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Borel circle squaring

By Andrew S. Marks and Spencer T. Unger

Abstract

We give a completely constructive solution to Tarski’s circle squaring

problem. More generally, we prove a Borel version of an equidecomposition

theorem due to Laczkovich. If k ≥ 1 and A,B ⊆ Rk are bounded Borel

sets with the same positive Lebesgue measure whose boundaries have upper

Minkowski dimension less than k, then A and B are equidecomposable by

translations using Borel pieces. This answers a question of Wagon. Our

proof uses ideas from the study of flows in graphs, and a recent result of

Gao, Jackson, Krohne, and Seward on special types of witnesses to the

hyperfiniteness of free Borel actions of Zd.

1. Introduction

In 1925, Tarski posed the problem of whether a disk and square of the

same area in the plane are equidecomposable by isometries [Tar25]. That is,

can a disk be partitioned into finitely many pieces that can be rearranged

by isometries to partition a square of the same area? This problem became

known as Tarski’s circle squaring problem. In contrast to the Banach-Tarski

paradox in R3, a theorem of Tarski (see [Wag85]) implies that any two Lebesgue

measurable sets in R2 that are equidecomposable by isometries must have the

same Lebesgue measure, even when the pieces used in the equidecomposition

are allowed to be nonmeasurable. Thus, the requirement that the circle and

the square have the same area is necessary.

The idea of comparing the measure of sets by partitioning them into con-

gruent pieces has a long history, dating back in some form to Euclid. The

well-known Wallace-Bolyai-Gerwien theorem states that two polygons in R2

have the same area if and only if they are dissection congruent, that is, equide-

composable by polygonal pieces where we may ignore boundaries. Hilbert’s
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third problem asked whether any two polyhedra of the same volume are dis-

section congruent. Dehn famously gave a negative answer to this problem.

Early work on Tarski’s circle squaring problem established the nonexis-

tence of certain types of equidecompositions. Dubins, Hirsch, and Karush

[DHK63] introduced the notion of scissors congruence in R2, considering equi-

decompositions using pieces whose boundaries consist of a single Jordan curve.

They showed that a disk in R2 is scissors congruent to no convex set other than

translates of itself. So Tarski’s circle squaring problem has a negative answer

for this restrictive type of equidecomposition. Gardner [Gar85] also showed

that Tarski’s circle squaring problem cannot be solved using any locally dis-

crete subgroup of isometries.

Laczkovich answered Tarski’s question positively in 1990 [Lac90], using

only translations in his equidecomposition. In 1992, he improved this result

to give a very general sufficient condition for when two bounded sets in Rk of

the same Lebesgue measure are equidecomposable by translations. If X ⊆ Rk,
then we let ∂X = cl(X)\ int(X) indicate its boundary and ∆(X) be the upper

Minkowski dimension of X (see [Lac92]). Let λ be Lebesgue measure.

Theorem 1.1 ([Lac92, Th. 3]). Suppose k ≥ 1, and suppose A,B ⊆ Rk
are bounded sets such that λ(A) = λ(B) > 0, ∆(∂A) < k, and ∆(∂B) < k.

Then A and B are equidecomposable by translations.

Laczkovich’s proofs in [Lac90] and [Lac92] are nonconstructive and use

the axiom of choice. It remained an open problem whether such equidecompo-

sitions could be done constructively. In [Wag85, App. C, Question 2.a], Wagon

made this question precise by asking whether Tarski’s circle squaring problem

could be solved using Borel pieces. Recall that the Borel sets are the smallest

collection of sets obtained by starting with the open sets and closing under the

operations of countable union, countable intersection, and complementation.

In a recent breakthrough, Grabowski, Máthé, and Pikhurko [GMP17]

showed that Tarski’s circle squaring problem can be solved using Lebesgue

measurable or Baire measurable pieces, by proving a version of Theorem 1.1

for Lebesgue measurable/Baire measurable equidecompositions. Their proof is

also nonconstructive since it uses the axiom of choice to construct the equide-

composition on a null/meager set. However, their result gave strong evidence

that a constructive solution to Tarski’s circle squaring problem might exist,

since it showed that there cannot be any measure-theoretic or Baire category

obstruction.

In this paper, we answer Wagon’s question [Wag85, App. C, Question 2.a]

and give a completely constructive solution to Tarski’s circle squaring prob-

lem. More generally, we prove a Borel version of Laczkovich’s Theorem 1.1.

This generalizes the results of [GMP17]. It also provides a “Borel solution”
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to Hilbert’s third problem: any two bounded Borel sets in Rk with “small

boundary” have the same measure if and only if they are translation equide-

composable using Borel pieces:

Theorem 1.2. Suppose k ≥ 1, and suppose A,B ⊆ Rk are bounded Borel

sets such that λ(A) = λ(B) > 0, ∆(∂A) < k, and ∆(∂B) < k. Then A and B

are equidecomposable by translations using Borel pieces.

The pieces that we use in our equidecomposition are quite simple. Let

ΣA,B
1 be the collection of all open balls in Rk, translates of A, and translates

of B. Then inductively, let BA,Bn be all finite Boolean combinations of ΣA,B
n

sets, and let ΣA,B
n+1 be all countable unions of sets in BA,Bn . If A and B are Σ0

m

in the usual Borel hierarchy, then clearly every set in ΣA,B
n is Σ0

n+m−1. The

pieces we use in our equidecomposition are sets in BA,B4 (see Section 7). If A

and B are a disk and a square of the same area in R2, then it is easy to see

that A and B are not equidecomposable using set in BA,B1 , since A and B are

not scissors congruent.

A key idea in our proof is to use flows in infinite graphs as an interme-

diate step towards constructing equidecompositions. Under the hypotheses of

Theorem 1.2, in Section 4 we give an explicit and simple construction of a

bounded “Borel flow” between A and B. Laczkovich’s discrepancy estimates

from [Lac92] — the central ingredient in the proof of Theorem 1.1 — are used

to show the convergence of this construction.

Another important tool in our proof comes from the theory of orbit equiv-

alence and Borel equivalence relations. In particular, we use a result of Gao,

Jackson, Krohne, and Seward, about special types of witnesses to the hyper-

finiteness of free Borel actions of Zd (see Theorem 5.5). Their theorem is part

of an ongoing research program to understand the complexity of actions of

amenable groups in descriptive set theory and ergodic theory. It builds on the

result due to Weiss that every free Borel action of Zd is hyperfinite, and more

recent work of Gao-Jackson [GJ15] (see also [SS]). Gao, Jackson, Krohne, and

Seward’s theorem is announced in [GJKS15], but has not yet appeared, and

so we include a proof of their result in Appendix A for completeness. (This

proof is different from their forthcoming proof). So our paper is essentially

self-contained except for our use of Laczkovich’s discrepancy estimates.

In Section 5 we use this hyperfiniteness witness to turn our real-valued

Borel flow between A and B into an integer-valued flow. This step in our

proof also relies on the integral flow theorem, which is a corollary of the Ford-

Fulkerson proof of the max-flow min-cut theorem. The last step in our proof

in Section 6 uses this integer valued flow to define a Borel equidecomposition

from A to B.
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These ideas are very different from the work of [GMP17]. The tools they

use are quite specific to the measurable and Baire measurable settings and

cannot easily be adapted to prove Theorem 1.2.

The authors would like to thank Anton Bernshteyn, Clinton Conley, Steve

Jackson, Alekos Kechris, Igor Pak, Robin Tucker-Drob, and Brandon Seward

for helpful discussions.

2. Preliminaries

If a : Γ y X is an action of a group Γ on a set X, then A,B ⊆ X are

said to be a-equidecomposable if there exist a partition {A1, . . . , An} of A and

group elements γ1, . . . , γn ∈ Γ such that γ1 ·A1, . . . , γn ·An is a partition of B.

Similarly we say that A,B ⊆ X are a-equidecomposable using Borel pieces if

there exist a partition {A1, . . . , An} of A into Borel sets and group elements

γ1, . . . , γn ∈ Γ such that γ1 ·A1, . . . , γnAn is a partition of B into Borel pieces.

Suppose A,B ⊆ Rk are bounded and we wish to show that A and B are

equidecomposable by translations using Borel pieces. By scaling and translat-

ing A and B, we may assume that A,B ⊆ [0, 1/2)k, which is a subset of the

k-torus Tk = Rk/Zk, which we identify with [0, 1)k. Then it is clear that any

equidecomposition by translations between A and B in Tk can also be done

in Rk using the same set of pieces. This idea was used by Laczkovich [Lac90].

We will work in Tk throughout the paper and show that A and B are equide-

composable by translations using Borel pieces in Tk.
Tk inherits both its topology and abelian group structure from Rk. We

let λ be Haar measure on Rk/Zk, which we can identify with Lebesgue mea-

sure on the fundamental domain [0, 1)k. If F ⊆ Tk is finite and A ⊆ Tk is

λ-measurable, then the discrepancy of F relative to A is

D(F,A) = ||F ∩A|/|F | − λ(A)| .

Given u = (u1, . . . , ud) ∈ (Tk)d, let au be the action of Zd on Tk defined

by

(n1, . . . , nd) ·au x = n1u1 + · · ·+ ndud + x

for (n1, . . . , nd) ∈ Zd and x ∈ Tk. Let

RN = {(n1, . . . , nd) ∈ Zd : 0 ≤ ni < N for every i ≤ d}

and let the image of this set under the action au be

FN (x, au) = RN ·au x.

Laczkovich proved the following crucial estimate on the discrepancies of

these sets, using ideas from Diophantine approximation and building on work

of Schmidt [Sch64] and Niederreiter and Wills [NW75].
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Lemma 2.1 (Laczkovich [Lac92, Proof of Th. 3]; see also [GMP17, Lemma

6]). Suppose A ⊆ Tk is measurable, ∆(∂A) < k and λ(A) > 0. Let d be such

that d > 2k/(k−∆(∂A)). Then for almost every u ∈ (Tk)d, there are an ε > 0

and M > 0 such that for every x ∈ Tk and N > 0,

D(FN (x, au), A) ≤MN−1−ε.

The variables u, (x1, . . . , xd), and η in [Lac92] correspond to our x, u,

and ε, respectively.

Though we will not need this observation for our proof, we remark that

the order of the quantifiers over u and A can be reversed here. Almost every

u ∈ (Tk)d satisfies the lemma for every measurable A ⊆ Tk. This follows from

Laczkovich’s argument.

By a graph G on a set V , we mean a (simple undirected) graph with

vertex set V , so the edge relation of G will be a symmetric irreflexive relation

on V . If G is a graph on a vertex set V and x ∈ V , then we write [x]G for

the set of vertices in the same connected component as x. We let dG be the

graph metric on the vertex set of G. We will write d instead of dG when the

graph G is clear from context. Let NG(x) be the set of neighbors of x, so

NG(x) = {y ∈ V : dG(x, y) = 1}. We will write N(x) when the graph is clear.

A graph G is said to be locally finite if NG(x) is finite for every vertex x of G.

If U ⊆ V , then we let G � U be the induced subgraph of G on the set U . If F

is a set of edges of G, we let G − F be the subgraph of G obtain by removed

the edges in F .

If a : Zd y X is an action of Zd on a set X, let Ga be the graph with

vertex set X where there is an edge from x to y if γ · x = y for some γ ∈ Zd
with |γ|∞ = 1. Here |(γ1, . . . , γd)|∞ = supi |γi| is the sup norm. The bulk

of our proof is establishing the existence of certain types of flows (defined in

Section 3) on the graph Gau where au is as in Lemma 2.1.

Recall that a standard Borel space is a set X equipped with a σ-algebra

generated by a Polish (separable, completely metrizable) topology on X. The

space Tk equipped with its Borel sets is an example of a standard Borel

space. If X is a standard Borel space and n > 0, then we equip Xn with

the standard Borel space arising from the product topology on Xn. We will

use [X]<∞ to note the standard Borel space of all finite subsets of X. Here

we use the standard Borel structure where B ⊆ [X]<∞ is Borel if for every n,

{(x1, . . . , xn) ∈ Xn : {x1, . . . , xn} ∈ B} is a Borel subset of Xn.

In some of our proofs, we will need to make an arbitrary choice between

finitely many elements of some standard Borel space X. In this situation we

will fix some Borel linear ordering < on X and choose the <-least element.

Note that every standard Borel space admits a Borel linear ordering. (One

can see this using the isomorphism theorem for standard Borel spaces and the
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fact that the usual linear ordering on R is Borel [Kec95, Th. 15.6].) In the case

when X = Tk, we may simply use the lexicographic ordering on [0, 1)k.

A Borel graph is a graph whose vertices are the elements of a standard

Borel space X and whose edge relation is Borel as a subset of X ×X. For a

recent survey of the theory of Borel graphs, see [KM16]. If u ∈ (Tk)d, then the

graph Gau is an example of a Borel graph; since the action au is continuous,

the edge relation of Gau is closed. In order to prove Theorem 1.2, we will

not need to consider any Borel graphs other than Gau . However, some of our

lemmas are stated in the generality of any Borel graph of the form Ga, where

a is a free Borel action of Zd. If G is a Borel graph on X, we let [G]<∞ be

the set of all finite subsets of X that lie in a single connected component of G.

This is a Borel subset of [X]<∞.

3. Flows in graphs

Our proof will use the following types of flows on graphs. Suppose G is a

locally finite graph with vertex set V , and f : V → R. An f -flow on G is a

real-valued function φ on the edges of G such that φ(x, y) = −φ(y, x) for every

edge (x, y) of G, and such that for every x ∈ V ,

f(x) =
∑

y∈N(x)

φ(x, y).

If ε > 0, then an (ε, f)-flow is a real-valued function φ on the edges of G

such that φ(x, y) = −φ(y, x) for every edge (x, y) of G and such that for every

x ∈ V , ∣∣∣∣∣∣f(x)−
∑

y∈N(x)

φ(x, y)

∣∣∣∣∣∣ < ε.

Suppose that c is a nonnegative function on the edges of G (where we may

have c(x, y) 6= c(y, x)). We call c a capacity function on G, and we say that an

f -flow φ is bounded by c if φ(x, y) ≤ c(x, y) for every edge (x, y) in G. We say

that an f -flow φ is bounded if it is bounded by a constant capacity function.

If φ1, . . . , φn are f -flows on a graph G, then their average 1
n(
∑
i φi) is also

an f -flow. The average of finitely many (ε, f)-flows is similarly an (ε, f)-flow.

At a key step in our proof of Lemma 4.2, we will need to average over flows in

this way. This is the reason why we have to use real-valued flows (instead of

matchings) in our proof.

A folklore restatement of the max-flow min-cut theorem characterizes ex-

actly when a finite graph G admits an f -flow bounded by a capacity function c.

Roughly, for every finite set F of vertices,
∑
x∈F f(x) should be at most the

capacity of the edges leaving F .
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Theorem 3.1. Suppose G is a finite graph on X , f : X → R is a function,

and c is a capacity function for G. Then G has an f -flow bounded by c if and

only if for every set F ⊆ X ,

−
∑

{(x,y)∈G:x/∈F∧y∈F}
c(x, y) ≤

∑
x∈F

f(x) ≤
∑

{(x,y)∈G:x∈F∧y/∈F}
c(x, y).

Proof. The forward direction is clear, so we focus on the reverse. Define

G′ to be the finite graph containing G as a subgraph where we add two vertices

to X, a source s and a sink t, and edges as follows. Add an edge (s, x) to each

x ∈ X such that f(x) > 0, and add an edge (y, t) to each y ∈ X such that

f(y) < 0. Define a capacity function c′ for G′ as follows. Let c′(x, y) = c(x, y)

for every edge (x, y) in G. For every edge (s, x) incident to s, let c′(s, x) = f(x),

and for every edge (y, t) incident to t, let c′(y, t) = −f(y) and c′(t, y) = 0. Now

apply the max-flow min-cut theorem [Die10] to the graph G′ with source s,

sink t, and capacity function c′.

Take any F ⊆ X, and let {{s}∪F, {t}∪ (X \F )} be a cut in G′. One can

show using either of the two inequalities on f and c that the capacity of this

cut is greater than or equal to∑
{x:f(x)>0}

f(x) = −
∑

{x:f(x)<0}
f(x),

which is the capacity of the cut containing just s or just t. This value is

therefore the minimum capacity of a cut in G′, and the restriction to G of the

resulting maximal flow on G′ is as required. �

For finite graphs, there is no real difference in studying f -flows as defined

above, and flows with a single source and single sink. This is because one can

easily convert between these types of problems using the idea in the proof of

Theorem 3.1 above. However, for infinite graphs, it becomes complicated to

try and use a single source and sink to model an f -flow. (See, for instance,

[ABG+11].) For example, if G is the infinite 3-regular tree and f is the constant

function 1 on the vertices of G, then G admits an f -flow bounded by 1 (even

though every vertex in the graph is a source, and there are no sinks).

In our proof, we will be constructing flows on infinite graphs. We remark

that by taking ultralimits, one can characterize when a locally finite graph

admits an f -flow bounded by a given capacity function. Note that in this case,

we need both inequalities given in Theorem 3.1. We mention this result as a

contrast to some of our results about Borel flows in infinite graphs. However,

we will not use Theorem 3.2 in our proof of Theorem 1.2.

Theorem 3.2 (Folklore). Suppose that G is locally finite graph on X ,

f : X → R is a function, and c is a capacity function such that c(x, y) <∞ for

every edge (x, y) in G. Then G has an f -flow bounded by c if and only if for
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every finite set F ⊆ X ,

−
∑

{(x,y)∈G:x/∈F∧y∈F}
c(x, y) ≤

∑
x∈F

f(x) ≤
∑

{(x,y)∈G:x∈F∧y/∈F}
c(x, y).

Proof. By working in each connected component separately, we can as-

sume that G is connected. (This uses the axiom of choice.) Fix a vertex x

in G, and for each n ≥ 0, consider the graph Gn that is the induced subgraph

of G on the vertex set {y : dG(x, y) ≤ n}. Let G′n be the graph obtained by

adding a single new vertex to Gn and connecting it to each of the vertices

{y : dG(x, y) = n} in Gn. Let fn be the function on the vertices of G′n that is

equal to f on {y : dG(x, y) ≤ n} and equal to −∑{y:dG(x,y)≤n} f(y) at the new

vertex. Clearly G′n and fn satisfy the hypotheses of Theorem 3.1 for the ca-

pacity function c′ which is equal to c(x, y) on edges in Gn and is infinite on the

new edges in G′n. This is because the only sets F yielding finite total capacities

either lie in the interior of the n-ball around x, or their complement does.

Let φn be an fn-flow for G′n. Let U be a nonprincipal ultrafilter on N.

Define φ on the edges of G by the ultralimit φ(e) = limU φn(e). The limit con-

verges since |φn(e)| ≤ c(e). It is straightforward to check that φ is an f -flow

for G. �

4. Constructing flows in Ga

For this section, we fix a free action a : Zd y X and a function f : X → R.

Assuming f satisfies the conditions given in Lemma 4.2, we give an explicit con-

struction of an f -flow in the graph Ga. To prove Theorem 1.2, we will eventu-

ally apply Lemma 4.2 when the action a is au for some u satisfying Lemma 2.1,

and f = χA − χB, the difference between the characteristic functions of A

and B. Lemma 2.1 ensures that f satisfies the hypothesis of Lemma 4.2. In

this situation, the flow given by Lemma 4.2 will clearly be Borel (see Section 7).

For every i > 0, let πi : Zd/(2iZ)d → Zd/(2i−1Z)d be the canonical homo-

morphism. This yields the inverse limit

Ẑd = lim←−
i≥0

Zd/(2iZ)d,

where elements of Ẑd are sequences (h0, h1, . . .) such that πi(hi) = hi−1 for all

i > 0.

We begin by making several definitions that depend on a and f . Below,

if F ⊆ X is finite, we will write
∑
F f instead of

∑
x∈F f(x).

Suppose x ∈ X and h ∈ Zd/(2nZ)d for some n > 0. View h as a coset of

2nZd, and recall that RN = {(n1, . . . , nd) ∈ Zd : 0 ≤ ni < N for every i ≤ d}.
If we let

Px,h =
{
(h′ +R2n) · x : h′ ∈ h

}
,
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then Px,h is a partition of [x]Ga into sets of size 2nd = |R2n |. For every y ∈ [x]Ga ,

let [y](x,h) be the element of Px,h that contains y. Let

Qx,h(y) = {[z](x,πn(h)) : z ∈ [y](x,h)},

so Qx,h(y) is a partition of [y](x,h) into 2d many pieces.

Suppose γ ∈ Zd is such that |γ|∞ = 1. Let Ux,h(y, γ) be the set of

z ∈ [y](x,h) such that (2n−1γ) · z ∈ [y](x,h) and there exists some 0 ≤ i < 2n−1

such that y = (iγ) · z. Note that all z ∈ Ux,h(y, γ) must come from a unique

element of Qx,h(y), which we will call Qx,h(y, γ). Let nx,h(y, γ ·y) = |Ux,y(y, γ)|.
Define a function φx,h on the edges of Ga � [x]Ga by

φx,h(y, γ · y) =
1

2nd
nx,h(y, γ · y)

∑
Qx,h(y,γ)

f.

The rough idea is that φx,h is defined by working inside each element of Px,h,

and for each z in this set, φx,h moves some mass at z along a path of the form

z, γ ·z, . . . , (2n−1γ) ·z to the point (2n−1γ) ·z. The definition of φx,h at an edge

(y, γ · y) comes from summing the contribution of all the different z’s whose

associated path includes (y, γ · y).

Finally, for all (h0, h1, . . .) ∈ Ẑd, y ∈ [x]Ga , and γ ∈ Zd with |γ|∞ = 1, let

ψx,(h0,...,hn)(y, γ · y) =
n∑
i=1

(φx,hi(y, γ · y)− φx,hi(γ · y, y)) .

Our definition of ψx,(h0,...,hn) is chosen so that the “error” at y which

prevents ψx,(h0,...,hn) from being a flow is exactly the average value of f over

[y](x,hn). This is the content of Lemma 4.1.

Lemma 4.1. For every x ∈ X , (h0, h1 . . .) ∈ Ẑd, n > 0 and y ∈ [x]Ga ,

f(y)−
∑
|γ|∞=1

ψx,(h0,...,hn)(y, γ · y) =
1

2nd

∑
[y](x,hn)

f.

Proof. We work by induction. For the base case of n = 0, the left-hand

side is f(y) since the summation defining ψx,(h0) is empty. The right-hand side

is also f(y) since [y](x,h0) = {y}.
Let the left-hand side of the above equation be

θn(y) = f(y)−
∑
|γ|∞=1

ψx,(h0,...,hn)(y, γ · y).

Note that

θn(y) = θn−1(y)−

Ñ ∑
|γ|∞=1

φx,hn(y, γ · y)− φx,hn(−γ · y, y)

é
,
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where we have changed φx,hn(γ · y, y) to φx,hn(−γ · y, y) in the second term in

the summation, by using the fact that we are summing over all γ with |γ|∞ = 1.

Note that (−γ ·y, y) = (−γ ·y, γ ·(−γ) ·y) is an edge oriented in the “direction”

of γ.

We now compute this sum. Fix z ∈ Ux,hn(y, γ) so that z ∈ [y](x,hn),

2n−1γ · z ∈ [y](x,hn) and y = (iγ) · z for some 0 ≤ i < 2n−1. If y 6= z, then z is

counted in both nx,hn(y, γ ·y) and nx,hn(−γ ·y, y). Moreover, it contributes the

same amount to φx,hn(y, γ · y) and φx,hn(−γ · y, y). Using this fact to cancel

corresponding terms and summing over γ, we get∑
|γ|∞=1

φhn,x(y, γ · y)− φhn,x(−γ · y, y)

=
1

2nd

Ö
|Sy|

∑
[y](x,hn−1)

f −
∑

z∈{(2n−1γ)·y:γ∈Sy}

∑
[z](x,hn−1)

f

è
,

where Sy = {γ : |γ|∞ = 1 ∧ (2n−1γ) · y ∈ [y](x,hn)}. Note that {[(2n−1γ) ·
y](x,hn−1) : γ ∈ (Sy ∪ {0})} = Qx,hn(y) and so Sy has 2d − 1 elements since

Qx,h(y) has 2d many elements.

Using our induction hypothesis that θn−1(y) = 1
2(n−1)d

∑
[y](x,hn−1)

f and

simplifying, we get

θn(y) =
1

2nd

Ö ∑
[y](x,hn−1)

f +
∑

z∈{(2n−1γ)·y:γ∈Sy}

∑
[z](x,hn−1)

f

è
,

which is equal to 1
2nd

∑
[y](x,hn)

f using the fact from above that {[(2n−1γ) ·
y](x,hn−1) : γ ∈ (Sy ∪ {0})} = Qx,hn(y) is a partition of [y](x,hn). �

Lemma 4.1 implies that for every x ∈ X and (h0, h1 . . .) ∈ Ẑd, the function

limn→∞ ψx,(h0,...,hn)(y, z) will be an f -flow provided it converges everywhere

and limn→∞
1

2nd

∑
[y](x,hn)

f → 0 everywhere. However, if a : Zd y X is a Borel

action, then we cannot hope to pick a single point x out of each connected

component of Ga in a Borel way to use as a base point in this construction.

(For example, for the action au, a set that meets Tk exactly once in each orbit

must be nonmeasurable). Instead, we will average the above construction over

every possible element of Ẑd and then use the fact that the resulting function

does not depend on the base point x that we choose.

For every x ∈ X, define

ψx(y, z) =
∑
n>0

1

2nd

∑
h∈Zd/(2nZ)d

φx,h(y, z)− φx,h(z, y).
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Finally, let ψ be defined on every edge (y, z) in Ga by

ψ(y, z) = ψy(y, z).

Lemma 4.2. Suppose there is a function Φ: N → R such that for every

y ∈ X , ∣∣∣∣∣∣ ∑R2n ·y
f

∣∣∣∣∣∣ < Φ(2n)

and

c =
1

2d−1

∞∑
n=0

Φ(2n)

2n(d−1)

is finite. Then ψ is an f -flow bounded by c.

Proof. We begin by showing that for every x ∈ X, ψx is an f -flow of

G � [x]Ga bounded by c.

If hn ∈ Zd/(2nZ)d, then since nx,hn(y, s) ≤ 2n−1, and |∑Qx,h(y,γ) f)| ≤
Φ(2n−1), we get |φx,h(y, γ · y)| ≤ 2n−1 Φ(2n−1)

2nd . Hence,

|ψx(y, z)| ≤
∞∑
n=1

2 · 2n−1 Φ(2n−1)

2nd
=

1

2d−1

∞∑
n=1

Φ(2n−1)

2(n−1)(d−1)
= c.

If we consider the first n terms in the summation defining ψx, this is

equal to the average of ψx,(h0,...,hn) over all sequences (h0, . . . , hn) with hi ∈
Zd/(2iZ)d and πi(hi) = hi−1. This is because there are the same number

of these sequences (h0, . . . , hn) containing any given hi ∈ Zd/(2iZ)d. Each

such ψx,(h0,...,hn) is an (ε, f)-flow for ε = Φ(2n)/2nd by Lemma 4.1. Since the

average of finitely many (ε, f)-flows is an (ε, f)-flow, it follows that ψx is a

limit of (ε, f)-flows with ε = Φ(2n)/2nd, which approaches 0 as n goes to ∞.

Finally, ψx(y, z) = −ψx(z, y) by definition. This finishes the proof that ψx is

an f -flow bounded by c.

To show that ψ is an f -flow of Ga, it is enough to show that for all x ∈ X
and g ∈ Zd, ψx = ψg·x. Now Pg·x,−g+h = Px,h, and so φg·x,−g+h = φx,h.

From this we can conclude that ψg·x = ψx, since each term in the summation

defining ψx averages φx,h over all h ∈ Zd/(2nZ)d, which is equal to the average

of φg·x,−g+h over all h ∈ Zd/(2nZ)d, and hence the average of φg·x,h over all

h ∈ Zd/(2nZ)d. �

5. Integral Borel flows

Suppose G is a graph on X and f : X → Z is a function. An integral

f -flow is an f -flow φ so that φ(x, y) is an integer for every edge (x, y) in G.

In this section, we consider the problem of turning real-valued f -flows into

integral f -flows.
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Classically, the question of when a locally finite graph admits an integral

f -flow is easy to answer. It is usually called the integral flow theorem.

Theorem 5.1 (The integral flow theorem [Die10]). Suppose G is a locally

finite graph on X , c is a capacity function for G that takes integer values, and

f : X → Z also takes integer values. If there is an f -flow bounded by c, then

there is an integral f -flow bounded by c.

Proof. Suppose first thatG is a finite graph. Consider the graphG′ defined

in the proof of Theorem 3.1. If we use the Ford-Fulkerson algorithm (see

[Die10]) to find a maximal flow for G′, it will make a flow with only integer

values.

For infinite graphs, the theorem follows from the finite case using the

same idea as the proof of Theorem 3.2. This is because an ultralimit of integer

valued functions is integer valued. �

We also have the following folklore theorem, which shows that if f takes

integer values, then we can find an integral f -flow “close” to any real-valued

f -flow.

Corollary 5.2. Suppose G is locally finite graph on X and f : X → Z
takes integer values. If φ is an f -flow, then there is an integral f -flow ψ such

that

|φ(x, y)− ψ(x, y)| < 1

for every edge (x, y) in G.

Proof. Let

φ′(x, y) =

bφ(x, y)c if φ(x, y) ≥ 0,

dφ(x, y)e if φ(x, y) < 0.

Then φ′(x, y) = −φ′(x, y), and φ′ is an integral f ′-flow for the function f ′(x) =∑
y∈N(x) φ

′(x, y). Thus, (φ − φ′) is an (f − f ′)-flow, which is bounded by the

capacity function where c(x, y) = 0 if φ(x, y) − φ′(x, y) ≤ 0 and c(x, y) = 1

otherwise. Now applying Theorem 5.1, there is an integral (f − f ′)-flow φ′′

that is bounded by c. Finally, adding again we see that ψ = φ′′ + φ′ is an

integral f -flow, and |φ(x, y)− ψ(x, y)| < 1. �

Note that since |φ(x, y)−ψ(x, y)| < 1 in Corollary 5.2, if φ(x, y) is already

an integer, then ψ(x, y) = φ(x, y).

Now in the Borel setting, we have the following corollary of [Lac88], which

implies that we cannot always turn a real valued Borel f -flow into an integral

Borel f -flow.
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Corollary 5.3 ([Lac88]). There is a 2-regular acyclic Borel graph G on

X and a Borel function f : X → Z such that G has a Borel f -flow, but does

not have an integral Borel f -flow.

Proof. Let G be the graph defined by Laczkovich in [Lac88]. This graph

is a 2-regular acyclic Borel graph G on a standard Borel space X that admits a

bipartition into two Borel sets X0 and X1. By [Lac88] this graph has no Borel

(or even Lebesgue-measurable) perfect matching. Now let f : X → {−1, 1} be

the function where f(x) = 1 if x ∈ X0 and f(x) = −1 if x ∈ X1. If we let

φ(x, y) = 1/2 and φ(y, x) = −1/2 for every edge (x, y) in G where x ∈ X0 and

y ∈ X1, then φ is clearly a Borel f -flow.

However, G does not have an integer-valued Borel f -flow. For a contra-

diction, suppose ψ was an integer-valued Borel f -flow for G. Then the set of

edges (x, y) such that x ∈ X0 and y ∈ X1 and ψ(x, y) > 0 would be a Borel

perfect matching of G. �

Despite this, we do have the following “Borel integral flow theorem” for

graphs induced by free Borel actions of Zd for d ≥ 2.

Lemma 5.4. Suppose d ≥ 2, a : Zd y X is a free Borel action, and Ga is

the associated graph. Then if f : X → Z is a Borel function and φ is a Borel

f -flow for G, there is an integral Borel f -flow ψ such that |φ− ψ| ≤ 3d.

In our proof of Theorem 1.2, we will use Lemma 5.4 to turn the real-valued

Borel flow constructed in Lemma 4.2 into an integral Borel flow.

Our proof of Lemma 5.4 uses the following result of Gao, Jackson, Krohne,

and Seward (see Appendix A). Their theorem answers a question originally

due to Ben Miller.

Suppose F is a finite set of vertices in a graph G, and let ∂F be the set

of edges that are incident on one vertex in F and one vertex not in F . Now

let ∂1F = ∂F , and let ∂n+1F be the set of edges that are in ∂nF or share a

vertex with an edge in ∂nF . Finally, let ∂vis(∞)F ⊆ ∂F be the set of edges

in the boundary of F that are “visible from infinity.” That is, ∂vis(∞)F is the

set of edges e ∈ ∂F such that the unique x /∈ F incident to e is such that the

connected component of x in G− ∂F is infinite.

Theorem 5.5 (Gao, Jackson, Krohne, and Seward). Suppose d ≥ 1,

n > 0, and a : Zd y X is a free Borel action of Zd on a standard Borel

space X , and Ga is the associated graph. Then there is a Borel set C ⊆ [X]<∞

such
⋃
C = X , for every distinct R,S ∈ C , ∂nR and ∂nS are disjoint, and

every S ∈ C is connected and has ∂S = ∂vis(∞)S.

For an announcement of this theorem, see the paragraph following Corol-

lary 1.8 in [GJKS15].
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The point of this theorem is that the elements of C cover the whole

space X, and their boundaries can be chosen to be arbitrarily far apart.

The condition that ∂S = ∂vis(∞)S is incidental and is included just to make

Lemma 5.6 a little simpler. Given any connected S ⊆ X, let S̃ be the set of ver-

tices in S together with all x ∈ X that are in some finite connected component

of G− ∂S. The idea here is that S̃ is obtained by filling in any “holes” inside

S. It is clear that ∂S̃ ⊆ ∂S, and that ∂vis(∞)S̃ = ∂S̃. Hence, if C ⊆ [G]<∞

satisfies all the conditions of the theorem except the condition on ∂vis(∞), then

we can simply replace C with {S̃ : S ∈ C} to satisfy this last condition.

We need a short combinatorial lemma. Recall than an Euler cycle in a

finite graph is a closed walk that includes each edge in the graph exactly once.

Lemma 5.6. Suppose d ≥ 2, a : Zd y X is a free action, Ga is the

associated graph, and F ⊆ X is a finite Ga-connected set with ∂vis(∞)F = ∂F .

Let H∂F be the graph whose vertex set is the unordered edges in ∂F , that is,

{{x, y} : (x, y) ∈ ∂F}, and where distinct {x, y}, {z, w} are adjacent in H∂F

if there is a 3-cycle in Ga that includes them both. Then H∂F has an Euler

cycle.

Proof. By Euler’s theorem, we need to show that H∂F is connected and

every vertex of H∂F has even degree.

We begin by showing every edge has even degree. Fix (x, y) ∈ ∂F . Any

3-cycle in Ga that contains (x, y) must contain exactly one other edge in ∂F .

Thus, it suffices to show that there are an even number of 3-cycles in Ga
containing the edge (x, y). Let (x, y) = (x, γ · x) where |γ|∞ = 1. Then the

number of 3-cycles containing (x, y) is equal to the number of δ with |δ|∞ = 1

and |γ − δ|∞ = 1. If γ = (γ1, . . . , γd), then this δ = (δ1, . . . , δd) must have

δi ∈ {−1, 0, 1} if γi = 0, δi ∈ {0, 1} if γi = 1, and δi ∈ {−1, 0} if γi = −1.

Thus, if there are k many values of i such that γi = 0, then the number of δ

with this property is 3k2d−k − 2, where we subtract 2 since neither δ nor γ− δ
can be equal to 0. To finish, note that 3k2d−k − 2 is even since k < d.

Next, we claim that H∂F is connected. To see this will use [Tim13]. First,

we claim that the set of all 3-cycles in Ga generates the cycle space of Ga.

That is, every cycle in Ga is a sum of finitely many 3-cycles, where we add

edges in the cycles modulo 2 (see [Tim13]). This is easy to see, and we sketch

an argument in the case where a is the translation action of Zd on itself. Let

ei be the ith element of the usual basis for Zd. Let T be the spanning subtree

of Ga where for each x = (x1, x2, . . . , xd) ∈ Zd, we have (x, ei ·x) ∈ T if xj = 0

for all j > i. Given an edge (x, y) ∈ Ga such that (x, y) /∈ T , let C(x,y) be

the unique cycle created by adding (x, y) to T . An easy induction shows that

every such C(x,y) is a sum of 3-cycles, but clearly any cycle in Ga is a sum of

cycles of the form C(x,y).
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Since F is connected and ∂vis(∞)F = ∂F , if we choose any x ∈ F and

y /∈ F where y ∈ [x]Ga , then ∂F is a minimal set of edges separating x and y

in the sense that any proper subset of ∂F does not separate x and y. Hence,

by [Tim13, Lemma 1], if H∂F had two connected components Π1 and Π2, then

there would be some 3-cycle in Ga that intersects both Π1 and Π2. But this is

clearly a contradiction. �

We are now ready to prove Lemma 5.4.

Proof of Lemma 5.4. Let φ be a Borel f -flow for Ga. Let C ⊆ X∞ be as

in Theorem 5.5, with n = 3. We use n = 3 here for the following reason: if

R,S ∈ C and we change φ separately on ∂2R and ∂2S in a such a way that

it remains a flow after each individual modification, then if we combine both

modifications the result will also be a flow.

We define another Borel f -flow φ′ as follows. Let φ′(x, y) = φ(x, y) if

(x, y) is not in ∂2F for any F ∈ C. If (x, y) ∈ ∂2F for some F ∈ C, then

there is a unique such F . Let ((e1, e
′
1, e
′′
1), . . . , (en, e

′
n, e
′′
n)) be the sequence of

3-cycles in Ga associated to the lexicographically least Euler cycle of H∂F ,

where we are representing each 3-cycle by the edges contained in it. An Euler

cycle of H∂F exists by Lemma 5.6. We may arrange these 3-cycles so that for

all i, we have ei, e
′
i ∈ ∂F , e′′i /∈ ∂F , and e′i = ei+1. Orient the edges so that

(ei, e
′
i, e
′′
i ) = ((xi, yi), (yi, zi), (zi, xi)).

Let φF0 = φ. Given (ei, e
′
i, e
′′
i ), let αi = φFi (ei) − bφFi (ei)c. Then define

φFi+1(u, v) = φFi (u, v) if (u, v) is not an edge in the cycle (ei, e
′
i, e
′′
i ), and oth-

erwise let φFi+1(u, v) = φFi (u, v)− αi if (u, v) is oriented the same direction as

the cycle ei, e
′
i, e
′′
i , and φFi+1(u, v) = φFi (u, v) + αi if (u, v) is oriented in the

opposite direction. Hence, φFi+1 is still an f -flow since we are modifying ψFi
only by adding the same amount to each edge going around a single cycle.

Finally, let φ′(x, y) = φFn (x, y).

We claim that if e ∈ ∂F , then φ′(e) will be an integer. First suppose that

e 6= e′n. Then if j is the largest number such that e = ej (up to direction),

we define φFj (e) to be an integer, and e cannot equal e′k for any k > i since

e′k = ek+1, hence φFk (e) = φFj (e) for all k > i. Thus φ′(e) is an integer. If

e = e′n, then since f is integer valued, the total flow out of F must be an

integer. So since φ′ takes integer values on all the other edges in ∂F , φ′(e)

must also be an integer.

Note that |φ′(x, y)−φ(x, y)| ≤ 3d−1 for every edge (x, y). This is because

every node in H∂F has degree at most 3d − 1, and we change the flow on each

edge by at most 1 as we go around the Euler cycle.

Now let D be the set of edges (x, y) in Ga such that (x, y) ∈ ∂F for some

F ∈ C. Since
⋃
C = X, Ga −D has finite connected components. Let K be

a connected component of Ga −D. If θ is an integer-valued function defined
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on the edges of K, let φ′θ(x, y) = θ(x, y) if the edge (x, y) is in K, and φ′(x, y)

otherwise. By Corollary 5.2, there is an integer valued function θ defined on

the edges of K so that φ′θ(x, y) is an f -flow, and |φ′θ − φ′| < 1.

Let ψ be the Borel f -flow on Ga defined as follows. Let ψ(x, y) = φ′(x, y)

if (x, y) ∈ D. If (x, y) /∈ D, then let K be the connected component of Ga−D
containing (x, y), let θ be the lexicographically least integer-valued function

on the edges of K such that φ′θ is an f -flow where |φ′θ − φ′| < 1, and let

ψ(x, y) = φ′θ(x, y). �

6. Proof of Theorem 1.2

In order to prove Theorem 1.2 using the fewest number of pieces in our

equidecomposition, we use the following lemma due to Gao and Jackson, which

was an important ingredient in their proof that Borel actions of abelian groups

are hyperfinite. In Remark 6.2, we describe how one can prove Theorem 1.2

without using this black box.

Lemma 6.1 ([GJ15]). Suppose a : Zd y X is a free Borel action of Zd on a

standard Borel space X and n > 0. Then there is a Borel set C ⊆ [X]<∞ such

that C partitions X and every S ∈ C is a set of the form {(n1, . . . , nd) · x :

0 ≤ ni < Ni} for some x ∈ X and sequence N1, . . . , Nd where Ni = n or

Ni = n+ 1.

Roughly, the above lemma states that there is a Borel tiling of the action

a using rectangles each of whose side lengths is n or n+ 1.

Proof of Theorem 1.2. As discussed at the beginning of Section 2, we may

assume that A,B ⊆ Tk. Let d ≥ 2 be such that d > 2k/(k−∆(∂A)), and pick

u ∈ (T k)d such that the action au is free and satisfies Lemma 2.1 for both sets

A and B. Hence, there is some M and ε > 0 such that

D(FN (x, au), A) ≤MN−1−ε and D(FN (x, au), B) ≤MN−1−ε

for every x ∈ Tk and N > 0.

Now consider the graph Gau and the function f = χA−χB, the difference

between the characteristic functions of A and B. Since λ(A) = λ(B), by the

definition of discrepancy and f , for every x ∈ Tk and n > 0,∣∣∣∣∣∣ ∑
F2n (x,au)

f

∣∣∣∣∣∣ = 2nd |D(F2n(x, au), A)−D(F2n(x, au), B)| ≤ 2M2n(d−1−ε).

Thus, by Lemma 4.2, letting Φ(2n) = M2n(d−1−ε)+1, there is a bounded Borel

f -flow for the graph Gau . By Lemma 5.4, there is a bounded integral Borel

f -flow for the graph Gau . Call this integral Borel flow ψ, and suppose that ψ

is bounded by the constant c.
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For each n, by Lemma 6.1, let Cn ⊆ (Tk)<∞ be a Borel tiling of the action

au by rectangles of side lengths n or n+ 1. For each x ∈ Tk, let Vn(x) be the

unique element of Cn that contains x. Now for every x ∈ Tk, |∂Vn(x)| ≤
2d · 3d · (n + 1)d−1, which is O(nd−1). Next, since there is some x′ ∈ Vn(x)

such that Fn(x′, au) ⊆ Vn(x), we have that |A ∩ Vn(x)| ≥ λ(A)nd −Mnd−1−ε.

Hence, there is some K so that

c|∂VK(x)| ≤ |A ∩ VK(x)| and c|∂VK(x)| ≤ |B ∩ VK(x)|

for every x ∈ Tk. Fix this K, and let C = CK .

For each R ∈ C, let N(R) be the set of S ∈ C such that S 6= R and

∂S ∩ ∂R 6= ∅. Note that N(R) is finite. Given S ∈ N(R), let

Ψ(R,S) =
∑

{(x,y):x∈R∧y∈S}
ψ(x, y)

so Ψ(R,S) is integer-valued, Ψ(R,S) = −Ψ(S,R) and∑
S∈N(R)

Ψ(R,S) = |R ∩A| − |R ∩B|.

Note also that
∑
S∈N(R) |Ψ(R,S)| is less than |R∩A| and |R∩B| by our choice

of K, and if S ∈ N(R), then for any x ∈ R and y ∈ S, there is a γ ∈ Zd with

|γ|∞ < 2K + 4 such that γ · x = y.

Essentially, if we let GC be the graph with vertex set C where R is adjacent

to S if ∂R ∩ ∂S, then Ψ is a flow on this graph for the function f(R) =∑
R χA − χB, and N is the neighborhood relation on this graph.

To show that A and B are au-equidecomposable using Borel pieces, it

suffices to construct a Borel bijection g : A → B such that for all x ∈ A,

g(x) = γ · x for some γ such that |γ|∞ < 2K + 4. Then the pieces in our

equidecomposition will be {x ∈ A : g(a) = γ ·x} for each γ with |γ|∞ < 2K+4.

Our idea for constructing g is that for every R,S ∈ C, if Ψ(R,S) > 0, we

should map Ψ(R,S) many points from A ∩ R to point of B ∩ S. After doing

this for all pairs R,S, there will be an equal number of points of A and B left

in each R ∈ C, so we map the remaining points in A∩R to the points of B∩R.

Fix a Borel linear ordering <C of C, and a Borel linear ordering < of Tk.
For each R ∈ C, inductively let A(R,S) ⊆ A ∩ R be the least Ψ(R,S) many

elements of A ∩R that are not in A(R,S′) for any S′ ∈ N(R) where S′ <C S.

Similarly, for each R ∈ C, let B(R,S) ⊆ B ∩ R be the first Ψ(R,S) many

elements of B ∩ R that are not in B(R,S′) for any S′ ∈ N(R) with S′ <C S.

Finally, let A′(R) = A ∩ R \ ⋃{S∈N(R):Ψ(R,S)>0}A(R,S)} and B′(R) = B ∩
R \ ⋃{S∈N(R):Ψ(R,S)}B(R,S). By the properties of Ψ listed above, |A′(R)| =

|B′(R)| for every R ∈ C. Define g : A → B as follows. Given x ∈ A, let R

be the unique element of C containing x. If there is some S ∈ N(R) such
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that x ∈ A(R,S), and x is the lth-least element of A(R,S), then let g(x) be

the lth-least element of B(S,R). If not, then x ∈ A′(R). If x is the lth-least

element of A′(R), then let g(x) be the lth-least element of B′(R). �

Remark 6.2. We sketch an alternate proof of Theorem 1.2 without using

Lemma 6.1. By Theorem A.1, for each n, there is a Borel maximal n-discrete

set Cn for Gau . Note that the n/2-balls around points in Cn are pairwise

disjoint. Given x ∈ Cn, let Vn(x) be the Voronoi cell determined by the seed

x in the graph Gau . That is, Vn(x) is the set of y ∈ Tk such that x is the

<-least element of Vn such that d(y, x) ≤ d(y, z) for all z ∈ Tk. Note that

{Vn(x) : x ∈ Cn} is a Borel partition of Tk. Since the n/2-balls around points

in Cn are pairwise disjoint, every set Vn(x) contains a set of the form Fn(x′, au)

(where x′ is a point of distance n/2 from x).

Next, we compute an upper bound on the size of ∂Vn(x). Fix x ∈ X. The

3n-ball around x has size (6n+ 1)d ≤ (7n)d. Since the n/2-balls around points

in B are disjoint and have size (n+ 1)d ≥ nd, there are at most (7n)d/nd = 7d

many points y of distance ≤ 2n from x, since the n/2-ball around y must

be contained in the 3n-ball around x. Now given any two points x, y ∈ B

such that d(x, y) ≤ 2n, the set of z such that d(x, z) = d(y, z) ≤ n has size

O(n(d−1)). Since there are at most 7d such y ∈ B in the 2n-ball around x, the

boundary of Vn(x) has size O(n(d−1)). Thus, we can find some K such that for

every x ∈ X,

c|∂VK(x)| ≤ |VK(x) ∩A| and c|∂VK(x)| ≤ |VK(x) ∩B|.

Now finish as before using these Voronoi cells {VK(x) : x ∈ CK} instead of the

Gao-Jackson tiling.

7. The Borel complexity of our equidecompositions

In this section, we make some remarks about the complexity of the Borel

pieces used in the proof of Theorem 1.2. The task of computing these com-

plexities is standard, and we merely sketch a outline of the argument to show

the pieces are BA,B4 . Fix A,B ⊆ Tk and the action au : Zd y Tk from the

proof of Theorem 1.2. We begin with a remark we will use several times when

computing complexities.

Remark 7.1. Suppose C ⊆ Tk is defined in terms of some sets D1, . . . , Dn

⊆ Tk. If there is some m and a deterministic algorithm that decides if x ∈ C
based on inspecting what vertices of the m-ball around x in the graph Gau lie

in D1, . . . , Dn, then C is a finite boolean combination of the sets g ·Di where

|g|∞ ≤ k and 1 ≤ i ≤ n. Hence, if D1, . . . , Dn ∈ BA,Bm , then we also have

C ∈ BA,Bm .
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In the cases where we apply Remark 7.1 to compute complexities, such an

algorithm will be clear from the proof where we construct the corresponding

set.

We now proceed to calculate the complexity of the sets at each step in

our argument. Recall from Section 4 that

ψ(x, γ · x) =
∑
n>0

1

2nd

∑
h∈Zd/(2nZ)d

φx,h(x, γ · x)− φx,h(x, γ · x).

Let ψk(x, γ · x) be the first k many terms of this summation, so

ψk(x, γ · x) =
k∑

n=1

1

2nd

∑
h∈Zd/(2nZ)d

φx,h(x, γ · x)− φx,h(x, γ · x).

Then it is clear that ψk can take only finitely many rational values, and for

each γ ∈ Zd with |γ|∞ = 1, and every possible value a, by Remark 7.1,

{x : ψk(x, γ · x) = a} ∈ BA,B1 .

Define

εk =
1

2d−1

∞∑
n=k−1

Φ(2n)

2n(d−1)

to be the tails of the summation defining the constant c in Lemma 4.2, where

Φ is as in the proof of Theorem 1.2. Then |ψk(x, y) − ψ(x, y)| < εk for every

edge (x, y) in Gau . Hence, for each real number a,

{x : ψ(x, γ · x) < a} ∈ ΣA,B
2

since x is in this set if and only if ψk(x, γ · x) + εk < a for some k. Indeed, for

any finite sequence (g1, γ1), . . . , (gn, γn), where gi, γi ∈ Zd and |γi|∞ = 1, we

have that {
x :

(
n∑
i=1

ψ(gi · x, γi · (gi · x))

)
< a

}
∈ ΣA,B

2

by the same argument.

In Section 2, we discussed how at some points in our proof, we use a Borel

linear ordering on Tk to make an arbitrary choice in our construction. In order

to obtain pieces in our decomposition with the lowest possible complexity, we

need to use a particular ordering. Since the comparisons we make in our proof

are only between points in the same orbit of au, it is enough to have a Borel

partial order that is linear on each orbit. So given x, g · x in the same orbit

of au, define x < g · x if g is greater than 0 in the lexicographic ordering on

elements of Zd. We use this ordering because it combines well with Remark 7.1.

Next, we consider the proof of Theorem 5.5 in Appendix A. The maxi-

mal ri-discrete sets constructed after our statement of Theorem A.1 are BA,B1 .

It is straightforward to see that the sets Ci constructed by Lemma A.2 are
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each BA,B3 ; the complicated part of their definition is finding the least g such

that D∗(x) ∩ (g + [0, 1]d) is nonempty. Hence, for the sets Di constructed in

the proof of Theorem 5.5, for any g1, . . . , gn ∈ Zd,

{x ∈ Tk : {g1 · x, . . . , gn · x} ∈ Di} ∈ BA,B3

by Remark 7.1. Note that for each i, there is an upper bound on the size of

all elements of Di.

Now consider Lemma 5.4, where we turn our real-valued flow ψ into an

integral Borel flow, which we will call ψ′. (Our variable choices here differ from

the φ and ψ in the statement of Lemma 5.4.) We claim that for each i, letting

Di be as in the proof of Theorem 5.5 as above, for every m,

{x ∈ Tk : x ∈
⋃
Di ∧ ψ′(x, γ · x) = m} ∈ BA,B3 .

This follows by combining the fact that for each i, the elements of Di have

bounded size with the fact proved above that{
x :

(
n∑
i=1

ψ(gi · x, γi · (gi · x))

)
< a

}
∈ ΣA,B

2 ,

and then using Remark 7.1. Thus, taking the union of these BA,B3 sets, we see

that for every m,

{x ∈ Tk : ψ′(x, γ · x) = m} ∈ ΣA,B
4

in our integral Borel flow ψ′.

Finally, consider the argument in Section 6, which uses Remark 6.2 to

define the equidecomposition. Since our equidecomposition just uses the value

of ψ′ (whose complexity has been computed above), and a maximal K-discrete

set, which is BA,B1 , the resulting pieces will be BA,B4 by Remark 7.1. (Similarly,

inspecting the proof of Lemma 6.1 in [GJ15] also yields pieces with the same

complexity at this last step.)

Appendix A. Proof of Theorem 5.5

In this appendix, we give a proof of Theorem 5.5. If d is a metric on a

set X, then we say that Y ⊆ X is r-discrete (with respect to d) if d(x, y) > r

for all distinct x, y ⊆ Y . We further say that Y ⊆ X is a maximal r-discrete

set if Y is r-discrete and for every x ∈ X there is a y ∈ Y with d(x, y) ≤ r. If

G is a graph on X, then by an r-discrete set of vertices in X, we mean with

respect to the graph metric G induces on X.

We will need the following theorem of Kechris, Solecki, and Todorcevic.

Theorem A.1 ([KST99, Th. 4.2]). Every locally finite Borel graph G has

a maximal r-discrete Borel set.
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In the specific case of the graph Gau we can give a short proof of this

fact. Given any r > 0, for sufficiently small ε > 0, the ε-ball around any point

x ∈ Tk will be an r-discrete Borel set. Thus, we can find a maximal r-discrete

Borel set C for Gau as follows. Let B0, B1, . . . , Bn be finitely many ε-balls that

cover Tk. Define C0 = B0, and let Ci+1 = Bi+1 \
⋃{g · Cj : j ≤ i ∧ |g|∞ ≤ r}.

So inductively,
⋃
i≤k Ci is an r-discrete set, and for every x ∈ Bk, there is a

y ∈ Ck such that d(x, y) ≤ r. Now finish by letting C =
⋃
i≤nCi.

Next, we need the following lemma, which is a rephrasing of an idea due to

Boykin and Jackson. They used it to give a new proof of the theorem originally

due to Weiss that free Borel actions of Zd are hyperfinite.

Lemma A.2 ([BJ07]). Suppose d ≥ 1, n > 0, a : Zd y X is a free Borel

action of Zd on a standard Borel space X , and r0 < r1 < · · · is an increasing

sequence of natural numbers. Then there is a sequence C0, C1, . . . ⊆ X of Borel

sets such that Ci is Borel maximal ri-discrete set for Ga, and for every ε > 0

and every x ∈ X , there are infinitely many i such that d(x,Ci) < εri.

Proof. For each i, by Theorem A.1, let C ′i be a Borel maximal ri-discrete

set for the graph Ga. To each x ∈ X, we associate a sequence D0(x), D1(x), . . .

of subsets of Rd. Let

Di(x) = {g/ri : g ∈ Zd ∧ (−g) · x ∈ C ′i}.

So each set Di(x) is a maximal 1-discrete subset of Rd, with respect to metric

|·|∞ on Rd. Now let D∗(x) ⊆ Rd be the set of accumulation points of the

sequence D0(x), D1(x), . . ., so D∗(x) is a closed subset of Rd. The set D∗(x)

is nonempty since each set Di(x) contains at least one point in the set [0, 1]d,

which is compact. Now if x, y ∈ X are in the same orbit of a, then D∗(x) =

D∗(y), since the set Di(x) can be shifted by a distance of d(x, y)/ri to become

equal to Di(y), and d(x, y)/ri → 0 as i→∞.

Recall that a function f on X is said to be a-invariant if f(x) = f(y) for

all x, y in the same a-orbit of X. We claim that there is an a-invariant Borel

function f : X → Rd such that f(x) ∈ D∗(x) for every x ∈ T k. Let fn(x) be the

lexicographically least g ∈ {0, . . . , rn − 1}d such that D∗(x) ∩ (g + [0, 1]d)/rn
is nonempty. Then each function fn is a-invariant, and by the definition of

the lexicographic order, the lexicographically least element of D∗(x)∩ [0, 1]d is

contained in (fn(x)+[0, 1]d)/rn. If we let f(x) = limn→∞ fn(x)/ri, then f(x) is

the lexicographically least element of D∗(x)∩[0, 1]d, and |f(x)− fi(x)|∞ < 1/ri
for every i. Note that f is a-invariant.

For every x ∈ X and ε > 0, there are infinitely many i such that

d(f(x), Di(x)) < ε/2,

since f(x) is an accumulation point of the Di(x). Hence, there are infinitely

many i such that d(fi(x)/ri, Di(x)) < ε/2+1/ri. Using the definition of Di(x),
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this means there are infinitely many i such that there exists some y ∈ C ′i such

that d((−fi(x)) · x, y) < εri/2 + 1.

Now if we define

Ci = {fi(y) · y : y ∈ C ′i},
then using the a-invariance of fi, we see that there are infinitely many i such

that d(x,Ci) < εri/2 + 1, which suffices to prove the theorem. �

It seems likely that one can prove an analogous result for any finitely gen-

erated nilpotent group Γ instead of Zd by using the Mal’cev completion of Γ

in place of Rd in the argument above. However, the analogous problem for

arbitrary finitely generated amenable groups is open. A positive answer would

imply that every free Borel action of a finitely generated amenable group is hy-

perfinite, which is a well-known open problem (see [JKL02], [GJ15], and [SS]).

Problem A.3. Let Γ be a finitely generated amenable group with sym-

metric generating set S, and let a : Γ y X be a free Borel action of Γ on a

standard Borel space X. Let Ga,S be the Borel graph on X where there is an

edge between x and y if there exists a γ ∈ S such that γ · x = y. Must it be

the case that for every increasing sequence r0 < r1 < · · · , there is a sequence

C0, C1, . . . of Borel subsets of X such that Ci is a Borel maximal ri-discrete

set, and for every ε > 0 and x ∈ X, there are infinitely many i such that

dGa,S
(x,Ci) < εri?

Lemma A.2 will be used in our proof of Lemma 5.5 to ensure that the

elements of C cover X. The next definition and lemma will be used to ensure

that elements of C have disjoint boundaries.

Definition A.4. Suppose S is a set of vertices in a graph G on X. Then

let Br(S) = {x : d(x, S) ≤ r} be the “ball” of radius r around S. Abusing

notation, if Y ⊆ [G]<∞, let Br(Y ) = {Br(S) : S ∈ Y }. Finally, if Y, Z ⊆
[G]<∞, let

Br(Y,Z) =
¶
S ∪

⋃
{Br(R) : R ∈ Z ∧ d(R,S) ≤ r} : S ∈ Y

©
.

That is, for each S ∈ Y , Br(Y, Z) contains the set consisting of S together

with the r-balls around all elements of Z of distance at most r from S.

We have the following triviality.

Lemma A.5. Suppose Y,Z ⊆ [G]<∞ are such that diam(R) ≤ r for every

R ∈ Z , for all distinct R,R′ ∈ Z , d(R,R′) > 2r, and d(S, S′) > 6r for every

S, S′ ∈ Y . Then

(1) for every Q ∈ Br(Y, Z), there is an S ∈ Y such that S ⊆ Q ⊆ B3r(S);

(2) every element of Br(Y,Z) is finite and connected, and the elements of

Br(Y, Z) are pairwise disjoint ;

(3) if R ∈ Z and Q ∈ Br(Y, Z), then either Br(R) ⊆ Q, or d(R,Q) > r.
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We now use Lemma A.2 to prove Theorem 5.5.

Proof of Theorem 5.5. Let ri = n12i+1, and let C0, C1, . . . ⊆ X be Borel

maximal 4ri-discrete sets satisfying the conclusion of Lemma A.2. We now

define sets Di ⊆ [G]<∞. Given that we have defined Dj for j < i, we define

Di by constructing a sequence Ai0, . . . , A
i
i ⊆ [G]<∞ and letting Di = Aii at the

end. To begin, let Ai0 = Bri/4(Ci). Hence, by the definition of Ci, the elements

of Ai0 are connected, have diameter ≤ ri/2, and for all distinct R,R′ ∈ Ai0, we

have d(R,R′) > 3ri.

For 0 < j ≤ i, let

Aij = Bri−j (A
i
j−1, Di−j).

We claim that at the end of this construction, the elements of Di = Aii have

diameter ≤ ri and are pairwise of distance at least 2ri. This is easy to prove

by induction using Lemma A.5, since for every Q ∈ Di = Aii, there is some

S ∈ Ai0 such that

Q ⊆ B3r0(· · ·B3ri−2(B3ri−1(S)) · · · )

and so diam(Q) ≤ ri/2 + 6ri−1 + · · ·+ 6r0 which is at most ri by our definition

of ri. Next, note that for each 0 < j ≤ i, if R ∈ Di−j and Q ∈ Di, then

by induction using Lemma A.5, either Bri−j (R) ⊆ Q, or d(Q,R) > ri−j −
3ri−j−1 − · · · − 3r0. Note that ri−j − 3ri−j−1 − · · · − 3r0 ≥ r0 for all 0 < j ≤ i.

To finish, let C = {S̃ : S ∈ ⋃iDi}, where S̃ is the set of vertices in S

together with all x ∈ X that are in some finite connected component of G−∂S.

It is clear that ∂S̃ ⊆ ∂S, and that ∂vis(∞)S̃ = ∂S̃ as described in the paragraph

after the statement of Theorem 5.5. It follows from the previous paragraph

that all distinct R,S ∈ ⋃iDi have ∂nR ∩ ∂nS = ∅, since r0 > 2n. Finally,⋃
C = X since

⋃
(
⋃
iA

i
0) = X by our choice of the sequence Ci. �
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