Total Betti numbers of modules of finite projective dimension

By Mark E. Walker

Abstract

The Buchsbaum-Eisenbud-Horrocks Conjecture predicts that the i^{th} Betti number $\beta_i(M)$ of a nonzero module M of finite length and finite projective dimension over a local ring R of dimension d should be at least $\binom{d}{i}$. It would follow from the validity of this conjecture that $\sum_i \beta_i(M) \ge 2^d$. We prove the latter inequality holds in a large number of cases and that, when R is a complete intersection in which 2 is invertible, equality holds if and only if M is isomorphic to the quotient of R by a regular sequence of elements.

1. Introduction

We recall a long-standing conjecture (see [3, 1.4] and [6, Prob. 24]):

CONJECTURE (Buchsbaum-Eisenbud-Horrocks Conjecture). Let R be a commutative Noetherian ring such that $\operatorname{Spec}(R)$ is connected, and let M be a nonzero, finitely generated R-module of finite projective dimension. For any finite projective resolution $0 \to P_d \to \cdots \to P_1 \to P_0 \to M \to 0$ of M, we have

$$\operatorname{rank}_R(P_i) \ge \binom{c}{i},$$

where $c = \text{height}_R(\text{ann}_R(M))$, the height of the annihilator ideal of M.

The validity of the Buchsbaum-Eisenbud-Horrocks Conjecture would imply that the "total rank" of any projective resolution of M is at least 2^c . In this paper, we prove this latter inequality holds in a large number of cases:

THEOREM 1. Assume R, M, and P are as in the Buchsbaum-Eisenbud-Horrocks Conjecture and, in addition, that

Keywords: Betti numbers, Buchsbaum-Eisenbud-Horrocks Conjecture AMS Classification: Primary: 13D02.

This work was partially supported by grant #318705 from the Simons Foundation.

^{© 2017} Department of Mathematics, Princeton University.

- (1) R is locally a complete intersection and M is 2-torsion free, or
- (2) R contains \mathbb{Z}/p as a subring for an odd prime p.
- Then $\sum_{i} \operatorname{rank}_{R}(P_{i}) \geq 2^{c}$, where $c = \operatorname{height}_{R}(\operatorname{ann}_{R}(M))$.

Theorem 2 below is the special case of Theorem 1 in which we assume R is a local ring and M has finite length. We record it as a separate theorem since Theorem 1 follows immediately from it and also because in the local situation we can say a bit more.

For a local ring R and a finitely generated R-module M, let $\beta_i(M)$ be the i^{th} Betti number of R, defined to be the rank of the i^{th} free module in the minimal free resolution of M.

THEOREM 2. Assume (R, \mathfrak{m}, k) is a local (Noetherian, commutative) ring of Krull dimension d and that M is a nonzero R-module of finite length and finite projective dimension. If either

- (1) R is the quotient of a regular local ring by a regular sequence of elements and 2 is invertible in R, or
- (2) R contains \mathbb{Z}/p as a subring for an odd prime p,
- then $\sum_i \beta_i(M) \ge 2^d$.

Moreover, if the assumptions in (1) hold and $\sum_i \beta_i(M) = 2^d$, then M is isomorphic to the quotient of R by a regular sequence of d elements.

To see that Theorem 1 follows from Theorem 2, with the notation of the first theorem, let \mathfrak{p} be a minimal prime containing $\operatorname{ann}_R(M)$ of height c. Then $\dim(R_{\mathfrak{p}}) = c$, $M_{\mathfrak{p}}$ has finite length, and $\beta_i(M_{\mathfrak{p}}) \leq \operatorname{rank}_R(P_i)$ for all i. Moreover, if M is 2-torsion free, then $2 \notin \mathfrak{p}$ and hence is invertible in $R_{\mathfrak{p}}$.

I thank Seth Lindokken, Michael Brown, Claudia Miller, Peder Thompson and Luchezar Avramov for useful conversations about this paper.

2. Complete intersections of residual characteristic not 2

In this section we prove part (1) of Theorem 2 and the assertion concerning when the equation $\sum_i \beta_i(M) = 2^d$ holds; see Theorem 2.4 below.

For any local ring (R, \mathfrak{m}, k) , let $\operatorname{Perf}^{\mathsf{fl}}(R)$ be the category of bounded complexes of finite rank free *R*-modules *F*. such that $H_i(F)$ has finite length for all *i*, and define $K_0^{\mathsf{fl}}(R)$ to be the Grothendieck group of $\operatorname{Perf}^{\mathsf{fl}}(R)$. Recall that $K_0^{\mathsf{fl}}(R)$ is generated by isomorphism classes of objects of $\operatorname{Perf}^{\mathsf{fl}}(R)$, modulo relations coming from short exact sequences and quasi-isomorphisms.

Let $\psi^2 : K_0^{\mathsf{fl}}(R) \to K_0^{\mathsf{fl}}(R)$ be the 2nd Adams operation, as defined by Gillet-Soulé [4]. Gillet-Soulé's definition involves the Dold-Kan correspondence between complexes and simplicial modules, but if 2 is invertible in R, then ψ^2 admits a simpler description: For $F \in \operatorname{Perf}^{\mathsf{fl}}(R)$, let $T^2(F)$ denote its second tensor power $F \otimes_R F$ endowed with the action of the symmetric group $\Sigma_2 = \langle \tau \rangle$ given by

$$f \cdot (x \otimes y) = (-1)^{|x||y|} y \otimes x.$$

Since $\frac{1}{2} \in R$, we have a direct sum decomposition $T^2(F_{\cdot}) = S^2(F_{\cdot}) \oplus \Lambda^2(F_{\cdot})$, where $S^2(F_{\cdot}) := \ker(\tau - \mathrm{id})$ and $\Lambda^2(F_{\cdot}) := \ker(\tau + \mathrm{id})$. By [1, 6.14] we have

(2.1)
$$\psi^2[F] = [S^2(F)] - [\Lambda^2(F)] \in K_0^{\mathsf{fl}}(R).$$

Let ℓ_R denote the length of an *R*-module, and write $\chi : K_0^{\mathsf{fl}}(R) \to \mathbb{Z}$ for the Euler characteristic map: $\chi([F_i]) = \sum_i (-1)^i \ell_R H_i(F_i)$.

PROPOSITION 2.2 (Gillet-Soulé; see [4, 7.1]). If R is a local complete intersection of dimension d, then $\chi \circ \psi^2 = 2^d \cdot \chi$.

Definition 2.3. A local ring (R, \mathfrak{m}, k) of dimension d such that 2 is invertible in R will be called a *quasi-Roberts ring* if there we have an equality of maps $\chi \circ \psi^2 = 2^d \cdot \chi$.

THEOREM 2.4. Let (R, \mathfrak{m}, k) be a local ring of dimension d such that 2 is invertible in R. If R is a quasi-Roberts ring, then for any nonzero R-module M of finite length and finite projective dimension, we have $\sum_i \beta_i(M) \geq 2^d$.

Moreover, if $\sum_i \beta_i(M) = 2^d$, then $M \cong R/(y_1, \ldots, y_d)$ for some regular sequence of elements $y_1, \ldots, y_d \in \mathfrak{m}$.

Proof. Let F be the minimal free resolution of M, so that $\chi(F) = \ell_R(M)$ and $\operatorname{rank}_R(F_i) = \beta_i(M)$. Using (2.1) we get (2.5)

$$2^{d} \cdot \ell_{R}(M) = \chi(\psi^{2}(F)) = \sum_{i} (-1)^{i} \ell_{R} H_{i}(S^{2}(F)) - \sum_{j} (-1)^{j} \ell_{R} H_{j}(\Lambda^{2}(F))$$
$$\leq \sum_{i \text{ even}} \ell_{R} H_{i}(S^{2}(F)) + \sum_{i \text{ odd}} \ell_{R} H_{i}(\Lambda^{2}(F)).$$

Since $S^2(F)$ and $\Lambda^2(F)$ are direct summands of $F \otimes_R F$.

(2.6)
$$\sum_{i \text{ even}} \ell_R H_i(S^2(F_{\cdot})) + \sum_{i \text{ odd}} \ell_R H_i(\Lambda^2(F_{\cdot})) \le \sum_i \ell_R H_i(F_{\cdot} \otimes_R F_{\cdot}).$$

For each $i, H_i(F \otimes_R F) \cong H_i(F \otimes_R M)$ is a subquotient of $F_i \otimes_R M$ and thus (2.7) $\ell_R H_i(F \otimes_R M) \leq \ell_R(F_i \otimes_R M) = \operatorname{rank}(F_i) \cdot \ell_R(M) = \beta_i(M) \cdot \ell_R(M).$

Putting the inequalities (2.5), (2.6), and (2.7) together yields

$$2^{d} \cdot \ell_{R}(M) \le \ell_{R}(M) \cdot \sum_{i} \beta_{i}(M),$$

and since $\ell_R(M) > 0$, we conclude $\sum_i \beta_i(M) \ge 2^d$.

Now suppose $\sum_i \beta_i(M) = 2^d$. Then the inequalities (2.5), (2.6), and (2.7) must actually be equalities, which means that $H_i(S^2(F_i)) = 0$ for all odd i, $H_j(\Lambda^2(F_i)) = 0$ for all even j, and $F_i \otimes_R M$ has trivial differential. Since

MARK E. WALKER

 $H_0(\Lambda^2(F.)) \cong \Lambda^2(M)$ is the classical second exterior power, M must be cyclic, i.e., of the form R/I for some ideal I. Since $F. \otimes_R R/I$ has trivial differential, $I/I^2 \cong \operatorname{Tor}_1^R(R/I, R/I)$ is free as an R/I-module, and thus a result of Ferrand and Vasconcelos (see [2, 2.2.8]) gives that I is generated by a regular sequence of elements. \Box

3. Rings of odd characteristic

In this section we prove part (2) of Theorem 2. The main idea is to replace the Euler characteristic χ occurring in the proof of part (1) with the *Dutta multiplicity*.

Definition 3.1. Assume (R, \mathfrak{m}, k) is a complete local ring of dimension d that contains \mathbb{Z}/p as a subring for some prime p and that k is a perfect field. For $F \in \operatorname{Perf}^{\mathrm{fl}}(R)$, define

$$\chi_{\infty}(F_{\cdot}) = \lim_{e \to \infty} \frac{\chi(\varphi^e F_{\cdot})}{p^{de}},$$

where φ^e denotes extension of scalars along the e^{th} iterate of the Frobenius endomorphism of R. The limit is known to exist by, e.g., [9, 7.3.3].

Proof of Theorem 2 part (2). There is a faithfully flat map $(R, \mathfrak{m}, k) \rightarrow (R', \mathfrak{m}', k')$ of local rings such that $\mathfrak{m} \cdot R' = \mathfrak{m}', R'$ is complete and k' is algebraically closed; see [5, 0.10.3.1]. Letting $M' := M \otimes_R R'$, we have that M' is a nonzero R'-module of finite length and finite projective dimension, $\beta_i^{R'}(M') = \beta_i^{R}(M)$ for all i, and $\dim(R') = \dim(R)$. We may therefore assume R is complete with algebraically closed residue field.

Let F be the minimal free resolution of M. Since R is complete with perfect residue field, a result of Roberts [9, 7.3.5] gives

$$\chi_{\infty}(F_{\cdot}) > 0$$

and a result of Kurano-Roberts [7, 3.1] gives (using (2.1))

(3.3)
$$\chi_{\infty}(S^2(F_{\cdot})) - \chi_{\infty}(\Lambda^2(F_{\cdot})) = \chi_{\infty}(\psi^2(F_{\cdot})) = 2^d \cdot \chi_{\infty}(F_{\cdot})$$

For each $e \ge 0$, we have $\varphi^e S^2(F_{\cdot}) \cong S^2(\varphi^e F_{\cdot})$ and $\varphi^e \Lambda^2(F_{\cdot})) \cong \Lambda^2(\varphi^e F_{\cdot})$, and thus

$$\chi_{\infty}(S^{2}(F.)) = \lim_{e \to \infty} \frac{1}{p^{de}} \sum_{i} (-1)^{i} \ell_{R} H_{i}(S^{2}(\varphi^{e}F.)),$$
$$\chi_{\infty}(\Lambda^{2}(F.)) = \lim_{e \to \infty} \frac{1}{p^{de}} \sum_{i} (-1)^{i} \ell_{R} H_{i}(\Lambda^{2}(\varphi^{e}F.)).$$

As in the proof of Theorem 2.4, for a fixed e, we have

$$\frac{1}{p^{de}} \sum_{i} (-1)^{i} \ell_{R} H_{i}(S^{2}(\varphi^{e}F_{\cdot})) - \frac{1}{p^{de}} \sum_{i} (-1)^{i} \ell_{R} H_{i}(\Lambda^{2}(\varphi^{e}F_{\cdot}))$$

$$\leq \sum_{j} \ell_{R} H_{j}(T^{2}(\varphi^{e}F_{\cdot})).$$

By [8, 1.7], the complex $\varphi^e(F)$ is the minimal free resolution of the finite length module $\varphi^e(M)$ for each $e \ge 0$. As in the proof of Theorem 2.4, for each *i*, we have

$$\ell_R H_i(T^2(\varphi^e F_{\cdot})) \leq \operatorname{rank}(\varphi^e F_i) \cdot \ell_R(\varphi^e M) = \beta_i(M) \cdot \chi(\varphi^e F_{\cdot}).$$

We have proven that

$$\frac{1}{p^{de}} \sum_{i} (-1)^{i} \ell_{R} H_{i}(\varphi^{e} S^{2}(F.)) - \frac{1}{p^{de}} \sum_{i} (-1)^{i} \ell_{R} H_{i}(\varphi^{e} \Lambda^{2}(F.))$$

$$\leq \frac{1}{p^{de}} \chi(\varphi^{e} F.) \cdot \sum_{i} \beta_{i}(M)$$

holds for each $e \ge 0$. Taking limits and using (3.3) gives

$$2^{d} \cdot \chi_{\infty}(F_{\cdot}) \le \chi_{\infty}(F_{\cdot}) \cdot \sum_{i} \beta_{i}(M)$$

Since $\chi_{\infty}(F_{\cdot}) > 0$ by (3.2), we conclude $\sum_{i} \beta_{i}(M) \geq 2^{d}$.

References

- M. K. BROWN, C. MILLER, P. THOMPSON, and M. E. WALKER, Cyclic Adams operations, J. Pure Appl. Algebra 221 no. 7 (2017), 1589–1613. MR 3614968. Zbl 1360.19006. https://doi.org/10.1016/j.jpaa.2016.12.018.
- [2] W. BRUNS and J. HERZOG, Cohen-Macaulay Rings, Cambridge Stud. Adv. Math. 39, Cambridge University Press, Cambridge, 1993. MR 1251956. Zbl 0788.13005.
- [3] D. A. BUCHSBAUM and D. EISENBUD, Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension 3, *Amer. J. Math.* 99 no. 3 (1977), 447–485. MR 0453723. Zbl 0373.13006. https://doi.org/10.2307/2373926.
- [4] H. GILLET and C. SOULÉ, Intersection theory using Adams operations, *Invent. Math.* 90 no. 2 (1987), 243–277. MR 0910201. Zbl 0632.14009. https://doi.org/10.1007/BF01388705.
- [5] A. GROTHENDIECK, Éléments de Géométrie Algébrique. I. Le Langage des Schémas, Inst. Hautes Études Sci. Publ. Math. 4, 1960. MR 0163908. Zbl 0118.
 36206. Available at http://www.numdam.org/item?id=PMIHES_1960_4_5_0.
- [6] R. HARTSHORNE, Algebraic vector bundles on projective spaces: a problem list, *Topology* 18 no. 2 (1979), 117–128. MR 0544153. Zbl 0417.14011. https://doi. org/10.1016/0040-9383(79)90030-2.

MARK E. WALKER

- [7] K. KURANO and P. C. ROBERTS, Adams operations, localized Chern characters, and the positivity of Dutta multiplicity in characteristic 0, *Trans. Amer. Math. Soc.* **352** no. 7 (2000), 3103–3116. MR 1707198. Zbl 0959.13004. https://doi.org/ 10.1090/S0002-9947-00-02589-7.
- [8] C. PESKINE and L. SZPIRO, Dimension projective finie et cohomologie locale. Applications à la démonstration de conjectures de M. Auslander, H. Bass et A. Grothendieck, *Inst. Hautes Études Sci. Publ. Math.* no. 42 (1973), 47–119. MR 0374130. Zbl 0268.13008. Available at http://www.numdam.org/item?id= PMIHES_1973_42_47_0.
- P. C. ROBERTS, Multiplicities and Chern Classes in Local Algebra, Cambridge Tracts in Math. 133, Cambridge Univ. Press, Cambridge, 1998. MR 1686450.
 Zbl 0917.13007. https://doi.org/10.1017/CBO9780511529986.

(Received: April 7, 2017) (Revised: May 22, 2017)

UNIVERSITY OF NEBRASKA, LINCOLN, NE *E-mail*: mark.walker@unl.edu