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Chern’s conjecture for special affine
manifolds

By Bruno Klingler

Abstract

An affine manifold X in the sense of differential geometry is a differen-

tiable manifold admitting an atlas of charts with value in an affine space,

with locally constant affine change of coordinates. Equivalently, it is a man-

ifold whose tangent bundle admits a flat torsion free connection. Around

1955 Chern conjectured that the Euler characteristic of any compact affine

manifold has to vanish. In this paper we prove Chern’s conjecture in the

case where X moreover admits a parallel volume form.
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1. Introduction

Let X be a connected topological manifold of dimension n. Following

Klein’s Erlangen program one may study X by asking if it supports a lo-

cally homogeneous geometric structure: a system of local coordinates mod-

eled on a fixed homogeneous space G/H such that on overlapping coordinate

patches, the coordinate changes are locally restrictions of transformations from

the group G. Klein noticed that we recover as special cases all classical (i.e.,

euclidean, spherical or hyperbolic) geometries. This program, known as uni-

formization, has been highly successful for n = 2 and more recently for n = 3.

We refer the reader to [Gol11] for a nice survey on locally homogeneous geo-

metric structures.

1.1. Affine structures. In this paper we are interested in particularly nat-

ural locally homogeneous structures, namely, affine structures, which are sur-

prisingly very poorly understood. An affine structure on X is a maximal atlas

of charts (Uα, ϕα : Uα
∼→ ϕα(Uα) ⊂ V ), where V denotes the real affine space

of dimension n with underlying real vector space ~V ' Rn, such that

• each Uα is open in X =
⋃
α Uα;

• ϕα : Uα
∼−→ ϕα(Uα) ⊂ V is a homeomorphism;

• for every nonempty connected open set U ⊂ Uα ∩ Uβ, the change of coor-

dinates (ϕα ◦ ϕ−1
β )|ϕβ(U) : ϕβ(U)

∼−→ ϕα(U) is the restriction of an element

g(U,α, β) of the affine group Aff(V ) ' GL(~V ) n ~V .

Equivalently, fixing x0 a point of X and using the monodromy principle, one

easily shows that an affine structure on X is the datum of a group morphism

h : π1(X,x0) −→ Aff(V ) and a local homeomorphism D : X̃ −→ V , where X̃

denotes the universal cover of X, which is h-equivariant: for all γ ∈ π1(X,x0),

for all x ∈ X̃, D(γ · x) = h(γ) · D(x). The developing map D is obtained

by glueing the local charts (ϕα), and the holonomy h is obtained by piecing

together the transition functions (g(U,α, β)).

Notice that an affine structure on a topological manifold X defines canon-

ically a C∞-structure on X. Hence without loss of generality we will from
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now on assume that X is a C∞-manifold (we will just say manifold) and work

in the differentiable category. In this setting one obtains a third equivalent

definition of an affine structure on X, namely, a flat torsion-free connection on

the tangent bundle TX.

1.2. Chern’s conjecture. Around 1950 Chern tried to understand which

topological constraints an affine structure imposes on a connected closed

n-manifold. He apparently proposed the following:

Conjecture 1.1 (Chern, 1955). Let X be a connected closed manifold.

If X admits an affine structure, then its Euler characteristic χ(X) vanishes.

Notice that the Euler characteristic is multiplicative under passage to a

finite covering space. Hence without loss of generality we can and will as-

sume in Conjecture 1.1 that X is oriented. In this case, χ(X) := χ(TX) =

〈e(TX), [X]〉, where e(TX) ∈ HdX (X,Z) denotes the Euler class of the real

oriented tangent bundle TX of X, the nonnegative integer dX denotes the

dimension of X, and [X] ∈ HdX (X,Z) denotes the fundamental class of X.

As the Euler class of any odd rank real oriented vector bundle is killed by 2 (see

[MS74, property 9.4]), Conjecture 1.1 trivially holds true for odd-dimensional

manifolds.

We now explain why Conjecture 1.1 is nontrivial. We first recall that

the existence of a flat connection on an oriented vector bundle does not im-

ply the vanishing of its real Euler class: while Chern-Weil theory (see [MS74,

App. C]) says that the real Pontryagin classes pi,R(E) ∈ H4i(X,R) of an ori-

ented real vector bundle E on X can be computed using the curvature form

of any GL(r,R)+-connection ∇ on E, hence vanish if ∇ is flat, the real Euler

class eR(E) ∈ Hr(X,R) can be computed from the curvature form of ∇ only

if ∇ is an SO(r)-connection on E. Indeed, the following easy construction

provides oriented R2-bundles E admitting a flat connection but with nonzero

Euler number on the closed oriented surface Σ of genus g, g ≥ 2. Fix a complex

structure on Σ, and consider the induced hyperbolic uniformization Σ ' Γ\H,

where H denotes the Poincaré upper half-plane and π1(Σ) ' Γ ⊂ PSL(2,R) is a

cocompact torsion-free lattice. The group PSL(2,R) acts naturally on the pro-

jective line P1(R) hence the S1-bundle η := Γ\(H×P1(R)) over Σ can be seen

as a bundle with structural group PSL(2,R) with the discrete topology. Notice

that η is nothing other than the tangent circle bundle to Σ, hence has Euler

number 2−2g. It is easy to check that η admits a square root η̂; namely, the in-

clusion ι : Γ ↪→ PSL(2,R) lifts to ι̂ : Γ ↪→ SL(2,R). The 2-plane bundle E asso-

ciated to ι̂ has structural group SL(2,R) with discrete topology (hence admits a

flat connection) and has Euler number 1−g; see [MS74, pp. 313–314] for details.

Remark 1.2. Notice however that the real Euler class of the oriented real

vector bundle underlying a complex vector bundle of complex rank r identifies
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with its r-th real Chern class and hence vanishes by Chern-Weil’s theory. In

particular, Chern’s conjecture holds true for complex affine manifolds.

Hence Conjecture 1.1 is not a general statement on flat vector bundles.

One could nevertheless ask if it is a statement on flat, not necessarily torsion-

free, connection on tangent bundles. In [Ben55] Benzécri proved Chern’s con-

jecture for closed 2-manifolds: among them only tori admit affine structures.

In [Mil58] Milnor proved his celebrated inequality:

Theorem 1.3 (Milnor). An oriented R2-bundle E over the closed oriented

surface Σg of genus g ≥ 2 admits a flat connection ∇ if and only if |χ(E)| < g.

This implies, in particular, the following stronger version of Benzécri’s

result: the tangent bundle of a closed connected surface X admits a flat, not

necessarily torsion-free, connection if and only if χ(X) = 0. Milnor asked if

this result can be generalized in all dimensions. However in [Smi77], Smillie

showed the following:

Theorem 1.4 (Smillie). For any n ≥ 2, there are examples of closed 2n-

dimensional manifolds X with nonvanishing Euler characteristic χ(X) whose

tangent bundle TX admits a flat connection with nonzero torsion.

Hence Chern’s conjecture is really a question on affine structures, not on

flat connections on tangent bundles.

1.3. Results. The simplest examples of affine manifolds are the complete

ones, namely, the ones for which the developing map D : X̃ −→ V is a global

diffeomorphism (equivalently, the ones that are geodesically complete). In this

case X is a quotient of V by a subgroup Γ ⊂ Aff(V ) acting freely discon-

tinuously on V . After the results of Benzécri, Milnor and Smillie that we

mentioned, Kostant and Sullivan [KS75] proved Conjecture 1.1 in the case

where the affine structure on X is moreover complete. Their proof in that case

is an ingenious argument on the monodromy, which cannot be generalized.

In [HT75] Hirsch and Thurston proved Conjecture 1.1 when the image of the

holonomy homomorphism h : π1(X,x0) −→ Aff(V ) is built out of amenable

groups by forming free products and taking finite extensions. (A simpler proof

when the holonomy is solvable was obtained by Goldman and Hirsch [GH81].)

Recently, Bucher and Gelander proved Conjecture 1.1 for varieties that are

locally a product of surfaces; see [BG11].

In this paper we deal with special affine structures, i.e., affine structures

whose holonomy lies in the special affine subgroup SAff(V ) ' SL(~V ) n ~V

of Aff(V ) ' GL(~V ) n ~V . Equivalently, special affine structures are the affine

structures admitting a parallel volume form. Markus conjectured in 1960 that a

closed affine manifold is complete if and only if it is special affine (see [HT75]).
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This conjecture is largely opened, a significant step being Carrière’s result

[Car89] that any closed flat Lorentzian manifold is complete.

Our main result in this paper is the proof of Chern’s conjecture for special

affine manifolds:

Theorem 1.5. If X is a connected closed special affine manifold, then

χ(X) = 0.

Notice that if X is a connected closed manifold with vanishing first Betti

number, then any multiplicative character χ : π1(X,x0) −→ R∗ takes value

in ±1, thus any affine structure on (the oriented cover of) X is special affine.

Hence

Corollary 1.6. Suppose X is a connected closed affine manifold with

vanishing first Betti number. Then χ(X) = 0.

1.4. Strategy of the proof of Theorem 1.5. Let us now describe the strategy

of the proof of Theorem 1.5. While most previous results build on group-

theoretic arguments and generalized versions of the Milnor-Wood inequality,

our approach relies on the geometry of the total space E of the tangent bundle

of an affine manifold.

The following classical proposition, which we recall in the appendix, fol-

lows from the very definition of the (real) Euler class of an oriented real vector

bundle and reduces its study to the study of the differential forms on the total

space of the bundle:

Proposition 1.7. Let X be a connected oriented closed n-manifold and E

an oriented real vector bundle on X of rank r > 0, with total space E . The

Euler class eR(E) ∈ Hr(X,R) vanishes if and only if the natural morphism

between cohomology with compact support and usual cohomology

R ' Hr
c (E ,R) −→ Hr(E ,R) ' Hr(X,R)

vanishes.

Remark 1.8. Proposition 1.7 is Poincaré dual to the following homological

statement, which might be more intuitive: the Euler class eR(E) ∈ Hr(X,R)

is zero if and only if the natural morphism

Hn(E ,R) = R · [X] −→ HBM
n (E ,R)

vanishes (where [X] denotes the fundamental class in E of the zero section of E

and HBM
• denotes the Borel-Moore homology).

We study differential forms on E using the geometry of E . When E is a

mere bundle, the only natural geometric structure on E is the foliated structure

given by the projection π : E −→ X. If in addition we assume that the
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bundle E is endowed with a flat connection ∇, the total space E has a natural

local product structure in the sense of Definition 2.1, the additional foliation

being given by the flat leaves of ∇.

For any manifold M endowed with a local product structure, the de Rham

complex of sheaves of real differential forms (Ω•M , d) is enriched with a natural

bigrading (Ω•,•E , d′, d′′), d′ being the differential in the “horizontal” direction

and d′′ the one in the “vertical” direction. This bigrading defines two filtrations

d′F
• and d′′F

•, on H•c (E ,R) and also on H•(E ,R). As usual the graded pieces

of these filtrations are computed by spectral sequences d′E
•,•
• and d′′E

•,•
• (both

in the compact support case and the usual one). I do not know how to compute

these filtrations for a general local product structure.

On the other hand when M is the total space E of a flat bundle E on X,

one can compute these filtrations with the exception of d′′F
• on H•c (E ,R); see

Propositions 3.2 and 3.4.

The morphism H•c (E ,R) −→ H•(E ,R) we want to study is induced by

a morphism of spectral sequences ϕ•,•• : d′′E
•,•
c,• −→ d′′E

•,•
• , and the relation

between the local product structure on E and the vanishing of eR(E) is given

by the following refinement of Proposition 1.7:

Proposition 1.9. Let X be a connected oriented closed n-manifold. Let E

be an oriented flat real vector bundle on X of rank r > 0 with total space E
and projection π : E −→ X . The Euler class eR(E) ∈ Hr(X,R) vanishes if

and only if the map

ϕ0,r
∞ : Gr0

d′′
F •H

r
c (E ,R) = d′′E

0,r
c,∞ −→ d′′E

0,r
∞ = Gr0

d′′
F •H

r(E ,R) = R

vanishes.

We will be mainly interested in the case n = r. In this case the local

product structure on E is called a para-complex structure on E . The bigrad-

ing (Ω•,•E , d′, d′′) is formally similar to the bigrading of the complex analytic

de Rham complex on a complex manifold, except that there is no involution of

(Ω•E , d) exchanging d′ and d′′ (like the conjugation in the complex setting).

Suppose now that the vector bundle E is the tangent bundle TX. Any

linear connection ∇ on TX defines a natural almost complex structure I on E .

Moreover Dombrowski [Dom62] proved that I is a complex structure if and

only if ∇ is flat and torsion-free; i.e., X is an affine manifold. This complex

structure was further studied by Cheng and Yau [CY82].

The interplay of this complex structure on E and the natural para-complex

structure on E is our main tool for studying the vanishing of eR(TX): the total

space E of the tangent bundle of an affine manifold acquires a very rich para-

hypercomplex structure (see Definition 4.1), a notion analogous to a hypercom-

plex structure in complex geometry. In particular, and this will be crucial for
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us, the standard para-complex structure on E is the value at θ = 0 ∈ [0, 2π[ of

an S1-family of para-complex structures, induced by a canonical SO(2)-action

on TE . Such an S1-family simply does not exist if ∇ is flat but has nontrivial

torsion. Notice moreover that for θ 6= 0 mod π/2, the para-complex structure

on E corresponding to θ does not come from a flat bundle structure on TX.

For each θ ∈ S1, the corresponding para-complex structure defines, as

above, a filtration d′′θ
F •, on H•c (E ,R) and on H•(E ,R). It satisfies d′′θ=0

F • =

d′′F
• and d′′

θ=π/2
F • = d′F

•. The main idea in the proof of Theorem 1.5 is that

while the filtrations d′F
• and d′′F

• are unrelated when E is the total space

of a mere flat bundle, the S1-family of para-complex structures on the total

space E of the tangent bundle of an affine manifold induces an S1-family of

filtrations interpolating between them. Technically speaking, we construct a

spectral sequence in the category of sheaves over S1, obtaining a morphism

ϕ0,n
∞,S1 : d′′E

0,n
c,∞ −→ d′′E

0,n
∞

of sheaves over S1. The subtle relation between this spectral sequence of

sheaves and the spectral sequence we are interested in at the point θ = 0 lies

in the existence of a canonical factorization (see Lemma 4.10) of the morphism

ϕ0,n
∞ as

(1) ϕ0,n
∞ : d′′E

0,n
c,∞

∼ //
Ä
d′′E0,n

c,∞
ä
θ=0

Ä
ϕ0,n

∞,S1

ä
θ=0 //

(
d′′E0,n
∞
)
θ=0

//
d′′E

0,n
∞ .

Let us warn the reader that the canonical morphism
(
d′′E0,n
∞
)
θ=0 −→ d′′E

0,n
∞

relating the stalk of the sheaf d′′E0,n
∞ at the point θ = 0 to d′′E

0,n
∞ in the

factorization (1) is a priori neither injective nor surjective.

A crucial feature of the sheaves d′′E0,n
c,∞ and d′′E0,n

∞ on S1 is their con-

structibility, as they are quotients of the constant sheaf RS1 . Suppose now

that X is special affine. We use this constructibility, the fact that d′′
θ=π/2

F • =

d′F
• and the existence of an affine volume form on X to show that the sheaf

d′′E0,n
∞ is identically zero (see Lemma 4.13). It follows from (1) that the mor-

phism ϕ0,n
∞ vanishes. By Proposition 1.9, this finishes the proof of Theorem 1.5.

1.5. Notation. From now on manifolds are connected and oriented. If Y is

a manifold, one denotes by ShY the Abelian category of sheaves of real vector

spaces on Y , by C∞Y ∈ ShY its sheaf of infinitely differentiable real functions

and by (Ω•Y , d) its de Rham complex of sheaves of real differential forms. One

denotes by RY ∈ ShY the constant sheaf of rank one. More generally, if Λ

denotes a π1(Y )-module, we denote by ΛY the locally constant sheaf on Y

defined by Λ. The notation T ∗Y denotes either the cotangent bundle of Y or

the associated sheaf on Y .
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We refer to [KS90, Ch. II] for a survey on sheaves and their properties. In

particular, given f : X −→ Y a morphism of manifolds, one denotes as usual

by f−1 : ShY −→ ShX , f∗ : ShX −→ ShY and f! : ShX −→ ShY the pull-back

functor, direct image functor and direct image with proper support functor. If

F is a C∞Y -module, the notation f∗F denotes the C∞X -module C∞X ⊗f−1C∞Y
F .

Acknowledgments. This work was done while I was a member at the In-

stitute for Advanced Study, Princeton. I thank the Institute, in particular the

Ellentuck Fund and the Charles Simonyi Fund, for their support. I also thank

Burt Totaro for providing the argument of the proof of Proposition 3.4.

2. Differential forms on spaces with a local product structure

2.1. Spectral sequence associated to a foliation. Recall that a foliation F
of dimension r on a manifold M of dimension n+ r is the datum of an atlas of

charts (Vα, ϕα : Vα
∼→ ϕα(Vα) ⊂ Rn × Rr) such that the change of coordinates

(ϕα◦ϕ−1
β )|ϕβ(V α∩Vβ) : ϕβ(Vα∩Vβ)

∼−→ ϕα(Vα∩Vβ) is a diffeomorphism of open

subsets of Rn×Rr of the form ϕαβ(x, y) = (ϕ1
αβ(x), ϕ2

αβ(x, y)). The connected

components of the sets x = constant in a chart Vα are called plaques. Let

F ⊂ TM be the (integrable) subbundle of vectors tangent to the plaques. The

exact sequence of vector bundles

0 −→ F −→ TM −→ Q := TM/F −→ 0

defines the dual sequence

0 −→ Q∗ −→ T ∗M −→ F ∗ −→ 0.

This 1-step filtration of T ∗M induces a filtration F • on the de Rham complex

of sheaves (Ω•M , d) hence spectral sequences FE
pq
1 ⇒ Hp+q(M,R) and FE

pq
c,1 ⇒

Hp+q
c (M,R). We will not need a precise description of these spectral sequences

for general foliations (see [Ton97, Ch. 4]) as we consider only spaces with a

local product structure (two foliations).

2.2. Local product structures and para-complex structures.

Definition 2.1. Let n and r be two positive integers. A local product

structure of type (n, r) on a manifold M of dimension n+ r is the datum of an

atlas of charts (Vα, ϕα : Vα
∼→ ϕα(Vα) ⊂ Rn×Rr) such that the change of coor-

dinates (ϕα ◦ϕ−1
β )|ϕβ(Vα∩Vβ) : ϕβ(Vα∩Vβ)

∼−→ ϕα(Vα∩Vβ) is a diffeomorphism

of open subsets of Rn × Rr of the form

(2) ϕαβ(x, y) = (ϕ1
αβ(x), ϕ2

αβ(y)).

Remark 2.2. Recall that an almost product structure on a manifold M is

an endomorphism J ∈ EndTM such that J2 = 1. Let TM+ ⊂ TM (resp.

TM− ⊂ TM) be the subbundle eigenspace of I associated to the eigenvalue +1
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(resp. −1) of I. Hence TM = TM+⊕TM−. The almost product structure J is

said to be of type (n, r) if TM+ is of rank n and TM− of rank r. Equivalently,

an almost product structure of type (n, r) is a (GL(n,R)×GL(r,R))-structure

onM . A local product structure of type (n, r) is the same thing as an integrable

almost product structure of type (n, r). We refer to [Wal61] for details.

In this paper we will essentially be concerned with the special case n = r.

Definition 2.3. A para-complex structure on a manifold M of dimension

2n is a local product structure of type (n, n).

We refer to [CFG96] for a survey on para-complex geometry.

2.3. The bigraded de Rham complex of a local product structure. A pair

of supplementary foliations F ′ and F ′′ on a manifold M gives rise to two

pairs of spectral sequences as in Section 2.1. In the case of a local product

structure, these spectral sequences are the two spectral sequences associated

to a bigraduation of the de Rham complex of M , as we now show.

Let M be a manifold with a local product structure of type (n, r), and let

(Vα, ϕα : Vα → Rn × Rr) be an atlas of charts for the local product structure.

Let p′ : Rn×Rr −→ Rn and p′′ : Rn×Rr −→ Rr be the two natural projections.

The map ϕα induces a decomposition of the sheaves of differential forms on Vα,

(3) Ωl
Vα '

⊕
p+q=l

Ωp,q
Vα
,

where

(4) Ωp,q
Vα

:= ϕ∗α(p′∗Ωp
Rn ⊗C∞Rn×Rr

p′′∗Ωq
Rr).

The shape (2) of the change of coordinates guarantees that these local

decompositions glue together and one obtains a canonical decomposition of

sheaves

(5) Ωl
M =

⊕
p+q=l

Ωp,q
M .

Moreover the decomposition dRn+r = d′Rn + d′′Rr of the differential on Rn+r

induces a canonical decomposition of d : Ω•M −→ Ω•+1
M into the sum of two

differential operators d = d′ + d′′ where

d′ : Ω•,•M −→ Ω•+1,•
M and d′′ : Ω•,•M −→ Ω•,•+1

M

satisfy

d′2 = d′′2 = d′d′′ + d′′d′ = 0.

Hence the bigraded C∞M -algebra Ω•,•M carries two natural derivations d′

and d′′ of type (1, 0) and (0, 1) respectively. Considering the double complex
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Ω•,•M of sheaves on M ,

(6) Ω0,0
M

d′′

��

d′ // Ω1,0

d′′

��

d′ // · · ·

d′′

��

d′ // Ωn,0

d′′

��
Ω0,1
M

d′′ ��

d′ // Ω1,1

d′′ ��

d′ // · · ·

d′′ ��

d′ // Ωn,1

d′′ ��
...

d′′

��

d′ // ...

d′′

��

d′ // ...

d′′

��

d′ // ...

d′′

��
Ω0,r
M

d′ // Ω1,r d′ // · · · d′ // Ωn,r,

one obtains an identification

(7) (Ω•M , d) = Tot(Ω•,•M , d′, d′′).

Remark 2.4. The situation is formally similar to the decomposition of the

sheaves of complex differential forms on a complex manifold, except there is no

real involution exchanging Ωp,q
M with Ωq,p

M .

Definition 2.5. Let M be a manifold with a local product structure. We

define the sheaves L′p and L′′p, p ∈ Z>0, on M as L′p := Ker(d′′ : Ωp,0
M −→ Ωp,1

M )

and L′′p := Ker(d′ : Ω0,p
M −→ Ω1,p

M ).

2.4. Cohomological properties of the bicomplex Ω•,•M .

Lemma 2.6. Let M be a manifold with a local product structure. Then

RM −→ (L′•, d′) and RM −→ (L′′•, d′′) are resolutions of the constant sheaf RM .

Proof. Let (Vα, ϕα : Vα → Rn × Rr) be a chart of the local product

structureM . Then (L′•, d′)|Vα = (p′◦ϕα)−1((Ω•Rn , d)). As RRn −→ (Ω•Rn , d) is a

resolution and the functor (p′◦ϕα)−1 is exact, one obtains a quasi-isomorphism

RVα = (p′ ◦ ϕα)−1RRn ' (L′•, d′)|Vα . This proves that RM −→ (L′•, d′) is a

resolution. Similarly, replacing L′, p′ and d′ by L′′, p′′ and d′′ respectively, one

obtains that RM −→ (L′′•, d′′) is a resolution. �

Recall the following classical definitions:

Definition 2.7. Let A be an Abelian category and K a complex of objects

of A. The (decreasing) filtration bête F •K of K is defined as

(8) (F pK)n =

0 if n < p,

Kn if n ≥ p.
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Definition 2.8. We denote by d′E
p,q the classical hypercohomology spec-

tral sequence associated to the filtration bête F • on the complex of sheaves

((L′)•, d′) on M :

(9) d′E
p,q
1 = Hq(M, (L′)p)⇒ Hp+q(M,R).

We denote by d′F
• the associated filtration on H•(M,R).

Similarly, we denote by d′′E
p,q the spectral sequence obtained by replacing

L′ and d′ by L′′ and d′′ respectively:

(10) d′′E
p,q
1 = Hq(M, (L′′)p)⇒ Hp+q(M,R).

We denote by d′′F
• the associated filtration on H•(M,R).

Replacing cohomology with compactly supported cohomology, we obtain

the two spectral sequences

d′E
p,q
c,1 = Hq

c (M, (L′)p)⇒ Hp+q
c (M,R),(11)

d′′E
p,q
c,1 = Hq

c (M, (L′′)p)⇒ Hp+q
c (M,R).(12)

We still denote by d′F
• and d′′F

• the two associated filtrations on H•c (M,R).

Remark 2.9. These spectral sequences are first quadrant spectral sequences

and hence converge. However I do not know if they always degenerate in E2.

Remark 2.10. Notice that the sheaves Ωp,q
M are fine sheaves on M . Hence

both L′p −→ (Ωp,•
M , d′′) and L′′p −→ (Ω•,pM , d′) are acyclic resolutions for the

functors Γ(M, ·) and Γc(M, ·). Thus the spectral sequences we defined above

are nothing other than the two spectral sequences of the double complexes of

real vector spaces obtained by applying Γ(M, ·) and Γc(M, ·) to the double

complex of sheaves (6). Once more the situation is formally similar to the

Hodge to de Rham spectral sequence for complex manifolds.

Remark 2.11. In view of Remark 2.10, the language of sheaves in not

really needed at this step. However the use of sheaves will be unavoidable in

the heart of the proof; see Section 4.3.

3. The case of flat bundles

LetX be a manifold of dimension n. Let E be a real oriented vector bundle

on X of rank r > 0, with total space E and projection π : E −→ X. The bundle

structure on E defines a “trivial” foliation of dimension r on E , with closed

linear leaves. Suppose from now on that the bundle E is endowed with a flat

connection ∇ associated to a linear representation ρ : π1(X,x0) −→ GL(~V ).

Then the manifold E has a natural local product structure given by the fibers

of π and the leaf of the flat connection ∇. In the description of Definition 2.1
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the maps ϕ2
αβ are moreover linear. In this situation the complex (L′•, d′) and

(L′′•, d′′) are easier to describe.

3.1. The complex (L′•, d′). Notice that the sheaf L′p is nothing other, by

definition, than π−1Ωp
X and the complex (L′•, d′) coincides with the complex

(π−1Ω•X , π
−1dX), which is well defined for any (not necessarily flat) vector

bundle E on X.

Proposition 3.1. There is a canonical isomorphism

H i(E , π−1Ωp
X) = H i(Ωp,•(E), d′′) =

0 if i 6= 0,

Ωp(X) if i = 0.

Similarly, considering cohomology with compact support :

H i
c(E , π−1Ωp

X) = H i(Ωp,•
c (E), d′′) =

0 if i 6= r,

Ωp
c(X) if i = r.

Proof. Let us give the proof for the compactly supported cohomology, the

proof for ordinary cohomology is similar. Consider the Leray spectral sequence

for π

Ei,j2 = H i
c(X,R

jπ!(π
−1Ωp

X))⇒ H i+j
c (E , π−1Ωp

X).

By the projection formula, Rπ!(π
−1Ωp

X) = Rπ!(R)⊗ Ωp
X = Ωp

X [−r].
As Ωp

X is a fine sheaf (hence Γc-acyclic),

Ei,j2 =

0 if i 6= r,

Ωj
c(X) if i = r.

Hence the E2-page has only one nonzero column at i = r, the Leray spectral

sequence degenerates in E2 and we get the result. �

Hence the first page d′E
p,q
1 is given by

d′E
p,q
1 = Hq(E , π−1Ωp

X) =

Ωp(X) if q = 0,

0 if q 6= 0.

It coincides with the usual de Rham complex of X on the line q = 0, thus the

spectral sequence d′E degenerates in E2 (not in E1 as in the compact Kähler

case!) and we recover (in a complicated way) the isomorphism

d′E
p,0
∞ = Grp

d′
FH

p(E ,R) = Hp(E ,R) ' Hp(X,R).

For the compactly supported cohomology, we get

d′E
p,q
c,1 = Hq

c (E , π−1Ωp
X) =

Ωp
c(X) if q = r,

0 if q 6= r.
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Hence the E1-page of the spectral sequence d′Ec is the compactly supported

global de Rham complex for X on the line q = r, the spectral sequenced′Ec
degenerates in E2 and we recover (a version of) the Thom isomorphism (see Ap-

pendix A):

d′E
p,r
c,∞ = Grp

d′
FH

p+r
c (E ,R) = Hp+r

c (E ,R) ' Hp
c (X,R).

Hence we have proven

Proposition 3.2. Let X be a connected oriented n-manifold. Let E be

an oriented flat real vector bundle on X of rank r > 0 with total space E and

projection π : E −→ X . Then

d′E
p,0
∞ = Grp

d′
FH

p(E ,R) = Hp(E ,R) ' Hp(X,R)

and

d′E
p,r
c,∞ = Grp

d′
FH

p+r
c (E ,R) = Hp+r

c (E ,R) ' Hp
c (X,R).

3.2. The complex (L′′•, d′′) for flat bundles. The cohomology of the sheaves

(L′′)q, 0 ≤ q ≤ r, is not as simple as the one of the π−1Ωp
X , 0≤ p≤n. We will

interpret it directly in terms of the monodromy representation ρ :π1(X,x0) −→
GL(~V ) defining the flat structure on E. This π1(X,x0)-module structure on ~V

induces a natural structure of π1(X,x0)-modules on the infinite dimensional

real vector spaces Ωq(~V ) and Ωq
c(~V ), 0 ≤ q ≤ r, which makes (Ω•(~V ), d) and

(Ω•c(
~V ), d) complexes of π1(X,x0)-modules.

Recall (see 1.5) that if Λ is a π1(X)-module, we denote by ΛX the corre-

sponding local system on X. Hence we obtain the following resolutions in the

category of infinite dimensional local systems on X:

(13) RX ' ((Ω•(~V ))X , d
′′) and RX [−r] ' ((Ω•c(

~V ))X , d
′′).

Proposition 3.3.

H i(E ,L′′q) = H i(Ωq,•(E), d′′) = H i(X, (Ωq(~V ))X)

and

H i
c(E ,L′′q) = H i

c(Ω
q,•(E), d′′) = H i

c(X, (Ω
q
c(
~V ))X).

Proof. We give the proof for the compactly supported cohomology; the

other case is similar. Consider the Leray spectral sequence:

Ei,j2 = H i
c(X,R

jπ!L′′q)⇒ H i+j
c (E ,L′′q).

As π is a locally trivial fibration the sheaf Rjπ!L′′q is nothing other than

the locally constant sheaf (Hj
c (~V ,Ωq

~V
))X . The sheaf Ωq

~V
is fine and hence is
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Γc-acyclic on ~V . Thus Hj
c (~V ,Ωq

~V
) is zero for j 6= 0 and

Ei,j2 =

0 if j 6= 0,

H i
c(X, (Ω

q
c(~V ))X) if j = 0.

The spectral sequence degenerates trivially in E2 and the result follows. �

Although the cohomology of the sheaves (L′′)q, 0 ≤ q ≤ r, is not as simple

as the one of the π−1Ωp
X , 0 ≤ p ≤ n, we can still show that the filtration d′′F

is trivial on H•(E ,R):

Proposition 3.4. Let X be a connected oriented n-manifold. Let E be

an oriented flat real vector bundle on X of rank r > 0 with total space E and

projection π : E −→ X . For any integer p, the natural map

Hp(E ,R) ' Hp(X,R) −→ d′′E
0,p
∞ := Gr0

d′′
FH

p(E ,R)

is an isomorphism.

Proof. It follows from Proposition 3.3 that the spectral sequence d′′E
p,q
1 =

Hq(E ,L′′p)⇒ Hp+q(E ,R) is canonically isomorphic, via the isomorphism π∗ :

H•(X, ·) −→ H•(E , ·), to the spectral sequence Ep,qρ,1 = Hq(X, (Ωp(~V ))X) ⇒
Hp+q(X,RX) associated to the filtration bête of the resolution RX ' (Ω•(~V ))X .

Notice that the natural morphism of π1(X,x0)-modules R −→ Ω0(V ) is split

injective: the splitting is defined by associating to f ∈ Ω0(V ) its value f(0).

Hence the edge map Hq(X,RX) −→ Hq(X, (Ω0(~V ))X) of our spectral sequence

is injective for all q, and hence the map Hp(E ,R) −→ Gr0

d′′
FH

p(E ,R) is an iso-

morphism. �

Notice that similarly the spectral sequence

d′′E
p,q
c,1 = Hq

c (E ,L′′p)⇒ Hp+q(E ,R)

is canonically isomorphic, via the Thom isomorphism

Φ : H•c (X,R) −→ H•+rc (E ,R),

to the spectral sequence

Ep,qc,ρ,1 = Hq
c (X, (Ωp(~V ))X)⇒ Hp+q

c (X,RX [−r])

associated to the filtration bête of the resolution RX [−r] ' (Ω•c(
~V ))X . This

time the morphism Ωr
c(
~V ) −→ R of π1(X,x0)-modules given by integrating

over ~V does not split anymore, and I do not know how to compute the filtration

d′′F on H•c (E ,R).

Definition 3.5. We denote by ϕ : d′′Ec −→ d′′E the canonical morphism of

spectral sequences defined by the morphism of functors H•c (E , ·) −→ H•(E , ·).
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3.3. A criterion for the vanishing of the Euler class of a flat bundle: Proof

of Proposition 1.9. From now on we assume that X is closed.

Proof. Let E be a flat oriented real vector bundle of rank r > 0 with total

space E and projection π : E −→ X. Let ω ∈ Ωr
c(E) be a Thom form for E;

see Definition A.6. In particular the n-form ω is d-closed. By Lemma A.4 the

Euler class of E can be computed as

e(X) = i∗[ω] ∈ Hn(X,R),

where i : X −→ E denotes the zero section.

Let us now relate the form ω to the spectral sequence d′′Ec. Decompose

the form ω into types: ω =
∑r
i=0 ω

i,r−i, with ωi,r−i ∈ Ωi,r−i
c (E). As ω is

d-closed, we obtain

(14) ∀ i, 0 ≤ i ≤ r, d′ωi,r−i = −d′′ωi+1,r−i−1.

In particular, d′ωr,0 = 0. As L′′p −→ (Ω•,pE , d′) is a fine resolution, the spectral

sequence d′′E
p,q
c,1 = Hq

c (E ,Lp)⇒ Hp+q
c (E ,R) coincides with the double complex

spectral sequence

Ep,qc,1 = Hq(Ω•,pc (E), d′)⇒ Hp+q
c (E ,R).

Hence the d′-closed form ωr,0 defines a class [ωr,0] ∈ d′′E
0,r
c,1. Notice that the

subquotient d′′E
0,r
∞ of d′′E

0,r
1 is in fact a subspace of d′′E

0,r
1 as Ep,q1 = 0 for

p < 0.

Lemma 3.6. The class [ωr,0] belongs to d′′E
0,r
c,∞.

Proof. By definition, d1 : d′′E
0,r
c,1 −→ d′′E

1,r
c,1 maps [ωr,0] to the class of

d′′ωr,0 in d′′E
1,r
c,1 = Hr(Ω•,1c (E), d′). From (14) we get d′′ωr,0 = d′(−ωr−1,1),

hence d1[ωr,0] = 0 and [ωr,0] belongs to d′′E
r,0
c,2.

More generally, it follows by induction on i that [ωr,0] belongs to d′′E
0,r
c,i

and that di[ω
0,r] coincides with the class of d′′ωr−i+1,i−1 in d′′E

i,r−i+1
c,i , which

vanishes as d′′ωr−i+1,i−1 = d′(−ωr−i,i).
The lemma follows. �

We now prove the proposition. Suppose first that ϕ0,r
∞ : d′′E

0,r
c,∞ −→ d′′E

0,r
∞

vanishes, and let us show that eR(e) = 0. As the diagram

d′′E
0,r
c,∞
� � //

ϕ0,r
∞
��

d′′E
0,r
c,1

ϕ0,r
1
��

d′′E
0,r
∞
� � //

d′′E
0,r
c,1

commutes, it follows from Lemma 3.6 that ϕ0,r
1 ([ωr,0]) = 0. This means that

ωr,0 is d′-exact in (Ω•,0(E), d′). There exists α ∈ Ωr−1,0(E) such that ωr,0 = d′α.
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Hence

e(X) = [i∗ω] = [i∗ωr,0] = [i∗(d′α)] = [d(i∗α)] = 0 ∈ Hn(X,R).h

Conversely, suppose that ϕ0,r
∞ : d′′E

0,r
c,∞ −→ d′′E

0,r
∞ does not vanish. Con-

sider the commutative diagram

Hr
c (E ,R) // //

��

d′′E
0,r
c,∞ = Gr0

FH
r
c (E ,R)

ϕ0,r
∞
��

Hr(E ,R) // //
d′′E

0,r
∞ = Gr0

FH
r(E ,R).

As Hr
c (E ,R) ' H0(X,R) ' R (Thom isomorphism) the nonvanishing of ϕ0,r

∞
implies that the quotient map R = Hr

c (E ,R) � d′′E
0,r
c,∞ is an isomorphism

and that the map Hr
c (E ,R) −→ Hr(E ,R) is injective. As the Thom class

[ω] ∈ Hr
c (E ,R) generates Hr

c (E ,R), this implies that its image eR(e) is nonzero

in Hr(E ,R). �

4. The case of affine manifolds

Let X be a closed n-manifold whose tangent bundle E := TX admits a

flat connection. As explained in Section 3 the flat structure on TX endows

the total space E of TX with a para-complex structure, which we call its

standard para-complex structure, and Proposition 1.9 provides a criterion for

the vanishing of χ(X).

Suppose now that X is affine; i.e., the flat connection on TX is torsion-

free. In that case and in that case only, the standard para-complex structure on

TX can be upgraded to a much richer structure: a para-hypercomplex structure

(see Section 4.1).

Any para-hypercomplex manifold M admits a canonical GL(2,R)-action

on its tangent bundle, whose restriction to SO(2) defines an S1-family of para-

complex structures on M . Hence when X is affine, the space E is canoni-

cally endowed with an S1-family of para-complex structures, the para-complex

structure at θ = 0 being the standard one.

The main idea in the proof of Theorem 1.5 is that this S1-family of para-

complex structures on E induces an S1-family of spectral sequences, interpo-

lating in a subtle way between the spectral sequence d′′Ec and the much better

understood spectral sequence d′Ec (resp. between d′′E and d′E). This will enable

us to show that Proposition 1.9 is satisfied for special affine manifolds.

4.1. Para-hypercomplex structures.

4.1.1. Definition. Let n be a positive integer. The canonical isomorphism

Rn ⊗ R2 ' R2n induces an embedding

(15) GL(n,R)×R∗ GL(2,R) ⊂ GL(2n,R).
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Definition 4.1. Let M be a differential manifold of dimension 2n. A para-

hypercomplex structure on M is an integrable GL(n,R)-structure on M (for

the embedding of GL(n,R) in GL(2n,R) defined by (15)).

Equivalently [And05], a para-hypercomplex structure onM is the data of a

complex structure I ∈ End (TM) and a para-complex structure J ∈ End (TM)

satisfying IJ = −JI.

Para-hypercomplex manifolds are for para-complex manifolds what hy-

percomplex manifolds are for complex manifolds. This analogy is explained in

detail in Appendix B, hoping it might clarify the well-known many analogies

between complex geometry and affine geometry.

Para-hypercomplex structures are also called “complex-product” struc-

ture. In addition to Appendix B we refer to [IZ05], [And05] and references

mentioned there for more details on such structures.

4.1.2. S1-family of para-complex structures on a para-hypercomplex man-

ifold. Let M be a para-hypercomplex manifold. The 4-dimensional R-algebra

generated by the two elements J and I of Definition 4.1 satisfying J2 = 1,

I2 = −1 and JI = −IJ identifies with gl2(R), which thus acts on TM . As

the GL(n,R)-structure on M is integrable, this gl2(R)-action integrates to an

action of the centralizer GL(2,R) of GL(n,R) in GL(2n,R) on TM . The

GL(2,R)-orbit of J in End (TM) identifies with the GL(2,R)-adjoint orbit of

J ∈ gl2(R), whose Killing norm is positive. Hence the GL(2,R)-orbit of J is

a hyperboloid of one sheet H := GL(2,R)/(R∗ ×Z/2 R∗) ' R× S1, the section

S1 being given by the SO(2)-orbit of J . Each point of this orbit H defines a

para-complex on M .

We thus obtain an H-family of para-complex structures on M , with an

S1-subfamily for which the complex structure I is preserved.

4.1.3. Para-hypercomplex structure on the tangent bundle of an affine

manifold. Let X be a closed n-dimensional manifold. Let E the total space of

its tangent bundle TX and π : E −→ X the corresponding projection. Let ∇
be any linear connection on TX. It induces the following:

• A direct sum decomposition TE = TvE ⊕ ThE into a vertical and horizontal

part. Moreover TvE ' ThE ' π∗TX.

• An almost complex structure I on E given by I =
(

0 1
−1 0

)
in the previous

decomposition.

• An almost product structure J on E defined by J =
(−1 0

0 1

)
. They obviously

satisfy the relation IJ = −JI.

One easily shows that J is integrable if and only if ∇ is flat. Moreover

Dombrowski [Dom62] proved that I is a complex structure if and only if ∇ is

flat and torsion-free. It follows from these remarks and Definition 4.1 that if X
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is an affine manifold, then the total space E of TX is canonically endowed with

a para-hypercomplex structure, which we call the para-hypercomplex structure

on E .

4.2. S1-family of para-complex structures on the total space of the tangent

bundle of an affine manifold. It follows from Sections 4.1.3 and 4.1.2 that the

para-hypercomplex space E , total space of the tangent bundle E := TX of an

affine manifold X, is endowed with an S1-family of para-complex structures.

We now describe in more detail these structures in term of the developing map

of the affine structure on X.

4.2.1. The standard para-complex structure on E . We define the standard

action of Aff(V ) on EV := V × ~V as the one obtained on the total space EV of

the tangent bundle TV = V × ~V from the standard action of Aff(V ) on V . If

l : Aff(V ) � GL(~V ) denotes the linear part, this standard action is given by

∀ g ∈ Aff(V ), ∀(u, v) ∈ EV = V × ~V , g · (u, v) = (g · u, l(g) · v).

Let X be an oriented (Aff(V ), V )-manifolds. Fix a base-point x0 in X, x̃0

the corresponding base point of X̃, and let (h : π1(X,x0) −→ Aff(V ), D :

X̃ −→ V ) be the corresponding holonomy and developing map.

Let E denote the total space of the tangent bundle TX, with projection

π : E −→ X and base point e0 := (x0, 0). Then the (Aff(V ), V )-structure

(h,D) on X defines an (Aff(V ), V × ~V )-structure on E (for the standard action

of Aff(V ) on V × ~V ) with holonomy h : π1(E , e0) ' π1(X,x0) −→ Aff(V ) and

developing map

(16) DE := dD : Ẽ −→ EV = V × ~V ,

called the standard (Aff(V ), V × ~V )-structure on E . It induces the standard

para-complex structure on E associated as in Section 3 to the flat structure

on the bundle E = TX defined by the monodromy representation l ◦ h :

π1(X,x0) −→ GL(~V ).

4.2.2. The S1-family of para-complex structures on the tangent bundle of

an (Aff(V ), V )-manifold. Let us fix an origin O ∈ V . It defines a splitting

Aff(V ) = GL(~V ) n ~V . The decomposition of an element g ∈ Aff(V ) for this

splitting will be denoted by (l(g), t(g)) (where t(g) denotes the translational

part of g).

Definition 4.2. Let θ ∈ [0, 2π]. The θ-deformed action of Aff(V ) on EV is

defined by

∀ g ∈ Aff(V ), ∀(u, v) ∈ EV = V × ~V ,

g ·θ (u, v) = (l(g) · u+ cos θ · t(g), l(g) · v − sin θ · t(g)).

We denote by EV,θ the space EV with this θ-deformed affine action of

Aff(V ).
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Remark 4.3. The 0-deformed action is the standard action of Section 4.2.1.

For θ ∈ [0, 2π], let us define Rθ :=
Ä

cos θ sin θ
− sin θ cos θ

ä
∈ GL(~V ⊕ ~V ) as the block

rotation matrix with angle θ. Fix ẽ0 ∈ Ẽ a point over e0 ∈ E and choose

O := DE(ẽ0) as an origin for V . The local diffeomorphism DE,θ := Rθ ◦DE :

Ẽ −→ EV satisfies

∀ γ ∈ π1(E , e0), DE,θ ◦ γ = h(γ) ·θ DE,θ.

In other words the pair (h,DE,θ) defines an (Aff(V ), EV,θ)-structure on E . In

particular, it defines a para-complex structure on E , called the θ-para-complex

structure which, in local affine coordinates, is obtained by applying the rota-

tion Rθ to the standard one. This S1-family of para-complex structures on E
coincides with the one defined in Section 4.1.2.

Remark 4.4. Notice that these (Aff(V ), EV,θ)-structures on E are not de-

duced by differentiation from an affine structure on X as in (16), except if

θ = 0 mod π.

Remark 4.5. All these (Aff(V ), EV,θ)-structures on E are equivalent as

(Aff(V ×V ), V ×V )-structures. On the other hand the para-complex structures

associated to θ1 and θ2 coincide if and only if θ1 = θ2 mod π.

4.3. The one-parameter family of spectral sequences.

4.3.1. Definitions.

Definition 4.6. For each θ ∈ [0, 2π], we define

• the complex of sheaves (L′′•θ, d′′θ) on E associated to the θ-para-complex

structure on E as in Definition 2.5;

• the spectral sequences d′′θ
E•,•• and d′′θ

E•,•c,• associated to the θ-para-complex

structure on E as in Definition 2.8;

• the bigraded complex of sheaves (Ω•,•E,θ, d
′
θ, d
′′
θ) on E associated to the θ-para-

complex structure on E as defined in Section 2.3.

We now sheafify the situation over S1:

Definition 4.7. Consider the submersion Ψ : Ẽ × S1 −→ EV defined

by Ψ(e, θ) = DE,θ(e). We define the complex of sheaves (L′′•E×S1/S1 , d′′) on

E × S1 as the descent to E × S1 of the π1(E)-equivariant complex of sheaves

Ψ−1((L′′)•EV , d
′′) on Ẽ × S1, and (Ω•,•E×S1/S1 , d

′, d′′) as the descent to E × S1 of

the π1(E)-equivariant complex of sheaves Ψ−1(Ω•,•EV , d
′, d′′).

The complex ((L′′)•EV , d
′′) resolves the constant sheaf REV and is quasi-

isomorphic to the total complex of (Ω•,•EV , d
′, d′′). As the functor Ψ−1 is exact, it

follows once more that the complex (L′′•E×S1/S1 , d′′) resolves the constant sheaf
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RE×S1 and is quasi-isomorphic to the total complex of (Ω•,•E×S1/S1 , d
′, d′′). For

θ ∈ S1, the restriction of the complex of sheaves (L′′•E×S1/S1 , d′′) to the fiber Eθ
coincides with the complex of sheaves (L′′•θ, d′′θ). Similarly the restriction of

the bigraded complex of sheaves (Ω•,•E×S1/S1 , d
′, d′′) to the fiber Eθ coincide with

(Ω•,•E,θ, d
′
θ, d
′′
θ).

Remark 4.8. The sheaves Ωr,s
E,θ on E are fine sheaves and hence provide

an acyclic resolution (Ω•,sE,θ, d
′
θ) of L′′sθ. In contrast, the sheaves Ωr,s

E×S1/S1 are

not fine, hence the resolution (Ω•,sE×S1/S1 , d
′) of L′′sE×S1/S1 has no reason to be

acyclic.

Definition 4.9. Let p2 : E × S1 −→ S1 denote the second projection.

(a) We denote by d′′E
•,•
c,• the spectral sequence computing Rp2!RE×S1 =

Rp2!(L′′
•
E×S1/S1) associated to the filtration bête on L′′•E×S1/S1 ,

d′′E
p,q
c,1 = Rqp2!L′′

p
E×S1/S1 ⇒ Rp+qp2!RE×S1 ,

and by d′′F
• the associated filtration on the sheaves R•p2!RE×S1 .

(b) Similarly we denote by d′′E
•,•
• the spectral sequence computing

Rp2∗RE×S1 = Rp2∗(L′′
•
E×S1/S1)

associated to the filtration bête on L′′•E×S1/S1 :

d′′E
p,q
1 = Rqp2∗L′′

p
E×S1/S1 ⇒ Rp+qp2∗RE×S1 ,

and by d′′F
• the associated filtration on the sheaves R•p2∗RE×S1 .

(c) We denote by ϕ•,••,S1 : d′′E
•,•
c,• −→ d′′E

•,•
• the morphism of spectral se-

quences of sheaves over S1 induced by the morphism of functors Rp2! −→ Rp2∗.

4.3.2. The sheaf spectral sequence versus the pointwise spectral sequences.

Let us now describe the relation between the morphisms of sheaves

ϕr,s∞,S1 : d′′E
r,s
c,∞ −→ d′′E

r,s
∞

and the morphisms of vector spaces ϕr,s∞ : d′′E
r,s
c,∞ −→ d′′E

r,s
∞ of Definition 3.5.

As usual, for a sheaf F over a locally compact topological space Y , we

denote by Fy its stalk at the point y. Recall that if f : Y −→ Z is a continuous

morphism of topological spaces, then for any point z ∈ Z, there are natural

morphisms (Rpf∗F )z −→ Hp(Yz, F|Yz) and (Rpf!F )z −→ Hp
c (Yz, F|Yz). More-

over this last morphism is an isomorphism by the proper base change theorem

([KS90, Prop. 2.5.2]), while the first one is not surjective in general. Let us

apply this to f = p2 and z = θ.

For all nonnegative integers r, s and all θ ∈ S1, we obtain a natural iso-

morphism Ä
Rrp2!L′′

s
E×S1/S1

ä
θ

∼−→ Hr
c (E ,L′′θ

s
),
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i.e., a natural isomorphism
Ä
d′′E

r,s
c,1

ä
θ

∼−→ d′′θ
Er,sc,1. This isomorphism is compat-

ible with the differential d1, hence for every θ ∈ S1, we obtain an isomorphism

of spectral sequences
(
d′′E
•,•
c,•
)
θ
∼−→ d′′θ

E•,•c,• . For all θ ∈ S1, we denote by αr,sθ
the inverse isomorphism

(17) αr,sθ :
Ä
d′′E

r,s
c,∞
ä
θ

∼−→ d′′θ
Er,sc,∞.

Arguing with p2∗ rather than p2!, one obtains for every θ ∈ S1 a morphism

(18) βr,sθ : (d′′E
r,s
∞ )θ −→ d′′θ

Er,s∞ ,

which is a priori neither injective nor surjective as the fibers of p2 are non-

compact.

As these morphisms are natural we obtain, in particular,

Lemma 4.10. The morphism of vector spaces ϕ0,n
∞ : d′′E

0,n
c,∞ −→ d′′E

0,n
∞

factorizes as

d′′E
0,n
c,∞ ∼

(α0,n
0 )

−1

//
Ä
d′′E0,n

c,∞
ä
θ=0

Ä
ϕ0,n

∞,S1

ä
θ=0 //

(
d′′E0,n
∞
)
θ=0

β0,n
0 //

d′′E
0,n
∞ .

The following criterion is thus an immediate corollary of Lemma 4.10 and

Proposition 1.9:

Corollary 4.11. Let X be an affine n-dimensional manifold. If the

morphism of sheaves ϕ0,n
∞,S1 : d′′E0,n

c,∞ −→ d′′E0,n
∞ vanishes, then eR(X) = 0.

4.3.3. Structure of the sheaves d′′Er,n−r∞ . By definition the sheaf d′′Er,n−r∞
is the graded sheaf Grr

d′′
F •R

np∗RE×S1 on S1. Now Rnp2∗RE×S1 is nothing

other than the constant sheaf RS1 as the fibration p2 : E ×S1 −→ S1 is trivial.

Hence all the sheaves d′′Er,n−r∞ are constructible on S1 as constructibility is

preserved by taking subquotients. The following lemma will in particular be

useful for us:

Lemma 4.12. There exists a unique open subset j : U ↪→ S1 such that the

sheaf d′′En,0∞ is isomorphic to the subsheaf j!RU ↪→ RS1 .

Proof. The sheaf d′′En,0∞ = Grn
d′′
F •R

np2∗RE×S1 = d′′F
nRnp2∗RE×S1 =

d′′F
nRS1 is not only a subquotient, but a subsheaf of RS1 . Hence its sup-

port U is open in S1, and d′′En,0∞ is of the form j!RU , where j : U ↪→ S1

denotes the natural inclusion. �

4.4. End of the proof of the Theorem 1.5. Our main Theorem 1.5 follows

immediately from Section 4.11 and the following:

Proposition 4.13. Suppose that X is special affine. Then the inclusion

morphism

d′′E
n,0
∞ ↪→ RS1

is an isomorphism. In particular, d′′E0,n
∞ is zero.
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Proof. The real vector spaces {Ω0,n
EV,θ(EV,θ)}

SAff(V ) ⊂ Ωn(EV ) of SAff(V )-

invariant (0, n)-forms on EV for the θ-deformed action coincide for all θ ∈ S1

and are 1-dimensional. Let ω0,n
EV be a common generator of these spaces. Hence

Ψ−1ω0,n
V defines a π1(E)-invariant global section of Ψ−1Ω0,n

EV , hence a global

section ω0,n
E×S1/S1 of the sheaf Ω0,n

E×S1/S1 on E × S1. As the section ω0,n
EV is

d-closed, the section ω0,n
E×S1/S1 is also d-closed.

As d′′E
n,0
1 =p2∗L′′

n
E×S1/S1 and L′′nE×S1/S1 =ker(d′ : Ω0,n

E×S1/S1−→Ω1,n
E×S1/S1),

the d′-closed global section ω0,n
E×S1/S1 of Ω0,n

E×S1/S1 over E × S1 defines a global

section [ω0,n
E×S1/S1 ] of the sheaf d′′E

n,0
1 over S1, hence of its quotient d′′En,0∞ .

Let us show that this global section [ω0,n
E×S1/S1 ] ∈ d′′En,0∞ (S1) is nonzero.

For θ ∈ S1, consider the morphism

d′′E
n,0
∞ (S1) −→

Ä
d′′E

n,0
∞
ä
θ

βn,0
θ−→ d′′θ

En,0∞,θ,

where the first morphism associates to a global section its germ at θ ∈ S1.

By definition it maps the class [ω0,n
E×S1/S1 ] to the class [ω0,n

θ ] ∈ d′′θ
En,0∞ , where

ω0,n
θ := D∗E,θ(ωEV ) ∈ d′′θ

En,01 .

Consider θ = π/2. Then by definition, d′′π
2

En,0∞ is nothing other than d′E
n,0
∞

and [ω0,n
π
2

] is a generator of d′E
n,0
∞ ' R (see Proposition 3.2). This shows that

the germ of [ω0,n
E×S1/S1 ] ∈ d′′En,0∞ (S1) is nonzero, hence [ω0,n

E×S1/S1 ] ∈ d′′En,0∞ (S1)

is nonzero.

By Section 4.12, the sheaf d′′En,0∞ is of the form j!RU for some open subset

j : U ↪→ S1. Such a sheaf admits a nontrivial global section over S1 if and

only if U = S1. Hence the morphism d′′En,0∞ ↪→ RS1 is an isomorphism.

This finishes the proof of Lemma 4.13 and of Theorem 1.5. �

Remark 4.14. It is worth noticing that if one argues similarly replacing

ω0,n
EV by ωn,0EV (with its obvious meaning), then one obtains a global section of

Ωn,0
E×S1/S1 that is d-closed. However it does not define a section of d′′E

0,n
1 (S1) =

Rnp2∗L′′
0(S1).

Appendix A. Thom class and Euler class: Proof of Proposition 1.7

Let X be a connected oriented n-manifold. Let E be an oriented real vec-

tor bundle on X of rank r > 0, with total space E and projection π : E −→ X.

In this section we recall the definition of the Euler class e(X) ∈ H̃r(X,Z) from

the Thom class of E (where H̃• denotes the reduced cohomology).

Recall that the Thom space Th(E) of the bundle E is the space uniquely

defined in the homotopy category by one of the following equivalent construc-

tions:
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(a) Apply one-point compactification to each fiber of E to obtain a new bundle

Sph(E) over X whose fibers are spheres Sr with basepoints, namely, the

points at ∞. These basepoints specify a section s∞ : X −→ Sph(E).

Define the Thom space as the quotient Th(E) = Sph(E)/s∞(X).

(b) Introduce a auxiliary Riemannian metric on E, and denote by D(E) and

S(E) the associated unit disk bundle and unit sphere bundle in E. Define

Th(E) as the quotient D(E)/S(E).

(c) Define Th(E) = P(E ⊕ 1)/P(E).

Notice that the constructions (a) and (c) are clearly functorial for morphisms

of vector bundles. For a point x ∈ X, let ιx : Ex −→ E denotes the inclusion

of the fiber Ex in E, seen as a morphism of vector bundles over {x} and X

respectively. It induces a map still denoted ιx : Th(Ex) ' Sr −→ Th(E)

between Thom spaces.

Theorem A.1 (Thom isomorphism). Let X be a connected oriented

n-manifold. Let E be an oriented real vector bundle on X of rank r > 0,

with total space E and projection π : E −→ X .

There exists a unique class u ∈ H̃r(Th(E),Z), called the Thom class

of E, such that for any x ∈ X the pull-back ι∗xu is the preferred generator of

H̃r(Th(Ex),Z) ' H̃r(Sr,Z) given by the orientation.

Moreover the map Φ = π∗(·) ∪ u : H•(X,Z) −→ H̃•+r(Th(E),Z) is an

isomorphism of Z-modules.

Let E0 be the complement of the zero-section in E . Then Th(E) is

the cofiber of the inclusion E0 ↪→ E ; in particular, the reduced cohomol-

ogy H̃•(Th(E),Z) is nothing other than the relative cohomology H•(E , E0;Z).

Hence we obtain the following version of the Thom class of E and of the Thom

isomorphism in terms of relative cohomology:

Theorem A.2. Let X be a connected oriented n-manifold. Let E be an

oriented real vector bundle on X of rank r > 0, with total space E and projection

π : E −→ X .

There exists a unique class u ∈ Hr(E , E0;Z), called the Thom class of E,

such that for any x ∈ X , the pull-back ι∗xu is the preferred generator of

Hr(Ex, Ex \ {0};Z) ' H̃r(Sr,Z) given by the orientation.

Moreover the map Φ = π∗(·) ∪ u : H•(X,Z) −→ H•+r(E , E0;Z) is an

isomorphism of Z-modules.

Definition A.3. Let X be a connected oriented n-manifold. Let E be

an oriented real vector bundle on X of rank r > 0, with total space E and

projection π : E −→ X.

The Euler class of E is the class

e(E) = Φ−1u2 ∈ Hr(X,Z).
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The following lemma follows easily from the definition (see [BT82, Prop.

12.4] for a proof with real coefficients):

Lemma A.4. Let X be a connected oriented n-manifold. Let E be an

oriented real vector bundle on X of rank r > 0, with total space E and projection

π : E −→ X . The Euler class e(E) ∈ Hr(X,Z) is the image of the Thom class

u ∈ Hr(E , E0;Z) under the composite

Hr(E , E0;Z)
·|E−→ Hr(E ,Z)

i∗' Hr(X,Z),

where i : X −→ E denotes the zero-section.

We now give a differential geometric interpretation of the Thom class.

Denote by (Ω•cv(E), d) the de Rham complex of differential forms on E with

vertical compact support; see [BT82]. Notice that whenX is closed this complex

coincides with the complex of differential forms on E with compact support

(Ω•c(E), d). By integrating along the fibers one defines a push-forward map of

complexes

π∗ : (Ω•cv(E), d) −→ (Ω•−n(X), d).

One easily shows

Proposition A.5. There exists a canonical isomorphism

ϕ : H∗(Ω•cv(E), d) −→ H∗(E , E0;R)

making the following diagram of isomorphisms commutative:

H∗(Ω•cv(E), d)
ϕ //

π∗
��

H∗(E , E0;R)

Φ−1

��
H∗−n(Ω•(X),R)

∼ // H∗−n(X,R).

Definition A.6. A form ω ∈ Ωr
cv(E) is called a Thom form if its class

[ω] ∈ Hr
cv(E ,R) ' H0(X,R) ' R is a generator.

Proposition 1.7 follows immediately from Lemma A.4 and Proposition A.5.

Appendix B. Quaternionic and para-quaternionic geometry

In this appendix we illustrate the analogy between hypercomplex struc-

tures (or even the more general quaternionic structures) among complex struc-

tures and para-hypercomplex structures (and more generally, para-quaternionic

structures) among para-complex ones.

Let us start with the classical quaternionic geometry, for which we refer

to the original paper of Salamon [Sal86] and more recently the work of Ver-

bitsky (see for example [Ver99]). Let n be a positive integer. Let H denotes

the Hamilton’s quaternion algebra over R (which identifies with the Clifford
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algebra Cl0,2(R)). The natural left-action of the group GL(n,H) on the left

quaternionic vector space Hn, which identifies with R4n as a real vector space,

defines an embedding GL(n,H) ⊂ GL(4n,R), with centralizer GL(1,H) (act-

ing by right scalar multiplication on Hn). The intersection of GL(n,H) with

GL(1,H) is R∗, thus defining a maximal subgroup

GL(n,H)×R∗ GL(1,H) = GL(n,H)×Z/2Z Sp(1) ⊂ GL(4n,R),

where Sp(1) ' SU(2) is the 3-sphere of quaternionic units.

Definition B.1. Let M be a differential manifold of dimension 4n. An

almost quaternionic structure on M is a GL(n,H)×Z/2ZSp(1)-structure on M .

A quaternionic structure on M is an almost quaternionic structure admitting

a torsion-free connection.

An almost hypercomplex structure on M is a GL(n,H)-structure on M . A

hypercomplex structure on M is an almost hypercomplex structure admitting

a torsion-free connection.

Equivalently, an almost hypercomplex structure on M is the data of two

endomorphisms I1, I2 ∈ End (TM) satisfying I2
1 = I2

2 = −1 (i.e., I1 and I2

are almost complex structures on M) and I1I2 = −I2I1, hence generating an

action of the algebra H on TM . This action integrates to an action of the

Lie group Sp(1) ' SU(2) on TM , generated by the one-parameter subgroups

with tangent vectors I1, I2 and I1I2. This almost hypercomplex structure is a

hypercomplex structure if and only if the almost complex structures I1 and I2

are integrable, or equivalently if there exists a (unique) torsion-free connection

∇ on TM such that ∇I1 = ∇I2 = 0 (the Obata connection).

Para-quaternionic geometry is defined similarly, replacing the quaternion

algebra by the para-quaternion algebra Cl1,1(R) ' gl2(R), i.e., the 4-dimen-

sional R-algebra generated by two elements j and i satisfying j2 = 1, i2 = −1

and ji = −ij. Consider the inclusion of groups

GL(n,R) = GL(n,C) ∩ (GL(n,R)×GL(n,R))

⊂ GL(n,R)×GL(n,R) ⊂ GL(2n,R),
(19)

given by A ∈ GL(n,R) 7→
(
A 0
0 A

)
∈ GL(2n,R). The centralizer of GL(n,R) in

GL(2n,R) is GL(2,R), with intersection R∗, thus defining an embedding

GL(n,R)×R∗ GL(2,R) = GL(n,R)×Z/2Z SL(2,R) ⊂ GL(2n,R).

Definition B.2. Let M be a differential manifold of dimension 2n. An

almost para-quaternionic structure on M is a GL(n,R)×Z/2ZSL(2,R)-structure

on M . A quaternionic structure on M is an almost quaternionic structure

admitting a torsion-free connection.

An almost para-hypercomplex structure on M is a GL(n,R)-structure

on M . A para-hypercomplex structure on M is an almost para-hypercomplex

structure admitting a torsion-free connection.
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Remark B.3. In the literature para-hypercomplex structures are some-

times called ”complex-product” structures.”

Equivalently [And05], an almost para-hypercomplex structure on M is the

data of an almost-complex structure I ∈ End (TM) and an almost product

structure J ∈ End (TM) satisfying IJ = −JI. (It follows immediately that J

and IJ are necessarily para-complex structures.) The endomorphisms I and J

generate an action of the algebra Cl1,1(R) of para-quaternions on TM . This

action integrates to an action of the Lie group SU(1, 1) ' SL(2,R) on TM , gen-

erated by the one-parameter subgroups with tangent vectors I, J and IJ . This

is a para-hypercomplex structure if and only if the almost complex structure I

and the almost product structure J are integrable, or equivalently if there

exists a (unique) torsion-free connection ∇ on TM such that ∇I = ∇J = 0.
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