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On the generic part of the cohomology of
compact unitary Shimura varieties

By Ana Caraiani and Peter Scholze

Abstract

The goal of this paper is to show that the cohomology of compact unitary

Shimura varieties is concentrated in the middle degree and torsion-free,

after localizing at a maximal ideal of the Hecke algebra satisfying a suitable

genericity assumption. Along the way, we establish various foundational

results on the geometry of the Hodge-Tate period map. In particular, we

compare the fibres of the Hodge-Tate period map with Igusa varieties.
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1. Introduction

Let G/Q be a reductive group. The real group G(R) acts on its associated

symmetric domain X = G(R)/K∞, where K∞ ⊂ G(R) is a maximal compact

subgroup. For any congruence subgroup Γ ⊂ G(Q), one can form the locally

symmetric space

XΓ = Γ\X.
We assume that XΓ is compact and that Γ is torsion-free. Then Matsushima’s

formula, [Mat67], expresses the cohomology groups H i(XΓ,C) with complex

coefficients in terms of automorphic forms π on G, and the (g,K∞)-cohomology

of their archimedean component π∞.1 A computation of (g,K∞)-cohomology

then shows that the part of cohomology to which tempered representations

contribute is concentrated in the middle range q0 ≤ i ≤ q0 + l0 (cf. [BW80,

Th. III.5.1]); here l0 = rk G− rk K∞ and q0 = 1
2(dimX − l0).

In particular, if l0 = 0, then tempered representations occur only in the

middle degree q0. This happens when the XΓ are complex algebraic varieties,

e.g., when G gives rise to a Shimura variety.

The motivating question of this paper is to establish a similar result for

the cohomology groups H i(XΓ,F`) with torsion coefficients. In this context,

it is difficult to formulate the analogue of the temperedness condition, which

is an analytic one. We learnt the following formulation from M. Emerton.

Recall that for any system m of Hecke eigenvalues appearing in H i(XΓ,F`), one

expects to have a mod ` Galois representation ρm (with values in the Langlands

dual group). One may then put the condition that ρm is irreducible, and ask

whether this implies that q0 ≤ i ≤ q0 + l0. In particular, a result of this type

1 In the noncompact case, this is still true and is a theorem of Franke, [Fra98].
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for G = GLn (where l0 > 0) is important for automorphy lifting theorems in

the nonself dual case as in work of Calegari-Geraghty, [CG, Conj. B].

In the present paper, we deal with this question in the case where XΓ is

a Shimura variety (so that l0 = 0). More precisely, we will consider the case

where G is an anisotropic unitary similitude group of dimension n for some

CM field F with totally real subfield F+ ⊂ F . We assume that F contains

an imaginary quadratic field. Assume, moreover, that G is associated with a

division algebra over F ; i.e., it is one of Kottwitz’s simple Shimura varieties,

[Kot92a].2 Our main theorem is the following.

Theorem 1.1. Let m be a system of Hecke eigenvalues appearing in

H i(XΓ,F`). Then there is an associated Galois representation

ρm : Gal(F/F )→ GLn(F̄`).

Assume that there is a rational prime p such that F is completely decom-

posed above p, and

ρm is unramified and decomposed generic

at all places of F above p. Then i = q0 is the middle degree.

Remark 1.2. The first part of the theorem can be deduced from [Sch15a],

but we give a different proof in this paper. We will make use of the Hodge-Tate

period map again, but this time in a p-adic context with p 6=` (whereas [Sch15a]

worked in the situation p = `). We note that this should make it possible to

understand the behaviour of ρm at places above `.

Remark 1.3. It is a formal consequence that the Z`-cohomology localized

at m is concentrated in degree q0, and torsion-free, if the conclusion of the

theorem holds true.

Remark 1.4. The condition that ρm is decomposed generic is defined be-

low. It follows from a suitable “big image” assumption. However, note that if

ρm is a generic sum of characters, there will still be a prime p as in the theorem,

so that our result also applies to many reducible representations.

Remark 1.5. We prove the result under a slightly weaker assumption de-

pending on the precise signature of G. In particular, if the signature of G is

(0, n) at all except for one infinite place, e.g., in the Harris-Taylor case, we

only need the existence of one finite prime v of F at which ρm is unramified

and decomposed generic.

2We also allow the complementary case where G is quasisplit at all finite places, under

a small extra assumption (cf. Section 5.1), so that our main result also covers cases where

nontrivial endoscopy occurs.
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Remark 1.6. In the Harris-Taylor case (i.e., G is of signature (1, n − 1)

at one infinite place, and (0, n) at the other places), there has been previous

work on this question, notably by Shin, [Shi15], restricting attention to the

cohomology that is supercuspidal modulo ` at some finite prime p, by Emerton

and Gee, [EG15], making suitable assumptions on ρm at `-adic places, and by

Boyer, [Boy17], under a condition very closely related to our condition.

Remark 1.7. Lan and Suh, [LS12], prove that if the level is hyperspe-

cial at ` and one takes cohomology with coefficients in the local system Lξ
corresponding to a suitably generic algebraic representation ξ of G, then the

whole `-adic cohomology groups H i(XΓ,Lξ) for i 6= q0 vanish. This behaviour

cannot be expected in our situation, as at least all even cohomology groups

H2i(XΓ,F`) are nonzero, so it is necessary to localize at some maximal ideal

of the Hecke algebra.

Remark 1.7.1. An argument involving the Hochschild-Serre spectral se-

quence and Poincaré duality shows that the theorem also holds when F` is

replaced by a nontrivial (Hecke-equivariant) coefficient system.

Remark 1.8. Let F be a CM field and Π be a conjugate self-dual regular

algebraic cuspidal automorphic representation of GLn(AF ). Then Π will be

obtained by base change from an automorphic representation π on a unitary

group, which contributes to the cohomology of a compact unitary Shimura

variety (see, for example, [HT01], [Shi11], [Car12]). In this situation, π con-

tributes only to the middle degree cohomology, and the proof relies on generic-

ity rather than temperedness. In fact, concentration in middle degree is proved

simultaneously with the Ramanujan-Petersson conjecture (at finite places) for

Π as above, using the template of [HT01] rather than appealing to [BW80].

These results rely on the fact that the local components of cuspidal automor-

phic representations of GLn are generic, and they follow by combining the

classification of unitary generic representations of GLn due to Tadic (and the

bounds of Jacquet-Shalika) with the Weil conjectures. While temperedness is

an analytic condition, genericity can be formulated modulo `.

Let us define the critical notion of being decomposed generic.

Definition 1.9. Let L be a p-adic field with residue field Fq, ` 6= p. An

unramified representation

ρ : Gal(L/L)→ GLn(F̄`)

is decomposed generic if the eigenvalues {λ1, . . . , λn} of ρ(Frob), where Frob ∈
Gal(L/L) is an arithmetic Frobenius, satisfy λi/λj 6∈ {1, q} for all i 6= j.
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The main consequence of this definition is that any characteristic 0 lift of

ρ is a direct sum of characters (i.e., “decomposed”), and the associated repre-

sentation of GLn(L) under the local Langlands correspondence is a generic3

principal series representation; cf. Lemma 6.2.2.

The rough idea. Let us now explain the idea of our proof. In very rough

terms, the idea is to work at a fixed prime p 6= ` and look at the projection

from the Shimura variety S, which is a moduli space of abelian varieties (with

extra structures), to the corresponding moduli space M of p-divisible groups

(with extra structures),

π : S →M.4

One could then analyze the cohomology of the Shimura variety in terms of a

Leray spectral sequence. Note that the fibres of π should be a moduli space

of abelian varieties with a trivialization of their p-divisible group, which are

essentially the Igusa varieties of [Man05]; cf. also [HT01]. This means that one

can compute the fibres of Rπ∗Z` in terms of the cohomology of Igusa varieties.

The alternating sum of the Q̄`-cohomology groups has been analyzed in depth

by Sug Woo Shin, [Shi09], [Shi10].

An important property of the situation is that the Hecke operators away

from p act trivially on M , so the passage to the localization at m can already be

done on the sheaf Rπ∗F`. This makes it possible to use geometry on M . More

specifically, in the actual setup considered below, (the localization at m of)

Rπ∗F` will turn out to be perverse (up to shift), and thus is concentrated

in one degree on the largest stratum where it is nonzero. In that case, (the

localization at m of) Rπ∗Z` will be concentrated in one degree and flat. Thus,

not much information is lost by passing to the alternating sum of the Q̄`-

cohomology groups. Specifically, we will use this argument inductively to show

that (Rπ∗Z`)m is trivial on all strata except the 0-dimensional stratum, which

will then give the desired bound.

Unfortunately, the moduli space M of p-divisible groups does not really

exist, or at the very least has horrible properties. This makes it hard to exe-

cute this strategy in a naive way. In April 2011, [Sch11], one of us realized (in

the Harris-Taylor case) that there should be a Hodge-Tate period map, which

would make a good substitute for π.5 The idea here is that if C/Qp is a com-

plete algebraically closed nonarchimedean field with ring of integers OC , then

3Recall that a generic representation is one that admits a Whittaker model; see, for

example, Section 2.3 of [Kud94].
4This idea is also behind [Sch13b] and was also mentioned to one of us (P.S.) by

R. Kottwitz.
5We learnt that L. Fargues had also been aware of the Hodge-Tate period map in some

form.
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by [SW13, Th. B], p-divisible groups over OC are classified by pairs (T,W ),

where T is a finite free Zp-module, and W ⊂ T ⊗Zp C is a subvectorspace, the

Hodge-Tate filtration. In particular, p-divisible groups with a trivialization of

their Tate module are classified by a Grassmannian, at least on (C,OC)-valued

points. Now, even if the moduli space of p-divisible groups is not a nice object,

one can replace it by this Grassmannian, which is manifestly a nice object. It

turns out that with this modification, the argument outlined above works.

The precise ideas. Let us now be more precise. We work adèlically, so for

any compact open subgroup K ⊂ G(Af ), we have the Shimura variety SK ,

which is a quasiprojective scheme over the reflex field E. For the moment,

we allow an arbitrary Shimura variety. Recall that these are associated with

Shimura data, which consist of a reductive group G/Q and a G(R)-conjugacy

class X of homomomorphisms h : ResC/RGm → GR, subject to the usual

axioms. Then

SK(C) = G(Q)\(X ×G(Af )/K).

Associated with any h, one has a minuscule cocharacter µ=µh : Gm→GC.

The reflex field E ⊂ C is the field of definition of the conjugacy class of µ. With

any cocharacter µ, one can associate two opposite parabolics Pµ and P std
µ , and

there are two corresponding flag varieties FlG,µ and FlstdG,µ over E, parametrizing

parabolic subgroups in the given conjugacy class. The association h 7→ µh 7→
P std
µh

defines the (holomorphic) Borel embedding X ↪→ FlstdG,µ(C). There is also

an antiholomorphic embedding X ↪→ FlG,µ(C) defined using Pµh .

Fix any prime p, and p|p a place of the reflex field E. Denote by SK the

rigid-analytic variety, or rather the adic space, corresponding to SK⊗EEp, and

similarly for F`G,µ. Our first main result refines the theory behind the Hodge-

Tate period map from [Sch15a], which can be regarded as a p-adic version of

the (antiholomorphic) Borel embedding.

Theorem 1.10. Assume that the Shimura datum is of Hodge type. Then

for any sufficiently small compact open subgroup Kp ⊂ G(Apf ), there is a per-

fectoid space SKp over Ep such that

SKp ∼ lim←−
Kp

SKpKp .

Moreover, there is a Hodge-Tate period map

πHT : SKp → F`G,µ,

which agrees with the Hodge-Tate period map constructed in [Sch15a] for the

Siegel case, and is functorial in the Shimura datum.

Moreover, we prove a result saying that all semisimple automorphic vector

bundles come via pullback along πHT .
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The idea here is to chase Hodge tensors through all constructions, which

is possible by using Deligne’s results that they are absolute Hodge, [DMOS82],

(and also satisfy a compatibility under the p-adic comparison isomorphism,

[Bla94]), and the results on relative p-adic Hodge theory of [Sch13c]. The

details appear in Section 2. As stated above, one should think of F`G,µ as a

(substitute for the) moduli space of p-divisible groups with extra structure and

trivialized Tate module.

Next, we want to identify the fibres of πHT with Igusa varieties. First,

we have to define a natural stratification on F`G,µ, which corresponds under

πHT to the Newton stratification (pulled back from the special fibre through

the specialization map). Recall that the Newton strata are parametrized by

the finite subset B(G,µ−1) ⊂ B(G) of Kottwitz’ set B(G) of isocrystals with

G-structure.

Theorem 1.11. Let G be a reductive group over Qp, and let µ be a con-

jugacy class of minuscule cocharacters. There is a natural decomposition

F`G,µ =
⊔

b∈B(G,µ−1)

F`bG,µ

into locally closed subsets F`bG,µ. The union⊔
b�b′

F`b
′
G,µ

is closed for all b ∈ B(G,µ−1); in particular, F`bG,µ is open when b is the basic

element of B(G,µ−1).

Thus, the closure relations are exactly the opposite of the closure relations

of the Newton stratification on the Shimura variety;6 this change of closure

relations is related to a subtle behaviour of πHT on certain higher-rank points

of the adic space.

To give an idea of what the stratification looks like, we recall the example

of the modular curve. In that case, the flag variety is just P1. The whole

ordinary locus of the modular curve is contracted to P1(Qp), and the Hodge-

Tate period map just measures the position of the canonical subgroup on this

locus. The supersingular locus is mapped onto Drinfeld’s upper half-plane

Ω2 = P1 \P1(Qp) in a way best understood using the isomorphism between the

Lubin-Tate and Drinfeld towers. Thus, in this case the relevant stratification

of P1 is simply the stratification into P1(Qp) and Ω2. We caution the reader

that in general, the strata F`bG,µ are quite amorphous, and it happens that

some nonempty strata have no classical points. The reason is that if b is basic,

then F`bG,µ agrees with the admissible locus in the sense of [RZ96], which does

6We note that we do not prove that the closure of a stratum is a union of strata, so the

term “closure relations” is meant in a loose sense.
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not admit a nice description, but whose classical points agree with the explicit

weakly admissible locus. If G is a nonsplit inner form of GL5 and µ corresponds

to (1, 1, 0, 0, 0), one can verify that all classical points of F`G,µ are contained

in the basic locus, while there are many other nonempty strata.

The proof of this theorem relies on certain recent advances in p-adic Hodge

theory. First, to define the stratification on points, we make use of the clas-

sification of G-bundles on the Fargues-Fontaine curve; by a recent result of

L. Fargues, [Far15a], they are classified up to isomorphism by B(G). Here,

we construct a G-bundle on the Fargues-Fontaine curve by starting with the

trivial G-bundle and modifying it at the infinite point of the Fargues-Fontaine

curve. To construct the modification, we have to relate the flag variety F`G,µ
to a Schubert cell in a B+

dR-affine Grassmannian as studied in [Wei14]; however,

for our applications, the theory of [Wei14] is not necessary.

Finally, to check the closure relations, we use recent results of Kedlaya

and Liu, [KL15], on the semicontinuity of the Newton polygon for families of

ϕ-modules over the Robba ring.

Now we can relate the fibres of πHT to Igusa varieties. From now on, we

assume that the Shimura variety is of PEL type (of type A or C), and compact,

with good reduction at p. Pick any b ∈ B(G,µ−1). Corresponding to b, we can

find a p-divisible group Xb over F̄p equipped with certain extra endomorphism

and polarization structures. We consider the following kind of Igusa varieties.

Proposition 1.12. There exists a perfect scheme Igb over F̄p that is a

moduli of abelian varieties A with extra structures, equipped with an isomor-

phism ρ : A[p∞] ∼= Xb.
One can identify Igb with the perfection of the tower I b

Mant = lim←−m I b
Mant,m

of Igusa varieties constructed by Mantovan, [Man05].

In particular, the étale cohomology of Igb agrees with the étale cohomology

of Igusa varieties.

Let us also mention the following proposition. Here, S b
K ⊂ SK ⊗ F̄p,

b ∈ B(G,µ−1) denotes a Newton stratum of the natural integral model SK of

the Shimura variety SK at hyperspecial level.

Proposition 1.13. Fix a geometric base point x̄ ∈ S b
K . There is a

natural map

πproét
1 (S b

K , x̄)→ Jb(Qp)

corresponding to a Jb(Qp)-torsor over S b
K that above any geometric point para-

metrizes quasi-isogenies between A[p∞] and Xb respecting the extra structures.

Remark 1.14. Here, πproét
1 is the pro-étale fundamental group introduced

in [BS15]. For normal schemes, it agrees with the usual profinite étale funda-

mental group of SGA1. However, Newton strata are usually not normal, and
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in fact the homomorphism to Jb(Qp) often has noncompact image. For exam-

ple, if b is basic, then the image is a discrete cocompact subgroup of Jb(Qp),

related to the p-adic uniformization of the basic locus as in [RZ96]. Thus, the

formalism of πproét
1 is crucial for this statement.

Restricted to the leaf Cb ⊂ S b
K (the set of points where A[p∞] ∼= Xb), the

map π1(Cb, x̄)→ Jb(Qp) takes values in a compact open subgroup of Jb(Qp) and

then corresponds to the tower of finite étale covers I b
Mant,m → Cb considered

by Mantovan.

There is a close relation between the fibres of πHT over points in F`bG,µ and

the perfect schemes Igb; note, however, that the former are of characteristic 0

while the latter are of characteristic p. Roughly, one is the canonical lift of

the other, except for issues of higher rank points. In any case, one gets the

following cohomological consequence.

Theorem 1.15. Let x be any geometric point of F`bG,µ ⊂ F`G,µ. For any

` 6= p, there is an isomorphism

(RπHT∗Z/`nZ)x ∼= RΓ(Igb,Z/`nZ)

compatible with the Hecke action of G(Apf ).

We recall that the alternating sum of the Q̄`-cohomology of Igusa varieties

has been computed by Sug Woo Shin, [Shi09], [Shi10]. His results are presented

in Section 5 and combined with the (twisted) trace formula.

The final ingredient necessary for the argument as outlined above is that

RπHT∗F` is perverse. Obviously, RπHT∗F` should be constructible with respect

to the stratification

F`G,µ =
⊔

b∈B(G,µ−1)

F`bG,µ.

However, as the strata are amorphous, it is technically difficult to define a

notion of perverse sheaf in this setup. We content ourselves here with proving

just what is necessary for us to conclude. Specifically, we will prove that the

Kp-invariants of the nearby cycles of RπHT∗F` are perverse for any formal

model of F`G,µ and sufficiently small compact open subgroup Kp ⊂ G(Qp).

Choosing these formal models correctly will then make it possible to deduce

that the cohomology is concentrated in one degree on the largest stratum where

it is nonzero.

Remark 1.16. Heuristically, the reason that RπHT∗F` is perverse is that

πHT is simultaneously affine and partially proper (i.e., satisfies the valuative

criterion of properness). In classical algebraic geometry, this would mean that

πHT is finite, and pushforward along finite morphisms preserves perversity. In

general, partially proper implies that RπHT∗ = RπHT !, so assuming that there
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is a Verdier duality that exchanges these two functors, one has to prove only

one of the two support inequalities defining a perverse sheaf. This inequality is

precisely Artin’s bound on the cohomological dimension of affine morphisms.

Remark 1.17. The fact that the closure relations are reversed on the flag

variety is critical to our strategy. Namely, our assumption on ρm ensures that

the cohomology should be “maximally ordinary,” and this makes it reasonable

to hope that everything comes from the µ-ordinary locus. In our setup, the

µ-ordinary locus inside the flag variety is the closed stratum and 0-dimensional.

In the naive moduli space of p-divisible groups, the µ-ordinary locus would be

open and dense (cf. [Wed99]), and the inductive argument outlined above would

stop at the first step.

Remark 1.18. Recently, L. Fargues, [Far16], has conjectured that to any

local L-parameter, there is a corresponding perverse sheaf on the stack BunG
of G-bundles on the Fargues-Fontaine curve, thus realizing the local Lang-

lands correspondence as a geometric Langlands correspondence on the Fargues-

Fontaine curve. We conjecture that the perverse sheaves RπHT∗Q̄` on F`G,µ
are related to these conjectural perverse sheaves on BunG via pullback along

the natural map F`G,µ → BunG, by some form of local-global compatibility.

In the Harris-Taylor case, one can be more explicit, and this was the subject

of [Sch11].
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Notation and conventions. A non-archimedean field K is a topological

field whose topology is induced by a continuous rank 1 valuation (which is

necessarily uniquely determined, up to equivalence). We denote by OK ⊂ K

the subring of powerbounded elements, which is the set of element of absolute
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value ≤ 1 under the rank 1 valuation. If, in the context of adic spaces, K

is equipped with a higher rank valuation, we denote by K+ ⊂ OK the open

and bounded valuation subring of elements that are ≤ 1 for this higher rank

valuation.

We have tried our best to make our signs internally consistent, although

the reader may often feel the presence of unnecessarily many minus signs. As

regards slopes, we observe the following. We use covariant Dieudonné theory.

Usually, this sends Qp/Zp to (Zp, F = p) and µp∞ to (Zp, F = 1); this is,

however, not compatible with passage to higher tensors. The underlying reason

is that in the duality between covariant and contravariant Dieudonné theory,

there is an extra Tate twist; for this reason, we divide the usual Frobenius by p,

which gets rid of this Tate twist. Thus, the covariant Dieudonné module for

µp∞ is (Zp, F = p−1) in our setup, and one sees that the Frobenius operator

does not preserve the lattice; in general, the associated Dieudonné module

will have slopes in [−1, 0]. However, in the passage from isocrystals to vector

bundles on the Fargues-Fontaine curve, the isocrystal (Qp, F = p−1) is sent to

the ample line bundle O(1), so the slope changes sign once more, and in the

end the usual slope of a p-divisible group agrees with the slope of the associated

vector bundle on the Fargues-Fontaine curve. We feel that any confusion about

signs on this part of the story is inherent to the mathematics involved.

As regards cocharacters (and associated filtrations), we have adopted what

we think is the standard definition of the cocharacter µ = µh corresponding to

a Shimura datum {h}; for example, in the case of the modular curve, µ(t) =

diag(t, 1) as a map Gm → GL2. This has the advantage of being “positive,” but

the disadvantage that virtually everywhere we have to consider µ−1 instead;

e.g., with this normalization, it is the set B(G,µ−1) that parametrizes the

Newton strata. We feel that on this side of the story, it might be a good idea

to exchange µ by µ−1, but we have stuck with the standard choice.

2. Refining the Hodge-Tate period map

In this section, we work with a general Shimura variety of Hodge type and

we prove that the Hodge-Tate period map from the corresponding perfectoid

Shimura variety factors through the expected flag variety.

2.1. Recollections on the Hodge-Tate period map. Let (G,X) be a Shimura

datum, where X is a G(R)-conjugacy class of homomorphisms

h : ResC/RGm → GR.

Recall that (G,X) is a Shimura datum if it satisfies the following three condi-

tions:
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(1) Let g denote the Lie algebra of G(R). For any choice of h ∈ X, its compo-

sition with the adjoint action of G(R) on g determines a Hodge structure

of type (−1, 1), (0, 0), (1,−1) on g.7

(2) h(i) is a Cartan involution of Gad(R).

(3) Gad has no factor defined over Q whose real points form a compact group.

The second condition implies that the stabilizer of any h is compact modulo

its center.

A choice of cocharacter h determines, via base change to C and restriction

to the first Gm factor, a Hodge cocharacter µ : Gm → GC. This allows us to

define two opposite parabolic subgroups:

P std
µ := {g ∈ G| lim

t→∞
ad(µ(t))g exists}

and

Pµ := {g ∈ G| lim
t→0

ad(µ(t))g exists}.

The Hodge cocharacter µ defines a filtration on the category RepC(G) of finite-

dimensional representations of G on C-vector spaces. Indeed, the action of Gm

on RepC(G) via µ induces a grading on RepC(G), and we take Fil•(µ) to be

the descending filtration on RepC(G) associated with this grading. Concretely,

Filp(µ) is the direct sum of all subspaces of type (p′, q′) with p′ ≥ p. The

parabolic P std
µ can equivalently be defined as the subgroup of G stabilizing

Fil•(µ). The opposite parabolic Pµ can be defined as the stabilizer of the

opposite, ascending filtration Fil•(µ), where Filp(µ) is the direct sum of all

subspaces of type (p′, q′) with p′ ≤ p. Both conjugacy classes of parabolics are

defined over the reflex field E of the Shimura datum, which is the minimal

field of definition of the conjugacy class {µ}. Note that

Mµ := CentG(µ)

is the Levi component of both parabolics.

The two parabolics determine two flag varieties FlstdG,µ and FlG,µ over E

parametrizing parabolics in the given conjugacy class. The choice of a base

point h allows us to identify FlstdG,µ(C) ' G(C)/P std
µ (C). There is an embedding

β : X ↪→ FlstdG,µ(C),

called the Borel embedding, defined by h 7→ Fil•(µh). It is easy to see that the

Borel embedding is holomorphic. (There is also an embedding

X ↪→ FlG,µ(C),

7Here, an action of C∗ on a C-vector space is said to be of type {(pi, qi)} if the vector

space decomposes as a direct sum of subspaces on which the action is through the cocharacters

z 7→ z−piz−qi .



THE GENERIC PART OF THE COHOMOLOGY OF SHIMURA VARIETIES 661

which is antiholomorphic, defined in the natural way from the opposite filtra-

tion Fil•(µ).)

Let K ⊂ G(Af ) be a compact open subgroup. Let

SK(C) := G(Q)\(X ×G(Af )/K).

When K is neat (so, when K is small enough), SK(C) has the structure of an

algebraic variety over C (by a theorem of Baily-Borel) and has a model SK
over the reflex field E [Mil90].

Example 2.1.1. Let g ≥ 1, and let

(V, ψ) = (Q2g, ψ((ai), (bi)) =
g∑
i=1

(aibg+i − ag+ibi))

be the split symplectic space of dimension 2g over Q. Let G̃ := GSp(V, ψ). The

hermitian symmetric domain X̃ is the Siegel double space. Fix the self-dual

lattice Λ = Z2g in V . For every h ∈ X̃, the Hodge structure induced by µh
on V has type (−1, 0), (0,−1) and V (−1,0)/Λ is an abelian variety over C of

dimension g.

For K̃⊂G̃(Af ) a neat compact open subgroup, the corresponding Shimura

variety S̃K̃ is the moduli space of principally polarized g-dimensional abelian

varieties with level-K̃-structure. It has a model over the reflex field Q. It

carries a universal abelian variety A and a natural ample line bundle ω given

by the determinant of the sheaf of invariant differentials on A. The flag variety

FlG̃,µ̃ parametrizes totally isotropic subspaces W ⊂ V .

We say that a Shimura datum is of Hodge type if it admits a closed embed-

ding (G,X) ↪→ (G̃, X̃) for some choice of Siegel data (G̃, X̃). A consequence of

this is that the associated Shimura variety SK (for some neat level K) carries

a universal abelian variety, which is the restriction of the universal abelian

variety over S̃K̃ . One can regard SK as a moduli space for abelian varieties

equipped with certain Hodge tensors; cf. below.

Let (G,X) be a Shimura datum of Hodge type, and let (G̃, X̃) be a choice

of Siegel data for which there exists an embedding (G,X) ↪→ (G̃, X̃). Fixing

such an embedding gives rise to closed embeddings Fl
(std)
G,µ ↪→ Fl

(std)

G̃,µ̃
. By [Del71,

Prop. 1.15], there exists some compact open subgroup K̃ ⊂ G̃(Af ) with K =

K̃∩G(Af ) such that there is a closed embedding of the corresponding Shimura

varieties over E,

SK ↪→ S̃K̃ ⊗Q E.

Let p be a prime number. We will consider compact open subgroups of

the forms K = Kp × Kp ⊂ G(Apf ) × G(Qp), where Kp and Kp are compact
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open. Fix a place p of E above p. Let F`G,µ be the adic space associated with

FlG,µ ⊗E Ep. The following is part of Theorem IV.1.1 of [Sch15a].8

Theorem 2.1.2.

(1) For any sufficiently small tame level Kp ⊂ G(Apf ), there exists a perfectoid

space SKp over Ep, such that

SKp ∼ lim←−
Kp

(SKpKp ⊗E Ep)
ad.

(2) There exists a G(Qp)-equivariant Hodge-Tate period map

πHT : SKp → F`G̃,µ̃.

(3) The map πHT is equivariant with respect to the natural Hecke action of

G(Apf ) on the inverse system of SKp and the trivial action of G(Apf ) on

F`G̃,µ̃.

Recall that the Hodge-Tate period map, [Sch15a], [SW13], has the follow-

ing description on points: for A/C an abelian variety of dimension g, the Tate

module of A admits the Hodge-Tate decomposition:

0→ (Lie A)(1)→ TpA⊗Zp C → (Lie A∨)∨ → 0.

A point x ∈ SG,Kp(C,C+) corresponding to A/C together with a symplectic

isomorphism TpA
∼→ Z2g

p (and extra structures) is mapped to the point πHT (x)

∈F`G̃,µ̃(C,C+) corresponding to the Hodge-Tate filtration Lie(A)⊂C2g.

We note that one can think of the Hodge-Tate period map as a p-adic

analogue of the Borel embedding. The goal of this section is to prove the

following theorem.

Theorem 2.1.3.

(1) The Hodge-Tate period map for SKp factors through F`G,µ, and the result-

ing map

πHT : SKp → F`G,µ

is independent of the choice of embedding of Shimura data.

(2) Fix some µ in the given conjugacy class, defined over a finite extension of

E. The tensor functor from Rep Mµ to G(Qp)-equivariant vector bundles

on SKp given as the composition

fp : Rep Mµ ↪→ Rep Pµ −→ {G(Qp)−equivariant vector bundles on F`G,µ}
π∗HT−→ {G(Qp)−equivariant vector bundles on SKp}

8The setup is slightly different, but the proof works verbatim.
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is isomorphic to the tensor functor

f∞ : Rep Mµ ↪→ Rep P std
µ −→ {automorphic vector bundles on SK}
−→ {G(Qp)−equivariant vector bundles on SKp}.

The isomorphism is independent of the choice of Siegel embedding and

equivariant for the Hecke action of G(Apf ).

Remark 2.1.4. One may avoid choosing µ by replacing Rep Mµ with the

category of G-equivariant vector bundles on the space of cocharacters in the

conjugacy class of µ. Note that after fixing any µ, this space identifies with

G/Mµ, and so G-equivariant vector bundles are identified with representations

of Mµ. We leave it as an exercise to the reader to reformulate the theorem and

its proof in this more canonical language.

Let us first recall how the tensor functor f∞ is defined: any representation

ξ of Mµ determines a representation of P std
µ by making the unipotent radical

act trivially. Now, starting with a representation of P std
µ , we can define an

automorphic vector bundle on SK as in Section III of [Mil90], provided that

the level K is sufficiently small: first, there is an equivalence of categories

ξ 7→ W(ξ)

between RepC(P std
µ ) and the category of GC-equivariant vector bundles on

FlstdG,µ. (The functor in one direction is taking the stalk of the vector bundle

above the point corresponding to µ.) Then restriction along the image of the

Borel embedding gives a G(R)-equivariant vector bundle on X. Passing to the

double quotient defining the Shimura variety

SK(C) = G(Q) \ (X ×G(Af )/K)

over C defines the automorphic vector bundle

V(ξ) := G(Q) \ (W(ξ)×G(Af )/K).

The automorphic vector bundles V(ξ) are algebraic and, when the representa-

tion ξ is defined over a finite extension E′ of E, V(ξ) is also defined over E′.

Remark 2.1.5. Proving that the automorphic vector bundles descend to

the reflex field makes use of an intermediate algebraic object between SK and

FlstdG,µ, called the standard principal bundle (see Section IV of [Mil90]), which

is a G-torsor over SK . See the proof of Lemma 2.3.5 for more details.

In particular, fp is defined in an analogous way to f∞, except that it uses

the Hodge-Tate period map in place of the Borel embedding. The appear-

ance of the opposite parabolic Pµ in this picture forces one to look only at

representations inflated from the common Levi Mµ.
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2.2. The p-adic-de Rham comparison isomorphism. For an abelian vari-

ety over C, its image under the Hodge-Tate period map is determined by the

Hodge-Tate filtration on H1
ét(A,Qp)⊗Qp C. The Hodge-Tate period map as a

map of adic spaces SKp → F`G̃,µ̃ is defined via a relative version of the Hodge-

Tate filtration, which is a filtration on the local system given by the p-adic étale

cohomology of the universal abelian variety over SK , tensored with the com-

pleted structure sheaf of the base. In fact, the Hodge-Tate filtration is defined

more generally; see Section 3 of [Sch13d] for a construction of the Hodge-Tate

filtration for a proper smooth rigid-analytic variety over a geometric point.

As we will need to work with higher tensors in our analysis of Hodge type

Shimura varieties, our goal in this section is to give a construction of the relative

Hodge-Tate filtration in the case of a proper smooth morphism π : X → S of

smooth adic spaces over Spa(K,OK), where K is a complete discretely valued

field of characteristic 0 with perfect residue field k of characteristic p. This

will be done in a way that also clarifies its relationship to the relative p-adic-

de Rham comparison isomorphism.

The following sheaves on Xproét are defined in [Sch13c]: the completed

structure sheaf ÔX , the tilted completed structure sheaf ÔX[ , the relative

period sheaves B+
dR,X and BdR,X as well as the structural de Rham sheaves

OB+
dR,X and OBdR,X . We recall some of their definitions: the tilted integral

structure sheaf Ô+
X[ is the (inverse) perfection of Ô+

X/p (i.e., the inverse limit

of Ô+
X/p with respect to the Frobenius morphism).

Definition 2.2.1.

(1) The relative period sheaf B+
dR,X is the completion of W (Ô+

X[)[1/p] along

the kernel of the natural map θ : W (Ô+
X[)[1/p]→ ÔX .

(2) The relative period sheaf BdR,X is B+
dR,X [ξ−1], where ξ is any element that

generates the kernel of θ.

Lemma 6.3 of [Sch13c] shows that ξ exists pro-étale locally on X, is not

a zero divisor and is unique up to a unit. Therefore, the sheaf BdR,X is well

defined. When X = Spa(C,OC), we recover Fontaine’s period ring BdR,C from

this construction. By construction, the relative period sheaf BdR,X is equipped

with a natural filtration FiliBdR,X = ξiB+
dR,X , with gr0BdR,X = ÔX .

We define the sheaf OB+
dR,X as the sheafification of the following presheaf.

If U = Spa(R,R+) is affinoid perfectoid, with (R,R+) the completed direct

limit of (Ri, R
+
i ), the presheaf sends U to the direct limit over i of the com-

pletion of Ä
R+
i ⊗̂W (k)W (R[+)

ä
[1/p]

along ker θ, where

θ : (R+
i ⊗̂W (k)W (R[+)[1/p]→ R
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is the natural map. We set OBdR,X := OB+
dR,X [ξ−1] as before. The structural

de Rham sheaves OB(+)
dR are equipped with filtrations and connections

∇ : OB(+)
dR,X → OB

(+)
dR,X ⊗OX Ω1

X .

We have an identification (OB(+)
dR )∇=0 = B(+)

dR .

We now recall the relative p-adic-de Rham comparison isomorphism for a

proper smooth morphism π : X → S of smooth adic spaces over K.

Theorem 2.2.2 ([Sch13c, Th. 8.8]). Assume that Riπ∗Fp is locally free

on Sproét for all i ≥ 0.9 Then, for all i ≥ 0, Riπ∗Ẑp is de Rham in the sense

of [Sch13c, Def. 7.5], with associated filtered module with integrable connection

given by RiπdR∗OX (with its Hodge filtration, and Gauss-Manin connection).

In particular, there is an isomorphism

Riπ∗Ẑp,X ⊗Ẑp,S OBdR,S ' RiπdR∗OX ⊗OS OBdR,S

of sheaves on Sproét, compatible with filtrations and connections.

Moreover, we need to recall the two different B+
dR-local systems associated

with Riπ∗Ẑp. The first one, which is closely related to étale cohomology, is

given by

M = Riπ∗Ẑp,X ⊗Ẑp,S B+
dR,S

∼= Riπ∗B+
dR,X .

The other one, which is closely related to de Rham cohomology, is given by

M0 = (RiπdR∗OX ⊗OS OB
+
dR,S)∇=0.

Note that the definition of M0 did not make use of the Hodge filtration. The

relation between these two lattices is given by the following proposition, which

reformulates the condition of being associated.

Proposition 2.2.3 ([Sch13c, Prop. 7.9]). There is a canonical isomor-

phism

M⊗B+
dR,S

BdR,S
∼= M0 ⊗B+

dR,S
BdR,S .

Moreover, for any j ∈ Z, one has an identification

(M ∩ FiljM0)/(M ∩ Filj+1M0) = (Fil−jRiπdR∗OX)⊗OS ÔS(j)

⊂ grjM0 = RiπdR∗OX ⊗OS ÔS(j).

In particular, M0 ⊂M.

9This condition is verified if π is algebraizable and has been announced in general by

Gabber. Another proof will appear in a forthcoming version of [Wei14]; the idea is to use

(the new version of) pro-étale descent to reduce to the case where S is w-strictly local, in

which case one can redo the finiteness argument over a geometric point. With Qp-coefficients,

it has also been announced by Kedlaya-Liu.
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In particular, we get an ascending filtration on

gr0M = Riπ∗Ẑp,X ⊗Ẑp,S ÔS

given by

Fil−j(R
iπ∗Ẑp,X ⊗Ẑp,S ÔS) = (M ∩ FiljM0)/(Fil1M ∩ FiljM0).

Here, Fil−1 = 0, and Fili is everything. We call this filtration the relative

Hodge-Tate filtration.

Corollary 2.2.4. For all j ≥ 0, there are canonical isomorphisms

grj(R
iπ∗Ẑp,X ⊗Ẑp,S ÔS) ∼= (grjRiπdR∗OX)⊗OS ÔS(−j).

Proof. This is immediate from Proposition 2.2.3 by passing to graded

pieces. �

In particular, one sees that

Fil0(Riπ∗Ẑp,X ⊗Ẑp,S ÔS) = Riπ∗OX ⊗OS ÔS .

This map can be identified.

Proposition 2.2.5. The first filtration step Fil0 of the relative Hodge-

Tate filtration is given by the natural map

Riπ∗OX ⊗OS ÔS → Riπ∗ÔX ∼= Riπ∗Ẑp,X ⊗Ẑp,S ÔS ,

which is injective.

We note that in [Sch15a], only the first step of the Hodge-Tate filtration

was used (for i = 1), and it was defined as the natural map

Riπ∗OX ⊗OS ÔS → Riπ∗ÔX .

Proof. We have to identify the image of M0 → gr0M. This can be done

after ⊗B+
dR,S
OB+

dR,S , as this operation preserves gr0. Now note that

M0 ⊗B+
dR,S
OB+

dR,S = RiπdR∗OX ⊗OS OB
+
dR,S

and

M⊗B+
dR,S
OB+

dR,S = RiπdR∗OB+
dR,X ,

by the relative Poincaré lemma. The map M0 → M is induced by the natural

inclusion OX → OB+
dR,X , which commutes with the natural connections.

Passing to gr0 on the side of M replaces the relative de Rham complex of

OB+
dR,X with just ÔX , as the differentials sit in positive degrees. We note that

the composite OX → OB+
dR,X → ÔX is the natural inclusion, as

ÔX = gr0OB+
dR,X = (OX ⊗W (k) W (Ô+

X[))/(ker θ),
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using the map θ : OX ⊗W (k) W (Ô+
X[) → ÔX , which is OX -linear. It follows

that the map

M0 ⊗B+
dR,S
OB+

dR,S → gr0M

agrees with the map

RifdR∗OX ⊗OS OB
+
dR,S → Rif∗ÔX

which projects RifdR∗OX → Rif∗OX → Rif∗ÔX and then extends OB+
dR,S-

linearly. Thus, its image is given by the image of Rif∗OX ⊗OS ÔS → Rif∗ÔX .

By the identification of the graded pieces of the relative Hodge-Tate filtration,

this map has to be injective, giving the result. �

2.3. Hodge cycles and torsors. Let

(G,X) ↪→ (G̃, X̃)

be an embedding of Shimura data, as in the previous section, where G̃ =

GSp(V, ψ). Let

V ⊗ :=
⊕
r,s∈N

V ⊗r ⊗ (V ∨)⊗s.

By Proposition 3.1 of [DMOS82], the subgroup G of G̃ is the pointwise stabi-

lizer of a finite collection of tensors (sα) ⊂ V ⊗.

As above, the embedding of Shimura data determines an embedding of

Shimura varieties defined over E:

SK ↪→ S̃K̃ ⊗Q E.

Let A be the abelian scheme over SK obtained by pulling back the universal

abelian scheme over the Siegel moduli space. Let π : A → SK be the projection.

The first relative Betti homology of A, i.e., the dual of R1πan
∗ Q, defines a local

system of Q-vector spaces VB on SK(C). Since the Betti cohomology of an

abelian variety parametrized by X ×G(Af )/K gets identified with V , VB can

be identified with the local system of Q-vector spaces over SK(C) given by the

G(Q)-representation V and the G(Q)-torsor

X ×G(Af )/K → G(Q)\(X ×G(Af )/K) = SK(C).

Corresponding to the G(Q)-invariant tensors (sα), we get global sections (sα,B)

⊂ V⊗B . Moreover, these are Hodge tensors for the Hodge structure on Betti

homology, since they are G-invariant and, in particular, invariant under the

action of any h ∈ X.

Lemma 2.3.1. The G(Q)-torsor

X ×G(Af )/K → G(Q)\(X ×G(Af )/K) = SK(C)
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can be identified with the G(Q)-torsor sending any U ⊂ SK(C) to

{β : V × U ∼= VB|U | β(sα) = sα,B}.

Proof. This follows from the fact that G ⊂ GL(V ) is the closed subgroup

that is the stabilizer of the sα. �

Now assume that (G,X) ↪→ (G̃′, X̃ ′) is a second symplectic embedding,

where G̃′ = GSp(V ′, ψ′). As for any representation of G, there is a G-invariant

idempotent e ∈ V ⊗ such that V ′ = eV ⊗. Using e, any G-invariant tensor

s′α ∈ (V ′)⊗ can be transferred to a G-invariant tensor in V ⊗. Moreover, one

also has an identification

V ′B = eV⊗B ,
compatibly with their natural Hodge structures. We will generally assume that

e belongs to the family sα, by adjoining it if necessary.

Let VdR := (R1πdR∗OA)∨ be the first relative de Rham homology of A.

This is a vector bundle over SK equipped with an integrable connection ∇.

The base change to C can be defined directly: We have to specify an analytic

vector bundle Van
dR,C over SK(C), which corresponds to the algebraic vector

bundle VdR,C. (Here, we make use of the equivalence of categories between

algebraic vector bundles equipped with a flat connection with regular singular

points and analytic vector bundles equipped with a flat connection [Del70].)

Then the relative de Rham comparison isomorphism over C gives rise to an

isomorphism

Van
dR,C

∼= VB ⊗Q OSK(C),

compatible with the connection.

In particular, the global sections (sα,B) ⊂ V⊗B give rise to horizontal global

sections (sα,dR) ⊂ (Van
dR,C)⊗, which are necessarily algebraic, i.e.,

(sα,dR) ⊂ V⊗dR,C.

The following lemma appears in work of Kisin [Kis10], based on Deligne’s result

that Hodge cycles on abelian varieties are absolute Hodge, [DMOS82].

Lemma 2.3.2. The tensors sα,dR in V⊗dR,C are defined over E.

Proof. We sketch Kisin’s proof here. We work with each connected com-

ponent of SK individually. Let x be the generic point of one such component,

with function field κ (containing E), and choose a complex embedding of its

algebraic closure κ̄ ↪→ C. Let Ax be the corresponding abelian variety over κ.

Let sα,B,x be the fiber of sα,B over x. Let sα,dR,x ∈ H1
dR(Ax)⊗ ⊗κ C be the

image of sα,B,x under the de Rham comparison isomorphism. (This is also the

fiber of sα,dR over x.) Let sα,p,x ∈ H1
ét(Ax,κ̄,Qp)

⊗ be the image of sα,B,x under

the comparison between Betti and p-adic étale cohomology.
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Note that by definition (sα,dR,x, sα,p,x) is a Hodge cycle. By Deligne,

[DMOS82], it is an absolute Hodge cycle. This means that sα,dR,x is defined

over κ̄, and it remains to show that the action of Gal(κ̄/κ) on it is trivial. For

this, it is enough to check that the Gal(κ̄/κ)-action on sα,p,x is trivial, since a

Hodge cycle is determined by either its de Rham or étale component.

For this latter statement, consider the K̃p-torsor over Siegel moduli space

given by lim←−K̃′p S̃K̃pK̃′p
, where K̃ ′p runs over open compact subgroups of K̃p.

Fixing a κ̄-point x̃ of this tower above x, the Gal(κ̄/κ)-action on H1
ét(Ax,κ̄,Qp)

is induced by the map Gal(κ̄/κ) → K̃p describing the action on x̃. There

is an analogous Kp-torsor over SK defined by lim←−K′p SK
pK′p . This fits into a

commutative, Kp-equivariant diagram

SKp

��

// S̃K̃p

��

SK // S̃K̃ .

Taking for x̃ a lift to SKp , we see that the action of Gal(κ̄/κ) on H1
ét(Ax,κ̄,Qp)

factors through a map

Gal(κ̄/κ)→ Kp ⊂ G(Qp).

Since the tensors sα,p,x are G(Qp)-invariant, the Galois action on these tensors

is trivial as well. �

Remark 2.3.3. If (G,X) ↪→ (G̃′, X̃ ′) is a second symplectic embedding

with G̃′ = GSp(V ′, ψ′), and e ∈ V ⊗ is an idempotent with V ′ = eV ⊗, as above,

then applying Lemma 2.3.2 to the embedding G ↪→ GSp(V ⊕ V ′, ψ ⊕ ψ′), one

sees that the isomorphism

V ′dR,C
∼= edRV⊗dR,C

is defined over E.

There is also a Qp-local system Vp over SK defined by restricting to SK
the first relative p-adic étale homology of the family A. There are families of

Hodge tensors (sα,p) ⊂ V⊗p coming from the comparison between Betti and

p-adic étale homology (over C). By the argument in Lemma 2.3.2, the sα,p are

also defined over the reflex field E.

Choose a cocharacter µ in the conjugacy class X, which is defined over

some finite extension E′/E. We will base change everything to E′ from now

on, but drop E′ from our notation. Recall that P std
µ can be identified with the

parabolic subgroup of G that stabilizes the descending filtration induced by

µ on a faithful representation V of G. We can define a P std
µ -torsor PdR over
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SK as the torsor of frames on the vector bundle VdR that respect the Hodge

filtration. More precisely, for any U ⊂ SK , we have

PdR(U) = {β : VdR|U
∼→ V ⊗Q OU | β(sα,dR) = sα ⊗ 1, β(Fil•) = Fil•µ},

where Fil• on VdR is the Hodge filtration and Fil•µ on V is the descending

filtration defined by µ. The existence of one such isomorphism β follows from

the fact that the comparison between Betti and de Rham cohomology respects

the Hodge filtrations and matches the Hodge cycles sα with sα,dR.

Lemma 2.3.4. The P std
µ -torsor PdR over SK is independent of the choice

of symplectic embedding G ↪→ GSp(V, ψ).

Proof. Considering a second symplectic embedding G ↪→ GSp(V ′, ψ′),

there is a G-invariant idempotent e ∈ V ⊗ such that V ′ = eV ⊗. This de-

termines a Hodge tensor eB in V⊗B , and by Lemma 2.3.2 a tensor edR in V⊗dR.

This defines an isomorphism of vector bundles V ′dR ' edRV⊗dR by Remark 2.3.3,

which respects all the Hodge tensors sα,dR and which respects the Hodge fil-

tration on the two vector bundles (because edR is a Hodge tensor). This gives

a map of P std
µ -torsors PdR → P ′dR, and any such map is an isomorphism. �

From the above P std
µ -torsor PdR and from the projection Pµ � Mµ, we

get an Mµ-torsor MdR over SK via pushout:

MdR = PdR ×P std
µ

Mµ.

Since PdR is independent of the choice of symplectic embedding, so is MdR.

This Mµ-torsor corresponds to trivializing the graded pieces of the Hodge fil-

tration on VdR individually. By the Tannakian formalism, MdR is equivalent

to a functor from finite-dimensional representations of the Levi subgroup Mµ

to vector bundles on SK .

Lemma 2.3.5. The Mµ-torsor MdR encodes the tensor functor

f∞ : Rep Mµ → {automorphic vector bundles on SK}

in the statement of Theorem 2.1.3.

Proof. By construction, the tensor functor corresponding to MdR factors

through the inflation map Rep Mµ → Rep P std
µ .

It remains to see that the functor corresponding to P std
µ maps a represen-

tation of P std
µ to the associated automorphic vector bundle on SK . This is es-

sentially the definition of automorphic vector bundles, as given by [Mil90]. For

this, note that PdR and the map P std
µ → G define by pushout a G-torsor GdR

over SK , which parametrizes frames of VdR respecting the Hodge tensors sα,dR

(but not necessarily respecting the Hodge filtration). This is what Milne calls

the standard principal bundle. Since it was constructed from a P std
µ -torsor,
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GdR is equipped with a canonical map to the flag variety FlstdG,µ ' G/Pµ. We

have a diagram

SK GdR
oo // FlstdG,µ.

Proposition 3.5 of [Mil90] proves that automorphic vector bundles are obtained

by pullback from FlG,µ to GdR followed by descent to SK . We note that Theo-

rems 4.1 and 4.3 of [Mil90] show that the diagram is algebraic and has a model

over the reflex field E. �

We now work with the local system Vp determined by the relative p-adic

étale cohomology of A. This is a local system of Qp-vector spaces over SK .

After pulling it back to the adic space SK , we can think of it as a locally free

Q̂p-module on (SK)proét.

Regard Pµ as a group object in the pro-étale site of SK by sending U to

Pµ(ÔSK (U)); we emphasize that we are using the completed structure sheaf

in this definition. We can now define a Pµ-quasitorsor Pp on the pro-étale

site of SK from the Hodge-Tate filtration on Vp ⊗Q̂p ÔSK as follows. For U in

(SK)proét, set

Pp(U) = {β : Vp ⊗Q̂p ÔSK |U
∼→ V ⊗Q ÔSK |U | β(sα,p ⊗ 1)

= sα ⊗ 1, β(Fil•) = Fil•(µ)},

where Fil• on Vp⊗ÔSK is the relative Hodge-Tate filtration and Fil•(µ) is the

ascending filtration determined by µ on V .

Lemma 2.3.6. The object Pp over SK is a Pµ-torsor.

Proof. Similarly to Pp, one can define a G-quasitorsor Gp over the pro-

étale site of SK , by removing the condition on filtrations. The latter is the

pushout of a G(Q̂p)-torsor on the pro-étale site of SK given by looking at

isomorphisms between Vp and V ⊗Qp Q̂p respecting all tensors. This is a

torsor since, for example, it admits a global section over the perfectoid Shimura

variety SKp . In order to prove that Pp is a torsor, we note that the type of the

Hodge-Tate filtration on Vp⊗Q̂p ÔSK is a discrete invariant, so it is constant on

each connected component of SK . Therefore, it suffices to check the statement

above classical points.

Thus, let x ∈ SK(L,OL) be a point defined over a finite extension L of Ep

with completed algebraic closure C. We may pick a point ofMdR(C) above x,

which amounts to trivializing all Hodge cohomology groups (compatibly with

the tensors). Then the Hodge-Tate decomposition reads

Vp,x ⊗Qp C
∼=
⊕
j

Vj ⊗ C(−j) ∼= V ⊗ C,



672 A. CARAIANI and P. SCHOLZE

where V =
⊕

j Vj is the weight decomposition according to the action of µ,

and we are using any fixed choice of p-power roots of unity in C in the second

isomorphism. Under this isomorphism, the Hodge-Tate filtration on the left-

hand side is taken to Fil•(µ), as desired.

The fact that sα,p can be identified with sα under the Hodge-Tate isomor-

phism is proved in [Bla94]. �

As before, this torsor is independent of the choice of symplectic embed-

ding.

Lemma 2.3.7. The Pµ-torsor Pp is independent of the choice of symplec-

tic embedding.

Proof. This uses the same idea as the proof of Lemma 2.3.4. Let (V, ψ)

be a symplectic embedding of G, which defines the Pµ-torsor Pp. For another

symplectic embeddingG ↪→ GSp(V ′, ψ′), we define a Pµ-torsor P ′
p analogously.

We can relate the two symplectic embeddings given by (V, ψ) and (V ′, ψ′) via

a G-invariant idempotent e ∈ V ⊗, with p-adic realization ep ∈ V⊗p . The tensor

ep defines an isomorphism of vector bundles

V ′p ⊗ ÔSK ' ep(V
⊗
p ⊗ ÔSK ),

which matches the tensors s′α,p ∈ V ′⊗p with tensors in V⊗p .

Moreover, ep respects the Hodge-Tate filtration on the two vector bundles.

Indeed, ep is the image of edR under the p-adic-de Rham comparison isomor-

phism. At points of SK corresponding to abelian varieties defined over number

fields, this follows from [Bla94]. Since both ep and edR are horizontal sections,

the result extends over all of SK after checking it at such a point in every con-

nected component of SK . The definition of the relative Hodge-Tate filtration

in terms of the p-adic-de Rham comparison isomorphisms then ensures that ep
respects the Hodge-Tate filtration, and the isomorphism induced by ep gives a

map of Pµ-torsors Pp →P ′
p, which has to be an isomorphism. �

The Pµ-torsor Pp defines a G-torsor Gp by inflation along the map Pµ→G.

For any U ∈ (SK)proét,

Gp(U) = {β : Vp ⊗Q̂p ÔSK |U
∼→ V ⊗Q ÔSK |U | β(sα,p ⊗ 1) = sα ⊗ 1}.

The perfectoid Shimura variety SKp can be regarded as aKp-torsor in (SK)proét.

From the moduli description of SKp , we see that Gp(SKp) has a canonical sec-

tion, given by the trivialization of the p-adic Tate module of the universal

abelian variety A over SKp , which by definition respects the tensors (sα,p).

The map Pµ � Mµ defines an Mµ-torsor Mp by pushout. This can be

described as a sheaf on (SK)proét as follows:

Mp(U) = {β : gr•(Vp⊗ÔSK )|U
∼→ gr•(µ)(V ⊗Qp ÔSK )|U | β(sα,p⊗1) = sα⊗1}.



THE GENERIC PART OF THE COHOMOLOGY OF SHIMURA VARIETIES 673

As in the complex case, the existence of Pp determines a map Gp → F`G,µ,

which is independent of the choice of symplectic embedding G ↪→ GSp(V, ψ)

by Lemma 2.3.7. Here, we abuse notation by writing F`G,µ for the sheaf on

(SK)proét sending U to F`G,µ(U). This and the given section of Gp(SKp) define

an element of F`G,µ(SKp), i.e., a map of adic spaces

πHT : SKp → F`G,µ.

By functoriality of this construction (for G and for G̃ := GSp(V, ψ)), we have

the commutative diagram of adic spaces

SKp

��

// S̃K̃p

��

F`G,µ // F`G̃,µ̃.

Therefore, the Hodge-Tate period map for SKp factors through this canonical

map SKp → F`G,µ. This proves the first part of Theorem 2.1.3.

The second part of Theorem 2.1.3 will follow from the next lemma and

from the comparison isomorphism between de Rham and p-adic étale co-

homology.

Lemma 2.3.8. The Mµ-torsor Mp encodes the tensor functor

fp : Rep Mµ → {G(Qp)− equivariant vector bundles on SKp}

in the statement of Theorem 2.1.3.

Proof. This is immediate from the definitions. �

We now compare the two Mµ-torsors, MdR and Mp. For this, we first

consider a P std
µ -torsor PdR over SK , which will be the sheaf on (SK)proét

defined by

PdR(U) = {β : VdR ⊗OSK ÔSK |U
∼→ V ⊗Q ÔSK |U | β(sα,dR ⊗ 1)

= sα ⊗ 1, β(Fil•) = Fil•(µ)},

where Fil• is the Hodge-de Rham filtration on VdR. It is easy to see from the

definitions that PdR is the pullback of PdR from SK (ringed with OSK ) to

(SK)proét (ringed with ÔSK ). We can define MdR by pushout. This is also a

sheaf on (SK)proét, parametrizing isomorphisms

gr•(VdR ⊗ ÔSK )
∼→ gr•(µ)(V ⊗ ÔSK )

that map the tensors sα,dR to sα. Again, MdR is the pullback of MdR from

SK to (SK)proét.

Proposition 2.3.9. There is a canonical isomorphism MdR
∼= Mp of

Mµ-torsors on (SK)proét, independent of the choice of symplectic embedding.
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Proof. The determinant representation GSp(V, ψ) → Gm gives rise geo-

metrically to the Tate motive and is independent of the choice of symplec-

tic embedding. Using this, both torsors map to the torsor of trivializations

ÔSK (1) ∼= ÔSK . Now, for any j ∈ Z, there is the isomorphism

grj(VdR ⊗OSK ÔSK )
∼→ grj(Vp ⊗Q̂p ÔSK )(j)

coming from the relative p-adic-de Rham comparison isomorphism, Corol-

lary 2.2.4. One gets a similar comparison for V⊗dR and V⊗p , and we know

by [Bla94] that all tensors sα,dR resp. sα,p are matched at points defined over

number fields, and thus globally.

Using these isomorphisms as well as the trivialization ÔSK (1) ∼= ÔSK , one

writes down the isomorphism MdR
∼= Mp. To check that it is independent of

the choice of symplectic embedding, one argues as before. �

As mentioned above, Proposition 2.3.9 implies the second part of Theo-

rem 2.1.3, once we use the Tannakian formalism in Lemmas 2.3.5 and 2.3.8 to

reinterpret MdR and Mp as tensor functors

Rep Mµ → {G(Qp)− equivariant vector bundles on SKp}.

3. The Newton stratification on the flag variety

We start with some motivation. Assume that the Shimura varieties SK
are of Hodge type and that K = KpKp ⊂ G(Af ) is a compact open subgroup

such that Kp is hyperspecial. This means that G extends to a reductive group

over Zp and that Kp = G(Zp). Then (at least if p > 2) the Shimura variety

SK admits an integral model SK by [Kis10]. Moreover, as in Section 1.4

of [Kis17], we can define a Newton stratification on the special fiber of SK

in terms of the Kottwitz set B(G,µ−1) (whose definition we recall below).

Pulling this stratification back along the continuous specialization map, we

get a stratification on SK , which in turn can be pulled back to the perfectoid

Shimura variety to get a Newton stratification SKp =
⊔
b∈B(G,µ−1) SbKp . There

is a unique closed stratum, corresponding to the basic locus and a unique open

stratum, corresponding to the µ-ordinary locus.

Our goal in this section is to define a stratification on the flag variety

F`G,µ =
⊔

b∈B(G,µ−1)

F`bG,µ,

such that the following properties are satisfied:

(1) on points of rank one, SbKp = π−1
HT (F`bG,µ);

(2) all F`bG,µ are locally closed subspaces of the adic space F`G,µ, in the topo-

logical sense;

(3) the basic stratum is open, and the µ-ordinary stratum is closed.



THE GENERIC PART OF THE COHOMOLOGY OF SHIMURA VARIETIES 675

We will define this stratification independently of the one on the Shimura

variety, using relative versions of the Fargues-Fontaine curve [FF14] and a

classification result for vector bundles with G-structure over this curve, due

to Fargues, [Far15a]. We will reinterpret vector bundles over the curve as

ϕ-modules over the Robba ring, à la Kedlaya-Liu [KL15], and use their results

to conclude that the strata we define are locally closed. In Section 4.3, we will

see that this is compatible with the stratification pulled back from the special

fiber, in the sense described above, for compact Shimura varieties of PEL type.

Throughout this section, our notation will be purely local, so fix a prime p

and a connected reductive group G over Qp. Moreover, we fix a conjugacy class

of cocharacters µ : Gm → GQp
, defined over the reflex field E/Qp. Often, we

will assume that µ is minuscule, meaning that in the induced action on the Lie

algebra of G, only the weights −1, 0 and 1 appear. However, for the moment,

µ is allowed to be arbitrary.

3.1. Background on isocrystals with G-structure. We recall here the defi-

nition of the sets B(G) and B(G,µ), originally due to Kottwitz [Kot85]. We

start with B(G). Let L := W (F̄p)[1/p]. Let σ be the automorphism of L in-

duced by the pth power Frobenius on F̄p. There is an action of G(L) on itself

by σ-conjugation, defined by g 7→ hgσ(h)−1 for g, h ∈ G(L). Then B(G) is de-

fined to be the set of σ-conjugacy classes of elements b ∈ G(L). (We note that

instead of working with F̄p here, we could work with any algebraically closed

field of characteristic p, as Kottwitz shows that the definition is independent

of this choice.)

One can reinterpret this definition in terms of isocrystals with G-structure.

Recall the following definition.

Definition 3.1.1. An isocrystal over F̄p is a pair (V, φ) consisting of a finite-

dimensional L-vector space and a σ-linear automorphism φ of V . The height

of an isocrystal (V, φ) is the dimension of V over L.

An isocrystal with G-structure is an exact tensor functor

RepQpG→ {Isocrystals/F̄p}.

For G = GLn /Qp, the set B(G) is in bijection with the set of isomorphism

classes of isocrystals of height n over F̄p via b 7→ (Ln, bσ). For general G, this

extends to a bijection between B(G) and isomorphism classes of isocrystals

with G-structure.

The Dieudonné-Manin classification shows that B(GLn) is in bijection

with a corresponding set of Newton polygons, via the slope decomposition of

the isocrystals. More precisely, any isocrystal (V, φ) over F̄p is isomorphic to

a unique isocrystal of the form

V ∼=
⊕

λ=s/r∈Q V
⊕nλ
λ ,
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where λ = s/r runs through rational numbers written in primitive form with

r > 0, the nλ are nonnegative integers, almost all zero, and

Vλ =

à
Lr,

à
1

. . .

1

ps

í
σ

í
.

The subspaces V ⊕nλλ ⊂ V are uniquely determined and referred to as the

subspace of slope λ.

For a general reductive group G, an element b ∈ B(G) is determined by a

version of the Newton polygon and an additional finite datum encoded in the

Kottwitz invariant. In the following, fix a splitting of GQ̄p and, in particular,

a maximal torus T ⊂ GQ̄p , and let X∗(G) := X∗(T ) be the corresponding

cocharacter lattice, which comes with a dominant chamber.

Let us first recall the Newton map

ν : B(G)→ (X∗(G)⊗Q)Γ
dom.

Here, Γ := Gal(Q̄p/Qp) is the absolute Galois group of Qp, and (X∗(G)⊗Q)dom

is the set of dominant rational cocharacters. If we let D be the (pro-)algebraic

torus with character group Q, the latter set can be identified with the set of

conjugacy classes of Hom(DQ̄p , GQ̄p), on which Γ acts naturally.

To construct the Newton map, Kottwitz assigns to any b ∈ G(L) a slope

homomorphism νb ∈ Hom(DL, GL). In the case of G = GLn, this gives the

slope decomposition of the corresponding isocrystal; in general, it is defined by

the Tannakian formalism. Changing b by a σ-conjugate does not change the

conjugacy class of νb, and (thus) this conjugacy class is invariant under σ.

However, the Newton map is not, in general, injective. In fact, νb is

trivial if and only if b is in the image of the natural injection H1(Qp, G) ↪→
B(G). Here, one can identify the Galois cohomology group H1(Qp, G) with

the isomorphism classes of exact tensor functors

RepQpG→ {Qp−vector spaces}.

Such tensor functors embed fully faithfully into the category of isocrystals with

G-structure, via sending a Qp-vector space W to W ⊗Qp L with the induced

Frobenius from L.

For this reason, Kottwitz also constructs a map

κ : B(G)→ π1(GQ̄p)Γ.

For G = GLn, this map is defined by b 7→ κ(b) = valp(det b) ∈ Z. In general,

there is a unique natural transformation B( ) → π1( )Γ of set-valued func-

tors on the category of connected reductive groups over Qp with this property.

(Kottwitz defines his map in terms of the center of the Langlands dual group.
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See Section 1.13 of [RR96] for more on the definition using the algebraic funda-

mental group.) Again, we abbreviate π1(G) = π1(GQ̄p). Moreover, according

to Theorem 1.15 of [RR96], the natural transformation B( )→ π1( )Γ fits into

a commutative diagram

B(G) //

��

(X∗(G)⊗Q)Γ

��

π1(G)Γ
// π1(G)Γ ⊗Q ,

where the lower horizontal arrow is given by averaging over all Galois conju-

gates. Then Kottwitz proves that

(ν, κ) : B(G)→ (X∗(G)⊗Q)Γ
dom × π1(G)Γ

is injective.

The set (X∗(G) ⊗ Q)Γ
dom admits a partial ordering. Under this ordering,

we say that ν � ν ′ if ν ′ − ν is a nonnegative Q-linear combination of positive

coroots. This defines a partial ordering on B(G), where we say b � b′ if νb � νb′
and κ(b) = κ(b′).

Now, recall that we have fixed a conjugacy class of cocharacters µ : Gm →
GQ̄p . The set of conjugacy classes of cocharacters of GQ̄p is in bijection with

the set X∗(G)dom. There is a natural map X∗(G)dom → (X∗(G)⊗Q)Γ
dom given

by averaging over all Galois conjugates:

µ̄ =
1

[E′ : Qp]

∑
γ∈Gal(E′/Qp)

γ(µ)

for E′ large enough. Let µ[ be the image of µ in π1(G)Γ.

Definition 3.1.2. The subset B(G,µ) ⊂ B(G) of µ-admissible elements is

the subset of elements b for which νb � µ̄ and κ(b) = µ[.

In fact, we will really be interested in B(G,µ−1), where µ−1 denotes a

dominant representative of the inverse of µ.

3.2. The Fargues-Fontaine curve. The goal of this subsection is to define

the (adic) Fargues-Fontaine curve and discuss some of its properties. For this,

we start with some background on the curve as in [FF14] and [Wei14], and we

then compare with constructions of Kedlaya and Liu [KL15].

Let F be a complete algebraically closed nonarchimedean field of charac-

teristic p, e.g., F =
◊�Fp((t)). Let OF ⊂ F be its ring of integers, i.e., the subring

of powerbounded elements. Fix $ ∈ F with 0 < |$| < 1; different choices will

give rise to the same objects. First, we define the Fargues-Fontaine curve as
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an adic space. Let

Y(0,∞) = Spa(W (OF ),W (OF )) \ (p[$] = 0) ,

where W (OF ) is endowed with the (p, [$])-adic topology. As in [Wei14], this

space admits a natural continuous map

α : Y(0,∞) → (0,∞),

sending any point x ∈ Y(0,∞) to

α(x) =
log |[$](x̃)|
log |p(x̃)|

∈ (0,∞),

where x̃ is the maximal generalization of x, which corresponds to a continuous

rank-1-valuation on W (OF ) taking nonzero values on [$] and p. For any

interval I ⊂ (0,∞), we let YI ⊂ Y(0,∞) be the interior of α−1(I). In the

following proposition, we use some terminology from [SW13].

Proposition 3.2.1. For any closed interval I = [s, r] ⊂ (0,∞) with

r, s ∈ Q, the space

YI = Spa(R[s,r]
F ,R[s,r],+

F )

is a sheafy affinoid adic space, where R[s,r],+
F is the p-adic completion of the

integral closure of

W (OF )

ñ
p

[$1/r]
,
[$1/s]

p

ô
inside W (OF )

[
p

[$1/r]
, [$1/s]

p

]
[1/p], and R[s,r]

F = R[s,r],+
F [1/p]. More precisely,

R[s,r]
F is preperfectoid in the sense that R[s,r]

F ⊗̂QpK is a perfectoid K-algebra

for any perfectoid field K/Qp.

In particular, Y(0,∞) is an honest adic space.

Proof. The identification

YI = Spa(R[s,r]
F ,R[s,r],+

F )

follows from the definitions. By [KL15, Th. 3.7.4], it is enough to show that

R[s,r]
F is preperfectoid; cf. [KL15, Th. 5.3.9]. One can also argue as follows.

Let K/Qp be any perfectoid field. We can consider the auxiliary space Z =

Spa(W (OF )[1/p],W (OF )), where we endow W (OF ) with the p-adic topology.

As on Y(0,∞), p is topologically nilpotent, one gets a map Y(0,∞) → Z, which

is an open embedding, and one can thus consider YI as a rational subset of Z.

As the base change of Z to K is perfectoid, or more precisely W (OF )⊗̂ZpK is a

perfectoid K-algebra, and the property of being a perfectoid K-algebra passes

to rational subsets, one finds that also R[s,r]
F ⊗̂QpK is a perfectoid K-algebra.

�
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The space Y(0,∞) has an action of ϕ, defined by taking the lift of the

Frobenius on OF . This ϕ-action is properly discontinuous, as can be seen by

observing that α is equivariant with respect to the ϕ-action if one lets ϕ act

through multiplication by p on (0,∞). Therefore, the following definition is

sensible.

Definition 3.2.2. The adic Fargues-Fontaine curve is y XF = Y(0,∞)/ϕ
Z.

After defining the scheme version of the curve, we will discuss more pre-

cisely in which sense this is a curve.

Often, we will be in the situation where we start with a complete alge-

braically closed nonarchimedean field C over Qp, and take F = C[, the tilt of C.

In that case, there is a natural map θ : W (OF )→ OC , which induces a natural

(C,OC)-point of Y(0,∞), and thus of XF , which we denote by ∞ ∈ XF (C,OC).

In fact, ∞ is a closed point of XF with residue field C. We will denote the

inclusion

i∞ : Spa(C,OC)→ XF .

The completed local ring of XF at ∞ can be identified with the ring of peri-

ods B+
dR,C , which is the ker θ-adic completion of W (OF )[1/p]; cf. also Defini-

tion 2.2.1. Note that B+
dR,C is a complete discrete valuation ring, as expected

for the completed local ring of a curve.

There is a close relationship between vector bundles on XF and isocrystals.

Recall that L was defined as W (F̄p)[1/p]. A choice of an embedding F̄p → OF
gives a structure map Y(0,∞) → Spa(L,OL). If (V, ϕV ) is an isocrystal, one can

thus pull it back to a vector bundle on Y(0,∞) with a ϕ-linear automorphism;

by descent, this gives a vector bundle on XF . We denote the resulting functor

by V 7→ E(V ).

Theorem 3.2.3 ([FF14]). The above composition of functors induces a

bijection between isomorphism classes of isocrystals and isomorphism classes

of vector bundles on XF .

Remark 3.2.4. In fact, Fargues-Fontaine prove this result for the scheme

version of their curve, which we introduce below. However, by a GAGA result

proved in [KL15] and [Far15b], this is equivalent to the stated result for the

adic curve.

It is important to note that this functor from isocrystals to vector bundles

is not an equivalence of categories; there are nonzero maps between vector

bundles of different slope, in general.

To define a scheme version of the curve, we define a natural line bundle

OXF (1) on XF , which we regard as ample.
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Definition 3.2.5. For any d ∈ Z, let OXF (d) be the line bundle correspond-

ing to the isocrystal (L, p−dσ).

Remark 3.2.6. This construction induces a map Z → Pic XF . It follows

from Theorem 3.2.3 that this is an isomorphism. Using this identification, one

can define the degree of any vector bundle on XF by looking at the determinant

line bundle. This gives rise to a notion of slopes of vector bundles and a Harder-

Narasimhan filtration. We warn the reader that if an isocrystal V is sent to

the vector bundle E(V ), then the slopes of V and E(V ) differ by a sign.

Now we define a scheme

XF = Proj
Ä
⊕d≥0H

0 (XF ,OXF (d))
ä
.

There is a natural map of locally ringed topological spaces XF → XF . In par-

ticular, there is a natural functor from vector bundles on XF to vector bundles

on XF . This functor is an equivalence of categories; cf. [KL15] and [Far15b].

The following theorem summarizes some of the properties of XF .

Theorem 3.2.7 ([FF14]). The scheme XF is a regular, noetherian scheme

of Krull dimension 1 with field of constants Qp. All residue fields of XF at

closed points are algebraically closed complete extensions C of Qp with C[ ∼= F .

For any closed point x ∈ XF , XF \ {x} is the spectrum of a principal ideal do-

main.

Fargues, [Far15a], has recently extended the classification of vector bun-

dles to a classification of G-bundles for any reductive group G over Qp. As it

is technically easiest for us to do so, we define G-bundles on XF (or XF ) using

the Tannakian perspective.

Definition 3.2.8. A G-bundle on XF (or XF ) is an exact tensor functor

RepQpG→ BunXF
∼= BunXF .

Using the functor from isocrystals over F̄p to vector bundles on the Fargues-

Fontaine curve, we get a natural functor from isocrystals with G-structure to

G-bundles on XF . We denote this functor by b 7→ Eb.

Theorem 3.2.9 ([Far15a]). The functor from isocrystals with G-structure

to G-bundles on XF induces a bijection on isomorphism classes.

In other words, any G-bundle on XF is isomorphic to Eb for a unique

b ∈ B(G).

Next, we discuss the relationship between vector bundles on the Fargues-

Fontaine curve and ϕ-modules over the Robba ring. The Robba ring is the

ring of functions defined on a small unspecified annulus Y(0,r).
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Definition 3.2.10. The Robba ring is the direct limit

R̃F = lim−→
r

H0(Y(0,r],OY(0,r]
).

One can make this more explicit; cf. [KL15, Def. 4.2.2]. The space of

global sections R̃rF = H0(Y(0,r],OY) can be identified with the inverse limit of

the Banach algebras R̃[s,r]
F as s runs over (0, r], and thus it acquires a structure

of Fréchet algebra. Let

W (OF )

Æ
p

[$]1/r

∏
=

∑
n≥0

[cn]pn | cn ∈ $−n/rOF , cn$n/r → 0

 .
Then R̃rF can also be described as the Fréchet completion of

W (OF )

Æ
p

[$]1/r

∏ï
1

p

ò
=

{ ∑
n>−∞

[cn]pn | cn ∈ F, cn$n/r → 0

}

along the norms maxn{|cn$n/s|} for s ∈ (0, r]. When r′ < r, there is a natu-

ral inclusion map R̃rF ↪→ R̃r′F coming from restriction of global sections. The

ϕ-action on Y(0,∞) sends Y[s,r] isomorphically to Y[ps,pr] and Y(0,r] isomorphi-

cally to Y(0,pr]. Therefore, ϕ induces isomorphisms R̃[s,r]
F

∼→ R̃[s/p,r/p]
F and

R̃rF
∼→ R̃r/pF , and thus an automorphism of R̃F .

We note that the Robba ring is the ring of functions defined on some

small punctured disc of unspecified radius around the point Spa(F,OF ) of

Spa(W (OF ),W (OF )).

Definition 3.2.11. A ϕ-module over R̃F is a finite projective R̃F -module

M equipped with a ϕ-linear automorphism.

Remark 3.2.12. As R̃F is a Bézout domain (cf. [KL15, Lemma 4.2.6]),

any ϕ-module M is finite free as R̃F -module.

Theorem 3.2.13 ([KL15, Th. 6.3.12]). There is an equivalence of cate-

gories

{Vector bundles on XF } '
¶
ϕ−modules over R̃F

©
.

The proof is based on the observation that any ϕ-module over R̃F is

defined over R̃rF for r small enough. This can be turned into a ϕ-module over

Y(0,r] and then be spread to a ϕ-module over all of Y(0,∞) via pullback under

Frobenius. By descent, this gives a vector bundle over XF .
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3.3. The relative Fargues-Fontaine curve. In this subsection, we extend

the constructions to the relative setting. Here, our basic input will be a per-

fectoid affinoid algebra (R,R+) of characteristic p.10 Let $ be a pseudouni-

formizer of R. Define

Y(0,∞)(R,R
+) = Spa(W (R+),W (R+)) \ (p[$] = 0).

Many constructions carry over to this relative situation. In particular, there is

still a continuous map

α : Y(0,∞)(R,R
+)→ (0,∞)

defined in the same way. Again, we let YI(R,R+) ⊂ Y(0,∞)(R,R
+) denote the

interior of the preimage α−1(I) for any interval I ⊂ (0,∞). Proposition 3.2.1

extends to the relative setting.

Proposition 3.3.1. For any closed interval I = [s, r] ⊂ (0,∞) with

r, s ∈ Q, the space

YI(R,R+) = Spa(R[s,r]
R ,R[s,r],+

R,R+ )

is a sheafy affinoid adic space, where R[s,r],+
R,R+ is the p-adic completion of the

integral closure of

W (R+)

ñ
p

[$1/r]
,
[$1/s]

p

ô
inside W (R+)

[
p

[$1/r]
, [$1/s]

p

]
[1/p], and R[s,r]

R = R[s,r],+
R,R+ [1/p].11 More precisely,

R[s,r]
R is preperfectoid in the sense that R[s,r]

R ⊗̂QpK is a perfectoid K-algebra

for any perfectoid field K/Qp.

In particular, Y(0,∞)(R,R
+) =

⋃
I YI(R,R+) is an honest adic space.

Proof. The same arguments as for Proposition 3.2.1 apply. �

Again, there is a totally discontinuous action ϕ of Frobenius.

Definition 3.3.2. The relative Fargues-Fontaine curve X (R,R+) is the

quotient Y(0,∞)(R,R
+)/ϕZ.

As before, there is a line bundle OX (R,R+)(d) for any d ∈ Z, and one can

form the scheme

X(R) = Proj
Ä
⊕d≥0H

0
Ä
X (R,R+),OX (R,R+)(d)

ää
.12

This comes with a map of locally ringed topological spaces X (R,R+)→ X(R),

and one has a relative GAGA result.

10We will not fix a perfectoid base field inside R, although one can always find one.
11One can check that R[s,r]

R depends only on R, and not on R+.
12As notation suggests, this does not depend on R+.
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Theorem 3.3.3 ([KL15, Th. 8.7.7]). The pullback functor from vector

bundles on X(R) to vector bundles on X (R,R+) is an equivalence of categories.

Moreover, we can define R̃rR as the inverse limit of the Banach algebras

R̃[s,r]
R as s runs over (0, r] and the relative Robba ring R̃R as the direct limit

of the Fréchet algebras R̃rR over r > 0. Again, a ϕ-module over R̃R is a finite

projective R̃R-module M equipped with a ϕ-linear automorphism.

Theorem 3.3.4 ([KL15, Ths. 6.3.12, 8.7.7]). There is an equivalence of

categories¶
Vector bundles on X (R,R+)

©
'
¶
ϕ−modules over R̃R

©
.

3.4. The mixed characteristic affine Grassmannian. Our goal in this sec-

tion is to construct an isomorphism between the flag variety F`G,µ and the

Schubert cell corresponding to µ in the B+
dR-Grassmannian for G, assuming

that µ is minuscule. This is an analogue of a classical statement about the

usual affine Grassmannian.

Throughout this section, G is a connected reductive group over Qp. First,

we define the version of the affine Grassmannian that we will consider.

Let (R,R+) be a perfectoid affinoid algebra over Qp, in the sense of [KL15,

Def. 3.6.1].13 One has the surjective map θ : W (R[+) → R+, whose kernel

is generated by ξ ∈ W (R+) not a zero divisor. Then B+
dR,R is defined as the

ξ-adic completion of W (R[+)[1/p], and BdR,R = B+
dR,R[ξ−1]. We note that, as

notation suggests, these rings are independent of the choice of R+.

Definition 3.4.1. Let Gr
B+

dR
G be the functor associating to any perfectoid

affinoid Qp-algebra (R,R+) the set of G-torsors over Spec B+
dR,R trivialized

over Spec BdR,R, up to isomorphism.

We refer to [Wei14] for a more thorough discussion of this object, in the

case G = GLn.

If (R,R+) = (K,K+) where K is a perfectoid field, then B+
dR,K is a

complete discrete valuation ring, abstractly isomorphic to K[[ξ]]. In that case,

one sees that

Gr
B+

dR
G (K,K+) = G(BdR,K)/G(B+

dR,K).

In particular, assume that K = C is algebraically closed, and fix an embedding

Q̄p → C. Then, using the Cartan decomposition

G(BdR,C) =
⊔

µ∈X∗(G)dom

G(B+
dR,C)µ(ξ)−1G(B+

dR,C)

13If R contains a perfectoid field, this agrees with the definition of [Sch12], and this case

would suffice for our discussion here.
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(where the induced embedding Q̄p ↪→ B+
dR,C is used to define µ(ξ) for a cochar-

acter µ : Gm → GQ̄p), we can associate an element of µ(x) ∈ X∗(G)dom to any

point of x ∈ Gr
B+

dR
G (C,OC). This is the decomposition into Schubert cells.14

Now, we fix a conjugacy class µ of cocharacters Gm → GQ̄p , defined over E.

In the following, we assume that R is an E-algebra. Any choice of representa-

tive µ : Gm → GQ̄p in this conjugacy class determines an ascending filtration

Fil•(µ) on RepQ̄pG, where Film(µ) is the direct sum of all subspaces where µ

acts through weights m′ ≥ −m.15 Let F`G,µ/E be the rigid-analytic flag vari-

ety parametrizing all such filtrations. The choice of µ identifies F`G,µ = G/Pµ,

where Pµ ⊂ G is the stabilizer of Fil•(µ).

Definition 3.4.2. Let Gr
B+

dR
G,µ ⊂ Gr

B+
dR

G ⊗Qp E be the subfunctor sending

a perfectoid affinoid E-algebra (R,R+) to the set of those G-torsors over

Spec B+
dR,R trivialized over Spec BdR,R whose relative position µ(x) is given

by µ for all x ∈ Spa(R,R+).

Proposition 3.4.3. There is a natural Bialynicki-Birula map

πG,µ : Gr
B+

dR
G,µ → F`G,µ,

where we regard F`G,µ as a functor on perfectoid affinoid E-algebras.

Proof. By the Tannakian formalism, it is enough to prove this result in

the case G = GLn. In that case, write µ = (k1, . . . , kn) as a tuple of n integers,

k1 ≥ k2 ≥ · · · ≥ kn. The functor Gr
B+

dR
GLn

parametrizes B+
dR,R-lattices Λ ⊂ BndR,R,

i.e., finite projective submodules such that Λ[1/ξ] = BndR,R. Any such lattice

gives rise to a filtration on Rn by setting

FilmR
n = ((B+

dR,R)n ∩ ξ−mΛ)/((ξB+
dR,R)n ∩ ξ−mΛ).

Using the fact that a finitely generated R-module M for which dimC(x)M ⊗R
C(x) is the same for all x = Spa(C(x),OC(x))→ Spa(R,R+) is finite projective

(cf. [KL15, Prop. 2.8.4]), one verifies that Rn/FilmR
n is a finite projective

R-module for any m.

Note that Fil•R
n is an increasing filtration, where the rank of FilmR

n

is given by the largest i such that ki ≥ −m. The same type of filtrations is

parametrized by F`G,µ, as desired. �

14We have inserted a slightly nonstandard sign in µ(ξ)−1.
15One reason the minus sign appears here is for consistency with the global definitions,

where type (p, q) refers to characters z 7→ z−pz−q.
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Lemma 3.4.4. Assume that µ is minuscule and that (R,R+) = (K,K+),

where K/E is a perfectoid field. Then

πG,µ : Gr
B+

dR
G,µ (K,K+)→ F`G,µ(K,K+)

is a bijection.

Proof. Recall that B+
dR,K is a complete discrete valuation ring with residue

field K. By the Cohen structure theorem, we may choose an isomorphism

B+
dR,K

∼= K[[ξ]]. This identifies

Gr
B+

dR
G,µ (K,K+) = G(K((ξ)))/G(K[[ξ]]),

and the Bialynicki-Birula morphism becomes the Bialynicki-Birula morphism

for the usual affine Grassmannian for G/Qp. This is known to be an isomor-

phism; cf., e.g., [NP01, Lemme 6.2]. �

Theorem 3.4.5. Assume that µ is minuscule. Then the Bialynicki-Birula

morphism

πG,µ : Gr
B+

dR
G,µ → F`G,µ

is an isomorphism.

Proof. In the proof, we will use the Tannakian formalism. This interprets

Gr
B+

dR
G as the associations mapping any V ∈ Rep G to a lattice ΛV ⊂ V ⊗BdR,

compatibly with tensor products and short exact sequences.

First, let us check injectivity of πG,µ. Thus, take two (R,R+)-valued

points x, y ∈ Gr
B+

dR
G,µ (R,R+) that are sent to the same point of F`G,µ. We have

to show that the corresponding lattices ΛV,x, ΛV,y agree for all V ∈ Rep G. But

at any point z ∈ Spa(R,R+) with completed residue field K(z), Lemma 3.4.4

implies that

ΛV,x ⊗B+
dR,R

B+
dR,K(z) = ΛV,y ⊗B+

dR,R
B+

dR,K(z).

One concludes that ΛV,x = ΛV,y by applying the following lemma to all ele-

ments of ΛV,x and ΛV,y.

Lemma 3.4.6. Let Λ be a finite projective B+
dR,R-module and a ∈ Λ⊗B+

dR,R

BdR,R any element. Assume that for all z ∈ Spa(R,R+) with completed residue

field K(z), a ∈ Λ⊗B+
dR,R

B+
dR,K(z). Then a ∈ Λ.

Proof. We may choose m ≥ 0 minimal such that a ∈ ξ−mΛ and assume

m > 0 for contradiction. Then a induces a nonzero element ā of the finite

projective R-module ξ−mΛ/ξ−m+1Λ. By assumption, the specialization of ā

to K(z) vanishes for all z ∈ Spa(R,R+). But an element of R vanishing at all

points of Spa(R,R+) is trivial, as R is reduced. �
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Now, to prove surjectivity, we first observe that Gr
B+

dR
G is in fact a sheaf

for the pro-étale topology used in [Sch13c].16 More precisely, we allow covers

Y = Spa(S, S+) → X = Spa(R,R+) that can be written as a composite

Y → Y0 → X, where Y → Y0 is an inverse limit of finite étale surjective maps

and Y0 → X is étale. This pro-étale topology of perfectoid spaces is defined

in [KL15, §9.2]. The descent result we need is [KL15, Th. 9.2.15]. Indeed,

using the Tannakian formalism, it is enough to prove that one can glue finite

projective B+
dR,R-modules in the pro-étale topology. As B+

dR,R is ξ-adically

complete with ξ not a zero divisor and B+
dR,R/ξ = R, a standard argument

reduces us to gluing finite projective R-modules, which is precisely [KL15,

Th. 9.2.15].

Thus, we see that it is enough to construct, for any representation V of G,

a B+
dR-local system MV ⊂ V ⊗ BdR on the pro-étale site of F`G,µ, compatibly

with tensor products and short exact sequences, which maps to the correct

filtration under the Bialynicki-Birula morphism. Indeed, by pullback, this will

induce a similar B+
dR-local system on the pro-étale site of Spa(R,R+) for any

(R,R+)-valued point of F`G,µ, which by the descent result above gives an

(R,R+)-point of Gr
B+

dR
G,µ .

Now note that any representation V of G gives rise to a filtered module

with integrable connection (V ⊗OF`G,µ , id⊗∇,Fil−•), where Fil• is the univer-

sal ascending filtration parametrized by F`G,µ (so that Fil−• is a descending

filtration). Because µ is minuscule, this filtered module with integrable connec-

tion satisfies Griffiths transversality (with the same proof as in the complex

case; cf. [Del79, Prop. 1.1.14]). Now [Sch13c, Prop. 7.9] constructs a corre-

sponding B+
dR-local system MV ⊂ V ⊗ BdR on the pro-étale site of F`G,µ, and

this construction is compatible with tensor products and short exact sequences.

One verifies that the induced filtration is correct, finishing the proof. �

3.5. Vector bundles over X and the Newton stratification. The goal of this

subsection is to define the Newton stratification on F`G,µ, where G/Qp is a

reductive group and µ is a conjugacy class of minuscule cocharacters, defined

over the reflex field E. The idea is that, given a (C,OC)-point of F`G,µ ∼=
Gr

B+
dR

G,µ , one can modify the trivial G-bundle over XC[ along∞ to obtain a new

G-bundle over XC[ and therefore (by Fargues’ theorem) an element of B(G).

Fix any perfectoid affinoid (R,R+) over Qp. We recall how to construct a

vector bundle over X (R[, R[+) from a B+
dR,R-lattice in BndR,R. First note that,

by GAGA for the curve, it is enough to define a vector bundle on a scheme

version X(R[) of X (R[, R[+). Let Z be the image of the canonical closed

16It is also a sheaf for stronger topologies as used in [Wei14], but we do not need this here.
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immersion

i∞ : Spec R→ X(R[).

Then Spec B+
dR,R is the completion of X(R[) along Z. Moreover, Spec BdR,R

can be identified with the fiber product of Spec B+
dR,R and the complement of

Z over X(R[).

Theorem 3.5.1 ([KL15, Th. 8.9.6]). There is an equivalence between the

category of vector bundles over X(R[) (or over X (R[, R[+)) and the category

of triples (M1,M2, ι), where M1 is a vector bundle on X(R[)\Z , M2 is a vector

bundle over Spec B+
dR,R, and ι is an isomorphism between M1|Spec BdR,R

and

M2|Spec BdR,R
. This equivalence is compatible with tensor products and short

exact sequences.

In particular, one gets a functor from B+
dR,R-lattices in BndR,R by gluing it

to the trivial rank n vector bundle on X(R[) \ Z.

Corollary 3.5.2. For any perfectoid affinoid Qp-algebra (R,R+), there

is a natural map

E : Gr
B+

dR
G (R,R+)→ {G−bundles over X (R[, R[+)}.

Proof. If G = GLn, this follows from the discussion above. In general, it

follows from the Tannakian formalism. �

In particular, consider the case where (R,R+) = (C,OC), with C/Qp

complete and algebraically closed, and OC ⊂ C its ring of integers; more-

over, fix an embedding Q̄p ↪→ C. Using Fargues’ classification of G-bundles,

Theorem 3.2.9, one gets a composite map

b(·) : Gr
B+

dR
G (C,OC)→ B(G) : x 7→ b(E(x))

classifying the isomorphism class of the associated G-bundle E(x). We will

need to know the following compatibility between µ and b.

Proposition 3.5.3. Let G be any reductive group over Qp and µ any

conjugacy class of cocharacters (not necessarily minuscule). For any x ∈
Gr

B+
dR

G,µ (C,OC) with b = b(E(x)), one has b ∈ B(G,µ−1).

Proof. Unraveling the definition of B(G,µ−1), we have to prove two sepa-

rate statements. The first statement is νb � µ−1 as elements of (X∗(G)⊗Q)Γ
dom.

This reduces to the case of G = GLn by [RR96, Lemma 2.2]. In that case, the

statement is the following.

Lemma 3.5.4. Let E be a vector bundle of rank n over XC[ , together with

a trivialization outside the point∞. Its relative position from the trivial bundle

on XC[ is measured by a cocharacter µ(E) of GLn. Let νE ∈ (X∗(GLn)⊗Q)dom



688 A. CARAIANI and P. SCHOLZE

be the Newton polygon of E , with slopes {λi | E ∼=
⊕

iOXC[ (λi)}. One has the

inequality

νE � µ(E);

i.e., “The Newton polygon of E lies above its Hodge polygon.”17

Proof. We adapt the original argument in [Kat79]. By considering exterior

powers of vector bundles, it suffices to check that

(1) the Newton and Hodge slopes match for the top exterior power of E , and

(2) the first slope of the Newton polygon of E always lies above the first slope

of the Hodge polygon of E .

The fact that the Hodge and Newton slopes match in the case of line

bundles on XFF,C is a direct verification: The modification E is given by the

lattice E ⊗O
X[

B+
dR,C = ξ−dBdR,C for a unique d ∈ Z and, in fact, µ(E) =

d ∈ X∗(GL1) = Z in our normalization. The resulting line bundle is given by

OX[(d), which is of slope d, as desired.

For the second part, up to twisting, we may assume that the first slope of

the Hodge polygon is 0; in particular, all Hodge slopes are nonnegative. This

implies that

(B+
dR,C)n ⊆ E ⊗OX

C[
B+

dR,C .

This, in turn, implies that the trivialization of E away from ∞ extends to an

injection OnX
C[

↪→ E . We have to show that all slopes of E are nonnegative,

so assume for contradiction that there is a quotient E → OX
C[

(λ) with λ < 0.

This induces a nonzero map OnX
C[
→ OX

C[
(λ). On the other hand, there are

no nonzero maps OX
C[
→ OX

C[
(λ) by [FF14]. �

The other part of the condition b ∈ B(G,µ−1) concerns the Kottwitz map

and is given by the following lemma.

Lemma 3.5.5. The composition Gr
B+

dR
G,µ (C,OC) → B(G)

κ−→ π1(G)Γ is

constant and equal to −µ[.

Proof. We note that the map in question is functorial in (G,µ). We first

reduce to the case where G has simply connected derived group by making a

central extension G̃→ G (cf. [Kot85, 5.6]); picking any lift µ̃ of µ, the resulting

map

Gr
B+

dR

G̃,µ̃
(C,OC)→ Gr

B+
dR

G,µ (C,OC)

17We remind the reader that the correspondence between isocrystals and vector bundles

on XC[ reverses slopes, so that this statement translates into b(E)−1 ∈ B(GLn, µ(E)), which

is equivalent to b(E) ∈ B(GLn, µ(E)−1).
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is surjective, as follows from the Cartan decomposition, so it is enough to prove

the result for (G̃, µ̃).

Now if G has simply connected derived group Gder, then T = G/Gder is a

torus for which π1(G)Γ → π1(T )Γ is an isomorphism; thus, we are reduced to

the case of a torus.

If G = T is a torus, we may find a surjection T̃ → T , where T̃ is a

product of induced tori ResK/QpGm. Arguing as before, we are reduced to the

case of T̃ , and then to the case T̃ = ResK/QpGm. In that case, π1(T̃ )Γ = Z
(cf. [Kot85, Lemma 2.2]), which is torsion-free, so it is enough to identify the

image in π1(Gm) = Z under the norm map NormK/Qp : T̃ → Gm. Finally, we

are reduced to the case G = Gm, which is part of Lemma 3.5.4. �

�

Now fix a minuscule µ as above, defined over E. The inverse of the

isomorphism πG,µ in Theorem 3.4.5 gives rise to a composition

E : F`G,µ(R,R+)→ Gr
B+

dR
G,µ (R,R+)→ {G−bundles over X (R[, R[+)}.

Definition 3.5.6. The map

|F`G,µ| → B(G)

sends any (C,C+)-valued point x ∈ F`G,µ(C,C+), where C is a complete

algebraically closed extension of E and C+ ⊂ C is an open and bounded

valuation subring, to the isomorphism class of the associated G-bundle E(x),

which by Theorem 3.2.9 is given by an element of B(G).

For any b ∈ B(G), we let F`bG,µ ⊂ F`G,µ be the subset of all points with

image b.

One easily checks that this map is well defined as a map on |F`G,µ|,
i.e., is independent of the choice of complete algebraically closed extension of

the residue field at any point. We remark that by definition a higher rank

point has the same image as its maximal, rank 1, generalization, and therefore

the map factors over the maximal hausdorff quotient of |F`G,µ|, which can

be identified with the topological space F`Berk
G,µ underlying the corresponding

Berkovich space.

Proposition 3.5.7.

(1) The map b(·) : |F`G,µ| → B(G) is lower semicontinuous.

(2) The image of the map b(·) : |F`G,µ| → B(G) is contained in the set of

µ−1-admissible elements B(G,µ−1).

Remark 3.5.8. In [Rap15, Prop. A.9], based on the discussion here, it is

proved that in fact the image of |F`G,µ| → B(G,µ−1) is all of B(G,µ−1).
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Proof. The second part follows from Proposition 3.5.3 above. For the first

part, by the definition of the partial ordering on B(G) and the fact that the

Kottwitz map is constant by the second part, it remains to prove semicontinuity

of the Newton map. We may pick an affinoid perfectoid space Spa(R,R+)

with a map to F`G,µ that is a topological quotient map by using a pro-étale

cover. It is then enough to show that the composite map |Spa(R,R+)| →
|F`G,µ| → B(G) is lower semicontinuous. But semicontinuity of the Newton

map can be checked on representations of G (cf. [RR96, Lemma 2.2]), so pick

a representation of G. We get a corresponding vector bundle over X (R[, R[+).

Now, the result follows from Theorem 7.4.5 of [KL15], using Corollary 3.3.4.

�

Corollary 3.5.9. The strata F`bG,µ are locally closed in F`G,µ. More

precisely, the stratum corresponding to the basic element is open in F`G,µ, and

the strata

F`�bG,µ :=
⊔
b�b′

F`b
′
G,µ

are closed.

Proof. This follows immediately from Proposition 3.5.7. �

4. The geometry of Newton strata and Igusa varieties

In this section, we will return to the global setup, but will in addition

assume that the Shimura datum (G,X) is of PEL type and has good reduction

at p. This means that they will admit smooth integral models that are moduli

spaces of abelian varieties equipped with polarizations, endomorphisms and

level structure. Our goal is to understand the fibers of the Hodge-Tate period

map

πHT : SKp → F`G,µ

defined in Theorem 2.1.3 in terms of the Igusa varieties introduced by Manto-

van, [Man05].

We start with some preliminaries on p-divisible groups, which recall mate-

rial from [SW13] as well as a construction of Chai and Oort. We then express

the Newton strata in SKp in terms of Rapoport-Zink spaces and Igusa varieties,

in the spirit of [Man05].

4.1. Preliminaries on p-divisible groups. We recall the notions of Tate

module and universal cover of a p-divisible group as used in [SW13], together

with some of their properties. Let Nilp be the category of Zp-algebras on

which p is nilpotent. If R is a p-adically complete Zp-algebra, let Nilpop
R be

the opposite category to the category of R-algebras on which p is nilpotent.
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A p-divisible group G can be thought of as an fpqc sheaf on Nilpop
R sending an

R-algebra S to lim−→G[pn](S).

Definition 4.1.1.

(1) The fpqc sheaf Tp(G)(S) = lim←−n G[pn](S) on Nilpop
R is called the (integral)

Tate module of G.

(2) The fpqc sheaf G̃(S) = lim←−p:G→G G(S) on Nilpop
R is called the universal cover

of G.

We note that Tp(G) is a sheaf of Zp-modules, while G̃ = Tp(G)[1/p] is a

sheaf of Qp-vector spaces. We can canonically identify

TpG = Hom(Qp/Zp,G), G̃ = Hom(Qp/Zp,G)[1/p].

Proposition 4.1.2.

(1) If G is connected, then it is representable by an affine formal scheme with

finitely generated ideal of definition. If Lie G is free of dimension r, then

G ' Spf R[[x1, . . . , xr]].

(2) If ρ : G1 → G2 is an isogeny, then the induced morphism ρ̃ : G̃1 → G̃2 is an

isomorphism.

(3) If R is perfect of characteristic p, G is connected and Lie G is free of

dimension r, then

G̃ ' Spf R[[x
1/p∞

1 , . . . , x1/p∞
r ]].

(4) If R is perfect of characteristic p, G is connected and Lie G is free of

dimension r, then

TpG ' Spec R[[x
1/p∞

1 , . . . , x1/p∞
r ]]/(x1, . . . , xr).

Proof. The first part is proved in [Mes72]. The remaining results are

proved in [SW13]: the second and third parts in Proposition 3.1.3 and the

fourth part follow from the first part, the third part and the short exact se-

quence of sheaves on Nilpop
R given by

0→ TpG → G̃ → G → 0.

(This short exact sequence is a restatement of Proposition 3.3.1 of [SW13] in

the case when G is connected: the Tate module is the closed subfunctor of G̃
given by pullback along the natural map G̃ → G — projection onto the last

coordinate — from the zero section in G.) �

The universal vector extension EG of G is a crystal on the nilpotent crys-

talline site of R defined in [Mes72]. Its Lie algebra Lie EG can be made into a

crystal on the crystalline site of R by [BBM82], which we will denote by M(G).
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If G is a p-divisible group over F̄p, the Dieudonné module D(G) is obtained

by evaluating the crystal M(G) on the PD thickening W (F̄p) → F̄p. Then

D(G)[1/p] is an isocrystal over L, as defined in Section 4. Here, the Frobenius

ϕG on D(G)[1/p] satisfies

D(G) ⊂ ϕG(D(G)) ⊂ p−1D(G),

and pϕG is the Frobenius usually considered.18 We will call a p-divisible group

G over F̄p isoclinic if the corresponding isocrystal has only one slope. If this

slope is given by −λ, we say that G is isoclinic of slope λ, so that µp∞ is

isoclinic of slope 1.

Given a p-divisible group G over F̄p, we can use the isocrystal D(G)[1/p]

to construct a vector bundle E(G) over the Fargues-Fontaine curve XF for any

complete algebraically closed nonarchimedean field F ⊃ F̄p.

Example 4.1.3. If G = Qp/Zp, then D(G) = L with ϕG = σ, and E(G) =

OXF . If G = µp∞ , then D(G) = L with ϕG = p−1σ, and E(G) = OXF (1).

On the other hand, one can use the schematic version of the Fargues-

Fontaine curve to build a vector bundle corresponding to a p-divisible group

over OC/p, where C is any complete algebraically closed extension of Qp with

ring of integers OC/p. Define Acris to be the p-adic completion of the PD

envelope of the surjection W (O[C) � OC/p and B+
cris := Acris[1/p]. If G is a

p-divisible group over the semiperfect ring OC/p, then its Dieudonné module

is a finite projective Acris-module M(G) obtained by evaluating M(G) on the

PD thickening Acris → OC/p. Then M(G)[1/p] is a B+
cris-module equipped

with a Frobenius-semilinear map ϕG . Recall (cf. [FF14]) that the schematic

Fargues-Fontaine curve can also be defined as

XC[ = Proj

Å
⊕d≥0

Ä
B+

cris

äϕ=pd
ã
.

We associate to G the vector bundle E(G) on XC[ corresponding to the graded

module

⊕d≥0 (M(G)[1/p])ϕ=pd .

Theorem 4.1.4.

(1) For any p-divisible group G over OC/p, there exist a p-divisible group H
over F̄p and a quasi-isogeny

ρ : H×F̄p OC/p→ G

18If one uses the usual Frobenius on contravariant Dieudonné theory, then our conven-

tion corresponds to defining covariant Dieudonné theory as the literal dual of contravariant

Dieudonné theory, i.e., without a Tate twist.
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(2) The functor G 7→ E(G) from p-divisible groups over OC/p up to isogeny

to vector bundles on XC[ is fully faithful, with essential image the vector

bundles whose slopes are all between 0 and 1.

(3) Let G be a p-divisible group over F̄p. Then GAGA for the curve identifies

E(G) with E(G).

Proof. The first two parts are Theorem 5.1.4 of [SW13]. The last part is

clear. �

We now specialize to p-divisible groups over a perfect field k. (Since every

p-divisible group over OC/p is quasi-isogenous to one defined over F̄p, if we are

interested in understanding quasi-self-isogenies, it is enough to restrict to this

case.) Let G,G′ be two isoclinic p-divisible groups over k. Our goal is to define

an “internal Hom” p-divisible group HG,G′ over k satisfying the following two

properties:

(1) the Tate module Tp(HG,G′) can be identified with the sheaf Hom(G,G′);
(2) the Dieudonné module D(HG,G′)[1/p] is equal to

Hom(D(G)[1/p], D(G′)[1/p])≤0,

where the latter denotes the internal homomorphism in Dieudonné modules

and we are taking the slope ≤ 0-part.

In a talk of C.-L. Chai at the Faltings conference 2014, we learnt that

a p-divisible group satisfying these properties has been defined by Chai and

Oort. We explain their construction below.

We define HG,G′ as an inductive system of finite group schemes. For each

n ≥ 1, consider the commutative group schemes of finite type over k defined as

Hn := Hom(G[pn],G′[pn]).

For m ≥ n, there are natural restriction maps

rm,n : Hm → Hn

that restrict a homomorphism G[pm] → G′[pm] to G[pn] ⊂ G[pm]. The kernel

ker rm,n ⊂ Hm is a closed subgroup scheme. As we are working over a field,

one can form the quotient H(m)
n = Hm/ker rm,n, which is a subgroup scheme

of Hn. As m increases, they form a descending chain.

Lemma 4.1.5. The subgroup scheme H(m)
n stabilizes for m� 0; let H′n =

H(m)
n for m sufficiently large. Then H′n is a finite group scheme over k.

Proof. We may assume that k is algebraically closed. First, we claim

that H(m)
n is a finite group scheme for m � 0. It is enough to see that

H(m)
n (k) is finite. By Dieudonné theory, one sees that Hom(G,G′) is a finite
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free Zp-module, independent of the algebraically closed field k. In particular,

the image Hn(k)∞ ⊂ Hn(k) of

Hom(G,G′)→ Hn(k)

is finite and independent of k. Now the sequence of Hm ×Hn (Hn \ Hn(k)∞)

forms a cofiltered system of quasicompact schemes with affine transition maps

and with empty inverse limit. It follows that one of the schemes is already

empty, showing that the image of Hm(k) → Hn(k) agrees with the finite set

Hn(k)∞.

Now, the H(m)
n form a decreasing sequence of finite group schemes over k.

As such, they are eventually constant, e.g., by looking at their order. �

We define ιn : Hn → Hn+1 to be the map given by pre-composition with

the multiplication by p map G[pn+1]→ G[pn] followed by composition with the

inclusion G′[pn] ↪→ G′[pn+1].

Lemma 4.1.6. The maps ιn : Hn → Hn+1 send H′n into H′n+1. The

colimit

H = HG,G′ = lim−→
ιn

H′n

is a p-divisible group over k with H[pn] = H′n.

Proof. From the commutation between ιn and rm,n, one infers that ιn
sends H′n into H′n+1. First, we check that ιn : H′n → H′n+1 is injective with

image H′n+1[pn]. Let S be any k-scheme. If f : G[pn]S → G′[pn]S induces the

trivial map

G[pn+1]S
p−→ G[pn]S

f−→ G′[pn]S ↪→ G′[pn+1]S ,

then f = 0 as the first map is surjective and the last is injective; this proves

injectivity of ιn. Now let f : G[pn+1]S → G′[pn+1]S be a map killed by pn,

which for any m ≥ n lifts fppf locally to a map fm : G[pm+1]S → G′[pm+1]S . It

follows that f factors uniquely as

G[pn+1]S
p−→ G[pn]S

g−→ G′[pn]S ↪→ G′[pn+1]S

for some g : G[pn] → G′[pn], as f has image in the pn-torsion, and kills

pnG[pn+1] = G[p]. Similarly, any lift fm : G[pm+1]S → G′[pm+1]S of f is killed

by pm, which implies that fm factors uniquely through a map gm : G[pm] →
G′[pm], which necessarily lifts g. This shows that H′n = H′n+1[pn].

Moreover, we need to see that p : H′n+1 → H′n+1 has image H′n; by

the above, it follows that the image is contained in H′n; the resulting map

H′n+1 → H′n is in fact the map rn+1,n. By construction of the H′n, the map

rn+1,n is indeed surjective, finishing the proof. �



THE GENERIC PART OF THE COHOMOLOGY OF SHIMURA VARIETIES 695

Lemma 4.1.7. The Tate module TpHG,G′ can be identified with the sheaf

Hom(G,G′).

Proof. The Tate module TpHG,G′ is the inverse limit of HG,G′ [pn] ' H′n
with respect to the rn+1,n maps. This, by definition, is the same as the inverse

limit of the projective system of Hn’s with respect to the rn+1,n maps, which

is the sheaf Hom(G,G′). �

Lemma 4.1.8. The Dieudonné module D(HG,G′)[1/p] is equal to

Hom(D(G)[1/p], D(G′)[1/p])≤0,

where Hom(D(G)[1/p],D(G′)[1/p]) is the internal homomorphism in Dieudonné

modules and we are taking the slope ≤ 0-part.

Remark 4.1.9. Note that the statement only depends on G and G′ up to

quasi-isogeny. Chai and Oort prove Lemma 4.1.8 by directly computing the

relative Frobenius on HG,G′ in terms of the relative Frobenius on conveniently

chosen G and G′. We give a different proof below. Also, Chai-Oort give an

integral version of Lemma 4.1.8.

Proof. Let HD be a p-divisible group over k with rational Dieudonné mod-

ule
Hom(D(G)[1/p], D(G′)[1/p])≤0.

First, we construct a natural map

H̃D → H̃G,G′ = Hom(G,G′)[1/p].
In order to construct such a map, it is enough to construct a functorial map on

R-valued points, where R is f -semiperfect in the sense of [SW13, Def. 4.1.2],

as H̃G,G′ , like the universal cover of any p-divisible group, is represented by a

formal scheme that is locally of the form Spf S, where S is an inverse limit of

f -semiperfect rings.

Thus, let R be f -semiperfect, with associated B+
cris(R). Then by [SW13,

Th. A], we have

H̃G,G′(R) = HomR(G,G′)[1/p]
= HomB+

cris(R),ϕ(D(G)⊗B+
cris(R), D(G′)⊗B+

cris(R))

= (Hom(D(G)[1/p], D(G′)[1/p])⊗B+
cris(R))ϕ=1

and
H̃D(R) = HomR(Qp/Zp,HD)[1/p] = (D(HD)⊗B+

cris(R))ϕ=1

= (Hom(D(G)[1/p], D(G′)[1/p])≤0 ⊗B+
cris(R))ϕ=1.

Now the obvious inclusion

Hom(D(G)[1/p], D(G′)[1/p])≤0 ⊂ Hom(D(G)[1/p], D(G′)[1/p])
induces the desired map H̃D → H̃G,G′ .
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To check that this is an isomorphism, it suffices by the same argument to

check on R-valued points, where R is f -semiperfect. Thus, it remains to see

that

(Hom(D(G)[1/p], D(G′)[1/p])⊗B+
cris(R))ϕ=1

= (Hom(D(G)[1/p], D(G′)[1/p])≤0 ⊗B+
cris(R))ϕ=1.

For this, it suffices to see that for any Dieudonné module D with only positive

slopes,

(D ⊗B+
cris(R))ϕ=1 = 0.

For this, using the Dieudonné-Manin classification, we have to see that there

are no elements x ∈ Acris(R) with paϕb(x) = x, where a, b > 0 are positive

integers. Note that ϕ preserves the p-adically complete ring Acris(R); on the

other hand, the equation on x implies x = pmaϕmb(x) for any m ≥ 1, so that

x is infinitely divisible by p, which implies x = 0. �

Corollary 4.1.10. Assume that G and G′ are isoclinic.

(1) If the slope of G is strictly greater than the slope of G′, then HG,G′ vanishes.

(2) If the slopes of G and G′ are equal, then HG,G′ is an étale p-divisible group.

(3) If the slope of G is strictly less than the slope of G′, then HG,G′ is a connected

p-divisible group.

Corollary 4.1.11. If G and G′ are isoclinic and the slope of G is strictly

less than the slope of G′ and HG,G′ has dimension r, then the sheaf Hom(G,G′)
is representable by the scheme

Spec k[[x
1/p∞

1 , . . . , x1/p∞
r ]]/(x1, . . . , xr).

Proof. This follows from Proposition 4.1.2 and Corollary 4.1.10. �

4.2. Rapoport-Zink spaces of PEL type. In this section, we introduce the

Rapoport-Zink spaces of PEL type that we will consider, and we recall some

of the results we will need. In close analogy to the EL case treated in [SW13],

we define a local avatar of the Hodge-Tate period morphism, mapping the

infinite-level Rapoport-Zink space to F`G,µ.

We first introduce PEL structures, as in [RZ96], with several simplifying

assumptions that will be verified in the global case that we want to consider.

Fix a finite-dimensional, semisimple algebra B over Qp, endowed with an anti-

involution ∗, and a finite left B-module V equipped with an alternating bilinear

form

(·, ·) : V ⊗Qp V → Qp

such that (bv, w) = (v, b∗w) for all v, w ∈ V , b ∈ B. The data so far define an

algebraic group G over Qp, whose values over a Qp-algebra R are

G(R) = {(g, c) ∈ GLB⊗R(V ⊗R)×R× | (gv, gw) = c(v, w)}.
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We refer to c : G→ Gm as the multiplier character of G. We make the general

assumption that G is connected, which amounts to excluding type D in the

classification.

Moreover, we assume that the data are unramified. More precisely, we

assume that B is a product of matrix algebras over unramified extensions of Qp

and admits a ∗-stable maximal Zp-order OB ⊂ B, which we fix. Moreover, we

assume that there is an OB-stable lattice Λ ⊂ V , which is self-dual under (·, ·);
again, we fix such a lattice Λ. These data define a reductive group GZp over

Zp via

G(R) = {(g, λ) ∈ GLOB⊗R(Λ⊗R)×R× | (gv, gw) = λ(v, w)}.

Now also fix a conjugacy class of cocharacters µ : Gm → GQ̄p such that in

the induced weight decomposition of VQ̄p , only weights 0 and 1 appear,

VQ̄p = V0 ⊕ V1,

and λ ◦ µ : Gm → Gm is the identity morphism. This implies, in particular,

that the subspaces V0 and V1 are totally isotropic. We let E/Qp be the field of

definition of µ. Finally, we fix an element b ∈ G(L), satisfying the compatibility

b ∈ B(G,µ−1). Set Ĕ := E · L.

Note that the condition b ∈ B(G,µ−1) together with the condition on the

weights of µ on V imply that the slopes of b on V are in [−1, 0]. In particular,

in our (nonstandard) normalization of the covariant Dieudonné module, there

is a p-divisible group Xb over F̄p whose rational Dieudonné module is given byÄ
V ⊗Qp L, b(id⊗ σ)

ä
;

then Xb is uniquely determined up to isogeny, and its universal cover ‹Xb is

uniquely determined. By functoriality, Xb is equipped with an action ι : B →
End(‹Xb) and with a symmetric polarization (i.e., an anti-symmetric quasi-

isogeny to its dual), with induced Rosati involution being compatible with ∗
on B.

Write D = (B, ∗, V, (·, ·), b, µ) for the rational data. For the integral data,

write Dint = (OB, ∗,Λ, (·, ·), b, µ).

Definition 4.2.1. The Rapoport-Zink space MDint of PEL type associated

to Dint is the functor on Nilpop
OĔ

sending an OĔ0
-algebra R to the set of isomor-

phism classes of pairs (G, ρ), where G is a p-divisible group over R equipped

with an action of OB and a principal polarization whose induced Rosati in-

volution is compatible with ∗ on OB, such that the OB-action satisfies the

determinant condition (see 3.23 in [RZ96] for a precise formulation), and

ρ : Xb ×F̄p R/p→ G ×R R/p
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is a quasi-isogeny compatible with the OB-action and the polarization, up to

an automorphism of µ̃p∞,R/p.

The following combines Theorem 3.25 and Section 3.82 of [RZ96]. In our

unramified situation, and excluding type D, we may allow p = 2.

Theorem 4.2.2. The functor MDint is representable by a formal scheme

that locally admits a finitely generated ideal of definition. Moreover, MDint is

formally smooth.

We let MDint := (MDint)ad
η be the adic generic fiber associated to the

formal scheme (representing) MDint . The adic generic fiber is taken in the

sense of Section 2 of [SW13], Proposition 2.2.1 of loc. cit. gives a fully faithful

functor

M 7→Mad

from formal schemes over OĔ that locally admit a finitely generated ideal of

definition to adic spaces over Spa(OĔ ,OĔ), and

Mad
η := Mad ×Spa(OĔ ,OĔ) Spa(Ĕ,OĔ).

Then MDint agrees with the adic space corresponding to the usual rigid-

analytic generic fibre of MDint .

For each n ≥ 1, one can define a coverMDint,n ofMDint that parametrizes

full level n structures. More precisely, define the compact open subgroups

K0 := {g ∈ G(Qp) | gΛ = Λ}

and

Kn := {g ∈ K0 | g ≡ 1 (mod pn)}.
Let MDint,n be the functor on complete affinoid (Ĕ(ζpn),OĔ(ζpn ))-algebras

parametrizing OB-linear maps

Λ/pn → G[pn]ad
η (R,R+)

that match the pairing (·, ·) on Λ with the one induced by the polarization on

G[pn]. Here, note that the second pairing takes values in µpn , but using the

fixed primitive pn-th root of unity ζpn ∈ E(ζpn), we can identify µpn ∼= Z/pn.

Then by Lemma 5.33 of [RZ96], the MDint,n are finite étale covers of MDint .

We can also define an infinite-level version of these Rapoport-Zink spaces.

Definition 4.2.3. Let MDint,∞ be the functor that sends a complete affi-

noid (Ĕ(ζp∞),OĔ(ζp∞ ))-algebra (R,R+) to the set of triples (G, ρ, α), where

(G, ρ) ∈MDint(R,R+) and

α : Λ→ TpGad
η (R,R+)

is a morphism of OB-modules such that the following conditions are satisfied:
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(1) The pairing (·, ·) on Λ matches the pairing on TpG induced by the polar-

ization. More precisely, the diagram

Λ⊗Zp Λ
α⊗α

//

(·,·)
��

TpGad
η (R,R+)⊗Zp TpGad

η (R,R+)

��

Zp
(1,ζp,ζp2 ,...)

// (Tpµp∞)ad
η (R,R+)

commutes, where the right vertical map is the pairing induced from the

polarization, and the lower map is defined using the fixed p-power roots of

unity in the base field E(ζp∞).

(2) The induced maps

Λ→ TpGad
η (C,C+)

are isomorphisms for all geometric points Spa(C,C+) of Spa(R,R+).

Recall that we have the quasi-logarithm map defined in Section 3 of [SW13],

which induces a map of sheaves on complete affinoid (Ĕ,OĔ)-algebras (R,R+):

qlogXb : (X̃b)ad
η (R,R+)→ D(Xb)[1/p]⊗L R.

If (R,R+) = (C,C+) is a geometric point, then the image of TpGad
η (C,C+)

⊗Zp C under qlogXb can be identified with (Lie G∨)∨ ⊗ C.

The arguments in Section 6 of [SW13] give the following theorem. (The

case of Rapoport-Zink spaces of EL type is Theorem 6.5.4 of [SW13]. We

remark that [SW13] follows the conventions on b and µ in [RZ96], which differ

from our conventions here.)

Theorem 4.2.4. The functor MDint,∞ is representable by an adic space

over Spa(Ĕ(ζp∞),OĔ(ζp∞ )). The space MDint,∞ is preperfectoid, and

MDint,∞ ∼ lim←−
n

MDint,n.

Moreover, there is the following alternate description of MDint,∞, which

depends only on the rational data D. The sheaf MDint,∞ is the sheafification

of the functor on complete affinoid (Ĕ(ζp∞ ,OĔ(ζp∞ ))-algebras sending (R,R+)

to the set of B-linear maps

V → (X̃b)ad
η (R,R+)

that match the pairing (·, ·) on V with the polarization on (‹Xb)ad
η (up to the

fixed choice of p-power roots of unity, as above) and that in addition satisfy

(1) the image of V ⊗Qp R in D(Xb)[1/p] ⊗L R is totally isotropic under the

pairing (·, ·) induced by the identification D(Xb)[1/p] ' V ⊗Qp L;
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(2) the quotient W of D(Xb)[1/p] ⊗L R by the image of V ⊗Qp R is a finite

projective R-module, which locally on R is isomorphic to V1 ⊗ R as a

B ⊗Qp R-module;

(3) for any point Spa(C,C+) of Spa(R,R+), the sequence

0→ V → (‹Xb)ad
η (C,C+)→W ⊗R C → 0

is exact.

Proof. To see that MDint,∞ is representable by a preperfectoid space, we

will show that it is a closed subfunctor of the Rapoport-Zink space at infinite

levelM∞ for the p-divisible group Xb, which is defined in Section 6.3 of [SW13].

Recall that the spaceM∞ only keeps track of deformations of Xb, without the

OB-action or the polarization. By abuse of notation, let us actually denote by

M∞ the base change of this space to Spa(Ĕ(ζp∞),OĔ(ζp∞ )).

We claim that the natural (forgetful) map MDint,∞ ↪→ M∞ is a closed

embedding. We follow Theorem 3.25 of [RZ96]. Let G be the universal

p-divisible group over M∞. The conditions that the OB-action and the po-

larization lift to quasi-isogenies on G depend only on preserving the Hodge

filtration on D(G)[1/p], by Grothendieck-Messing theory, so these are closed

conditions. They correspond to restricting to a closed subset of the image

of the Grothendieck-Messing period morphism. On the other hand, the con-

dition that a quasi-isogeny be a genuine isogeny on the adic generic fiber is

an open and closed condition. (This follows in the same way as Proposi-

tion 3.3.3 of [SW13], which is the special case of a quasi-isogeny from the

p-divisible group Qp/Zp. In the general case, the key observation is that

{e} ↪→ Hom(G1[pn],G2[pn])ad
η is an open and closed embedding when {e} cor-

responds to the trivial isogeny and n ∈ Z≥1.) Finally, the condition that the

trivialization α of (TpG)ad
η be OB-linear and respect the polarization is closed.

The first part of the theorem now follows from Theorem 6.3.4 of [SW13],

which shows thatM∞ is preperfectoid and Proposition 2.3.7 of loc. cit., which

shows that a closed subspace of a preperfectoid space is preperfectoid.

For the second part, letMD,∞ be the functor defined by the rational data.

There is a natural map of functorsMDint,∞ →MD,∞: For (R,R+) a complete

affinoid algebra over (Ĕ(ζp∞),OĔ(ζp∞ )), let (G, ρ, α) ∈ MDint,∞(R,R+). The

quasi-isogeny ρ gives an identification ‹Xb ' G̃. The map from the rational

Tate module of G to its universal cover, precomposed with the trivialization α,

gives a map

V → (‹Xb)ad
η (R,R+).

By construction, this map will respect the polarization and the B-action. The

first condition is satisfied because the image of V ⊗QpR in D(Xb)[1/p]⊗LR can

be identified with (Lie G∨)∨⊗R. (See the proof of Proposition 7.1.1 of [SW13].)
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The compatibility between the pairing (·, ·) on V and the polarization on G
imply that (Lie G∨)∨⊗R is totally isotropic under (·, ·). The second condition

is satisfied because W can be identified with Lie G ⊗ R. The third condition

follows from [SW13, Prop. 3.4.2(v)].

We also recall the functor M′∞ defined in Section 6.3 of [SW13] (which

again, we base change to Spa(Ĕ(ζp∞),OĔ(ζp∞ ))): this parametrizes maps

V → (‹Xb)ad
η (R,R+)

that satisfy

(1) the quotient W of D(Xb)[1/p] ⊗L R by the image of V ⊗Qp R is a finite

projective R-module, of the same rank as that of V1;

(2) for any geometric point Spa(C,C+) of Spa(R,R+), the sequence

0→ V → (‹Xb)ad
η (C,C+)→W ⊗R C → 0

is exact.

Lemma 6.3.6 of [SW13] shows that M∞
∼→M′∞, and we have a commutative

diagram of adic spaces

MDint,∞� _

��

//MD,∞� _

��

M∞
∼

//M′∞.

The bottom map is an isomorphism, and the vertical maps are closed embed-

dings.

It remains to see that the top map is surjective. For this, note that there

is a p-divisible group G over MD,∞, obtained by restriction from M∞. The

integral Tate module (TpG)ad
η is identified with the lattice Λ ⊂ V , which is

stable under OB and self-dual under (·, ·). The p-divisible group G is equipped

locally on MD,∞ with a quasi-isogeny on the special fiber to Xb. The first

two conditions on the image of V ⊗Qp R ensure that the B-action and the

polarization on D(Xb)[1/p] ⊗L R preserve the Hodge filtration of G, so that

they define quasi-isogenies on G. The fact that these quasi-isogenies are genuine

isogenies follows from the fact that they preserve the integral Tate module. �

From now on, we identify MDint,∞ 'MD,∞, so the moduli problem only

depends on the rational data D.

Recall that F`G,µ is the flag variety over Spa(E,OE) parametrizing fil-

trations on Rep G of the same type as the ascending filtration corresponding

to the cocharacter µ. On the faithful representation V of G, µ induces the

decomposition

VQ̄p = V0 ⊕ V1,
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and the ascending filtration is given by

Fil−1,µ(VQ̄p) := V1 and Fil0,µ(VQ̄p) := VQ̄p .

In the case we are considering, we can be more explicit: F`G,µ parametrizes

B-equivariant quotients W ′ of V ⊗Qp R that are finite projective R-modules

such that

(1) the kernel of the map V ⊗R�W ′ is totally isotropic under (·, ·); and

(2) locally on R, W ′ is isomorphic to V0 ⊗R as B ⊗Qp R-modules.

Proposition 4.2.5. There is a local Hodge-Tate period map

πHT :MD,∞ → F`G,µ,

sending an (R,R+)-valued point of MD,∞ given by a map V → (‹Xb)ad
η (R,R+)

to the quotient of V ⊗Qp R given as the image of the map

V ⊗Qp R→ D(Xb)[1/p]⊗L R.

The local Hodge-Tate period map is G(Qp)-equivariant.

Proof. The proof is exactly the same as the proof of Proposition 7.1.1

of [SW13]. �

Recall that, by Theorem 3.5.9, we have a stratification of F`G,µ by locally

closed strata indexed by elements of B(G,µ−1) and that we have fixed an

element b ∈ B(G,µ−1).

Proposition 4.2.6. The local Hodge-Tate period map factors through

πbHT :MD,∞ → F`bG,µ.

Proof. It suffices to check this on Spa(C,OC)-valued points. Thus, we

have a p-divisible group G/OC with extra structures, equipped with a quasi-

isogeny G ×OC OC/p → Xb ×F̄p OC/p. Moreover, there is a trivialization

TpG ⊗Zp Qp = V compatible with all extra structures, and we have the Hodge-

Tate filtration

0→ Lie G ⊗ C(1)→ TpG ⊗Zp C → (Lie G∨)∨ ⊗ C → 0,

where Fil−1 = Lie G ⊗ C(1) and Fil0 = TpG ⊗Zp C.

Let E be the G-bundle on XC[ corresponding to the image of G under

πHT and the identification F`G,µ ∼= Gr
B+

dR
G,µ . Let EV be the vector bundle on

XC[ corresponding to E and the faithful representation V ; note that µ is still

minuscule as cocharacter into GL(V ). Then EV is constructed from the B+
dR,C-

lattice Ξ in V ⊗Qp BdR,C inducing the above filtration on V ⊗Qp C under the
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Bialynicki-Birula map. Explicitly, if ξ ∈ B+
dR,C is a generator of the maximal

ideal, then the lattice Ξx ⊂ V ⊗Qp BdR,C satisfies

V ⊗Qp B
+
dR,C ⊂ Ξ ⊂ V ⊗Qp ξ

−1B+
dR,C

and

Ξ/(V ⊗Qp B
+
dR,C) = Lie G ⊗ C.

Then EV is the modification of the trivial vector bundle V ⊗Qp OXC[ at the

point ∞ by the lattice Ξ.

In the case of a one-step filtration, one can construct the vector bundle

EV directly: it is the unique vector bundle on XC[ that fits into the diagram

of coherent sheaves

0 // OX
C[
⊗Qp V

// EV� _

��

// i∞∗(Lie G ⊗ C)� _

��

// 0

0 // OX
C[
⊗Qp V

// OXFF,C (1)⊗Qp V
// i∞∗(V ⊗Qp C(−1)) // 0.

But then the proof of Proposition 5.1.6 of [SW13] shows that EV is the vector

bundle attached to the p-divisible group G×OC OC/p, which is quasi-isogenous

to Xb ×F̄p OC/p.
By unraveling the Tannakian formalism behind the construction of the

G-bundle E and keeping in mind the fact that Xb together with the B-action

and polarization determine b, we see that E ' Eb as G-bundles, as desired. �

Remark 4.2.7. The same proof, without keeping track of the polarization,

also works in the case of Rapoport-Zink spaces of EL type to show that the

local Hodge-Tate period map defined in Proposition 7.1.1 of [SW13] factors

through F`bG,µ.

Remark 4.2.8. We have defined the Hodge-Tate filtration in Section 2 in

terms of the p-adic étale cohomology of a universal family of abelian varieties. If

A/OC is an abelian variety and G = A[p∞], then Proposition 4.15 of [Sch13d]

shows that the Hodge-Tate filtration on TpG ⊗Zp C is compatible with the

filtration defined in Section 2, so the local and global Hodge-Tate period maps

are compatible.

Definition 4.2.9. Define the sheaf AutG(‹Xb) on Nilpop
W (F̄p)

by

AutG(‹Xb)(R)

= {α ∈ AutB(‹Xb,R), β ∈ Aut(µ̃p∞,R) | α respects the polarization up to β}.

Lemma 4.2.10. The sheaf AutG(‹Xb) is representable by a formal scheme

over Spf W (F̄p), locally of the form Spf W (R) for a perfect ring R.
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Proof. Forgetting all extra structures defines a closed embedding, so it is

enough to show representability of Aut(‹X) for any p-divisible group X over F̄p.
We may assume that X is completely slope divisible, i.e., that it is isomorphic

to a direct sum of slope divisible isoclinic p-divisible groups Xi, defined over

a finite field, for i = 1, . . . , r, with nonincreasing slopes. Then Aut(‹X) is

a closed subfunctor of the product of two copies of Hom(Xi,Xj)[1/p] over

i, j ∈ {1, . . . , r} with i ≥ j, via sending an automorphism to the endomorphism,

and its inverse. Each of the factors can be identified with the universal cover

of the p-divisible group HXi,Xj . Therefore, each of the factors is representable

by a formal scheme over Spf W (F̄p), by Proposition 4.1.2.

For the final statement, it is enough to see that

AutG(‹Xb)(R) = AutG(‹Xb)(R/p)
and that if R is of characteristic p, then Frobenius induces a bijection of

AutG(‹Xb)(R). Both statements follow from the similar properties of universal

covers of p-divisible groups, for which see [SW13, Prop. 3.1.3]. �

In fact, one can give a more precise description of AutG(‹Xb). As usual,

we denote by

ρ ∈ X∗(G)dom

the half-sum of the positive roots.

Proposition 4.2.11. Let Jb(Qp) be the locally profinite set Jb(Qp) made

into a formal scheme over W (F̄p); i.e., the sections over U ⊂ Jb(Qp) are

continuous maps U →W (F̄p). There is a natural map

AutG(‹Xb)→ Jb(Qp)

all of whose fibres are isomorphic to

SpfW (F̄p)[[x
1/p∞

1 , . . . , x
1/p∞

d ]],

where d = 〈2ρ, νb〉.

Remark 4.2.12. Let us illustrate this result in the case Xb = µp∞×Qp/Zp,
without extra structures. Then there are no maps µp∞ → Qp/Zp, so AutG(‹Xb)
has lower triangular form; more precisely,

Aut(‹Xb) =

(
Q×p 0fiµp∞ Q×p

)
.

In this case, Jb(Qp) = Q×p ×Q×p , and the projection

AutG(‹Xb)→ Jb(Qp)

is given by the diagonal elements. The fibres are given by the unipotent partfiµp∞ ∼= SpfW (F̄p)[[x1/p∞ ]].
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Proof. It is enough to prove the results for AutG(‹Xb) as a formal scheme

over F̄p, as all structures lift uniquely to W (F̄p) by rigidity of perfect rings.

We first consider the case when Xb has an unramified EL structure. By stan-

dard Morita arguments, one can reduce to the case when the EL structure is

given by (F,OF ), with F/Qp an unramified extension and G = ResF/Qp GLn.

If (B,OB) is an unramified PEL datum and B =
∏
iBi is its decompo-

sition into simple factors, then Xb decomposes as
∏
iXb,i and AutG(‹Xb) =∏

i AutGi(
‹Xb,i). Similarly, when B ' Md(F ) is simple, the equivalence of cat-

egories between p-divisible groups with (B,OB)-EL structure and p-divisible

groups with (F,OF )-structure means that it suffices to compute AutF (‹Xb).
See [Ham15, Section 4.1] for more details on this reduction step.

If F = Qp, then G = GLn and we are considering quasi-self-isogenies

of p-divisible groups, without any extra compatibilities. Since Xb is com-

pletely slope divisible, we can write it as Xb = ⊕ri=1Xi, where the Xi are

isoclinic p-divisible groups of strictly decreasing slopes λi ∈ [0, 1]. Using Corol-

lary 4.1.10(1), we see that Aut(‹Xb) takes the lower triangular form

Aut(‹Xb) =

à
Aut(›X1)‹HX2,X1 Aut(›X2)

...
...

. . .‹HXr,X1
‹HXr,X2 · · · Aut(›Xr)

í
.

Moreover, Corollary 4.1.10(2) implies that Aut(X̃i) = Aut(X̃i)(F̄p); as

Jb(Qp) = Aut(‹Xb)(F̄p) =
r∏
i=1

Aut(X̃i)(F̄p),

we see that projection to the diagonal defines a map

Aut(‹Xb)→ Jb(Qp).

The structure of the fibres now follows from Corollary 4.1.10(3) and Proposi-

tion 4.1.2(3). To check that d = 〈2ρ, νb〉, we count dimensions. More precisely,

for i > j, ‹HXi,Xj is representable by Spf F̄p[[x
1/p∞

1 , . . . , x
1/p∞

di,j
]], where di,j is

the dimension of HXi,Xj . If the height of Xi is mi, then Lemma 4.1.8 implies

that the slope of HXi,Xj is λj − λi and its dimension is di,j = mimj (λj − λi).
On the other hand, by making the root data of GLn explicit (cf. [Ham15,

App. A]), we can compute the contribution of the slopes λi, λj to 〈2ρ, νb〉. The

positive roots of GLn (corresponding to the Borel subgroup given by the upper

triangular matrices) are

R+ = {ek − el|k, l ∈ {1, . . . , n}, k < l}.
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We also have

νb = (λ1, . . . , λ1︸ ︷︷ ︸
m1

, . . . , λr, . . . , λr︸ ︷︷ ︸
mr

).

The contribution coming from λi, λj to 〈2ρ, νb〉 is precisely mimj (λj − λi)
= di,j .

The case of a general unramified extension F/Qp follows in the same way,

by working in the category of p-divisible groups with OF -action instead. Let

d = [F : Qp]. The theory developed in Section 4.1 can be extended to define an

internal homomorphism in the category of p-divisible groups with OF -action.

If G is a p-divisible group with OF -action, its rational Dieudonné module D(G)

decomposes as D(G) = ⊕τ :OF ↪→W (F̄p)D(G)τ . Choose an embedding τ0 : OF ↪→
W (F̄p) and let DF (G) := D(G)τ0 . The analogue of Lemma 4.1.8 holds for

DF and homomorphisms of p-divisible groups with OF -action, with the same

proof (but replacing ϕ by ϕd and embedding F into B+
cris via τ0).19 The

structure of AutF (‹Xb) can now be deduced in the same way. The dimension

computation is also analogous to the one above. Let Xb = ⊕ri=1Xi, with the

slope of the F -isocrystal attached to Xi being equal to λi (here, 0 ≤ λi ≤ d,

and λi/d is the slope of Xi as a p-divisible group) and Xi having height mi

as a p-divisible group with OF -action, i.e., height dmi as p-divisible group.

The dimension of the p-divisible group with OF -action corresponding to the

OF -linear homomorphisms between Xi and Xj is di,j = mimj (λj − λi). On

the other hand, the positive roots of ResF/Qp GLn are

R+ = {eτ,k − eτ,l|k, l ∈ {1, . . . , n}, k < l, τ : F ↪→ Q̄p}

and

νb =

Ü
λ1

d
, . . . ,

λ1

d︸ ︷︷ ︸
m1

, . . . ,
λr
d
, . . . ,

λr
d︸ ︷︷ ︸

mr

ê
.

The contribution from slopes λi, λj is again di,j = mimj (λj − λi).
We now consider the case when Xb has an unramified PEL structure.

Recall that we are assuming that the PEL datum is of type (AC). By similar

Morita-theoretic arguments as above (cf. [Ham15, Cor. 4.5]), we can write

(B,OB, ∗) =
∏
i(Bi,OBi , ∗) as a product of simple PEL data. On the level of

19For p-divisible groups with OF -action, there is a more restricted notion of p-divisible

OF -module; the requirement is that the two actions of OF on the Lie algebra agree.

This condition cannot be formulated for a p-divisible groups with OF -action up to quasi-

isogeny, and in fact for p-divisible groups with OF -action up to quasi-isogeny, every-

thing works very similarly to the case of p-divisible OF -modules. For example, note that

B(F,GLn) = B(Qp,ResF/Qp GLn).
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quasi-self-isogenies we get

AutG(‹Xb) =

(∏
i

AutGi(
‹Xb,i))1

↪→
∏
i

AutGi(
‹Xb,i),

where
Ä∏

i AutGi(
‹Xb,i)ä1

is a closed subfunctor of the product, defined by the

condition that the similitude factors on each term are the same. The group G

is defined similarly, as the closed subgroup (
∏
iGi)

1 ↪→ ∏
iGi. The similitude

factor on AutGi(
‹Xbi) defines a map

AutGi(
‹Xbi)→ Q×p

that will factor as

AutGi(
‹Xbi)→ Jbi(Qp)→ Q×p ,

where the latter map is the natural similitude morphism on Jbi . We see that

the result for all Gi implies the result for G, so we can assume that G is simple.

We reduce to one of the following three cases:

(1) Xb is a p-divisible group with (F,OF )-EL structure, where F/Qp is unram-

ified;

(2) Xb is a p-divisible group with (F,OF , ∗)-PEL structure, where ∗ is the

identity on F ;

(3) Xb is a p-divisible group with (F,OF , ∗)-PEL structure, with Qp ⊂ F+ ⊂ F
unramified extensions, ∗ an automorphism of order 2 and F+ = F ∗=1.

The first case was already dealt with above. The second case corresponds to

G = GSpn /OF with n even, while the third to G = GUn/OF+ .

We explain the computation of AutG(‹Xb) in the case of G = GSpn /OF .

As before, d = [F : Qp], and we write Xb = ⊕ri=1Xi, with each Xi isoclinic

of slope λi ∈ [0, d] as p-divisible group with OF -action, and the λi in strictly

decreasing order. The fact that Xb is equipped with a symmetric polarization

means that d − λi is also a slope of Xb, occurring corresponding to the same

height mi as λi. As before, the restriction of an automorphism of ‹Xb to the

graded pieces ‹Xi of the slope filtration defines the map

AutG(‹Xb)→ Jb(Qp).

The fibres of this map can be computed at the same time as the dimension,

and we concentrate on the dimension in the following. We can write

νb =

Ü
λ1

d
, . . . ,

λ1

d︸ ︷︷ ︸
m1

, . . . ,
λr
d
, . . . ,

λr
d︸ ︷︷ ︸

mr

ê
,

with λi + λr+1−i = d, mi = mr+1−i. Using the same choices as in [Ham15,

App. A] and recalling that c : G→ Gm is the multiplier character, the positive
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roots of G = GSpn /OF are

R+ = {eτ,k − eτ,l|k < l ∈ {1, . . . , n/2}, τ : F ↪→ Q̄p}
∪ {eτ,k + eτ,l − c|k 6= l ∈ {1, . . . , n/2}, τ : F ↪→ Q̄p}
∪ {2eτ,k − c|k ∈ {1, . . . , n/2}, τ : F ↪→ Q̄p}.

We compute the contributions coming from slopes λi, λj to both the dimension

of AutG(‹Xb) and to 〈2ρ, νb〉 and check that they are the same.

(1) If λj > λi ≥ d
2 , then the contribution to the dimension of AutG(‹Xb) is, just

like in the EL case, di,j = mimj(λj − λi) and it matches the contribution

from
λj
d ,

λi
d to 〈2ρ, νb〉 by the same argument. Using the polarization, this

also takes care of all cases with d
2 ≥ λj > λi.

(2) If λj ≥ d
2 ≥ d − λi, with i 6= j, then the contribution to the dimension

of AutG(‹Xb) is mimj(λi + λj − d). This is given by the dimension of the

internal Hom OF -module between X∨i and Xj if j < i, computed as in the

EL case, which by the compatibility with the polarization also pins down

the quasi-isogeny between X∨j and Xi. This matches the contribution from
λj
d , 1−

λi
d and λi

d , 1−
λj
d to 〈2ρ, νb〉, using the fact that 〈c, νb〉 = 1.

(3) If λi >
d
2 , the contribution to 〈2ρ, νb〉 from λi

d , 1−
λi
d is mi(mi+1)

2 (2λi−d).

This is also the dimension of the part of HomOF (X∨i ,Xi)[1/p] that is com-

patible with the polarization. Indeed, the polarization induces an involu-

tion on HomOF (X∨i ,Xi)[1/p], and we can compute the dimension of the

part fixed under the polarization using Lemma 4.1.8: the slope is 2λid − 1,

and the height of the fixed part as a p-divisible OF -module is mi(mi+1)
2 .

The case G = GUn is similar and left as an exercise. �

Remark 4.2.13. In view of the theory developed in Section 4.3 and Corol-

lary 4.3.9 in particular, the dimension of AutG(‹Xb) should match the dimension

of central leaves inside the Newton stratum corresponding to b on the special

fiber of a corresponding Shimura variety. This indeed agrees with the dimen-

sion of central leaves as computed by [Ham15, Cor. 7.8].

Note that there is an action of AutG(‹Xb) on MDint . We let AutG(‹Xb)ad
η be

its adic generic fiber over Spa(L,OL). Then the action of AutG(‹Xb)ad
η onMDint

extends to an action onMD,∞. The map πbHT :MD,∞ → F`bG,µ is equivariant

for this action with respect to the trivial action on the target. We would like

to say that πbHT : MD,∞ → F`bG,µ is an AutG(‹Xb)ad
η -torsor. However, we

have only defined the target as a locally closed subspace of F`G,µ. Also, the

condition of being a torsor includes the condition that the map is surjective

locally in some specified topology. It is probably necessary to use some of

the fine topologies from [Wei14] here. Thus, we content ourselves with some
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more basic information. Recall that MD,∞ is preperfectoid and lives over

the perfectoid field E(ζp∞)∧; thus, one can form a perfectoid space ”MD,∞ as

in [SW13, Prop. 2.3.6]. The product”MD,∞ ×Spa(L,OL) AutG(‹Xb)ad
η

exists in the category of adic spaces, and is still a perfectoid space, by the local

structure of the automorphism scheme. On the other hand, the space

MD,∞ ×F`G,µMD,∞ ⊂MD,∞ ×Spa(Ĕ,OĔ)MD,∞
is preperfectoid (as proved in [SW13, Prop. 2.3.7], this condition passes to

closed subsets), so again we can pass to a perfectoid space

(MD,∞ ×F`G,µMD,∞)∧.

Proposition 4.2.14. The action map”MD,∞ ×Spa(L,OL) AutG(‹Xb)ad
η → (MD,∞ ×F`G,µMD,∞)∧

is an isomorphism of perfectoid spaces.

Proof. Let (R,R+) be a perfectoid affinoid algebra over Ĕ.20 We have to

construct an inverse map

(MD,∞ ×F`G,µMD,∞)(R,R+)→ (MD,∞ ×Spa(L,OL) AutG(‹Xb)ad
η )(R,R+).

Given an element of the source, we have (after localization on Spa(R,R+))

two p-divisible groups G1, G2 over R+,21 equipped with quasi-isogenies to Xb
over R+/p, and trivializations of the Tate module on the generic fibre. In

particular, we get an isomorphism of the Zp-local systems given by the Tate

modules of G1 and G2 over R, in other words an isomorphism G1,R
∼= G2,R. We

need to check that this isomorphism extends to R+, as one can then compose

this isomorphism with the given quasi-isogenies to Xb over R+/p to get a self-

quasi-isogeny of Xb, as desired. In this regard, we observe the following lemma,

which is a non-noetherian version of a result of Berthelot, [Ber80].

Lemma 4.2.15. Let R+ be a Zp-algebra that is integrally closed in R =

R+[1/p]. Let G, H be p-divisible groups over R+. Assume that the Newton

polygon of Gs is independent of s ∈ Spec(R+/p) and that the same holds true

for H . Let fR : GR → HR be a morphism of p-divisible groups over R. Then

fR extends, necessarily uniquely, to a morphism f : G → H of p-divisible

groups over R+ if and only if for all geometric rank 1 points Spa(C,OC) of

Spa(R,R+), the base change fC : GC → HC extends to a map fOC : GOC →
HOC .

20In the proof, we are really only using that R+ ⊂ R is bounded and that this property

passes to rational subsets.
21Here, we use that R+ ⊂ R is bounded.
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Proof. For each n ≥ 1, we have to check that the map G[pn]R → H[pn]R
extends to R+. Both schemes G[pn], H[pn] in question are affine and finite

locally free over R+. Thus, the question whether this morphism extends is the

question whether a matrix with entries in R has entries in R+. As

R+ = {f ∈ R | ∀x ∈ Spa(R,R+) : |f(x)| ≤ 1},

we can reduce to the case of a point, i.e., R = K is a complete nonarchimedean

field, and K+ ⊂ K is an open and bounded valuation subring. We may also

assume that K is algebraically closed and rename C = K, C+ = K+. By

assumption, the map extends to OC . Let mOC ⊂ OC be the maximal ideal;

it is also contained in C+. Then C+/mOC ⊂ OC/mOC is a valuation subring.

Finally, we are reduced to the following lemma. �

Lemma 4.2.16. Let V be a valuation ring of characteristic p with quotient

field K . Let G, H be p-divisible groups over V with constant Newton polygon.

Then the map

Hom(G,H)→ Hom(GK , HK)

is a bijection.

Remark 4.2.17. Using this lemma, one can remove the noetherian hypoth-

esis from the main result of [Ber80]; i.e., the same fully faithfulness result holds

true for any integral domain R in place of V . Indeed, to check whether a ho-

momorphism over K extends to R, one has to check whether certain matrices

over K have entries in R, which can be checked on valuation rings.

Proof. The map is clearly injective. For surjectivity, we have to check as

above that certain matrices with coefficients in K have entries in V . Thus, we

may assume that K is algebraically closed.

Observe that it is enough to prove the result up to quasi-isogeny. Indeed,

if f : G→ H becomes divisible by p over K, then G[p]K ⊂ GK is killed by f ,

whence its flat closure G[p] ⊂ G is killed by f , which shows that f is divisible

by p.

Now, e.g., by the Dieudonné-Manin classification, both GK and HK admit

a quasi-isogeny to a completely slope divisible p-divisible group G0, H0 (defined

over F̄p ⊂ V ). We may assume that these quasi-isogenies are genuine isogenies;

then we may take their flat closures over V and divide G, resp. H, by them;

thus, we may assume that GK and HK are completely slope divisible. Then

by [OZ02, Prop. 2.3], G and H are themselves completely slope divisible. As

V is perfect, both G and H decompose as a direct sum of their isoclinic pieces

(cf. [OZ02, Prop. 1.3]); thus G ∼= G0 ×F̄p V , H ∼= H0 ×F̄p V .

Finally, we use that the Dieudonné module functor on V is fully faithful;

cf. [Ber80]. Thus, as G and H come via base extension from F̄p, it remains to
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show that if (D,ϕ) is any isocrystal over F̄p, then

(D ⊗W (F̄p)[1/p] W (V )[1/p])ϕ=1 = (D ⊗W (F̄p)[1/p] W (K)[1/p])ϕ=1.

We may assume that D = Dλ is simple of slope λ = s/r. In that case, we have

to prove

W (V )[1/p]ϕ
r=ps = W (K)[1/p]ϕ

r=ps .

Clearly, the left-hand side is contained in the right-hand side. If s 6= 0, then the

right-hand side is 0, as follows by looking at the p-adic valuation of any nonzero

element. We are left with the case s = 0, where r = 1. But W (K)[1/p]ϕ=1 =

Qp ⊂W (V )[1/p]ϕ=1, finishing the proof. �

Using Lemma 4.2.15, we only have to check the result on geometric rank 1

points. But now, by [SW13, Th. B], p-divisible groups over OC are equivalent

to pairs (T,W ), where T is a finite free Zp-module, and W ⊂ T ⊗Zp C is

the Hodge-Tate filtration. Thus, it remains to check that the Hodge-Tate

filtration is preserved, but this is true since we started with an element of the

fibre product

(MD,∞ ×F`G,µMD,∞)(R,R+). �

We also have the following surjectivity result.

Lemma 4.2.18. Let C/Ĕ(ζp∞) be a complete algebraically closed extension

with ring of integers OC . Then the map

πbHT :MD,∞(C,OC)→ F`bG,µ(C,OC)

is surjective.

Proof. Given x ∈ F`bG,µ(C,OC), we get (corresponding to the represen-

tation G → GL(V ) and using [SW13, Th. B]) a p-divisible group G/OC with

trivialized Tate module, which by functoriality comes equipped with an action

of OB and a principal polarization. To give a point of MD,∞(C,OC), it re-

mains to construct a quasi-isogeny ρ over OC/p. For this, note that the proof of

Proposition 4.2.6 gives an identification between the G-bundle EG correspond-

ing to G, and the G-bundle Ex corresponding to the point x. By assumption,

x ∈ F`bG,µ(C,OC), so there is an isomorphism of G-bundles Ex ∼= Eb, which

gives an isomorphism of G-bundles EG ∼= Eb. Using Theorem 4.1.4, this gives

the desired quasi-isogeny. �

Using these results, we can compute the dimension of the strata F`bG,µ ⊂
F`G,µ. Here, we define the dimension as the Krull dimension, i.e., the length

of the longest chain of specializations.

Proposition 4.2.19. Let K be a complete nonarchimedean field with ring

of integers OK and residue field k. Let X be a partially proper adic space over

Spa(K,OK). Then the dimension of X is equal to the maximal transcendence
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degree of k(x) for x ∈ X , where k(x) is the residue field of the ring of integers

OK(x) in the completed residue field K(x) at x.

Remark 4.2.20. Recall that a map f : X → Y of analytic adic spaces

is partially proper if for any complete nonarchimedean field K with ring of

integers OK ⊂ K and open and bounded valuation subring K+ ⊂ K (so

K+ ⊂ OK), the map

X(K,K+)→ X(K,OK)×Y (K,OK) Y (K,K+)

is a bijection. This is the analogue of the valuative criterion for properness in

this setup.

Proof. As X lives over Spa(K,OK), it is analytic, and thus any point

generalizes to a rank 1 point. It is thus enough to prove the more precise

assertion that for any rank 1 point x, the dimension of the closure {x} is

equal to the transcendence degree of k(x). But the closure {x} gets identified

with the Zariski-Riemann space for k(x)/k (using partial properness), whose

dimension is equal to the transcendence degree of k(x)/k. �

Proposition 4.2.21. Let K be a complete nonarchimedean field with ring

of integers OK and residue field k. Let f : X → Y be map of partially proper

adic spaces over Spa(K,OK), and fix a rank 1 point x ∈ X , with image y ∈ Y .

Let Xy = X ×Y {y} be the fibre of f over y. Let {x}X ⊂ X , {y}Y ⊂ Y and

{x}Xy ⊂ Xy be the respective closure. Then

dim {x}X = dim {y}Y + dim {x}Xy .

Proof. Let k(x) and k(y) have the same meaning as in Proposition 4.2.19.

Then the statement translates into the additivity of transcendence degrees for

the extensions k(x)/k(y)/k. �

Proposition 4.2.22. For any complete nonarchimedean field K/OĔ , the

space

AutG(‹Xb)ad ×Spa(OĔ ,OĔ) Spa(K,OK)

is partially proper over Spa(K,OK), of dimension 〈2ρ, νb〉.

Proof. The adic generic fiber is partially proper by Lemma 4.2.15. (A

quasi-self-isogeny respecting extra structures over Spa(C,OC) will also re-

spect the extra structures when it extends to Spa(C,C+) by the injectiv-

ity of the map in Lemma 4.2.16.) For the claim about the dimension of

AutG(‹Xb)ad×Spa(OĔ ,OĔ)Spa(K,OK), it is enough to consider a connected com-

ponent, all of which are by Proposition 4.2.11 given by

Spa(OĔ [[x
1/p∞

1 , . . . , x
1/p∞

d ]],OĔ [[x
1/p∞

1 , . . . , x
1/p∞

d ]])×Spa(OĔ ,OĔ) Spa(K,OK).
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To compute the dimension, we may assume thatK is algebraically closed. Then

K is perfectoid, and by tilting we can assume that K is of characteristic p. In

that case, the space is topologically the same as

Spa(OĔ [[x1, . . . , xd]],OĔ [[x1, . . . , xd]])×Spa(OĔ ,OĔ) Spa(K,OK).

But this is the d-dimensional open unit disc over K. �

Proposition 4.2.23. The dimension of F`bG,µ is equal to 〈2ρ, µ〉−〈2ρ, νb〉.

Proof. Both F`G,µ and MD,∞ are partially proper adic spaces defined

over Spa(Ĕ,OĔ) of dimension 〈2ρ, µ〉. Pick any rank 1 point x ∈ MD,∞
such that the dimension of {x} is 〈2ρ, µ〉, and let y ∈ F`bG,µ be its image.

Let ȳ be a geometric point above y, corresponding to a completed algebraic

closure C of K(y), and pick a lift of ȳ to MD,∞, using Lemma 4.2.18. Then

Proposition 4.2.21 shows that

〈2ρ, µ〉 ≤ dim {y}+ dimMD,∞,y.

But dimMD,∞,y = dimMD,∞,ȳ, and using Proposition 4.2.14 and the choice

of ȳ, one has

dimMD,∞,ȳ = dim AutG(‹Xb)ad ×Spa(OĔ ,OĔ) Spa(C,OC).

The latter has been computed in Proposition 4.2.22, showing the inequality

dim F`bG,µ ≥ dim {y} ≥ 〈2ρ, µ〉 − 〈2ρ, νb〉.

For the converse, pick any rank 1 point y ∈ F`G,µ. As before, one sees that

dimMD,∞,y = 〈2ρ, νb〉, so pick a rank 1 point x ∈MD,∞,y whose closure is of

dimension 〈2ρ, νb〉. Applying Proposition 4.2.21, we see that the dimension of

the closure of x inMD,∞ is at least dim {y}+ 〈2ρ, νb〉. On the other hand, the

dimension of the closure of x is bounded by dimMD,∞ = 〈2ρ, µ〉. This shows

that

dim {y} ≤ 〈2ρ, µ〉 − 〈2ρ, νb〉,
which (as y was arbitrary) proves the other inequality. �

4.3. A product formula. We now return to our global setting, where we

want to study the Hodge-Tate period map πHT : SKp → F`G. Recall that we

are restricting to the case when the Shimura datum (G,X) is of PEL type.

More precisely, we fix global PEL data as follows; cf. [Kot92b, §5]. Let B

be a finite-dimensional simple Q-algebra with center F , and let V be a faithful

finitely generated B-representation. Let ∗ be a positive involution on B, and

let F+ = F ∗=1. On V , we fix a nondegenerate Q-valued alternating form (·, ·)
such that (bv, w) = (v, b∗w) for all v, w ∈ V and b ∈ B. Let G/Q be the

algebraic group whose R-valued points are

G(R) = {x ∈ EndB⊗R(V ⊗R) | xx∗ ∈ R×}.
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We assume that G is connected; under the classification of [Kot92b], this

amounts to excluding type D. Finally, we fix a ∗-homomorphism h : C →
EndB⊗R(V ⊗ R) such that the symmetric real-valued bilinear form (v, h(i)w)

on V ⊗R is positive-definite. Note that h induces a map, denoted in the same

way, h : ResC/R → GR and, in particular, a Shimura datum.

We need to assume that these data are “unramified” at p. More precisely,

we assume that BQp is a product of matrix algebras over unramified extensions

of Qp, and fix a maximal Z(p)-order OB ⊂ B; we assume that ∗ preserves OB.

Finally, we assume that there exists a Z(p)-lattice Λ ⊂ V that is self-dual under

(·, ·) and stable under OB, and we fix such a Λ. Using these data, we can define

a connected reductive group GZ(p)
over Z(p) with generic fibre G as

GZ(p)
(R) = {x ∈ EndOB⊗R(Λ⊗R) | xx∗ ∈ R×}.

We fix the hyperspecial maximal compact open subgroup Kp = GZ(p)
(Zp)

⊂ G(Qp).

Let Kp ⊂ G(Apf ) be a compact open subgroup, and fix a place p|p of E.

As in [Kot92b], one can define a moduli space of abelian varieties with extra

structures SKpKp over OE,p ⊂ E. In most cases, the generic fibre SKpKp/E of

SKpKp is the Shimura variety corresponding to (G, {h}); in general, however,

the Hasse principle for the group G fails, and it consists of |ker1(Q, G)| copies

of this Shimura variety. Thus, the notation of this section conflicts slightly

with the previous notation for Shimura varieties of Hodge type.

Let Fq be the residue field of OE,p. The special fiber SKpKp ×OE,p Fq
admits a Newton stratification by locally closed strata S b

KpKp indexed by b ∈
B(G,µ−1); cf. [RR96]: A point x ∈ SKpKp ×OE,p Fq gives rise to a p-divisible

group with extra structure, which can be translated into an isocrystal with

G-structure, and is classified by an element b ∈ B(G). By [RR96], this element

actually lies in B(G,µ−1).

One of the main results of [Man05] is a decomposition of the Newton

stratum S b
KpKp into the Rapoport-Zink space Mb and the Igusa variety Igb

corresponding to b. Thus, we first recall these two objects. From the last

section, we already know the Rapoport-Zink space.

For b ∈ B(G,µ−1), choose a completely slope divisible p-divisible group

Xb over F̄q with extra structures giving rise to the σ-conjugacy class b, as

in [Man05, §3]. Let Dint,b be the integral data corresponding to the base

extension of B, V,OB,Λ to Zp, and (µ, b). Then Dint,b is of PEL type, and

we consider the corresponding Rapoport-Zink space Mb := MDint,b
, which

lives over OĔ , where Ĕ is the completion of the maximal unramified extension

of Ep.

Next, we want to introduce the Igusa variety.
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Definition 4.3.1. We let Igb/Spec F̄q be the functor sending an F̄q-algebra

R to the set of isomorphism classes of pairs

{(A, ρ) | A ∈ SKpKp(R), ρ : A[p∞]
∼→ Xb ×F̄p R},

where A ∈ SKpKp(R) is an abelian variety equipped with extra structures (and

satisfying the determinant condition) and the isomorphism ρ is compatible with

the extra structures; as usual, it is only supposed to preserve the polarization

up to a scalar, i.e., an automorphism of µp∞,R.

Remark 4.3.2. This definition is different from the Igusa varieties defined

in [Man05], and we will explain their relation below.

Proposition 4.3.3. The functor Igb is representable by a scheme.

Proof. It is enough to prove that the map Igb → SKpKp ×OE,p F̄q is rel-

atively representable. Let A be the universal abelian variety over SKpKp .

Then we are considering the inverse limit of the schemes parametrizing iso-

morphisms A[pn] ∼= Xb[pn] compatible with extra structures, each of which is

representable. �

From the definition of Igb, it is evident that the group of automorphisms

of Xb respecting the extra structures acts on it. However, next we give an

alternative description of Igb that shows that the larger group AutG(‹Xb) acts

on Igb.

Lemma 4.3.4. For an F̄q-algebra R, Igb(R) can be identified with the set

of isomorphism classes of pairs (A, ρ̃), where A ∈ SKpKp(R) is an abelian

variety considered up to p-power isogeny (respecting the extra structures) and

ρ : A[p∞]
∼→ Xb ×F̄p R

is a quasi-isogeny (respecting the extra structures).

Proof. Each element (A, ρ) of Igb(R) determines a pair (A, ρ) as in the

statement of the lemma.

Conversely, given A ∈ SKpKp(R) with a quasi-isogeny

ρ : A[p∞]
∼→ Xb ×F̄p R,

we can find a unique abelian variety A′ with extra structures equipped with a

p-power isogeny to A, such that A[p∞] gets identified with Xb; i.e., the induced

quasi-isogeny

ρ′ : A′[p∞]
∼→ Xb ×F̄p R

is an isomorphism. Then (A′, ρ′) defines a point of Igb(R), as desired. �

Corollary 4.3.5. The formal group scheme AutG(‹Xb) acts canonically

on Igb. Moreover, Igb is perfect ; i.e., the Frobenius map is an automorphism.
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Proof. The first part follows from Lemma 4.3.4 by acting on ρ (noting

that quasi-isogenies of Xb are the same as automorphisms of ‹Xb).
For the second part, we have to see that for any F̄q-algebra R, the Frobe-

nius of R induces an automorphism of Igb(R). But pulling back under Frobe-

nius induces an equivalence on the category of abelian varieties up to p-power

isogeny (as Verschiebung gives an inverse up to multiplication by p). Similarly,

pullback under Frobenius induces an equivalence on the category of p-divisible

groups up to quasi-isogeny, showing that the datum of ρ is preserved. �

Now we recall the more classical objects; for more details, see [Man05].

The leaf C b corresponding to Xb is the subset of the locally closed stratum

S b
KpKp ×Fq F̄q where the fibers of the p-divisible group A[p∞] at all geometric

points are isomorphic to Xb:

C b :=
¶
x ∈ S b

K | Ax[p∞]×κ(x) κ(x) ' Xb ×F̄p κ(x)
©
.

This is a priori defined only as a subset of S b
KpKp ×Fq F̄q, but Proposition 1

of [Man05] shows that C b is a closed subset and defines a smooth subscheme

of S b
KpKp ×Fq F̄q when endowed with the induced reduced structure. We note

that contrary to the objects defined so far, C b depends on the choice of Xb
within its isogeny class.

Recall that

Xb = ⊕ri=1Xi,
where the Xi are isoclinic p-divisible groups of strictly decreasing slopes λi ∈
[0, 1]. Let Gb be the p-divisible group of the universal abelian variety A /SKpKp

restricted to C b. Then Gb is completely slope divisible, with slope filtration

0 ⊂ Gb,1 ⊂ · · · ⊂ Gb,r = Gb,

with Gib := Gb,i/Gb,i−1 isoclinic of slope λi. The OB-action on G and the polar-

ization respect this filtration, so that each Gib is endowed with an OB-action

and there are induced polarizations Gib → (Gjb )∨ for all i, j with λi + λj = 1.

Definition 4.3.6. The (pro-)Igusa variety is the map

I b
Mant → C b

that over a C b-scheme S parametrizes tuples (ρi)
r
i=1 of isomorphisms

ρi : Gib ×C b S
∼→ Xi ×Spec F̄p S

that are compatible with the OB-actions on Gib and Xi, and commute with the

polarizations on G and Xb, up to an automorphism of µp∞,S .

Remark 4.3.7. A version of these Igusa varieties is considered in [Man05];

see also Section II of [HT01] for the case of one-dimensional p-divisible groups.

Rather than trivializing the whole isoclinic p-divisible group Gib, one trivializes



THE GENERIC PART OF THE COHOMOLOGY OF SHIMURA VARIETIES 717

the Gib[pm] for some positive integer m. More precisely, let I b
Mant,m be the

moduli space of isomorphisms on C b-schemes S

ρi,m : Gib[pm]
∼→ Xi[pm]×F̄p S,

that (fppf locally) lift to arbitrary m′ ≥ m and that respect the extra struc-

tures. Proposition 4 of [Man05] shows that the underlying reduced subscheme

of I b
Mant,m is a finite étale and Galois cover of C b.

In view of the theory developed in Section 4.1, we can identify the set

of endomorphisms of Xi[pm], which lift to arbitrary m′ ≥ m, with the pm-

torsion in the étale p-divisible group HXi,Xi . Now consider the intersection of

the scheme-theoretic images of the automorphisms of Xi[pm+k] inside the auto-

morphisms of Xi[pm] (under the natural restriction map). By Lemma 4.1.5, the

images of Aut(Xi[pm+k]) ↪→ Aut(Xi[pm]) will stabilize for large enough k, giv-

ing rise to an open and closed subscheme of the finite étale scheme HXi,Xi [p
m].

This shows that I b
Mant,m → C b is a quasitorsor under an étale group scheme.

From [Man05, Prop. 4] (which produces sections over a finite étale cover), it

follows that they are actually torsors. In particular, we see that I b
Mant,m is

actually already reduced.

Thus, the scheme

I b
Mant = lim←−

m

I b
Mant,m

is a pro-étale cover of C b.

Note that, as Igb is reduced, the natural map Igb → SKpKp factors over

Igb → C b. Moreover, as any homomorphism between p-divisible groups pre-

serves the slope filtration by Corollary 4.1.10, we see that any isomorphism

Gb ∼= Xb induces isomorphisms Gib ∼= Xi, and thus there is a natural map

Igb → I b
Mant.

Proposition 4.3.8. The perfect scheme Igb is the perfection of I b
Mant,

via the natural map Igb → I b
Mant.

Proof. Let (I b
Mant)

perf be the perfection of I b
Mant. Then we claim that

the p-divisible group Gb over C b becomes canonically isomorphic to Xb when

pulled back to (I b
Mant)

perf . Recall that Gb has a slope filtration

0 ⊂ Gb,1 ⊂ · · · ⊂ Gb,r = Gb,

with Gib := Gb,i/Gb,i−1 isoclinic of slope λi. Moreover, when pulled back along

I b
Mant → C b, each Gib becomes trivialized to Xi.

The existence of the slope filtration on Gb means that we have integers

0 ≤ tr < · · · < t2 < t1 ≤ s, such that for i = 1, . . . , r,

(1) the slope λi = ti
s ;
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(2) the quasi-isogenies
F s

pti
: Gb,i → (Gb,i)(ps),

where F is the Frobenius isogeny, are genuine isogenies;

(3) the induced maps
F s

pti
: Gib → (Gib)(ps)

are isomorphisms.

The inequalities between the ti imply that F s

pti
acts nilpotently on Gb,i−1. Re-

peated iterations of
F s

pti
: (Gb,i)(p−s) → Gb,i

can be used to construct canonical splittings Gib ↪→ Gb,i over (I b
Mant)

perf .

Thus, G decomposes canonically into G1 × · · · × Gr over (I b
Mant)

perf , and

this is trivialized to X1 × · · · × Xr = Xb, as desired. �

We remark that Jb(Qp) ⊂ AutG(‹Xb) acts on Igb. However, only a certain

submonoid of Jb(Qp) acts on I b
Mant; Mantovan, [Man05], does however con-

struct a canonical action of Jb(Qp) on the étale cohomology of I b
Mant. From

Proposition 4.3.8, it follows that the étale cohomology of I b
Mant is also the étale

cohomology of Igb, on which we have a natural action of Jb(Qp). We leave it

to the reader to verify that this is the same action as the one constructed by

Mantovan.

Corollary 4.3.9. The map Igb → C b is faithfully flat.

As the map is obviously a quasitorsor under the automorphisms of Xb
respecting the extra structure, this implies that it is in fact a torsor under

this group. Note that C b is smooth, while the scheme of automorphisms of Xb
is a highly nonreduced object like SpecF̄p[[X

1/p∞

1 , . . . , X
1/p∞

d ]]/(X1, . . . , Xd).

The fact that a torsor under this group over something smooth is a perfect

scheme forces the smooth directions of the base to match with the nonreduced

directions of the group, so that one can deduce that the dimension of C b

is d = 〈2ρ, νb〉, for example by looking at the transitivity triangle for the

cotangent complex.

Proof. As I b
Mant is a cofiltered limit of smooth schemes along affine tran-

sition maps, its Frobenius morphism is (faithfully) flat, and thus Igb → I b
Mant

is faithfully flat. We have already seen that I b
Mant → C b is faithfully flat, so

we get the result. �

As Igb is a perfect scheme, it lifts uniquely to a flat p-adic formal scheme

over W (F̄q) = OĔ , which we denote by IgbOĔ
. As a moduli problem on Nilpop

OĔ
,

it parametrizes abelian varieties up to p-power isogeny in SKpKp , equipped
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with an isomorphism of ‡A[p∞] with (the canonical lift of) ‹Xb, respecting all

extra structures.

One can also describe this deformation of Igb to mixed characteristic dif-

ferently. For this, fix a lift (Xb)OK of Xb up to quasi-isogeny (with its extra

structures) to OK , where OK is the ring of integers of some complete nonar-

chimedean field K/Ĕ; in other words, pick a point (Xb)OK ∈ Mb(OK). This

is possible (with K = Ĕ), as Mb is formally smooth. One gets the following

lemma.

Lemma 4.3.10. The points of the formal scheme IgbOK = IgbOĔ
×OĔ OK

over R ∈ Nilpop
OK are given by the pairs (A, ρ), where A ∈ SKpKp(R) is an

abelian variety with extra structure, and

ρ : A[p∞]
∼→ (Xb)OK ×OK R

is an isomorphism compatible with the extra structure. �

We will also need a variant of Igusa varieties, where one trivializes A[p∞]

only up to quasi-isogeny.

Definition 4.3.11. Let Xb be the functor sending R ∈ Nilpop
OE,p to the set

of pairs (A, ρ), where A ∈ SKpKp(R) is an abelian variety with extra structure,

and

ρ : A[p∞]×R R/p→ Xb ×F̄q R/p

is a quasi-isogeny compatible with the OB-action and the polarization, up to

an automorphism of µ̃p∞,R/p.

Fix a lift (Xb)OK of Xb to OK as above. We define a map of formal schemes

over OK ,

IgbOK ×OĔ Mb → XbOK .

For R ∈ Nilpop
OK , let

(A, ρ), (G, ρ′) ∈ (IgbOK ×Mb)(R).

Thus, A ∈ SKpKp(R) is an abelian variety with extra structure, equipped with

an isomorphism

ρ : A[p∞] ∼= (Xb)OK ×OK R.
On the other hand, G is a p-divisible group with extra structure over R,

equipped with a quasi-isogeny ρ′ to Xb over R/p, which lifts uniquely to a

quasi-isogeny (denoted in the same way)

ρ′ : G → (Xb)OK ×OK R.

We get the composite quasi-isogeny G → A[p∞]. It follows that there is a

unique quasi-isogeny of p-power order A′ → A such that A′[p∞]→ A[p∞] gets
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identified with G → A[p∞]. This defines a new point A′ ∈ SKpKp(R), which

comes equipped with a quasi-isogeny

ρ′ : A′[p∞] = G → (Xb)OK ×OK R

and, in particular, a quasi-isogeny to Xb over R/p.

Lemma 4.3.12. The map constructed above induces an isomorphism and

fits into a commutative diagram

IgbOK ×OĔ Mb

��

∼=
// XbOK

��

Mb Mb.

Here, the first vertical map is projection onto the second factor, and the second

vertical map sends (A, ρ) ∈ Xb to (A[p∞], ρ) ∈Mb.

In particular, choosing K = Ĕ above, Xb is representable by a formal

scheme.

Proof. The diagram commutes by construction.

We now define the inverse of the top horizontal map: suppose we are

given a pair (A′, ρ′) ∈ Xb(R). In order to define (G, ρ′) ∈ Mb(R) we just take

(A′[p∞], ρ′). From the quasi-isogeny

ρ′ : A′[p∞]→ (Xb)OK ×OK R,

we find a quasi-isogeny of p-power degree A′ → A such that the induced quasi-

isogeny

ρ : A[p∞]→ (Xb)OK ×OK R
is an isomorphism, so we get (A, ρ) ∈ IgbOK (R). It is easy to verify that this

construction is inverse to the horizontal map. �

We would like to say that Xb is an AutG(‹Xb)-torsor over the completion

of SKpKp along S b
KpKp . It is clear that it is a quasitorsor, and it remains to

show that the map is locally surjective in some topology, the naive choice of

course being the fpqc topology.

If this were true, then one could take the pushout along AutG(‹Xb) →
Jb(Qp) to get a Jb(Qp)-torsor over S b

KpKp . This Jb(Qp)-torsor can in fact be

constructed, as in the following proposition (which will not be used in the

sequel, but is included as it fits the current discussion).

Proposition 4.3.13. Let S be a scheme over F̄p, and let X be a p-divisible

group with extra structure over S. Assume that there is some b ∈ B(G) such

that all fibres of X are quasi-isogenous to Xb (compatibly with extra structures).

Then there is a natural Jb(Qp)-torsor over S that above any geometric point
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x̄ ∈ S parametrizes quasi-isogenies between Xx̄ and Xb (compatible with extra

structures).

Remark 4.3.14. The Jb(Qp)-torsor is to be understood as in [BS15]; more

precisely, there is a sheaf of (abstract) groups on Sproét corresponding to the

topological group Jb(Qp), and we are considering a torsor on Sproét under this

sheaf of groups. If S is connected and locally topologically noetherian and

x̄ ∈ S is a geometric base point, this corresponds to a map

πproét
1 (S, x̄)→ Jb(Qp).

This map and the Jb(Qp)-torsor only depend on X up to isogeny. We remark

that the displayed map may have noncompact image in general, but the image

is compact in case X admits a slope decomposition (or is isogenous to such an

X); this explains [OZ02, Ex. 4.2], where a p-divisible group over a nonnormal

base is constructed that is not isogenous to one admitting a slope filtration.

We remark that most Newton strata, e.g., the basic one, give such examples:

For the basic Newton stratum, the image of the displayed homomorphism is a

discrete cocompact subgroup of Jb(Qp) related to p-adic uniformization.

Proof. We may assume that S is perfect. In that case, we consider the

functor sending any T ∈ Sproét to the set of quasi-isogenies between XT and

(Xb)T , respecting extra structures. This is a Jb(Qp)-quasitorsor, and we want

to prove that it is a torsor.

First, we check this when S is strictly local, so assume S = Spec R is

the spectrum of a strictly henselian perfect ring R. In that case, we need to

show that there is a quasi-isogeny between X and Xb, compatible with extra

structures. As there is such a quasi-isogeny over the special point, the result

follows from the following lemma.

Lemma 4.3.15. Let R be a strictly henselian perfect ring with residue

field k. Then the functor G 7→ Gk from the category of p-divisible groups

over R with constant Newton polygon, up to isogeny, to p-divisible groups over

k up to isogeny is an equivalence of categories.

Remark 4.3.16. In fact, the proof will show that if G and H are p-divisible

groups with constant Newton polygon over R, then there is a constant c de-

pending only on the heights of G and H such that for any homomorphism

ψk : Gk → Hk over k, pcψk lifts to a (necessarily unique) homomorphism

G→ H; cf. [OZ02, Cor. 3.4].

Proof. Choose an embedding F̄p ↪→ R. Assume for the moment that we

know that any p-divisible group G over R with constant Newton polygon is

isogenous to G0,R := G0 ×F̄p R for some p-divisible group G0 over F̄p. By the
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Dieudonné-Manin classification, the functor in the lemma is essentially surjec-

tive. To check fully faithfulness of the functor, we may restrict to calculating

HomR(G,H)[1/p] where G = G0,R, H = H0,R. By fully faithfulness of the

Dieudonné module functor over perfect rings (first deduced by Gabber from

results of Berthelot, [Ber80], cf. also [Lau13, Th. D]), it is then enough to check

that for any isocrystal (D,ϕ) over F̄p,

(D ⊗W (R)[1/p])ϕ=1 = (D ⊗W (k)[1/p])ϕ=1.

We may assume that D = Dλ is simple of slope λ; if λ 6= 0, then there are no

ϕ-invariants, and if λ = 0, then both sides are equal to Qp.

It remains to see that any p-divisible groupG overR with constant Newton

polygon is isogenous to a constant p-divisible group.22 More precisely, choose

a completely slope divisible G0/F̄p with an isogeny ψk : Gk → G0,k that one

can assume to be of degree bounded only in terms of the height h of G. Then

we claim that there is a (necessarily unique) quasi-isogeny ψ : G→ G0,R lifting

ψk, and whose degree is bounded only in terms of h; i.e., there is a constant

c = c(h) such that pcψ : G→ G0,R is an isogeny.

For this, assume first that R is an integral domain, with quotient field K.

By Lemma 4.2.16 (cf. Remark 4.2.17), the functor from p-divisible groups

over R to p-divisible groups over K is fully faithful. We can find an isogeny

ψ′K : GK → G0,K of degree bounded only in terms of h, which then extends

to a map ψ′ : G → G0,R of degree bounded only in terms of h. Over k, ψk
and ψ′k differ by a quasi-isogeny of G0 of bounded degree; correcting ψ′ by this

quasi-isogeny gives the desired quasi-isogeny ψ : G→ G0,R lifting ψk, which is

of bounded degree.

In general, let {pi} be the minimal prime ideals of R (which may be

infinitely many);23 then the result holds true over each R/pi, which is still

a strictly henselian perfect ring. Let R̃ ⊂ ∏
iR/pi be the subring of those

elements f = {fi ∈ R/pi} for which f̄ := f̄i ∈ k is independent of i. Then R̃ is

another strictly henselian perfect ring, R ↪→ R̃, and there is an isogeny

ψR̃ : GR̃ → G0,R̃.

Indeed, pcψR̃ will be an actual isogeny, and then to write down this isogeny, one

has to write down many matrices with entries in R̃; but one has these matrices

with entries in R/pi for each i, reducing to the same matrix over k. It remains

to see that ψR̃ is defined over R, i.e., that some matrices with coefficients

in R̃ have coefficients in R. For each i, R̃/piR̃ is a strictly henselian perfect

22Cf. [OZ02, Cor. 3.6] in the case whereR is the perfection of a noetherian strictly henselian

ring R′ and G is defined over R′.
23If there are only finitely many, e.g., if S is the perfection of a noetherian scheme, one

can argue as in [OZ02, end of proof of Prop. 3.3].
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ring, so ψR̃/piR̃ is uniquely determined; by uniqueness, it must be given by the

base extension of ψR/pi , which is already known to exist. Thus, we finish by

observing that

R = {f ∈ R̃ | ∀i : f mod pi ∈ R/pi ⊂ R̃/piR̃}.

To verify the displayed equation, we observe that R → R̃ is a v-cover in the

sense of [BS17], so that by [BS17, Th. 4.1(i)] (applied to E = OX),

R = {f ∈ R̃ | f ⊗ 1 = 1⊗ f ∈ R̃⊗R R̃}.

As everything is reduced, the latter equality can be checked as a system of

equalities in

(R̃⊗R R̃)/pi(R̃⊗R R̃) = R̃/piR̃⊗R/pi R̃/piR̃,

as desired. �

Now we go back to a general perfect base scheme S. We need to find

a quasi-isogeny between X and Xb (compatible with extra structures) locally

on Sproét. For any geometric point x̄ ∈ S, we can find such a quasi-isogeny

over Sx̄. Thus, fixing any n, after replacing S by an étale neighborhood of x̄

and X by a quasi-isogenous p-divisible group, we can assume that there is an

isomorphism X[pn] ∼= Xb[pn] compatible with extra structure.

In that case, we can look at the Kb-quasitorsor S̃ → S of isomorphisms

XT ∼= (Xb)T compatible with extra structures on the category of perfect

S-schemes T , where Kb ⊂ Jb(Qp) is the compact open subgroup of automor-

phisms of Xb, compatible with extra structures. Note that S̃ is representable

by a perfect scheme. We claim that if n was chosen large enough (depending

only on Xb), then this quasitorsor is a torsor; i.e., S̃ → S is faithfully flat.

This will then give the desired quasi-isogeny locally on Sproét (namely, over the

pro-étale cover S̃ → S).

To show that S̃ is a torsor, we need to see that it is faithfully flat, so we

can assume that S = Spec R is strictly local. We need to show that there is

an isomorphism X ∼= (Xb)R compatible with extra structures, assuming that

such an isomorphism exists on pn-torsion for n big enough.

As before, let k be the residue field of R. Then Xk and Xb have isomorphic

pn-torsion; from [Sch13a, Lemma 4.4] one deduces that there is an isomorphism

ψx : Xb ∼= Xk compatible with extra structures, if n was chosen large enough;

moreover, one can assume that this isomorphism reduces to the given one

Xb[pn] ∼= Xk[pn] on pn/2-torsion (say, n = 2m is even). From Lemma 4.3.15

and Remark 4.3.16, we see that ψx lifts to a quasi-isogeny ψ : (Xb)R → X,

such that pcψ : (Xb)R → X and pcψ−1 : X → (Xb)R are actual isogenies,

where c is a constant depending only on Xb. Then the kernel G ⊂ (Xb)R of

pcψ is contained in the p2c-torsion; thus, it is the kernel of pcψ : (Xb)R[p2c]→
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X[p2c] ∼= (Xb)R[p2c] (if m ≥ 2c, which we may assume). By choosing m large

enough and using Lemma 4.1.5, we may arrange that pcψ lies inHXb,Xb [p
2c](R).

But as R is strictly henselian perfect,

HXb,Xb [p
2c](R) = HXb,Xb [p

2c](F̄p).

It follows that G ⊂ (Xb)R is constant, G = G0,R, for G0 ⊂ Xb, with Xb/G0
∼= Xb

compatibly with extra structures (as this is true over k). But then pcψ factors

over an isomorphism

(Xb/G0)R ∼= X,
where the left-hand side is isomorphic to (Xb)R. This gives the desired isomor-

phism X ∼= (Xb)R compatible with extra structures. �

Now we go back to the study of Igusa varieties. Let X b := (Xb)ad
η be the

adic generic fiber of the formal scheme Xb.

Definition 4.3.17. Let X b∞ be the functor that sends a complete affinoid

(Ĕ(ζp∞),OĔ(ζp∞ ))-algebra (R,R+) to the set of triples (A, ρ, α), where (A, ρ) ∈
X b(R,R+) and

α : Λ→ TpA
is a morphism of OB-modules such that

(1) the pairing (·, ·) on Λ matches the pairing on TpA induced by the polar-

ization and the fixed choice of p-power roots of unity; and

(2) the induced maps

Λ→ TpAad
η (C,C+)

on all geometric points Spa(C,C+) of Spa(R,R+) are isomorphisms.

Remark 4.3.18. There are natural maps Xb → Mb and X b∞ → Mb
∞, de-

fined by sending an abelian variety to its p-divisible group. We can check on

the level of moduli problems that X b∞ fits into the Cartesian diagram

X b∞ //

��

Mb
∞

��

X b //Mb,

therefore it is representable by an adic space.

We let (IgbOK )ad
η be the generic fiber of the formal scheme IgbOK .

Corollary 4.3.19. We have an isomorphism

(IgbOK )ad
η ×Spa(Ĕ,OĔ)M

b
∞
∼→ X b∞,K .

In particular, X b∞ is preperfectoid.
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Proof. The first part follows from the decomposition of Xb in Lemma 4.3.12

and the cartesian diagram of Remark 4.3.18. The final assertion follows for-

mally from the facts that Mb
∞ is preperfectoid and that IgbOK is locally of the

form W (R)⊗OĔOK for a perfect ring R, so that (if K is perfectoid) its generic

fibre is a perfectoid space. �

We let “X b∞ be the perfectoid space associated with X b∞ as in [SW13,

Prop. 2.3.6]. Let SKp be the perfectoid infinite-level Shimura variety over Ep.

Let SbKp ⊂ SKp be the locus of those points Spa(K,K+) → SKp over which

the universal abelian variety over K extends to K+, and defines a point of

S b
KpKp over the residue field of K+. This is the preimage under the continu-

ous specialization map of the locally closed subset S b
KpKp ⊂ SKpKp ×OE,p Fq,

and thus SbKp ⊂ SKp is a locally closed subset.

Lemma 4.3.20. The perfectoid space “X b maps to SbKp by forgetting the

quasi-isogeny ρ and to Mb
∞ by sending (A, ρ) to (A[p∞], ρ). The induced map“X b∞ → (Mb

∞ ×F`G,µ S
b
Kp)∧

is an isomorphism of perfectoid spaces.

In other words,

X b∞ //

��

Mb
∞

πbHT
��

SbKp

πHT
// F`G,µ

becomes a Cartesian diagram when one takes points over a perfectoid space.

Proof. Note that the diagram commutes by Remark 4.2.8. Therefore, the

map in the lemma is well defined. We first check the fact that the diagram

is Cartesian on (C,OC)-points, where C/Ĕ(ζp∞) is complete and algebraically

closed with ring of integers OC . A (C,OC)-point of SbKp gives rise to a couple

(A, α), where A/OC is an abelian variety with extra structures and α : Λ →
TpA(C,OC) is an isomorphism compatible with extra structures. A (C,OC)-

point ofMb
∞ gives us a triple (G, β, ρ), where G/OC is a p-divisible group with

extra structures, β : Λ
∼→ TpG(C,OC) is a trivialization of its integral Tate

module and G ×OC OC/p→ Xb ×F̄p OC/p is a quasi-isogeny.

The fact that (A, α) and (G, β, ρ) are mapped to the same point of F`G,µ
under πHT and πbHT means that the Hodge-Tate filtrations on TpA ⊗ C and

TpG⊗C are identified under the isomorphism β◦α−1. Now [SW13, Th. B] gives

an isomorphism A[p∞] ∼= G extending the given isomorphism on the generic

fibre. Thus, the given data assemble into a point of X b∞, and one checks that

these constructions are inverse.
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Now, if (R,R+) is any perfectoid affinoid Ĕ(ζp∞)-algebra, one gets similar

data (A, α), (G, β, ρ) over R+. One has to check that the isomorphism β ◦α−1

between A[p∞]R and GR extends to R+. This follows from Lemma 4.2.15

above. �

Putting together Remark 4.3.18 and Lemma 4.3.20, we get a diagram with

Cartesian squares (the right one when evaluated on perfectoid spaces)

Xb

��

X b∞oo //

��

SbKp

πbHT
��

Mb Mb
∞oo

πHT
// F`G,µ.

4.4. Étale cohomology. Fix a prime ` 6= p, and consider the map

πHT : SKp → F`G,µ.

In this final subsection, we use the geometric results established so far to

identify the fibres of F = RπHT∗Z/`nZ with the cohomology of Igusa varieties.

In this section, we make the additional assumption that SKpKp is proper over

OE,p. It is known that this is equivalent to asking that G is anisotropic over Q;

cf. [Lan11].

Let C be a complete algebraically closed extension of Ĕ(ζp∞), with an open

and bounded valuation subring C+ ⊂ C, and fix a point x ∈ F`G,µ(C,C+); we

assume that C is the completed algebraic closure of the residue field of F`G,µ
at the underlying (topological) point. We are interested in understanding the

stalk Fx = (RiπHT∗Z/`nZ)x. In this respect, we have the following general

base change lemma.

Lemma 4.4.1. Let f : Y → X be a quasicompact and quasiseparated map

of analytic adic spaces, and for definiteness, assume that X is either a locally

strongly noetherian adic space or a perfectoid space over Spa(Zp,Zp), and Y

is perfectoid.24 Let x ∈ X be a point with residue field K(x) and open and

bounded valuation subring K(x)+. Let C(x̄) be a completed algebraic closure

of K(x) with an open and bounded valuation subring C(x̄)+ ⊂ C(x̄) lifting

K(x)+, giving rise to a geometric point x̄ = Spa(C(x̄), C(x̄)+)→ X . Let

Yx̄ = (Y ×X Spa(C(x̄), C(x̄)+))∧

be the fibre of Y over x̄, which is a perfectoid space over C(x̄). For any sheaf

G of abelian groups on Yét and all i ≥ 0, the natural map

(Rif∗G)x̄ → H i(Yx̄,G)

is an isomorphism.

24We only need to know that they have well-defined étale sites and that the same holds for

all fibres of f over geometric points. For example, the lemma is also true when one assumes

instead that both X and Y are perfectoid.
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Here, and in the following, these statements will also be true for sheaves

of groups and i = 0, 1, and sheaves of sets and i = 0. We will not spell this out.

Proof. Let Uj = Spa(Rj , R
+
j ) → X be a cofinal system of affinoid étale

neighborhoods of x̄; then

Spa(C(x), C(x)+) ∼ lim←−
j

Spa(Rj , R
+
j ),

and one has
(Rif∗G)x̄ = lim−→

j

H i(Y ×X Spa(Rj , R
+
j ),G).

It remains to see that

lim−→
j

H i(Y ×X Spa(Rj , R
+
j ),G) = H i(Yx̄,G).

But this follows from Yx̄ ∼ lim←−j
Ä
Y ×X Spa(Rj , R

+
j )
ä

(cf. [SW13, Prop. 2.4.3]),

where all terms are quasicompact and quasiseparated, and the resulting con-

sequence for étale cohomology; cf. [Sch12, Cor. 7.18].25 �

In particular, we obtain

(RiπHT∗Z/`nZ)x = H i(SKp,x,Z/`nZ).

Next, we reduce to the case of rank 1 points. For this, we use the following

lemma.

Lemma 4.4.2. Let X be a quasicompact and quasiseparated analytic adic

space, and for definiteness, assume that X is a perfectoid space.26 Let U ⊂ X
be a quasicompact open subset that contains all rank 1 points of X . Then, for

any locally constant sheaf G of abelian groups on Xét and all i ≥ 0, the natural

map
H i(X,G)→ H i(U,G)

is an isomorphism.

Proof. Let j : U ↪→ X be the inclusion. It is enough to prove that

G → Rj∗G is an isomorphism. This can be checked on geometric points which,

using Lemma 4.4.1, reduces us to the case X = Spa(C,C+) for some com-

plete algebraically closed field C with an open and bounded valuation subring

C+ ⊂ C. Then U = Spa(C,D+) for a different open and bounded valuation

subring D+ ⊂ C, containing C+. As X is strictly local, the sheaf G is the

constant sheaf associated with some abelian group G. But as any étale cover

of X splits, one has RΓ(X,G) = G, and similarly for U , giving the result. �

25In the discussion around [Sch12, Cor. 7.18], the Xi are assumed to be strongly noether-

ian; the discussion is also valid if all Xi are perfectoid.
26Again, the lemma also holds true when X is a strongly noetherian adic space, or when-

ever X has a well-behaved étale site.



728 A. CARAIANI and P. SCHOLZE

Applying Lemma 4.4.2 to the inclusion SKp,x̃ ⊂ SKp,x shows that

(RiπHT∗Z/`nZ)x = (RiπHT∗Z/`nZ)x̃ = H i(SKp,x̃,Z/`nZ).

Thus, we will from now on assume that x = x̃ is a rank 1 point and write

C+ = OC . Now choose b ∈ B(G,µ−1) such that x ∈ F`bG,µ. If y ∈ SKp,x is any

(geometric) rank 1 point, the argument of Lemma 4.2.18 shows that y ∈ SbKp .

Thus, SbKp,x = SKp,x ×SKp SbKp ⊂ SKp,x is a quasicompact open subset with

the same rank 1 points, so applying Lemma 4.4.2 once more, we see that

(RiπHT∗Z/`nZ)x = H i(SbKp,x,Z/`nZ).

Now we apply Lemma 4.2.18 to lift x ∈ F`bG,µ(C,OC) to a point z ∈
Mb
∞(C,OC), giving rise, in particular, to a p-divisible group (Xb)OC (with

extra structures) lifting Xb. Then Lemma 4.3.20 identifies the fibre SbKp,x with

the fibre X b∞,z. This, in turn, gets identified with (IgbOC )ad
η by Corollary 4.3.19.

Combining the discussion so far, we see that

(RiπHT∗Z/`nZ)x = H i((IgbOC )ad
η ,Z/`nZ).

Next, we pass to the special fibre.

Lemma 4.4.3. Let X/F̄p be a perfect scheme, and let C be a complete

algebraically closed nonarchimedean field whose residue field contains F̄p. Let

XOC be the flat formal scheme over Spf OC that is the unique lifting of X ×F̄p
OC/p, and let XC = (XOC )ad

η be its generic fibre, which is a perfectoid space.

For all i, the canonical maps

H i(X,Z/`nZ)← H i(XOC ,Z/`
nZ)→ H i(XC ,Z/`nZ)

are isomorphisms.

Proof. The question is local on X, so we can assume that X is affine. Then

we can write X = lim←−Xj as a cofiltered inverse limit of affine schemes Xj that

are perfections of schemes of finite type over F̄p. One also gets XC ∼ lim←−j Xj,C ,

so all cohomology groups in question become a filtered colimit over j; thus,

we can assume that X is the perfection of an affine scheme X0 of finite type.

Then the cohomology of X agrees with the cohomology of X0.

Moreover, the cohomology of XOC is the same as the cohomology of its

special fibre X ×F̄p k, where k is the residue field of OC , which in turn agrees

with the cohomology of X0 ×F̄p k. Thus, the first map is an isomorphism by

invariance of étale cohomology under change of algebraically closed base field.

Also, under tilting, the étale cohomology of XC agrees with the étale

cohomology of XC[ . We may thus assume that C is of characteristic p. In

that case, one can also form X0,OC = X0 ×Spec F̄p Spf OC and its generic fibre

X0,C , which is a rigid-analytic variety over C, with XC ∼ lim←−Frob
X0,C . Thus,
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the cohomology of XC agrees with the cohomology of X0,C . Finally, we are

reduced to proving that the map

H i(X0,OC ,Z/`
nZ)→ H i(X0,C ,Z/`nZ)

is an isomorphism. By [Hub96, Cor. 3.5.17], the right-hand side can be com-

puted, in terms of H i−j(X0 ×F̄p k,R
jψZ/`nZ).

It is enough to see that if X0 is a scheme of finite type over F̄p, then

the complex of nearby cycles of X0,C = X0 ×F̄p C is quasi-isomorphic to the

constant sheaf Z/`nZ. By [DK73, XIII 2.1.4], we can compute the stalk of

RjψZ/`nZ at a geometric point x̄ as Hj((X0,OC )x̄×C,Z/`nZ), with (X0,OC )x̄
the strict henselization of X0,OC = X0 ×F̄p OC at x̄. We conclude the proof,

since the map X0,C → Spec OC is the base change along the map Spec OC →
Spec F̄p of the universally locally acyclic map X0 → F̄p. (For universal local

acyclicity, we use the definition of [Del77]. Every scheme of finite type is

universally locally acyclic over a point; cf. [Del77, Th. finitude, Th. 2.13].) �

Thus, we get

(RiπHT∗Z/`nZ)x = H i(Igb,Z/`nZ),

where Igb/F̄p is the perfect scheme introduced in Definition 4.3.1. Using Propo-

sition 4.3.8, we finally arrive at the following formula.

Theorem 4.4.4. For any geometric point x̄ of F`G,µ contained in F`bG,µ,

there is an isomorphism

(RiπHT∗Z/`nZ)x̄ = H i(Igb,Z/`nZ) = lim−→
m

H i(I b
Mant,m,Z/`nZ).

It (only) depends on the choice of a lift of x̄ to Mb
∞ and is compatible with the

Hecke action of G(Apf ). �

One can formulate a version of this result where one replaces Z/`nZ by

the local system corresponding to an algebraic representation ξ.

5. The cohomology of Igusa varieties

The goal of this section is to compute the alternating sum of cohomology

groups [H(Igb, Q̄`)] as a virtual representation of G(Apf ) × Jb(Qp). We will

work with (the Igusa varieties corresponding to) unitary Shimura varieties.

Our setup is similar to that of [SS13] (see Section 5.1 for more detail), and we

intend to prove a version of Theorem 6.1 of [Shi11] in this situation.

By Proposition 4.3.8 and since perfection does not change the étale topos,

it is enough to work with the classical objects I b
Mant. By Poincaré duality,

it is enough to compute the alternating sum of the compactly supported co-

homology groups. Sug Woo Shin has derived a formula for the alternating

sum [Hc(I b
Mant, Q̄`)] as a sum of stable orbital integrals for G and its elliptic
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endoscopic groups (see Theorem 5.2.3). We reinterpret this formula as the

geometric side of the twisted trace formula and compare it to the spectral side.

5.1. Setup. We assume that F = F+ · K is the composition of a totally

real field F+ and an imaginary quadratic field K. Let c ∈ Gal(F/F+) be

the nontrivial element. Let G/Q be a unitary similitude group preserving an

alternating hermitian form 〈, 〉 on an F -vector space V of dimension n. Let

SplF/F+ denote the set of rational primes v such that every prime of F+ above

v splits in F . We make the following further assumptions on F and G:

(1) F+ 6= Q;

(2) the set of rational primes that are ramified in F is contained in SplF/F+ ;

(3) G is quasi-split at all finite places.

See Section 10 of [SS13] for a discussion of these conditions. The first condi-

tion is needed in order to identify the stable trace formula for Igusa varieties

with the geometric side of the trace formula (avoiding so-called cuspidal sub-

groups). The second condition is imposed to avoid issues with L-packets and

base change for unitary groups.27 The third condition implies that endoscopic

representations will contribute to [Hc(I b
Mant, Q̄`)] and is thus in some sense

the hardest case.

Let h : C→ EndF (V )R be an R-algebra homomorphism such that h(zc) =

h(z)c for all z ∈ C and such that the bilinear pairing (v, w) 7→ 〈v, h(i)w〉 is

symmetric and positive definite. Then (F, c, V, 〈, 〉, h) is a Shimura datum of

PEL type. The fact that c is an involution of the second kind implies that

the PEL datum is of type (A), according to the classification on page 375

of [Kot85].

The R-algebra homomorphism h induces a homomorphism of algebraic

groups h : ResC/RGm→GR. Then (G,{h}) is a Shimura datum as in Section 2.1.

For K ⊂ G(Af ) an open compact subgroup, we can define the Shimura variety

SK , which has a model over the reflex field E. Let µ be the Hodge cocharacter

corresponding to h. We follow the slight abuse of notation in denoting by SK
not the actual Shimura variety, but the PEL moduli problem, which is the

disjoint union of |ker1(G,Q)| copies of the actual Shimura variety. This factor

|ker1(Q, G)| will thus appear in many formulas below.

Also assume that the prime p is unramified in F and splits in K (so, in

particular, it lies in SplF/F+).

Let p be a prime in the reflex field E of the Shimura datum above the

rational prime p. Let K ⊂ G(Af ) be a compact open subgroup that is suffi-

ciently small and has the form KpKp, such that Kp ⊂ G(Qp) is hyperspecial.

27Actually, (2) implies (1).
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The fact that p is unramified in F means that good integral models SK of SK
exist over OEp .

We fix a field isomorphism ι` : Q̄`
∼→ C throughout. If G is a topologi-

cal group, such that every neighborhood of the identity contains a compact-

open subgroup and Ω is an algebraically closed field of characteristic 0, we let

C∞c (G) be the space of smooth, compactly supported, Ω-valued functions on

G. (Usually they will be C-valued; if they are valued in Q̄`, then by smooth we

mean locally-constant.) We let Irr(G) denote the set of isomorphism classes of

irreducible admissible representations of G over Ω and Groth(G) be the corre-

sponding Grothendieck group. For all the groups we consider, we choose Haar

measures and transfer factors as in [Shi10], [Shi11].

In particular, if G is an unramified group over a non-archimedean field F,

we choose a hyperspecial maximal compact subgroup K and a Haar measure

such that K has volume 1. We let Hur(G(F)) be the subspace of C∞c (G(F))

consisting of bi-K-invariant functions, which is an algebra with respect to con-

volution.

5.2. A stable trace formula. In this section, we recall the main construc-

tions and results of [Shi10]. For any open compact subgroup K ⊂ G(Af )

that is hyperspecial at p, we have an integral model SK/OEp . As described

in Section 4.3, the special fiber of SK has a Newton polygon stratification,

in terms of elements b ∈ B(G,µ−1). Fix b and also a p-divisible group with

extra structures Xb/F̄p as in Section 4.3. Recall that Jb(Qp) is the group of

quasi-self-isogenies of Xb that respect all the extra structures.

By the Igusa variety I b
Mant we mean the projective system of F̄p-schemes

I b
Mant,Kp,m, where Kp ⊂ G(Apf ) runs over sufficiently small open compact

subgroups and m runs over positive integers. Each of these schemes is a finite

Galois cover of the leaf Cb inside S b
K . Define

[Hc(I
b
Mant, Q̄`)] :=

⊕
k

(−1)k lim−→
Kp,m

Hk
c (I b

Mant,Kp,m, Q̄`).

Since each of the summands is an admissible representation of G(Apf )×Jb(Qp),

we think of [Hc(I b
Mant, Q̄`)] as a virtual representation in Groth(G(Apf ) ×

Jb(Qp)).

Often, we will fix a finite set S of places of Q including p,∞ and all places

at which F ramifies. If we fix a compact open subgroup KS ⊂ G(AS) that is a

product of hyperspecial maximal compact open subgroups Kq ⊂ G(Qq), we let

[Hc(I
b
Mant, Q̄`)]

S ur

be the summand of [Hc(I b
Mant, Q̄`)] of those representations that are unram-

ified outside S. More precisely, any element π ∈ Groth(G(Apf ) × Jb(Qp)) can
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be written as a (possibly infinite) sum

π =
∑
i

niπi,

where πi runs through the irreducible representations of G(Apf ) × Jb(Qp) (all

of which decompose into a tensor product), ni ∈ Z, and for each compact open

subgroup K ⊂ G(Apf )×Jb(Qp), there are only finitely many i for which ni 6= 0

and πKi 6= 0. Then we define

πS ur =
∑

i:πK
S

i 6=0

niπi.

Let Groth(G(Apf )×Jb(Qp))
S ur denote the subgroup of Groth(G(Apf )×Jb(Qp))

consisting of those π for which π = πS ur. Then there are nondegenerate trace

pairings

Groth(G(Apf )× Jb(Qp))× C∞c (G(Apf )× Jb(Qp))→ C

and

Groth(G(Apf )×Jb(Qp))
S ur×

Ä
Hur(G(AS))⊗ C∞c (G(ASfin\{p})× Jb(Qp))

ä
→ C.

Let φ ∈ C∞c (G(Apf ) × Jb(Qp)). We say that φ is acceptable if it satisfies

the conditions of Definition 6.2 of [Shi09]. The main condition is that φ is

a linear combination of functions of the form φp × φp, where φp is supported

on νb-acceptable elements of Jb(Qp). These are those elements δ ∈ Jb(Qp),

δ = (δi) ∈
∏r
i=1 Aut0(Xi), such that any eigenvalues ei of δi satisfy

vp(ei) < vp(ej) whenever λi > λj

(Definition 6.1 of [Shi09]).

Remark 5.2.1. This condition will separate components of Jb(Qp) corre-

sponding to different slopes in terms of their p-adic valuation, which in turn is

needed in order to transfer functions from Jb(Qp) to G(Qp). See Lemma 3.9

of [Shi10] and Lemma V.5.2 of [HT01] for more details.

Lemma 6.3 of [Shi09] guarantees that the twist of any φ by a sufficiently

high power of Frobenius is acceptable.

We recall the set Eell(G) of elliptic endoscopic triples for G. In fact, we

work more generally: let F be a local or global field of characteristic 0, and

let G be a connected reductive group over F. An endoscopic triple for G is

a triple (H, s, η), where H is a quasi-split connected reductive group over F,

s is an element of Z(Ĥ) and η : Ĥ → Ĝ is an embedding of complex Lie

groups. The triple has to satisfy certain conditions, as in 7.4 of [Kot84]. Let

Γ := Gal(Q̄/Q). An endoscopic triple is called elliptic if (Z(Ĥ)Γ)◦ ⊂ Z(G).

We will use the notion of isomorphism of endoscopic triples in Section 2.1
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of [Shi10], which is stronger than the one in [Kot84]. We let Eell(G) be the set

of isomorphism classes of elliptic endoscopic triples for G.

Assume that Gder is simply-connected. (This will be the case for G := G,

our unitary similitude group.) We use Weil groups to construct L-groups; then

we can choose an extension of η to an L-group morphism η̃ : LH → LG by

Proposition 1 of [Lan79].

Assume that F is a local field. Given η̃, Langlands and Shelstad (see [LS87])

define a transfer factor

∆ : H(F)ss,(G,H)−reg ×G(F)ss → C,

which is canonical up to a nonzero constant.

The fundamental lemma and the transfer conjecture, which are now the-

orems due to Ngo, Waldspurger and others (see [Ngô10, Wal97]), assert that

for each function φ ∈ C∞c (G(F)), there exists φH ∈ C∞c (H(F)) satisfying an

identity about the transfer of orbital integrals

SOH(F)
γH

(φH) =
∑

γ∈G(F)ss/∼
∆(γH, γ)e(Gγ)OG(F)

γ (φ).

(See Theorem 3.1 of [SS13] for an explanation of the notation.) If H,G and η̃

are unramified and if φ ∈ Hur(G(F)), then ∆ can be normalized such that φH

can be taken to be η̃∗(φ), where η̃∗ : Hur(G(F))→ Hur(H(F)) is the morphism

of unramified Hecke algebras induced from η̃ via the Satake isomorphism. In

particular, if φ is the idempotent associated to a hyperspecial maximal compact

subgroup, then φH can also be taken to be the idempotent of a hyperspecial

maximal compact subgroup.

Let φ ∈ C∞c (G(Apf )× Jb(Qp)) be an acceptable function of the form

φ =
∏
v 6=∞

φv, with φv ∈ C∞c (G(Qv)), v 6= p, φp ∈ C∞c (Jb(Qp)).

Let (H, s, η) ∈ Eell(G).

Definition 5.2.2. Let φH := φH,pφHp φ
H
∞ ∈ C∞c (H(A)), where

• φH,p is the Langlands-Shelstad transfer of φp (as described above).

• φH∞ is constructed by Kottwitz in Section 7 of [Kot90], where we take the

trivial algebraic representation of G as an input. (This corresponds to the

fact that our local system on I b
Mant is Q̄`.) We give more details in the

case when G is a unitary similitude group below.

• φHp is constructed in Section 6 of [Shi10]. The function φHp is the key

construction of [Shi10]; we give more details in Section 5.4 below.

The following is the main result of [Shi10], Theorem 7.2 of loc. cit.
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Theorem 5.2.3. Let φ and φH be as above, with (H, s, η) ∈ Eell(G). Then

tr(φ|ι`Hc(I
b
Mant, Q̄`)) = | ker1(Q, G)|

∑
(H,s,η)

ι(G,H)STHe (φH).

Remark 5.2.4. Shin’s result is in fact valid for any PEL Shimura variety

of type (A) or (C). We recall that

ker1(Q, G) := ker

Ç
H1(Q, G)→

∏
v

H1(Qv, G)

å
and that SK is the disjoint union of | ker1(Q, G)| copies of the Shimura variety

for G. Also, ι(G,H) := τ(G)τ(H)−1|Out(H, s, η)|−1. The term STHe (φH) is a

sum of stable orbital integrals over (representatives of) Q-elliptic semisimple

stable conjugacy classes in H(Q).

In the case of our unitary similitude group G, the set Eell(G) only depends

on the quasi-split inner form Gn of G, and in [Shi11], Shin gives a concrete

description of a set of representatives for the isomorphism classes in Eell(Gn).

If ~n = (ni)
s
i=1 is a vector with entries positive integers, one can define a quasi-

split group G~n over Q as in Section 3.1 of [Shi11]. Define GL~n :=
∏s
i=1 GLni ,

and let i~n : GL~n → GL(
∑

i ni)
be the natural map. Let

Φ~n := i~n(Φn1 , . . . ,Φns),

where Φn is the matrix in GLn with entries (Φn)ij = (−1)i+1δi,n+1−j . Then

G~n is the algebraic group over Q sending a Q-algebra R to

G~n(R) = {(λ, g) ∈ R× ×GL~n(F ⊗Q R)|g · Φ~n · tgc = λΦ~n}.

Since G is quasi-split at all finite places, we have

G×Q Af ' Gn ×Q Af ,

and we fix such an isomorphism.

The representatives for Eell(Gn) can be taken to be

{(Gn, sn, ηn)} ∪ {(Gn1,n2 , sn1,n2 , ηn1,n2)|n1 + n2 = n, n1 ≥ n2 ≥ 0} ,

where (n1, n2) may be excluded if both n1 and n2 are odd numbers. (See con-

dition 7.4.3 of [Kot84].) Here, sn = 1 ∈ Ĝn, sn1,n2 = (1, (In1 ,−In2)) ∈ Ĝn1,n2 ,

ηn is the identity map and ηn1,n2 : Ĝn1,n2 → Ĝn is the natural embedding

induced by GLn1 ×GLn2 ↪→ GLn.

If we choose a Hecke character $ : A×K/K× → C× such that $|A×/Q×
corresponds via class field theory to the quadratic character associated to K/Q,

we can extend ηn1,n2 to an L-morphism

η̃n1,n2 : LGn1,n2 → LGn.
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(See Section 3.2 of [Shi11] for the precise formula.) By [Shi11, Prop. 7.1],

$ can be chosen such that the set of primes where $ is ramified is contained

in SplF/F+ . As a consequence, we can use the explicit transfer factors described

in Section 3.4 of [Shi11] at all places not equal to p,∞. These are compatible

with the Langlands-Shelstad transfer described above: at unramified places v,

we take

η̃∗n1,n2
: Hur(Gn(Qv))→ Hur(Gn1,n2(Qv)),

making use of the fundamental lemma [Ngô10]. Since we have fixed an isomor-

phism G×Q Af
∼→ Gn×Q Af , we can also think of this as a transfer from G to

Gn1,n2 at places away from p,∞.

We also describe the explicit transfer at the place ∞. The transfer is

as in Section 7 of [Kot90] and uses Shelstad’s theory of real endoscopy and

the Langlands correspondence for real reductive groups; see also Section 3.5

of [Shi11] for any unfamiliar notation. Recall that over R, G is an inner form

of the quasi-split unitary similitude group Gn. For any discrete L-parameter

ϕG~n for G~n, with L-packet Π(ϕG~n), define

φϕG~n :=
1

|Π(ϕG~n)|
∑

π∈Π(ϕG~n )

φπ,

where φπ is a pseudo-coefficient for π. When ϕG~n ∼ ϕξ corresponds to an

L-packet Πdisc(G~n(R), ξ∨) for some irreducible algebraic representation ξ of

G~n, the function φϕG~n is called a Euler-Poincaré function; we denote it also

by φG~n,ξ. The desired function φ~n∞ will be a precise linear combination of the

Euler-Poincaré functions for L-parameters ϕG~n for which η̃ ◦ ϕG~n corresponds

to the trivial algebraic representation of GC. (See 5.11 of [Shi11] for the precise

formula.)

For further use, we record a version of Theorem 5.2.3 for the group G.

Corollary 5.2.5. If φp · φp ∈ C∞c (G(Apf )× Jb(Qp)) is acceptable, then

tr(φ|ι`Hc(I
b
Mant, Q̄`)) = | ker1(Q, G)|

∑
G~n

ι(G,G~n)STG~ne (φ~n),

where G~n runs over the set described above and φ~n is obtained from φ as in

Definition 5.2.2.

Remark 5.2.6. The constants ι(G,G~n) can be computed explicitly:

ι(G,G~n) =

1
2τ(G)τ(G~n)−1 if ~n = (n2 ,

n
2 ),

τ(G)τ(G~n)−1 otherwise.

5.3. Base change and the twisted trace formula. Let

G~n := ResK/Q(G~n ×Q K).
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One can define L-morphisms BC~n : LG~n → LG~n and ζ̃n1,n2 : LGn1,n2 → LGn,

and there is a commutative diagram of L-morphisms

(5.3.1) LGn1,n2

BCn1,n2
��

η̃
// LGn

BCn
��

LGn1,n2

ζ̃
// LGn.

In this section, we review the associated base change for the groups G~n
and G~n as well as the twisted trace formula. Let S be a finite set of primes

containing ∞, p and all the primes where either the CM field F or the Hecke

character ψ are ramified. Recall that, by the assumptions in Section 5.1, we

can and will arrange that Sfin ⊂ SplF/F+ .

We can define a notion ofBC-transfer of functions as in Section 4 of [Shi11].

If v is a finite place of Q such that v 6∈ S, then the dual map to the L-morphism

BC~n defines the transfer

BC∗~n : Hur(G~n(Qv))→ Hur(G~n(Qv)),

(Case 1) of Section 4.2 of [Shi11]. Otherwise, if v ∈ Sfin ⊂ SplF/F+ then

(Case 2) of Section 4.2 of loc. cit. constructs a BC-transfer φv ∈ C∞c (G~n(Qv))

of fv ∈ C∞c (G~n(Qv)). We remark that if v splits in K (e.g., if v = p), one can

check directly that BC∗~n is surjective. It is also possible to define a transfer ζ̃∗~n,

as in Section 4 of loc. cit., making the obvious diagram commutative.

At ∞, the transfer is defined in Section 4.3 of loc. cit. Let ξ be an ir-

reducible algebraic representation of (G~n)C, giving rise to the representation

Ξ of (G~n)C that is just Ξ := ξ ⊗ ξ. Recall that φG~n,ξ is the Euler-Poincaré

function for ξ. Associated to Ξ, Labesse defined a twisted analogue of the

Euler-Poincaré function, a Lefschetz function fG~n,Ξ [Lab91]. The discussion

on page 24 of [Shi11] implies that fG~n,Ξ and φG~n,ξ are BC-matching functions.

Define the group

G+
~n := (ResK/Q GL1×ResF/Q GL~n) o {1, θ},

where θ(λ, g)θ−1 = (λc, λcg]) and g] = Φt
~ng

cΦ−1
~n . If we denote by G◦~n and G◦~nθ

the cosets of {1} and {θ} in G+
~n , then G+

~n = G◦~n t G◦~nθ. There is a natural

Q-isomorphism G~n
∼→ G◦~n, which extends to an isomorphism

G~n o Gal(K/Q)
∼→ G+

~n

so that c ∈ Gal(K/Q) maps to θ. Using this isomorphism, we write G~n and

G~nθ for the two cosets.

If f ∈ C∞c (G~n(A)) (with trivial character on A◦Gn,∞), then we define fθ

to be the function on G~nθ(A) obtained via translation by θ. The (invariant)
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twisted trace formula (see [Art88a], [Art88b]) gives an equality

(5.3.2) IG~nθgeom(fθ) = IG~nθspec(fθ).

The left-hand side of the equation is defined in Section 3 of [Art88b], while the

right-hand side is defined in Section 4 of loc. cit.

Let fG~n,Ξ and φG~n,ξ be as defined above. The following is Corollary 4.7

of [Shi11].

Proposition 5.3.1. We have the following equality :

(5.3.3) IG~nθgeom(fθ) = τ(G~n)−1STG~ne (φ),

when φ and f satisfy

φ = φS · φSfin
· φG~n,ξ and f = fS · fSfin

· fG~n,Ξ
with φS a BC-transfer of fS and φSfin

a BC-transfer of fSfin
.

Proof. We sketch the proof here. First, use Theorem 4.3.4 of [Lab99] to

rewrite the sum of stable orbital integrals on the right as the elliptic part of the

twisted trace formula for G~nθ. Then the geometric side of the twisted trace

formula for G~nθ is simplified using similar techniques to those in Chapter 7

of [Art88b]: the key facts are that the Lefschetz function fG~n,Ξ is cuspidal, so

only θ-elliptic elements contribute, and that [F+ : Q] ≥ 2, so that the only

Levi subgroup that contributes to the geometric side is G~nθ itself. �

We now explain how to construct our test functions, which is exactly

as in the proof of Theorem 6.1 of [Shi11]. We let (fn)S be any function

in Hur(Gn(AS)) and fnSfin\{p} be any function in C∞c (Gn(ASfin\{p})). We let

φS, φSfin\{p} be theirBC-transfers, as described above. We take φp∈C∞c (Jb(Qp))

to be any acceptable function and set

φ := φS · φSfin\{p} · φp.

From these test functions, we construct all the other test functions we will

need. First, for each elliptic endoscopic group G~n, we let φ~n be constructed

from φ as in Definition 5.2.2. Let (fn1,n2)S and (fn1,n2)Sfin\{p} be obtained

from (fn)S and fnSfin\{p}
by transfer along the L-morphism ζ̃. We choose f~np

so that BC∗~n(f~np ) = φ~np . (Recall that BC∗~n is surjective at p.) We can define

f~n∞ explicitly as a linear combination of Lefschetz functions for representations

Ξ(ϕ~n) of G~n for which η̃ ◦ ϕ~n corresponds to the trivial representation of G.

(See (6.7) of [Shi11] for the precise formula.) Finally, we set

f~n := (f~n)S · (f~n)Sfin\{p} · f
~n
p · f~n∞.

By the commutative diagram of L-morphisms (5.3.1), we can apply Proposi-

tion 5.3.1 to f~n and φ~n. To check the compatibility, see (4.18) of [Shi11] for
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primes away from S, (4.19) of loc. cit. for primes in Sfin \ {p}, and compare

the precise formulas for φ~n∞ and f~n∞. We mention that the formulas for φ~n∞
and f~n∞ use as input an inner form G of Gn over R; in loc. cit. this inner form

has a specific signature (a group of so-called Harris-Taylor type), but here we

work more generally. In particular, the integer q(G) appearing there is defined

as 1
2dim(G(R)/K∞A

◦
∞).

Theorem 5.3.2. We have an equality

tr(φ|ι`[Hc(I
b
Mant, Q̄`)]) = | ker1(Q, G)|τ(G)

∑
G~n

ε~n · IG~nθspec(f~nθ),

where ε~n = 1
2 if ~n = (n2 ,

n
2 ) and ε~n = 1 otherwise.

Proof. This follows by combining Corollary 5.2.5, Remark 5.2.6, Proposi-

tion 5.3.1 and equation (5.3.2). �

Fix G~n. We now proceed to simplify the spectral side IG~nθspec(f~nθ). We need

the following notation from [Shi11]: let M0 be a minimal Levi subgroup of G~n.

For M a rational Levi of G~n containing M0, choose a parabolic subgroup Q

containing M as a Levi. The group WG~nθ(aM )reg defined in [Art88b] acts on

the set of parabolic subgroups that have M as a Levi component. The auto-

morphism Φ−1
~n θ of G~n preserves M and acts on WG~nθ(aM )reg. By combining

Proposition 4.8 and Corollary 4.14 of [Shi11], we have the following expression

for the summands on the right-hand side of Theorem 5.3.2.

Proposition 5.3.3. There is an equality

IG~nθspec(f~nθ) =
∑
M

|WM |
|WG|

|det(Φ−1
~n θ−1)

a
G~nθ
M

|−1
∑
ΠM

tr
Ä
n− IndG~n

Q (ΠM )ξ(f
~n) ◦A′

ä
,

where M runs over the Levi subgroups of G~n containing M0 and ΠM runs over

the irreducible Φ−1
~n θ-stable subrepresentations of the discrete spectrum RM,disc.

Remark 5.3.4. The subscript ξ indicates a possible twist by a character of

A◦G~n,∞ corresponding to an irreducible algebraic representation ξ of G~n, and A′

is a normalized intertwiner on n− IndG~n
Q (ΠM )ξ. We do not make this precise,

as we will not need these details. We do note that as ΠM is Φ−1
~n θ-stable,

n− IndG~n
Q (ΠM )ξ is θ-stable.

5.4. The transfer at p. We recall the construction of the function φ~np , start-

ing from an acceptable function φp ∈ C∞c (Jb(Qp)), as well as the representation-

theoretic counterpart to this construction, Redb~n.

The group Jb(Qp) is an inner form of a Levi subgroup Mb(Qp) of G(Qp);

for further reference, we recall their precise definitions, following Chapter 1

of [RZ96]. According to Definition 1.8 of loc. cit., an element b̃ of G(L) is
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called decent if there exists a positive integer s such that

(b̃σ)s = sνb̃(p)σ
s,

where sνb̃ factors through a morphism Gm → G. By Section 4.3 of [Kot85], any

σ-conjugacy class b ∈ B(G) admits a decent representative b̃; as G is quasisplit,

one can moreover arrange that νb̃ is defined over Qp; cf. [Kot85, p. 219]. Let

Mb be the centralizer of ν in G, which is a Qp-rational Levi subgroup. Then b

is a basic element of Mb and Jb is an inner form of Mb.

Fix G~n an elliptic endoscopic group for G. The set Eeff
p (Jb, G,G~n) is

defined in Section 6.2 of [Shi09]; it consists of certain isomorphism classes

(MG~n , s~n, η~n) of G~n-endoscopic triples for Jb(Qp). The function φ~np is con-

structed via transfer from φp on Jb(Qp) to MG~n(Qp), followed by a version

of transfer from MG~n(Qp) to G~n(Qp). We remark that the latter step makes

crucial use of the acceptability of φp; cf. Lemma 3.9 of [Shi10].

There is a representation-theoretic counterpart to this construction. This

is a group morphism

Redb~n : Groth(G~n(Qp))→ Groth(Jb(Qp)).

Redb~n will be defined as the composition of the following maps:

(1) The map

Groth(G~n(Qp))→
⊕

(MG~n
,s~n,η~n)

Groth(MG~n(Qp)),

where the sum runs over G~n-endoscopic triples in Eeff
p (Jb, G,G~n) and the

map on each term is a linear combination of normalized Jacquet functors

(indexed over a finite set of allowed Levi embeddings MG~n ↪→ G~n).

(2) The map

Groth(MG~n(Qp))→ Groth(Mb(Qp)),

which is the functorial transfer with respect to the L-morphism η̃~n. Both

MG~n and Mb are (restrictions of scalars of) products of general linear

groups, and the transfer ends up being a normalized parabolic induction.

(3) The map

Groth(Mb(Qp))→ Groth(Jb(Qp)),

which is the Langlands-Jacquet map on Grothendieck groups, defined by

[Bad07].

(See Section 5.5 of [Shi11] for the precise definition of these three maps; even

though the case we are considering is slightly more general, the formulas will

be exact analogues.)
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Remark 5.4.1. When ~n=(n), Eeff
p (Jb, G,G~n) has only one element, namely,

(Mb, 1, id). The morphism Redbn consists of a normalized Jacquet functor fol-

lowed by the Langlands-Jacquet map.

We record the relationship between Redb~n and φ~np in the following lemma.

Lemma 5.4.2. For any πp ∈ Groth(G~n(Qp)),

tr πp(φ
~n
p ) = tr

Ä
Redb~n(πp)

ä
(φp).

Proof. The statement follows in the same way as Lemma 5.10 of [Shi11].

(See also Lemmas 6.3 and 6.4 of [Car12] for a unitary group with a slightly

different signature.) The idea is that the constructions of both Redb~n and φ~n

can be broken down into the three steps outlined above and the constructions

in each of these steps are dual to each other. One of the key points is that

the transfer of φp from Jb(Qp) to MG~n(Qp) can be broken down into transfer

from Jb(Qp) to the quasi-split form Mb(Qp) followed by transfer from Mb(Qp)

to MG~n(Qp). The other key point is the slightly nonstandard transfer be-

tween MG~n and G~n, where the desired compatibility follows from Lemma 3.9

of [Shi10]. �

We note that the whole situation decomposes into a product. Namely, let

p1, . . . , pm be the primes of F+ above p, and fix a decomposition p = uuc in K.

We also denote by pi the place of F lying over pi in F+, and u in K, and by pci
the complex conjugate place of F . With these choices, we get a decomposition

GQp =
∏
i

ResFpi/Qp GLn×Gm.

Here, the projection to the Gm-factor is the unitary similitude factor, and the

projection to the general linear groups is via the projection

V ⊗Q Qp =
⊕
i

(V ⊗F Fpi ⊕ V ⊗F Fpci
)→

⊕
i

V ⊗F Fpi .

The resulting constructions above admit similar decompositions. In particular,

b = ((bi)i=1,...,m, b0) ∈ B(G) =
m∏
i=1

B(ResFpi/Qp GLn)×B(Gm),

and Jb =
∏m
i=1 Jbi × Gm. Also, any irreducible representation πp of G(Qp)

decomposes into a tensor product

πp =
m⊗
i=1

πpi ⊗ π0,
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where πpi is an irreducible representation of GLn(Fpi) and π0 is a character of

Q×p . A similar discussion applies to representations of

G~n(Qp) =
m∏
i=1

GL~n(Fpi)×Q×p .

Lemma 5.4.3. Let π~np ∈ Irr(G~n(Qp)) be decomposed as

π~np =
m⊗
i=1

π~npi ⊗ π
~n
0 .

Assume that there is some i such that π~npi transfers to a generic principal

series representation of GLn(Fpi) and Jbi is a non-quasi-split inner form of

Mbi . Then

Redb~n(πp) = 0.

Proof. This follows from the explicit description of Redb~n above, which in-

cludes the Langlands-Jacquet map. If π~np satisfies the above condition, then its

image ρ in Groth(Mb(Qp)) will have as Mbi(Fpi)-components only generic prin-

cipal series representations. Indeed, to see this, note that by the definition in

Section 2 of [Shi10], for a G~n-endoscopic triple, the L-morphism LMG~n → LMb

is the restriction of the L-morphism η̃n1,n2 : LGn1,n2 → LGn. The condition of

being a generic principal series representation can be interpreted on the dual

side and is then easily deduced from this diagram. But if ρ ∈ Groth(Mb(Qp))

has only generic principal series representations as Mbi(Fpi)-components, then

it lies in the kernel of the Langlands-Jacquet map whenever Jbi is a non-quasi-

split inner form, by the construction of this map following Theorem 3.1 and

Proposition 3.3 of [Bad07]. �

5.5. Generic principal series. Fix test functions

fS ∈ Hur(Gn(AS)), fSfin\{p} ∈ C
∞
c (Gn(ASfin\{p})),

and let φS , φSfin\{p} be their base change transfers to Gn(AS) and Gn(ASfin\{p})

as defined in Section 5.3. Let φp ∈ C∞c (Jb(Qp)) be any function. Set

φ := φSφSfin\{p}φp.

Lemma 5.5.1. The trace tr(φ|ι`[Hc(I b
Mant, Q̄`)]) can be written as a linear

combination of terms of the form

tr
Ä
(Π~n)S((f~n)S) ◦AS

ä
tr
Ä
(Π~n)Sfin\{p}((f

~n)Sfin\{p}) ◦ASfin\{p}
ä

tr
Ä
Redb~n(π~np )(φp)

ä
,

where π~np ∈ Rep(G~n(Qp)) base changes to Π~n
p ∈ Rep(G~n(Qp)), the component

at p of a θ-stable isobaric irreducible automorphic representation Π~n of G~n.
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Moreover, Π~n is of the form

Π~n = (n− IndG~n
Q ΠM )ξ,

where ΠM occurs in the (relatively) discrete part of the automorphic spectrum

of the Levi subgroup M of a parabolic Q ⊂ G~n and Π~n
∞ is cohomological (with

respect to the trivial algebraic representation).

Proof. We follow the proof of Proposition 6.1 of [Shi11], in a more general

situation, but without keeping track of endoscopic signs and constants.

First, assume that the function φp is acceptable, in which case we can

define the transfers φ~np ∈ C∞c (G~n(Qp)). Since the base change map at p is

surjective, we can choose fnp ∈ C∞c (G(Qp)) that transfers to φnp . Then we also

get the transfers f~np ∈ C∞c (G~n(Qp)). We set

f~n := (f~n)Sf~nS\{p}f
~n
p .

By combining Theorem 5.3.2 and Proposition 5.3.3, we can write

tr(φ|ι`[Hc(I
b
Mant, Q̄`)])

as a finite linear combination on terms of the form tr
Ä
Π~n(f~n) ◦A′

ä
, where Π~n

is a θ-stable irreducible automorphic representation of G~n.

Recall that each Π~n is of the form (n− IndG~n
Q ΠM )ξ, where ΠM occurs in

the (relatively) discrete part of the automorphic spectrum of the Levi subgroup

M of G~n. The fact that Π~n is θ-stable follows from Remark 5.3.4, and the

irreducibility of Π~n follows from the fact ΠM is unitary and that, for general

linear groups, any parabolic induction of a unitary representation is irreducible.

Moreover, the representation ΠM must be isobaric, since it contributes to the

discrete spectrum of M . (This follows from the classification of automorphic

representations occurring in the discrete spectrum of general linear groups

due to Moeglin and Waldspurger, [MW89]. See, for example, Theorem 1.3.3

of [Art13] and the discussion below it.) Now the strong multiplicity one result

due to Jacquet and Shalika (the main result of [JS81], see also Theorem 1.3.2

of [Art13]) implies that the string of Satake parameters outside the finite set S

determines ΠM . The parabolic induction Π~n is also isobaric, because it is

irreducible, and therefore it is determined by (Π~n)S . To check that Π~n
∞ is

cohomological (for the trivial representation), it is enough to determine the

infinitesimal character of Π~n
∞, which can be done using the definition of the

test functions at ∞.

Decompose the intertwiner A′ as (A′)p · A′p. Using the fact that Π~n is

θ-stable and that the base change map at p is injective (since p splits in the

quadratic field K), we can rewrite tr
Ä
Π~n
p (f~np ) ◦A′p

ä
as tr π~np (φ~np ) for some rep-

resentation π~np in Irr(G~n(Qp)) (at least up to a sign). Now, using Lemma 5.4.2,

we can rewrite the latter as tr Redb~n(π~np )(φp).
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Keeping φp fixed, we have a formula for tr(φ|ι`[Hc(I b
Mant, Q̄`)]) as a finite

linear combination of traces of φp against irreducible representations of Jb(Qp).

At this stage, we can take φp to be any smooth, compactly-supported function

on Jb(Qp), not necessarily an acceptable one. Indeed, recall that the twist of

any such φp by any sufficiently high power of Frobenius is acceptable, so the

equality above holds for φ
(N)
p for sufficiently large N . The argument in the

proof of Lemma 6.4 of [Shi09] now proves that the desired equality holds for

every integer N and, in particular, for N = 0. �

Corollary 5.5.2. Fix φSfin\{p} and φp. If Π~n is a θ-stable automorphic

representation of G~n as in Lemma 5.5.1 that contributes to

tr(φ|ι`[Hc(I
b
Mant, Q̄`)]),

then the transfer of (Π~n)S to G = Gn (via ζ̃~n,∗) occurs in

BCS
Ä
[Hc(I

b
Mant, Q̄`)]

Sur
ä
.

Conversely, any G(AS)-subrepresentation of BCS
Ä
[Hc(I b

Mant, Q̄`)]
Sur
ä

is of

the form ΠS , where Π = ζ̃~n∗(Π
~n).

Proof. Since we have fixed φSfin\{p} and φp, tr(φ|ι`[Hc(I b
Mant, Q̄`)]) can be

written as a linear combination of finitely many terms of the form

tr
Ä
(Π~n)S((f~n)S) ◦AS

ä
.

We will ignore the sign that comes from the choice of the normalized inter-

twiner AS . Recall that f(~n)S is the transfer of (fn)S along ζ̃∗~n. We can therefore

rewrite these terms as

tr
Ä
(Π~n)S((f~n)S)

ä
= tr

Ä
ζ̃~n,∗(Π

~n)S((fn)S
ä
.

Since φS is the BC-transfer of (fn)S , we can also write tr(φ|ι`[Hc(I b
Mant, Q̄`)])

as a linear combination of finitely many terms of the form tr
Ä
ΠS((fn)S)

ä
,

where ΠS runs over irreducible admissible G(AS)-representations that occur

in BCS([Hc(I b
Mant, Q̄`)]

Sur). The corollary now follows from the linear inde-

pendence of unramified Hecke characters. �

Remark 5.5.3. A subrepresentation ΠS of BCS
Ä
[Hc(I b

Mant, Q̄`)]
Sur
ä

is of

the form ΠS , where Π = ζ̃~n∗(Π
~n) could be obtained from Π~n for several different

G~n ∈ E ell(G). For example, in the Case ST which is discussed in Section 6

of [Shi11], the contribution is from an endoscopic group Gn1,n2 but also from

a Levi subgroup M of G.

Our goal is now to construct a Galois representation

rΠ : Gal(F̄ /F )→ GLn(Q̄`)
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attached to the automorphic representation Π := ζ̃~n,∗(Π
~n) (or rather the auto-

morphic representation of GLn(AF ) obtained from Π by forgetting the simil-

itude factor). We will build this from the Galois representations attached

to regular L-algebraic, essentially self-dual, cuspidal automorphic representa-

tions of GLm(AF ), where m ∈ Z≥1. We will use the notions of L-algebraic and

C-algebraic representations due to Buzzard-Gee [BG14] and note that in the

case of general linear groups these notions only differ by a character twist.

By Lemma 5.5.1, Π~n
∞ is cohomological, which implies Π~n is C-algebraic.

Write Π~n = ψ ⊗ Π1 ⊗ Π2 according to the decomposition Gn1,n2(A) = A×F0
×

GLn1(AF ) × GLn2(AF ). Each Πi is a regular C-algebraic, θ-stable isobaric

automoprhic representation of GLni(AF ). The automorphic representation

Πi|det |(1−ni)/2 is regular L-algebraic.

Recall that we have ve chosen an isomorphism ι` : Q̄`
∼→ C.

Theorem 5.5.4. There exists a Galois representation

ri : Gal(F̄ /F )→ GLn(Q̄`)

such that for any place q of F ,

WD
Ä
ri|Gal(F̄q/Fq)

äF−ss ' ι−1
` rec

Ä
Πi,q|det |(1−ni)/2

ä
,

where rec denotes the local Langlands correspondence normalized as in [HT01].28

Proof. Recall that the representation Π~nwas constructed as n−IndG~n
Q (ΠM )

(recall that for us ξ is trivial) for some automorphic representation ΠM that

is Φ−1
~n θ-stable and that occurs in the discrete automorphic spectrum of some

Levi subgroup M of G~n. This means we can write

Πi = n− Ind
GLni
Qi

(ΠMi),

where Mi is the Levi subgroup of parabolic subgroup Qi of GLni and ΠMi

is Φ−1
ni θ-stable and occurs in the discrete automorphic spectrum of Mi. The

classification of the discrete automorphic spectrum for general linear groups

due to Moeglin and Waldspurger [MW89] together with the fact that ΠMi is

Φ−1
ni θ-stable tells us that ΠMi can be expressed in terms of regular L-algebraic,

conjugate self-dual cuspidal automorphic representations of (possibly a prod-

uct of) general linear groups. (We remark that the conjugate self-dual, regular

algebraic case suffices here because ΠM is Φ−1
~n θ-stable and has regular infini-

tesimal character, since Π~n has regular infinitesimal character.) The existence

28For our purposes, it is enough to know the compatibility up to semisimplification, i.e.,

without identification of the monodromy operator, which is the most subtle part of the local-

global-compatibility.
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of the Galois representation ri and the compatibility with the local Lang-

lands correspondence now follows from the main theorems of [Shi11], [CH13]

and [Car12]. �

Let v be a place of F above a prime q ∈ SplF0/Q \ (S ∪{`}). Let qv denote

the cardinality of the residue field of v. Let Ti,v ∈ Z[G(Qq)//G(Zq)] be the

characteristic function of

GLn(OFv)diag($v, . . . , $v︸ ︷︷ ︸
i

, 1, . . . , 1) GLn(OFv)×
∏
w 6=v

GLn(OFw)× Z×p × Z×p

inside

G(Qq) =
∏
w

GLn(Fw)×Q×p ×Q×p ,

where w runs over all places of F lying over q.

Corollary 5.5.5. Let ΠS be an irreducible admissible G(AS)-subrepre-

sentation of BCS
Ä
[Hc(I b

Mant, Q̄`)]
Sur
ä
. Then there exists a Galois representa-

tion

rΠS ,` : Gal(F̄ /F )→ GLn(Q̄`)

unramified outside the places above S ∪ {`} and such that for all finite places

v lying above a prime q ∈ SplF0/Q \ (S ∪ {`}), the Frobenius eigenvalues of

rΠS ,` match the Satake eigenvalues of ΠS at v. More precisely, for every such

prime v, the characteristic polynomial of rΠS ,`(Frobv) is given by the image of

Xn − T1,vX
n−1 + · · ·+ (−1)iqi(i−1)/2

v Ti,vX
n−i + · · ·+ (−1)nqn(n−1)/2

v Tn,v

under the Satake parameter map corresponding to ΠS and the isomorphism ι−1
` .

Proof. Choose an automorphic representation Π~n = ψ ⊗ Π1 ⊗ Π2 of G~n

as in Corollary 5.5.2. By Theorem 5.5.4, there exist Galois representations ri
associated to the L-algebraic representations Πi| det |(1−ni)/2.

We recall the definition of the L-morphism ζ̃~n from [Shi11]. Let ε : Z →
{0, 1} be the unique map such that ε(n) ∼= n (mod 2). On the level of dual

groups “G~n, the morphism ζ~n is induced by the embedding GL~n ↪→ GLn. We

extend this to an L-morphism using the Hecke character $, via

w ∈WK
7→
Å
$(w)−N(n1,n2), $(w)−N(n1,n2),

Å
$(w)ε(n−n1)·In1 0

0 $(w)ε(n−n2)·In2

ã
σ∈Φ

ã
o w

and, if w∗ is a fixed element in WQ \WK,

w∗ 7→
Ä
an1,n2 , an1,n2 , (Φn1,n2Φ−1

n )σ∈Φ

ä
o w∗.

(See loc. cit. for any unexplained notation, though only the definition of ε will

matter for what follows.)
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The character $ satisfies $∞(z) = (z/z̄)δ/2 for some odd integer δ, since

$∞ : C× → C× extends the sign character on R×. The character of GLni(AF )

defined by |det |(ni−n)/2$(NF/K ◦ det)ε(n−ni) is L-algebraic, since ((n − ni) +

ε(n− ni)δ)/2 ∈ Z, so it corresponds to a character εi : Gal(F̄ /F )→ Q̄×` .

Let Π := ζ̃n1,n2,∗(Π
~n). Write Π = ψ′⊗Π0, according to the decomposition

G(A) = A×K ×GLn(AF ). Set

Π0
i := Πi|det |(1−ni)/2|det |(ni−n)/2$(NF/K ◦ det)ε(n−ni).

By the definition of ζ̃n1,n2,∗, we get the identity

Π0| det |(1−n)/2 = n− IndGLn
GLn1 ×GLn2

Ä
Π0

1 ⊗Π0
2

ä
.

The representation on the right-hand side is L-algebraic, and normalized par-

abolic induction is compatible with this notion and with the local Langlands

correspondence rec, so the term on the left-hand side, Π0|det |(1−n)/2, is also

L-algebraic, with corresponding Galois representation rΠS ,` := ⊕2
i=1ri ⊗ εi

(matching via rec). One checks directly that the relationship between Π0 and

rΠS ,` is as in the statement of the theorem. �

Remark 5.5.6. Essentially, rΠS ,` is constructed from the Galois representa-

tion associated to the C-algebraic representation Π~n compatibly with the trans-

fer of representations from G~n to G along the L-morphism ζ̃~n. Let p =
∏m
i=1 pi

be the decomposition of p into prime ideals of F . If we set Π := ζ̃~n,∗(Π
~n) and

Πp =

(
m⊗
i=1

Πpi

)
⊗Πp,0,

then Πpi and rΠS ,`|Gal(F̄pi/Fpi )
are related via the geometric normalization of the

local Langlands correspondence for every i = 1, . . . ,m. This is a consequence

of the local-global compatibility at pi in Theorem 5.5.4. In particular, if for

some i

rΠS ,`|Gal(F̄pi/Fpi )
= χi,1 ⊕ · · · ⊕ χi,n

decomposes as a direct sum of characters such that for all a 6= b, χi,aχ
−1
i,b is not

the cyclotomic character, then Πpi is a generic principal series representation

of GLn(Fpi).

In the following, we fix a Galois representation

r : Gal(F̄ /F )→ GLn(Q̄`)

that is unramified outside S ∪ {`}, and we restrict attention to the summand

BCp([Hc(I
b
Mant, Q̄`)]

S ur)S ur
r of BCS([Hc(I

b
Mant, Q̄`)]

S ur)

coming from representations ΠS as above, with rΠS ,`
∼= r.



THE GENERIC PART OF THE COHOMOLOGY OF SHIMURA VARIETIES 747

The following theorem is the key result of this section. Recall that we have

fixed a prime p|p of the reflex field E, so that we have embeddings E ↪→ C,

E ↪→ Ep ↪→ Q̄p. For convenience, let us fix an isomorphism ιp : Q̄p
∼= C

compatible with the embedding of E.

Theorem 5.5.7. For each prime pi of F , let

Si = {τ : F ↪→ C|ιp ◦ τ induces pi}.

Assume that for each i, Si contains at most one τ for which pτqτ is nonzero,

where G has signature (pτ , qτ ) at τ : F ↪→ C. Moreover, for each i for which

Si contains some τ for which pτqτ is nonzero, assume that

rGal(F̄pi/Fpi )
= χi,1 ⊕ · · · ⊕ χi,n

decomposes as a direct sum of characters, such that for all a 6= b, χi,aχ
−1
i,b is

not the cyclotomic character.

Then, if b ∈ B(G,µ−1) is not µ-ordinary,29

BCp([Hc(I
b
Mant, Q̄`)]

S ur)r = 0.

Proof. Assume the contrary. Then there is some θ-stable isobaric auto-

morphic representation Π~n of G~n as above, with Π := ζ̃~n∗(Π
~n) contributing to

BCS([Hc(I b
Mant, Q̄`)]

S ur) and such that rΠ,`
∼= r. The component Π~n

p of Π~n

at p comes from a unique representation π~np ∈ Irr(G~n(Qp)) via base change.

We may decompose

π~np =
m⊗
i=1

π~npi ⊗ π
~n
0

according to

G~n(Qp) =
m∏
i=1

GL~n(Fpi)×Q×p .

By the assumption on r and the local-global compatibility in Remark 5.5.6, we

know that π~npi transfers to a generic principal series representation of GLn(Fpi)

for all i for which Si contains some τ with pτqτ 6= 0. By Lemma 5.4.3,

Redb~n(π~np ) = 0 as soon as Jbi is not quasisplit for some such i, so that in

this case there is no contribution by Lemma 5.5.1.

It remains to see that if b ∈ B(G,µ−1) is not µ-ordinary, then there is

some i for which Si contains some τ with pτqτ 6= 0, such that Jbi is not

quasisplit.

We can decompose

µ = ((µi)i=1,...,m, µ0) : Gm → GQ̄p =
m∏
i=1

(
∏

Fpi ↪→Q̄p

GLn,Q̄p)×Gm,Q̄p ;

29It might be more accurate to write µ−1-ordinary.
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let Gi = ResFpi/Qp GLn. Then µi is a conjugacy class of minuscule cocharacters

of Gi, and we have a decomposition

B(G,µ−1) =
m∏
i=1

B(Gi, µ
−1
i ),

as the Gm factor plays no role here. In each factor GLn,Q̄p , µ has the form

t 7→ diag(t, . . . , t, 1, . . . , 1)

with t occurring pτ times, and 1 occurring qτ times, where τ : F → Q̄p
∼= C

is the corresponding complex place. In particular, for each i for which Si does

not contain any τ with pτqτ 6= 0, µi is central, which implies that B(Gi, µ
−1
i )

has precisely one element. If there is exactly one such τ , then denoting by µi,τ
the corresponding component of µi, one sees that

B(Gi, µ
−1
i ) = B(GLn /Fpi , µ

−1
i,τ ),

using the relative B(H/L) = B(L,H) for a reductive group H over a p-adic

field L.30 Now the result follows from the next lemma. �

Lemma 5.5.8. Let L be any p-adic field, and let

µ : Gm → GLn : t 7→ diag(t, . . . , t, 1, . . . , 1)

be a minuscule cocharacter with n− q occurrences of t and q occurrences of 1.

Then there is exactly one element b∈B(GLn /L, µ
−1) for which Jb is quasisplit,

namely the µ-ordinary element represented by diag($−1, . . . , $−1, 1, . . . , 1),

with n− q occurrences of the uniformizer $ of L, and q occurrences of 1.

Proof. By the choice of µ, we know that for any b ∈ B(GLn /L, µ
−1),

the slopes λi satisfy −1 ≤ λi ≤ 0. If some slope λ is nonintegral, then Jb is

not quasisplit, as it contains a factor that is a general linear group over the

division algebra of invariant λ (mod 1) over L. Thus, if Jb is quasisplit, then

all slopes are equal to 0 or −1; from the equality κ(b) = −µ one deduces that

slope −1 occurs with multiplicity n− q, and slope 0 with multiplicity q, which

corresponds to the µ-ordinary element b = diag($−1, . . . , $−1, 1, . . . , 1). For

this b, Jb ∼= GLn−q ×GLq is quasisplit. �

5.6. Simple Shimura varieties. In this section, we sketch how to adapt

the arguments above for Kottwitz’ simple Shimura varieties as in [Kot92a].

This includes the case of Shimura varieties that admit q-adic uniformization

for some rational prime q distinct from p and `. In that case, our main result

is related to level-raising results, as shown in [Tho14].

30So far, we were only using the case L = Qp and did not include this in the notation.
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Recall that F = F+ · K. Assume that we have a PEL datum of the form

(B, ∗, V, 〈, 〉, h), where B is a division algebra with center F , V is a simple

B-module, and ∗ is an involution of the second kind. Then the corresponding

Shimura varieties SK are proper, and the group G has no endoscopy. Assume

that B is split at all places over p, in which case the constructions and results

of Section 5.4 carry over. However, Theorem 5.2.3 simplifies considerably.

We follow Section 6 of [Shi12], where it is assumed that p is inert in F+; this

assumption is not necessary for our purposes. As above, let Gn be a quasi-split

inner form of G over Q and fix an isomorphism Gn ' G over Qp.

Proposition 5.6.1. Let φ = φpφp ∈ C∞c (G(Apf ) × Jb(Qp)), with φp an

acceptable function. Then

tr(φ|ι`Hc(I
b
Mant, Q̄`)) = | ker1(Q, G)|ι(G,Gn)STGne (φGn).

Proof. The other terms in the stable trace formula vanish by Lemma 7.1

of [Shi10]. �

We can now combine this with the stable trace formula for the SK , which is

Theorem 6.1 of [Art89] and which is simplified in our situation as in Proposition

6.3 of [Shi12], also making use of Lemma 5.4.2 for Gn(Qp) ' G(Qp). We get

Redbn
(
[H(SK , Q̄`)]

)
= εG · d(GR) · [Hc(I

b
Mant, Q̄`)],

where εG, d(GR) are certain nonzero constants. Again, we appeal to Lemma 6.4

of [Shi11] to extend a trace identity from acceptable φp to all φp ∈ C∞c (Jb(Qp)).

We combine this with Matsushima’s formula, which gives a description of

[ι`H(SK , Q̄`)] in terms of automorphic representations of G. We get an ana-

logue of Corollary 6.12 of [Shi12].

Corollary 5.6.2. We have the following equality in Groth(G(Apf ) ×
Jb(Qp)):

[ι`Hc(I
b
Mant, Q̄`)] = (−1)q(G)

∑
πf

c(πf )[πpf ][Redbn(πp)].

The sum runs over admissible representations πf of G(Af ) such that πfπ∞
is an automorphic representation of G for some representation π∞ of G(R) that

is cohomological for the trivial algebraic representation. The coefficients c(πf )

are related to the automorphic multiplicity of πfπ∞.

In this case, the existence of Galois representations is also known, as the

stable base change of such π to GLn has been established by Shin in the

appendix to [Gol14]. As before, for a Galois representation

r : Gal(F̄ /F )→ GLn(Q̄`),

we restrict attention to the summand [Hc(I b
Mant, Q̄`)]r of

[Hc(I
b
Mant, Q̄`)]
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coming from representations π as above, with rπ,` ∼= r.

We get the following analogue of Theorem 5.5.7, which is proved in the

same way.

Corollary 5.6.3. For each prime pi of F above p, let

Si = {τ : F ↪→ C|ιp ◦ τ induces pi}.
Assume that for each i, Si contains at most one τ for which pτqτ is nonzero,

where G has signature (pτ , qτ ) at τ : F ↪→ C. Moreover, for each i for which

Si contains some τ for which pτqτ is nonzero, assume that

rGal(F̄pi/Fpi )
= χi,1 ⊕ · · · ⊕ χi,n

decomposes as a direct sum of characters, such that for all a 6= b, χi,aχ
−1
i,b is

not the cyclotomic character.

Then, if b ∈ B(G,µ−1) is not µ-ordinary,

[Hc(I
b
Mant, Q̄`)]r = 0.

6. Torsion in the cohomology of unitary Shimura varieties

In this final section, we give a precise formulation and proof of our main

result. We start by formulating and proving the critical perversity result.

6.1. Perverse sheaves on the flag variety. Consider the Hodge-Tate period

map

πHT : SKp → F`G,µ

for a compact Hodge type Shimura variety. In this section, we would like to

make precise in which sense RπHT∗F` is perverse.31

Recall the following result on preservation of perversity under nearby cy-

cles.

Theorem 6.1.1 ([Ill94, Cor. 4.5]). Let K be a complete discretely valued

nonarchimedean field with ring of integers OK and completed algebraic closure

C with OC ⊂ C , and let ` be a prime that is invertible in OK . Let X be

a scheme of finite type over OK . Let XOC be the base-change to OC , with

geometric generic fibre j : Xη̄ = XOK ⊗OK C ↪→ XOC and geometric special

fibre i : Xs̄ ↪→ XOC . Let F be a perverse F`-sheaf on Xη = X ×OK K . Then

RψF = i∗Rj∗F |Xη̄ is a perverse sheaf on Xs̄.

Moreover, nearby cycles in the scheme setting agree with nearby cycles in

the formal/rigid setting. More precisely, we have the following result.

31As we are far from a finite type situation, we avoid talking about Q`-sheaves. We could

talk about Z/`nZ-sheaves, but in that case the notion of perversity is slightly subtle as Z/`nZ
is not a field. For our applications, the F`-case is enough.
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Theorem 6.1.2 ([Hub96, Th. 3.5.13]). Let the situation be as in Theo-

rem 6.1.1. Let Xη be the associated rigid-analytic variety over K , considered

as an adic space, with base change Xη̄ to C . There is a natural morphism of

sites λ : Xη̄,ét → (Xs̄)ét, given by lifting an étale map Y → Xs̄ to an étale map

of formal schemes over OC , and then taking the generic fibre.

Let F ad be the pullback of F under Xét → Xét. Then

Rλ∗(F
ad|Xη̄) ∼= RψF .

In our situation, it is hard to give a direct definition of perversity of

RπHT∗F`. However, the above properties suggest that at least for every formal

model X of the flag variety F`G,µ, the nearby cycles RψXRπHT∗F` should be

a perverse sheaf on the special fibre Xs̄ of X. This is still not true, as G(Qp)

acts on RπHT∗F`; one can only hope for the Kp-invariants to be perverse for

any sufficiently small Kp ⊂ G(Qp). Thus, we work with the equivariant sites

introduced in [Sch15b, §2].

First, note that RπHT∗F` is a canonically a complex of sheaves on the equi-

variant site (F`G,µ/G(Qp))ét. More precisely, one has the map of equivariant

sites

πHT /G(Qp) : (SKp/G(Qp))ét → (F`G,µ/G(Qp))ét,

and one can look at R(πHT /G(Qp))ét∗F`, and this pulls back to RπHT∗F` under

the projection (F`G,µ)ét → (F`G,µ/G(Qp))ét. To check the latter statement,

note first that by passing to slice categories, using [Sch15b, Prop. 2.9], one may

replace G(Qp) by any compact open subgroup Kp ⊂ G(Qp), and then one can

pass to the limit using [Sch15b, Prop. 2.8].

Now take any étale U = Spa(A,A◦)→ F`G,µ. By [Sch15b, Cor. 2.5], the

action of Kp extends to a continuous action on U if Kp is sufficiently small. Let

U = Spf(A◦) with special fibre Us = Spec(A◦/p). Then Kp acts trivially on Us
if Kp is sufficiently small, by continuity of the Kp-action and finite generation

of A◦/p. It follows that any étale map to Us lifts to a Kp-equivariant étale

map to UOC (where C = Cp), giving a natural morphism of sites

λU/Kp : (Uη̄/Kp)ét → Us̄,ét.

Proposition 6.1.3. Let

πHT : SKp → F`G,µ

be the Hodge-Tate period map for a compact Shimura variety of Hodge type

and any sufficiently small compact open subgroup Kp ⊂ G(Apf ). Let x̄ ∈ F`G,µ
be a geometric point. Then there exists a neighborhood basis of affinoid étale

neighborhoods U = Spa(A,A◦) of x in F`G,µ such that, denoting U = Spf(A◦),

RλU/Kp∗(R(πHT /G(Qp))∗F`)|Uη̄/Kp [〈2ρ, µ〉]
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is a perverse sheaf on Us̄ for any sufficiently small pro-p compact open subgroup

Kp ⊂ G(Qp).

Proof. By [Sch15a, Th. IV.1.1(i)], one can find some affinoid étale (in

fact, open) neighborhood U of x such that SKp,U = SKp ×F`G,µ U is affinoid

perfectoid and equal to the preimage of an affinoid étale SKpKp,U → SKpKp

for any sufficiently small Kp. These properties will then also be true for any

étale V → U that factors as a composite of finite étale maps and rational

embeddings, and such V are cofinal. Thus, fix any U with the stated properties.

Let

πHT,U : SKp,U → U = Spa(A,A◦)

be the restriction of πHT . As πHT is partially proper, so is πHT,U . If Kp is

sufficiently small, πHT,U is Kp-equivariant, and induces a map

πHT,U/Kp : SKp,U/Kp → U/Kp.

Also,

(R(πHT /G(Qp))∗F`)|U/Kp = RπHT,U/Kp∗F`,
and by [Sch15b, Prop. 2.12], there is an equivalence of sites (SKp,U/Kp)ét

∼=
SKpKp,U,ét.

Now any SKpKp,U = Spa(RKpKp,U , R
◦
KpKp,U ) has its natural integral model

SKpKp,U = Spf(R◦KpKp,U ), with inverse limit SKp,U = Spf(R◦Kp,U ), where

SKp,U = Spa(RKp,U , R
◦
Kp,U ). We get a map of formal schemes

πHT,U : SKp,U → U.

Modulo p, we get a map of schemes

πHT,Us : SKp,U,s → Us,

with SKp,U,s = Spec(R◦Kp,U/p), and Us = Spec(A◦/p). But Us is of finite type

over Fp, and SKp,U,s = lim←−Kp SKpKp,U,s in the category of (affine) schemes. It

follows that πHT,Us factors over a map

πHT,Kp,Us : SKpKp,U,s → Us

(of affine schemes of finite type over Fp) for any sufficiently small Kp. We

claim that πHT,Kp,Us satisfies the valuative criterion of properness. If K is an

algebraically closed field with a rank-1-valuation ring V ⊂ K, and we are given

a V -point of Us together with a lift of the corresponding K-valued point to

a K-valued point of SKpKp,U,s, we need to show that this K-valued point is

in fact V -valued. We may lift the K-valued point of SKpKp,U,s to SKp,U,s (as

all transition maps are finite and surjective). We may then find a complete

algebraically closed extension C/Qp with residue field K and a (C,OC)-valued

point of SKp,U specializing to this K-valued point of SKp,U,s. Let C+ ⊂ OC be

the preimage of V ⊂ K. Then the image of the (C,OC)-valued point of SKp,U
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under πHT,U is a (C,OC)-valued point of U that extends to a (C,C+)-valued

point. As πHT,U is partially proper, it follows that we get a (C,C+)-valued

point of SKp,U , which specializes to a V -valued point of SKp,U,s and thus of

SKpKp,U,s, as desired.

Thus, πHT,Kp,Us is a map of affine schemes of finite type over Fp that

satisfies the valuative criterion of properness; i.e., it is finite.32 Now consider

the following diagram, where we have base-changed some spaces and maps to

algebraically closed fields:

(SKp,U,η̄/Kp)ét

∼=
��

πHT,Uη̄/Kp
// (Uη̄/Kp)ét

λU/Kp

��

SKpKp,U,η̄,ét

λSKpKp,U
��

SKpKp,U,s̄,ét πHT,Kp,Us̄
// Us̄,ét.

We are interested in the pushforward of F` from the upper left to the lower right

corner, computed via the upper right corner. We may equivalently compute

it via the lower left corner. In that case, the first pushforward is perverse by

Theorems 6.1.1 and 6.1.2, up to the shift 〈2ρ, µ〉 = dimSKpKp,U . But πHT,Kp,Us̄
is finite, so it also preserves perversity under pushforward. �

We will need the following consequence, which is a statement purely about

the cohomology of Igusa varieties. For the statement, let S be a finite set of

primes such that Kp = Kp
SK

S , where KS ⊂ G(ASf ) is a product of hyperspecial

maximal compact open subgroups, and Kp
S ⊂ G(ApS). Let

TS = Z[G(ASf )//KS ]

be the abstract (commutative) Hecke algebra of KS-biinvariant compactly sup-

ported functions on G(ASf ).

Corollary 6.1.4. Fix a maximal ideal m ⊂ TS , and among all b ∈
B(G,µ−1) with the property that the m-torsion

H i(Igb,F`)[m] 6= 0

for some i ∈ Z, take some b with d = 〈2ρ, νb〉 minimal. Then H i(Igb,F`)[m] is

nonzero only for i = d.

32Thus, we are in the somewhat curious situation that πHT,Us is ind-finite, but πHT,U has

fibres of positive dimension.
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The idea is that the sheaf (RπHT∗F`)m is concentrated on a subset of

dimension 〈2ρ, µ〉 − d by assumption. Thus, F`bG,µ is one of the largest strata

where (RπHT∗F`)m is nonzero. But as this sheaf is (up to shift) perverse, one

concludes by observing that on the largest stratum where a perverse sheaf is

nonzero, it is concentrated in one degree. However, as the notion of perversity

is defined via nearby cycles, we need to rewrite this argument slightly.

Proof. As

H i(Igb,F`) = lim−→
m

H i(I b
Mant,m,F`),

where the transition maps are split injective (namely, projections are given by

averaging operators over compact open subgroups of Jb(Qp)), and the terms on

the right are finite-dimensional, we see that the m-torsion is nonzero precisely

when the m-localization is nonzero. Thus, we may work with the localization

at m instead.

Now RπHT∗F` (in fact, the G(Qp)-equivariant version R(πHT /G(Qp))étF`)
is a sheaf of TS-modules, as the Hecke operators away from p act trivially

on F`G,µ. We may thus form the localization (RπHT∗F`)m. We claim that

(RπHT∗F`)m is concentrated on the union F`≥dG,µ of F`b
′
G,µ over all b′ with

〈2ρ, νb′〉 ≥ d (which is a closed subset of F`G,µ).

Indeed, if y ∈ F`G,µ does not lie in F`≥dG,µ, then it lies in F`b
′
G,µ for some

b′ with 〈2ρ, νb′〉 < d. Now Theorem 4.4.4 computes the fibre of RπHT∗F` at

any geometric point above y as RΓ(Igb
′
,F`). We may pass to localizations at

m in this statement, and thus the assumption of the corollary shows that the

localization of (RπHT∗F`)m at y vanishes.

Next, we claim that for any affinoid étale U → F`G,µ with formal model U,

equivariant under Kp, with trivial action on Us, the nearby cycles

RλU/Kp∗ ((R(πHT /G(Qp)∗F`)m) |Uη̄/Kp

are supported on a closed subset of Us̄ of dimension 〈2ρ, µ〉−d. Indeed, the sheaf

is supported on the closure in U of the preimage U≥d ⊂ U of F`≥dG,µ ⊂ F`G,µ.

But U≥d ⊂ U is a closed subset of dimension ≤ 〈2ρ, µ〉− d, and then the same

is true for its closure in U: If x ∈ Us is a point whose closure is of dimension e,

then the closure in U of any lift x̃ ∈ U of x will have at least dimension e (as

the specialization map is specializing).

Recall that RλU/Kp∗(R(πHT /G(Qp))∗F`)|Uη̄/Kp [〈2ρ, µ〉] is perverse. It fol-

lows that the same is true for its localization

(RλU/Kp∗(R(πHT /G(Qp))∗F`)|Uη̄/Kp [〈2ρ, µ〉])m
= RλU/Kp∗ ((R(πHT /G(Qp))∗F`)m) |Uη̄/Kp [〈2ρ, µ〉]
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at m. This sheaf is supported on a scheme of finite type of dimension 〈2ρ, µ〉−d.

It follows that the localizationÄ
RλU/Kp∗ ((R(πHT /G(Qp))∗F`)m) |Uη̄/Kp

ä
|x̄

at any geometric point x̄ ∈ Us̄ whose closure is of dimension 〈2ρ, µ〉 − d is

concentrated in degree d.

Now pick b as in the statement, and choose a rank 1 point y ∈ F`bG,µ
with dim {y} = 〈2ρ, µ〉 − d, and a geometric point ȳ above y. One has an

identification

(RπHT∗F`)m,ȳ = RΓ(Igb,F`)m.

On the other hand, choose a cofinal system of affinoid étale neighborhoods

Ui = Spa(Ri, R
◦
i )→ F`G,µ of ȳ as in Proposition 6.1.3, with formal models Ui.

Let x̄i ∈ Ui,s be the specialization of ȳ, which is a geometric point of Ui,s. If i

is large enough, the dimension of the closure of x̄i will be equal to 〈2ρ, µ〉 − d:

One needs to arrange that the image of R◦i → OK(ȳ) → k(ȳ), where K(ȳ) is

the completed residue field at ȳ, with ring of integers OK(ȳ) and residue field

k(ȳ), contains a transcendence basis. Also, choose compact open subgroups

Kp,i ⊂ G(Qp) that act on Ui and trivially on Ui,s, such that the Kp,i shrink

to 1.

In that situation, we know that for all large enough i,Ä
RλUi/Kpi∗ ((R(πHT /G(Qp))∗F`)m) |Ui,η̄/Kp,i

ä
|x̄i

is concentrated in degree d. Finally, we conclude by observing that

(RπHT∗F`)m,ȳ = lim−→
i

Ä
RλUi/Kp,i∗ ((R(πHT /G(Qp))∗F`)m) |Ui,η̄/Kp,i

ä
|x̄i . �

6.2. A genericity assumption. In our main theorem, we impose a generic-

ity assumption at some auxiliary prime. In this section, we briefly study this

genericity condition.

Definition 6.2.1. Let L be a p-adic field, and let

ρ : Gal(L̄/L)→ GLn(F̄`)

be an unramified, continuous representation, with ` 6= p. Then ρ is decomposed

generic if the eigenvalues λ1, . . . , λn of ρ(Frob) satisfy λa/λb 6∈ {1, q} for all

a 6= b, where Frob is an arithmetic Frobenius and q is the cardinality of the

residue field of L.

We note that this condition actually only depends on the semisimplifica-

tion of ρ, but it also implies that ρ is semisimple. In particular, if

ρ : Gal(L̄/L)→ GLn(Q̄`)
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is a continuous representation, the condition that the reduction ρ be decom-

posed generic is unambiguous.

Lemma 6.2.2. Assume that

ρ : Gal(L̄/L)→ GLn(Q̄`)

is a continuous representation such that the reduction ρ is decomposed generic.

Then ρ decomposes as a sum ρ =
⊕n
i=1 χi of characters, and χa/χb is not the

cyclotomic character for any a 6= b.

In particular, the representation of GLn(L) corresponding to ρ is a generic

principal series representation.

Proof. We may conjugate ρ into GLn(OK) for some finite extensionK⊂Q̄`.

Writing ρ =
⊕n

i=1 χi, we may further conjugate ρ into the matrices in GLn(OK)

that are diagonal modulo a uniformizer $ of OK . Now we try to conjugate ρ

into the matrices which are diagonal modulo higher powers of $. By standard

calculations in deformation theory, the relevant obstruction groups are given

by

H1(Gal(L̄/L), χa/χb)

for a 6= b. But if

χλ : Gal(L̄/L)→ F̄×`
denotes the unramified character sending Frob to λ, then it is well known that

H1(Gal(L̄/L), χλ) = 0

if λ 6∈ {1, q}. By assumption, it follows that all relevant obstruction groups

vanish.

The final statement follows because χa/χb is not the cyclotomic character.

�

6.3. Conclusion. Finally, we can tie everything together and prove our

main theorem.

Let us recall the relevant Shimura varieties. We fix a compact Shimura

variety of PEL type, associated with PEL data (B, ∗, V, (·, ·)) of type A satis-

fying one of the following assumptions. In both cases, F = F+ · K is a CM

field with totally real subfield F+ containing an imaginary quadratic field K.

Case 1. Assume that B is a central division algebra over F , and V ∼= B

is a simple B-module.

Case 2. Assume that B = F , F+ 6= Q, the corresponding group G is

quasi-split at all finite places, and if a rational prime q is ramified in F , then

F/F+ is split at all places above q.
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In both cases, let SplF/F+ denote the set of rational primes q such that

every place of F+ above q splits in F . Moreover, fix a finite set S of primes such

that F and G are unramified outside S, and pick a sufficiently small compact

open subgroup K = KSK
S ⊂ G(Af ) = G(AS) × G(ASf ) such that KS is a

product of hyperspecial maximal compact open subgroups Kq ⊂ G(Qq). In

Case 2, we assume that S ⊂ SplF/F+ . Finally, take some rational prime `. We

will consider the following abstract Hecke algebra

TS =
⊗

q∈SplK/Q\(S∪{`})
Z[G(Qq)//Kq].

Theorem 6.3.1. Let m ⊂ TS be a maximal ideal such that

H i(SK ,F`)m 6= 0

for some i ∈ Z.

(1) There is a (unique) semisimple continuous Galois representation

ρm : Gal(F/F )→ GLn(F̄`)

unramified outside the places above S∪{`}, such that for all finite places v

lying above a prime q ∈ SplK/Q \ (S ∪ {`}), the characteristic polynomial

of ρm(Frobv) is given by the image of

Xn − T1,vX
n−1 ± · · ·+ (−1)iqi(i−1)/2

v Ti,vX
n−i + · · ·+ (−1)nqn(n−1)/2

v Tn,v

under a fixed embedding TS/m ↪→ F̄`, where qv is the cardinality of the

residue field at v and

Ti,v ∈ Z[G(Qq)//Kq]

is the characteristic function of

GLn(OFv)diag($v, . . . , $v︸ ︷︷ ︸
i

, 1, . . . , 1) GLn(OFv)×
∏
w 6=v

GLn(OFw)× Z×p

inside

G(Qq) =
∏
w

GLn(Fw)×Q×p ,

where w runs over all places of F lying over the same place of K as v.

(2) Assume that there is some rational prime p ∈ SplK/Q \ (S ∪ {`}), split as

p = uuc in K. Assume there is a prime p|p of E such that the following

condition involving the primes pi|u of F , i = 1, . . . ,m, and the sets Si from

Theorem 5.5.7 holds true. For any i, there is at most one τ ∈ Si such that

pτqτ 6= 0; if there is such a τ ∈ Si, then ρm is decomposed generic at pi.

Then

H i(SK ,F`)m 6= 0

only for i = dimSK .
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Before giving the proof, let us explain in two examples how condition (2)

can be ensured, thus connecting it with the conditions stated in the introduc-

tion.

Remark 6.3.2. Assume that there is a prime p that is completely decom-

posed in F and such that ρm is unramified and decomposed generic at all places

above p. Using Chebotarev, there are then many such p, and we can assume

that p 6∈ S ∪ {`}. In that case, all sets Si in (2) have just one element, and we

see that the desired condition is satisfied.

Remark 6.3.3. Assume that the signature of G is (0, n) at all except for

one infinite place. Moreover, assume that there is some finite prime v of F such

that ρm is unramified and decomposed generic at v. By Chebotarev, there are

then many such v that are moreover decomposed over the rational prime p

of Q, with p 6∈ S ∪ {`}.33 In particular, p needs to be split in K. There is

just one τ for which pτqτ 6= 0, and by choosing the prime p of the reflex field

correctly, one can arrange that this τ appears in Si for pi = v. We see that

condition (2) applies.

Proof. We write out the argument in the more involved Case 2.

For part (1), pick any p ∈ SplK/Q \ (S ∪ {`}). Then K = KpK
p is

decomposed. There is a Hochschild-Serre spectral sequence relating

H i(SKp ,F`)

and H i(SK ,F`).34 In particular, it follows that if i is minimal with H i(SK ,F`)m
6= 0, then

H i(SKp ,F`)m 6= 0.

Thus, there is some b ∈ B(G,µ−1) such that

H i(Igb,F`)m 6= 0

for some i ∈ Z; otherwise we would have

(RπHT∗F`)m = 0,

and hence

RΓ(SKp ,F`)m = 0

by the Leray spectral sequence for πHT : SKp → F`G,µ. Now pick some

b ∈ B(G,µ−1) with d = 〈2ρ, νb〉 minimal such that for some i ∈ Z,

H i(Igb,F`)m 6= 0.

33In Chebotarev’s theorem, only places with residue field Fp contribute to the Dirichlet

density.
34Here and in the following, all cohomology groups are étale cohomology groups after base

change to an algebraically closed field.
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In that case, this group is nonzero exactly for i = d by Corollary 6.1.4. Taking

invariants under a pro-p-compact open subgroup of Jb(Qp) (which is an exact

operation), this implies that

H i(I b
Mant,m,F`)m

is nonzero at most for i = d; if m is large enough, it is nonzero if i = d. It

follows that the cohomology with Z`-coefficients is concentrated in the middle

degree and flat, and thus the Q̄`-cohomology

H i(I b
Mant,m,Z`)m ⊗ Q̄`

is nonzero for i = d. By Poincaré duality (and applying the same discussion

with the “dual” set of Hecke eigenvalues), the same holds true for compactly

supported cohomology. We have a decomposition

[Hc(I
b
Mant, Q̄`)]

S ur = [Hc(I
b
Mant, Q̄`)]

S ur
m + [Hc(I

b
Mant, Q̄`)]

S ur,m

according to systems of Hecke eigenvalues lifting m, or a different set of Hecke

eigenvalues modulo `, and by concentration in one degree, the first summand

is nonzero in the Grothendieck group, and its base change BCp is still nonzero.

It follows that there is some ΠS as in Lemma 5.5.1 whose Hecke eigenvalues

lift m. Then Theorem 5.5.5 implies that there is a Galois representation rΠS ,`,

whose reduction is the desired Galois representation ρm.

Now, we deal with part (2). We choose p and p as guaranteed in the

statement. It is enough to prove that H i(SK ,F`)m is nonzero only for i ≥
dimSK ; the other bound follows by Poincaré duality (and the result for the

“dual” ideal, which satisfies the same hypothesis). Now a Hochschild-Serre

spectral sequence shows that it is enough to prove that

H i(SKp ,F`)m = 0

for i < dimSK . As above, we take some b ∈ B(G,µ−1) with d = 〈2ρ, νb〉
minimal such that

H i(Igb,F`)m 6= 0

for some i ∈ Z. We get concentration in middle degree in this case, and hence

the argument above shows that there is some Galois representation r lifting

ρm with

BCp([Hc(I
b
Mant, Q̄`)]

S ur)r 6= 0.

But by Lemma 6.2.2 and the assumptions on p, p and ρm, the hypothesis

of Theorem 5.5.7 are satisfied. Thus, if b is not µ-ordinary, we arrive at a

contradiction. It follows that b is µ-ordinary.

In that case, 〈2ρ, µ〉 = 〈2ρ, νb〉 = dimSK , so Corollary 6.1.4 shows that

H i(Igb,F`)m
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vanishes for i < dimSK for all b ∈ B(G,µ−1). Thus, (RiπHT∗F`)m vanishes

for i < dimSK , and the result follows by applying the Leray spectral sequence

for πHT : SKp → F`G,µ. �

References

[Art88a] J. Arthur, The invariant trace formula. I. Local theory, J. Amer. Math.

Soc. 1 no. 2 (1988), 323–383. MR 0928262. Zbl 0682.10021. https://doi.

org/10.2307/1990920.

[Art88b] J. Arthur, The invariant trace formula. II. Global theory, J. Amer. Math.

Soc. 1 no. 3 (1988), 501–554. MR 0939691. Zbl 0667.10019. https://doi.

org/10.2307/1990948.

[Art89] J. Arthur, The L2-Lefschetz numbers of Hecke operators, Invent. Math.

97 no. 2 (1989), 257–290. MR 1001841. Zbl 0692.22004. https://doi.org/

10.1007/BF01389042.

[Art13] J. Arthur, The Endoscopic Classification of Representations : Orthogo-

nal and Symplectic Groups, American Mathematical Society Colloquium

Publications 61, American Mathematical Society, Providence, RI, 2013.

MR 3135650. Zbl 1310.22014. https://doi.org/10.1090/coll/061.

[Bad07] A. I. Badulescu, Jacquet-Langlands et unitarisabilité, J. Inst. Math.
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Inst. Hautes Études Sci. no. 111 (2010), 1–169. MR 2653248. Zbl 1200.

22011. https://doi.org/10.1007/s10240-010-0026-7.
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PEL-type, Ann. Sci. École Norm. Sup. (4) 32 no. 5 (1999), 575–618.

MR 1710754. Zbl 0983.14024. https://doi.org/10.1016/S0012-9593(01)

80001-X.

[Wei14] J. Weinstein, Peter Scholze’s lectures on p-adic geometry, 2014.

(Received: November 19, 2015)

Mathematisches Institut der Universität Bonn, Endenicher Allee 60,

53115 Bonn, Germany

E-mail : caraiani@math.uni-bonn.de

Mathematisches Institut der Universität Bonn, Endenicher Allee 60,

53115 Bonn, Germany

E-mail : scholze@math.uni-bonn.de

http://www.ams.org/mathscinet-getitem?mr=3377388
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1330.11042
https://doi.org/10.1515/crelle-2013-0057
http://www.ams.org/mathscinet-getitem?mr=3264255
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1296.11034
https://doi.org/10.1017/fms.2014.14
https://doi.org/10.1017/fms.2014.14
http://www.ams.org/mathscinet-getitem?mr=1440722
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0871.22005
https://doi.org/10.1023/A:1000103112268
http://www.ams.org/mathscinet-getitem?mr=1710754
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0983.14024
https://doi.org/10.1016/S0012-9593(01)80001-X
https://doi.org/10.1016/S0012-9593(01)80001-X
mailto:caraiani@math.uni-bonn.de
mailto:scholze@math.uni-bonn.de

	1. Introduction
	2. Refining the Hodge-Tate period map
	2.1. Recollections on the Hodge-Tate period map
	2.2. The p-adic-de Rham comparison isomorphism
	2.3. Hodge cycles and torsors

	3. The Newton stratification on the flag variety
	3.1. Background on isocrystals with G-structure
	3.2. The Fargues-Fontaine curve
	3.3. The relative Fargues-Fontaine curve
	3.4. The mixed characteristic affine Grassmannian
	3.5. Vector bundles over X and the Newton stratification

	4. The geometry of Newton strata and Igusa varieties
	4.1. Preliminaries on p-divisible groups
	4.2. Rapoport-Zink spaces of PEL type
	4.3. A product formula
	4.4. Étale cohomology

	5. The cohomology of Igusa varieties
	5.1. Setup
	5.2. A stable trace formula
	5.3. Base change and the twisted trace formula
	5.4. The transfer at p
	5.5. Generic principal series
	5.6. Simple Shimura varieties

	6. Torsion in the cohomology of unitary Shimura varieties
	6.1. Perverse sheaves on the flag variety
	6.2. A genericity assumption
	6.3. Conclusion

	References

