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Wilkie’s conjecture for restricted
elementary functions

By Gal Binyamini and Dmitry Novikov

To our teacher Askold Khovanskii, on the occasion of his 70th birthday.

Abstract

We consider the structure RRE obtained from (R, <,+, ·) by adjoining

the restricted exponential and sine functions. We prove Wilkie’s conjecture

for sets definable in this structure: the number of rational points of height H

in the transcendental part of any definable set is bounded by a polynomial

in logH. We also prove two refined conjectures due to Pila concerning

the density of algebraic points from a fixed number field, or with a fixed

algebraic degree, for RRE-definable sets.

1. Introduction

1.1. Statement of the main results. Our main object of study is the struc-

ture

(1) RRE = (R, <,+, ·, exp |[0,1], sin |[0,π]).

The superscript RE stands for “restricted elementary”. We consider the nat-

ural language for RRE, where we also include constants for each real number.

We will refer to formulas in this language as RRE-formulas.

For a set A ⊂ Rm, we define the algebraic part Aalg of A to be the union

of all connected semi-algebraic subsets of A of positive dimension. We define

the transcendental part Atrans of A to be A \Aalg.

Recall that the height of a (reduced) rational number a
b ∈ Q is defined to

be max(|a|, |b|). More generally, for α ∈ Qalg we denote by H(α) its absolute

multiplicative height as defined in [4]. For a vector α of algebraic numbers, we

denote by H(α) the maximum among the heights of the coordinates.

Let F ⊂ C denote a number field that will be fixed throughout this paper.

For a set A ⊂ Cm, we denote the set of F-points of A by A(F) := A ∩ Fm and

Keywords: Pfaffian functions, rational points, definable sets, metric entropy

AMS Classification: Primary: 11G99, 03C64, 11U09.

c© 2017 Department of Mathematics, Princeton University.

237

http://annals.math.princeton.edu/about
https://doi.org/10.4007/annals.2017.186.1.6


238 GAL BINYAMINI and DMITRY NOVIKOV

denote

(2) A(F, H) := {x ∈ A(F) : H(x) 6 H}.

The following is our main result.

Theorem 1. Let A ⊂ Rm be RRE-definable. Then there exist integers

κ := κ(A) and N = N(A, [F : Q]) such that

(3) #Atrans(F, H) 6 N · (logH)κ.

Theorem 1 establishes a conjecture of Wilkie [26, Conj. 1.11] for the case

of the restricted exponential function. It also establishes a refined version due

to Pila [24, Conj. 1.4], who conjectured that the exponent κ can be chosen to

be independent of the field F. For a statement of the full conjectures and an

outline of the history of the problem, see Section 1.2.

We also prove an additional conjecture of Pila [24, Conj. 1.5] (in the case

of the restricted exponential) on counting algebraic points of a fixed degree

without restricting to a fixed number field. For k ∈ N, we denote

A(k) := {x ∈ A : [Q(x1) : Q], . . . , [Q(xm) : Q] 6 k},(4)

A(k,H) := {x ∈ A(k) : H(x) 6 H}.(5)

Then we have the following.

Theorem 2. Let A ⊂ Rm be RRE-definable. Then there exist integers

κ := κ(A, k) and N = N(A, k) such that

(6) #Atrans(k,H) 6 N · (logH)κ.

Note that in Theorem 2 the exponent κ may depend on the degree k.

1.2. Background. In [5], Bombieri and Pila considered the following prob-

lem: let f : [0, 1] → R be an analytic function and X ⊂ R2 its graph. What

can be said about the number of integer points in the homothetic dilation tX?

They showed that if f is transcendental, then for every ε > 0 there exists a

constant c(f, ε) such that #(tX ∩ Z2) 6 c(f, ε)tε for all t > 1. The condi-

tion of transcendence is necessary, as can be observed by the simple example

f(x) = x2 satisfying #(tX ∩ Z2) ' t1/2. The proof of [5] introduced a new

method of counting integer points using certain interpolation determinants.

In [19] Pila extended the method of [5] to the problem of counting rational

points on X. In particular, he proved that if f is transcendental, then for every

ε > 0 there exists a constant c(f, ε) such that #X(Q, H) 6 c(f, ε)Hε for all

H ∈ N. In this generality, the asymptoticO(Hε) is essentially the best possible,

as illustrated by [20, Exam. 7.5].

Moving beyond the case of curves one encounters a new phenomenon: a

set X may be transcendental while still containing algebraic curves, and in
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such a case (as illustrated by the graph of x → x2) one cannot expect the

asymptotic #X(Q, H) = O(Hε). However, in [21, Th. 1.1] Pila showed that

for compact subanalytic surfaces, this is the only obstruction. More precisely,

for any compact subanalytic surface X ⊂ Rn and ε > 0 there exists a constant

C(X, ε) such that #Xtrans(Q, H) 6 C(X, ε)Hε. The same result for arbitrary

compact subanalytic sets was conjectured in [20, Conj. 1.2]. In [26, Th. 1.8]

Pila and Wilkie proved this conjecture in a considerably more general setting.

Namely, they showed that if the set X is definable in any O-minimal structure

and ε > 0, then there exists a constant C(X, ε) such that #Xtrans(Q, H) 6
C(X, ε)Hε. This result contains, in particular, the case of compact subanalytic

sets (and more generally globally subanalytic sets), obtained for the O-minimal

structure of restricted analytic functions Ran. It also contains much wider

classes of definable sets, for instance those definable in the structure Ran,exp

obtained by adjoining the graph of the unrestricted exponential function to Ran.

The Pila-Wilkie theorem in this generality turned out to have many important

diophantine applications; see, e.g., [27] for a survey.

As mentioned earlier, the asymptotic O(Hε) is essentially the best possible

if one allows arbitrary subanalytic sets (even analytic curves). However, one

may hope that in more tame geometric contexts much better estimates can

be obtained. In [26, Conj. 1.11] Wilkie conjectured that if X is definable in

Rexp, i.e., using the unrestricted exponential but without allowing arbitrary

restricted analytic functions, then there exist constants N(X) and κ(X) such

that

(7) #Xtrans(Q, H) 6 N(X) · (logH)κ(X).

In [24, Conjs. 1.4 and 1.5] Pila proposed two generalizations of this conjecture:

namely, that for an arbitrary number field F ⊂ R, one has

(8) #Xtrans(F, H) 6 N(X,F) · (logH)κ(X),

where only the constant N(X,F) is allowed to depend on F, and for k ∈ N one

has

(9) #Xtrans(k,H) 6 N(X, k) · (logH)κ(X,k),

where both constants are allowed to depend on k.

Some low-dimensional cases of the Wilkie conjecture have been estab-

lished. In [22, Th. 1.3] Pila proved the analog of the Wilkie conjecture for

graphs of Pfaffian functions (see Section 5 for the definition) or plane curves

defined by the vanishing of a Pfaffian function. In [14, Cor. 5.5] Jones and

Thomas have shown that the analog of the Wilkie conjecture holds for sur-

faces definable in the structure of restricted Pfaffian functions. In [24], [6]

the Wilkie conjecture is confirmed for some special surfaces defined using the

unrestricted exponential.



240 GAL BINYAMINI and DMITRY NOVIKOV

1.3. Overview of the proof.

1.3.1. The Pfaffian category. Our approach is based on an interplay be-

tween ideas of complex analytic geometry and the theory of Pfaffian functions.

We briefly pause to comment on the latter. In [15] Khovanskii introduced the

class of Pfaffian functions, defined as functions satisfying a type of triangular

system of polynomial differential equations; see Section 5 for details. The Pfaf-

fian functions enjoy good finiteness properties and have played a fundamental

role in Wilkie’s work on the model-completeness of Rexp [28].

From the Pfaffian functions one can form the class of semi-Pfaffian sets,

i.e., sets defined by a boolean combination of Pfaffian equalities and inequali-

ties, and sub-Pfaffian sets, i.e., projections of semi-Pfaffian sets. Pfaffian func-

tions have a natural notion of degree, and by works of Khovanskii [15] and

Gabrielov and Vorobjov [11], [12], the number of connected components of any

semi- or sub-Pfaffian set can be explicitly estimated from above in terms of the

degrees of the Pfaffian functions involved; see Theorem 6. Moreover, for us it

is important that these estimates are polynomial in the degrees.

1.3.2. The holomorphic-Pfaffian category. The theory of Pfaffian func-

tions is an essentially real theory, based on topological ideas going back to

the classical Rolle theorem. The holomorphic continuation of a real Pfaffian

function on Rn is not, in general, a Pfaffian function on Cn ' R2n. However,

since our arguments are complex-analytic in nature, we restrict attention to

holomorphic-Pfaffian functions: holomorphic functions whose graphs (in an

appropriate domain) are sub-Pfaffian sets. It is a small miracle that the graph

of the complex exponential ez, and hence also of sin z, is indeed a Pfaffian set

when restricted to a strip. A similar feature is used in an essential way in the

work of van den Dries [8], which we discuss below.

1.3.3. The inductive scheme for counting rational points. Fix some do-

main Ω ⊂ Cn. We begin by explaining our estimate for #X(Q, H) when

X ⊂ Cn is a holomorphic-Pfaffian variety, i.e., a set cut out by holomorphic-

Pfaffian equations of Pfaffian degree β. For simplicity, we assume X = Xtrans.

Our basic strategy is similar to the strategy used by Pila and Wilkie [26]: we

seek to cover X by smaller pieces Xk, such that for each piece, one can find an

algebraic hypersurface Hk with Xk(Q, H) ⊂ Xk ∩Hk.

By way of comparison, in [26] the subdivision is performed in two steps.

One first applies a reparametrization theorem to write X as the union of im-

ages of Cr-smooth maps φj : (0, 1)dimX → X with unit norms: this step is

independent of H. One then subdivides each cube (0, 1)dimX into Hε sub-

cubes, and for each subcube, one constructs the hypersurface as above using

a generalization of the Bombieri-Pila method [5]. Crucially for [26], the de-

grees of these hypersurfaces can be chosen to depend only on ε but not on H.
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However, to go beyond the asymptotic O(Hε) it appears that one must allow

the degrees to depend on H.

In our approach X is covered by poly(β) pieces Xk := X∩∆k, where ∆k is

a Weierstrass polydisc for X, a notion introduced below. (More accurately, we

take ∆k to be a Weierstrass polydisc shrunk by a factor of two.) We then con-

struct a hypersurface Hk of degree poly(β, logH) containing Xk(Q, H). Con-

sequently, we replace X by X ∩ (∪kHk), which is guaranteed to have strictly

smaller dimension and degree polynomial in β and logH. One can then finish

the proof by induction on dimension and eventually obtain a zero-dimensional

holomorphic-Pfaffian variety defined by equations of degree poly(logH) and

hence having at most poly(logH) points. We proceed to explain the subdivi-

sion step and the construction of the algebraic hypersurfaces.

1.3.4. Weierstrass polydiscs and holomorphic decompositions. We define

a Weierstrass polydisc ∆ = ∆z×∆w for X to be a polydisc in some coordinate

system, where dimX = dim ∆z and X ∩ (∆z × ∂∆w) = ∅. It follows from

this definition that the projection from X ∩ ∆ to ∆z is a finite (ramified)

covering map, and all fibers have the same number of points (counted with

multiplicities). We denote this number by e(X,∆) and call it the multiplicity

of ∆. Weierstrass polydiscs are ubiquitous in complex analytic geometry: they

are the basic sets where a complex analytic variety can be expressed as a finite

cover of a polydisc.

By a variant of Weierstrass division we prove the following polynomial

interpolation result: for any holomorphic function f on a neighborhood of ∆,

there is a function P on ∆, holomorphic in the z-variables and polynomial of

degree at most e(X,∆) in each of the w-variables, such that f ≡ P on X ∩∆

(see Proposition 7). Moreover, the norm of P can be estimated in terms of the

norm of f . The existence of such a decomposition immediately implies that ∆ is

the domain of a decomposition datum in the sense of [3] (see Definition 8). Then

the results of [3], themselves a complex-analytic analog of the Bombieri-Pila

interpolation determinant method [5], imply that (X ∩∆)(Q, H) is contained

in an algebraic hypersurface of degree d = poly(e(X,∆), logH). (For a precise

statement, see Proposition 12.) It will therefore suffice to cover X by poly(β)

Weierstrass polydiscs ∆ each satisfying e(X,∆) = poly(β).

1.3.5. Covering by Weierstrass polydiscs. The multiplicity e(X,∆) is rel-

atively easy to estimate using Pfaffian methods, being the number of isolated

solutions of a system of Pfaffian equations and inequalities. The heart of the ar-

gument is therefore the covering by Weierstrass polydiscs. For this purpose we

prove the following, somewhat stronger statement (see Theorem 7): if B ⊂ Ω

is a ball of radius r around a point p ∈ Ω, then there is a Weierstrass polydisc

∆ ⊂ B for X with center p and polyradius at least r/poly(β). In other words,
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every point p is the center of a relatively large Weierstrass polydisc. From this

it is easy to deduce that X can be covered by poly(β) Weierstrass polydiscs.

We briefly comment on the proof of Theorem 7. Suppose first that X has

complex codimension 1. In this case we show, by a simple geometric argument,

that the theorem can be reduced to finding a ball of radius r/poly(β) disjoint

from S1 · X, where S1 = {|ζ| = 1} acts by scalar multiplication on Cn. The

set S1 ·X is also sub-Pfaffian, now of real codimension 1. We use an argument

involving metric entropy, specifically Vitushkin’s formula (in the form given

by Friedland and Yomdin [9]) to show that S1 ·X can be covered by relatively

few balls of radius r/poly(β), and elementary considerations then show that

it must be disjoint from one (in fact, many) such ball. For X of arbitrary

codimension, we use an induction on codimension by repeated projections.

1.3.6. From RRE-definable sets to holomorphic-Pfaffian varieties. At this

point our review of the proof for holomorphic-PfaffianX is essentially complete.

We now briefly discuss the case of a general RRE-definable set A. Let I =

[−1, 1], and assume that A ⊂ Im. (The general case is easily reduced to this

one.) Our approach for this case is based on a quantifier-elimination result

of van den Dries [8] (itself a variant of the work of Denef and van den Dries

[7] on subanalytic sets). In [8] it is shown, up to some minor variations in

formulation, that any A as above is definable by a quantifier-free formula in

a language LDRE that has a natural interpretation in the structure I. This

language has an order relation <, m-ary operation symbols for certain special

functions f : Im → I, and a binary operation D called restricted division,

interpreted in I as

(10) D(x, y) =

x/y |x| 6 |y| and y 6= 0,

0 otherwise.

The crucial feature for us is that all functions appearing in the language extend

as holomorphic-Pfaffian functions to a complex neighborhood of Im. Therefore

a set defined by quantifier-free LRE-formulas, i.e., not involving the restricted

division D, is essentially the real part of a holomorphic-Pfaffian variety (after

some work to handle inequalities).

To handle a formula involving a restricted division D(x, y), we replace it

by three formulas: one for the case |x| > |y| or y = 0 where we replace D(x, y)

by 0; one for the case |x| = |y| 6= 0 where we replace D(x, y) by 1; and one for

the case |x| < |y| where we replace D(x, y) by a new variable z and add the

equation zy = x (which is equivalent to z = D(x, y) when x < y). Repeating

this for every restricted division in the formula, we reduce the set A to a union

of projections (forgetting the variables z) of sets Bj definable by quantifier-free

LRE-formulas. Moreover, each fiber of the projection π : Bj → A contains at

most one point: this corresponds to the fact that we only add a variable z
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under the restriction that |x| < |y| and, in particular, y 6= 0, and under

these conditions the equation yz = x uniquely defines z. We call this type of

projections admissible (see Definition 27).

It remains to study rational points in sets of the form π(B), where B is

defined by a quantifier-free LRE-formula and π is an admissible projection. Up

to some minor details involving the algebraic part of B, we may replace B by its

complex-analytic germ — which is a holomorphic-Pfaffian variety. The strategy

described above for holomorphic-Pfaffian varieties extends in a straightforward

manner to their admissible projections. The relevant statement is Theorem 8.

1.3.7. From rational points to F-points and points of degree k. The proof

can be carried out for F-points rather than Q-points in exactly the same man-

ner. (We follow the strategy of Pila [24, Th. 3.2].) The case of algebraic points

of degree k requires some additional work. We essentially follow the proof

of [23], with some minor additional details needed to obtain the necessary

degree estimates.

1.4. Contents of this paper. This paper is organized as follows. In Sec-

tion 2 we prove some preliminary results of polynomial interpolation in the

complex setting; define the notion of a Weierstrass polydisc; and establish a

result on holomorphic decompositions of functions over a Weierstrass polydisc.

In Section 3 we give upper and lower bounds for interpolation determinants

over a fixed Weierstrass polydisc, in analogy with the Bombieri-Pila determi-

nant method. In Section 4 we recall the notion of ε-entropy and Vitushkin’s

bound and derive some simple consequences that are needed in the sequel.

In Section 5 we recall the Pfaffian, semi-Pfaffian and sub-Pfaffian categories;

introduce the holomorphic-Pfaffian category; and prove the key technical result

on covering of holomorphic-Pfaffian varieties by Weierstrass polydiscs. In Sec-

tion 6 we prove an analog of the Wilkie conjecture for holomorphic-Pfaffian

varieties and their projections by an induction over dimension. In Section 7

we generalize the results of Section 6 to arbitrary RRE-definable sets and prove

the main Theorems 1 and 2. Finally in Section 8 we give some concluding re-

marks related to effectivity and uniformity of the bounds and discuss possible

generalizations to other structures.

1.5. Acknowledgments. We are grateful to Yosef Yomdin for numerous

invaluable discussions.

2. Polynomial interpolation, Weierstrass polydiscs

and holomorphic decomposition

We fix some basic notation. All complex domains considered in this paper

are assumed to be relatively compact with piecewise smooth boundary. Let

Ω ⊂ Cn be a domain and Z ⊂ Ω. We denote by O(Z) the ring of germs of
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holomorphic functions in a neighborhood of Z. If Z is relatively compact in Ω,

we denote by ‖·‖Z the maximum norm on O(Z̄).

Let A ⊂ Cn be a ball or a polydisc around a point p ∈ Cn and δ > 0. We

let Aδ denote the δ−1-rescaling of A around p, i.e., Aδ := p+ δ−1(A− p).

2.1. Polynomial interpolation.

2.1.1. Univariate interpolation. Let Ω ⊂ C be a domain and f : Ω→ C a

function. Let a := {a1, . . . ,ak} ⊂ Ω be a multiset of points and denote by ν(aj)

the number of times aj appears in a. We define the interpolation polynomial

L[a; f ] to be the unique polynomial of degree at most k − 1 satisfying

(11) L[a; f ](l)(aj) = f(aj), j = 1, . . . , k, l = 0, . . . , ν(aj)− 1.

Denote ha(z) :=
∏k
j=1(z−aj). When f is a holomorphic function, the classical

proof of the Weierstrass division theorem (see, e.g., [13]) shows that L[a; f ]

admits an integral representation as follows.

Proposition 1. Let Ω ⊂ C be a simply-connected domain and a ⊂ Ω.

Let f ∈ O(Ω̄). Then for z ∈ Ω,

(12) L[a; f ](z) =
1

2πi

∮
∂Ω

f(ζ)

h(ζ)

h(ζ)− h(z)

ζ − z
dζ, h := ha.

Proof. The right-hand side of (12) is easily seen to be a polynomial of

degree k − 1 in z (since this is true for the integrand). Evaluating at z = aj ,

we have h(z) = 0, and the integral reduces to the Cauchy formula for f(aj). �

Next we give norm estimates for L[a; f ] in terms of the norm of f .

Proposition 2. Let D ⊂ C be a disc, a ⊂ D a multiset and f ∈ O(D̄1/3).

Then

(13) ‖L[a; f ]‖D 6 3 ‖f‖D1/3 .

Proof. Since the claim is invariant under affine transformations of C, we

may assume that D is the unit disc. Then we have for any z ∈ D, an estimate

|h(z)| 6 2k and for any ζ ∈ ∂D1/3 an estimate |h(ζ)| > (3 − 1)k = 2k. Using

the integral representation (12),

‖L[a; f ]‖D = max
z∈D

∣∣∣∣∣ 1

2πi

∮
∂D1/3

f(ζ)

ζ − z

Ç
1− h(z)

h(ζ)

å
dζ

∣∣∣∣∣
(14)

6 3
‖f‖D1/3

3− 1
(1 + 1) 6 3 ‖f‖D1/3 . �

2.2. Weierstrass polydiscs. We say that x = (x1, . . . ,xn) is a standard

coordinate system on Cn if it is obtained from the standard coordinates by an

affine unitary transformation.

Let Ω ⊂ Cn be a domain and X ⊂ Ω an analytic subset.
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Definition 3. We say that a polydisc ∆ = ∆z × ∆w in the x = z × w

coordinates is a pre-Weierstrass polydisc for X if ∆̄⊂Ω and (∆̄z×∂∆w)∩X=∅.
We call ∆z the base and ∆w the fiber of ∆.

If X is pure-dimensional, we say that ∆ is a Weierstrass polydisc for X if

dim z = dimX.

When speaking about (pre-)Weierstrass polydiscs we will assume (unless

otherwise stated) that the coordinates are given by x = z × w. We will also

denote by πz : Cn → Cdim z the projection to the z-coordinates and by πXz its

restriction to ∆ ∩X.

We recall some standard facts.

Fact 4. If ∆ is a pre-Weierstrass polydisc for X , then πXz is proper and

finite-to-one.

Proof. Let pi ∈ ∆∩X be a sequence of points that escapes to the boundary

of ∆. We will show that πXz (pi) escapes to the boundary of ∆z. Assume

otherwise. Passing to a subsequence we may assume that πXz (pi) converges in

∆z, and passing to a further subsequence we may also assume that pi converges

in ∆̄. But then it must necessarily converge to a point in (∆z × ∂∆w) ∩ X,

which is ruled out by the definition of a pre-Weierstrass polydisc. Thus πXz is

proper, hence its fibers are compact complex submanifolds of ∆w, and must

therefore be finite. �

Fact 5. If X has pure dimension and ∆ is a Weierstrass polydisc for X ,

then πXz is e(X,∆)-to-1 for some number e(X,∆) ∈ N (where points in the

fiber are counted with multiplicities).

Proof. In the Weierstrass case, dimX = dim z so dimX = dimπXz (X).

Under this condition it is well known that the map πXz is a finite unramified

cover outside some proper analytic subset B ⊂ ∆z [13, III.B]. Then the map

is e(X,∆)-to-1, where e(X,∆) is the cardinality of the fiber over any point in

∆z \B. �

Lemma 6. Let X have pure dimension and ∆ be a Weierstrass polydisc

for X . For l = 1, . . . ,dim w, there exists a monic polynomial

(15) Pl(z,wl) ∈ O(∆z)[wl], degPl = e(X,∆)

such that for any z ∈ ∆z , the roots of Pl(z,wl) are precisely the wl-coordinates

of the points of (πXz )−1(z).

Proof. In the notation of Fact 5 and its proof, set ν = e(X,∆) and let

W1, . . . ,Wν : ∆z \B → X ∩∆ be the (ramified) inverses of πXz . Then

(16) Pl(z,wl) =
ν∏
j=1

Ä
wl −wl(Wj(z))

ä
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has univalued coefficients that are holomorphic outsideB, and sinceW1, . . . ,Wν

are bounded near B, it follows from the Riemann removable singularity theo-

rem that the coefficients extend to holomorphic functions in ∆z. �

Proposition 7. Let X have pure dimension m. Let ∆ be a Weierstrass

polydisc for X , and set ν = e(X,∆). Let f ∈ O(∆̄z × ∆̄
1/3
w ). There exists a

function

(17) P ∈ O(∆̄z)[w], degwi P 6 ν − 1, i = 1, . . . , n−m

such that P |X∩∆ = f |X∩∆, and

(18) ‖P‖∆ 6 3n−m ‖f‖
∆z×∆

1/3
w
.

Proof. Set s := dim w = n − m. Let ∆w =
∏s
i=1Di. For l = 1, . . . , s,

write

ŵl := (w1, . . . ,wl−1, ωl,wl+1, . . . ,ws),(19)

Ωl = ∆z ×D1 × · · · ×Dl−1 ×D
1/3
l × · · · ×D1/3

s .(20)

Consider the operator

(21) Ll(g) =
1

2πi

∮
∂D

1/3
l

g(z, ŵl)

Pl(z, ωl)

Pl(z, ωl)− Pl(z,wl)

ωl −wl
dωl,

where Pl denotes the polynomial from Lemma 6.

We claim that Ll maps O(Ω̄l) to O(Ω̄l+1). Indeed, let g ∈ O(Ω̄l). For every

fixed z ∈ ∆z, the roots of Pl(z,wl) lie in Dl, and it follows that the integrand

is holomorphic whenever (z, w) ∈ Ω̄l+1 and ωl lies in a neighborhood of ∂D
1/3
l .

By Proposition 2 we have the norm estimate

(22) ‖Ll(g)‖Ω̄l+1
6 3 ‖g‖Ω̄l .

It is easy to see that if g is polynomial of degree at most ν−1 in wj , j 6= l,

then so is Ll(g). Moreover, Proposition 1 shows that Ll(g) is polynomial of

degree at most ν − 1 in wl and agrees with g for any point (z, w) ∈ Ω̄l+1 such

that wl(w) is a root of Pl and, in particular, whenever w ∈ (πXz )−1(z).

Finally, setting

(23) P = Ls · · ·L1f ∈ O(Ω̄s+1) = O(∆̄),

we obtain a polynomial of degree ν− 1 in each variable w1, . . . ,ws that agrees

with f whenever w ∈ (πXz )−1(z). The norm estimate (18) follows by repeated

application of (22). �
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2.3. Decomposition data. We recall the following definition from [3, Def. 4].

Given a standard system of coordinates x, we say that (∆,∆′) is a pair of

polydiscs if ∆ ⊂ ∆′ are two polydiscs with the same center in the x coordinates.

We view Nn as a semigroup with respect to coordinate-wise addition. An

ideal is a subset I ⊂ Nn satisfying I+Nn ⊂ I, and a co-ideal is the complement

of an ideal. For a co-ideal M ⊂ Nn and k ∈ N, we denote by

(24) M6k := {α ∈M : |α| 6 k}

and by HM(k) := #M6k its Hilbert-Samuel function. The function HM(k) is

eventually a polynomial in k, and we denote its degree by dimM.

Definition 8. Let X ⊂ Cn be a locally analytic subset, x a standard

coordinate system, (∆,∆′) a pair of polydiscs centered at the x-origin and

M ⊂ Nn a co-ideal. We say that X admits decomposition with respect to the

decomposition datum

(25) D := (x,∆,∆′,M)

if there exists a constant denoted ‖D‖ such that for every holomorphic function

F ∈ O(∆̄′), there is a decomposition

(26) F =
∑
α∈M

cαxα +Q, Q ∈ O(∆̄),

where Q vanishes identically on X ∩∆ and

(27) ‖cαxα‖∆ 6 ‖D‖ · ‖F‖∆′ ∀α ∈M.

We define the dimension of the decomposition datum, denoted dimD, to be

dimM.

Since HM(k) is eventually a polynomial of degree dimM, the function

HM(k) − HM(k − 1) counting monomials of degree k in M is eventually a

polynomial of degree dimM−1. If dimD > 1, we denote by e(D) the minimal

constant satisfying

(28) HM(k)−HM(k − 1) 6 e(D) · L(dimM, k) ∀k ∈ N,

where L(n, k) :=
(n+k−1
n−1

)
denotes the dimension of the space of monomials of

degree k in n variables. In the case dimD = 0, the co-ideal M is finite and we

denote by e(D) its size.

The following is the standard Cauchy inequality.

Lemma 9 ([17, p. 6]). Let ∆ be a polydisc in the x-coordinates and F ∈
O(∆̄). Then the Taylor expansion F =

∑
α cαxα satisfies

(29) ‖cαxα‖∆ 6 ‖F‖∆ .
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As a direct consequence of Proposition 7 and Lemma 9 we obtain the

following theorem.

Theorem 3. Let X have pure dimension m. Let ∆ be a Weierstrass

polydisc for X , and set

ν = e(X,∆), M = Nm × {0, . . . , ν − 1}n−m, ∆′ = ∆z ×∆1/3
w .(30)

Then (x,∆,∆′,M) is a decomposition datum for X with ‖D‖ 6 3n−m, dimM

= m and e(D) = νn−m.

3. Interpolation determinants

Let Ω ⊂ Cn be a domain and X ⊂ Ω an analytic subset of pure dimen-

sion m. Let x be standard coordinates. Let ∆ be a Weierstrass polydisc for

X, and set ∆′ := ∆z ×∆
1/3
w and ν := e(X,∆) as in Theorem 3.

3.1. Interpolation determinants. Let f := (f1, . . . , fµ) be a collection of

functions and p := (p1, . . . , pµ) a collection of points. We define the interpola-

tion determinant

(31) ∆(f ,p) := det(fi(pj))16i,j6µ.

Lemma 10. Assume m > 0. Suppose fi ∈ O(∆̄′) with ‖fi‖∆′ 6 M and

pi ∈ ∆1/δ ∩X for i = 1, . . . , µ and 0 < δ 6 1/2. Then

(32) |∆(f ,p)| 6 (Cµ3M)µ · δE·µ1+1/m
,

where

C = Om(ν
n−m
m ),(33)

E = Ωm(ν−
n−m
m ).(34)

Proof. This follows from [3, Lemma 9] and Theorem 3. �

We note that the proof of [3, Lemma 9] is a direct adaptation of the

interpolation determinant method of [5], and the reader familiar with this

method may recognize that essentially the same arguments go through given

the definition of decomposition data.

3.2. Polynomial interpolation determinants. Let d ∈ N, and let µ denote

the dimension of the space of polynomials of degree at most d in m+1 variables,

µ = L(m + 2, d). Let f := (f1, . . . , fm+1) be a collection of functions and

p := (p1, . . . , pµ) a collection of points. We define the polynomial interpolation

determinant of degree d to be

(35) ∆d(f ,p) := ∆(g,p), g = (fα : α ∈ Nm+1, |α| 6 d).
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Note that ∆d(f ,p) = 0 if and only if there exists a polynomial of degree at

most d in m+ 1 variables vanishing at the points f(p1), . . . , f(pµ).

In [24], the following height function was introduced. For an algebraic

number α ∈ Qalg, let den(α) denotes the denominator of α, i.e., the least posi-

tive integer K such that Kα is an algebraic integer. If {αi} are the conjugates

of α, we denote

(36) Hsize(α) = max(den(α), |αi|).

If α has degree t and

(37) P ∈ Z[X], P = at(X − α1) · · · (x− αt)

is its minimal polynomial, then [4, 1.6.5, 1.6.6]

(38) H(α)t = |at|
t∏

j=1

max(1, |αj |).

In particular, it follows that

(39) H(α)t > Hsize(α).

For a set A ⊂ Cm, we define Asize(F, H) in analogy with A(F, H) from (2) by

replacing H(·) with Hsize(·). The following lemma is essentially contained in

the proof of [24, Th. 3.2], and we reproduce the argument for the convenience

of the reader.

Lemma 11. Let H ∈ N, and suppose that for every i = 1, . . . ,m+ 1 and

j = 1, . . . , µ,

(40) fi(pj) ∈ F, Hsize(fi(pj)) 6 H.

Then ∆d(f ,p) either vanishes or satisfies

(41)
∣∣∣∆d(f ,p)

∣∣∣ > (µ!H(m+2)µd)−[F:Q].

Proof. Denote the matrix defining ∆d(f ,p) by S. Let Qi,j := den fi(pj)

for i = 1, . . . ,m + 1 and j = 1, . . . , µ. By assumption, Qi,j 6 H. The row

corresponding to pj in ∆d(f ,p) consists of algebraic numbers with common

denominator dividing Qj :=
∏
iQ

d
i,j . Setting K =

∏µ
j=1Qj , we see that KS is

a matrix of algebraic integers and |K| 6 H(m+1)µd.

Let G := Gal(F/Q). If detS is nonvanishing, then so are its G-conjugates,

and then

(42) 1 6 |
∏
σ∈G

KSσ| = K [F:Q] · | detS| ·
∏

id 6=σ∈G
|det(Sσ)|.

We estimate |det(Sσ)| from above. By assumption, each entry of Sσ has

absolute value bounded by Hd. Expanding the determinant by the Laplace
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expansion, we have

(43) | det(Sσ)| 6 µ!Hµd ∀σ ∈ G.

Plugging (43) into (42), we have

�(44) | detS| > K−[F:Q](µ!Hµd)−[F:Q]+1 > (µ!H(m+2)µd)−[F:Q].

Comparing Lemmas 10 and 11 we obtain the following.

Proposition 12. Let M,H > 2, and suppose that fi ∈ O(∆̄′) with

‖fi‖∆′ 6M . Let

(45) Y = f(X ∩∆2) ⊂ Cm+1.

There exists a constant Cn > 0 depending only on n such that if

(46) d > Cnν
n−m ([F : Q] logH + logM)m ,

then Y size(F, H) is contained in an algebraic hypersurface of degree at most d

in Cm+1.

Proof. We consider first the case m = 0. In this case ν = e(X,∆) is the

number of points in X ∩ ∆. In particular, this bounds the number of points

in Y , all the more in Y size(F, H), and the claim holds with any d > ν.

Now assume m > 0 and suppose toward contradiction that Y size(F, H) is

not contained in an algebraic hypersurface of degree at most d in Cm+1. By

standard linear algebra it follows that there exist p = p1, . . . , pµ ∈ X ∩ ∆2

such that {f(pj) : j = 1, . . . , µ} is a subset of Y and does not lie on the zero

locus of any nonzero polynomial of degree d. Then
∣∣∣∆d(f ,p)

∣∣∣ 6= 0, and from

Lemmas 10 and 11, we have

(47) (µ!H(m+2)µd)−[F:Q] 6
∣∣∣∆d(f ,p)

∣∣∣ 6 (Cµ3Md)µ · (1/2)E·µ
1+1/m

.

Taking logs and using µ ∼m dm+1, we have

(48) log 2 · E · d1+1/m . log(Cµ3Md) + [F : Q]
î
(m+ 2)d logH + log µ

ó
.

Therefore

(49) d1/m = ν
n−m
m On

Å
log ν

d
+ logM + [F : Q] logH

ã
.

Finally note that (46) implies, in the case m > 0, that (log ν)/d = On(1). �

4. Metric entropy, Vitushkin’s bound

Let A ⊂ Rn be a relatively compact subset. For every ε > 0, we denote

by M(ε,A) the minimal number of closed balls of radius ε needed to cover A.

The logarithm of M(ε,A) is called the ε-entropy of A.

For r > 0, we denote Qr := [0, r] ⊂ R. In our setting it will be more

convenient to define M(ε,A) in terms of covering by ε-cubes, i.e., translates



WILKIE’S CONJECTURE FOR RESTRICTED ELEMENTARY FUNCTIONS 251

of the cube Qnε . For simplicity, we will also restrict our considerations to the

unit cube Qn1 ⊂ Rn.

Vitushkin’s bound states that

(50) M(ε,A) 6 cn
n∑
i=0

Ṽi(A)/εi,

where Ṽi(A) denotes the i-th variation of A — that is, the average number of

connected components of the section A∩P over all affine (n−i)-planes P ⊂ Rn
with respect to an appropriate measure.

Let A ⊂ Qn1 , and denote by Vi(A) the maximal number of connected

components of the set A∩P , where P ⊂ Rn is an affine (n− i)-plane (or ∞ if

this number is unbounded). We also denote V (A) := maxi Vi(A). We will use

the following result of Friedland and Yomdin [9].

Theorem 4 ([9, Th. 1]). Let A ⊂ Qn1 and 0 < ε 6 1. Then

(51) M(ε,A) 6 Vol(A) +
n∑
i=0

2i
Ç
n

i

å
Vi(∂A)/εi.

We use the following to slightly improve the asymptotics, but it is other-

wise inessential.

Corollary 13. Let A ⊂ Qn1 be subanalytic, and suppose dimA 6 m < n.

Then

(52) M(ε,A) 6
m∑
i=0

2i
Ç
n

i

å
Vi(A)/εi.

Proof. Note first that in this case ∂A = A. In the proof of Theorem 4, for

every fixed ε the quantity Vi(A) is in fact only used to estimate the number of

connected components of the intersection A∩ P where P varies over a certain

finite set of affine (n− i)-planes P . It is easy to see that the argument remains

valid if one replaces each P by its sufficiently small parallel translate P ′. For

i > m, we can choose these translates so that A ∩ P ′ = ∅, and the statement

follows. �

Corollary 14. Let r > 0 and A ⊂ Qnr with dimA = m < n. If

(53) rε−1 > n−m
»
CV (A), C := (m+ 1)24n,

then there exists an ε-ball disjoint from A.

Proof. Since the claim is invariant under rescaling, we may assume r = 1.

Let S ⊂ Qn1 be a set of at least (4ε)−n points with pairwise `∞ distances at

least 4ε: for instance, one can choose a grid with (4ε)−1 equally spaced points

on each axis. Suppose A touches the ε-ball Bs around each point of s ∈ S.

Then every ε-cover of A by cubes must contain a cube that touches each Bs,
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and since an ε-cube cannot touch two such balls by the triangle inequality, it

follows that

(54) (4ε)−n 6M(ε,A) 6
m∑
i=0

2i
Ç
n

i

å
Vi(A)/εi 6 22n(m+ 1)ε−mV (A)

and the conclusion follows. �

5. The Pfaffian category, Entropy and Weierstrass polydiscs

5.1. Pfaffian functions, semi-Pfaffian and sub-Pfaffian sets. Let U ⊂ Rn
be a domain. We denote the coordinates on Rn by x. The following definition,

which plays a key role in our considerations, was introduced by Khovanskii in

[15] (see also [11]).

Definition 15. A Pfaffian chain of order ` and degree α is a sequence of

functions f1, . . . , f` : U → R, real analytic in U and satisfying a triangular

system of differential equations

(55) dfj =
n∑
i=1

Pi,j(x, f1(x), . . . , fj(x)) dxi, j = 1, . . . , `,

where Pij are polynomials of degrees not exceeding α. A function f : U → R
of the form f(x) = P (x, f1(x), . . . , f`(x)), where P is a polynomial of degree

not exceeding β, is called a Pfaffian function of order ` and degree (α, β).

The following Pfaffian analog of the Bezout theorem, due to Khovanskii

[15], is the basis for the theory of Pfaffian functions and sets.

Theorem 5. Let f1, . . . , fn : U → R be Pfaffian functions with a common

Pfaffian chain of order ` and deg fi = (α, βi). Then the number of isolated

points in {x ∈ U : f1(x) = · · · = fn(x) = 0} does not exceed

(56) 2`(`−1)/2β1 · · ·βn(min(n, `)α+ β1 + · · ·+ βn − n+ 1)`.

We now move to the notion of semi-Pfaffian and sub-Pfaffian sets. For this

purpose we restrict our consideration to domains of the form
∏n
j=1 Ij where

each Ij is an open, possibly unbounded interval in R. By a slight abuse of

notation we denote this product by In. We will write Xn := (X1, . . . , Xn) for

a set a variables ranging over In.

Definition 16.

• A basic Pfaffian relation on In is a relation f(Xn) ∗ 0 where ∗ ∈ {=, >}
and f is a Pfaffian function on In.

• A semi-Pfaffian formula φ(Xn) is a Boolean combination of basic Pfaffian

relations. We say that φ has complexity (n, s, `, α, β) if it involves s basic

Pfaffian relations, where all the Pfaffian functions have degree at most β in

a common Pfaffian chain of order ` and degree α.
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• A sub-Pfaffian formula is a formula of the form φ(Xn) := ∃Y r : ψ(Xn, Y r),

where ψ(Xn, Y r) is a semi-Pfaffian formula on In+r. The complexity of φ

is defined to be (n, r, s, `, α, β) where ψ has complexity (n+ r, s, `, α, β).

If a formula is semi-algebraic, then we omit `, α from the complexity notation

(formally ` = α = 0).

We write φ(In) for the set of points in In satisfying φ, and we refer to

such sets as semi-Pfaffian (resp. sub-Pfaffian) for φ semi-Pfaffian (resp. sub-

Pfaffian). The categories of semi-Pfaffian and sub-Pfaffian sets thus defined

admit effective estimates for various geometric quantities in terms of the com-

plexity of the formulas. We will require only estimates for the number of

connected components, which are provided by the following theorem.

Theorem 6 ([12, Th. 6.6]). If φ is semi-Pfaffian of complexity (n, s, `, α, β),

then the number of connected components of φ(In) is bounded by

(57) sn2`(`−1)/2O(nβ + min(n, `)α)n+`.

Similarly if φ is sub-Pfaffian of complexity (n, r, s, `, α, β), then the number of

connected components of φ(In) is bounded by

(58) sn+r2`(`−1)/2O((n+ r)β + min(n+ r, `)α)n+r+`.

Proof. The first part is [12, Th. 6.6]. The second follows from the first

since projection cannot increase the number of connected components. �

Corollary 17. Let φ be sub-Pfaffian of complexity (n, r, s, `, α, β). Then

V (φ(In)) is bounded by a polynomial of degree at most n+ r + ` in β.

Proof. To estimate V (φ(In)) we intersect with additional linear equa-

tions and count connected components. The result follows easily from Theo-

rem 6. �

5.2. Sub-Pfaffian sets and RRE. The restricted exponential and sine func-

tions are Pfaffian. As a consequence we have the following proposition.

Proposition 18. Every RRE-definable subset of Rn is sub-Pfaffian.

Proof. By the main result of [8] every RRE-definable subset of Rn is de-

finable by a formula of the type

(59) φ(Xn) := ∃Y m : ψ(Xn, Y m),

where ψ is a quantifier-free RRE-formula. (In fact one can replace ∃ by “exists a

unique,” although we shall not use this fact.) By adding additional variables Y

one can also assume that the function symbols exp, sin only appear in the form

exp(Yj), sin(Yj): by induction on the construction tree of each term we replace

every occurrence of exp(T ) for a term T by exp(Yj) for some new variable Yj ,
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and we add the condition Yj = T to ψ (and similarly for sin). Then it will

follow that ψ is equivalent to a sub-Pfaffian formula once we show that the

graph of the restricted exponential and sine functions is sub-Pfaffian.

It is known that the function sin(z) is Pfaffian in the interval [0, π]. We

claim that the graph of the restricted sine, X2 = sin |[0,π](X1) in I2 := R2 is sub-

Pfaffian. Note that in defining this graph we may not use the function sin(X1),

since sin is not a Pfaffian function in R. To resolve this minor technicality we

define the graph by a projection from I3 := R2 × [0, π] using the sub-Pfaffian

formula

(60) φsin(X1, X2) := [(X1 < 0 ∨X1 > π) ∧X2 = 0]∨
[∃Y ∈ [0, π] : (X1 = Y ∧X2 = sin(Y ))],

where sinY is a Pfaffian function over [0, π]. The restricted exponential func-

tion can be treated similarly. (In fact here it is not necessary to add the

additional variable over [0, 1] because exp is Pfaffian in R itself.) �

5.3. Pfaffian functions in the complex domain. We return now to the com-

plex setting. We fix some standard coordinates x on Cn and identify Cn with

R2n by the map

(61) (x1, . . . ,xn)→ (Re x1, Im x1, . . . ,Re xn, Im xn).

Since we work in Cn, it will be convenient to allow unitary changes of variables.

To make this consistent with the Pfaffian framework we consider the following

setting. We let U denote some fixed ball around the origin, and we will assume

that our Pfaffian chain is defined over U . We then let I2n denote some product

of intervals and assume A · I2n ⊂ U for any unitary A. Finally we will always

work with sub-Pfaffian sets contained in a ball B ⊂ In, and we assume that the

formulas explicitly contain the condition x ∈ B. Under these assumptions we

can make a constant unitary change of variable in a Pfaffian formula without

affecting the complexity: if {fj(x)} is a Pfaffian chain, then by the chain rule,

{fj(A·x)} is a Pfaffian chain of the same order ` and degree α. If the coefficients

of A are taken to be independent variables, then this transformation increases

the degree α by 1.

Our main result in this subsection is a theorem showing that if an analytic

set X in a ball B ⊂ Cn is sub-Pfaffian, then one can choose a Weierstrass

polydisc for X with size depending polynomially on β−1. Since we are mainly

concerned with the asymptotic in β, we allow the asymptotic constants to

depend on all other parameters. In particular, when dealing with formulas of

complexity (2n, r, s, `, α, β), we view all parameters except β as O(1).

We will require a slight technical extension of the notion of Weierstrass

polydiscs.
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Definition 19. Suppose ∆ := ∆z × ∆w is a Weierstrass polydisc for an

analytic set X. If B ⊂ Cn is a Euclidean ball around the origin, we will say

that ∆ has gap B if ∆z × ∂∆w is disjoint from the set B +X.

We begin with a lemma in codimension one.

Lemma 20. Let B ⊂ Cn be a Euclidean ball around the origin. Let X ⊂ B
be an analytic subset of pure dimension m. Suppose X is defined by a sub-

Pfaffian formula φ of complexity (2n, r, s, `, α, β). Then there exists a pre-

Weierstrass polydisc ∆:=∆z×∆w centered at the origin for X where dim w=1

and Bη ⊂ ∆ ⊂ B where

η := O(βν), ν = ν(n,m, r, `) :=
2n+ r + `+ 2

2n− 2m− 1
.(62)

Moreover, ∆ can be chosen to have gap Bη .

Proof. We may assume without loss of generality that B is the unit ball.

The group S1 := {ζ ∈ C : |ζ| = 1} acts on B by multiplication. We consider

Z := S1 ·X, the S1-saturation of X. Then Z can be defined as a sub-Pfaffian

set using the formula

(63) ψ(x) := ∃(ζ ∈ C) : (|ζ|2 = 1) ∧ φ(ζ · y)

of complexity (2n, r + 2, O(1), `, O(1), β). By Corollary 17, we have

(64) V (Z) = O(β2n+r+`+2).

Note that Z has real dimension at most 2m+1. Then according to Corollary 14

applied to Z, in the cube Q := [1/4n, 1/2n]2n ⊂ B there exists a ball Bv ⊂ Q

with center v ∈ Q and radius Ω(β−ν) such that Bv ∩ Z = ∅. Equivalently,

(S1 ·Bv) ∩X = ∅.
Making a unitary change of coordinates, we may assume that in the x =

z × w coordinates, v is given by (0, λ), where |λ| = Ω(1). Let ∆w denote

the disc of radius |λ| around the origin in the w coordinate and ∆z denote

a polydisc of polyradius Ω(β−ν) around the origin in the z coordinates with

v + ∆z ⊂ Bv. Since ∆z is invariant under the S1 action,

(65) ∆z × ∂∆w = (S1 · v) + ∆z = S1 · (v + ∆z) ⊂ S1 ·Bv

is disjoint from X, i.e., ∆ := ∆z×∆w is a Weierstrass polydisc for X. Finally,

since each radius of ∆ is Ω(β−ν), we have Bη ⊂ ∆ for η = O(β−ν) as claimed.

To satisfy the gap condition it is enough to choose Bv to be disjoint from

Z + BO(βν) instead of Z. This is clearly possible for the same reasons: for

instance, it is enough to decrease the radius of Bv by a factor of two. �

We now state our main result.
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Theorem 7. Let B ⊂ Cn be a Euclidean ball around the origin. Let

X ⊂ B be an analytic subset of pure dimension m. Suppose X is defined

by a sub-Pfaffian formula φ of complexity (2n, r, s, `, α, β). Then there exists

a Weierstrass polydisc ∆ := ∆z × ∆w centered at the origin for X where

Bη ⊂ ∆ ⊂ B and

η := O(βθ) θ = θ(n,m, r, `) 6 (2n+ r + `+ 2) log(2n− 2m+ 1).(66)

Moreover, ∆ can be chosen to have gap Bη .

Proof. We begin with a simple topological remark. Suppose that ∆1 =

∆z × ∆w ⊂ B is a pre-Weierstrass polydisc for X. Then πXz is proper so

X ′ := πXz (X) ⊂ ∆z is an analytic subset. Suppose ∆2 := ∆z′ ×∆w′ ⊂ ∆z is a

Weierstrass polydisc for X ′. Then

(67) ∆ := ∆2 ×∆w ⊂ ∆1

is a Weierstrass polydisc for X. Indeed,

• X does not meet ∆z′ × (∆w′ × ∂∆w) since it does not meet ∆z × ∂∆w;

• X does not meet ∆z′× (∂∆w′×∆w) since its z-projection X ′ does not meet

∆z′ × ∂∆w′ .

We now proceed with the proof, by induction on n−m. The case n−m = 1

is exactly Lemma 20. For n − m > 1, consider the pre-Weierstrass polydisc

∆1 = ∆z×∆w ⊂ B provided by Lemma 20. Choose some ball B′ ⊂ ∆z. Then

X ′ ∩ B′ ⊂ B′ is a sub-Pfaffian set: after a unitary change from the x to the

z×w coordinates, it is defined by the formula

(68) ψ(z) = ∃w : (w ∈ ∆w) ∧ (z ∈ B′) ∧ φ(z,w)

of complexity (2n − 2, r + 2, O(1), `, O(1), β). Thus, applying the inductive

hypothesis we obtain a Weierstrass polydisc ∆2 ⊂ B′ ⊂ ∆z for X ′. Defining

∆ as above we obtain a Weierstrass polydisc for X.

We have Bη1 ⊂ ∆1, where η1 = O(βν) for ν = ν(n,m, r, `). Then B′ can

be chosen so that BO(η1) ⊂ B′ ×∆w. Also (B′)η2 ⊂ ∆2, where η2 = O(βθ) for

θ = θ(n− 1,m, r + 2, `). Setting

(69) η = O(η1) · η2 = O(βν+θ),

we see that

(70) Bη = (BO(η1))η2 ⊂ (B′ ×∆w)η2 ⊂ (B′)η2 ×∆w ⊂ ∆2 ×∆w = ∆.

Finally, computing θ by induction, we see

θ(n,m, r, `) =
n−m−1∑
j=0

ν(n− j,m, r + 2j, `) =
n−m−1∑
j=0

2n+ r + `+ 2

2n− 2j − 2m− 1

6 (2n+ r + `+ 2) log(2n− 2m+ 1).

(71)
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To verify the gap condition, by Lemma 20 we may choose ∆1 to have gap

Bη1 , and by induction we may choose ∆2 to have gap (B′)η2 . Then

(72) [∆z′ × (∆w′ × ∂∆w)] ∩ (X +Bη1) ⊂ (∆z × ∂∆w) ∩ (X +Bη1) = ∅

and

[∆z′ × (∂∆w′ ×∆w)] ∩ (X + (B′ ×∆w)η2)

⊂ π−1
z [(∆z′ × ∂∆w′) ∩ (X ′ + (B′)η2)] = ∅.

(73)

Since Bη ⊂ Bη1 and Bη ⊂ (B′×∆w)η2 , we see that ∆ indeed has gap Bη. �

Theorem 7 contains the key argument that allows us to cover analytic sets

by a polynomial (in β) number of Weierstrass polydiscs. However, in practice

the condition of pure-dimensionality of X is somewhat inconvenient. We use a

deformation argument to obtain a result valid in the case of mixed dimensions.

We begin with a definition.

Definition 21. Let Ω ⊂ Cn be a domain and {gl : Ω → C, l = 1, . . . , S}
a collection of holomorphic functions. Suppose that the graphs of gα are sub-

Pfaffian with complexity bounded by (2n+2, r, s, `, α, β). Then we say that the

analytic set X ⊂ Ω of common zeros of {gl} is a holomorphic-Pfaffian variety.

If X ⊂ Ω is an analytic subset of a domain Ω ⊂ Cn and k ∈ N, we denote

by X6k the union of the components of X that have dimension k or less. Note

that X6k is also analytic in Ω.

Corollary 22. Let X ⊂ Ω be a holomorphic-Pfaffian variety as in Def-

inition 21 and B ⊂ Ω a relatively compact Euclidean ball. Let 0 6 m < n.

There exist an analytic set Z ⊂ B of pure dimension m satisfying X6m ⊂ Z

and a Weierstrass polydisc ∆ for Z such that

(1) Bη ⊂ ∆ ⊂ B, where η = O(βθ) and

(74) θ = θ(n,m, 2S(r + 1), `) 6 (2n+ 2S(r + 1) + `+ 2) log(2n− 2m+ 1);

(2) e(Z,∆) = O(βn+2S(r+1)+`).

Proof. The claim is invariant under translation, and we may assume with-

out loss of generality that B is centered at the origin. Let g̃1 denote a generic

linear combination of the gl. If not all gl are identically vanishing, then the

zero locus Z1 of g̃1 is an analytic subset of B̄ of codimension 1. In particular,

it has finitely many irreducible components. We write Z1,b for the union of

those components of Z1 that are components of X and Z1,g for the rest.

For every component of Z1,g, there is a function gl that is not identically

vanishing on it. Then we may choose a generic linear combination g̃2 of the

gl that is not identically vanishing on any component of Z1,g. We set Z2 =

Z1,g ∩ {g̃2 = 0}, which is an analytic subset of B̄ of codimension 2. We write
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Z2,b for the union of those components of Z2 that are components of X and

Z2,g for the rest.

Proceeding in the same manner, we obtain a set Z := Zn−m with

(75) X ⊂ Z ∪ Zb, Zb := Z1,b ∪ · · · ∪ Zn−m−1,b.

Since the components of the sets Zj,b for j = 1, . . . , n−m−1 have codimension

j < n−m, we have X6m ⊂ Z.

Fix a tuple c1, . . . , cn−m ∈ C. Let ε > 0, and set

(76) Zε := {x ∈ B : g̃1(x) = c1ε, . . . , g̃n−m(x) = cn−mε}.

By a Sard-type argument, for generic cj and sufficiently small ε > 0, we have

dimZε = m. We claim that Z is contained in the Hausdorff limit of Zεj along

any sequence 0 6= εj → 0. Note that Z has pure dimension m while Zb∩Z has

dimension strictly smaller than m, so Zg := Z \ Zb is dense in Z and it will

suffice to prove that Zg is contained in the limit of Zε. Let y ∈ Zg. We will

show it is in the limit of Zεj .

The equations g̃1 = · · · = g̃n−m = 0 intersect properly, i.e., at an analytic

set of dimension m, around y. If we choose m additional generic affine-linear

functions L1, . . . , Lm vanishing at y, then the intersection

(77) g̃1 = · · · = g̃n−m = L1 = · · · = Lm = 0

is a proper isolated intersection. By conservation of proper intersection num-

bers under deformations, we see that the system

(78) g̃1 = c1εj , . . . , g̃n−m = cn−mεj , L1 = · · · = Lm = 0

must indeed admit at least one solution yj ∈ Zεj converging to y as εj → 0.

For ε > 0, the set Zε is defined by the sub-Pfaffian formula

(79) φ(x) = (x ∈ B) ∧ ∃(y1, . . . , yS) :
S∧
l=1

(yl = gl(x)) ∩
n−m∧
j=1

(g̃j(x) = cjε),

where we write each g̃j as an appropriate linear combination of the yl vari-

ables. The complexity of φ is bounded by (2n, 2S(r + 1), O(1), `, O(1), β). By

Theorem 7, Zε admits a Weierstrass polydisc ∆(ε) satisfying Bη ⊂ ∆(ε) ⊂ B,

where

(80) η := O(βθ), θ = θ(n,m, 2S(r + 1), `).

Moreover, we may assume that the ∆(ε) have a gap bounded from below

uniformly over ε.

Since the space of Weierstrass polydiscs satisfying the conditions above

is compact, we may choose a sequence εj → 0 such that ∆(εj) converges (for

instance, in the Hausdorff distance) to some polydisc ∆. We claim the ∆ is a

Weierstrass polydisc for Z. Indeed, suppose Z intersects ∆z × ∂∆w. Since Z
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is the Hausdorff limit of Zεj , we see that points of Zεj must come arbitrarily

close to ∆z × ∂∆w. But this contradicts the fact that ∆(εj) converges to ∆

and Zεj stays at a uniformly bounded distance from ∆(εj)z × ∂∆(εj)w.

To estimate e(Z,∆) recall that Z \ Zb has dimension strictly smaller

than m. Since the map πZz is finite, we see that for a generic choice of a

point p ∈ ∆z, the fiber (πZz )−1(p) consists of ν = e(Z,∆) isolated points in

Z \ Zb. Each such isolated point is an isolated solution of the system

(81) {(z,w) ∈ ∆ : g̃1(z,w) = · · · = g̃n−m(z,w) = 0, z = z(p)}.

Then the intersection (81) is proper at these isolated points and it follows that

for sufficiently small ε, the intersection

(82) {(z,w) ∈ ∆ : g̃1(z,w) = c1ε, . . . , g̃n−m(z,w) = cn−mε, z = z(p)}

contains at least ν points. But this intersection is sub-Pfaffian, being the

intersection of Zε with the equation z = z(p). Hence the upper bound for ν

follows from Theorem 6. �

Remark 23. In Corollary 22, if some of the functions gl are in fact Pfaffian

of degree β rather sub-Pfaffian, then one can take S to be the number of sub-

Pfaffian functions. Indeed, in the formula (79) one does not need to add new

variables yl to express the value of the Pfaffian gl: as Pfaffian functions they

can be summed into the linear combinations g̃j directly.

6. Exploring rational points

We begin with a definition.

Definition 24. Let X ⊂ Cm and W ⊂ Cm be two sets. We define

(83) X(W ) := {w ∈W : Ww ⊂ X}

to be the set of points of W such that X contains the germ of W around w,

i.e., such that w has a neighborhood Uw ⊂ Cm such that W ∩ Uw ⊂ X.

If A ⊂ Cn, we denote by AR := A ∩ Rn. We remark that

(84) (A(W ))R ⊂ (AR)(WR).

We will consider Definition 24 in two cases: for X ⊂ Cm locally analytic and

W ⊂ Cm an algebraic variety, and for X ⊂ Rm subanalytic and W ⊂ Rm a

semi-algebraic set.

Our principal motivation for Definition 24 is the following lemma (cf. The-

orem 10).

Lemma 25. Let W ⊂ Rm be a connected positive-dimensional semi-

algebraic set and A ⊂ Rm. Then A(W ) ⊂ Aalg.
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We record some simple consequences of Definition 24.

Lemma 26. Let A,B,W ⊂ Cm. Then

(85) A(W ) ∪B(W ) ⊂ (A ∪B)(W ).

If A ⊂ B is relatively open, then

(86) B(W ) ∩A = A(W ).

6.1. Projections from admissible graphs. Let Ωx ⊂ Cm and Ωy ⊂ Cn be

domains, and set Ω := Ωx × Ωy ⊂ Cn+m. We denote by π : Ω → Ωx the

projection map.

Let U ⊂ Ωx be an open subset and ψ : U → Ωy a function, and denote its

graph by

(87) Γψ ⊂ Ω, Γψ := {(x, ψ(x)) : x ∈ U}.

We denote by ψ̃ : U → Γψ the map x→ (x, ψ(x)).

Definition 27. We say that ψ is admissible if Γ = Γψ is relatively compact

in Ω, and if there exists an analytic subset XΓ of Ω that agrees with Γ over U ,

i.e., XΓ ∩ π−1(U) = Γ.

Example 28. Let Ωx ⊂ C2 be a domain such that the unit ball B2 ⊂ C2 is

a relatively compact subset of Ωx, and let Ωy ⊂ C be a domain such that the

unit ball B1 ⊂ C is a relatively compact subset of Ωy. Let

(88) U := {(x1, x2) ∈ B2 : |x1| < |x2|},

and define ψ : U → Ωy by (x1, x2) → (x1/x2). Then ψ is an admissible

projection, as its graph over U agrees with the analytic subset XΓ ⊂ Ω given

by yx2 = x1. This example is essentially the only case that we shall require in

the sequel.

In Theorem 8 we prove an analog of the Wilkie conjecture for images of

holomorphic Pfaffian varieties under admissible projections. In Section 7 we

study RRE-definable sets and show that (for the purpose of counting rational

points) one can reduce any definable set to the image of such an admissible

projection (see Proposition 36).

6.2. Rational points on admissible projections. We fix an admissible map

ψ : U → Ωy and denote Γ := Γψ. In this section we will consider a fixed

holomorphic-Pfaffian variety X and compute asymptotics for the number of

rational points with respect to the height H. Therefore in our asymptotic

notation we allow our constants to depend on X and Γ, as well as on [F : Q].

We note, however, that the estimates do not depend on F itself. The degree
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of a pure dimensional algebraic variety W ⊂ Cn denoted degW is the num-

ber of intersections between W and a generic hyperplane of complementary

dimension.

The following is our main result in this section.

Theorem 8. Let X ⊂ Ω be a holomorphic-Pfaffian variety defined by S

sub-Pfaffian functions with complexity bounded by (2n + 2m + 2, r, s, `, α, β).

Suppose X ⊂ XΓ, and set

(89) Y := π(X ∩ Γ) ⊂ Ωx.

Then for

(90) κ = 3m (m+ n+ 2S(r + 1) + `+ 1)3m

and any H ∈ N, there exist algebraic varieties V0, . . . , Vm such that Vj has pure

dimension j and degree O((logH)κ), and

(91) Y size(F, H) ⊂ Y (V0) ∪ · · · ∪ Y (Vm).

We will need the following basic lemma. Below, SingW denotes the sin-

gular part of the algebraic variety W .

Lemma 29. Let W ⊂ Cm be a pure dimensional algebraic variety of de-

gree d. Then

(1) W is set-theoretically cut out by a set of at most m+ 1 polynomials, each

of degree at most d;

(2) there exists a polynomial Q of degree at most d vanishing identically on

SingW but not on W .

Proof. Assume first that W is a hypersurface. Then W = {P = 0},
where P is square-free and degP = d, proving (1). Any derivative of P vanishes

on SingW , and any derivative that is not identically zero has no common

factors with P and hence does not vanish identically on W , proving (2). We

proceed with the case k := dimW < m− 1.

For any sufficiently generic affine-linear projection L : Cn → Ck+1, the

Zariski closure of L(W ) ⊂ Ck+1 is a hypersurface of degree d (since the pullback

of a generic line in Ck+1 by L is a generic (n − k)-plane). Let PL be the

(square-free) polynomial of degree d defining this hypersurface, and set P ′L :=

PL ◦L. Since L is affine linear, we also have degP ′L = d. We claim that m+ 1

(sufficiently generic) polynomials thus constructed define W set theoretically,

proving (1). Indeed, let L1 be generic as above, and let W1 = {P ′L1
= 0}.

Next, choose L2 sufficiently generic so that for any component C ⊂ W1 that

is not contained in W , we have L2(C) 6⊂ L(W ). Then P ′L2
does not vanish

identically on any C as above, and setting W2 = W1 ∩ {P ′L2
= 0}, we see

that any component of W2 not contained in W has codimension at least 2.
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Continuing in the same manner we construct W3, . . . ,Wm+1 such that any

component C ⊂ Wk that is not contained in W has codimension at least k

and, in particular, Wm+1 = W .

For the second statement, let Tp(W ) ⊂ Cm be the common zeros locus

of the differentials dPp for every polynomial in the ideal of W . By definition

we have SingW = {p : dimTp(W ) > k}. Choose a sufficiently generic L :

Cn → Ck+1 such that dimL(W ) = k, and such that at a generic point p of

(each component of) SingW , we have dL(Tp(W )) = Ck+1. We let QL denote

one of the nonvanishing derivatives of the (square-free) PL. Then QL does

not vanish identically on L(W ), so Q′L := QL ◦ L does not vanish identically

on W . Thus (2) will be proved with Q = Q′L once we show that Q′L vanishes

on (a generic point of) SingW . Let p ∈ SingW be a generic point such that

dL(Tp(W )) = Ck+1. Then

(92)

[( dPL)L(p)](Ck+1) = [( dPL)L(p) ◦ ( dL)p](Tp(W )) = [( dP ′L)p](Tp(W )) = {0},

where the last equality follows from the definition of Tp(W ) and the fact that

P ′L vanishes on W . In conclusion, we see that QL, as a derivative of PL,

vanishes at the point L(p) so that Q′L vanishes at p as claimed. �

We begin the proof of Theorem 8 with the following proposition.

Proposition 30. Let X ⊂ Ω be a holomorphic-Pfaffian variety defined

by S sub-Pfaffian function with complexity bounded by (2n+2m+2, r, s, `, α, β).

Suppose X ⊂ XΓ, and set

(93) Y := π(X ∩ Γ) ⊂ Ωx.

Let W ⊂ Cm be an algebraic variety of pure dimension k and degree d. Then

for

(94) λ(k) = λ(n,m, r, S, `, k) := (n+m+ 2S(r + 1) + `)(n+m− k + 1)

+ (n+m)θ(n+m, k − 1, 2S(r + 1), `) + 1

and for any H ∈ N, there exists an algebraic variety V ⊂W of pure dimension

k − 1 and degree O(dλ(k)(logH)k−1) such that

(95) (Y ∩W )size(F, H) ⊂ Y (W ) ∪ V.

Proof. Set

(96) Z := (X ∩ (W × Ωy))
<k.

Let q ∈ Y ∩W , and suppose that q 6∈ SingW and q 6∈ Y (W ). Then the germ

Wq of W at q is smooth k-dimensional and not contained in Y . Equivalently,

its image ψ̃(Wq) is the germ of a smooth k-dimensional analytic set at ψ̃(q)
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that is not contained in X. Since we assume X ⊂ Γ around ψ̃(q), we deduce

that the dimension of

(97) X ∩ (Wq × Ωy) = X ∩ Γ ∩ (Wq × Ωy) = X ∩ ψ̃(Wq)

at ψ̃(q) is strictly smaller than k, i.e., ψ̃(q) ∈ Z. In conclusion,

(98) Y ∩W ⊂ Y (W ) ∪ SingW ∪ π(Z).

By Lemma 29 there exists a hypersurface H0 ⊂ Cm of degree at most d

containing SingW and not containing W . Also, the holomorphic-Pfaffian va-

riety X ∩ (W × Ωy) is cut out by the equations for X and a set of additional

polynomials equations (in x) of degrees bounded by d.

Let p ∈ Γ̄. Since Γ ⊂ Ω is relatively compact, there exists a Euclidean ball

Bp ⊂ Ω around p of radius Ω(1). Slightly shrinking Bp if necessary, we may

also assume B
1/3
p ⊂ Ω. By Corollary 22 there exist an analytic set Z ′ ⊂ Bp

of pure dimension k − 1 satisfying Z ⊂ Z ′ and a Weierstrass polydisc ∆ for Z

such that

(1) Bη ⊂ ∆ ⊂ B, where η = O(dθ) and θ = θ(n+m, k − 1, 2S(r + 1), `);

(2) e(Z ′,∆) = O(dn+m+2S(r+1)+`).

Note that in the estimate above we use S, the number of sub-Pfaffian holo-

morphic equations for X, and do not count the additional equations used to

define W . This is permissible in light of Remark 23 and improves the asymp-

totics.

Assume first that W is irreducible. Then one can choose a subset of k

coordinates on Cm, say f = (x1, . . . , xk), such that f : W → Ck is dominant

and, in particular, no nonzero polynomial in f vanishes identically on W . We

apply Proposition 12 to Z ′ and f . We conclude that

(99) [π(Z ′ ∩B2η
p )]size(F, H) ⊂ {Pp(f) = 0}

for some nonzero polynomial Pp(f) of degree d̃, where

d̃ = O(e(Z ′,∆)n+m−k+1(logH)k−1)

= O(d(n+m+2S(r+1)+`)(n+m−k+1)(logH)k−1).
(100)

Finally, since the ball B2η
p has radius Ω(η−1), one can choose a covering of Γ̄ by

O(ηn+m) such balls. We let H be the union of the corresponding hyperplanes

{Pp(f) = 0}, and we take V ′ = W ∩H and V = V ′ ∪ (W ∩H0). Then the

degree estimates follow from the Bezout theorem and the statement follows

from (98), (99) and the choice of H0.

If W is reducible with components Wi, then we may repeat the construc-

tion above for each Wi separately and take V ′ to be the union of the resulting

V ′i and V = V ′ ∪ (W ∩H0) as before. The degree estimates in this case are

only improved. �
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Proof of Theorem 8. Define κ(m), . . . , κ(0) by

κ(m) = 0, κ(k) = k − 1 + λ(k)κ(k + 1).(101)

Apply Proposition 30 with W = Vm := Cm to obtain an algebraic variety

Vm−1 ⊂ Cm of pure dimension m− 1 and degree O((logH)κ(m−1)) such that

(102) Y size(F, H) ⊂ Y (Vm) ∪ Vm−1.

Apply Proposition 30 again with W = Vm−1 to obtain an algebraic variety

Vm−2 ⊂ Cm of pure dimension m− 2 and degree O((logH)κ(m−2)) such that

(103) (Y ∩ Vm−1)size(F, H) ⊂ Y (Vm−1) ∪ Vm−2.

Repeating similarly we obtain an algebraic variety Vk ⊂ Cm of pure dimen-

sion k and degree O((logH)κ(k)) such that

(104) (Y ∩ Vk)size(F, H) ⊂ Y (Vk) ∪ Vk−1,

where V−1 = ∅. Finally, using Y (V0) = Y ∩ V0 and (104) gives

(105) Y size(F, H) ⊂ Y (V0) ∪ · · · ∪ Y (Vm).

An easy estimate on κ(k) finishes the proof: as κ(k) + 1 6 λ(k) (κ(k + 1) + 1),

we have

κ(0) 6
m−1∏
k=0

λ(k) 6 3m (m+ n+ 2S(r + 1) + `+ 1)3m . �

7. Definable sets in RRE and the language LDRE

Let I = [−1, 1]. For m ∈ N, we let RRE{X1, . . . , Xm} denote the ring of

power series f ∈ R[[X1, . . . , Xm]] such that

(1) f converges in a neighborhood of Im;

(2) for every point p ∈ Im, there is a polydisc ∆p around p such that f

converges in ∆p to a holomorphic function, whose graph (in ∆p) is

definable in RRE.

We remark that [8] requires strong definability in item (2) above, but this is in

fact equivalent to definability by the main result of [8]. By Proposition 18 and

the compactness of Im, for every function f ∈ RRE{X1, . . . , Xm}, there exists

a complex neighborhood Ωf of Im such that f is holomorphic and sub-Pfaffian

in Ωf .

We recall the language LDRE of [8]. There are a countable set of variables

{X1, X2, . . .}, a relation symbol < and a binary operation symbol D, and an m-

ary operation symbol f for every f ∈ RRE{X1, . . . , Xm} satisfying f(Im) ⊂ I.
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We view I as an LDRE-structure by interpreting < and f in the obvious way

and interpreting D as restricted division, namely,

(106) D(x, y) =

x/y |x| 6 |y| and y 6= 0,

0 otherwise.

We denote by LRE the language obtained from LDRE by omitting D.

For every LDRE-term t(X1, . . . , Xm), we have an associated map t : Im → I,

which we denote x→ t(x).

Lemma 31. Let t(X1, . . . , Xm) be an LRE term. Then there is a complex

neighborhood Ω of Im such that t corresponds to a holomorphic sub-Pfaffian

function in Ω.

Proof. We prove the claim by induction: if t = Xi, then the claim is

obvious. Suppose t = f(T1, . . . , Tj), where f ∈ RRE{Y1, . . . , Yj} and the claim

is proved for T1, . . . , Tj . Then there exist a complex neighborhood Ωf of Ij

such that f is holomorphic and sub-Pfaffian in Ωf and complex neighborhoods

Ωi of Im such that Ti corresponds to a holomorphic sub-Pfaffian function in Ωi.

Since Ti(I
n) ⊂ I, we may, shrinking Ωi if necessary, assume that (T1, . . . , Tj)

maps Ω := Ω1× · · ·×Ωj to Ωf . Then t corresponds to a holomorphic function

in Ω, and since sub-Pfaffian functions are closed under composition, it is also

sub-Pfaffian. �

For an LDRE-formula φ(X1, . . . , Xm), we write φ(Im) for the set of points

x ∈ Im satisfying φ. If A ⊂ Im, we write φ(A) := φ(Im) ∩ A. We will use the

following key result of [8].

Theorem 9. I has elimination of quantifiers in LDRE.

7.1. Admissible formulas. Let U ⊂ I̊m be an open subset. We define the

notion of an LDRE-term being admissible in U by recursion as follows: a variable

Xj is always admissible in U ; a term f(t1, . . . , tm) is admissible in U if and only

if the terms t1, . . . , tm are admissible in U ; and a term D(t1, t2) is admissible

in U if t1, t2 are admissible in U and if

(107) |t1(x)| 6 |t2(x)| and t2(x) 6= 0

for every x ∈ U . An easy induction gives the following.

Lemma 32. If t is admissible in U , then the map t : U → I is real analytic.

We will say that an LDRE-formula φ is admissible in U if all terms appearing

in φ are admissible in U . The following proposition shows that when consid-

ering definable subsets of I one can essentially reduce to admissible formulas.

The proof is identical to that of [3, Prop. 20].
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Proposition 33. Let U ⊂ I̊m be an open subset and φ(X1, . . . , Xm) a

quantifier-free LDRE-formula. There exist open subsets U1, . . . , Uk ⊂ U and

quantifier-free LDRE-formulas φ1, . . . , φk such that φj is admissible in Uj and

(108) φ(U) =
k⋃
j=1

φj(Uj).

7.2. Basic formulas and equations. We say that φ is a basic D-formula if

it has the form

(109)
Ä
∧kj=1 tj(X1, . . . , Xm) = 0

ä
∧
Ä
∧k′j=1 sj(X1, . . . , Xm) > 0

ä
where tj , sj are LDRE-terms. It is easy to check the following.

Lemma 34. Every quantifier-free LDRE-formula φ is equivalent in the struc-

ture I to a finite disjunction of basic formulas. If φ is U -admissible, then so

are the basic formulas in the disjunction.

We say that φ is a basic D-equation if k′ = 0, i.e., if it involves only

equalities. If φ is a basic D-formula, we denote by φ̃ the basic D-equation

obtained by removing all inequalities.

Let φ be a U -admissible basic D-formula for some U ⊂ Im. Then φ̃ is

U -admissible as well. Moreover, since all the terms sj evaluate to continuous

functions in U , the strict inequalities of φ are open in U and we have the

following.

Lemma 35. Suppose φ is a U -admissible basic D-formula. Then φ(U) is

relatively open in φ̃(U).

The set defined by an admissible D-equation can be described in terms of

admissible projections in the sense of Section 6.1.

Proposition 36. Let U ⊂ I̊m, and let φ be a U -admissible D-equation,

(110) φ = (t1 = 0) ∧ · · · ∧ (tk = 0).

In the notation of Section 6.1, there exist

(1) complex domains Ωx ⊂ Cm and Ωy ⊂ CN with N ∈ N and Im ⊂ Ωx,

(2) an open complex neighborhood U ⊂ UC ⊂ Ωx,

(3) an analytic map ψ : UC → Ωy ,

(4) an analytic set X ⊂ Ω,

such that ψ is admissible, the sets X,XΓ ⊂ Ω are sub-Pfaffian, and Y :=

π(X ∩ Γψ) satisfies YR = φ(U).

Proof. The proof is essentially the same as the proof in [3, Prop. 23] for the

language LDan. We note that in [3] this proposition is proved with an extra set
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of parameters Λ, and in the current context one can take Λ to be a singleton.

To see that the sets X,XΓ are also sub-Pfaffian use Lemma 31. �

7.3. Estimate for LDRE-definable sets.

Proposition 37. Let A ⊂ I̊m be an LDRE-definable set. There exist in-

tegers κ = κ(A) and N = N(A, [F : Q]) with the following property : for any

H ∈ N, there exists a collection of at most β := N(logH)κ smooth connected

semi-algebraic subsets Sα ⊂ Rm, each of complexity (m,β, β) such that

(111) A(F, H) ⊂
⋃
α

A(Sα).

Proof. According to (39), for any α ∈ F, we have Hsize(α) 6 H(α)t where

t := [F : Q]. Thus

(112) A(F, H) ⊂ Asize(F, Ht)

for every H ∈ N. Therefore up to minor rescaling it will suffice to prove the

claim with H(·) replaced by Hsize(·).
By Theorem 9 we may write A = φ(I̊m) for some quantifier-free LDRE-

formula φ. By Proposition 33 and Lemma 34 we may write

(113) A =
k⋃
j=1

nj⋃
i=1

φji(Uj),

where φji is a Uj-admissible basic D-formula. By the first part of Lemma 26 it

is clear that it will suffice to prove the claim with A replaced by each φij(Uj).

We thus assume without loss of generality that φ is already a U -admissible

basic D-formula and prove the claim for A = φ(U).

Recall that φ̃ is a U -admissible D-equation. We write B = φ̃(I̊m). Apply-

ing Proposition 36 to φ̃ and using Theorem 8 we construct a locally analytic

set Y ⊂ Cm such that YR = B, and algebraic varieties V0, . . . , Vm such that Vj
has pure dimension j and degree O((logH)κ

′
) such that

(114) Y size(F, H) ⊂ Y (V0) ∪ · · · ∪ Y (Vm).

By (84) and YR = B, we have

(115) B(F, H)size ⊂ B(V0) ∪ · · · ∪B(Vm), Vj := (Vj)R.

Recall that A is relatively open in B by Lemma 35. Then

Asize(F, H) = A ∩ (Bsize(F, H)) ⊂ A ∩
m⋃
j=0

B(Vj) =
m⋃
j=0

(A ∩B(Vj))

=
m⋃
j=0

A(Vj),

(116)

where the last equality is given by the second part of Lemma 26.
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If we write each Vj as a union of connected smooth strata Vj = ∪lSj,l,
then we have

(117) Asize(F, H) ⊂
⋃
j

A(Vj) ⊂
⋃
j,l

A(Sj,l).

It remains to estimate the number and complexity of the strata. Recall from

Lemma 29 that each Vj is cut out by m + 1 complex equations of degree at

most deg Vj , which is bounded by β1 := O((logH)κ
′
). The real-part Vj is cut

out by the same equations and additional linear equations for the vanishing of

all imaginary parts, and thus has complexity (m, 3m + 2, β1). By [10, Th. 2]

one can decompose Vj into a union of β2 := β
(2O(m))
1 smooth (but not nec-

essarily connected) semi-algebraic sets of complexity (m,β2, β2). Finally, by

[1, Th. 16.13] each such semi-algebraic set can be decomposed into its con-

nected components, with the number of connected components bounded by

β3 = β
(m4)
2 and their complexity bounded by (m,β3, β3). (A better estimate

for the number of connected components follows from Theorem 6.) �

7.4. Estimate for RRE-definable sets. Consider the map τ : R → I̊ given

by x→ x/
√

1 + x2. This map is a bijection between R and I̊, with the inverse

τ−1 : I̊ → R given by y → y/
√

1− y2. A straightforward verification [8, 4.6]

shows that the τ -images of the basic relations of RRE are LDRE-definable in I,

and it follows that every RRE-definable set A ⊂ Rn has an LDRE-definable

τ -image τ(A) ⊂ I̊m.

Lemma 38. Suppose A ⊂ I̊m is RRE-definable. Then A is LDRE-definable.

Proof. Let I ′ := τI = [− 1√
2
, 1√

2
]. By the above, τ(A) ⊂ I̊ ′ is LDRE-

definable. The restriction τ−1|I′ : I ′ → [−1, 1] is definable in I by the LDRE-

formula

(118) φ(y, x) := ∃z : z > 0, z2 = 1− y2, x = D(y, z).

Then A = τ−1(τA) is LDRE-definable as well. �

The following theorem is the general form of our main result.

Theorem 10. Let A ⊂ Rm be an RRE-definable set. There exist integers

κ = κ(A) and N = N(A, [F : Q]) with the following property : for any H ∈ N,

there exists a collection of at most β := N(logH)κ smooth connected semi-

algebraic subsets Sα ⊂ Rm, each of complexity (m,β, β) such that

(119) A(F, H) ⊂
⋃
α

A(Sα).

Proof. For A ⊂ I̊m, the claim follows by Lemma 38 and Proposition 37.

For the general case, note that the definable transformations xi → 1/xi and
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xi → xi + 1 do not affect the heights of the points of A by more than a

constant factor, their pullbacks preserve the smoothness of Sα and do not

affect the degrees of Sα by more than a constant factor. It is easy to construct

a finite set {Tj} where each Tj : Rm → Rm is a finite composition of the

transformations above such that for any A ⊂ Rm,

(120) A =
⋃
j

T−1
j (Tj(A) ∩ I̊m).

The claim now follows from the case A ⊂ I̊m already considered. �

Remark 39. The reader may note that the strata Sα in Theorem 10 play

essentially the same role as the “basic blocks” introduced in [23]. They will be

used in a similar way for the proof of Theorem 2.

7.5. Proofs of the main theorems. In this section we prove our two main

results Theorems 1 and 2. We start with Theorem 1, which is essentially an

immediate consequence of Theorem 10.

Proof of Theorem 1. Let H ∈ N. Consider the collection of β smooth

connected semi-algebraic sets Sα obtained from Theorem 10, such that

(121) A(F, H) ⊂
⋃
α

A(Sα).

By Lemma 25 we see that Atrans(F, H) is contained in the union of the zero-

dimensional strata Sα. Then #(Atrans)(F, H) is bounded by the number of

strata, which is of the required form by Theorem 10. �

We now pass to the proof of Theorem 2, which is a direct adaptation of

the approach of [23] (with slightly more effort needed to obtain the necessary

degree estimates). We introduce some additional notation for this purpose.

Let P6k := Rk+1 \ {0} and Pk := {c ∈ P6k : ck 6= 0}. For c ∈ P6k, let

Pc ∈ R[x] denote the polynomial

(122) Pc(X) :=
k∑
j=0

cjX
j .

We let Dk ⊂ Pk denote the discriminant, i.e., the set of c ∈ Pk such that Pc

has a (possibly complex) double zero. Then Dk is an algebraic subset and its

complement P̃k := Pk \Dk is an open semi-algebraic set. We let Zk ⊂ P̃k ×R
be the set

(123) Zk := {(c, x) ∈ P̃k × R : Pc(x) = 0}.

Lemma 40. Let {Uχ} denote the connected components of P̃k. For each

χ, there is a tuple of at most k real-analytic algebraic functions φχ,j : Uχ → R
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such that

(124) Zk =
⋃
χ,j

Γφχ,j ,

where Γφ denotes the graph of φ.

Proof. Since P̃k is the complement of the discriminant, the number of zeros

of Pc for c ∈ Uχ is some constant nχ 6 k, and since Pc has no double zeros

one can uniquely choose the branch φχ,j for j = 1, . . . , nχ to be the j-th root

of Pc in increasing order. The branches thus constructed are Nash functions,

i.e., real analytic and algebraic, on Uχ. Their graphs cover Zk ∩ (Uχ × R) by

construction. �

Following [23] we introduce the following height function. For an algebraic

number α ∈ Qalg, we define

(125) Hpoly
k (α) = min{H(c) : c ∈ P6k(Q), Pc(α) = 0}

and Hpoly
k (α) =∞ if [Q(α) : Q] > k. Then whenever [Q(α) : Q] 6 k, we have

[23, 5.1]

(126) Hpoly
k (α) 6 2kH(α)k.

For a set A ⊂ Rm we define Apoly(k,H) in analogy with A(k,H) replacing

H(·) by Hpoly
k (·).

Proof of Theorem 2, adapted from [23]. As in the proof of Theorem 1, from

(126) we deduce that up to minor rescaling it will suffice to prove the claim

with A(k,H) replaced by Apoly(k,H). Let k = (k1, . . . , km) ∈ Nm, and denote

A(k) := {x ∈ A : [Q(x1) : Q] = k1, . . . , [Q(xm) : Q] = km},(127)

Apoly(k, H) := {x ∈ A(k) : Hpoly
k (x) 6 H}.(128)

Then

(129) Apoly(k,H) =
⋃

k:16kj6k

Apoly(k, H),

and it will suffice to prove the claim for fixed k in place of k.

Denote P̃k :=
∏m
j=1 P̃

kj , and let Zk ⊂ P̃k × Rm be the set

(130) Zk := {(c1, . . . , cm, x1, . . . , xm) ∈ P̃k × Rm :

Pc1(x1) = · · · = Pcm(xm) = 0}.

Let {Uχ} denote the connected components of P̃k. For each χ, there is a tuple

of at most km real-analytic algebraic maps φχ,j : Uχ → Rm such that

(131) Zk =
⋃
χ,j

Γφχ,j ,
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where Γφ denotes the graph of φ. Indeed, Uχ are just direct products of

the connected components of P̃kj , and the claim follows by taking the direct

products of the functions constructed in Lemma 40.

For each component Uχ and map φχ,j , we define the set

(132) Aχ,j ⊂ P̃k, Aχ,j := {p ∈ P̃k : φχ,j(p) ∈ A}.
Since φχ,j are semi-algebraic, Aχ,j are definable in RRE. Consider the collec-

tion of at most β = N(logH)κ smooth connected semi-algebraic strata Sχ,j,α
obtained from Theorem 10, such that

(133) Aχ,j(Q, H) ⊂
⋃
α

Aχ,j(Sχ,j,α).

Let x ∈ Apoly(k, H), and for l = 1, . . . ,m, let cl ∈ P6kl be a tuple

satisfying Pcl(xl) = 0 and H(cl) 6 H. Since [Q(xl) : Q] = kl, we see that Pcl

is (up to a scalar) the minimal polynomial of xl, so it has degree kl and no

multiple roots, i.e., cl ∈ P̃kl . Write p = (c1, . . . , cm) ∈ P̃k. Then (p, x) ∈ Zk,

and by (131) we have x = φχ,j(p) for some pair (χ, j). By (132) we have

p ∈ Aχ,j(Q, H). Choose one of the strata Sχ,j,α such that p ∈ Aχ,j(Sχ,j,α),

and denote it by S(p) and its germ at p by Sp. Then Sp ⊂ Aχ,j , and by (132)

we have Yp := φχ,j(Sp) ⊂ A. Note that Yp is a semi-algebraic set containing

φχ,j(p) = x.

Suppose x ∈ Atrans. Then φχ,j is constant on Sp, for otherwise Yp would

be a connected positive-dimensional semi-algebraic set containing x. Since

S(p) is connected, nonsingular and analytic and φχ,j is real analytic, it follows

that φχ,j is constant (with value x) on the whole of S(p).

From the above it follows that there is an injective correspondence p →
S(p) between the points x ∈ (Atrans)poly(k, H) and the strata Sχ,j,α. The

number of these strata for each χ, j is at most β, and since the number of

pairs χ, j is independent of H we obtain a bound of the required form. (But

note that the exponent κ now depends on the sets Aχ,j , i.e., on k as well as A.)

This finishes the proof. �

8. Concluding remarks

8.1. Effectivity. While we do not compute all explicit constants in this

paper in the interest of space, all of the estimates presented for holomorphic-

Pfaffian varieties and their admissible projections are entirely effective in the

complexity of the holomorphic-Pfaffian varieties involved. We do give an ef-

fective estimate for the exponent κ in Theorem 8 as we believe this may be of

some interest in possible diophantine applications.

As a consequence of the above, our estimates for sets defined by quantifier-

free LDRE-formulas can be made effective in terms of the complexity of the

formulas. We do not study the effectivity of the quantifier-elimination result

of [8], and we therefore cannot make a direct statement about the effectivity
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of our main results for general RRE-definable sets. However, we believe that

by a combination of Pfaffian techniques and the proof of [8] it is possible to

obtain an effective statement in this context as well.

8.2. Uniformity with respect to parameters. Our approach is essentially

uniform over definable families, and the results could be developed in this

additional generality in the same way as this is done in [3] for the subanalytic

context. We avoided this extra generality in this paper in the interest of

preserving clarity; and also since in view of Section 8.1, we believe a detailed

analysis should give estimates depending only on the complexity of the formulas

involved, and hence a priori uniform over families.

8.3. Generalization to other structures. We have focused in this paper

on the structure RRE since it contains the restricted form of Wilkie’s orig-

inal conjecture. It is of course natural to make similar conjectures for sets

definable in other “tame” geometric structures. We identify two possible cate-

gories for such a generalization: structures generated by elliptic functions, for

instance the Weierstrass ℘-function (for a fixed lattice/s) and possibly higher-

dimensional abelian functions; and structures generated by modular functions,

for instance Klein’s j-invariant and possibly universal covering maps of more

general Shimura curves/varieties. In both cases one must of course restrict the

functions to a suitable fundamental domain to avoid periodicity and obtain an

O-minimal structure [18]. Both categories are closely related to diophantine

problems of unlikely intersections: the former to the circle of problems around

the Manin-Mumford conjecture, and the latter to the circle of problems around

the André-Oort conjecture [25].

The elliptic case appears to be possibly amenable to our approach. That

is, a surprising work of Macintyre [16] shows that the real and imaginary parts

of ℘−1 (on an appropriate domain) are real-Pfaffian functions, thus placing ℘

in the holomorphic-Pfaffian category (in analogy with the function ez whose

real an imaginary parts ex and sinx, restricted to an appropriate domain, are

real-Pfaffian and generate RRE). From the model-theoretic side, the work of

Bianconi [2] establishes a close analog of the results of [8] for the structures

generated by real and imaginary parts of elliptic (or more generally abelian)

functions. It therefore appears likely that the methods used in this paper could

be carried over to the elliptic category (at least for elliptic functions).

The modular category currently appears to be more challenging: we have

no reason to believe that the j-function is Pfaffian (or definable from Pfaffian

functions). However, we note that the j-function (as well as other modu-

lar functions) does satisfy certain natural non-Pfaffian systems of differential

equations, and one may hope that some progress in the analysis of such systems

could provide a suitable replacement for the Pfaffian category.
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