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Geometric monodromy — semisimplicity
and maximality

By Anna Cadoret, Chun-Yin Hui, and Akio Tamagawa

Abstract

Let X be a connected scheme, smooth and separated over an alge-

braically closed field k of characteristic p ≥ 0, let f : Y → X be a

smooth proper morphism and x a geometric point on X. We prove that

the tensor invariants of bounded length ≤ d of π1(X,x) acting on the

étale cohomology groups H∗(Yx,F`) are the reduction modulo-` of those of

π1(X,x) acting on H∗(Yx,Z`) for ` greater than a constant depending only

on f : Y → X, d. We apply this result to show that the geometric variant

with F`-coefficients of the Grothendieck-Serre semisimplicity conjecture —

namely, that π1(X,x) acts semisimply on H∗(Yx,F`) for `� 0 — is equiv-

alent to the condition that the image of π1(X,x) acting on H∗(Yx,Q`) is

‘almost maximal’ (in a precise sense; what we call ‘almost hyperspecial’)

with respect to the group of Q`-points of its Zariski closure. Ultimately, we

prove the geometric variant with F`-coefficients of the Grothendieck-Serre

semisimplicity conjecture.

1. Introduction

Let X be a connected scheme, smooth and separated over an algebraically

closed field k of characteristic p ≥ 0, and let f : Y → X be a smooth proper

morphism. As all the objects are of finite type over the base, we may assume

that X = X0 ×k0 k for some smooth, separated and geometrically connected

scheme X0 over a finitely generated subfield k0 ⊂ k and that f : Y → X is the

base-change over k of a smooth proper morphism of k0-schemes f0 : Y0 → X0.

In the following, we always use the notation f0 : Y0 → X0/k0 for such a

model. By the smooth-proper base-change theorem, for every prime ` 6= p, the

higher-direct image sheaves R∗f0∗Z/`n are locally constant constructible and

hence, for every geometric point x on X, they give rise to continuous actions
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of the étale fundamental group π1(X0, x) on (R∗f0∗Z/`n)x ' H∗(Yx,Z/`n),

(R∗f0∗Z`)x ' H∗(Yx,Z`) and (R∗f0∗Q`)x ' H∗(Yx,Q`).

The aim of this paper is to prove the following two statements about the

restriction of these representations to the geometric étale fundamental group

π1(X,x). (Note that they are independent of the model f0 : Y0 → X0/k0.)

Theorem 1.1. The following holds :

(1.1) For ` � 0 (depending on f : Y → X), the action of π1(X,x) on

H∗(Yx,F`) is semisimple.

Assertion (1.1) is the natural geometric variant with F`-coefficients of

the Grothendieck-Serre semisimplicity conjecture, stating that the action of

π1(X0, x) on H∗(Yx,Q`) is semisimple for ` 6= p. (See, for instance, page 109

of the version of Tate’s Woods Hole talk in [Tat65]; see also Section 11.) The

geometric variant with Q`-coefficients of this conjecture is a celebrated theorem

of Deligne, proved in [Del80]; see below for details.

Theorem 1.2. Assertion (1.1) is equivalent to the following :

(1.2) After replacing X by a connected étale cover and for ` � 0 (depending

on f : Y → X), the image of π1(X,x) in the group of Q`-points of its

Zariski closure in GL(H∗(Yx,Q`)) is almost hyperspecial.

Given a connected semisimple group G over Q`, recall that a compact

subgroup Π ⊂ G(Q`) is called hyperspecial if there exists a semisimple group

scheme G over Z` with generic fiber G and such that Π = G(Z`). When they

exist, hyperspecial subgroups are the compact subgroups of maximal volume

in G(Q`). We say that a compact subgroup Π ⊂ G(Q`) is almost hyperspecial

if (psc)−1(Π) ⊂ Gsc(Q`) is hyperspecial, where psc : Gsc → G denotes the simply

connected cover. We refer to the beginning of Section 8 for further details.

A motivation for the reformulation (1.2) of (1.1) in terms of maximality

is its potential applications to problems requiring large monodromy assump-

tions. (See the introduction of [Hal08] and references therein for a survey of

applications of large monodromy results.)

Assertion (1.1) was previously known in the following cases:

(1.1.1) when p = 0;

(1.1.2) if one replaces F`-coefficients with Q`-coefficients;

(1.1.3) when f : Y → X is an abelian scheme (or more generally forH1(Yx,F`))
and p is arbitrary [Zar77], [Zar14] (see also [MB85]) or a family of K3-

surfaces and p 6= 2 [SZ15],

while (1.2) was previously known when p = 0. (See, for instance, [Cad15,

Rem. 2.5].) Let us also point out that an arithmetic variant of (1.2) holds over

a set of primes of density one and for arbitrary systems of compatible rational

semisimple `-adic representations [Lar95a].
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Let us recall the proofs of (1.1.1) and (1.1.2). For (1.1.1), we may assume

k ⊂ C and x ∈ X(C). The topological fundamental group Π := πtop
1 (Xan

C , x)

acts on the singular cohomology H := H∗(Y an
x ,Z). As H is a finitely generated

Z-module, H ⊗ F` ' H∗(Y an
x ,F`) for ` � 0. Thus, by comparison of singu-

lar/étale cohomology and of topological/étale fundamental group, the image of

π1(X,x) acting on H∗(Yx,F`) identifies with the image of Π acting on H ⊗ F`
for ` � 0. The fact that Π acts semisimply on H ⊗ F` for ` � 0 then follows

formally [CT11, Lem. 2.5] from the Hodge-theoretical fact that Π acts semisim-

ply on H ⊗ Q [Del71, Cor. 4.2.9(a)]. For (1.1.2), by standard specialization

arguments (see, for instance, Section 4.2) we may assume k0 is a finite field

and k = k0. Set F := Rwf∗Q`, and consider the largest maximal semisimple

smooth subsheaf F ′ ⊂ F . As F ′x ⊂ Fx is stable under the action of π1(X0, x),

the extension

0→ F ′ → F → F/F ′ → 0

corresponds to a class in H1(X,Hom(F/F ′,F ′))F , where F denotes the geo-

metric Frobenius on X. As F is smooth, pure of weight w, Hom(F/F ′,F ′)
is smooth, pure of weight 0, and hence H1(X,Hom(F/F ′,F ′)) is mixed of

weights ≥ 1 and H1(X,Hom(F/F ′,F ′))F = 0; see [Del80, (3.4)].

So, when p = 0, the essential ingredient is comparison between complex

and étale topology, which provides an underlying Z-structure for the action of

π1(X,x) on H∗(Yx,Z`) and reduces (1.1.1) to a Hodge-theoretical statement

by reduction modulo-` for `� 0. When p > 0, such an underlying Z-structure

is no longer available. For Q`-coefficients, we can resort to Deligne’s theory

of weights. But such a theory does not exist for F`-coefficients. Our basic

strategy is to combine both aspects, namely try and deduce (1.1) from (1.1.2)

by a reduction modulo-` argument which involves Deligne’s weight theory, in

particular, the following two consequences of it:

Fact 3.1. The H∗(Yx,Z`) are torsion-free for `� 0.

Fact 3.2. The H∗(Yx,Q`) (`: prime 6= p) form a compatible system of

Q-rational representations.

The combination of Facts 3.1 and 3.2 provides a weak replacement for

the Z-structure in characteristic 0, allowing us to ‘glue together’ the various

representations with F`-coefficients by means of the reduction modulo-` of the

characteristic polynomials of Frobenii.

These ideas have already been exploited to obtain structural results about

the image of π1(X,x) acting on H∗(Yx,F`). For instance,

Fact 3.4. After possibly replacing X by a connected étale cover and for

`� 0, the image of π1(X,x) acting on H∗(Yx,F`) is perfect and generated by

its order-` elements.
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This seemingly technical statement also plays a crucial part in our argu-

ments.

However, to achieve the proofs of Theorems 1.1 and 1.2, more information

is required. The way to grasp the missing information is Tannakian: instead

of considering only H∗(Yx,Z`), we consider all possible tensor constructions

of bounded length built from H∗(Yx,Z`). Behind this is the observation that

the image of π1(X,x) acting on H∗(Yx,Q`) is captured by its Zariski closure

while the image of π1(X,x) acting on H∗(Yx,F`) is captured by its algebraic

envelope in the sense of Nori. (This is one place where Fact 3.4 is crucial.)

Both are algebraic groups hence should be reconstructible from their tensor

invariants, whence the idea to compare the tensor invariants for the action of

π1(X,x) on H∗(Yx,Q`) and H∗(Yx,F`). This is the core result of our paper.

To state it, we need some notation.

For every partition λ of an integer d ≥ 0, let cλ ∈ Z[Sd] denote the

associated Young symmetrizer and write nλ := d!
dλ

, where dλ is the dimension

of the irreducible representation of the symmetric group Sd defined by cλ.

Then 1
nλ
cλ ∈ Z[ 1

nλ
][Sd] is an idempotent. Fix a prime ` such that d < `. Let

Λ` denote Z` or F`, and let Π be a profinite group acting continuously on a

finitely generated free Λ`-module M . Let Sd act on M⊗d on the right; this

action commutes with the one of Π, thus

Sλ(M) :=
1

nλ
cλ(M⊗d) ⊂M⊗d

again gives a representation of Π. For λ, λ∨ partitions of integers d, d∨ respec-

tively, write
Sλ,λ∨(M) := Sλ(M)⊗ Sλ∨(M∨),

where (−)∨ denotes the Λ`-dual.

For a profinite group Π (in practice, Π will be π1(X,x)) acting continu-

ously on a finitely generated free Z`-module M , consider the following equiv-

alent properties

(Inv,M) (i) MΠ ⊗ F` ' (M ⊗ F`)Π;

(ii) H1(Π,M)[`] = 0;

(iii) H1(Π,M) is torsion-free.

Eventually, for a group Π0 acting on a moduleM and a morphism Π→ Π0,

let M |Π denote the Π-module obtained from M by restriction of the action from

Π0 to Π.

Theorem 1.3. For all integers d, d∨ ≥ 0, partitions λ, λ∨ of d, d∨ respec-

tively and `� 0 (depending on f , d, d∨),

(1.3.0) the property (Inv, Sλ,λ∨(H∗(Yx,Z`))) holds.

Furthermore, (Inv,M |π1(X,x)) holds for every π1(X0, x)-module M which is of

one of the following forms :
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(1.3.1) a torsion-free quotient of Sλ,λ∨(H∗(Yx,Z`));
(1.3.2) a submodule of Sλ,λ∨(H∗(Yx,Z`)) with torsion-free cokernel.

Theorem 1.3 applies, in particular, to λ = (d) i.e., cλ =
∑
σ∈Sd σ, for

which Sλ(M) = Sd(M) and to λ = (1, · · · , 1), i.e., cλ =
∑
σ∈Sd sign(σ)σ, for

which Sλ(M) = Λd(M).

To prove Theorem 1.3, we reduce to the case where X0 is a curve and k0

is finite. (This uses Bertini’s theorem, de Jong’s alterations and specialization

of tame étale fundamental group.) This allows us to use Deligne’s theory of

weights and the machinery of étale cohomology.

To obtain Theorem 1.2, we follow the above rough Tannakian strategy.

Theorem 1.3 enables us to show that, for ` � 0, the Nori envelope of the

image of π1(X,x) acting on H∗(Yx,F`) identifies with the reduction modulo-`

of the Zariski closure G`∞ of the image of π1(X,x) acting on H∗(Yx,Z`) (The-

orem 7.3). This in turn enables us to show that there exists a constant C ≥ 1

(depending only on f) such that the image of π1(X,x) acting on H∗(Yx,Z`)
has index ≤ C in G`∞(Z`) (what we call weak maximality – see (7.3.2)). Using

this, we can give several equivalent formulations of (1.1), among which are that

G`∞ is semisimple (7.5.4) and (1.2) (see Corollary 8.2).

The reformulation (7.5.4) raises a general question: given a connected

semisimple group G over Q` together with a faithful finite-dimensional

Q`-representation V and a lattice H ⊂ V , can one exploit tensor invariants

data (as in Theorem 1.3) to deduce that the Zariski closure G of G in GLH
is a semisimple model of G over Z`? This question led to a first complete

proof of Theorem 1.1 (Section 9), which is entirely due to the second author,

Chun-Yin Hui. More precisely, the key-result is that, under mild assumptions,

the semisimplicity of G is encoded by a finite explicit list of tensor invariants

dimensions (Theorem 9.1). This criterion is then applied to H := H∗(Yx,Z`)
using Theorem 1.3 and the tools developed for the proof of Theorem 1.2. The-

orem 9.1 relies on Lie theory and is of independent interest.

After this first proof of Theorem 1.1 was obtained, we completed a second

proof (Section 10), which is cohomological and reminiscent of the argument of

Deligne. This second proof requires Theorem 1.3, Facts 3.1, 3.2 and 3.4, but

it involves no additional group-theoretical machinery.

We conclude by observing that Theorems 1.3 and 1.1 imply that the posi-

tive characteristic variant of the (arithmetic) Grothendieck-Serre-Tate conjec-

tures with F`-coefficients follow from the usual Grothendieck-Serre-Tate con-

jectures (arithmetic, with Q`-coefficients) (Corollary 11.1).

The paper is divided into three parts. In Part I (Sections 1–6), we review

the properties of étale cohomology involved in the proofs of our main results

and establish Theorem 1.3; here, Deligne’s weight theory is ubiquitous. In

Part II (Sections 7–8), we develop the group-theoretical machinery leading to
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the proof of Theorem 1.2. Part III (Sections 9–11) is devoted to the proofs

of Theorem 1.1 and to the application to the (arithmetic) Grothendieck-Serre-

Tate conjectures with F`-coefficients. The second proof of Theorem 1.1 (Sec-

tion 10) can be read just after Part I.
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Part I: Étale cohomology

2. Notation, conventions

2.1. Given a field k0 and an algebraically closed field k containing k0,

write π1(k0, k) (or simply π1(k0)) for Aut(k0/k0), where k0 denotes the sepa-

rable closure of k0 in k. From a scheme-theoretic point of view, writing x for

the geometric point Spec(k) → Spec(k0), one has π1(k0, k) = π1(Spec(k0), x),

which justifies the notation. If k0 is finite, let Fk0 ∈ π1(k0, k) (or simply F if

k0 is clear from the context) denote the geometric Frobenius.

2.2. Given a prime ` and a profinite group Π, let RepZ`(Π) denote the

category of finitely generated Z`-modules endowed with a continuous action

of Π. Let X0 be a connected scheme and x a geometric point on X0. Then

the fiber functor F → Fx induces an equivalence1 from the category S(X0,Z`)
of smooth Z`-sheaves on X0 to RepZ`(π1(X0, x)). Thus, if P is a property of

objects in RepZ`(π1(X0, x)) (e.g., torsion-free, torsion, irreducible, semisimple,

etc.), we will say that F ∈ S(X0,Z`) has P if Fx has P . The same considera-

tions apply to the corresponding Q`-categories. In the following, we will often

implicitly identify smooth Z`- (resp. Q`-) sheaves on X0 and finitely generated

Z`- (resp. Q`-) modules endowed with a continuous action of π1(X0, x).

For every x0 ∈ X0 and geometric point x over x0, consider the natural

action of π1(x0, x) on Fx defined as the composition

ρx0 : π1(x0, x)
x0→ π1(X0, x)→ GL(Fx) := AutZ`(Fx).

1As X is connected, there always exists an étale path between two geometric points on X.

So this equivalence of categories is independent of x in a canonical way up to fixing an étale

path from x to any other geometric point.



GEOMETRIC MONODROMY — SEMISIMPLICITY AND MAXIMALITY 211

Assume X0 is geometrically connected and of finite type over a field k0.

Let x0 ∈ X0, and fix a geometric point x : Spec(k) → X over x0; write

X := X0 ×k0 k. Then the sequence

π1(X,x)→ π1(X0, x)→ π1(k0, k)→ 1

is exact. The functor F → Fπ1(X,x)
x from S(X0,Z`) to RepZ`(π1(k0, k)) coin-

cides with the global section functor H0(X,−) : S(X0,Z`)→ RepZ`(π1(k0, k))

and the action of π1(k0, k) on H0(X,F) by ‘transport of structure’ identifies

with the labelled arrow (∗) in the commutative diagram

π1(k0, k)
(∗)

**

π1(x0, x) //

55

ρx0

11coker(π1(X,x)→ π1(X0, x))

'

OO

// GL(Fπ1(X,x)
x ),

which also shows that the restriction to Fπ1(X,x)
x of the action of π1(x0, x) on Fx

factors through the canonical morphism π1(x0, x)→ π1(k0, k). In particular, if

x0 ∈ X0(k0), the induced action of π1(x0, x) on Fπ1(X,x)
x is independent of x0.

For σ ∈ π1(x0, x), write

PFσ,x0 := det(T Id− ρx0(σ),Fx ⊗Q`) ∈ Q`[T ].

If the residue field k(x0) at x0 is a finite field, we will simply write Fx0 := Fk(x0)

and PFx0 := PFFx0 ,x0
(or even simply Px0 if F is clear from the context).

Let q be a power of a prime number and w ∈ Z. A q-Weil number of weight

w is an algebraic number α such that |ι(α)| = q
w
2 for every complex embedding

ι : Q ↪→ C. If X0 is of finite type over Z, following [Del80, (1.2)], a smooth

Z`-sheaf F on X0 is said to be pure of weight w (resp. mixed) if for every closed

points x0 ∈ X0[1
` ], the roots of PFx0 are |k(x0)|-Weil numbers of weight w (resp.

if F admits a filtration whose successive quotients are pure; the weights of the

nonzero quotients are then called the weights of F). A smooth Z`-sheaf F on

X0 is said to be Q-rational if for every closed point x0 ∈ X0[1
` ], P

F
x0 is in Q[T ].

Given a set L of primes, a system F`, ` ∈ L of smooth Z`-sheaves on X0 is

said to be Q-rational compatible if each of the F` is Q-rational and if for every

closed point x0 ∈ X0, the polynomials PF`x0 ∈ Q[T ] are independent of ` (for `

not equal to the residue characteristic of x0).

2.3. Given a prime ` and 0 6= P =
∑
n≥0 anT

n ∈ Q[T ], we define the

reduction modulo-` P ` of P to be the reduction modulo-` of a(P )P ∈ Z[T ],

where

a(P ) =
∏
p

p−min{vp(an), n≥0}.
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Here, the product is over all rational primes and vp : Q → Z ∪ {∞} is the

p-adic valuation. Given an F`[T ]-module M and P ∈ Q[T ], we say that M is

killed by P if it is killed by P `.

3. Some consequences of the Weil conjectures

From now on, we retain the notation and conventions of the introduction

for f : Y → X/k and f0 : Y0 → X0/k0. By the smooth-proper base-change

theorem, R∗f0∗Z` is a smooth Z`-sheaf on X0 and (R∗f0∗Z`)x = H∗(Yx,Z`)
for every geometric point x on X. The following facts all rely on the Weil

conjectures.

Fact 3.1 ([Gab83], [Suh12, Thm. 1.4] (see also [Org16, Thm. 6.2.2])).

The smooth Z`-sheaves R∗f∗Z` are torsion-free (of finite constant rank) for

`� 0. In particular,

H∗(Yx,Z`)⊗ F`→̃H∗(Yx,F`) for `� 0.

Fact 3.2. ([Del80, Cor. 3.3.9]) Assume k0 is finite (so that X0 is of finite

type over Z). Then R∗f0∗Z` (`: prime 6= p) is a Q-rational compatible system.

Fact 3.3 ([Del80, Cors. 3.4.3, 1.3.9], [LP95, Prop. 1.1], [LP95, Prop. 2.2]).

After possibly replacing X0 by a connected étale Galois cover, the Zariski clo-

sure of the image of π1(X,x) (resp. π1(X0, x)) acting on H∗(Yx,Q`) is con-

nected semisimple (resp. connected) for all ` 6= p.

Fact 3.4 ([CT13, Thm. 1.1], [CT16, Fact 5.1]). After possibly replacing X

by a connected étale Galois cover and for `� 0 depending only on f : Y → X ,

the image of π1(X,x) acting on H∗(Yx,F`) is perfect and generated by its

order ` elements.

Fact 3.1 is used several times in the proof of Theorem 1.3: to reduce

the proof of Theorem 1.3 to the case where Y → X is the base change of

a smooth proper morphism Y0 → X0 with X0 a curve over a finite field k0

(see Section 4.1) and then, combined with Fact 3.2, to compare the actions of

π1(X,x) on H∗(Yx,Q`) and H∗(Yx,F`) for ` � 0 (see Section 5.1). Facts 3.3

and 3.4 are used in the proof of (1.3.2) (see Section 5.3), and they also play a

crucial part in the proofs of Theorem 1.2 (Part II) and Theorem 1.1 (Part III).

4. Preliminary reductions

Consider the following assertions:

(Inv, f0) For ` � 0, (Inv,M |π1(X,x)) holds for every π1(X0, x)-module M

which is a torsion-free quotient of H∗(Yx,Z`) or a submodule of

H∗(Yx,Z`) with torsion-free cokernel.
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(GSS, f) For `� 0, the action of π1(X,x) on H∗(Yx,F`) is semisimple.

Let (Inv) (resp. (GSS)) denote (Inv, f0) (resp. (GSS, f)) for every smooth

proper morphism f0 : Y0 → X0. The aim of this section is to prove the

following.

Proposition 4.1. Assume (Inv, f0) (resp. (GSS, f )) holds when k0 is a

finite field, k = k0 and X0 is a smooth, separated and geometrically connected

curve over k0. Then Theorem 1.3 (resp. (1.1)) holds.

4.1. Localization. We begin with a formal group-theoretic lemma.

Lemma 4.2. Let Π be a profinite group and U ⊂ Π a normal open sub-

group. Fix a prime ` not dividing [Π : U ]. The following hold :

(4.2.1) Let H be a finitely generated free Z`-module endowed with a continuous

action of Π. If the sequence 0→ HU `→ HU → (H⊗F`)U → 0 is exact,

then the sequence 0→ HΠ `→ HΠ → (H ⊗ F`)Π → 0 is also exact.

(4.2.2) Let H be a finitely generated F`-module endowed with a continuous

action of Π. If U acts semisimply on H , then Π also acts semisimply

on H .

Proof. Assertion (4.2.1) follows from the fact that H1(Π/U,HU )[`] = 0 by

applying the functor (−)Π/U to the short exact sequence 0 → HU `→ HU →
(H ⊗ F`)U → 0. Assertion (4.2.2) follows from the fact that for every Π-sub-

module H ′ ⊂ H, U -equivariant projector pU : H � H ′ and system of repre-

sentatives π1, . . . , πr of Π/U , the map pΠ : H � H ′ defined by

pΠ(h) =
1

r

∑
1≤i≤r

πipU (π−1
i h)

is a Π-equivariant projector. �

As a result, to prove Theorem 1.3 (resp. (1.1)) we may base-change f0 :

Y0 → X0 over X ′0 → X0 for any morphism X ′0 → X0 inducing a morphism

π1(X ′0, x
′) → π1(X0, x) with normal open image. This applies for instance to

open immersions or connected étale Galois covers.

4.2. Specialization. Let Λ` denote Z` or F`.

Lemma 4.3. There exist a finite field k̃0, a smooth, separated and geomet-

rically connected curve ‹X0 over k̃0, a smooth proper morphism f̃0 : ‹Y0 → ‹X0,

and a normal open subgroup U ⊂ π1(X,x), such that the following holds.

Write k̃ = k̃0 and f̃ : ‹Y → ‹X for the base-change of f̃0 : ‹Y0 → ‹X0 over k̃.

Then, for every geometric point x̃ on X̃ and ` � 0, there is an isomorphism

H∗(‹Yx̃,Λ`) ' H∗(Yx,Λ`) such that the image of π1(‹X, x̃) acting on H∗(‹Yx̃,Λ`)
identifies with the image of U acting on H∗(Yx,Λ`). Furthermore, we may
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assume that the action of π1(‹X0, x̃) on H∗(‹Yx̃,Λ`) factors through the tame

étale fundamental group π1(‹X0, x̃)→ πt1(‹X0, x̃).

Proof. We proceed in two steps.

Step 1: Reduction to dim(X0) = 1. We may assumeX0 has dimension≥ 1.

Using [Jou83, Thm. 6.10] (see [CT13, Ex. 3.1] for details), we can construct

a finitely generated field extension K0 of k0 and a closed curve C0 ⊂ X0 ×k0
K0 smooth, separated, geometrically connected over K0, such that for every

geometric point c on C mapping to x on X, the induced morphism π1(C, c)→
π1(X,x) is surjective. (Note that, if x is fixed, we cannot ensure that there

exists a geometric point c on C mapping to x, but this is not a problem since,

to prove Lemma 4.3, we may replace x by any other geometric point; see

footnote 1). Here, we write K := K0k and C := C0 ×K0 K. So the conclusion

follows from the fact that the resulting representation

π1(C0, c)→ π1(X0, x)→ GL(H∗(Yx,Λ`))

identifies (modulo the isomorphism H∗((Y ×X C)c,Λ`) ' H∗(Yx,Λ`) given by

the smooth-proper base-change theorem) with the representation π1(C0, c)→
GL(H∗((Y ×X C)c,Λ`)) associated to the base-change Y0 ×X0 C0 → C0.

Step 2: Reduction to dim(X0) = 1, |k0| < +∞ and k = k0. From the

above, we may assume that X0 is a smooth, separated, geometrically con-

nected curve over k0. After enlarging k0, we may assume it has a smooth

compactification Xcpt
0 over k0. From de Jong’s alteration theorem [Ber97,

Prop. 6.3.2], for every u ∈ Xcpt
0 \X0, there exists an open subgroup Uu of the

inertia group Iu ⊂ π1(X0, x) at u such that the image of Uu in GL(H∗(Yx,Q`))

is unipotent for all ` 6= p. The image of Uu in GL(H∗(Yx,Z`)) is also a pro-`

group for ` � 0 (Fact 3.1). Hence, after replacing X0 by a connected étale

Galois cover (Section 4.1), we may assume that π1(X0, x) → GL(H∗(Yx,Z`))
factors through the tame étale fundamental group π1(X0, x)→ πt1(X0, x) and

even that π1(X0, x) → GL(H∗(Yx,F`)) does (Fact 3.1). Then by the stan-

dard specialization arguments (specialization of tame étale fundamental group,

smooth-proper base-change for étale cohomology), we may assume that k0 is

finite and k = k0. �

4.3. End of proof of Proposition 4.1. Lemmas 4.2 and 4.3 show that if

(Inv, f0) (resp. (GSS, f)) holds when X0 is a smooth, separated, geometrically

connected curve over a finite field k0 and k = k0, then (Inv) (resp. (GSS))

holds. We now explain why (Inv) implies Theorem 1.3.

Consider the d-fold fiber product

f
[d]
0 : Y

[d]
0 := Y0 ×X0 · · · ×X0 Y0 → X0.
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By construction (Y [d])x = (Yx)[d] and, as H∗(Yx,Z`) is torsion-free for ` � 0,

the Künneth formula (for both Z`- and F`-coefficients) shows that the horizon-

tal arrows in the canonical commutative square of graded π1(X0, x)-modules

H∗((Y [d])x,Z`)
' //

��

H∗(Yx,Z`)⊗d

��
H∗((Y [d])x,F`)

' // H∗(Yx,F`)⊗d

are isomorphisms. This induces a commutative square, whose horizontal ar-

rows are still isomorphisms:

H∗((Y [d])x,Z`)π1(X,x) ⊗ F`
' //

��

(H∗(Yx,Z`)⊗d)π1(X,x) ⊗ F`

��
H∗((Y [d])x,F`)π1(X,x) ' // (H∗(Yx,F`)⊗d)π1(X,x).

On the other hand, as f
[d]
0 : Y

[d]
0 → X0 is a smooth proper morphism, (Inv, f

[d]
0 )

implies that for `� 0 (depending on f : Y → X, d), the left vertical arrow is

an isomorphism as well.

We now conclude the proof of Theorem 1.3. For ` � 0 (depending on

f : Y → X, d, d∨), H∗(Yx,Z`) is torsion-free so Lemma 4.4 below reduces the

assertion of Theorem 1.3 to the statement that (Inv,M |π1(X,x)) holds for every

π1(X0, x)-module M which is a torsion-free quotient of

H∗(Yx,Z`)⊗d ⊗ (H∗(Yx,Z`)∨)⊗d
∨

or a submodule of

H∗(Yx,Z`)⊗d ⊗ (H∗(Yx,Z`)∨)⊗d
∨

with torsion-free cokernel. But by Poincaré duality and the Künneth for-

mula, H∗(Yx,Z`)⊗d⊗ (H∗(Yx,Z`)∨)⊗d
∨

is isomorphic to H∗(Y
[d+d∨]
x ,Z`) (after

suitable Tate twists) as a π1(X0, x)-module. So the conclusion follows from

(Inv, f
[d+d∨]
0 ). �

Lemma 4.4. Let Π be a profinite group acting continuously on a finitely

generated torsion-free Z`-module M , and let 0 ≤ d, d∨ < ` be integers. Then,

for every pair of partitions λ, λ∨ of d, d∨ respectively, Sλ,λ∨(M) is a direct

factor of M⊗d ⊗M∨⊗d∨ as a Π-module.

Proof. Write S′λ(M) := (1 − 1
nλ
cλ)(M⊗d) ⊂ M⊗d; this is again a Π-sub-

module, and we have a direct sum decomposition

M⊗d = Sλ(M)⊕ S′λ(M).

Similarly, we have

M∨⊗d
∨

= Sλ∨(M∨)⊕ S′λ∨(M∨).

This implies that Sλ,λ∨(M) is a direct factor of M⊗d ⊗M∨⊗d∨ . �
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4.4. Proposition 4.1 thus reduces the proof of Theorem 1.3 to the fol-

lowing special case. Assume X0 is a smooth, separated and geometrically

connected curve over a finite field k0 and that k = k0. Then

Theorem 4.5. For `� 0 (depending on f : Y → X),

(4.5.0) (Inv, H∗(Yx,Z`)) holds.

Furthermore, (Inv,M |π1(X,x)) holds for every π1(X0, x)-module M which is of

one of the following forms :

(4.5.1) a torsion-free quotient of H∗(Yx,Z`);
(4.5.2) a submodule of H∗(Yx,Z`) with torsion-free cokernel.

5. Proof of Theorem 4.5

5.1. Proof of (4.5.0). We may assume that x is a geometric point on X

over x0 ∈ X0(k0) and that R∗f∗Z` is torsion-free (Fact 3.1). In particular, we

have the short exact sequence

0→ R∗f∗Z`
`→ R∗f∗Z` → R∗f∗F` → 0

and the assertion of Theorem 4.5 is equivalent to the fact that the canonical

(injective) morphism

H0(X,R∗f∗Z`)⊗ F` → H0(X,R∗f∗F`)

is an isomorphism. This, in turn, amounts to showing thatH1(X,R∗f∗Z`)[`]=0.

To show this, we compute — in two ways — the characteristic polynomial of

F (:= Fk0) acting on H1(X,Rwf∗Z`)[`].
On the one hand, we have

H1(X,Rwf∗Z`)[`] � H0(X,Rwf∗F`) ' Hw(Yx,F`)π1(X,x) ⊂ Hw(Yx,F`)
� Hw(Yx,Z`) ↪→ Hw(Yx,Q`),

which shows that F acting on H1(X,Rwf∗Z`)[`] is killed by

Pw := PR
wf0∗Q`

x0 = det(T Id− F,Hw(Yx,Q`)) ∈ Q[T ],

which is independent of `(6= p) and whose roots are |k0|-Weil numbers of weight

w [Del80, Cor. 3.3.9]. Here we use that x0 ∈ X0(k0) and hence (Section 2.2)

that the action of F on H0(X,Rwf∗F`) identifies with the restriction of the

action of Fx0 on Hw(Yx,F`).
On the other hand, from Lemma 5.1 below, the characteristic polynomial

of F acting on H1(X,Rwf∗Z`)[`] divides the characteristic polynomial of F

acting on H1(X,Rwf∗Z`)⊗F`. As we also have a canonical F -equivariant em-

bedding H1(X,Rwf∗Z`)⊗ F` ⊂ H1(X,Rwf∗F`), Lemma 5.3 below shows that

there exists P≥w+1 ∈ Q[T ], which is independent of `( 6= p), whose roots are |k0|-
Weil numbers of weights ≥ w+ 1 and such that F acting on H1(X,Rwf∗Z`)[`]
is killed by P≥w+1 for `� 0.
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The conclusion thus follows from the fact that Pw, P≥w+1 ∈ Q[T ] are

coprime and hence that P
`
w, P

`
≥w+1 ∈ F`[T ] are coprime as well for `� 0. �

Lemma 5.1. Let H be a finitely generated Z`-module equipped with a

Z`-linear automorphism F . Then the characteristic polynomial of F acting

on H[`] always divides the characteristic polynomial of F acting on H ⊗ F`.

Proof. As Z` is a principal ideal domain, the short exact sequence of

Z`-modules 0 → Htors → H → H/Htors → 0 always splits. In particular,

Htors ⊗ F` ⊂ H ⊗ F`. So it is enough to show that the characteristic poly-

nomial of F acting on H[`] always divides the characteristic polynomial of

F acting on Htors ⊗ F`. Hence we may assume H is finite. Then the exact

sequence of Z`[F ]-modules

0→ H[`]→ H
`→ H → H ⊗ F` → 0

shows that, in the Grothendieck group of Z`[F ]-modules of finite length, we

have [H[`]] = [H ⊗ F`]. In particular, H[`] and H ⊗ F` have the same F -semi-

simplification. �

Lemma 5.2. Let Λ` denote Q` (resp. F`). Let Y0 be a scheme, separated

and of finite type over a finite field k0, and let Y denote the base-change of Y0

over k := k0. Then for every integer w ≥ 0, there exists P≤w,Y0 ∈ Q[T ], which

is independent of `(6= p) and whose roots are |k0|-Weil numbers of weights

≤ w and such that F acting on Hw
c (Y,Λ`) is killed by P≤w,Y0 ∈ Q[T ] (resp. for

`� 0 (depending on Y )).

Proof (see [Gei00, Lem. 4.1]). The assertion holds for smooth proper Y

([Del80, Cor. 3.3.9] for Λ` = Q` plus Fact 3.1 for Λ` = F`). Also, if the assertion

holds over a finite extension k0 ↪→ k′0, then it holds over k0. Indeed, if d := [k′0 :

k0] and Fk′0 = F dk0 acting on Hw
c (Y,Λ`) is killed by P≤w,Y0⊗k0k

′
0
∈ Q[T ] whose

roots are |k′0|-Weil numbers of weights ≤ w, then Fk0 is killed by P≤w,Y0 :=

P≤w,Y0⊗k0k
′
0
(T d) ∈ Q[T ] whose roots are |k0|-Weil numbers of weights ≤ w.

Thus, in the following, we will implicitly allow finite field extensions of the

base field. (For instance, the divisor D, alteration Y ′, etc. introduced below

may only be defined over a finite extension of k0, but this does not affect the

argument.) Eventually, by topological invariance of étale cohomology, we may

assume that Y is reduced.

We proceed by induction on the dimension of Y . The 0-dimensional case is

straightforward. Assume the assertion of the lemma holds for ≤ r-dimensional

reduced schemes, separated and of finite type over k0.Fix an (r+1)-dimensional

scheme Y0, separated and of finite type over k0. Write D for the union of the

intersections of the pairs of distinct irreducible components of Y . Then the
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localization exact sequence for cohomology with compact support

· · · → Hw
c (Y \D,Λ`)→ Hw

c (Y,Λ`)→ Hw
c (D,Λ`)→ · · ·

and the induction hypothesis for D show that, without loss of generality,

Y may be assumed to be integral. From de Jong’s alterations theorem [dJ96,

Thm. 4.1], there exists a generically étale alteration φ : Y ′ → Y and an open

embedding Y ′ ↪→ Y
′cpt into a scheme Y

′cpt smooth and projective over k such

that Y
′cpt \ Y ′ is a strict normal crossing divisor. Fix a nonempty open sub-

scheme ∅ 6= U ↪→ Y such that U ′ := Y ′ ×Y U → U is finite étale, and write

D := Y \U . Again, the localization exact sequence for cohomology with com-

pact support and the induction hypothesis for D show that it is enough to

prove the claim for U . As U ′ → U is a finite étale morphism of degree say δ,

one has the trace morphism which induces the multiplication-by-δ morphism

δ· : Hw
c (U,Λ`)

res−−→ Hw
c (U ′,Λ`)

tr−→ Hw
c (U,Λ`).

So, as soon as ` > δ, Hw
c (U,Λ`) is a direct factor of Hw(U ′,Λ`) as an F -module.

Hence it is enough to prove the claim for U ′. Write D′ := Y
′cpt \U ′. Then the

localization exact sequence for cohomology with compact support

· · · → Hw−1
c (D′,Λ`)→ Hw

c (U ′,Λ`)→ Hw
c (Y

′cpt,Λ`)→ · · · ,

the induction hypothesis for D′ and the fact that the assertion of the lemma

holds for the smooth projective scheme Y
′cpt yield the conclusion. �

Lemma 5.3. Let Λ` denote Q` (resp. F`). With the notation of The-

orem 4.5 there exists P≥w+1 ∈ Q[T ] whose roots are |k0|-Weil numbers of

weights ≥ w+ 1 and such that F acting on H1(X,Rwf∗Λ`) is killed by P≥w+1

(resp. for `� 0).

Proof. One may assume that Y0 is connected, hence irreducible. Then Y

is equidimensional, say, of dimension dY . From the Leray spectral sequence

Ev,w2 = Rvg∗R
wf∗Λ` ⇒ Rv+w(gf)∗Λ` for Y0

f0→ X0
g0→ Spec(k0), one sees

that H1(X,Rwf∗Λ`) = E1,w
2 = E1,w

∞ (recall that X is a curve) is a sub-

quotient of R1+w(gf)∗Λ` = H1+w(Y,Λ`) ' H2dY −w−1
c (Y,Λ`)(dY )∨ (the sec-

ond isomorphism is Poincaré duality). Now, take P≤2dY −w−1,Y0 ∈ Q[T ] as in

Lemma 5.2, and let δ denote its degree. Then, for Λ` = Q` (resp. F`), F act-

ing on H1(X,Rwf∗Λ`) is killed by T δP≤2dY −w−1,Y0(|k0|dY T−1) ∈ Q[T ], whose

roots are |k0|-Weil numbers of weights ≥ w + 1, as desired. �

5.2. Proof of (4.5.1). We may assume X0 is affine. From (4.5.0) we have

an F -equivariant injective morphism

H1(π1(X,x), Hw(Yx,Z`)) ↪→H1(π1(X,x), Hw(Yx,Z`))⊗Q` = H1(X,Rwf∗Q`).
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From the Λ` = Q` case of Lemma 5.3, F acting on H1(X,Rwf∗Q`), hence

on H1(π1(X,x), Hw(Yx,Zl)), is killed by P≥w+1 ∈ Q[T ] independent of `. On

the other hand, as X has cohomological dimension ≤ 1, the canonical F -equi-

variant morphism

H1(π1(X,x), Hw(Yx,Z`))→ H1(π1(X,x),M)

is surjective. This shows that

(5.2.1) F acting on H1(π1(X,x),M) is killed by a polynomial P≥w+1 ∈ Q[T ] in-

dependent of ` and M and whose roots are |k0|-Weil numbers of weights

≥ w + 1 .

Assertion (5.2.1) implies that H1(π1(X,x),M)[`] is also killed by P≥w+1.

To conclude, consider the diagram

0 // Mπ1(X,x) ⊗ F` // (M ⊗ F`)π1(X,x) //
_�

��

H1(π1(X,x),M)[`] // 0

Hw(Yx,Z`) // // M // // M ⊗ F`,

which shows that F acting on (M ⊗ F`)π1(X,x) is killed by a polynomial Pw ∈
Q[T ] independent of `andM and whose roots are |k0|-Weil numbers of weight w.

5.3. Proof of (4.5.2). Let Π`∞ denote the image of π1(X,x) acting on

Hw(Yx,Z`). From Fact 3.3, Πab
`∞ is finite (see, e.g., [CT12, Thm. 5.7]). In

particular, Π`∞ acts on det(M) through a finite quotient, which has to be of

order dividing `− 1. But, on the other hand, Π`∞ is generated by its `-Sylow

subgroups (Fact 3.4) so Π`∞ acts trivially on det(M). This shows that the

canonical isomorphism

M→̃Hom(Λm−1M,det(M)) = (Λm−1M)∨ ⊗ det(M), v 7→ v ∧ −

(where m denotes the Z`-rank of M) induces a π1(X,x)-equivariant isomor-

phism M ' (Λm−1M)∨. As M ↪→ Hw(Yx,Z`) has torsion-free cokernel, M∨

is a torsion-free π1(X0, x)-quotient of Hw(Yx,Z`)∨ and hence Λm−1M∨ is a

torsion-free π1(X0, x)-quotient of Λm−1Hw(Yx,Z`)∨, which is itself a π1(X0, x)-

quotient of H(m−1)(2df−w)(Y
[m−1]
x ,Z`)((m−1)df ) for `� 0. So we are reduced

to (4.5.1). �

6. Summary

Our goal in the remaining parts of this paper is to prove Theorems 1.2

and 1.1. We fix the notation and conventions which will be used from now on

and review the information we have collected so far.
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Let k0 be a field finitely generated over Fp and contained in an algebraically

closed field k, and let f0 : Y0 → X0 be a smooth proper morphism of k0-

schemes, with X0 smooth separated, geometrically connected over k0. Let

f : Y → X denote the base-change of f0 : Y0 → X0 over k. Assume ` � 0 so

that R∗f∗Z` is torsion-free of constant rank r (Fact 3.1).

Let Π`∞ (resp. Π0`∞) denote the image of π1(X,x) (resp. π1(X0, x)) acting

on H∗(Yx,Z`) =: H`∞ , and let Π` denote the image of π1(X,x) acting on

H∗(Yx,F`) =: H`. Write V`∞ := H`∞ ⊗Z` Q`.

Let G`∞ ↪→ GLH`∞ denote the Zariski closure of Π`∞ (endowed with the

reduced subscheme structure), G`∞ := G`∞,Q` ↪→ GLV`∞ its generic fiber, and

G` := G`∞,F` ↪→ GLH` its special fiber. The scheme G`∞ coincides with the

Zariski closure of Π`∞ in GLV`∞ . Let also G0`∞ denote the Zariski closure of

Π0`∞ in GLV`∞ . By construction,

(6.1) G`∞ ↪→ GLH`∞ is flat over Z`. In particular, dim(G`) = dim(G`∞).

From Lemma 4.2, we may assume (Facts 3.3 and 3.4)

(6.2.1) Π` is perfect and generated by its order ` elements for `� 0 ;

(6.2.2) G`∞ is connected semisimple and G0`∞ is connected for every ` 6= p.

Eventually, Theorem 1.3 reads

(6.3) For every integers d, d∨ ≥ 0, partitions λ, λ∨ of d, d∨ and `� 0 (depend-

ing on d, d∨) the property (Inv,M) holds for

(6.3.1) Every Π0`∞-module quotient Sλ,λ∨(H`∞)�M which is torsion-free;

(6.3.2) Every Π0`∞-submodule M ↪→ Sλ,λ∨(H`∞) with torsion-free cokernel.

Part II: Semisimplicity versus maximality

7. Structure of G`; first reformulations of (1.1)

7.1. Group-theoretical preliminaries. Let Λ` denote Z` or F`. Given a

closed subgroup Π of GLr(Λ`), write Π+ ⊂ Π for the (normal closed) sub-

group of Π generated by its `-Sylow subgroups. Given a finitely generated

Λ`-module H, write

H⊗ :=
⊕
s,t≥0

H⊗s ⊗ (H∨)⊗t.

For an integer d ≥ 1, set

T≤d(H) :=
⊕
s,t≤d

H⊗s ⊗ (H∨)⊗t ⊂ H⊗.

Let H` be an r-dimensional F`-vector space. Given a subgroup Π` ⊂
GL(H`), let ‹Π` ↪→ GLH` denote its algebraic envelope, in the sense of Nori

[Nor87], which is the algebraic subgroup generated by the one-parameter groups

φg: A1
F` → GLH` ,

t 7→ exp(t log(g))



GEOMETRIC MONODROMY — SEMISIMPLICITY AND MAXIMALITY 221

for g ∈ Π` of order `. Here exp(n) :=
∑

0≤i≤`−1
ni

i! for a nilpotent n ∈ End(H`)

and log(u) := −∑
1≤i≤`−1

(1−u)i

i for a unipotent u ∈ GL(H`).

By construction, ‹Π` is a smooth algebraic subgroup of GLH` , connected

and generated by its unipotent subgroups. Furthermore, the following hold.

Lemma 7.1.

(7.1.1) For `� 0 depending only on r, we have ‹Π`(F`)+ = Π+
` . In particular,

Π+
` -submodules and ‹Π`-submodules of H` coincide.

(7.1.2) There exists d ≥ 1 depending only on r such that ‹Π` is the stabilizer of

(T≤d(H`))
Π̃` in GLH` for `� 0 depending only on r.

(7.1.3) For every d ≥ 1 and `� 0 depending only on d and r, we have

(T≤d(H`))
Π̃` = (T≤d(H`))

Π+
` .

Proof. The first part of (7.1.1) is [Nor87, Thm. B] and the second part

follows from the first part by construction of ‹Π`. Assertion (7.1.2) follows

from [CT16, Lem. 4.1]. For (7.1.3), the inclusion (T≤d(H`))
Π̃` ⊂ (T≤d(H`))

Π+
`

holds as soon as ` ≥ r. (Recall that for ` ≥ r the only elements in GLr(F`)
of order a power of ` are those of order `.) For the opposite inclusion, fix an

isomorphism H`→̃F⊕r` . Then for every v ∈ (T≤d(H`))
Π+
` and g ∈ Π` of order `,

each component of the vector equation

exp(t log(g))v − v = 0

is a polynomial in t with degree ≤ 2d(r − 1) and has at least ` distinct roots.

So for ` > 2d(r−1), the image of φg is contained in the stabilizer of v in GLH` .

This shows (T≤d(H`))
Π̃` ⊃ (T≤d(H`))

Π+
` . �

A semisimple group scheme over Z` is a smooth affine group scheme whose

geometric fibers are connected semisimple algebraic groups. Then all the geo-

metric fibers have the same root data [DG70, XXII, Prop. 2.8]. We say that

a semisimple group scheme over Z` is simply connected if its fibers are. Fur-

thermore, we have

Lemma 7.2. Let G be a simply connected semisimple group scheme over Z`.
Then G(Z`) = G(Z`)+.

Proof. This follows from the fact that the kernel of the reduction-modulo-`

morphism G(Z`)→ G(F`) is a pro-` group and that, as GF` is simply connected,

G(F`) = G(F`)+ [Ste68a, §12]. �

7.2. Structure of G` and weak maximality. We are now able to prove the

main result of this section.

Theorem 7.3. For `� 0, we have ‹Π` = G`. In particular,

(7.3.1) for `� 0, G`(F`)+ is perfect and G` = ‡G`(F`);
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(7.3.2) (Weak maximality) there exists an integer Cr ≥ 1 depending only on r

such that, for `� 0, [G`∞(Z`) : Π`∞ ] ≤ Cr (hence Π`∞ = G`∞(Z`)+).

Proof. Assume that ` � 0 so that (6.2.1), (6.2.2) and the conclusions

of Lemma 7.1 hold. By construction, (H⊗`∞)Π`∞ = (H⊗`∞)G`∞ and G`∞ is

contained in the stabilizer of (H⊗`∞)Π`∞ . As stabilizers commute with arbitrary

base-changes, G` is contained in the stabilizer of (H⊗`∞)Π`∞⊗F` hence, a fortiori

in the stabilizer of T≤d(H`∞)Π`∞ ⊗ F` for every integer d ≥ 1. On the other

hand, from (7.1.2), there exists an integer d ≥ 1 depending only on r such that‹Π` is the stabilizer of (T≤d(H`))
Π̃` in GLH` . Then, up to increasing `, we have

T≤d(H`∞)Π`∞ ⊗ F` = T≤d(H`)
Π` (Theorem 1.3). By (6.2.1) and (7.1.3) this

shows that G` ⊂ ‹Π`. For the opposite inclusion, as Π̃` is integral (being smooth

and connected), it is enough to show that dim(G`) ≥ dim(‹Π`). This follows

from dim(G`∞) ≥ dim(‹Π`) [Lar10, Thm. 7] and (6.1). Then (7.3.1) follows

from (6.2.1) and (7.1.1) while the first part of (7.3.2) follows from [Lar10,

Thm. 7 (3)]. The assertion Π`∞ = G`∞(Z`)+ then follows from the fact that

Π+
`∞ ⊂ G`∞(Z`)+ ⊂ Π`∞ for ` > Cr and (6.2.1). �

Corollary 7.4. The subgroup scheme G`∞ ↪→ GLH`∞ is connected,

smooth over Z` for `� 0.

Proof. The key point is that ‹Π` = G` for ` � 0 (Theorem 7.3). Then,

the assertion about smoothness follows from the fact that G`∞ is flat (6.1)

and of finite type over Z` and from the smoothness of ‹Π` (as observed in the

paragraph before Lemma 7.1) while the assertion about connectedness follows

from (6.2.2) and the connectedness of ‹Π`. �

7.3. First reformulations of (1.1). Using Corollary 7.4, we obtain the fol-

lowing reformulations of (1.1).

Corollary 7.5. The following assertions are equivalent :

(7.5.1) the action of Π` on H` is semisimple for `� 0;

(7.5.2) the action of ‹Π` (equivalently G`) on H` is semisimple for `� 0;

(7.5.3) ‹Π` (equivalently G`) is semisimple for `� 0;

(7.5.4) G`∞ is a semisimple group scheme over Z` for `� 0.

Proof. Assume `� 0 so that (6.2.1), (6.2.2), (6.3) and the conclusions of

Lemma 7.1 and Corollary 7.4 hold. The equivalence (7.5.1) ⇔ (7.5.2) follows

from (6.2.1) and (7.1.1). The fact that (7.5.2) implies that Π̃` is reductive

is standard. Then Π̃` is automatically semisimple since it it generated by its

unipotent subgroups. This shows (7.5.2) ⇒ (7.5.3). The equivalence (7.5.3)

⇔ (7.5.4) is by definition; since (6.2.2), Corollary 7.4 holds. The implication

(7.5.3)⇒ (7.5.2) follows, for instance, from [Jan97, Prop. 3.2]; see also [Lar95b,

Thm. 3.5]. �
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8. Semisimplicity versus maximality

Let G be a connected semisimple group over Q`. Write psc : Gsc → G
and pad : G → Gad for the simply connected cover and adjoint quotient of G
respectively. Recall that the Bruhat-Tits building [Tit79] B := B(Gsc,Q`) is

equipped with a natural action of Gad(Q`) and that G(Q`) acts on B through

its image in Gad(Q`). There is a bijective correspondence between

- semisimple models G of G over Z`;
- hyperspecial points b ∈ B,

given by G→ BG(Z`) [Tit79, 3.8.1]. Also given an isogeny φ : G → G′ and if Gb,

G′b are respectively the semisimple models over Z` of G and G′ corresponding

to a hyperspecial point b ∈ B, then φ : G → G′ extends uniquely to a morphism

φb : Gb → G′b of group schemes over Z`.
A compact subgroup Π ⊂ G(Q`) of the form Π = G(Z`) for some semisim-

ple model G of G over Z` (or, equivalently, such that Π ⊂ G(Q`) is the stabilizer

of a hyperspecial point in B) is called hyperspecial. Hyperspecial subgroups,

when they exist, are the compact subgroups of G(Q`) of maximal volume

[Tit79, 3.8.2]. In particular, a G(Q`)-conjugate of a hyperspecial subgroup

is again hyperspecial.

A compact subgroup Π ⊂ G(Q`) is called almost hyperspecial if (psc)−1(Π)

⊂ Gsc(Q`) is hyperspecial.

Lemma 8.1. Let G be a connected semisimple group over Q`. Let G

(resp. Gsc) be a smooth, connected group scheme over Z` with generic fiber G
(resp. Gsc). Assume

(8.1.1) Gsc is semisimple over Z`;
(8.1.2) (psc)−1(G(Z`)+) is a normal subgroup of Gsc(Z`) such that

Gsc(Z`)/(psc)−1(G(Z`)+)

is abelian.

Then for `�0 depending only on the dimension of G, G is semisimple over Z`.

Proof. For a profinite group Π which is an extension of a finite group by a

pro-` group, let N(Π) denote the product of the orders of the groups (counted

with multiplicities) appearing in the non-abelian part of the composition series

of Π. Note that if Π′ ⊂ Π are two such groups, then N(Π′) ≤ N(Π).

Let H be a connected, smooth, affine group scheme over Z`; write H` :=

HF` for its special fiber. The following hold:

(1) The non-abelian parts of the composition series of H(Z`) and H(F`) (resp.

H(Z`)+ and H(F`)+) coincide. This is because the reduction modulo-` map

H(Z`)→ H(F`)
is surjective with pro-` kernel.
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(2) Write Hss
` := H`/R(H`), where R(H`) is the solvable radical of H`. Then

the non-abelian parts of the composition series of H(F`), Hss
` (F`), Hss

` (F`)+

and H(F`)+ coincide. Indeed, first, as Hss
` is a semisimple group, the quo-

tient Hss
` (F`)/Hss

` (F`)+ is abelian for `� 0. More precisely, letM` denote

the kernel of the simply connected cover of Hss
` . Since H1(F`,M`(F`)) is of

order dividing |M`(F`)| (e.g., [Ser68, XIII, §1, Prop. 1]), Hss
` (F`)/Hss

` (F`)+

embeds into H1(F`,M`(F`)) for ` prime to the order ofM`. The assertion

then follows from the fact that the rank of Hss
` (hence the order of M`) is

bounded as ` varies. As a result, the non-abelian parts of the composition

series of Hss
` (F`) and Hss

` (F`)+ coincide. Next, Lang’s theorem [Lan56]

gives a short exact sequence

1→ R(H`)(F`)→ H(F`)→ Hss
` (F`)→ 1.

Hence the non-abelian parts of the composition series of H(F`) and Hss
` (F`)

coincide. Furthermore, the above short exact sequence induces a short

exact sequence

1→ R(H`)(F`) ∩ H(F`)+ → H(F`)+ → Hss
` (F`)+ → 1.

Therefore the non-abelian parts of the composition series of H(F`)+ and

Hss
` (F`)+ coincide.

(3) Let Hi, i ∈ I denote the almost simple factors of Hss
` . Then [Tit64, Main

Theorem] the non-abelian part of the composition series of Hss
` (F`) is pre-

cisely the family of the

Hi(F`)+/(Z(Hi(F`)) ∩Hi(F`)+), i ∈ I

for ` � 0. As the kernel and the cokernel of
∏
i∈I Hi(F`) → Hss

` (F`), the

Z(Hi(F`)) and Hi(F`)/Hi(F`)+, i ∈ I all have order bounded from above

by a constant depending only on the rank of Hss
` , there exists a constant

c > 0 depending only on the rank of Hss
` such that

N(Hss
` (F`)) ≤ |Hss

` (F`)| ≤ cN(Hss
` (F`)).

If d denotes the dimension of Hss
` , this also implies [Nor87, Lem. 3.5]

(`− 1)d

c
≤ N(Hss

` (F`)) ≤ (`+ 1)d.

As Gsc(Z`)/(psc)−1(G(Z`)+) is abelian, the non-abelian parts of the com-

position series of Gsc(Z`) and (psc)−1(G(Z`)+) coincide and as the kernel of

psc : (psc)−1(G(Z`)+)→ G(Z`)+ is abelian, we have

N(Gsc(F`)) = N(Gsc(Z`)) = N((psc)−1(G(Z`)+)) ≤ N(G(Z`)+)

= N(G(F`)+) = N(G(F`)) = N(Gss
F`(F`)).
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Let d denote the common dimension of GF` and Gsc
F` , and let dss denote the

dimension of Gss
F` . Then we have

(`− 1)d

c
≤ |G

sc(F`)|
c

≤ N(Gsc(F`)) ≤ N(Gss
F`(F`)) ≤ (`+ 1)d

ss
.

When `→ +∞, this forces dss = d, as desired. �

Corollary 8.2. The assertions of of Corollary 7.5 are also equivalent to

(8.2) Π`∞ ⊂ G`∞(Q`) is an almost hyperspecial subgroup for `� 0.

Proof. Assume `� 0 so that (6.2.1), (6.2.2), (6.3), (7.3.2) and the conclu-

sion of Corollary 7.4 hold. Assume (7.5.4) holds. Then G`∞ corresponds to a

hyperspecial point b ∈ B, which also gives rise to a simply connected semisim-

ple model Gsc
`∞ over Z` of the simply connected cover psc : Gsc

`∞ → G`∞ with

the property that Gsc
`∞(Z`) is the stabilizer of b in Gsc

`∞(Q`) and the isogeny

psc : Gsc
`∞ → G`∞ extends uniquely to a morphism psc : Gsc

`∞ → G`∞ of group

schemes over Z`. Furthermore, psc : Gsc
`∞ → G`∞ induces a morphism (Fact 7.2)

Gsc
`∞(Z`)→ G`∞(Z`)+ with the following properties:

(i) The diagram

Gsc
`∞(Q`)

psc // G`∞(Q`)

Gsc
`∞(Z`) //
� ?

OO

G`∞(Z`)+
� ?

OO

is cartesian. Indeed, since psc : Gsc
`∞ → G`∞ is open (even a local isomor-

phism), G`∞(Z`)+ ∩ psc(Gsc
`∞(Q`)) ⊂ G`∞(Z`) is open hence closed, hence

compact. So (psc)−1(G`∞(Z`)+) is compact in Gsc
`∞(Q`) as an extension

of the compact group G`∞(Z`)+ ∩ psc(Gsc
`∞(Q`)) by a finite group. Also,

(psc)−1(G`∞(Z`)+) contains Gsc
`∞(Z`). Thus, by maximality of Gsc

`∞(Z`),
we have (psc)−1(G`∞(Z`)+) = Gsc

`∞(Z`).

(ii) The homomorphism Gsc
`∞(Z`) → G`∞(Z`)+ is surjective. Indeed, let g ∈

G`∞(Z`)+. Since the image of psc : Gsc
`∞(Q`) → G`∞(Q`) is normal and its

cokernel is of exponent bounded by a constant depending only on the rank

of G`∞ , g lies in the image of psc : Gsc
`∞(Q`)→ G`∞(Q`) for `� 0 (compared

with the rank of G`∞), that is, by (i), in the image of (psc)−1(G`∞(Z`)+) =

Gsc
`∞(Z`).

(8.2) thus follows from (7.3.2).

The implication (8.2) ⇒ (7.5.4) follows from Lemma 8.1 and (7.3.2). �

This concludes the proof of Theorem 1.2.
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Part III: Semisimplicity

9. Lie-theoretic proof of Theorem 1.1

The results explained here are entirely due to the second author, Chun-Yin

Hui. They led to the first complete proof of Theorem 1.1.

9.1. Semisimple models and good lattices. Let G`∞ be a connected semi-

simple group over Q` of dimension δ and rank s. Let V`∞ be a faithful,

r-dimensional Q`-representation of G`∞ . Fix a lattice H`∞ ↪→ V`∞ ; this de-

fines a model GLH`∞ of GLV`∞ over Z`. Let G`∞ denote the Zariski closure

of G`∞ inside GLH`∞ (endowed with the reduced subscheme structure). Then

G`∞ is a flat model of G`∞ over Z`. Under mild assumptions, we give a criterion

in terms of tensor-invariants data to ensure that G`∞ is a semisimple group

scheme over Z`. Write G` := G`∞,F` and G◦` for its identity component.

Let RepfZ`(G`∞) denote the category of finitely generated free Z`-modules

M together with a morphism of Z`-group schemes G`∞ → GLM . Define

∆H`∞ : RepfZ`(G`∞) → Z≥0,

M 7→ dimF`(M
G◦`
F` )− dimQ`(M

G`∞
Q` ).

Let T`∞ ⊂ G`∞ be a maximal torus. We will say that T`∞ admits a

nice model with respect to H`∞ if T`∞ splits over a finite extension E` of Q`

and if the closed embedding T`∞,E` ' Gs
m,E`

↪→ GLV`∞,E` extends to a closed

embedding Gs
m,O` ↪→ GLH`∞,O` , where O` denotes the ring of integers of E`.

Theorem 9.1. Assume G`∞ contains a maximal torus which admits a

nice model with respect to H`∞ . Then,

(9.1.1) G`∞ is smooth over Z`;
(9.1.2) The quotient Grd

` of G◦` by its unipotent radical is a reductive group of

rank s (and the root system of Grd
`,F`

is a subsystem of the root system

of G`∞,Q`);
(9.1.3) For ` � 0 (depending only on r), the following holds. Let g`∞ ↪→

H`∞ ⊗ H∨`∞ denote the Lie algebra of G`∞ . Then G`∞ is semisimple

over Z` if and only if ∆H`∞ (M) ≤ 0 for M = Λng∨`∞ , n = 1, . . . , δ.

Proof. As Spec(O`)→ Spec(Z`) is flat, G`∞,O` ⊂ GLH`∞,O` coincides with

the Zariski closure of G`∞,E` (endowed with its reduced subscheme structure)

and G`∞,E` = G`∞,E` [BT84, 1.2.6]. So to perform the proof, we may base-

change to O`, E`. For simplicity, we assume O` = Z` and E` = Q` below.

Fix a Borel subgroup T`∞ ⊂ B`∞ ⊂ G`∞ ; write Φ := Φ(G`∞ , T`∞) for

the root system, and let Φ+ ⊂ Φ denote the set of positive roots defined by

B`∞ . For α ∈ Φ, let g`∞,α ⊂ g`∞,Q` = Lie(G`∞) ⊂ gl(V`∞) and U`∞,α ⊂ G`∞
denote the corresponding root space and group respectively. Let T`∞ '
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Gs
m,Z` ,U`∞,α ⊂ G`∞ denote the Zariski closure of T`∞ ,U`∞,α; by construc-

tion, T`∞ ,U`∞,α are flat over Z`. For α ∈ Φ, g`∞,α ∩ gl(H`∞) is a free Z`-
module of rank 1. Let N`∞,α ∈ g`∞,α ∩ gl(H`∞) be a Z`-basis (in particular,

N`∞,α ⊗ F` 6= 0). Then for ` ≥ r, the closed embedding x`∞,α : Ga,Z` → G`∞ ,

t 7→ exp(tN`∞,α) induces an isomorphism of Z`-group schemes onto a closed

subgroup scheme of G`∞ which coincides with U`∞,α ⊂ G`∞ .

By [BT84, 2.2.3(iii)] the T`∞-equivariant morphism induced by multipli-

cation ∏
α∈Φ+

U`∞,α × T`∞ ×
∏

α∈−Φ+

U`∞,α → G`∞

induces an isomorphism onto a dense open Z`-subscheme of G`∞ . In particular

G`∞ is smooth over Z`, G◦`∞ ⊂ G`∞ is an open subgroup scheme, smooth, affine

over Z` [BT84, 2.2.5] and G◦` contains a split torus of rank s. As the reductive

rank is lower semicontinuous (e.g., [Gil13, Thm. 10.4.2]), G◦` has reductive

rank s. Furthermore, reduction modulo-` induces a canonical isomorphism of

Gs
m-modules g`∞ ⊗ F`→̃Lie(G`). The latter implies that the root system of

Grd
`,F`

is a subsystem of the root system of G`∞,Q` (since Lie(Grd
` ) is a quotient

of Lie(G`)).
We now turn to the proof of (9.1.3). Let Gu

` denote the unipotent radical

of G`, and write g` := Lie(G`), gu
` := Lie(Gu

` ), grd
` := Lie(Grd

` ). This gives rise

to a decomposition of the adjoint representation

0 −→ gu
` −→ g` −→ grd

` −→ 0,

and dualizing,

0 −→ (grd
` )∨ −→ g∨` −→ (gu

` )∨ −→ 0.

As Gu
` acts trivially on grd

` (observe that for g ∈ Gu
` the conjugation automor-

phism cg on G◦` descends to the identity map on Grd
` = G◦` /Gu

` ), the action of

G◦` on grd
` factors through the adjoint representation of Grd

` .

Suppose now the condition on ∆H`∞ is satisfied.

Claim 1. For `� 0 (depending only on r), Grd
` is semisimple.

Proof of Claim 1. Compute the dimension of the Lie algebra z` of the

center of Grd
` ,

dimF`(z`) ≤ dimF`((g
rd
` )G

rd
` )

(1)
= dimF`((g

rd∨
` )G

rd
` ) = dimF`((g

rd∨
` )G

◦
` )

(2)

≤ dimF`((g
∨
` )G

◦
` )

(3)

≤ dimQ`((g
∨
`∞,Q`)

G`∞ )
(1)
= dimQ`(g

G`∞
`∞,Q`)

(4)
= 0,

where (1) is by the semisimplicity [Jan97, Prop. 3.2] (see also [Spr68, Cor. 4.3])

and self-duality of the adjoint representation of the reductive group Grd
`



228 ANNA CADORET, CHUN-YIN HUI, and AKIO TAMAGAWA

(resp. G`∞) for ` � 0 compared with the rank (resp. for all `), (2) is be-

cause grd∨
` is a submodule of g∨` , (3) is the assumption ∆H`∞ (g∨`∞) ≤ 0 and (4)

is because G`∞ is semisimple. �

Claim 2. For every integer n and for ` � 0 (depending only on n),

the following holds. Consider a pair of rank n connected semisimple groups

G over F` and G′ over Q`. Assume dim(G) < dim(G′). Then there exists

0 ≤ m ≤ dim(G) such that dim((Λmg)G) > dim((Λmg′)G
′
). Here g and g′

denote the Lie algebra of G and G′ respectively.

Proof of Claim 2. The assertion will follow from the explicit computation

of the invariant dimensions of the exterior algebra Λ∗g for a rank n connected

semisimple algebraic group G over an algebraically closed field. Assume first

that G is almost simple. Over C (and thus over any algebraically closed field

of characteristic zero), these are given by the coefficients (corresponding to the

exterior powers) of the Poincaré polynomial PG(T ) of the cohomology of the

Lie group G (e.g., [Baz01, §0]):

PG(T ) =
n∏
j=1

(1 + T 2dj+1),

where d1, . . . , dn are the exponents of the Weyl group (For the explicit values

of d1, . . . , dn for each simple type, see [Car72, Prop. 10.2.5].) These results

also hold for a connected almost simple algebraic group G over F̄` when `� 0

compared with the rank of G as can be shown from the semisimplicity of the rep-

resentations [Jan97, Prop. 3.2] (see also [Spr68, Cor. 4.3] and [Ser94]) and the

classification of irreducible representations of the simply connected cover Gsc

[Ste68b, §12 Thm. 41]. For an arbitrary connected semisimple group G over an

algebraically closed field, the (graded) invariant dimensions of Λ∗g are given

by the coefficients of the product of Poincaré polynomials

PG(T ) =
t∏
i=1

PGi(T ),

where G1, . . . ,Gt are the almost simple factors of G. This follows easily from

the algebra isomorphism Λ∗(V ⊕W ) = Λ∗(V )⊗ Λ∗(W ).

Now, we apply the above to G and G′ as in Claim 2. On the one hand, we

have
PG(1) = 2n = PG′(1)

while, on the other hand,

deg(PG) = dim(G) < dim(G′) = deg(PG′).

This shows that the sum of coefficients in degrees ≤ dim(G) of PG is strictly

larger than the sum of coefficients in degrees ≤ dim(G) of PG′ . In particular,

there exists m ≤ dim(G) such that the coefficient in degree m of PG is strictly

larger than the coefficient in degree m of PG′ . �
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We can now conclude the proof of (9.1.3). Let us first show that the

condition on ∆H`∞ is sufficient. As G`∞ is flat over Z`, it is enough to

show that (i) G` is connected and (ii) Grd
` and G`∞ have the same dimen-

sion. Assertion (i) follows from (ii) and the fact that G`∞ is connected [Con14,

Prop. 3.1.3]. If (ii) does not hold, then there exists 0 ≤ m ≤ δ such that

dimF`((Λ
mgrd

` )G
rd
` ) > dimQ`((Λ

mg`∞,Q`)
G`∞ ) by Claim 2 applied to G = Grd

`,F`
(which is semisimple by Claim 1) and G′ = G`∞,Q` and the rank assertion in

(9.1.2). Since ∆H`∞ (Λmg∨` ) ≤ 0, this contradicts the following inequalities (for

`� 0):

dimF`((Λ
mgrd

` )G
rd
` ) = dimF`((Λ

mgrd∨
` )G

rd
` )

= dimF`((Λ
mgrd∨

` )G
◦
` )

≤ dimF`((Λ
mg∨` )G

◦
` )

≤ dimQ`((Λ
mg∨`∞,Q`)

G`∞ ) = dimQ`((Λ
mg`∞,Q`)

G`∞ ).

The argument also shows that the condition on ∆H`∞ is necessary since the

root system (hence, the Poincaré polynomial) of a semisimple group scheme is

locally constant. �

9.2. Application to the Proof of Theorem 1.1. We retain the notation of

Section 6 and Part II. From Corollary 7.5, it is enough to prove that G`∞

is a semisimple group scheme over Z`. This can be checked by applying the

criterion of Theorem 9.1.

9.2.1. The fact that the assumptions of Theorem 9.1 are satisfied for

` � 0 follows from the first paragraph in the proof of [LP95, Prop. 1.3]. In-

deed, one can always find a Γ-regular element2 t for G0`∞ ⊂ GLV`∞ with the

property that the characteristic polynomial of t acting on V`∞ coincides with

the characteristic polynomial Px0 of ρ`∞(Fx0) for some x0 ∈ X0. More pre-

cisely, let V ss
`∞ denote the π1(X0, x)-semisimplification of V`∞ and Grd

0`∞ the

Zariski closure of the image of π1(X0, x) acting on V ss
`∞ . Note that Grd

0`∞ iden-

tifies with the quotient of G0`∞ by its unipotent radical. In particular (6.2.2),

Grd
0`∞ is connected reductive. By [LP92, Prop. 7.2], there exists (a density 1

set of) x0 ∈ π1(X0, x) such that the image tx0 of Fx0 by π1(X0, x)→ GL(V ss
`∞)

is Γ-regular for Grd
0`∞ ⊂ GLV ss

`∞
. Let T rd

0`∞ ⊂ Grd
0`∞ denote the corresponding

2Let Q be a field of characteristic 0, V a finite-dimensional Q-vector space and G ⊂ GLV
a reductive subgroup. Then a regular semisimple element g ∈ G(Q) is said to be Γ-regular

for G ⊂ GLV if every automorphism of Tg ×Q Q which fixes g and preserves the formal

character of Tg ⊂ GLV is trivial, and if the only GLV (Q)-conjugate of Tg ×Q Q containing g

is Tg ×Q Q. Here Tg ⊂ G denotes the (necessarily unique) maximal torus containing g. We

refer to [LP95, §1] and [LP92, §4] for details.
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maximal torus. Since the kernel of G0`∞ � Grd
0`∞ is the unipotent radical of

G0`∞ , there exists a maximal torus T0`∞ ⊂ G0`∞ lifting T rd
0`∞ and mapping iso-

morphically onto T rd
0`∞ . Then the unique element t ∈ T0`∞(Q`) lifting tx0 has

the desired property.

Let T0`∞ ⊂ G0`∞ denote the unique (necessarily maximal) torus contain-

ing t. Let T`∞ ⊂ G`∞ denote the maximal torus of G`∞ contained in T0`∞ . By

definition of Γ-regularity (see footnote 2), the splitting fields E`/Q` of T0`∞

and Px0 over Q` coincide. In particular, for ` � 0 (not dividing the discrim-

inant of the product of the monic irreducible factors of Px0) the eigenspace

decomposition V`∞,E` = ⊕λV`∞,E`(λ) of t coincides with the one of T0`∞,E`

and induces a decomposition H`∞,O` = ⊕λ(H`∞,O` ∩ V`∞,E`(λ)). This ensures

that the closed embedding T`∞,E` ' Gs
m,E`

↪→ GLV`∞,E` extends to a closed

embedding Gs
m,O` ↪→ GLH`∞,O` .

9.2.2. Let δ denote the dimension of G`∞ . It only remains to show that,

for ` � 0, ∆H`∞ (M) ≤ 0 for M = Λng∨`∞ , n = 1, . . . , δ. Note that, from

Theorem 7.3, G` is connected. Also, as Π`∞ is normal in Π0`∞ , g`∞ is a Π0`∞-

module.

From (6.3.1) applied to the Π0`∞-module quotients H⊗n`∞ ⊗ (H∨`∞)⊗n �
Λng∨`∞ it is enough to show that for M = Λng∨`∞ , n = 1, . . . , δ, we have

(9.2.2.1) dim(MG`F` ) ≤ dim(MΠ`
F` )

and

(9.2.2.2) dim(MG`
∞

Q` ) = dim(MΠ`∞
Q` ).

(9.2.2.1) always holds since Π` ⊂ G`(F`). As for (9.2.2.2), for every v ∈MΠ`∞
Q` ,

we have Π`∞ ⊂ StabGLV`∞
(v) =: Sv. But as Sv ⊂ GLV`∞ is a closed algebraic

subgroup, this implies G`∞ ⊂ Sv.

10. Cohomological proof of Theorem 1.1

10.1. Preliminary reductions.

Lemma 10.1. Let ι : A` ↪→ H` be a Π`-submodule of F`-dimension a.

Consider the following conditions :

(10.1.1) ι : A` ↪→ H` splits as a morphism of Π`-modules ;

(10.1.2) Λaι : ΛaA` ↪→ ΛaH` splits as a morphism of Π`-modules ;

(10.1.3) (ΛaH`)
Π` ↪→ ΛaH` splits as a morphism of Π`-modules.

Then, for `� 0, (10.1.3) ⇒ (10.1.2) ⇒ (10.1.1).

Proof. (10.1.3)⇒ (10.1.2): As Π` = Π+
` (6.2.1), Π` acts trivially on ΛaA`.

Thus, ΛaA` ↪→ (ΛaH`)
Π` and this trivially splits as a morphism of Π`-modules.
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(10.1.2) ⇒ (10.1.1): Fix a Π`-equivariant splitting s : ΛaH` → ΛaA`
of Λaι : ΛaA` ↪→ ΛaH`. Then one can explicitly construct a Π`-equivariant

splitting for ι : A` ↪→ H` as follows:

H`
v→v∧− //

σs

��

Hom(Λa−1H`,Λ
aH`)

−◦∧a−1ι // Hom(Λa−1A`,Λ
aH`)

s◦−
��

A` '
v→v∧− // Hom(Λa−1A`,Λ

aA`). �

From Lemma 10.1, it is enough to show (10.1.3) for H` = Hw(Yx,F`).
For ` � 0, ΛaH` is a direct factor of Hwa(Y

[a]
x ,F`). So replacing Y0 → X0

with Y
[a]

0 → X0, it is enough to show that HΠ`
` ↪→ H` splits as a morphism of

Π`-modules. That is, writing A` := HΠ`
` and B` := H`/H

Π`
` ,

(10.1.4) The class [H`] of 0→ A` → H` → B` → 0 is trivial in H1(Π`, A`⊗B∨` )

(or, equivalently, in H1(Π`∞ , A` ⊗B∨` )).

10.2. Proof of (10.1.4). Write B`∞ := H`∞/H
Π`∞
`∞ , A`∞ := HΠ`∞

`∞ . Con-

sider the following exact commutative snake diagram

0

��

0

��

0

��
0 // A`∞

` //

��

A`∞ //

��

A` //

��

C ′ //

��

0

0 // H`∞
` //

��

H`∞
//

��

H`
//

��

C //

��

0

0 // K ′′
ι //

δ

88

B`∞ //

��

B` //

��

C ′′ //

��

0

0 0 0.

From Fact 3.1, C = 0 and hence C ′′ = 0, while from (6.3), C ′ = 0. This shows

that δ = 0 and hence that there is an isomorphism K ′′ ' B`∞ with respect to

which ι identifies with multiplication-by-`. In particular,

(10.2.1) the sequence 0→ B`∞
`→ B`∞ → B` → 0 is exact.

Let [H`∞ ] and [H`∞Q` ] denote the class of the extensions

0→ A`∞ → H`∞ → B`∞ → 0,

0→ A`∞Q` → H`∞Q` → B`∞Q` → 0

in H1(Π`∞ , A`∞ ⊗B∨`∞), H1(Π`∞ , A`∞Q` ⊗B∨`∞Q`) respectively.
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Then [H`∞ ] maps to [H`] via

H1(Π`∞ , A`∞ ⊗B∨`∞)→ H1(Π`∞ , A` ⊗B∨` )

(Fact 3.1, (6.3) and (10.2.1)) and by definition [H`∞ ] maps to [H`∞Q` ] via

H1(Π`∞ , A`∞ ⊗B∨`∞)→ H1(Π`∞ , A`∞Q` ⊗B
∨
`∞Q`).

By (6.2.2), [H`∞Q` ] = 0. So it is enough to show that

H1(Π`∞ , A`∞ ⊗B∨`∞)→ H1(Π`∞ , A`∞Q` ⊗B
∨
`∞Q`)

is injective; that is, H1(Π`∞ , A`∞ ⊗ B∨`∞)[`] = 0. But this follows from

(6.3.2) applied to the Π0`∞-equivariant embedding with torsion-free cokernel

A`∞ ⊗B∨`∞ ↪→ H`∞ ⊗H∨`∞ .

11. The Grothendieck-Serre-Tate conjectures with F`-coefficients

One may ask whether it is reasonable to expect the (arithmetic) posi-

tive characteristic variant of the Grothendieck-Serre-Tate conjectures with F`-
coefficients to hold for ` � 0. We retain the notation and conventions of the

introduction. Let Λ` denote Z`, F` or Q`. Let K0 be a field finitely generated

over Fp and Y0 a smooth proper scheme of dimension d over K0. Let Y denote

the base change of Y0 to an algebraic closure K of K0. For every integer w ≥ 0,

consider the following statements:

(11.1, Λ`, w) (semisimplicity) The action of π1(K0) on H2w(Y,Λ`) is semi-

simple.

(11.2, Λ`, w) (fullness) The map Zw(Y0)⊗ Λ` → H2w(Y,Λ`(w))π1(K0) is sur-

jective. Here Zw(Y0) denotes the Z-module of codimension w

algebraic cycles.

Theorem 1.1 and Theorem 1.3 show

Corollary 11.1. Assertions (11.1, Q`, w) and (11.2, Q`, i), i = w, d−w
for Y0 imply the assertions (11.1, F`, w) and (11.2, F`, w) for Y0 provided

`� 0 (depending on Y0).

Proof. Assume (11.1, Q`, w), (11.2, Q`, i), i = w, d − w for Y0. From

[MR04, Lem. 3.1], for `� 0 (depending on Y0), the canonical morphism

Zw(Y0)⊗ Z` → H2w(Y,Z`(w))π1(K0)

is surjective hence, in particular, Zw(Y0)⊗Z` → H2w(Y,Z`(w)) has torsion-free

cokernel. This, together with Fact 3.1, shows that the images of Zw(Y0)⊗Λ` →
H2w(Y,Λ`(w))π1(K0) for Λ` = Z`, F` or Q` have the same rank. Thus it is

enough to show (11.1, F`, w) and
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(11.2′,F`, w) H2w(Y,Λ`(w))π1(K0) for Λ` = F`,Q` have the same dimension

for `� 0.

From Lemma 4.2, one may freely replace K0 by a finite Galois extension.

In particular, we may assume that the Zariski closure of the image of π1(K0)

acting on H2w(Y,Q`(w)) is connected for every prime ` 6= p (see Fact 3.3).

If K0 is a finite field, (11.1, F`, w) follows from the fact that the minimal

polynomial of the Frobenius acting on H2w(Y,Q`) is in Q[T ], separable and

independent of ` while (11.2′, F`, w) follows from the fact that (under (11.1,

Λ`, w)) the dimension of H2w(Y,Λ`(w))π1(K0) is the multiplicity of 1 among

the roots of the characteristic polynomial of Frobenius, which is in Q[T ] and

independent of `.

If K0 is finitely generated, Y0 is the generic fiber of a smooth proper

morphism Y0 → X0 with X0 a smooth, separated, geometrically connected

scheme over a finite field k0. Let X denote the base-change of X0 to the

algebraic closure k of k0. Up to enlarging k0, we can find x0 ∈ X0(k0) such

that the Frobenius Fx0 acts semisimply on H2w((Y0)x,Q`) ' H2w(Y,Q`) for

every ` 6= p. (See the second paragraph after Proposition 1.1 in [LP95].) Here

x is any geometric point over x0. By the above argument, Fx0 acts semisimply

on H2w(Y,F`) for `� 0. In particular, its image is of prime-to-` order. Thus

(11.1, F`, w) follows from Theorem 1.1 and [Ser94, Lem. 5(b)]. For (11.2′,

F`, w), observe that

H2w(Y,Λ`(w))π1(K0) = (H2w(Y,Λ`(w))π1(X ,x))Fx0 .

From Theorem 1.3, H2w(Y,Λ`(w))π1(X ,x) for Λ` = F`,Q` have the same di-

mension. Thus (11.2′, F`, w) follows (under (11.1, Λ`, w)) from the fact that

the characteristic polynomial of Fx0 acting on H2w(Y,Q`(w))π1(X ,x) is in Q[T ]

and independent of `. (See (the proof of) [LP95, Prop. 2.1].) �
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2000, pp. 299–314. MR 1748625. Zbl 1022.14007.

[Gil13] Ph. Gille, Introduction to reductive group schemes over rings,

2013, Toronto (Fields Institute), preprint. Available at https:

//www.fields.utoronto.ca/programs/scientific/12-13/torsors/lietheory/

Notes/Gille-Notes.pdf.

[Hal08] C. Hall, Big symplectic or orthogonal monodromy modulo l, Duke Math.

J. 141 no. 1 (2008), 179–203. MR 2372151. Zbl 1205.11062. https://doi.

org/10.1215/S0012-7094-08-14115-8.

[Jan97] J. C. Jantzen, Low-dimensional representations of reductive groups are

semisimple, in Algebraic Groups and Lie Groups, Austral. Math. Soc. Lect.

Ser. 9, Cambridge Univ. Press, Cambridge, 1997, pp. 255–266. MR 1635685.

Zbl 0877.20029.

http://www.ams.org/mathscinet-getitem?mr=2842079
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1273.14088
https://doi.org/10.1016/j.jalgebra.2011.09.002
http://www.ams.org/mathscinet-getitem?mr=2988904
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1305.14016
https://doi.org/10.1215/00127094-1812954
https://doi.org/10.1515/crelle-2016-0057
https://doi.org/10.1515/crelle-2016-0057
http://www.ams.org/mathscinet-getitem?mr=0407163
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0248.20015
http://www.ams.org/mathscinet-getitem?mr=3362641
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1349.14151
http://www.ams.org/mathscinet-getitem?mr=0498551
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0219.14007
http://www.numdam.org/item?id=PMIHES_1971__40__5_0
http://www.numdam.org/item?id=PMIHES_1971__40__5_0
http://www.ams.org/mathscinet-getitem?mr=0601520
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0456.14014
http://www.numdam.org/item?id=PMIHES_1980__52__137_0
http://www.numdam.org/item?id=PMIHES_1980__52__137_0
http://www.ams.org/mathscinet-getitem?mr=0274460
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0212.52810
http://www.ams.org/mathscinet-getitem?mr=0725400
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0574.14019
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0574.14019
http://www.ams.org/mathscinet-getitem?mr=1748625
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1022.14007
https://www.fields.utoronto.ca/programs/scientific/12-13/torsors/lietheory/Notes/Gille-Notes.pdf
https://www.fields.utoronto.ca/programs/scientific/12-13/torsors/lietheory/Notes/Gille-Notes.pdf
https://www.fields.utoronto.ca/programs/scientific/12-13/torsors/lietheory/Notes/Gille-Notes.pdf
http://www.ams.org/mathscinet-getitem?mr=2372151
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1205.11062
https://doi.org/10.1215/S0012-7094-08-14115-8
https://doi.org/10.1215/S0012-7094-08-14115-8
http://www.ams.org/mathscinet-getitem?mr=1635685
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0877.20029


GEOMETRIC MONODROMY — SEMISIMPLICITY AND MAXIMALITY 235

[dJ96] A. J. de Jong, Smoothness, semi-stability and alterations, Inst. Hautes
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