Total Betti numbers of modules of finite projective dimension

By Mark E. Walker

Abstract

The Buchsbaum-Eisenbud-Horrocks Conjecture predicts that the $i^{\text {th }}$ Betti number $\beta_{i}(M)$ of a nonzero module M of finite length and finite projective dimension over a local ring R of dimension d should be at least $\binom{d}{i}$. It would follow from the validity of this conjecture that $\sum_{i} \beta_{i}(M) \geq 2^{d}$. We prove the latter inequality holds in a large number of cases and that, when R is a complete intersection in which 2 is invertible, equality holds if and only if M is isomorphic to the quotient of R by a regular sequence of elements.

1. Introduction

We recall a long-standing conjecture (see [3, 1.4] and [6, Prob. 24]):
Conjecture (Buchsbaum-Eisenbud-Horrocks Conjecture). Let R be a commutative Noetherian ring such that $\operatorname{Spec}(R)$ is connected, and let M be a nonzero, finitely generated R-module of finite projective dimension. For any finite projective resolution $0 \rightarrow P_{d} \rightarrow \cdots \rightarrow P_{1} \rightarrow P_{0} \rightarrow M \rightarrow 0$ of M, we have

$$
\operatorname{rank}_{R}\left(P_{i}\right) \geq\binom{ c}{i}
$$

where $c=\operatorname{height}_{R}\left(\operatorname{ann}_{R}(M)\right)$, the height of the annihilator ideal of M.
The validity of the Buchsbaum-Eisenbud-Horrocks Conjecture would imply that the "total rank" of any projective resolution of M is at least 2^{c}. In this paper, we prove this latter inequality holds in a large number of cases:

Theorem 1. Assume R, M, and P. are as in the Buchsbaum-EisenbudHorrocks Conjecture and, in addition, that

[^0](1) R is locally a complete intersection and M is 2-torsion free, or
(2) R contains \mathbb{Z} / p as a subring for an odd prime p.

Then $\sum_{i} \operatorname{rank}_{R}\left(P_{i}\right) \geq 2^{c}$, where $c=\operatorname{height}_{R}\left(\operatorname{ann}_{R}(M)\right)$.
Theorem 2 below is the special case of Theorem 1 in which we assume R is a local ring and M has finite length. We record it as a separate theorem since Theorem 1 follows immediately from it and also because in the local situation we can say a bit more.

For a local ring R and a finitely generated R-module M, let $\beta_{i}(M)$ be the $i^{\text {th }}$ Betti number of R, defined to be the rank of the $i^{\text {th }}$ free module in the minimal free resolution of M.

Theorem 2. Assume (R, \mathfrak{m}, k) is a local (Noetherian, commutative) ring of Krull dimension d and that M is a nonzero R-module of finite length and finite projective dimension. If either
(1) R is the quotient of a regular local ring by a regular sequence of elements and 2 is invertible in R, or
(2) R contains \mathbb{Z} / p as a subring for an odd prime p,
then $\sum_{i} \beta_{i}(M) \geq 2^{d}$.
Moreover, if the assumptions in (1) hold and $\sum_{i} \beta_{i}(M)=2^{d}$, then M is isomorphic to the quotient of R by a regular sequence of d elements.

To see that Theorem 1 follows from Theorem 2, with the notation of the first theorem, let \mathfrak{p} be a minimal prime containing $\operatorname{ann}_{R}(M)$ of height c. Then $\operatorname{dim}\left(R_{\mathfrak{p}}\right)=c, M_{\mathfrak{p}}$ has finite length, and $\beta_{i}\left(M_{\mathfrak{p}}\right) \leq \operatorname{rank}_{R}\left(P_{i}\right)$ for all i. Moreover, if M is 2-torsion free, then $2 \notin \mathfrak{p}$ and hence is invertible in $R_{\mathfrak{p}}$.

I thank Seth Lindokken, Michael Brown, Claudia Miller, Peder Thompson and Luchezar Avramov for useful conversations about this paper.

2. Complete intersections of residual characteristic not 2

In this section we prove part (1) of Theorem 2 and the assertion concerning when the equation $\sum_{i} \beta_{i}(M)=2^{d}$ holds; see Theorem 2.4 below.

For any local ring (R, \mathfrak{m}, k), let $\operatorname{Perf}^{f l}(R)$ be the category of bounded complexes of finite rank free R-modules F. such that $H_{i}(F$.) has finite length for all i, and define $K_{0}^{\mathrm{fl}}(R)$ to be the Grothendieck group of $\operatorname{Perf}^{\mathrm{ff}}(R)$. Recall that $K_{0}^{\mathrm{fl}}(R)$ is generated by isomorphism classes of objects of $\operatorname{Perf}^{\mathrm{fl}}(R)$, modulo relations coming from short exact sequences and quasi-isomorphisms.

Let $\psi^{2}: K_{0}^{\mathrm{fl}}(R) \rightarrow K_{0}^{\mathrm{ff}}(R)$ be the $2^{\text {nd }}$ Adams operation, as defined by Gillet-Soulé [4]. Gillet-Soulé's definition involves the Dold-Kan correspondence between complexes and simplicial modules, but if 2 is invertible in R, then ψ^{2} admits a simpler description: For $F . \in \operatorname{Perf}^{f l}(R)$, let $T^{2}(F$.) denote its second tensor power $F . \otimes_{R} F$. endowed with the action of the symmetric group $\Sigma_{2}=\langle\tau\rangle$
given by

$$
\tau \cdot(x \otimes y)=(-1)^{|x||y|} y \otimes x
$$

Since $\frac{1}{2} \in R$, we have a direct sum decomposition $T^{2}(F$. $)=S^{2}(F.) \oplus \Lambda^{2}(F$. $)$, where $S^{2}(F):.=\operatorname{ker}(\tau-\mathrm{id})$ and $\Lambda^{2}(F):.=\operatorname{ker}(\tau+\mathrm{id})$. By [1, 6.14] we have

$$
\begin{equation*}
\psi^{2}[F .]=\left[S^{2}(F .)\right]-\left[\Lambda^{2}(F .)\right] \in K_{0}^{\mathrm{fl}}(R) \tag{2.1}
\end{equation*}
$$

Let ℓ_{R} denote the length of an R-module, and write $\chi: K_{0}^{\mathrm{fl}}(R) \rightarrow \mathbb{Z}$ for the Euler characteristic map: $\chi([F])=.\sum_{i}(-1)^{i} \ell_{R} H_{i}(F$.$) .$

Proposition 2.2 (Gillet-Soulé; see [4, 7.1]). If R is a local complete intersection of dimension d, then $\chi \circ \psi^{2}=2^{d} \cdot \chi$.

Definition 2.3. A local ring (R, \mathfrak{m}, k) of dimension d such that 2 is invertible in R will be called a quasi-Roberts ring if there we have an equality of maps $\chi \circ \psi^{2}=2^{d} \cdot \chi$.

ThEOREM 2.4. Let (R, \mathfrak{m}, k) be a local ring of dimension d such that 2 is invertible in R. If R is a quasi-Roberts ring, then for any nonzero R-module M of finite length and finite projective dimension, we have $\sum_{i} \beta_{i}(M) \geq 2^{d}$.

Moreover, if $\sum_{i} \beta_{i}(M)=2^{d}$, then $M \cong R /\left(y_{1}, \ldots, y_{d}\right)$ for some regular sequence of elements $y_{1}, \ldots, y_{d} \in \mathfrak{m}$.

Proof. Let F. be the minimal free resolution of M, so that $\chi(F)=.\ell_{R}(M)$ and $\operatorname{rank}_{R}\left(F_{i}\right)=\beta_{i}(M)$. Using (2.1) we get

$$
\begin{align*}
2^{d} \cdot \ell_{R}(M)=\chi\left(\psi^{2}(F)\right) & =\sum_{i}(-1)^{i} \ell_{R} H_{i}\left(S^{2}(F .)\right)-\sum_{j}(-1)^{j} \ell_{R} H_{j}\left(\Lambda^{2}(F .)\right) \tag{2.5}\\
& \leq \sum_{i \text { even }} \ell_{R} H_{i}\left(S^{2}(F .)\right)+\sum_{i \text { odd }} \ell_{R} H_{i}\left(\Lambda^{2}(F .)\right)
\end{align*}
$$

Since $S^{2}\left(F\right.$.) and $\Lambda^{2}\left(F\right.$.) are direct summands of $F . \otimes_{R} F$.,

$$
\begin{equation*}
\sum_{i \text { even }} \ell_{R} H_{i}\left(S^{2}(F .)\right)+\sum_{i \text { odd }} \ell_{R} H_{i}\left(\Lambda^{2}(F .)\right) \leq \sum_{i} \ell_{R} H_{i}\left(F . \otimes_{R} F .\right) \tag{2.6}
\end{equation*}
$$

For each $i, H_{i}\left(F . \otimes_{R} F.\right) \cong H_{i}\left(F . \otimes_{R} M\right)$ is a subquotient of $F_{i} \otimes_{R} M$ and thus
(2.7) $\ell_{R} H_{i}\left(F . \otimes_{R} M\right) \leq \ell_{R}\left(F_{i} \otimes_{R} M\right)=\operatorname{rank}\left(F_{i}\right) \cdot \ell_{R}(M)=\beta_{i}(M) \cdot \ell_{R}(M)$.

Putting the inequalities $(2.5),(2.6)$, and (2.7) together yields

$$
2^{d} \cdot \ell_{R}(M) \leq \ell_{R}(M) \cdot \sum_{i} \beta_{i}(M)
$$

and since $\ell_{R}(M)>0$, we conclude $\sum_{i} \beta_{i}(M) \geq 2^{d}$.
Now suppose $\sum_{i} \beta_{i}(M)=2^{d}$. Then the inequalities (2.5), (2.6), and (2.7) must actually be equalities, which means that $H_{i}\left(S^{2}(F).\right)=0$ for all odd i, $H_{j}\left(\Lambda^{2}(F).\right)=0$ for all even j, and F. $\otimes_{R} M$ has trivial differential. Since
$H_{0}\left(\Lambda^{2}(F).\right) \cong \Lambda^{2}(M)$ is the classical second exterior power, M must be cyclic, i.e., of the form R / I for some ideal I. Since $F . \otimes_{R} R / I$ has trivial differential, $I / I^{2} \cong \operatorname{Tor}_{1}^{R}(R / I, R / I)$ is free as an R / I-module, and thus a result of Ferrand and Vasconcelos (see [2, 2.2.8]) gives that I is generated by a regular sequence of elements.

3. Rings of odd characteristic

In this section we prove part (2) of Theorem 2. The main idea is to replace the Euler characteristic χ occurring in the proof of part (1) with the Dutta multiplicity.

Definition 3.1. Assume (R, \mathfrak{m}, k) is a complete local ring of dimension d that contains \mathbb{Z} / p as a subring for some prime p and that k is a perfect field. For $F . \in \operatorname{Perf}^{f l}(R)$, define

$$
\chi_{\infty}(F .)=\lim _{e \rightarrow \infty} \frac{\chi\left(\varphi^{e} F .\right)}{p^{d e}},
$$

where φ^{e} denotes extension of scalars along the $e^{\text {th }}$ iterate of the Frobenius endomorphism of R. The limit is known to exist by, e.g., [9, 7.3.3].

Proof of Theorem 2 part (2). There is a faithfully flat map $(R, \mathfrak{m}, k) \rightarrow$ $\left(R^{\prime}, \mathfrak{m}^{\prime}, k^{\prime}\right)$ of local rings such that $\mathfrak{m} \cdot R^{\prime}=\mathfrak{m}^{\prime}, R^{\prime}$ is complete and k^{\prime} is algebraically closed; see [5, 0.10.3.1]. Letting $M^{\prime}:=M \otimes_{R} R^{\prime}$, we have that M^{\prime} is a nonzero R^{\prime}-module of finite length and finite projective dimension, $\beta_{i}^{R^{\prime}}\left(M^{\prime}\right)=\beta_{i}^{R}(M)$ for all i, and $\operatorname{dim}\left(R^{\prime}\right)=\operatorname{dim}(R)$. We may therefore assume R is complete with algebraically closed residue field.

Let F. be the minimal free resolution of M. Since R is complete with perfect residue field, a result of Roberts [9, 7.3.5] gives

$$
\begin{equation*}
\chi_{\infty}(F .)>0 \tag{3.2}
\end{equation*}
$$

and a result of Kurano-Roberts [7, 3.1] gives (using (2.1))

$$
\begin{equation*}
\chi_{\infty}\left(S^{2}(F .)\right)-\chi_{\infty}\left(\Lambda^{2}(F .)\right)=\chi_{\infty}\left(\psi^{2}(F .)\right)=2^{d} \cdot \chi_{\infty}(F .) . \tag{3.3}
\end{equation*}
$$

For each $e \geq 0$, we have $\varphi^{e} S^{2}(F.) \cong S^{2}\left(\varphi^{e} F.\right)$ and $\left.\varphi^{e} \Lambda^{2}(F).\right) \cong \Lambda^{2}\left(\varphi^{e} F\right.$.), and thus

$$
\begin{aligned}
& \chi_{\infty}\left(S^{2}(F .)\right)=\lim _{e \rightarrow \infty} \frac{1}{p^{d e}} \sum_{i}(-1)^{i} \ell_{R} H_{i}\left(S^{2}\left(\varphi^{e} F .\right)\right), \\
& \chi_{\infty}\left(\Lambda^{2}(F .)\right)=\lim _{e \rightarrow \infty} \frac{1}{p^{d e}} \sum_{i}(-1)^{i} \ell_{R} H_{i}\left(\Lambda^{2}\left(\varphi^{e} F .\right)\right) .
\end{aligned}
$$

As in the proof of Theorem 2.4, for a fixed e, we have

$$
\begin{aligned}
\frac{1}{p^{d e}} \sum_{i}(-1)^{i} \ell_{R} H_{i}\left(S^{2}\left(\varphi^{e} F .\right)\right)-\frac{1}{p^{d e}} \sum_{i}(-1)^{i} \ell_{R} H_{i} & \left(\Lambda^{2}\left(\varphi^{e} F .\right)\right) \\
& \leq \sum_{j} \ell_{R} H_{j}\left(T^{2}\left(\varphi^{e} F .\right)\right)
\end{aligned}
$$

By $[8,1.7]$, the complex $\varphi^{e}(F$.$) is the minimal free resolution of the finite$ length module $\varphi^{e}(M)$ for each $e \geq 0$. As in the proof of Theorem 2.4, for each i, we have

$$
\ell_{R} H_{i}\left(T^{2}\left(\varphi^{e} F .\right)\right) \leq \operatorname{rank}\left(\varphi^{e} F_{i}\right) \cdot \ell_{R}\left(\varphi^{e} M\right)=\beta_{i}(M) \cdot \chi\left(\varphi^{e} F .\right)
$$

We have proven that

$$
\begin{aligned}
\frac{1}{p^{d e}} \sum_{i}(-1)^{i} \ell_{R} H_{i}\left(\varphi^{e} S^{2}(F .)\right)-\frac{1}{p^{d e}} \sum_{i}(-1)^{i} \ell_{R} & H_{i}\left(\varphi^{e} \Lambda^{2}(F .)\right) \\
& \leq \frac{1}{p^{d e}} \chi\left(\varphi^{e} F .\right) \cdot \sum_{i} \beta_{i}(M)
\end{aligned}
$$

holds for each $e \geq 0$. Taking limits and using (3.3) gives

$$
2^{d} \cdot \chi_{\infty}(F .) \leq \chi_{\infty}(F .) \cdot \sum_{i} \beta_{i}(M) .
$$

Since $\chi_{\infty}(F)>$.0 by (3.2), we conclude $\sum_{i} \beta_{i}(M) \geq 2^{d}$.

References

[1] M. K. Brown, C. Miller, P. Thompson, and M. E. Walker, Cyclic Adams operations, J. Pure Appl. Algebra 221 no. 7 (2017), 1589-1613. MR 3614968. Zbl 1360.19006. https://doi.org/10.1016/j.jpaa.2016.12.018.
[2] W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge Stud. Adv. Math. 39, Cambridge University Press, Cambridge, 1993. MR 1251956. Zbl 0788.13005.
[3] D. A. Buchsbaum and D. Eisenbud, Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension 3, Amer. J. Math. 99 no. 3 (1977), 447-485. MR 0453723. Zbl 0373.13006. https://doi.org/10.2307/ 2373926.
[4] H. Gillet and C. Soulé, Intersection theory using Adams operations, Invent. Math. 90 no. 2 (1987), 243-277. MR 0910201. Zbl 0632.14009. https://doi.org/ 10.1007/BF01388705.
[5] A. Grothendieck, Éléments de Géométrie Algébrique. I. Le Langage des Schémas, Inst. Hautes Études Sci. Publ. Math. 4, 1960. MR 0163908. Zbl 0118. 36206. Available at http://www.numdam.org/item?id=PMIHES_1960_4_-5_0.
[6] R. Hartshorne, Algebraic vector bundles on projective spaces: a problem list, Topology 18 no. 2 (1979), 117-128. MR 0544153. Zbl 0417.14011. https://doi. org/10.1016/0040-9383(79)90030-2.
[7] K. Kurano and P. C. Roberts, Adams operations, localized Chern characters, and the positivity of Dutta multiplicity in characteristic 0, Trans. Amer. Math. Soc. 352 no. 7 (2000), 3103-3116. MR 1707198. Zbl 0959.13004. https://doi.org/ 10.1090/S0002-9947-00-02589-7.
[8] C. Peskine and L. Szpiro, Dimension projective finie et cohomologie locale. Applications à la démonstration de conjectures de M. Auslander, H. Bass et A. Grothendieck, Inst. Hautes Études Sci. Publ. Math. no. 42 (1973), 47-119. MR 0374130. Zbl 0268.13008. Available at http://www.numdam.org/item?id= PMIHES_1973_-42__47_0.
[9] P. C. Roberts, Multiplicities and Chern Classes in Local Algebra, Cambridge Tracts in Math. 133, Cambridge Univ. Press, Cambridge, 1998. MR 1686450. Zbl 0917.13007. https://doi.org/10.1017/CBO9780511529986.
(Received: April 7, 2017)
(Revised: May 22, 2017)
University of Nebraska, Lincoln, NE
E-mail: mark.walker@unl.edu

[^0]: Keywords: Betti numbers, Buchsbaum-Eisenbud-Horrocks Conjecture AMS Classification: Primary: 13D02.
 This work was partially supported by grant \#318705 from the Simons Foundation.
 (c) 2017 Department of Mathematics, Princeton University.

