Erratum on "On the number of generators of ideals in polynomial rings"

By Jean Fasel

Abstract

We explain a mistake that occurred in the proof of Murthy's conjecture by the author.

Introduction

The purpose of this erratum is to explain a counter-example to [Fas16, Th. 3.2.7]. It follows that the proof of Murthy's conjecture stated in [Fas16] no longer holds, i.e., that the conjecture is still open. We would like to thank Mrinal Das for spotting the mistake in [Fas16, Lemma 3.2.3].

1. The counter-example

In [Fas16, Th. 3.2.7], the following result was stated.
Theorem. Let k be an infinite field of characteristic different from 2, and let R be an essentially smooth k-algebra. Moreover, let $n \geq 2, v \in Q_{2 n}(R)$ and $v_{0}=(0, \ldots, 0) \in Q_{2 n}(R)$. The strong lifting property holds for the row v if and only if $v \in v_{0} E O_{2 n+1}(R)$.

However, this result is incorrect. It follows from [MPM98, Ex. 2.4] that the conclusion cannot hold as we now show.

Let $R=\mathbb{C}[X, Y]$, and let $f=X^{3}+Y^{3}-1 \in R$. There exists a matrix $\sigma \in S L_{2}(R / I)$ whose class in $S K_{1}(R / I)$ is nontrivial. Let $\left(\bar{a}_{1}, \bar{a}_{2}\right)=e_{1} \sigma$ be the first row of σ, and let $I=(f) \subset R$. It is easy to see that ($\left.\overline{a_{1} f}, \overline{a_{2} f}\right)$ generate I / I^{2}. Now, we have a commutative diagram

[^0]whose vertical maps are isomorphisms. If the set of generators ($\left.\overline{a_{1} f}, \overline{a_{2} f}\right)$ of I / I^{2} lifts to a set of generators of I, we then see that the matrix σ lifts to a matrix in $S L_{2}(R)$, contradicting the fact that its class in $S K_{1}(R / I)$ is nontrivial.

Let us show now that this example contradicts [Fas16, Th. 3.2.7]. Let $a_{1}, a_{2} \in R$ be such that their classes modulo I are respectively \bar{a}_{1}, \bar{a}_{2}. By assumption, there exists $b_{1}, b_{2}, r \in R$ such that $a_{1} b_{1}+a_{2} b_{2}=1-r f$. This yields $a_{1} f b_{1} r+a_{2} f b_{2} r=r f-r^{2} f^{2}$ and thus a row $v=\left(a_{1} f, a_{2} f, r f\right) \in Q_{4}(R)$ such that $I(v)=I=(f)$. As $R=\mathbb{C}[X, Y]$, it follows that $v \in v_{0} E O_{5}(R)$. Yet, the strong lifting property is not satisfied since $\left(\overline{a_{1} f}, \overline{a_{2} f}\right)$ do not lift to generators of I.

The mistake in the proof of [Fas16, Th. 3.2.7] lies in Lemma [Fas16, Lemma 3.2.3]. If the ideal $I(v M)$ is indeed generated by the set of elements given there, it is not true that it satisfies the strong lifting property. As a consequence, the proof of [Fas16, Th. 3.2.9] collapses.

References

[Fas16] J. FASEL, On the number of generators of ideals in polynomial rings, Ann. of Math. 184 no. 1 (2016), 315-331. MR 3505181. Zbl 06605833. https: //doi.org/10.4007/annals.2016.184.1.3.
[MPM98] S. Mandal and M. Pavaman Murthy, Ideals as sections of projective modules, J. Ramanujan Math. Soc. 13 no. 1 (1998), 51-62. MR 1626712. Zbl 0940.13005.
(Received: December 12, 2016)
(Revised: June 6, 2017)

[^1]
[^0]: Keywords: polynomial rings, number of generators of ideals, complete intersections AMS Classification: Primary: 13A15, 13C40, 14M10; Secondary: 14R10, 19M05, 19G38.
 © 2017 Department of Mathematics, Princeton University.

[^1]: Institut Fourier - UMR 5582, Université Grenoble Alpes CS 40700, F-38058 Grenoble Cedex 9
 E-mail: jean.fasel@gmail.com

