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Positive scalar curvature on foliations

By Weiping Zhang

Abstract

We generalize classical theorems due to Lichnerowicz and Hitchin on

the existence of Riemannian metrics of positive scalar curvature on spin

manifolds to the case of foliated spin manifolds. As a consequence, we

show that there is no foliation of positive leafwise scalar curvature on any

torus, which generalizes the famous theorem of Schoen-Yau and Gromov-

Lawson on the nonexistence of metrics of positive scalar curvature on torus

to the case of foliations. Moreover, our method, which is partly inspired

by the analytic localization techniques of Bismut-Lebeau, also applies to

give a new proof of the celebrated Connes vanishing theorem without using

noncommutative geometry.
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0. Introduction

It has been an important subject in differential geometry to study when a

smooth manifold carries a Riemannian metric of positive scalar curvature (cf.

[18, Ch. IV] and [12]). In this paper, we study related problems on foliations.

Let F be an integrable subbundle of the tangent vector bundle TM of a

smooth manifold M . For any Euclidean metric gF on F , let kF ∈ C∞(M),

which will be called the leafwise scalar curvature associated to gF , be defined

as follows: for any x ∈ M , the integrable subbundle F determines a leaf Fx
passing through x such that F |Fx = TFx. Then, gF determines a Riemannian

metric on Fx. Let kFx denote the scalar curvature of this Riemannian metric.

We define

(0.1) kF (x) = kFx(x).

For a closed spin manifoldM , let “A(M) be the canonicalKO-characteristic

number of M such that if dimM = 8k + 4i with i = 0 or 1, then “A(M) =
3+(−1)i

4
“A(M);1 if dimM = 8k+i with i = 1 or 2, then “A(M) ∈ Z2 is the Atiyah-

Milnor-Singer α invariant,2 while in other dimensions one takes “A(M) = 0.

The main result of this paper can be stated as follows.

Theorem 0.1. Let F be an integrable subbundle of the tangent bundle

of a closed spin manifold M . If F carries a metric of positive leafwise scalar

curvature, then “A(M) = 0.

When F = TM , one recovers the classical theorems due to Lichnerowicz

[19] (for the case of dimM = 4k) and Hitchin [17] (for the cases of dimM =

8k + 1 and 8k + 2).

Example 0.2. Take any 8k + 1 dimensional closed spin manifold M such

that “A(M) 6= 0. By a result of Thurston [27], there always exists a codimension

one foliation on M . However, by our result, there is no metric of positive

leafwise scalar curvature on the associated integrable subbundle of TM .

Remark 0.3. A longstanding open question in foliation theory (cf. [33,

Rem. C14]) is whether the existence of gF with kF > 0 implies the existence of

gTM with kTM > 0. This question admits an easy positive answer in the case

where (M,F ) carries a transverse Riemannian structure. (When such a trans-

verse Riemannian structure exists, (M,F ) is called a Riemannian foliation.)

An approach to this question for codimension one foliations is outlined in the

long paper of Gromov [12, p. 193].

1Cf. [31, pp. 13] for a definition of the Hirzebruch Â-genus Â(M).
2Cf. [18, §2.7] for a definition.
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Combining Theorem 0.1 with the well-known results of Gromov-Lawson

[13] and Stolz [26], one gets the following consequence, which provides a posi-

tive answer to the above question for simply connected manifolds of dimension

greater than or equals to five.

Corollary 0.4. Let F be an integrable subbundle of the tangent bundle

of a closed simply connected manifold M with dimM ≥ 5. If F carries a metric

of positive leafwise scalar curvature, then M admits a Riemannian metric of

positive scalar curvature.

For nonsimply connected manifolds, recall that a famous result due to

Schoen-Yau [25] and Gromov-Lawson [14] states that there is no metric of

positive scalar curvature on any torus. By combining Theorem 0.1 with the

techniques of Lusztig [23] and Gromov-Lawson [14], one obtains the following

generalization to the case of foliations.

Corollary 0.5. There exists no foliation (Tn, F ) on any torus Tn such

that the integrable subbundle F of T (Tn) carries a metric of positive leafwise

scalar curvature.

If F is further assumed to be spin, then Corollaries 0.4 (in the case of

dimM = 4k, k > 1) and 0.5 can also be deduced from the following celebrated

vanishing theorem of Connes, which provides another kind of generalization of

the Lichnerowicz theorem [19] to the case of foliations.

Theorem 0.6 (Connes [10, Th. 0.2]). Let F be a spin integrable subbundle

of the tangent bundle of a compact oriented manifold M . If F carries a metric

of positive leafwise scalar curvature, then “A(M) = 0.

Recall that the proof of Theorem 0.6 outlined in [10] makes use of non-

commutative geometry in an essential way. It is based on the Connes-Skandalis

longitudinal index theorem for foliations [11] as well as the techniques of cyclic

cohomology. Thus it relies on the spin structure on F , and we do not see how

to adapt it to prove Theorem 0.1, where one assumes TM to be spin instead.

On the other hand, while Theorem 0.1 is different from Connes’ result

and also covers the cases of dimM = 8k + 1 and 8k + 2 where the Hirzebruch“A-genus vanishes tautologically, a common difficulty for both Theorems 0.1

and 0.6 is that there might be no transverse Riemannian structure on the

underlying foliated manifold.

To overcome this difficulty, Connes [10] introduces an important geomet-

ric idea, which reduces the original problem to that on a fibration3 over the

foliation under consideration. The key advantage of this fibration is that the

3This will be called a Connes fibration in what follows.
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lifted (from the original) foliation is almost isometric, i.e., very close to Rie-

mannian foliations. On the other hand, however, this fibration is noncompact.

This makes the proof of Theorem 0.6 in [10], which relies essentially on the

noncommutative techniques, highly nontrivial.

Our proof of Theorem 0.1 is differential geometric and does not use non-

commutative geometry. It makes use of the sub-Dirac operators constructed

in [22, §2b)] on the Connes fibration, as well as the adiabatic limit computa-

tions on foliations also considered in [22]. The key point is that while Connes’

noncommutative proof of Theorem 0.6 relies heavily on the analysis near the

(fiberwise) infinity of the associated Connes fibration, our main concern is on

a compact subset of the Connes fibration. To be more precise, inspired by [5],

[6] and [10], we introduce a specific deformation of the sub-Dirac operator on

the Connes fibration (cf. (2.21) in Section 2.2) and show that the deformed

operator is “invertible” on certain compact subsets of the Connes fibration.

Moreover, by modifying the sub-Dirac operators mentioned above (see

Section 1.4 for more details), our method applies to give a purely geometric

proof of Theorem 0.6. This new proof provides a positive answer to a long-

standing question in index theory (cf. [16, p. 5 of Lecture 9]).

We would like to mention that the idea of constructing sub-Dirac operators

has also been used in [20] to prove a generalization of the Atiyah-Hirzebruch

vanishing theorem for circle actions [3] to the case of foliations.

This paper is organized as follows. In Section 1, we discuss the case of

almost isometric foliations and carry out the local computations. We also in-

troduce the sub-Dirac operator in this case and prove Theorem 0.6 in the case

where the underlying foliation is compact. In Section 2, we work on noncom-

pact Connes fibrations and carry out the proofs of Theorems 0.1 and 0.6. We

also include some new results in the end of the paper.

1. Adiabatic limit and almost isometric foliations

In this section, we discuss the geometry of almost isometric foliations in

the sense of Connes [10]. We introduce for this kind of foliations a rescaled

metric and show that the leafwise scalar curvature shows up from the limit

behavior of the rescaled scalar curvature. We also introduce in this setting the

sub-Dirac operators inspired by the original construction given in [22]. Finally,

by combining the above two procedures, we prove a vanishing result when the

almost isometric foliation under discussion is compact.

This section is organized as follows. In Section 1.1, we recall the definition

of the almost isometric foliation in the sense of Connes. In Section 1.2 we

introduce a rescaling of the given metric on the almost isometric foliation and

study the corresponding limit behavior of the scalar curvature. In Section 1.3,

we study Bott type connections on certain bundles transverse to the integrable
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subbundle. In Section 1.4, we construct the required sub-Dirac operator and

compute the corresponding Lichnerowicz type formula. In Section 1.5 we prove

a vanishing result when the almost isometric foliation is compact and verifies

the conditions in Theorem 0.6.

1.1. Almost isometric foliations. Let (M,F ) be a foliated manifold, where

F is an integrable subbundle of the tangent vector bundle TM of a smooth

manifold M ; i.e., for any smooth sections X, Y ∈ Γ(F ), one has

[X,Y ] ∈ Γ(F ).(1.1)

Take a splitting TM = F ⊕ TM/F . Let pTM/F : TM = F ⊕ TM/F →
TM/F be the canonical projection. Following [7], we define the Bott connec-

tion to be any connection ∇TM/F on TM/F so that for any X ∈ Γ(F ) and

U ∈ Γ(TM/F ), one has

∇TM/F
X U = pTM/F [X,U ].(1.2)

The key property of the Bott connection is that it is leafwise flat; that is, for

any X, Y ∈ Γ(F ), one has (cf. [31, Lemma 1.14])Ä
∇TM/F

ä2
(X,Y ) = 0.(1.3)

However, it may happen that ∇TM/F does not preserve any metric on TM/F .

Let G be the holonomy groupoid of (M,F ) (cf. [28]).

We make the assumption that there is a proper subbundle E of TM/F

and choose a splitting

TM/F = E ⊕ (TM/F )/E.(1.4)

Let q1, q2 denote the ranks of E and (TM/F )/E respectively.

Definition 1.1 (Connes [10, §4]). If there exists a metric gTM/F on TM/F

with its restrictions to E and (TM/F )/E such that the action of G on TM/F

takes the form Ç
O(q1) 0

A O(q2)

å
,(1.5)

where O(q1), O(q2) are orthogonal matrices of ranks q1, q2 respectively, and

A is a q2 × q1 matrix, then we say that (M,F ) carries an almost isometric

structure.

Clearly, the existence of the almost isometric structure does not depend

on the splitting (1.4). We assume from now on that (M,F ) carries an almost

isometric structure as above.

For simplicity, we denote E, (TM/F )/E by F⊥1 , F⊥2 respectively.
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Let gF be a metric on F . Let gF
⊥
1 , gF

⊥
2 be the restrictions of gTM/F to

F⊥1 , F⊥2 . Let gTM be a metric on TM so that we have the orthogonal splitting

TM = F ⊕ F⊥1 ⊕ F⊥2 , gTM = gF ⊕ gF⊥1 ⊕ gF⊥2 .(1.6)

Let ∇TM be the Levi-Civita connection associated to gTM .

From the almost isometric condition (1.5), one deduces that for any X ∈
Γ(F ), Ui, Vi ∈ Γ(F⊥i ), i = 1, 2, the following identities, which may be thought

of as infinitesimal versions of (1.5), hold (cf. [22, (A.5)]):

〈[X,Ui], Vi〉+ 〈Ui, [X,Vi]〉 = X〈Ui, Vi〉,
〈[X,U2], U1〉 = 0.

(1.7)

Equivalently, ¨
X,∇TMUi Vi +∇TMVi Ui

∂
= 0,¨

∇TMX U2, U1

∂
+
¨
X,∇TMU2

U1

∂
= 0.

(1.8)

In this paper, when there is no further notice, we also make the following

assumption. This assumption holds by the Connes fibration to be dealt with

in the next section.

Definition 1.2. An almost isometric foliation as above verifies Condition

(C) if F⊥2 is also integrable. That is, for any U2, V2 ∈ Γ(F⊥2 ), one has

[U2, V2] ∈ Γ
Ä
F⊥2
ä
.(1.9)

1.2. Adiabatic limit and the scalar curvature. In this subsection, we study

the relationship between the leafwise scalar curvature and the scalar curvature

on the total manifold of an almost isometric foliation. For convenience, we

recall the formula for the Levi-Civita connection (cf. [4, (1.18)]) that for any

X, Y, Z ∈ Γ(TM),

2
¨
∇TMX Y,Z

∂
= X〈Y,Z〉+ Y 〈X,Z〉 − Z〈X,Y 〉

+ 〈[X,Y ], Z〉 − 〈[X,Z], Y 〉 − 〈[Y, Z], X〉.
(1.10)

Recall that by [22, Prop. A.2], if one rescales the metric gF
⊥
1 to 1

ε2
gF
⊥
1 and

takes ε → 0, then the almost isometric foliation in the sense of Definition 1.1

becomes an almost Riemannian foliation in the sense of [22, Def. 2.1]. In order

to get information on the leafwise scalar curvature, one further rescales the

metric 1
ε2
gF
⊥
1 ⊕gF⊥2 (standardly) to 1

β2 ( 1
ε2
gF
⊥
1 ⊕gF⊥2 ) (compare with [22, (1.4)]

and [21]), which is equivalent to rescaling gF to β2gF . Putting these two rescal-

ing procedures together, it is natural to introduce the following deformation

of gTM .
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For any β, ε > 0, let gTMβ,ε be the rescaled Riemannian metric on TM

defined by

gTMβ,ε = β2gF ⊕ 1

ε2
gF
⊥
1 ⊕ gF⊥2 .(1.11)

We will always assume that 0 < β, ε ≤ 1.

We will use the subscripts and/or superscripts “β, ε” to decorate the

geometric data associated to gTMβ,ε . For example, ∇TM,β,ε will denote the Levi-

Civita connection associated to gTMβ,ε . When the corresponding notation does

not involve “β, ε,” we will mean that it corresponds to the case of β = ε = 1.

Let p, p⊥1 , p⊥2 be the orthogonal projections from TM to F , F⊥1 , F⊥2 with

respect to the orthogonal splitting (1.6). Let ∇F,β,ε, ∇F⊥1 ,β,ε, ∇F⊥2 ,β,ε be the

Euclidean connections on F , F⊥1 , F⊥2 defined by

∇F,β,ε = p∇TM,β,εp, ∇F⊥1 ,β,ε = p⊥1 ∇TM,β,εp⊥1 , ∇F
⊥
2 ,β,ε = p⊥2 ∇TM,β,εp⊥2 .

(1.12)

In particular, one has

∇F = p∇TMp, ∇F⊥1 = p⊥1 ∇TMp⊥1 , ∇F
⊥
2 = p⊥2 ∇TMp⊥2 .(1.13)

By (1.10)–(1.13) and the integrability of F , the following identities hold

for X ∈ Γ(F ):

∇F,β,ε = ∇F , p∇TM,β,ε
X p⊥i = p∇TMX p⊥i , i = 1, 2,

p⊥1 ∇
TM,β,ε
X p = β2ε2p⊥1 ∇TMX p, p⊥2 ∇

TM,β,ε
X p = β2p⊥2 ∇TMX p.

(1.14)

From (1.7)–(1.11), we deduce that for X ∈ Γ(F ), Ui, Vi ∈ Γ(F⊥i ), i = 1, 2,¨
∇TM,β,ε
U1

V1, X
∂

=
¨
∇TMU1

V1, X
∂

=
1

2
〈[U1, V1] , X〉 ,(1.15)

while ¨
∇TM,β,ε
U2

V2, X
∂

=
¨
∇TMU2

V2, X
∂

=
1

2
〈[U2, V2] , X〉 = 0.(1.16)

Equivalently, for any Ui ∈ Γ(F⊥i ), i = 1, 2,

p⊥1 ∇
TM,β,ε
U1

p = β2ε2p⊥1 ∇TMU1
p, p⊥2 ∇

TM,β,ε
U2

p = 0.(1.17)

Similarly, one verifies that¨
∇TM,β,ε
U1

X,U2

∂
=

1

2
〈[U1, X], U2〉 −

β2

2
〈[U1, U2], X〉 ,¨

∇TM,β,ε
U2

X,U1

∂
=
ε2

2
〈[U1, X], U2〉+

β2ε2

2
〈[U1, U2], X〉 .

(1.18)

For convenience of the later computations, we collect the asymptotic be-

havior of various covariant derivatives in the following lemma. These formulas

can be derived by applying (1.7)–(1.18). The inner products which appear in

the lemma correspond to β = ε = 1.
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Lemma 1.3. The following formulas hold for X, Y, Z ∈ Γ(F ), Ui, Vi, Wi

∈ Γ(F⊥i ) with i = 1, 2, when β > 0, ε > 0 are small :¨
∇TM,β,ε
X Y,Z

∂
= O(1),

¨
∇TM,β,ε
X Y,U1

∂
= O

Ä
β2ε2

ä
,¨

∇TM,β,ε
X Y, U2

∂
= O

Ä
β2
ä
,

(1.19) ¨
∇TM,β,ε
X U1, Y

∂
= O (1) ,

¨
∇TM,β,ε
X U1, V1

∂
= O (1) ,¨

∇TM,β,ε
X U1, U2

∂
= O (1) ,

(1.20) ¨
∇TM,β,ε
X U2, Y

∂
= O (1) ,

¨
∇TM,β,ε
X U2, U1

∂
= O

Ä
ε2
ä
,¨

∇TM,β,ε
X U2, V2

∂
= O (1) ,

(1.21) ¨
∇TM,β,ε
U1

X,Y
∂

= O (1) ,
¨
∇TM,β,ε
U1

X,V1

∂
= O

Ä
β2ε2

ä
,¨

∇TM,β,ε
U1

X,U2

∂
= O (1) ,

(1.22) ¨
∇TM,β,ε
U1

V1, X
∂

= O (1) ,
¨
∇TM,β,ε
U1

V1,W1

∂
= O (1) ,¨

∇TM,β,ε
U1

V1, U2

∂
= O

Å
1

ε2

ã
,

(1.23) ¨
∇TM,β,ε
U1

U2, X
∂

= O

Å
1

β2

ã
,
¨
∇TM,β,ε
U1

U2, V1

∂
= O (1) ,¨

∇TM,β,ε
U1

U2, V2

∂
= O (1) ,

(1.24) ¨
∇TM,β,ε
U2

X,Y
∂

= O (1) ,
¨
∇TM,β,ε
U2

X,U1

∂
= O

Ä
ε2
ä
,¨

∇TM,β,ε
U2

X,V2

∂
= 0,

(1.25) ¨
∇TM,β,ε
U2

U1, X
∂

= O

Å
1

β2

ã
,
¨
∇TM,β,ε
U2

U1, V1

∂
= O (1) ,¨

∇TM,β,ε
U2

U1, V2

∂
= O (1) ,

(1.26) ¨
∇TM,β,ε
U2

V2, X
∂

= 0,
¨
∇TM,β,ε
U2

V2, U1

∂
= O

Ä
ε2
ä
,¨

∇TM,β,ε
U2

V2,W2

∂
= O (1) .

(1.27)

Proof. The formulas in (1.19) follow from (1.14).

The first formula in (1.20) follows from (1.11) and the second formula in

(1.19). The second one is trivial, and the third one follows from (1.18).

The first formula in (1.21) follows from (1.11) and the third formula in

(1.19). The second one follows from the second formulas in (1.7) and (1.18).

The third one is trivial.



POSITIVE SCALAR CURVATURE ON FOLIATIONS 1043

The first formula in (1.22) follows from (1.1), (1.10) and (1.11). The

second one follows from (1.17) and the third one follows from the first formula

in (1.18).

The first formula in (1.23) follows from (1.11) and the second formula in

(1.22). The second formula is trivial. For the third formula, the 1
ε2

factor

comes from the terms involving 〈[U1, U2], V1〉, 〈[V1, U2], U1〉 and U2〈U1, V1〉.
The first formula in (1.24) follows from the first formula in (1.18). The

second one is trivial, and the third one follows from (1.9).

The first formula in (1.25) follows from the first formula in (1.14). The

second one follows from the second formula in (1.18), and third one follows

from (1.16).

The first formula in (1.26) follows from (1.11) and the second formula in

(1.25). The second one is trivial, and the third one follows from (1.9).

The first formula in (1.27) follows from the third formula in (1.25). The

second one follows from the third formula in (1.26), and the third one is trivial.

The proof of Lemma 1.3 is completed. �

In what follows, when we compute the asymptotics of various covariant

derivatives, we will simply use the above asymptotic formulas freely without

further notice.

Let RTM,β,ε = (∇TM,β,ε)2 be the curvature of ∇TM,β,ε. Then for any

X, Y ∈ Γ(TM), one has the following standard formula:

RTM,β,ε(X,Y ) = ∇TM,β,ε
X ∇TM,β,ε

Y −∇TM,β,ε
Y ∇TM,β,ε

X −∇TM,β,ε
[X,Y ] .(1.28)

Let RF = (∇F )2 be the curvature of ∇F . Let kTM,β,ε, kF denote the scalar

curvatures of gTM,β,ε, gF respectively. Recall that kF is defined in (0.1). The

following formula for kF is obvious,

kF = −
rk(F )∑
i, j=1

¨
RF (fi, fj) fi, fj

∂
,(1.29)

where fi, i = 1, . . . , rk(F ), is an orthonormal basis of (F, gF ). Clearly, when

F = TM , it reduces to the usual definition of the scalar curvature kTM of gTM .

Proposition 1.4. If Condition (C) holds, then when β > 0, ε > 0 are

small, the following formula holds uniformly on any compact subset of M ,

kTM,β,ε =
kF

β2
+O

Ç
1 +

ε2

β2

å
.(1.30)
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Proof. By (1.1), (1.14), (1.28) and Lemma 1.3, one deduces that when

β > 0, ε > 0 are very small, for any X, Y ∈ Γ(F ), one has¨
RTM,β,ε(X,Y )X,Y

∂
=
¨
∇TM,β,ε
X

Ä
p+ p⊥1 + p⊥2

ä
∇TM,β,ε
Y X,Y

∂
−
¨
∇TM,β,ε
Y

Ä
p+ p⊥1 + p⊥2

ä
∇TM,β,ε
X X,Y

∂
−
〈
∇TM,β,ε

[X,Y ] X,Y
〉

=
¨
RF (X,Y )X,Y

∂
− β2ε2

¨
p⊥1 ∇TMY X,∇TMX Y

∂
− β2

¨
p⊥2 ∇TMY X,∇TMX Y

∂
+ β2ε2

¨
p⊥1 ∇TMX X,∇TMY Y

∂
+ β2

¨
p⊥2 ∇TMX X,∇TMY Y

∂
=
¨
RF (X,Y )X,Y

∂
+O

Ä
β2
ä
.

(1.31)

For X ∈ Γ(F ), U ∈ Γ(F⊥1 ), by (1.7)–(1.28), one finds that when β, ε > 0

are small,¨
RTM,β,ε(X,U)X,U

∂
=
¨
∇TM,β,ε
X

Ä
p+ p⊥1 + p⊥2

ä
∇TM,β,ε
U X,U

∂
−
¨
∇TM,β,ε
U

Ä
p+ p⊥1 + p⊥2

ä
∇TM,β,ε
X X,U

∂
−
≠
∇TM,β,ε

(p+p⊥1 +p⊥2 )[X,U ]
X,U

∑
= β2ε2

¨
∇TMX p∇TMU X,U

∂
+ β2ε2

¨
∇TM,β,ε
X p⊥1 ∇TMU X,U

∂
− ε2

¨
p⊥2 ∇

TM,β,ε
U X,∇TM,β,ε

X U
∂

− β2ε2
¨
∇TMU p∇TMX X,U

∂
− β2ε2

¨
∇TM,β,ε
U p⊥1 ∇TMX X,U

∂
+ ε2

¨
p⊥2 ∇

TM,β,ε
X X,∇TM,β,ε

U U
∂

− β2ε2
≠
∇TM(p+p⊥1 )[X,U ]

X,U

∑
−
≠
∇TM,β,ε

p⊥2 [X,U ]
X,U

∑
= O

Ä
β2 + ε2

ä
.

(1.32)

Similarly, for X ∈ Γ(F ), U ∈ Γ(F⊥2 ), one has that when β > 0, ε > 0 are

small,¨
RTM,β,ε(X,U)X,U

∂
=
¨
∇TM,β,ε
X

Ä
p+ p⊥1 + p⊥2

ä
∇TM,β,ε
U X,U

∂
−
¨
∇TM,β,ε
U

Ä
p+ p⊥1 + p⊥2

ä
∇TM,β,ε
X X,U

∂
−
≠
∇TM,β,ε

(p+p⊥1 +p⊥2 )[X,U ]
X,U

∑
= β2

¨
∇TMX p∇TMU X,U

∂
− 1

ε2

¨
p⊥1 ∇

TM,β,ε
U X,∇TM,β,ε

X U
∂

+ β2
¨
∇TM,β,ε
X p⊥2 ∇TMU X,U

∂
− β2

¨
∇TMU p∇TMX X,U

∂
− β2ε2

¨
∇TM,β,ε
U p⊥1 ∇TMX X,U

∂
− β2

¨
∇TM,β,ε
U p⊥2 ∇TMX X,U

∂
− β2

¨
∇TMp[X,U ]X,U

∂
− β2

〈
∇TM
p⊥2 [X,U ]

X,U
〉

= O
Ä
β2 + ε2

ä
.

(1.33)
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For U, V ∈ Γ(F⊥1 ), one verifies that¨
RTM,β,ε(U, V )U, V

∂
=
¨
∇TM,β,ε
U

Ä
p+ p⊥1 + p⊥2

ä
∇TM,β,ε
V U, V

∂
−
¨
∇TM,β,ε
V

Ä
p+ p⊥1 + p⊥2

ä
∇TM,β,ε
U U, V

∂
−
≠
∇TM,β,ε

(p+p⊥1 +p⊥2 )[U,V ]
U, V

∑
= β2ε2

¨
∇TMU p∇TM,β,ε

V U, V
∂

+
¨
∇TMU p⊥1 ∇TMV U, V

∂
− ε2

¨
p⊥2 ∇

TM,β,ε
V U,∇TM,β,ε

U V
∂
− β2ε2

¨
∇TMV p∇TM,β,ε

U U, V
∂

−
¨
∇TMV p⊥1 ∇TMU U, V

∂
+ ε2

¨
p⊥2 ∇

TM,β,ε
U U,∇TM,β,ε

V V
∂

−
〈
∇TM,β,ε
p[U,V ] U, V

〉
−
〈
∇TM
p⊥1 [U,V ]

U, V
〉
−
≠
∇TM,β,ε

p⊥2 [U,V ]
U, V

∑
= −ε2

¨
p⊥2 ∇

TM,β,ε
V U,∇TM,β,ε

U V
∂

+ ε2
¨
p⊥2 ∇

TM,β,ε
U U,∇TM,β,ε

V V
∂

+O (1) = O

Å
1

ε2

ã
,

(1.34)

from which one gets that when β > 0, ε > 0 are small,

ε2
¨
RTM,β,ε(U, V )U, V

∂
= O (1) .(1.35)

For U, V ∈ Γ(F⊥2 ), one verifies directly that¨
RTM,β,ε(U, V )U, V

∂
=
¨
∇TM,β,ε
U

Ä
p+ p⊥1 + p⊥2

ä
∇TM,β,ε
V U, V

∂
−
¨
∇TM,β,ε
V

Ä
p+ p⊥1 + p⊥2

ä
∇TM,β,ε
U U, V

∂
−
〈
∇TM,β,ε

[U,V ] U, V
〉

= β2
¨
∇TMU p∇TM,β,ε

V U, V
∂
− 1

ε2

¨
p⊥1 ∇

TM,β,ε
V U,∇TM,β,ε

U V
∂

+
¨
∇TMU p⊥2 ∇TMV U, V

∂
− β2

¨
∇TMV p∇TM,β,ε

U U, V
∂

+
1

ε2

¨
p⊥1 ∇

TM,β,ε
U U,∇TM,β,ε

V V
∂
−
¨
∇TMV p⊥2 ∇TMU U, V

∂
−
¨
∇TM[U,V ]U, V

∂
= O(1).

(1.36)

For U ∈ Γ(F⊥1 ), V ∈ Γ(F⊥2 ), one verifies directly that,¨
RTM,β,ε(U, V )U, V

∂
=
¨
∇TM,β,ε
U

Ä
p+ p⊥1 + p⊥2

ä
∇TM,β,ε
V U, V

∂
−
¨
∇TM,β,ε
V

Ä
p+ p⊥1 + p⊥2

ä
∇TM,β,ε
U U, V

∂
−
〈
∇TM,β,ε

[U,V ] U, V
〉

= −β2
¨
p∇TM,β,ε

V U,∇TM,β,ε
U V

∂
− 1

ε2

¨
p⊥1 ∇

TM,β,ε
V U,∇TM,β,ε

U V
∂

+
¨
∇TM,β,ε
U p⊥2 ∇

TM,β,ε
V U, V

∂
+ β2

¨
p∇TM,β,ε

U U,∇TM,β,ε
V V

∂
+

1

ε2

¨
p⊥1 ∇

TM,β,ε
U U,∇TM,β,ε

V V
∂
−
¨
∇TMV p⊥2 ∇

TM,β,ε
U U, V

∂
+

1

ε2

〈
U,∇TM,β,ε

[U,V ] V
〉

= O

Å
1

ε2
+

1

β2

ã
,

(1.37)
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from which one gets that when β > 0, ε > 0 are small,

ε2
¨
RTM,β,ε(U, V )U, V

∂
=
¨
RTM,β,ε(V,U)V,U

∂
= O

Ç
1 +

ε2

β2

å
.(1.38)

From (1.29), (1.31)–(1.33), (1.35), (1.36) and (1.38), one gets (1.30). �

1.3. Bott connections on F⊥1 and F⊥2 . From (1.7) and (1.9)–(1.12), one

verifies directly that for X ∈ Γ(F ), Ui, Vi ∈ Γ(F⊥i ), i = 1, 2, one has≠
∇F

⊥
1 ,β,ε
X U1, V1

∑
= 〈[X,U1] , V1〉 −

β2ε2

2
〈[U1, V1] , X〉 ,≠

∇F
⊥
2 ,β,ε
X U2, V2

∑
= 〈[X,U2] , V2〉 .

(1.39)

By (1.39), one has that for X ∈ Γ(F ), Ui ∈ Γ(F⊥i ), i = 1, 2,

lim
ε→0+

∇F
⊥
i ,β,ε
X Ui = ‹∇F⊥iX Ui := p⊥i [X,Ui] .(1.40)

Let ‹∇F⊥i be the connection on F⊥i defined by the second equality in (1.40)

and by ‹∇F⊥iU Ui = ∇F
⊥
i
U Ui for U ∈ Γ(F⊥1 ⊕ F⊥2 ). In view of (1.2) and (1.40),

we call ‹∇F⊥i a Bott connection on F⊥i for i = 1 or 2. Let ‹RF⊥i denote the

curvature of ‹∇F⊥i for i = 1, 2.

The following result holds without Condition (C).

Lemma 1.5. For X, Y ∈ Γ(F ) and i = 1, 2, the following identity holds :‹RF⊥i (X,Y ) = 0.(1.41)

Proof. We proceed as in [31, Proof of Lemma 1.14]. By (1.40) and the

standard formula for the curvature (cf. [31, (1.3)]), for any U ∈ Γ(F⊥i ), i = 1, 2,

one has ‹RF⊥i (X,Y )U = ‹∇F⊥iX ‹∇F⊥iY U − ‹∇F⊥iY ‹∇F⊥iX U − ‹∇F⊥i[X,Y ]U

= p⊥i
Ä
[X, [Y,U ]] + [Y, [U,X]] + [U, [X,Y ]]

ä
− p⊥i

î
X,
Ä
Id− p⊥i

ä
[Y, U ]

ó
− p⊥i

î
Y,
Ä
Id− p⊥i

ä
[U,X]

ó
= −p⊥i

î
X,
Ä
p⊥1 + p⊥2 − p⊥i

ä
[Y,U ]

ó
− p⊥i

î
Y,
Ä
p⊥1 + p⊥2 − p⊥i

ä
[U,X]

ó
,

(1.42)

where the last equality follows from the Jacobi identity and the integrability

of F .

Now if i = 1, then by (1.7), one has U ∈ Γ(F⊥1 ) and

p⊥1
î
X, p⊥2 [Y,U ]

ó
= p⊥1

î
Y, p⊥2 [U,X]

ó
= 0.(1.43)
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While if i = 2, still by (1.7), one has U ∈ Γ(F⊥2 ) and

p⊥1 [Y, U ] = p⊥1 [U,X] = 0.(1.44)

From (1.42)–(1.44), one gets (1.41). The proof of Lemma 1.5 is completed.

�

Remark 1.6. For i = 1, 2, let RF
⊥
i ,β,ε denote the curvature of ∇F⊥i ,β,ε.

From (1.39)–(1.41), one finds that for any X, Y ∈ Γ(F ), when β > 0, ε > 0

are small, the following identity holds:

RF
⊥
i ,β,ε(X,Y ) = O

Ä
β2ε2

ä
.(1.45)

On the other hand, for i = 1, 2, by using (1.7), (1.9), (1.10), (1.12) and

(1.28), one verifies directly that when β > 0, ε > 0 are small, the following

identity holds:

RF
⊥
i ,β,ε = O (1) .(1.46)

1.4. Sub-Dirac operators associated to spin integrable subbundles. We as-

sume for simplicity that TM , F , F⊥i , i = 1, 2, are all oriented and of even

rank, with the orientation of TM being compatible with the orientations on

F , F⊥1 and F⊥2 through (1.6). We further assume that F is spin and carries a

fixed spin structure.

Let S(F ) = S+(F )⊕S−(F ) be the Hermitian bundle of spinors associated

to (F, gF ). For any X ∈ Γ(F ), the Clifford action c(X) exchanges S±(F ).

Let i = 1 or 2. Let Λ∗(F⊥i ) denote the exterior algebra bundle of F⊥,∗i .

Then Λ∗(F⊥i ) carries a canonically induced metric gΛ∗(F⊥i ) from gF
⊥
i . For any

U ∈ F⊥i , let U∗ ∈ F⊥,∗i correspond to U via gF
⊥
i . For any U ∈ Γ(F⊥i ), set

c(U) = U∗ ∧ −iU , ĉ(U) = U∗ ∧+iU ,(1.47)

where U∗∧ and iU are the exterior and interior multiplications by U∗ and U

on Λ∗(F⊥i ).

Denote q = rk(F ), qi = rk(F⊥i ).

Let h1, . . . , hqi be an oriented orthonormal basis of F⊥i . Set

τ
(
F⊥i , g

F⊥i
)

=

Ç
1√
−1

å qi(qi+1)

2

c (h1) · · · c (hqi) .(1.48)

Then

τ
(
F⊥i , g

F⊥i
)2

= IdΛ∗(F⊥i ).(1.49)

Set

Λ∗±
Ä
F⊥i
ä

=
{
h ∈ Λ∗

Ä
F⊥i
ä

: τ
(
F⊥i , g

F⊥i
)
h = ±h

}
.(1.50)
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Since qi is even, for any h ∈ F⊥i , c(h) anti-commutes with τ(F⊥i , g
F⊥i ),

while ĉ(h) commutes with τ(F⊥i , g
F⊥i ). In particular, c(h) exchanges Λ∗±(F⊥i ).

Let τ̃(F⊥i ) denote the Z2-grading of Λ∗(F⊥i ) defined by

τ̃
Ä
F⊥i
ä∣∣∣

Λ
even
odd (F⊥i )

= ±Id|
Λ

even
odd (F⊥i )

.(1.51)

Now we have the following Z2-graded vector bundles over M :

S(F ) = S+(F )⊕ S−(F ),(1.52)

Λ∗
Ä
F⊥i
ä

= Λ∗+
Ä
F⊥i
ä
⊕ Λ∗−

Ä
F⊥i
ä
, i = 1, 2,(1.53)

and

Λ∗
Ä
F⊥i
ä

= Λeven
Ä
F⊥i
ä
⊕ Λodd

Ä
F⊥i
ä
, i = 1, 2.(1.54)

We form the following Z2-graded tensor product, which will play a role in

Section 2:

W
Ä
F, F⊥1 , F

⊥
2

ä
= S(F )“⊗Λ∗

Ä
F⊥1
ä “⊗Λ∗

Ä
F⊥2
ä
,(1.55)

with the Z2-grading operator given by

τW = τS(F ) · τ
(
F⊥1 , g

F⊥1
)
· τ̃
Ä
F⊥2
ä
,(1.56)

where τS(F ) is the Z2-grading operator defining the splitting in (1.52). We

denote by

W
Ä
F, F⊥1 , F

⊥
2

ä
= W+

Ä
F, F⊥1 , F

⊥
2

ä
⊕W−

Ä
F, F⊥1 , F

⊥
2

ä
(1.57)

the Z2-graded decomposition with respect to τW .

Recall that the connections∇F ,∇F⊥1 and∇F⊥2 have been defined in (1.13).

They lift canonically to Hermitian connections ∇S(F ), ∇Λ∗(F⊥1 ), ∇Λ∗(F⊥2 ) on

S(F ), Λ∗(F⊥1 ), Λ∗(F⊥2 ) respectively, preserving the corresponding Z2-gradings.

Let ∇W (F,F⊥1 ,F
⊥
2 ) be the canonically induced connection on W (F, F⊥1 , F

⊥
2 )

which preserves the canonically induced Hermitian metric on W (F, F⊥1 , F
⊥
2 ),

and also the Z2-grading of W (F, F⊥1 , F
⊥
2 ).

For any vector bundle E over M , by an integral polynomial of E we will

mean a bundle φ(E) which is a polynomial in the exterior and symmetric

powers of E with integral coefficients.

For i = 1, 2, let φi(F
⊥
i ) be an integral polynomial of F⊥i . We denote

the complexification of φi(F
⊥
i ) by the same notation. Then φi(F

⊥
i ) carries

a naturally induced Hermitian metric from gF
⊥
i and also a naturally induced

Hermitian connection ∇φi(F⊥i ) from ∇F⊥i .
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Let W (F, F⊥1 , F
⊥
2 ) ⊗ φ1(F⊥1 ) ⊗ φ2(F⊥2 ) be the Z2-graded vector bundle

over M ,

W
Ä
F, F⊥1 , F

⊥
2

ä
⊗ φ1

Ä
F⊥1
ä
⊗ φ2

Ä
F⊥2
ä

= W+

Ä
F, F⊥1 , F

⊥
2

ä
⊗ φ1

Ä
F⊥1
ä
⊗ φ2

Ä
F⊥2
ä

⊕W−
Ä
F, F⊥1 , F

⊥
2

ä
⊗ φ1

Ä
F⊥1
ä
⊗ φ2

Ä
F⊥2
ä
.

(1.58)

Let∇W⊗φ1⊗φ2 denote the naturally induced Hermitian connection on the above

vector bundle with respect to the naturally induced Hermitian metric on it.

Clearly, ∇W⊗φ1⊗φ2 preserves the Z2-graded decomposition in (1.58).

Let S be the End(TM)-valued one form on M defined by

∇TM = ∇F +∇F⊥1 +∇F⊥2 + S.(1.59)

Let e1, . . . , edimM be an orthonormal basis of TM . Let ∇F,φ1(F⊥1 )⊗φ2(F⊥2 ) be

the Hermitian connection on W (F, F⊥1 , F
⊥
2 )⊗ φ1(F⊥1 )⊗ φ2(F⊥2 ) such that for

any X ∈ Γ(TM),

∇F,φ1(F⊥1 )⊗φ2(F⊥2 )
X = ∇W⊗φ1⊗φ2X +

1

4

dimM∑
i, j=1

〈S(X)ei, ej〉 c (ei) c (ej) .(1.60)

Let the linear operator DF,φ1(F⊥1 )⊗φ2(F⊥2 ) : Γ(W (F, F⊥1 , F
⊥
2 ) ⊗ φ1(F⊥1 ) ⊗

φ2(F⊥2 ))→ Γ(W (F, F⊥1 , F
⊥
2 )⊗ φ1(F⊥1 )⊗ φ2(F⊥2 )) be defined by

DF,φ1(F⊥1 )⊗φ2(F⊥2 ) =
dimM∑
i=1

c (ei)∇
F,φ1(F⊥1 )⊗φ2(F⊥2 )
ei .(1.61)

We call DF,φ1(F⊥1 )⊗φ2(F⊥2 ) a sub-Dirac operator with respect to the spin vector

bundle F .

One verifies that DF,φ1(F⊥1 )⊗φ2(F⊥2 ) is a first order formally self-adjoint el-

liptic differential operator. Let D
F,φ1(F⊥1 )⊗φ2(F⊥2 )
± : Γ(W±(F, F⊥1 , F

⊥
2 )⊗φ1(F⊥1 )

⊗ φ2(F⊥2 )) → Γ(W∓(F, F⊥1 , F
⊥
2 ) ⊗ φ1(F⊥1 ) ⊗ φ2(F⊥2 )) be the corresponding

restrictions of DF,φ1(F⊥1 )⊗φ2(F⊥2 ). Then one hasÅ
D
F,φ1(F⊥1 )⊗φ2(F⊥2 )
+

ã∗
= D

F,φ1(F⊥1 )⊗φ2(F⊥2 )
− .(1.62)

Remark 1.7. In the special case of F = {0}, the above sub-Dirac operator

is simply the sub-Signature operator constructed in [30] (cf. [32]). On the

other hand, in the case where one of F⊥i = {0} (i = 1 or 2), the above

sub-Dirac operator is constructed in [22, §2], which is sufficient for the proof

of Theorem 0.1. The sub-Dirac operator constructed above will be used in

Section 2.5 to prove the Connes vanishing theorem, i.e., Theorem 0.6.

Remark 1.8. When F⊥1 , F⊥2 are also spin and carry fixed spin structures,

then TM = F ⊕ F⊥1 ⊕ F⊥2 is spin and carries an induced spin structure from
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the spin structures on F , F⊥1 and F⊥2 . Moreover, one has the following iden-

tifications of Z2-graded vector bundles (cf. [18]) for i = 1, 2:

(1.63) Λ∗+
Ä
F⊥i
ä
⊕ Λ∗−

Ä
F⊥i
ä

= S+

Ä
F⊥i
ä
⊗ S

Ä
F⊥i
ä∗ ⊕ S− ÄF⊥i ä⊗ S ÄF⊥i ä∗ ,

Λeven
Ä
F⊥i
ä
⊕ Λodd

Ä
F⊥i
ä

=
Ä
S+

Ä
F⊥i
ä
⊗ S+

Ä
F⊥i
ä∗ ⊕ S− ÄF⊥i ä⊗ S− ÄF⊥i ä∗ä

⊕
Ä
S+

Ä
F⊥i
ä
⊗ S−

Ä
F⊥i
ä∗ ⊕ S− ÄF⊥i ä⊗ S+

Ä
F⊥i
ä∗ä

.

(1.64)

By (1.48)–(1.61), (1.63) and (1.64), DF,φ1(F⊥1 )⊗φ2(F⊥2 ) is simply the twisted

Dirac operator

(1.65)

DF,φ1(F⊥1 )⊗φ2(F⊥2 ) : Γ
Ä
S(TM)“⊗S ÄF⊥2 ä∗ ⊗ S ÄF⊥1 ä∗ ⊗ φ1

Ä
F⊥1
ä
⊗ φ2

Ä
F⊥2
ää

−→ Γ
Ä
S(TM)“⊗S ÄF⊥2 ä∗ ⊗ S ÄF⊥1 ä∗ ⊗ φ1

Ä
F⊥1
ä
⊗ φ2

Ä
F⊥2
ää
,

where for i = 1, 2, the Hermitian (dual) bundle of spinors S(F⊥i )∗ associated

to (F⊥i , g
F⊥i ) carries the Hermitian connection induced from ∇F⊥i . The point

of (1.61) is that it only requires F being spin. On the other hand, (1.65) allows

us to take the advantage of applying the calculations already done for usual

(twisted) Dirac operators when doing local computations.

Remark 1.9. It is clear that the definition in (1.61) does not require that

F ⊆ TM be integrable.

Let ∆F,φ1(F⊥1 )⊗φ2(F⊥2 ) denote the Bochner Laplacian defined by

∆F,φ1(F⊥1 )⊗φ2(F⊥2 ) =
dimM∑
i=1

Å
∇F,φ1(F⊥1 )⊗φ2(F⊥2 )
ei

ã2

−∇F,φ1(F⊥1 )⊗φ2(F⊥2 )∑dimM
i=1 ∇TMei ei

.(1.66)

Let kTM be the scalar curvature of gTM and RF
⊥
i (i = 1, 2) be the cur-

vature of ∇F⊥i . Let Rφ1(F⊥1 )⊗φ2(F⊥2 ) be the curvature of the tensor product

connection on φ1(F⊥1 )⊗ φ2(F⊥2 ) induced from ∇φ1(F⊥1 ) and ∇φ2(F⊥2 ).

In view of Remark 1.8, the following Lichnerowicz type formula holds:(
DF,φ1(F⊥1 )⊗φ2(F⊥2 )

)2
= −∆F,φ1(F⊥1 )⊗φ2(F⊥2 )

+
kTM

4
+

1

2

dimM∑
i, j=1

c (ei) c (ej)R
φ1(F⊥1 )⊗φ2(F⊥2 ) (ei, ej)

+
1

8

2∑
k=1

dimM∑
i, j, s, t=1

〈
RF

⊥
k (ei, ej) et, es

〉
c (ei) c (ej) ĉ (es) ĉ (et) .

(1.67)
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When M is compact, by the Atiyah-Singer index theorem [1] (cf. [18]),

one has

ind

Å
D
F,φ1(F⊥1 )⊗φ2(F⊥2 )
+

ã
= 2

q1
2

¨“A(F )L̂
Ä
F⊥1
ä
e
Ä
F⊥2
ä

ch
Ä
φ1

Ä
F⊥1
ää

ch
Ä
φ2

Ä
F⊥2
ää
, [M ]

∂
,

(1.68)

where “A(F ) is the Hirzebruch “A-class (cf. [31, §1.6.3]) of F , L̂(F⊥1 ) is the

Hirzebruch L̂-class (cf. [18, (11.18′) of Chap. III]) of F⊥1 , e(F⊥2 ) is the Euler

class (cf. [31, §3.4]) of F⊥2 , and “ch” is the notation for the Chern character

(cf. [31, §1.6.4]).

1.5. A vanishing theorem for almost isometric foliations. In this subsec-

tion, we assume M is compact and prove a vanishing theorem. Some of the

computations in this subsection will be used in the next section, where we will

deal with the case where M is noncompact.

Let f1, . . . , fq be an oriented orthonormal basis of F . Let h1, . . . , hq1 (resp.

e1, . . . , eq2) be an oriented orthonormal basis of F⊥1 (resp. F⊥2 ).

Let β > 0, ε > 0, and consider the construction in Section 1.4 with respect

to the metric gTMβ,ε defined in (1.11). We still use the superscripts “β, ε” to dec-

orate the geometric data associated to gTMβ,ε . For example, DF,φ1(F⊥1 )⊗φ2(F⊥2 ),β,ε

now denotes the sub-Dirac operator constructed in (1.61) associated to gTMβ,ε .

Moreover, it can be written as

DF,φ1(F⊥1 )⊗φ2(F⊥2 ),β,ε = β−1
q∑
i=1

c (fi)∇
F,φ1(F⊥1 )⊗φ2(F⊥2 ),β,ε
fi

+ ε
q1∑
j=1

c (hj)∇
F,φ1(F⊥1 )⊗φ2(F⊥2 ),β,ε
hj

+
q2∑
s=1

c (es)∇
F,φ1(F⊥1 )⊗φ2(F⊥2 ),β,ε
es .

(1.69)

By (1.69), the Lichnerowicz type formula (1.67) for (DF,φ1(F⊥1 )⊗φ2(F⊥2 ),β,ε)2

takes the following form (compare with [22, Th. 2.3]):(
DF,φ1(F⊥1 )⊗φ2(F⊥2 ),β,ε

)2
= −∆F,φ1(F⊥1 )⊗φ2(F⊥2 ),β,ε +

kTM,β,ε

4
(1.70)

+
1

2β2

q∑
i, j=1

c (fi) c (fj)R
φ1(F⊥1 )⊗φ2(F⊥2 ),β,ε (fi, fj)

+
ε2

2

q1∑
i, j=1

c (hi) c (hj)R
φ1(F⊥1 )⊗φ2(F⊥2 ),β,ε (hi, hj)

+
1

2

q2∑
i, j=1

c (ei) c (ej)R
φ1(F⊥1 )⊗φ2(F⊥2 ),β,ε (ei, ej)
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+
ε

β

q∑
i=1

q1∑
j=1

c (fi) c (hj)R
φ1(F⊥1 )⊗φ2(F⊥2 ),β,ε (fi, hj)

+
1

β

q∑
i=1

q2∑
j=1

c (fi) c (ej)R
φ1(F⊥1 )⊗φ2(F⊥2 ),β,ε (fi, ej)

+ ε
q1∑
i=1

q2∑
j=1

c (hi) c (ej)R
φ1(F⊥1 )⊗φ2(F⊥2 ),β,ε (hi, ej)

+
1

8β2

q∑
i, j=1

q1∑
s, t=1

〈
RF

⊥
1 ,β,ε (fi, fj)ht, hs

〉
c (fi) c (fj) ĉ (hs) ĉ (ht)

+
ε2

8

q1∑
i, j=1

q1∑
s, t=1

〈
RF

⊥
1 ,β,ε (hi, hj)ht, hs

〉
c (hi) c (hj) ĉ (hs) ĉ (ht)

+
1

8

q2∑
i, j=1

q1∑
s, t=1

〈
RF

⊥
1 ,β,ε (ei, ej)ht, hs

〉
c (ei) c (ej) ĉ (hs) ĉ (ht)

+
ε

4β

q∑
i=1

q1∑
j=1

q1∑
s, t=1

〈
RF

⊥
1 ,β,ε (fi, hj)ht, hs

〉
c (fi) c (hj) ĉ (hs) ĉ (ht)

+
1

4β

q∑
i=1

q2∑
j=1

q1∑
s, t=1

〈
RF

⊥
1 ,β,ε (fi, ej)ht, hs

〉
c (fi) c (ej) ĉ (hs) ĉ (ht)

+
ε

4

q1∑
i=1

q2∑
j=1

q1∑
s, t=1

〈
RF

⊥
1 ,β,ε (hi, ej)ht, hs

〉
c (hi) c (ej) ĉ (hs) ĉ (ht)

+
1

8β2

q∑
i, j=1

q2∑
s, t=1

〈
RF

⊥
2 ,β,ε (fi, fj) et, es

〉
c (fi) c (fj) ĉ (es) ĉ (et)

+
ε2

8

q1∑
i, j=1

q2∑
s, t=1

〈
RF

⊥
2 ,β,ε (hi, hj) et, es

〉
c (hi) c (hj) ĉ (es) ĉ (et)

+
1

8

q2∑
i, j=1

q2∑
s, t=1

〈
RF

⊥
2 ,β,ε (ei, ej) et, es

〉
c (ei) c (ej) ĉ (es) ĉ (et)

+
ε

4β

q∑
i=1

q1∑
j=1

q2∑
s, t=1

〈
RF

⊥
2 ,β,ε (fi, hj) et, es

〉
c (fi) c (hj) ĉ (es) ĉ (et)

+
1

4β

q∑
i=1

q2∑
j=1

q2∑
s, t=1

〈
RF

⊥
2 ,β,ε (fi, ej) et, es

〉
c (fi) c (ej) ĉ (es) ĉ (et)

+
ε

4

q1∑
i=1

q2∑
j=1

q2∑
s, t=1

〈
RF

⊥
2 ,β,ε (hi, ej) et, es

〉
c (hi) c (ej) ĉ (es) ĉ (et) .
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By (1.30), (1.45), (1.46) and (1.70), we get that when β>0, ε>0 are small,

(1.71)(
DF,φ1(F⊥1 )⊗φ2(F⊥2 ),β,ε

)2
= −∆F,φ1(F⊥1 )⊗φ2(F⊥2 ),β,ε +

kF

4β2
+O

Ç
1

β
+
ε2

β2

å
.

Proposition 1.10. If kF > 0 over M , then for any Pontrjagin classes

p(F⊥1 ), p′(F⊥2 ) of F⊥1 , F⊥2 respectively, the following identity holds :

(1.72)
¨“A(F )p

Ä
F⊥1
ä
e
Ä
F⊥2
ä
p′
Ä
F⊥2
ä
, [M ]

∂
= 0.

Proof. Since kF > 0 over M , one can take β > 0, ε > 0 small enough so

that the corresponding terms in the right-hand side of (1.71) verifies that

(1.73)
kF

4β2
+O

Ç
1

β
+
ε2

β2

å
> 0

over M . Since −∆F,φ1(F⊥1 )⊗φ2(F⊥2 ),β,ε is nonnegative, by (1.62), (1.71) and

(1.73), one gets

(1.74) ind

Å
D
F,φ1(F⊥1 )⊗φ2(F⊥2 ),β,ε
+

ã
= 0.

From (1.68) and (1.74), we get

(1.75)
¨“A(F )L̂

Ä
F⊥1
ä

ch
Ä
φ1

Ä
F⊥1
ää
e
Ä
F⊥2
ä

ch
Ä
φ2

Ä
F⊥2
ää
, [M ]

∂
= 0.

Now as it is standard that any rational Pontrjagin class of F⊥1 (resp. F⊥2 )

can be expressed as a rational linear combination of characteristic classes of the

form L̂(F⊥1 )ch(φ1(F⊥1 )) (resp. ch(φ2(F⊥2 ))), one gets (1.72) from (1.75). �

Remark 1.11. If one changes the Z2-grading in the definition of the sub-

Dirac operator by replacing τ̃(F⊥2 ) in (1.56) by τ(F⊥2 , g
F⊥2 ), then one can prove

that under the same condition as in Proposition 1.10,¨“A(F )p
Ä
F⊥1
ä
p′
Ä
F⊥2
ä
, [M ]

∂
= 0(1.76)

for any Pontrjagin classes p(F⊥1 ), p′(F⊥2 ) of F⊥1 , F⊥2 .

2. Connes fibration and vanishing theorems

This section is organized as follows. In Section 2.1, we recall the definition

of the Connes fibration and prove some basic properties of it. In Section 2.2,

we introduce a specific deformation of the sub-Dirac operator on the Connes

fibration and prove a key vanishing result for the deformed sub-Dirac operator

on certain compact subsets of the Connes fibration. This motivates the proof

of Theorem 0.1 for the case of dimM = 4k given in Section 2.3. In Section 2.4,

we present the proof of the dimM = 8k + i (i = 1, 2) cases of Theorem 0.1.

Finally, in Section 2.5 we present the proof of Theorem 0.6 and state some new

vanishing results.
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2.1. The Connes fibration. Let (M,F ) be a compact foliation; i.e., F is

an integrable subbundle of the tangent vector bundle TM of a closed mani-

fold M . For any vector space E of rank n, let E be the set of all Euclidean

metrics on E. It is well known that E is the noncompact homogeneous space

GL(n,R)+/SO(n) (with dim E = n(n+1)
2 ), which carries a natural Riemann-

ian metric of nonpositive sectional curvature (cf. [15]). In particular, any two

points of E can be joined by a unique geodesic.

Following [10, §5], let π :M→ M be the fibration over M such that for

any x ∈M ,Mx = π−1(x) is the space of Euclidean metrics on the linear space

TxM/Fx.

Let T VM denote the vertical tangent bundle of the fibration π :M→M .

Then it carries a natural metric gT
VM such that any two points p, q ∈ Mx,

with x ∈M , can be joined by a unique geodesic in Mx. Let dMx(p, q) denote

the length of this geodesic.

By using the Bott connection on TM/F (cf. (1.2)), which is leafwise flat,

one lifts F to an integrable subbundle F of TM.4 Let gF be a Euclidean

metric on F , which lifts to a Euclidean metric gF = π∗gF on F .

For any v ∈ M, TvM/(Fv ⊕ T Vv M) is identified with Tπ(v)M/Fπ(v) un-

der the projection π : M → M . By definition, v determines a metric on

Tπ(v)M/Fπ(v), which in turn determines a metric on TvM/(Fv ⊕ T Vv M). In

this way, TM/(F ⊕ T VM) carries a canonically induced metric.

Let F⊥1 ⊆ TM be a subbundle, which is transversal to F ⊕ T VM, such

that we have a splitting TM = (F ⊕T VM)⊕F⊥1 . Then F⊥1 can be identified

with TM/(F ⊕ T VM) and carries a canonically induced metric gF
⊥
1 . From

now on we use the notation F⊥2 = T VM.

Let gTM be the Riemannian metric on M defined by the following or-

thogonal splitting:

TM = F ⊕ F⊥1 ⊕F⊥2 , gTM = gF ⊕ gF⊥1 ⊕ gF⊥2 .(2.1)

Let p⊥2 be the orthogonal projection from TM to F⊥2 . Let ∇TM be the Levi-

Civita connection of gTM. Then ∇F⊥2 = p⊥2 ∇TMp⊥2 is a Euclidean connection

on F⊥2 not depending on gF and gF
⊥
1 .

By [10, Lemma 5.2], (M,F) admits an almost isometric structure with

respect to the metrics given by (2.1). In particular, for any X ∈ Γ(F), Ui, Vi ∈

4Indeed, the Bott connection on TM/F determines an integrable lift F̃ of F in TM̃, where

(locally) M̃ = GL(TM/F )+ is the GL(q1,R)+ (with q1 = rk(TM/F )) principal bundle of

oriented frames over M . Now as M̃ is a principal SO(q1) bundle over M, F̃ determines an

integrable subbundle F of TM.
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Γ(F⊥i ) with i = 1, 2, one has by (1.7) that

〈[X,Ui], Vi〉+ 〈Ui, [X,Vi]〉 = X〈Ui, Vi〉,
〈[X,U2], U1〉 = 0.

(2.2)

Take a metric on TM/F . This is equivalent to taking an embedded section

s : M ↪→M of the Connes fibration π : M→ M . Then we have a canonical

inclusion s(M) ⊂M.

For any p ∈ M \ s(M), we connect p and s(π(p)) ∈ s(M) by the unique

geodesic in Mπ(p). Let σ(p) ∈ F⊥2 |p denote the unit vector tangent to this

geodesic. Let ρ(p) = dMπ(p)(p, s(π(p))) denote the length of this geodesic.

The following simple result will play a key role in what follows.

Lemma 2.1. There exists A1 > 0, depending only on the embedding s :

M ↪→ M, such that for any X ∈ Γ(F) with |X| ≤ 1, the following pointwise

inequalities hold on M\ s(M):

|X(ρ)| ≤ A1,(2.3)

∣∣∣∣∇F⊥2X σ

∣∣∣∣ ≤ A1

ρ
.(2.4)

In particular, the following inequality holds on M:∣∣∣∣∇F⊥2X (ρσ)

∣∣∣∣ ≤ 2A1.(2.5)

Proof. Since the estimates to be proved are local, we may well assume

that there is Y ∈ Γ(F ) over M , with |Y | ≤ 1, such that X = π∗Y . Let φt
(resp. φ̃t), t ∈ R, be the one-parameter group of diffeomorphisms on M (resp.

M) generated by Y (resp. X = π∗Y ). Then φ̃t is the lift of φt.

Take any p ∈M\s(M). By [10, Lemma 5.2] and (2.2), one sees that each

φ̃t maps the fiberMπ(p) isometrically to the fiberMφt(π(p)). Thus, it maps the

geodesic connecting p and s(π(p)) in Mπ(p) to the geodesic connecting φ̃t(p)

and φ̃t(s(π(p))) in Mφt(π(p)), such that ρ(p) = dMφt(π(p))(φ̃t(p), φ̃t(s(π(p)))).

Thus, one has∣∣∣ρ Äφ̃t(p)ä− ρ(p)
∣∣∣

=
∣∣∣dMφt(π(p))

Ä
φ̃t(p), s(φt(π(p)))

ä
− dMφt(π(p))

Ä
φ̃t(p), φ̃t(s(π(p)))

ä∣∣∣
≤ dMφt(π(p))

Ä
s(φt(π(p))), φ̃t(s(π(p)))

ä
= ρ
Ä
φ̃t(s(π(p)))

ä
.

(2.6)

Since at p one has X(ρ) = limt→0+
ρ(φ̃t(p))−ρ(p)

t , (2.3) follows from (2.6)

and the following lemma.
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Lemma 2.2. There exist c0, A0 > 0, depending only on the embedding

s : M ↪→M, such that for any x ∈ s(M) and 0 ≤ t ≤ c0, one has

ρ
Ä
φ̃t(x)

ä
≤ A0t.(2.7)

Proof. Take any x ∈ s(M). If t = 0, then (2.7) clearly holds. Recall that

φ̃t maps Mπ(p) isometrically to Mφt(π(p)). Thus one has

ρ
Ä
φ̃t(x)

ä
= ρ
Ä
φ̃−1
t (s(φt(π(x))))

ä
.(2.8)

Since φ̃−1
t (s(φt(π(x)))) depends smoothly on t, one sees from (2.8) that (2.7)

holds at x ∈ s(M). By the compactness of s(M), it holds for all x ∈ s(M). �

To prove (2.4), we first observe that by (2.2) one has that for any U ∈
Γ(F⊥2 ), the following identity holds (cf. (1.25)),

p⊥2 ∇TMU X = 0.(2.9)

From (2.9) and the fact that [X,σ] = [π∗Y, σ] ∈ Γ(F⊥2 ) (cf. [4, Lemma

10.7]), one sees that in order to prove (2.4), one need only to prove that

|[X,σ]| ≤ A1

ρ
.(2.10)

To prove (2.10), recall that (cf. [9, Th. 2.3 of Ch. 6])

[X,σ] = lim
t→0+

σ −
Ä
φ̃t
ä
∗ σ

t
.(2.11)

Since φ̃t maps geodesics inMφ−t(π(p)) to geodesics inMπ(p), one sees as in

[10, §5] that at p ∈M\s(M), (φ̃t)∗σ is the unit vector tangent to the geodesic

connecting p and φ̃t(s(φ−t(π(p)))).

Let αp be the angle at p of the geodesic triangle in Mπ(p) with vertices

p, s(π(p)) and φ̃t(s(φ−t(π(p)))). Then one has∣∣∣σ − Äφ̃tä∗ σ∣∣∣2 = 2 (1− cos (αp)) .(2.12)

Since Mπ(p) is of nonpositive curvature, one has (cf. [15, Cor. I.13.2]),Ä
ρ
Ä
φ̃t (s (φ−t(π(p))))

ää2 ≥ 2 (1− cos (αp)) ρ(p) dMπ(p)
Ä
p, φ̃t (s (φ−t(π(p))))

ä
.

(2.13)

From (2.12) and (2.13), one gets

∣∣∣σ − Äφ̃tä∗ σ∣∣∣ ≤ ρ
Ä
φ̃t (s (φ−t(π(p))))

ä√
ρ(p) dMπ(p)

Ä
p, φ̃t (s (φ−t(π(p))))

ä .(2.14)

From (2.11), (2.14) and proceeding as in Lemma 2.2, one gets (2.10). �
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2.2. Sub-Dirac operators and the vanishing on compact subsets. From now

on we assume that there is δ > 0 such that kF ≥ δ over M . We also assume

that M is spin and carries a fixed spin structure, then F ⊕ F⊥1 = π∗(TM) is

spin and carries an induced spin structure. For simplicity, we also assume first

that F⊥2 is oriented and both TM and F⊥2 are of even rank.

For any β, ε > 0, following (1.11), let gTMβ,ε be the deformed metric of

(2.1) on M defined by the orthogonal splitting

TM = F ⊕ F⊥1 ⊕F⊥2 , gTMβ,ε = β2gF ⊕ gF
⊥
1

ε2
⊕ gF⊥2 .(2.15)

In what follows, we will use the subscripts (or superscripts) β, ε to dec-

orate the geometric objects with respect to the deformed metric gTMβ,ε . It is

clear that for any X ∈ F ⊕ F⊥1 and U ∈ F⊥2 , cβ,ε(X), c(U) and ĉ(U) act on

Sβ,ε(F ⊕ F⊥1 )“⊗Λ∗(F⊥2 ) and exchange (Sβ,ε(F ⊕ F⊥1 )“⊗Λ∗(F⊥2 ))±.

Let f1, . . . , fq (resp. h1, . . . , hq1 ; resp. e1, . . . , eq2) be an orthonormal basis

of (F , gF ) (resp. (F⊥1 , gF
⊥
1 ); resp. (F⊥2 , gF

⊥
2 )). By proceeding as in [22, §2]

and Sections 1.4 and 1.5, we construct the sub-Dirac operator (cf. (1.61) and

(1.69), where we take F in (1.61) to be F ⊕ F⊥1 , F⊥1 in (1.61) to be zero and

F⊥2 in (1.61) to be F⊥2 )

DF⊕F⊥1 ,β,ε
: Γ
Ä
Sβ,ε(F ⊕ F⊥1 )“⊗Λ∗

Ä
F⊥2
ää
−→ Γ

Ä
Sβ,ε(F ⊕ F⊥1 )“⊗Λ∗

Ä
F⊥2
ää(2.16)

given by

DF⊕F⊥1 ,β,ε
=

q∑
i=1

β−1cβ,ε
Ä
β−1fi

ä
∇β,εfi +

q1∑
s=1

ε cβ,ε (εhs)∇β,εhs +
q2∑
j=1

c (ej)∇β,εej ,

(2.17)

where as in (1.69), ∇β,ε is the canonical connection on Sβ,ε(F ⊕F⊥1 )“⊗Λ∗(F⊥2 )

determined by (1.60) with respect to gTMβ,ε . In particular, in view of Remark 1.8,

one has î
∇β,ε, ĉ(σ)

ó
= ĉ

(
∇F⊥2 σ

)
.(2.18)

Let DF⊕F⊥1 ,β,ε,±
acting on (Sβ,ε(F ⊕ F⊥1 )“⊗Λ∗(F⊥2 ))± be the restrictions

of DF⊕F⊥1 ,β,ε
, then (

DF⊕F⊥1 ,β,ε,+

)∗
= DF⊕F⊥1 ,β,ε,−

.(2.19)

For any R > 0, denote

MR = {p ∈M : ρ(p) ≤ R}.(2.20)

Then MR is a smooth manifold with boundary ∂MR.
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Let f : [0, 1]→ [0, 1] be a smooth function such that f(t) = 0 for 0 ≤ t ≤ 1
4 ,

while f(t) = 1 for 1
2 ≤ t ≤ 1. Let h : [0, 1] → [0, 1] be a smooth function such

that h(t) = 1 for 0 ≤ t ≤ 3
4 , while h(t) = 0 for 7

8 ≤ t ≤ 1.

Inspired by [5] and [10], we make the following deformation of DF⊕F⊥1 ,β,ε
on MR, which will play a key role in what follows:

DF⊕F⊥1 ,β,ε
+
f
( ρ
R

)
ĉ(σ)

β
.(2.21)

Remark 2.3. The usual deformation from the analytic localization point

of view (such as in [5]) deforms DF⊕F⊥1 ,β,ε
by T ĉ(ρσ), with T > 0 being

independent of β and ε. On the other hand, fc(σ) has occurred in [10], where

it is viewed as the symbol of a fiberwise Dirac operator. Here we use f ĉ(σ)/β

to deform DF⊕F⊥1 ,β,ε
, while Lemma 2.1 allows us to get the needed estimates

given in the following lemma.

Lemma 2.4. There exists R0 > 0 such that for any (fixed) R ≥ R0, when

β, ε > 0 (which may depend on R) are small enough,

(i) for any s ∈ Γ(Sβ,ε(F ⊕ F⊥1 )“⊗Λ∗(F⊥2 )) supported in MR, one has5∥∥∥∥∥
Ç
DF⊕F⊥1 ,β,ε

+
f
( ρ
R

)
ĉ(σ)

β

å
s

∥∥∥∥∥ ≥
√
δ

4β
‖s‖;(2.22)

(ii) for any s ∈ Γ(Sβ,ε(F ⊕ F⊥1 )“⊗Λ∗(F⊥2 )) supported in MR \MR
2

, one has∥∥∥∥∥
Ç
h

Å
ρ

R

ã
DF⊕F⊥1 ,β,ε

h

Å
ρ

R

ã
+
ĉ(σ)

β

å
s

∥∥∥∥∥ ≥ 1

2β
‖s‖.(2.23)

Proof. In view of Remark 1.8 and (2.17), one hasÇ
DF⊕F⊥1 ,β,ε

+
f
( ρ
R

)
ĉ(σ)

β

å2

= D2
F⊕F⊥1 ,β,ε

+
f ′
( ρ
R

)
βR

cβ,ε(dρ)ĉ(σ)

+
f
( ρ
R

)
β

[
DF⊕F⊥1 ,β,ε

, ĉ(σ)
]

+
f
( ρ
R

)2
β2

,

(2.24)

where we identify dρ with the gradient of ρ.

By definition, one has on M\ s(M) that

cβ,ε(dρ) =
q∑
i=1

β−1cβ,ε
Ä
β−1fi

ä
fi(ρ) +

q1∑
s=1

ε cβ,ε (εhs)hs(ρ) +
q2∑
j=1

c (ej) ej(ρ).

(2.25)

5The norms below depend on β and ε. In case of no confusion, we omit the subscripts for

simplicity.
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By (2.17) and (2.18), one has on M\ s(M) that

[
DF⊕F⊥1 ,β,ε

, ĉ(σ)
]

=
q∑
i=1

β−1cβ,ε
Ä
β−1fi

ä
ĉ

Å
∇F

⊥
2

fi
σ

ã
+

q1∑
s=1

ε cβ,ε (εhs) ĉ

Å
∇F

⊥
2

hs
σ

ã
+

q2∑
j=1

c (ej) ĉ

Å
∇F

⊥
2

ej σ

ã
.

(2.26)

By Lemma 2.1, (2.25) and (2.26), we find that there exists a constant

C > 0, not depending on R, β, ε > 0, such that the following inequality holds

on MR \ s(M):

|cβ,ε(dρ)|
R

+ f

Å
ρ

R

ã ∣∣∣[DF⊕F⊥1 ,β,ε, ĉ(σ)
]∣∣∣ ≤ C

βR
+OR (1) ,(2.27)

where by OR(·) we mean that the estimating constant might depend on R > 0.

On the other hand, by (1.71), the following formula holds on MR:

D2
F⊕F⊥1 ,β,ε

= −∆β,ε +
kF

4β2
+OR

Ç
1

β
+
ε2

β2

å
,(2.28)

where −∆β,ε ≥ 0 is the corresponding Bochner Laplacian and kF = π∗kF ≥ δ.
From (2.24), (2.27) and (2.28), one sees that if one first fixes a sufficiently

large R > 0 and then makes β > 0, ε > 0 sufficiently small, one deduces (2.22)

easily.

Now by (2.17) one has on MR \ s(M) thatÇ
h

Å
ρ

R

ã
DF⊕F⊥1 ,β,ε

h

Å
ρ

R

ã
+
ĉ(σ)

β

å2

=

Å
h

Å
ρ

R

ã
DF⊕F⊥1 ,β,ε

h

Å
ρ

R

ãã2

+
h
( ρ
R

)2
β

[
DF⊕F⊥1 ,β,ε

, ĉ(σ)
]

+
1

β2
.

(2.29)

From (2.27) and (2.29), one gets (2.23), where Supp(s) ⊆ MR \ MR
2

,

similarly. �

Lemma 2.4 motivates the proof of Theorem 0.1 (for the case of dimM =

4k) given in Section 2.3, where we make use of a trick of Braverman [8, §14].

This approach reflects the topological nature of the “A-genus and the involved

indices.

2.3. Proof of Theorem 0.1 for the case of dimM = 4k. Let ∂MR bound

another oriented manifold NR so that ÑR =MR∪NR is a closed manifold (for

example, one can take the double ofMR). Let E be a Hermitian vector bundle

over MR such that (Sβ,ε(F ⊕ F⊥1 )“⊗Λ∗(F⊥2 ))− ⊕ E is a trivial vector bundle

overMR. Then (Sβ,ε(F ⊕F⊥1 )“⊗Λ∗(F⊥2 ))+ ⊕E is a trivial vector bundle near

∂MR, under the identification ĉ(σ) + IdE .
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By obviously extending the above trivial vector bundles to NR, we get

a Z2-graded Hermitian vector bundle ξ = ξ+ ⊕ ξ− over ÑR and an odd self-

adjoint endomorphism V = v + v∗ ∈ Γ(End(ξ)) (with v : Γ(ξ+) → Γ(ξ−), v∗

being the adjoint of v) such that

ξ± =
Ä
Sβ,ε

Ä
F ⊕ F⊥1

ä “⊗Λ∗
Ä
F⊥2
ää
± ⊕ E(2.30)

over MR, V is invertible on NR and

V = f

Å
ρ

R

ã
ĉ(σ) + IdE(2.31)

on MR, which is invertible on MR \MR
2

.

Recall that h( ρR) vanishes near ∂MR. We extend it to a function on ÑR
which equals to zero on NR, and we denote the resulting function on ÑR by

h̃R. Let π‹NR : T ÑR → ÑR be the projection of the tangent bundle of ÑR. Let

γ‹NR ∈ Hom(π∗‹NRξ+, π
∗‹NRξ−) be the symbol defined by

γ
‹NR(p, w) = π∗‹NR Ä√−1 h̃2

R cβ,ε(w) + v(p)
ä

for p ∈ ÑR, w ∈ TpÑR.(2.32)

By (2.31) and (2.32), γ‹NR is singular only if w = 0 and p ∈MR
2

. Thus γ‹NR is

an elliptic symbol.

On the other hand, it is clear that h̃RDF⊕F⊥1 ,β,ε
h̃R is well defined on ÑR

if we define it to equal to zero on ÑR \MR.

Let A : L2(ξ) → L2(ξ) be a second order positive elliptic differential

operator on ÑR preserving the Z2-grading of ξ = ξ+⊕ξ−, such that its symbol

equals to |η|2 at η ∈ T ÑR. (To be more precise, here A also depends on

the defining metric. We omit the corresponding subscript/superscript only for

convenience.) Let PR,β,ε : L2(ξ)→ L2(ξ) be the zeroth order pseudodifferential

operator on ÑR defined by

(2.33) PR,β,ε = A−
1
4 h̃RDF⊕F⊥1 ,β,ε

h̃RA
− 1

4 +
V

β
.

Let PR,β,ε,+ : L2(ξ+) → L2(ξ−) be the obvious restriction. Then the princi-

pal symbol of PR,β,ε,+, which we denote by γ(PR,β,ε,+), is homotopic through

elliptic symbols to γ‹NR . Thus PR,β,ε,+ is a Fredholm operator. Moreover, by

the Atiyah-Singer index theorem [1] (cf. [18, Th. 13.8 of Ch. III]), one finds

(2.34) ind (PR,β,ε,+) = “A(M).

Inspired by [8, §14] (see also [24, §3]), for any 0 ≤ t ≤ 1, set

(2.35) PR,β,ε,+(t) = A−
1
4 h̃RDF⊕F⊥1 ,β,ε

h̃RA
− 1

4 +
tv

β
+A−

1
4

(1− t)v
β

A−
1
4 .

Then PR,β,ε,+(t) is a smooth family of zeroth order pseudodifferential operators

such that the corresponding symbol γ(PR,β,ε,+(t)) is elliptic for 0 < t ≤ 1. Thus
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PR,β,ε,+(t) is a continuous family of Fredholm operators for 0 < t ≤ 1 with

PR,β,ε,+(1) = PR,β,ε,+.

Now since PR,β,ε,+(t) is continuous on the whole [0, 1], in view of (2.34),

if PR,β,ε,+(0) is Fredholm and has vanishing index, then Theorem 0.1 follows

from (2.34).

Thus we need only to prove the following result.

Proposition 2.5. There exist R, β, ε > 0 such that the following iden-

tity holds :

(2.36) dim (ker (PR,β,ε,+(0))) = dim (ker (PR,β,ε,+(0)∗)) = 0.

Proof. By definition, PR,β,ε(0) : L2(ξ)→ L2(ξ) is given by

(2.37) PR,β,ε(0) = A−
1
4 h̃RDF⊕F⊥1 ,β,ε

h̃RA
− 1

4 +A−
1
4
V

β
A−

1
4 .

By (2.19), PR,β,ε(0) is formally self-adjoint. Thus we need to show that

(2.38) dim (ker (PR,β,ε(0))) = 0

for certain R, β, ε > 0. Let s ∈ ker(PR,β,ε(0)). By (2.37) one hasÅ
h̃RDF⊕F⊥1 ,β,ε

h̃R +
V

β

ã
A−

1
4 s = 0.(2.39)

Since h̃R = 0 on ÑR \MR, while V is invertible on ÑR \MR, by (2.39)

one has

(2.40) A−
1
4 s = 0 on ÑR \MR.

Write on MR that

(2.41) A−
1
4 s = s1 + s2,

with s1 ∈ L2(Sβ,ε(F ⊕ F⊥1 )“⊗Λ∗(F⊥2 )) and s2 ∈ L2(E).

By (2.31), (2.39) and (2.41), one has

s2 = 0,(2.42)

while Ç
h̃RDF⊕F⊥1 ,β,ε

h̃R +
f
( ρ
R

)
ĉ(σ)

β

å
s1 = 0.(2.43)

We need to show that (2.43) implies s1 = 0. Let α : [0, 1] → [0, 1] be a

smooth function such that α(t) = 0 for 0 ≤ t ≤ 1
2 , while α(t) = 1 for 2

3 ≤ t ≤ 1.

Following [5, p. 115], let α1, α2 be the smooth functions on MR defined by

α1 =
1− α

( ρ
R

)Ä
α
( ρ
R

)2 +
(
1− α

( ρ
R

))2ä 1
2

, α2 =
α
( ρ
R

)Ä
α
( ρ
R

)2 +
(
1− α

( ρ
R

))2ä 1
2

.(2.44)
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Then α2
1 + α2

2 = 1 on MR. Clearly, α1h̃R = α1, α2f( ρR) = α2. Thus, one has∥∥∥∥∥
Ç
h̃RDF⊕F⊥1 ,β,ε

h̃R +
f
( ρ
R

)
ĉ(σ)

β

å
s1

∥∥∥∥∥
2

=

∥∥∥∥∥α1

Ç
DF⊕F⊥1 ,β,ε

+
f
( ρ
R

)
ĉ(σ)

β

å
s1

∥∥∥∥∥
2

+

∥∥∥∥∥α2

Ç
h̃RDF⊕F⊥1 ,β,ε

h̃R +
ĉ(σ)

β

å
s1

∥∥∥∥∥
2

,

(2.45)

from which one gets

√
2

∥∥∥∥∥
Ç
h̃RDF⊕F⊥1 ,β,ε

h̃R +
f
( ρ
R

)
ĉ(σ)

β

å
s1

∥∥∥∥∥
≥
∥∥∥∥∥α1

Ç
DF⊕F⊥1 ,β,ε

+
f
( ρ
R

)
ĉ(σ)

β

å
s1

∥∥∥∥∥
+

∥∥∥∥∥α2

Ç
h̃RDF⊕F⊥1 ,β,ε

h̃R +
ĉ(σ)

β

å
s1

∥∥∥∥∥
≥
∥∥∥∥∥
Ç
DF⊕F⊥1 ,β,ε

+
f
( ρ
R

)
ĉ(σ)

β

å
(α1s1)

∥∥∥∥∥
+

∥∥∥∥∥
Ç
h̃RDF⊕F⊥1 ,β,ε

h̃R +
ĉ(σ)

β

å
(α2s1)

∥∥∥∥∥
− ‖cβ,ε (dα1) s1‖ − ‖cβ,ε (dα2) s1‖ ,

(2.46)

where for each i ∈ {1, 2}, we identify dαi with the gradient of αi.

By Lemma 2.1, (2.25) and (2.44), there is C1 > 0, not depending on

R, β, ε > 0, such that

|cβ,ε (dα1)|+ |cβ,ε (dα2)| ≤ C1

βR
+OR(1).(2.47)

From Lemma 2.4, (2.46) and (2.47), one finds that there exist R, β, ε > 0

such that ∥∥∥∥∥
Ç
h̃RDF⊕F⊥1 ,β,ε

h̃R +
f
( ρ
R

)
ĉ(σ)

β

å
s1

∥∥∥∥∥ ≥ ‖s1‖√
β
.(2.48)

From (2.39)–(2.43), (2.48) and the invertibility of A−
1
4 , one sees that for

suitable R, β, ε > 0, (2.38) holds. This completes the proof of Proposition 2.5,

which implies Theorem 0.1 for the case of dimM = 4k, when F⊥2 is orientable

and of even rank. �

If rk(F⊥2 ) is not even, we can consider M ×M ×M ×M to make it even.

If F⊥2 is not orientable, then we can consider the double covering of M with



POSITIVE SCALAR CURVATURE ON FOLIATIONS 1063

respect to w1(F⊥2 ), the first Stiefel-Whitney class of F⊥2 , and consider the pull-

back of F⊥2 on the double covering. The proof of Theorem 0.1 for the case of

dimM = 4k is thus completed.

Remark 2.6. One may also use ρ
R instead of f( ρR) in the above proof.

2.4. The case of the mod 2 index. In this subsection, we consider the cases

of dimM = 8k + i, i = 1, 2. Here we deal with the case of dimM = 8k + 1,

where one considers real operators as in [2], in detail. By multiplying M by a

Bott manifold of dimension eight, which is a compact spin manifold B8 such

that “A(B8) = 1, we may well assume that q1 > 1. Then ∂MR is connected.

Let f1, . . . , fq+q1 be an oriented orthonormal basis of F⊕F⊥1 with respect

to the metric β2gF ⊕ gF
⊥
1

ε2
. Set

τβ,ε = cβ,ε (f1) · · · cβ,ε (fq+q1) .(2.49)

Let τ̂ be the Z2-grading operator for Λ∗(F⊥2 ) = Λeven(F⊥2 )⊕ Λodd(F⊥2 ).

Inspired by [2, §3] and [6, (3.1)] (compare with [29], which deals with the

case of dimM = 8k + 2), we modify the sub-Dirac operator in (2.16) by

τ̂ τβ,εDF⊕F⊥1 ,β,ε
: Γ
Ä
Sβ,ε(F ⊕ F⊥1 )⊗ Λ∗

Ä
F⊥2
ää

−→ Γ
Ä
Sβ,ε(F ⊕ F⊥1 )⊗ Λ∗

Ä
F⊥2
ää
,

(2.50)

which is formally skew-adjoint. (Here by dimension reason there is no Z2-

grading of the real spinor bundle Sβ,ε(F ⊕ F⊥1 ).) We also modify V = v + v∗

in (2.31) by “V = v̂ − v̂∗(2.51)

such that one has, on MR, the following formula for v̂ acting between real

vector bundles:

(2.52) v̂ = f

Å
ρ

R

ã
τ̂ ĉ(σ) + IdE : Γ

Ä
Sβ,ε(F ⊕ F⊥1 )⊗ Λeven

Ä
F⊥2
ä
⊕ E
ä

−→ Γ
Ä
Sβ,ε(F ⊕ F⊥1 )⊗ Λodd

Ä
F⊥2
ä
⊕ E
ä
.

We then modify the operator PR,β,ε in (2.33) by“PR,β,ε = A−
1
4 h̃Rτβ,ετ̂ DF⊕F⊥1 ,β,ε

h̃RA
− 1

4 +
“V
β
,(2.53)

which is clearly formally skew-adjoint. By direct computation, one has

(τ̂ ĉ(σ))∗ = ĉ(σ)τ̂ = −τ̂ ĉ(σ)(2.54)

and that for any X ∈ TM,

τ̂ τc(X)τ̂ ĉ(σ) + τ̂ ĉ(σ)τ̂ τc(X) = τc(X)ĉ(σ)− ĉ(σ)τc(X) = 0.(2.55)
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From (2.53)–(2.55), one sees that (“PR,β,ε)2 has an elliptic symbol. Thus“PR,β,ε is a zeroth order real skew-adjoint elliptic pseudodifferential operator,

and thus admits a mod 2 index in the sense of [2]. Moreover, by the mod 2

index theorem in [2] (cf. [18]), one has

α(M) = dim
Ä
ker
Ä“PR,β,εää mod 2.(2.56)

Now by proceeding as in Section 2.3, one sees that there are R, β, ε > 0

such that

dim
Ä
ker
Ä“PR,β,εää ∈ 2Z.(2.57)

From (2.56) and (2.57), one gets α(M) = 0.

2.5. Proof of the Connes vanishing theorem and more. Without loss of

generality, we may and we will assume that all F = π∗F , F⊥1 and F⊥2 are

oriented and of even rank. The main concern here is that we only assume F is

spin, not TM . Thus, here F = π∗F is spin and carries a fixed spin structure.

Instead of the sub-Dirac operator considered in (2.16), we now consider

the sub-Dirac operator constructed as in (1.61),

D
F ,φ(F⊥1 )
β,ε : Γ

Ä
S(F)“⊗Λ∗

Ä
F⊥1
ä “⊗Λ∗

Ä
F⊥2
ä
⊗ φ
Ä
F⊥1
ää

−→ Γ
Ä
S(F)“⊗Λ∗

Ä
F⊥1
ä “⊗Λ∗

Ä
F⊥2
ä
⊗ φ
Ä
F⊥1
ää
.

(2.58)

Now we can proceed as in Sections 2.2 and 2.3, by replacing the sub-Dirac

operator in (2.16) by D
F ,φ(F⊥1 )
β,ε above.

In particular, by the Atiyah-Singer index theorem [1], the right-hand side

of the formula corresponding to (2.34) is now

2
q1
2

¨“A(F )L̂(TM/F )ch(φ(TM/F )), [M ]
∂
.(2.59)

In summary, if kF is positive over M , then we get¨“A(F )L̂(TM/F )ch(φ(TM/F )), [M ]
∂

= 0.(2.60)

Now as any rational Pontrjagin class of TM/F can be expressed as a

rational linear combination of classes of form L̂(TM/F )ch(φ(TM/F )), one

gets from (2.60) that for any Pontrjagin class p(TM/F ) of TM/F , one has¨“A(F )p(TM/F ), [M ]
∂

= 0,(2.61)

which has been proved in [10, Cor. 8.3]. In particular, one has“A(M) =
¨“A(TM), [M ]

∂
=
¨“A(F )“A(TM/F ), [M ]

∂
= 0,(2.62)

which completes the proof of Theorem 0.6.

Remark 2.7. If one modifies the sub-Dirac operator in (2.16) by twist-

ing an integral power of F⊥1 , then one sees that (2.61) also holds under the

condition of Theorem 0.1. This generalizes [22, Th. 3.1].
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By further modifying the sub-Dirac operators involved above, one gets the

following generalization of Theorems 0.1 and 0.6. (Compare with [22, Th. 3.2].)

Theorem 2.8. Under the assumptions of either Theorem 0.1 or 0.6, if

TM/F is also oriented, then for any Pontrjagin class p(TM/F ) of TM/F ,

one has for any integer k ≥ 0 that¨“A(F )p(TM/F )e(TM/F )k, [M ]
∂

= 0.(2.63)

In particular, ¨“A(F )e(TM/F ), [M ]
∂

= 0.(2.64)

Under the assumption of Theorem 2.8, if one assumes that dimM = 6

and rk(F ) = 4, then by (2.63) one gets¨
e(TM/F )3, [M ]

∂
= 0.(2.65)

From (2.65), one obtains the following partial complement to a classical

result of Bott [7, Cor. 1.7], which states that there is no smooth codimension

two foliation on the complex projective space CP 2n+1 with n ≥ 2.

Corollary 2.9. There is no smooth codimension two foliation of positive

leafwise scalar curvature on CP 3.
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