) expressing the needed transversality
as a differential equation with constraints on 1-jets (not just values) at the
marked point, and (iii) solving this equation using weighted Sobolev spaces.

Fix a slice as above with m > 2 and a point p = (f, J) on the zero set of
®1, so df (x1) = 0. Consider a variation p; = (f¢, J¢) of p = pg in M gimple that
fixes the domain (including the complex structure and the marked point x;)
and also fixes the image point f(z1). Then f; : C' — X is (4, J¢)-holomorphic,
and f;(z1) = f(x1) is constant. The tangent vector to p; at t = 0 then has the
form (¢,0, K), where

(A5) Ce W™ (f*'TX), ((x1)=0, KeT;J', and L,(¢,0,K)=0.

Here £, is the linearization given by (4.12) and (4.13). Calculating the first
variation of

Q1(pt) = %(dft — Jidfij)(z1) € (AldO @c fiTX)z,

as in [MS12, Prop. 3.1.1] (with a sign change), and using the fact that df(x1)
= 0, one finds that
(A.6)

(dD1)y(¢,0,K) = 3 (VC = JVC 0 j + (Ve )dfs + Kdfj) (z1) = (VO (1),

The right-hand side is independent of the connection because ¢ vanishes at x7.

To prove (b), it suffices to show that (A.6) is surjective, i.e., for each
N € (A}jo ®c f*TX)s, there exists a tuple (¢, 0, K) satisfying (A.5) and such
that

(A7) (VO (1) = no-

Choose a local holomorphic coordinate z on C' centered at x1, and write
no = vodz, where vo € (f*TX )z, = Tj(,)X. Extending vy to a smooth section
of TX, pulling back by f, and multiplying by a bump function creates a Wh"
section v of f*T'X supported in the coordinate chart with v(z1) = vy. We will
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seek a solution ((,0, K) of (A.5) and (A.7) satisfying
¢ =20+ p,
where p € WH(f*T'X) is a correction satisfying

(A.8) () = (Vp)(z1) = 0.
This ansatz implies that ¢ € W, {(z1) = 0 and
(VO (1) = (82 S+ z(Vv)0’1> ‘z:O = vodz = 1)9.
The only remaining constraint is the last equation in (A.5), which reduces to
(A.9) Ly(,0,K) =Dy + $Kdfj =a for o=-—D)(zv).

Using the formula (4.25) for Dg, one sees that a is bounded. Furthermore,
la(z)] = O(|z|) for small z, as follows. As in [MS12, 3.1.5], we can write Dg
as the sum of a first order complex-linear operator Dg’l, and a complex anti-
linear zeroth order operator R given in terms of the Nijenhuis tensor of J by
(R¢)(w) = N, (¢,0f(w)). The calculation

Dg(zv) = Dg’l(zv) + R(z2v) = zDg’lv +ZRv = zng +(Z—2)Rv

then implies that o is O(|z|).

Because f is simple, we can now use weighted Sobolev spaces to find a
solution (u, K) € WY (f*TX) @ T;J' of equation (A.9) that satisfies (A.8).
The appropriate weighted spaces are defined below, and the needed facts are
listed in Lemmas A.2 and A.3. Using the results and notation of those lemmas,
the proof of (b) is completed as follows.

Fix 0 ¢ Qp with 1 < § < 2, and define r > 2 by § = 2 — 2/r. Since
C is compact and « is bounded and O(]z|), one sees that « is in F%", and
hence is in W%° by Lemma A.2(a). Because f is simple, Lemma A.3(c)
shows the existence of a solution (u,0,K) € W™ x {0} x T;J" to (A.9).
This p satisfies Dp(u,0) = a — $Kdfj on C’, and both o = —Dp(zv,0) and
Kdfj = 2£,(0,0, K) are in F'=17 as is seen by taking m = [ in (4.26). But
then Lemma A.2(b) shows that (u,0) lies in " and satisfies (A.8) and (A.9).
This completes the proof that (d®1), is surjective. O

The weighted Sobolev spaces used at the end of the above proof are defined
as follows. Fix a local holomorphic coordinate z : U — C with origin at z1,
and a Riemannian metric gg on C that is euclidean on U. Also fix a smooth
positive function p on ¢’ = C\ {x;} that is equal to |z| on U \ {z1}, and a
constant § € R. Let ¢ be the metric p~2gy on C’. Writing z = e~ #+) gives
coordinates (t,6) with

(A.10) p=lz|=e""
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and ¢’ = dt? + d#?, so (C',¢’) is a manifold with an end C?_, isometric to the
cylinder [0,00) x St, where S! = R/27Z. Let

&0 = WH(fTX)

be the completion of the set of C! sections of f*T'X with compact support on
C’ in the norm

(A1) €505 = [, 107°96T +157%]" dvoly.

using the norm and connection on the bundle f*T'X induced by the metric ¢’
on €’ and the metric on X. The spaces 58 "9 and FOrd are defined similarly
(cf. (4.20)), also using the metrics ¢’ on C’ and the metric on X.

The next lemma gives ways to translate between these weighted spaces,
which are defined using the metric ¢’ and its Levi-Civita connection V' on C’,
and the unweighted spaces £™" and F™", which were defined in Section 4.2
using the metric gg and connection V on C. Part (b) is a regularity result for
the operator D)) defined by (4.25).

LEMMA A.2. Fiz p = (f,J), where f € W' is J-holomorphic, J € J',
1 >6, andr > 2. Then

(a) if @ € FO is a 1-form with |a(2)| = O(|z]), then o € FOr for all
d<2—-2/r;

(b) if p € 8&“’5, 6 > 1, is a weak solution of D)y = a on C\ {z1} with
a € FI7Ur then p extends to a solution on C with (1,0) € ELT . and with
(0) = (V12)(0) = 0.

Proof. (a) For a 1-form «, the norms with respect to the metrics gg and
g = p~2go are related by |a|, = plalg,, while dvoly = p~2?dvoly,. Hence

/C/ |P_504|Z’ dvoly = /C’ ‘,01_5_2/%420 dvoly, .

The right-hand integral is finite for § < 2 — 2/r because a € F*" and, by

assumption, |alg, < c1p=cie”t on C. 4.

(b) The pointwise norm of a section of f*T'X does not depend on the
metric on the domain. Integrating |u|" dvoly,, = p?*°" |p=%u|" dvol,, and
again noting that p is bounded and is equal to |z| on the end, shows that
p € WO and that, for small ¢, the integral over the disk B(e) centered at z;
satisfies

2467

r
0,r,8 < e

[l dvoly, < €47
B(e)
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Holder’s inequality then shows that for any s < r, u € W%® and there is a
constant ¢z = c3(s) such that

(A.12) / l® dvoly, < c3e?t,
B(e)

To apply elliptic regularity, we first verify that Dg u = « weakly on all of C'.
Choose a smooth 1-parameter family of cutoff functions {+.} supported on B(¢)
with 0 < . <1 and |dv.| < 4/e. Given any n € Fb", write n = v.n+ (1 —7:)n
and integrate:

(A1) [ (O = o) = [ (DD Ge )
- / (yem, @) + / (1 =~2)n, Dy — a).
B(e) C

The last integral vanishes because Dg,u = a weakly on C'\ {z1}. Noting that n
is bounded by the Sobolev Embedding Theorem, Holder’s inequality shows that
the absolute value of the middle integral on the right-hand side is bounded by
7Moo [[ellor [17ello,sB(e) < c4e%/*, where 1 =1-1 Fore <1, the first integral
on the right is similarly bounded by

/B( )(Id%! [+ 71 (D) nl) |l < (ldvellorssee) 1nlloe + (DY) nllor) ll1llos:mee)
3

S cs €1+6,

where this last inequality follows from (A.12) because ||dvel|or;p() < cee?/m 1

and [[(DS)*nllo, < crllnll1, as in [MS12, Prop. 3.1.11]. These bounds hold for
all small € > 0, so the left-hand side of (A.13) is equal to 0. Thus Dyp = o
weakly on C.

Elliptic regularity, as in Theorem C.2.3 of [MS12], then shows that u €
W and Dg,u = « on C. In particular, ;& is C? by the Sobolev Embedding
Theorem. With this, (A.12) and the hypothesis that ¢ > 1 imply that u(0) =

(V1)(0) = 0. 0

LEMMA A.3. Fizp = (f,J) as in Lemma A.2. Then there is a discrete
set Qp C R such that for each § ¢ Qp,

(a) the operator Dg defined by (4.25) on C' sections with compact support in
C\ {z1} extends to a Fredholm operator

(A14) Dg . 55»7"75 — JT_‘O,T,J;

(b) if df(x1) = 0 and § < 2, then the operator L, defined by (4.12) and (4.13),
restricted to the subspace defined by k = 0, induces a bounded operator

(A15) £y WIS (FTX) & 0} & Tyg™ — 7079,
(c) if, in addition, f is simple, then (A.15) is surjective.
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Proof. (a) The Fredholm properties of the operator (A.14) are determined
by its asymptotic behavior in a neighborhood of x1, which depends on the
geometry of X near f(x1). Choose a local trivialization of the complex vector
bundle (7'X, J) in a neighborhood V' of f(x1). Our assumptions imply that f
is of class C! so, after shrinking C’_,, we can assume that f(C’_4) lies in V.
Pulling back yields a C*~! trivialization f*TX = Clq % R2N of f*TX over
the end C!_; in which J corresponds to the standard complex structure Jo
on CV = R?N. This, together with the section dz of A%l, gives a similar
trivialization of A%l ®c f*T'X on the end.

Referring to formula (4.25) and noting that f is J-holomorphic, we can
write Dg( in these trivializations as

(A.16) DYC=00( + S-(dz,

where 9o¢ = %(d{ + Jod(j) and S is a matrix-valued function depending on
the pullbacks of J, V.J, and the connection form of V in the trivialization.
The specific formula for S shows that it is at least C*~1.

After converting to (t,0) coordinates on C. , and substituting dz =

—Zz(dt —id 6), (A.16) becomes
(A.17) DYC=0o( + T,

where 09 = %((%C + Joa(;() and T = —e ¥9S. Since S is bounded on C,

we have |T| < cje™.

Thus Dg is a first order elliptic operator with C*'~!
coefficients that, in some trivialization on the end of C’, is the sum of the
translation invariant operator dy and a O order term 7T that decays to 0
uniformly as ¢ — oco. A theorem of Lockhart and McOwen [LM85, Th. 6.2]
then implies that (A.14) is bounded and Fredholm for all § not in a discrete set
Qp. (The proof assumes that D, has smooth coefficients, but applies without

change for coefficients that are C? or better.)

(b) Using (a), it suffices to bound the last term in (4.12). Because f is C?,
the assumption that df (1) = 0 implies that |df (2)|g, < c2|2| = c2p on the end,
and hence by compactness there is a constant c3 such that |df|, < c3p? on all
of C'. We then have

1/r
1Kl < 1o ([ 1077 co’l dvoly ) < eall e

where the last inequality holds because p = e~! on the end of C’ and § < 2.

(c) Following the argument used to prove Proposition 5.1, if £, is not
surjective, then there exists an element ¢ of the dual space (FOm9)* = F0:5=9,
s = 757 > 1, such that (D9)*c¢ = 0 and (5.2) holds for every K in T;J%
The proof of Lemma 4.1, applied on C’, shows that there is an injective point

x € C" such that ¢(z) # 0. Then K = [.Kj, as defined after (5.3), has
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compact support in a neighborhood of this point z € C’ and lies in T;7,
giving a contradiction as € — 0. Thus (A.15) is surjective. ([

Next, note that for every £ > 0, the map
(A18) g - MZ,simple — Msimple
that forgets the marked points is a submersion with index 7, = 2¢.

PROPOSITION A.4. The set NE C Mgimple of simple maps that are not
embeddings has codimension dim X — 4 in the sense of Definition 5.4.

Proof. As above, N€ is the union of 71(11S!) and m2(125?), where ¢ :
St = @1_1(0) — M simple and ¢ : S? = ev 1 (A) = Mo gimple- Lemma A.1
implies that ¢1 and 1 are inclusions of submanifolds with index ¢y = —codim St
for £ = 1,2. One sees from (A.2) and (A.3) that S* and S? both have codimen-
sion dim X. Hence N is a set of codimension k where k = —index (mp 0 1) =
—indexmy — index 1y = —2¢ + dim X > dim X — 4. O

COROLLARY A.5. If X is a symplectic Calabi-Yau 6-manifold, there is
a Baire set J* C jl, I > 6 orl = o0, so that for each J € J*, all sim-
ple J-holomorphic maps are reqular and are embeddings with pairwise disjoint
1mages.

Proof. For J = J l, the Sard-Smale Theorem implies that the regular
values of the projection m : Mgmple — J are a Baire set J; in J. When X is
a Calabi-Yau 6-manifold, the index of 7 is 0, and Proposition A.4 shows that
NE is a codimension 2 subset of Mgimple. Applying Sard-Smale again, there is
a Baire set J5 of J such that for each J € J* = J1NJa, J is a regular value of
7 and 7~ !(J) is disjoint from A'E, which means that all simple J-holomorphic
curves are embedded.

This proof extends to the space of smooth maps over J = J° by applying
Taubes’ argument, as in the proof Theorem 3.1.6(II) in [MS12]. O

Appendix B

This second appendix is devoted to the proof of the following result, which
immediately implies Lemma 5.5, and also generalizes parts (b) and (c) of
Proposition 5.3. As in Appendix A, our moduli spaces and operators D), are de-
fined on the Sobolev completions introduced in Section 4.2, but for notational
simplicity, we omit the superscripts indicating the Sobolev norms.

PROPOSITION B.1. Suppose dim X > 6 and N is a component of Mgimple
such that the projection w: N — J has index 0. Then

(a) WLNN is a codimension 1 submanifold of N, and
(b) W\WH NN is a subset of N of codimension > 3.

Furthermore, (a) and (b) hold with N replaced by N N Mc.
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The proof is based on another construction involving the spaces (A.1) and
the projections (A.18). Below, we will locally regard My simple @s a subset of
a slice and write its elements as pairs ¢ = (p,x), where p = m(q) = (f,J) €
Mimple and x = (21, ..., x¢) are the marked points on the domain C of f. For
each £ > 0, let

*
Mé,simple - Mé,simple

be the open set of all ¢ such that each of the marked points x1,...,x, is an
injective point of f. Pull back the bundles & and F to Mj ;) by the map
between slices corresponding to (A.18). Let £ — M Gimple D€ the subbundle
of ;& whose fiber at ¢ = (p, x) is the set

55:{gew}gp\fN(a:i)zoforizl,...,f}

of elements of 7;&, whose normal component vanishes at x1,...,zy. For
each ¢ = (p,x) € M Gnples 55 is a linear subspace of 7;&, of codimension

¢(dim X — 2), and the linearization D, at p, given in (4.13), restricts to a
linear map

(B.1) Dé : 55 — ) Fp.

Regarding Df; as the composition of the inclusion 55 — m, &y with D,,, one sees
that D is Fredholm with index

(B.2) 1 = index D} = index D, — {(dim X — 2)

for all ¢ = (p,x) € Mj gppe- As in (5.7), let Fred,, — M7 1. be the fiber
bundle whose fiber at ¢ = (p,x) is the space of index ¢; Fredholm operators
from 85 to m; Fp. This is stratified by submanifolds Fred; , and

Ly
L . Y4

defines a section of this bundle. Let
l
Vv - MZSimple
be the open set of all ¢ = (p,x1,...,2¢) such that there exists an injective

point y, distinct from the set {x;}, such that ker Df;rl) =0.

LEMMA B.2. The section ¢ is transverse to Fred;, along V¢, as is its
restriction to 7~ (Mc¢). Hence for s > 1, the sets

(B.3) sts =vin (\Ilg)_lFrede = {q e V*| dim ker Df; = s}

and Sés =S4 N, Y (M) are submanifolds of codimension s(s — tg), where
Le 1s given by (B.2).
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Proof. To prove transversality at ¢ € S%* we must show that the image
of (d¥*), projects surjectively onto the normal space Hom (ker Dg, coker DS) to
Fred;, at Dé. Fix a slice containing ¢, and identify coker Dg with the kernel
of the adjoint operator (Dg)* defined as in (4.27). By contradiction, assume
there exists a non-zero element of the normal space, regarded as a linear map
Ag e kerDé — ker(Dg)*, such that <Aq,(5ng)> 2 = 0 for every variation
v € TyM simple- Since A, # 0, there exists an L?-normalized & € ker DS such
that ¢ = Ak € ker(Df)* is nonzero. Fix an L? orthonormal basis {x;} of
ker Df7 with k1 = k. We then have

(B.4) 0= (40, 0D}z = 3 [ (Agri, (0. D)

for all v € T4 My simple-
The assumption that ¢ € V¢ means, by definition, that there is an injective
point y ¢ {x1,...,x,} such that the map

(B.5) ev, : ker Dg = N given by & &V (2)

is injective for x = y, and hence for all  in a neighborhood of 3. As in the
proof of Lemma 4.1, there exits an injective point x in that neighborhood with
c(z) # 0. For this x, the values {x}¥(x)} are linearly independent because
(B.5) is injective. Applying Lemma B.3 below with ¢ = x(z) # 0 and
V = span{xN (x)|i > 2} produces a K satisfying (B.7) below.

Now proceed as in the proof of Proposition 5.3(b), taking v. = (0,25.K)
in (B.4). These variations do not affect the map f, the complex structure on
the domain or the marked points, and hence do not change the domain and
range of the operators (B.1). Because D, and Dé are differential operators
with the same formula, the variation (,, D), is again given by (5.8) with K
replaced by 26. K.

After substituting and taking the limit ¢ — 0 as in the proof of Proposi-
tion 5.3(b), equation (B.4) implies that

(B.6) 0= ((Agri) (@), (Vn @) K) fuf) = le(x) ],

)

where the last equality holds because (anv (:E)K)f*j =0 for all i > 2 by (B.7).
This contradicts the fact that ¢(x) # 0 and hence establishes the transversality
of U at ¢ € S%*. The restriction of ¥ to 7, ' (M) is also transverse to Fred;,
because for each embedding ¢ € S%° with image C, the variations v, above
are tangent to ﬂ[l(/\/lc). Thus S%* and Sés are manifolds whose codimen-

sion, in both cases, is the dimension of the normal space to Fred® ,,, which is
(dim ker Df;)(dim coker Dé) = 5(s — tg). O
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LEMMA B.3. Fiz p = (f,J) € Mgimple, an injective point x € C, and a
neighborhood U of f(x). For any nonzero § € Ny(z), any subspace V. C Ny ()
not containing £, and any ¢ € (A}jo ®c f*TX)g, there exists a K € T;7,
supported on U, vanishing along f(C') such that, at the single point z,

(B.7) (VeK) fuj=c and (VuK)fij=0 YweV.

Proof. Still following the proof of Proposition 5.3(b), there is a Koy € T;J
such that Kyf.j = ¢ at . Choose a local coordinate system {z,y1,92,...}
centered at f(z) with z a local complex coordinate on f(C), and {y;} real
coordinates vanishing along f(C), and with 8871 P ¢ and %’f(x) eV for
2<k<dimV +1. Then K = y18K( has the required properties where j is
any smooth function supported in U with 8 = 1 near the origin. U

Proof of Proposition B.1. We begin by making a series of observations
about the images of the sets V¢ and S%* under the forgetful map (A.18).

(i) The images of the V¢ cover Mimple- If not, there would be a map
P € Msimple not in the image of any V¢, Choose a dense sequence
{z1,29,...} of distinct injective points in the domain C of p. Then for
each ¢, ¢ = (p,x1,...,2¢) ¢ V¥, which implies that ker Dt1 =£ 0. But

qe+1
then ker Dg;:ll C ker Dge are nontrivial nested subspaces of the finite-

dimensional vector space ker D,, so they have a nonzero intersection.
Hence there is a nonzero x € ker D), whose normal component vanishes
at all z;, and therefore everywhere, contradicting Lemma 4.1.

(ii) The images of the S“* with s > 1 cover W. Given p € W, we have
ker D), # 0. As in (i), there is a sequence {z;} C C and an m > 0 such
that ker D' = 0. Let ¢ be the largest k such that ker Dé“k # 0. Then by
(B.3), qp € $%* for s = dimker D!, > 1, and hence p € m(S%*).

(iii) S%1 = W' is a submanifold of Mgmple- Equation (B.3) shows that
S0 C W' while Lemma 4.1 implies W! C §%1. Hence, by Lemma B.2,
W! is a submanifold of Mimple of codimension 1 — ¢o. In particular, for
each component N of Mgmple with index D, = 0, we have ¢y = 0 by
(B.2), so the restriction W! N is a codimension 1 submanifold of N

(iv) 7 : S — Mgimple is a Fredholm map of index 2¢ + s(ty — s). This map
is the composition of the inclusion S%° — M simple, Which has index
s(tg — s) by Lemma B.2, and the map (A.18), which has index 2.

By Facts (ii) and (iii), W\ W! is covered by the sets m,(S%*) for £ > 0,
s > 1, and (¢4,s) # (0,1). By Fact (iv) and (B.2), the intersection of each of
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these sets with A is the image of a Fredholm map of index

20 — s(dim X — 2) — 2 <2 —Als — % < —3.

Thus (W \ W!) NN is a set of codimension 3 in the sense of Definition 5.4.

The same proof applies if we restrict everything to M¢ instead of Mgimple-
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